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Abstract

This dissertation presents a theoretical analysis of methods to manipulate and con-
trol the momentum state of coherent matter waves. Of particular interest is the
coherent acceleration of a quantum-degenerate atomic system, which, as a direct
consequence of the form of the de Broglie wavelength, results in tunable source of
matter waves. Such sources are of considerable importance for a number of poten-
tial applications in the field of atom optics, including the development of highly
sensitive gyroscopes, accelerometers, gravity gradiometers or atom lithography and
holography, as well as for potential uses in integrated atom optics.

Our basic setup consists of a Bose-Einstein condensate in a moving optical lattice
created by a pair of frequency-chirped counterpropagating laser beams acting as a
“conveyor belt” for ultracold atoms. Whereas the acceleration of ultracold but non-
condensed atoms in such a lattice was demonstrated earlier, we extend this scheme
to the case of Bose-Einstein condensates.

As a first step, we investigate the acceleration efficiency for various acceleration
rates and nonlinear interaction strengths. We find parameter regimes where efficient
acceleration is possible, i.e. all atoms are accelerated to the same velocity and the
initially sharp momentum distribution and thus its monochromaticity is preserved.
However, in general we identify switch-on effects of the lattice, dynamical loss and
nonlinear effects to be responsible for deterioration of the monochromaticity of the
condensate: On the one hand, switch-on effects and dynamical loss induce a coupling
of the initially populated momentum mode to other modes, thereby distributing the
momentum over several modes. On the other hand, the nonlinear release of mean
field energy during the acceleration process causes the mode profile itself to broaden,
also leading to a contamination of the initial monochromaticity.

As a second step, we discuss ways to improve this scheme by removing the re-
striction of constant accelerations. We employ genetic algorithms to optimize the
time-dependent motion of the lattice. We show that with such flexibility, it is possi-
ble to achieve a fast and highly efficient coherent acceleration of condensates, even
when mean-field effects cannot be neglected. The same scheme also enables the cre-
ation of arbitrary coherent superposition states in momentum space. The technique
is thus suitable for building highly efficient momentum state beam splitters.

In addition to simply accelerating condensates, it is desirable for many potential
applications to transport atomic wave packets without dispersion over large dis-
tances. This can be achieved by launching bright atomic solitons, where the effects
of the nonlinearity counterbalance the dispersion. Placing a Bose-Einstein conden-
sate with repulsive interactions in a lattice, one can create a negative effective mass.
Under these circumstances bright and stable soliton solutions exist, so-called gap

solitons. After a careful analysis of the soliton properties, we use the tools we de-
veloped for condensate acceleration and demonstrate two feasible schemes to excite
the solitons.

Experimental data released after publication of our results demonstrating the
acceleration of Bose-Einstein condensates in moving lattices [1, 2] and the very
recent observation of atomic gap solitons [3] indicates that our theoretical analysis
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was timely and indeed experimentally feasible.
As an outlook, we briefly comment on a new direction in the field of atom optics

that holds promise for future applications: the use of quantum degenerate Fermi
gases. In atomic as well as in optical physics one often encounters situations where
there exists a coupling between several modes of a system. Here, we illustrate the
“toy model” of a fermionic coupler where transitions between two internal states
are induced by Raman coupling. Due to Fermi statistics and interatomic interac-
tions, this is a simple example of a nonlinear multimode coupler. Investigation of
this system consisting of only a few fermions already clearly illustrates the basic
differences between bosonic and fermionic dynamics and sheds light on the role of
two-body collisions. Understanding the basic mechanisms of this system is a first
step towards more sophisticated coherent control of fermionic systems.



Zusammenfassung

In der vorliegenden Arbeit berichten wir über theoretische Analysen zur Manip-
ulation und Steuerung des Impulszustandes von kohärenten Materiewellen. Ins-
besondere betrachten wir die Möglichkeit, Bose-Einstein Kondensate kohärent zu
beschleunigen, was uns ermöglicht, die de Broglie Wellenlänge der Materiewelle
zu wählen. Diese einstellbaren kohärenten Atomstrahlquellen versprechen großen
Nutzen in einer Vielzahl von Anwendungen, z.B. beim Einsatz in integrierten Atom-
sensoren.

Wir betrachten ein Bose-Einstein Kondensat in einem sich räumlich bewegenden
optischen Gitter. Zunächst untersuchen wir die Beschleunigungsdynamik für ver-
schiedene konstante Beschleunigungsraten des Gitters und unterschiedliche Mean-
Field-Energien des Kondensats. Wir identifizieren dynamische Verlustprozesse und
nichtlineare Effekte, die zu einer Verbreiterung der anfänglich sehr scharfen Im-
pulsverteilung führen und somit den monochromatischen Charakter bzw. die Kohä-
renz des Kondensats vermindern. Der Parameterbereich, in dem das gesamte Kon-
densat effizient beschleunigt werden kann, ist eingeschränkt. Deswegen betrachten
wir im nächsten Schritt komplexe zeitabhängige Bewegungen des optischen Git-
ters, die nicht nur zu einer konstanten Beschleunigung führen. Mit Hilfe so genan-
nter Genetischer Algorithmen optimieren wir diese zusätzlichen Freiheitsgrade des
Gitters, so dass Kondensate mit hohen Mean-Field-Energien schnell und effizient
beschleunigt werden können. Zusätzlich zeigen wir, dass dieses Verfahren zur Gener-
ierung von beliebigen kohärenten Superpositionen von Impulsmoden genutzt werden
kann. Dieses ermöglicht u.a. die Konstruktion von nichtlinearen Atomstrahlteil-
ern. Außer der Beschleunigung von Kondensaten ist es oft wünschenswert, atomare
Wellenpakete ohne Dispersion über weite Strecken zu transportieren. Wir zeigen,
dass in unserem System die Möglichkeit besteht, helle atomare Gap Solitonen zu
erzeugen. Durch das periodische Gitter kann man dem Kondensat eine negative
effektive Masse zuschreiben, deren dispersive Wirkung durch die repulsive inter-
atomare Wechselwirkung ausbalanciert wird. Wir untersuchen detailliert die Eigen-
schaften der Gap Solitonen und entwickeln Methoden zur Anregung, die auf den
Ergebnissen der zuvor dargestellten optimierten Beschleunigung von Kondensaten
basieren.

Nach der Veröffentlichung unserer Analysen wurden experimentelle Ergebnisse
bekannt, die sowohl die Beschleunigung von Bose-Einstein Kondensaten in optis-
chen Gittern als auch die Anregung von Gap Solitonen zeigen. Dies deutet darauf
hin, dass unsere theoretischen Ansätze zur rechten Zeit ein Gebiet von hohem prak-
tischen Interesse beleuchtet haben.

In einem abschließenden Ausblick betrachten wir kurz entartete Fermi Gase, die
ein neuer Forschungsschwerpunkt in der Atomoptik sind. Da sowohl in der Atom-
physik als auch in der Optik gekoppelte Systeme häufig eine fundamentale Rolle
spielen, untersuchen wir die Dynamik von zwei gekoppelten internen Zuständen
eines kalten Fermi Gases in einer harmonischen Falle. Auf Grund von Fermi-
Statistik und Stoßprozessen zwischen den Atomen handelt es sich hierbei um eine
einfache Version eines nichtlinearen Vielmoden-Kopplers. Ein Grundverständnis
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der Dynamik dieses Systems ist ein wichtiger Schritt, Methoden zur gezielten,
kohärenten Manipulation von fermionischen Systemen zu entwickeln.
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Chapter 1

Introduction

One of the most striking features of quantum mechanics is the wave-like character of
massive particles. It was first noticed by de Broglie that not only light, but all matter
should be regarded as waves, with the so-called de Broglie wavelength Λ = h/p,
where p is the particle momentum [4]. This groundbreaking result enabled the
transfer of concepts from wave optics with light to the domain of massive particles.
This led to the development of the field of de Broglie optics [5], that describes the
propagation, reflection, refraction, diffraction and interference of matter waves.

In contrast to the subfields of electron optics [6] and neutron optics [7] with
well-established applications such as e.g. electron microscopy and neutron interfer-
ometry, we focus on particle waves consisting of neutral atoms. The breakthrough
in this field of atom optics was sparked by the rapid progress in laser cooling over
the past twenty years [8]. The decrease of the momentum of the atoms by con-
trolling the atomic motion by laser light eliminated problems associated with the
small de Broglie wavelength of atoms at room temperature. Subsequently, many
atom-optical elements, including mirrors, gratings, resonators and interferometers
were successfully demonstrated.

Another milestone was then reached by the achievement of Bose-Einstein con-
densation in dilute gases of neutral atoms [9, 10, 11], where a macroscopic quantum
object with an extremely narrow momentum spread is created in the ground state
of a trap. Coherent extraction of atoms from trapped condensates led to the mat-
ter wave equivalent of the optical laser, the atom laser [12, 13, 14, 15]. These
sources of monochromatic matter waves are bright and enabled the transition from
linear to nonlinear atom optics due to the intrinsic many-body interactions within
the condensate. First experiments were carried out soon after the first success-
ful condensation, demonstrating that many concepts known from nonlinear optics
have indeed a matter wave equivalent, such as e.g. atomic four-wave mixing [16],
phase-coherent amplification [17, 18], dark atomic solitons [19, 20] and matter wave
superradiance [21].

Despite many similarities between optical and atom optical concepts, there are
also differences. The most obvious one is that in atom optics the conventional roles
of light and matter are reversed. Specifically, in atom optics, light is usually used
to control and manipulate atomic trajectories and the quantum state. More pro-
found, however, are the structural differences between photons and atoms: Atoms,
in contrast to photons, are e.g. massive particles, they exhibit a rich internal struc-
ture, they possess a magnetic moment and a specific polarizability, and are thus
sensitive to many external fields. These properties allow for excellent manipulation
and custom-tailored control of atomic matter waves.

Current research tries to harness these exceptional properties in order to move
the field of atom optics towards applications. A major goal is to build compact
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2 CHAPTER 1. INTRODUCTION

atomic interferometric devices that outperform state-of-the-art optical sensors. Sin-
gle components to reach this ambitious goal have already successfully been tested:
On the one hand, free-space atom optical sensors - based on atomic interference -
were shown to be able to compete with state-of-the-art optical devices [22]. On the
other hand, the increased need to control samples of atoms in confined geometries
led to the successful guiding of ultracold atoms as well as of Bose-Einstein conden-
sates on lithographically fabricated magnetic waveguides [23, 24, 25, 26, 27]. The
current challenge is to seamlessly combine these various approaches, since highly
sensitive waveguide interferometers with bright and coherent atomic sources still
remain to be demonstrated.

Besides sensor applications, a variety of other fields can benefit substantially
from the manipulation of quantum degenerate atomic wave packets or beams with
finely tuned potentials. In some of these fields, new applications are based on the
substitution of laser light by atomic de Broglie waves. Tuning the velocity of a
beam of condensed atoms leads to a tunable source of de Broglie waves. These
are expected to overcome the limitations of conventional laser light when used e.g.
in atomic lithography [28, 29] or even in proposed schemes for atomic holography
[30]. Other fields, such as quantum information processing and computation, exploit
properties that are unique to coherent matter. Among those applications that do
not have a counterpart in quantum optics, one finds newly developed and very
promising schemes for quantum computation, where controlled collisions between
atoms in neighboring sites of an optical lattice are used to generate multi-particle
entanglement [31, 32].

In the following Section 1.1 we briefly review the basic building blocks on the
road towards microfabricated atomic sensors. This serves the purpose of conveying
a deeper understanding of these topics so that in Section 1.2, the dissertation work
and its outline can be embedded into this context. In particular, we summarize the
concepts of the atom laser in Section 1.1.1, give an overview over atomic waveguides
in Section 1.1.2, and introduce the basic principles of atomic sensors in Section 1.1.3.

1.1 Recent developments

1.1.1 Coherent atomic sources: Atom lasers

Although the idea of an atom laser as a source of coherent matter waves has been in-
vestigated before the demonstration of Bose-Einstein condensation [33, 34, 35], the
experimental pursuit became practical only after the availability of condensates.
This is due to the fact that the main prerequisite for a laser is readily fulfilled after
the condensation: The condensate in the trap is a macroscopically populated single
quantum state and thus the stimulated emission - as needed in optical lasers to
transfer many photons into a single cavity mode - is taken care of by the conden-
sation procedure. The remaining step towards a working atom laser is an output
coupler that coherently extracts atoms from the trap. Since the condensate atoms
all have the same energy and hence the same de Broglie wavelength, the resulting
beam of matter waves is expected to be monochromatic. For atoms, monochro-
maticity means that the momentum spread of the beam is narrow so that the beam
is highly directional and propagates without much spreading. In terms of coherence,
monochromaticity is equivalent to first-order coherence [36, 37]. Just as most appli-
cations of optical lasers rely solely on this degree of coherence, it is also expected to
be sufficient for many applications of atom lasers, including atomic interferometers
that will be described in Section 1.1.3.

The first atom laser was demonstrated by the MIT group [12], where the output
coupler was realized by inducing spin-flips from magnetically trapped to untrapped
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states. Gravity then accelerated the extracted atoms away from the trap, as shown
in Fig. 1.1(a). In order to compensate for variations of the frequency needed
to flip the spins, caused by fluctuations of the confining magnetic field, the rf-
field was pulsed on a time scale short compared to these fluctuations. The pulsed
nature of the output coupler limited the coherence length of the atomic beam to the
coherence length of the condensate. An improvement of this scheme is described in
Ref. [15], where stabilization of the magnetic trapping field allows for a continuous
extraction of atoms, as can be seen in Fig. 1.1(b). Measurements showed that this
CW-outcoupling indeed preserved the spatial coherence. The coherence length was
determined to be on the order of several millimeters [38]. Reference [14] followed
a slightly different approach in building an output coupler by using pulsed optical
Raman transitions to transfer atomic population from trapped to untrapped states.
Choosing the angle between the two Raman lasers gives the possibility of varying
the imparted momentum to the atoms between 0 and 2nh̄kL, with n the order of
the Raman process and kL the wave vector of the laser. In this way it is possible
to choose the de Broglie wavelength of the matter wave beam, resulting in a widely
tunable atom laser. Furthermore, the pulse sequence can be arranged so that the
released wave packets strongly overlap and the extraction is quasi-continuous, as
illustrated in Fig. 1.1(c). A fourth type of atom laser, as described in Ref. [13],
is essentially an example of a mode-locked atom laser. A Bose-Einstein condensate
is trapped in an optical lattice under the influence of gravity. This tilted lattice
potential is shallow enough for atoms to tunnel out of the individual potential
wells. Since the condensate covers several lattice sites, the extracted atoms are
phase-coherent but differ by the gravitational energy separation between the wells.
Such a comb of signals in the frequency domain results in a train of short pulses
in the time domain. Figure 1.1(d) shows a snapshot of such a train of equidistant
pulses. Subsequently, experiments with atom lasers were successfully carried out,
demonstrating reflection, focusing and storage of an atomic laser beam in a resonator
[39]. Furthermore, Ref. [40] describes the construction of a continuous source of
Bose-Einstein condensed atoms, that could be combined with CW-outcoupling in
order to create a truly continuous atom laser.

1.1.2 Atomic waveguides

After many trap configurations for neutral atoms had been developed, it was a
logical step to move from free-space atom optics towards controlled guiding of atoms
in confined geometries. Based on the success of optical fibers and microfabricated
waveguides, efforts were launched to develop similar devices for neutral atoms. First
concepts were based on hollow core fibers, where either the red-detuned center of
the fundamental mode [41] or the blue-detuned evanescent fields on the inner walls
of the fiber guided the atoms [42]. Successful guiding involving both schemes was
demonstrated in Refs. [43, 44, 45, 46]. Another group used a hollow core fiber
with current carrying wires arranged around the core so that the magnetic field
guided the atoms in the center of the fiber [47]. The major breakthrough in guiding
neutral atoms then came with the use of lithographically patterned current-carrying
wires, so-called atom chips. As in free-space magnetic traps, atoms with a magnetic
quantum number mF interacting with a magnetic field B(r) experience a potential

V (r) = mF gFµB ·B(r), (1.1)

with µB the Bohr magneton and gF the g-factor. Weak-field seeking atoms, with
mF gF > 0, are attracted towards the minimum of the potential. In contrast to
free-space atom optics or hollow core fiber waveguides, the guiding potential is now
generated by wires that can basically be placed in arbitrary patterns on the sub-
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Figure 1.1: Output of different atom lasers based on extraction of atoms from Bose-
Einstein condensates: (a) MIT laser [12] based on pulsed rf-induced spin-flips; (b)
Munich laser [15] based on continuous rf-induced spin-flips; (c) NIST laser [14]
based on pulsed optical Raman transitions; (d) Yale laser [13] based on tunneling
in an optical lattice. The atoms are extracted from condensates shown at the top,
the coherent atomic beams travel downwards.
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Figure 1.2: Two-wire magnetic atom waveguide: (a) The currents in the two wires
are in opposite directions, each creating a spherical magnetic field Bwires centered
around the wires; additionally, an external magnetic field Bext is applied. (b) The
resulting potential exhibits a minimum between the two wires where the atoms can
be guided. Due to the external magnetic field the potential minimum is shifted
away from the substrate. Schematic from Ref. [24].

strate. Figure 1.2 shows schematically how current-carrying wires generate a guid-
ing potential for weak-field seeking atoms. The lithographical fabrication process
enables the design of a broad variety of potentials, custom-tailored to applications,
such as e.g. miniature quadrupole and Ioffe-Pritchard traps, magnetic lattices, in-
terferometers, storage rings, etc. [48]. Furthermore, these devices occupy very little
space and are fairly robust against external disturbances.

At first, experiments have been carried out with ultracold but non-condensed
atoms, among those the demonstration of transport and merging clouds of atoms
with the help of a conveyor belt potential [25]. Then, Bose-Einstein condensates
have been created directly on the atom chips [26, 27]. By now, it became almost a
standard procedure to guide condensates in miniature waveguides.

A possible drawback of substrate-based magnetic waveguides is the interaction
of the cold atoms with the nearby hot surface [49]. Indeed, Ref. [50] measured
the fragmentation of trapped condensates caused by spatial fluctuations of surface
currents and confirmed radio-frequency spin-flip transitions due to surface noise
predicted in Ref. [51]. However, since the disturbing fluctuations are mainly of
technical nature and they decrease with increasing distance of the cloud to the
surface, they can successfully be suppressed. As a consequence, it was recently
found that decoherence is indeed not an issue, and coherent manipulation of internal
states of neutral atoms in a magnetic microchip trap was demonstrated [52, 53].

The development of microfabriacated waveguides for ultracold atoms may not
only lead to various new applications, reaching from sensor applications and in-
tegrated atomic clocks to controlled quantum information processing. It might
also proof useful in the study of fundamental issues requiring tightly confined one-
dimensional potential, such as e.g. needed for the realization of a Tonks-Girardeau
gas [54, 55, 56].

1.1.3 Atomic sensors

The use of integrated optical sensors has grown rapidly over the past years, since
they offer new abilites, compact sizes and most often superior performance [57]. In
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this section, we show that the use of matter waves instead of light is even more
promising for future sensor applications due to a potential increase in sensitivity.

Common sensors based on interferometry rely on the detection of a phase dif-
ference created between two paths of the interferometer. This phase shift is caused
by the interaction with the external field that is to be probed. For illustration pur-
poses, we consider a Mach-Zehnder interferometer shown in Figure 1.3 as a basic
setup. An initial atomic wave function ψ0 is coherently split into two parts ψ1

and ψ2 that evolve along the two interferometer paths. At a second beam splitter
they are then combined and detected. A 50% beam splitter leads to outgoing wave
functions ψ± = 2−1/2 (ψ1 ± ψ2). Writing the stationary wave functions in terms of
amplitude and phase,

ψi(r) ≈ Aie
iφi(r), (1.2)

with i = 1, 2 and Ai, φi(r) real-valued, we evaluate the atomic density at the
detectors to

|ψ±|2 ∝ 1 ± cos (∆φ) , (1.3)

where we assumed A1 = A2. The phase difference accumulated by the wave func-
tions along the two interferometer paths is denoted by ∆φ = φ2 − φ1. Using the
WKB approximation of the stationary Schrödinger equation, i.e. the quantum me-
chanical version of Hamilton’s ray optics, one finds the phase difference ∆φ to be
proportional to the difference of the classical actions accumulated along the two
paths [5, 36]. The WKB approximation is valid for weak perturbations and enables
us to explicitly calculate the phase difference for various external fields.

For illustration purposes we consider an interferometer sensitive to rotations. As
shown in Fig. 1.3 we assume the interferometer to rotate at a constant frequency
Ω. The phase difference created in these gyroscopes is due to the fact that in one
arm of the interferometer the atoms are copropagating with the rotation, in the
other arm they are counterpropagating. This phase shift is the so-called Sagnac

effect. For the atomic case, the phase shift in the WKB approximation is given by
∆φa = 2MΩA/h̄ [5], with M the mass of the atoms and A the area enclosed by the
interferometer loop. In an optical fiber gyroscope with light of wavelength λ and
frequency ω, the Sagnac shift is evaluated to ∆φo = 8πΩA/λc, with c the speed of
light [57]. The ratio between the atomic and optical case is then

∆φa

∆φo
∝ Mc2

h̄ω
. (1.4)

Mainly due to the atomic mass, this ratio is typically on the order of 1011. This
means that, assuming everything else being equal, matter wave rotation sensors are
more sensitive than optical fiber gyroscopes by roughly eleven orders of magnitude.
However, besides the fact that optical fiber gyroscopes usually enclose a much larger
area, matter wave sensors are suspected to suffer seriously from decoherence, re-
ducing the staggering factor of 1011. Nonetheless, the demonstration of an atomic
gyroscope that performed as well as its state-of-the-art optical counterpart [58]
shows that further research in atomic sensors might be fertile. Furthermore, there
are applications that are unique to atomic sensors, since atoms interact with the
environment in different ways than photons. An example for this is the demonstra-
tion of a gravity gradiometer [59], that is based on the acceleration of the atomic
mass.

Possible future improvements of matter wave sensors include the use of bright
and monochromatic atom lasers as a source of matter waves as well as the construc-
tion of squeezed states in order to achieve maximum sensitivity.
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Figure 1.3: Schematic of a Mach-Zehnder interferometer. For illustration purposes
the setup is assumed to rotate at a frequency Ω, the axis of rotation being oriented
perpendicular to the plane of the interferometer.

1.2 Dissertation work

1.2.1 Motivation and overview

A basic requirement to successfully combine atom lasers and microfabricated waveg-
uides to sensitive atom interferometers is the control of the atomic momentum.
There are several reasons why coherent manipulation of the momentum state is an
inevitable tool to achieve this:

• Changing the momentum state of the atom laser beam and thus changing its
de Broglie wavelength makes it a tunable source of coherent atoms. In partic-
ular, controlled acceleration and deceleration of the atomic beam is necessary
to impart the appropriate momentum.

• Controlling the momentum state supports efficient guiding on the microfabri-
cated chips and can reduce loss due to tunneling out of the guiding potential.

• Engineering of arbitrary phase-dependent momentum state superpositions en-
ables the shaping of non-dispersive wave packets (such as momentum state
solitons) or the construction of highly efficient beam splitters for interferom-
eters.

In this dissertation we propose various approaches that provide the desired momen-
tum state control. We focus on techniques that are robust, experimentally feasible
and preserve the monochromaticity of the atom beam or wave packet. Furthermore,
we include the intrinsic nonlinear effects in our considerations.

In Chapter 2, we introduce our basic setup, consisting of a Bose-Einstein con-
densate in a moving optical lattice, which is created by a pair of frequency-chirped
counterpropagating laser beams.

Using a constantly accelerated optical lattice, successful acceleration of ultracold
but non-condensed atoms was reported in Refs. [60, 61, 62, 63, 64, 65] by means
of rapid adiabatic passage. There, the moving lattice induced sequential coupling
between neighboring momentum modes. In Chapter 3, we extend this scheme to
Bose-Einstein condensates and investigate the acceleration efficiency for various
acceleration rates and condensate sizes. Accordingly, we identify switch-on effects
of the lattice and dynamical as well as nonlinear effects as the major mechanisms
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responsible for loss of the initial monochromaticity. After publication of our work,
two groups experimentally demonstrated the predicted behavior [1, 2, 66].

As a next step, in Chapter 4, we demonstrate how to improve the efficiency
of the acceleration scheme by dropping the restriction of constant accelerations.
Allowing for an arbitrary time-dependent frequency chirp of the lattice beams, we
employ genetic algorithms to optimize the motion of the lattice. This permits a fast
and highly efficient transfer between momentum modes, even for large condensates
with high nonlinearities. We also demonstrate how to create arbitrary superposition
states in momentum space by additionally optimizing for a prescribed relative phase
between two modes.

In addition to accelerating condensates, it is desirable to transport atomic wave
packets without dispersion. This is can be achieved by creating solitons, where the
nonlinearity cancels the dispersive effects. In Chapter 5, we show that by placing
a Bose-Einstein condensate with repulsive interactions in a lattice, one can create
a negative effective mass. Under these circumstances bright and stable soliton
solutions exist, so-called gap solitons. Using the results from previous chapters, we
also discuss how to excite these solitons.

We conclude by briefly considering a new direction in the field of atom optics:
quantum degenerate Fermi gases. Chapter 6 contains an investigation of a “toy
model” of a fermionic coupler, where internal states of trapped fermions are cou-
pled by a light field. The system is a simple example of a nonlinear multimode
coupler and illustrates clearly the difference between bosonic and fermionic dynam-
ics. Understanding the basic mechanisms that influence the behavior of the system
is a first step towards the extension of more sophisticated coherent manipulation
schemes from bosons to fermions.

Chapter 7 then summarizes the results and provides an outlook on future re-
search.

1.2.2 Publications

In direct context of this dissertation, the following articles have been published:

• Coherent acceleration of Bose-Einstein condensates,
S. Pötting, M. Cramer, C. H. Schwalb, H. Pu, and P. Meystre,
Phys. Rev. A 64, 023604 (2001).

• Momentum-state engineering and control in Bose-Einstein condensates,
S. Pötting, M. Cramer, and P. Meystre,
Phys. Rev A 64, 063613 (2001).

• Atomic Solitons in Optical Lattices,
S. Pötting, P. Meystre, and E. M. Wright.
In Nonlinear Photonic Crystals, edited by R. E. Slusher and B. J. Eggleton
(Springer-Verlag, Heidelberg, 2003).

• Raman coupler for a trapped two-component quantum-degenerate Fermi gas,
S. Pötting, M. Cramer, W. Zhang, and P. Meystre,
Phys. Rev. A 65, 063620 (2002).

Refer to Appendix D for a complete list of publications of the author that originated
from research in the field of quantum and atom optics.



Chapter 2

The Model System

We base our investigations on the mean field theory of Bose-Einstein condensates
at zero temperature. The Gross-Pitaevskii equation (GPE), provides an excellent
description of many features of this system, as has been demonstrated in numerous
experiments [13, 16, 19, 20, 67, 68, 69, 70, 71]. Although this approach does not
capture intrinsic many-body effects such as higher-order coherence, it proves to be
sufficient for momentum state control. In this chapter, we first derive the stationary
GPE in Section 2.1 via a variational approach [72]. In Section 2.2, we then briefly
work out the condensate ground state properties in a harmonic trap [72], since
this often serves as a starting point for numerical simulations. In order to describe
the dynamics of Bose-Einstein condensates, in Section 2.3 we derive the equation of
motion in the mean field limit, the time-dependent GPE. We discuss its validity, and
reduce it to one dimension, a step appropriate for the tight transverse confinement
of the condensate considered throughout the dissertation.

At the core of the dissertation lies the manipulation of condensates with the help
of time-dependent periodic optical potentials or optical lattices. Section 2.4 intro-
duces the laser geometry used to generate a frequency-chirped lattice and derives
the resulting time-dependent potential experienced by the atoms. We complete
this section by introducing scaling parameters in lattice recoil units. Then, Section
2.5 reviews basic properties of optical lattices, including the band structure model,
the concept of an effective mass, and summarizes effects such as Bloch oscillations
and Landau-Zener tunneling [73, 74, 75]. This will prove useful for the physical
interpretation of some of the processes we study.

2.1 Stationary Gross-Pitaevskii equation

To set the stage for our discussion, we first derive the stationary mean-field GPE
for an atomic Bose-Einstein condensate, following Ref. [72]. The time-independent
Schrödinger equation for a sytem of of N bosonic atoms with many-body wave
function Ψ(r1, . . . , rN ) is given by

HΨ(r1, . . . , rN ) = EΨ(r1, . . . , rN ), (2.1)

where the N -particle wave function is normalized to unity 1

∫

dr1 . . . drN |Ψ(r1, . . . , rN )|2 = 1, (2.2)

1Integrations are always over the whole space unless stated otherwise.

9
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and the Hamiltonian is given by

H =
N
∑

i=1

[

− h̄2

2M
∇2

i + V (ri)

]

+
N
∑

i<j

V (ri, rj). (2.3)

We consider a dilute atomic gas so that we can restrict ourselves to one-body and
two-body interactions. In Eq. (2.3), V (ri) denotes the single-particle potential
and V (ri, rj) the two-particle potential. Our goal is to find the wave function that
minimizes the energy functional

E[Ψ] =

∫

dr1 . . .drNΨ∗HΨ. (2.4)

Considering that in the fully condensed state at zero temperature all bosons are
in the same ground state ψ(r), we proceed by applying the Hartree or mean field
approximation, where we assume that the N -particle wave function is a product of
Hartree wave functions,

Ψ(r1, . . . , rN ) =

N
∏

i=1

ψ(ri), (2.5)

where the wave function ψ(r) is normalized to unity,
∫

dr |ψ(r)|2 = 1. (2.6)

We also consider a short-range pseudopotential of the form [76]

V (ri, rj) = Uδ(ri − rj), (2.7)

where the interaction strength is given by

U =
4πh̄2as

M
, (2.8)

and as is the s-wave scattering length for atoms in their electronic ground state.
In the framework of scattering theory it can be shown that this s-wave scattering
is the major contribution for scattering of ultracold bosons [36]. With this explicit
two-particle interaction and in the Hartree approximation we can write the energy
functional from Eq. (2.4) as

E[ψ] = N

∫

dr

[

h̄2

2M
|∇ψ(r)|2 + V (r) |ψ(r)|2 +

N

2
U |ψ(r)|4

]

, (2.9)

where we assumed a large number of atoms in the condensate so that N − 1 ≈ N .
The contributions to the total energy in Eq. (2.9) can be identified in their order
of appearance as kinetic, potential and mean field energy. Minimizing the energy
functional with respect to ψ(r) leads to an equation for the nonlinear ground state
wavefunction. In order to ensure constancy of the particle number we add the
constraint

N [ψ] ≡ N

∫

dr |ψ(r)|2 −N = 0. (2.10)

The constraint is incorporated with the help of a Lagrange multiplier µ, so that we
minimize E [ψ] − µN [ψ] with respect to ψ. We obtain the stationary GPE

[

− h̄2

2M
∇2 + V (r)

]

ψ(r) +NU |ψ(r)|2ψ(r) = µψ(r). (2.11)

The Lagrange multiplier µ is the chemical potential. The stationary GPE is a mean
field equation that describes one particle in the effective presence of N − 1 others.
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2.2 Ground state properties

The solution of the stationary GPE from Eq. (2.11) determines the ground state
of a condensate in a trapping potential V (r). Since the solution agrees well with
experimentally observed condensate states, it serves as a starting point for most of
our numerical investigations. Here, we introduce two approximation methods that
hold for large condensates and allow us to estimate the condensate size, atom num-
ber and chemical potential. On the one hand, the Thomas-Fermi approximation
of Section 2.2.1 allows for accurate estimates of the wave function and the chemi-
cal potential. The wave function, however, suffers from a discontinuity of the first
derivative at the edge of the cloud. On the other hand, the Gaussian variational ap-
proach in Section 2.2.2 yields a smooth wave packet and approximates the chemical
potential fairly well. Although the shape of the wave function differs significantly
from the actual solution, the smooth Gaussian estimate proved to be a good initial
wave packet for numerical simulations.

In the following, we consider for concreteness a Bose-Einstein condensate in
three-dimensional anisotropic harmonic oscillator traps with the potential given by

V (r) =
1

2
M
(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

, (2.12)

where the ωi (i = x, y, z) are the harmonic trap frequencies.

2.2.1 Thomas-Fermi approximation

An accurate expression for the ground state energy may under appropriate condi-
tions be obtained by neglecting the kinetic energy with respect to the interparticle
interaction in the GPE Eq. (2.11). This is the case for fairly dense clouds with a

large number of atoms, so that N |ψ|2 is dominating the kinetic energy contribu-
tion. This approximation is reminiscent of the Thomas-Fermi approximation in the
theory of atoms with large numbers of electrons, where complicated terms in the
kinetic and electron-electron repulsion energy are replaced by simple functionals of
the electron density [77]. It is therefore referred to by this name also in the context
of Bose-Einstein condensates. The stationary GPE from Eq. (2.11) then reads

µψ(r) =
[

V (r) +NU |ψ(r)|2
]

ψ(r). (2.13)

The condensate density then has the solution

|ψ(r)|2 =

{

µ−V (r)
NU : µ ≥ V (r)

0 : else
. (2.14)

For a harmonic potential in Eq. (2.12) this is an ellipsoid with semi-axes of length
Ri =

√

2µ/Mωi (i = x, y, z). Scaling each coordinate by the respective axis length,
one can integrate over the interior of the resulting unit sphere. The normalization
condition Eq. (2.6) then yields a relation between the chemical potential and the
number of particles:

µ =
152/5

2

(

Nas

ā

)2/5

h̄ω̄, (2.15)

with the geometric mean ω̄ of the oscillator frequencies defined as

ω̄ = (ωxωyωz)
1/3

(2.16)

and the characteristic length ā defined as

ā =

√

h̄

Mω̄
. (2.17)
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2.2.2 Gaussian variational calculation

As a second method we estimate the ground state by a variational method [72]. We
seek Gaussian solutions of the form

ψ(r) =
2
√

2

π3/4√wxwywz
e
−2

(

x2

w2
x

+ y2

w2
y

+ z2

w2
z

)

, (2.18)

where wi (i = x, y, z) are the variational parameters that denote the spatial Gaus-
sian widths.2 This trial Gaussian wave function, which is normalized to unity, is
inserted into the energy functional Eq. (2.9) and we obtain

E(wx, wy, wz) = N
∑

i=x,y,z

h̄ωi

(

a2
i

w2
i

+
w2

i

16a2
i

)

+

√
2N2U

wxwywzπ3/2
. (2.19)

Here, we introduced the harmonic oscillator lengths ai = (h̄/Mωi)
1/2 (i = x, y, z).

Minimizing with respect to the variational parameters wi, i.e.

∂E

∂wi
= 0, (2.20)

we obtain the following coupled equations

1

2
h̄ωi

(

w2
i

4a2
i

− 4a2
i

w2
i

)

−
√

2NUaxayaz

wxwywz ā3π3/2
= 0, (2.21)

where we defined ā as in Eq. (2.17). In general, these equations can be solved
numerically. However, if the number of particles is large, we can neglect the kinetic
energy terms (proportional to 1/w2

i ) with respect to the interaction energy per
particle. Then Eqs. (2.21) decouple and we can solve for the variational parameters
wi. Substituting the expression for U from Eq. (2.8), the solutions are

wi = 2

(

2

π

)1/10 (
Nas

ā

)1/5
ω̄

ωi
ā, (2.22)

with ω̄ defined as in Eq. (2.16). To leading order, i.e. neglecting the kinetic
energy term as before in Eq. (2.19), the chemical potential can be calculated by
the thermodynamical relation µ = ∂E/∂N , which gives

µ =
7

4

(

2

π

)1/5(
Nas

ā

)2/5

h̄ω̄, (2.23)

showing that the chemical potential scales as N2/5.
As in the Thomas-Fermi approximation in Eq. (2.15), we have µ ∝ N2/5, how-

ever, the explicit expressions for the chemical potentials for the two approximations
differ by a numerical factor of ≈ 0.92. Figure 2.1 compares the ground states for
the two approximations and an exact numerical calculation for the case of a spher-
ically symmetric trap. The Thomas-Fermi solution is very close to the numerical
solution3 and only fails close to the edge of the condensate cloud. It was shown that
the region where the two solutions differ approaches zero with increasing particle
number [78]. The variational solution only roughly approximates the numerical so-
lution, but does not suffer from a discontinuity in the first derivate at the edge of
the cloud. For numerical simulations we prefer the smooth Gaussian approximation
or numerically determined ground states over the Thomas-Fermi solution, which
introduces high frequency components due to the sharp edge.

2Throughout the dissertation we use the convention that by the width of a Gaussian we always
refer to the full width at 1/e of the maximum of the density |ψ|2 of a wave function.

3The numerical method used to calculate nonlinear ground states is presented in Appendix A.2.
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Figure 2.1: Ground state of a condensate in a spherically harmonic trap (ax = ay =
az ≡ a) for N = 105 atoms and a ratio as/a = 0.003: full numerical solution (solid),
Thomas-Fermi approxomation (dashed), and Gaussian variational approximation
(dotted).

2.3 Time-dependent Gross-Pitaevskii equation

Having derived the stationary GPE in Section 2.1 that provides the ground state
wave function and energy, we now seek an equation of motion for the mean field
Hartree wave function ψ. This enables us to investigate the dynamics of condensates
in various external potentials. Similar to the energy functional in Eq. (2.4), we can
write the action functional of the N -particle wave function as

S[Ψ] =

∫

dt

∫

dr1 . . . drNΨ∗

(

ih̄
∂

∂t
−H

)

Ψ. (2.24)

We recall that the action functional can be written in form of a Lagrangian density
L as

S =

∫

dt

∫

drL(θ, ∂tθ, ∂iθ), (2.25)

where we abbreviated ∂t = ∂/∂t and ∂i = {∂/∂x, ∂/∂y, ∂/∂z}. The arguments of
the Lagrangian density are defined as θ = {ψ, ψ∗}, ∂tθ = {∂tψ, ∂tψ

∗} and ∂iθ =
{∂iψ, ∂iψ

∗}. Employing the Hartree approximation from Eq. (2.5) and using the
pseudopotential from Eq. (2.7), we can identify the Lagrangian density to be

L(θ, ∂tθ, ∂iθ) =
ih̄

2
N [ψ∗(r, t)∂tψ(r, t) − ψ(r, t)∂tψ

∗(r, t)]

− h̄2

2M
N |∇ψ(r, t)|2 − V (r, t)N |ψ(r, t)|2

− N(N − 1)

2
U |ψ(r, t)|4 , (2.26)

where we now choose the one-particle potential to be explicitly time-dependent.
The Euler-Lagrange equations of motion for fields [79],

∂t
∂L

∂(∂tψ∗)
=

∂L
∂ψ∗

−
∑

i

∂i
∂L

∂(∂iψ∗)
, (2.27)
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lead directly to an equation of motion for the Hartree function, the so-called time-
dependent GPE:

ih̄
∂

∂t
ψ(r, t) =

[

− h̄2

2M
∇2 + V (r, t)

]

ψ(r, t) +NU |ψ(r, t)|2ψ(r, t), (2.28)

where, again, we assumed large condensates so that N − 1 ≈ N .
We derived the time-dependent as well as the stationary GPE under the explicit

assumption of a system in a number state by starting with an N -particle wave
function. When deriving the GPE within the framework of second quantization,
one can also arrive at a mean field equation for the expectation value of the field
operator with respect to a coherent state. Both approaches, number state and
coherent state assumptions, lead to identical GPEs for large number of particles
[36].

2.3.1 Reduction to one dimension

For most of the phenonema that we investigate it is not necessary to solve the
full three-dimensional time-dependent GPE, since we restrict ourselves to control
and manipulation of the atomic condensate in only one dimension. We assume the
condensate to be confined by a static potential in the other two dimensions. In this
section we show that a tight confinement in these dimensions enables us to reduce
the GPE to a one-dimensional equation of motion. This equation then captures the
important physics and is more accessible to analytical and numerical treatment.

Consider a potential of the form

V (r, t) = V (z, t) + V⊥(x, y). (2.29)

Typically, V (z, t) will be an optical potential used to manipulate the state of the
condensate, while V⊥(x, y) is an optical or magnetic trapping potential in the trans-
verse direction. The condensate is assumed to be tightly confined in the (x, y) plane,
so that the spacing of the energy levels of the transverse trapping potential exceeds
the magnitude of the mean field energy. Transverse excitations are then suppressed
in this quasi-one-dimensional geometry, and we can also neglect the mean-field ef-
fects in this direction. The transverse mode ϕ⊥(x, y) is then the ground state of
the potential V⊥(x, y), obeying the eigenvalue equation

E⊥ϕ⊥(x, y) = − h̄2

2M

(

∂2

∂x2
+

∂2

∂y2

)

ϕ⊥(x, y) + V⊥(x, y)ϕ⊥(x, y). (2.30)

The potential in Eq. (2.29) may be realized, for example, using a red-detuned optical
dipole trap around the focus of a Gaussian laser beam centered on the origin [80],
thereby giving approximately harmonic transverse confinement. Substituting the
factorized Hartree function

ψ(r, t) = ψ(z, t)ϕ⊥(x, y)e−iEgt/h̄ (2.31)

into the time-dependent GPE from Eq. (2.28) and projecting onto the normalized
transverse mode ϕ⊥, the reduced one-dimensional GPE becomes

ih̄
∂

∂t
ψ(z, t) =

[

− h̄2

2M

∂2

∂z2
+ V (z, t)

]

ψ(z, t) +NU0|ψ(z, t)|2ψ(z, t). (2.32)

We define the effective one-dimensional nonlinear coefficient U0 as

U0 = U

∫

dxdy |ϕ⊥(x, y)|4 . (2.33)
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In particular, if the transverse ground state can be approximated as a Gaussian of
width w⊥,

ϕ⊥(x, y) =
2√
πw⊥

exp

(

−2
x2 + y2

w2
⊥

)

, (2.34)

the explicit expression for the effective nonlinear coefficient is U0 = 2U/πw2
⊥ ac-

cording to Eq. (2.33).

2.4 Optical lattices

After having introduced the basic mean field properties and evolution equations for
the Bose-Einstein condensate, we now focus on the derivation of a time-dependent
optical lattice potential, our main tool to manipulate the momentum state of matter
waves. We present the derivation in detail to clearly state the time scales involved
and approximations made, since this is crucial for a possible experimental verifica-
tion of our predictions.

2.4.1 Laser geometry

We consider a two-level atom in an optical lattice potential along the z-axis created
by two counterpropagating laser fields with frequencies ωL and ω′

L(t) = ωL−δ(t) and
wave vectors kL and k′L(t), respectively. The time-dependent frequency detuning
δ(t) between the two fields can be chosen to have positive or negative values. We
consider the case where the transverse atomic wave function is much smaller than
the beam waist and the longitudinal extent is much less than the Rayleigh range.
It is then appropriate to approximate the counterpropagating laser beams as plane
waves propagating along the z-axis,

E(z, t) =
E
2
ε
[

ei(kLz−ωLt) + ei{k′

L(t)z−[ωL−δ(t)]t+φ}
]

+ c.c., (2.35)

where we choose the electric field amplitude E and the polarization vector ε of both
fields to be the same. φ is the fixed relative phase between the two laser fields. For
simplicity, we consider the case of a two-level atom that is electric dipole-coupled
to the light field. Figure 2.2 shows the two-level system consisting of a ground state
|g〉 and an excited state |e〉, separated by the energy h̄ωA. We define the detuning
from the atomic resonance as

∆ = ωA − ωL. (2.36)

In order to avoid spontaneous emission from the excited state, we use far-off resonant
light, so that |∆| � Γ, with Γ the spontaneous decay rate of the excited atomic
level. Furthermore, we choose the frequencies so that

|δ(t)| � |∆| � ωL. (2.37)

This inequality holds in typical experimental setups, where ωL is in the optical
regime, ∆ in the GHz-regime and δ in the MHz-regime.

2.4.2 Lattice potential

The coupled Schrödinger equations for the ground and excited state wave functions
ψg and ψe in the electric dipole approximation [81] read

ih̄
∂

∂t
ψg =

[

− h̄2

2M
∇2 + V (r)

]

ψg − d∗eg ·E(t)ψe (2.38)

ih̄
∂

∂t
ψe =

[

− h̄2

2M
∇2 + V (r) + h̄ωA

]

ψe − deg ·E(t)ψg, (2.39)
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∆
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Figure 2.2: Two-level atom coupled by two laser fields, one with frequency ωL and
wave vector kL, the other with ωL − δ and k′L, respectively.

where deg = d∗ge is the atomic dipole moment of the transition and V (r) an external
potential in addition to the two laser fields. We proceed by adiabatically eliminating
the excited state dynamics. Transformation to a rotating frame with ψe(r, t) →
ψe(r, t) exp (−iωLt) leads to the coupled equations

ih̄
∂

∂t
ψg =

[

− h̄2

2M
∇2 + V (r)

]

ψg − d∗eg ·E(t)ψee−iωLt (2.40)

ih̄
∂

∂t
ψe =

[

− h̄2

2M
∇2 + h̄∆ + V (r)

]

ψe − deg ·E(t)ψgeiωLt, (2.41)

with the detuning ∆ defined in Eq. (2.36). If the magnitude of the detuning term
greatly exceeds the kinetic and potential energy terms in Eq. (2.41), we can neglect
these terms and formally solve for the excited state wave function,

ψe(t) ≈ i

h̄
ψg(t)e−i∆t

t
∫

0

dt′ei∆t′deg ·E(t′)eiωLt′ . (2.42)

Here, we made use of the fact that ψg(t) is slowly varying compared to all other
terms, which oscillate at least at frequency ∆, and ψg(t) was taken outside the
integral. We now substitute the explicit form of the electric field from Eq. (2.35)
into the excited state solution from Eq. (2.42). According to Eq. (2.37), we can
perform the rotating wave approximation (RWA) by neglecting terms that oscillate
at ≈ 2ωL, i.e. at twice the optical frequency, and obtain

ψe(t) = i
ΩL

2
ψg(t)e−i∆t

t
∫

0

dt′
[

ei(kLz+∆t′) + ei[k′

Lz+(∆+δ)t′+φ]
]

. (2.43)
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Here, we introduced the Rabi frequency as ΩL = deg · εE/h̄. Carrying out the
integration leads to

ψe(t) =
ΩL

2∆
ψg(t)ei(kLz−∆t)

(

ei∆t − 1
)

+
ΩL

2∆
ψg(t)ei(k′

Lz−∆t+φ)
(

ei(∆+δ)t − 1
)

− i
ΩL

2
ψg(t)ei(k′

Lz−∆t+φ)

t
∫

0

dt′ei(∆+δ)t′
[

δ

∆
+
t′

∆

dδ

dt′

]

. (2.44)

The time scale over which ψg(t) changes is given by the inverse Rabi frequency
1/ΩL. If we now demand that

∣

∣

∣

∣

dδ

dt

∣

∣

∣

∣

� |ΩL∆| , (2.45)

and recall from Eq. (2.37) that |δ(t)| � |∆|, we can safely neglect the integral in
Eq. (2.44). We then substitute the remaining terms into the equation of motion
for the ground state, Eq. (2.40). Once again we perform the RWA by only keeping
terms oscillating at the frequency δ(t) and neglecting all others, since they are
considerably faster according to Eq. (2.37). We end up with an effective equation
for the wave function of the electronic ground state,

ih̄
∂

∂t
ψg =

(

− h̄2

2M
∇2 + V (r)

)

ψg

− h̄ |ΩL|2
2∆

{1 + cos [(kL − k′L)z − δt+ φ]}ψg, (2.46)

where we replaced Ng by the total number of atoms N since the excited state is

negligibly populated. We now define the lattice depth as V0 = h̄ |ΩL|2 /2∆, remove
the constant energy term by the transformation ψg → ψg exp (iV0t/h̄) and choose
the fixed relative phase between the two laser fields to be φ = π. 4 This leaves us
with

ih̄
∂

∂t
ψg =

(

− h̄2

2M
∇2 + V (r)

)

ψg

+V0 cos [(kL − k′L)z − δt]ψg. (2.47)

The laser beams produce an effective cosine-shaped potential due to the AC-Stark
shift. As a last step, we simplify the expression for the wave vector difference in
the argument of the cosine. We rewrite the difference of the wave vectors and the
change of k′L(t) with time as

1

kL
|kL| − |k′L| =

δ

ωL
, (2.48)

1

kLωL

∣

∣

∣

∣

dk′L
dt

∣

∣

∣

∣

=
1

ω2
L

∣

∣

∣

∣

dδ

dt

∣

∣

∣

∣

. (2.49)

Due to the conditions imposed in Eqs. (2.37) and (2.45), k′L does not change
significantly with time and kL and k′L are essentially of equal magnitude, |k′L(t)| ≈
|kL|. Since we consider counterpropagating laser fields, we have k′L = −kL. The

4The relative phase φ corresponds to a constant spatial shift of the lattice potential. We choose
φ = π for convenience, so that the lattice maximum occurs at z = 0.
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atom in the electronic ground state then experiences an effective optical lattice
potential

Vlat (z, t) = V0 cos [2kLz − δ(t)t]. (2.50)

The frequency chirp δ(t) causes the optical lattice fringes to move at the instanta-
neous velocity

vlat (t) =
1

2kL

d

dt
[δ(t)t] . (2.51)

Note that neglecting the temporal change of the wave vector k′L implies lattice
velocities much less than the speed of light, vlat � c.

2.4.3 Recoil units

It is useful to introduce recoil units, which we use throughout the dissertation. The
recoil energy ER and the recoil frequency ωR, respectively, are defined as

ER = h̄ωR =
h̄2k2

L

2M
and ωR =

h̄k2
L

2M
. (2.52)

They account for the amount of energy transferred when an atom absorbs or emits
one photon from the lattice laser field. Accordingly, the atom momentum is changed
by an amount h̄kL and the recoil velocity vR is given by

vR =
h̄kL

M
. (2.53)

We also introduce the recoil acceleration rate aR as

aR = vRωR. (2.54)

The velocity of a particle accelerated at this rate increases by one recoil velocity
after a time equal to the inverse of the recoil frequency. The lattice potential in Eq.
(2.50) has a periodicity of π/kL, thus we express length scales in units of 1/kL. For
example, for typical condensates of sodium atoms, 23Na, and a red detuned laser
with wavelength λ = 985 nm we have

ωR = 2π × 8.9 kHz, (2.55)

vR = 1.76 cm/s,

aR = 1551.9 m/s
2
,

1/kL = 0.157 µm.

The mass of sodium is M = 3.82 × 10−26 kg and the s-wave scattering length
as = 4.9 nm.

2.5 Periodic potentials and band structure

Periodic systems, such as the optical lattice potential introduced in Eq. (2.51),
exhibit unique features that are conveniently discussed in terms of energy bands.
These energy bands emerge in periodic systems due to many identical potential
wells in close proximity. Infinitely separated, each potential well is assumed to have
a discrete energy spectrum and the system is highly degenerate. As we move po-
tential wells together, this degeneracy is lifted. The more wells we move together
the finer the splitting gets. Eventually, these finely split levels blur into energy
bands around an originally degenerate eigenvalue. In this section we briefly derive
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the band structure of an optical lattice and review its main features and implica-
tions. Especially, we motivate the concept of a negative effective mass and discuss
the mechanisms of Bloch oscillations and Landau-Zener tunneling between specific
bands. These concepts are useful in the discussion of effects that we investigate in
following chapters.

2.5.1 Dispersion curve

Consider a scalar particle in a one-dimensional lattice potential. Its Hamiltonian is
given by

H = − h̄2

2M

∂2

∂z2
+ Vlat (z), (2.56)

where Vlat is given by Eq. (2.50). The period of the lattice is π/kL, so that
Vlat (z + π/kL) = Vlat (z). Bloch’s theorem [75] requires the eigenfunctions of the
Hamiltonian to be of the form

ϕnk(z) = eikzunk(z), (2.57)

where unk(z) is spatially periodic with the lattice periodicity, i.e. unk(z + π/kL) =
unk(z). The eigenfunctions in Eq. (2.57) are characterized by a band index n and
a quasimomentum k. Accordingly, the eigenvalues are also characterized by n and
k,

Hϕnk(z) = εnkϕnk(z). (2.58)

Substituting the Bloch wave functions ϕnk(z) into the Hamiltonian (2.56), we find
that the spatially periodic functions unk(z) satisfy the equation

Hkunk(z) = εnkunk(z), (2.59)

where we defined

Hk =
(p̂+ h̄k)

2

2M
+ Vlat (z). (2.60)

Here, p̂ = −ih̄∂/∂z is the single-particle momentum operator. In Fig. 2.3 we
compare the dispersion curves of atoms in the periodic potential to the free space
case. Figure 2.3(a) shows the parabolic dispersion curve for a free particle reduced
to the first Brillouin zone. The effect of the periodic potential is to create avoided
crossings of width ∆εn, or energy gaps, between bands n and n−1 as shown in Fig.
2.3(b). Whereas in free space the particle can assume any energy, the lattice leads
to the formation of discrete energy bands, shown in Fig. 2.4 for the same potential
as in Fig. 2.3. These bands are labeled by the discrete index n. For this particular
choice of potential depth, V0 = 2ER, the lowest band is weakly bound. The higher
bands are separated only by small energy gaps and hence are practically free. For
small lattice depths (V0 ≤ 10ER), perturbation theory yields a splitting between
the first two bands equal to the potential depth, ∆ε ≈ V0 [82]. Deeper lattices cause
the energy gaps to broaden and the width of each band to decrease.

2.5.2 Atomic motion in the lattice

In order to illustrate the effects of the band structure on particle dynamics, we
consider a constant external force F acting on the atom in addition to the lattice.
The Hamiltonian then reads

H ′ = − h̄2

2M

∂2

∂z2
+ Vlat (z) + Fz. (2.61)
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Figure 2.3: Dispersion curves reduced to the first Brillouin zone: (a) a free particle
and (b) a particle in the periodic lattice potential Vlat = V0 cos (2kLz) with V0 =
2ER.
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Figure 2.4: Allowed energy bands (grey shaded areas) for the lattice potential in
Fig. 2.3 (solid line).

Due to the modified potential, the Bloch functions in Eq. (2.57) are no longer
eigenstates of the system. However, the structure of the Bloch functions is preserved
when using the time-dependent ansatz

ϕnk(t)(z, t) = eik(t)zunk(z, t). (2.62)

Using this ansatz in the time-dependent Schrödinger equation

ih̄
∂

∂t
ϕnk(t)(z, t) = H ′ϕnk(t)(z, t), (2.63)

we obtain an equation of motion for the spatially periodic part unk(z, t),

ih̄
∂

∂t
unk(t)(z, t) = Hk(t)unk(t)(z, t), (2.64)

where we defined

Hk(t) =
(p̂+ h̄k(t))2

2M
+ Vlat (z), (2.65)

as in Eq. (2.60), with the quasimomentum now being time-dependent. Additionally,
we obtain an equation for the quasimomentum k(t),

h̄
d

dt
k(t) = −F. (2.66)

This is reminiscent of Newton’s law ṗ = F for a particle in free space, but with
the particle momentum p now replaced by the quasimomentum k. The effect of the
external force in both cases is an acceleration of the particle. However, whereas the
velocity of a particle in free space subject to a constant force grows linearly, one
can show that the mean value of a particle moving in band n of a periodic potential
obeys [75]

〈vn〉 (k) =
1

h̄

dεn(k)

dk
. (2.67)

The mean velocity of a particle in a lattice depends on the shape of the band it is
moving in. Figure 2.5(a) illustrates this behavior for the two lowest bands of Fig.
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2.3. For example, for the band n = 0, the mean velocity is negative for negative
k, positive for positive k, and vanishes at the center of the Brillouin zone and at
the band edges. Another way to express this behavior is to rewrite the equation of
motion for the quasimomentum Eq. (2.66) with the help of Eq. (2.67) to

F = M∗ d 〈vn〉
dt

, (2.68)

where we introduced the so-called effective mass M∗ as

1

M∗
=

1

h̄2

d2εn(k)

dk2
. (2.69)

The definition of the effective mass is chosen so that Eq. (2.68) still resembles
Newton’s equation mv̇ = F , with the effect of the band structure contained in the
effective mass. It is important to point out that the effective mass can assume
negative values. Figure 2.5(b) shows this effect for the two lowest bands of Fig. 2.3.
For the band n = 0, regions of negative curvature and thus negative effective mass
occur near the band edges, whereas for band n = 1, there is a region of negative
effective mass around the center of the Brillouin zone. The existence of a negative
effective mass is crucial for the discussion of gap solitons in Chapter 5. Dynamical
effects of a negative effective mass on condensates in optical lattices have recently
been investigated theoretically [83] and experimentally [84, 85].

2.5.3 Bloch oscillations

Solving Eq. (2.66) yields

k(t) = k(0) − F

h̄
t, (2.70)

so that the quasimomentum k scans the Brillouin zone linearly with time. The time
it takes to traverse the Brillouin zone is the so-called Bloch period TB and is given
by

TB =
2kLh̄

|F | . (2.71)

If the motion of a particle is confined to one band, the particle changes its velocity
due to the changing quasimomentum k according to Eq. (2.67) while traversing
the Brillouin zone during one Bloch period TB . Since the Brillouin zone is scanned
periodically as long as the external force is applied, the mean velocity exhibits the
same periodicity. These oscillations are referred to as Bloch oscillations [73].

2.5.4 Landau-Zener tunneling

Until now we considered atomic motion confined to one energy band. However,
there is a finite probability of interband tunneling. This effect was first described
by Zener in the context of dielectric breakdown in metals [74]. The probability for
a tunneling event to occur between band n and n− 1 is given by

PLZ
n = exp

(

− πM∆εn
2

4nkLh̄
2 |F |

)

, (2.72)

where ∆εn is the energy gap between the two bands. The stronger the external
force or the smaller the band gap, the more likely are the atoms to tunnel between
bands. In the band structure in Fig. 2.3(b), the probability for tunneling out of
the lowest band is highest at the band edges. If the system undergoes several Bloch
oscillations, Landau-Zener tunneling occurs each time the quasimomentum passes
the tunneling region.
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Chapter 3

Acceleration in Optical

Lattices

The simplest and most important coherence property of an atomic beam is its
monochromaticity. With this in mind, our goal is to determine the extent to which it
is possible to significantly accelerate an initially quasi-monochromatic Bose-Einstein
condensate without losing this property. We discuss the case of a condensate in an
optical lattice accelerated at a constant rate.

After connecting the constantly accelerated lattice potential to the quasimo-
mentum description in an accelerated frame in Section 3.1, we begin by briefly
reviewing the case of classical point particles in Section 3.2. Here, starting with an
ensemble of spatially distributed atoms at rest, the accelerated optical lattice traps
atoms in individual lattice sites and drags them along. The acceleration causes
an initially sharp momentum distribution to broaden, the ensemble is considerably
heated. Also, increasing the acceleration rate causes fewer atoms to be confined
until the confinement vanishes entirely at a critical value.

In contrast to the classical case, the physical origin of acceleration of ultracold
and condensed atoms is very different. Here, the atomic wavefunction probes the
periodicity of the lattice and the acceleration process can be interpreted as Bragg
scattering with continuously varied detuning. For typical experiments, the momen-
tum spread is much smaller than the lattice vector and the atomic momentum can
only change by integer multiples of the lattice vector. We refer to these localized
peaks as momentum modes. In addition, the atoms perform Bloch oscillations,
which can easily be explained in the band structure picture. Section 3.3 introduces
this type of acceleration by reviewing work done with ultracold atoms, in which the
lattice successively couples neighboring momentum modes [60, 61, 62, 63, 64, 65].
If the atoms are initially prepared in the lowest energy band of the periodic po-
tential, the transfer is demonstrated to be perfect if the acceleration rate is small
enough. If this is the case, the rate of change of the atomic state due to the ac-
celerating force is small compared to the difference in eigenfrequencies between the
bands. The adiabatic theorem [86] then guarantees that the atoms follow the lowest
band without being excited to higher bands. Since the acceleration is constant, the
quasimomentum of the atoms increases linearly with time while passing through
adjacent Brillouin zones. This process is accordingly known as rapid adiabatic pas-

sage. A side effect of this type of acceleration is the occurence of Bloch oscillations:
while following the lowest band adiabatically, the mean velocity of the atoms in the
accelerated frame is determined by the local slope of the band. A full scan of the
Brillouin zone is equivalent to one full Bloch oscillation.

However, this type of acceleration relies on small acceleration rates, typically on

25



26 CHAPTER 3. ACCELERATION IN OPTICAL LATTICES

the order of 1 − 10 m/s
2
, in order to fulfill the adiabatic criterion. This leads to

time scales too long for many applications. Also, mean field effects are not taken
into account. Therefore, in Section 3.4, we investigate the acceleration efficiency
at the limit of adiabaticity. We consider lattice accelerations that are an order of
magnitude higher, around 500 m/s2, and focus on atomic condensates instead of
ultracold atoms. For a fixed lattice depth, we find a regime of efficient coupling,
where around 85% of the atoms are transferred to the final mode. Section 3.5
discusses the loss mechanisms that occur during the acceleration process. These
losses can be explained either by imperfect Rabi oscillations between momentum
modes, or, in the band structure picture, by Landau-Zener tunneling, where atoms
are excited to continuum bands. In addition to tunneling losses, sudden switch-on
of the lattice potential causes initial loss to free bands. Furthermore, we show in
Section 3.6 that large condensates distort the effective band structure and cause
considerable nonlinear phase shifts that also degrade the transfer efficiency.

Section 3.7 concludes by briefly connecting our results to recent experiments, in
which a Bose-Einstein condensate was accelerated in an optical lattice according to
our proposed setup [1, 2].

3.1 Accelerated optical lattice

We investigate the acceleration of condensates by means of a frequency-chirped
optical lattice, introduced in Section 2.4. Although we show later on that this is
not necessarily an optimum choice, we restrict our analysis in this chapter to linear
accelerations produced by a time-dependent detuning between the two lattice laser
beams of the form

δ(t) = ηt, (3.1)

so that the lattice potential from Eq. (2.50) reads

Vlat = V0 cos
(

2kLz − ηt2
)

. (3.2)

According to Eq. (2.51), this produces a lattice group velocity vlat linearly changing
with time and a constant lattice acceleration alat,

vlat (t) =
ηt

kL
and alat =

η

kL
. (3.3)

This simple case is sufficient to identify and discuss the major physical mechanisms
at play in the acceleration of the atoms.

To briefly connect atomic motion in accelerated lattices with the quasimomen-
tum description introduced in Section 2.5.1, we give the explicit unitary transforma-
tion between a laboratory frame and an accelerated frame, following Refs. [62, 87].
For single particles, the Hamiltonian in the laboratory frame is given by

Hlab =
p̂2

2M
+ V0 cos (2kLz − ηt2), (3.4)

with p̂ the single-particle momentum operator. We now introduce a unitary trans-
formation

U(t) = eiα(t)p̂/h̄e−iβ(t)z/h̄eiγ(t)/h̄, (3.5)

with the parameters chosen as

α(t) =
ηt2

2kL
, β(t) =

Mηt

kL
, γ(t) =

Mη2t3

3k2
L

. (3.6)
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This transformation performs a translation in position space of α(t) = alatt
2/2 and

a translation in momentum space β(t) = Malatt. Applying this transformation to
Hlab then yields the Hamiltonian in the accelerated frame Hacc,

Hacc = U(t)HlabU
†(t) + ih̄

[

∂

∂t
U(t)

]

U †(t). (3.7)

Explicitly, this evaluates to

Hacc =
p̂2

2M
+ V0 cos (2kLz) +

Mηz

kL
. (3.8)

In the accelerated frame, the atoms experience a constant inertial force F = Mη/kL =
Malat in addition to the effect of the periodic potential. Clearly, Hacc is identical
to the Hamiltonian in Eq. (2.61). Thus, an accelerated optical lattice is equivalent
to the situation considered in Section 2.5.2, where we derived equations of motion
for the quasimomentum of a particle in an optical lattice.

3.2 Classical point particles

We first consider the acceleration of an ensemble of N non-interacting, point-like
classical particles in the frequency-chirped optical lattice given in Eq. (3.2). We
proceed by numerically solving Newton’s equations of motion,

d2zi(t)

dt2
=

2kLV0

M
sin
(

2kLz − ηt2
)

, (3.9)

with i = 1 . . .N . Initially, the N atoms are at rest and distributed over around 100
lattice sites. The size of this interval and the probability of finding an atom at a
given point were chosen to mimic the shape of a Bose-Einstein condensate density
profile, to which we turn in Section 3.4. Explicitly, we considered a Gaussian density
distribution of the particles.

The solid lines in Fig. 3.1 show the evolution of the mean mean velocity 〈v(t)〉
of the classical atomic ensemble over the acceleration time for two acceleration
rates. We observe that the mean atomic velocity is always somewhat less than
the corresponding instantaneous lattice velocity vlat, the dashed lines in Fig. 3.1.
The cause of this difference is revealed in Fig. 3.2, which shows the momentum
distribution n(k) of the classical ensemble at a fixed time t and for the same two
values of alat. Here, we expressed the momentum p in terms of the wavenumber
k = p/h̄. In addition to peaks at positive momenta indicative of accelerated atoms
that contribute to an increase in the mean velocity of the sample, a significant group
of particles acquire negative momenta, i.e. they are accelerated in the direction
opposite to the lattice motion. These are atoms that spill into a well to their left
in the moving potential. An explanation for this spilling is easily given in the
accelerated frame, where the periodic potential is tilted due to the inertial force F ,
as shown in Eq. (3.8). Atoms confined to the individual wells are accelerated in
the laboratory frame, whereas atoms that are not confined, roll down the potential
hill and are not dragged along. Increasing the inertial force, i.e. accelerating the
lattice at a higher rate, makes the potential wells shallower, causing fewer atoms to
be confined. Once the acceleration reaches a critical value of acrit = 2kLV0/M =
2V0aR/ER there exist no more local minima that can bind the particles and the
lattice cannot accelerate any of the atoms. However, it is important to note that,
as long as there exist local minima, atoms once trapped will remain trapped.

Another important feature of Fig. 3.2 is that the momentum distributions of
both the accelerated and decelerated groups of atoms are rather wide. This shows
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Figure 3.1: Mean velocity of the atomic cloud of classical particles: The simulation
uses N = 105 atoms initially at rest with a Gaussian spatial distribution of lon-
gitudinal width wz = 318.9/kL and a transverse width w⊥ = 31.9/kL. In lattice
recoil units (see Section 2.4.3), the lattice depth is chosen to be V0 = 2ER and we
consider two acceleration rates, a1 = 0.33aR (two lower curves) and a2 = 0.73aR

(two upper curves). Shown are the results of a numerical simulation (solid) and the
instantaneous lattice velocity vlat (dashed).

that (even ignoring the decelerated atoms), the lattice accelerator produces a consid-
erable heating of the atomic sample. This can be a serious problem for applications
requiring a high degree of spatial coherence of the atomic beam. We will see that
the situation can be significantly improved in the quantum regime for condensates
with a mean field energy small compared to the lattice depth, being a result of
quantum interferences.

3.3 Bloch oscillations of ultracold atoms

Before focusing on condensate acceleration, we briefly review the situation of ultra-
cold but non-condensed atoms in optical lattices. Ultracold atoms in both static
and time-dependent optical lattices have been investigated in several contexts in the
recent past. At the single-atom level, they were exploited extensively in theoretical
and experimental work aiming at demonstrating effects such as Bloch oscillations
[60, 61, 62], Landau-Zener tunneling [63, 88], the appearance of Wannier-Stark lad-
ders [64, 65, 88, 89], quantum chaos [90] and the dynamics of mesoscopic quantum
superpositions [91].

Of particular relevance in the present context is Ref. [62], which explicitly con-
siders the acceleration of atoms in a moving periodic potential and interprets it in
terms of momentum transfer via multiple rapid adiabatic passage. The experiment
proceeds by first laser cooling a sample of cesium atoms so that the velocity distri-
bution corresponds to a Lorentzian shape, with a narrow width of around 0.5vR (full
width at half maximum). Then, a statistical mixture of Bloch states is prepared
around k = 0 in the lowest energy band by adiabatically turning on the lattice
potential Vlat(t) = V0(t) cos (2kLz). Denoting a Bloch state in band n and quasi-
momentum k by |n, k〉, the atoms stay in the fundamental band if the adiabatic
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is fulfilled while ramping up the lattice potential. Here, the time-dependence of the
Hamiltonian H(t) derives from the time-dependent lattice depth V0(t) and ∆ε1 is
the energy splitting at the band gap as defined in Fig. 2.3(b).

The lattice depth is then kept constant and the lattice is accelerated, so that
the lattice potential can be written as in Eq. (3.2), Vlat(t) = V0 cos

(

2kLz − ηt2
)

.
As shown in Section 3.1, this is equivalent to an inertial force F = Malat in the
accelerated frame, so that we are exactly in the situation described in Section 2.5.2
when discussing atomic motion in a lattice. If the adiabatic criterion of Eq. (3.10)
is fulfilled during the acceleration process, the time-dependence of the Hamiltonian
now deriving from the motion of the lattice, the atoms will follow the lowest band
in which they were prepared. As described in Section 2.5.3, they perform Bloch
oscillations.

The explicit expression for the adiabatic criterion, see Ref. [62], is identical to
the probability of Landau-Zener tunneling to occur between the two lowest bands,
see Eq. (2.72). Thus, tunneling loss is the major restriction on the maximum
allowed acceleration rate, in contrast to the case of accelerated classical particles.

3.4 Condensate acceleration

The extension of the work on ultracold atoms to condensates in optical lattices was
first investigated theoretically in Refs. [92, 93], both pointing out the possibility
of Bloch oscillations, although the nonlinearity is identified to distort the disper-
sion curve of the sytem. The first experimental demonstration of a Bose-Einstein
condensate in an optical lattice is described in Ref. [13]. There, the condensate is
accelerated by gravity in a shallow optical lattice, causing atoms to tunnel out of the
different potential wells. These atoms interfere and produce a pulsed output, con-
sisting of a superposition of equidistant modes separated in energy by Mgπ/kL, the
matter-wave equivalent of a mode-locked laser. Other experiments have employed
optical lattices to Bragg scatter condensates in order to characterize coherence and
phase properties of the condensate [94, 95]. Bragg scattering was exploited to gen-
erate multiple momentum sidemodes of the condensate used in matter-wave four-
wave mixing experiments [16, 96, 97] and to realize atomic beam splitters used in
coherent matter-wave amplifiers [17, 18]. When considering condensates in lattices,
the system can undergo a transition from the superfluid phase to a Mott insulator
phase, as described in Ref. [98] and recently demonstrated in a groundbreaking
experiment [99]. The transition occurs for a critical ratio between the interaction
energy of atoms at one lattice site and the tunneling matrix element to neighboring
sites. Increasing the lattice depth will in general increase this ratio. However, to
reach the critical value for only one atom per site, a lattice depth of 10 − 20ER is
needed. Since the critical ratio grows linearly with the number of atoms and we
only consider cases with at least 100 atoms per site and moderate lattice depths,
Mott insulator effects are not an issue.

We now focus on the acceleration of a condensate at a high rate while at the
same time trying to preserve its initial quasi-monochromaticity. Our goal is to
gain insight into the physical acceleration mechanism in order to identify degrading
processes. For this purpose it is sufficient to describe the atomic system in the
Hartree mean-field limit in one dimension, where the evolution of a Bose-Einstein
condensate at temperature T = 0 in an accelerated optical lattice is described by
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Figure 3.3: Mean velocity of a condensate with N = 105 atoms, an initial Gaussian
spatial distribution of longitudinal width wz = 318.9/kL and a transverse width
w⊥ = 31.9/kL. The lattice depth is chosen to be V0 = 2ER. Acceleration rates are
as in Figs. 3.1 and 3.2, a1 = 0.33aR (dashed) and a2 = 0.73aR (dotted), together
with the corresponding instantaneous lattice velocity (solid) for the two acceleration
rates.

the GPE of Eq. (2.28), with the lattice potential Eq. (3.2) as an external potential,

ih̄
∂

∂t
ψ(z, t) =

[

− h̄2

2M

∂2

∂z2
+ V0 cos

(

2kLz − ηt2
)

]

ψ(z, t)

+ NU0 |ψ|2 ψ(z, t). (3.11)

We solve Eq. (3.11) numerically using a split-operator technique, see Appendix
A.4. We start with a condensate in a trap ground state exhibiting the same density
profile as the classical ensemble considered in Section 3.2. We then assume the
trapping potential to be switched off and suddenly turn on the accelerated lattice
potential. The resulting mean velocity 〈v(t)〉 of the condensate is shown in Fig. 3.3
for the two acceleration rates used for the classical ensemble in Figs. 3.1 and 3.2.

We observe that the mean velocity of the condensate exhibits two major differ-
ences when compared to the case of classical particles. First, the condensate shows
pronounced time-dependent oscillations that can be identified as Bloch oscillations,
introduced in Section 2.5.3, with the oscillation period being consistent with Eq.
(2.71) and F = Malat . Since the oscillations are not clean, this indicates that the
condensate dynamics involves more than just the fundamental band (which is as-
sumed in the derivation of pure Bloch oscillations). Second, the higher of the two
lattice accelerations causes 〈v〉 to converge towards a constant value, an effect due
to increased Landau-Zener tunneling, as will be explained later.

The difference between the classical and quantum situations is evidenced even
more strikingly in Fig. 3.4. Instead of being composed of two broad continua
as in Fig. 3.2, the condensate momentum distribution φ(k), which is the Fourier
transform of the spatial wavefunction ψ(z), consists of a series of very narrow peaks
located at integer multiples of 2kL. Physically, this is due to the fact that while
the classical particles probe the local value of the lattice potential, the ultracold
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Bose-Einstein condensate probes a region of the lattice comprising a large number
of maxima and minima, and hence its full periodicity. As such, the individual
classical particles are channeled in one or the other potential well of the time-
dependent potential, while the condensed atoms are diffracted by it. Their dynamics
is governed by the quantum interferences that give rise to Bragg scattering, with
the resulting narrow peaks of Fig. 3.4.

A central result is that after acceleration, the condensed atoms can still be
largely monochromatic. The next section takes advantage of the physical difference
in physics between the acceleration of quantum and classical samples to investigate
ways to improve the monochromaticity of the condensate.

3.4.1 Quasimodes

With respect to atom-interferometric applications, we call an acceleration scheme
ideal if it leaves all atomic population in one single momentum mode whose value
is determined by the velocity vlat of the optical lattice. We can therefore define
a figure of merit of the accelerator as one minus the fraction of atoms in other
momentum sidemodes. Fig. 3.4 suggests that we have to restrict ourselves to certain
acceleration rates and times in order not to lose too many atoms. The closest we
were able to approach “perfect” acceleration with our simple linear acceleration
scheme is shown in the example of Fig. 3.4(a).

In the following we consider a simple coupled-mode description of the accelera-
tion process that identifies the important parameters in its optimization. We extend
the case of a static lattice as shown in Ref. [100] to accelerated ones. We start from
the GPE (3.11) and introduce the momentum space condensate wave function as
the Fourier transform of the spatial wave function ψ(z, t),

φ(k, t) =
1√
2π

∞
∫

−∞

dz ψ(z, t)e−ikz. (3.12)

Substituting this into Eq. (3.11) we obtain the corresponding coupled difference-
differential GPEs

ih̄
∂

∂t
φ(k, t) =

h̄2k2

2M
φ(k, t)

+
V0

2

[

φ(k − 2kL)e−iηt2 + φ(k + 2kL)eiη2
]

+
NU0

2π

∫

dk1dk2 φ(k − k1 + k2, t)φ(k1, t)φ
?(k2, t). (3.13)

From Eq. (3.13) we observe that the optical lattice couples states separated in
momentum by k = ±2kL. Together with the fact that the initial momentum distri-
bution of the condensate is much narrower than kL, i.e. ∆k � kL, since the spatial
extent of the condensate that we have in mind is large compared to the lattice period
π/kL, this leads to a momentum distribution consisting in general of a “comb” of
narrow peaks. Ground state collisions lead to a broadening of these peaks, but for
small enough particle numbers N , it can be expected that this broadening remains
small compared to 2kL. This suggests that it is useful to expand the momentum
space condensate wave function on a basis of quasimodes described by the mode
functions

un(k) =
1√
2kL

{Θ [k − (2n− 1)kL] − Θ [k − (2n+ 1)kL]} , (3.14)
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where Θ(x) is the Heavyside step function. The quasimode functions un are or-
thonormal,

∫

dk u′n(k)un(k) = δnn′ , (3.15)

hence the momentum space wave function can then be expanded as

φ(k, t) =
∑

n

ξn(t)un(k). (3.16)

The expansion coefficients ξn(t) are obtained by projection of the momentum space
wave function onto the quasimodes,

ξn(t) =

∫

dk un(k)φ(k, t) =
1√
2kL

(2n+1)kL
∫

(2n−1)kL

dk φ(k, t). (3.17)

The associated quasimode populations pn(t) are accordingly

pn(t) = |ξn(t)|2 =

(2n+1)kL
∫

(2n−1)kL

dk |φ(k, t)|2. (3.18)

3.4.2 Sequential Bragg resonances

Having introduced the concept of quasimodes allows us to discuss the acceleration
in terms of a coupled-mode approach that leads to a determination of optimum
acceleration parameters. Since we assumed the nonlinearity to be weak in order to
prevent the narrow momentum peaks from broadening, we neglect the nonlinearity
in Eq. (3.13) for now and project onto the quasimodes defined in Eq. (3.14). We
find the following linear equations of motion for the expansion coeffficients ξn(t),

ih̄
∂

∂t
ξn(t) = ER

(

1

3
+ 4n2

)

ξn(t) +
V0

2

[

ξn−1e−iηt2 + ξn+1eiηt2
]

, (3.19)

where ER as defined in Eq. (2.52). Going into a rotating frame with the transfor-
mation ξn(t) → ξn(t) exp

[

−i
(

nηt2 + ωRt/3
)]

, the equations of motion Eq. (3.19)
can be rewritten in matrix form as

ih̄
∂

∂t
ξ(t) = H(t)ξ(t), (3.20)

where

ξ(t) = (· · · , ξn−1, ξn, ξn+1, · · ·)T
, (3.21)

and the coupling Hamiltonian H(t) is given by the tridiagonal matrix

H(t) = h̄



























. . .
. . .

. . . ωn−1(t)
V0

2h̄
V0

2h̄
ωn(t)

V0

2h̄
V0

2h̄
ωn+1(t)

. . .

. . .
. . .



























. (3.22)
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Figure 3.5: Temporal evolution of the quasimode population for a condensate ac-
celerated at rates alat = 0.33aR (a) and alat = 0.73aR (b). The condensate and
lattice parameters are chosen as in Fig. 3.3. Shown is the solution of the truncated
coupled-mode equations from Eq. (3.20) (dotted) and the direct solution of the
GPE in Eq. (3.11) (solid).

The diagonal elements of H(t), which are responsible for the explicit time-dependence
of the coupling Hamiltonian, are given by

ωn(t) = 4ωRn
2 − 2nηt. (3.23)

Finally, we can define the detuning ∆n between adjacent modes as

∆n(t) = ωn+1(t) − ωn(t) = 4ωR(2n+ 1) − 2ηt. (3.24)

Equation (3.20) describes Bragg scattering of atoms off the periodic optical lattice.
First-order Bragg resonances occur whenever one of the detunings ∆n(t) in Eq.
(3.24) becomes equal to zero. We observe that these detunings depend explicitly
on time, due to the acceleration of the optical potential. As a result of the linear
acceleration, neighboring pairs of modes are therefore successively moved in and out
of resonance, so that in contrast to the case of classical particles, the physical process
underlying the atomic acceleration consists of successively tuned and detuned Bragg
resonances.
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This sequence of resonances is illustrated in Fig. 3.5, which shows the evolution
of the population dynamics of a few momentum sidemodes of the condensate for
the two acceleration rates of Figs. 3.1- 3.4. The solid lines give the results of
a truncated coupled-modes analysis, while the dotted curves show the results of
the direct solution of the GPE Eq. (3.11), in which case the various sidemode
populations are calculated from

pn(t) =

(2n+1)kL
∫

(2n−1)kL

dk |φ(k, t)|2 . (3.25)

The two approaches are in very good agreement, despite the fact that the coupled-
mode analysis included only eight modes in the present example and neglected the
nonlinearity. Figure 3.5(a) clearly illustrates the successful sequential population
transfer towards sidemodes of higher momentum. In contrast, Fig. 3.5(b) shows a
sequential loss for each transfer between two neighboring modes, leaving population
in lower modes, a result of the fact that after some time these modes are far–off
resonance from any other mode.

3.5 Loss mechanisms in condensate acceleration

With the help of the coupled-mode approach we identified sequential Bragg reso-
nances as the physical mechanism that accelerates the condensates. With this un-
derstanding, we now explain several processes that cause a loss of monochromaticity.
Specifically, we investigate the one-time loss caused by the sudden switch-on of the
lattice and discuss the dynamical loss caused by incomplete Bragg scattering and
Landau-Zener tunneling, respectively.

3.5.1 Initial loss: Sudden lattice switch-on

If a condensate in the trap ground state is suddenly loaded into a lattice, it will not
be located in its lowest band, but rather in a superposition of Bloch states of the
general form

ψ(z) =
∑

n,k

ankϕnk(z), (3.26)

where ϕnk(z) are the Bloch functions defined in Eq. 2.57. We obtain the expansion
coefficients ank by projecting the condensate wave function onto the Bloch functions,

ank =

∫

dz ϕ∗
nk(z)ψ(z). (3.27)

The probability of finding the condensate in band n with momentum k is then
given by |ank|2. Since we assume the condensate at t = 0 to be highly localized in
momentum space, we can approximate it by a plane wave with wave vector k0,

ψ(z, t = 0) =
1√
L

eik0z, (3.28)

where we consider the plane wave to be defined on a finite one-dimensional domain of
length L in order to normalize the wave function. This plane wave approximation
enables us to easily calculate the decomposition into Bloch functions of different
bands, as shown in Fig. 3.6 for a condensate initially at rest, k = 0. Right after
the lattice is suddenly switched on, a large fraction of the condensate remains in
the fundamental band n = 0. However, around 10% of the atoms are excited to the
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Figure 3.6: Initial state decomposition of u0 into Bloch functions at k = 0 for a
lattice of depth V0 = 2ER.

n = 2 band. This excited band is a quasi-free band for the choice of V0 = 2ER,
as illustrated in Fig. 2.4. Atoms in this band do not feel the lattice potential and
cannot be accelerated. Thus, the sudden switch-on of the lattice is a considerable
source of loss, regardless of the acceleration rate. However, it only occurs once, and
can be circumvented by ramping up the lattice adiabatically so that the condensate
remains in the fundamental band. The decomposition into Bloch states has recently
been measured experimentally for sudden switch-on and adiabatic loading [2].

3.5.2 Dynamical loss

Whereas the sudden switch-on of the lattice causes a one-time loss, there are loss
processes that occur over the whole duration of the acceleration. This incomplete
transfer for high acceleration rates can be explained in two ways: A crude but
qualitative argument emerges from the coupled-mode picture, whereas the analysis
of Landau-Zener tunneling provides a good quantitative estimate of the loss rate.

Incomplete Bragg scattering

Ignoring for now all but the two adjacent modes un and un−1, we observe that they
couple with a time-dependent Rabi frequency Ωn given by

Ωn(t) =
1

2

√

Ṽ0
2

+ ∆2
n(t). (3.29)

We can gain insight into the time scale of this coupling mechanism by introducing
an averaged Rabi frequency Ω̄ over the interval tR = 1/η̃, the time it takes the
system to move from one Bragg resonance to the next, see Eq. (3.24),

Ω̄ =
1

tR

tn+tR
∫

tn

dtΩn(t), (3.30)

where tn = (n− 1)/η̃. Hence, one can expect that a close to optimal mode-to-mode
coupling should correspond to

Ω̄tR ≈ π, (3.31)
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since in this case the system can complete half of an averaged Rabi cycle in the time
it takes to move from one Bragg resonance to the next. The complete population of
one mode is then approximately transferred to the next mode, thereby increasing
the momentum of the condensate by 2h̄kL. If the lattice acceleration is too fast
for this Rabi transfer to fully occur, lower momentum modes remain significantly
populated. This is the case in the example of Figs. 3.4(b) and 3.5(b). We have
mentioned in the context of Fig. 3.5(b) that once a momentum sidemode is shifted
out of resonance, its population remains practically constant. This accounts for the
saturation in 〈v〉 shown in Fig. 3.3. In contrast to the classical case where all atoms
that are captured in a potential well remain captured, here, in the quantum regime,
atoms initially accelerated may gradually be moved out of resonance, after which
they retain a constant velocity.

Figure 3.7 summarizes the results of a numerical optimization of the lattice
acceleration rate. It confirms that if the acceleration rate is too large one can only
transfer a small fraction of the population to the next mode, while if it is too small
we couple to modes with negative momentum, as manifested in the small dip in
all curves near the origin. The plateau-like feature defines the regime of efficient
coupling, where around 85% of the population is transferred.

The derivation of the critical acceleration rate acrit that is indicated in Fig. 3.7
will be given in the following section on Landau-Zener tunneling.

Landau-Zener tunneling

Another explanation for this dynamical loss is given by Landau-Zener tunneling, as
described in Section 2.5.4. Since the lattice depth V0 = 2ER ≤ 10ER that we use
throughout this chapter is within the perturbative regime, the band gap between
the two lowest bands is ∆ε1 ≈ V0, see Section 2.5.1. The tunneling rate PLZ

1 from
Eq. (2.72) between these two bands is then

PLZ
1 = exp

(

−acrit

alat

)

with acrit =
πV 2

0 aR

8E2
R

, (3.32)
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the critical acceleration corresponding to a tunneling probability of PLZ
1 = 1/e ≈

37%. With our particular choice of V0 = 2ER we have acrit = πaR/2, which is also
indicated in in Fig. 3.7. For the small acceleration rate alat = 0.33aR that we used
throughout the chapter we obtain a tunneling loss PLZ

1 ≈ 0.9%. This explains the
efficient transfer as seen e.g. in Fig. 3.5(a). We conclude that our calculated overall
efficiency of around 85% is mainly due to the initial loss caused by the sudden
switch-on of the lattice. For the higher acceleration rate alat = 0.73aR we have a
loss rate of PLZ

1 ≈ 12%, in good agreement with Fig. 3.5(b). The constant loss
occurs for each mode-to-mode transfer, every time the band gap is passed. Atoms
tunneling to the higher band are quasi-free and are no longer accelerated.

3.6 Nonlinear effects

Until now we assumed the nonlinearity to be small, so that the linear coupled-
mode approach is valid. The situation changes drastically once the nonlinearity
is increased, and new loss effects occur. The main reason for this is that a freely
evolving condensate that is released from a trap converts its mean field energy into
kinetic energy. The time scale over which this conversion takes place is determined
by the chemical potential µ of the condensate,

tµ ≈ h̄

µ
. (3.33)

Although in our case the condensate evolves in an optical lattice potential in contrast
to free space, it was shown in Ref. [100] that tµ is still a good estimate under these
conditions.

The first implication of the energy conversion is that the initially narrow modes
broaden, as can be observed in Fig. 3.8(a) which shows a broad continuum in
momentum space rather than localized modes. In this case we have tµ = 0.23/ωR.
This time is smaller by an order of magnitude than the time tµ = 4.65/ωR for
the condensate used in Fig. 3.4(a), in which case the modes experience almost no
broadening. A fast broadening of the modes also leads to increased losses, since the
tails of the modes move themselves out of the Bragg resonance.

In addition to this broadening, the mean field energy decreases the actual energy
gap by an amount µ, so that higher tunneling rates occur. As long as µ � V0, the
nonlinearity has almost no effect on the tunneling rate, as illustrated in Fig. 3.4(a),
where µ = 0.215ER � V0 = 2ER. In Fig. 3.8(a) in contrast, µ = 4.3ER is on the
order of the gap and we have extremely high loss rates of around 25% for the first
few transfers. This is despite the fact that the acceleration rate alat = 0.33aR alone
only predicts a loss of 0.9%, as discussed in Section 3.5.2. After t ≈ 15/ωR the loss
rate decreases. This is due to the fact that the mean field energy is almost fully
converted and the gap is no longer reduced. The remaining losses are then mainly
due to the broad modes as mentioned above.

It is obvious that the linear coupled-mode approach does not capture these
phenomena. Hence it should only be applied for acceleration times t � tµ and
chemical potentials µ� V0.

3.7 Recent experiments

Shortly after publication of our work on condensate acceleration [101], experiments
of Bose-Einstein condensates in moving optical lattices were reported. In one ex-
periment, Morsch et al. [1, 66] load a condensate into an accelerated optical lattice
and observe Bloch oscillations as well as Landau-Zener tunneling. They also verify
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nonlinear effects in the tunneling process predicted earlier in Ref. [93]. Their data
for different lattice acceleration rates agree qualitatively with our calculations. In
a second experiment, Hecker-Denschlag et al. [2] focus on the preparation of a con-
densate in prescribed lattice states. They are able to transfer population between
lattice states and observe their evolution. They also use these techniques to demon-
strate a condensate accelerator with a maximum transfer efficiency of around 70%,
very similar to the behavior we predicted. In contrast to Refs. [1, 66] however, these
experiments are performed in a regime where t� h̄/µ, so that nonlinear effects do
not play a role.
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Chapter 4

Optimized Acceleration

In the previous chapter we found that the use of a constantly accelerated lattice
suffers from non-perfect transfer efficiency. We concluded that high acceleration
rates as well as an effectively decreased band gap due to a large mean field energy
increases the tunneling probability to free bands. Also, the sudden switch-on of the
optical lattice causes initial loss to free bands. In this chapter, we discuss how these
limitations can be overcome by dropping the constraint of a constant acceleration.
We parametrize the time dependence of the frequency chirp between the two lattice
beams, which introduces more flexibility to the system. Since the system is no
longer amenable to analytic treatment, we use genetic algorithms to solve this high-
dimensional optimization problem. The genetic algorithm technique has proved to
be very successful in various ”real world” engineering problems [102, 103], but also
in the field of atomic, molecular and optical physics, where such algorithms are
e.g. employed to shape laser pulses for laser chemistry [104, 105, 106, 107] and to
generate and analyze ultrashort pulses [108].

After a general introduction in Section 4.1, we illustrate the usefulness of genetic
algorithms with two examples: In Section 4.2, we show that a nearly perfect and fast
momentum transfer is possible even for very large condensates. Then, in Section
4.3, we demonstrate that, in principle, arbitrary momentum state superpositions
can be generated. Here, a prescribed relative phase between momentum states can
be created by accumulating a dynamical phase, while at the same time optimizing
for the prescribed mode population.

4.1 Genetic algorithms

Genetic algorithms (GA) are global optimization algorithms inspired by both, natu-
ral selection and natural genetics, and can be applied to a broad variety of problems
[102, 103]. The terminology used to describe the functioning of GAs is based on
several metaphors from the originating field of biological evolution. The key ele-
ment of the technique is to mimic the biological principle of survival of the fittest.
In order to achieve this goal, GA proceed by parametrizing the control function
to be optimized in terms of a finite set of coefficients, or genes. A set of genes
corresponding to a particular instance of the control function is called a chromo-

some. The GA operates on a set of chromosomes, the population. A fitness function

determines how well the control function encoded in a particular chromosome ful-
fills the desired optimization goal. This quantitative measure of the performance
of a chromosome is then used to establish a ranking among all chromosomes of a
population. The algorithm then proceeds by replacing an ill-fitted fraction of the
population by new chromosomes, the offsprings, that result from the combination
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of two parent chromosomes according to some set of rules. This process is referred
to as mating. The selection of the parent chromosomes and the mating rules have
to be designed so that it is likely that both parents pass on genes that perform
well, and that the offspring has a higher fitness value than the parents. In addition
to this controlled combination of chromosomes, random mutations of single genes
have to be implemented to prevent the algorithm from becoming trapped in local
extrema. The process of evaluating the fitness, establishing a ranking and mating
is iterated until a chromosome reaches a prescribed fitness value.

Genetic algorithms were first proposed in the context of atomic, molecular and
optical physics in a groundbreaking article by Judson and Rabitz [104]. The au-
thors argued that the design of laser pulses to control the motion of molecules in
an experimental setup suffers from the lack of exact knowledge of the molecular
Hamiltonian. They suggested the use of GA to leapfrog these difficulties: The ap-
plied laser pulses were encoded into a sequence of genes and the evaluation of the
fitness of the chromosomes was determined by using the experimental apparatus
as an analog computer that solves Schrödinger’s equation exactly and in real time
with the true laboratory parameters. The feasibility of this approach was demon-
strated by numerical simulations. Later, this scheme was successfully implemented
in actual experiments, see e.g. Refs. [106, 107].

Our goal is to extend the methods from the previous chapter, that use a con-
stantly accelerated lattice to accelerate condensates, by allowing a more complex
motion of the lattice. We demonstrate the usefulness of GA in this particular
setup with the help of numerical simulations. The time-dependent motion of the
lattice can be viewed as an extended Bragg scattering mechanism. In principle,
this approach should be experimentally feasible, since Bragg scattering is already
a well-established tool of atom optics: It has been used in many applications such
as the determination of the coherence properties of condensates [94, 95], the imple-
mentation of Mach–Zehnder interferometers to image the condensate phase [109],
the splitting of condensates [110], and the creation of initial states appropriate for
nonlinear mixing processes [16].

4.1.1 The control parameter

As in Chapter 3, we base our investigations on the one-dimensional GPE with an
optical lattice potential, see Eq. (3.11), but with the linear frequency chirp between
the lattice laser beams replaced by its general form δ(t),

ih̄
∂

∂t
ψ(z, t) =

[

− h̄2

2M

∂2

∂z2
+ V0 cos (2kLz − δ(t)t)

]

ψ(z, t)

+ NU0 |ψ|2 ψ(z, t). (4.1)

In the situation at hand, the control is achieved by the time-dependent detuning
δ(t). It is convenient to express the detuning by a truncated Fourier series:

δi(t) =

m
∑

ν=1

aiν cos(2νωRt) + biν sin(2νωRt), i = 1, . . . ,N , (4.2)

where ωR is the recoil frequency defined in Eq. (2.52). Each detuning δi is now
encoded in a chromosome ci consisting of n = 2m genes gij , each gene corresponding
to one particular Fourier coefficient,

ci(gi1, . . . , gin) = ci(ai1, . . . , aim, bi1, . . . , bim). (4.3)

The index i labels a specific chromosome, and the size of the chromosome population
is N .
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Figure 4.1: Schematics of the genetic algorithm.
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Starting from a randomly initialized population, the genetic algorithm uses a
set of mating rules, mutations, and a problem-specific fitness function f(ci) to cre-
ate new generations of chromosomes, as illustrated in Fig.4.1. In our problem, the
fitness is evaluated by evolving an initial momentum space wavefunction φ(k, 0)
according to the Fourier transformed GPE from Eq. (4.1) for a time tf , the dy-
namics of the optical lattice being determined by the detuning δi(t). The fitness
for each chromosome is then evaluated, based on the final wavefunction in momen-
tum space φ(k, tf ), and compared to the optimization goal. If the optimum was
not reached, the process is iterated. When it comes to the production of the new
offspring matrix c′i, two steps are necessary: First, parent chromosomes that are to
be combined by mating operators have to be selected. This is achieved by ranking
the initial N chromosomes according to their fitness and using the so-called roulette
wheel method [102] that assures that parent chromosomes with a high fitness are
preferentially selected. Second, a group of offspring chromosomes c′i are generated
from the parent population ci according to specified mating rules.

4.1.2 The mating operators

Mating operators perform the actual combination of parent genes into a group of
offspring chromosomes, and as such, they are at the heart of the GA. Several mating
operators may be considered.

One-point crossover

The one-point crossover operator cuts the two parent chromosomes at a randomly
chosen position µ (1 ≤ µ < n) and swaps them according to

Parent 1 g1,1 . . . g1,n

Parent 2 g2,1 . . . g2,n

⇓
one-point crossover

⇓
Child 1 g1,1 . . . g1,µ g2,µ+1 . . . g2,n

Child 2 g2,1 . . . g2,µ g1,µ+1 . . . g1,n

Two-point crossover

A slightly modified version of the one-point crossover is the two-point crossover that
cuts the two parent chromosomes at two random positions µ1 and µ2 (1 ≤ µ1 <
µ2 < n), and then exchanges the genes between these two positions:

Parent 1 g1,1 . . . g1,n

Parent 2 g2,1 . . . g2,n

⇓
two-point crossover

⇓
Child 1 g1,1 . . . g1,µ1

g2,µ1+1 . . . g2,µ2
g1,µ2+1 . . . g1,n

Child 2 g2,1 . . . g2,µ1
g1,µ1+1 . . . g1,µ2

g2,µ2+1 . . . g2,n

Average crossover

This mating operator produces just one offspring from the two parent chromosomes
by averaging the genes between two randomly chosen positions µ1 and µ2 (0 ≤ µ1 <
µ2 ≤ n) according to g′κ = (g1,κ + g2,κ)/2):
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Parent 1 g1,1 . . . g1,n

Parent 2 g2,1 . . . g2,n

⇓
average crossover

⇓
Child g1,1 . . . g1,µ1

g′µ1+1 . . . g′µ2
g1,µ2+1 . . . g1,n

4.1.3 Randomness in offspring production

Except for the random location at which the splicing of the chromosome occurs, the
mating operators discussed so far are deterministic. Since a deterministic offspring
production can lead the GA to converge in a local rather than a global optimum, we
require in addition truly random operators. These operators randomly change single
genes with the intention to push chromosomes that are close to a local optimum
into a different region of the search space. Although this might decrease the current
fitness of the chromosome, it enables the GA to explore the whole search space for
global optima. In the problem at hand, we introduce two operators, the “classical”
operator mutation and a modified mutation operator creep.

The mutation operator

The mutation operator produces one offspring from one parent by replacing a gene
by a random number g′µ within predetermined bounds g′min ≤ g′µ ≤ g′max. The
probability of this process to take place is given by the mutation rate.

Parent g1 . . . gµ . . . gn

⇓
mutation

⇓
Child g1 . . . g′µ . . . gn

The creep operator

The creep operator also produces one offspring from one parent by changing its
genes with a certain rate, the creep rate. In contrast to the mutation operator, the
creep operator does not replace the gene by a totally random value but rather shifts
the old value gµ by a random amount, g′µ = gµ + (0.5 − r)pcreep. Here pcreep is a
parameter that controls the range of the shift and 0 ≤ r ≤ 1 is a random number.

Parent g1 . . . gµ . . . gn

⇓
creep
⇓

Child g1 . . . g′µ . . . gn

The operators discussed in this section are the most common ones in GA optimiza-
tion and the only ones used in our analysis. Note that this set of operators can in
principle be applied to a broad range of optimization problems, but custom-tailored
mating operators can be designed that are better suited for a particular task [111].

4.1.4 Operator selection

When it comes to selecting a specific mating operator or mutation operator, there
are basically two possibilities: The first one consists of assigning fixed weights to the
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available operators and then choosing randomly among them. This is a straight-
forward approach, but it suffers from the problem of not discriminating against
mating operators that do not perform well for the optimization problem at hand.
Thus, a second possibility is to dynamically adjust the operator weights over the
course of the optimization [102, 111]. This guarantees that the best suited operators
are applied and allows one to test the performance of new mating operators. This
is done by assigning an adjustable operator fitness to each mating operator under
consideration. As such, the mating operators are selected according to their fitness
the same way as the parent chromosomes are picked. We make use of this adaptive
approach. The details of the procedure used in our simulations are discussed in
Appendix B.

4.2 Optimized coherent acceleration

We now apply GA optimization to the manipulation of the state of a Bose-Einstein
condensate in a chirped optical lattice. As a first example, we consider the coher-
ent transfer of a condensate population between the adjacent quasimodes u0 and
u1. Our motivation here is to overcome difficulties experienced with a constantly
accelerated lattice as discussed in Chapter 3.

For the sake of illustration, we assume that the condensate is initially in the
zero-momentum quasimode, p0(t = 0) = 1 according to the definition in Eq. (3.18),
and seek a time-dependent detuning such that p1(tf ) = 1 after some predetermined
time tf . In that case, the algorithm fitness has the simple form

f(ci) = p1(tf ), (4.4)

with an optimal value of unity.
Figure 4.2 summarizes the results of the optimization procedure. It compares

the optimized population transfer of a large condensate consisting of 2× 106 atoms
(spatial extend and atom number are chosen as in Fig. 3.8) to the case of the
same condensate subject to on-resonance Bragg scattering. In this example, the
genetic algorithm involved a one-point-crossover, a two-point-crossover and an av-
erage cross-over mating operator. In addition, it included two mutation operators
with mutation rates of 0.8 and 0.4, and two creep operators, both at a rate of 0.9,
but different creep parameters: a “coarse” creep with pcreep = 0.01 and a “finer”
creep operator with pcreep = 0.001. More details of the simulations are given in
Appendix B. While it can be expected that resonant Bragg scattering at the ap-
propriate frequency transfers almost perfectly the population of a small condensate
from mode u0 to mode u1, such is not the case for the large condensate we inves-
tigated (dashed line in Fig.4.2(b)). In this case, the mean-field nonlinearity of the
condensate is no longer negligible. It dynamically shifts the Bragg resonance, see
Chapter 3 and Ref. [100], so that the transfer efficiency drops to barely over 90% and
the maximum transfer occurs later in time. It is in such nontrivial situations that
genetic algorithms are expected to be useful. Indeed, the optimal time-dependent
detuning δ(t) found by the genetic algorithm is highly non-trivial. The temporal
dependence of the detuning δ(t), which transfers more than 99% of the population
to the quasimode u1, reveals that while it is initially advantageous to remain close
to the Bragg resonance frequency, as indicated by the rather flat portion of the de-
tuning, it eventually becomes necessary to drastically couple the condensate atoms
to higher momentum modes so as to drag the remaining population to the final
state u1. The relatively fast initial increase of the detuning above the level of the
first Bragg resonance makes up for the fact that at t = 0 we start with zero detun-
ing and couple partially to the mode of negative momentum u−1. Note that the
optimized detuning successfully counteracts the sudden switch-on of the lattice at



4.2. OPTIMIZED COHERENT ACCELERATION 49

(a)

p
  

(t
)

1

1/ωRt [        ]

R
δ(

  )
  [

   
  ]

ω

0

1st BR

2nd BR
12

8

4

0

−4

1

0.8

0.6

0.4

0.2

0.5 1 1.5 2

(b)

t

Figure 4.2: Momentum transfer of a condensate with N = 2 × 106 atoms, and a
Gaussian spatial distribution of longitudinal width wz = 318.9/kL and transverse
width w⊥ = 31.9/kL; V0 = 2ER (same parameters as in Fig. 3.8) over a duration of
tf = 2.41/ωR. (a) The optimized time-dependent detuning (solid) and the first and
second Bragg resonance (BR) for reference (dashed). (b) Temporal evolution of the
mode population p1 for: On resonance (dashed) and optimized (solid). Indicated
in (a) and (b) is the time it takes to resonantly transfer all population from the
quasimode u0 to u1 if the two modes were a linear two-mode system (vertical dotted
line).
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Figure 4.3: Effect of the nonlinearity on the momentum space wave function: Mo-
mentum space densities within quasimode u1 after optimizing the transfer, so that
p1 > 0.99 after time tf = 2.41/ωR; N = 105 (solid), N = 5×105 (dashed), N = 106

atoms (dotted), and N = 2×106 (dashed–dotted). The condensate density is given
in units of ρ = 2ER/NU0 for N = 105.

t = 0 and prevents initial loss to free bands, in contrast to the situation described in
Section 3.5.1. All condensate atoms are accelerated to a final velocity of 2vR during
a time tf = 2.41/ωR, corresponding to an averaged acceleration of 0.83aR. This
acceleration rate is larger than the already lossy acceleration of 0.73aR for fewer
atoms (and thus a smaller nonlinearity) from Figs. 3.4(b) and 3.5(b). According
to Eq. (3.32), we would have expected a tunneling loss of around 15% if a constant
acceleration of this strength had been used. The use of an optimized detuning not
only overcomes the obstacles encountered in Chapter 3, caused by a sudden lattice
switch-on and large mean field energies, but even beats the Landau-Zener tunneling
rate and provides a faster transfer.

The effect of the mean-field energy is further illustrated in Fig. 4.3, which
shows the final momentum distribution φ(k) within the quasimode u1 for various
numbers of atoms in the condensate for optimal transfer. While this distribution
remains extremely narrow compared to the quasimode width 2kL, collisions lead to
a substantial reshaping and broadening within that mode.

4.3 Coherent superposition engineering

In a second application, we set out to design an equal-weight superposition of the
two quasimode states u0 and u1

φ(k, tf ) =
1√
2

(

u0eiϕ0 + u1eiϕ1

)

, (4.5)

with a prescribed relative phase ∆ϕ = ϕ1−ϕ0. In contrast to the previous example,
we now want to control two properties of the quantum state, the relative phase as
well as the population in each state. Whereas the principles of population transfer
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have been demonstrated in the previous section, a relative phase can be created by
controlling the dynamic phase that each mode accumulates over the course of the
evolution of the system. The fitness function to be optimized has to monitor both
population and phase properties, and is therefore more complicated.

We choose to employ a penalty function P(ci) for the optimization of the quasi-
mode populations [103]. The goal of P(ci) is to decrease the fitness of chromosomes
that do not fulfill the desired requirements, thereby steering the population towards
the target values. A prototype penalty function is

P(ci) =















1.5 : p0(ci), p1(ci) > 0.465
1.0 : p0(ci), p1(ci) > 0.47

0 : p0(ci), p1(ci) > 0.475
100 : else.

(4.6)

The fitness function for this optimization problem is then given by

f(ci) = 1 − |α(ci) − ∆ϕ| − P(ci), (4.7)

where, as we recall, ci corresponds to a specific realization of the time-dependent
detuning δ(t) and α(ci) is the relative phase corresponding to this realization. This
fitness function reaches its maximum, unity in this case, when the populations are
within the specified range and the phase difference is exactly as prescribed. The
results for the optimization for the two cases ∆ϕ = −π/2 and ∆ϕ = −π/4 are
shown in Fig. 4.4. For the genetic algorithm we used the same operators and
parameters as in Section 4.2. More details of the simulations are given in Appendix
B.

Fig. 4.5 shows the momentum distribution φ(k) within each of the two quasi-
modes u0 and u1 of the condensate, as well as the corresponding phases for the
case ∆ϕ = −π/2. Clearly, the genetic algorithm converges to the stated goal, and
produces a condensate in the desired coherent superposition.

In particular, we observe that the relative phase of the two components is ap-
proximately constant in the region where the condensate wave function is different
from zero. The optimization goal of ∆ϕ = −π/2 is achieved with an accuracy of
over 99% at the center of the mode. The curvature of the phase at the wings of the
wave function is due to nonlinear phase shifts accumulated during the Hamiltonian
evolution. It could be reduced by further decreasing the density of the condensate.
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Figure 4.4: Excitation of an equal-weight coherent superposition of momentum
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momentum distribution, see also Fig. 4.5.
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Chapter 5

Dispersion-free Transport:

Gap Solitons

Having discussed the acceleration of condensates and the engineering of specific
momentum states in the previous chapters, we now focus on the transport of wave
packets. In free-space atom-optical applications as well as in atomic waveguides
it is desirable to minimize the dispersion of a traveling wave packet. This can be
achieved by non-spreading solutions of the nonlinear equation of motion, which
are as we recall solitons [112]. These are well-known from nonlinear optics and
have been demonstrated in various fiber optics experiments [113]. In solitons, the
dispersive effects are balanced by the nonlinearity, and the spreading of the wave
packet is canceled. In Section 5.1 we review this situation for atomic solitons: In
the case of a repulsive nonlinearity the balancing gives rise to a non-spreading dip in
an otherwise constant background density. These dark solitons were experimentally
excited in Bose-Einstein condensates by optical phase imprinting [19, 20, 69]. On
the other hand, bright solitons, non-spreading localized wave packets, exist in the
presence of an attractive nonlinearity. Such solitons were created very recently
in Bose-Einstein condensates by using Feshbach resonances to achieve a negative
scattering length [70, 71]. However, this method is restricted to relatively small
solitons, since attractive interactions cause condensates to collapse above a critical
number of atoms [11, 114]. Ideally, though, it would be desirable to generate solitons
carrying larger numbers of atoms. In order to circumvent this problem, we show
that bright solitons exist even in the presence of repulsive interactions. This is
done by loading the condensate into an optical lattice, where it can be assigned an
effective mass that is inversely proportional to the local curvature of the dispersion
curve [75]. If we place the Bose-Einstein condensate at a point of negative curvature,
which usually occurs at a band gap, the effective mass will also be negative and
can counteract the repulsive interaction. This type of soliton is called gap soliton

[115, 116, 117, 118]. In contrast to earlier work, where we demonstrated gap solitons
being composed of two Zeeman levels of a condensate that are coupled by an optical
lattice [119, 120], we now focus on gap solitons consisting of superpositions of two
momentum states with a fixed relative phase. In Section 5.2 we present an exact
and an approximate form of stationary and moving gap solitons. The stability of
the solitons is demonstrated by numerical propagation in one and three dimensions
in Section 5.3. Finally, Section 5.4 discusses possible excitation schemes based on
our findings and the results from Chapter 4.

55
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5.1 Introduction to atomic solitons

We briefly review one-dimensional dark and bright soliton solutions, where we as-
sume tight transverse confinement. Since the nonlinearity alone can balance the
dispersion of the wave packet, we consider the GPE from Eq. 2.32 without an
external potential,

ih̄
∂

∂t
ψ(z, t) =

[

− h̄2

2M

∂2

∂z2
+NU0|ψ(r, t)|2

]

ψ(z, t). (5.1)

5.1.1 Dark atomic solitons

For the case of repulsive interactions (asc > 0, i.e. U0 > 0), both the kinetic energy
and nonlinear term in Eq. (5.1) tend to broaden localized wave packets, so we
do not expect localized, or bright soliton, solutions for that case. However, dark
solitons describing localized density dips in an otherwise constant background can
arise and are given by [19, 20, 121] (with analogous solutions being well known in
nonlinear fiber optics, see e.g. [113])

ψ(z, t) = n
1/2
0

√

1 − (1 − v2
s) sech2

(

(z − vsv0t)

ws
(1 − v2

s)1/2

)

ei(φ−µt/h̄) , (5.2)

where n0 is the background density away from the dark soliton core, µ = n0|U0|,
ws =

√

h̄2/Mµ is the correlation length determining the width1 of the soliton core,

and v0 =
√

µ/M is the Bogoliubov speed of sound. The group velocity vs of the
dark soliton is given in units of v0 and bounded by −1 < vs < 1. The spatial phase
φ of the soliton is given by

φ(z, t) = − arctan

[

(

1

v2
s

− 1

)1/2

tanh

(

(z − vsv0t)

ws

(

1 − v2
s

)1/2
)

]

. (5.3)

Figure 5.1 (a) illustrates the density distribution |ψ(z)|2 of a dark soliton for various
velocities, and Fig. 5.1 (b) shows the corresponding spatial phases φ(z). These
solutions show that the dark solitons are characterized by the presence of a phase-
step δ across the localized density dip. It can be related to the velocity vs and the
density nbot at the bottom of the atomic density dip [19, 20]. In particular, one
finds the relation

cos

(

δ

2

)

= vs =
nbot

n0
, (5.4)

so that for a stationary soliton with vs = 0 and a vanishing density at the bottom,
nbot = 0, there is a steep δ = π phase-step (solid curves in Fig. 5.1). Only stationary
solitons have a vanishing density at their center, so they are also referred to as black

solitons, whereas for moving solitons with nbot > 0 the expression grey soliton is
used. Also, only stationary solitons have a sharp phase step across the center,
whereas moving solitons exhibit a smoother phase step.

Dark matter-wave solitons have been observed experimentally in a sodium con-
densate by Denschlag et al. [20], and in a cigar-shaped rubidium condensate by
Burger et al. [19]. In both experiments dark solitons of variable velocity were
launched via the phase imprinting of a condensate by a light-shift potential. By

1In this chapter we use the convention that ws refers to the width of a hyperbolic secant. The
full width at 1/e of the maximum of a squared hyperbolic secant is then given by 2.17ws, 2.17
being a numerical conversion factor. This conversion relates the width of hyperbolic secant-shaped
density distributions to the width of a Gaussian density distribution as defined in Chapter 2.
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applying a pulsed laser to only half of the Bose-Einstein condensate and choosing
the laser intensity and duration to imprint a desired phase-step δ, the soliton veloc-
ity could be selected according to Eq. (5.4). Ideally, imprinting a phase step of π
should lead to a stationary dark soliton, but the experiments were carried out in a
harmonic trap [122] where dissipative effects were shown to accelerate the solitons
[123, 124]. The solitons then decayed before reaching the edge of the condensate.
Note that the subtle interplay between density distribution and the spatial phase
is crucial for the successful excitation of the solitons, a fact that becomes very
important when discussing means to excite atomic gap solitons in Chapter 5.4.

5.1.2 Bright atomic solitons

For the case of attractive interactions (asc < 0, i.e. U0 < 0), the kinetic energy of the
condensate can be balanced by the nonlinearity, yielding spatially localized bright
solitons [113, 121], i.e. non-spreading wave packets in contrast to non-spreading
density dips as in the case of dark solitons. The one-parameter solution to Eq.
(5.1) then reads

ψ(z, t) =

√

1

2ws
eiφ(z,t)sech

(

z − vsvRt

ws

)

, (5.5)

with ws = 2h̄2/N |U0|M is the soliton width and vs is the dimensionless velocity
parameter. The phase of the bright soliton is given by

φ(z, t) =
(

z − vsvR

2
t
) vsvRM

h̄
+
N2U2

0M

8h̄3 t, (5.6)

exhibiting only a linear spatial dependence in contrast to the spatial phase step of
dark solitons.

Recently, such bright solitons have been experimentally demonstrated in con-
densates of 7Li atoms [70, 71], where the scattering length was tuned to negative
values by using Feshbach resonances [125, 126, 127]. In both experiments the mag-
nitude of the attractive interaction was chosen to excite solitons consisting of around
5000-6000 atoms. Whereas in Ref. [70] a soliton train was created and predicted
interactions between the single solitons were observed, Ref. [71] excited a single
soliton. Both experiments demonstrated a dispersion-free propagation over macro-
scopic distances. Since in two or more dimensions negative scattering lengths can
lead to catastrophic collapse in homogeneous systems for large enough particle num-
bers, the experminents had to be performed in quasi-one-dimensional systems with
strong transverse confinement, where solitons are rendered stable [128].

5.2 Momentum state gap solitons

So far in our discussion dark solitons aroused for positive and bright solitons for
negative scattering lengths. However, it is possible to extend the range of options by
considering a Bose-Einstein condensate in a one-dimensional optical lattice where
bright soliton solutions exist even for positive scattering lengths. In general, these
so-called gap solitons consist of two components that are coupled by the periodic po-
tential. They exhibit a more complex structure than the single component solitons
described in Sections 5.1.1 and 5.1.2 and their excitation process is more compli-
cated. However, due to their complex structure, soliton properties such as width
and number of atoms per soliton are less restricted and they offer more possibilities
for coherent manipulation.

Historically, gap solitons were first considered in nonlinear optics where they re-
sult from the combination of an optical nonlinearity and a periodic spatial refractive-
index distribution [115, 116, 117, 118]. They were then first mentioned in the
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context of nonlinear atom optics by Lenz et al., considering a nonlinearity caused
by dipole-dipole interactions between cold atoms [129, 130]. Steel et al. pointed
out the possibility of gap solitons in condensed atomic systems [131], where two
counterpropagating components of a scalar condensate are coupled by an optical
lattice. In earlier work, we discussed the existence of gap solitons in a condensed
system with two magnetic Zeeman levels coupled by an optical lattice. Excitation
schemes using magnetic phase imprinting were demonstrated [120, 132]. However,
since coupling between the two considered Zeeman levels is hard to achieve in alkali
metals [133], we return here to gap solitons consisting of a scalar condensate in two
counterpropagating momentum modes. We derive detailed soliton solutions and
investigate their properties. After demonstrating the soliton stability by numerical
propagations studies, we develop feasible excitation schemes.

Just recently, several groups showed renewed interest in bright gap solitons in
condensed systems with repulsive interactions. In particular, the existence of soli-
tons in deep lattices [134] and methods to excite very narrow solitons, usually trains
of solitons, by means of Bragg reflections were demonstrated [135, 136].

5.2.1 Coupled-mode equations

In contrast to the nonlinear optics case, where the periodicity is due to a periodically
modulated index of refraction, e.g. a fiber Bragg grating, we use the optical lattice
introduced in Chapter 2 as the only external potential. The one-dimensional GPE
then reads

ih̄
∂

∂t
ψ(z, t) =

[

− h̄2

2M

∂2

∂z2
+ V0 cos (2kLz)

]

ψ(z, t) + NU0|ψ(r, t)|2ψ(z, t), (5.7)

where we require U0 > 0. We consider a weak optical lattice, V0 � ER, and
require the atomic wavefunction to be spread over several lattice sites, thus enabling
momentum modes to be coupled via Bragg scattering. Following the nonlinear
optics approach [117], we look for soliton solutions ψs consisting of a superposition
of two counterpropagating modes with momenta ±h̄kL of the form

ψs(z, t) =
[

ψ+(z, t)eikLz + ψ−(z, t)e−ikLz
]

e−iωRt. (5.8)

Substituting this ansatz for ψs into Eq. (5.7) and assuming that the envelope
functions ψ± for the two momentum modes vary slowly with respect to 1/kL,

∣

∣

∣

∣

∂2

∂z2
ψ±(z)

∣

∣

∣

∣

�
∣

∣

∣

∣

1

kL

∂

∂z
ψ±(z)

∣

∣

∣

∣

, (5.9)

we can neglect second-order spatial derivatives compared to first-order derivatives.
Applying this slowly varying envelope approximation, we obtain the coupled-mode
equations for the envelope functions

i
∂

∂t
ψ(z, t) =

(

−ivRσ3
∂

∂z
+ σ1

V0

2h̄

)

ψ(z, t)

+
NU0

h̄

(

|ψ+|2 ψ+ + 2 |ψ−|2 ψ+

|ψ−|2 ψ− + 2 |ψ+|2 ψ−

)

. (5.10)

Here, vR is the recoil velocity defined in Eq. (2.53), and we combined the envelope
functions ψ± into the vector

ψ(z, t) =

(

ψ+(z, t)
ψ−(z, t)

)

. (5.11)
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For compact notation, we also introduced the Pauli matrices 2 σ1, σ3. The coupling
between the two mode functions ψ± is mediated by the optical lattice as well as
by the nonlinearity, as can be seen in Eq. (5.10). In the derivation of Eq. (5.10)
we neglected couplings to modes carrying a momentum other than ±h̄kL, since the
linear coupling mechanism is off-resonant and the nonlinear mixing is not phase-
matched for these momenta.

In the following we present two different solutions of Eq. (5.10) that coincide in
an experimentally relevant limit. Whereas the first approach, given in Section 5.2.2,
reveals the general structure and the properties of the gap solitons, the method used
in Section 5.2.4 gives insight into the physical origin of gap solitons.

5.2.2 Solitary wave solutions

The coupled-mode equations Eq. (5.10) contain the effects of the optical lattice as
well as terms describing nonlinear self-phase and cross-phase modulation. In non-
linear optics, Aceves and Wabnitz [137] derived solutions of this set of equations
by extending the results of the massive Thirring model of field theory [138], where
the self-phase modulation terms are absent. From a strict mathematical point of
view, these extended solutions yield solitary waves, since the system is not exactly
integrable [139]. Since these solitary waves exhibit most features of a true soliton,
including stability in wave packet collisions, we nevertheless refer to them as soli-
tons. Adjusting the solutions from Ref. [137] to our problem, we obtain explicit
two-parameter soliton solutions that are characterized by a bounded soliton group
velocity −1 < vs < 1, given in units of the recoil velocity vR, and a shape and phase
parameter 0 < α < π:

ψ(z, t) = A0

(

−e2θ + e−iα

e2θ + eiα

)2γ2

2
vs

eiσ





1

β
sech (θ − iα/2)

−β sech (θ + iα/2)



 . (5.13)

Here, we abbreviated

β =

(

1 − vs

1 + vs

)
1

4

, (5.14)

γ1 =
1

√

1 − v2
s

, γ2 =
1

√

3 − v2
s

, (5.15)

θ = − V0 sinα

2h̄vR

√

1 − v2
s

(z − vsvRt), (5.16)

σ = − V0 cosα

2h̄vR

√

1 − v2
s

(vsz − vRt) , (5.17)

A0 =
γ2

γ1

√

V0

2NU0
sinα. (5.18)

These solutions account for the full temporal evolution of the system. Since we will
be looking for schemes to excite the gap solitons, we focus on the initial conditions
by setting t = 0. Figure 5.2 illustrates the impact of the parameter α on the shape
and phase of the soliton. Higher values of α cause the peak density of the soliton
to increase and the width to decrease, as shown in Fig. 5.2(a). Defining the spatial

2The Pauli matrices we use are defined as

σ1 =

(

0 1
1 0

)

, σ3 =

(

1 0
0 −1

)

. (5.12)
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phase difference between the two soliton components as ∆ϕ(z) = arg [ψ+(z)] −
arg [ψ−(z)], higher values of α lead to a larger spatial phase-step across the soliton,
as exhibited in Fig. 5.2(b). For α� 1 the spatial phase difference is approximately
constant with ∆ϕ(z) ≈ π. In view of a feasible excitation, we restrict our analysis
to this case of a constant phase difference. For this regime with α� 1, the soliton
solutions of Eq. (5.13) then simplify to

ψ(z, t = 0) ≈ α

√

V0

2NU0

γ2

γ1
sech

(

z

ws

)

e−iksz





1

β
−β



 , (5.19)

where ws is the width of the hyperbolic secant-shaped soliton and ks the soliton
wave vector, with

ws =
2h̄vR

√

1 − v2
s

αV0
and ks =

vsV0

2h̄vR

√

1 − v2
s

. (5.20)

We obtain an expression for the full wave function ψs by substituting Eq. (5.19)
into Eq. (5.8),

ψs(z, t = 0) = α

√

V0

2NU0

γ2

γ1
sech

(

z

ws

)[

1

β
ei(kL−ks)z − βe−i(kL+ks)z

]

. (5.21)

Recalling that ψs has to be normalized to unity, we determine the number of atoms
in the soliton to be

N =
2h̄vRαγ

2
2

√

1 − v2
s

U0γ2
1

(

1

β2
+ β2 − 2πwskL

sinh(πwskL)

)

≈ 2h̄vRαγ
2
2

√

1 − v2
s

U0γ2
1

(

1

β2
+ β2

)

, (5.22)

where the approximation holds since we require wskL � 1.
For a stationary soliton with vs = 0 the wave function in Eq. (5.21) simplifies

to

ψs(z, t = 0) = α

√

2V0

3NU0
sech

(

z

ws

)

sin (kLz), (5.23)

with width ws = 2h̄vR/αV0 and wave vector ks = 0. We chose the global phase so
that ψs(z, t = 0) is real. The soliton consists of a hyperbolic secant-shaped envelope
that is modulated due to the interference of the two counterpropagating plane wave
components. The fringe pattern in the soliton density |ψs|2 has the periodicity of
the optical lattice with density maxima in the potential minima.

5.2.3 Gap soliton properties

Equation (5.21) shows that gap solitons consist of two counterpropagating compo-
nents. Whereas in linear systems without an optical lattice these wave packets would
travel in opposite directions, the nonlinearity “glues” these packets together to form
a non-dispersive unit. However, these soliton solutions impose severe restrictions
on the shape, width, number of atoms and spatial phases of the two counterprop-
agating components. Therefore, we now investigate the most important properties
of the soliton solutions, enabling us to connect these to experimentally accessible
parameters and to develop excitation schemes.

Note that the solutions in Eq. (5.21) are derived under the assumption α � 1.
It turns out that this approximation is still valid in practice for values α ≤ 0.25.
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Figure 5.2: One-dimensional soliton solutions at t = 0 according to Eqs. (5.13)-
(5.18) for α = 0.1 (solid), α = 0.25 (dashed), and α = 1.0 (dotted): (a) soliton

density |ψ+(z)|2 in units of the characteristic density ρ = 2ER/NU0; (b) phase
difference ∆ϕ(z) = arg [ψ+(z)] − arg [ψ−(z)]. For all plots we chose a stationary
soliton consisting of N = 12204 atoms with velocity parameter vs = 0, a transverse
Gaussian width w⊥ = 95.7/kL and a lattice depth V0 = 0.04ER. Note that for

vs = 0 we have |ψ+(z)|2 = |ψ−(z)|2.
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Momentum modes

Transforming the solution in Eq. (5.21) into momentum space by using the Fourier
transform as defined in Eq. (3.12), we obtain

φs(k) = φ+(k) + φ−(k), (5.24)

where the mode functions φ± are centered around ±kL + ks and given by

φ+(k) = αws
1

β

√

πV0

4NU0

γ2

γ1
sech

[πws

2
(k − kL + ks)

]

, (5.25)

φ−(k) = −αwsβ

√

πV0

4NU0

γ2

γ1
sech

[πws

2
(k + kL + ks)

]

. (5.26)

These modes contain important information on the phase and amplitude relations
that are needed to create stable solitons. In particular, Eqs. (5.25) and (5.26)
show that there is always a spatially homogeneous phase difference of π between
the two modes, as described in Section 5.2.2 for the chosen regime α � 1. For
the stationary soliton in Eq. (5.23) it is this phase difference that leads to the
sine-shaped modulation of the hyperbolic secant-shaped envelope.

Another important property is the relative mode population. Since in momen-
tum space the distance between the centers of the two modes is 2kL and we require
wskL � 1, the overlap of the two modes is negligible and their relative population
is

∫

dk |φ−(k)|2
∫

dk |φ+(k)|2
= β4 =

1 − vs

1 + vs
. (5.27)

This shows that the relative occupation depends on the soliton velocity vs. The
faster the solitons move to the right (left), the more population is in mode φ+ (φ−),
as would be intuitively expected. For vs = 0, the two modes are equally populated.

Width

Equation (5.20) reveals that the soliton width ws is inversely proportional to the
depth of the optical lattice V0 and the shape parameter α for a chosen velocity
parameter vs,

ws ∝ 1

V0α
vRv(vs), (5.28)

with v(vs) = (1 − v2
s)1/2. That means that for fixed parameters α and vs we can

in principle launch solitons with any width by adjusting the lattice depth V0 to
that particular choice. Fig. 5.3(a) illustrates the width as a function of V0 for two
velocities vs and two values of the parameter α.

Number of atoms

In contrast to the width ws, the number of atoms in the soliton does not depend on
the strength of the optical lattice, as can be seen from Eq. (5.22), but is inversely
proportional to the the effective nonlinear coefficient U0. Using the expression for U0

for the harmomic transverse potential considered in Section 2.3.1 and the definition
of the recoil velocity in Eq. (2.53), we find for a chosen velocity parameter vs

N ∝ αw2
⊥kL

as
v(vs), (5.29)

with

v(vs) =
√

1 − v2
s

(

1

β2
+ β2

)

γ2
2

γ2
1

. (5.30)
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Figure 5.3: Soliton properties for velocities vs = 0 (solid) and vs = 0.5 (dashed)
and two choices of parameter α: (a) width ws as a function of lattice depth V0; (b)
number of atoms N as a function of the transverse width w⊥ for typical sodium
parameters with kL/as = 1.3 × 1015 (see Section 2.4.3).
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For fixed parameters α and vs and wave vector kL, the only ways to increase N are
by increasing the transverse width w⊥ of the condensate or decreasing the scattering
length as, e.g. by using Feshbach resonances. Both possibilities lower the effective
nonlinear coefficient U0. We restrict ourselves here to modifications of the transverse
width. In this case the number of atoms depends on the particular species of atoms
being considered via the scattering length as.

Including the velocity dependence according to Eq. (5.22), Fig. 5.3(b) shows
the number of atoms for typical sodium parameters as a function of the transverse
width for two velocities vs and two values of the parameter α. We have to keep
in mind that increasing the transverse width will eventually violate the reduction
to one dimension. As described in Section 2.3.1, the condensate is assumed to be
tightly confined in the transverse direction. In that sense we find ourselves in a
situation opposite to the nonlinear optics case: Whereas the difficulty in optics is
to achieve high laser intensities to create the required nonlinearity, in the atomic
case we actually have to reduce the effective nonlinearity to obtain solitons with a
reasonable number of atoms.

In Section 5.3.2 we will show with the help of three-dimensional simulations that
there exist parameter regimes that are experimentally accessible.

5.2.4 Multiple scales solutions

In Section 5.2.2 we solved the coupled-mode system from Eq. (5.10) directly by
considering the effects of the lattice and the nonlinearity together. We now seek
solutions where we neglect the nonlinearity at first and solve the remaining linear
system. These linear solutions are then modified by reintroducing the nonlinearity
as a small perturbation. This approach is more instructive in the sense that it
reveals the physical origin of the gap solitons. We show that in the proper limit the
two approaches coincide.

We start by neglecting the nonlinear terms in Eq. (5.10), so we have to solve
the linear coupled equations

i
∂

∂t
ψ(z, t) =

(

−ivRσ3
∂

∂z
+ σ1

V0

2h̄

)

ψ(z, t). (5.31)

Substituting the plane wave ansatz

ψ(z, t) =

(

A+

A−

)

e−i(ωt−kz) (5.32)

into Eq. (5.31) and solving the eigenvalue problem, we find for the energy dispersion

ω±(k) = ±
√

v2
Rk

2 + V 2
0 /4h̄

2, (5.33)

with the upper index +(−) corresponding to upper (lower) branch. The orthonormal
eigenvectors corresponding to ω± are given by

A±(k) =

(

A±
+(k)

A±
−(k)

)

=
1

√
2

√

|ω±|2 + vRω±k

(

vRk + ω±

V0/2h̄

)

. (5.34)

The solid curves in Fig. 5.4 show the two branches of the dispersion curve (5.33).
The lower branch exhibits a negative curvature everywhere and thus a negative
effective mass, see Eq. (2.69). Later, we will see that it is this negative effective
mass that makes bright soliton solutions possible, despite the repulsive interatomic
interaction. Reintroducing the second-order derivatives that were dropped in the
slowly varying envelope approximation of Eq. (5.9), we find that the region of
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Figure 5.4: Linear energy dispersion for an optical lattice of depth V0 = 0.5ER, with
(solid) and without (dashed) applying the slowly varying envelope approximation.

negative curvature is actually only finite. It can be seen from the dashed curves
in Fig. 5.4, that this region is around the center of the Brillouin zone in the lower
branch.

Based on these findings, we now reintroduce the nonlinearity as a small pertur-
bation. We consider a wave packet that is placed in the lower branch with a narrow
spread of wave vectors around a central value k̃. We can then write the atomic
wavefunction as a product of a slowly varying envelope χ(z, t) modulated by the
solution of the linear system,

ψ(z, t) = χ(z, t)A−(k̃)e−i[ω−(k̃)t−k̃z]. (5.35)

Using the method of multiple scales, the details of which are shown in Appendix C,
leads to a nonlinear equation of motion for the envelope function χ(z, t),

[

ih̄
∂

∂t
+ ih̄v

∂

∂z
+

h̄2

2M∗

∂2

∂z2
− g |χ(z, t)|2

]

χ(z, t) = 0. (5.36)

Here, g is the nonlinear coefficient, given by Eq. (C.19) in Appendix C. The
group velocity v and the effective mass M∗ are derived from the dispersion curve.
According to the definitions in Section 2.5.2, they read

v =
dω−

dk

∣

∣

∣

∣

k̃

and
1

M∗
=

1

h̄

d2ω−

dk2

∣

∣

∣

∣

k̃

. (5.37)

As shown in Appendix C, bright soliton solutions of Eq. (5.36) for g > 0 only
exist if M∗ < 0. The physical mechanism of the gap solitons can now easily be
explained: The repulsive nonlinearity produces a spreading of the wave packet,
whereas a negative effective mass in the kinetic energy term causes a contraction
of the wave packet. Balancing the spreading and the contraction leads to a soliton
solution. In Fig. 5.4 we showed that a region of negative effective mass only exists
around the center of the Brillouin zone in the lower branch. Thus, k̃ must be within
this region, and it is justified in Eq. (5.35) to modulate the envelope χ(z) by the
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linear solution A− corresponding to this lower branch. Also, the envelope solution
raises the energy of the linear solution so that the soliton energy lies within the
band gap, hence the name gap soliton. Note that the effective equation of motion
(5.36) yields soliton solutions as in the case of standard atomic solitons described in
Section 5.1. However, only the envelope functions are genuine solitons. Modulating
the soliton envelopes by the linear eigenfunctions then satisfies the full equation of
motion (5.7), but these modulated solutions are no longer true solitons but rather
solitary waves. 3

In order to connect this approach to the previously derived solutions of Section
5.2.2, we now calculate the envelope χ(z), taking the case k̃ = 0, so that v = 0 and
M∗ = −V0/2v

2
R < 0. As shown in Appendix C, and by using χ(z) in Eq. (5.36) we

obtain

ψ(z, t = 0) = α

√

V0

6NU0
sech

(

αV0

2h̄vR
z

)(

1
−1

)

, (5.38)

with the dimensionless parameter α � 1. This solution is identical to the one in
Eq. (5.19) for vs = 0.

5.3 Numerical propagation studies

After having derived the gap soliton solutions and investigated their properties in
the previous sections, we now demonstrate their stability by numerical simulations.
The characteristic time scale of solitons is the soliton period ts, defined as the time
it takes for the dynamical soliton phase σ, see Eqs. (5.13) and (5.17), to go through
a cycle of 2π. Requiring σts = 2π leads to an expression for the soliton period,

ts =
4πh̄

√

1 − v2
s

V0
. (5.39)

A soliton is considered stable if the initial wave packet does not disperse over the
course of several soliton periods. In the following we show the evolution of stationary
and moving solitons in one and three dimensions.

5.3.1 Propagation in one dimension

Figure 5.5 shows the evolution of solitons that were initially prepared according
to Eq. (5.21). In Fig. 5.5(a), the stable propagation of a stationary soliton over
ten soliton periods is demonstrated, whereas Fig. 5.5(b) illustrates a stable moving
soliton with a velocity of vs = 0.5 over eight soliton periods. In both cases, the
initial wave packet does not exhibit spatial dispersion.

Both solitons exhibit fringes in the density due to the interference of the two
counterpropagating components. Note, however, that the actual spatial period is
on the order of 1/kL and cannot be resolved in the graphs. The fringes seen in both
graphs are due to aliasing effects and are not physical.

5.3.2 Propagation in three dimensions

Cylindrical coordinates

Until now we restricted ourselves to situations where a description by the one-
dimensional GPE from Eq. (2.32) is sufficient. However, we need to investigate the
stability of the gap solitons in three-dimensional geometries. This is necessary since
in any experimental setting, the wave function will have a finite transversal width.

3As mentioned earlier, since these solitary waves exhibit almost all features of true solitons, we
nevertheless refer to them as solitons.
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Figure 5.5: Temporal evolution of one-dimensional solitons, the color coding shows
the density |ψs(z, t)|2 in units of the characteristic density ρ = 2ER/NU0: (a)
stationary soliton with velocity vs = 0, width ws = 400/kL and N = 12204 atoms;
(b) moving soliton with vs = 0.5, ws = 346.4/kL and N = 9985. For both plots we
chose α = 0.25 and used a transverse Gaussian width w⊥ = 95.7/kL and a lattice
depth V0 = 0.04ER.

We need to choose this width carefully in order not to cause transverse excitations.
Additionally, we know from Section 5.2.3 that this width also determines the number
of atoms in the soliton.

In order to model realistic geometries, we assume the condensate to be confined
in the transverse direction by a radially symmetric trapping potential. It is then
advantageous to transform the GPE to cylindrical coordinates

ih̄
∂

∂t
ψ(r, z, ϕ, t) = − h̄2

2M

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
+

∂2

∂z2

)

ψ(r, z, ϕ, t)

+
[

V (r, z, t) +NU |ψ(r, z, ϕ, t)|2
]

ψ(r, z, ϕ, t). (5.40)

We do not consider situations where the condensate carries angular momentum, as
would be the case for vortices. It is thus justified to drop the dependence on ϕ.
The GPE for the cylindrically symmetric wave function then reduces to

ih̄
∂

∂t
ψ(r, z, t) = − h̄2

2M

(

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)

ψ(r, z, t)

+
[

V (r, z, t) +NU |ψ(r, z, t)|2
]

ψ(r, z, t). (5.41)

We assume the potential V (r, z, t) to be time-independent, consisting of a stationary
harmonic trapping potential in the radial direction and an optical lattice potential
along the z-axis:

V (r, z) =
1

2
Mω2

⊥r
2 + V0 cos (2kLz), (5.42)

where ω⊥ is the transverse trapping frequency.
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Figure 5.6: Three-dimensional stationary soliton |ψ(r, z)|2 according to Eq. (5.43)
at different times: (a) t = 0; (b) t = 10ts; (c) t = 20ts. The color coding shows
the density in units of ρ = 2ER/NU . The soliton with velocity vs = 0, longitudinal
width ws = 160.0/kL and transverse width w⊥ = 95.7/kL contains N = 12204
atoms. The lattice depth is V0 = 0.1ER, the transverse trapping frequency ω⊥ =
0.00158ωR and α = 0.25.

Results

We use a finite difference method as described in Appendix A to solve Eq. (5.41)
with the potential (5.42). As an initial wave packet we use the one-dimensional soli-
ton solution ψs(z) in Eq. (5.21) along the z-axis and a Gaussian density distribution
in the radial direction,

ψ(r, z) = ψs(z)
2√
πw⊥

e−2r2/w2

⊥ , (5.43)

where w⊥ is the transverse Gaussian width. Figure 5.6 shows4 the stable evolution
of a stationary soliton over 20 soliton periods. Obviously, the wave packet does not
disperse over the course of the simulation. In Fig. 5.7 we illustrate details of the
soliton dynamics by slicing the wave packet along the z-axis at r = 0. Since the
soliton solution ψs(z) in Eq. (5.21) is strictly valid only in a true one-dimensional
geometry, the wave packet undergoes some reshaping due to transverse effects. By
contracting and shedding off atoms, as indicated by the lobes to both sides of the
peak density in Figs. 5.7(a) and (b), the wave packet rearranges itself so that the
remaining atoms form a stable soliton. In Fig. 5.8 we demonstrate the stable

4As in the one-dimensional case, the visible fringes are not physical since the actual fringe
spacing cannot be resolved.
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Figure 5.7: Stationary soliton from Fig. 5.6, slices at r = 0 at different times: (a)

t = 0; (b) t = 10ts; (c) t = 20ts. The soliton density |ψ(r = 0, z)|2 is given in units
of ρ = 2ER/NU .
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Figure 5.8: Three-dimensional moving soliton |ψ(r, z)|2 according to Eq. (5.43)
at different times: (a) t = 0; (b) t = 8.17ts; (c) t = 16.33ts. The color coding
shows the density in units of ρ = 2ER/NU . The soliton with velocity vs = 0.5,
longitudinal width ws = 160.0/kL and transverse width w⊥ = 105.8/kL contains
N = 12204 atoms. The lattice depth is V0 = 0.087ER, the transverse trapping
frequency ω⊥ = 0.00129ωR and α = 0.25.

evolution of a moving soliton over 16.33 soliton periods.5 Again, we do not observe
any significant dispersion along the z-axis. In a recent publication, Hilligsøe et al.

[140] showed numerically that gap solitons are stable only in a truly one-dimensional
situation, whereas in two and three dimensions, resonant transverse excitations
lead to dynamical instabilities. They calculated the time for the decay in three
dimensions to be 1/(0.133ω⊥), corresponding to 38.0ts for the parameters of Fig.
5.6 and 46.6ts for Fig. 5.8. Since the characteristic time scale of the solitons ts is
much smaller than the decay time, stable propagation over reasonably long times
is possible for realistic physical parameters, as numerically verified in Figs. 5.6 and
5.8.

For completeness, we demonstrate numerically the importance of the correct
relative phase between the two counterpropagating components of the gap soliton.
To do so, we artificially create a phase difference of 2π between the two momentum
modes of a stationary soliton. This corresponds to a cos (kLz) modulation of the
hyperbolic secant-shaped envelope in Eq. (5.23). The density maxima of the wave
function and the lattice potential now coincide and this situation does not corre-
spond to a stable soliton. Figure 5.9 shows the propagation of this wave packet,
displaying strong dispersion along the z-axis. All other parameters are chosen to
be the same as in Fig. 5.6.

5We propagate the soliton over only 16.33 soliton periods due to computational restrictions,
since the wave packet eventually reaches the numerical domain boundary.
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Figure 5.9: Atomic wave packet with the same parameters as in Fig. 5.6 but
incorrect relative phase between the counterpropagating components. The wave
packet is shown at different times: (a) t = 0; (b) t = 10ts; (c) t = 20ts. The color
coding shows the density in units of ρ = 2ER/NU .
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5.4 Excitation of gap solitons

Although optical and atomic solitons are governed by similar equations of motion
and therefore have equivalent mathematical structures, their excitation schemes
differ fundamentally. For the generation of optical solitons it is often sufficient to
solely couple light with a frequency and power fulfilling the soliton conditions into
optical fibers [113]. However, although atomic solitons, such as the dark and bright
solitons of Section 5.1, were already derived shortly after the first demonstration
of Bose-Einstein condensates [121], their experimental demonstration was delayed,
because elaborate excitation schemes were required. The successful use of optical
phase imprinting [19, 20] and Feshbach resonances [70, 71] shows that these schemes
are completely different from the excitation of optical solitons. Also in the case of
atomic gap solitons, the optical counterpart cannot guide us and we have to find new
ways of excitation. In the following we discuss two experimentally feasible schemes
to generate atomic gap solitons. In particular, we demonstrate the excitation of the
stationary soliton shown in Fig. 5.5(a). For simplicity, we restrict the numerical
simulations to this one-dimensional case.

In Section 5.2.3 we showed that once the velocity of the soliton is chosen, we
have to populate two momentum modes according to that specific choice and create
a phase difference of π between the two modes. For the stationary soliton that we
wish to excite we need equal populations of the two modes centered around ±kL.

In both excitation schemes we start with a condensate initially at rest and the
trapping potential switched off. We assume the initial condensate wave function to
be

ψ0(z) =
√

2α

√

V0

6NU0
sech

(

z

ws

)

. (5.44)

Although we assume a hyperbolic secant-shaped wave function this is not a strong
restriction for experimental setups. Gap solitons are known to be fairly insensitive
to the exact shape as long as the width of the wave packet matches the initial
conditions [119].

5.4.1 Bragg pulse excitation

The first excitation scheme uses resonant Bragg pulses to transfer the correct popu-
lation to the momentum modes. Since we have to couple from a condensate initially
at rest to modes carrying momenta ±h̄kL, we need a moving lattice of the form

V (z, t) = V0 cos
(

2k̄z + δt
)

with k̄ = kL/2. (5.45)

For resonant Bragg scattering from the initial mode with zero momentum to modes
with momenta ±h̄kL we need δ = ∓ωR [100]. With a first pulse of duration t1 we
transfer half of the population from the initial mode to the mode carrying momen-
tum h̄kL. A second pulse of duration t2 is then applied to transfer the remaining
population from the initial mode to the mode with momentum −h̄kL. By adjusting
the pulse durations we are able to establish a homogeneous phase of π between the
modes with ±h̄kL. Starting with ψ0 given by Eq. (5.44), the excitation scheme
reads

ψ0
1st Bragg pulse−→ 1√

2
ψ0

(

1 − ieikLz
)

2nd Bragg pulse−→ i√
2
ψ0

(

e−ikLz − eikLz
)

.

The final state is identical to the soliton solution ψs(z) in Eq. (5.23). We then
replace the moving lattice in Eq. (5.45) by a stationary lattice

V (z) = V0 cos (2kLz). (5.46)
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This is the lattice that is needed for a stable propagation of the excited soliton.
Figure 5.10 shows the numerical simulation of the excitation process. In Fig.

5.10(a) the wave packet after the first Bragg pulse is illustrated. The right in-
set shows that the initial mode and the mode with momentum h̄kL are equally
populated. This leads to an interference pattern in the density. After the second
Bragg pulse, we see in Fig. 5.10(b) that now both modes with momentum ±h̄kL

are equally populated. The vanishing density at the origin z = 0 indicates a sine-
shaped modulation, corresponding to the desired relative phase of π. Figure 5.10(c)
then shows the generated wave packet after a propagation over ten soliton periods.
Although there is an onset of a shoulder visible in Fig. 5.10(c), suggesting that a
wave packet is separating from the soliton, further numerical investigations show
that this is not the case.6 The population difference between the two momentum
modes causes the soliton to move very slowly. However, this effect is negligible over
the chosen timescale of several soliton periods. Apparently, our proposed scheme
results in the excitation of a stable and (almost) stationary soliton that does not
disperse.

5.4.2 Genetic algorithm excitation

The excitation scheme of the previous section has the disadvantage that two optical
lattices are needed, one for resonant Bragg scattering and one for the excited soliton
to “live in”. We circumvent this in a second scheme by using a magnetic field in
combination with an optimized lattice motion as described in Chapter 4.

In a first step we accelerate the condensate initially at rest to a state with
momentum −h̄kL. This can be achieved by applying a magnetic field with a spatial
gradient B′. The potential for this interaction can be written as

V (z) = mF gFµBB
′z, (5.47)

with µB = 9.274×10−28 J/G the Bohr magneton and gF the g-factor. In general, a
condensate consisting of sodium atoms is trapped in a hyperfine state with quantum
numbers F = 1 and mF = −1. For this configuration we have gF ≈ −0.5. For
a given magnetic field gradient B′ the field has to be switched on for a time t1
determined by

−mF gFµBB
′t1 = −kL, (5.48)

in order to place the condensate in a mode with momentum −h̄kL.
We now recall the results from Chapter 4, where we demonstrated the creation

of a prescribed population and phase difference in momentum modes by optimizing
the lattice motion with help of genetic algorithms. In this excitation scheme we
have to transfer half of the population from the mode with momentum −h̄kL to
the mode with h̄kL. At the same time we need to create a phase difference of π
between these two modes. Using a lattice of the form

V (z, t) = V0 cos [2kLz − δ(t)t], (5.49)

we have to find the time-dependent detuning δ(t) that creates the prescribed mo-
mentum state during a time t2. Schematically, this scheme reads

ψ0
B′

−→ ψ0e−ikLz

δ(t)−→ 1√
2
ψ0

(

eikLz − e−ikLz
)

.

6We also propagated the excited gap soliton over 30 soliton periods and observed a negligible
loss of only 3% of the initial number of atoms (not shown in a figure).
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Figure 5.10: Excitation and propagation of a stationary soliton with ws = 400/kL,
w⊥ = 95.7/kL, N = 12204, α = 0.25 and ρ = 2ER/NU0. The left insets show

a magnification of |ψ(z)|2 in the same units as the large graphs, the right insets

illustrate the momentum distribution |φ(k)|2 in units of 1/ρ. (a) After the Bragg
pulse at t1 = 2π/ωR with lattice V0 cos (kLz − ωRt) and V0 = ER. (b) After the
Bragg pulse at t2 = t1 + 12π/ωR with lattice V0 cos (kLz + ωRt) and V0 = ER. (c)
After propagation at t3 = t2 + 10ts, with lattice V0 cos (2kLz) and V0 = 0.04ER.
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After the optimized lattice motion, the final state of the condensate meets the initial
conditions for a stationary soliton. By setting δ(t) = 0 for t > t1 + t2 we already
have the stationary lattice needed for a stable propagation of the excited soliton.

Figure 5.11 shows the numerical results of the excitation process. After applying
the magnetic field gradient the condensate is completely in the state of momentum
−h̄kL, as illustrated in Fig. 5.11(a). There are clearly no interference fringes in that
case. Figure 5.11(b) shows the wave function after the lattice evolution according to
an optimized δ(t). The condensate is almost in an equal superposition of modes with
momentum ±h̄kL. It is not exactly an equal superposition since the optimization
procedure was stopped when there was more than 47% population in each of these
modes. The sine-like oscillations in the density verify that there is a relative phase
difference of π between the modes. Figure 5.11(c) then shows the wave packet after
a propagation over ten soliton periods. Due to the imperfect excitation, i.e. slightly
unequal mode popualtions, the wave packet rearranged its shape over the course of
the propagation. Nevertheless, the population difference is much smaller than in the
case of Bragg pulse excitation shown in Fig. 5.10(c). The wave packet behaves like
a soliton since the dispersive effects are very small and thus the genetic algorithm
optimization enables a stable gap soliton excitation.
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Figure 5.11: Excitation and propagation of a stationary soliton with ws = 400/kL,
w⊥ = 95.7/kL, N = 12204, α = 0.25 and ρ = 2ER/NU0. The left insets show

a magnification of |ψ(z)|2 in the same units as the large graphs, the right insets

illustrate the momentum distribution |φ(k)|2 in units of 1/ρ. (a) After magnetic field
pulse at t1 = 5.6/ωR. (b) After optimized lattice motion at t2 = t1 + π/2ωR with
lattice V0 cos [2kLz − δ(t)t] and V0 = 2ER. (c) After propagation at t3 = t2 + 10ts
with lattice V0 cos (2kLz) and V0 = 0.04ER.
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Chapter 6

Outlook: Fermions

This chapter serves as an outlook on one of the latest developments in the field of
atom optics: degenerate systems of dilute Fermi gases. These systems have recently
been experimentally demonstrated [141, 142, 143, 144]. Unlike Bose-Einstein con-
densates, these systems are not amenable to a mean-field description, a consequence
of the intrinsically multimode character of the system due to Pauli exclusion prin-
ciple. Fermi systems promise the extension of nonlinear atom optics to a regime
without counterpart in traditional nonlinear optics.

After a brief review of recent achievements in theoretical and experimental as-
pects of degenerate Fermi gases in Section 6.1, we present a simple model of a
fermionic atomic coupler in Section 6.2. This model helps to gain an understanding
how fermionic matter waves can be manipulated by interaction with light, which is
a cornerstone in the quantum control of bosonic atoms as well. In contrast to the
well-known two-mode couplers that accurately describe many physical situations,
such as optical waveguide switches or population transfer in two-level atoms, the
fermionic coupler will be an example of a nonlinear multimode coupler. We discuss
the specific situation where transitions between two internal states of a quantum-
degenerate Fermi system at zero temperature are induced by Raman coupling. We
assume both states to be harmonically trapped with slightly different trap frequen-
cies. Investigating the dynamics of the system serves the two-fold goal to illustrate
some of the differences to the bosonic case, as well as the role of collisions in the
fermionic case. Neglecting collisions in Section 6.3, we find that the optical coupling
results in a collapse and revival behavior of the population difference between the
two traps, caused by the difference in trap frequencies. However, as then shown
in Section 6.4, two-body collisions lead to an additional nonlinear phase shift that
inhibits the collapse of the population difference.

6.1 Degenerate Fermi gases

6.1.1 Cooling of fermions

As in the case for bosons, dilute fermionic gases approach quantum degeneracy
when the phase space density reaches unity. Whereas bosons condense in the lowest
single-particle state, fermions tend to a state with a filled Fermi sea. In order to
achieve the ultracold temperatures needed for quantum degenerate Fermi gases, one
first applies common laser cooling techniques that work irrespectively of the atom
statistics. However, laser cooling alone is not sufficient, and fermions cannot be
evaporatively cooled the way bosons are because of their fermionic statistics: Due
to the requirement of antisymmetry, identical fermions, i.e. fermions of the same
species and in the same internal state, are not subject to s-wave scattering, and the

79
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effects of p-wave scattering are negligibly small. These scattering events, however,
are necessary to rethermalize the remaining atoms after high energy fermions have
been removed from the trap. This difficulty can be overcome by using a mixture
of two different types of atoms. Successful experiments with 40K used two different
internal states and both states were evaporatively cooled. The interspecies s-wave
scattering then enabled the rethermalization [141, 142]. In another experiment, 6Li
fermions were cooled together with their bosonic isotope 7Li [143, 144, 145]. The
fermions were cooled by collisions with the bosons that were evaporated, a process
referred to as sympathetic cooling. Besides this influence of the atom statistics on
the cooling process, an additional problem is the increasing degree of degeneracy
during the cooling. Pauli blocking reduces the number of available final states and
as a result, even two-component mixtures cannot easily be cooled efficiently since
fewer collisions scatter into the few empty states [142, 146]. However, sophisticated
improvements of the cooling techniques overcame these problems so that several
groups have now achieved quantum degenerate Fermi gases with temperatures as
low as one tenth of the Fermi temperature TF [147, 148] with up to 7 × 107 atoms
[149, 150]. These samples of degenerate fermions are comparable in size to the
largest alkali Bose-Einstein condensates.

6.1.2 The BCS-BEC crossover

Currently, research is being conducted on the control of interatomic interactions by
the use of Feshbach resonances. These resonances occur when the relative energy of
a colliding pair of atoms is nearly degenerate with a quasi-bound molecular state.
First observations in samples of fermions have been made in Ref. [151], where
p-wave scattering between fermions in the same hyperfine state were enhanced.
In another experiment, measurements of positive and negative s-wave scattering
lengths in a Fermi gas have been reported [152]. Controlling the scattering length
opens up the possibility of experimentally tuning the fermionic system between a
Bardeen-Cooper-Schrieffer (BCS)-type superfluid1 and a Bose-Einstein condensate.
In the BCS limit, the superfluidity is due to a condensation of delocalized Cooper

pairs, where two fermions are correlated in momentum space in the presence of
attractive interatomic interactions. In the case of repulsive interactions, pairs of
fermions form weakly bound bosonic molecules that can then condense into a Bose-
Einstein condensate (BEC). Whereas in the BCS-type superfluid the Fermi statistics
plays an essential role, no fermionic degrees of freedom remain in the case of a
molecular BEC since the fermions are bound as bosonic molecules. Tuning the
interatomic interaction from attractive to repulsive one can continuously probe the
BCS-BEC crossover. Close to the Feshbach resonance, where the scattering length
changes its sign, one expects to see resonance superfluidity [152, 159, 160]. Although
a pure BCS-type superfluid has not been reported yet, experimental formation
of remarkably stable bosonic molecules2 from a Fermi gas [150, 162] led to the
successful demonstration of molecular Bose-Einstein condensates [163, 164, 165].
Just recently, even the resonance condensation of fermionic atom pairs close to the
Feshbach resonance has been reported [147, 166]. The possibility of exploring the
BCS-BEC crossover regime in dilute Fermi gases follows many years of theoretical
studies and might lead to new insights into the world of interacting fermions, that
has not been possible with conventional Fermi systems such as e.g. electrons in

1The theory of BCS-type superfluidity respectively superconductivity has originally been
developed for electrons in metals by Bardeen, Cooper and Schrieffer [153]. Theoretical in-
vestigations on the formation of this state in dilute atomic vapors can be found in Refs.
[154, 155, 156, 157, 158, 159, 160].

2Dimers of fermions exhibit much longer lifetimes than dimers of bosons due to the fermionic
suppression of vibrational quenching in molecule collisions [161].
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Figure 6.1: Two-component Fermi gas in a harmonic trap. The trapping frequencies
ω+ and ω− correspond to the two internal states, which are coupled via a spin-flip
transition at frequency ωL resonant with the frequency difference of the trap ground
states.

metals.

6.2 The fermionic Raman coupler

6.2.1 The model system

We consider a two-component quantum-degenerate atomic system trapped in a one-
dimensional, harmonic potential with each component corresponding, e.g., to one
internal hyperfine spin state. In general, the coupling of the atoms to the trapping
field is different for the two (spin) components |+〉 and |−〉, so that they see trapping
potentials of different frequencies ω+ and ω−. The two internal states are coupled by
a Raman-type interaction of frequency ωL equal to the spin-flip transition frequency
of the atoms in the ground state of the two trapping potentials. This model, which
is summarized on the diagram of Fig. 6.1, is described by the second-quantized
Hamiltonian

Ĥ =

∫

dx Ψ̂†
+(x)H+Ψ̂+(x) +

∫

dx Ψ̂†
−(x)H−Ψ̂−(x)

+ h̄g

∫

dx
[

e−iωLtΨ̂†
+(x)Ψ̂−(x) + h.c.

]

, (6.1)

where h̄g is the Raman coupling strength. The first-quantized Hamiltonian describ-
ing the trapping potentials associated with the internal states |+〉 and |−〉 is

H± = − h̄2

2m

∂2

∂x2
+

1

2
mω2

±x
2 + E±, (6.2)
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with E± being the energy of the internal state |±〉. The Raman resonance condition
is therefore, with ωA = E+ − E−,

ωL = ωA + (ω+ − ω−)/2. (6.3)

We remark that this resonance condition effects only the coupling between the
two trap ground states: the coupling between all other levels is off-resonant for
ω+ 6= ω−. Hence, introducing a small detuning even for the ground states does not
significantly alter the dynamics of the system.

6.2.2 Equations of motion

The atomic field operators corresponding to the two traps obey the fermionic, re-
spectively bosonic (anti)commutation relations

[

Ψ̂i(x), Ψ̂†
j(x′)

]

±
= δijδ(x− x′),

[

Ψ̂i(x), Ψ̂j(x′)
]

±
= 0,

[

Ψ̂†
i (x), Ψ̂†

j(x′)
]

±
= 0, (6.4)

where i, j = {+,−}.
For the harmonic potentials at hand, the Heisenberg equations of motion for

the atomic field operators take the same form, independently of whether the atoms
are bosonic or fermionic. It is convenient to expand them in terms of eigenstates
{un(x)} of one of the trap Hamiltonians H±, say, H+ for concreteness, as

Ψ̂+(x, t) =
∑

n

un(x)ân(t),

Ψ̂−(x, t) =
∑

n

un(x)b̂n(t), (6.5)

where the ân and b̂n satisfy either fermionic or bosonic commutation relations. In
both cases, this expansion readily yields the Heisenberg equations of motion

i
dân

dτ
= Anân + g̃b̂n,

i
db̂n
dτ

= Bnb̂n + Cnb̂n+2 +Dnb̂n−2 + g̃ân, (6.6)

where we have introduced the coefficients

An =
1

2
(β − 1) + n,

Bn =
1

4

(

β2 − 1
)

(2n+ 1) + n,

Cn =
1

4

(

β2 − 1
)
√

(n+ 2)(n+ 1),

Dn =
1

4

(

β2 − 1
)
√

n(n− 1), (6.7)

and the ratio
β = ω+/ω− (6.8)

of the trap frequencies. The dimensionless time τ is scaled to ω+, τ = ω+t, and so
is the dimensionless coupling strength g̃ = g/ω+.
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We emphasize that while the operator ân describes the annihilation of atoms
in level n of the upper trap, a similar interpretation of the b̂n’s is not possible,
since they result from the expansion of the field operator of atoms in the internal
state |−〉 on the basis of the “+”-trap. Denoting the eigenstates of the single-
atom Hamiltonian of the lower trap as {vn(x)}, the “true” annihilation operators
ĉn associated with the trapped atoms in the |−〉 internal state are related to the

b̂n’s by the mapping

ĉn(t) =
∑

n

Tnmb̂m(t), (6.9)

where the mapping matrix element Tnm is the overlap integral

Tnm =

∫

dx vn(x)um(x). (6.10)

6.3 Linear dynamics

In this section, we compare the dynamics of ideal noninteracting bosonic and
fermionic systems evolving under the influence of the Raman coupling. We pro-
ceed by numerically solving the Heisenberg equations of motion (6.6) for a sample
of N atoms initially in the internal state |+〉 and at temperature T = 0. For
bosonic atoms, all atoms are therefore initially in the “+”-trap ground state, while
for fermions they fill the lowest N trap levels. The corresponding initial states are
correspondingly

|ψF (0)〉 =

N−1
∏

i=0

â†i |0〉+ ⊗ |0〉−, (6.11)

in the case of fermions, and

|ψB(0)〉 =
1√
N !
â†N0 |0〉+ ⊗ |0〉−, (6.12)

for bosonic atoms.
We consider, first, the case of noninteracting fermionic atoms. For trap fre-

quencies approximately equal, β ' 1, Eq. (6.6) suggests the existence of two lim-
iting situations, at least in the case of fermions. (We will revisit this point when
discussing low-temperature bosonic systems.) In the first one, which we call the
“strong-coupling regime” in the following, g̃ ≈ N , so that the inter-trap coupling
dominates the dynamics and the intra-trap coupling terms b̂n±2 can largely be ig-
nored. In contrast, the “weak-coupling regime” g̃ � N is dominated by intra-trap
coupling.

As a first measure of the system dynamics, Fig. 6.2 shows3 the difference

∆N(τ) =
1

N

∫

dx
[〈

Ψ̂†
+(x)Ψ̂+(x)

〉

−
〈

Ψ̂†
−(x)Ψ̂−(x)

〉]

=
1

N

∑

n

(〈

â†n(τ)ân(τ)
〉

−
〈

ĉ†n(τ)ĉn(τ)
〉)

. (6.13)

between the populations of the “+” and “-” traps. Figure 6.2(a) is for the strong-
coupling regime, and Fig. 6.2(b) for the weak-coupling regime.

One can gain some intuitive understanding of the strong-coupling regime by
remarking that in that regime, intra-trap transitions remain small, so that the Ra-
man coupling is predominantly between levels of the two traps with equal quantum

3All plots of the population difference ∆N exhibit fast oscillations that cannot be resolved on
the shown time scale.
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number n. To lowest order, these transitions are all at the Rabi frequency g̃. How-
ever, this simplest description cannot explain the result of Fig. 6.2(a). Rather, it
is necessary to include at least their lowest-order corrections, i.e,

Ωn =

√

g̃2 +
1

4
(An −Bn)

2 ' g̃ +

(

(β − 1)2

8g̃

)

n2. (6.14)

Such an n-dependence of Rabi frequencies is known to lead to collapse and revival
phenomena, as was first discussed in the context of the Jaynes-Cummings model
[167], where Ωn ∝ √

n. This is precisely the type of behavior exhibited by ∆N in
the strong-coupling regime. Because of the n2-dependence of Ωn, it is expected that
the lowest trap levels, i.e. the atoms in the deep Fermi sea, play a dominant role in
the appearance of the revivals. We verified that the populations of the lowest trap
levels indeed oscillate more or less in phase, while those of higher n levels dephase
rapidly.

We remark that both collapses and revivals of ∆N disappear when the two trap
frequencies are identical, since for β = 1, we have An = Bn = n and hence Ωn = g̃.
In addition, intra-trap transitions vanish in that case, due to Cn = Dn = 0. Fig.
6.2(b) shows the inversion ∆N between the total trap populations in the weak-
coupling regime, g̃ � N . In this limit, inter-trap and intra-trap coupling occur on
similar time scales. Immediately following a Raman transition from the |+〉 to the
|−〉 internal state, the population of the “-”-trap starts to undergo a redistribution
between its levels. The combined effects of the intra- and inter-trap transitions
result in that case in a random-looking evolution of ∆N(t) of Fig. 6.2(b).

We now briefly turn to the case of a Bose gas. For a sample at zero-temperature,
T = 0, and initially in the internal state |+〉, all atoms are in the ground state of
the “+”-trap at τ = 0. As a result, the strong-coupling regime is characterized
by almost perfect Rabi oscillations of the atomic population between the two trap
ground states, with a very small fraction of the atoms coupling to higher modes due
to intra-trap transitions. This behavior is also largely preserved for β2−1 � g̃ � N .
(We recall that for fermions the right-hand side of this inequality corresponds to
the weak-coupling regime, dominated by intra-trap transitions.) This difference
between bosons and fermions can readily understood from Eqs. (6.6), which show
that in the T = 0 bosonic case, intra-trap coupling first occurs between the levels
n = 0 and n = 2 of the “-”-trap, with coupling coefficient D2 = (β2 − 1)/4. As long
as this coupling remains small compared to the inter-trap coupling g̃, the system
acts effectively as a two-mode system. In other words, for low temperature bosonic
systems, the weak-coupling regime is not characterized by g̃ ≈ N as is the case for
fermions, but rather by g̃ � β2 − 1.

As is to be expected, the difference between fermionic and bosonic systems is
reduced as T is increased. At first, the sharp edge of the Fermi-Dirac distribution
softens, resulting in slightly reduced (strong-coupling) collapses and revivals of the
fermionic system. On the other hand, for T 6= 0, bosons occupy higher trap states,
resulting in a spread in Rabi frequencies participating in the population difference
signal. This in turn leads to collapses and revivals rather than the perfect T = 0
Rabi oscillations. Increasing the temperature further leads of course to undistin-
guishable behaviors of the bosonic and fermionic systems.

6.4 Collisions

In this section, we discuss the effect of collisions on the preceding results. Collisions
are of course central to the dynamics of quantum-degenerate atomic systems. They
are essential in the evaporative cooling of the sample, and also provide a nonlinearity
that can lead to the nonlinear mixing of matter waves. In bosonic systems, much
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Figure 6.2: ∆N(τ) for N = 10 fermions and trap ratio β = 0.9, as obtained from a
numerical integration of Eqs. (6.6): (a) strong coupling regime with g̃ = 10.0; (b)
weak coupling regime with g̃ = 1.0. Time τ is given in units of 1/ω+.
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new physics can be studied, e.g. by changing the sign of the scattering length of
s-wave collisions. In the following sections, we first discuss the way collisions impact
the operation of the Raman coupler in the case of fermions, and later compare these
results with those for a bosonic sample.

6.4.1 Fermions

It is well known that in fermionic atoms, the Pauli exclusion principle forbids the
existence of s-wave scattering between atoms in the same internal state. In addition,
p-wave scattering is generally negligible. Hence two-body collisions are described
by the Hamiltonian

Ĥcol = U0

∫

dx Ψ̂†
+(x)Ψ̂†

−(x)Ψ̂−(x)Ψ̂+(x), (6.15)

where U0 = 4πh̄2aρ/m is the interaction strength with a being the s-wave scattering
length and ρ the characteristic density of the system. Again, we expand the field
operators according to Eq. (6.5) in terms of the basis {un} and obtain

Ĥcol = U0

∑

i,j,k,l

Uijkl â
†
i b̂

†
j b̂kâl, (6.16)

where the matrix element

Uijkl =

∫

dxui(x)uj(x)uk(x)ul(x) (6.17)

characterizes the scattering between different levels. We note that Uijkl is symmetric
under permutations.

In the presence of this quartic Hamiltonian, the Heisenberg equations of motion
for the operators an and bn involve cubic combinations of operators. To close this
system of equations, we invoke a time-dependent Hartree-Fock ansatz, which has
proved to be very successful in the treatment of many-particle quantum systems
[168], to factorize products of operators, of the generic form b̂†i (τ)b̂j(τ)âk(τ), by

b̂†i (τ)b̂j(τ)âk(τ) ≈ 〈b̂†i (τ)b̂j(τ)〉âk(τ) − 〈b̂†i (τ)âk(τ)〉b̂j(τ), (6.18)

where the expectation value is over the state |ψF (0)〉 since we work in the Heisenberg
picture. At this level of approximation, we neglect all contributions from pairing.
This factorization scheme readily yields the time-dependent Hartree-Fock equations
of motion (in dimensionless variables)

i
∂ân

∂τ
=

∑

k

[

(

Anδnk +Qbb
nk

)

âk −
(

Qab
nk

∗ − g̃δnk

)

b̂k

]

,

i
∂b̂n
∂τ

=
∑

k

[

(Bnδnk +Qaa
nk) b̂k −

(

Qab
nk − g̃δnk

)

âk

]

+ Cnb̂n+2 +Dnb̂n−2, (6.19)

where we have introduced the time-dependent coefficients

Qaa
nk(τ) = Ũ0

∑

i,j

Unijk〈â†i (τ)âj(τ)〉,

Qbb
nk(τ) = Ũ0

∑

i,j

Unijk〈b̂†i (τ)b̂j(τ)〉,

Qab
nk(τ) = Ũ0

∑

i,j

Unijk〈â†i (τ)b̂j(τ)〉, (6.20)
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and Ũ0 = U0/h̄ω+ is a dimensionless interaction strength.
The effect of collisions is illustrated in Figs. 6.3(a),(b), which show the popula-

tion inversion ∆N(τ) for two values of the interaction strength Ũ0.
For weak enough collisions, the dynamics of the system is not significantly al-

tered, as should of course be expected. However, we observe a quantitative change
in the dynamics of ∆N as Ũ0 is increased. Instead of a collapse and revivals, ∆N(τ)
now undergoes nearly full Rabi oscillations.

A first hint at the cause of this changed behavior is offered by Fig. 6.4, which
shows a snapshot of the level populations in the “+”-trap for the cases of Fig. 6.3(a)
and 6.3(b), respectively. We observe that the smaller value of Ũ0 corresponds to
an inhomogeneous level population distribution, whereas the higher nonlinearity
causes the trap levels to be almost equally populated.

A more quantitative understanding of the role of collisions can be gained by
estimating how the nonlinear terms in Eq. (6.19) modify the (collisionless) Rabi
frequency. A numerical evaluation of the coefficients Uijkl shows that elastic col-
lisions, i = j = k = l, dominate the dynamics of the system. In addition, Unnnn

turns out to be a decreasing function of n. Keeping the elastic contributions to the
collision-induced dynamics only, and neglecting as in the strong-coupling regime of
Section 6.3 the effects of intra-trap coupling terms b̂n±2, one finds that as a result
of collisions Eq. (6.14) is approximately changed to

ΩNL
n (τ) =

√

g2 +
1

4
(An −Bn +Qbb

nn(τ) −Qaa
nn(τ))

2
. (6.21)

Fig. 6.5 shows, as a function of Ũ0, the time-dependent Rabi frequencies ΩNL
n (τ)

averaged over a time interval Θ large compared to their inverse,

Ω̄n =
1

Θ

Θ
∫

0

dτ ΩNL
n (τ). (6.22)

Because Unnnn is a decreasing function of n, its contribution tends to compensate
the n2 dependence of Eq. (6.14). As a result, there is a range of collision strengths
for which the dependence of ΩNL

n (τ) on n largely disappears. In this range, para-
doxically, the dynamics of the collision-dominated Fermi system resembles that of
a collisionless Bose system. From this admittedly crude argument – which is how-
ever consistent with our full numerical results – we also conjecture that for even
larger Ũ0, the approximate cancellation of the n-dependence of the Rabi frequen-
cies will disappear and we expect an overall dephasing and decay of the population
difference ∆N(t). It has unfortunately proven prohibitive to try and check this
conjecture numerically.

6.4.2 Bosons

We now turn to the case of bosonic atoms. Bose statistics allows for s-wave collisions
between atoms in the same spin state, so that the collisional Hamiltonian is now

Ĥcol = U+

∫

dx Ψ̂†
+(x)Ψ̂†

+(x)Ψ̂+(x)Ψ̂+(x)

+ U−

∫

dx Ψ̂†
−(x)Ψ̂†

−(x)Ψ̂−(x)Ψ̂−(x)

+ 2Ux

∫

dx Ψ̂†
+(x)Ψ̂†

−(x)Ψ̂+(x)Ψ̂−(x), (6.23)

where the Ui, i = {+,−, x} characterize the strength of the collisions. In the
following we assume for simplicity U+ = U− = U0 and Ux = ηxU0.
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Figure 6.3: Population difference ∆N(τ) for N = 10 fermions, a trap ratio β = 0.9
and in the strong-coupling regime g̃ = 10.0. The plots, which result from the
numerical integration of Eqs. (6.19), are for different strengths of the two-body
collisions: (a) Ũ0 = 0.01; (b) Ũ0 = 0.1. Time τ is given in units of 1/ω+.
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Figure 6.4: Occupation of the first 15 upper trap levels at time τ = 490 (in units of
1/ω+), (a) for the parameters of Fig. 6.3(a); (b) for the parameters of Fig. 6.3(b).

To truncate the Heisenberg equations of motion for the field operators, we now
invoke a mean-field approximation, factorize all products of operators, and replace
the resulting expectation values by time-dependent c-numbers. This gives

i
d〈ân〉
dτ

=
∑

k

(

Anδnk +Qaa
nk + ηxQ

bb
nk

)

〈âk〉 + g̃〈b̂n〉,

i
∂〈b̂n〉
∂τ

=
∑

k

(

Bnδnk +Qbb
nk + ηxQ

aa
nk

)

〈b̂k〉 + g̃〈ân〉

+ Cn〈b̂n+2〉 +Dn〈b̂n−2〉, (6.24)

where

Qaa
nk(τ) = 2Ũ0

∑

i,j

Unijk〈âi(τ)〉∗〈âj(τ)〉,

Qbb
nk(τ) = 2Ũ0

∑

i,j

Unijk〈b̂i(τ)〉∗〈b̂j(τ)〉, (6.25)

and the expectation values are with respect to the state |ψB(0)〉. Figure 6.6 shows
the inversion ∆N(τ) for a sample of bosonic atoms initially in the internal state
|+〉 for a nonlinear parameter Ũ0 = 0.5. In contrast to the case where collisions are
absent and we have full Rabi oscillations, see Section 6.3, here one starts observing
a damping of the oscillations. This is clearly a result of the scattering of atoms into
higher trap states. This is illustrated in Fig. 6.7, which shows the population of
the first upper trap levels at a fixed time. The transitions between the populated
trapped states are characterized by n-dependent Rabi-frequencies, leading to the
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.

onset of a dephasing process resembling the situation for noninteracting fermions.4

We see, then, that in the case of interacting bosons, intra-trap scattering is an
important element of the dynamics of the Raman coupler, which rapidly evolves
to a multimode behavior; in contrast to the intrinsically multimode fermionic case
Uijkl tends to reduce the spread in Rabi frequencies and thus inhibits dephasing.

A remarkable property of the bosonic trap population distribution is that only
even trap levels are occupied, see Fig. 6.7. This is a combined result of three facts:
(a) at T = 0 all atoms are initially in the ground state of one of the traps; (b) s-wave
scattering only couples trap states of same parity, as expressed by the symmetry
properties of the collision matrix from Eq. 6.17; (c) intra-trap coupling only couples
trap levels with ∆n = 2, see Eq. (6.6).

It is known from nonlinear optics [169] and atom optics [170] that systems gov-
erned by a pair of coupled nonlinear Schrödinger equations can reach a regime where
the nonlinear phase shifts dominate their dynamics. Such two-mode systems ex-
hibit Rabi oscillations for small nonlinearities, but mode-coupling is inhibited above
a certain strength of the nonlinearity. This effect is absent in the present multimode
system, a result of the strong inter-mode scattering.

4The choice of a given number of modes in the numerical simulations limits the evolution time
to values such that the population of modes close to the numerical cut-off point remains small.
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the parameters of Fig. 6.6.



Chapter 7

Summary and Conclusion

In this dissertation, we presented a variety of momentum state manipulation tech-
niques for matter waves, reaching from constantly accelerating Bose-Einstein con-
densates to introducing optimization schemes to create arbitrary coherent momen-
tum state superpositions. Using these tools we were also able to show efficient
excitation of atomic gap solitons.

Shortly after the publication of our results for the coherent acceleration of Bose-
Einstein condensates, its experimental feasibility was demonstrated by two different
research groups [1, 2] in agreement with our predictions. Besides emphasizing the
timeliness of the theoretical analysis this also shows the necessity in current research
to control the motion of a condensate. Very recently, even atomic gap solitons were
experimentally excited, again in good agreement with our predictions and numerical
simulations [3]. It is very likely that, together with the rapid improvement in
the field of integrated atom optics, these achievements soon lead to unprecedented
controlled guiding of condensate wave packets on microfabricated atom waveguides.

From a theoretical point of view there still remain open issues that could evolve
into new tools for coherent manipulation. As for the acceleration of Bose-Einstein
condensates, it seems possible to combine the ideas of adiabaticity and non-trivial
lattice acceleration to create a counterintuitive process similar to STIRAP (stimu-
lated Raman adiabatic passage). Specifically, controlling the time-dependent accel-
eration of the lattice such that the Bragg resonances are swept continuously from
higher to lower momentum modes of the condensate, thereby building up a coher-
ence between these modes, should then result in an efficient transfer from an initial
state of low momentum to one of high momentum. Preliminary investigations indi-
cate that this method could be well suited for the construction of large-momentum
beam splitters. Another direction besides the counterintuitive acceleration is to go
past the mean-field theory in order to determine the higher-order coherence proper-
ties of the accelerated beams. With this understanding one can imagine to be able
to generate non-classical matter wave fields during the acceleration process.

Furthermore, genetic algorithm optimization, that we used for the acceleration
of condensates and the excitation of gap solitons, is expected to play an important
role in the preparation of quantum states of ultracold or condensed atomic systems.
After being a well-established tool in e.g. physical chemistry, other groups now
also started to theoretically apply control optimization to manipulate Bose-Einstein
condensates. As an example, Ref. [171] demonstrates the creation of a flat spatial
phase with the help of an optical lattice. However, there are some issues that have
to be resolved, such as the inclusion of laser and atom number fluctuations into the
numerical simulations. This is necessary so that the calculated control pulses can
be used in actual experiments. A first step towards this goal has been achieved in
optimal control theory [172], where uncertainties in pulse duration are admitted.
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However, apart from numerical simulations, feedback optimization can also di-
rectly be used in experimental setups. Especially the short production times for
Bose-Einstein condensates on microfabricated chips and the possibility to design
interesting spatial and time-dependent potentials makes these systems good candi-
dates for these techniques. Besides quantum state engineering it also seems possible
to use genetic algorithm feedback loops for the optimization of experimental proce-
dures that need many trial-and-error adjustments, such as finding optimal ramping
times for the cooling of fermions.

In the last part of the dissertation we gave an outlook on possible quantum state
manipulation techniques with fermions. We found that the Raman coupling between
two internal states of a trapped Fermi gas exhibits rich dynamics, quite different
from its bosonic counterpart. This is of course due primarily to the fact that a Fermi
gas occupies a large number of trap states, and hence can never be approximated as a
two-mode system. Surprisingly perhaps, we also found that two-body collisions can
under appropriate conditions inhibit collapses and revivals. Despite the limitation of
restricting the numerical simulations to fairly small numbers of atoms on the order
of 10, the analysis sheds some light on the dynamics of trapped Fermi systems. This
might provide useful guidance in understanding more realistic trapped Fermi gases
in three dimensions and with a large number of fermionic atoms, so one can start
developing coherent manipulation tools also for fermionic systems.

In conclusion, one needs to harness atomic properties in order to succeed building
atom-optical devices, such as integrated atomic sensors or robust quantum comput-
ers. We introduced some new techniques and pointed out possible extensions of
these schemes. The major challenge is now to combine several tools introduced by
different groups to advance the field of atom optics step by step.



Appendix A

Numerical Methods

It is possible to obtain approximate solutions or reasonable analytical estimates
for the momentum control schemes we demonstrate throughout this dissertation.
However, numerical verification of these control schemes is necessary, especially in
the presence of nonlinear atom-atom interactions. In this Appendix we review the
most important numerical methods we used. We discuss a finite-difference scheme
used to calculate ground states of the nonlinear GPE. For propagation in time,
we introduce a split-step Fourier method for the one-dimensional case and a finite-
difference scheme for three-dimensional cylindrically symmetric geometries.

A.1 Discretization

Domain and function discretization

We discretize the equations for numerical treatment by defining a grid of space-time
points for the one-dimensional Cartesian coordinate z and the three-dimensional
cylindrical coordinates r and z.1 We divide the domain along the r-axis into M
sections of length ∆r and the domain along the z-axis into L−1 pieces of length ∆z.
For convenience we choose M an odd and L to be an even integer. The temporal
step size is denoted by ∆t. We then write for a space-time point on the grid

(r, z, t) → (i∆r, [2j − L+ 1]∆z/2, n∆t) , (A.1)

where i, j, n are integers with 0 ≤ i ≤ M , 0 ≤ j < L and n ≥ 0. Thus, the grid
points cover a finite domain for the coordinates r and z, bounded by 0 ≤ r ≤M∆r
and −(L− 1)∆z/2 ≤ z ≤ (L− 1)∆z/2.

We introduce the following notation for a discretized arbitrary function f , that
depends on the spatial variable r or z or on both:

fn
i ≡ f(i∆r, n∆t),

fn
j ≡ f([2j − L+ 1]∆z/2, n∆t), (A.2)

fn
i,j ≡ f(i∆r, [2j − L+ 1]∆z/2, n∆t),

the upper index corresponding to time, the lower indices to space.

Derivative discretization

Having introduced the discretized space-time grid, we can now approximate deriva-
tives by their most simple symmetric finite-difference approximation[173]. A first-

1Since we only consider radially symmetric situations in three dimensions, we drop the angular
dependence, as explained in Section 5.3.2.
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order spatial derivative in r can be written as

∂

∂r
f(r) ≈ fi+1 − fi−1

2∆r
, (A.3)

whereas a second-order derivative is given by

∂2

∂r2
f(r) ≈ fi+1 − 2fi + fi−1

∆r2
. (A.4)

One obtains the corresponding derivatives in the z-space by replacing the coordinate
r by z and the index i by j.

A.2 Nonlinear ground state method

Following Ref. [174], we discuss a numerical method to calculate the ground state
solution of the nonlinear GPE. The stationary GPE from Eq. (2.11), reduced to
one dimension, reads

Hψ = µψ, (A.5)

with the Hamiltonian H given by

H = − h̄2

2M

∂2

∂z2
+ V (z) +NU0 |ψ(z)|2 . (A.6)

Using Eqs. (A.2) and (A.4), we write the discretized version of Eq. (A.5) as

−h̄2

2M∆z2
(ψj+1 − 2ψj + ψj−1) + Vjψj +NU0 |ψj |2 ψj = µψj . (A.7)

We can then rewrite the Hamiltonian in form of a tridiagonal matrix,

H =





















. . .
. . .

. . . dj−1 κ
κ dj κ

κ dj+1
. . .

. . .
. . .





















, (A.8)

where we used dj = h̄2/M∆z2 + Vj + NU0 |ψj |2 and κ = −h̄2/2M∆z2. We apply
free boundary conditions by setting ψj = 0 outside the domain, i.e. for j < 0 or
j ≥ L.

Without the nonlinear term, the problem is readily solved by calculating the
eigenvalues and eigenvectors2 of the matrix H in Eq. (A.8): the lowest eigenvalue
corresponds to the ground state energy and the associated eigenvector is the dis-
cretized ground state wave function. Including the nonlinearity, we have to use an

iterative method. Starting with a trial wave function ψ
(0)
j , we calculate the eigen-

vector ψ
(EV )
j corresponding to the lowest eigenvalue. We then construct a new trial

function from the first trial function and the calculated eigenfunction by letting

ψ
(1)
j =

√

ε
[

ψ
(0)
j

]2

+ (1 − ε)
[

ψ
(EV )
j

]2

, (A.9)

2The eigenvalues and eigenvectors of the matrix can efficiently be calculated by software pack-
ages such as MATLAB or LAPACK.
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with 0 < ε < 1 is. The above procedure is then iterated with the newly constructed

trial function until the trial function agrees with the calculated eigenfunction ψ
(EV )
j

within a certain range, yielding the nonlinear ground state. Crucial parameters are
the mixing parameter ε and the choice of the first trial function. In general, a small

ε leads to a slow but stable convergence. A good choice for ψ
(0)
j is the harmonic

oscillator ground state if the trapping potential can be Taylor-expanded around its
minimum.

A.3 Split-operator method

A very powerful method for numerical propagation in the time domain is the so-
called split-operator method. We assume that the Hamiltonian of the system can
be decomposed into a sum of two operators that are allowed to be nonlinear and
time-dependent,

H(t) = L1(t) + L2(t). (A.10)

The system evolution is governed by the Schrödinger equation

ih̄
∂

∂t
ψ(t) = H(t)ψ(t), (A.11)

which is formally be solved by

ψ(t+ ∆t) = T̂







exp



− i

h̄

t+∆t
∫

t

dt′H(t′)











ψ(t), (A.12)

where T̂ is the time-ordering operator. If the equal-time commutator of the Hamil-
tonian H vanishes, we can neglect terms of order O

(

∆t3
)

in Eq. (A.12) and ap-
proximate the integral by evaluating H at time t, leaving us with

ψ(t+ ∆t) ≈ exp

[

− i

h̄
H(t)∆t

]

ψ(t)

= exp

[

− i

h̄
(L1 + L2) ∆t

]

ψ(t). (A.13)

Here, we made use of the decomposition in Eq. (A.10). According to the Baker-
Hausdorff formula we can write

exp

(

− i

h̄
L1∆t

)

exp

(

− i

h̄
L2∆t

)

= exp

{

− i

h̄
(L1 + L2) ∆t− 1

2h̄2 [L1,L2] ∆t2 + O
(

∆t3
)

}

≈ exp

[

− i

h̄
(L1 + L2) ∆t

]

,

where we neglected terms of order O(∆t2) in the last step. Using this identity in
Eq. (A.13), we can calculate ψ(t + ∆t) by successively applying the exponentials
containing L1 and L2 to the initial wave function ψ(t),

ψ(t+ ∆t/2) = exp

[

− i

h̄
L1(t)∆t

]

ψ(t), (A.14)

ψ(t+ ∆t) = exp

[

− i

h̄
L2(t+ ∆t/2)∆t

]

ψ(t+ ∆t/2). (A.15)
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The total Hamiltonian evolution is divided into two parts: first, the function ψ is
computed at the intermediate time t + ∆t/2 by evolving the system according to
L1. Then, in a second step, the final function at t+ ∆t is obtained by evolving the
intermediate result according to L2.

A.4 Split-operator method for one-dimensional GPE

We are now ready to apply the split-operator solutions from Eqs. (A.14) and (A.15)
to the one-dimensional time-dependent GPE from Eq. (2.28),

ih̄
∂

∂t
ψ(z, t) =

[

− h̄2

2M

∂2

∂z2
+ V (z, t)

]

ψ(z, t) +NU0|ψ(z, t)|2ψ(z, t). (A.16)

Operator splitting and solutions

We split the Hamiltonian into a part L1, consisting of the kinetic energy term, and
a part L2, which contains the linear and nonlinear potential, by defining

L1 = − h̄2

2M

∂2

∂z2
, (A.17)

L2(t) = V (z, t) +NU0 |ψ(z, t)|2 . (A.18)

The propagation of the wave function from time t to t+ ∆t/2 with the operator L1

according to Eq. (A.14) is best done by introducing the Fourier transform φ(k, t),
defined as

φ(k, t) =
1√
2π

∞
∫

−∞

dz ψ(z, t)e−ikz. (A.19)

After the transformation of the wave function ψ(z, t) to momentum space, the
evolution according to L1 is then given by

φ(k, t+ ∆t/2) = exp

(

−i
h̄

2M
k2∆t

)

φ(k, t). (A.20)

Transforming φ(k, t + ∆t/2) back to coordinate space, we can apply the second
computational step. The propagation with operator L2 according to Eq. (A.15) is
then simply

ψ(z, t+ ∆t) = exp

[

− i

h̄
V (z, t+ ∆t/2)∆t

]

(A.21)

× exp

[

− i

h̄
NU0 |ψ(z, t+ ∆t/2)|2 ∆t

]

× ψ(z, t+ ∆t/2).

Discretized scheme

Implementation of this propagation method from time t to t + ∆t on the one-
dimensional grid requires the values of the wave function ψn

j for all j to be known
at time t = n∆t as an initial condition. For the evolution according to the kinetic
energy operator L1 we first use a discrete Fourier transform3 to obtain φn

l , with
−L/2 ≤ l < L/2, from ψn

j . Properly discretized, the solution from Eq. (A.20) is
written as

φ
n+1/2
l = exp

[

−i
h̄

2M
(l∆k)

2
∆t

]

φn
l , (A.22)

3For computational efficiency a Fast Fourier Transform algorithm is recommended [175].
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with the step size in momentum space given by ∆k = 2π/(L− 1)∆z. Dicretization
of the second computational step in Eq. (A.21) yields

ψn+1
j = exp

[

− i

h̄

(

V
n+1/2
j +NU0

∣

∣

∣
ψ

n+1/2
j

∣

∣

∣

2
)

∆t

]

ψ
n+1/2
j . (A.23)

A.5 Finite-difference scheme for cylindrical sym-

metry

In Cartesian coordiantes, the above stated Fourier method can easily be extended
to three dimensions, whereas in cylindrical coordinates the Fourier transform has
to be replaced by a Hankel transform. However, numerical implementations of the
Hankel transform are less accurate than the fast Fourier algorithms and require an
exponentially spaced grid along the r-axis [176]. Therefore, we employ a different
approach based on a finite-difference scheme.

In Section 5.3.2, we need to propagate the GPE in cylindrical coordinates,

ih̄
∂

∂t
ψ(r, z, t) = − h̄2

2M

(

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)

ψ(r, z, t)

+
[

V (r, z) +NU |ψ(r, z, t)|2
]

ψ(r, z, t). (A.24)

We assume a time-indenpendent potential of the form

V (r, z) = V (r) + V (z), (A.25)

which is the case for the situation discussed in Section 5.3.2. There, the radial part
V (r) corresponds to a harmonic trapping potential and the longitudinal potential
V (z) models the optical lattice along the z-axis.

Operator splitting and solutions

We apply the operator splitting as discussed in Section A.3 and divide the Hamilto-
nian into a a nonlinear part L1 and a linear part L2, containing the kinetic energy
contributions as well as the trapping and lattice potential,

L1(t) = NU |ψ(r, z, t)|2 , (A.26)

L2 = − h̄2

2M

(

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)

+ V (r, z). (A.27)

The solution of the the nonlinear operator L1, according to Eq. (A.14), is readily
given by

ψ(r, z, t+ ∆t/2) = exp

(

− i

h̄
NU |ψ(r, z, t)|2 ∆t

)

ψ(r, z, t), (A.28)

propagating the wave function from time t to t+ ∆t/2. The solution of the linear
term L2 is more complicated since it contains derivatives of both coordinates r and
z. A common scheme to solve the propagation from t+ ∆t/2 to t+ ∆t is to apply
another operator splitting, this time separating the coordinates,

L2 = Lr + Lz , (A.29)

with

Lr = − h̄2

2M

(

∂2

∂r2
+

1

r

∂

∂r

)

+ V (r), (A.30)

Lz = − h̄2

2M

∂2

∂z2
+ V (z), (A.31)
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where we made use of the decomposition of the potential V (r, z) in Eq. (A.25).
We are now able to use the Alternate Direction Implicit (ADI) scheme [173]. This
powerful method reduces the two-dimensional problem to a succession of two one-
dimensional problems, similar to the operator splitting in time. The specific im-
plementation we use is based on work by Peaceman and Rachford and uses the
formulas

(

I + i
∆t

2h̄
Lr

)

ψ(t+ 3∆t/4) =

(

I − i
∆t

2h̄
Lz

)

ψ(t+ ∆t/2), (A.32)

(

I + i
∆t

2h̄
Lz

)

ψ(t+ ∆t) =

(

I − i
∆t

2h̄
Lr

)

ψ(t+ 3∆t/4), (A.33)

where I is the identity matrix. First, the wave function is propagated from time
t+ ∆t/2 to t+ 3∆t/4 with the operator Lz . Then, application of Lr yields the final
wave function at t+∆t. Since the method is derived from the famous Crank-Nicolson
scheme for parabolic partial differential equations [175], it is unconditionably stable
[173].

Discretized scheme

The discretized version of the split operator solution for L1 in Eq. (A.28) simply
reads

ψ
n+1/2
i,j = exp

(

− i

h̄
NU

∣

∣ψn
i,j

∣

∣

2
∆t

)

ψn
i,j , (A.34)

where the values ψn
i,j for all i, j serve as the initial condition and are assumed to be

known.
For the discretization of the ADI method in Eqs. (A.32) and (A.33) we introduce

the abbreviations

µ =
∆t

2h̄
, µr =

h̄∆t

2M∆r2
and µz =

h̄∆t

2M∆z2
. (A.35)

According to Eq. (A.32), the first propagation step is then properly discretized by

µr
2i+ 1

4i
ψ

n+3/4
i+1,j + (i − µr − µVi)ψ

n+3/4
i,j + µr

2i− 1

4i
ψ

n+3/4
i−1,j

= −µz

2
ψ

n+1/2
i,j+1 + (i + µz + µVj)ψ

n+1/2
i,j − µz

2
ψ

n+1/2
i,j−1 ,

for 1 ≤ i ≤M−1 and 1 ≤ j ≤ L−2. These equations correspond to L−2 tridiagonal
systems, one for each value of j. Each tridiagonal system can be solved for the values

ψ
n+3/4
i,j with 0 ≤ i ≤ M , since the right hand side is completely known from Eq.

(A.34). The Thomas algorithm [173] turned out to be an appropriate method to
solve the tridiagonal systems at hand. Next, we specify the missing values at the

boundaries by ψ
n+3/4
i,0 = ψ

n+3/4
i,L−1 = 0, corresponding to a vanishing wave function

at the domain boundaries z = ±(L − 1)∆z. Having computed all values at time
t+ 3∆t/4 by this procedure, discretization of the second stage of the computation
due to Eq. (A.33) yields M − 1 tridiagonal systems,

µz

2
ψn+1

i,j+1 + (i − µz − µVj)ψn+1
i,j +

µz

2
ψn+1

i,j−1

= −µr
2i+ 1

4i
ψ

n+3/4
i+1,j + (i + µr + µVi)ψ

n+3/4
i,j − µr

2i− 1

4i
ψ

n+3/4
i−1,j ,

for 1 ≤ i ≤M − 1 and 1 ≤ j ≤ L− 2. Again, we use the Thomas algorithm to solve
these system of equations to obtain the values ψn+1

i,j for 0 ≤ j < L. The boundaries

in this case are then specified by ψn+1
0,j = ψn+1

1,j , which assures a vanishing derivative

at r = 0, and ψn+1
M,j = 0, corresponding to a vanishing wave function at the domain

boundary r = M∆r.



Appendix B

Details of Genetic Algorithm

In this Appendix we give specific details of the implementation of the genetic algo-
rithm in the problem of BEC state engineering in an optical lattice from Chapter
4.

Over the course of the optimization we monitor the maximum fitness fmax of a
population,

fmax = max{f(ci) : i = 1, . . . ,N}. (B.1)

Obviously, if at least the best chromosome is kept from the old generation, the
maximum fitness is a monotonically increasing function. This feature, referred to
as elitism, is used throughout our simulations. Another observable of interest is the
mean fitness fmean of a population,

fmean =
1

N

N
∑

i=1

f(ci). (B.2)

A typical evolution of these two quantities is shown in Fig. B.1(a). The maximum
fitness increases monotonically to reach a value close to the optimum after about
40 generations. In contrast, the mean fitness rises over the course of the first
10 generations and then exhibits fluctuations due to the stochastic character of
the genetic algorithm: Parts of the population are replaced by randomly created
chromosomes from one generation to the next and randomize the mean fitness value.
In our simulations we used populations of size N = 50 − 100 and performed the
optimization over 50 − 100 generations. We always kept the best chromosomes
of a generation and replaced 80% − 90% of the population by newly generated
chromosomes. For the population transfer of Section 4.2 we used 16, and for the
superposition state engineering of Section 4.3 26 genes per chromosome. The gene
boundaries were chosen as −1.4ωR ≤ aiν , biν ≤ 1.4ωR.

As mentioned in Section 4.1, we use an adaptive operator technique, where the
operators themselves are dynamically assigned a fitness based on their performance.
Choosing a particular mating operator via a roulette–wheel method [102] then as-
sures that good operators are employed more often in the mating process, just
the same way as good parent chromosomes reproduce more often. If any operator
produces an offspring that is better than the best chromosome of the previous gen-
eration, we reward this operator by giving it a credit proportional to the increase
in fitness it caused. Also, we pass half of this given credit back to the operator that
created the parent chromosome involved in producing the better offspring. Thus
operators that perform well and also their direct ancestors can accumulate credit
over the run of the simulation. Passing credit back to previous operators enables
us to reward pairs of operators that work well together at a certain stage of the
optimization process. In our simulations we adjust the fitness of all operators every

101
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Figure B.1: A typical run of the genetic algorithm for the superposition state engi-
neering: (a) Maximum fitness (solid) and mean fitness (dashed) of the population
as a function of the generation. We started the optimization with pre–optimized
chromosomes from previous simulations, which explains the high initial maximum
fitness of over 60%. (b) Operator fitness as a function of the generation, starting
with equal fitness for all operators. The minimum operator fitness is set equal to
0.1 for all operators.
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five generations based on the credit they accumulated during that period: The new
operator fitness is then a weighted sum of the old fitness (the basis portion, in our
case 85%) and the accumulated credit (the adaptive portion, in our case 15%). The
more credit an operator accumulates the higher will be its new fitness and the more
likely it is that it will be chosen in future mating processes. Since the total operator
fitness is set constant, we introduce a lower bound of 0.1 to the operator fitness,
thereby preventing operators that do not perform well over several generations from
being practically expelled from the pool of operators.

Fig. B.1(b) shows a typical evolution of the fitness of the individual mating
operators in the superposition state engineering problem from Section 4.3. The
creep and one-point-crossover operators perform well for the first 30 generations.
For subsequent generations the two-point-crossover and the average-crossover op-
erators take over and help increasing the maximum fitness, which approaches its
optimum value (unity in the present example). There is no further improvement in
the remaining 50 generations, the fitness of the various operators staying constant.
The random mutation operators never perform well in the problem at hand. Con-
sequently their fitness is quickly reduced to the lower bound. The creep operators,
which are basically controlled mutations, perform much better and could replace
the pure mutation operators.
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Appendix C

Method of Multiple Scales

In this Appendix we derive soliton solutions of the nonlinear coupled mode equations
in Eq. (5.10) by using a multiple scales approach.

C.1 Properties of the linear eigensolutions

Before solving the full nonlinear problem, we recall useful properties of the solutions
of the linear system in Eq. (5.31). The eigenvectors of this system A± in Eq. (5.34)
are orthonormal,

A+(k) ·A+(k) = A−(k) ·A−(k) = 1,

A+(k) ·A−(k) = A−(k) ·A+(k) = 0. (C.1)

Furthermore, we evaluate the following expressions using the Pauli matrix σ3 as
defined in Section 5.2.1,

A±(k) · σ3 ·A±(k) =
vRk

ω±
, (C.2)

A±(k) · σ3 ·A∓(k) = ∓ V0

2h̄ω±
, (C.3)

and the derivatives of the linear dispersion curve

dω±

dk
=

v2
Rk

ω±
, (C.4)

d2ω±

dk2
=

v2
RV

2
0

4h̄2 (ω±)
3 . (C.5)

C.2 Nonlinear envelope equation

The eigenvectors A± with eigenenergies ω± solve the linear system in Eq. (5.31)
but not the full nonlinear system in Eq. (5.10). We now seek for solutions where
the linear solutions are modified by the nonlinearity that is assumed to be weak.
The effect of the nonlinearity will be to modulate the linear solutions on different
temporal and spatial scales. In order to separate these scales, we use the method of
multiple scales, following Ref. [117]. We start by introducing a new set of temporal
and spatial variables

tn = µnt, zn = µnz, (C.6)
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where µ � 1 and n = 0, 1, . . . an integer. Both the tn and zn are treated as
independent variables. The temporal and spatial derivatives are then written as

∂

∂t
=

∑

n=0

µn ∂

∂tn
, (C.7)

∂

∂z
=

∑

n=0

µn ∂

∂zn
. (C.8)

(C.9)

In order to solve the full nonlinear equation we seek for solutions of the form

ψ = µχ1(z1, z2, . . . , t1, t2, . . .)A
−e−i(ω−t0−k̃z0)

+ µ2χ2(z1, z2, . . . , t1, t2, . . .)A
+e−i(ω−t0−k̃z0)

+ µ3χ3(z1, z2, . . . , t1, t2, . . .)A
+e−i(ω−t0−k̃z0)

+ O(µ4), (C.10)

where A± and ω− are understood to be evaluated at k = k̃. Equation (C.10)
constructs a wave packet with a central wave vector k̃ that consists of a superpo-
sition of the linear solutions. By introducing the envelope functions χi we allow
the nonlinearity to modulate these linear solutions on spatial and temporal scales.
Since we consider the nonlinearity to be weak, these envelopes are expected to be
slowly varying. The term of order µ1 gives the major contribution since µ � 1,
so ψ is mainly located in the lower energy band of the dispersion curve with small
admixtures of the upper band.

We now substitute Eq. (C.10) into the nonlinear system in Eq. (5.10) and
identify terms with corresponding powers of µ.

Order µ

For order µ1 we obtain the equation

(

i
∂

∂t0
+ ivRσ3

∂

∂z0
− σ1

V0

2h̄

)

A−e−i(ω−t0−k̃z0) = 0, (C.11)

which is identically satisfied.

Order µ
2

For order µ2 we find

(

i
∂

∂t1
+ ivRσ3

∂

∂z1

)

χ1A
− +

(

ω− − ω+
)

χ2A
+ = 0. (C.12)

Projecting this equation to the left onto A− and using Eqs. (C.1) and (C.2) we
obtain

(

∂

∂t1
+
v2

Rk̃

ω−

∂

∂z1

)

χ1 = 0. (C.13)

This can be rewritten with help of Eq. (C.4) in terms of the slope of the dispersion
curve at k = k̃ as

(

∂

∂t1
+

dω−

dk

∣

∣

∣

∣

k̃

∂

∂z1

)

χ1 = 0. (C.14)
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Solving this equation leaves us with

χ1 = χ1

(

z1 −
dω−

dk

∣

∣

∣

∣

k̃

t1, z1, . . . , t2, . . .

)

. (C.15)

To lowest order in µ we obtain an envelope χ1 of arbitrary shape moving at the
group velocity determined by the lower energy band. Projecting Eq. (C.12) to the
left onto A+ and using Eqs. (C.1) and (C.3) leaves us with a relation between the
envelope functions χ1 and χ2,

χ2 = −i
vRV0

4h̄ (ω−)
2

∂

∂z1
χ1. (C.16)

Order µ
3

Identifying terms of order µ3 we are left with

0 =

(

i
∂

∂t2
+ ivRσ3

∂

∂z2

)

χ1A
−

+

(

i
∂

∂t1
+ ivRσ3

∂

∂z1

)

χ2A
+

+
(

ω− − ω+
)

χ3A
+

− NU0

2h̄

[

3 − σ3
1

vR

dω−

dk

∣

∣

∣

∣

k̃

]

|χ1|2 χ1A
−. (C.17)

Note that this is the lowest order for nonlinear terms to appear. Projecting this
equation to the left onto A− and using Eqs. (C.1), (C.2) and (C.3), we get

[

i
∂

∂t2
+ i

dω−

dk

∣

∣

∣

∣

k̃

∂

∂z2
− g

h̄
|χ1|2

]

χ1 + i
vRV0

2h̄ω−

∂

∂z1
χ2 = 0, (C.18)

where the nonlinear interaction strength g is defined as

g =
NU0

2

[

3 − k

ω−

dω−

dk

∣

∣

∣

∣

k̃

]

. (C.19)

Again, we rewrite Eq. (C.18) by using the derivatives of the linear dispersion curve,
Eqs. (C.4) and (C.5), and the result from Eq. (C.16) to end up with

[

ih̄
∂

∂t2
+ ih̄

dω−

dk

∣

∣

∣

∣

k̃

∂

∂z2
+
h̄

2

d2ω−

dk2

∣

∣

∣

∣

k̃

∂2

∂z2
1

− g |χ1|2
]

χ1 = 0. (C.20)

We now let µ → 1 in the usual spirit of perturbation theory and end up with an
equation of motion for the envelope function χ(z, t)

[

ih̄
∂

∂t
+ ih̄v

∂

∂z
+

h̄2

2M∗

∂2

∂z2
− g |χ1(z, t)|2

]

χ1(z, t) = 0. (C.21)

Here, we associate the derivatives with the group velocity v and the effective mass
M∗ according to the definitions in Eqs. (2.67) and (2.69),

v =
dω−

dk

∣

∣

∣

∣

k̃

and
1

M∗
=

1

h̄

d2ω−

dk2

∣

∣

∣

∣

k̃

. (C.22)
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C.3 General soliton solution

Equation (C.21) is identical to Eq. (5.1) except the additional term containing the
group velocity. As we know from Section 5.1.2, this equation has general bright
soliton solutions with the soliton wave function χ(z, t) and the phase φ(z, t) given
by

χ1(z, t) =

√

−M
∗v2

1

g
eiφ(z,t)sech

[

M∗v1
h̄

(z − vt− v2t)

]

, (C.23)

φ(z, t) =
M∗

h̄

[

v2(z − vt) − v2
2t

2
+
v2
1t

2

]

,

with the velocity parameters v1 and v2. The parameter v1 determines the soliton
amplitude and width, the combination of v2 and v determines the soliton velocity.
In order to satisfy the slowly varying envelope assumption we rewrite the velocity
parameters as v1 = αvR and v2 = βvR with the dimensionless parameters α, β �
1. The bright soliton solution in Eqs. (C.23) only exists if either the nonlinear
coefficient or the effective mass is negative, i.e. gM∗ < 0.

C.4 Stationary soliton solution

For illustration purposes we now focus on the stationary soliton solution, which can
be achieved with v = v2 = 0 in Eq. (C.23). At time t = 0 we then obtain

χ1(z, t = 0) = αvR

√

−M
∗

g
sech

(

αvRM
∗

h̄
z

)

. (C.24)

The choice v = 0 determines k̃, with the help of Eqs. (C.4) and (C.22) we find

v =
dω−

dk

∣

∣

∣

∣

k̃

= 0 ⇒ k̃ = 0. (C.25)

The central wave vector k̃ of the stationary soliton wave packet is thus located at
the center of the Brillouin zone. We can now evaluate the nonlinear coefficient g
and the effective mass M∗ at k̃ = 0 according to Eqs. (C.19) and (C.22),

g =
3NU0

2
and M∗ = − V0

2v2
R

. (C.26)

Since we consider repulsive interatomic interactions, i.e. U0 > 0, we have gM∗ < 0
and the negative effective mass cancels the minus sign under the square root in Eq.
(C.24). Since a region of negative effective mass only exists in the lower branch
of the dispersion curve we chose the wave function in Eq. (C.10) to be mainly
consisting of this branch.

Evaluation of the eigenvector A− at k̃ = 0 yields

A− =
1√
2

(

1
−1

)

. (C.27)

This enables us to write the full stationary soliton solution ψ(z) according to Eq.
(C.10) as

ψ(z, t = 0) = χ1(z, t = 0)A−

= α

√

V0

6NU0
sech

(

V0α

2h̄vR
z

)(

1
−1

)

. (C.28)
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• Atomic Solitons in Optical Lattices,
S. Pötting, P. Meystre, and E. M. Wright.
In Nonlinear Photonic Crystals, edited by R. E. Slusher and B. J. Eggleton
(Springer-Verlag, Heidelberg, 2003).

• Input-output theory for fermions in an atom cavity,
C. P. Search, S. Pötting, W. Zhang, and P. Meystre,
Phys. Rev. A 66, 043616 (2002).

• Raman coupler for a trapped two-component quantum-degenerate Fermi gas,
S. Pötting, M. Cramer, W. Zhang, and P. Meystre,
Phys. Rev. A 65, 063620 (2002).

• Momentum-state engineering and control in Bose-Einstein condensates,
S. Pötting, M. Cramer, and P. Meystre,
Phys. Rev A 64, 063613 (2001).

• Coherent acceleration of Bose-Einstein condensates,
S. Pötting, M. Cramer, C. H. Schwalb, H. Pu, and P. Meystre,
Phys. Rev. A 64, 023604 (2001).

• Coherent transport of matter waves,
C. Henkel and S. Pötting,
Appl. Phys. B 72, 73 (2001).

• Quantum coherence and interaction-free measurements,
S. Pötting, E. S. Lee, W. Schmitt, I. Rumyantsev, B. Mohring, and P. Meystre,
Phys. Rev. A 62, 060101 (2000).

• Magneto-optical control of bright atomic solitons,
S. Pötting, O. Zobay, P. Meystre, and E. M. Wright,
J. Mod. Opt. 47, 2653 (2000).

• PbS quantum-dot-doped glasses for ultrashort-pulse generation,
K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F.
Borrelli,
Appl. Phys. Lett. 76, 10 (2000).

• Loss and heating of particles in small and noisy traps,
C. Henkel, S. Pötting, and M. Wilkens,
Appl. Phys. B 69, 379 (1999).
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• Creation of gap solitons in Bose-Einstein condensates,
O. Zobay, S. Pötting, P. Meystre, and E. M. Wright,
Phys. Rev. A 59, 643 (1999).
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[38] I. Bloch, T. W. Hänsch, and T. Esslinger, Nature 403, 166 (2000).



BIBLIOGRAPHY 113

[39] T. Esslinger, I. Bloch, M. Greiner, and T. W. Hänsch, Generating and Manip-
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415, 39 (2002).

[100] P. B. Blakie and R. J. Ballagh, J. Phys. B: At. Mol. Opt. Phys. 33, 3961
(2000).

[101] S. Pötting, M. Cramer, C. H. Schwalb, H. Pu, and P. Meystre, Phys. Rev. A
64, 023604 (2001).

[102] L. Ed. Davis, Handbook of Genetic Algorithms (Van Norstrand Reinhold, New
York, 1991).

[103] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engi-

neers (World Scientific, Singapore, 1999).



116 BIBLIOGRAPHY

[104] R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).

[105] T. C. Weinacht, J. Ahn, P. H. Bucksbaum, Nature 397, 233 (1999).

[106] H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824
(2000).

[107] T. Hornung, M. Motzkus, and R. de Vivie-Riedle, J. Chem. Phys. 115, 3105
(2001).

[108] J. W. Nicholson, F. G. Omenetto, D. J. Funk, and A. J. Taylor, Opt. Lett.
24, 490 (1999).

[109] J. E. Simsarian, J. Denschlag, M. Edwards, C. W. Clark, L. Deng, E. W.
Hagley, K. Helmerson, S. L. Rolston, and W. D. Phillips, Phys. Rev. Lett.
85, 2040 (2000).

[110] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S. L.
Rolston, and W. D. Phillips, Phys. Rev. Lett. 82, 871 (1999).

[111] B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, Phys. Rev.
A 63, 063412 (2001).

[112] A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin, Proc. IEEE 61, 1443
(1973).

[113] G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).

[114] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 78, 985
(1997).

[115] W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).

[116] D. N. Christodoulides and R. I. Joseph, Phys. Rev. Lett. 62, 1746 (1989).

[117] C. M. de Sterke and J. E. Sipe, Gap Solitons. In Progress in Optics, Vol.
XXXIII, edited by E. Wolf (Elsevier, Amsterdam, 1994).

[118] B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe,
Phys. Rev. Lett. 76, 1627 (1996).

[119] S. Pötting, Gap Solitons in Atomic Bose-Einstein Condensates, Master thesis,
University of Arizona (1998).

[120] O. Zobay, S. Pötting, P. Meystre, and E. M. Wright, Phys. Rev. A 59, 643
(1999).

[121] W. P. Reinhardt and C. W. Clark, J. Phys. B: At. Mol. Opt. Phys. 30, L785
(1997).

[122] R. Dum, J. I. Cirac, M. Lewenstein, and P. Zoller, Phys. Rev. Lett. 80, 2972
(1998).

[123] P. O. Fedichev, A. E. Muryshev, and G. V. Shlyapnikov, Phys. Rev. A 60,
3220 (1999).

[124] T. Busch and J. R. Anglin, Phys. Rev. Lett. 84, 2298 (2000).

[125] J. L. Roberts, N. R. Claussen, J. P. Burke, Jr., C. H. Greene, E. A. Cornell,
and C. E. Wieman, Phys. Rev. Lett. 81, 5109 (1998).



BIBLIOGRAPHY 117

[126] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn,
and W. Ketterle, Nature 392, 151 (1998).

[127] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman,
Phys. Rev. Lett. 85, 1795 (2000).

[128] Y. S. Kivshar and T. J. Alexander, Trapped Bose–Einstein Condensates:

Role of Dimensionality. In Proceedings of the APCTP-Nankai Symposium on

Yang-Baxter Systems, Nonlinear Models and Their Applications, edited by
Q-H. Park et al. (World Scientific, Singapore, 1999).

[129] G. Lenz, P. Meystre, E. M. Wright, Phys. Rev. Lett. 71, 3271 (1993).

[130] G. Lenz, P. Meystre, E. M. Wright, Phys. Rev. A 50, 1681 (1994).

[131] M. J. Steel and W. Zhang, Bloch function description of a Bose–Einstein

condensate in a finite optical lattice, eprint cond-mat/9810284 (1998).

[132] S. Pötting, P. Meystre, and E. M. Wright, Atomic Solitons in Optical Lattices.
In Nonlinear Photonic Crystals, edited by R. E. Slusher and B. J. Eggleton
(Springer-Verlag, Heidelberg, 2003).

[133] S. Pötting, O. Zobay, P. Meystre, and E. M. Wright, J. Mod. Opt. 47, 2653
(2000).

[134] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001).

[135] I. Carusotto, D. Embriaco, and G. C. La Rocca, Phys. Rev. A 65, 053611
(2002).

[136] R. G. Scott, A. M. Martin, T. M. Fromhold, S. Bujkiewicz, F. W. Sheard,
and M. Leadbeater, Phys. Rev. Lett. 90, 110404 (2003).

[137] A. B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989).

[138] D. J. Kaup and A. C. Newell, Lett. Nuovo Cim. 20, 325 (1977).

[139] Optical Solitons, edited by J. R. Taylor (Cambridge University Press, Cam-
bridge, 1992).

[140] K. M. Hilligsøe, M. K. Oberthaler, and K.-P. Marzlin, Phys. Rev. A 66,
063605 (2002).

[141] B. DeMarco and D. S. Jin, Science 285, 1703 (1999).

[142] B. DeMarco, S. B. Papp, and D. S. Jin, Phys. Rev. Lett. 86, 5409 (2001).

[143] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and
R. G. Hulet, Science 291, 2570 (2001).

[144] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles,
and C. Salomon, Phys. Rev. Lett. 87, 080403 (2001).

[145] F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M.-
O. Mewes, and C. Salomon, Phys. Rev. A 64, 011402(R) (2001).

[146] M. J. Holland, B. DeMarco, and D. S. Jin, Phys. Rev. A 61, 053610 (2000).

[147] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92, 040403 (2004).

[148] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas,
Science 298, 2179 (2002).



118 BIBLIOGRAPHY

[149] Z. Hadzibabic, S. Gupta, C. A. Stan, C. H. Schunck, M. W. Zwierlein,
K. Dieckmann, and W. Ketterle, Phys. Rev. Lett. 91, 160401 (2003).

[150] K. E. Strecker, G. B. Partridge, and R. G. Hulet, Phys. Rev. Lett 91, 080406
(2003).

[151] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev. Lett. 90,
053201 (2003).

[152] C. A. Regal and D. S. Jin, Phys. Rev. Lett. 90, 230404 (2003).

[153] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

[154] H. T. C. Stoof, M. Houbiers, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett
76, 10 (1996).

[155] M. Houbiers, R. Ferwerda, H. T. C. Stoof, W. I. McAlexander, C. A. Sackett,
and R. G. Hulet, Phys. Rev. A 56, 4864 (1997).

[156] G. Bruun, Y. Castin, R. Dum, and K. Burnett, Eur. Phys. J. D 7, 433 (1999).

[157] L. You and M. Marinescu, Phys. Rev. A 60, 2324 (1999).

[158] M. A. Baranov, JETP Lett. 64, 301 (1996).

[159] E. Timmermans, K. Furuya, P. W. Milonni, and A. K. Kerman, Phys. Lett.
A 285, 228 (2001).

[160] M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R. Walser, Phys.
Rev. Lett. 87, 120406 (2001).

[161] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92, 083201 (2004).

[162] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature 424, 47 (2003).

[163] M. Greiner, C. A. Regal, and D. S. Jin, Nature 426, 537 (2003).

[164] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin,
J. Hecker-Denschlag, and R. Grimm, Science 302, 2101 (2003).

[165] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta,
Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003).

[166] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman,
and W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004).

[167] F. W. Cummings, Phys. Rev. 140, A1051 (1965).

[168] A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems

(McGraw-Hill, San Francisco, 1971).

[169] S. M. Jensen, IEEE Journal of Quantum Electronics QE-18, 1580 (1982).

[170] K. J. Schernthanner, G. Lenz, and P. Meystre, Phys. Rev. A 51, 3121 (1995).

[171] S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619 (2002).

[172] Z. Murtha and H. Rabitz, Eur. Phys. J. D 14, 141 (2001).

[173] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations

(Wadsworth & Brooks, Belmont, 1989).

[174] H. Pu and N. P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).



BIBLIOGRAPHY 119

[175] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in C, second edition (Cambridge University Press, Cambridge, 1999).

[176] P. B. Blakie, Optical Manipulation of Bose-Einstein Condensates, PhD thesis,
University of Otago (2001).



120 BIBLIOGRAPHY



Curriculum vitae

Persönliche Angaben

Name Sierk Pötting
Geburtstag 19. Januar 1973
Geburtsort Salzkotten
Familienstand Ledig
Staatsangehörigkeit Deutsch

Ausbildung

1979 - 1983 Grundschule Josefschule, Paderborn
1983 - 1992 Gymnasium Schloss Neuhaus, Paderborn
Juni 1992 Abitur
1992 - 1993 Zivildienst (Rettungssanitäter, Freiwillige Feuerwehr Paderborn)
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