Darstellung intramyokardialer Temperaturphänomene während der Radiofrequenz-Katheterablation mittels Thermografie im In-vitro-Modell

Dissertation
zum Erwerb des Doktorgrades der Medizin
an der Medizinischen Fakultät der
Ludwig-Maximilians-Universität zu München

vorgelegt von
Frank Gindele
aus
Ravensburg
2005
Mit Genehmigung der Medizinischen Fakultät
der Universität München

Berichterstatter: Priv. Doz. Dr. med. C. Reithmann

Mitberichterstatter: Priv. Doz. Dr. med. V. Klauss

Priv. Doz. Dr. med. R. Waidelich

Mitbetreuung durch den promovierten Mitarbeiter: Dr. med. M. Fiek

Dekan: Prof. Dr. med. med. D. Reinhardt

Tag der mündlichen Prüfung: 15.12.2005
Meinen Eltern
1 EINLEITUNG ..5

1.1 Supraventrikuläre Tachykardien (SVT) .. 6
 1.1.1 Vorhofflimmern ... 7
 1.1.2 Vorhofflattern .. 9
 1.1.3 AV-Knoten-Reentrytachykardie (AVNRT) 10
 1.1.4 Wolff-Parkinson-White-Syndrom (WPW-Syndrom) 13
 1.1.5 Ektope atriale Tachykardien (EAT) ... 15

1.2 Ventrikuläre Herzrhythmusstörungen ... 17
 1.2.1 Ventrikuläre Tachykardie (VT) .. 17
 1.2.2 Kammerflimmern (VF) .. 20

1.3 Therapiemethoden tachykarder Herzrhythmusstörungen 21
 1.3.1 Antiarrhythmisch medikamentöse Therapie 21
 1.3.2 Rhythmuschirurgische Therapie ... 22
 1.3.3 Katheterablation ... 23

1.4 Klinische Evaluierung des Ablationserfolges 31
 1.4.1 Temperaturmessung .. 31
 1.4.2 Impedanzmessung ... 31
 1.4.3 Kinetik des Nekrosewachstums ... 32

1.5 Limitierungen der konventionellen Kathetertechnologie 33

1.6 Alternative Energiequellen und Ablationstechniken 34

1.7 Ziel der Studie .. 35

2 MATERIAL UND METHODIK ..37

2.1 In-vitro-Versuchsaufbau ... 37
 2.1.1 Optisches Medium .. 39
 2.1.2 Thermokamera ... 40
 2.1.3 Elektrodenkatheter ... 41
 2.1.4 Radiofrequenzgenerator .. 43
 2.1.5 Ablationssubstrat .. 43

2.2 Versuchsdurchführung ... 43

2.3 Auswertung der Thermografiedaten ... 46

2.4 Statistische Analyse ... 47
3 ERGEBNISSE..49

3.1 Entwicklung und Validierung des Versuchsaufbaus..........................49
 3.1.1 Ermittlung eines optimalen optischen Mediums..........................49
 3.1.2 Transmissionsgrad der Saphirglasscheibe51
 3.1.3 Validierung des Versuchsaufbaus ..53

3.2 4mm-Standard-Katheter ..54
 3.2.1 Qualitative Auswertung der Thermografiemessungen54
 3.2.2 Temperaturkinetik in unterschiedlichen Myokardtiefen56
 3.2.3 Temperaturkinetik in Abhängigkeit von der Ablationsleistung59
 3.2.4 Beurteilung der induzierten Läsionen ...62
 3.2.5 Katheter-Tip-Temperatur ..64

3.3 Large-Tip-Katheter ...65
 3.3.1 Qualitative Auswertung der thermografischen Messungen66
 3.3.2 Temperaturkinetik in unterschiedlichen Myokardtiefen67
 3.3.3 Beurteilung der induzierten Läsionen ...69
 3.3.4 Katheter-Tip-Temperatur ..71

3.4 Gekühltes Kathetersystem..73
 3.4.1 Qualitative Auswertung der thermografischen Messungen73
 3.4.2 Temperaturkinetik in unterschiedlichen Myokardtiefen75
 3.4.3 Beurteilung der induzierten Läsionen ...79
 3.4.4 Katheter-Tip-Temperatur ..80

3.5 Minimaltemperatur der Nekroseentstehung ...81

DISKUSSION ..83

3.6 Validität des Versuchsmodells ...83
 3.6.1 Ablationssubstrat ...84
 3.6.2 Versuchsbecken und Superfusion ..85
 3.6.3 Substratfixation und Katheterpositionierung89
 3.6.4 Stromfluss und Indifferenzelektrode ...91
 3.6.5 Temperaturmessung durch moderne Thermografieverfahren92
 3.6.6 Optisches Medium ...94

3.7 Exemplarischer Vergleich der drei Kathetersysteme98
 3.7.1 Temperaturkinetik bei konstanter Ablationsleistung99
 3.7.2 Temperaturprofil im Bereich der Katheterspitze101
 3.7.3 Ablationsleistung und Oberflächentemperatur103
 3.7.4 Temperaturprofil im Myokardquerschnitt nach 55s Ablation104
1 Einleitung

Herzrhythmusstörungen sind Abweichungen der zeitlichen Folge bzw. Regelmäßigkeit der Herzaktionen von der normalen Herzfrequenz, meist hervorgerufen durch Erregungsbildungs- sowie Erregungsleitungsstörungen des Herzens [124]. Sie können in Brady- (Grundfrequenz < 60/min) und Tachykardien (Grundfrequenz > 100/min) unterteilt werden.

Bradykarde Rhythmusstörungen entstehen entweder durch Störungen der Impulsbildung, d.h. der Automatie, oder der Überleitung. Neben einer pharmakologischen Therapie, welche im allgemeinen Notfallsituationen vorbehalten ist, stellt hier die Behandlung mit Schrittmachern das Therapieverfahren der ersten Wahl dar [80].

auch zu nicht unerheblichen Komplikationen bis hin zur Myokardperforation führen kann [61], spielt die Entwicklung effektiver Prüfverfahren zur Evaluierung neuer Ablationssysteme im Vorfeld des klinischen Einsatzes am Patienten eine besonders wichtige Rolle.

1.1 Supraventrikuläre Tachykardien (SVT)

Die supraventrikulären Tachykardien umfassen alle schnellen Herzrhythmusstörungen, welche entweder im Bereich der Herzvorhöfe oder des AV-Knotens ihren Ursprung finden [158][81]. Sie sind epidemiologisch die in der internistischen Praxis am häufigst behandelten Herzrhythmusstörungen. 1990 befanden sich in Deutschland mehr als 30 Patienten mit SVT pro Monat und Arzt in internistischer Behandlung [96].

Im Gegensatz zu den ventrikulären sind die supraventrikulären Herzrhythmusstörungen, abgesehen von Vorhofflimmern und –flattern, meist nicht mit organischen Herzmuskelschädigungen assoziiert.
1.1.1 Vorhofflimmern

Eine immer bedeutendere Rolle bei der Behandlung des symptomatischen, medikamentös therapierefraktären Vorhofflimmerns stellt die linksatriale Pulmonalvenenisolation durch RF-Ablation dar, welche je nach Arbeitsgruppe in 50 bis 80% zu einer Rezidivfreiheit führen kann.

Kann eine persistierender Sinusrhythmus nicht erzielt werden, so ist die Normalisierung und Kontrolle der Kammerfrequenz durch eine medikamentöse Verlangsamung der AV-Überleitung indiziert. Hier kommen in erster Linie Betablocker, Digitalispräparate und Verapamil und eine Kombinationen dieser Wirkstoffe zum Einsatz [139].

Gelingt weder eine dauerhafte Konversion zu einem Sinusrhythmus noch die Normalisierung der Kammerfrequenz unter Vorhofflimmern, so ist, als ultima ratio aus Gründen des Risikos der Entwicklung einer tachykarde bedingten Kardiomyopathie, die Unterbrechung der AV-Überleitung durch Katheterablation mit folgender VVI-Schrittmachersversorgung zu erwägen.
Ob Vorhofflimmern rein medikamentös oder mit alternativen Therapieverfahren behandelt wird, hängt von der Häufigkeit und Frequenz der Tachykardieepisoden und vom Vorhandensein einer strukturellen Herzkrankheit ab, welche die Schwere der klinischen Symptomatik bestimmen [67].

1.1.2 Vorhofflattern

Abbildung 2: Reentrykreis bei Vorhofflattern und schematische Darstellung der Ablationslinie (Isthmuslinie) bei der Ablation von typischem Vorhofflattern

1.1.3 AV-Knoten-Reentrytachykardie (AVNRT)
Neben Vorhofflimmern und –flattern stellt die AV-Knoten-Reentrytachykardie die zweithäufigste Form der paroxysmalen, supraventrikulären Tachykardien dar [67][122]. Ihr Erstmanifestationsalter liegt im Mittel im 4. Lebensjahrzehnt. Bei Frauen tritt sie deutlich häufiger auf als bei Männern. Es existiert für diese
Art der Rhythmusstörung keine Disposition durch Alter oder Vorerkrankungen [81]. Pathophysiologisch schlossen Moe et al. 1956 experimentell erstmals auf eine funktionelle Längsdissoziation des AV-Knotens mit einer schnellen (β) und einer langsamen Leitungsbahn (α) als auslösende Grundlage dieser Tachykardie [105], was Rosen et al. 1974 klinisch an Patienten mit AVNRT bestätigen konnten [129]. 1992 schließlich gelangen Jackman et al. der Nachweis zweier anatomisch getrennter Leitungsbahnen [71]. Die typische Form der AV-Knoten-Reentrytachykardie (slow-fast-Form, über 90% aller AVNRTs [141][72]) entsteht im Regelfall durch eine vorzeitige atriale Erregung (atriale Extrasystole), die aufgrund der kürzeren effektiven Refraktärperiode der schnellen Leitungsbahn nur über die langsame Leitungsbahn geleitet werden kann. Unter dieser Bedingung ist der Wiedereintritt der Erregung retrograd in die schnelle Leitungsbahn möglich, was ein atriales Echo zur Folge hat. Nach erneutem Eintritt der Erregungswelle in die langsame Leitungsbahn auf der atrialen Seite ist der Reentrykreis geschlossen und die AV-Knoten-Reentrytachykardie initiiert [141].

Die inverse Form (fast-slow-Form) der AVNRT mit antegrader Leitung über die schnelle Leitungsbahn macht nur ca. 4% aller AV-Knoten-Reentrytachykardien aus. Eine noch seltene Form stellt die permanente junktionale Reentrytachykardie (PJRT) als Sonderform dar. Hierbei kommt es durch das Vorhandensein einer typischerweise rechts-posterosiptalen, akzessorischen Leitungsbahn mit dekrementalen Leitungseigenschaften zu einer atrioventrikulären Reentrytachykardie. Diese Tachykardie tritt beim Betreffenden meist schon im frühen Kindesalter auf und führt häufig durch chronische Frequenzbelastung zur Herzinsuffizienz, welche nach erfolgreicher Ablationstherapie reversibel ist [122]. Die klinischen Symptome der AVNRT reichen von Palpitationen und Synkope bis hin zum Schock (selten) bei hämodynamisch relevanten, hochfrequenten Tachykardien [69].

Abbildung 5: EKG bei einer typischen AVNRT. Schmale Kammerkomplexe gefolgt von P-Wellen, welche den retrograd über die schnelle Leitungsbahn aktivierten Vorhöfen entsprechen

AV-Knoten-Reentrytachykardien können oft alleine durch vagale Manöver (Karotissinusmassage, Valsalvamanöver oder Eiswasser [144]) oder mit einer Gabe von Adenosin in 80% der Fälle zu einem Sinusrhythmus konvertiert

1.1.4 Wolff-Parkinson-White-Syndrom (WPW-Syndrom)
Dieses unter den Herzrhythmusstörungen wohl bekannteste Syndrom wurde erstmals 1930 von den gleichnamigen Untersuchern beschrieben [156] und ist die häufigste Rhythmusstörung bei akzessorischen Leitungsbahnen [141]. Durch eine Hemmungsmissbildung in den frühen embryonalen Phasen der Herzentwicklung bleiben neben der physiologischen atrioventrikulären Reizleitungsverbindung (AV-Knoten und His-Bündel) zusätzlich leitende, muskuläre Fasern zwischen Vorhöfen und Kammern bestehen [1][5]. Diese akzessorischen Leitungsbahnen können fast an jeder Stelle des Anulus fibrosus auftreten. Da sie im Gegensatz zum AV-Knoten aus schnell leitenden Herzmuskelfasern bestehen, führen sie zu einer vorzeitigen und exzentrischen Erregung der Kammern und prädestinieren für das Auftreten paroxysmaler Reentrytachykardien. Klassisch zeigt das Oberflächen-EKG eine PQ-Zeit von <0,12s mit einer Deltawelle und einer linksschenkelblockartig deformierten QRS-Komplex, was der simultanen Erregung der Herzkammern über die akzessorische Bahn und dem AV-Knoten entspricht [141][122]. Der Großteil der paroxysmal auftretenden Tachykardien imponiert durch schmale QRS-Komplexe im EKG. Die elektrische Erregung wird hierbei über den AV-Knoten auf die Kammern (antegrad) und über das akzessorische Leitungsbündel zurück in die Vorhöfe (retrograd) geleitet (orthodromer Reentry) [141]. Nur in 5-
10% der Fälle kann eine antegrad Leitung über das akzessorische Leitungsbündel beobachtet werden (antidromer Reentry), was zu einer breitkomplexigen Tachykardie führt. Epidemiologisch sind Männer gegenüber Frauen häufiger betroffen (Verhältnis 3:2). Die WPW-Konfiguration tritt in der Bevölkerung mit einer Häufigkeit von 0,1-3 pro 1000 Einwohner auf [22]. Nur in 25-50% kommt es zur klinischen Symptomatik (Tachykardien), erst dann spricht man vom eigentlichen WPW-Syndrom [158][38].

Von großer Bedeutung ist das Auftreten von Vorhofflimmern oder –flattern in Kombination mit einer bestehenden akzessorischen, antegrad leitenden Bahn. Entsprechend der Leitungseigenschaften des akzessorischen Bündels kann es hier zu einer sehr schnellen Überleitung der Vorhofimpulse auf die Kammern kommen, was zu Kammerfrequenzen bis über 300/min führen kann. Dies kann zu Synkopen und bei spontanem Übergang in Kammerflimmern bis hin zur Reanimationspflichtigkeit führen. Die Inzidenz des plötzlichen Herztodes bei WPW-Syndrom wird mit etwa 1 pro 1000 Patienten/Jahr
angegeben [38][86][107], was diese Rhythmusstörung zu einer potentiell lebensbedrohlichen Erkrankung macht. Überwiegend handelt es sich hierbei allerdings um symptomatische Patienten mit oft zusätzlicher kardialer Grunderkrankung oder multiplen Bahnen. Nur 12% der Patienten sind vor einem Herzstillstand völlig asymptomatisch [67]. Die überwiegende Zahl der Patienten mit WPW-Syndrom ist herzgesund und die Langzeitprognose ist sehr gut [3][7].

Auch beim Auftreten einer paroxysmaler Tachykardie bei WPW-Syndrom ist zunächst ein Versuch indiziert, die Tachykardie mit vagalen Manövern zu terminieren. Medikamentös kann durch Adenosin eine kurzzeitige AV-Blockierung und damit eine Unterbrechung des Reentrymechanismus versucht werden. Ist dies nicht möglich, so ist die Gabe von Ajmalin i.v. (Klasse-Ia-Antiarrhythmikum) mit hoher Effizienz Mittel der Wahl [152].

1.1.5 Ektotope atriale Tachykardien (EAT)

Diese Form der SVT ist mit einem Anteil von 10-15% aller SVT relativ selten. Sie geht vom Arbeitsmyokard des rechten oder linken Vorhofes aus, wobei weder der Sinusknoten noch der AV-Knoten in die Entstehung oder die Perpetuierung der Tachykardie mit einbezogen sind. Die Pathogenese ist entweder fokaler Genese, bedingt durch eine erhöhte oder abnorme Automatie oder bedingt durch getriggerte Aktivität [114]. Auch kann sie auf dem Boden eines Mikroeentrysts basieren. Eine Erhöhung der normalen

Ektope atriale Tachykardien sind medikamentös oft schwer zu beherrschen. Hier können Disopyramid (Klasse Ia), Flecainid und Propafenon (Klasse Ic) sowie Amiodaron (Klasse III) mit einer gewissen Wirksamkeit eingesetzt
werden. Durch das schlechte Ansprechen der medikamentösen Therapie haben hier ebenso ablative Verfahren den höchsten Stellenwert[114].

Eine Sonderform der atrialen fokalen Tachykardie stellt bei Kindern und Jugendlichen die unaufhörliche Tachykardie („Incessant“-Form) dar. Diese kann speziell bei einer 1:1-Überleitung zu einer tachykardiebedingten Kardiomyopathie führen, welche nach ablative und/oder medikamentöser Behandlung reversibel ist und eine gute Prognose unter Therapie aufweist[59][103].

1.2 Ventrikuläre Herzrhythmusstörungen

1.2.1 Ventrikuläre Tachykardie (VT)
Als ventrikuläre Tachykardien werden Rhythmusstörungen bezeichnet, deren Ursprung in den Herzkammern liegt und die länger als 30s bestehen oder wegen eines hämodynamischen Kollapses beendet werden müssen.

Die Mehrzahl ventrikulärer Tachykardien (80-90%) tritt im Zusammenhang mit einer strukturellen Herzerkrankung auf[65]. Hier sei vor allem die ischemische
und die dilatative Kardiomyopathie, sowie das Auftreten von VTs nach
erzchirurgischen Eingriffen als Ursache erwähnt. Als seltene strukturelle
Erkrankung ist hier ebenfalls die Arrhythmogene rechtssventrikuläre Dysplasie
(ARVD) zu nennen.

Daneben gibt es eine geringere Anzahl von Patienten mit ventrikulären
Tachykardien, bei denen keine strukturelle Herzerkrankung nachweisbar ist.
Insbesondere ist hier das Auftreten ventrikulärer Tachykardien bei familiär
vererbten, genetischen Defekten von Ionenkanälen der Herzmyokardzellen zu
erwähnen. Hierzu gehören bestimmte Formen des Long-QT-Syndroms als
genetisch vererbter Ionenkanaldefekt. Des weiteren spielt das Brugadasyndrom
eine Rolle, das eine primär elektrische Erkrankung speziell junger Männer
darstellt und zu ventrikulären Tachykardien bis hin zum plötzlichen Herztod
führen kann [70].

Nach der ersten Dokumentation von Formen „idiopathischer“ ventrikulärer
Tachykardien durch Gallavardin im Jahr 1922 [42] sind zahlreiche
Klassifikationen entworfen worden, wobei eine einheitliche Klassifikation bisher
nicht erzielt wurde [65]. Idiopathische VTs treten bei Herzgesunden auf und
sind meist fokaler Genese, das heißt, sie entstehen an umschriebenen Stellen
des Myokards mit erhöhter Automatie [17]. Sie sind in ca. 80% der Fälle im
rechtsventrikulären Ausflusstrakt lokalisiert und können mit Betablockern oder
durch Gabe von Calciumantagonisten vom Verapamil-Typ mit guter Prognose
behandelt werden. Bei deren Unwirksamkeit oder Unverträglichkeit kann die
Indikation zur RF-Ablation gestellt werden, die sich bei 80-90% der Patienten
als kurativ erweist [128].

Neben der Einteilung der VT nach strukturellen und idiopathischen Ursachen ist
eine weitere Einteilung nach dem Tachykiardietypus möglich. Wie auch bei den
supraventrikulären Tachykardien lassen sie sich in Tachykardien mit
pathologischer Impulsbildsbildung in ektopen Kammermyokardzellen (abnorme
Automatie vs. getriggerte Aktivität) und auf Reentrymechanismen basierende
Kammertachykardien untergliedern [32]. Die Reentrymechanismen spielen
hierbei mit einem Anteil von 80-90% aller VTs eine wesentlich größere Rolle.
Die Prognose bei ventrikulärer Tachykardie hängt stark von der kardialen Grunderkrankung ab. Zeigt sich eine anhaltende ventrikuläre Tachykardie innerhalb der ersten 6 Wochen nach einem Myokardinfarkt, so ist sie mit einer Mortalität von 75% innerhalb eines Jahres vergesellschaftet. Patienten ohne Herzerkrankung hingegen, die eine uniforme (monomorphe) ventrikuläre Tachykardie aufweisen, haben eine gute Prognose und ein sehr niedriges Risiko für einen plötzlichen Herztod [81].

Abbildung 8: EKG bei monomorpher, ventrikulärer Tachykardie. Es imponieren breite, regelmäßige Kammerkomplexe.

Eine suffiziente Behandlung der VT besteht primär in der Behandlung einer meist vorhandenen Grundkrankheit (z.B. Myokardinfarkt). Bei der antiarrhythmischen Rezidivprophylaxe sollte aufgrund der proarrhythmogenen Nebenwirkungen dieser Medikamentengruppe das Risiko-Nutzen-Verhältnis der Therapie genau abgewogen werden. Dies hat eindrucksvoll die CAST-Studie gezeigt, in welcher die Mortalität durch ventrikuläre Herzrhythmusstörungen bei Patienten nach Herzinfarkt im Antiarrhythmika-Kollektiv um das 3,5-fache gegenüber dem Placebo-Kollektiv erhöht war [20]. Es konnte in Studien gezeigt werden, dass unter Mexiletin und Phenytoin (Klasse Ib) noch 80%, unter Lidocain (Klasse Ib) und Chinidin (Klasse Ia) noch bis zu 90% der Arrhythmien durch Stimulation auslösbar waren [140]. Die besten Ergebnisse konnten bei Klasse-III-Antiarrhythmika (Hauptvertreter: Amiodaron und Sotalol) erzielt werden.
werden, welche je nach Autor 50% [140] bzw. 70% [137] Suppression und ein Proarrhythmierisiko von nur 2% aufwiesen [137]. Trotzdem bietet die antiarrhythmisch medikamentöse Therapie alleine keinen ausreichenden Schutz vor dem plötzlichen Herztod [37]. Der momentane Behandlungsstandard ventrikulärer Tachykardien bei struktureller Herzkrankheit stellt die Versorgung mit einem implantierbaren Cardioverter/Defibrillator (ICD) in Kombination mit einer meist adjuvanten Antiarrhythmikatherapie dar. Ablative Verfahren kommen nur in Einzelfällen zur Anwendung und setzen sehr aufwendige Mappingverfahren und viel Erfahrung der durchführenden Kardiologen voraus.

1.2.2 Kammerflimmern (VF)

Abbildung 9: Initial Sinusrhythmus, welcher durch eine ventrikuläre Extrasystole in eine ventrikuläre Tachykardie konvertiert und später in Kammerflimmern degeneriert.
Prinzipiell kann Kammerflimmern jedoch auch durch das Einfallen einer vorzeitigen Erregung in die vulnerable Phase der Repolarisation sofort auftreten, was häufig bei Patienten mit akutem Myokardinfarkt oder Ischämie geschieht [81]. Pathophysiologisch spaltet sich bei der Degeneration einer VT zu Kammerflimmern der „stabile“ Erregungskreis in multiple Reentry-Impulse auf, was als „Fraktionierung in mehrere asynchrone Reentrykreise“ beschrieben wurde [134]. Die einzige suffiziente Therapiemöglichkeit stellt die elektrische Defibrillation dar.

1.3 Therapiemethoden tachykarder Herzrhythmusstörungen

Während die Behandlung von Herzrhythmusstörungen noch bis vor 20 Jahren eine Domäne der Antiarrhythmika und in speziellen Fällen der Rhythmuschirurgie war, steht die Therapie heute auf den zwei Hauptsäulen Medikation und Ablation bei supraventrikulären Rhythmusstörungen bzw. Medikation und ICD bei ventrikulären Tachykardien.

1.3.1 Antiarrhythmisch medikamentöse Therapie
Die Stärke der Antiarrhythmika lag und liegt auch heute noch in der Akuttherapie tachykarder Herzrhythmusstörungen [67].

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Blockierung des schnellen Natrium-Kanals</th>
<th>Blockierung der adrenergen β-Rezeptoren</th>
<th>Blockierung des repolarisierenden Kaliumeinstroms</th>
<th>Blockierung langsamer Calcium-Kanäle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasse Ia-c</td>
<td>Blockierung des schnellen Natrium-Kanals</td>
<td>Blockierung der adrenergen β-Rezeptoren</td>
<td>Blockierung des repolarisierenden Kaliumeinstroms</td>
<td>Blockierung langsamer Calcium-Kanäle</td>
</tr>
<tr>
<td>Klasse II</td>
<td>Blockierung der adrenergen β-Rezeptoren</td>
<td>Blockierung des repolarisierenden Kaliumeinstroms</td>
<td>Blockierung langsamer Calcium-Kanäle</td>
<td>Blockierung langsamer Calcium-Kanäle</td>
</tr>
<tr>
<td>Klasse III</td>
<td>Blockierung des repolarisierenden Kaliumeinstroms</td>
<td>Blockierung langsamer Calcium-Kanäle</td>
<td>Blockierung langsamer Calcium-Kanäle</td>
<td>Blockierung langsamer Calcium-Kanäle</td>
</tr>
<tr>
<td>Klasse IV</td>
<td>Blockierung langsamer Calcium-Kanäle</td>
<td>Blockierung langsamer Calcium-Kanäle</td>
<td>Blockierung langsamer Calcium-Kanäle</td>
<td>Blockierung langsamer Calcium-Kanäle</td>
</tr>
</tbody>
</table>

1.3.2 Rhythmuschirurgische Therapie
einer Letalität von 0-2% berichtet [40][136]. Ebenfalls konnten gute Ergebnisse bei der chirurgischen Therapie von medikamentös therapierefraktären AV-Knoten-Reentrytachykardien erzielt werden [26].

1.3.3 Katheterablation
Mit der Einführung der transvasalen Katheterablation wurde ein wichtiges, nichtoperatives Verfahren zur Behandlung therapierezisternter Arrhythmien geschaffen. Das Prinzip besteht in der Lokalisation eines Tachykardiefokus oder einer elementaren Struktur eines Reentrys mit Hilfe der Katheterotechnik und einer anschließenden Energieapplikation an dieser Stelle. Dadurch kann eine umschriebene Nekrosezone induziert und damit die Tachykardie supprimiert werden

Die Idee zur elektrischen Ablation arrhythmogener Strukturen mit Hilfe der Katheterstechnik entstand 1979 durch einen Zufall. Vedel et al. konnten während einer elektrophysiologischen Katheteruntersuchung das plötzliche Auftreten

(fehlender faradayscher Effekt), was bedeutet, dass ohne schmerzhafte Muskelkontraktionen dieses Verfahren auch ohne Narkose angewandt werden kann. Weiterhin ist die Energie sehr gut dosierbar, was eine sehr umschriebene Nekrosebildung zur Folge hat, die direkt im Bereich der Katheterspitze stattfindet.

Die Hochfrequenzkatheterablation hat sich heute zum Mittel der Wahl bei der Therapie vieler Formen von Herzrhythmusstörungen entwickelt und wird mit hohen Erfolgs- und geringen Komplikationsraten in großen kardiologischen Zentren routinemäßig angewandt.

Im Folgenden werden die Therapieoptionen mit Hilfe moderner Katheterablation an den oben beschriebenen Herzrhythmusstörungen im Detail dargestellt.

Vorhofflimmern

Eine kurative Therapie durch die Katheterablation ist bisher noch nicht sicher reproduzierbar möglich. Durch die vielfältigen pathophysiologischen Ursachen und die komplexen Mapping-Prozeduren konnte die RF-Katheterablation in der klinischen Routine bis heute noch nicht etabliert werden.

In neuester Zeit haben sich zwei hauptsächliche Ablationsstrategien etabliert: Die Triggerelimination versucht auslösende atriale Extrasystolen (meistens innerhalb der Pulmonalvenen) zu identifizieren und durch fokale Hochfrequenzstromapplikation auszuschalten oder innerhalb der Pulmonalvenen zu isolieren. Durch die Substratmodifikation als zweite Strategie sollen mit der Anlage langer Ablationslinien die Eigenschaften des Vorhofmyokards so verändert werden, dass Vorhofflimmern nicht mehr aufrechterhalten werden kann [78].

Der Erfolg dieser komplexen Verfahren hängt stark von der Erfahrung des durchführenden Kardiologen ab. Bei der Kombination aus Isolation der Pulmonalvenenostien und aus Substratmodifikation werden von Hocini et al. beispielsweise Erfolgsraten von 75% bei chronischem und 82% bei paroxysmalem Vorhofflimmern beschrieben [62]. Insgesamt differieren die Erfolgsraten bei der sogenannten Pulmonalvenenisolation stark je nach

Alternativ berichten Haissaguerre et al. über 3 Fälle von durch Mapping belegte Sonderformen von Vorhofflimmern mit erfolgreicher RF-Ablation in der posterior-septalen Region rechts-atrial [55] [122].

Eine weitere Therapieoption im Sinne der sogenannten Hybridtherapie besteht aus einer Konversion des Vorhofflimmerns durch antiarrhythmische Therapie (vor allem mit Klasse-Ic- oder -III-Antiarrhythmika) zu Vorhofflattern, das anschließend kurativ durch die Anlage einer bidirektionalen Isthmusblockade zu behandeln ist und eine weitere lebenslange Einnahme des Antiarrhythmikums voraussetzt (Hybrid-Modell s. 1.1.1).
Vorhofflattern

AVNRT

einer etwas geringeren Rezidivrate abgekommen [121]. Trotz der hohen Erfolgsraten muss jedoch die Indikation zur Slow-Pathway-Katheterablation durch das mögliche Auftreten eines AV-Blockes III° mit folgender obligater Schrittmacherimplantation streng gestellt werden. Zusätzliche Risikofaktoren für eine konsekutive AV-Blockierung sind Adipositas, vorangegangene Herzoperationen mit anatomischen Strukturänderungen, die hypertensive Herzkrankheit und die Anwendung des Verfahrens durch unerfahrene Katheteriseure [121].

WPW-Syndrom

Das WPW-Syndrom stellt heute ebenso eine primäre Indikation zur Katheterablation dar. Mit einer kurativen Erfolgsrate von >90% und Rezidivraten von 3-10% ist diese allen anderen Therapieformen überlegen. Behandelt werden Patienten mit symptomatischen Tachykardien und Patienten ohne Symptomatik mit Risikoberufen oder plötzlichem Herztod in der Familienanamnese [141]. Bei Kindern ist die Indikation strenger zu stellen [55].

Ektope atriale Tachykardien

Die Ablation ektoper atrialer Tachykardien setzt ein oft aufwendiges Mappingverfahren zur Lokalisation des Tachykardiefokus voraus. Hier können vor allem dreidimensionale Mapping-Techniken wie beispielsweise das CARTO-System von Vorteil sein.

Der Fokus findet sich häufig im Bereich anatomischer Strukturen wie der Crista terminalis, der Klappenringe, der Einmündung der Pulmonalvenen und Hohlvenen sowie am Ansatz der Herzohren. Kann der Ort der Tachykardieentstehung genau lokalisiert werden, zeigt eine Katheterablation in diesem Bereich einen hohen kurativen Effekt mit einer geringeren Rezidivquote [114].

Ventriculäre Tachykardien

1.4 Klinische Evaluierung des Ablationserfolges

Im klinischen Alltag gilt eine Katheterablation als erfolgreich, wenn die zu behandelnde Rhythmusstörung nach der Ablation durch programmierte Stimulation nicht mehr auslösbar ist. Ebenso kann die Terminierung einer laufenden Tachykardie während der Ablation als Hinweis auf Erfolg gewertet werden.

Es existieren jedoch physikalische Parameter, die während der Ablation „online“ registriert werden können und ebenso Prädiktoren für den Ablationserfolg darstellen.

1.4.1 Temperaturmessung

1.4.2 Impedanzmessung

Die Impedanz ist der elektrische Widerstand zwischen Anode und Kathode d.h. zwischen Ablationselektrode und Indifferenzelektrode (unipolarer Ablationsmodus) am Rücken des Patienten. Er berechnet sich aus der Summe von Ohmschem, kapazitivem und induktivem Widerstand. Der Ohmsche Widerstand wird nach der Formel \(R = \frac{U}{I} \) errechnet, wobei \(U \) die Spannung und \(I \) die Stromstärke sind. Da bei der Anwendung der Radiofrequenzablation die kapazitiven Widerstände vernachlässigbar gering sind, entspricht die Impedanz dem Ohmschen Widerstand, der sich in diesem Fall aus den Wirkwiderständen
der metallenen Leiter und Elektroden, des biologischen Gewebes und des Generatorinnenwiderstands zusammensetzt.

Während der Gewebeerwärmung bei der Ablation sinkt die Impedanz typischerweise um Werte von 5 bis 10\(\Omega\) ab [53][30]. Beim Auftreten stärkerer Impedanzabfälle während der Ablation, gleichbedeutend mit einem starken Anstieg der Temperatur intramyokardial, steigt das Risiko eines plötzlichen Impedanzsprunges nach oben stark an [66]. Dieser Impedanzsprung wird durch eine Koagelbildung an der Katheterspitze bei Temperaturen von >100°C ausgelöst. Eine klinische Studie konnte zeigen, dass bei einem Impedanzabfall von >13\(\Omega\) ein Impedanzsprung mit einer Sensitivität von 82% und einer Spezifität von 80% zu erwarten ist [66]. Der positiv prädikative Wert betrug für diesen Parameter 28%. So eignet sich die Messung der Ablationsimpedanz neben der Temperaturmessung ebenso, um die Erhitzung des Myokardgewebes zu beurteilen und somit eine Überhitzung und Perforation zu vermeiden.

1.4.3 Kinetik des Nekrosewachstums

Bei fest vorgegebenem Temperaturzielwert wird 90% der gewählten Temperatur nach 2,2 ± 3,0s erreicht [94], danach stellt sich ein Steady-state-Zustand ein. Die Wärme im katheternahen Myokard entsteht als Widerstandswärme bei hoher Stromdichte an der Kontaktstelle des Katheters mit dem Myokardgewebe. In tieferen Gewebeschichten hingegen findet die Erwärmung langsamer statt, da der Prozess der passiven Wärmeleitung hier
wesentlich mehr Zeit beansprucht. Somit ist das Läsionswachstum in den ersten Sekunden sehr schnell, verlangsamt sich jedoch im weiteren Verlauf stark. Dieses Nekrosewachstum kann am besten durch eine monoexponentielle Funktion beschrieben werden [110]. In-vitro- und In-vivo-Studien haben gezeigt, dass nach 7 bis 10s einer Wechselstromapplikation die Nekrosen die Hälfte ihrer Maximalausdehnung erreichen und dass die maximalen Läsionsgrößen nach 30 bis 40s erreicht werden [53][154][155].

1.5 Limitierungen der konventionellen Kathetertechnologie

Die Ablationsleistung kann bei zu geringen Nekroseausmaßen nicht beliebig gesteigert werden, da die Gefahr einer Myokardüberhitzung mit Gasblasenbildung, die Entstehung von Blutkoageln an der Katheterspitze bis hin zur Geweberuptur in hohen Leistungsbereichen sehr groß wird.

Die Optimierung der bisherigen Kathetertechnologie und ihre Erweiterung wird somit in den kommenden Jahren einen hohen Stellenwert in der klinischen Forschung einnehmen. Neue Kathetergeometrien im Bereich der Hochfrequenzkatheterablation sind in Entwicklung und die Evaluierung
alternativer Energieformen wie Ultraschall, Laser, Mikrowellen und Cryotechnik ist im Gange. Um eine sichere Anwendung am Patienten zu gewährleisten ist eine präklinische Erprobung und Evaluierung dieser Neuerungen unumgänglich.

1.6 Alternative Energiequellen und Ablationstechniken

1.7 Ziel der Studie

Zielsetzung dieser Studie war es, einen In-vitro-Messplatz zu entwickeln, mit dem es möglich ist, die thermischen Charakteristika unterschiedlicher Ablationskatheter auf das Myokardgewebe detailliert zu untersuchen und zu analysieren.

Folgende Anforderungen sollten hierbei erfüllt werden:

- Eine mehrdimensionale, farbcodierte, dynamische Darstellung der Temperaturkinetik während der Katheterablation unter standardisierten Bedingungen
- Die möglichst authentische Simulation der physiologischen Parameter während der Katheterablation im klinischen Einsatz
- Eine schnelle, einfache und kostengünstige Methode zur präklinischen In-vitro-Testung neuer Kathetertechniken
- Die Entwicklung eines suffizienten, alternativen Messverfahrens zur Einsparung von Tierversuchen
Exemplarisch sollte das Modell durch die thermodynamische Testung drei verschiedener RF-Kathetersysteme im Rahmen einer experimentellen Studie validiert und die Messgenauigkeit des Versuchsmessplatzes ermittelt werden. Hierfür wurden ein Standard-, ein Large-Tip- und ein gekühlter RF-Katheter verwandt.
2 Material und Methodik

Die grundlegende Idee zu dieser Arbeit war die Entwicklung und Etablierung eines In-Vitro-Versuchsmodells, welches die Realität im Organismus während der RF-Katheterablation möglichst genau abbilden kann. Das Ziel war die qualitative und quantitative Beurteilung der Temperaturphänomene im Myokardgewebe (Gewebequerschnitt) unter dem jeweiligen Ablationskatheter. Da aus Gründen mangelnder Praktikabilität eine Durchführung der Versuche am ganzen, geschlossenen Herzmuskel nicht in Frage kam, entschieden wir uns, die Ablationsenergie auf linksventrikuläre Myokardwürfel mit normierten Abmessungen zu applizieren. Die direkte Umgebung des Myokardwürfels und des Ablationskatheters sollte die physiologischen Zustände im Herzen möglichst exakt und standardisiert simulieren.

2.1 In-vitro-Versuchsaufbau

Kupferne Referenzelektrode befand sich direkt gegenüber der Katheterauflagefläche an der Unterseite des Myokardwürfels und wurde von ihrer Fläche her so gewählt, dass die gemessenen Impedanzwerte zwischen dem Katheter und dieser Flächenelektrode denen in vivo entsprechen. Um möglichst physiologische Bedingungen zu simulieren, wurde das Becken mit isotonischer Kochsalzlösung (NaCl 0,9%) befüllt und diese durch eine Thermostatpumpe (Julabo MP-5, Fa. Julabo Labortechnik GmbH, Seelbach) entsprechend der normalen Körpertemperatur auf einer konstanten Temperatur von $37,0 \pm 1,5 ^\circ C$ gehalten.

Abbildung 10: Schematische Darstellung des Versuchsaufbaus
Durch ein im Querschnitt halbkreisförmiges Anflutrohr mit 1,0cm Radius (Öffnungsfläche 3,142cm²) erfolgte eine konstante Superfusion mit Kochsalzlösung (4 Liter/min) auf der Myokardoberfläche, was in etwa dem Herzzzeitvolumen beim Erwachsenen entspricht. Das Anflutrohr befand sich in einer Entfernung von 20mm zum Ablationsort.

Zur Messung des dynamischen Temperaturverlaufs im Myokardquerschnitt wurde eine Thermografiekamera (AGEMA Thermovision 900, Fa. AGEMA, Danderyd, Schweden) in 15cm Entfernung vor dem optischen Medium außerhalb des Versuchsbeckens positioniert. Durch eine Einzelbildspeicherung kann mit dieser Kamera zu jedem beliebigen Zeitpunkt der Energieabgabe die Temperaturverteilung thermografisch dokumentiert werden. Durch digitale Bildwandlung und eine rechnergestützte Analyse ist es möglich, den Temperaturverlauf im Querschnitt des Myokards mit hoher Auflösung (+0,1mm) farbkodiert darzustellen und die Temperatur an jedem beliebigen Punkt bis auf eine Genauigkeit von ±0,1°C zu bestimmen. Weiterhin können Temperaturminima/-maxima und Isothermen (Zonen mit identischer Absoluttemperatur) lokalisiert, sowie farblich dargestellt werden. Aufgrund von aufgebrachten Eichmarkierungen ist außerdem eine exakte räumliche Vermessung mit einem Millimeterraster möglich.

2.1.1 Optisches Medium
Eines der Kernprobleme bei der Entwicklung des Versuchsmodells war die Tatsache, dass weder Plexi- noch normales Glas für die zu messende thermische Strahlung ausreichend permeabel ist. Die Wahl eines geeigneten optischen Mediums, durch das die Temperaturphänomene im Myokardquerschnitt mit Hilfe der Thermografie messbar gemacht werden konnten, wurde demnach durch mehrere Faktoren bestimmt. Einerseits sollte die Transmission, d.h. die Durchlässigkeit des Materials für Wärmestrahlung, möglichst hoch sein, um an der Oberfläche des Mediums realistische Werte aus dem Inneren des Beckens ableiten zu können. Andererseits musste das
Material wasserbeständig und thermisch stabil sein. Als bestgeeignetes Material zeigte sich hierfür Saphirglas.

2.1.2 Thermokamera

Zur Erfassung und Dokumentation der Temperaturvorgänge im Myokardquerschnitt war eine spezielle Thermografiekamera notwendig. Wir benutzten hierzu das Modell AGEMA Thermovision 900 der Firma AGEMA, Danderyd (Schweden).

Abbildung 11: Strahlungseinflüsse auf die Thermografiekamera. Die Störstrahlung (*), welche das Messergebnis des Detektors verfälschen würde (schwarze Pfeile), wird rechnergestützt eliminiert.

2.1.3 Elektrodenkatheter

Folgende RF-Kathetersysteme wurden auf ihre thermodynamischen Eigenschaften während der RF-Ablation untersucht:

Kühlflüssigkeit

4mm 8mm

Standard-Tip Large-Tip Gekühlter Katheter
- Ablations-Katheter (D-Type) mit 4mm Spitzenlektrode, 7 French Katheterdurchmesser (Standard-Tip); Fa. Cordis Webster Inc.; USA
- Ablations-Katheter (J-Type) mit 8mm Spitzenlektrode, 7 French Katheterdurchmesser (Large-Tip); Fa. Cordis Webster Inc.; USA
- Gekühlter Ablations-Katheter (Sprinkler) mit 4mm Spitzenlektrode, 7 French Katheterdurchmesser (Cooled-Tip); Fa. Medtronic; USA

In der Elektrodenspitze ist bei jedem Katheter ein Temperatursensor zur kontinuierlichen Temperaturmessung integriert (Thermistor). Jeder Katheter kann kontrolliert über ein sich im Katheter befindliches Seilzugsystem, welches vom distalen Kathetergriff aus bedient wird, gekrümmt und somit intrakardial gesteuert werden.

Das gekühlte Kathetersystem wurde mit Hilfe einer speziellen Hochdruckpumpe mit physiologischer Kochsalzlösung durchströmte. Dieser Durchsatz belief sich auf 20ml/min. Die Kühlung wurde bei jeder Ablation jeweils 10s vor Ablationsbeginn gestartet.

Die Auswahl der RF-Kathetersysteme wurde durch die in der Klinik gestellten Anforderungen bestimmt. So wird der Standard-Katheter vorwiegend zur Ablation bei supraventrikulären Tachykardien eingesetzt. Der Large-Tip-Katheter findet seine Anwendung hauptsächlich bei der Isthmusablation (Vorhofflattern), während der gekühlte Katheter vorwiegend zur Ablation
ventrikulärer Tachykardien und ebenso zur Isthmusablation bei Vorhofflattern eingesetzt wird.

2.1.4 Radiofrequenzgenerator
Als Energiequelle diente ein Radiofrequenzgenerator der Fa. Stockert (EP Shuttle, Stockert GmbH Freiburg) mit einer Arbeitsfrequenz von 500kHz, der sowohl temperatur- als auch leistungsgesteuert betrieben werden kann. Die Ablationsenergie kann entsprechend einer vorwählbaren Leistung (Bereich 0-100W) über eine variable Dauer von 0-120s abgegeben werden.

2.1.5 Ablationssubstrat
Die Ablationen wurden an Schweinemyokard durchgeführt, welches von frisch geschlachteten Tieren des jeweiligen Versuchstages stammte (Ischämiezeit $2 \pm 0,5h$). Die Exzidate mit einer Größe von $3 \times 1 \times 1,5cm$ wurden aus dem linksventrikulären Myokard direkt vor Versuchsbeginn präpariert. Insgesamt wurden für die gesamte Versuchsreihe ca. 40 Schweineherzen präpariert.

2.2 Versuchs­durchführung

Das Versuchsprotokoll sah die Messung der Temperaturkinetik mittels Thermografie sowohl unter zeitlichen als auch räumlichen Gesichtspunkten bei Verwendung der drei beschriebenen Ablationskatheter, sowie die Analyse der
makroskopischen Nekrosedimensionen im Myokardexzidat nach beendeter Ablation vor.

MESSUNG THERMODYNAMISCHER UND ELEKTROPHYSIOLOGISCHER PARAMETER:

Mit jedem Kathetermodell (n=3) wurden RF-Applikationen unterschiedlicher Leistungen durchgeführt (10, 20, 30, 40 und 50W), wobei pro Leistungsstufe mindestens n=7 Applikationen erfolgten. Die Ablationsdauer betrug jeweils 60s. Die Katheterspitze lag plan auf dem Myokard, parallel zum optischen Medium auf. Die Superfusion (NaCl 0,9%; 37°C) wurde bei 4l/min (laminare Strömung über Myokard 0,21m/s) konstant gehalten. Alle Ablationen erfolgten epikardial, um standardisierte Verhältnisse zu erzielen. Während jeder Ablation wurden die maximale Temperatur an der Katheterelektrode (Thermistor) und der Impedanzverlauf während der Ablation dokumentiert. Die Temperaturphänomene wurden während jeder RF-Applikation im Myokardquerschnitt durch die Thermografiekamera registriert und in 5-Sekunden-Intervallen in Form eines farbcodierten Temperaturbildes auf einem Datenträger gespeichert.

MORPHOLOGISCHE UNTERSUCHUNG DER LÄSIONEN:

Nach einem vertikalen Schnitt durch die Mitte der Nekrose wurden die Läsionsdimensionen mit einer Millimeterschublehre bestimmt.

Das Läsionsvolumen wurde entsprechend der Formel für ein abgeflachtes Ellipsoid berechnet:

\[V = \frac{1}{6} \times \pi \times \text{Länge} \times \text{Breite} \times \text{Tiefe} \]

Da versuchsbedingt nur die Hälfte der klinisch relevanten Läsion induziert wurde, musste in Anlehnung an Abbildung 13 für die Volumenbestimmung folgende korrigierte Formel angewandt werden:

\[V = \frac{1}{6} \times \pi \times 2C \times B \times A \]
2.3 Auswertung der Thermografiedaten

Die Analyse der Temperaturkinetik aus den thermografischen Daten erfolgte anhand lotrecht unter der Katheterspitze liegender Messpunkte. Mit Hilfe einer Schablone wurden so die Temperaturwerte im Abstand von 1mm bis in eine Myokardtiefe von 10mm ermittelt.
2.4 Statistische Analyse

Die Berechnung der Irrtumswahrscheinlichkeit für unabhängige Variablen mit mehreren Freiheitsgraden (wie Temperaturwerte) erfolgte mit Hilfe des Student-T-Tests. Die angegebenen Daten sind durch Mittelwert ± Standardabweichung definiert, das Signifikanzniveau \(\alpha \) auf 0,05 festgelegt.

Zur statistischen Datenauswertung wurden die Statistikprogramme Excel 2000 und Origin 5.0 herangezogen.
3 Ergebnisse

3.1 Entwicklung und Validierung des Versuchsaufbaus

3.1.1 Ermittlung eines optimalen optischen Mediums
Durch die Konzeption des In-Vitro-Modells bedingt, muss die Messung der thermischen Strahlung durch ein optisches Medium erfolgen. Hierbei kann ein Teil der Strahlung, abhängig von der Wellenlänge, das optische Medium unverändert passieren (Transmission), der Rest wird reflektiert (Reflexion) und vom optischen Medium selbst absorbiert (Absorption). Die Transmission berechnet sich nach der Kirchhoffschen Formel.

\[
\text{Kirchhoff-Regel: } \tau + \alpha + \rho = 1
\]

\(\tau = \text{Transmission} \)
\(\alpha = \text{Absorption} \)
\(\rho = \text{Reflexion} \)

Abbildung 15: Die Kirchhoffsche Formel besagt, dass beim Einbringen eines optischen Mediums in einen Strahlengang die Summe aus Transmission (Anteil der Strahlung, welche das Medium durchdringt), Absorption der Strahlung im Medium und Reflexion am Medium stets 1 ist.

Um eine möglichst gute Abbildung der Temperaturprozesse im Inneren des Versuchsbeckens durch die Thermografiekamera erzielen zu können, muss die Transmission der Wärmestrahlung im entsprechenden Temperaturbereich möglichst hoch sein.
Als mögliche Materialien standen uns generell aus Praktikabilitäts- und Kostengründen Quarzglas und Saphirglas zur Verfügung. Bei beiden Materialien besteht für das von uns gemessene Strahlungsspektrum eine Transmission >70%, wobei die Transmissionseigenschaften von Saphirglas im geforderten Temperaturbereich höher und gleichmäßiger sind.

Abbildung 16: Transmissionsverhalten der Materialien Quarzglas und Saphirglas im Bereich zwischen den Wellenlängen 1 und 12µm. Das für das Versuchsmodell ausschlaggebende Messfenster befindet sich zwischen 8 und 11µm Wellenlänge. Mit Hilfe eines speziellen Cut-Off-Filters zeigt Saphirglas in diesem Bereich einen Transmissionsgrad von >80%.

Eine erste Pilot-Versuchsreihe mit unserem Versuchsmodell führten wir mit dem Medium Quarzglas durch. Die Messergebnisse zeigten sich hier als nicht befriedigend. Vor allem im Bereich geringer Wellenlängen, d.h. bei höheren Temperaturen um 90-100°C (Bereich 8-9µm) waren die Ergebnisse fast nicht zu verwerten, da in diesem Bereich teilweise nur eine Transmission von 60% erreicht wird.
Die eigentliche Versuchsreihe führten wir nach den Erfahrungen mit Quarzglas mit dem Material Saphirglas durch. Dieses erbrachte weit bessere und aussagekräftigere Messergebnisse. Bei Saphirglas liegen laut Literatur die Transmissionseigenschaften im Bereich unseres Messfenster mit einem zusätzlich eingefügten cut-off-Filter bei knapp über 90%.

3.1.2 Transmissionsgrad der Saphirglasscheibe

Vor Versuchsbeginn wurde der theoretische Transmissionsgrad der speziell von uns verwandten Saphirglasscheibe experimentell ermittelt. Dazu benutzten wir einen sogenannten Schwarzen Strahler. Hierbei handelt es sich um einen feuerfesten Hohlzylinder mit einer kleinen Öffnung an der Frontseite, der elektrisch aufgeheizt wird und durch eine oder mehrere Luftmäntel zur Wärmeisolation umgeben ist.

![Schematische Darstellung eines Schwarzen Hohlraumstrahlers](image)

Strahlung, die von außen durch das Loch eintritt, wird im Inneren vielfach reflektiert bzw. gestreut und dabei in hohem Maße absorbiert. Der Bruchteil
dieser Strahlung, der aus der frontalen Öffnung wieder austritt, ist daher äußerst gering. Der Absorptionsgrad ε im Inneren ist nahezu 1. Die emittierte Strahlung, welche die Öffnung des geheizten Hohlraumes verlässt, ist deshalb in ihrer Wellenlänge genau definiert und identisch mit der von einer schwarzen Fläche gleicher Temperatur abgegebenen Strahlung. Sie wird auch als Hohlraumstrahlung bezeichnet [44].

Der Hohlraumstrahler wurde schrittweise auf Temperaturen zwischen 50 und 120°C erhitzt. Die durch die frontale Öffnung austretende Wärmestrahlung wurde durch die Thermokamera in einem ersten Versuchsschritt direkt und in einem zweiten mit der im Strahlengang befindlichen Saphirglasscheibe registriert. Der Quotient der jeweils ermittelten Temperaturpaare ergab einen Wert von $0,92 \pm 0,01$. Die Transmission unserer Saphirglasscheibe betrug somit 92% (Abbildung 18).

Abbildung 18: Ermittlung der Transmission der Saphirglasscheibe. Der Schwarze Hohlraumstrahler wird schrittweise auf Temperaturen zwischen 50 und 120°C erhitzt. Bei jedem Temperaturschritt wird eine Messung mittels Thermografiekamera direkt und eine zweite mit dazwischen liegender Saphirglasscheibe durchgeführt. Der Quotient aus den jeweiligen Temperaturwertepaaren ist 0,92. Dies bedeutet, dass 92% der Hohlraumstrahlung im untersuchten Temperaturbereich ungehindert die Saphirglasscheibe passieren kann (Transmissionsgrad).
3.1.3 Validierung des Versuchsaufbaus
In einer weiteren Versuchsreihe wurde die Messgenauigkeit der Thermokamera während simultaner, computergestützter Korrektur der im Modell auftretenden Störstrahlung bestimmt (siehe auch Abschnitt 2.1.2).

In einem Versuchsbecken wurde physiologische Kochsalzlösung durch die Thermostatpumpe in Schritten zu je 10°C von einer Anfangstemperatur von 20°C bis auf 70°C erwärmt. Bei jedem Temperaturschritt wurde die Absoluttemperatur jeweils an der Grenzfläche zwischen Myokard und Saphirglasscheibe mit einem Temperatursensor (Katheterspitze eines Standardkatheters) und zusätzlich mit einer in das Myokard eingeführten Temperatursonde gemessen. Simultan wurden die Temperaturwerte an der Saphirglasscheibe außerhalb des Beckens durch die Thermografiekamera registriert.

Es zeigte sich kein signifikanter Unterschied zwischen den unterschiedlichen Messverfahren. Somit konnte von einer genauen Wiedergabe der Temperaturwerte durch die Thermokamera ausgegangen werden.

Insgesamt konnte gezeigt werden, dass die thermografisch ermittelten Temperaturwerte mit hoher Genauigkeit die Temperaturwerte im Inneren des Versuchsbeckens wiedergeben.
Katheter-Messreihen

3.2 4mm-Standard-Katheter

3.2.1 Qualitative Auswertung der Thermografiemessungen

Beim Standard-Tip überwiegt die Isothermenbreite in allen thermografisch ausgewerteten Verteilungen die Isothermentiefe signifikant.

Aus der Darstellung ist ebenfalls erkennbar, dass die Zone der maximalen Temperatur (hellgelb) nicht exakt mittig unter dem Katheter liegt, sondern etwas exzentrisch nach rechts verschoben zur Darstellung kommt. Ebenso ist eine höhere Temperaturentwicklung der Kühlflüssigkeit über dem Myokardstück mit Bildung von Flüssigkeitsverwirbelungen, vor allem über dem distalen Elektrodenende, zu erkennen. Diese Effekte sind dadurch zu erklären, dass der Kühleffekt in Form der Superfusion mit NaCl-Lösung im Bereich nahe des Kühlmittelausstritts (Anflutrohr links) größer ist und damit die Temperaturmaxima
sowohl im Myokard als auch im Kühlmittel nach rechts verschoben werden (Abbildung 21).

Eine weitere Beobachtung ist die nahezu konstante und während der ganzen Ablation im Vergleich zum umgebenden Myokard niedrigere Temperatur der Katheterlektrodenspitze (Abbildung 22).

Thermografisch gemessen steigt die Elektrodentemperatur während des gesamten Verlaufes der Ablation bei höchster Leistungsstufe nicht über 46°C an. Der Grund dafür ist die RF-Energie, die nicht die Elektrode selbst, sondern nur das umgebende Gewebe durch Induktion erhitzt. Die geringe Erwärmung der Katheterspitze ist dabei ein passiver Vorgang durch die Wärmeabgabe des angrenzenden Myokardgewebes.

3.2.2 Temperaturkinetik in unterschiedlichen Myokardtiefen

Wird der Temperaturverlauf in verschiedenen Myokardtiefen lotrecht unter dem Ablationskatheter betrachtet, so zeigt sich, dass in den katheternahen Gewebeschichten die Temperatur in den ersten Sekunden stark ansteigt. Im weiteren Verlauf der Energieabgabe zeigt sich hier eine immer geringer werdende Temperaturzunahme pro Zeitintervall. Der Temperaturverlauf gleicht hier einer Exponentialfunktion (streng monoton wachsende Sättigungsfunktion). In den tieferen Myokardschichten hingegen zeigt sich schon zu Beginn der Ablation eine deutlich geringere Temperaturzunahme pro Zeitintervall. In 8 mm Gewebetiefe steigt die Temperatur mit der Zeit sogar nahezu linear an (}
Diagramm 1). Der initial (bis 15s Ablationsdauer) signifikante Temperaturunterschied zwischen Myokardoberfläche und 1mm Gewebetiefe nimmt mit zunehmender Ablationszeit kontinuierlich ab (Diagramm 2). Dies ist durch Erwärmung der tieferen Gewebeschichten durch kontinuierliche Wärmeleitung zu erklären bedingt. Die oberflächlichen Gewebetemperaturen nahe der Katheterspitze hingegen werden durch Wärmeinduktion erzeugt (hohe Dichte des elektrischen Feldes um die Katheterspitze), welche einen anfänglich raschen Temperaturanstieg bewirkt. Der hier fließende elektrische Strom führt zu einer Beschleunigung der Schwingungen der im Myokard befindlich gelösten Ionen. Da die Stromdichte (Stromstärke pro Fläche) mit der 4. Potenz der Entfernung von der Elektrode abfällt, wird nur ein schmaler Saum des Gewebes unmittelbar um die Katheterspitze direkt durch den Stromfluss erwärmt.

Diagramm 2: Absolute Temperaturdifferenz zwischen der Temperatur an der Grenze zwischen Katheter und Myokard und der Temperatur in 1 mm Gewebetiefe. Bis 15s nach Ablationsbeginn zeigt sich in 1 mm Tiefe eine signifikant niedrigere Temperatur als an der Grenzfläche. Im weiteren zeitlichen Verlauf gleicht sich die Temperatur in 1 mm Tiefe immer mehr der Oberflächentemperatur an.

Nach 55s herrschen an der Grenzschicht und in 1 mm Tiefe nahezu die selben Temperaturen. Dies wird durch den oberflächennah starken Kühleffekt der Gewebesuperfusion mit Kochsalzlösung bedingt, der der Temperaturinduktion entgegenwirkt.

Wird der Endpunkt der Ablation betrachtet, so zeigen die Temperaturverlaufskurven in allen Gewebeschichten immer noch eine Steigungstendenz. Es wird daher bei einer Ablationsdauer von 60s kein „steady state“ der Temperaturen am Ende der RF-Abgabe erreicht.

Bei der Betrachtung des Temperaturverteilungs in lotrecht unter der Katheterspitze (Diagramm 3) zeigen sich bei 50W nach 55s Ablation im Bereich unterhalb 1mm Gewebetiefe große Temperaturdiskrepanzen. Mit zunehmender Tiefe werden die Temperaturunterschiede jedoch immer geringer. Die Temperatur-Tiefen-Verteilung gleicht hier einer streng monoton fallenden Abklingfunktion (Exponentialfunktion), welche sich asymptotisch der Grundtemperatur im Versuchsbecken und Myokard von 37°C annähert.
Diagramm 3: Temperaturverteilung nach 55s Ablationszeit bei 50W in unterschiedlichen Gewebetiefen. Die Verteilungsfunktion gleicht zwischen 1mm und 8mm Gewebetiefe einer abnehmenden Exponentialfunktion (Abklingfunktion). Hier findet eine Temperaturerhöhung durch kontinuierlich Wärmeleitung statt. Im Bereich bis 1mm unter der Katheterspitze wird die Temperaturerhöhung durch das dichte elektrische Feld induziert. Durch den gegenwirkenden Kühlungseffekt der Superfusion an der Gewebeoberfläche stellt sich ein nahezu gleichmäßig hohes Temperaturniveau in diesem Bereich ein.

3.2.3 Temperaturkinetik in Abhängigkeit von der Ablationsleistung

Diagramm 4 zeigt die Temperaturprofile lotrecht unter dem Kathetermittelpunkt nach 55s Ablationszeit bei unterschiedlichen Ablationsleistungen. Mit zunehmender Leistung nehmen auch die absoluten Gewebetemperaturen zu. Am deutlichsten manifestiert sich dies im Bereich um die Katheterspitze, wo die Temperatur direkt durch die Stärke des leistungsabhängigen Stromfeldes bestimmt wird.

Diagramm 5: Absolute Temperaturdifferenz zwischen der Temperatur an der Katheter-Gewebe-Grenze und der Temperatur in 3mm Gewebetiefe unter der Katheterspitze nach 55s Ablationszeit. Je höher die angelegte Leistung, desto größer die Differenz.
3.2.4 Beurteilung der induzierten Läsionen

Nach jeder Energieabgabe wurde das Myokardexzidat makroskopisch untersucht und die entstandene Nekrose wie in Kapitel 2.2 beschrieben vermessen. Anschließend wurde die Korrelation der thermografisch ermittelten Temperaturwerte mit den entsprechenden Nekrosedimensionen untersucht.

Diagramm 6 zeigt ein nahezu paralleles Ansteigen der Nekrosetiefe und des maximalen Durchmessers, wobei die Tiefe stets signifikant geringer als der gemessene Durchmesser ist. Diese Ergebnisse entsprechen ebenfalls den thermografisch ermittelten Isothermenmorphologien.
Diagramm 7: Korrelation von Nekrosetiefe bzw. -breite und thermografisch gemessener Temperatur an der Katheter-Gewebe-Grenze (Kk=Korrelationskoeffizient).

Trägt man die Nekrosetiefe bzw. den maximalen Nekrosedurchmesser gegen die thermografisch ermittelte Temperatur an der Katheter-Gewebe-Grenze auf, so zeigen sich mit 0,98 bzw. 0,94 in beiden Fällen hohe Korrelationskoeffizienten. Die Läsionsausmaße korrelieren demnach stark mit der Gewebe-Oberflächen-Temperatur (Diagramm 7).

Diagramm 8: - links: Nekrosevolumina in Abhängigkeit von der Ablationsleistung - rechts: Korrelation der Temperaturen an der Katheter-Gewebe-Grenze (oben) bzw. der Temperaturen in 1mm Gewebetiefe (unten) und den dazugehörigen Nekrosevolumina (Kk=Korrelationskoeffizient).
Diagramm 8 zeigt die Nekrosevolumina in bezug auf unterschiedliche Ablationsleistungen. Je größer die pro Zeiteinheit abgegebene Ablationsenergie ist, desto voluminöser wird die induzierte Läsion. Bestimmt man die Korrelation von Nekrosevolumina und Gewebe-Oberflächen-Temperaturen, so findet man einen Korrelationskoeffizienten von 0,80. Eine noch höhere Korrelation von 0,94 ergibt sich aus dem Vergleich von Nekrosevolumina und Temperaturen in 1mm Gewebetiefe. Dies kann durch die in 1mm Gewebetiefe fehlende Superfusion erklärt werden, welche an der Oberfläche zu größeren Temperaturschwankungen und somit zu einer größeren Streuung der Temperaturwerte führt.

3.2.5 Katheter-Tip-Temperatur
Von besonderer Bedeutung ist der Vergleich zwischen der an der Katheterspitze gemessenen Temperatur im Versuchsbecken und der durch die Thermografiekamera registrierten Temperatur an der Katheter-Gewebe-Grenze nach 55s Ablationszeit.

Aus *Diagramm 9* wird ersichtlich, dass sich mit Zunahme der gewählten Ablationsleistung auch ansteigende, signifikante Temperaturdifferenzen zwischen beiden Messverfahren ergeben. Dabei zeigt der Temperatursensor in der Katheterspitze stets höhere Temperaturen als die Thermokamera an der Katheter-Gewebe-Grenze.

Diagramm 10 zeigt ein stetiges, lineares Anwachsen der Temperaturdifferenz bei Leistungszunahme. Dieses Phänomen kann durch vielfältige Einflüsse erklärt werden und wird im Diskussionsteil ausführlich behandelt.

3.3 Large-Tip-Katheter

3.3.1 Qualitative Auswertung der thermografischen Messungen

Abbildung 24: Exemplarische Darstellung einer thermografisch registrierten Ablation mit dem Large-Tip-Katheter bei 50W Leistung über 60s (zeitlicher Abstand der Aufnahmen 10s). Die Zonen hoher Temperaturen sind hell, die niedriger Temperaturen dunkel dargestellt.

Im Gegensatz zum Standard-Tip fällt auf, dass insgesamt eine geringere Temperaturentwicklung zu verzeichnen ist. Die maximal gemessenen Temperaturen bei 50W Ablationsleistung liegen im Mittel bei 46,6°C und somit um bis zu 8°C signifikant niedriger als die Maximaltemperaturen beim Standardkatheter (53,9°C). Durch die größere Elektrodenfläche resultiert hier eine geringere Stromdichte und somit eine geringere Temperaturentwicklung.

Durch die veränderte Kathetergeometrie kommt es beim Large-Tip zu einer stärkeren Ausbreitung der Temperatur in der horizontalen Achse. Wie beim Standard-Tip bleibt auch bei den Ablationen mit dem Large-Tip die Elektrode signifikant kühler als das umgebende Gewebe. Sie erreicht beim Large-Tip bei einer maximalen Leistung von 50W nach 55s nur 40,1°C ± 1,6°C im Vergleich zum Standard-Tip mit 44,3°C ± 1,5°C (Abbildung 25).
3.3.2 Temperaturkinetik in unterschiedlichen Myokardtiefen

Die Temperaturausbreitung im Myokard bei der Ablation mit dem Large-Tip ähnelt der beim Standardkatheter. Ein wesentlicher Unterschied ist jedoch das Vorliegen eines signifikant niedrigeren Temperaturniveaus in allen Myokardschichten (Diagramm 11).

Ein weiterer Unterschied zum Standard-Tip zeigt sich im Bereich bis 1mm Gewebetiefe. Während zu Beginn der Ablation die Temperatur an der Gewebegrenzschicht signifikant höher ist als in 1mm Gewebetiefe, kehrt sich dieses Verhältnis während der Stromabgabe um. Nach 25s besteht an der Oberfläche und in 1mm Tiefe die gleiche Temperatur. Nach 55s ist die Temperatur in 1mm Gewebetiefe signifikant höher als an der Oberfläche (45,6°C vs. 46,6°C). Erklärung hierfür ist der größere Küheffekt durch die Superfusionslösung bei sehr großer Elektrodenoberfläche des Katheters. Da die Hitzeeentwicklung in den katheternahen Bereichen durch Induktion bedingt ist, ist das Temperaturmaximum beim Large-Tip deutlich unterhalb der Gewebeoberfläche anzutreffen. Dort überwiegt die Wärmeinduktion den Küheffekt (Diagramm 12). Insgesamt mindert die Perfusion bei großer Angriffsfläche an der Katheterspitze ebenfalls stark die Maximaltemperatur.

Die Temperaturverteilung in bezug auf die einzelnen Gewebeschichten nach 55s Ablationszeit bei 50W Leistung stellt sich entsprechend der niedrigeren Temperaturen im Gegensatz zum Standard-Tip somit flacher dar. Sie gleicht jedoch nach wie vor einer Exponentialfunktion, wobei sich die Temperaturkurve asymptotisch der Referenztemperatur von 37°C annähert.
3.3.3 Beurteilung der induzierten Läsionen

Im Gegensatz zum Standardkatheter zeigt der Large-Tip-Katheter schon bei niederen Ablationsleistungen wesentlich breitere Nekrosezonen. Das Verhältnis zwischen Nekrosebreite und –tiefe unterscheidet sich signifikant von dem des Standardkatheters (Diagramm 13). Der Large-Tip-Katheter induziert ab ≥30W Ablationsleistung signifikant breitere aber weniger tiefe Läsionen.

Abbildung 26: Isothermenausdehnung bei der Ablationen mit 50W nach 55s. Vergleich zwischen Standard-Tip und Large-Tip. Die 45°C-Isotherme liegt beim Standard-Tip signifikant tiefer, weist aber eine geringere Breite im Vergleich zum Large-Tip auf.

3.3.4 Katheter-Tip-Temperatur

Betrachtet man die Temperaturdifferenzen bei beiden Kathetersystemen im Vergleich, so fällt auf, dass die Temperaturunterschiede beim Large-Tip-Katheter geringer sind und diese auch mit steigender Ablationsleistung in geringerem Maße zunehmen. Dies ist ebenfalls auf das insgesamt niedrigere Temperaturniveau bei der Ablation mit dem Large-Tip zurückzuführen (Diagramm 16).
3.4 Gekühltes Kathetersystem

Auch beim gekühlten Katheter wurde das bereits vorgestellte Versuchsprotokoll mit insgesamt n=35 Ablationen bei den Leistungsstufen 10-50W über 60s Dauer analog zum Standard- und Large-Tip-Katheter verwandt.

3.4.1 Qualitative Auswertung der thermografischen Messungen

Bei der Betrachtung einer Thermografiesequenz während der Ablation mit dem gekühlten Katheter fällt auf, dass die geometrische Form der Temperaturosbreitung der des Standard-Katheters sehr ähnelt. Dies ist durch die Geometrie der Ablationselektrode (4mm-Tip) zu erklären, welche der des Standardkatheters entspricht. Im Gegensatz zu konventionellen Ablationssystemen ist jedoch ein für den gekühlten Katheter typischer Kühlsaum um die Ablationselektrode zu erkennen. Analysiert man alle Bildsequenzen, so zeigt sich, dass die Temperatur zwischen Katheterspitze

3.4.2 Temperaturkinetik in unterschiedlichen Myokardtiefen

![Diagramm 17: Zeitliche Temperaturentwicklung in verschiedenen Myokardtiefen lotrecht unter der Katheterspitze (50W). Im Gegensatz zu Standard- und Large-Tip ist die Temperatur an der Grenze zwischen Myokard und Katheter stets niedriger als die Temperatur in tieferen Gewebeschichten. Die höchsten Temperaturen werden in 1mm Gewebetiefe erreicht.](image)

Der Unterschied zu den konventionellen, nicht gekühlten Ablationssystemen liegt, wie bereits erwähnt, in der Kühlung der Katheterspitze. Somit ist die Maximaltemperatur beim gekühlten Katheter nicht direkt an der Katheter-Gewebe-Grenze, sondern in 1mm Tiefe nachweisbar. Die Oberflächentemperatur bleibt von Beginn der Ablation an signifikant niedriger als die Temperatur in 1mm Gewebetiefe und überschreitet bei 50W Leistung zu
keinem Zeitpunkt 45,5°C. Mit zunehmender Ablationszeit wird der beschriebene Temperaturunterschied zwischen der Gewebeoberfläche und 1mm Gewebetiefe stetig größer.

Bei der Betrachtung des Temperaturprofils lotrecht unter der Katheterspitze ist ebenso wie beim Standard- und Large-Tip ein Abfall der Temperatur mit zunehmender Gewebetiefe im Sinne einer abklingenden Exponentialfunktion zu verzeichnen.
Diagramm 19: Temperaturverteilung nach 55s Ablationszeit bei 50W in unterschiedlichen Gewebetiefen. Die Verteilungsfunktion gleicht zwischen 1mm und 8mm Gewebetiefe einer abnehmenden Exponentialfunktion (Abklingfunktion) wie sie ebenso beim Standard- und Large-Tip zu verzeichnen ist. Der Unterschied zu den beiden anderen Kathetern zeigt sich in der signifikanten Temperaturdifferenz zwischen der Gewebeoberfläche und 1mm Gewebetiefe.

Der Hauptunterschied zwischen den drei untersuchten Ablationskathetern, in bezug auf die Temperaturkinetik im Myokardquerschnitt, ist vor allem innerhalb der katheternahen Grenzschicht zu verzeichnen. Hier kommt es durch die unterschiedlichen Kühleffekte zu verschiedenen aber signifikant unterschiedlichen Temperaturphänomenen. Nur beim Standardkatheter ist ein Abfall der Temperaturwerte in die Tiefe direkt von der Katheter-Gewebe-Grenze zu verzeichnen (geringster Kühleffekt). Beim Large-Tip und beim gekühlten Katheter steigt die Temperatur ausgehend von der Gewebegrenzfläche bis in 1mm Tiefe an, um dann wieder abzufallen (Diagramm 20).

Um die beschriebenen Effekte noch deutlicher darzustellen, zeigt Diagramm 21 eine temperaturgesteuerte Ablation. Die Katheter-Tip-Zieltemperatur wurde dabei auf 55°C eingestellt und während der Ablation bei variabler Leistungsabgabe durch den Ablationsgenerator aufrechterhalten. Während diese Temperatur beim Standard-Katheter der Höchsttemperatur im Gewebe entspricht, so sind die entstehenden Temperaturen beim Large-Tip und im

Diagramm 21: Temperaturgesteuerter Ablationsmodus mit einer vorgegebenen Katheter-Tip-Temperatur von 55°C bei variabler Leistung. Man sieht deutlich die signifikanten Temperaturunterschiede in 1mm Gewebetiefe, welche zu unterschiedlichen Nekrosedimensionen führen.
Besonderen beim gekühlten Katheter im Myokard wesentlich höher. Dies bewirkt die Induktion größerer und tiefener Nekrosen, stellt jedoch vor allem beim temperaturgesteuerten Ablationsmodus (fest vorgegebene Temperatur an der Katheterspitze bei variabler Leistung) eine Gefahr für Komplikationen dar. Da nur die Katheter-Tip-Temperatur aber nicht die eigentliche Maximaltemperatur im Gewebe während der Ablation in der klinischen Praxis gemessen werden kann, kann es durch Fehleinschätzung der angezeigten Temperaturwerte zu Überhitzung und Gasblasenbildungen mit nachfolgenden Myokardrupturen kommen.

3.4.3 Beurteilung der induzierten Läsionen
Auch beim gekühlten Kathetersystem zeigt die Temperaturverteilung thermografisch die Form eines abgeflachten Ellipsoids.

Abbildung 29: Vergleich der Isothermenausdehnung bei der Ablationen nach 55s, 50W zwischen Standard-Tip und Cooled-Tip. Die Dimensionen der Isothermen (hier exemplarisch 45°C) unterscheiden sich nicht signifikant in ihrer Tiefen- und Breitenausdehnung.

Bei der Betrachtung der Thermografiedaten zeigt sich ebenso kein signifikanter Unterschied zwischen den Isothemendimensionen im Vergleich von Standardkatheter und gekühltem Katheter. Exemplarisch wird dies in Abbildung 29 an zwei Thermografiebildern dargestellt, welche bei 50W Leistung nach 55s registriert wurden.

3.4.4 Katheter-Tip-Temperatur
Ebenso wie beim Standard-Tip und beim Large-Tip besteht auch beim Cooled-Tip eine Diskrepanz zwischen der vom Temperatursensor der Katheterspitze
gemessenen Temperatur und der thermografisch registrierten Temperatur an der Gewebe-Katheter-Grenze. Auch hier registriert der Thermistor des Katheters eine signifikant höhere Temperatur an der Grenzschicht als die Thermografiekamera (Diagramm 23).

3.5 Minimaltemperatur der Nekroseentstehung

Aus den ermittelten Nekrosetiefen wurde durch die Zuordnung der thermografisch ermittelten Temperaturwerte in der entsprechenden Gewebetiefe ein absoluter Temperaturwert für die Demarkation der Nekrosen in unserem Versuchsmodell von 43,3°C ermittelt. Dieser Wert ist der Mittelwert aus den Daten aller drei untersuchter Kathetersysteme. Dies bedeutet, dass in unserem Modell eine Läsion ab Gewebetemperaturen von größer 43,3°C induziert wird.
Diagramm 24: Absolute Temperaturwerte (thermografisch im Myokardquerschnitt ermittelt), bei denen bei der Ablation eine optisch erkennbare Nekrosezone im Myokard entsteht. Gemittelt über alle drei Katheter beträgt die Demarkationstemperatur 43,3°C.
Diskussion

3.6 Validität des Versuchsmodells

Im Folgenden werden die einzelnen versuchsspezifischen Determinanten detailliert dargestellt und ihre Auswirkung auf die Versuchsdurchführung diskutiert.
3.6.1 Ablationssubstrat
Als Ablationssubstrat wurde Schweinemyokard gewählt, das am Versuchstag wenige Stunden zuvor frisch exzidiert wurde. Der linke Ventrikel wurde isoliert und in mehrere Proben von jeweils 3cm (±1mm) Länge, 1cm (±1mm) Breite und 1,5cm (±1mm) Tiefe geschnitten. Eine exakte Normierung des Substrats war aus Standardisierungsgründen wichtig, da beispielsweise bei sehr kleinen Stücken ein unverhältnismäßig großer Effekt des Flüssigkeitsmediums auf die Temperaturkinetik zu erwarten war. Des weiteren durfte aufgrund der notwendigen Fixation des Substrats eine gewisse Obergrenze der Myokarddimension nicht überschritten werden, da bei zu großen Stücke eine Fixierung ohne übermäßigen Anpressdruck nicht mehr möglich gewesen wäre.

Ein ganz wesentlicher Punkt ergibt sich aus der Tatsache, dass als Substrat avitales, nicht perfundiertes Myokard Verwendung fand. Klinisch ist vorstellbar, dass die intramyokardiale Perfusion eine mögliche Rolle in bezug auf den Langzeitfolge nach Katheterablation spielt. Diese wäre durch die endotheliale Schädigung der Mikrovaskularisation in der Umgebung der direkten Nekrosezone erklärbar [52]. Allerdings konnten Haines et al. in einer Arbeit aus dem Jahre 1989 zeigen, dass die Perfusion des Myokards mit Blut keinen signifikanten Unterschied bezüglich der Läsionsinduktion herbeiführt, denn der
mit Abstand größte Teil des Kühleffektes am Ablationsort wird durch das zirkulierende Blut verursacht. Bei der temperaturgesteuerten Ablation in dieser Studie war für die Aufrechterhaltung einer konstanten Temperatur von 80°C mit Gewebeperfusion kein Mehrbedarf an Leistung aufzubringen als ohne Durchblutung. Weiterhin wurde beobachtet, dass durch die Erhitzung mit RF-Energie eine schnelle Koagulation in den Mikrogefäßen und eine Vasokonstriktion ausgelöst wird, was zum schnellen Sistieren der Perfusion im Ablationsgebiet führt [52]. Eine Aufrechterhaltung der Mikroperfusion des Myokardstückes wäre außerdem schon aus rein technischer Sicht extrem aufwendig, wenn überhaupt, durchführbar gewesen. Alterationen der induzierten Läsionen durch physiologische Prozesse im Heilungsverlauf sind nur im Tiermodell ausreichend zu analysieren und stellten kein ausgewiesenes Ziel des hier beschriebenen In-vitro-Modells dar, dessen Aufgabe die Evaluierung des thermischen Soforterfolges ist.

Weiterhin bedingt der statische Zustand unseres Substrates, im Gegensatz zum kontrahierenden Herzen, eine gleichmäßig stabile und feste Katheterauflage. Durch diesen optimierten Katheter-Wandkontakt wird ein optimaler Energietransfer gewährleistet was zur Ausbildung maximierter Läsionen beiträgt. Im klinischen Einsatz ist aufgrund der myokardialen Trabekulierung und Wandbewegung von einem geringeren Energietransfer durch einen z.T. schlechteren Wandkontakt und eine geringere Kühlleistung auszugehen, was insgesamt eine geringere Läsionsinduktion zur Folge hat. Die In-vitro-Evaluierung führt somit eher zu einer Überschätzung der ablatischen Wirksamkeit eines Kathetersystems, womit die Sicherheit für den Patienten beim späteren klinischen Einsatz erhöht werden kann.

3.6.2 Versuchsbecken und Superfusion

Die Dimensionen des Versuchsbeckens mussten unterschiedlichen Erfordernissen gerecht werden. Einerseits sollte eine gute Bedienbarkeit des Versuchsaufbaus, d.h. das unkomplizierte Wechseln und Fixieren der Myokardproben und eine sichere und dabei einfache Positionierung des Ablationskatheters, möglich sein. Andererseits sollte gewährleistet werden, dass die Superfusionslösung auch in Bereichen mit weniger Umwälzung,
beispielsweise an den Beckenränder, eine konstante Temperatur von \(37^\circ\text{C} \pm 1^\circ\text{C}\) beibehält und eine rasche Abkühlung durch ein zu großes zirkulierendes Volumen und eine zu große Flüssigkeitsoberfläche verhindert wird. Mit den gewählten Maßen von jeweils 20 x 30 x 10cm und einem Fassungsvermögen von insgesamt 12l konnte den zuvor genannten Kriterien Rechnung getragen werden. In der Literatur finden sich unterschiedlichste Abmessungen von In-vitro-Versuchsaufbauten, variierend zwischen 2 und 10l, welche in den meisten Fällen durch die individuellen Anforderungen bedingt waren [18] [28] [49] [52] [75] [88].

Betrachtet man die entsprechenden physikalischen Eigenschaften flüssiger Medien, so zeigt sich ein nur geringer Unterschied der spezifischen Wärmeleitfähigkeit λ von reinem Wasser mit 0,58W/mK und Blut mit 0,47W/mK bei 37°C. Dazu kommt weiterhin, dass die Wärmeleitfähigkeit von Flüssigkeiten in Abhängigkeit von Strömung und Turbulenzen variiert [133].

Die Superfusionsrate mit Kochsalzlösung wurde mit 4l/min festgelegt. Zu deren Berechnung gingen wir von einer Superfusionsrate in der Höhe des Herzzeitvolumens in Ruhe (HF: ca. 60/min) bei einem mittleren, gesunden Erwachsenen (Schlagvolumen ca. 60-70ml) aus. Das Anflutrohr entspricht mit 3,142cm² in etwa der Fläche der Aortenklappe (3,5-5cm² [57]) bzw. der Pulmonalklappe. Es wird daher eine mittlere Flussgeschwindigkeit im Bereich des Ablationsortes von ca. 0,21m/s erreicht, was in etwa der Flussgeschwindigkeit entlang des Endokards beim Menschen entspricht [127]. Aus Standardisierungsgründen haben wir einen Ablationsort zugrundegelegt, der anatomisch bedingt einer hohen Superfusionsrate ausgesetzt ist, beispielsweise im Bereich des Ausflusstraktes. Eine höhere Flussgeschwindigkeit des Superfusionsmediums bedeutet einen größeren Küheffekt an der Myokardoberfläche mit der Möglichkeit einer höheren Leistungsabgabe und somit Maximierung der erreichbaren Nekrosen.

Durch diese Simulation des „idealen Ablationsortes“ mit optimierter Läsionsgröße erfolgt im Hinblick auf die Patientensicherheit im klinischen
Einsatz ebenfalls eher eine Überschätzung des Effekts eines Ablationssystems. Von Bedeutung ist dies gerade bei der Testung neuer Kathetersysteme, die am Patienten nicht selten im temperaturgesteuerten Modus eingesetzt werden. Des weiteren sind aber auch die Unterschiede einzelner Kathetersysteme bei maximaler Wirkung ausgeprägter und besser zu evaluieren.

Diagramm 25: Superfusionsraten in In-vitro-Modellen. Die von uns gewählte Rate von 0,21m/s liegt im mittleren Bereich der von anderen Arbeitsgruppen gewählten Flussgeschwindigkeiten. Das arithmetische Mittel der verschiedenen Superfusionsraten liegt bei 0,17m/s, was in etwa der Flussgeschwindigkeit in unserem Versuchsmodell entspricht.

In der Literatur variieren die gewählten Superfusionsraten der Kühlmedien erheblich. Panescu et al. arbeiteten zur Validierung ihrer mathematischen Temperaturverteilungs-Modelle mit einer Strömungsgeschwindigkeit von nur 0,085m/s an der Endokardfläche [117]. Demazumder et al. hingegen beschrieben maximale Superfusionsraten von bis zu 0,26m/s [28]. In Diagramm 25 sind einige Superfusionsraten von In-vitro-Modellen dargestellt ([19] [49] [76] [119]).
3.6.3 Substratfixation und Katheterpositionierung

Die Fixierung der Myokardprobe an der Saphirscheibe erfolgte durch einen gefederten Plexiglasblock. Nachdem die Ablationssubstrate in ihren Maßen standardisiert waren, wurde bei jeder Ablation der gleiche Druck auf den Gewebeblock ausgeübt. Der Federdruck wurde so gewählt, dass der Myokardblock an der Saphirglasscheibe ohne hohen Druck stabil und plan ohne Luft- und größere Flüssigkeitseinschlüsse anlag. Eine Veränderung des thermischen Verhaltens des Myokards unter Druckeinwirkung kann natürlich nicht ausgeschlossen werden. Allerdings wurde bei den, in diesem Rahmen auftretenden, geringen Drücken dieser Faktor nicht weiter berücksichtigt.

Versuchsmodell angestrebte Impedanzwert entsprach der typischen Präablationsimpedanz während des klinischen Einsatzes beim Menschen (70-150Ω) [54].

<table>
<thead>
<tr>
<th></th>
<th>Standard-Tip</th>
<th>Large-Tip</th>
<th>Cooled-Tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2N Andruck</td>
<td>95Ω</td>
<td>80Ω</td>
<td>110Ω</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>96,91Ω</td>
<td>79,57Ω</td>
<td>111,63Ω</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>4,9</td>
<td>4,7</td>
<td>3,3</td>
</tr>
</tbody>
</table>

Tabelle 0.1: Präablationsimpedanz als Standardisierungsfaktor für den Katheterandruck während der Ablation; in der oberen Zeile sind die katheterspezifischen Richtwerte bei 0,2N Andruck auf die Endokardfläche aufgeführt. Die zweite Zeile zeigt die während der Versuche gemessenen Werte im Mittel.

Präablationsimpedanzen mit ihren dazugehörigen Standardabweichungen während der Versuchsreihen verzeichnet.

3.6.4 Stromfluss und Indifferenzelektrode

Die Größe und Position der Indifferenzelektrode, die wesentlichen Einfluss auf Strompfad, Impedanz, Stromdichte und die entstehende Tip-Temperatur haben [111], wurde ebenfalls so gewählt, dass bei der Positionierung des Katheter mit 0,2N (20g) Andruck Präablationsimpedanzen im Bereich zwischen 70 und 150Ω zu verzeichnen waren, wie sie auch im In-vivo-Situs vorherrschen.

Um weiterhin auch die Richtung des Stromflusses den klinischen Verhältnissen anzupassen, wurde eine Position der Indifferenzelektrode auf der dem Katheter gegenüberliegenden Seite des Myokardblocks gewählt, so dass ein Fluss lotrecht durch das Myokard induziert wurde (siehe Abbildung 10). Nath et al. und Haines et al. postulieren in einer In-vivo-Studie mit 20 Patienten eine Unabhängigkeit der Impedanz, Spannung, Stromdichte, Tip-Temperatur und somit auch der Läsionsentstehung von der Positionierung der Indifferenzelektrode, wenn die Größe derselben konstant gehalten wird [111] [54]. Sie gehen, unabhängig von der Position der Indifferenzelektrode, von einer homogen radiären Stromdichte im Bereich von 1mm um die Katheterspitze aus. Da die Induktion der Temperatur nur in diesem eng umschriebenen Bereich um die Katheterspitze stattfindet, wird eine Unabhängigkeit der Temperaturrentwicklung von der Indifferenzelektrode postuliert.

Zusammengefasst sind die Variablen „Gewebetemperatur, Superfusionsrate des flüssigen Mediums, Strompfad der RF-Energie und Impedanzverhältnisse“ mit der Ablationssituation in vivo vergleichbar, was eine vergleichbare Dimensionierung der induzierten Läsionen erwartet lässt. Tendenziell wurde durch den optimierten Katheter-Wandkontakt und die Kühlung aber eher eine Überschätzung der Nekroseausmaße bewirkt.

3.6.5 Temperaturmessung durch moderne Thermografieverfahren

Die räumlich und zeitlich lückenlose, zweidimensionale Darstellung der Temperaturkinetik im Myokardquerschnitt während der RF-Ablation mit Hilfe der Thermografie ist ein Novum und in dieser Form in der Literatur bisher noch nicht beschrieben worden. Mit dieser Technik ist es möglich, Abbildungen zu erstellen, welche mit einer räumlichen Auflösung von 0,1mm die Temperaturdynamik im Myokardquerschnitt an jeder beliebigen Position abbilden. Durch die Darstellung der Temperaturen in Form eines Falschfarbenbildes, welches jedem Temperaturwert eine definierte Farbe zuordnet (Auflösung 0,1°C bei 30°C), kann die Temperaturkinetik visualisiert und so ein qualitatives Bild der Temperaturverteilung während des Ablationsprozesses erstellt werden. Durch eine sehr hohe Abbildungsfrequenz im zeitlichen Verlauf kann ebenfalls der dynamische Aspekt der Temperaturverteilung während der Ablation erfasst und analysiert werden.

Solch detaillierte Verteilungsmuster und dynamische Prozesse waren bisher nur in Form computergestützter [92], numerisch berechneter Modelle (Finite Elemente) [19] [75] [117] [101] [145] oder physikalisch, theoretischer Modelle [51] darstellbar. All diesen Modellen gemeinsam ist aber, dass sie nur eine theoretische, näherungsweise Abbildung der Realität versuchen. Außerdem
konnte bislang nur eine begrenzte Anzahl der prozess-beeinflussenden Faktoren einbezogen werden, andernfalls wären die Modelle zu komplex und nicht mehr berechenbar geworden. Da nach Haverkamp et al. [58] insgesamt 14 verschiedene Determinanten Einfluss auf die Wirkung von hochfrequentem Wechselstrom auf biologisches Gewebe haben und diese Faktoren sich weiterhin gegenseitig in dynamischer Weise beeinflussen, wird deutlich, wie begrenzt die Möglichkeiten solch mathematisch berechenbarer Modelle zwangsläufig sind. Eine deutlich effektivere Berücksichtigung dieser dynamischen Determinanten lässt sich in In-vitro-Modellen erreichen, welche die physiologischen Faktoren im lebenden Organismus zu simulieren versuchen. Am häufigsten kommen hier vor allem intramyokardiale Temperatursonden zum Einsatz [18] [28] [49] [52] [75] [88] [117], welche an definierten Punkten im Herzmuskel positioniert werden. Dabei ist einerseits bereits die Größe, andererseits auch eine schwierig reproduzierbare und standardisierbare Positionierung der Sonden, die mit der Anzahl derselben zunimmt, stark limitierend. Weiterhin haben diese Modelle den Nachteil, dass die Temperaturwerte nur an genau definierten Punkten bestimmt werden können. Eine umfassende Darstellung der komplexen dynamischen Temperaturprozesse im Myokardquerschnitt war bisher nicht möglich.

In einer unserer ersten Versuchsreihen, in der zusätzlich Temperatursonden verwendet wurden, zeigte sich außerdem, dass die metallenen Sonden selbst den RF-Strom leiten und somit den Strompfad zwischen Katheter und Indifferenzelektrode beeinflussen und verfälschen können.

Die realistischste aber auch aufwendigste Art der Untersuchung von Ablationsphänomenen stellt der Tierversuch dar, wie er von vielen Autoren zur Untersuchung von Ablationsprozessen oder zur Validierung von In-vitro-Modellen bzw. theoretischen Modellen verwendet wurde [2] [21] [50] [58] [95] [101] [104] [109] [113] [120] [138] [154]. Hier können beispielsweise über eine Läsionsvermessung nach Versuchsende die Auswirkungen bestimmter Ablationsparameter, wie beispielsweise unterschiedlicher Elektrodenkonfigurationen und Ablationstemperaturen bzw. -leistungen untersucht werden. Der Einfluss bestimmter, im In-vitro-Modell gut zu untersuchender Faktoren, wie die Superfusionsrate und Katheterposition zur
Myokardfläche, lassen sich im Tierversuch durch nicht-standardisierbare dynamische Prozesse wie die Herz Muskeln muskelkontraktion, Trabekelwerk und unterschiedliche Superfusionsverhältnisse nur schwer evaluieren. Eine Beurteilung der intramyokardialen Temperaturphänomene ist im In-vivo-Versuch bei einem transvasalen Zugang zum Herzen des Versuchstieres gänzlich unmöglich. Durch diese fundamentalen Unterschiede zwischen In-vitro- und In-vivo-Modellen ist ein Vergleich von Untersuchungsergebnissen äußerst schwierig zu interpretieren [92].

Ein unbestrittener Vorteil, der nur im In-vivo-Versuch ermöglicht wird, ist die Beurteilung der induzierten Läsionen im Langzeitverlauf. Verwendet man z.B. die Kälte-(Cryo)-Ablation, so ist bei diesem Verfahren ein intakter biologischer Organismus notwendig, um überhaupt eine Nekrose auszubilden, da die Läsionsbildung nicht auf dem Ausfärben von Eiweißstoffen (Koagulationsnekrose) basiert. Im Gegensatz dazu entsteht bei der Applikation von Wärme die typische Koagulationsnekrose, die nachweisbar ihre maximale Ausdehnung am Ende der RF-Abgabe erreicht und die im weiteren Verlauf in ihren Dimensionen durch biologische Vorgänge nicht signifikant verändert wird. Dies bedeutet, dass bei Einsatz eines Ablationssystems dessen Wirkung auf Erwärmung des Myokards beruht, die Nekrosen im Langzeitverlauf dem Soforterfolg entsprechen und somit eine Evaluierung mittels Thermografie sofort anhand der sichtbaren Nekrosen durchgeführt werden kann. Dennoch wäre eine Beurteilung von Ablationstechniken die auf einen intakten Organismus angewiesen sind (Cryo-Ablation) möglich, indem man die für die Läsionsentstehung kritische Temperaturschwelle in Form von Isothermen bestimmt und daraus Hinweise auf die zu erwartende Läsionsgröße gewinnt.

3.6.6 Optisches Medium
Das Kernstück unseres Versuchsaufbaus stellt, neben der Thermografiekamera, ein spezielles optisches Glas im Strahlengang zwischen Substrat und Thermokamera dar. Zur exakten Messung von Temperaturprozessen innerhalb des Versuchsbeckens bedurfte es eines optischen Materials, welches einen möglichst hohen Anteil der thermischen Strahlung ausgehend vom Myokardquerschnitt während der Ablation unverfälscht passieren lässt und somit für die Thermokamera sichtbar macht
(hohe Transmissionsrate). Als optische Medien kamen grundsätzlich folgende Materialien in Frage:

<table>
<thead>
<tr>
<th>Material</th>
<th>$\lambda_{cut-off} [\mu m]$</th>
<th>Brechzahl bei $\lambda=2 \mu m$</th>
<th>η</th>
<th>besondere Eigenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium-Flourid (MgF₂)</td>
<td>8</td>
<td>1,3</td>
<td>1,3</td>
<td>gut geeignet, hohe Transmission</td>
</tr>
<tr>
<td>Irtran 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saphir (Al₂O₃)</td>
<td>7</td>
<td>1,8</td>
<td>1,8</td>
<td>gut geeignet, mit Spezialfilter („cut-off-Filter“) weiteres Spektrum (bis $>11\mu m$) möglich</td>
</tr>
<tr>
<td>Zink-Sulfid (ZnS)</td>
<td>14</td>
<td>2,2</td>
<td>2,2</td>
<td>gut geeignet, kostenintensiv</td>
</tr>
<tr>
<td>Irtran 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silizium (Si)</td>
<td>40</td>
<td>3,4</td>
<td>3,4</td>
<td>Nur mit Breitband-Anti-Reflexions-Beschichtung (BBAR-Coating) zur Erhöhung der Transmission verwendbar</td>
</tr>
<tr>
<td>Germanium (Ge)</td>
<td>50</td>
<td>4,0</td>
<td>4,0</td>
<td>Nur mit Breitband-Anti-Reflexions-Beschichtung (BBAR-Coating) zur Erhöhung der Transmission verwendbar</td>
</tr>
</tbody>
</table>

Tabelle 0.2: Infrarotdurchlässige Materialien

Ausschlaggebend für eine Eignung in unserem Versuchsmodell war nach dem Wien’schen Verschiebungsgesetz eine möglichst hohe Transmissionsrate im Bereich zwischen 8μm ($\approx 100^\circ C$) und 11μm ($\approx 0^\circ C$), da sich die zu messenden Temperaturen im Bereich zwischen 37 und 70°C bewegten (siehe Formel 0.1: λ=Wellenlänge [μm]; T=Temperatur [K]).

$$\lambda_{max} = \frac{2898}{T} \quad (0.1)$$

Die Transmission des Materials spiegelt sich in der jeweiligen Brechzahl wider. Die Beziehung zwischen Brechzahl und Transmission zeigt Formel 0.2 (τ=Transmission; η=Brechzahl).
Das bedeutet, dass sich ein inverser Zusammenhang zwischen Brechzahl und Transmission ergibt. Je kleiner die Brechzahl ist, desto höher ist die Transmissionsrate.

Die besten Transmissionseigenschaften zeigen nach diesen Kriterien somit Irtran 1 ($\tau=96\%$) und Saphir ($\tau=85\%$). In bezug auf eine möglichst hohe Cut-off-Wellenlänge, ($\lambda_{\text{cut-off}}$, entspricht der Wellenlänge der Infrarotstrahlung, ab der die Transmissionseigenschaften deutlich schlechter werden) weisen Zink-Sulfid, Silizium und Germanium mit $\lambda_{\text{cut-off}}>11\mu m$ die von uns geforderte Eigenschaft auf. Saphirglas erfüllt diese Bedingung ebenfalls mit einem speziellen „Cut-off-Filter“, da das Transmissionsspektrum mit Hilfe dieses Spezialfilters auf den Bereich der fernen Infrarotstrahlung (>8µm) erweitert werden kann. Irtran 1 weist hingegen ab Wellenlängen >8µm deutlich schlechtere Transmissionseigenschaften auf. Andere Materialien wie Barium-Sulfid oder Teflon- bzw. Polyethylenfolie schieden aus unterschiedlichen Gründen wie hohe Empfindlichkeit oder geringe mechanische Belastbarkeit von Anfang an aus.

Erste Pilotversuche mit herkömmlichen Quarzglas zeigten nicht den gewünschten Erfolg, da sich dieses Material zwar im Wellenlängenspektrum <4µm durch eine Transmission von über 90% auszeichnet, im Bereich über 4µm jedoch nur noch eine Transmissionsrate um 20% aufweist. Messungen im Bereich zwischen 30°C und 100°C, also im Kernbereich des Modells, waren deshalb nicht verwertbar.

Eine zweite Messreihe mit Germanium als optisches Medium zeigte bei einem hohen Cut-off-Wert von 50µm zwar gute Temperatur-Messwerte, jedoch erwies sich die Anti-Reflex-Beschichtung als wasserlöslich und verhinderte somit weitere Messungen.

Die dritte durchgeführte Versuchsreihe mit Saphirglas und speziellem Cut-off-Filter erbrachte schließlich sowohl eine gute Transmissionsrate von im Mittel

$$ \tau = \frac{2\eta}{\eta^2 + 1} \quad (0.2) $$
90% (siehe Kapitel 3.1.1), als auch eine mechanisch-chemische Beständigkeit gegenüber der verwendeten Superfusionslösung. Weiterhin war dieses Material auch weniger kostenintensiv und erwies sich unter Berücksichtigung aller Gesichtspunkte für unsere Belange als ideal.

Die Validierungsmessreihen in Kapitel 3.1.3 mit Hilfe des schwarzen Strahlers zeigen eine sehr gute Korrelation der Thermistor-Messwerte mit den entsprechenden Thermografiewerten bei nur sehr langsameter Erwärmung der Temperatur im Becken.

Ein weiterer ausschlaggebender Faktor bei der Temperaturmessung durch ein optisches Medium ist in der Schnelligkeit der zeitlichen Änderung der Temperaturen am Medium zu sehen. Bei den Messungen in Kapitel 3.1.3 wurde

Da sich der beschriebene Fehler jedoch als systematisch erweist und bei jedem Katheter Temperaturdifferenzen mit nur geringer Streuung und linearem Anstiegsverhalten bei zunehmender Ablationsleistung auftreten, kann eine qualitative Aussage über die Temperaturprozesse durch das hier vorgestellte Versuchsmodell kritisch erfolgen. Da unsere Ergebnisse mit den Absolutemperaturen aus den Daten anderer Arbeitsgruppen mit anderen experimentellen Ansätzen sehr gut korrelieren (siehe unten), kann weiterhin davon ausgegangen werden, dass sich die oben beschriebene Limitierung nur in begrenztem und kritisch akzeptablem Maße auf die Absolutwerte in unserem Modell auswirkt.

3.7 Exemplarischer Vergleich der drei Kathetersysteme

Schwerpunkt unserer Versuchsreihen war die Darstellung und Verifizierung spezifischer Merkmale und Unterschiede verschiedener Kathetersysteme durch die neuartige Technik der Thermografie. Wir wählten bei unseren Versuchen den leistungsgesteuerten Ablationsmodus, da zum einen bei dem gekühlten Kathetersystem keine Temperatursteuerung möglich ist und zum anderen bei
einer standardisierten Leistungsabgabe die Eigenschaften der Katheter besser verglichen werden können.

Weiterhin wurde als Objektivierungskriterium starkes Augenmerk auf die Korrelation der thermografisch ermittelten Temperaturwerte mit den optisch vermessenen Läsionsdimensionen gelegt.

3.7.1 Temperaturkinetik bei konstanter Ablationsleistung
Wie bereits zuvor beschrieben, existiert eine große Anzahl von Studien, welche sich mit der Temperaturrentstehung und -wirkung bei der RF-Ablation befassen. Oft wird hierbei ein temperaturgesteuerter Ablationsmodus benutzt, was einen direkten Vergleich mit einem leistungsgesteuerten Modus teilweise erschwert.

Bei allen drei Kathetern konnten wir einen zu Beginn steilen Temperaturanstieg an der Katheter-Gewebe-Grenzfläche verzeichnen, welcher nach ca. 5-10s abflachte und sich nach ca. 20s asymptotisch einem Maximalwert annäherte (Sättigungsfunktion). Die Anstiegssteilheit der Temperaturkurven war mit zunehmender Gewebetiefe geringer, d.h. in tieferen Gewebeschichten war ein trägerer Temperaturanstieg zu verzeichnen.

Jain et al. berichten in zwei verschiedenen In-vitro-Arbeiten unter Zuhilfenahme eines numerischen Modells mit finiten Elementen ebenfalls von einem raschen Temperaturzuwuchs in den katheternahen Schichten in den ersten 20s. Dagegen wird der Temperaturzuwachs in tieferen Myokardregionen schon zu Beginn der Ablation als langsam und nahezu linear beschrieben [76] [77]. Auch
Haines und Watson propagieren eine maximale Temperaturzunahme in den katheternahen Gewebeschichten innerhalb der ersten Sekunden. Dabei verlängere sich die Halbwertszeit des Temperaturanstiegs proportional mit der Gewebetiefe [52].

Diese charakteristische Temperaturkinetik mit einer maximalen Temperaturzunahme in den katheternahen Gewebeschichten zu Beginn der Ablation deckt sich mit den von uns gewonnenen Ergebnissen und ist in Diagramm 26 dargestellt.

Diagramm 26: Gemittelter Temperaturzuwachs während der ersten 5s bei 50W Leistung bei einer Ablation mit dem Standard-Katheter (eigene Daten). Je tiefer die Gewebeschicht, desto geringer zeigt sich der zeitliche Temperaturzuwachs in den initialen 5s des Ablationsprozesses.

Auch nach der Abflachung der Temperaturkurven in der zweiten Hälfte der Ablationszeit wird nach Jain et al. im leistungsgesteuerten Modus nicht das Temperaturmaximum erreicht. Die Temperatur steigt kontinuierlich weiter an. Es handelt sich um eine monoexponentielle Zunahme der
Grenzflächentemperatur [54] [154]. Dies betätigt sich auch in unseren Ergebnissen und kann bei konstanter Ablationsleistung durch eine Zunahme der elektrischen Leitfähigkeit des Gewebes und des Blutes erklärt werden (ca. 2% pro °C Temperaturzunahme [76] [31]). Aus diesem Grund kommt es zu einem stetigen Abfall der Impedanz mit Zunahme der Stromdichte an der Ablationselektrode, welche direkt proportional zur entstehenden Temperatur ist [54].

3.7.2 Temperaturprofil im Bereich der Katheterspitze

Die weitaus höchste Temperatur in unserem Versuchsmodell wird an der Katheter-Gewebe-Grenze des Standard-Katheters bei 50W gemessen. Hier wird die 4mm-kurze Ablationselektrode nur durch die Superfusion gekühlt, welche sich jedoch im Vergleich mit dem Large-Tip-Katheter, bedingt durch die kleinere Elektrodenoberfläche, wesentlich geringer auswirkt. Beim Large-Tip werden daher an dessen Elektrodenoberfläche signifikant niedrigere Temperaturen verzeichnet. Er ist bedingt durch die doppelte Länge der Elektrodenspitze (8mm) dem Kühleffekt der Superfusion wesentlich stärker unterworfen [2]. Weiterhin ist bei konstanter Leistung die Stromdichte an der größeren Elektrode geringer [54], was grundsätzlich die Induktion geringerer Temperaturen zur Folge hat. Beim gekühlten System wird die niedrigste Oberflächentemperatur verzeichnet, was durch den aktiven Kühlkreislauf zu erklären ist [109] [28].

Die eigentliche Temperaturentstehung bei der RF-Ablation geht nicht vom Katheter im Sinne einer „heißen Nadel“ selbst aus [92], sondern wird durch den elektrischen Widerstand und die Stromdichte im umgebenden Gewebe und in der umgebenden Flüssigkeit induziert. Diese Wärmeinduktion findet vor allem in der direkten Umgebung der Katheterspitze statt [54]. Die Widerstandshitze verhält sich dabei proportional zum Quadrat der Radiofrequenz-Stromdichte (Energiedichte). Da sich die Stromdichte im unipolaren Ablationsmodus (Katheterellektrode vs. Indifferenzelektrode) proportional zu 1/r² verhält, wobei r die Entfernung vom Kathetermittelpunkt bedeutet, ist die Hitzeentwicklung im Gewebe proportional zu r⁴.
Diagramm 27: Vergleich der Temperatur an der Katheter-Gewebe-Grenze (T0) und in 1mm Gewebetiefe (T1) bei den drei untersuchten Kathetertypen bei 50W Leistung nach 55s Ablationszeit. Das höchste Temperaturniveau wird beim Standard-Katheter an der Gewebeoberfläche erreicht. Die zweithöchsten Werte sind beim Large-Tip und gekühlten System in jeweils 1mm Tiefe zu verzeichnen, während das niedrigste Temperaturniveau beim gekühlten System an der Oberfläche zu finden ist. Die Oberflächentemperaturen beim Large-Tip bewegen sich zwischen den beiden anderen Kathetern.

Dies bedeutet, dass nur eine sehr dünne Myokardschicht von ca. 1mm Dicke um die Ablationselektrode direkt durch die Induktion von der Widerstandshitze erwärmt wird (induktive Wärmeentstehung) [54]. Weiter entfernte Gewebeschichten werden durch Wärmeleitung von dieser Zone der höchsten Temperatur ausgehend erhitzt (kapazitive Wärmeleitung). Dieses physikalische Phänomen lässt sich auch bei Betrachtung unserer eigenen gewonnenen Daten nachweisen. Das Temperaturmaximum liegt beim Standard-Tip direkt an der Katheter-Gewebe-Grenze. Der Einfluss der Kühlung zeigt sich in einem nicht-signifikanten Abfall der Temperatur zwischen Oberfläche und 1mm Tiefe. Anders verhält es sich beim Large-Tip-Katheter. Die Temperatur in 1mm Tiefe übersteigt signifikant die Grenzflächentemperatur und nimmt dann mit zunehmender Gewebetiefe wieder ab. Durch den standardisierten Kühlkreislauf beim gekühlten System befindet sich das Temperaturmaximum ebenfalls in
1mm Tiefe und ist, bezogen auf die Absolutwerte, wesentlich höher als die Temperatur an der Katheter-Myokard-Grenze.

Insgesamt ist aber aus der beschriebenen Temperaturkinetik ersichtlich, dass die Kühlung durch Superfusion und die Kühlung durch ein katheterinternes Kühlssystem in ihrer Wirkung vergleichbar ist. Dieses Phänomen ist ebenfalls in der Literatur beschrieben [28], lässt sich allerdings in den bisher publizierten theoretischen Arbeiten nicht so eindrücklicher visualisieren und darstellen wie durch die thermografische Untersuchung. Die Temperaturgradienten zwischen der Gewebeoberfläche und 1mm Gewebetiefe sind zur besseren Darstellung in Diagramm 27 als Pfeile abgebildet.

3.7.3 Ablationsleistung und Oberflächentemperatur

Im vorgestellten Versuchsmodell ergibt sich eine sehr hohe Korrelation zwischen der angelegten Ablationsleistung und den thermografisch bestimmten Maximaltemperaturen an der Gewebe-Katheter-Grenze. Der Korrelationskoeffizient beträgt beim Standard-Tip 0,98, beim Large-Tip 0,95 und beim gekühlten System 0,86 (T0). Der etwas geringerer Koeffizient bei Letzterem ist auf die Turbulenzen bedingt durch den katheterinternen Kühlkreislauf einerseits und die starke Superfusion andererseits
zurückzuführen. Betrachtet man die Korrelation zwischen Leistung und Temperatur beim gekühlten Katheter in 1mm Gewebetiefe (T1), so findet sich hier ein Koeffizient von 0,97. Die hohen Korrelationsraten können als Gütekriterium der Standardisierung der Superfusion und des Wandkontaktes angesehen werden, da bei konstanten Werten die Oberflächentemperatur bzw. die Temperatur in 1mm Gewebetiefe direkt proportional zur angelegten Ablationsleistung ist [44]. Diese Beziehung zwischen Gewebetemperatur und Leistung ist in der Literatur beschrieben und bei Konstanz der sonstigen Parameter physikalisch zwingend begründbar.

Diagramm 28: Korrelationen von Ablationsleistung und thermografisch bestimmter Temperatur an der Katheter-Gewebe-Grenze. In allen Fällen ergeben sich hohe Korrelationskoeffizienten (Kk).

3.7.4 Temperaturprofil im Myokardquerschnitt nach 55s Ablation
Die Temperaturwerte in unterschiedlichen Myokardtiefen beim Standard-Katheter nach 55s RF-Applikation folgen einer abnehmenden
Exponentialfunktion, einer sog. Abklingfunktion. Hierbei fällt die Temperatur in den oberen Gewebeschichten erst steil ab, um sich dann in den tieferen Myokardschichten der Referenztemperatur von 37°C asymptotisch anzunähern (Diagramm 29).

Die selbe Tatsache spiegelt sich auch bei der Betrachtung der Temperaturverteilung bei unterschiedlichen Ablationsleistungen wieder. Hier zeigt sich mit zunehmender Gewebetiefe der Temperaturabfall um so steiler, je höher das absolute Temperaturmaximum ist.

Insgesamt entsprechen die in unserer Studie erhobenen Daten, insbesondere auch in den zeitlichen und räumlichen Aspekten, den in der Literatur beschriebenen Werten.

Ein wesentlicher Vorteil unseres In-vitro-Modells liegt jedoch in der zweidimensionalen online-Registrierung der Temperaturkinetik während der RF-Abgabe, die eine sowohl zeitlich als auch räumlich lückenlose Dokumentation und Analyse ermöglicht. Daraus kann eine optische Darstellung von Temperaturphänomenen gewonnen werden, was bisher nur in theoretischen Modellen möglich war.

In Abbildung 30 sind Thermografieaufnahmen aller drei Kathetermodelle bei 50W nach 55s Ablationsdauer dargestellt. Die Zonen höchster Temperaturen im Myokard sind farblich dunkel markiert, ebenso eine Isotherme im Blutstrom. Deutlich lässt sich beim Standard-Katheter eine Verschiebung des Temperaturmaximums im Perfusionsstrom in Flussrichtung nachweisen.
Weniger beeindruckend stellt sich dieser Effekt beim Large-Tip aufgrund der geringeren Wärmeabgabe der großen Elektrodenfläche dar, während er beim gekühlten System nicht nachweisbar ist.

Das gekühlte Kathetersystem neutralisiert den superfusionsbedingten Verschiebungseffekt der Maximaltemperatur durch die interne, den Katheter gleichmäßig umgebende Kühlflüssigkeit [28].

Haines et al. beschreiben die Läsionen und damit auch die Temperaturverteilung im Myokard als nicht hemisphärisch, da die Superfusionsflüssigkeit die Oberfläche abkühlt. Sie postulieren den Maximaldurchmesser der Läsion bei Ablation mit dem Standard-Katheter in ca. 1-2mm Tiefe [54]. Da die Läsionsausdehnung direkt von der Temperaturverteilung abhängig ist, wird auch diese Aussage durch unsere thermografische Analyse belegt. Auch hier findet sich die maximale Ausdehnung der Isothermen ca. 2mm unterhalb des Elektrodenkatheters (Abbildung 31).

Abbildung 31: Ausdehnung der 49°C-Isotherme beim Standard-Tip nach 55s Ablationsdauer bei 50W. Die maximale Breite befindet sich in ca. 2mm Gewebetiefe unter dem Katheter.

Die Beobachtung, dass die Ablationselektrode selbst durch die RF-Abgabe nicht erhitzt wird und deutlicher kühler bleibt, deckt sich mit der Aussage von Labonté et al. [92]. Dieser bezeichnet die Ablationselektrode nicht als „Hot Tip“, sondern als Ausgangspunkt eines elektrischen Feldes, welches erst durch den
Widerstand des Umgebungsgewebes eine Temperaturerhöhung generiert. Die Elektrode selbst wird dabei nur passiv durch das umgebende Myokard erwärmt.

3.8 Evaluierung der Läsionen

Da im leistungsgesteuerten Ablationsmodus bei jedem Katheter in der vorgegebenen Ablationszeit die gleiche Energiemenge abgegeben wird, spiegeln neben den induzierten Gewebetemperaturen gerade die unterschiedlichen Nekrosedimensionen den Einfluss der verschiedenen Elektrodengeometrien und Kühleffekte wieder. Die Läsionsausmaße können somit als Korrelate zu den erhobenen Thermografiedaten dienen, da die Läsionsentstehung ausschließlich durch Temperaturprozesse zu erklären ist.

Abbildung 32: Myokardquerschnitt mit Nekrose nach 60s Ablation bei 50W mit einem Standard-Tip.

Läsionsdimensionen:

Ein Vergleich mit der aktuellen Literatur in Bezug auf absolute Läsionsausmaße erweist sich als schwierig. Dies ist allein schon dadurch bedingt, dass selten ein Versuchsmodell den Gegebenheiten eines anderen genau entspricht. Des weiteren kommt eine gewisse Variabilität in der Vermessung der Nekrosen zum Tragen [75]. So werden, wie in unserem Fall, die Läsionsdimensionen in einigen Arbeiten rein optisch bestimmt und ausgemessen [76] [102], wohingegen in einigen anderen Studien die Bereiche der Eiweißdenaturierung
mittels verschiedener Färbemethoden markiert werden [19] [28] [52]. Erwähnenswert ist jedoch, dass die Koagulationsnekrosen die aus der RF-Applikation resultieren, deutliche und scharfe Demarkationsgrenzen aufweisen, so dass in der Regel eine unkomplizierte und genaue makroskopische Vermessung ohne Anfärbung möglich ist.

Aufgrund eines ähnlichen Versuchs-Set-ups werden nachfolgend zwei In-vitro-Studien von Jain et al. angeführt, welche ebenfalls in einem leistungsgesteuerten Ablationsmodus mit einem 7F Standardkatheter (4mm-Tip) durchgeführt wurden. Anzumerken ist, dass in diesen Arbeiten die Superfusionsgeschwindigkeit mit bis zu 0,085m/s weit unter unserer Einstellung von 0,21m/s liegt. Ein Vergleich der Absoluttemperaturen ist deshalb auch hier sehr kritisch zu werten. Verglichen wird deshalb auch der Quotient aus der Läsionstiefe und der Läsionsbreite, da dieser vom Ausmaß der Superfusion unabhängig ist, dafür aber eine enge Assoziation mit der Kathetergeometrie aufweist. Ein Vergleich der Daten von Jain et al. und unseren Ergebnissen ist in Tabelle 0.3 abgebildet. Es zeigt sich, dass sowohl bei Jain et al. als auch in unseren Daten die Breite der Läsionen gegenüber der Tiefe überwiegt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Läsionstiefe (mm)</td>
<td>4,4</td>
<td>4,5</td>
</tr>
<tr>
<td>Läsionsbreite (mm)</td>
<td>7,8</td>
<td>6,0</td>
</tr>
<tr>
<td>Tiefe/Breite</td>
<td>0,56</td>
<td>0,75</td>
</tr>
</tbody>
</table>

Tabelle 0.3: Literaturvergleich der Läsionsausmaße bei der leistungsgesteuerten Ablation mit einem 7F Standard-Katheter (4 mm) im unipolaren Modus. Im Vergleich mit den Daten von Jain et al. zeigt sich ein ähnliches Verhältnis der Dimensionen.

Der Quotient aus Nekrose-Tiefe und -Breite ist folglich in allen drei Studien kleiner 1 und rangiert zwischen 0,56 und 0,75. Dieses Tiefen-Breiten-Verhältnis beschreibt die bereits zuvor erwähnte geometrische Form eines abgeflachten
Ellipsoiden, welches ebenfalls auch visuell in unseren thermografischen Abbildungen (Isothermen) nachweisbar ist.

Durch unterschiedliche Formeln zur Berechnung der Läsionsvolumina in der Literatur einerseits und durch vielfältige In-vitro-Modelle mit unterschiedlichen Katheterfixierungen, Perfusionsgeschwindigkeiten und Ablationsmodalitäten
andererseits gestaltet sich ein Vergleich der Läsionsvolumina schwierig. Deshalb existiert diesbezüglich eine große Variabilität der myokardialen Läsionsvolumina zwischen 50 und etwa 800mm³ in den durch In-vitro-Versuche erhobenen Datensätzen [19] [52] [77].

Korrelation der Läsionsparameter mit Temperaturprofil und Leistung

In vielen Studien wird eine temperaturgesteuerte RF-Ablation favorisiert. Als Begründung wird zumeist die hohe Korrelation der durch einen Thermistor in der Katheterspitze während der Ablation gemessenen Temperatur mit der Läsionstiefe angegeben. Im Gegensatz hierzu wird die Korrelation von Ablationsleistung und Läsionstiefe als weniger bedeutsam eingestuft [54] [58]. Unsere Ergebnisse demonstrieren allerdings, dass beide Faktoren, sowohl die thermografisch gemessene Temperatur an der Grenzfläche Katheter/Myokard, als auch die Ablationsleistung bei vergleichbarer Impedanz, jeweils eine hohe Korrelation (>0,95) mit der induzierten Läsionstiefe aufweisen.

![Abbildung 34: Exemplarische Darstellung der Tiefe/Breite-Quotienten (Q) einzelner Isothermen bei 50W nach 55s Ablation.](image)

Die errechneten Quotienten aus Läsions- und Isothermendimensionen unterscheiden sich nicht signifikant voneinander. Somit wird die Thermografie zur Bestimmung der Temperaturkinetik im Myokardquerschnitt durch die
resultierenden Läsionsdimensionen in ihrer Aussagekraft untermauert (Tabelle 0.4).

<table>
<thead>
<tr>
<th>Läsion</th>
<th>Isotherme</th>
<th>n.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard-Tip</td>
<td>0,67</td>
<td>0,69</td>
</tr>
<tr>
<td>Large-Tip</td>
<td>0,51</td>
<td>0,51</td>
</tr>
<tr>
<td>Cooled Tip</td>
<td>0,73</td>
<td>0,76</td>
</tr>
</tbody>
</table>

3.8.1 Mindesttemperatur für die Demarkation von Nekrosezonen

Mit Hilfe der Läsionsdimensionen und der thermographischen Abbildungen wurde eine Schwellentemperatur für die Entstehung einer Koagulationsnekrose aus unseren Daten ermittelt. Diese Temperatur lag im Mittel bei 43,3°C. Die genau Berechnung erfolgte über die Läsionstiefe bei allen durchgeführten Ablationen und die jeweilige Zuordnung der in dieser Tiefe thermografisch ermittelten Temperaturwerte.

In der Literatur schwanken die Angaben über die Schwellentemperatur, ab der eine Koagulationsnekrose entsteht bzw. sichtbar wird. Allgemein wird eine irreversible Schädigung des Myokards mit Verlust der elektrischen Leitfähigkeit ab einer Temperatur von >50°C angenommen. Dieser Wert wurde von Cao et al. [19], Nath et al. [112] und auch Haines et al. [54] als Mindesttemperatur für die Läsionsbildung favorisiert. Aufgrund der Daten einer In-vitro-Studie berechneten Haines et al. die Demarkationstemperatur jedoch mit bereits 46,6 - 48,8°C, etwas niedriger als theoretisch veranschlagt. Demazumder et al. propagieren hingegen, basierend auf einem In-vitro-Versuch mit einem gekühlten Kathetersystem, eine Mindesttemperatur von 55°C über mindestens 10s Dauer. Die Läsionen wurden dabei zum Vermessen mit 1%iger Triphenyl-
Tetrazolium-Lösung angefärbt [28]. Eine Arbeit von Haverkamp et al. beschreibt eine Läsionsentstehung sogar erst dann, wenn eine Temperaturdifferenz von mehr als 20°C vom Ausgangswert vorliegt, d.h. im klinischen Bereich von ca. 57°C. Dieser Wert konnte in einem In-vivo-Versuch nachgewiesen werden [58]. Den höchsten Schwellenwert für eine optische Nekrosedemarcation geben Jain und Wolf aufgrund einer In-vitro-Studie mit 59°C an [76]. Insgesamt zeigt sich somit unter Berücksichtigung der publizierten Daten eine Temperaturspanne von 46,6°C bis 59°C. Diese große Streuung unterstützt die These von Jain und Wolf [75], dass das Ausmaß der Nekrosezone großen Variabilitäten unterworfen ist.

![Diagramm 30: Mindesttemperatur der Nekroseentstehung in der Literatur. Die ermittelten Werte variieren je nach Arbeitsgruppen und den damit zugrundeliegenden Versuchsmodellen.](image)

Weiterhin muss berücksichtigt werden, dass die angegebenen Temperaturwerte, wenn sie über den Thermistor in der Katheterspitze bestimmt werden, eine Mischtemperatur des einerseits anliegenden Myokards andererseits aber auch des umgebenden Flüssigkeitsstroms widerspiegeln.
Viele Faktoren wie Temperatur/Flussgeschwindigkeit des umgebenen Mediums oder der Anteil der Kontaktfläche der Ablationselektrode mit dem Myokard tragen somit zur Generierung der Gesamttemperatur bei.

Die von uns berechnete Temperaturgrenze der Läsionsinduktion von 43,3°C liegt etwa 3°C unterhalb der publizierten Minimaltemperatur. Möglicherweise trägt die starke Superfusion mit zu dieser Tatsache bei, ein systembedingter Wärmeverlust unseres Set-ups kann allerdings ebenfalls nicht ausgeschlossen werden (Diagramm 30).
Zusammenfassung

Ziel der vorliegenden Untersuchung war die Entwicklung eines In-vitro-Modells zur Evaluierung von Ablationskathetern, die durch thermische Wirkung eine Modifikation des Myokards zur Therapie von Herzrhythmusstörungen bewirken. Mit dieser Methodik sollte es möglich sein, sowohl unterschiedliche Kathetergeometrien als auch neue Energieformen in bezug auf ihre direkte thermische Wirkung auf Myokard während der Energieapplikation zu analysieren. Diese Informationen sind Voraussetzung für die Beurteilung neuer Ablationstechniken im Hinblick auf Effizienz und Sicherheit vor ihrem Einsatz am Patienten. Die gewonnenen Ergebnisse sollten in Relation zu den bekannten Effekten des 4mm-Standardkatheters gesetzt werden, um eine sichere klinische Anwendung zu gewährleisten.

Als Kernstück des Versuchsaufbaus wurde die moderne Technik der Thermografie angewandt, die eine kontaktfreie Analyse der Temperaturkinetik im Myokardquerschnitt ermöglicht. Damit konnte gänzlich auf schwierig zu positionierende intramyokardiale Temperatursonden verzichtet werden, wie sie in der Literatur bislang in den meisten In-vitro-Modellen Verwendung fanden. Diese metallenen Sonden haben weiterhin den Nachteil, dass sie den Radiofrequenzstrom während der Ablation selbst leiten und somit funktionell als Ablationselektroden wirken können, was eine störende Beeinflussung der Messergebnisse bewirken kann.

Als Basis des Versuchsaufbaus wurde ein zweigeteiltes Plexiglasbecken verwendet, das mit 37°C warmer, zirkulierender Kochsalzlösung gefüllt war. An einer Seite des Beckens wurde im Inneren eine Myokardprobe fixiert und mit einem darauf aufgelegten Katheter Radiofrequenzstrom auf die epikardiale Myokardoberfläche appliziert, eine sogenannte Ablation durchgeführt. Im darunter liegenden Myokardquerschnitt konnten mittels Thermografiekamera
die Temperaturphänomene während der RF-Abgabe online an jedem beliebigen Ort zu jedem beliebigen Zeitpunkt dokumentiert und analysiert werden.

Aufgrund physikalisch-optischer Gegebenheiten musste die thermographische Messung durch ein sogenanntes optisches Medium erfolgen. Die Verwendung von herkömmlichem Fenster- oder Plexiglas war aufgrund der Transmissionseigenschaften dieser Werkstoffe nicht möglich.

In einem ersten Versuchsschritt wurden unterschiedliche optische Gläser (Quarz, Germanium) in bezug auf ihre Eigenschaften in o.g. Versuchsaufbau untersucht. Als geeignetes optisches Medium wurde schließlich Saphirglas gefunden. Durch Vorversuchsreihen wurde der Transmissionskoeffizient dieses Materials experimentell ermittelt und mit 92% bestimmt.

In einem weiteren Versuchsschritt wurde eine Kalibrierung des Versuchsaufbaus mit Hilfe eines sog. schwarzen Strahlers durchgeführt. Durch schrittweises Erhitzen von physiologischer Kochsalzlösung im Versuchsmodell konnte über mehrere Temperaturmessverfahren die thermographische Messung kalibriert und validiert werden.

Im Anschluss daran wurden die Versuchsreihen zur Katheter-Evaluierung vorgenommen. Es wurden Versuchsreihen mit drei verschiedenen Kathetertypen durchgeführt, die auf der Anwendung von Radiofrequenz-Strom beruhen (Standard-Katheter mit 4mm Spitzelektrode, Large-Tip-Katheter mit 8mm Spitze und ein intrinsisch gekühltes Kathetersystem mit 4mm Spitzelektrode).

Durch die farbcodierte Darstellung der Temperaturkinetik erschließt das Modell die Möglichkeit der qualitativen Beurteilung spezieller, katheterspezifischer Temperaturphänomene. So konnte gezeigt werden, dass sich die Zone maximaler Temperatur während der RF-Ablation je nach Kathetertyp in

Die zweidimensionale Darstellung der Temperatur bietet auch die Möglichkeit, einen direkten Vergleich mit den Ausmaßen der induzierter Nekrosezonen im Myokard zu vollziehen. Bei einer rein thermischen Induktion der
Ablationsläsionen zeigte sich in unserem Fall eine große Übereinstimmung der Läsionsausmaße mit den Temperaturverteilungsmustern. Dies bestätigte somit die Validität der Thermografie in der Darstellung intramyokardialer Temperaturprozesse während der Ablation.

Die Anwendung der Thermografietechnik stellt im Bereich der Analyse von Temperaturphänomenen während der Katheterablation bei Herzrhythmusstörungen ein gänzlich neues Verfahren dar. Hierbei bietet das vorliegende In-vitro-Modell, das im Rahmen dieser Versuchsreihen validiert werden konnte, gegenüber den bisherig eingesetzten Verfahren wesentliche Vorteile: Durch eine kontaktfreie Messung mit Hilfe der Thermografiekamera kann die Temperatur unter dem Ablationskatheter nahezu interferenzfrei zu jedem beliebigen Zeitpunkt des Ablationsvorgangs mit einer Messgenauigkeit von ±0,1°C bestimmt werden. Ein weiterer Vorteil liegt in der flächenhaft zweidimensionalen Darstellung der Temperaturwerte im Myokardquerschnitt mit einer räumlichen Auflösung von ±0,1mm. Die Temperatur kann so an jedem beliebigen Punkt während des Ablationsprozesses bestimmt werden, was mit herkömmlichen Versuchsmodellen nicht möglich war. Die Temperaturverteilung wird grafisch dargestellt und ermöglicht somit eine räumliche Zuordnung dynamischer Temperaturprozesse (Kinetik). Bislang war eine räumliche Darstellung dieser Art nur mit komplexen theoretischen, mathematisch-numerischen Modellen und mit Hilfe finiter Elemente möglich.

Literaturverzeichnis

[27] COX JL, GALLAGHER JJ, CAIN ME: Experience with 118

[34] **ERNST S., OUYANG F., GOYA M., KUCK KH.:** Primäre Katheterablation von Vorhofflimmern. Herz 2002; 27:365-369 Heft 4

[37] **Fiek M:** Untersuchung antitachykarder Stimulationsverfahren zur Therapie spontaner ventrikulärer Tachykardien bei Patienten mit implantierbarem Cardioverter/Defibrillator (ICD) im Langzeitverlauf. München, Ludwigs-Maximilians-Universität, Medizinische Fakultät, Diss., 1998

[38] **Fisch C:** Clinical electrophysiological studies and the Wolff-Parkinson-White pattern. Circulation 1990; 82:1872-1872

[42] **Gallavardin L:** Extrasystolie ventriculaire a proxysmes tachycardieques prolonges. Arch mal cœur 1922; 15:298-306

[63] **Hocini M, Pasquier JL, Jais P, Haissaguerre M**: *Ablative strategy:*
a definite treatment for cardiac arrhythmias? Rev Prat. 2004 Feb
15; 54(3):291-297

[64] **HOFFMANN E, GERTH A, REMP T, MÜLLER D, STEINBECK G:** *Left-
ventricular radiofrequency catheter ablation of the atrioventricular
junction.* Z Kardiol 1992; 81:389-393

[65] **HOFFMANN E, REITHMANN C, NEUSER H, NIMMERMANN P, REMP T,
STEINBECK G:** *Repetitive monomorphe ventrikuläre Tachykardie
(Typ Gallavardin): Klinische und elektrophysiologische
Charakteristika von 20 Patienten.* Z Kardiol 1998; 87:353-363

[66] **HOFFMANN E, REMP T, GERTH A, ET AL.:** *Does impedance
monitoring during radiofrequency catheter ablation reduce the risk
of impedance rise?* Circulation 1993; 88:1-165 (abstr.)

[67] **HOFFMANN E, STEINBECK G:** *Katheterablation supraventrikulärer
Tachykarden.* Berlin; Heidelberg; New York: Springer Verlag,
1996

[68] **HOYT RH, HUANG SKS, MARKUS FI, ODELL RS:** *Factors influencing
transcatheter radiofrequency ablation of the myocardium.* J Appl
Cardiol 1986; 1:469-486

[69] **HUNG J, KELLY DT, HUTTON BF, UThER JB, BAIRD DK:** *Influence of
heart rate and atrial transport on left ventricular volume and
function: Relation to hemodynamic changes produced by
supraventricular arrhythmia.* Am J Cardio 1981; 48:632-638

[70] **IKEDA T:** *Brugada syndrome: current clinical aspects and risk
stratification.* Ann Noninvasive Electrocardiol 2002; 7(3):251-262

[71] **JACKMAN WM, BECKMAN KJ, McCLELLAND JH ET AL.:** *Treatment of
supraventricular tachycardia due to atrioventricular nodal reentry
by radiofrequency catheter ablation of slow pathway conduction.

[72] **JACKMAN WM, NAGAKAWA H, HEIDBÜCHEL H ET AL.:** *Three forms of
atrioventricular nodal (junctional) reentrant tachycardia: differential
diagnosis, electrophysiological characteristics, and

[79] **JENTZER JH, GOYAL R, WILLIAMSON BD ET AL.:** *Analysis of junctional ectopy during radiofrequency ablation of the slow-pathway in patients with atrioventricular nodal reentrant tachycardia.* Circulation 1994; 90:2820-2826
[80] **JOSEPHSON ME:** *The bradyarrhythmias.* Harrison’s principles of internal medicine. 14th edition. New York 1998

[82] **KALTENBRUNNER W,** **CARDINAL R,** **DUBUC M,** **SHENASA M,** **NADEAU R,** **TREMBLAY G,** **VERMEULEN M,** **SAVARD P,** **PAGE PL:** *Epicardial and endocardial mapping of ventricular tachycardia in patients with myocardial infarction: is the origin of the tachycardia always subendocardial localized?* Circulation 1991; 84:1058-1071

[84] **KAY GN,** **EPSTEIN AE,** **DAILEY SM,** **PLUMB VJ,** **SMITH JM,** **CAIN ME:** *Role of radiofrequency ablation in the management of supraventricular arrhythmias: Experience in 760 consecutive patients.* J Cardiovasc Electrophysiol 1993; 4:371-392

[85] **KIM YH,** **SOSA-SUAREZ G,** **TROUTON TG,** **O’NUNAIN SS,** **OSSWALD S,** **McGOVERN BA,** **RUSKIN JN,** **GARAN H:** *Treatment of ventricular tachycardia by transcatheter radiofrequency ablation in patients with ischemic heart disease.* Circulation 1994; 89:1094-1102

[87] **KLEIN LS,** **SITH HT,** **HACKETT K:** *Radiofrequency catheter ablation of ventricular tachycardia in patients without structural heart disease.* Circulation 1992; 85:1666-1674

[88] **KONGSGAARD E,** **STEEN T,** **JENSEN O,** **AASS H,** **AMLIE JP:** *Temperature Gueided Radiofrequency Catheter Ablation of Myocardium: Comparison of Catheter Tip and Tissue Temperatures In Vitro.* PACE 1997; 20[Pt.I]:1252-1260

[89] **KOTTKAMP H,** **CHEN X,** **HINDRICKS G,** **BREITHARDT G,** **BORGGREFE M:**
Radiofrequency catheter ablation of idiopathic left ventricular tachycardia—further evidence for micro-reentry as the underlying mechanism. J Cardiovasc Elektrophysiol 1994; 5:268-273

tachycardia in patients with coronary artery disease. Circulation 1993; 87:363-372

[108] MYERBURG RJ: Epidemiology of Ventricular Tachycardia / Ventricular Fibrillation and Sudden Cardiac Death. PACE 1986 (II); 9:1334-1339

PFEIFFER D, NEUGEBAUER A, TEBBENJOHANS J, SCHUMACHER B, NIEHAUS M, ROTHER T, LÜDERITZ B: Radiofrequency ablation of atrioventricular nodal reentrant tachycardia: mechanisms and

[131] SCHEINMANN MM, LAKS LL, DI MARCO J, PLUMB V: Current role of
catheter ablative procedures in patients with cardiac arrhythmias. Circulation 1990; 83: 2146-2153

[133] Schlichting HJ, Rodewald B: Leben im Wärmebad. Praxis der Naturwissenschaften-Physik 1988; 37/5, 30

STEVENSON WG, FRIEDMAN PL, GANZ LI: Radiofrequency catheter ablation of ventricular tachycardia late after myocardial infarction. J Cardiovasc Electrophysiol 1997; 8:1309-1319

STEVENSON WG, FRIEDMAN PL, KOCOVIC D, SAGER PT, SAXON LA, PAVRI B: Radiofrequency catheter ablation of ventricular tachycardia after myocardial infarction. Circulation 1998; 98:308-314

TAVSANOGLU S, OZENEL E: Ice-water washcloth rather than facial emersion (diving reflex) for supraventricular tachycardia in adults (letter). Am J Cardiol 1985; 56:1003

VAUGHAN WILLIAMS EM: Classification of antiarrhythmic drugs. In Sandoe E, Flensted-Jensen E, Olsen KH (eds.): Cardiac Arrhythmias. Sodertalje, Sweden, Astra 1979; pp449-472

VELEBIT V, PODRID P, LOWN B, COHEN BH, GRAYBOYS TB:
Aggravation and provocation of ventricular arrhythmias by antiarrhythmic drugs. Circulation 1982; 65:886-894

1997; 640-704
Anhang

3.9 Lebenslauf

Name: Frank Gindele

Geburtsdatum: 17. Dezember 1972

Geburtsort: Ravensburg

Wohnort: Elberfelder Str. 9

10555 Berlin

Familienstand: verheiratet

Staatsangehörigkeit: deutsch

1979 – 1983 Grundschule Ravensburg

1983 – 1992 Gymnasium Ravensburg

Abschluss: Allgemeine Hochschulreife

Abteilung Rettungsdienst

seit 2003 Assistenzarzt in der Med. Klinik I für Kardiologie und konservative Intensivmedizin im Klinikum am Urban Berlin
3.10 Danksagung

Mein besonderer Dank gilt Frau Prof. Dr. med. E. Hoffmann und Herrn PD Dr. med. C. Reithmann für die Überlassung des Themas und die Unterstützung und konstruktive Kritik bei der Durchführung und Fertigstellung dieser Arbeit. Es wurde mir dadurch Gelegenheit gegeben, wertvolle Erfahrungen sowohl bei der Bearbeitung wissenschaftlicher Fragestellungen, als auch in der klinischen Kardiologie zu sammeln.

Weiterhin möchte ich Herrn Dr. med. Michael Fiek für die tatkräftige und freundschaftliche Unterstützung, wie auch für die Anleitung bei der Erstellung dieser Arbeit danken.

Mein aufrichtiger Dank gilt ebenso Frau Brigitte und Herrn Rudolf Zenner für die Förderung meiner wissenschaftlichen Arbeit am Klinikum Großhadern durch ein einjähriges Forschungsstipendium der Rudolf und Brigitte Zenner Stiftung.