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Stufen

Wie jede Blüte welkt und jede Jugend
Dem Alter weicht, blüht jede Lebensstufe,
Blüht jede Weisheit auch und jede Tugend
Zu ihrer Zeit und darf nicht ewig dauern.
Es muß das Herz bei jedem Lebensrufe
Bereit zum Abschied sein und Neubeginne,
Um sich in Tapferkeit und ohne Trauern
In andre, neue Bindungen zu geben.
Und jedem Anfang wohnt ein Zauber inne,
Der uns beschützt und der uns hilft, zu leben.

Wir sollen heiter Raum um Raum durchschreiten,
An keinem wie an einer Heimat hängen,
Der Weltgeist will nicht fesseln uns und engen,
Er will uns Stuf’ um Stufe heben, weiten.
Kaum sind wir heimisch einem Lebenskreise
Und traulich eingewohnt, so droht Erschlaffen,
Nur wer bereit zu Aufbruch ist und Reise,
Mag lähmender Gewöhnung sich entraffen.
Es wird vielleicht auch noch die Todesstunde
Uns neuen Räumen jung entgegensenden,
Des Lebens Ruf an uns wird niemals enden . . .
Wohlan denn, Herz, nimm Abschied und gesunde!

aus Hermann Hesse: Das Glasperlenspiel
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1. Abstract

On the role of cosmic rays in clusters of galaxies

We take a multi-faceted approach to study the relativistic cosmic ray (CR) proton population in galaxy clusters.
CR protons may be accelerated by structure formation shock waves, injected from radio galaxies into the intra-
cluster medium, or result from supernova driven galactic winds. This thesis addresses the following questions:
do CR protons exist in galaxy clusters? What is the dynamic and cosmological impact of CRs? How can we
observe them? How can we describe CRs and their interactions? The first major part of this thesis investigates the
question of the dynamic influence of CRs on the intra-cluster medium and searches for unbiased tracers of their
existence using multi-frequency observational results. To this end, I develop an analytical framework to describe
the hadronic interactions of CR protons with the ambient thermal plasma. In the second part, a description of CR
gas for cosmological applications is presented that is especially suited for hydrodynamical simulations. During the
course of this work, I focus on developing a formalism for instantaneously identifying and estimating the strength of
structure formation shocks during cosmological simulations to accelerate CRs through diffusive shock acceleration.

Since the energetically dominant CR population is trapped by cluster magnetic fields, it can only be observed
indirectly through non-thermal radiative processes. CR protons interact hadronically with the ambient plasma and
produce mainly neutral and charged pions that successively decay intoγ-rays, secondary electrons, and neutrinos. I
develop an analytic formalism which describes the induced radio synchrotron, inverse Compton, andγ-ray emission.
Comparing the expectedγ-ray flux to the upper limits obtained by theγ-ray observatory EGRET, I am able to
constrain the CR proton energy density in nearby cooling core clusters to< 20% relative to the thermal energy
density. In this context, I study the hypothesis that the diffuse radio synchrotron emission of galaxy clusters is
produced by hadronically originating relativistic electrons and I develop a non-parametric criterion to obtain the
minimum energy state for an observed radio synchrotron emission: the excellent agreement between the observed
and theoretically expected radio surface brightness profile of the Perseus mini-halo and the small amount of energy
density in CR protons needed to account for the observed radio emission makes this hadronic model an attractive
explanation of radio mini-halos found in cooling core clusters. To explain the giant radio halo of Coma within the
hadronic model of secondary electrons, the CR proton-to-thermal energy density profile has to increase radially up
to moderate CR energy densities. Cosmological simulations that self-consistently follow CR acceleration at shock
waves predict such an energy density profile: strong shock waves, that occur predominantly in low density regions,
are able to efficiently accelerate high-energetic CRs, whereas weak central flow shocks inject only a low-energetic
CR population which is strongly diminished by Coulomb interactions. This implies that the dynamic importance of
the shock-injected CR energy density is largest in the low-density halo infall regions, but is less important for the
weaker shocks occurring in central high-density cluster regions.

As an extension of this work, I propose a new method in order to elucidate the content of the radio plasma bubbles
located at cool cores of galaxy clusters. Using the Sunyaev-Zel’dovich (SZ) effect, theAtacama Large Millimeter
Array and theGreen Bank Telescopeshould be able to infer the dynamically dominant CR component of the plasma
bubbles in suitable galaxy clusters within short observation times. Future high-sensitivity multi-frequency SZ obser-
vations will be able to infer the energy spectrum of the dynamically dominant electron population. This knowledge
can yield indirect indications for an underlying composition of relativistic outflows of radio galaxies because plasma
bubbles represent the relic fluid of jets.

In the second major part of my thesis, I address the problem of constructing an accurate and self-consistent model
for the description of CRs that aims at studying the dynamic influence of CRs on structure formation and galaxy
evolution. This will not only allow the production of realistic non-thermal emission signatures of galaxies and
clusters of galaxies, but also allow in-vivo studies of dynamic effects driven by relativistic particles and the star
formation history. The developed model self-consistently traces relativistic protons originating from various kinds
of sources, such as structure formation shock waves and supernovae driven galactic winds, and also accounts for
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dissipative processes in the relativistic gas component. To this end, I develop a formalism for the identification and
accurate estimation of the strength of structure formation shocksduring cosmological smoothed particle hydrody-
namics simulations. Shocks not only play a decisive role for the thermalization of gas in virializing structures but
also for the acceleration of CRs through diffusive shock acceleration. The formalism is applicable both to ordinary
non-relativistic thermal gas and to plasmas composed of CRs and thermal gas. I apply these methods to studying
the properties of structure formation shocks in high-resolution hydrodynamic simulations of theΛCDM model and
find that most of the energy is dissipated in weak internal shocks which are predominantly central flow shocks or
merger shock waves traversing halo centers. Collapsed cosmological structures are surrounded by external shocks
with a much higher Mach number, but they play only a minor role in the energy balance of thermalization. I show
that after the epoch of cosmic reionization, the Mach number distribution is significantly modified by an efficient
suppression of strong external shock waves due to the associated increase of the sound speed of the diffuse gas.
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Kosmische Strahlung in Galaxienhaufen

Für die Untersuchung der relativistischen Protonenpopulation (engl.: cosmic rays, CRs) in Galaxienhaufen haben
wir einen vielschichtigen Ansatz gewählt. CR-Protonen können an Stoßwellen während der kosmischen Struk-
turentstehung beschleunigt werden, sie können von Radiogalaxien in das Gas des Galaxienhaufens injiziert werden
oder aus galaktischen Winden entstehen, die von Supernova-Explosionen angetrieben werden. Diese Doktorar-
beit hat sich mit folgenden Fragen befaßt: Existieren CR-Protonen in Galaxienhaufen? Welchen dynamischen und
kosmologischen Einfluß haben CRs? Wie können wir diese beobachten? Wie können wir CRs und ihre Wechsel-
wirkungen beschreiben? Der erste Teil dieser Arbeit untersucht, ob CRs einen dynamischen Einfluß auf das Gas in
Galaxienhaufens haben und sucht nach Indikatoren für die Existenz von CRs unter der Verwendung von Daten aus
Multifrequenz-Beobachtungen. Zu diesem Zweck entwickle ich einen analytischen Formalismus, um die hadroni-
sche Wechselwirkung von CR-Protonen mit dem umgebenden thermischen Gas zu beschreiben. Im zweiten Teil
stelle ich eine Beschreibung für CR-Gas in kosmologischen Anwendungen vor, das für hydrodynamische Simula-
tionen besonders geeignet ist. Im weiteren Verlauf dieser Arbeit konzentriere ich mich auf die Entwicklung eines
Formalismus, der die Stärke von Strukturentstehungs-Stoßwellen unmittelbar während kosmologischer Simulatio-
nen genau bestimmt, um die CRs mit diffusiver Stoßwellenbeschleunigung zu generieren.

Da die energetisch dominierende CR-Population durch Magnetfelder des Galaxienhaufens gebunden ist, kann sie
nur indirekt durch nicht-thermische Strahlungsprozesse nachgewiesen werden. CR-Protonen wechselwirken hadro-
nisch mit dem sie umgebenden Plasma und produzieren hauptsächlich neutrale und geladene Pionen, die sukzessive
in γ-Strahlung, sekundäre Elektronen und Neutrinos zerfallen. Ich entwickle einen analytischen Formalismus, der
die induzierte Radio-Synchrotronstrahlung, inverse Compton-Emission undγ-Strahlung beschreibt. Durch Ver-
gleich des erwartetenγ-Strahlenflusses mit den mit Hilfe des EGRET-Satelliten gewonnenen oberen Grenzen an
die emittierteγ-Strahlung ist es mir möglich, die Energiedichte der CR-Protonen in nahen Galaxienhaufen mit
kalten Zentren auf< 20% relativ zur thermischen Energiedichte zu beschränken. In diesem Zusammenhang unter-
suche ich die Hypothese, daß die diffuse Radio-Synchrotronstrahlung von Galaxienhaufen durch hadronisch gener-
ierte relativistische Elektronen produziert wurde. Dazu entwickle ich ein nicht-parametrisches Kriterium, um den
energetisch begünstigten Zustand für die beobachtete Radio-Synchrotronemission zu erhalten. Die ausgezeichnete
Übereinstimmung des beobachteten mit dem theoretisch erwarteten Radiohelligkeitsprofil des Radiominihalos im
Perseus-Haufen sowie die kleine Energiedichte der CR-Protonen, die zur Erklärung der beobachteten Radioemis-
sion benötigt wird, macht dieses hadronische Modell zu einer attraktiven Erklärung für Radiominihalos in Galaxien-
haufen mit kalten Zentren. Um den riesigen Radiohalo im Coma-Haufen mit dem hadronischen Modell zu erklären,
muß das Profil der CR-Protonen-Energiedichte relativ zur thermischen Energiedichte mit größeren Radien zu mo-
deraten CR-Energiedichten ansteigen. Kosmologische Simulationen, die der CR-Beschleunigung an Stoßwellen
selbstkonsistent folgen, sagen solch ein Energiedichteprofil voraus: Starke Stoßwellen, die sich vor allem in un-
terdichten Regionen bilden, können hochenergetische CRs sehr effizient beschleunigen. Im Gegensatz dazu in-
jizieren schwache Strömungsstoßwellen nur eine niederenergetische CR-Protonenpopulation, die durch Coulomb-
Wechselwirkungen stark verringert wird. Daraus kann man schließen, daß der dynamische Einfluß der CRs aus
Stoßwellen am größten in unterdichten Akkretionsregionen und kleiner in den schwächeren Strömungsstoßwellen
ist, die in den zentralen dichten Haufenregionen vorkommen.

Als Erweiterung dieser Arbeit schlage ich eine neue Methode vor, um den Inhalt von Radioplasmablasen in den
kalten Zentren von Galaxienhaufen aufzuklären. Unter Zuhilfenahme des Sunyaev-Zel’dovich (SZ)-Effektes sollten
dasAtacama Large Millimeter Arrayund dasGreen Bank Teleskopden dynamisch dominierenden CR-Bestandteil
in geeigneten Galaxienhaufen innerhalb kurzer Beobachtungszeiten identifizieren können. Zukünftige hochsen-
sitive Multifrequenz-SZ-Beobachtungen werden das Energiespektrum der dynamisch dominierenden Elektronen-
population messen können. Dieses Wissen kann indirekte Hinweise auf die zugrundeliegende Zusammensetzung
relativistischer Jets in Radiogalaxien liefern, da die Plasmablasen das Relikt der Jets darstellen.

Im zweiten großen Teil meiner Doktorarbeit beschäftige ich mich mit der Konstruktion eines genauen und selbst-
konsistenten Modells für die Beschreibung der CRs. Dieses zielt darauf ab, den dynamischen Einfluß der CRs
auf die Strukturentstehung und die Galaxienentwicklung zu studieren. Das Modell wird nicht nur realistische,
nicht-thermische Emissionssignaturen von Galaxien und Galaxienhaufen erzeugen können, sondern auchin vivo-
Studien dynamischer, von CRs verursachter Effekte in Verbindung mit Sternentstehung erlauben. Das entwick-
elte Modell folgt selbstkonsistent den relativistischen Protonen, die aus verschiedenen Quellen wie Stoßwellen der
Strukturentstehung und von Supernovae verursachten galaktischen Winden entstehen. Außerdem werden auch dis-
sipative Prozesse der CRs berücksichtigt. Zu diesem Zweck entwickle ich einen Formalismus für das Auffinden von
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Stoßwellen, der ihre Stärke im Verlauf kosmologischer SPH (engl.: smoothed particle hydrodynamics)-Simulatio-
nen genau abschätzen kann. Stoßwellen sind nicht nur für die Thermalisierung des Gases in virialisierten Struk-
turen verantwortlich, sondern auch für die Beschleunigung von CRs durch diffusive Stoßwellenbeschleunigung.
Man kann den Formalismus sowohl auf gewöhnliches, nicht-relativistisches thermisches Gas anwenden, als auch
auf Plasmen, die aus einer Mischung von CRs und thermischen Gases bestehen. Eine Anwendung dieser Methoden
auf Stoßwellen der kosmologischen Strukturentstehung in hochaufgelösten hydrodynamischen Simulationen im
ΛCDM-Modell zeigt, daß die meiste Energie in schwachen internen Stoßwellen dissipiert wird, die vor allem zen-
trale Strömungs-Stoßwellen oder von Haufenkollisionen induzierten Stoßwellen darstellen, welche die Halozentren
durchlaufen. Kollabierte kosmologische Strukturen sind von externen Stoßwellen mit viel größeren Machzahlen
umgeben, die aber in der Energiebilanz der Thermalisierung nur eine untergeordnete Rolle spielen. Ich zeige, daß
nach der Epoche der kosmischen Reionisation die Machzahlverteilung signifikant durch eine effiziente Unterdrück-
ung der starken externen Stoßwellen aufgrund des damit verbundenen Anwachsens der Schallgeschwindigkeit des
diffusen Gases modifiziert wird.
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2. Introduction and motivation

2.1. Motivation

An astonishingly complete picture of cosmology and structure formation emerged over the past decades to the
standard model ofconcordance cosmology: according to this model, the geometry of the observable Universe
is indistinguishable from a flat geometry on spatial hypersurfaces of constant time, implying that the total energy
density is similar to the critical density needed to close the Universe. The two dominant components of the Universe
seem to be a non-baryonic form of dark matter whose gravity is responsible for structure formation, and a yet
unknown form of dark energy, whose negative pressure is currently causing the Universe to accelerate. The mean
density of baryonic matter is approximately 15% of the total matter density, and baryonic matter is only visible
because the gravitational attraction of non-baryonic dark matter has drawn baryonic matter into deep potential wells
where a small fraction of it condensed to form stars and galaxies. The cosmological model is supported by many
observations ranging from big bang nucleosynthesis, cosmic microwave background radiation, measurements of
the Lyman-α forest and cluster abundances, to the accelerated expansion of the Universe as observed by highly
redshifted type Ia supernovae. This wealth of concurring observations is complemented by numerical simulations
of cosmological structure formation. They are an inevitable tool for studying the non-linear evolution of structure
formation, baryonic physics in clusters of galaxies, and galaxy evolution.

However, some inconsistencies with the standard model on galactic scales cast a doubt on this successful picture,
two of which shall be mentioned in the following: numerical simulations predict too much substructure in galactic
halos which is not observed, the so-calledsubstructure problem. While it is yet unclear what exactly causes these
low mass substructures (if they exist) to be devoid of stars, the solution might consist in finding a consistent physical
mechanism keeping those environments from forming stars. Secondly, it shall be pointed out that hydrodynamical
simulations still fail in successfully simulating the formation of galactic discs from first principles. The resulting
simulated disks and their angular momentum are too small, giving rise to theangular momentum problem. These
problems indicate that an essential ingredient in the physical description of cosmic structure formation processes
may have been neglected. This thesis investigates one prime candidate for such a missing link, namely cosmic rays.

Galactic non-equilibrium processes like shock waves and turbulence have generated magnetic fields andcosmic
rays(CRs) in the interstellar medium. Cosmic rays are relativistic particles, mainly protons andα-particles that play
a decisive role within our Galaxy: their pressure, along with that of the thermal gas, balances gravity, they trace past
energetic events such as supernovae, and they reveal the underlying structure of the baryonic matter distribution
through their interactions. Numerical simulations and semi-analytic descriptions of galaxy and cluster formation
have neglected these non-thermal components so far for simplicity despite their importance. Relativistic protons
are expected to impact on the star formation rate owing to their additional pressure and their significantly enlarged
cooling time compared to the thermal gas. This could lead to an efficient and halo mass dependent feedback
mechanism which naturally explains why low mass dark matter halos, seen numerously in numerical structure
formation simulations, apparently do not exhibit high star formation rates. Secondly, the energy density of the
relativistic proton component might prevent the thermal gas from vigorously cooling at the early stages of the
assembly of the galactic disk leading to suppression of angular momentum transfer from thermal gas to dark matter.
Thus, the CR population might resolve naturally the substructure and the angular momentum problems.

On larger scales, clusters of galaxies provide useful laboratories for investigating non-equilibrium processes in-
cluding turbulence and resulting non-thermal components. Apart from the underlying dark matter component, the
main constituent of the intra-cluster medium is a thermal gas with temperatureskT of a few keV that makes galaxy
clusters powerful X-ray emitters. This X-ray emission probes the morphology of the cluster’s baryonic component
and traces radiative processes such as radiative cooling, feedback and metal enrichment which provide important
indications as to the dynamical state of the cluster apart from carrying cosmological information. Evidence for
the existence of relativistic electrons and cluster-wide magnetic fields is provided by Mpc-sized diffuse structures
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of radio synchrotron emission (the so called ‘cluster radio halos’ and ‘cluster radio relics’) and Faraday rotation
measures of radio lobes. To date, it is unclear which processes are responsible for the acceleration of these relativis-
tic electrons which cause the huge extended radio emission of clusters, leading to the so-calledcluster radio halo
problem. Clusters of galaxies are also expected to contain significant populations of relativistic protons originating
from structure formation shocks, radio galaxies, and supernova driven galactic winds. The interplay of relativistic
protons, magnetic fields, and turbulence in connection with the central active galactic nucleus might provide an
efficient feedback mechanism that is able to prevent cluster cooling cores from catastrophic cooling which is not
observed in X-rays, thecluster cooling flow problem. The individual morphology and the statistics of non-thermal
emission mechanisms induced by relativistic particles are tracers of the cluster evolution which first need to be
understood before using clusters as precision cosmological probes.

These considerations motivate the study of galactic and cosmological non-equilibrium processes in order to gain
insight into fundamental problems of cluster evolution and galaxy formation. This thesis seeks to put forward
first steps towards an understanding of the cosmological role of CR protons and opens up a new direction towards
cosmological research of structure formation while incorporating ideas and theories from cosmic ray and plasma
physics. The quantitative investigation of non-thermal components requires new analytical and numerical tools
which are developed in the course of this thesis to provide the foundation for answering the presented cosmological
problems. There are other candidates than CRs that may solve the presented cosmological riddles, but there is still
no consensus on the relative importance of these mechanisms. Thus, the first major part of this thesis is dedicated to
the study of CR protons in clusters of galaxies and their hadronic interactions with the ambient thermal plasma using
multi-frequency observational results. Developing an analytical framework for these interactions and applying it to
clusters of galaxies, we investigate the question of the dynamical influence of CRs on the intra-cluster medium. The
answer is subtle because on the one hand CRs do not seem to dominate the energy density of the central cluster
regions while they may be responsible for the huge diffuse radio synchrotron emission as observed in numerous
clusters. On the other hand, there are theoretical reasons to believe that CRs can dominate the outskirts of clusters
since strong structure formation shock waves are efficient in accelerating CRs and infalling spiral galaxies into the
cluster’s potential experience stripping of their CR rich interstellar medium there. In the second part, a description
of CR gas for cosmological applications especially suited for hydrodynamical simulations is presented. In the
course, I focus on developing a formalism of instantaneously identifying and estimating the strength of structure
formation shocks during cosmological simulations to accelerate CRs through diffusive shock acceleration. Both the
analytical and the numerical studies provide arguments in favor of a hadronic origin of radio synchrotron emitting
CR electrons and suggest a solution to the cluster radio halo problem. This enables valuable insight in the dynamical
relevance of CRs on cluster scales while providing the opportunity of interesting future discoveries and solutions to
the presented galactic problems.

2.2. Structure

An introduction to fundamental cosmological concepts and the theory of cosmic structure formation as relevant for
this PhD thesis is presented in Chapter3. In this context, the formation and physics of clusters of galaxies is illus-
trated while relating these to multi-frequency observational signatures. An overview of the theoretical background
of galactic cosmic rays is presented in Chapter4. In the following, the key concepts of non-thermal emission
processes such as synchrotron radiation, inverse Compton emission, and pion decay inducedγ-ray emission are
introduced.

In Chapter5, I develop a theoretical framework for analytically modeling multi-frequency signatures resulting
from hadronic CR proton interactions with the ambient thermal plasma of the intra-cluster medium. These interac-
tions produce charged and neutral pions which successively decay intoγ-rays and relativistic electrons or positrons.
Self-consistent analytical formulae describing theγ-ray source function resulting from decaying neutral pions and
the stationary spectrum of hadronically originating secondary electrons are derived. The latter allow the calculation
of accompanying synchrotron and inverse Compton emission and yield thus complementary information on the
non-thermal energetic content of clusters.

The formalism of the previous chapter is then applied in Chapter6 to nearby clusters of galaxies using multi-
frequency observations. Using EGRET upper limits on theγ-ray emission of clusters, I constrain the CR proton
population in galaxy clusters and study the hypothesis that the diffuse radio synchrotron emission of galaxy clusters
is produced by hadronically originating relativistic electrons. This model can be tested with future sensitiveγ-ray
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observations of the accompanying neutral pion decays. The TeVγ-ray detection by the HEGRA collaboration of
the giant elliptical galaxy M 87 might be the first detection of hadronically originatingγ-rays from a galaxy cluster
since both, the expected radialγ-ray profile and the required amount of CR protons, support this scenario.

In Chapter7, I estimate magnetic field strengths and CR energy densities of radio emitting galaxy clusters by
minimizing the total non-thermal energy density contained in CR electrons, protons, and magnetic fields. Theclas-
sicalminimum energy estimate can be constructed independently of the origin of the radio synchrotron emitting CR
electrons yielding thus an absolute minimum of the non-thermal energy density. Provided the observed synchrotron
emission is generated by a CR electron population originating from hadronic CR proton interactions, I introduce
thehadronicminimum energy criterion which is a non-parametric approach yielding an absolute minimum energy
state and providing a solid foundation to scrutinize the hadronic model on the basis of radio synchrotron emission
alone.

TheChandraX-ray Observatory is finding a large number of cavities in the X-ray emitting intra-cluster medium
which often coincide with the lobes of the central radio galaxy. Therefore, it can be assumed that these cavities
are partly or completely inflated by CR gas of unknown composition (electron/proton or electron/positron gas). In
Chapter8, I propose high-resolution Sunyaev-Zel’dovich (SZ) observations to unveil the yet unknown dynamically
dominant component of the radio plasma bubbles. The thermal and relativistic SZ emission of different compositions
of these plasma bubbles are calculated while simultaneously allowing for the cluster’s kinetic SZ effect. Future high-
sensitivity multi-frequency SZ observations will be able to infer the energy spectrum of the dynamically dominant
electron population in order to measure its temperature or spectral characteristics. This knowledge can yield indirect
indications for an underlying radio jet model.

In Chapter9, an approximative framework for treating the dynamical and radiative effects of CRs for cosmological
applications such as numerical simulations or semi-analytical methods is developed. Particle number, momentum
and energy conservation principles are used to derive evolution equations for the basic CR variables due to adiabatic
and non-adiabatic processes. These are compression, rarefaction, CR injection via shocks of supernova remnants
and structure formation shock waves, in-situ re-acceleration of CRs, CR spatial diffusion, CR energy losses due to
Coulomb interactions, Bremsstrahlung, and hadronic interactions with the background gas, including the associated
γ-ray and radio emission due to subsequent pion decay.

The properties of cosmological structure formation shock waves in high-resolution hydrodynamic simulations of
aΛCDM universe are studied in Chapter10. I quantify their decisive role in the evolution of the thermalization
of the cosmic plasma as well as in accelerating relativistic CRs through diffusive shock acceleration. I develop
a formalism for instantaneously identifying and accurately estimating the strength of structure formation shocks
during cosmological smoothed particle hydrodynamics simulations for both, non-relativistic thermal gas and plasma
composed of CRs and thermal gas. Performing cosmological simulations, the influence of cosmic reionization on
the Mach number distribution as well as the spatial characteristics of the shock-injected CR energy is studied in
detail which allows conclusions on the dynamical relevance of CRs on cluster scales.

In Chapter11, I present the most important findings and conclusions while putting them into a cosmological
context and pointing out the future perspective.

7



Introduction and motivation

8



3. Cosmology and cosmic structure formation

Abstract

This chapter presents an introduction to the theory of cosmic structure formation as well as fundamental cosmological concepts
which are relevant for the scope of this PhD thesis. After introducing the family of Friedmann-Lemaître cosmological models
together with some basic definitions in Sect.3.1, the theory of the cosmological structure formation ranging from the linear into
the non-linear regimes is presented in Sect.3.2. Finally, in Sect.3.3 the interplay of different physical processes in clusters of
galaxies is highlighted while relating these to multi-frequency observational signatures.

3.1. Friedmann-Lemaître cosmological models

The cosmological background model is described by the highly-symmetric Robertson-Walker metric which is char-
acterized by two free parameters: hypersurfaces of constant cosmic time are homogeneous and isotropic three-
spaces which are either flat, hyperbolically or spherically curved, and change with time according to a cosmic scale
factor. The homogeneous dynamics of the Universe is governed by this cosmic scale factor which obeys Fried-
mann’s equations being derived from Einstein’s field equations assuming the symmetry of the metric.

3.1.1. Geometry of space-time

3.1.1.1. Cosmological principles

The standard cosmological model is based upon two fundamental postulates:

• When averaged over sufficiently large scales, there exists a mean motion of radiation and matter in the Uni-
verse. From a reference system comoving with that mean motion, all averaged observables are isotropic.

• The position of any observer following this mean motion is not preferred over others, i.e. they experience the
same history of the Universe and measure the same averaged observable properties (the so-called cosmologi-
cal Copernican principle).

The first postulate is supported by observations of galaxy populations in the observed Universe today, which
is perceived to be isotropic on the largest scales (� 10h−1Mpc ∼ scale of a galaxy cluster). Another strong
argument in favor of isotropy is the perfect rotational invariance of the cosmic microwave background (CMB)
temperature in the comoving frame. Observers at rest in a frame comoving with the expanding Universe are called
fundamental observers. The smoothness of the CMB,δT/T0 ∼ 10−5 on all angular scales measured, is an indication
of an isotropic and homogeneous distribution of matter and radiation at early times. Accepting the isotropy on
the spatial hyper-surface around a fundamental observer and applying the cosmological principle in space leads to
isotropy around any point on a spatial hyper-surface. Assuming further that the metric is an analytic function of the
coordinates immediately implies homogeneity.

3.1.1.2. Robertson-Walker metric

Taking the symmetry assumptions of isotropy and homogeneity motivated by observations, the metric can be written
in the form (for derivation seeMisner, Thorne & Wheeler(1973) or d’Inverno(1992))

ds2 = gµνx
µxν = c2dt2 − a(t)2

[
dw2 + f 2

K(w)
(
dθ2 + sin2 θdφ2

)]
, (3.1)
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which is called theRobertson-Walker metric. Here, Einstein’s sum convention was used andµ, ν ∈ {0, . . . ,3}. If one
considers space-time as being filled with a fluid, then the coordinates (w, θ, φ) are the coordinates of a comoving
fluid element wherew is the radial distance from the origin and (θ, φ) are the two angles characterizing a point on
the unit sphere around the origin. The coordinatet is the proper time of a clock comoving with such an element
with constantw, θ, φ. Specifically,

fK(w) =


1
√

K
sin(
√

Kw) (K > 0)

w (K = 0)
1
√
−K

sinh[
√
−Kw] (K < 0)

. (3.2)

Due to its high symmetry, the Robertson-Walker metric allows only two free parameters:K, which is related to the
curvature of three-dimensional spatial hyper-surfaces,R(3) = 6Ka−2(t). One distinguishes between three different
geometries of an open (K < 0), a flat (K = 0) and a closed (K > 0) Universe according to the sign of the curvature.
It is important to notice thatfK(w) and therefore|K|−1/2 both have the dimension of length. The other parametera(t)
describes the conformal mapping between hyper-surfaces separated by time-like vectors and is a function of cosmic
time t only. In the dynamical context, this parameter describes the evolution of the Universe and is therefore called
thecosmic scale factor a(t). Conventionally, it is normalized such that its value is unity at the present epocht0. If
the radiusr of the two-spheres is defined byr ≡ fK(w), then the metric takes the following form:

ds2 = c2dt2 − a(t)2

[
dr2

1− Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
. (3.3)

This metric shows that hyper-surfaces of constant cosmic timet form a maximally symmetric space, i.e. a space with
constant curvature. However the curvature of the overall space-time can change with time. The time dependence
of the cosmic scale factor and the dependence ofK on the matter content of the Universe uniquely determine
space-time.

3.1.1.3. Cosmological redshift

Owing to the expansion of the Universe, photons are redshifted during their propagation from the source to the
observer. Consider a comoving source emitting light with a wavelengthλs at ts which reaches the observer with
wavelengthλo at to. Photons travel on radial null geodesics of zero proper time, ds2 = c2dτ2 = c2dt2−a(t)2dw2 = 0.
Because the comoving coordinate distancew from the source to the observer is constant and time independent by
definition, it follows

w =

∫ s

o
dw =

∫ to

ts

cdt
a(t)
= const. →

δto
δts
=

a(to)
a(ts)
. (3.4)

The redshift is defined as the relative change in wavelength 1+ z = λo/λs. Relating the inverse of the emitted and
observed time intervals to the frequencies of the light,δts = ν−1

s andδto = ν−1
o yields the important relation

1+ z=
a(to)
a(ts)

≡
1

a(ts)
for a(to) = 1. (3.5)

3.1.2. Homogeneous dynamics of the Universe

3.1.2.1. Einstein’s equations and Friedmann world models

According to General Relativity, space-time is a four-dimensional manifold, whose metric tensorgµν is a dynamical
field. The dynamics of this field is governed by Einstein’s field equations (1915)

Gµν ≡ Rµν −
R
2
gµν =

8πG
c4

Tµν + Λgµν , (3.6)

where both the energy-momentum tensorTµν of matter and radiation and the cosmological constantΛ act as sources
of gravity which itself couples to the right-hand side of the equation. These considerations show the inherent non-
linearity of the field equations. Here,Rµν = Rαµαν denotes the Ricci tensor andR = Rµνgµν the Ricci scalar.1

1The sign conventions for the formulae of General Relativity are chosen in agreement with the textbook ofLandau & Lifshitz(1975) implying
the particular choice of signature (+ − − −), where the zeroth component refers to the time. The sign convention for the Riemann tensor is
Rαµβν ≡ Γαµν,β − Γ

α
µβ,ν + Γ

ρ
µνΓ
α
ρβ − Γ

ρ
µβΓ
α
ρν.
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3.1.2 Homogeneous dynamics of the Universe

Friedmann’s solution of an expanding Universe solves Einstein’s equations (3.6) assuming the energy-momentum
tensor of a perfect fluid, which is completely determined by the energy densityρ, the pressurep and the four-velocity
uµ of the fluid,

Tµν =
(
ρ +

p
c2

)
uµuν − pgµν. (3.7)

With this energy-momentum tensor of Eqn. (3.7) and the metric of Eqn. (3.1), the general set of Einstein’s field
equations (3.6) is reduced to two independent ordinary differential equations for the three unknown functions of
time,a(t), ρ(t) andp(t): ( ȧ

a

)2

=
8πG

3
ρ −

Kc2

a2
+
Λc2

3
and

ä
a
= −

4
3
πG

(
ρ +

3p
c2

)
+
Λc2

3
, (3.8)

where the dot denotes the derivative with respect to the coordinate timet. The two equations (3.8) can be combined
to yield theadiabatic equation,

d
dt

[
a3(t)ρ(t)c2

]
+ p(t)

d
dt

[
a3(t)

]
= 0. (3.9)

This can also be independently obtained by virtue of the conservation equations of Einstein’s field equations,
Tµν;ν = 0, which itself is a necessary requirement for the contracted Bianchi identitiesGµν;ν = 0 to hold identi-
cally. The semicolon denotes the covariant derivative. The first term of the adiabatic equation is proportional
to the change of energy contained in a fixed comoving volume, which has the meaning of an “internal” energy,
whereas the second term is proportional to the change of the proper volume. So Eqn. (3.9) states the first law of
thermodynamics in a cosmological context and conserves the entropy per comoving volume in thermal equilibrium,
S = (ρc2 + p)V/T = const. The first of Friedmann’s equations (3.8) defines theHubble function H(t) which is a
measure for the expansion rate of the Universe2,

H(t) ≡
d
dt

ln(a) =
ȧ
a
→ H2(t) = H2

0

[
Ωr

a4(t)
+
Ωm

a3(t)
−
Ωc

a2(t)
+ ΩΛ

]
. (3.10)

The value of the Hubble function at the present epoch is theHubble constant H(t0) ≡ H0, whose uncertainty is
commonly expressed asH0 = 100hkm s−1 Mpc−1. Measurements of the CMB anisotropies (Spergel et al.2003)
and from Cepheid variable stars in distant galaxies (Freedman et al.2001) converge on a value ofh = 0.71± 0.04.
Thecritical densityof the Universe is given by

ρcr ≡
3H2

0

8πG
' 1.9 · 10−29 h2 g cm−3. (3.11)

If the sum of all cosmological fluid densities equalsρcr, spatial hypersurfaces are flat and the curvatureK vanishes.
The energy density of cosmological fluids (radiation 3p/c2, matterρ, curvatureK, and the cosmological constant
Λ) can be expressed in units of the critical density yielding

Ωr =
3p
ρcrc2

, Ωm =
ρ

ρcr
, Ωc =

Kc2

H2
0

, and ΩΛ =
Λc2

3H2
0

. (3.12)

Taking the Hubble function of Eqn. (3.10) at the present time where the scale factor is normalized to unity and
recalling the previous definitions leads to an expression for the curvature

Ωc = Ωm + Ωr + ΩΛ − 1 ≡ Ωtot − 1 , (3.13)

which defines the total densityΩtot.

3.1.2.2. Different Epochs of the Universe

The under-determined set of Friedmann’s equations (3.8) is completed by the equation of state,p = p(ρ,S). The
equation of state of all cosmologically relevant fluids (denoted by f) can be parameterized byp = ωfρc2, whereωf

2The scaling of the density parametersΩr andΩm with the scale factor will be derived in Sect.3.1.2.2.
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Cosmology and cosmic structure formation

is assumed to be independent of time and temperature in the simplest cases. Inserting this expression into Eqn. (3.9)
yields the following solution

ρf (t) = ρf ,0 a−3(1+ωf ). (3.14)

In the course of its evolution, the Universe passed three epochs, in which its dynamics was mainly determined by
one of the components, radiation, matter and vacuum energy, respectively.

• Theradiation dominatedera is characterized byωr =
1
3, which is valid for a non-degenerate ultra-relativistic

gas in thermal equilibrium and leads toρr ∝ a−4. In addition to a volume factor ofa3 for the dilution effect as
the Universe expands, there is an additional factor ofa for the redshift of photon momentum.

• Thematter dominatedera is described by a pressure-less fluid,ωm = 0, which is a good approximation for a
non-relativistic gas or fluid with the propertyp� ρc2. Thus, the density evolution readsρm ∝ a−3. The matter
density gets diluted at the same rate as the proper volume increases, which is the conservation law of the total
amount of energy in the comoving frame. Since the slope of the radiation energy densityρr as a function of
the scale factor is steeper than that of the matter densityρm, it follows that the early Universe was radiation
dominated. After a transition period, the so-calledmatter-radiation equalityat aeq with equal densities of
the two fluids, the matter dominated regime took over. The energy density of ordinary and relativistic matter
were equal when the scale factora(t) was

aeq =

(
ρr

ρm

)
today

' 3.2× 10−5Ω−1
m h−2 → zeq ' 4200, (3.15)

using current most favored density values as given below.

The period ofrecombinationoccurred during the matter dominated era and represents the epoch when the
Universe became transparent for photons. Before the time of recombination, the Universe was completely
ionized. In this state of hot primeval plasma, the photons where tightly coupled to the baryons by Compton
interactions between photons and electrons, and Coulomb interactions between electrons and protons. Be-
cause the mean free path of the photons was much shorter than the horizon scalecH(a)−1, the photons were
in thermal equilibrium at this time. During the evolution of the Universe, its temperature decreased due to
cosmic expansion up to some point where thermal energy was no longer high enough to keep the proton-
electron plasma ionized. At this time, protons and electrons combined to form neutral hydrogen atoms and
the Universe became transparent for electromagnetic radiation, i.e. the photons decoupled from matter. These
photons reaching fundamental observers appear to originate from a spherical surface called thesurface of last
scatteringwith its radius being the distance a photon has traveled since the time of decoupling atzrec = 1089.

• Finally, the possible era of thedomination of a cosmological constantis described by a fluid with nega-
tive pressure,ωΛ = −1. This can be obtained from the definition of the energy-momentum tensor of the
cosmological constantΛ, which is treated in this context as a perfect fluid component of the Universe,
8πGc−4Tµν

Λ
≡ Λgµν. After taking the trace of this equation and using the definitions in Eqn. (3.12), the

desired equation of state follows. This gives rise to a constant energy density,ρΛ ∝ const. The transition from
the matter dominated epoch into theΛ-dominated epoch occurred at

aeq,Λ =
3

√
ρm

ρΛ
' 0.7 → zeq,Λ ' 0.4 , (3.16)

using density values forρm andρΛ at the present epoch.

The cosmological constant represents a cosmological fluid which is constant in space and time, the physical origin
of which can not be successfully explained. Generalizing this behavior while allowing for variations in space
and time, a new field referred to as quintessence with the densityΩQ has been invented (Wetterich1988, Ratra
& Peebles1988, Wetterich1995). To date, the most sensitive measurements of the density parameters have been
carried out by the WMAP satellite (Spergel et al.2003). They obtained the following values for the matter density
Ωm = 0.27± 0.04, baryonic densityΩb = 0.044± 0.004, curvatureΩc = 0.02± 0.02, and the cosmological constant
ΩΛ = 0.73± 0.04. Previous considerations showed that the radiation densityΩr ' 3.2 × 10−5h−2 is dynamically
negligible at the present epoch.
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3.1.2 Homogeneous dynamics of the Universe

3.1.2.3. Distances in cosmology

In an arbitrary curved space-time, such as that underlying General Relativity, the term “distance” no longer has a
unique meaning. Due to the high symmetry of Euclidean space, “distance” combines different properties which
are no longer equivalent in General Relativity, so that each desired property needs its own distance definition in
curved space-time. For the purpose of this thesis, four different distance scales are important, the proper distance,
the comoving distance, the angular diameter distance, and the luminosity distance. Distances between different
time-like geodesic lines are measured by light signals, which are emitted at timets from the source and observed at
time to. Assuming the scale factora(t) to be a monotonic function, which is at least true piecewise, the coordinate
time t can be related in a unique way to the cosmic scale factora, which occurs in the Friedmann equation.

Proper distance The proper distance Dprop(zo, zs) is the elapsed coordinate time a light signal needs to propa-
gate from the source atzs = z(ts) to the observer atzo = z(to) and is defined by dDprop ≡ −cdt = −cdaȧ−1 =

−cda (aH)−1. The last step uses the definition of the Hubble parameter in Eqn. (3.10) and the minus sign arises
because of the choice of the coordinate origin at the observer and the requirement of an increasing distance the
further back one goes in time. This yields

Dprop(zo, zs) =
c

H0

∫ a(zo)

a(zs)

da√
Ωma−1 + (1−Ωm −ΩΛ) + ΩΛa2

. (3.17)

Comoving distance The comoving distance Dcom(zo, zs) is the distance on the spatial hyper-surfacet = t0 be-
tween the world-lines of a source and an observer locked into the Hubble flow. In other words it is the radial distance
on this hyper-surface with the scale factor, i.e. the cosmic expansion, divided out. Its definition dDcom ≡ dw can
be rewritten using the fact that photons travel on null-geodesics yielding dDcom = −c a−1 dt = −cda(aȧ)−1 =

−cda(a2H)−1. Hence,

Dcom(zo, zs) =
c

H0

∫ a(zo)

a(zs)

da√
Ωma+ (1−Ωm −ΩΛ)a2 + ΩΛa4

= w(zo, zs) . (3.18)

Angular diameter distance Theangular diameter distance Dang(zo, zs) is defined such that the relation in Eu-
clidean space between the physical size of the cross-sectionδA of an object and the solid angleδΩ that it subtends
also holds in curved space,δΩD2

ang= δA. Using the expression for the physical surface area of a 2-sphere centered
at the observer

A2 =

∫
Ω

dΩ
√
−g(3) = 4πa(zs)

2 f 2
K [w(zo, zs)] and

δΩ

4π
=

δA

4πa(zs)2 f 2
K [w(zo, zs)]

, (3.19)

one obtains the formula for the angular diameter distance

Dang(zo, zs) ≡
(
δA
δΩ

)1/2

= a(zs) fK [w(zo, zs)] = a(zs) fK [Dcom(zo, zs)]. (3.20)

Luminosity distance Finally, theluminosity distance Dlum(zo, zs) relates the luminosity of a source atzs to the
flux received by an observer atzo,

Dlum(zo, zs) ≡

[
a(zo)
a(zs)

]2

Dang(zo, zs) =
a(zo)2

a(zs)
fK [Dcom(zo, zs)]. (3.21)

The luminosity distance is proportional to the angular diameter distance which relates the physical size of the source
to its apparent angular size on the observer’s sky. The energy flux is furthermore diminished because the photons
are redshifted bya(zo)a(zs)−1, and their arrival times are delayed by another factor ofa(zo)a(zs)−1 yielding the final
formula.

The integral representation of both the proper and comoving distances leads to the nice property of their being
additive functions, i.e. two adjacent distances can be computed using the starting point of the first one and the ending
point of the second one,Dcom(z1, z2)+Dcom(z2, z3) = Dcom(z1, z3). The angular diameter distance and the luminosity
distance do not have the additive property in general.

13



Cosmology and cosmic structure formation

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

PSfrag replacements

redshift zredshift z

(H
0
/
c)

D
(0
,
z)

(H
0
/
c)

D
(0
,
z)

Ωm = 1, ΩΛ = 0 Ωm = 0.3, ΩΛ = 0.7
DpropDprop
DcomDcom
DangDang
DlumDlum

Figure 3.1.: Four distance definitions are plotted as a function of source redshiftz with the observer being at redshift
zero. These are the proper distanceDprop (solid line), the comoving distanceDcom (dotted line), the angular diameter
distanceDang (dashed line), and the luminosity distanceDlum (dashed-dotted line). On the left-hand side an Einstein-de
Sitter cosmology is shown in comparison with the currently preferredΛCDM cosmology on the right-hand side.

3.2. Structure formation

Theories of structure formation hypothesize that structure grows via gravitational instability from initial density
fluctuations within a very homogeneous and isotropic background distribution. The theory how these structures
formed includes the following three main aspects: (i) The properties of the initial conditions of the density fluctua-
tions generated by some physical mechanism which is not contained in the standard model of structure formation.
Among many theories, an inflationary period in the very early Universe would be the most promising idea relating
quantum fluctuations to macroscopic density perturbations and predicting the statistics of these seed fluctuations to
be Gaussian (Guth1981, Albrecht & Steinhardt1982). (ii) The nature of gravitationally interacting particle species
in the Universe and their interactions leading to the growth of structures, and (iii) the time evolution of the ampli-
tudes of the density perturbations in an expanding Universe by gravitational instability are the other two pillars. As
long as the density contrast is smaller than unity, it is sufficient to describe the evolution of the perturbations by lin-
ear perturbation theory until late times. In order to study the growth of structure in the non-linear regime governing
the formation of galaxies or clusters of galaxies, numerical N-body simulations have been a very successful tool.

3.2.1. Properties of dark matter

The dominant interaction governing the evolution and dynamics of galaxies, clusters and large scale structure is
gravitation due to the long range of its interaction and the fact that gravity can not be shielded like the electromag-
netic force. The importance of gravitation for cosmology is supported by the growing evidence fordark matter
constituting the major fraction of matter in our Universe today. Since dark matter does not couple to photons, it
has to be detected by means of its gravitational or weak interactions. The most stringent arguments in favor of this
matter to bedark, i.e. not interacting electromagnetically are the following: the time elapsed since the decoupling
of pure baryonic density perturbations from the primordial photon-baryon plasma was not long enough to produce
all the structure observed today with the size of density perturbations inferred from the anisotropies of the cosmic
microwave background. Furthermore, indirect evidence of dark matter can be inferred by the gravitational effect on
visible matter or radiation such as flat rotation curves in spiral galaxies, by the analysis of peculiar velocity fields of

14



3.2.2 Linear growth of density perturbations

galaxies averaged over very large scales, and by discrepancies of mass estimates for galaxy clusters by the gravita-
tional lensing effect on background galaxies or the virial theorem on the one hand and the combined baryonic mass
in stars and hot plasma on the other hand (Allen et al.2002, David et al.1995).

Dark matter is thought to be composed of yet undiscovered elementary particles which primarily interact by
gravity and carry neither an electromagnetic nor a strong charge in most scenarios while they can possibly interact
through the weak nuclear force. In order to account for a significant fraction of the critical densityρcr, they must
have the property of being stable particles with very weak self-interaction rates such that the annihilation ceased in
the very early Universe before their number density had decreased too much. Another line of arguments in favor of
a very small self-interaction cross-section is its impact on the central structure of dark matter halos (Yoshida et al.
2000). Dark matter might be detected by its annihilation signal from individual dark matter halos (Stoehr et al.
2003) while this process could be responsible for the excess of the cosmologicalγ-ray background around 10 GeV
(Elsässer & Mannheim2005, Strong et al.2004). If the dark matter particle is non-relativistic, trans-relativistic,
or relativistic at the time of decoupling from weak interactions it is namedcold, warm, or hot, respectively. The
neutrino as a representative ofwarm dark matterseems to be ruled out of accounting for the bulk of dark matter,
since it predicts structure formation from the top down, starting with superclusters and subsequently separating into
clusters and galaxies (White, Frenk & Davis1983). This would contradict observational evidence that structure
formed bottom up leading to thehierarchical modelof structure formation. This scenario is corroborated bycold
dark matter models(CDM), with its most promising candidate the lightest super symmetric particle, presumably
the neutralino (seeJungman, Kamionkowski & Griest1996, for a review).

3.2.2. Linear growth of density perturbations

The dark matter perturbations are characterized by thedensity contrastδ(x,a) at the comoving positionx,

δ(x,a) =
ρ(x,a) − 〈ρ(a)〉
〈ρ(a)〉

, (3.22)

where〈ρ(a)〉 = Ωmρcra−3 is the volume averaged cosmological matter density. Provided the density contrastδ(x,a)
is smaller than unity, the solution for matter under the influence of its own self-gravity can be found expanding the
linearized equations of motions in the Newtonian framework, because small perturbations imply weak gravitational
fields and space is locally flat. However, if the wavelength of the perturbations are of the order of the horizon scale,
general relativistic effects need to be considered due to the fact that the horizon is comparable to the curvature
radius of space-time. Nevertheless, both the Newtonian and the relativistic approach yield for an adiabatic change
of volume elements in the linear regimeδ � 1 the solution

δ(a) ∝ a3ωf+1 =

{
a2 beforeaeq, radiation dominated era: ωr =

1
3

a afteraeq, matter dominated era: ωm = 0
, (3.23)

as long as the Einstein-de Sitter limit holds, i.e.Ωm(a) ' 1. At late times, when this limit no longer applies in the
case of a non-zero cosmological constant (Ωm , 1, ΩΛ , 0), the amplitude of the growing perturbation mode is
given by

δ(a)
δ0
= a
g̃(a)
g̃(1)

≡ D+(a) , (3.24)

whereδ0 is the density contrast linearly extrapolated to the present and the density dependent growth function
g̃(a,Ωm,ΩΛ) is approximated byCarroll, Press & Turner(1992)

g̃(a,Ωm,ΩΛ) =
5
2
Ωm(a)

[
Ω4/7

m (a) −ΩΛ(a) +

(
1+
Ωm(a)

2

) (
1+
ΩΛ(a)

70

)]−1

. (3.25)

3.2.3. Statistical description and initial conditions

3.2.3.1. Linear growth of perturbation modes

In linear perturbation theory, the density field grows homogeneously implying that individual Fourier modes evolve
independently,̂δ(k,a) = D+(a)δ̂(k). Here, the density field has been conveniently decomposed into Fourier modes
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using the convention̂δ(k,a) ≡
∫

d3xδ(x,a)eikx. This approach is strictly only valid in flat space. Because obser-
vations seem to agree on space being flat at the present epoch (Spergel et al.2003), the dynamics of Friedmann’s
equations guarantees that space is even flatter at earlier times and at late times, the interesting scalesλ are much
smaller than the curvature radius of the Universe,cH−1(a).

A perturbation mode of a certain comoving wavelengthλ enters the comoving horizondH(a) = c/[aH(a)] if their
scales become comparable to each other and therefore causally connected. Ifλ < dH(aeq), the density perturbation
enters the horizon during the radiation dominated epoch ataenter< aeq, in which the expansion time-scaletexp = H−1

is given by the radiation densityρr, which is shorter than the collapse time-scale of dark matter,tcol:

texp ∼
1
√

Gρr
<

1
√

Gρdm
∼ tcol (3.26)

This comparison shows that the radiation driven expansion prevents the collapse of dark matter perturbations within
the horizon, while perturbations on larger scales are not affected by this suppression and continue to grow according
to Eqn. (3.23). It follows that the suppression factor for perturbations withλ < dH(aeq) can be written as

fsup=

(
aenter

aeq

)2

. (3.27)

The condition for the comoving wavelengthλ entering the horizon at the time of matter-radiation-equality is given
by λ = dH(aenter) = c/[aenterH(aenter)]. Recalling the definition ofaeq in Eqn. (3.15), aeq = Ωr/Ωm, the Hubble
function in the Einstein-de Sitter regime can be approximated by

H(a) = H0

√
Ωra−4 + Ωma−3 = H0Ω

1/2
m a−3/2

√
1+

aeq

a
. (3.28)

Hence, inserting this equation into the expression for the comoving horizon yields a relation between the scale factor
at the time of entering and the perturbation mode of comoving wavelengthλ,

λ ∝

{
aenter for aenter� aeq

a1/2
enter for aeq� aenter� 1

. (3.29)

Thus, the suppression factor in Eqn. (3.27) can be written using the expression for the wave number of the pertur-
bationk = λ−1 and the horizon size at the time of matter-radiation equality,k0 = d−1

H (aeq),

fsup=

(
k0

k

)2

. (3.30)

There is another process modifying the growth of structure if there are relativistic dark matter particles, so-called
hot dark matter (HDM). The free streaming of these particles exponentially damps density perturbations, which are
smaller than a certain minimum size necessary to keep them gravitationally bound.

3.2.3.2. Density power spectrum and transfer function

Assuming statistically isotropic and homogeneous Gaussian density fluctuationsδ(x), they can be completely char-
acterized by the power spectrum which is defined by〈

δ̂(k,a)δ̂∗(k,a)
〉
= (2π)3δD(k − k′)Pδ(k,a) and (3.31)

Pδ(k,a) = A(a)T2(k,a)Pi(k,ai). (3.32)

Here the asterisk denotes complex conjugation,A(a) is the normalization of the power spectrum (see Sect.3.2.3.3),
andPi(k,ai) = 〈|δi(k)|2〉 is the primordial power spectrum at some very early time before any scale of interest has
entered the horizon. We introduced the concept of thelinear transfer function T(k,a) in order to relate the linear
perturbations of the modek at a given scale factora after matter-radiation equalityaeq to the initial perturbation
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3.2.3 Statistical description and initial conditions

modeki . Thus, the transfer function joins the unaffected growth of fluctuations on the largest scales to the suppressed
growth on small scales and is defined for adiabatic perturbations as

T2(k,a) =

[
a

D+(a)

]2
〈
δ̂2(k,a)

〉〈
δ̂2i (ki ,ai)

〉 , (3.33)

whereD+(a) is the linear growth factor between scale factora and the present (Eqn. (3.24)) and the normalization
scale factor is arbitrary, as long as it refers to a time before any scale of interest has entered the horizon.T(k,a)
depends only on the matter content of the Universe, e.g. the properties of CDM particles and on the specific cos-
mology, because the growth factor depends on the density parametersΩm andΩΛ. However, it does not depend on
the initial amplitudes of the perturbations.Bardeen et al.(1986) provide an accurate fitting function ofT(k,a) for
CDM models.

The growth of the density contrast,δ ∝ a3ωf+1 (Eqn. (3.23)), makes the spectral change asPδ ∝ a2(3ωf+1). At
aenter� aeq, the power spectrum has thus changed to

Penter(k) ∝ a2(3ωf+1)
enter ∝ k−4Pi(k) , (3.34)

using Eqn. (3.29) for perturbation modes with wave numbersk� k0, i.e.λ � dH(aeq). The most common variants
of inflationary models predict the total power of density perturbations ataenter to be almost scale invariant. This
impliesk3Penter= const., or Penter(k) ∝ k−3. Consequently, the primordial spectrum has to scale withk asPi(k) ∝ k.
This scale invariantspectrum is called theHarrison-Zel’dovichpower spectrum. The initial power spectrum is
commonly parameterized as

Pi(k) ∝ kns , (3.35)

which defines the spectral tiltns of (scalar) density perturbations. Summarizing the presented arguments, the linear
power spectrum has the following asymptotic behavior ata� aeq while assumingns ≈ 1,

Pδ(k) ∝

{
k for k� k0

k−3 for k� k0
. (3.36)

3.2.3.3. Normalization

Having discussed the shape of the power spectrum, its normalization will be considered in the following. There are
primarily three different methods, normalizing the power spectrum at different scales and unfortunately also leading
different answers. This representation follows the review byBartelmann & Schneider(2001).

1. At the largest scales, normalization is done by the cosmic microwave background anisotropies which have
been measured over the full sky by the DMR experiment onboard the COBE (COsmic Background Explorer)
satellite at an angular scale ofφ ∼ 7 ◦ (Banday et al.1997). The WMAP satellite (Spergel et al.2003) sup-
ported the measured normalization. CMB temperature fluctuations can be related to density perturbations and
after adopting a specific cosmology, this yields a characteristic shape of the density power spectrum. The
power spectrum can be normalized at the comoving wave numberk and related to the measured angular mul-
tipole scalè = fK(w)k. Both scalar and tensor perturbations give rise to CMB temperature fluctuations while
density perturbations areonly determined by scalar perturbations. This could lead to a possible overestimate
of the normalization constant of the density power spectrum.

2. At intermediate scales of about 10h−1 Mpc, the power spectrum is normalized by the local abundance of
galaxy clusters (White et al.1993). Since galaxy clusters formed by gravitational instability from dark matter
density perturbations in the hierarchical model, the spatial number density of clusters is a measure for the
amplitude of dark matter fluctuations. Requiring the power spectrum to reproduce the observed local spatial
number density of clusters determines its normalization.

3. Finally, the power spectrum can be normalized by the local variance of galaxy counts, as suggested byDavis &
Peebles(1983), assuming galaxies to be biased tracers of the underlying dark matter perturbations. Measuring
the variance of galaxy numbers within spheres of radius 8h−1 Mpc leads to the resultσ8,galaxies≈ 1. Assuming
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Figure 3.2.: ΛCDM power spectrum of the density contrast, normalized to the local abundance of galaxy clusters using
h = 0.7. The solid curve shows the linear, the dashed curve the non-linear power spectrum using the formula ofPeacock
& Dodds(1996).

an expression for the bias, one can relate the variation in the galaxy counts to the dark matter fluctuations and
obtains the amplitudeA(t0) of the power spectrum, using (3.32) and

σ8 ≡ σ(R= 8h−1 Mpc, t0) = 4π
∫

k2dk
(2π)3

Pδ(k)W2
8(k)

!
= 1 . (3.37)

The windowWR(k) denotes the three-dimensional Fourier transform of the Heaviside functionH(R− |r|),

WR(k) =
3[sin(kR) − kRcos(kR)]

(kR)3
=

3 j1(kR)
kR

, (3.38)

where j1(x) is the spherical Bessel function of the first kind.

3.2.4. Non-linear evolution and numerical simulations

3.2.4.1. Properties of non-linear evolution

The final goal of theoretical cosmology is to find self-consistent physical concepts which are powerful enough to
predict the evolution of the Universe and the structure formation leading to gravitationally bound objects consistent
with astronomical observations. One challenge is that the objects we are able to observe in the Universe are the
result of non-linear evolution, because clusters typically have a density contrastδ ∼ 103 and galaxies even have
overdensities ofδ ∼ 106 for which linear perturbation theory is no longer applicable. The process of structure for-
mation proceeds inhomogeneously in the overdense regions causing different Fourier modes to couple. This can be
understood by considering linear growth,δ(a, x) = D+(a)δ0(x) which acquires in addition to the time dependence a
spatial dependence for non-linear growth,δ(a, x) = D+(a, x)δ0(x), such that the spatial multiplication translates to a
convolution in Fourier space. By the process of non-linear evolution non-Gaussian features are also introduced into
the distribution of density perturbations: the density contrastδ has a lower bound by definition, i.e.δ ≥ −1 so that
its original Gaussian distribution evolves into an approximately log-normal distribution in the course of structure
formation (Jain et al.2000). Thus, higher order moments are needed for the complete description of the statistical
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properties of the fields under consideration while the convergence of theN-point statistics is not guaranteed. Re-
cently, other statistical approaches have been developed such as Minkowski functionals which provide a more robust
morphological description of highly non-linear structures (Mecke et al.1994, Kerscher et al.1997, Schmalzing et al.
1999, Novikov et al.2000).

3.2.4.2. Numerical simulations

Fundamental equations One way of studying the non-linear evolution is numerical integration of the equations
of motion with given initial conditions arising from linear theory, which is a reasonable approximation at high
redshifts. The continuum limit of non-interacting dark matter is described by the collisionless Boltzmann equation
coupled to the Poisson equation in an expanding background Universe:

d
dt

f (r, u, t) ≡ ḟ + (u∇) f − ∇Φ∇u f = 0, ∆Φ(r, t) = 4πG
∫

f (r, u, t)du, (3.39)

where f (r, u, t) denotes the distribution function in phase space andḟ describes the partial derivative off with
respect to the time.N-body simulationsare particularly suited to solve these equations since phase space density is
sampled by a large numberN of tracer particles which are integrated along characteristic curves of the collisionless
Boltzmann equation. The accuracy of this approach depends on a sufficiently high number of particles. Fitting
formulae describing the non-linear behavior ofPδ(k) have been derived fromN-body simulations byJain et al.
(1995) andPeacock & Dodds(1996). While the linear power spectrum declines on small scales∝ k−3, the amplitude
of the non-linear power spectrum is substantially increased on these small scales at the expense of larger-scale
structure (see Fig.3.2). For the largest scales the non-linear power spectrum remains unaffected.

A simple model of the intergalactic or the interstellar medium can be obtained by modeling it as an ideal inviscid
gas which is coupled to dark matter through its gravitational interaction. The hydrodynamics of the gas is governed
by the continuity equation, the Euler equation, and the conservation equation for the thermal energyu:

dρ
dt
+ ρ∇u = 0,

du
dt
= −
∇p
ρ
− ∇Φ,

du
dt
= −

P
ρ
∇u −

Λ(u, ρ)
ρ
, (3.40)

whereΛ(u, ρ) describes external sinks or sources of heat for the gas, and we used the Lagrangian time derivative,
d/dt ≡ ∂/∂t + u∇. The equation of stateP = (γ − 1)ρu closes the above system of coupled differential equations.

Numerical methods Gravitational interactions of a collisionless fluid are computed in virtually all cosmological
codes by means of theN-body method. There are a diversity of methods for the approximation of the gravitational
field. Particle-mesh (PM) methods (Klypin & Shandarin1983, White et al.1983) are the fastest algorithms (of
complexityN logN per time step) for computing thelong-range gravitational forceon one particle exerted by the
others while they are not suited to obtain high spatial resolution: the discrete mass distribution is smoothed on
a three-dimensional mesh and the Newtonian potential is then obtained in Fourier space because of the algebraic
property of Poisson’s equation there. To increase the spatial resolution,short–range forcescan be computed by
direct summation between all pairs of particles (Hockney & Eastwood1981, Efstathiou et al.1985) while putting
up with the higher complexityN2 of the scheme. Within clustered regions, containing approximately 105 particles,
it is more efficient to refine the original mesh recursively by higher resolution Fourier-meshes (Couchman1991),
although leaving the problem of solving fast-Fourier transforms with non-periodic boundary conditions. Alterna-
tively, the adaptive refinement of the mesh can be obtained with the potential found in real space using relaxation
methods (Kravtsov et al.1997).

A different approach is pursued by hierarchical tree algorithms (Barnes & Hut1986, Dehnen2000) which expand
the gravitational field into multipoles and have no resolution limit, in principle. This method is however very
inefficient compared to Fourier-based methods for regions with low density contrast. TreePM hybrid methods (Xu
1995, Springel2005) combine these two different approaches: they use the tree methods for computing short-range
gravitational forces while exploiting the particle-mesh scheme for long-range scales.

Hydrodynamical solvers of cosmological codes are generally classified into two main categories: (1) Lagrangian
methods like smoothed particle hydrodynamics (SPH) and (2) Eulerian codes. SPH methods were first proposed by
Gingold & Monaghan(1977) andLucy (1977) and approximate continuous density fields by discrete distributions of
point particles. Subsequently, improved SPH techniques have been developed for cosmological applications (Evrard
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1988, Hernquist & Katz1989, Navarro & White1993, Springel & Hernquist2002, Springel2005). Contrarily,
Eulerian methods discretize space and represent continuous fields on a mesh. Originally, codes employed a mesh
which is fixed in space (Cen & Ostriker1993, Yepes et al.1995) or adaptively moving (Pen1998) while more
recently, adaptive mesh refinement (AMR) algorithms have been developed for cosmological applications (Berger
& Colella 1989, Bryan & Norman1997, Norman & Bryan1999, Kravtsov et al.2002).

Grid-based techniques offer superior power for capturing hydrodynamical shocks, in some algorithms even with-
out the aid of artificial viscosity and showing low residual numerical viscosity. However, codes employing static
meshes still lack the resolution and flexibility necessary to tackle structure formation in a hierarchically clustering
Universe which is characterized by the presence of substructure at all stages of evolution. These techniques are
particularly seriously limited when studying the formation of individual galaxies in a cosmological volume because
internal galactic structure such as disk and bulge components are not sufficiently resolved. Recently, a new gen-
eration of AMR codes finds more application in cosmology (Abel et al.2002, Kravtsov et al.2002, Refregier &
Teyssier2002). However, some grid-based problems remain even here because these codes impose symmetries
which result in advection errors and the dynamics not being Galilean-invariant. Being interested in dynamical im-
plications of CRs on structure formation and galaxy evolution, one faces not only the problem of the interplay of
gravity and hydrodynamics of a plasma composed of CRs and thermal particles but in addition radiative processes
such as cooling and supernova feedback. To date, there is no AMR code encompassing these requirements although
there are recent efforts towards this goal (Kang & Jones2005, Jones & Kang2005).

In contrast, SPH methods appear better suited for these problems due to their Lagrangian nature because they
adaptively increase the resolution in dense regions such as galactic halos or centers of galaxy clusters which are the
regions of primary interest in this aspect of cosmology. One drawback of SPH is the dependence on the artificial
viscosity which has to provide the necessary entropy injection in shocks.Monaghan(1997) modified the parameter-
ization of the artificial viscosity in analogy with the Riemann problem. Although the discontinuities are broadened
over the SPH smoothing scale, post-shock quantities are calculated very accurately.

3.3. Clusters of galaxies

The standard model of cosmology envisions structure formation as a hierarchical process in which gravity is con-
tinuously drawing matter together to form increasingly larger structures. Clusters of galaxies currently sit atop this
hierarchy as the largest objects that have had time to collapse under the influence of their own gravity (Sect.3.3.1).
There are two different approaches to classify these uniquely useful tracers of cosmic evolution: the theoretical
approach characterizes them according to their dynamical state in combination with concurrent physical processes
(Sect.3.3.2) while the observational approach connects multifrequency signatures to obtain a complete understand-
ing (Sect.3.3.3). The presentation in this section has been inspired by reviews ofSarazin(1988) andVoit (2005).

3.3.1. Cluster formation

Structure formation predicts the hierarchical build-up of dark matter halos from small scales to successively larger
scales. The gravitational pull of the density perturbations on the smallest scales causes them to deviate from the
Hubble flow and slows the expansion of their matter, eventually halting and reversing the expansion because the
density perturbations have larger amplitude on smaller mass scales. In the course of evolution, these small structures
merge and coalesce to form progressively larger structures as perturbations on larger mass scales reach the non-linear
regime. A full understanding of this hierarchical merging process requires numerical simulations, although its basic
concepts can be obtained by means of the analytical spherical collapse model (Gunn & Gott 1972, Fillmore &
Goldreich1984, Bertschinger1985).

However, the accretion process in real clusters is not symmetric. Gravitational forces between infalling matter
clumps produce a time-varying collective potential which randomizes the velocities of the infalling particles yielding
a Maxwellian velocity distribution characterized by the velocity dispersion of the particles as the most probable state.
Since the energy and the angular momentum are not conserved for individual particles, phase mixing occurs which
results in damping of bulk motions. This process is known asviolent relaxation(Lynden-Bell1967) and leads to a
state of virial equilibrium in which the total kinetic energyEkin is related to the total gravitational potential energy
Egrav through the equation

Egrav+ 2Ekin = 4πPinf r
3
inf , (3.41)
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wherePinf is the effective pressure due to infalling matter at the boundaryr inf of a collapsed system: in a steady state,
the momentum flux of particles exiting the boundary balances that entering, so the boundary is formally equivalent
to a reflecting wall which adds a pressure correction term, offsetting some of the gravitational energy (The &
White 1986). Once the collapse of the cluster is completed, violent relaxation is ineffective, and the cluster relaxes
throughtwo-body interactions(Chandrasekhar1942, Spitzer & Harm1958). While these processes are unlikely to
be important for small substructures, they can be significant for large halos near the cluster core:Chandrasekhar
(1942) showed that a massive object moving through a homogeneous and isotropic Maxwellian distribution of
lighter collisionless particles suffers a drag force calleddynamical frictionwhich is independent on the mass of
the lighter particles and leads to a slow-down of the massive object due to collective two-body encounters with the
lighter particles.

The final maximum entropy state of a relaxed collisionless system would be a self-gravitating isothermal sphere,
in which the velocity dispersionσv is constant and isotropic at every point andρm(r) = σ2

v/(2πGr2) (Lynden-Bell
1967). This model has the unfortunate property of an infinite mass and energy so that it is never realized in nature.
NumericalN-body simulations find that the profile of dark matter halos is described by a universal law (Navarro,
Frenk & White1997, (NFW))

ρ(x)
ρcr
=

δc

x(1+ x)2
with x =

r
rs
, (3.42)

andrs = rvir/c. rvir denotes the virial radius within which the mean matter density is 200ρcr andc is the concentration
parameter, and

δc =
200
3

c3

ln(1+ c) − c
1+ c

. (3.43)

Typical concentration parameters for simulated clusters are in the rangec ∼ 4 . . . 10 with the largest mass systems
showing the smallest concentration parameter and a typical scatter in lnc of 0.2 . . . 0.35 (Jing 2000). Even with
this more sophisticated density profile the mass diverges logarithmically with radius. Thus, the cluster’s mass and
relations linking that mass to observables depend crucially on the definition of the outer boundary of the cluster.
It turns out that there is no simple unique mass definition satisfying the needs of all applications. An example of
such a definition is obtained by truncating the isothermal sphere at the virial radius, arriving at a relation between
velocity dispersionσv and virial massMvir , Mvir ∝ σ

3
v (Evrard1989, Eke et al.1996, Evrard2004). On the other

hand, cluster masses in numerical simulations are frequently defined using thefriends-of-friendsalgorithm that links
neighboring mass particles (Davis et al.1985) while clusters defined in such a way often show irregular boundaries
which complicates the connection to observations (White2001).

Since the dynamical time scale of cluster evolution is of the order of 1 Gyr, it is impossible to observe the evolution
of individual clusters but rather how the demographics of the entire cluster population changes with redshift. An
important statistical concept is the cluster mass function in this context which yields the mass density of clusters
with mass larger thanM in a comoving volume element (Press & Schechter1974) and can be expressed as

nPS(M, z)dM =
〈ρ0〉

√
2πD+(z)M2

(
1+

n
3

) ( M
M∗

)(n+3)/6

exp

− 1

2D2
+(z)

(
M
M∗

)(n+3)/3 dM,

whereM∗ and〈ρ0〉 are the nonlinear mass today and the mean background density at the present epoch, andD+(z) is
the linear growth factor of density perturbations, normalized to unity today.n ≈ −1 denotes the effective exponent
of the dark matter power spectrum at the cluster scale.Bond et al.(1991) andSheth & Tormen(1999) proposed
a significantly improved analytic derivation of the mass function whileJenkins et al.(2001) measured the mass
function of dark matter halos in numerical simulations and obtained results consistent with Sheth & Tormen’s.

3.3.2. Dynamical state and physical processes

Baryonic plasma follows these transient potential wells provided by dark matter. The luminous content of galaxies
results from cooling processes and condensation within an extended dark matter halo (White & Rees1978). Clusters
have been traditionally characterized by accumulations of galaxies ranging from large groups of a few tens of
galaxies up to the largest clusters comprising few thousand galaxies. Clusters are the largest gravitationally bound
objects in the Universe and reach masses up a few times 1015M�. In the cores of galaxy clusters, hot plasma
has been detected both through its X-ray emission and by Compton up-scattering of photons from the cosmic
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microwave background radiation. This plasma shows typical temperatures ofkT ∼ (1 . . . 10) keV and is dilute,
ne ∼ (10−2 . . . 10−3) cm−3.

Clusters arevirtually closed systemswhich do neither lose their intra-cluster medium (ICM) nor their member
galaxies.3 Considering their entirety, they gather a very large sample of matter, thus providing a representative
sample of the whole Universe. Together with precise BBN baryon density estimates, this can be used to infer
the total matter densityΩm = Ωdm + Ωb (White et al.1993). According to ROSAT results (Briel et al. 1992),
most of the baryons in clusters reside in the hot, X-ray emitting intra-cluster plasma and are not bound in stars.
From a flux limited sample of X-ray emitting clusters,Mohr et al.(1999) have compiled the gas-to-total mass ratio
〈 fICM〉 ' 0.075h−3/2. Using the present day value of Hubble’s constant, one arrives at the following picture for a
galaxy cluster’s composition:∼ 85% of the mass consists of dark matter,∼ 12% is made out of hot plasma, and the
reminder is locked into stars.

Dynamical friction decelerates more massive galaxies near the cluster’s core until they spiral towards the center
(Lecar 1975). The kinetic energy removed from the massive galaxies is transferred to lighter galaxies or dark
matter particles so that their population expands in the cluster’s potential. Thus, dynamical friction generates mass
segregation in a cluster such that more massive galaxies are found preferably at smaller radii. Massive galaxies
spiraling into the cluster center will eventually merge to form a single supergiant elliptical galaxy if they are not
tidally disrupted (Ostriker & Tremaine1975, White1976). This formation scenario explains naturally the extremely
high luminosities of cD galaxies which are sitting nearly at rest at the bottom of the cluster’s potential well and are
dominating the center.

Clusters of galaxies are constantly growing through mergers. A major merger where comparably massive clusters
with a mass ratio. 3 collide occurs on average approximately every Gyr. Mergers inducecollisionless shock waves
which dissipate gravitational energy associated with hierarchical clustering into thermal energy of the IGM apart
from the additional contribution due to adiabatic compression caused by the later infalling material which itself
is compressed at these shock waves.4 Observations of such shock waves reveal that the plasma lags behind the
dark matter clump which itself is coincident with the effectively collisionless subcluster galaxies (Markevitch et al.
2004). Besides thermalization, the collisionless shock is able to accelerate electrons and ions of the high-energy tail
of the Maxwellian through diffusive shock acceleration (for reviews seeDrury 1983b, Blandford & Eichler1987,
Malkov & Drury 2001). These energetic ions are reflected at magnetic irregularities through magnetic resonances
between the gyro-motion and waves in the magnetized plasma and are able to gain energy in moving back and forth
the shock front. Relativistic electrons emit synchrotron radiation in the presence of magnetic fields which has been
observed as extended radio relics observed in the cluster outskirts, thus tracing shock waves in the radio band (e.g.,
Röttgering et al.1997). Additionally, merging subclumps stir turbulence with the largest eddies injected on the
scale of the merging impact parameter. Subsequently, the cluster is relaxing on a timescale which is longer than the
crossing time of the cluster,

tcross≡
r
σv
∼ 109 yr

(
r

Mpc

) (
σv

103km/s

)−1

< trelax < tHubble∼ 1010 yr, (3.44)

whereσv denotes the velocity dispersion. During this relaxation process, thermal energy is successively radiated
away through bremsstrahlung, a process which is most efficient in the densest regions at the cluster center. This
process cools the cluster core so that the ICM responds in developing a denser core in order to maintain hydrostatic
equilibrium. Theoretically, this process is instable leading to catastrophic cooling of cluster cooling cores which
is not observed in X-rays, giving rise to the so-calledcluster cooling flow problem. The central plasma in relaxed
clusters with a short cooling time is observed to develop cool cores with central temperatures∼ T0/2, but very little
X-ray line emission is seen from plasma at. T0/3 (Peterson et al.2001, 2003). Some sort of physical heating
mechanism seems to inhibit condensation below this temperature or balancing the energy losses by a comparable

3In this context, virtually closed does not imply them to be isolated systems because there is no clean boundary separating the cluster from the
rest of the Universe and they accrete constantly mass through any sufficiently remote boundary surface.

4A shock wave can be generally defined as a transition layer which propagates through a plasma and changes its state. The thickness of the
transition layer (the shock front) is determined by the physical process responsible for the energy conversion from the kinetic energy of the
incoming plasma to internal degrees of freedom of the downstream plasma. In an ordinary gas shock the energy is transferred by two-body
collisions to the random thermal motion of the gas molecules and the thickness is of the order of a few collisional mean free paths. However,
in tenuous plasmas collisions are rare and the energy transfer proceeds through collective electromagnetic effects. Thus the thickness of these
collisionless shocks is of the order of the gyro-radius of a thermal ion (or the Debye length if electrostatic effects are important).
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amount of energy injection. A couple of candidates have been proposed for resupplying the heat radiated away, four
of which shall be presented in the following:

• Dissipation of mechanical energy released by the expansion and buoyant motion of radio bubbles inflated by
the central radio galaxies (Churazov et al.2001, Brüggen & Kaiser2001, Quilis et al.2001, Brüggen et al.
2002, Chandran2004, Hoeft & Brüggen2004, Dennis & Chandran2005, Ensslin & Vogt2005). The centers
of many clusters with low-entropy plasma whose cooling time is less than the Hubble time also contain active
galactic nuclei that are ejecting jets of relativistic plasma into the ICM (Burns1990) which supports this
model. This scenario is theoretically compelling because the energy balancing mechanism provides a stable
self-adjusting feedback mechanism: If the radio galaxy activity is triggered by cold ambient plasma from the
core condensing onto the central supermassive black hole, the galaxy activity increases until it disrupts further
accretion.

• Thermal conductivity would allow the inward transport of heat from the hotter ambient ICM towards the
central core and thus offsetting the cooling (Malyshkin2001, Narayan & Medvedev2001, Voigt et al.2002,
Ruszkowski & Begelman2002, Cho et al.2003, Jubelgas et al.2004, Chandran & Maron2004). This scenario
faces severe problems to explain the absence of cooling: (i) thermal conductivity needs to be close to Spitzer’s
estimate, and therefore not suppressed by magnetic fields. (ii) The required energy injection needs to be fine-
tuned because too strong conduction would erase the cool core, but too weak conduction cannot prevent the
cooling catastrophe, thus leading to an unstable solution for the conductively heated cool core. Furthermore,
it is unable to explain the existence of cold gas clouds which need sufficient insulation from the keV plasma
(Soker2003, Nipoti & Binney 2004).

• A significant relativistic component, in the form of cosmic rays (CRs), present in the intracluster medium
and significantly frozen to the thermal plasma, can provide a temperature floor regardless of the nature of the
heating process. Such an addition qualitatively alters the conventional isobaric thermal instability criterion,
such that a fluid parcel becomes thermally stable when its thermal pressure drops below a threshold fraction
of its CR pressure (Chandran2004, Cen2005). The drawback of this model is, that an overall heating process
is still required to balance the radiative cooling losses while the energy density of CRs seems to be only a
small fraction of the thermal energy density within cool cores (Pfrommer & Enßlin2004a).

• Supernovae driven galactic winds are another candidate for supplying the feedback that suppresses condensa-
tion, but is is questionable if this process can provide enough energy to offset cooling. The amount of energy
input needed to balance the radiative energy losses while avoiding overcooling is∼ 1 keV per gas particle
in the ICM (Voit et al. 2002, Tornatore et al.2003). However, almost the entire supernova energy has to be
transfered to thermal energy of the ICM with implausible high efficiencies and virtually no radiative loses
(Kravtsov & Yepes2000) which is unlikely given the high central plasma densities.

To date, there is still no consensus on the relative importance of these mechanisms. The final solution might
require an interplay of different scenarios depending on still unknown boundary conditions. Overall, clusters of
galaxies provide useful laboratories for investigating the non-linear phase of structure formation, the interaction
of dark matter with baryonic physics, and studying the interplay active galaxies with the ICM with the additional
potential of yielding valuable insight into plasma physics.

3.3.3. Multi-frequency observations of clusters

The most important observational findings leading to the emergence of the previous physical interpretations will be
presented in this section. It provides the background for many implicit assumptions of the following chapters.

3.3.3.1. Optical properties of clusters

Observables in the optical band include the total luminosity of the cluster galaxies, that scales with the cluster mass,
the velocity dispersion of cluster member galaxies, responding to the depth of the cluster’s potential, and the amount
of gravitational lensing which background galaxies experience by the cluster’s potential. The first concentrations
of luminous objects in the constellations Virgo and Coma Berenices were already recognized by the end of the
eighteenth century byMessier(1784) andHerschel(1785). George Abell and collaborators performed pioneering
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work in compiling a nearly complete catalogue of nearby clusters according to well defined optical criteria (Abell
1958, Abell et al.1989). Today, optical cluster identification techniques extend and refine Abell’s basic approach
(e.g.Dalton et al.1997), sometimes augmenting it with information on galaxy colors to enhance the cluster contrast
against the background galaxy counts (e.g.Bahcall et al.2003).

Generally, cluster galaxies follow a luminosity function proposed bySchechter(1976) when neglecting cD galax-
ies, with the number of galaxies per unit luminosity and per unit volume distributed according to

ϕL(x)dx = ϕ∗x−α exp(−x)dx with x =
L
L∗
, (3.45)

with a characteristic luminosityL∗ corresponding to a characteristic magnitudeM∗B = −20.6, the normalization
ϕ∗ = 0.04h3/Mpc3, and the faint end slopeα = 5/4. Because the shape of the luminosity distribution function of
cluster galaxies is nearly universal, observing the high end tip of that distribution allows one to normalize the overall
cluster luminosity function, yielding estimates for both the cluster’s total optical luminosity and, less accurately, its
mass. The faint end slope of the luminosity function ofα = 5/4 is smaller compared to that of the mass function of
α = 5/3: there needs to be a halo mass dependent physical mechanism which prevents these systems from forming
stars (White & Frenk1991, Benson et al.2003). Although there have been some scenarios proposed, including
energy injection through photoionization during the reionization epoch (Benson et al.2002) or tidal interactions
with neighboring galaxies and with the hierarchically growing cluster halo (Gnedin2003), it is to date unknown
what causes these low-mass systems to be so faint.

Optical observations offer two complementary methods to infer the cluster’s morphology and the true mass
concentrations, through the orbital velocities of the member galaxies and the degree to which the background
galaxy images are distorted by the cluster’s gravitational potential. Because the velocity distribution of galaxies
within a relaxed cluster is expected to be Gaussian in velocity space, one is able to fit the velocity distribution
exp[−(vr − 〈v〉)2/(2σ2

1D)] to these galaxies to obtain the one-dimensional velocity dispersionσ1D for the cluster.
Using the approximation of galaxies as test particles in the cluster’s potential, one can apply the virial theorem of
Eqn. (3.41) with Ekin = 3Mσ2

1D/2 to infer a mass estimate. Since clusters are dynamical systems that have not
finished forming and equilibrating, these estimates are generally uncertain.

Gravitational lensing of background galaxies has originally been proposed byZwicky (1937) to infer the cluster
mass. Lensing is sensitive to the cluster’s morphology and mass distribution within a given projected radiusr⊥,
because the mass within this radius deflects photons towards our line-of-sight through the cluster center. When the
deflection angle is small compared to the angular impact parameter of the galaxy to the cluster center, the galaxy
images are tangentially stretched tor⊥. This phenomenon is called “weak lensing”, and one can only determine
statistical properties of the lensing system by averaging over the field of view: due to intrinsic ellipticities of the
individual galaxies, statistical techniques using apertures with angular size of the order 1′ are needed in order to
infer properties of the local gravitational field of the lens. Conventionally, this method is applied to faint distant
galaxy populations, whose shapes and sizes are weakly distorted by the gravitational tidal field of the deflecting
object. However, one has to assume, that the intrinsic ellipticities of galaxies are uncorrelated (for an excellent
review of this field, seeBartelmann & Schneider2001).

3.3.3.2. X-ray emission of thermal plasma

Observables in the X-ray band include the overall X-ray luminosity of a cluster, emitted by the hot plasma trapped
in the cluster’s gravitational potential, the cluster’s temperature inferred from the X-ray spectrum of that plasma,
and the abundances of various elements inferred from the emission lines in this spectrum. Extended X-ray emission
from galaxy clusters was first observed in the early 1970’s (Gursky et al.1971, Forman et al.1972). For typical
cluster temperatures (kT & 2 keV) the emissivity of thermal bremsstrahlung dominates over the line emission while
the situation reverses below that temperature given heavy metal abundances relative to hydrogen of∼ 0.3 times
those found in the Sun. Clusters can radiate bolometric X-ray luminosities up toLX = 1045 erg/s. The rate at which
the intra-cluster medium (ICM) radiates can be expressed in a cooling function of the plasma which is proportional
to nenionΛX(T), whereΛX(T) ∝

√
kT in the regime of thermal bremsstrahlung. This X-ray emissivity is extremely

sensitive to any substructure due to its dependence on the square of the density.
Assuming spherical symmetry, the equation of hydrostatic equilibrium can be written

d lnρp

d ln r
+

d lnTp

d ln r
= −2

T(r)
Tp
, (3.46)
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whereρp is the plasma density,Tp the plasma temperature, andkT(r) = GM(r)µ/(2r) which can be identified with
the characteristic temperature of a singular isothermal sphere in the case of a density distributionρ = σ1D/(2πGr2).5

Assuming furthermore, that the plasma is isothermal yields the classical beta model for the X-ray surface brightness
of clusters (Cavaliere & Fusco-Femiano1976). If the velocity dispersion of dark matter particles is also isothermal
with a constant velocity dispersionσ1D, then Poisson’s equation implies

d lnρp

d ln r
= −

µ

kTp

dΦ
dr
= β

d lnρ
d ln r

, (3.47)

whereβ ≡ µσ2
1D/(kTp). Taking the same assumptions (i.e. spherical symmetry, isotropy of velocities, a self-

gravitating system in a stationary state),King (1966) has developed a self-consistent truncated density distribution
for clusters. For the phase space density he assumes

f (r, u)d3r d3v ∝ exp

(
Φ(0)

σ2
∞

) [
exp

(
−
v2/2+ Φ(r)

σ2
∞

)
− 1

]
d3r d3v, (3.48)

whereσ∞ is the radial velocity dispersion in an untruncated cluster. The velocity distribution is thus truncated at
the escape velocityve: f (r, |u| > ve) = 0 wherev2e = −2Φ(r), and the potential vanishes at infinity,Φ(∞) = 0.
Integrating this phase space density over all velocities yieldsρ(r) as a function ofΦ(r) which has to be solved for
self-consistently by inserting into Poisson’s equation. Since there is no simple analytic solution forρ(r) to this
potential,King (1962) provides the approximate solutionρ(r) ∝ [1 + (r/rc)2]−3/2, whererc denotes the core radius
that prevents the profile from becoming singular at the origin, and the plasma density becomes

ρp(r) = ρp(0)

1+ (
r
rc

)2−3β/2

, (3.49)

where Eqn. (3.47) has been used. The expected X-ray surface brightness for an isothermal plasma withTp = Te is
then obtained by projection

SX(r⊥) = 2
∫ ∞

r⊥

dr
r n2

e(r)ΛX [Te(r)]√
r2 − r2

⊥

= S0

1+ (
r⊥
rc

)2−3β+1/2

, (3.50)

whereS0 is the central X-ray surface brightness. The observed X-ray surface brightness can be inverted using the
Abel integral equation to obtain the radial density profile (see AppendixA). Beta models generally describe the
observed surface brightness well up to∼ 3rc, with typical values ofβ ∼ 2/3 andrc ∼ 0.1rvir for rich clusters
(Jones & Forman1984). Because dark matter profiles are rather of NFW type (Eqn. (3.42)) than following the
cored profile proposed by King, only the success of describing X-ray surface brightness profiles by beta profiles
for the ICM justifies their use. The real ICM is sometimes far from hydrostatic equilibrium especially during a
merger event and shows a wealth of structure such as cold fronts, X-ray cavities, and additional substructure. Thus,
these equations might yield misleading answers and need to be cross-correlated with additional information of
other wavebands. Indeed, a Fourier analysis of spatially-resolved plasma pressure maps of the Coma galaxy cluster
reveals the presence of a scale-invariant pressure fluctuation spectrum in the range between 40 and 90 kpc and is
found to be well described by a projected Kolmogorov/Oboukhov-type turbulence spectrum. This indicates that at
least∼ 10% of the total ICM pressure is in turbulent form (Schuecker et al.2004).

Using the emission line fluxes, abundances of elements like iron, oxygen, and silicon are straightforwardly to
measure in the ICM. Collisional de-excitation is negligible because the ICM is so dilute. Thus, every collisional
excitation produces a photon that leaves the cluster. The observed spectrum can therefore be fitted by a optically-
thin spectrum of a collisionally-ionized, single temperature plasma, while adjusting the abundances in the model
to produce the best fit. Because the most abundant elements are nearly completely ionized in the hottest clusters,
these abundance determinations depend on the strength of the K-shell emission lines of iron, one of the rare lines
which can be measured in these environments. The total amount of iron obtained from these measurements exceeds
the total amount of iron contained within all the stars in the cluster galaxies (Renzini1997) and is comparable to

5Here,µ = 4mp/(3+ 5XH) is the mean particle weight assuming full ionization andXH = 0.76 is the primordial hydrogen mass fraction.

25



Cosmology and cosmic structure formation

the amount of iron produced by all the supernovae that are believed to have exploded during the cluster’s history
(David et al.1991). Supernovae are believed to drive strong galactic winds that enrich the ICM with heavy elements
(Heckman et al.1990). However, hydrodynamical simulation fail in producing these winds, because much of the
energy released by core collapse supernovae is transfered to the cool gas rather than driving a powerful gaseous
outflow (Mac Low & Ferrara1999). Strong galactic winds might be driven by relativistic protons through Parker
instabilities of spiral disks solving theenrichment problemof high iron abundances of the ICM as the study of the
isolated Parker instability suggests (Hanasz & Lesch2003).

3.3.3.3. Sunyaev-Zel’dovich effect

Hot plasma in galaxy clusters can also be observed through its effect on the cosmic microwave background (CMB).
Photons of the CMB experience inverse Compton collisions with thermal electrons of the hot dilute intra-cluster
plasma, an effect predicted bySunyaev & Zel’dovich(1972) (for a comprehensive review, seeBirkinshaw1999).
At the angular position of galaxy clusters, the CMB spectrum is modulated as photons are redistributed from the
low-frequency part of the spectrum below a characteristic crossover frequency to higher frequencies implying a net
energy transfer from the thermal intra-cluster plasma to CMB photons, known as the thermal Sunyaev-Zel’dovich
(SZ) effect. To lowest order, the distorted spectrum can be separated into an universal frequency-dependent function
that is independent of cluster parameters and the amplitude of the frequency modulation. This so-called Compton-y
parameter is proportional to the product of the probability that a photon passing through the cluster will Compton
scatter and the typical energy gain of a scattered photon:

y =

∫
kTe

mec2
neσTdl. (3.51)

The line-of-sight integration extends from the observer to the last scattering surface of the CMB at redshiftz' 1100.
Here,σT denotes the Thompson cross section,me the electron rest mass,Te andne are electron temperature and
thermal electron number density, respectively. The peculiar motion of a cluster with respect to the rest frame of
the CMB produces an additional spectral distortion due to the Doppler effect, called kinetic SZ effect. A detailed
introduction including the relativistic SZ effect will be given in Sect.8.2.

The SZ effect is independent of distances and represents thus an invaluable tool for detecting galaxy clusters out
to very high redshifts which are otherwise not detectable in optical or X-ray surveys. Because not all clusters will
be well resolved, the observables of SZ surveys are the line-of-sight Comptonization integrated over the solid angle
subtended by the cluster or the beam, whichever shows the small angular extent,Y =

∫
ydA ∝

∫
nekTedV. Thus,

the Y parameter is a measure of the total thermal energy within a cluster. Additionally, the study of the cluster’s
outskirts greatly benefits from the fact that the thermal SZ effect depends on the thermal pressure rather than the
density squared in the case of X-ray emissivity. Combining maps of the SZ effect, the X-ray surface brightness,
and from gravitational lensing, it might be possible to reconstruct the three-dimensional appearance of the cluster
(Zaroubi et al.2001). So far, the SZ effect has only been exploited for cosmological purposes while we propose
to use high-resolution SZ observations to unveil the still unknown dynamically dominant component of the radio
plasma bubbles within cool cluster cores in Chapter8.

3.3.3.4. Non-thermal emission processes

In the previous three sections, techniques for inferring the dark matter, baryonic, and turbulent content of clusters
were presented while non-thermal radiation provides completely complementary information to these components.
CR electrons within the ICM have two preferred emission mechanisms: (i) their gyro motion around magnetic
field lines generates diffuse radio synchrotron radiation and (ii) through inverse Compton collisions with photons
of the ambient starlight and the CMB, CR electrons are able to up-scatter these photons into the wave band ranging
from extreme ultra-violet (EUV) to the hard X-ray band. Observables in the radio band include the radio surface
brightness of a cluster, revealing a combination of the energy density of CR electrons and the magnetic field,
and the spectral index inferred from multi-frequency radio observations that traces the underlying CR electron
population. In contrast, inverse Compton emission reveals a cleaner signature of the CR electron population which
is not confused by magnetic fields. Combining these two emission processes unveils the energy density of the intra-
cluster magnetic field. An upper limit on the inverse Compton emission in combination with observed synchrotron
emission translates into a lower limit of the magnetic field strength.
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3.3.3 Multi-frequency observations of clusters

Diffuse extended radio synchrotron emission that cannot be attributed to individual galaxies in a galaxy cluster
is termed radio halo and shows a similar morphology compared to the thermal X-ray emission (e.g.,Kim et al.
1989, Giovannini et al.1993, Deiss et al.1997, Giovannini et al.1999, Liang et al.2000) while there are smaller
counterparts named radio mini-halos (e.g.,Pedlar et al.1990). In addition, there have been extended radio relics
observed in the cluster periphery (e.g.,Röttgering et al.1997) which may well coincide with merger shock waves
running into the shallower gravitational potential in the cluster outskirts as proposed byEnßlin et al.(1998) and
successfully reproduced in a simulation of this process byRoettiger et al.(1999). A taxonomy of particle accelera-
tion processes leading to these radio appearances will be given in Sect.6.1. It has been recognized that radio halos
in galaxy clusters are preferentially associated with massive (LX > 0.5× 1045 erg s−1) clusters that are experiencing
violent mergers and have a seriously disrupted cluster core, as indicated by substructure in the X-ray images and
temperature maps (seeFeretti1999, and references therein). The association of radio halos with clusters currently
experiencing the largest departures from a virialized state may account for both the vital role of mergers in accel-
erating the relativistic particles responsible for the radio emission as well as the rare occurrence of radio halos in
cluster samples (Buote2001). Based on these observations,Enßlin & Röttgering(2002) developed a redshift de-
pendent radio halo luminosity function and predicted large numbers of radio halos to be detected with future radio
telescopes.

Some clusters have also been reported to exhibit an excess EUV/hard X-ray emission compared to the expected
thermal bremsstrahlung of the hot ICM (Lieu et al.1996, Fusco-Femiano et al.1999, Sanders et al.2005). This
emission is most probably produced by inverse Compton up-scattering of CMB photons by relativistic electrons
according to the formulaνIC = νinitγ

2
CRe4/3 (Hwang1997, Enßlin & Biermann1998, Enßlin et al.1999). Here,νinit

denotes the initial frequency of the photon which gets up-scattered to the final frequencyνIC by a CR electron of
Lorentz factorγCRe. ‘Mildly’ relativistic CR electrons (γe ' 100− 300) are injected over cosmological timescales
into the ICM and have a comparably long lifetimes of a few times 109 years (seeSarazin2002, and references
therein) that predestines them to be responsible for the excess EUV emission. Less energetic CR electrons suffer
from efficient Coulomb losses while more energetic CR electrons loose their energy on much shorter timescales
due to inverse Compton/synchrotron losses. It has been proposed that a fraction of the diffuse cosmologicalγ-ray
background radiation originates from the same inverse Compton processes of higher energetic electrons which are
freshly accelerated at shock waves (Loeb & Waxman2000, Miniati 2002, Reimer et al.2003, Berrington & Dermer
2003, Kuo et al.2005).

A different piece of evidence for magnetic fields comes from Faraday rotation which arises owing to the bire-
fringence of magnetized plasma causing the plane of polarization to rotate for a nonzero magnetic field component
along the propagation direction of the photons (Clarke et al.2001). Although this methods yields reliable magnetic
field strength, it is only applicable within finite windows given by the extent of the sources emitting polarized radia-
tion. To date, the most sophisticated methods use a maximum likelihood estimator for the derivation of the magnetic
power spectra (Vogt & Enßlin2005) which is based on the theory of turbulent Faraday screens (Enßlin & Vogt2003,
Vogt & Enßlin2003) yielding self-consistently the magnetic field strength and the magnetic autocorrelation length.
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Coma cluster Perseus cluster

Figure 3.3.: Comparison of thermal X-ray emission and radio synchrotron emission of two prominent galaxy clusters, the
Coma cluster (left panels) and the Perseus cluster (right panels). Theupper panelsshow the X-ray emission and thelower
panelsshow the radio synchrotron emission. The Coma cluster is characterized by the merging of the larger, brighter
central cluster and the fainter group of galaxies to the lower right (the field is∼ 2.5◦ × 2.5◦ in both cases). The image of
the Perseus cluster shows the cluster core region (6× 6 arcmin2 for the X-ray map, 9× 9 arcmin2 for the radio map). The
bright yellow spot in the center of the X-ray map is due to accreting plasma onto a giant black hole in the nucleus of the
central galaxy. The twin dark cavities are thought to be buoyant magnetized bubbles of relativistic particles produced by
energy released from the vicinity of the black hole (for the origin of the radio synchrotron emission, refer to Chapter6).
(Credit: Coma/X-ray: ROSAT/MPE/Snowden, Perseus/X-ray: NASA/IoA/Fabian et al., Coma/radio: Deiss/Effelsberg, Perseus/radio: Pedlar/VLA).

28



4. Cosmic ray physics

Abstract

This thesis exclusively studies extragalactic cosmic rays whose proton and nuclear component is little known. Galactic cosmic
rays are much better studied, however, numerous fundamental questions are still open, almost 100 years after their discovery by
Hess. This chapter presents an overview of the physics of cosmic rays. After introducing basic physical concepts of cosmic rays,
observational properties and theories about the origin of galactic cosmic rays are discussed in Sect.4.1. In the following, non-
thermal emission processes are introduced in Sect.4.2 including synchrotron radiation and inverse Compton emission. Finally,
the hadronic physics of inelastic cosmic ray collisions leading to pion decay inducedγ-ray emission is presented in Sect.4.3.

4.1. Galactic cosmic rays

Cosmic rays (CRs) were discovered byHess(1912) and realized to originate outside the Earth. The Earth’s magnetic
field acts on energetic particles according to their charge and affects them differently coming from east or west, thus
proving that the majority of CRs are charged particles. The energy spectrum of highly energetic CRs from 1010 eV
(where the magnetic field of the Sun is no longer a concern) up to 1020 eV is well represented by a piecewise
power-law indicating that CR particles are produced in non-thermal processes. In contrast, on extragalactic scales
in the inter-galactic medium, there is hardly anything known about these non-thermal components because the
energetically dominant CRs below 1016 eV are trapped by cluster magnetic fields and can only be observed indirectly
through non-thermal radiative processes. This section is intended to give a short overview of the most important
observational findings and physical concepts which are the guiding lines for the further course of the thesis (for an
excellent introduction in this field, seeSchlickeiser(2002) or Lemoine & Sigl(2001)).

4.1.1. Physical concepts

4.1.1.1. Transport of cosmic rays

Consider a spatial random coordinatex(t) of a CR particle diffusing in a fluid of bulk velocityv. For simplicity,
we restrict ourselves to the one-dimensional case. During a time interval which is much shorter compared to the
diffusion time, the particle’s position varies by∆x = v∆t + δx. The first contribution is due to the bulk motion of the
scattering medium and the second term is due to the random walk diffusion with vanishing mean and the variance
〈δx2〉 = 2D(x, p)∆t, whereD(x, p) denotes the diffusion coefficient. The distribution of galactic CRs is governed by
a competition between injection, escape, energy gain (acceleration), and energy loss (catastrophic and continuous)
processes. The transport equation which describes the balance of these processes is a Fokker-Planck type equation
that includes the description of fluid motions, radiative losses, and phase space diffusion. It can be obtained by
considering the collisionless Boltzmann equation and working out the magneto-hydrodynamic forces acting on a
CR particle including the Lorentz force as well as pitch angle scattering on hydro-magnetic waves (Skilling 1975).
The transport equation governs the evolution of the isotropic partf (x, p) of the CR distribution function in phase
space, assuming weak anisotropy of the CR momentum distribution function:

∂

∂t
f +
∂

∂x
v(x, p) f = −

1
p2

∂

∂p
p2A(x, p) f +

1
p2

∂

∂p
p2Γ(x, p)

∂

∂p
f +
∂

∂x
D(x, p)

∂

∂x
f + s(x, p). (4.1)

The distribution is normalized such that the number density of CRsnCR =
∫

f 4πp2dp. The ‘friction’ term A
describes not only various kinds of energy losses but also the energy gain by first order processes inβ ≡ v/c
(adopting relativistic particles), the second contribution on the right-hand side describes the energy gain through
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the second order Fermi process, the third term on the right-hand side describes spatial diffusion, and the last term
accounts for sources such as freshly injected CR particles at shocks whose origin can be understood by means of
plasma physical calculations. The physical meaning of these processes will be sketched in the following:

• Synchrotron and inverse Compton losses.A relativistic charged particle of a Lorentz factorγ = (1−β2)−1/2

experiences Compton scattering with either real or virtual photons (which represent the magnetic field in
the case of synchrotron radiation). This causes the particle to emit photons in the forward direction into a
narrow cone of half-angleγ−1 with respect to its momentum leading to an energy loss which can effectively
be described by a friction force in opposite direction to its momentum:

Arad ≡
〈∆p〉
∆t

∣∣∣∣∣
rad
= −

4
3
σT

(me

m

)2
(εB + εph)γ

2, (4.2)

whereσT denotes the Thompson cross section,εB = B2/(8π) andεph are the energy densities of the magnetic
field (responsible for synchrotron losses) and the low energy photon field (causing the Compton effect in the
Thompson regime). The radiative losses of baryons are suppressed by (me/m)2 such that they can be neglected
unless they are ultra-high energetic CRs with energies& 1018 eV.

• First order Fermi process. The contribution of the first order Fermi process can be described by a non
inertial entrainment due to the deceleration of the scattering medium: a compressed flow (∇ · u < 0) produces
first order acceleration of charged particles. In this situation, the inertial force isF j = −pi(∂v j/∂xi) that gives
rise to an accelerating power

Pacc= −〈v j pi〉
∂v j

∂xi
= −

pv
3
∇ · u → Aacc= −

p
3
∂v

∂x
. (4.3)

• Second order Fermi process.Charged particles gyrate around, and travel slowly along magnetic field lines.
Occasionally, they get scattered on magnetic irregularities and plasma waves (mostly Alfvén waves). This
scattering process can be described by a random walk of the particle’s pitch angle with the magnetic field
direction,θ, yielding the characteristic variance〈δµ2〉 ∝ νs∆t whereνs denotes the average scattering fre-
quency andµ = cosθ. Because the particle scatters off moving targets, the particle systematically gains
energy through random variations of the CR momentumδp = ±βA pδµ whereβA = vA/c is the dimensionless
Alfvén velocity in the case of scattering Alfvén waves. The second order Fermi process is thus described by
a diffusion process in momentum space with the momentum diffusion coefficient

Γ ≡
〈δp2〉

2∆t
∼ β2

Aνsp2. (4.4)

• Diffusive losses from the disk.CRs experience momentum dependent diffusion in a turbulent magnetic
field with a Kolmogorov-type spectrum on small scales. This process leads to a loss time scale which is
proportional top−1/3. In an equilibrium situation, this results in a steepening of the observed spectrum within
the disc byp−1/3 relative to the injected spectrum.

• Radioactive decay.The observed isotope ratios resulting from radioactive decay provide a clock for cosmic
ray transport and yields the time scale of diffusive losses from the disk. For any given isotope, radioactive
decay can be a loss or a gain process in the equation of balance.

• Coulomb and ionization lossesare strongest for protons or heavier nuclei, but also relevant for electrons. The
ionization process limits the lower energy of the proton spectrum to approximately 50 MeV after traversing
a path length through most of the interstellar medium (Nath & Biermann1994). Energetic CRs experience
energy losses even within an ionized medium through Coulomb interactions. Coulomb losses efficiently
remove the low-energetic part of the injected CR spectrum on a short timescale and redistribute these particles
and their energy into the thermal pool.

• Catastrophic losses.Another loss process is the inelastic reaction of CR nuclei with atoms and molecules
of the interstellar medium. The CR protons interact hadronically with the ambient thermal gas and produce
mainly neutral and charged pions, provided their momentum exceeds the kinematic threshold of 0.78 GeV for
the reaction. The neutral pions successively decay intoγ-rays while the charged pions decay into secondary
electrons and neutrinos.
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• Spallation. Spallation describes the destruction of atomic nuclei in a collision with a CR particle that is
in most cases a proton or an alpha particle. In this destruction process, many pieces of debris are formed
where commonly a single nucleon gets stripped and a distribution of lighter nuclei is obtained. Since the
abundances of the elements Lithium, Beryllium, and Boron are much larger in CRs than in the interstellar
medium, spallation processes are assumed to account for the origin of these elements. For any specific
isotope, spallation can again occur as a loss or a gain process in the equation of balance.

4.1.1.2. Cosmic ray acceleration

The CR spectrum obeys a piecewise power-law which is referred to as their non-thermal property. The most suc-
cessful theory in explaining this behavior describes the acceleration of energetic particles at shock waves traversing
magnetized plasma. The original idea dates back toFermi(1949) and was modified in the context of astrophysical
shocks in the late seventies by several authors (Krimsky 1977, Bell 1978b, Blandford & Ostriker1978).

Fermi’s original theory Fermi realized that CRs gain energy when scattering off magnetized clouds of gas
moving through the interstellar medium at velocityv. Entering the cloud, a CR ion scatters offmagnetic irregularities
in the magnetic field which is tied to the partly ionized gas. Magnetic irregularities are ubiquitous in a plasma that
gets stirred by stellar winds, ionization fronts, supernova explosions, or by energetic particles moving through. In
the rest frame of the cloud: (i) the particle’s energy is conserved because of elastic collisions between the CR and
the cloud as a whole being more massive than the CR; (ii) the direction of the CR is randomized by the scattering
processes and leaves the cloud in a random direction. Performing a Lorentz transformation into the frame of the
cloud and out of it again after taking in account previous considerations yields an energy gain∆E/E ∝ β2 ≡ (v/c)2

that is second order inβ and becauseβ � 1, the average gain is small.

Diffusive shock acceleration Fermi’s original theory was modified to describe the more efficient acceleration
taking place in converging flows such as shock waves. A collisionless shock wave is able to accelerate ions from
the high-energy tail of the Maxwellian through a process calleddiffusive shock acceleration(for reviews seeDrury
1983b, Blandford & Eichler1987, Malkov & Drury 2001). These energetic ions are reflected at magnetic irregu-
larities through magnetic resonances between the gyro-motion and waves in the magnetized plasma and are able to
gain energy in moving back and forth the shock front.

A shock is a transition layer where the mean plasma velocity changes rapidly over a width determined by plasma
physical processes, and in dissipational shocks, most of the incident kinetic energy flux is converted into thermal
energy. It is convenient to describe a shock with respect to its rest frame which we assume to be non-relativistic. The
shock transition layer separates two regions: the velocity field decays from its upstream supersonic valuev1 > cs1

to a subsonic onev2 < cs2, where the indices 1 and 2 refer to theupstream regime(pre-shock regime) in front of the
shock and thedownstream regime(post-shock regime) in the wake of the shock wave, andcs is the sound speed.
The strength of the shock is measured by the Mach numberM = v1/cs1. The Rankine-Hugoniot jump relations
for the density, velocity and pressure can be derived considering the conservation laws of mass, momentum, and
energy:

ρ1v1 = ρ2v2, (4.5)

P1 + ρ1v
2
1 = P2 + ρ2v

2
2, (4.6)

(ε1 + P1) ρ−1
1 +

v21
2
= (ε2 + P2) ρ−1

2 +
v22
2
. (4.7)

whereρ, Pi , andεi denote the density, the pressure, and internal energy density, respectively. The compression ratio
is defined asr ≡ ρ2/ρ1 and can be written for polytropic fluids solely as a function of the Mach number using the
Rankine-Hugoniot jump relations:

r =
γ + 1

γ − 1+ 2/M2
. (4.8)

In a strong shock (M� 1), if the shocked plasma is non-relativistic, the adiabatic indexγ = 5/3 and the compres-
sion ratio approaches 4 while a plasma with relativistic pressure hasγ = 4/3 andr = 7. In the case of a strong
cooling shock wave, the compression ratio can go to infinity. Considering diffusion of the CR pressure or an oblique
magnetic field, the simple jump condition is modified and can develop a precursor.
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An energetic particle that has a higher individual velocity than the plasma flow in the shock frame may be able
to travel against the stream and gets trapped at the shock for a while and thereby experiences this system as a
permanently compressing flow. Thus, particles gain energy in going back and forth the shock front. In one cycle
coming from upstream, scattering downstream, and coming back upstream, particles gain typically an additional
fraction of vsh/c in momentum (assuming relativistic particles). However, due to convection of the flow, the CR
population loses a fractionvsh/c of its members that escape from this process downstream. Compared to Fermi’s
original theory, this is a more efficient acceleration mechanism (1st order inβ) owing to the symmetry breaking
shock front. In the linear regime, this process naturally leads to a CR power-law distribution in particle momentum,
p−α, which joins in a smooth manner into the shock-heated thermal distribution. The general expression for the
spectral index of such a CR population isα = 3r/(r − 1) in three-dimensional phase space. For relativistic particles
the resulting energy distribution is then given byE2−α, a result which will be used frequently in the course of this
thesis.

There is a very esthetical way of deriving the distribution function resulting from diffusive shock acceleration that
uses the cosmic ray transport equation (Blandford & Ostriker1978), which will be presented in the following. We
neglect the second order Fermi process and the radiative losses in the CR transport equation, and assume a sharp
shock transition which means that the shock width is much smaller than the diffusion length of CRs,D(x, p)/v.
Again, we consider a spatial random coordinatex(t) of a CR particle diffusing in a fluid of bulk velocityv. The fluid
velocity is described byv(x) = v1 + (v2 − v1) θ(x) and∂v/∂x = (v2 − v1) δD(x). Assuming this kinematic structure
of the shock implicitly accounts for shock heating through dissipation and acts therefore as a thermodynamical
background model. The stationary solution of the CR distribution function obeys the following transport equation:

v
∂

∂x
f −

1
3
∂v

∂x
p
∂

∂p
f =
∂
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D(x, p)

∂

∂x
f + v1g(p)δD(x). (4.9)

The last term is a special form of the source terms(x, p) that accounts for injection of a CR population at shocks.
This equation describes only the transport of the relativistic particle population over the shock wave while the
distribution of particles in thermal equilibrium constituting the Maxwellian is not explicitly followed and only taken
into consideration through their impact on the background velocity solution which we assume for the moment. The
injected CR distribution functiong(p) is normalized such thatnCR,inj = ηCRnth1 =

∫
g(p)4πp2dp, whereη denotes

the efficiency of CR injection relative to the thermal Maxwellian in the upstream regime. This equation can be
integrated on both sides of the shock front. Convection opposes diffusion ahead of the shock while it is not possible
to balance convection against diffusion behind the shock when neglecting loss processes and accounting for particle
acceleration through diffusive shock acceleration at the shock front. The only possible solution in this regime is a
spatially constant distribution function:

f (x, p) =

 f1(p) + [ f2(p) − f1(p)] exp

[
−
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]
, x < 0

f2(p), x > 0
, (4.10)

with f1(p) = f (−∞, p) and f2(p) = f (∞, p) = f (0, p). The distribution function exponentially decreases from the
shock front into the upstream regime over a diffusion lengthD1/v1. In particular, the relativistic pressure exponen-
tially decreases into the upstream regime and generates a precursor. The flux of particles at a given momentum must
be continuous. The continuity condition is obtained by rewriting the transport equation (4.9), yielding
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The continuity condition follows from integrating the transport equation and requiring the continuity off . There-
fore, the quantity in square brackets, which is the flux at a given momentum, must be continuous at the shock front.
Joining the solution left- and rightwards of the shock (Eqn. (4.10)) and using the continuity condition of Eqn. (4.11),
we obtain a differential equation for the transmitted distribution functionf2(p),

∂ f2
∂ ln p
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3r

r − 1
[
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]
→ f2(p) = αp−α

∫ p
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]
p′α−1, (4.12)

with the characteristic spectral indexα ≡ 3r/(r−1). The distribution function of the accelerated CR population is in-
dependent of the functional form ofD(x, p) as long as it is positive. The CR power-law is governed only by the kine-
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matic structure of the shock front, i.e. the compression ratior at the shock, and does not depend on the incident ki-
netic energy flux. However, the transmitted distribution functionf2 depends on the functional form of the initial CR
distribution functionf1 in the upstream regime and the injected CR populationg(p). As simple example, consider
no pre-existing CR distribution and a narrow injection in momentum space,g(p) = ηCRnth1δD(p− pinj)/(4πp2

inj).
The resulting CR population obeys a power-law in momentum:

f2(p) =
α ηCRnth1

4πp3
inj

(
p

pinj

)−α
θ(p− pinj). (4.13)

The presented model mimics the necessary requirements for diffusive shock acceleration of energetic particles: the
particle’s effective velocity component parallel to the shock normal has to be larger than the velocity of the shock
wave and its energy has to be large enough to escape the “trapping” process by Alfvén waves being generated
in the downstream turbulence (Malkov & Völk 1995, Malkov & Völk 1998). Thus, only particles of the high-
energy tail of the Maxwellian are able to return to the upstream shock regime in order to become accelerated.
The complicated detailed physical processes of the specific underlying acceleration mechanism are conveniently
compressed into a few parameters (Jones & Kang1993, Berezhko et al.1994, Kang & Jones1995), one of which
defines the momentum threshold for the particles of the thermal distribution to be accelerated,pinj = xinj pth =

xinj [2 kT2/(mpc2)]1/2. Theoretical studies of shock acceleration at galactic supernova remnants suggestxinj ∼ 3.5
implying an particle injection efficiency ofηCR ∼ 10−4 (Drury et al.1989, Jones & Kang1993, Berezhko et al.1994,
Kang & Jones1995, Malkov & Völk 1995).

4.1.2. Observational properties of galactic cosmic rays

4.1.2.1. Our Galaxy and the interstellar medium

Our Galaxy is a spiral galaxy which is characterized by a disc of stars and gas, mixed with interstellar dust, and
embedded into a spheroidal halo of old stars. The age of the system is about 13 billion years and the extent of the
disc is about 30 kpc across. The very center hosts a supermassive black hole with a mass of 3.7× 106M� (Schödel
et al. 2002). In the outer parts, the mass of the Galaxy is dominated by dark matter while the innermost part is
dominated by baryonic matter. The mass ratio of dark matter to stars to interstellar matter in our Galaxy is about
100:10:1.

The gas in between the stars is composed of hot plasma (∼ 0.3 keV), various stages of cooler gas including
molecular clouds, dust, CRs, and magnetic fields (Snowden et al.1997, Valinia & Marshall1998, Pietz et al.1998).
All three components, gas, magnetic fields, and CR protons are in equipartition with an energy density of about 1
eV per cm3, which is similar to the energy density of the CMB,εCMB ' 0.1 eV per cm3. The average density of
neutral hydrogen gas with temperatures of a few 103 K is about 1 particle per cm3 which is distributed in a disc of
scale height∼ 100 pc. In contrast, the hotter gas extends further from the symmetry plane, about 2 kpc on either
side. From the ratio of radioactive isotopes resulting from spallation to stable isotopes, the transport time of CRs at
1 GeV can be deduced to be 3× 107 years.

The magnetic field in our Galaxy has a total strength of 6µG in the solar neighborhood, slightly increasing
towards the center. Less than half of the total magnetic field strength is arranged in a regular component showing
a circular ring-like pattern. Other spiral galaxies show that the underlying symmetry follows the structure of the
spiral arms. On smaller scales, there are occasional field reversals which are still parallel to the circle around the
center. Finally, at scales smaller than the scale height of the hot disk, the magnetic field can be described by a
Kolmogorov turbulence spectrum (Goldstein et al.1995). The magnetic field is regenerated at a time scale less or
equal to the rotational timescale, with circumstantial evidence suggesting that is happens at a few times 107 years.
This again coincides with the time scale at which CRs diffuse out of the disc. It is yet unclear which processes drive
this galactic system towards equipartition.

4.1.2.2. Energy spectrum of cosmic rays

The solar wind prevents low energetic charged particles from reaching the inner solar system due to interactions
with the magnetic field in the solar wind which acts effectively as a mirror. The solar wind is a steady stream of
magnetized plasma which the Sun emits into all directions and which is responsible for our being unable to observe
directly interstellar energetic particles of energies. 300 MeV. For protons above 10 GeV – or other nuclei of the
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Figure 4.1.: The CR all-particle spectrum observed by different experiments above 1011 eV (from Wiebel-Sooth & Bier-
mann1998). The differential flux was multiplied withE2.75 to project out the steeply falling character. The “knee” can be
seen at 4× 1015 eV, the “second knee” at 3× 1017 eV, and the “ankle” at 5× 1018 eV.

same energy to charge ratio – the effect of the solar wind becomes negligible. Charged energetic particles gyrate
around the magnetic field of our Galaxy with the radius of gyration, called Larmor radius which is proportional to
the momentum of the particle perpendicular to the magnetic field direction,p⊥:

rL ≡
p⊥c
ZeB

' 2Z−1
( E
10 GeV

) ( B
µG

)−1

AU, (4.14)

whereZ denotes the charge number of the nuclei andB the strength of the magnetic field. This shows that a charged
particle of 10 GeV within aµG magnetic field has a Larmor radius which is twice the Earth’s orbit around the Sun
and proves the negligible effect of the solar wind on these particles. Highly relativistic particles above 3× 1018 eV
per unitZ cannot gyrate in the disk of the Galaxy, their Larmor radius is larger than the thickness of the disk. These
particles must originate outside the Galaxy, and indeed at that energy there is evidence for a change both in chemical
composition and in the slope of the spectrum.

The energies of directly observable CRs range from a few hundred MeV to 3× 1020 eV and the integral flux
ranges from 0.1 particle per m2, per s, per steradian, at 1 TeV per unitZ up to 1 particle per km2, per steradian, and
per century around 1020 eV, a decrease by a factor of 3× 10−15 in integral flux. The spectrum corresponds to the
differential flux and is defined as the number of particles at a certain energyE within an infinitesimal energy interval
dE. The CR spectrum is shown in Fig.4.1. CRs have a spectrum nearE−2.7 up to the knee, at about 4× 1015 eV,
and then aboutE−3.1 beyond, up to the ankle, at about 5× 1018 eV, beyond which the spectrum becomes hard to
quantify, but can be described approximately byE−2.7 again. There is no other strong feature in the spectrum,
especially no signature of a cutoff at the upper end as predicted byGreisen(1966) andZatsepin & Kuzmin(1966)
(see Sect.4.1.3.3). There is limited evidence from the newest experiments (AGASA and HiRes) for asecond knee
at 3× 1017 eV, where the spectrum appears to dip. Both the first and the second knee may be at an energy which is
proportional to charge, i.e. at a constant Larmor radius, and therefore may imply a range in energies. The fraction
of heavy elements seems to continuously increase towards and beyond the knee to the ankle where the composition
appears to become light again, i.e. there is a transition to protons and alpha particles. These measurements support
the previous considerations. CR electrons have a spectrum which is similar to that of protons below 10 GeV as
inferred from radio synchrotron emission. Relative to the CR protons, CR electrons are however suppressed by a
factor of 100. The CR electron spectrum steepens toE−3.3 above this energy which can be measured directly.
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4.1.3. Origin of galactic cosmic rays – theories

4.1.3.1. Injection and acceleration

The problem of the CR origin can be naturally subdivided into two complexes, the injection and the successive
acceleration of CRs. There are three different theories explaining the injection of the CR abundances which need to
describe both their spatial distribution and the observed peculiar abundances of CRs compared to those of the inter-
stellar medium: Hydrogen and Helium are less abundant in CRs than in the interstellar medium. The abundances
of the elements Lithium, Beryllium, and Boron very much larger in CRs compared to the interstellar medium, by
several orders of magnitudes. The abundances of the CR sub-Iron elements are also larger than in the interstellar
medium relative to Iron as are the abundances of odd-Z elements. The theories for the CR injection are outlined in
the following: (i) low mass stars accelerate selectively elements in their coronal activity to supra-thermal energies
that are injected into the interstellar medium (Shapiro1999). (ii) Using the observed similarity of the chemical
abundances of dust and CRs,Meyer et al.(1997) andRamaty et al.(1997) suggest the injection of CRs by ionized
dust particles such that the selection effects and the sites of dust formation govern the final CR distribution. (iii)
The third model hypothesizes CR injection from stellar winds of heavy stars by analogy with the solar wind and
explains selection effects by more efficient injection of doubly-ionized elements.

The idea of using supernova shock waves to accelerate CRs has been proposed long ago byBaade & Zwicky
(1934). The standard theory suggests that CR particles were accelerated through diffusive shock acceleration in
supernova shock waves which sweep up the powerful magnetized stellar winds of the predecessor stars until they
run into the ambient interstellar medium. This theory is able to explain the acceleration of particles up to energies at
the ankle at about 3× 1018 eV. The knee is explained as being due to a decrease of the acceleration efficiency once
the Larmor radius of the accelerated particles matches the spatial extent of the shocked shell expanding into the
stellar wind. CRs at these energies cannot be sufficiently isotropized and confined in the downstream regime of the
shock which leads to an increase of their escape probability into the interstellar medium. The spatial constraint of
this acceleration process predicts a maximum energy per charge, or rigidity, which naturally explains the observed
transition towards heavier CR element composition at energies beyond the knee. Highly energetic electrons have
been directly observed in supernova shocks through their synchrotron and inverse Compton emission up to TeV
γ-rays (Aharonian et al.2004). Although CR protons are by a factor of about 100 more abundant than electrons at
1 GeV, the theory of CR proton acceleration has not been proven directly through observations and has to draw an
analogy to the electron acceleration.

4.1.3.2. Transport in the Galaxy

Galactic CRs are injected from their sources with a certain spectrum. In the interstellar medium, these energetic
particles are diffusively transported within turbulent magnetic fields with a Kolmogorov-type spectrum on small
scales, interacting constantly with matter, magnetic fields and photon fields. On their way to the observer, they
have a certain escape probability from the hot galactic disk which increases with momentum. As a consequence
their spectrum steepens in an equilibrium situation byE−1/3, compared to the injected spectrum. Along this line
of argumentation, one deduces from the observed CR spectrum ofE−2.7 the injection spectrum ofE−2.3 without
taking re-acceleration into account. Synchrotron and inverse Compton losses are the dominant loss processes of
the CR electron spectrum above 10 GeV which leads to a steepening by unity. The observed electron spectrum at
these energies ofE−3.3 implies again an injection spectrum ofE−2.3, thus providing an important consistency check.
Radio observations in various locations of our Galaxy and other galaxies show consistency with the expectation
that the average spectrum in the energy range above GeV is universal. During their travel inside the Galaxy, the
CR protons interact hadronically with the ambient interstellar medium and produce mainly neutral and charged
pions. The neutral pions successively decay intoγ-rays while the charged pions decay into secondary electrons and
neutrinos. Future observations of thisγ-ray emission will certainly provide clean signatures on this aspect of CRs.

4.1.3.3. Cosmic rays above the ankle of the spectrum

After the discovery of the CMB, it was realized byGreisen(1966) andZatsepin & Kuzmin(1966) that a CR proton
above the energy of 5×1019 eV should suffer strong losses from its interaction with the CMB: in such an interaction,
the CMB photon has an energy above the pion’s rest mass as seen from the reference frame of the a relativistic proton
which leads to the production of a pion. This collision leads to an energy loss of the CR proton of 20% about every
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∼ 6 Mpc in the observer’s frame. Assuming a cosmological distribution of sources for protons at extreme energies,
the observed CR spectrum at the Earth is predicted to show a sharp cutoff at 5× 1019 eV, the GZK-cutoff. On the
basis of the limited event statistics, the cutoff is not observed leading to many speculations about the nature and the
origin of particles beyond the GZK-energy.

Cosmic rays between the ankle and the expected GZK-cutoff are readily explained by many possible sources,
mostly of extragalactic origin. The only exception are galactic pulsars, especially those with very high magnetic
fields, called magnetars, which are thought to accelerate charged particles to energies of 1021 eV. While this sce-
nario would naturally circumvent the GZK-cutoff, it shows severe problems when accounting for adiabatic losses
of the particles’ transport from close to the pulsar out to the interstellar medium and it predicts a highly anisotropic
distribution on the sky given the strength of the galactic magnetic field. Another scenario areγ-ray bursts at cosmo-
logical distances which are able to produce these energetic particles in their relativistic outflows (seeWaxman2000,
for a review). Yet another theory proposes the acceleration of highly energetic particles through diffusive shock
acceleration at structure formation shock waves which propagate through the cosmic tenuous plasma (Kang et al.
1996). These shock waves dissipate gravitational energy associated with hierarchical clustering into thermal energy
of the inter-galactic medium and have scales of many tens of Mpc, and shock velocities of∼ 1000 km/s. However,
the maximum energies of the accelerated CRs can hardly reach the energy of the GZK cutoff making a strong con-
tribution to the overall flux unlikely. The most conventional explanation are radio galaxies which drive powerful
relativistic outflows that interact strongly with the intergalactic medium in so-calledhot spots. These hot spots are
giant shock waves with sizes up to a few tens of kpc. Integrating over all known radio galaxies explains flux, spec-
trum as well as the chemical composition of CRs in this energy range (Hillas 1984, Biermann & Strittmatter1987,
Rachen et al.1993).

4.2. Non-thermal emission processes

The continuum emission processes of non-thermal particle populations extend over wide ranges of the electromag-
netic spectrum, from the radio to the high-energyγ-ray region. Overall, the continuum spectrum shows a complex
shape, but it can be approximated by a simple power-law form over wide wavelength intervals. In the inter-galactic
medium, CRs are only observable through their non-thermal emission processes because the energetically dominant
CR component below 1016 eV is trapped by cluster magnetic fields. This fact emphasizes the importance of these
radiative processes within extra-galactic cosmic ray physics. The discussion of emission processes will be brief in
this section, and the emphasis lies on presenting underlying concepts and summarizing important results rather than
extensive derivations (for excellent books on this topics, seeJackson1975, Rybicki & Lightman1979).

4.2.1. Synchrotron radiation

The motion of a charged particle in a magnetic fieldB is described in classical electro-dynamics by the Lorentz
force

d
dt

(γmu) =
Ze
c

(u × B). (4.15)

The acceleration du/(dt) is normal to the velocity implying a constant magnitudev of the velocity and thus a constant
Lorentz factorγ. Because there is no force acting on the charged particle in the direction of the magnetic fieldB,
the component of the velocity parallel to it,u‖, is constant. It follows that the velocity component normal to the
magnetic fieldv⊥ = (v2 − v2

‖
)1/2 is also constant. Thus, the particle moves in a helix with its axis parallel to the

magnetic field. The frequency of the projected orbit on a plane normal toB is calledgyration frequency:

νg =
ZeB

2πγmc
. (4.16)

In the following, we only consider electrons because the synchrotron radiation of protons is suppressed bym2
e/m

2.
A non-relativistic electron (γ ' 1) emitscyclotron radiationat the frequencyνg = eB/(2πmec) in a dipolar spatial
pattern with the symmetry axis perpendicular to the acceleration direction. As we increase the electron’s velocity
in a thought experiment, the higher harmonics ofνg start to contribute to the electron spectrum with a strength that
depends onβ = v/c. At relativistic velocities, asγ increases, the gyration frequency decreases according toνg ∝ γ

−1.
Because of beaming effects of relativistic particles, the emitted radiation is concentrated in the forward direction
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into a narrow cone of half-angleγ−1 with respect to the electron’s momentum. As the electron gyrates around the
magnetic field, an observer whose line-of-sight intersects the radiation cone sees a sequence of pulses with a period
equal to the Doppler shifted gyration frequencyν′g = νg/(1− β cos2 θ) ' νg/ sin2 θ, whereθ denotes the pitch angle
between the particle’s momentum and the magnetic field. The width of the pulse is given by the time taken by the
cone to cross the observer’s line-of-sight,∆t = 1/(2πγ3νg sinθ), assuming highly relativistic particles. The observed
frequency spectrum consists of a series of peaks atν′g and its higher harmonics, with a cutoff at ∼ 1/(2π∆t). For
highly relativistic electrons, the harmonics are closely spaced, and in addition, they are broadened when considering
an ensemble of CR electrons owing to the distribution ofγ and an isotropic pitch angle distribution. The resulting
spectrum appears to be continuous and has a maximum at thecritical frequency

νc =
3eBsinθ
4πmec

(
E

mec2

)2

= 1.6×

(
B⊥

1µG

) ( E
10 GeV

)2

GHz. (4.17)

The emitted power, i.e. the energy emitted per unit time and per unit frequency interval as a function of frequency
can be obtained from the Fourier transform of the electric field of synchrotron pulses, yielding

Psync(E, ν) =

√
3e3Bsinθ

mec2
F

(
ν

νc

)
, with F(x) = x

∫ ∞

x
K5/3(ξ)dξ, (4.18)

whereK5/3(ξ) is the modified Bessel function of order 5/3. The total power emitted at all frequencies is obtained by
integratingPsync(E, ν) overν and over an isotropic distribution function of the pitch angle,f (θ) dθ = dΩ(θ)/(4π) =
sinθ dθ/2:

Psync=
4
3
σTcβ2γ2εB. (4.19)

Consider an ensemble of CR electrons with energy in the range (E1,E2) and assuming their number density to be
distributed according to a power-law as motivated by diffusive shock acceleration:

n(E)dE = CE−αedE. (4.20)

The power emitted by electrons as a function of frequency of the emitted radiation peaks at the critical frequency
given by Eqn. (4.17) and reads

Psync(ν) =
∫ E2

E1

P(E, ν)n(E)dE =

√
3e3

2mec2

(
3e

4πm3
ec5

)αν
C(Bsinθ)αν+1ν−ανG

(
ν

ν1
,
ν

ν2
, p

)
, (4.21)

whereαν = (αe − 1)/2, ν1 andν2 are the critical frequencies corresponding to the energiesE1 andE2, respectively.
In general, the functionG(x1, x2, p) depends on frequency while this dependency can be relaxed in the case of
ν1 � ν � ν2:

G(x1, x2, p) =
∫ x1

x2

x(αe−3)/2F(x)dx → G(0,∞, p) =
2(αe−3)/2

3

(
3αe + 7
αe + 1

)
Γ

(
3αe − 1

12

)
Γ

(
3αe + 7

12

)
, (4.22)

whereF(x) is defined by Eqn. (4.18) andΓ is the usual gamma function. Thus, in this case the emitted spectrum has
a very simple power-law form,Psync(ν) ∝ ν−αν , while the energy spectrum has to depart from this pure power-law
behavior at the endpoints.

For an isotropic distribution of particles and orientations of magnetic fields, the averaged emitted power into all
spatial directions is obtained by integration, using the isotropic distribution function of the pitch angle:

1
√

π

∫ π

0
(sinθ)k sinθdθ = Γ

(
k+ 2

2

)
Γ

(
k+ 3

2

)−1

. (4.23)

This results in a replacement of the factor (sinθ)αν+1 in Eqn. (4.21) by

√
π

2
Γ

(
αe + 5

4

)
Γ

(
αe + 7

4

)−1

. (4.24)
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4.2.2. Inverse Compton emission

The interaction of an electron with electromagnetic radiation can be seen as the scattering of photons by electrons
where energy and momentum are exchanged between the interacting particles. An electron at rest that scatters a
photon gains energy in this process by acquiring the recoil velocity to satisfy momentum conservation. Accordingly,
the photon loses this energy as its wavelength is increased, giving rise to theCompton effect. Using the conservation
of relativistic four-momentum, one obtains

E1 =
E

1+
E

mec2
(1− cosθ)

, (4.25)

whereE andE1 indicate the energies of the incident and the scattered photon respectively, andθ is the angle be-
tween the incident and the scattered directions. The differential cross-section for Compton scattering of unpolarized
radiation, obtained by using quantum electrodynamics, is given by the Klein-Nishina formula

dσKN

dΩ
=

r2
0

2

(E1

E

)2 (
E
E1
+

E1

E
− sin2 θ

)
, (4.26)

wherer0 = e2/(mec2) denotes the classical electron radius. When the scattering electron is already moving, energy
can pass either from the electron to the photon or vice versa, depending upon the kinematical details of the collision.
The process is calledinverse Compton scatteringwhen a photons gains energy. Generally, the expression for the
change in photon energy is very complex (Felten & Morrison1966) while useful approximations can be obtained
considering Lorentz transformations.

Consider a Compton collision between a photon of energyE and an electron with a Lorentz factorγ in the
observer’s frameΣ. We perform now a Lorentz transformation into the electron’s rest frameΣ′. Energy transforms
as the time component of the energy-momentum four-vector, so that the photon energyE′ in the frameΣ′ before
scattering is given byE′ = γE(1 − β cosθ), whereθ is the angle between the incident electron and the photon
direction in the observer’s frameΣ. Thus, in the electron’s rest frameΣ′, the photon scatters with an energyE′ ' γE
for all but very small angles. If the photon has negligible energy inΣ′, i.e.E′ � mec2, the interaction can be treated
in the Thompson limitwhich is characterized by elastic scattering of the photon:E′1 ' E′. After transforming
back into the observer’s frame, usingE1 = γE′1(1 + β cosθ′1), the energy of the scattered photon inΣ is given by
E1 ' γ

2E. The energy of the inverse Compton scattered photon is therefore increased by a factorγ2, which can be
very large for highly relativistic electrons. However, this approximation is only valid if the fraction of energy lost
by the electron in a single collisionγ2E/(γmec2) � 1.

The emitted power of Compton scattering generated by a single electron in an optically thin medium, such that
photons undergo a single scattering event before they are escaping from the source, is given by

PComp=
4
3
σTcβ2γ2εph. (4.27)

The total number of incident photons per unit time iscσTnph, wherenph = εph/〈E〉 and〈E〉 is the average incident
photon energy. The average energy of the scattered photons forβ ' 1 is therefore〈E1〉 = 4/3 ·γ2E. One realizes the
similarity of the synchrotron power in Eqn. (4.19) to the power of Compton scattering in Eqn. (4.27): PComp/Psync=

εph/εB. This is due to the symmetry of electromagnetism such that synchrotron emission can be considered to
represent the scattering by an electron off virtual photons of the magnetic field. Thus, in the presence of radiation and
magnetic fields, electrons can loose their energy either through synchrotron emission or through inverse Compton
scattering of the ambient electromagnetic radiation.

When a photon of energyE is scattered by an electron with Lorentz factorγ, the energy of the emitted photon
depends on the incident and scattering angles through the differential Klein-Nishina cross-section which yield the
scattering probability in a specific direction. Consider the scattering of photons with energy in the range (E,E+dE)
by an electron with energyγmec2. AssumingγE� mec2 and isotropic incident radiation, the number of photons of
energyE1 produced per unit energy interval inE1 and per unit time is given by

dN(E1,E, γ) dE
dt dE1

=
3σTc
4γ2E

f

(
E1

4Eγ2

)
n(E)dE where f (x) = 2x ln x+ x+ 1− 2x2, (4.28)
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andn(E) is the number density of photons.f (x) decreases monotonically fromf (0) = 1 to f (1) = 0, with x = 1
corresponding to the maximum photon energy produced in the scattering. The Compton spectrum of the entire
electromagnetic field can be obtained by integrating the above expression for scattering from one single electron
over the electron energy distribution. Using the power-law distribution of Eqn. (4.20), the integration extends over
the range from

γmin = max

[
1
2

(E1

E

)1/2

, γ1

]
to γmax = min

[
γ2,

1
2

(E1

E

)1/2]
, (4.29)

whereγ1 = E1/(mec2) andγ2 = E2/(mec2) are the cutoffs of the electron distribution. Assumingγ1 �
1
2(E1/E)1/2 �

γ2, the energy spectrum of scattered photons is given by

PComp(E1) =
3σTcC

8

[
2αe+3(α2

e + 4αe + 11)

(αe + 3)2(αe + 1)(αe + 5)

]
E−αν1

∫ ∞

0
E(αe−1)/2n(E)dE, (4.30)

which is a power-law with the same spectral index compared to the synchrotron case,αν = (αe − 1)/2, because in
both cases the produced energy of the photon is proportional toγ2. If the incident photon spectrum is a black body
distribution, then ∫

E(αe−1)/2n(E)dE =
(kT)(αe+5)/2

π2(~c)3
Γ

(
αe + 5

2

)
ζ

(
αe + 5

2

)
(4.31)

whereΓ andζ are the gamma function and the Riemannζ function, respectively.

4.3. Inelastic cosmic ray collisions

As previously mentioned, CR protons interact hadronically with the ambient plasma and produce mainly neutral
and charged pions. The neutral pions successively decay intoγ-rays while the charged pions decay into secondary
electrons, positrons, and neutrinos:

π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ ,

π0 → 2γ .

Synchrotron and inverse Compton emission of secondary CR electrons provide a biased tracer of the underlying
CR proton population due to the presence of possibly different CR electron populations and the degeneracy of the
synchrotron emissivity with the magnetic energy density. In contrast, theγ-ray emission of theπ0-decay provides
a cleaner signature of the underlying CR proton population. After deriving kinematical details of theπ0-decay, the
pion production spectra resulting from the hadronic CR proton reaction with thermal protons are developed while
critically reviewing and comparing reaction models in the literature. Thus, this section shall serve as an introduction
to the next chapter where we develop the theoretical framework for hadronic CR proton reactions.

4.3.1. Relativistic kinematics

4.3.1.1. Threshold energy

Consider the inelastic CRp-p collision leading to the creation of a pion in the laboratory system,p+ p→ p+ p+ π.
To produce a new pion in this reaction, the minimum energy of the incoming protons has to be just enough in the
center-of-momentum system (CMS1) to produce the rest mass of all outgoing particles. From the invariance of the
four-momentum exactly at the threshold of pion production, we obtain

2γ′pmp = 2mp +mπ, (4.32)

β′pγ
′
pmp − β

′
pγ
′
pmp = 0. (4.33)

The threshold CMS energy of each of the protons isγ′pmpc2 = mpc2[1+mπ/(2mp)]. We perform a Lorentz transfor-
mation such that one proton rests in the laboratory frame,γ′p = γLT ,(

γp

βpγp

)
=

(
γ′p ±β′pγ

′
p

±β′pγ
′
p γ′p

) (
γ′p
β′pγ

′
p

)
=

(
γ′2p ± β

′2
p γ
′2
p

±β′pγ
′2
p + β

′
pγ
′2
p

)
. (4.34)

1In this section, CMS quantities are denoted with a prime.
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Here, the ‘+’ sign accounts for the relativistic proton and the ‘−’ sign for the resting proton in the laboratory frame.
Thus, the threshold Lorentz factor of the relativistic proton for pion production is given byγth = γ

′2
p (1 + β′2p ) =

2γ′2p − 1 = 2[1+mπ/(2mp)]2 − 1 = 1.22 GeV/(mpc2).

4.3.1.2. Relativistic decay kinematics

Consider the decay of a massive particle of massM into two daughter particles of massesma andmb in the CMS.
Employing the conservation of the total CMS energyE′ = E′a+ E′b and momentum conservation,p′a = −p′b, we can
express the energy of one daughter particle solely by the masses of the involved particles:

E′a,b =
M2 +m2

a,b −m2
b,a

2M
c2. (4.35)

We perform now a Lorentz transformation to the laboratory system where the original massM had an energy
EM = γMc2, transforming only the projection ofp′ onto the boost axis,(

Ea,b

pa,bc

)
=

(
γ βγ
βγ γ

) (
E′a,b
p′ccosθ′

)
. (4.36)

Using the equalityβ2 = (γ2 − 1)/γ2 = (E2 − M2c4)/E2, we arrive at the energy of the decaying particle in the
laboratory frame,

Ea,b =
EM

M

 M2 +m2
a,b −m2

b,a

2M
+

√
1−

M2c4

E2
M

p′(M,ma,mb)c−1 cosθ′
 , (4.37)

wherep′(M,ma,mb) is implicitly given by energy conservation, (p′2c−2 + m2
a)1/2 + (p′2c−2 + m2

b)1/2 = M. If M
decays isotropically, i.e. the emission probability is equally distributed in the CMS frame, the normalized angular
distribution function readsf (θ′)dθ′ = dΩ(θ′)/(4π) = 1

2 sinθ′dθ′. Substituting the dimensionless ratio of the CMS
energy of the daughter particle to the mass of the parent particle,η ≡ (M2 +m2

a,b −m2
b,a)/(2M2), andκ ≡ p′/(Mc),

we obtain the following form of Eqn. (4.37),

E(θ′) = EM(η + βκ cosθ′). (4.38)

The infinitesimal amount of energy emitted into the azimuthal angleθ′ is given by dE(θ′) = −βEMκ sinθ′dθ′.
Thus, the energy distribution of the produced particle is a constant function ranging fromEmin = (η − βκ)EM to
Emax = (η + βκ)EM:

f (E)dE = f (θ′)
∣∣∣∣∣dθ′dE

∣∣∣∣∣ dE =
1

2βκEM
dE. (4.39)

4.3.2. Pion decay induced γ-ray emission

Equation (4.37) simplifies significantly when both decay particles have zero mass (π0→ 2γ):

Eγ(θ
′) =

1
2
γπmπc

2(1+ βπ cosθ′). (4.40)

This equation limits theγ-ray energy, because−1 ≤ cosθ′ ≤ 1. In particular, for ultra-relativistic pions, i.e.
m2
πc

4/E2
π � 1, we obtainEγ(θ′) = Eπ cos2(θ′/2). Theγ-ray energy distribution can be derived using Eqn. (4.39) to

obtain the Green’s function for theπ0-decay,

f (Eγ|Eπ) =


1√

E2
π −m2

πc4
, for 1

2Eπ(1− βπ) ≤ Eγ ≤ 1
2Eπ(1+ βπ),

0, otherwise.
(4.41)

Given the pion source function, theγ-ray source spectrum is given by

qγ(r,Eγ) =
∫ Eπ,max

Eπ,min

dEπ
qπ(r,Eπ)√
E2
π −m2

πc4
ξπ0→2γ Rπ0→2γ, (4.42)
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4.3.3 Pion source function

whereRπ0→2γ ' 1 denotes the branching ratio andξπ0→2γ = 2 the multiplicity of the pion decay inducedγ-ray
emission. The integration limitsEπ,min andEπ,max can be found from the following considerations:Eπ,max is the
maximum pion energy that is able to produce aγ-ray of energyEγ,

Eπ,max =
Eγ[

cos2(θ′/2)
]
min
→ ∞, since

[
cos2(θ′/2)

]
min
= 0 (4.43)

From conservation of energy, we note thatEπ = Eγ,a+ Eγ,b. In the extreme case where theγ-rays are emitted in the
direction of motion,

Eγ,min =
1
2

Eπ(1− βπ), and Eγ,max =
1
2

Eπ(1+ βπ). (4.44)

Using this equation and rewriting the invariant square of the pion’s rest mass, we can expressEγ,min in terms of
Eγ,max:

(Eγ,min)(Eγ,max) =
1
4

E2
π(1− β

2
π) =

1
4

m2
πc

4 → Eπ = Eγ,min + Eγ,max = Eγ,max+
m2
πc

4

4Eγ,max
. (4.45)

This criterion can be reversed to put a lower limit on the pion energy integration. Thus, assuming the decay products
are distributed isotropically in their rest frame, theπ0-decay induced omnidirectional (i.e. integrated over 4π solid
angle) differentialγ-ray source function is given by

qγ(r,Eγ) = 2
∫ ∞

Eγ+
m2
πc4

4Eγ

dEπ
qπ(r,Eπ)√
E2
π −m2

πc4
. (4.46)

4.3.3. Pion source function

There are two analytical models in the literature that describe the hadronic CR proton reaction with protons of
the ambient thermal plasma while assuming isospin symmetry,ξπ0 = ξπ±/2. Fermi (1950) proposed thefireball
modelwhich assumes a state of hot quark-gluon plasma in thermal equilibrium after the hadronic interaction that
subsequently ablates pions with energy dependent multiplicities. This model is only valid in the high-energy limit
for CR protons (Ep � mpc2) and producesγ-rays with a power-law distribution that is characterized by the spectral
indexαγ = 4

3(αp −
1
2), as we will see later on in Chapter5.

In order to make detailed predictions for theπ0-decay inducedγ-ray spectrum, more realistic effects near the
π0-production threshold have to be included followingDermer’s model. At low proton energies, it assumes the
CRp-p interaction to be mediated by the excitation of the∆3/2-resonance which subsequently decays into two pro-
tons and aπ0-meson (Stecker1970). The production spectrum of secondaryπ0-mesons is given by a convolution of
the normalized∆3/2-isobar mass spectrum represented by a Breit-Wigner distribution with the energy distribution
function. The scaling model used at high energies (Stephens & Badhwar1981) uses Lorentz invariant cross sections
for charged and neutral pion production in p-p interactions inferred from accelerator data. The spectral index of the
resultingγ-ray power-law emission resembles that of the parent CR proton population,αγ = αp, and shows a differ-
ent asymptotic behavior compared to the simpler fireball model. This has important implications for predictions of
future TeVγ-ray observations usinǧCerenkov telescopes.

The pion production spectrum can be derived from general considerations including branching ratios and multi-
plicities of the hadronic reaction (Stecker1971). The pion production spectrum describes the produced number of
pions per unit time, volume and energy intervals, dN/(dt dV dEπ dEp), and reads in this context

qπ(Eπ,Ep) = cnNξ(Ep)σπpp(Ep)δD(Eπ − 〈Eπ〉)θ(Ep − Eth), (4.47)

wherenN is the target nucleon density in the plasma,σπpp the inelastic p-p cross section,〈Eπ〉 the average energy of
a single produced pion, andEth = 1.22 GeV denotes the threshold energy for pion production. For a differential CR
proton distribution, the pion source function can be marginalized over the proton energy, yielding

qπ± (Eπ) =
2
3

qπ(Eπ) =
2
3

∫ ∞

−∞

dEp f (1)
p (Ep)qπ(Eπ,Ep). (4.48)

41



Cosmic ray physics

Note, that we use an effective one-dimensional CR distribution functionf (1)(p) ≡ 4πp2 f (3)(p) which can often be
described by a power-law in momentum that is motivated by diffusive shock acceleration:

f (1)
p (Ep) =

ñCR

GeV

( pc
GeV

)−αp

'
ñCR

GeV

(
Ep

GeV

)−αp

, (4.49)

where the last step is strictly only valid in the high energy limit for CR protons (Ep � mpc2).

Fireball model Following the representation byMannheim & Schlickeiser(1994), pions are emitted from the
thermal fireball in the CMS with multiplicities

ξ = ξπ0 + ξπ± = 3

(
Ep − Eth

GeV

)1/4

' 3

(
Tp

GeV

)1/4

, (4.50)

where the kinetic CR proton energy is denoted byTp = (p2c2 + m2
pc4)1/2 − mpc2 ∝ pc, using the ultra-relativistic

approximation. It is well known that Eqn. (4.50) overestimates the number of pions at energies above 104 GeV.
Below that energy, the energy dependence of the mean pion energy is given by

〈Eπ〉(Ep) = Kp
Ep −mpc2

ξ
'

1
6

(
Tp

GeV

)3/4

GeV, (4.51)

since the limiting value of the inelasticityKp is roughly 1/2. Performing the integral of Eqn. (4.48) while approxi-
matingEp ' Tp when applying above’s definitions, the pion source function in the fireball model reads

qπ± (Eπ) = 2qπ0(Eπ) ' 16cnNñCRσ̄
π
ppGeV−1

(
6Eπ
GeV

)− 4
3 (αp−

1
2 )

. (4.52)

The error introduced by assuming a constant cross section for the inelastic pion production, ¯σπpp = 32 mbarn, grows
logarithmically with pion energy.

Dermer’s model In contrast to the fireball model, the scaling behavior in the high-energy limit of Dermer’s model
can be described by a constant pion multiplicityξ(Ep) ' ξ = 2. This reflects the fact that two leading pion jets are
leaving the interaction site in direction of the incident protons diametrically and carrying the high longitudinal
momenta owing to Lorentz contraction of the interacting nuclei in the center of mass system and Heisenberg’s
uncertainty relation (Nachtmann1990). Thus, the energy dependence of the mean pion energy is given by

〈Eπ〉(Ep) ' Kp
Tp

ξ
'

Tp

2ξ
. (4.53)

Applying these definitions to Eqn. (4.48), the pion source function in Dermer’s model evaluates to

qπ± (Eπ) = 2qπ0(Eπ) =
4
3
ξ2−αpcnNñCRσ

π
pp(αp)GeV−1

(
2Eπ
GeV

)−αp

. (4.54)

The weak energy dependences of the pion multiplicity and the inelastic cross section can be absorbed in a semi-
analytical parameterization of the cross section,σπpp(αp) (for details, see Chapter5).

Electron source function Finally, the electron source function can be obtained by considering the transforma-
tion law of distribution functions,

qe(Ee)dEe = qπ(Eπ)dEπ. (4.55)

The mean energy of the produced secondary electrons (π± → e± + 3ν) in the laboratory frame is given by〈Ee〉 =
1
4〈Eπ±〉. Using the mean value of the electron energy allows to approximate the electron source function by

qe(Ee) = qπ± [Eπ(Ee)]
dEπ
dEe
= 4qπ± (4Ee), (4.56)

which is the starting point for the discussion of non-thermal emission by secondary electrons in the next chapter.
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5. Hadronic cosmic ray proton interactions in
clusters of galaxies

Abstract

This chapter provides a theoretical framework for analytically modeling multi-frequency signatures resulting from hadronic cos-
mic ray proton (CRp) interactions with the ambient thermal gas of the intra-cluster medium (ICM). These interactions produce
charged and neutral pions which successively decay intoγ-rays and relativistic electrons or positrons. Theγ-ray source function
resulting from decaying neutral pions is presented for two popular models of the hadronic interaction of relativistic and non-
relativistic protons. It is valid over a broad range ofγ-ray energies extending from below MeV up to TeV. Using thisγ-ray source
function, we derive an analytic relation between theγ-ray and bolometric X-ray fluxes: this relation can find application in com-
piling a suitable sample of galaxy clusters which are promising candidates for future detection of diffuseγ-rays. The stationary
spectrum of hadronically originating secondary electrons is provided furthermore. It allows the calculation of accompanying
synchrotron and inverse Compton emission and yields thus additional and complementary information about the non-thermal
energetic content of clusters.

5.1. Introduction and definitions

In order to study non-thermal emission from galaxy clusters we model the synchrotron and inverse Compton (IC)
radiation of secondary cosmic ray electrons (CRe) produced in inelastic collisions by cosmic ray protons (CRp)
scattering off thermal nuclei as well as theγ-ray spectrum produced by decaying pions being produced by these
CRp-p collisions. Throughout this thesis, we use the following definitions for the differential source functionq(r,E),
the emissivityj(r,E) and the volume integrated quantities, respectively:

q(r,E) =
dN

dt dV dE
,

Q(E) =

∫
dV q(r,E) ,

j(r,E) = E q(r,E) , (5.1)

J(E) = E Q(E) , (5.2)

whereN denotes the integrated number of particles. From the source function the integrated number density pro-
duction rate of particlesλ(r), the number of particles produced per unit time interval within a certain volume,L,
and the particle fluxF can be derived. The definitions of the energy weighted quantities are denoted on the right
hand side, respectively,

λ(r) =

∫
dE q(r,E) ,

L =

∫
dV λ(r) ,

F =
L

4π D2
,

Λ(r) =

∫
dE E q(r,E) , (5.3)

L =

∫
dVΛ(r) , (5.4)

F =
L

4π D2
. (5.5)

This chapter is structured as follows: after introducing the CRp population (Sect.5.2), we develop an analytic
formalism describing the decay of secondary neutral pions into two high-energyγ-rays (Sect.5.3). Section5.3.1
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uses the analytical fireball model for inelastic CRp interactions with nuclei of the intergalactic medium in the high-
energy regime of CRp (Ep � mp c2), following Mannheim & Schlickeiser(1994). Based on that, we develop in
Sect.5.3.2an analytic formula describing theγ-ray spectrum by parameterizing important effects near the pion
threshold using an approximate description developed byDermer(1986a,b), which combines isobaric (Stecker
1970) and scaling models (Badhwar et al.1977, Stephens & Badhwar1981) of the hadronic reaction. Using this
formalism, an analyticFγ–FX scaling relation is derived in the framework of a simple scenario of spatial distribution
of CRp (Sect.5.4). Finally, Sect.5.5deals with radio and X-ray emission of secondary electrons being produced by
decaying charged pions.

5.2. Cosmic ray proton population

The differential number density distribution of a CRp population can be described by a power-law in momentum
pp,

fp(r, pp) dpp dV = ñCRp(r)
( pp c

GeV

)−αp
(
cdpp

GeV

)
dV , (5.6)

where the tilde indicates that ˜nCRp is not a real CRp number density while it exhibits those dimensions. We choose
the normalization ˜nCRp(r) in such a way that the kinetic CRp energy densityεCRp(r) is proportional to the thermal
energy densityεth(r) of the ICM,

εCRp(r) = XCRp(r) εth(r) =
∫ ∞

0
dp fp(r, pp) Ekin(pp) (5.7)

=
ñCRp(r) mp c2

2 (αp − 1)

(
mp c2

GeV

)1−αp

B

(
αp − 2

2
,
3− αp

2

)
. (5.8)

The kinetic energy of CRpEkin and the thermal energy density of the ICMεth are given by

Ekin(pp) =

√
p2

p c2 +m2
p c4 −mp c2, (5.9)

εth(r) =
3
2

de ne(r) kTe(r) , (5.10)

where de = 1+
1− 3

4XHe

1− 1
2XHe

(5.11)

counts the number of particles per electron in the ICM using the primordial4He mass fractionXHe = 0.24, and
B(a,b) denotes the beta-function (Abramowitz & Stegun1965). The functional dependence of the CRp scaling
parameterXCRp(r) is a priori unknown. In order to draw astrophysical conclusions for the CRp population in
clusters of galaxies, we adopt three different models for the spatial distribution of CRp later on in Chapter6.

In contrast to relativistic electrons which loose their energy on relatively short time scales compared to the Hubble
time through synchrotron emission in cluster magnetic fields and IC scattering with photons of the microwave
background, the dominant energy loss mechanisms of CRp are electronic excitations in the plasma (Enßlin et al.
1997), defining a cooling time (Gould1972)

tee=

[
−

1
γp

(
dγp

dt

)
ee

]−1

=
me c3 mp βp γp

4π e4 ne

ln 2γpmec2β2
p

~ωpl

 − β2
p

2

−1

, (5.12)

whereβpc denotes the velocity of the proton,γp its relativistic Lorentz factor, andωpl = (4πe2ne/me)1/2 the plasma
frequency. Inserting typical values for cooling flows yields a lower cutoff on the CRp momentum

pmin = βpγp mp c ' 0.2

(
tage

Gyr

) ( ne

10−2 cm−3

)
GeVc−1. (5.13)

In general, this gives rise to a spatially dependent cutoff of the CRp momentum which increases with time.
In order not to rely on too many assumptions, we do not impose a specific momentum cutoff which is possible

since the spectral indexαp varies in our model in between 2 and 3. Instead, we quantify the influence of a lower
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5.3 γ-ray spectrum from hadronic CRp interactions
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Figure 5.1.: The ratio of CRp energy densitiesεCRp(pmin, αp) with and without a lower cutoff pmin in the CRp number
density distribution function as a function ofpmin for different values of the CRp spectral indexαp (see Eqn. (5.14)). For
CRp the kinematically allowed threshold in order to produceπ0-mesons hadronically is given bypthr = 0.78 GeVc−1.

cutoff pmin on the population of CRp by taking the ratio of CRp energy densitiesεCRp(pmin, αp) with and without
a lower cutoff. This ratio as shown in Fig.5.1 can be written using the definition for the normalized lower CRp
momentum cutoff p̃ = pmin

mp c,

εCRp(p̃, αp)

εCRp(0, αp)
=
Bx

(
αp−2

2 ,
3−αp

2

)
+ 2 p̃1−αp

( √
1+ p̃2 − 1

)
B

(
αp−2

2 ,
3−αp

2

) , (5.14)

whereBx(a,b) denotes the incomplete beta-function (Abramowitz & Stegun1965) with x = (1+ p̃2)−1. Combining
Fig. 5.1 and Eqn. (5.13) demonstrates the small influence of Coulomb cooling to the CRp energy density within
cooling flows.

5.3. γ-ray spectrum from hadronic CRp interactions

5.3.1. Fireball model

The CRp interact hadronically with the thermal background gas and produce pions with relative multiplicitiesξπ0 =
1
2ξπ± according to isospin symmetry and assuming thermal equilibrium of the pion cloud in the center of mass (Fermi
1950). The charged pions decay into secondary electrons (and neutrinos) and the neutral pions intoγ-rays:

π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ
π0 → 2γ .

Only CRp above the kinematic thresholdpthr = 0.78 GeVc−1 are able to produce pions hadronically and are
therefore visible through their decay products in both theγ-ray and radio bands via radiative processes. Only
the CRp population above this threshold is constrained by this work while the lower energy part of this population
in general can not be limited by only considering hadronic interactions.

In the high-energy limit for CRp (Ep � mp c2) the pion source function resulting from hadronic CRp-p interac-
tions can be calculated followingMannheim & Schlickeiser(1994) to be

qπ0(r,Eπ0) dEπ0 dV ≈ 23 σ̄pp c nN(r)
ñCRp(r)

GeV

(
6Eπ0

GeV

)−αγ
dEπ0 dV, (5.15)
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whereαγ = 4/3 (αp−1/2), σ̄pp = 32 mbarn is the inelastic p-p cross section, andnN(r) = dtar ne(r) = ne(r)/(1− 1
2XHe)

is the target nucleon density in the ICM. Theπ0-decay induced omnidirectional (i.e. integrated over 4π solid angle)
differentialγ-ray source function can be calculated in this energy regime assuming the decay products are distributed
isotropically in their rest frame, yielding

qγ(r,Eγ) = 2
∫ ∞

Eγ+
m2
π c4

4Eγ

dEπ0
qπ0(r,Eπ0)√
E2
π0 −m2

π0 c4
(5.16)

= 23 σ̄pp c nN(r)
ñCRp(r)

GeV

(
6mπ0 c2

GeV

)−αγ
Bx

(
αγ

2
,
1
2

)
,

where x =

 4Eγmπ0 c2

4E2
γ +m2

π0 c4

2

. (5.17)

Owing to Lorentz symmetry, this formula is valid for both limiting energy regimes,Eγ � mπ0 c2/2 andEγ �
mπ0 c2/2. Because of an incomplete accounting of physical processes at the threshold of pion production like the
velocity distribution of CRp and momentum dependent inelastic CRp-p cross section, Eqn. (5.16) overestimates the
number ofγ-rays for energies aroundEγ ' mπ0 c2/2.

5.3.2. Dermer’s model

In order to make detailed predictions for theπ0-decay inducedγ-ray spectrum, more realistic effects near theπ0-
production threshold have to be included. This was done by using the code COSMOCR originally designed for
cosmic ray studies byMiniati (2001). The underlying∆3/2-isobaric model was shown to work well at low proton
energies (Stecker1970). It assumes the CRp-p interaction to be mediated by the excitation of the∆3/2-resonance
which subsequently decays into two protons and aπ0-meson. The production spectrum of secondaryπ0-mesons is
given by a convolution of the normalized∆3/2-isobar mass spectrum represented by a Breit-Wigner distribution with
the energy distribution function. The scaling model used at high energies (Stephens & Badhwar1981) uses Lorentz
invariant cross sections for charged and neutral pion production in p-p interactions inferred from accelerator data.
COSMOCR includes also the contribution of the two main kaon decay modes to secondary pion spectra (following
Moskalenko & Strong1998) which areK± → µ± + νµ/ν̄µ (63.5%) andK± → π0 + π± (21.2%) where the latter
channel also contributes to theγ-ray source function.

In order to derive an analytic formula describing the omnidirectional differentialγ-ray source function over the
energy range shown in Fig.5.2, we keep the behavior of the spectrum in the fireball model forEγ � mπ0 c2/2 and
parameterize the detailed physics at theπ0-threshold by the shape parameterδγ which smoothly joins the two power
laws to the asymptotic expansion of theB-function of Eqn. (5.16), yielding

qγ(r,Eγ) dEγ dV ' σpp c nN(r) ξ2−αγ
ñCRp(r)

GeV
4

3αγ

(
mπ0 c2

GeV

)−αγ ( 2Eγ
mπ0 c2

)δγ
+

(
2Eγ

mπ0 c2

)−δγ−αγ/δγdEγ dV. (5.18)

The scaling behavior in the high-energy limit of Dermer’s model can be described by a constant pion multiplicity
ξ = 2 characterizing the two leading pion jets leaving the interaction site in direction of the incident protons dia-
metrically and carrying the high longitudinal momenta owing to Lorentz contraction of the interacting nuclei in the
center of mass system and Heisenberg’s uncertainty relation (Nachtmann1990). This assumption of constant pion
multiplicity of the scaling model is in contrast to the fireball model (Mannheim & Schlickeiser1994), which as-
sumes a state of hot quark-gluon plasma in thermal equilibrium after the hadronic interaction subsequently ablating
pions with multiplicitiesξπ0 ' [(Ep − Eth)/GeV]1/4, whereEth = 1.22 GeV denotes the threshold energy for pion
production.

The γ-ray source function peaks at the energy ofmπ0 c2/2 ' 67.5 MeV. It is well known, that the asymptotic
slope of theγ-ray spectrum, characterized by its spectral indexαγ, reproduces the spectral index of the population
of CRp,αγ = αp (Dermer1986b). This is again in contrast to the fireball model which predicts a steeper asymptotic
slope in theγ-ray spectrum forαp > 2, amounting toαγ = 4/3 (αp − 1/2). In the following we restrict ourselves to
Dermer’s model because it is better motivated by accelerator data.

By comparing the logarithm of theγ-ray source function of Eqn. (5.18) to numerically calculated spectra using
COSMOCR we recognized that the influence of the detailed physics at the threshold together with the kaon contri-
bution can be modeled in our semi-analytic approach in Eqn. (5.18) by self-consistent scaling relations for the shape
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Figure 5.2.: Upper panel:The omnidirectional (i.e. integrated over 4π solid angle) differentialγ-ray source function
qγ(Eγ) normalized by the target number densitynN(r) and CRp normalization ˜nCRp(r) in order to be independent of the
spatial dependence of any specific model. The dotted lines show the simulatedγ-ray spectra while the solid curves
represent our models given by Eqn. (5.18) with the spectral indices from top to bottom,αp ∈ {2.0, 2.4, 2.7, 3.0, 3.5}.
Lower panel:Relative deviation of our analytic approach to simulatedγ-ray spectra.

parameterδγ and the effective inelastic p-p cross sectionσpp including the kaon decay modes. The shape parameter
δγ scales with the spectral index of theγ-ray spectrum as

δγ = 0.14α−1.6
γ + 0.44, (5.19)

which models the functional behavior of the spectrum (compare Fig.5.2). The effective cross sectionσpp also
depends onαγ which can be modeled by

σpp = 32×
(
0.96+ e4.4−2.4αγ

)
mbarn. (5.20)

On the one hand, the enhanced contribution to the normalization of theγ-ray source functionqγ(Eγ) for flat spectral
indicesαγ is due to the larger contribution of the channelp + p → K± + X relative top + p → π± + X for larger
energies, approaching asymptotically a value of 27 % at energies larger than 1 TeV (Miniati 2001) which we did not
account for a priori in our simple model. Secondly, this scaling behavior also includes higher order contributions to
the effective pion multiplicity for harder spectra characterized by a lower spectral indexαγ.

The effective description of the spectrum with the smooth peak characterized by the shape parameterδγ starts
to fail for very steep spectra ofαγ > 3.5 where relativistic kinematics at the threshold plays a crucial role. Then
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the higher number of decaying low energeticπ0-mesons results in a more concentrated peak on top of the boosted
broader distribution of decaying highly-energetic pions. The lower panel of Fig.5.2shows that the relative deviation
of the semi-analytic approach of Eqn. (5.18) to the simulatedγ-ray spectra amounts below 0.2 for the spectral range
shown in Fig.5.2, which is sufficient for the purpose of our work.

5.4. Energy band integrated γ-ray luminosity: analytic Fγ–FX scaling
relation

In the following, we derive an analyticFγ–FX scaling relation which should serve as an approximate estimate for a
given cluster of galaxies. In our scenario, we parameterize the CRp energy density in terms of the thermal energy
density times an arbitrary spatial scaling function,εCRp(r) = XCRp(r) εth(r). The bolometric X-ray emission of the
hot thermal intra cluster electrons is given by the cooling function for thermal bremsstrahlung (Rybicki & Lightman
1979),

ΛX [ne(r),Te(r)] = Λ0 ne(r)2
√

kTe(r) , (5.21)

with Λ0 =

(
2π

3me

)1/2 25π e6dtar

3h me c3
Z2 ḡB(Te) ' 6.62× 10−24 erg s−1 cm3 keV−1/2, (5.22)

wherene is the electron number density,Te the temperature,dtar is the nucleon density in the ICM relative to the
electrons for primordial element composition,Z the charge number1 and ḡB ' 1.2 is the frequency and velocity
averaged Gaunt factor.

In order to obtain the integratedγ-ray source densityλγ for pion decay inducedγ-rays theγ-ray source function
qγ(r,Eγ) in Eqn. (5.18) can be integrated over an energy interval yielding

λγ(r,E1,E2) =

∫ E2

E1

dEγ qγ(r,Eγ) = Aγ(αp) Nγ(αp) XCRp(r) n2
e(r) kTe(r) , (5.23)

where Aγ(αp) =
σpp(αp) de dtar mπ0 c

GeVmp
, (5.24)

Nγ(αp) =
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mπ0 c2

GeV

)−αγ [
Bx

(
αγ+1
2δγ
,
αγ−1
2δγ

)]x2

x1

(αp − 1)(
mp c2

GeV

)1−αp

B
(
αp−2

2 ,
3−αp

2

)
2αγ−2αγ δγ

, (5.25)

and xi =

1+ (
mπ0 c2

2Ei

)2δγ
−1

for i ∈ {1,2} . (5.26)

Here we introduced the abbreviation [f (x)]x2
x1
= f (x2) − f (x1). Assuming Dermer’s model theγ-ray spectral index

scales asαγ = αp in contrast to the fireball model whereαγ = 4/3 (αp − 1/2). The shape parameterδγ is given by
theαγ–δγ scaling relation in Eqn. (5.19) which strictly holds for Dermer’s model, but should also be valid for the
extended fireball model.

Comparing the integratedγ-ray source densityλγ(E1,E2) of Eqn. (5.23) to that of thermal bremsstrahlung (Eqn.
(5.21)) we obtain an analyticFγ–FX scaling relation for the ratio ofγ-ray fluxesFγ and bolometric X-ray fluxes
FX ,

Fγ(E1 < E < E2)

Fbol
X erg−1

=
Aγ(αp) Nγ(αp)

Λ0 keV−1/2 erg−1

(
〈kTe〉

keV

)1/2

XCRp(r) , (5.27)

where the prefactor is appropriately scaled yielding a dimensionless number which consists ofAγ(αp) (Eqn. (5.24)),
Nγ(αp) (Eqn. (5.25)), andΛ0 (Eqn. (5.22)). TheFγ–FX ratio scales linearly with the scaling functionXCRp(r) given
by Eqn. (5.7) and is independent of the underlying cosmology, however not of redshift due to the K-correction.
Inferred values for the expectedγ-ray flux Fγ are consistent with those obtained byEnßlin et al.(1997) for the
spectral index of our Galaxyαγ = 2.7. It should be noted, that this scaling relation only applies accurately for
isothermal clusters.

1SettingZ2 = 1 in Eqn. (5.22) is correct for a plasma of primordial element composition which consists of hydrogen and helium only, because
〈nNZ2〉 = nN in this case. This is a reasonable approximation owing to the small contamination of heavier elements in the ICM.
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5.5. Stationary spectrum of hadronically originating secondary
electrons

This section is based on a formalism developed inDolag & Enßlin (2000). The steady-state CRe spectrum is
governed by injection of secondaries and cooling processes so that it can be described by the continuity equation

∂

∂Ee

(
Ėe(r,Ee) fe(r,Ee)

)
= qe(r,Ee) . (5.28)

For Ėe(r, p) < 0 this equation is solved by

fe(r,Ee) =
1

|Ėe(r,Ee)|

∫ ∞

Ee

dE′eqe(r,E′e) . (5.29)

The cooling of the radio emitting CRe is dominated by synchrotron and inverse Compton losses giving

−Ėe(r,Ee) =
4σT c

3m2
e c4

B2(r)
8π

+
B2

CMB

8π

 E2
e , (5.30)

whereσT is the Thomson cross section,B(r) is the local magnetic field strength andB2
CMB/(8π) is the energy

density of the cosmic microwave background expressed by an equivalent field strengthBCMB = 3.24 (1+ z)2µG.
The CRe population above a GeV is therefore described by a power-law spectrum

fe(r,Ee) =
ñCRe(r)
GeV

( Ee

GeV

)−αe

, (5.31)

ñCRe(r) =
27 π 16−(αe−1) Amod

αe − 2

σpp m2
e c4

σT GeV

nN(r) ñCRp(r)

B2(r) + B2
CMB

, (5.32)

αe =

{
αp + 1 in Dermer’s model,
4
3 αp +

1
3 in the fireball model,

(5.33)

Amod =

 1 in Dermer’s model,

3
(

3
2

)−(αe−1)
in the fireball model.

(5.34)

For the sake of consistency, we use Dermer’s model throughout the chapter where the effective cross sectionσpp is
given by Eqn. (5.20) in contrast to the fireball model whereσpp = 32 mbarn. The approach of the scaling relation
of Eqn. (5.20) is approximately valid for CRe although the decay channels of charged kaons provide a stronger
contribution to theπ± branching ratio relative toπ0-mesons resulting also in slightly higher injection rates for
electrons and positrons. Differences in normalization and radio brightness morphology due to the different models
governing the CRp-p interaction are small and irrelevant for our conclusions.

5.5.1. Synchrotron emission of secondary electrons

The synchrotron emissivityjν at frequencyν and per steradian of a power law distribution of CRe (Eqn. (5.31)) in an
isotropic distribution of magnetic fields and electrons within the halo volume (Eqn. (6.36) inRybicki & Lightman
1979), is obtained after averaging over an isotropic distribution of electron pitch angles yielding

jν(r) = c2(αe) ñCRe(r) B(r)αν+1

(
ν

c1

)−αν
(5.35)

with c1 = 3eGeV2/(2π m3
e c5) ,
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) , (5.36)
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whereΓ(a) denotes theΓ-function (Abramowitz & Stegun1965) andαν = (αe − 1)/2 = αp/2 in Dermer’s model.
In our models the magnetic fieldB(r) was assumed to be spherically symmetric on cluster core scales and and to
follow the electron densityne(r) (Dolag et al.1999, 2001):

B(r) = B0

[
ne(r)
ne(0)

]αB

, (5.37)

whereB0 andαB are free parameters in our model. Assuming the radio emissivityjν(r) in Eqn. (5.35) to be only a
function of radius, then the line of sight integration yields the surface brightness of the radio halo

Sν(r⊥) = 2
∫ R

r⊥

jν(r) r dr√
r2 − r2

⊥

. (5.38)

5.5.2. Inverse Compton emission of secondary electrons

The source functionqIC owing to IC scattering of cosmic microwave background (CMB) photons off an isotropic
power law distribution of hadronically originating CRe (Eqn. (5.31)) is (derived from Eqn. (7.31) inRybicki &
Lightman1979, in the case of Thomson scattering),

qIC(r,Eγ) = q̃(r) fIC(αe)

(
me c2

GeV

)1−αe ( Eγ
kTCMB

)−(αν+1)

, (5.39)

fIC(αe) =
2αe+3 (α2

e + 4αe + 11)

(αe + 3)2 (αe + 5) (αe + 1)
Γ
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αe + 5

2

)
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αe + 5

2

)
, (5.40)

andq̃(r) =
8π2 r2

e ñCRe(r) (kTCMB)2

h3 c2
, (5.41)

whereαν = (αe − 1)/2 denotes the spectral index,re = e2/(me c2) the classical electron radius,ζ(a) the Riemann
ζ-function (Abramowitz & Stegun1965), andñCRe(r) is given by Eqn. (5.32). After integrating over the IC emitting
volume in the cluster we obtain the particle fluxF (Eγ) (see Eqns. (5.4) and (5.5)). The same CRe population
seen in the radio band via synchrotron emission scatter CMB photons into the hard X-ray regime. In theγ-ray
spectrum, there is a point of equal contribution of the IC spectrum of the CRe showing a decreasing slope of
−αν − 1 = −αp/2− 1 (assuming Dermer’s model) and the pion decay inducedγ-ray spectrum being characterized
by the rising slopeαγ = αp (see Eqn. (5.18)). In the high energy limit (Eγ � mπ0 c2/2), the pion decay induced
γ-ray spectrum declines with a slope of−αγ = −αp which is the same as the IC emission forαp = 2 and slightly
steeper for larger values ofαp (for illustration, see Fig.5.3).
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Figure 5.3.: The simulated differential flux ofγ-rays from Perseus reaching the Earth. Shown are upper limits of the
IC emission of secondary CRe (power-laws, assuming zero magnetic field) as well as pion decay inducedγ-ray emission
(represented by broad distribution centered onEpeak ' 67.5 MeV). The normalization of the spectra differing in their
values of the CRp spectral indexαγ = αp (Dermer’s model) depends on the assumed scaling between CRp and thermal
energy density. We fix this scaling parameterXCRp assuming the isobaric model (Sect.6.2.1in Chapter6) by comparing
the integrated flux above 100 MeV to EGRET upper limits (seeReimer et al.2003).

5.6. Summary and outline of astrophysical applications

For the first time we developed an analytic formalism to describe the neutral pion-decay inducedγ-ray spectrum
self-consistently for a given differential number density distribution of the CRp population being described by a
power-law in momentumpp and parametrized by the spectral indexαp. We derived an analyticFγ–FX scaling
relation for the ratio ofγ-ray flux to bolometric X-ray flux. Given the bolometric X-ray luminosity of a particular
cluster this formula estimates the expectedγ-ray flux Fγ owing to inelastic cosmic ray ion collisions and thus
provides observationally promising cluster candidates for constraining the CRp population. We furthermore present
formulae describing the synchrotron and inverse Compton emission of hadronically originating secondary electrons
assuming an isotropic distribution of magnetic fields following a smooth profile.

In order to obtain reliable flux estimates we are going to introduce in the following three possible spatial distribu-
tions of the CRp, whose population is either in fractional pressure equilibrium with the thermal particle population
(as assumed for selecting the clusters), experienced adiabatic compression during the formation of the cooling flow
cluster or is shaped by diffusion away from a central source of CRp. By modeling theγ-ray emission of these
particular clusters and comparing to EGRET upper limits we are going to present bounds on the CRp population.
Furthermore, we will derive upper bounds on the CRp population by radio synchrotron emission of hadronically
originating CRe and will compare azimuthally averaged radio brightness profiles of the the Perseus radio-mini halo
and the radio halo of Coma.

The results of this chapter were worked out in collaboration with T.A. Enßlin. This chapter coincides with the first
part of the paper entitled“Constraining the population of cosmic ray protons in cooling flow clusters withγ-ray and
radio observations: Are radio mini-halos of hadronic origin?”and has been published in the journalAstronomy &
Astrophysicswith the reference:Pfrommer & Enßlin, 2004, A&A, 413, 17.
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6. Cosmic rays in nearby clusters of galaxies:
signatures and limits

Abstract

This chapter constrains the cosmic-ray proton (CRp) population in galaxy clusters and studies the hypothesis that the diffuse
radio synchrotron emission of galaxy clusters is produced by hadronically originating relativistic electrons. Assuming the CRp-
to-thermal energy density ratioXCRp and the CRp spectral index to be spatially constant, we use an analytic relation between the
γ-ray and bolometric X-ray fluxes to obtain observationally promising cluster candidates for constraining the CRp population.
After modeling the spatial distribution of CRp within the intra-cluster medium, we constrain this population by comparing to
EGRET upper limits. In nearby cooling flow clusters, we obtain limits on the CRp population ofXCRp < 20%. The synchrotron
emission from secondary electrons generated in CRp hadronic interactions allows even tighter limits to be placed on the CRp
population using radio observations. We obtain excellent agreement between the observed and theoretical radio brightness
profiles for Perseus, but not for Coma without a radially increasing CRp-to-thermal energy density profile. Since the CRp and
magnetic energy densities necessary to reproduce the observed radio flux are very plausible, we propose synchrotron emission
from secondary electrons as an attractive explanation of the radio mini-halos found in cooling flow clusters. This model can
be tested with future sensitiveγ-ray observations of the accompanyingπ0-decays. We identify Perseus, Virgo, Ophiuchus, and
Coma as the most promising candidate clusters for such observations.

We furthermore examine the CRp population within the giant elliptical galaxy M 87 using the TeVγ-ray detection of the
HEGRA collaboration. In our scenario, theγ-rays are produced by decaying pions which result from hadronic CRp interactions
with thermal gas of the interstellar medium of M 87. By comparing theγ-ray emission to upper limits from EGRET, we constrain
the spectral index of the CRp population toαTeV

GeV < 2.275 within our scenario. Both the expected radialγ-ray profile and the
required amount of CRp support this hadronic scenario. The accompanying radio mini-halo of hadronically originating cosmic
ray electrons is outshone by the synchrotron emission of the relativistic jet of M 87 by one order of magnitude. According to our
predictions, the future GLAST mission should allow us to test this hadronic scenario.

6.1. Introduction

6.1.1. Taxonomy of particle acceleration processes

Cooling flows are regions where the influence of non-thermal intra-cluster medium (ICM) components such as
magnetic fields and cosmic rays may be strongest within a galaxy cluster owing to strong observed magnetic fields,
central active galaxies, and increasing non-thermal-to-thermal energy ratio due to rapid thermal cooling processes.
They are also regions where such components are best detectable due to the high gas density which allows for
secondary particle production in hadronic interactions of cosmic ray nuclei with the ambient gas. By the term
cooling flow we do not rely on specific models but only on observed properties such as declining temperature
gradients and enhanced electron density profiles towards the center of the cluster. Occasionally, we refer to the term
cooling flow cluster as cool core cluster.

Non-thermal relativistic particle populations such as cosmic ray electrons (CRe) and protons (CRp) can be injected
into the ICM mainly by three different processes (followingBrunetti2002) which produce radio signatures that differ
morphologically as well as spectrally:

1. Shock acceleration: Natural acceleration mechanisms providing relativistic particles are strong structure
formation and merger shocks (e.g.,Harris et al.1980, Sarazin1999). Detailed studies have been undertaken
on shocks of cosmological scales (Miniati et al.2000, Takizawa & Naito2000). Fermi I acceleration processes
of CRe at these shock fronts produce large scale extended peripheral radio relics as proposed byEnßlin et al.
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(1998). For instance two prominent relics in Abell 3667 (Röttgering et al.1997) were successfully reproduced
in a simulation of this process byRoettiger et al.(1999).

2. Reaccelerated electrons:Secondly, reacceleration processes of mildly relativistic CRe (γ ' 100− 300)
being injected over cosmological timescales into the ICM by sources like radio galaxies, supernova remnants,
merger shocks, and galactic winds can provide an efficient supply of highly-energetic CRe. Owing to their
long lifetimes of a few times 109 years these mildly relativistic CRe can accumulate within the ICM (see
Sarazin2002, and references therein), until they experience continuous in-situ acceleration either via shock
acceleration or resonant pitch angle scattering by turbulent Alfvén waves as originally proposed byJaffe
(1977), reconsidered bySchlickeiser et al.(1987), and lately byOhno et al.(2002). These acceleration
processes of CRe possibly yield extended radio halos centered on the cluster (Brunetti et al.2001) while there
are also suggestions that radio mini-halos within a cooling flow cluster originate from these processes (Gitti
et al.2002). There is also evidence that reacceleration processes acting on fossil radio plasma produces small
filamentary radio relics at the cluster periphery, so-called revived radio ghosts (Enßlin & Gopal-Krishna2001,
Enßlin & Brüggen2002) presumably by adiabatic compression in shock waves.

3. Particles of hadronic origin: Eventually, CRp can interact hadronically with the thermal ambient gas pro-
ducing secondary electrons, neutrinos, andγ-rays in inelastic collisions taking place throughout the cluster
volume which would generate radio halos through synchrotron emission (first pointed out byDennison1980,
Vestrand1982). In the ICM the CRp have lifetimes of the order of the Hubble time (Völk et al.1996, Enßlin
et al.1997, Berezinsky et al.1997), long enough to diffuse away from the production site and to maintain a
distribution over the cluster volume. This process was reconsidered in more detail byBlasi & Colafrancesco
(1999) and byDolag & Enßlin(2000), the latter authors using numerical hydro-dynamical simulations in-
cluding magnetic fields. Recently,Miniati et al. (2001) have performed cosmological simulations of cluster
formation including injection processes of primary CRp. These authors conclude that under certain conditions
extended diffuse radio emission could be due to hadronically produced CRe. However, there are also claims
that extended radio halos cannot be generated by secondary electrons due to the morphological steepness of
predicted radio brightness profiles in contrast to observations (Brunetti2002). Besides constraining the pop-
ulation of CRp in the ICM, this work will present arguments for the hadronic origin of radio mini-halos or
a substantial contribution of secondary electrons to these mini-halos. We further perform a parameter study
which shows that the large cluster radio halos could be also of hadronic origin, provided the CRp-to-thermal
energy density profile is radially increasing.

It is very difficult to distinguish between contributions of these three populations of cosmic ray (CR) particles to
non-thermal particle populations, especially if all of them account for injection of cosmic rays into the ICM in dif-
ferent strength depending on underlying governing physical processes and parameters. The hadronically produced
CRe may be reaccelerated by shocks or cluster turbulence and therefore mix up the different CRe populations.

Radio observations of the radio halo in the Coma cluster find a strong steepening of the synchrotron spectrum
with increasing radius (Giovannini et al.1993). This behavior is expected for a reaccelerated population of CRe
(Brunetti et al.1999, 2001). There is also a report of radial spectral steepening in the case of the radio mini-halo
of Perseus according toSijbring (1993). This, however, could easily be an observational artifact owing to a poor
signal-to-noise ratio in the outer core parts of the cluster in combination with the ambiguity of determining the
large scale Fourier components owing to the nonuniform coverage of the Fourier plane and missing short-baseline
information: the so-called “missing zero spacing”-problem of interferometric radio observations. By comparing
the spectral index distribution of the three radio maps (92 cm, 49 cm, and 21 cm), there seems to be likewise a
possibility of radial spectral flattening depending on the chosen radial direction. The hadronic electron model does
not necessarily produce the radial spectral steepening without fine-tuning.

6.1.2. Assumptions

The purpose of this chapter is to apply our conceptually simple analytic instruments for describing the spectral
signatures in radio, X-rays, andγ-rays resulting from inelastic cosmic ray ion collisions (as derived in Chapter5).
It is especially important to constrain the population of CRp within clusters of galaxies in order to understand
the governing physical processes of these objects and the important theoretical implications for the non-thermal
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content of the ICM, i.e. if non-thermal CR pressure plays an important role in supporting the intra-cluster ionized
gas (Enßlin et al.1997). The assumptions of our models are:

• CRe are taken to originate from hadronic interactions of CRp with thermal ambient protons of the ICM and
the CRp population is described by a power-law distribution in momentum. The origin of this population
is not specified here, but CRp may be accelerated by shock waves of cluster mergers, accretion shocks (Co-
lafrancesco & Blasi1998), or injected from radio galaxies into the ICM (Valtaoja1984, Enßlin et al.1997,
Blasi & Colafrancesco1999), or result from supernova driven galactic winds (Völk et al.1996).

• In our isobaric model, the energy density of CRp is assumed to be proportional to the thermal energy den-
sity of the ICM. In our scenario of adiabatic compression of CRp during the formation of the cooling flow
this proportionality is imposed prior to the transition. This assumption is reasonable if the thermal electron
population and the CRp were energized by the same shock wave assuming that there is a constant fraction
of energy going into the CRp population by such an acceleration process. As a third model we take a single
central point source injecting the CRp which results in a very peaked CRp profile (compareBlasi1999, Blasi
& Colafrancesco1999).

• The CRp spectral index is assumed to be independent of position and therefore constant over the cluster
volume. In some sense this represents an oversimplification which could be abandoned in order to repro-
duce some specific observational results, which however would be questionable without understanding the
underlying physical processes.

• The electron density and temperature profiles of the ICM are assumed to be spherically symmetric and were
taken from the literature. This assumption is justified in the case ofγ-rays resulting from neutral pion decay
because we use cluster volume averaged spectra in order to compare to observation, and is not severe in
the case of radio emission, since the profiles are obtained from deprojected X-ray data. The magnetic field
configuration is assumed to be spherically symmetric on cluster core scales and follows the electron density
with a power-law index as a free parameter within the suggested range (Dolag et al.2001, 1999).

• No reacceleration or diffusion process of CRe is taken into account in calculating the synchrotron and the
inverse Compton (IC) emission. Therefore we provide conservative estimates for the flux.

• The radio spectrum is taken to be quasi-stationary owing to the short electron cooling time which establishes
a stationary CRe population on very short timescales. There is a one-to-one correspondence between the CRp
power law index and that of the CRe population which is in addition determined by radiative synchrotron
losses and IC cooling.

6.1.3. The expected spectral index αp

The spectral index of the ICM CRp populationαp is not well constrained by observations. However, because galaxy
clusters are able to store CRp for cosmological times (Völk et al.1996, Enßlin et al.1997, Berezinsky et al.1997)
the spectral index of the global CRp population (allowing for spatial differentiation) is expected to be that of the
injection process, if no re-acceleration processes modified the spectrum after injection. We discuss briefly different
possible CRp sources in galaxy clusters:
Structure formation shock waveshave generated most of the thermal energy content of galaxy clusters. Therefore,
it is plausible to assume that they also produced most of the CR energy of clusters. Shock acceleration is able to
produce momentum power-law particle distributions characterized by a spectral index, which is in the test-particle
picture of non-relativistic shock acceleration

αinj =
R+ 2
R− 1

, (6.1)

whereR ≤ 4 is the shock compression factor. The lowest spectral indices are therefore generated by the strongest
shocks, which are preferentially found in peripheral regions of the clusters (Quilis et al.1998, Miniati et al.2000).
Thus, harder CRp populations (αinj = 2.0...2.5) are mostly injected into the outskirts of clusters. However, motion
of the ICM gas transports them efficiently into the cluster centers (Miniati et al.2001).
Injection by radio galaxies: Active galactic nuclei (AGN) are able to produce large amounts of relativistic plasma.
The composition of this plasma is not known, however, the presence of CRp is assumed in and supported by many
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papers. The energetics of AGN is sufficient to inject a significant CRp population into the thermal ICM (Enßlin et al.
1997, 1998, Colafrancesco & Blasi1998, Blasi1999, Wu et al.2000) provided CRp are present in the radio plasma
and are able to leave it on cosmological short timescales. If the radio plasma releases all its CRp, a moderately
flat injection spectrum can be expected (sayαinj ≈ 2.5) since radio emission from radio galaxies indicates flat CRe
spectra. If, however, only a small fraction of the CRp is able to leave the radio plasma diffusively, an even flatter
spectrum (sayαinj ≈ 2.2) can be expected due to increasing escape probability with momentum (Enßlin2003).
Supernova Remnants(SNR) are known to be able to produce flat (αinj ≈ 2.4) CR populations and they are believed
to be the main CRp source of our galaxy (Schlickeiser2002, and references therein). The reason for the steeper
(αp ≈ 2.7) galactic CRp spectrum is thought to be the momentum dependent escape probability from our Galaxy.
Thus, the spectrum of CRp escaping from galaxies should be flat again (αinj ≈ 2.4). The spectrum injected into
galaxy clusters could be even flatter, if termination shock waves of the galactic winds are able to re-accelerate them,
as proposed byVölk et al. (1996).

The CRp population in galaxy clusters which is able to interact with the thermal gas and thus to produce observable
signatures will be a mixture of contributions of the different sources, modified by acceleration and energy loss
processes. In order not to rely too much on a specific physical picture, we discuss simplified models, which should
be able to capture many typical situations.

6.1.4. Outline of the chapter

This chapter is structured as follows: after modeling the spatial distribution of CRp within cooling flow clusters
(Sect.6.2), we constrain this population by comparing to EGRET upper limits (Sect.6.3). We furthermore obtain
limits on the CRp population by the morphology of radio brightness profiles in the case of Perseus and Coma
(Sect.6.4). We propose the hadronic scenario to explain the detection of TeVγ-rays of the elliptical galaxy M 87 by
the HEGRA collaboration in Sect.6.5. Finally, we investigate the detectability of the hadronically induced diffuse
γ-ray emission by future satellite missions andČerenkov telescopes in Sect.6.6. Throughout this chapter we assume
the standardΛCDM cosmology withΩM = 0.3,ΩΛ = 0.7, andH0 = 70h70 km s−1 Mpc−1, whereh70 indicates the
scaling withH0.

6.2. Spatial distribution of cosmic ray protons in cooling flow clusters

In the following, we introduce three models for the spatial distribution of CRp within clusters of galaxies. The
origin of the CRp population is not specified in the first two models, but the CRp may be accelerated by shock
waves of cluster mergers, accretion shocks, or result from supernova driven galactic winds. In contrast to that we
explore in the third model the diffusion process of CRp away from a central AGN. Since it is unclear how CRp
are distributed spatially in detail, we investigate here three different scenarios which should serve as toy models.
We pursue the philosophy of estimating physical parameters from observationally obtained electron density and
temperature profiles by using simplified model assumptions for the CRp population. In doing so we try to minimize
the dimensionality of parameter space as much as possible in order to track the main physical processes by means
of analytically feasible methods and not to rely upon too many assumptions. Therefore the presented CRp profiles
which are based on the assumption of spherical symmetry should not be interpreted as a precise estimate of the CRp
population but rather as a plausible spherically averaged scenario.

6.2.1. Isobaric model of CRp

In this model we assume that the average kinetic CRp energy densityεCRp(r) is a constant fraction of the thermal
energy densityεth(r) of the ICM

εCRp(r) = XCRpεth(r) . (6.2)

This distribution might be maintained even in the case of a cooling flow cluster by mixing and ongoing turbulent
CRp diffusion processes exerted by relativistic plasma bubbles rising in the gravitational potential of the cluster
due to buoyant forces (Churazov et al.2001, and references therein) which possibly leads to fractional pressure
equilibrium with the thermal particle population.

56



6.2.2 Adiabatic compression of CRp

6.2.2. Adiabatic compression of CRp

Here we assume the CRp population to be originally isobaric to the thermal population but to become adiabatically
compressed during the formation of the cooling flow while it did not relax afterwards. The phase space volume
stays constant during this transition and the momenta and volumes scale according to

pp→ p′p =

(
n′e
ne

)1/3

pp = C1/3pp , (6.3)

Vp→ V′p =

(
n′e
ne

)−1

Vp = C−1Vp . (6.4)

Here the compression factorC = C(r) = (n′e/ne)(r) has been introduced, which is larger than unity within cooling
flows. Provided that the electrons have been in hydrostatic equilibrium during this transition, this impliesC(r) =
Tcluster/T′e(r), whereTclusterdenotes the electron temperature in the outer core region. This transformation implicitly
assumes that the ratio of the CRp number densities before and after the adiabatic compression equals that of the
electron population. If the differential number density distribution of the CRp population may be described by
a power-law in momentumpp, then after adiabatic compression of CRp the functional shape of their distribution
remains unchanged, however shifted according to

f ′(r′, p′) =
ñ′CRp(r

′) c

GeV

(
p′c

GeV

)−αp

, (6.5)

ñ′CRp(r
′) = ñCRp[ r′(r)] C(r′)(αp+2)/3. (6.6)

The normalization ˜nCRp(r) is chosen in such a way that the kinetic CRp energy density makes up a constant
fraction of the thermal energy density prior to cooling flow formation and is described by a scaling parameterXCRp

εCRp(r) = XCRpεth(r) → ε′CRp(r
′) = X′CRp(r

′) εth(r′) . (6.7)

After adiabatic compression of CRp this scaling parameter has thus changed to

X′CRp(r) = C(αp+2)/3(r) XCRp . (6.8)

Since any hadronically induced emissivity scales withX′CRp we obtain the following relation,

j adiabatic(r) = C(αp+2)/3(r) j isobaric(r) . (6.9)

6.2.3. Diffusion of CRp away from a central AGN

Many galaxy clusters – especially those with a cooling flow – harbor a central galaxy, which often exhibits nuclear
activity. The relativistic plasma bubbles produced by the AGN may contain relativistic protons, which can partly
escape into the thermal ICM. Most of the CRp that have been injected into the cluster center are either diffusively
transported into the surrounding ICM (as assumed byColafrancesco & Blasi1998, Blasi 1999) or form relativistic
bubbles which rise in the gravitational potential of the cluster due to buoyant forces (Churazov et al.2001, and
references therein). An argument in favor of a significant central CRp injection into the ICM is the much more
efficient escape of CRp from the magnetic confinement of the radio plasma bubble during the very early stages
due to the bubbles higher geometrical compactness and and expected stronger turbulence level (Enßlin 2003). In
addition to this, any galactic wind from a central galaxy will also inject CRp into the cluster center. In order to
treat these diffusion processes analytically one has to distinguish between clusters containing a cooling flow region
or not. In the first case CRp diffusion will shape their emission profiles owing to the peaked cooling flow profiles
while the emission strength in non-cooling flow clusters is mainly governed by the effective injection timescale.

Cooling flow clusters: The transport of CRp through the ICM is diffusive, with a diffusion coefficient κ(r, p)
which in general may depend on momentum and position. For illustration we use

κ(r, p) = κ0(r)
( p c
GeV

)αdiff

, (6.10)
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with κ0 ∼ 1027...30 cm2 s−1 being plausible values. By using this ansatz, we ignore likely deviations of the diffusion
coefficient from Eqn. (6.10) in the mildly relativistic regime because these CRp are also not constrained by observa-
tions of their hadronic interactions. The coefficientαdiff describes the momentum dependence of the diffusion and
is expected to beαdiff ≈

1
3 for active CRp diffusion in a Kolmogorov-like small-scale magnetic turbulence spectrum

andαdiff ≈ 0 for passive advective transport in a turbulent flow. In the latter caseκ(p) = vturbλturb/3 ∼ 1029 cm2 s−1,
wherevturb ∼ 100 km/s andλturb ∼ 10 kpc are the turbulent velocity and coherence length, respectively.

In a stationary situation, which is a valid approximation for timescales longer than the typical CRp diffusion
timescale in the case of a stationary or short-term intermittent CRp source, the CRp distribution functions is given
by

fp(r, pp) = −
Q(p)
4π

∫ r

0

dr ′

κ(r ′, p) r ′2
=

Qp(p)

4π κ(p) r
, (6.11)

where Qp(p) =
Qp,0 c

GeV

( pp c

GeV

)−αinj

(6.12)

is the averaged CRp injection rate of the central source. We assume it to be a power-law in momentum with spectral
indexαinj , which in general is not identical to the spectral index of the CRp population within radio plasma since
the escape fraction is expected to depend on momentum (Enßlin2003). For the last step in Eqn. (6.11) we assume
for simplicity the diffusion coefficient to be independent of position. Possible models of spatial distributions for
the diffusion coefficient depend strongly on many unknown quantities such as the dominant diffusion mechanism
(active diffusion versus passive advective transport), the velocity field, the turbulence scale, and the topology of
the magnetic field, only to mention a few. Therefore we are unable to guess a realistic profile forκ0(r) without
enlarging the accessible parameter space tremendously. However since we expect the diffusion coefficient not to
change dramatically over the cooling flow scale and since the distribution functionfp(r, pp) is sufficiently steep in
radius (Eqn. (6.11)) our results should be approximately correct. The total CRp luminosity of the source can be
estimated from Eqn. (6.11) to be

LCRp =
mp c2 Qp,0

2(αinj − 1)

(
mp c2

GeV

)1−αinj

B

(
αinj − 2

2
,
3− αinj

2

)
. (6.13)

Within our model, the CRp distribution function within the thermal ICM can be written as

fp(r, pp) =
ñCRp,0 c

GeV

 r

h−1
70 kpc

−1 ( pp c

GeV

)−αp

, (6.14)

whereαp = αinj + αdiff .1

In order to obtain a realistic estimate for the diffusion volume to be considered, the relevant length scale needs
to be taken into account. We define the characteristic scaleRdiff by calculating the second moment of the time-
dependent distribution function of the first particles released by the source, yielding

Rdiff =

√
2ndim tinj κ(p) ' 80h−1/2

70 kpc
( p c
GeV

)αdiff/2
, (6.15)

wherendim = 3 denotes the number of spatial dimensions. Here we assume a typical lifetime oftinj = 3h−1
70 Gyr

andκ0 ' 1029 cm2 s−1. Beyond this scaleRdiff there can be a CRp population resulting from diffusion away from
the central AGN which is however exponentially suppressed. Because theγ-ray luminosity resulting from hadronic
CRp interactions scales as

Lγ ∝ 4π

∫
dr r 2ñCRp(r) ne(r) ∝

∫
dr r 1−3β , (6.16)

1This seems to be in contradiction to the identity of injection and equilibrium spectral index for a system without escape claimed in Sect.6.1.3.
Formally, we had to include particle escape from the galaxy cluster in order to be able to have a finite steady state solution of the diffusion
problem, as given by Eqn. (6.11). In the realistic case of a finite age of the system the stationary solution is only approximately valid in the
center of the galaxy cluster. However, only there exists a sufficiently high target density to detect the CRp population. Therefore, although
we use a poor description of the CRp profile on large-scales, the estimatedγ-ray fluxes should be sufficiently accurate.
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6.3 Constraining the population of CRp by the integrated flux of γ-rays in different clusters

we always obtain centrally peakedγ-ray profiles, since the cooling radius is smaller than the diffusion scale,rc1 <
Rdiff , andβ > 1/3 within cooling flow regions (compare TableC.1). Thus, theγ-ray luminosity is only weakly
dependent onRdiff as long as it reflects the correct order of magnitude.

In this work we constrain ˜nCRp,0 with the aid ofγ-ray observations of galaxy clusters. From these constraints
limits on the averaged CRp luminosity escaping from the radio plasma of the central galaxy can be derived using

LCRp

κ0
=

4π mp c2 ñCRp,0 h−1
70 kpc

2 (αinj − 1)

(
mp c2

GeV

)1−αinj

B

(
αinj − 2

2
,
3− αinj

2

)
, (6.17)

where we again ignored any possible low-energy spectral cutoff, since it can be included a posteriori with the help
of Fig. 5.1. As a rough estimate we find numerically

LCRp = L(αinj) 1043 h−1/2
70 erg s−1

(
κ0

1029 cm2 s−1

)  ñCRp,0

10−6 h1/2
70 cm−3

 , (6.18)

with L(αinj) = 6.1, 2.2, 1.6, and 1.7 forαinj = 2.1, 2.3, 2.5, and 2.7, respectively. In Sect6.3.4we analyze these
constraints for our cluster sample in more detail.

Non-cooling flow clusters: In transforming the above considerations on diffusion length scales to the case of
non-cooling flow clusters we point out the following differences: in non-cooling flow clusters the core radius is
normally larger than the diffusion scale,rc > Rdiff , over which the electron density varies only slightly. Thus, a
stationary solution to the diffusion equation is not applicable in the case of a flat target profile. It follows that the
volume integratedγ-ray spectrum does not depend on the diffusion coefficient but only on the injection timetinj of
CRp into the ICM of the cluster core. We therefore adopt a modification to the diffusion model for non-cooling flow
clusters. The averaged CRp luminosity of the central galaxy reads in this context

LCRp =
ÑCRp

tinj

mp c2

2 (αinj − 1)

(
mp c2

GeV

)1−αinj

B

(
αinj − 2

2
,
3− αinj

2

)
. (6.19)

HereÑCRp denotes the integrated number of CRp being injected into the ICM of the cluster andαinj = αp, because
there is no diffusion induced spectral steepening simply due to the fact that the even more energetic CRp which
are still significantly contributing to theγ-ray flux in the EGRET energy band are not able to leave the central core
region within a reasonable timescale.

6.3. Constraining the population of CRp by the integrated flux of
γ-rays in different clusters

6.3.1. Cluster sample

Based on our analytic relation between theγ-ray and bolometric X-ray fluxes (Eqn. (5.27)), we compile a sample of
suitable clusters to obtain observationally promising cluster candidates for constraining the CRp population as well
as the future detection of diffuseγ-rays resulting from hadronic CRp interactions. As a simple scenario we choose
the CRp energy density to be a constant fraction of the thermal energy density,εCRp(r) = XCRpεth(r).

Applying theFγ–FX scaling relation and taking bolometric X-ray fluxes fromDavid et al.(1993) while fixing
XCRp = 0.01X0.01 andαp = 2.3 we estimatedγ-ray fluxesFγ,est(> 100 MeV) for the spectral sensitivity of EGRET
in order to choose our cluster sample (see TableC.2). Inferred values for the estimatedγ-ray fluxFγ,est by means of
theFγ–FX scaling relation sensitively depend on the bolometric X-ray luminosity of the particular cluster such that
values forFγ,est in TableC.2represent a rough estimate. A detailed modeling using density and temperature profiles
will be described later on in Sect.6.3.2in order to obtain upper limits on the CRp population. By comparingγ-ray
fluxesFγ obtained from these two different methods we recognized an inconsistency for the Virgo and Centaurus
cluster: this discrepancy is explained by a too small aperture of the X-ray experiments analyzed byDavid et al.
(1993) giving rise to an underestimation of the X-ray flux of these two nearest clusters in our sample (zVirgo = 0.0036
andzCentaurus= 0.0114) and therefore an underestimate ofFγ,est for these two clusters. Moreover, we noticed a
systematic discrepancy of the order of 50% between the different methods in cooling flow clusters which is due to
an insufficient accounting for the radial temperature variation in Eqn. (5.27).
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Parameters of electron density profilesne(r) of our cluster sample are given in TableC.1 where the clusters are
ordered according to their property of containing a cooling flow (upper part) or not (lower part). Note that the
parameters are subject to different formulae (6.20) and (6.21),

ne(r) =

2∑
i=1

ni

(
1+

r2

r2
ci

)−3β/2

, (6.20)

ne(r) =

 Λ̃[Te(0)]

Λ̃[Te(r)]
×

2∑
i=1

n2
i

(
1+

r2

r2
ci

)−3β

1/2

. (6.21)

The last equation (6.21) follows from deprojection of X-ray surface brightness profiles which are represented by
doubleβ-models. The derivation of this deprojection is given in AppendixA. For simplicity and consistency with
the X-ray surface brightness profiles given inMohr et al. (1999) we ignored the weak dependency onTe(r) in
Eqn. (6.21). In order to model the temperature profilesTe(r) for our cooling flow cluster sample we applied the
universal temperature profile for relaxed clusters proposed byAllen et al.(2001) to data taken from the literature,

Te(r) = T0 + (T1 − T0)

[
1+

(
r

rtemp

)−η]−1

. (6.22)

This equation matches the temperature profile well up to radii of∼ 0.3 rvir , which is sufficient for our purposes since
we are especially interested in the core region of clusters. The parameters of the temperature profile for particular
cluster are given in TableC.2.

6.3.2. Simulated γ-ray flux normalized by EGRET limits: the case of Perseus cluster

The volume integrated omnidirectional differentialγ-ray source functionQγ(Eγ) can be obtained by integrating
Eqn. (5.18). We integrated the volume out to a radius of 3h−1

70 Mpc which corresponds to the characteristic distance
where the simpleβ-model of electron densities breaks down due to accretion shocks in clusters. The integration
kernelqγ(r,Eγ) scales linearly with ˜nCRp(r) (as shown in Eqn. (5.18)) which is obtained by solving Eqns. (5.7)
and (5.10). By comparing the integratedγ-ray flux above 100 MeV,Fγ(> 100 MeV), to EGRET upper limits (see
Reimer et al.2003), we constrain the CRp scaling parameterXCRp. The inferred value forXCRp in the Perseus cluster
normalizes the differentialγ-ray flux

dFγ
dEγ
≡

Qγ(Eγ)

4πD2
(6.23)

in Fig. 5.3. The π0-meson decay induced distinct spectral signature resulting in the peak at aγ-ray energy of
mπ0 c2/2 ' 67.5 MeV can be clearly seen.

Figure5.3shows also upper limits on the differentialγ-ray flux owing to IC emission of hadronically originating
CRe represented by power-laws. The IC spectra are computed by means of Eqn. (5.39) for different spectral indices
αp and zero magnetic field. Non-zero magnetic fields can be included since the IC spectra scale according to
B2

CMB/(B(r)2 + B2
CMB) (see Eqn. (5.32)) which results in a lower normalization.

6.3.3. Results on the scaling parameter XCRp using γ-ray observations in different
clusters

By employing the technique described in Sect.6.3.2we constrained the CRp scaling parameterXCRp using EGRET
upper limits of theγ-ray flux by Reimer et al.(2003). As described in that section, we infer theγ-ray flux of
this clusters originating from within a sphere of radius 3h−1

70 Mpc. Owing to the vicinity of the Virgo cluster this
maximum radius subtends an angle on the sky which is larger than the width of the point spread function of the
EGRET instrument (θmax = 5.8◦ [Eγ/(100 MeV)]−0.534, Reimer et al.(2003)). Thus in the case of Virgo we use this
smaller integration volume.

Figure6.1shows constraints forXCRp using the isobaric model of CRp described in Sect.6.2. The adiabatic model
yields slightly tighter limits onXCRp. For clusters like Perseus (A 426), Virgo, Ophiuchus, and Coma (A 1656) we
can obtain quite tight constraints on the population of CRp. For the sake of completeness, the full table of constraints
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6.3.4 Results on LCRp in the AGN-diffusion model
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Figure 6.1.: Upper limits on the CRp scaling parameterXCRp by comparing the integrated flux above 100 MeV to EGRET
upper limits assuming aγ-ray spectral index in Dermer’s modelαγ = αp. The spatial distribution of CRp is given by the
isobaric model of CRp (see Sect.6.2.1). The blue arrow refers to the upper limit onXCRp inferred from radio brightness
profiles of the radio mini-halo of Perseus cluster for the parameter combinationB0 = 10µG,αB = 0.5, andαp = 2.3.

for XCRp using the isobaric and the adiabatic model of CRp is shown in TableC.3. Because in the adiabatic model
the CRp scaling parameterXCRp is a function of radius, the valueXadiabatic

CRp given in TableC.3refers to the unprimed
quantity in Eqn. (6.8) which reflects the outer core region of the cluster.

6.3.4. Results on LCRp in the AGN-diffusion model

The procedure of inferring constraints on CRp diffusing away from a central source is mostly sensitive to the CRp
population of the central cooling flow region rather than the shock region in the outer parts of the cluster. In
order to constrain the CRp density parameter ˜nCRp,0 and averaged CRp luminosityLCRp of the central active galaxy
in our AGN-diffusion model ofcooling flow clusterswe have to calculate the volume integrated omnidirectional
differentialγ-ray source functionQγ(Eγ) (see Eqn. (5.2)). The integration kernelqγ(Eγ) is proportional to ˜nCRp(r)
(Eqn. (5.18)) which is obtained by solving Eqns. (5.6) and (6.14). By comparing the integratedγ-ray flux above
100 MeV to EGRET upper limits (seeReimer et al.2003), we constrain the CRp density parameter ˜nCRp,0. In the
case ofnon-cooling flow clusterswe constrain the averaged CRp luminosityLCRp with the aid of the integrated CRp
number parameter̃NCRp, yielding an indirect measure of a combination of the CRp escape fraction from the radio
plasma of the central galaxy and the averaged CRp luminosity of this source.

Upper limits on the CRp density parameter ˜nCRp,0, number parameter of CRp̃NCRp, and averaged CRp luminosity
LCRp of the central active galaxy (by means of Eqn. (6.17)) are presented in TableC.4. For the sake of better
comparison, Fig.6.2 additionally illustrates the averaged CRp luminosityLCRp of the central active galaxy. This
shows that within this conceptually simple model we are able to put constraints onLCRp. The limits which are
strongest in the case of M87 in the Virgo cluster represent conservative bounds since we choose the active CRp
diffusion scenario resulting in spectral steepening of the CRp population. We obtain even tighter limits when
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Figure 6.2.: Cool core clusters:Upper limits on the average CRp luminosityLCRp of the central active galaxy by com-
paring the integrated flux above 100 MeV to EGRET upper limits assuming aγ-ray spectral index in Dermer’s model
αγ = αp. The spatial distribution of CRp is is calculated according to the diffusion model of CRp away from a central
AGN assumingαp = αinj + αdiff , whereαdiff = 1/3. Non-cool core clusters:Upper limits on the average CRp luminosity
LCRp without any diffusion induced spectral steepening, i.e.αp = αinj . Note thatLCRp scales in the case of cool core
clusters with the diffusion coefficientκ0 while it only depends on the CRp injection timetinj for non-cool core clusters (see
Sect.6.2.3).

assuming a passive advective transport of the CRp in a turbulent flow in which case we infer

LCRp = L(αp) 1042 h−1/2
70 erg s−1

(
κ0

1029 cm2 s−1

)
(6.24)

with L(αp) = 4.5, 4.8, 7.2, and 20.9 forαp = 2.4, 2.5, 2.7, and 2.9, respectively. These values are slightly smaller
than instantaneous jet power estimates of M87 being of the order ofLjet ' 1043 erg s−1 (Bicknell & Begelman1996,
Young et al.2002). In general, this demonstrates the ability of future high resolutionγ-ray observations to constrain
the energy fraction of CRp escaping from the radio plasma.

6.4. Radio emissivity of secondary electrons

6.4.1. The radio mini-halo in Perseus

In contrast toγ-rays induced by hadronic CRp interactions whose spectral shape and normalization is only governed
by the spectral indexαp as free parameter, the resulting radio emission from secondary electrons also depends on
the morphology and strength of the magnetic fieldB(r). Because only a subsample of cooling flow clusters contain
radio mini-halos which are not outshined by the central AGN we decided to concentrate on the Perseus cluster. It
has the fortunate property that the radio emission due to the central galaxy NGC 1275 is spatially resolved and can
be separated from the diffuse emission due to the radio-mini halo.
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6.4.1 The radio mini-halo in Perseus

Table 6.1.: Upper limits on the CRp scaling parameterXCRp inferred from radio brightness profiles of the radio mini-halo
of Perseus cluster for different values ofB0, αB, andαp.

Model αp B0 [µG] αB Xisobaric
CRp Xadiabatic

CRp

1 2.3 10 0.5 0.016 0.006
2 2.1 10 0.5 0.014 0.005
3 2.5 10 0.5 0.033 0.011
4 2.7 10 0.5 0.096 0.031
5 2.3 5 0.5 0.027 0.009
6 2.3 20 0.5 0.012 0.004
7 2.3 10 0.7 0.017 0.006
8 2.3 10 0.9 0.019 0.006

6.4.1.1. Intracluster magnetic fields

Magnetic fields in galaxy clusters seem to be on the level of∼ µG. Indirect estimates of magnetic field strength
assuming equipartition of energy density of the fields and that of a radio synchrotron emitting relativistic electron
population give low field strengths of∼ 0.1µG. Also lower limits on the field strength of a comparable level can
be derived using the measurements or upper limits on IC scattered CMB photons in the hard X-ray band (Rephaeli
et al.1994, Fusco-Femiano et al.1999, Enßlin et al.1999). Conversely, Faraday rotation measurements indicate
magnetic fields strengths of severalµG in typical galaxy clusters and a few 10µG in cooling flow regions of
clusters (Carilli & Taylor 2002, for a review). Faraday rotation based measurements of the field strength depend
on estimating the magnetic autocorrelation length from fluctuations in the Faraday rotation maps. Although the
formerly used methods to estimate this length-scale seem to be questionable (Enßlin & Vogt2003) a refined analysis
gives comparable results for the magnetic field strengths (Vogt & Enßlin 2003, in preparation).

6.4.1.2. Comparison of the morphology of radio emissivity from secondary electrons

The radio data was taken fromPedlar et al.(1990) where we neglected the innermost data points because of enhanced
contribution to radio brightness of the radio jet of NGC 1275 and the outermost data points due to the limited
sensitivity on the larger scales of the specific VLA configuration likely leading to an artificial decline in the radio
surface brightness. The values for the azimuthally averaged radio surface brightness were converted assuming a
two-dimensional Gaussian beam which leads to a beam areaAbeam = π (4 ln 2)−1 FWHMx FWHMy. Figure6.3
shows the radial distribution of radio brightnessSν(r⊥) as a function of impact parameterr⊥ obtained by means of
Eqn. (5.38) in comparison to the radio data. The CRp adiabatic and isobaric model being described in Sect.6.2are
both shown using model parameters ofαp = 2.3, B0 = 10 µG, andαB = 0.5, where the latter two parameters refer
to Eqn. (5.37). The normalization of the radio brightness depends on the assumed scaling between CRp and thermal
energy density. We fix this scaling parameterXCRp by comparing the simulated radio brightness to the measured
data at 24.65h−1

70 kpc. There is an excellent morphological concordance of the isobaric model of CRp and the radio
data for the radio-mini halo of the Perseus cluster. Since the required values ofXCRp are plausible (∼ 0.01–0.1, see
Sect.6.4.1.3), the hadronic secondary CRe model is a very attractive explanation for the observed radio mini-halos
in cooling flow clusters.

6.4.1.3. Results on the scaling parameter XCRp using radio observations in different models

By comparing the simulated radio brightness to the measured radio data at 24.65h−1
70 kpc which is the innermost

azimuthally averaged data point not being outshined by the radio galaxy cocoon of NGC 1275 we determine the
CRp scaling parameterXCRp. Taking this point of reference yields more conservative upper limits forXCRp instead
of normalizing by the integrated radio surface brightness especially in the case of poorer morphological matches.
The inferred values forXCRp in Table6.1are shown for different combinations ofB0, αB, andαp.

Deduced values of this scaling parameterXCRp which are obtained by considering only pion decay induced sec-
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Figure 6.3.: The radial distribution of radio brightness as a function of impact parameterr⊥. Shown are the CRp adiabatic
and isobaric model for model parametersB0 = 10 µG, αB = 0.5, andαp = 2.3 (details are described in the text) as well
as the azimuthally averaged radio brightness profile of the the Perseus radio-mini halo (data was taken fromPedlar et al.
1990). The normalization of the radio brightness depends on the assumed scaling between CRp and thermal energy density.
We fix this scaling parameterXCRp by comparing the simulated radio brightness to the measured data at 24.65h−1

70 kpc.

ondary electrons resulting from hadronic CRp interactions in the ICM reflect upper limits because there are also
other mechanisms in galaxy clusters leading to relativistic populations of electrons (see Sect.6.1). By analyzing the
variations of our model parameters in Table6.1we conclude a weak dependence ofXCRp onαB while the magnetic
field strength at the cluster centerB0 and the CRp spectral indexαp show a stronger influence onXCRp. The spectral
parameter of the magnetic fieldαB impacts mostly on the radial extensions of the radio brightness profiles while the
CRp scaling parameter reflects a degeneracy with respect toB0 andαp.

Figure6.4shows the scaling parameterXCRp(r) as a function of radiusr between CRp and thermal energy density
in the adiabatic model according to Eqn. (6.8) for models defined in Table6.1. The enhancement of CRp relative
to the thermal energy density owing to adiabatic compression of the CRp population during the formation of the
cooling flow can be clearly seen.

6.4.2. Constraints derived from the radio halo of Coma

6.4.2.1. Parameter study of the hadronic scenario

We also applied this formalism of synchrotron radiation emitted by secondary electrons as presented in Sect.5.5
to the radial distribution of radio brightness in the radio halo of the Coma cluster using radio data at 1.4 GHz by
Deiss et al.(1997). Assuming the CRp population to be distributed according to the isobaric model, the spatial radio
brightness profile obtained by this secondary electron model declines too fast with increasing impact parameterr⊥
in order to account for the observed extended radio halo of Coma. To check whether this shortfall of the theoretical
model represents a serious problem for the hadronic model of radio synchrotron emission we are asking in turn for
the necessary radial variation of the CRp scaling parameterXCRp(r) that is able to explain the observed radio halo.
Deprojecting the azimuthally averaged observed radio surface brightness profile which is described by aβ-model
yields (as laid down in AppendixA)

jν(r) =
S0

2π rc

6β − 1(
1+ r2/r2

c

)3β
B

(
1
2
,3β

)
, (6.25)
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6.4.2 Constraints derived from the radio halo of Coma
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Figure 6.4.: The deprojected scaling parameterXCRp(r) between CRp and thermal energy density in the adiabatic model
applied to the mini-radio halo of Perseus and presented for models which are defined in Table6.1.

whereS0 = 1.1 mJy arcmin−2, rc = 450h−1
70 kpc, andβ = 0.78. By comparing the observed to the theoretically

expected radio emissivity at each radius we infer the ratio of CRp-to-thermal energy densityXCRp(r). Figure6.5
shows a comparison ofXCRp(r) and the ratio of magnetic-to-thermal energy densityXB(r) = εB(r)/εth(r) for par-
ticular model parametersαp, αB, andB0. Whereasαp andB0 impact mostly on the normalization of both scaling
parametersXCRp(r) andXB(r), the choice ofαB governs the relative curvature of these functions:XB(r) ∝ ne(r)2αB−1

is curved in a convex fashion forαB > 0.5 and exhibits concave curvature forαB < 0.5 assuming the cluster to
be isothermal which is a valid approximation for Coma. While there are combinations of parameters for which
XCRp(r) becomes larger than unity and thus question the hadronic scenario (Brunetti2002), only small variations in
parameter space yield plausible values forXCRp(r) (compare Fig.6.5).

In order to quantify these considerations we perform a parameter study to exclude regions of parameter space
spanned byαp, αB, and B0 where the hadronic scenario is challenged to account for the radio halo in Coma.
Figure 6.6 shows the resulting contour lines ofXCRp(r ≤ 1h−1

70 Mpc) = 1 andXCRp(r ≤ 1h−1
70 Mpc) = 0.1 in

this parameter space. The gradient ofXCRp(r ≤ 1h−1
70 Mpc) points towards the lower right corner in Fig.6.6 and

thus leaves the upper left region of parameter space where the hadronic scenario is able to account for the observed
radio halo depending on the specific choice ofαB. SinceXB(r ≤ 1h−1

70 Mpc) < 0.1 for the entire region of parameter
space investigated here there are no further constraints imposed on the hadronic scenario.

Choosing the energy density of the magnetic field to decline like the thermal energy density, i.e.αB = 0.5, requires
XCRp(r) to increase by a factor of less than two orders of magnitude from the center to the outer parts of the cluster in
order to reproduce the observed radio halo of Coma. This factor, however, is reduced for smaller values ofαB. It is
further reduced due to the non-spherical morphology of Coma, as explained in the following. The X-ray emissivity
and the radio emissivity resulting from hadronic CRp interactions differ in their scaling with the electron density
according to

ΛX(r) ∝ ne(r)
2 and (6.26)

jν(r) ∝ XCRp(r) ne(r)
2+αB(1+αp/2) ∼ XCRp(r) ne(r)

3...4 (6.27)

within the framework set by our model and depending on the particular choice ofαB andαp. Thus, any anisotropy
like the Coma X-ray and radio bridge yields biased azimuthal averages when comparing observational to theoretical
radio surface brightness profiles where the latter uses density profiles obtained by deprojecting X-ray profiles.
Remarkably, this discrepancy is largest for large values ofαB andαp for which we infer the tightest limits on the
hadronic scenario (cf. Fig.6.6) and thus softens these limits. This results in biased profiles ofXCRp(r) which increase
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Figure 6.5.: The deprojected CRp scaling parameterXCRp(r) required to account for the observed radio halo in Coma
within the framework of the hadronic scenario. The rising curves with increasing radius representXCRp(r) while the
declining curves showXB(r) for the particular choice of a magnetic field being frozen into the flow and isotropized,
i.e.αB = 0.7 (Tribble1993).

too strongly towards larger radii (cf. alsoDolag & Enßlin2000). Pursuing an approach of averaging only along the
line of sight could attenuate the bias (Govoni et al.2001).

An increase ofXCRp(r) towards the cluster’s periphery is indeed observed in cosmological structure formation
simulations due to adiabatic compression inside the cluster which increases the thermal pressure at a higher rate
than the CRp pressure (Miniati et al.2001). Bearing in mind that the CRp-to-thermal pressure ratio ofMiniati et al.
(2001) is obtained from volume averages and the energy density stored in magnetic fields declines shallower in
comparison to the thermal energy density we conclude that our results arising the parameter study may be well in
agreement with these simulations.

6.4.2.2. The spectrum of the Coma radio halo

One might object that the CRp spectral index should be determined better owing to radio observations than the range
of αp = (2,3) being considered in the previous parameter study (Sect.6.4.2.1). The following line of argumentation
shows, that this, on the contrary, is not the case. First, there is an ambiguity of relating the CRp spectral indexαp

to the induced synchrotron spectral indexαν which is eitherαν = αp/2 (Dermer’s model) orαν = (2αp − 1)/3
(fireball model). When comparing multifrequency observations of diffuse radio emission of the ICM which extends
to several GHz the Sunyaev-Zel’dovich (SZ) distortion of the spectrum has to be taken care of. At these frequencies
of the Rayleigh-Jeans part of the Planck spectrum the SZ effect amounts to a decrement which introduces a cutoff

in the radio spectrum as can be seen in Fig.6.7. FollowingEnßlin(2002) the SZ luminosity reads for Coma in the
Rayleigh-Jeans part

FComa
SZ = −4.1× 10−3ν2GHz h−1/2

70 Jy, (6.28)

whereνGHz = ν/GHz.2 However, the SZ amplitude is uncertain within a factor of 2 which stems mostly from density
profiles being inferred from X-ray observations and extrapolated toRshock. Furthermore, the multifrequency dataset
as compiled byThierbach et al.(2003) is inhomogeneous because the solid angle over which the observed radio
fluxes have been integrated may vary among these observations. Finally, the quoted uncertainties may underestimate
the systematic uncertainties which e.g. result from incomplete accounting for point source subtraction.

2Here we corrected for a missing factor of 2 in Eqn. (4) inEnßlin(2002) and changed the slope of theβ-profile toβ = 0.75 (Briel et al.1992).
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Figure 6.7.: Observed radio halo fluxes of the Coma cluster as compiled byThierbach et al.(2003). Shown are synchrotron
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6.5. Probing the cosmic ray population of the elliptical galaxy M 87

This section examines the cosmic ray proton (CRp) population within the giant elliptical galaxy M 87 using the TeV
γ-ray detection of the HEGRA collaboration. In our scenario, theγ-rays are produced by decaying pions which
result from hadronic CRp interactions with thermal gas of the interstellar medium of M 87.

6.5.1. Detection of γ-rays by the HEGRA collaboration: possible models

The giant elliptical galaxy M 87 is an intensively studied object in our direct extragalactic vicinity situated at a
distance of 17 Mpc (Neilsen & Tsvetanov2000). The announcement of the TeVγ-ray detection of M 87 at a
4-σ significance level by the HEGRA collaboration (Aharonian et al.2003) using imaging atmospheričCerenkov
techniques was the first discovery of TeVγ-rays from a radio galaxy with a jet whose axis forms a relatively
large angle with the line of sight of roughly 30◦ − 35◦ (Bicknell & Begelman1996). On the basis of the limited
event statistics the detected emission is inconclusive whether it originates from a point source or an extended source.
Despite testing for burstlike behavior of M 87 no time variation of the TeVγ-ray flux has been found. This detection
provides the unique possibility for probing differentγ-ray emission scenarios and thus provides new astrophysical
insight into high energy phenomena of this class of objects.

In the literature, there are three different types of model predictingγ-ray emission from objects like M 87: in
the first scenario, the GeV/TeV γ-ray emission is generated by the active galactic nucleus (AGN), and possibly
related to processed radiation of the relativistic outflow (Dermer et al.1997). Particularly, inverse Compton (IC)
scattering of cosmic microwave background photons off electrons within the jet which have been directly accelerated
or reaccelerated as well as the Synchrotron Self Compton scenario could lead toγ-ray emission (Bai & Lee 2001).
Secondly, dark matter annihilation or decay processes could be another conceivable source ofγ-ray emission, such
as the hypothetical neutralino annihilation (Baltz et al.2000). Finally, hadronic cosmic ray proton (CRp) interactions
with the thermal ambient gas would produce pion decay inducedγ-rays as well as inverse Compton and synchrotron
emission by secondary cosmic ray electrons (CRe) (Vestrand1982). These processes are possible due to the long
lifetimes of CRp comparable to the Hubble time (Völk et al.1996), long enough to diffuse away from the production
site and to maintain their distribution throughout the cluster volume. Because of the strong dependence of this
hadronic process on particle density, the giant radio galaxy M 87, located inside the central cooling flow region of
the Virgo cluster, is expected to be a major site ofγ-ray emission (Pfrommer & Enßlin2004a).

This work uses the hadronic scenario to model the resultingγ-ray emission. Thus it probes the CRp population by
the recent TeVγ-ray observations yielding either an upper limit or a detection on the CRp population, provided this
scenario applies. However, this approach only constrains the CRp within the central region of intracluster medium
(ICM) of the Virgo cluster which is dominated by the interstellar medium (ISM) of the radio galaxy M 87. In the
following, we use the term ICM for both. It should be emphasized that this hadronic scenario predicts stationary
γ-ray emission and will be ruled out if the emission is found to be time-variable (barring the existence of a second
component). This, however, would result in even tighter constraints on the CRp population owing to the absence of
inescapably accompanyingγ-ray emission.

6.5.2. Energy-integrated γ-ray fluxes: EGRET versus HEGRA

Provided the CRp population has a power-law spectrum, the relation of the hadronicγ-ray fluxFγ in different energy
bands can easily be found using the analytic formulae for the integratedγ-ray source density, namely Eqns. (5.23)
to (5.26),

Fγ(E1 < Eγ < E2)

Fγ(E3 < Eγ < E4)
=
F̃γ(E1,E2)

F̃γ(E3,E4)
, (6.29)

where F̃γ(Ei ,E j) =

[
Bx

(
αγ + 1

2δγ
,
αγ − 1

2δγ

)]x j

xi

and xi, j =

1+ (
mπ0 c2

2Ei, j

)2δγ
−1

. (6.30)

Here we introduced the abbreviation [f (x)]x2
x1
= f (x2) − f (x1). This relation for hadronicγ-ray fluxes is indepen-

dent of any specific model of CRp spatial distribution as long as the same physical mechanism governs the CRp
distribution in both energy bands. In passing by, it should be noted that we use Dermer’s model for the hadronically
inducedγ-ray emission, whereαγ = αp.
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6.5.3 Modification of the spatial diffusion model of CRp

Using the HEGRAγ-ray flux for M 87 ofFγ(E > 730 GeV)= 9.6×10−13γ cm−2 s−1 (Aharonian et al.2003), and
requiring the expectedγ-ray flux above 100 MeV to be smaller than the EGRET upper limitFγ(E > 100 MeV)=
2.18× 10−8 γ cm−2 s−1 (Reimer et al.2003), we are able to constrain the CRp spectral index toαp < 2.275. For
this calculation, we assume a constant CRp spectral indexαTeV

GeV extending from the GeV to TeV energy regime. In
the case of steeper spectra in the TeV region, the CRp spectrum needs to be bent in a convex fashion or to exhibit a
low energy cutoff in order to meet the requirement imposed by EGRET.

6.5.3. Modification of the spatial diffusion model of CRp

In this section, we also examine three models for the spatial distribution of CRp within the ICM. The isobaric and
the adiabatic model for the spatial CRp distribution does not specify their origin, but the CRp may be accelerated by
shock waves of cluster mergers, accretion shocks, or result from supernova driven galactic winds. Due to the better
spatial resolution of theγ-ray detection of M 87 compared to the EGRET limits, it is necessary to modify our model
for the spatial diffusion of the CRp population to include a parameter governing the lifetime of the AGN source.

The relativistic plasma bubbles produced by M 87 likely contain relativistic protons, which can partly escape into
the thermal ICM (Enßlin2003). Most of the CRp that have been injected into the cluster center are either diffusively
transported into the surrounding ICM or form relativistic bubbles which rise in the gravitational potential of the
cluster due to buoyant forces (Churazov et al.2001, and references therein).

Momentum dependent CRp diffusion in a turbulent magnetic field with a Kolmogorov-type spectrum on small
scales would result in spectral steepening and therefore would violate the limits on the spectral indexαTeV

GeV obtained
in Sect.6.5.2provided there is no sharp upper cutoff in the CRp spectrum. Thus we adopt for simplicity the scenario
of passive advective transport of CRp in a turbulent flow with a diffusion coefficientκ independent of momentum.
The time-dependent CRp distribution function reads for short (duration∆t) point-like injection with CRp injection
rateQ(pp) at timet = 0

fp(r, pp, t) =
Q(pp)∆t

(4π t κ)3/2
exp

(
−

r2

4 t κ

)
. (6.31)

In a quasi-stationary situation, which is a valid approximation for timescales longer than the typical CRp diffusion
timescale in the case of a stationary or short-term intermittent CRp source, the integrated CRp distribution function
is approximately given by

fp(r, pp) =
∫ t

0
dt′ fp(r, pp, t

′) =
Q(pp)

4π r κ
erfc

(
r
√

4 t κ

)
, (6.32)

where erfc(x) denotes the complementary error function which is responsible for the spatial cutoff at the character-
istic diffusion scaleRdiff =

√
6 t κ. While assuming a power-law shapedQ(pp), the CRp distribution of Eqn. (5.6)

can be written within the framework set by this model as

fp(r, pp) =
ñCRp,0 c

GeV

(
r

kpc

)−1

erfc

(
r
√

4 t κ

) ( pp c

GeV

)−αp

. (6.33)

Following Sect.6.2.3, the averaged CRp luminosity of M 87 can be estimated to be

LCRp

κ
=

4π mpc2 ñCRp,0 kpc

2 (αp − 1)

(
mpc2

GeV

)1−αp

B

(
αp − 2

2
,
3− αp

2

)
. (6.34)

Considering an energy dependent mean-free-path for diffusion would require fine-tuning of this model while simul-
taneously enlarging the accessible parameter space. While the resulting profiles should only be slightly affected
by this change, this could possibly alter our conclusions concerning the normalization ˜nCRp,0. However, this would
only add further uncertainty to ˜nCRp,0 which already depends on two unknown parameters, the lifetime of the source
t and the diffusion coefficientκ.

6.5.4. Modeled γ-ray profiles

Theγ-ray flux profilesfγ(r⊥,Eγ > Ethr) are obtained by integrating theγ-ray source functionqγ(r,Eγ) of Eqn. (5.18)
above a threshold energyEthr, successively projecting and convolving the spherically symmetric profiles with the
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Figure 6.8.: Top: Modeledγ-ray surface flux profilesfγ(r⊥) as function of impact parameterr⊥ in our three different
models for the spatial distribution of the CRp population. They are normalized by comparing the integratedγ-ray flux
above 730 GeV to HEGRA data of M 87 within the innermost two data points.Bottom: Comparison of detected to
integratedγ-ray flux Fγ(θ2) within the central aperture and the innermost annuli for different models of spatial CRp
distribution as well as two different widths of the PSF. The thick black lines correspond toσ = 0.05◦ whereas the thin
grey lines are calculated forσ = 0.08◦. The vertical dashed line separates the data from the noise level at a position
corresponding tor⊥ = 37.5 kpc.

point spread function (PSF) of HEGRA, PSF(r⊥) = exp[−r2
⊥/(2σ

2)]/(2πσ2). Resolution studies based on obser-
vations of the Crab Nebula with HEGRA indicate a width ofσ = 0.08◦, assuming a differential spectral index of
αγ = 2.7 (Daum et al.1997). However, for flatter power-law spectra being preferred by our hadronicγ-ray model
(see Eqn. (6.29)), the width will be smaller owing to increasing meanγ-ray energy. This leads to an increase of
γ-ray induced particles of the air shower and therefore better quality of shower reconstruction according to a smaller
relative Poissonian error. For a rough estimate, we rescaled the width of the PSF using the scaling of the meanγ-ray
energies above the instrumental threshold, yieldingσ = 0.05◦ with αγ = 2.2.

The line-of-sight integration was performed out to a radius ofRmax ' 3 Mpc which corresponds to the character-
istic distance where theβ-model of electron densities is no longer applicable due to accretion shocks of the cluster.
The resultingγ-ray profiles are shown in Fig.6.8. The normalization of the surface fluxes depends on the assumed
scaling between CRp and thermal energy density, which is fixed by comparing the integrated flux above 730 GeV
to the innermost twoγ-ray flux data points of HEGRA (Aharonian et al.2003) corresponding toθ = 0.126◦ or
r⊥ = 37.5 kpc. Although there are distinct morphological differences visible in the three spatial CRp models, the
convolution with the PSF leads to very similar profiles for the expected HEGRAγ-ray counts within the uncertain-
ties. To demonstrate this, we compare the integratedγ-ray flux Fγ(Eγ > Ethr) for different annuli of equal solid
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6.5.5 Consequences and predictions for the CRp population in M 87

Table 6.2.: Consequences for the CRp scaling parameterXCRp and ñCRp,0 by comparing the integrated flux above 730
GeV to HEGRA data of the radio galaxy M 87 within the innermost two data points corresponding toθ = 0.126◦. The
spatial distribution of CRp is given by the isobaric, the adiabatic, and the diffusion model, respectively (see Sect.6.2). In
the first two cases the values are calculated for a CRp population with and without lower cutoff pmin while in the latter
case two different lifetimes of the source have been considered. Note that the averaged CRp luminosityLCRp scales with
κ29 = κ/(1029 cm2 s−1).

αTeV
GeV Xisobaric

CRp Xadiabatic
CRp ñCRp,0 [cm−3] LCRp

[
κ29 erg/s

]
pmin = 0 GeVc−1 : t = 1 Gyr κ−1

29 :

2.1 0.47 0.31 1.8× 10−7 1.1× 1043

2.2 0.65 0.43 5.0× 10−7 1.6× 1043

2.27 0.99 0.64 1.0× 10−6 2.4× 1043

pmin = 2 GeVc−1 : t = 3 Gyr κ−1
29 :

2.1 0.42 0.28 1.2× 10−7 7.6× 1042

2.2 0.52 0.34 3.4× 10−7 1.1× 1043

2.27 0.73 0.47 6.8× 10−7 1.6× 1043

angle elements centered on the source to the HEGRA data for the two different widths of the PSF discussed above
(Fig. 6.8).

6.5.5. Consequences and predictions for the CRp population in M 87

By employing the technique described in Sect.6.5.4, we explore the consequences for the CRp scaling parameters
XCRp andñCRp,0 in the particular models of CRp spatial distributions. The resulting values, shown in Table6.2, have
been obtained using a PSF of widthσ = 0.05◦, however there are no significant changes inXCRp for σ = 0.08◦. The
values of the CRp scaling parameterXCRp inferred from M 87 are comparable to the one in our Galaxy, which is of
order unity (Parker1969). Since the HEGRAγ-ray measurements probe only the central region of the Virgo cluster
which is dominated by the elliptical radio galaxy M 87, a composition of ISM and ICM is observed, potentially
mixed by convective motion within the cooling flow (Churazov et al.2001). Therefore we expectXCRp to be smaller
than in our Galaxy, but significantly higher than upper limits obtained in nearby cooling flow clusters, which are
less than 20% (Pfrommer & Enßlin2004a).

In the case of diffusion of CRp away from M 87, we are able to constrain the averaged CRp luminosityLCRp of
the central AGN by assuming a plausible value for the diffusion coefficientκ. The inferred values are of the same
order as instantaneous jet power estimates of M 87,Ljet ' 1043 erg s−1 (Bicknell & Begelman1996). Thus, we
limit a combination of diffusion efficiency of CRp into the ambient thermal medium and average jet power by this
approach.

Because of the scaling behavior ofXCRp in the isobaric and adiabatic models, we quantify the influence of a lower
cutoff pmin on the population of CRp due to Coulomb interactions in the plasma by taking the ratio of CRp energy
densitiesεCRp(pmin) with and without lower cutoff (see Eqn. (5.14)). Such a cutoff yields lower values ofXCRp

and therefore smaller contribution to theγ-ray flux in the energy range of EGRET once the CRp momentum cutoff

pmin exceeds the kinematic thresholdpthr = 0.78 GeVc−1 of the hadronic interaction. Thus, cooling of the CRp
population allows for steeper power-law distributions.

6.5.5.1. Synchrotron emission by hadronic CRe

Following the formalism described inPfrommer & Enßlin(2004a), we compute the synchrotron emission of
CRe resulting from hadronic CRp interactions. Integrating the expected radio surface brightness profiles over
the solid angle element corresponding to theγ-ray emission region and assuming magnetic fields of the form
B(r) = 10µG [ne(r)/ne(0)]0.5, we expect hadronic synchrotron fluxesFν = F0 [ν/(1.4 GHz)]−αp/2, whereF0 = 11 Jy
and 16 Jy forαp = 2.1 and 2.2. However, this hypothetical radio mini-halo is outshone by the synchrotron emission
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of the relativistic jet, which shows a flux level ofF1.4 GHz = (220± 11) Jy (Kuehr et al.1981). The hadronic radio
surface profiles which are characterized by a smooth morphology fall short by roughly one order of magnitude even
at impact parameters of some arc minutes compared to observed profiles ofRottmann et al.(1996).

6.5.5.2. Predictions for next generation Čerenkov telescopes and GLAST

There are three different scenarios predictingγ-ray emission from objects like M 87, namely processed radiation of
the relativistic outflow, dark matter annihilation, and the hadronic scenario. The predictions of these types of model
differ predominantly in morphology, existing time-variability, and spectral signatures. The radio galaxy M 87 which
is well within the field of view of the next generatioňCerenkov telescopes MAGIC3, HESS4, and VERITAS5 should
therefore serve as a unique source for testing these scenarios. While the angular resolution of these telescopes is
comparable to the previously attained resolution, the flux sensitivities have strongly improved. These developments
should allow forγ-ray spectroscopy by̌Cerenkov experiments in the near future, providing the opportunity of
scrutinizing existing time-variation, and thus being able to constrain differentγ-ray emission scenarios.

The LAT instrument onboard GLAST6 will complement this research to even lower energies ranging from
20 MeV up to 300 GeV. Given a CRp population described by a single power-law spectral indexαp = α

TeV
GeV

extending from the GeV to TeV energy regime as well as a CRp scaling parameterXCRp of Table 6.2, we cal-
culated the expected integratedγ-ray flux above 20 MeV. In the isobaric model, theγ-ray flux estimates are
Fγ(> 20 MeV)/(γ cm−2 s−1) = 6.0 × 10−8,1.3 × 10−7, and 2.3 × 10−7 for αTeV

GeV = 2.1, 2.2, and 2.27, respectively.
This is well above the sensitivity limit of GLAST. The energy resolution of GLAST will even provide the possibil-
ity to disentangle the pion decay induced signature from inverse Compton emission of high-energetic electrons or
positrons due to the energy resolution which is better than 10% and is sufficient to resolve the pion decay induced
peak in theγ-ray spectrum.

6.6. Detectability of γ-rays by future satellite missions and Čerenkov
telescopes

Based on the previous results we discuss the detectability of IC emission by secondary CRe and pion decay induced
γ-ray emission by current and future satellite missions as well as operating and futureČerenkov telescopes.

6.6.1. Detectability of pion decay induced γ-ray and IC emission with INTEGRAL

The imager IBIS which is the Imager on Board the “INTErnational Gamma-Ray Astrophysics Laboratory” (INTE-
GRAL)7 Satellite covers an energy range from 15 keV up to 10 MeV and is capable of high resolution imaging (12′

FWHM) and source identification. Its spectral sensitivity reaches down to 5× 10−8 γ s−1 cm−2 keV−1 (3σ in 106

s,∆E = E/2) to the continuum at 10 MeV. However, this is most probably not sufficient in order to detect the pion
decay inducedγ-rays of a particular cluster (compare Fig.5.3). Assuming a CRp spectral index ofαp = 2.3 and
taking the results of Table6.1we expect an IC emission of hadronically originating CRe in the Perseus cluster of

dF
dE

(20 keV)= FIC 10−7 γ cm−2 s−1 keV−1, (6.35)

with FIC = 8.4, 4.2, and 2.3 forB0 = 5 µG,10 µG, and 20µG. Comparing these results to thepost-launch
spectral sensitivity of 4× 10−6 γ s−1 cm−2 keV−1 to the continuum at 20 keV for an observation time of 106 s (3σ
detection) there is only a minor chance to detect IC emission of CRe. However, for steeper spectral indices or
a strongly inhomogeneously magnetized environment, IC fluxes can be enhanced at the expense of synchrotron
emission according toEnßlin et al.(1999).

3http://hegra1.mppmu.mpg.de/MAGICWeb/
4http://www.mpi-hd.mpg.de/hfm/HESS/HESS.html
5http://veritas.sao.arizona.edu/
6http://glast.gsfc.nasa.gov/science/
7http://astro.esa.int/Integral/
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Figure 6.9.: Expected limits on the CRp scaling parameterXCRp in the isobaric model by comparing the integrated
pion decay inducedγ-ray flux above 100 GeV to sensitivity limits of̌Cerenkov telescopes ofFγ,exp(E > Ethr) =
10−12γ cm−2 s−1 (Ethr/100 GeV)1−αγ assuming aγ-ray spectral index in Dermer’s modelαγ = αp. Note that limits on
XCRp roughly. 0.01 forαp = 2.3 in the isobaric model provide good chances to detectγ-rays in these particular clusters
with new generatioňCerenkov telescopes.

6.6.2. Possibility of pion decay induced γ-ray detection by GLAST

The “Large Area Telescope” (LAT) onboard the “Gamma-ray Large Area Space Telescope” (GLAST)8 scheduled
to be launched in 2006 has an angular resolution smaller than 3.5◦ at 100 MeV while covering an energy range of
20 MeV up to 300 GeV with an energy resolution smaller than 10%. Assuming a photon spectral index ofαγ = 2 for
theγ-ray background the point source sensitivity at high galactic latitude in an one year all-sky survey is better than
6×10−9 cm−2 s−1 for energies integrated above 100 MeV. Assuming the radio-mini halo in the Perseus cluster mainly
to originate from secondary electrons emitting synchrotron radiation then we expect the CRp scaling parameter to be
typically one order of magnitude below the upper limits obtained by comparing to EGRET data. This immediately
would imply a good possibility to detect pion decay inducedγ-ray emission by GLAST preferentially in nearby
cooling flow clusters like Perseus and Virgo. Specifically for our secondary model of the radio mini-halo of Perseus,
while assumingαp = 2.3 in the CRp isobaric model we expect an integratedγ-ray flux above 100 MeV from Perseus
of Fγ(> 100 MeV)/(γ cm−2 s−1) = 1.3 × 10−8,7.4 × 10−9, and 5.6 × 10−9 for B0 = 5µG,10µG, and 20µG. The
expectedγ-ray flux is ever higher when including lower energetic photons.

6.6.3. Expected γ-ray flux for Čerenkov telescopes

In the near future there will be differentČerenkov telescope experiments operating with several telescopes simul-
taneously and therefore allowing stereoscopic observations. On the southern hemisphere there are the “Collab-
oration between Australia and Nippon for a Gamma Ray Observatory in the Outback” (CANGAROO)9 in Aus-

8http://glast.gsfc.nasa.gov/science/
9http://www.physics.adelaide.edu.au/astrophysics/
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tralia and the “High Energy Stereoscopic System” (HESS)10 in Namibia. On the northern hemisphere there will
be the “Very Energetic Radiation Imaging Telescope Array System” (VERITAS)11 in Arizona. All these tele-
scopes have comparable lower energy thresholds ofEthr = 100 GeV and provide flux sensitivities better than
Fγ,exp(E > 100 GeV)= 10−12γ cm−2 s−1. On the northern hemisphere there will also be the “Major Atmospheric
Gamma-ray ImaginǧCerenkov detector” (MAGIC)12 on the Canary Islands observing with a single dish telescope
of 234 m2 providing an even lower energy threshold ofEmin = 30 GeV.

Following the formalism described in Sect.6.3.2and comparing the resultingγ-ray fluxFγ(E > Ethr) to expected
flux sensitivities ofČerenkov telescopesFγ,exp(E > Ethr), we obtain possible upper limits on the CRp scaling
parameterXCRp for an integrated volume out to a radial distance of 3h−1

70 Mpc. TableC.5shows constraints forXCRp

using the isobaric and the adiabatic model of CRp described in Sect.6.2. For the sake of better comparison, Fig.6.9
additionally illustrates these limits using the isobaric model of CRp. By comparing these limits to those obtained
by analyzing synchrotron emission in the Perseus and Coma cluster (see Table6.1) and assuming a substantial
contribution of hadronically originating CRe to these radio halos there is a realistic chance to detect extragalactic
pion decay inducedγ-ray emission in clusters like Perseus (A 426), Virgo, Ophiuchus, and Coma (A 1656).

6.7. Conclusions

We investigated hadronic CRp-p interactions in the ICM of clusters and simulated the resulting emission mech-
anisms in radio, X-rays, andγ-rays assuming spherical symmetry. By applying this technique to a sample of
prominent clusters of galaxies including cooling flow clusters we succeeded in constraining the population of CRp.
Especially cooling flow regions are perfectly suited for constraining non-thermal ICM components due to their high
gas density and magnetic field strength.

6.7.1. The cosmic ray population of nearby galaxy clusters: EGRET constraints

From the literature we collected electron density and temperature profiles of seven cooling flow clusters and four
non-cooling flow clusters using our analytic scaling relation between theγ-ray and bolometric X-ray fluxes to obtain
observationally promising candidates.

In order to apply this method to our sample of clusters of galaxies we introduced three specific models for the
spatial distribution of CRp within cooling flow cluster. In our first two scenarios we characterized the kinetic
CRp energy densityεCRp(r) to be a constant fraction of the thermal energy densityεth(r) of the ICM parametrized
by XCRp. The CRp isobaric model assumes the average pressure of CRp not to change during the formation of
the cooling flow while the adiabatic model hypothesizes this proportionality prior to transition because the CRp
experience adiabatic compression during the relaxation phase. In our third scenario we modeled the resulting
distribution of CRp diffusion from a central source. By modeling the particularγ-ray emission of our cluster
sample and comparing to EGRET upper limits we obtained upper bounds on the CRp scaling parameterXCRp =

εCRp(r)/εth(r). For Perseus and Virgo we infer the strongest upper limits which lie in the rangeXCRp ∈ [0.08,0.18]
for different choices of the CRp spectral indexαp ∈ [2.1,2.7].

6.7.2. Radio synchrotron emission by hadronically produced relativistic electrons

Furthermore, the radio emission due to hadronically produced secondary electrons emitting synchrotron radiation
was calculated and resulting radio brightness profiles were compared to measured data of the radio-mini halo of
Perseus as well as the radio halo of Coma. In the case of Coma our CRp profiles characterized by a flat CRp
scaling parameterXCRp are not able to reproduce the observed radio profiles particularly in the peripheral regions
of the cluster. In the following we adjusted the radial behavior ofXCRp(r) such that the synchrotron emission
resulting from hadronic CRe is able to account for the observed radio surface brightness profile and thus allowing
for an additional degree of freedom. The resulting increase ofXCRp(r) for larger radii could be due to adiabatic
compression which increases the thermal energy density at a higher rate than the CRp energy density. Even more

10http://www.mpi-hd.mpg.de/hfm/HESS/HESS.html
11http://veritas.sao.arizona.edu/
12http://hegra1.mppmu.mpg.de/MAGICWeb/
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important, the aspherical Coma cluster morphology reduces the required radial increase inXCRp(r). By exploring
the accessible parameter space spanned by parameters describing the magnetic field and the spectral index of the
CRp population we identify regions where the hadronic scenario is able to reproduce the observed radio profiles
preferentially for an energy density of the magnetic field which declines shallower than the thermal energy density.
We conclude that the secondary model for radio halos is still viable.

In the case of the Perseus mini-radio halo, we conclude upper limits onXCRp which are ranging for the isobaric
model of CRp within the intervalXCRp ∈ [0.01,0.1] for conservative combinations of values of the magnetic field
B and the CRp spectral indexαp while upper limits for the CRp adiabatic model are typically half an order of
magnitude below. By comparing calculated radio brightness profiles to measured data of the radio-mini halo in
Perseus, we found excellent morphological agreement between the CRp isobaric model and the radio data especially
for the choice ofB0 = 10 µG, αB = 0.5, andαp = 2.3. In the course of this chapter we argued that this specific
choice of parameters for the magnetic fields in cooling flow clusters is also preferred by experiments like Faraday
rotation measurements and cosmological cluster simulations including magnetic fields. A discussion of different
acceleration mechanisms of CRp such as structure formation shocks, supernovae remnants, and injection by active
radio galaxies supports also a value ofαp close to the inferred one. Because of the required moderate CRp energy
density we propose synchrotron radiation by non-thermal secondary electrons from hadronic interactions as a likely
explanation of radio mini-halos. In order to scrutinize this model we provide predictions ofγ-ray fluxes forČerenkov
telescopes as well as the INTEGRAL and GLAST satellites.

6.7.3. The cosmic ray population of the giant elliptical galaxy M 87

Using TeVγ-ray detections of M 87 by the HEGRA collaboration, it is for the first time possible to constrain the
CRp population of an elliptical galaxy. By comparing to EGRET upper limits on theγ-ray emission, we constrain
the CRp spectral index toαTeV

GeV < 2.275, provided theγ-ray emission is of hadronic origin and the population is
described by a single power-law ranging from the GeV to TeV energy regime.

By investigating three different models for the spatial distribution of the CRp and applying those to realistic
electron density and temperature profiles obtained from X-ray observations, we calculateγ-ray flux profiles resulting
from hadronic CRp interactions with the thermal ambient gas using an analytic formalism. After convolving with
the HEGRA point spread function, we compare the integratedγ-ray flux Fγ(Eγ > 730 GeV) for different annuli
of equal solid angle elements centered on the source. Based on the available data we find good morphological
agreement of all our models with these HEGRAČerenkov observations.

In the isobaric and adiabatic CRp model, the consequences for the CRp scaling parameterXCRp drawn from
normalization of ourγ-ray flux profiles to HEGRA observations yield slightly smaller values when comparing
to our Galaxy withXCRp ∼ 1, depending on the CRp spectral index. This is because of the sensitivity of the
observations to both the ISM of M 87 and the ICM of the central cooling flow region of Virgo, whereXCRp . 0.2
(cf. Fig.6.1). Especially forαTeV

GeV ' 2.1 or lower momentum cutoffs of the CRp population due to Coulomb cooling
processes, we obtain smaller contributions of CRp pressure to the ambient medium. By exploring our diffusion
model and comparing our constraints on the CRp luminosityLCRp to mechanical jet power estimates of M 87, we
show the ability of TeVγ-ray observations to constrain a combination of energy fraction of CRp escaping from the
radio plasma and average jet power of the AGN.

The expected radio emission by hadronically produced CRe is roughly one order of magnitude smaller compared
to the synchrotron emission of the jet. Therefore it will be a challenge for future radio observations to disentangle the
hadronic and jet emission components. FutureČerenkov observations should at least be able to severely constrain
the parameter space of differentγ-ray emission scenarios. Investigating theγ-ray flux in the energy regime of
GLAST, we predict values which should allow to scrutinize this hadronic model in contrast to other scenarios.

6.7.4. Predictions for next generation Čerenkov telescopes and GLAST

Finally, we analyzed the possibility of detecting such pion decay inducedγ-ray and IC emission by current and
future satellite missions as well as new generationČerenkov telescopes. Depending on the CRp spectral index,
the fragmentation of the spatial distribution of the magnetic field as well as its field strength, it will be difficult
for INTEGRAL to detect the IC emission of the hadronically originating secondary CRe while GLAST has the
potentiality to detect the distinct signature of the pion decay inducedγ-ray emission preferentially in nearby cooling
flow clusters. By investigating the opportunity of detecting extragalacticγ-rays byČerenkov telescopes we argued
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in favor of four candidate clusters (Perseus (A 426), Virgo, Ophiuchus, and Coma (A 1656)) which are especially
suited to detect hadronically originatingγ-ray emission. These future experiments have the potential of entering a
new era of precision high energy cluster physics.

The results of this chapter were worked out in collaboration with T.A. Enßlin. This chapter includes two publi-
cations: the second part of the paper entitled“Constraining the population of cosmic ray protons in cooling flow
clusters withγ-ray and radio observations: Are radio mini-halos of hadronic origin?”which has been published in
the journalAstronomy & Astrophysics (Pfrommer & Enßlin, 2004, A&A, 413, 17)and the letter entitled“Probing
the cosmic ray population of the giant elliptical galaxy M 87 with observed TeVγ-rays” which has been published
in the journalAstronomy & Astrophysics (Pfrommer & Enßlin, 2003, A&A, 407, L73).
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7. Estimating galaxy cluster magnetic fields by
minimum energy criteria

Abstract

This chapter estimates magnetic field strengths of radio emitting galaxy clusters by minimizing the non-thermal energy density
contained in cosmic ray electrons (CRe), protons (CRp), and magnetic fields. Theclassicalminimum energy estimate can
be constructed independently of the origin of the radio synchrotron emitting CRe yielding thus an absolute minimum of the
non-thermal energy density. Provided the observed synchrotron emission is generated by a CRe population originating from
hadronic interactions of CRp with the ambient thermal gas of the intra-cluster medium, the parameter space of theclassical
scenario can be tightened by means of thehadronicminimum energy criterion. For both approaches, we derive the theoretically
expected tolerance regions for the inferred minimum energy densities. Application to the radio halo of the Coma cluster and
the radio mini-halo of the Perseus cluster yields equipartition between cosmic rays and magnetic fields within the expected
tolerance regions. In the hadronic scenario, the inferred central magnetic field strength ranges from 2.4 µG (Coma) to 8.8 µG
(Perseus), while the optimal CRp energy density is constrained to 2%± 1% of the thermal energy density (Perseus). We discuss
the possibility of a hadronic origin of the Coma radio halo while current observations favor such a scenario for the Perseus
radio mini-halo. Combining future expected detections of radio synchrotron, hard X-ray inverse Compton, and hadronically
inducedγ-ray emission should allow an estimate of volume averaged cluster magnetic fields and provide information about their
dynamical state.

7.1. Introduction

Clusters of galaxies harbor magnetized plasma. In particular, the detection of diffuse synchrotron radiation from
radio halos or relics provides evidence for the existence of magnetic fields within the intra-cluster medium (ICM)
(for a review, seeCarilli & Taylor 2002). Since the detection rate of radio halos in galaxy clusters seems to be of
the order of 30% for X-ray luminous clusters (Giovannini et al.1999), the presence of magnetic fields appears to
be common. Based on these observations,Enßlin & Röttgering(2002) developed a redshift dependent radio halo
luminosity function and predicted large numbers of radio halos to be detected with future radio telescopes.

A different piece of evidence comes from Faraday rotation which arises owing to the birefringent property of
magnetized plasma causing the plane of polarization to rotate for a nonzero magnetic field component along the
propagation direction of the photons (Clarke et al.2001). However, the accessible finite windows given by the ex-
tent of the sources emitting polarized radiation are a limitation of this method. The derived magnetic field strengths
depend on the unknown magnetic field autocorrelation length which has to be deprojected from the observed two
dimensional Faraday rotation measure maps using certain assumptions (see, however,Enßlin & Vogt 2003, Vogt &
Enßlin2003). A different approach is given by the energy equipartition argument if a particular cluster exhibits dif-
fuse radio synchrotron emission. The method assumes equal energy densities of cosmic ray electrons and magnetic
fields in order to estimate volume averaged magnetic field strengths.

The minimum energy criterion is a complementary method. It is based on the idea of minimizing the non-thermal
energy density contained in cosmic ray electrons (CRe), protons (CRp), and magnetic fields by varying the magnetic
field strength. As one boundary condition, the implied synchrotron emissivity is required to match the observed
value. Additionally, a second boundary condition is required mathematically which couples CRp and CRe. For the
classical case, a constant scaling factor between CRp and CRe energy densities is assumed. However, if the physical
connection between CRp and CRe is known or assumed, a physically better motivated criterion can be formulated.
As such a case, we introduce the minimum energy criterion within the scenario of hadronically generated CRe.

Classically, the equipartition/minimum energy formulae use a fixed interval in radio frequency in order to estimate
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the total energy density in cosmic ray electrons (CRe), a purely observationally motivated procedure (Burbidge
1956, Pacholczyk1970). However, this approach has a drawback when comparing different field strengths between
galaxy clusters because a given frequency interval corresponds to different CRe energy intervals depending on the
magnetic field strengths (Beck2001). For this reason, variants of the minimum energy criterion have been studied
in order to place the magnetic field estimates on more physical grounds, based then on assumptions such as the fixed
interval in CRe energy (Pohl1993, Beck et al.1996, Brunetti et al.1997). The modified classical minimum energy
criterion does not specify a particular energy reservoir of the CRe. However, this apparent model-independence is
bought dearly at the cost of the inferred magnetic field strength depending on unknown parameters like the lower
energy cutoff of the CRe population or the unknown contribution of CRp to the non-thermal energy density. In the
following, we use the termclassical minimum energy criterionin its modified version, including e.g. a fixed interval
in CRe energy.

Natural candidates for acceleration mechanisms providing a highly-relativistic particle population are strong struc-
ture formation and merger shocks (e.g.,Harris et al.1980, Sarazin1999) or reacceleration processes of ’mildly’
relativistic CRe (γe ' 100− 300) being injected over cosmological timescales into the ICM. Owing to their long
lifetimes of a few times 109 years, these mildly relativistic CRe can accumulate within the ICM (seeSarazin2002,
and references therein), until they experience continuous in-situ acceleration via resonant pitch angle scattering
by turbulent Alfvén waves as originally proposed byJaffe (1977) and reconsidered bySchlickeiser et al.(1987),
Brunetti et al.(2001), Ohno et al.(2002), Gitti et al.(2002), andKuo et al.(2003). However, this reacceleration sce-
nario also faces challenges as recent results imply:Brunetti et al.(2004b) show, that if the CRp-to-thermal energy
density ratio were more than a few percent, Alfvén waves would be damped efficiently such that the reacceleration
mechanism of the electrons is inefficient. Because nearly all conceivable electron acceleration mechanisms produce
a population of CRp which accumulates within the clusters volume, this represents an efficient damping source of
Alfvén waves.1 Kuo et al.(2004) presented an interesting line of argumentation to investigate the nature of radio
halos by comparing the observed and statistically predicted population. This approach might allow to measure the
life time of radio halos and thus help to conclude their physical origin with a future flux-limited, controlled, and
homogeneous radio halo sample.

In this work, we examine a minimum energy criterion within another specific model for the observed extended
radio halos of∼Mpc size: hadronic interactions of CRp with the ambient thermal gas produce secondary electrons,
neutrinos, andγ-rays by inelastic collisions taking place throughout the cluster volume. These secondary CRe
would generate radio halos through synchrotron emission (Dennison1980, Vestrand1982, Blasi & Colafrancesco
1999, Dolag & Enßlin2000, Miniati et al. 2001, Pfrommer & Enßlin2004a). This scenario is motivated by the
following argument: The radiative lifetime of a CRe population in the ICM, generated by direct shock acceleration,
is of the order of 108 years forγe ∼ 104. This is relatively short compared to the required diffusion timescale needed
to account for such extended radio phenomena (Brunetti 2002). On the other hand, the CRp are characterized by
lifetimes of the order of the Hubble time, which is long enough to diffuse away from the production site and to be
distributed throughout the cluster volume to which they are confined by magnetic fields (Völk et al. 1996, Enßlin
et al.1997, Berezinsky et al.1997). The magnetic field strength within this scenario is obtained by analogy with
the classical minimum energy criterion while combining the CRp and CRe energy densities through their physically
connecting process. Apart from relying on the particular model, the inferred magnetic field strengths do not depend
strongly on unknown parameters in this model.2

The philosophy of these approaches is to provide a criterion for the energetically least expensive radio synchrotron
emission model possible for a given physically motivated scenario. To our knowledge, there is no first principle
enforcing this minimum state to be realized in Nature. However, our minimum energy estimates are interesting in
two respects: first, these estimates allow scrutinizing the hadronic model for extended radio synchrotron emission in
clusters of galaxies. If it turns out that the required minimum non-thermal energy densities are too large compared to
the thermal energy density, the hadronic scenario will become implausible to account for the extended diffuse radio
emission. For the classical minimum energy estimate, such a comparison can yield constraints on the accessible
parameter space spanned by lower energy cutoff of the CRe population or the contribution of CRp to the non-thermal
energy density. Secondly, should the hadronic scenario be confirmed, the minimum energy estimates allow testing

1Indeed, there are first hints for the existence of a 10 MeV - 100 MeV CRp population deriving from the detection of excited gamma-ray lines
from the clusters Coma and Virgo (Iyudin et al.2004). If verified, that would make a high energy (GeV) CRp population very plausible.

2Likewise the minimum energy criterion within the reacceleration scenario of mildly relativistic CRe (γe ' 100− 300) can be obtained by
minimizing the sum of magnetic, mildly relativistic CRe, and turbulent energy densities while allowing for constant synchrotron emission.
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for the realization of the minimum energy state for a given independent measurement of the magnetic field strength.
This chapter is organized as follows: after introducing synchrotron radiation of CRe (Sect.7.2.1), analytic formu-

lae for hadronically induced emission processes are presented (Sect.7.2.2). The classical and hadronic minimum
energy criteria are then derived, the theoretically expected tolerance regions are given, and limiting cases are dis-
cussed (Sect.7.3). In Sect.7.4, we examine whether future observations of inverse Compton emission and hadroni-
cally inducedγ-ray emission can serve as tests for the verification of the minimum energy criterion. Magnetic and
cosmic ray energy densities and their tolerance regions are inferred from application of the minimum energy argu-
ments in the Coma and Perseus cluster for both scenarios (Sect.7.5). This chapter concludes with formulae which
provide recipes for estimating the magnetic field strength in typical observational situations (Sect.7.6). Throughout
this chapter we use the present Hubble constantH0 = 70h70 km s−1 Mpc−1, whereh70 indicates the scaling ofH0.

7.2. Theoretical background

This section presents our definitions and the theoretical background for this work. After introducing characteristics
of the CRe population and the synchrotron emission formulae, we focus on specifications of the CRp population. Fi-
nally, the section concludes with analytic formulae describing the hadronically inducedγ-ray and radio synchrotron
emission processes.

7.2.1. Cosmic ray electrons and synchrotron emission

The differential number density distribution of a CRe population above a MeV is often represented by a power-law
in energyEe,

fe(r,Ee) dEe dV = ñCRe(r)
( Ee

GeV

)−αe
(

dEe

GeV

)
dV. (7.1)

where the tilde indicates that ˜nCRe is not a real CRe number density although it exhibits the appropriate dimensions.
The normalization ˜nCRe(r) might be determined by assuming that the kinetic CRe energy densityεCRe(r) is expressed
in terms of the thermal energy densityεth(r),

εCRe(r) = XCRe(r) εth(r) = AEe ñCRe(r), (7.2)

AEe(αe) =
GeV

2− αe

[( Ee

GeV

)2−αe
]E2

E1

. (7.3)

Here we introduced the abbreviation [f (x)]x2
x1
= f (x2)− f (x1). in order to account for cutoffs of the CRe population.

If the CRe population had time to lose energy by means of Coulomb interactions (Gould1972), the low energy part
of the spectrum would be modified. This modification, which impacts on the CRe distribution functionfe(r,Ee)
and thus onAEe(αe), can be approximately treated by imposing a time dependent lower energy cutoff on the CRe
population as described inPfrommer & Enßlin(2004a).

While the functional dependence of the CRe scaling parameterXCRe(r) is a priori unknown, its radial behavior
will be adjusted such that it obeys the minimum energy criterion. The thermal energy density of the ICMεth is given
by

εth(r) =
3
2

de ne(r) kTe(r), (7.4)

where de = 1+
1− 3

4XHe

1− 1
2XHe

(7.5)

counts the number of particles per electron in the ICM using the primordial4He mass fractionXHe = 0.24. Te and
ne denote the electron temperature and number density, respectively.

The synchrotron emissivityjν at frequencyν and per steradian of such a CRe population (7.1), which is located
in an isotropic distribution of magnetic fields (Eqn. (6.36) inRybicki & Lightman1979), is obtained after averaging
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over an isotropic distribution of electron pitch angles yielding

jν(r) = AEsyn(αe) ñCRe(r)
[
εB(r)
εBc

](αν+1)/2

∝ εCRe(r) B(r)αν+1ν−αν , (7.6)

Bc =
√
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2π m3

e c5 ν

3eGeV2
' 31

(
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)
µG, (7.7)

AEsyn =

√
3π

32π
Bc e3

mec2

αe +
7
3

αe + 1

Γ
(

3αe−1
12

)
Γ
(

3αe+7
12

)
Γ
(
αe+5

4

)
Γ
(
αe+7

4

) , (7.8)

whereΓ(a) denotes the Gamma-function (Abramowitz & Stegun1965) andαν = (αe − 1)/2. Note that for later
convenience, we introduce a (frequency dependent) characteristic magnetic field strengthBc which implies a char-
acteristic magnetic energy densityεBc. Line-of-sight integration of the radio emissivityjν(r) yields the surface
brightness of the radio emissionSν(r⊥).

7.2.2. Cosmic ray protons

7.2.2.1. CRp population

In contrast to the previously introduced CRe population and owing to the higher rest mass of protons, we assume
the differential number density distribution of a CRp population to be described by a power-law in momentumpp

which for instance is motivated by shock acceleration studies:

fp(r, pp) dpp dV = ñCRp(r)
( pp c

GeV

)−αp
(
cdpp

GeV

)
dV. (7.9)

The normalization ˜nCRp(r) can be determined in such a way that the kinetic CRp energy densityεCRp(r) is expressed
in terms of the thermal energy densityεth(r) of the ICM,

εCRp(r) = XCRp(r) εth(r) = AEp ñCRp(r), (7.10)

AEp(αp) =
mp c2

2 (αp − 1)

(
mp c2

GeV

)1−αp

B

(
αp − 2

2
,
3− αp

2

)
. (7.11)

B(a,b) denotes the Beta-function (Abramowitz & Stegun1965).
Aging imprints a modulation on the low energy part of the CRp spectrum by Coulomb losses in the plasma.

This modification, which impacts on the CRp distribution functionfp(r, pp) and thus onAEp(αp), can be treated
approximately by imposing a lower momentum cutoff as described inPfrommer & Enßlin(2004a). On the other
side, highly energetic CRp with energies beyond 2× 107 GeV are able to escape from the galaxy cluster assuming
momentum dependent CRp diffusion in a turbulent magnetic field with a Kolmogorov-type spectrum on small scales
(Berezinsky et al.1997). The finite lifetime and size of particle accelerating shocks also give rise to high-energy
breaks in the CRp spectrum. These low and high momentum cutoffs are always present in the CRp population.
However, for CRp spectral indices between 2. αp . 3 these spectral breaks have negligible influence on the CRp
energy density. If the breaks are neglected, the CRp energy density would diverge forαp . 2 at the high-energy
and for 3. αp at the low-energy part of the spectrum. In these cases, breaks have to be included by replacingAEp

in Eqn. (7.10) with

ÃEp(αp) =
mp c2

2 (αp − 1)

(
mp c2

GeV

)1−αp [
Bx(p̃)

(
αp − 2

2
,
3− αp

2

)
+ 2 p̃1−αp

(√
1+ p̃2 − 1

)]p̃1

p̃2

, (7.12)

x(p̃) = (1+ p̃2)−1, and p̃ =
pp

mpc
, (7.13)

whereBx(a,b) denotes the incomplete Beta-function (Abramowitz & Stegun1965) andp̃1 andp̃2 are the lower and
higher break momenta, respectively.
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7.2.2.2. Hadronically induced γ-ray emission

The CRp interact hadronically with the ambient thermal gas and produce pions, provided their momentum exceeds
the kinematic thresholdpthr = 0.78 GeVc−1 for the reaction. The neutral pions decay intoγ-rays while the charged
pions decay into secondary electrons (and neutrinos):

π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ
π0 → 2γ .

Only the CRp population above the kinematic thresholdpthr is visible through its decay products inγ-ray and
synchrotron emission.

An analytic formula describing the omnidirectional (i.e. integrated over 4π solid angle) differentialγ-ray source
function resulting fromπ0-decay of a power-law CRp population is given inPfrommer & Enßlin(2004a):

qγ(r,Eγ) dEγ dV ' σpp c nN(r) 22−αγ
ñCRp(r)

GeV
4

3αγ

(
mπ0 c2

GeV

)−αγ ( 2Eγ
mπ0 c2

)δγ
+

(
2Eγ

mπ0 c2

)−δγ−αγ/δγdEγ dV, (7.14)

wherenN(r) = dtar ne(r) = ne(r)/(1− 1
2XHe) denotes the target nucleon density in the ICM while assuming primor-

dial element composition withXHe = 0.24, which holds approximately. The formalism also includes the detailed
physical processes at the threshold of pion production like the velocity distribution of CRp, momentum dependent
inelastic CRp-p cross section, and kaon decay channels. The shape parameterδγ and the effective cross sectionσpp

depend on the spectral index of theγ-ray spectrumαγ according to

δγ ' 0.14α−1.6
γ + 0.44 and (7.15)

σpp ' 32 ·
(
0.96+ e4.4−2.4αγ

)
mbarn. (7.16)

There is a detailed discussion inPfrommer & Enßlin(2004a) how theγ-ray spectral indexαγ relates to the spectral
index of the parent CRp populationαp. In Dermer’s model, which is motivated by accelerator experiments, the pion
multiplicity is independent of energy yielding the relationαγ = αp (Dermer1986a,b).

Provided the CRp population has a power-law spectrum, the integratedγ-ray source densityλγ for pion decay
inducedγ-rays can be obtained by integrating theγ-ray source functionqγ(r,Eγ) in Eqn. (7.14) over an energy
interval yielding

λγ(r,E1,E2) =

∫ E2

E1

dEγ qγ(r,Eγ) = Aγ(αp) A−1
Ep

(αp) XCRp(r) n2
e(r) kTe(r), (7.17)

where Aγ(αp) =

σpp(αp) c de dtar

[
Bx

(
αγ+1
2δγ
,
αγ−1
2δγ

)]x2

x1(
mπ0 c2

GeV

)αγ−1
2αγ−1αγ δγ

, (7.18)

and xi =

1+ (
mπ0 c2

2Ei

)2δγ
−1

for i ∈ {1,2}. (7.19)

Theγ-ray number fluxFγ is derived by means of volume integration over the emission region and correct accounting
for the growth of the area of the emission sphere on which the photons are distributed:

Fγ(E1,E2) =
1+ z
4π D2

∫
dV λγ[ r, (1+ z)E1, (1+ z)E2]. (7.20)

HereD denotes the luminosity distance and the additional factors of 1+ z account for the cosmological redshift of
the photons.

7.2.2.3. Hadronically induced synchrotron emission

Following for instanceDolag & Enßlin(2000) andPfrommer & Enßlin(2004a), the steady-state CRe spectrum is
governed by injection of secondaries and cooling processes so that it can be described by the continuity equation

∂

∂Ee

(
Ėe(r,Ee) fe(r,Ee)

)
= qe(r,Ee) . (7.21)
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For Ėe(r, p) < 0 this equation is solved by

fe(r,Ee) =
1

|Ėe(r,Ee)|

∫ ∞

Ee

dE′eqe(r,E′e) . (7.22)

For the energy range of interest, the cooling of the radio emitting CRe is dominated by synchrotron and inverse
Compton losses:

−Ėe(r,Ee) =
4σT c

3m2
e c4

[εB(r) + εCMB] E2
e , (7.23)

whereσT is the Thomson cross section,εB(r) is the local magnetic field energy density, andεCMB = B2
CMB/(8π) is

the energy density of the cosmic microwave background expressed by an equivalent field strengthBCMB = 3.24 (1+
z)2µG. Assuming that the parent CRp population is represented by a power-law (7.9), the CRe population above a
GeV is therefore described by a power-law spectrum

fe(r,Ee) =
ñCRe(r)
GeV

( Ee

GeV

)−αe

, (7.24)

and ñCRe(r) = Aεeff (r)
ñCRp(r)

εB(r) + εCMB
, (7.25)

Aεeff (r) =
16−(αe−2)

αe − 2

σpp m2
e c4 nN(r)

σT GeV
, (7.26)

where the effective CRp-p cross sectionσpp is given by Eqn. (7.16).
The hadronically induced synchrotron emissivityjν at frequencyν and per steradian of such a CRe population

(7.24) which is located in an isotropic distribution of magnetic fields within the halo volume is given by Eqn. (7.6).
However, the normalization ˜nCRe(r) of the CRe population is given by Eqn. (7.25). The spectral index of the
synchrotron emission is related to the CRp spectral index byαν = (αe − 1)/2 = αp/2.

7.3. Minimum energy criteria

This section develops minimum energy criteria in order to estimate the magnetic field and studies the tolerance
region of the obtained estimates. As described in Sect.7.1, we discuss two different approaches when requiring
the non-thermal energy density of the source to be minimal for a particular (observed) synchrotron emission. The
classical minimum energy criterion used in radio astronomy (Pohl 1993, Beck et al.1996, Brunetti et al.1997)
can be applied irrespective of the particular acceleration process of CRe, but unfortunately it relies on uncertain
assumptions or parameters. Provided the hadronic scenario of synchrotron emission applies, these dependencies
can be softened. The resulting minimum energy argument needs to be changed accordingly.

The philosophy of these approaches is to provide an estimate of the energetically least expensive radio emission
model possible in each of these physically motivated scenarios. Thus, the obtained minimum energy estimates
should not be taken literally in a sense that they are necessarily realized in Nature. However, the minimum energy
estimates allow scrutinizing the hadronic model for extended radio synchrotron emission in clusters of galaxies by
comparing to the thermal energy density. For the classical minimum energy estimate, such a comparison can yield
important constraints on the accessible parameter space.

The non-thermal energy density in the intra-cluster medium (ICM), which is the quantity to be minimized, is
composed of the sum of the energy densities in magnetic fields, CRp and CRe:

εNT = εB + εCRp+ εCRe. (7.27)

The CRp population also includes higher mass nuclei in addition to protons. For convenience, we introduce canon-
ical dimensionless energy densities by means of scaling with the critical magnetic energy densityεBc = B2

c/(8π),
whereBc is defined in Eqn. (7.7):

xNT(r) ≡
εNT(r)
εBc

, xCRp(r) ≡
εCRp(r)

εBc

, xCRe(r) ≡
εCRe(r)
εBc

, (7.28)

xB(r) ≡
εB(r)
εBc

, xth(r) ≡
εth(r)
εBc

, andxCMB ≡
εCMB

εBc

. (7.29)
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7.3.1 Classical minimum energy criterion

After presenting the conceptually simpler classical minimum energy criterion, we will subsequently discuss the
hadronic minimum energy criterion.

7.3.1. Classical minimum energy criterion

This section presents the classical minimum energy criterion from a physically motivated point of view, probing
synchrotron emission from CRe characterized by a power-law distribution function without specifying their origin.
This approach implies putting up with a dependence of the inferred magnetic field strength on unknown parameters
like the lower energy cutoff of the CRe population or the unknown contribution of CRp to the non-thermal energy
density.

7.3.1.1. Derivation

Assuming a proportionality between the CRe and CRp energy densities, i.e.xCRp = kpxCRe, the non-thermal energy
composition equation (7.27) can be written as

xNT = xB + (1+ kp)xCRe. (7.30)

This assumption is reasonable if for instance the thermal electron population and the CRp were energized by the
same shock wave assuming that there is a constant fraction of energy going into the CRp population by such an
acceleration process, provided injection processes alone determine the energies. In order to proceed, we need an
expression forjν (given by Eqn. (7.6)) as a function of the dimensionless energy densities considered here:

jν(r) =
AEsyn(αe) εBc

AEe

xCRe(r) xB(r)1+δ, where (7.31)

δ =
αν − 1

2
=
αe − 3

4
. (7.32)

For consistency reasons, which will become clear in Sect.7.3.2, we introduceδ as a parameterization of the spectral
index. For typical radio (mini-)halos,δ is a small quantity: the synchrotron spectral indexαν = 1 corresponds to
δ = 0. Solving Eqn. (7.31) for the CRe energy density yields

xCRe = Cclass(r) xB(r)−1−δ, where (7.33)

Cclass(r) ≡
AEe jν(r)
AEsyn εBc

∝
jν
ν3

(7.34)

is a convenient auxiliary variable. Combining Eqns. (7.30) and (7.33) yields the non-thermal energy density solely
as a function of the magnetic energy density

xNT = xB + (1+ kp) Cclass(r) xB(r)−1−δ. (7.35)

Requesting this energy density to be minimal for a given synchrotron emissivity yields the energetically least
expensive radio emission model possible in this approach:(

∂xNT

∂xB

∣∣∣∣∣
jν

)
= 1− (1+ kp)(1+ δ) Cclass(r)xB(r)−2−δ !

= 0. (7.36)

The corresponding CRp, CRe and magnetic energy densities are given by

xBmin(r) =
[
(1+ kp)(1+ δ) Cclass(r)

]1/(2+δ)
, (7.37)

xCRemin(r) = Cclass(r)
[
(1+ kp)(1+ δ) Cclass(r)

]−(1+δ)/(2+δ)
, (7.38)

xCRpmin
(r) = kp xCRemin(r). (7.39)

Note that these formulae deviate fromPacholczyk(1970), since we use a fixed interval in CRe energy rather than in
radio frequency (cf. Sect.7.1). However, they are equivalent to those obtained byBrunetti et al.(1997).
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7.3.1.2. Localization of classical minimum energy densities

We wish to quantify how tight our statements about the inferred minimum energy densities are, i.e. to assign a tol-
erance region to the minimum energy estimates. This region would have the meaning of a quasi-optimal realization
of the particular energy densities. The curvature radius at the extremal value is one possible way of characterizing
the ‘sharpness’ of the minimum:3

σxB,Gauss≡

 1
xNT

∂2xNT

∂x2
B

∣∣∣∣∣∣
xBmin

−1/2

. (7.40)

In order to avoid unphysical negative values for the lower tolerance level ofxBmin we rather adopt the following
logarithmic measure of the curvature:

σln xB ≡

 ∂2 ln xNT

∂(ln xB)2

∣∣∣∣∣∣
xBmin

−1/2

. (7.41)

Considering the linear representation ofxB, this definition explicitly implies tolerance levels which are given by
exp(lnxB ± σln xB). Applying this definition to Eqn. (7.35) yields the theoretical tolerance level of the estimated
minimum magnetic energy density,

σln xB(r) =

 x−2−δ
Bmin

[
Cclass

(
1+ kp

)
+ x2+δ

Bmin

]2

Cclass

(
1+ kp

)
(2+ δ)2


1/2

(r). (7.42)

The tolerance level of the estimated minimum CRp energy density is given by

σln xCRp ≡

∣∣∣∣∣∣∂ ln xCRp

∂ ln xB

∣∣∣∣∣∣
xBmin

σln xB, (7.43)

while the theoretical tolerance level of the estimated minimum CRe energy density can be obtained likewise. Ap-
plying this Gaussian error propagation to Eqn. (7.33), we obtain following general result:

σln xCRp = σln xCRe = (1+ δ)σln xB. (7.44)

7.3.1.3. Equipartition condition

In order to investigate under which conditions the classical minimum energy criterion implies exact equipartition,
we examine the special caseδ = 0 of Eqn. (7.37). The resulting minimal magnetic and CRp energy densities read

xB0,min(r) =

√
(1+ kp) Cclass(r) , (7.45)

xCRp0,min
(r) =

√
k2

p Cclass(r)

(1+ kp)

kp�1
−→ xB0,min(r) . (7.46)

This comparison shows that there exists exact equipartition between the CRp and magnetic energy densities ifδ = 0
andkp � 1! In our Galaxykp ' 100 (Beck et al.1996) andαν = αGHz = 0.8 suggestingδ = −0.1 (Beuermann et al.
1985), which implies that these equipartition conditions are well fulfilled. Comparing this result with studies that
are using a combination of synchrotron emission, the local CRe density, and diffuse continuumγ-rays,Strong et al.
(2000) interestingly imply the same magnetic field strength as inferred from equipartition arguments (Beck et al.
1996). The corresponding minimal CRe energy density is given by

xCRe0,min(r) =

√
Cclass(r)
(1+ kp)

kp�1
−→ xB0,min(r) . (7.47)

The classical minimum energy densities in CRe and magnetic fields are in exact equipartition ifδ = 0 andkp � 1!
In the limiting caseδ = 0, the theoretical tolerance levels of the estimated classical minimum energy densities read

σln xB0
= σln xCRp0

= σln xCRe0
= 1. (7.48)

3One could picture this approach by assuming Gaussian statistics for the distribution of non-thermal energy densities. The curvature radius at
the minimum would then correspond to the widthσB and thus yielding the 68%-confidence level with respect to this extremal value.
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7.3.2. Hadronic minimum energy criterion

This section deals with the hadronic minimum energy criterion and thus probes hadronically induced synchrotron
emission. If a significant part of the CRe population is known to be generated by hadronic interactions, the minimum
energy estimate allows testing for the realization of the minimum energy state for a given independent measurement
of the magnetic field strength. Thus, the proposed minimum energy criterion would provide information about the
dynamical state of the magnetic field.

7.3.2.1. Derivation

To derive the hadronic minimum energy criterion, we need an expression for the CRp energy density as a function
of the magnetic energy density which is obtained by combining Eqns. (7.6) and (7.25):

xCRp(r) = Chadr(r) [xB(r) + xCMB] xB(r)−1−δ, (7.49)

Chadr(r) ≡
AEp

AEsyn

jν(r)
Aεeff (r)

∝
jν(r)
ν nN(r)

, (7.50)

δ =
αν − 1

2
=
αe − 3

4
=
αp − 2

4
. (7.51)

The parameterChadr(r) has the meaning of a hadronic synchrotron emissivity per target nucleon density and per
frequency. Its value decreases for any existing cutoff in the parent CRp population as described by Eqn. (7.12).
For convenience we introduce the parameterδ which ranges within [−0.1,0.2] for conceivable CRp spectral indices
αp = [1.6,2.8].

Assuming the hadronic electron source to be dominant, we can neglect the primary CRe population. In any case,
the energy density of hadronically generated CRe is negligible compared to the energy density of the parent CRp
population: Above energies of∼GeV the differential hadronic̃kp = ñCRp/ñCRehas typically values ranging between
k̃p ∼ 100 (Perseus) and̃kp ∼ 300 (Coma), where we inserted the typical values of the central density and magnetic
field strength. The tilde iñkp indicates the slightly modified definition compared to the previous classical case.
Requiring minimum non-thermal energy density within the hadronic framework for a given synchrotron emissivity
yields (

∂xNT

∂xB

∣∣∣∣∣
jν

)
= 1+

∂xCRp

∂xB

∣∣∣∣∣∣
jν

!
= 0. (7.52)

By using Eqn. (7.49) we obtain the following implicit equation for the minimum magnetic energy density:[
(1+ δ) xCMB + δxBmin(r)

]
xBmin(r)

−2−δ = C−1
hadr(r). (7.53)

The definition ofChadr(r) (7.50) reveals an implicit dependence on the parametrized spectral indexδ. However, the
right hand side of the minimum energy criterion (7.53) is uniquely determined for a given spectral index and an
observed synchrotron emissivity at a particular frequency. Thus, the minimum energy density of the magnetic field
giving rise to an observed synchrotron emission in the hadronic model can either be obtained by solving Eqn. (7.53)
numerically or applying the asymptotic expansion which will be developed in Sect.7.3.2.2.

7.3.2.2. Asymptotic expansion for δ , 0

The asymptotic expansion of the magnetic field energy density as a function of the small parameterδ follows from
the minimum energy criterion (7.53):

xBmin(r) = xB0(r) + δxB1(r) + δ
2xB2(r) +O(δ3), (7.54)

xB0(r) =
√

Chadr(r) xCMB, (7.55)

xB1(r) =
xB0

2

(
1− ln xB0 +

xB0

xCMB

)
(r), (7.56)

xB2(r) =
xB0

2

−1
2

(
ln xB0

)2
−

xB1

xB0

(
2+ ln xB0

)
+

x2
B1

x2
B0

 . (7.57)
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Figure 7.1.: Comparison between the numerical solution and the second order asymptotic expansion forChadr = 1 (cool
core cluster, formerly referred to as cooling flow cluster) andChadr= 10−4 (cluster without a cool core). The perfect match
indicates a fast convergence of the asymptotic solution for the range ofδ being considered.

A comparison between the numerical solution and the asymptotic solution for two different values of the parameter
Chadr is shown in Fig.7.1. The particular values of the parameterChadr will be motivated in Sect.7.5.2. This figure
should serve as mathematical illustration of the convergence behavior of the asymptotic expansion while keeping
the parameterChadr fixed. The second order asymptotic solution perfectly agrees with the exact solution for the
rangeδ = [−0.15,0.2] of conceivable CRp spectral indicesαp = [1.6,2.8].

7.3.2.3. Localization of hadronic minimum energy densities

Considering the accuracy of the estimated minimum energy densities in the hadronic scenario, we can also apply
the logarithmic measure of the theoretical tolerance level as defined in Eqn. (7.41):

σln xB(r) =
[
x2+δ

Bmin
+Chadr

(
xBmin + xCMB

)]
(ChadrxBmin)

−1/2

×
{
ChadrxCMB + x1+δ

Bmin

[
(1+ δ)2xBmin + (2+ δ)2xCMB

]}−1/2
(r). (7.58)

The corresponding tolerance level for the minimum CRp energy density is obtained by applying Gaussian error
propagation (7.43):

σln xCRp(r) =
(

xCMB

xBmin(r) + xCMB
+ δ

)
σln xB(r). (7.59)

The consequences of these rather unwieldy formulae will become intuitively clear in the next section where charac-
teristic limiting cases are investigated.

7.3.2.4. Special cases

In order to gain insight into the hadronic minimum energy criterion, we investigate special cases of Eqn. (7.53),
namelyδ → 0, εB � εCMB, andεB � εCMB, while simultaneously considering the resulting tolerance regions of
the previous Sect.7.3.2.3.

1. δ → 0: The limit of δ → 0 corresponds to a hard spectral CRp population described by a spectral index of
αp = 2.0 and thusαν = 1. There the dimensionless magnetic field energy density reads

xB0,min(r) =
√

Chadr(r) xCMB ∝

[
jν(r) εCMB

ν nN(r)

]1/2

. (7.60)
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We can formulate the corresponding dimensionless CRp energy density resulting from this minimizing argu-
ment:

xCRp0,min
(r) = Chadr(r) +

√
Chadr(r) xCMB. (7.61)

It is interesting to note that there are two regimes forxCRp0,min
, namely

xCRp0,min
(r) =

{
Chadr(r), for Chadr(r) � 0.01ν−2

GHz,
xB0,min(r), for Chadr(r) � 0.01ν−2

GHz .
(7.62)

Only in the limit of a small parameterChadr(r) andδ = 0, there is an exact equipartition between the hadronic
minimum energy densities in CRp and magnetic fields!

The tolerance regions of the estimated minimum energy densities are also more intuitive to understand in the
limit δ = 0 compared to the general case laid down in Eqn. (7.58):

σln xB0
(r) =

(
1+

xB0,min(r)

2xCMB

)1/2

, implying two regimes:

σln xB0
(r) =


1, for xB0,min � xCMB,[
xB0,min(r)
2xCMB

]1/2

, for xB0,min � xCMB .
(7.63)

In the previously studied classical case (7.48), the tolerance region remains constant for all conceivable mag-
netic energy densities. In contrast to this, the hadronic scenario shows a increasing tolerance regionσln xB0

for
strong magnetic field strengths (B0,min � 3.24 (1+ z)2 µG) which is explained by the following argument: in
the limit of strong magnetic fields, the hadronically induced synchrotron emission withαν = 1 does not de-
pend any more on the magnetic field strength but only on the CRp energy density. This is, because the inverse
Compton cooling is negligible in this regime, implying that observed synchrotron emission is insensitive to
any variation of the magnetic field strength since all injected CRe energy results in synchrotron emission.
Therefore magnetic field estimates inferred from minimum energy arguments are rather uncertain in the limit
of strong magnetic field strengths.

The tolerance levels of the corresponding CRp energy density, derived from Eqn. (7.59), shows two limiting
regimes:

σln xCRp0
(r) =

(
1+

xB0,min(r)

xCMB

)−1 (
1+

xB0,min(r)

2xCMB

)1/2

, implying

σln xCRp0
(r) =


1, for xB0,min � xCMB,[

xCMB
xB0,min(r)

]1/2

, for xB0,min � xCMB .
(7.64)

The tolerance region of the inferred minimum CRp energy density decreases in the regime of strong magnetic
fields which can be understood by the same token as above, i.e. synchrotron losses dominate over the inverse
Compton cooling in this limit. Thus, the observed radio emission reflects accurately the CRp energy density
in the strong magnetic field limit.

2. εB � εCMB: In the limit of εB � εCMB, the magnetic field energy density is an even stronger function of the
synchrotron emissivity and the number density of the ambient gas:

xBmin(r) = [δChadr(r)]1/(1+δ) ' δChadr(r)1/(1+δ) ∝ δ

[
jν(r)
ν nN(r)

]1/(1+δ)

, (7.65)

where we assumed|δ| � 1 in the second step. In the limit of strong magnetic fields and smallδ, exact
equipartition of the magnetic and CRp hadronic minimum energy density does not occur, because

xCRpmin
(r) = δ−δ/(1+δ)Chadr(r)1/(1+δ) ' Chadr(r)1/(1+δ)(1− δ ln δ). (7.66)
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3. εCMB � εB: In the opposite limit, we obtain the following minimum energy criterion for the magnetic field
energy density:

xBmin(r) = [(1+ δ) xCMB Chadr(r)]1/(2+δ) (3.67a)

'

(
1+
δ

2

)
[xCMBChadr(r)]1/(2+δ) (3.67b)

∝

(
1+
δ

2

) [
jν(r)εCMB

ν nN(r)

]1/(2+δ)

, (3.67c)

where we again assumedδ � 1 in the second step. In contrast to the previous limit, there is exact equipartition
between the magnetic and CRp hadronic minimum energy density to zeroth order inδ,

xCRpmin
(r) = (1+ δ)−(1+δ)/(2+δ) [xCMBChadr(r)]1/(2+δ) (3.68a)

'

(
1−
δ

2

)
[xCMBChadr(r)]1/(2+δ) . (3.68b)

7.4. Future testing

This section will discuss possibilities of measuring the magnetic field strength, averaged over the cluster volume, in
order to test for the realization of the energetically least expensive state given by the minimum energy criterion.

7.4.1. Inverse Compton emission

The CRe population seen in the radio band via synchrotron emission should also scatter photons of the cosmic
microwave background (CMB), the local radiation field of elliptical galaxies, and the thermal X-ray emission of the
ICM to different energy bands (Felten & Morrison1966, Rees1967). Combining measurements of inverse Compton
(IC) and synchrotron emission eliminates the uncertainty in number density of the CRe population provided the
inevitable extrapolation of the CRe power-law distribution for certain observed wavebands is justified. This enables
the determination of the magnetic field strengthB for an IC detection and a lower limit onB for a given non-detection
of the IC emission.

The source functionqIC owing to IC scattering of CMB photons off an isotropic power law distribution of CRe
(Eqn. (7.1)) is (derived from Eqn. (7.31) inRybicki & Lightman1979, in the case of Thomson scattering),

qIC(r,Eγ) = q̃(r) fIC(αe)

(
me c2

GeV

)1−αe ( Eγ
kTCMB

)−(αν+1)

, (7.69)

fIC(αe) =
2αe+3 (α2

e + 4αe + 11)

(αe + 3)2 (αe + 5) (αe + 1)
Γ

(
αe + 5

2

)
ζ

(
αe + 5

2

)
, (7.70)

andq̃(r) =
3πσT ñCRe(r) (kTCMB)2

h3 c2
, (7.71)

whereαν = (αe − 1)/2 denotes the spectral index,ζ(a) the Riemannζ-function (Abramowitz & Stegun1965), and
ñCRe(r) is given by Eqn. (7.2). After integrating over the considered energy interval and the IC emitting volume in
the cluster, the particle fluxFγ(E1,E2) is obtained (cf. Eqn. (7.20)).

Enßlin & Biermann(1998) compiled non-detection limits of IC emission of different photon fields in various
wavebands from the Coma cluster and obtained the tightest limits onB from the CMB photon field. The same CRe
population emitting radio synchrotron radiation scatters CMB photons into the hard X-ray band. Non-detection of
this IC emission by the OSSE experiment (Rephaeli et al.1994) yields a lower limit on the central magnetic field
strength ofBComa(0) > 0.2 µG f −0.43

B , where fB is the filling factor of the magnetic field in the volume occupied by
CRe. Provided the CRe power-law distribution can be extrapolated to lower energies, the limit given by the EUV
flux (Lieu et al.1996) predicts a magnetic field strength stronger thanBComa(0) > 1.2 µG f −0.43

B .
The reported high energy X-ray excess of the Coma cluster by the Beppo-Sax satellite (Fusco-Femiano et al.

1999) initiated other theoretical explanations about the origin of such an excess than IC up-scattering of CMB
photons by relativistic electrons. One possibility implies the existence of a bremsstrahlung emitting supra-thermal
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electron population between 10 and 100 keV which would also produce a unique Sunyaev-Zel’dovich signature
(Enßlin et al.1999, Enßlin & Kaiser2000, Blasi et al.2000, Blasi 2000, Liang et al.2002, Colafrancesco et al.
2003). However, such a population is questioned on theoretical reasons (Petrosian2001), and even the high X-ray
excess of Coma itself is under debate (Rossetti & Molendi2004, Fusco-Femiano et al.2004). The data analysis of
the RXTE observation of A 2256 yielded also evidence for a second spectral component (Rephaeli & Gruber2003).
On the basis of statistics alone, the detected emission is inconclusive as to whether it originates from a thermal
multi-temperature fluid or an isothermal gas in combination with a non-thermal IC power-law emission. Future
measurements with the IBIS instrument on-board the INTEGRAL satellite should provide even tighter upper limits
respectively detections of the IC X-ray flux of a particular cluster and should therefore allow even tighter lower
limits on the magnetic field strength.

7.4.2. γ-ray emission

This subsection outlines the method for estimating upper limits on the magnetic field strength using hadronic CRp
interactions. The method is based on the idea of combining hadronically inducedγ-ray and synchrotron emission
to eliminate the uncertainty in number density of the CRp population. For this purpose, one necessarily needs to
resolve the detailed broad spectral signature ofγ-rays resulting from theπ0-decay (π0-bump centered onmπ0c2/2 '
67.5 MeV) as laid down in Eqn. (7.17). This is to exclude other possible processes contributing to diffuse extended
γ-ray emission like IC radiation or dark matter annihilation. Because of possible other additional contributions to
the diffuse synchrotron emission from CRe populations, e.g. primarily accelerated electrons, we are only able to
provide an upper limit on the magnetic field strength.

The proposed algorithm allows for different spatial resolutions of theγ-ray and synchrotron emission. The ap-
plication, we have in mind, is the determination of intracluster magnetic fields. In this case,γ-ray observations of
theπ0-decay inducedγ-ray emission signature are only able to provide integratedγ-ray fluxes of the entire clus-
ter due to their comparably large point spread function.γ-ray fluxes depend on the thermal electron density and
temperature profiles which have to be derived from X-ray observations. However, if we assumed a comparable res-
olution inγ-ray and synchrotron emission the dependences on the thermal electron population could be eliminated
(cf. Sect.7.2.2). The algorithm consists of the following two steps:

1. Choosing a constant scaling parameterXCRp for the CRp population and performing the volume integral of
the energy integratedγ-ray source densityλγ (7.17) yields theγ-ray flux according to Eqn. (7.20). The CRp
parameterXCRp is obtained by comparing the observed to the theoretically expectedγ-ray flux.

2. InsertingXCRp into the synchrotron emissivityjν (7.6) enables us to solve for the magnetic field strength as
function of angle on the sky when comparing to radio surface brightness observations.

Once a detailed angular distribution ofπ0-decay inducedγ-ray emission from a particular astrophysical object is
available this algorithm may be implemented for the average of pixels contained within a certain solid angle. In this
case the spatial distribution of CRp may even be deprojected.

Is there a chance to apply this method to galaxy cluster magnetic fields with futureγ-ray instruments? Because
of the necessity of resolving the broad spectral signature ofγ-rays resulting from theπ0-decay centered on∼
67.5 MeV, the imaging atmospheričCerenkov technique with a lower energy cutoff above 10 GeV is not applicable.
Contrarily, the LAT instrument on-board GLAST scheduled to be launched in 2007 has an angular resolution better
than 3.5◦ at 100 MeV while covering an energy range from 20 MeV up to 300 GeV with an energy resolution better
than 10%. Assuming a photon spectral index ofαγ = 2 for theγ-ray background, the point-source sensitivity at high
galactic latitude in a one year all-sky survey is better than 6×10−9 cm−2 s−1 for energies integrated above 100 MeV.
Specifically, assuming a CRp spectral indexαp = 2.3 and a flatXCRp for simplicity, such a one year all-sky survey
is able to constrainXCRp < 0.01 (Perseus) andXCRp < 0.04 (Coma). Taking additionally into account theγ-ray flux
between 20 MeV and 100 MeV as well as a longer survey time will improve the sensitivities and yield even tighter
limits on XCRp. Comparing these limits with energetically favored values ofXCRpmin

which are obtained by applying
hadronic minimum energy arguments to a given radio synchrotron emission (cf. Fig.7.2) yields comparable values
in the case of Perseus while the situation in Coma is less optimistic. However, a definitive answer to the applicability
of this method can not be given on the basis of minimum energy arguments because such a minimum energy state
is not necessarily realized in Nature.
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Table 7.1.: Individual parameters describing the extended diffuse radio emission in the Coma and Perseus galaxy cluster
according to Eqn. (7.72). The maximal radius to which these profiles are applicable is denoted byrmax. The radio data at
1.4 GHz are taken fromDeiss et al.(1997) (Coma) andPedlar et al.(1990) (Perseus) while the profile of the Coma cluster
at 326 MHz is taken fromGovoni et al.(2001) which is based on radio observations byVenturi et al.(1990).

S0 rc rmax

Cluster [Jy arcmin−2] [h−1
70 kpc] [h−1

70 Mpc] β

1.4 GHz observations:
A1656 (Coma) 1.1× 10−3 450 1.0 0.78
A426 (Perseus) 2.3× 10−1 30 0.1 0.55
326 MHz observation:
A1656 (Coma) 4.7× 10−3 850 0.7 1.07

7.5. Applications

In this section we apply the classical and hadronic minimum energy criterion to the radio (mini-)halos of the Coma
and Perseus galaxy clusters. For simplicity, the CRp and CRe spectral indices are assumed to be independent of
position and therefore constant over the cluster volume. If a radial spectral steepening as reported byGiovannini
et al. (1993) in the case of the Coma radio halo will be confirmed by future radio observations evincing a better
signal-to-noise ratio, the CRp and CRe spectral index distributions would have to embody this additional degree of
freedom. We discuss in Sect.7.5.3that a moderate steepening would not significantly modify the hadronic minimum
energy condition while a strong steepening would challenge the hadronic scenario.

7.5.1. Classical minimum energy criterion

In a first step we have to deproject the radio surface brightness and electron density profiles: in analogy to X-ray
observations we assume the azimuthally averaged radio profile to be described by aβ-model,

Sν(r⊥) = S0

1+ (
r⊥
rc

)2−3β+1/2

. (7.72)

Deprojecting this profile yields the radio emissivity (cf. AppendixA)

jν(r) =
S0

2π rc

6β − 1(
1+ r2/r2

c

)3β
B

(
1
2
,3β

)
= jν,0

(
1+ r2/r2

c

)−3β
. (7.73)

The individual parameters for the Coma radio halo and Perseus radio mini-halo are shown in Table7.1. Both profiles
describe the extended diffuse emission where all point sources have been subtracted. Particularly, the extremely
bright flat-spectrum core owing to relativistic outflows of the radio galaxy NGC 1275 in the center of the Perseus
cluster has been excluded from the fit. The electron density profiles are inferred from X-ray observations byBriel
et al.(1992) (Coma) andChurazov et al.(2003) (Perseus).

In the following, we assume that the energy distribution of the CRe population above a MeV is represented
by a power-law in energyEe with a lower cutoff. As a word of caution, such an assumption might be a strong
simplification in the case of turbulent acceleration models yielding more complex energy distributions which are
considerably flatter at lower energies (Brunetti et al.2001, Petrosian2001, Ohno et al.2002) . We assume a CRe
spectral index ofαe = 3.3 which translates into a synchrotron spectral index ofαν = 1.15. This is consistent with
radio data of Perseus and Coma; particularly when considering the spectral cutoff between 1 and 10 GHz owing to
the Sunyaev-Zel’dovich flux decrement (Deiss et al.1997, Enßlin2002, Pfrommer & Enßlin2004a).

Applying the classical minimum energy criterion to the diffuse synchrotron emission of the Coma cluster yields
a central magnetic field strength ofBComa(r = 0) = 1.1+0.7

−0.4 µG. In the case of the Perseus radio mini-halo we obtain
BPerseus(r = 0) = 7.2+4.5

−2.8 µG. The indicated tolerance levels derive from the logarithmic definition of the theoretical
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Figure 7.2.: Profiles of the CRe-to-thermal energy densityXCRemin(r) (solid) and magnetic-to-thermal energy density
XBmin(r) (dotted) as a function of deprojected radius are shown. The different energy densities are obtained by means of
the classical minimum energy criterion (upper panels) and the hadronic minimum energy criterion (lower panels). In the
latter scenario, profiles of the scaled CRp energy density are shown instead of CRe profiles. The left hand side shows
profiles of the Coma cluster while the right hand side represents profiles of the Perseus cluster. The light shaded areas
represent the logarithmic tolerance regions ofXBmin(r) andXCRemin(r), respectively, while the dark shaded regions indicate
the overlap and thus the possible equipartition regions in the quasi-optimal case.
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accuracies of the minimum in Eqn. (7.41). However, these values are highly dependent on the lower energy cutoff

of the CRe population,E1, and the CRp proportionality parameterkp. Following the philosophy of this chapter
we adopt a physically motivated lower Coulomb cutoff of the CRe distribution ofE1 = 0.1 GeV corresponding
to a relativisticγ factor ofγe ' 200 (as suggested bySarazin1999). We also adopt a conservative choice of the
proportionality constant between the CRe and CRp energy densities ofkp = 1. An increase ofkp would directly
increase the magnetic field strength by approximately the square root of this factor.

For a cluster-wide comparison of energy densities of magnetic fields, CRe, and CRp, it is convenient to introduce
a scaling with the thermal energy density by means of

XB(r) ≡
xB(r)
xth(r)

=
εB(r)
εth(r)

, and (7.74)

XCRp,CRe(r) ≡
xCRp,CRe(r)

xth(r)
=
εCRp,CRe(r)

εth(r)
. (7.75)

Profiles of the CRe-to-thermal energy densityXCRemin(r) and magnetic-to-thermal energy densityXBmin(r) are shown
in Fig. 7.2 for the Coma and Perseus cluster and our different scenarios. The upper panels show the scaled energy
densities in the acceleration model of CRe, obtained by the classical minimum energy criterion. While the optimal
magnetic energy density is roughly a factor of two larger than the CRe energy density, they both can be in equipar-
tition for the quasi-optimal case of their distribution of energy densities, as indicated by the dark shaded regions. In
order to explain the observed synchrotron emission in the CRe acceleration scenario the CRe and magnetic energy
densities are only required to be below one percent of the thermal energy density.

7.5.2. Hadronic minimum energy criterion

Assuming a CRp spectral index ofαp = 2.3 when applying the hadronic minimum energy criterion to the diffuse
synchrotron emission of the Coma cluster yields a central magnetic field strength ofBComa(r = 0) = 2.4+1.7

−1.0 µG. In
the case of the Perseus cluster we obtainBPerseus(r = 0) = 8.8+13.8

−5.4 µG. Both inferred profiles of the magnetic field are
relatively flat: while the magnetic field strength in the outer part of the radio mini-halo in Perseus (r ' 100h−1

70 kpc)
declines to a value of 55% of its central value, the magnetic field in the outer region of the radio halo in Coma
(r ' 1 h−1

70 Mpc) only decreases to 72% of its central value.
As discussed in Sect.7.3.2.4, the hadronic scenario shows an increasing tolerance region for strong magnetic

field strengths which are expected to be present in the case of cool core clusters, such as Perseus (Taylor & Perley
1993, Carilli & Taylor 2002, Vogt & Enßlin2003). In this limit, synchrotron losses dominate over inverse Compton
cooling. This almost cancels the dependence of the synchrotron emissivity on the magnetic energy density. The
lower panels of Fig.7.2 show the scaled energy densitiesXBmin(r) and XCRpmin

(r) as inferred from the hadronic
scenario. In both clusters the optimal CRp energy density is larger than the magnetic energy density within this
model. However, both energy densities can be again in equipartition for the quasi-optimal case of their distribution,
as indicated by the dark shaded regions.

Owing to the inverse dependence ofσln xB andσln xCRp on the magnetic energy density in the limit of strong
magnetic fields (cf. Eqns. (7.63) and (7.64)), a large tolerance region ofXBmin immediately implies a well defined
localization ofXCRpmin

. In the Perseus cluster this results in a confinement for the CRp energy density of 2%±1% of
the thermal energy density. On the other hand, in the Coma clusterXBmin(r) andXCRpmin

(r) are required to increase by
less than one order of magnitude from the center to the outer parts of the cluster in order to account for the observed
radio halo. This increase might be partly due to azimuthally averaging the aspheric electron density distribution of
the Coma cluster (Pfrommer & Enßlin2004a).

High values for the radio emissivity per target density and frequencyChadr of order unity seem to reflect condi-
tions in cool core clusters (formerly referred to as cooling flow cluster) whereas smaller values seem to represent
conditions in clusters without cool cores as shown in the following:

Chadr≡
AEp

AEsyn

jν
Aεeff
= Ccluster

(
ν

1.4 GHz

)−1
(

ne

ne,0

)−1 (
jν
jν,0

)
, (7.76)

whereCComa= 9.4× 10−4 andCPerseus= 1.5× 10−1.
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7.5.3. Possibility of a hadronic scenario in Perseus and Coma

7.5.3.1. Perseus radio mini-halo

The azimuthally averaged radio surface brightness profile of the Perseus mini-halo matches the expected emission
by the hadronic scenario well on all radii (Pfrommer & Enßlin2004a) while requiring almost flat profiles for CRp
and magnetic energy densities relative to the thermal energy density,XCRp andXB, respectively. Moreover, the small
amount of required energy density in cosmic ray protonsεCRp (∼ 2% relative to the thermal energy density) supports
the hypothesis of a hadronic origin of the Perseus radio mini-halo not only because the hadronic minimum energy
criterion predicts a close confinement ofεCRp (see Sect.7.5.2) but also because cosmological simulations carried
out byMiniati et al. (2001) easily predict a CRp population at the clusters center of this order of magnitude.

7.5.3.2. Coma radio halo

The energetically favored radial profile for the magnetic field strength in the Coma cluster is almost flat as predicted
by the hadronic minimum energy criterion (see Sect.7.5.2). Provided these results would be realized in Nature, this
apparently contradicts profiles of the magnetic field strength as inferred from numerical simulations which seem to
follow the electron densityne(r) according toB(r) ∝ ne(r)αB with αB ∈ [0.5,0.9] (Dolag et al.1999, 2001). It would
also contradict theoretical considerations assuming the magnetic field to be frozen into the flow and isotropized,
i.e. αB = 2/3 (Tribble 1993). Applying the flux freezing conditions to the electron density profile of Coma (Briel
et al. 1992) yields an expected decline of the magnetic field strength from its central value to the magnitude at
1h−1

70 Mpc by a factor of∼ 6.7.
However, there are other numerical, physical, and observational arguments indicating large uncertainties in the

origin, amplification mechanism, and specific profile of the magnetic field strength, thus leaving the hadronic sce-
nario as a viable explanation of the Coma radio halo: in contrast to the cited numerical simulations, there are other
cosmological simulations (Miniati 2001, Miniati et al. 2001) which are able to produce giant radio halos in the
hadronic scenario and therefore reasonably flat profiles of the magnetic field strength. From the physical point of
view, there could be stronger shear flows or a larger number of weaker shocks in the outer parts of clusters which are
unresolved or not accounted for in current simulations. This would imply stronger additional amplification of the
magnetic field strength in the outer parts of clusters yielding a flatter profile of the magnetic field strength. Obser-
vationally, there are still uncertainties in the radio surface profiles which are increased by azimuthally averaging the
diffuse synchrotron emission in the presence of non-centrally symmetric emission components such as the so-called
radio-bridge in Coma around NGC 4839.

In order to account for the radio halo of Coma in the hadronic scenario, the product ofXCRp andXB needs to
increase by nearly two orders of magnitude towards the outskirts of the halo (cf. lower left panel of Fig.7.2). Leav-
ing aside the minimum energy criterion, this increase can be split arbitrarily among the magnetic and CRp energy
density ratios. For instance a constant magnetic-to-thermal energy density ratioXB, corresponding toαB = 0.5
in an isothermal cluster, is still consistent within the theoretically expected tolerance regions, i.e. within a quasi-
optimal realization. However, the CRp-to-thermal energy density ratioXCRp would have to compensate for this by
increasing nearly two orders of magnitude towards the outskirts of the halo.4 This choice of the magnetic field mor-
phology (αB = 0.5) has been adopted in Fig.7.3which represents a parameter study on the ability of hadronically
originating CRe to generate the radio halo of Coma. Contour lines of max(XCRp) = (1,0.3,0.1,0.03,0.01) for the
ranger ≤ 1h−1

70 Mpc are shown in parameter space spanned byαp andB0. The gradient of the maximum ofXCRp

points downwards in Fig.7.3 and thus leaves the upper region of parameter space where the hadronic scenario is
energetically able to account for the observed radio halo. For the choice ofαp = 2.3 andXB = 0.01 the maximum
of the CRp-to-thermal energy densityXCRp is smaller than 3% for the entire range of the radio halo. Conservative
choices for CRp spectral breaks have been adopted by means of Eqn. (7.12): we assume a high-momentum break of
p2 ∼ 2× 107 GeVc−1 being derived from CRp diffusion (Berezinsky et al.1997) while the lower momentum cutoff
assumes the CRp to be accelerated from a thermal Maxwellian distribution,p1 ∼ 3

√
2mpkTComa = 0.01 GeVc−1

(Miniati 2001). This choice of the lower cutoff represents the energetically tightest constraint because taking into
account Coulomb losses would only weaken the energetic requirements. Moving away from the minimum energy
solution, especially in the inner parts of the cluster, the presented energetic considerations show that the hadronic

4Though, some part of this apparent increase is an artifact owing to azimuthally averaging the non-centrally symmetric synchrotron brightness
distribution (for a more detailed discussion on this topic, seePfrommer & Enßlin2004a).

93



Estimating galaxy cluster magnetic fields by minimum energy criteria

1.5 2.0 2.5 3.0
0

2

4

6

8

10

0.0

0.1

0.5

1.1

2.0

3.1

PSfrag replacements

B
0

[µ
G

]

αp

X
B
[%

]

Figure 7.3.: Parameter study on the ability of hadronically originating CRe to account for the radio halo of Coma.
Assuming the profile of the magnetic field to scale with the square root of the electron density yields a flat magnetic-to-
thermal energy density ratioXB. Shown are contour lines from the bottom to the top of max(XCRp) = (1,0.3,0.1,0.03,0.01)
for the ranger ≤ 1h−1

70 Mpc in parameter space spanned byαp and B0. Conservative choices for CRp spectral breaks
have been assumed. The lower part represents the region in parameter space, where the hadronic scenario faces serious
challenges for explaining the observed radio halo of Coma.

scenario is a viable explanation of the Coma radio halo as long as the spatially constant CRp spectral index is
between 1.4 . αp . 2.8.

Giovannini et al.(1993) found a strong radial spectral steepening fromαν = 0.8 − 1.8 which would translate
within the hadronic scenario into a CRp spectral index steepening ofαp = 1.6 − 3.6. If the strong steepening will
be confirmed, the hadronic scenario will face serious challenges even when including conservative CRp spectral
breaks. However, an absent or weaker steepening of the CRp spectral index e.g. fromαp = 2.3 in the cluster center
to αp = 2.8 at the outskirts of the radio halo would only double the CRp energy density required to explain the
radio halo in the hadronic scenario. The studies ofGiovannini et al.(1993) are based on two synthesis aperture
radio maps obtained with different radio telescopes. The technique of interferometric radio observations generally
suffers from missing short-baseline information leading to an uncertainty of emission from larger structures: the
so-called “missing zero spacing”-problem. This uncertainty of the surface brightness distribution at a single fre-
quency is even increased for spatial distributions of the spectral index which represent a ratio of surface brightness
distributions yielding to possible observational artifacts at the outskirts of the radio halo. Thus, future observations
are required to decide whether the strong spectral steepening as a function of radius is an observational artifact or a
real characteristic of the radio halo.

Figure7.4compares radio synchrotron profiles of the Coma radio halo byGovoni et al.(2001) which is based on
observations byVenturi et al.(1990) using a synthesis aperture telescope with observations byDeiss et al.(1997)
using a single-dish telescope. The statistical variance given byGovoni et al.(2001) represents the rms scatter within
concentric annuli (shown in light grey) which is composed of measurement uncertainties and non-sphericity of the
underlying radio profile. Rescaling with the square root of the number of independent beams within concentric
annuli yields statistical uncertainties (black) however without taking into account systematics.5 The top panel
shows an comparison of the different profiles byGovoni et al.(2001) andDeiss et al.(1997) (rescaled from its
original observational frequencyν = 1.4 GHz to 326 MHz using the synchrotron spectral indexαν = 1.15). There
seems to be an indication of spectral steepening as reported byGiovannini et al.(1993). However, for simplicity
we use a spatially constant CRp spectral index. Because of the more extended profile of the radio halo of the

5Due to the interferometric nature of the measurement and due to the non-completely synthesized aperture, we expect the true error bars to be
larger than the estimates given here suggest. However, a detailed discussion of this topic is beyond the scope of this work.
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Figure 7.4.: Top panel:Azimuthally averaged radio brightness profile of the radio halo in the Coma cluster as a function
of impact parameterr⊥. Shown are the radio data at 326 MHz (Govoni et al.2001) in combination with the 1σ-error bars
(black) and the surface brightness fluctuations within concentric annuli (grey) which are based on observations byVenturi
et al.(1990). Also presented is the model profile according toGovoni et al.(2001) (dotted) and the model profile according
to Deiss et al.(1997) (dashed) which is rescaled to 326 MHz using the synchrotron spectral indexαν = 1.15 (cf. Table7.1).
Lower panel:Profiles of the magnetic-to-thermal energy densityXBmin(r) in the Coma cluster as a function of deprojected
radius are shown within the hadronic minimum energy criterion. A comparison of the used synchrotron profiles byDeiss
et al. (1997) (solid, tolerance region medium grey shaded) andGovoni et al.(2001) (dotted, tolerance region light grey
shaded) shows no significant difference within the allowed logarithmic tolerance regions (overlap is shown dark shaded).
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single-dish observation, we decided to adopt the profile obtained byDeiss et al.(1997) in our analysis shown in
Fig. 7.2. Nevertheless, the lower panel of Fig.7.4 shows a comparison of the energetically favored magnetic-to-
thermal energy densityXBmin(r) as a function of deprojected radius within the hadronic minimum energy criterion
for both data sets. The tolerance regions ofXBmin are drawn light shaded while the overlap ofXBmin using the
different synchrotron profiles is shown dark shaded. There is no significant difference within the allowed tolerance
regions. Together with the previous considerations about spectral steepening, this indicates that a moderate radially
dependent spectral index does not significantly modify the hadronic minimum energy condition while a strong
steepening would challenge the hadronic scenario.

7.6. Minimum energy criteria in a nutshell

This section provides self-consistent recipes for applying the classical and hadronic minimum energy criterion in
typical observational situations. We present formulae for inferring magnetic field strengths solely as a function of
observed flux per frequency,Fν, luminosity distance to the galaxy cluster,D, extent of the cluster measured in core
radius,rc, observed frequency,ν, and spectral index of the diffuse synchrotron emission,αν, where the emissivity
scales asjν ∝ ν−αν .

The omnidirectional (i.e. integrated over 4π solid angle) luminosity per frequency is given by the volume integral
of the synchrotron emissivity,jν,

Lν = 4π

∫
dV jν. (7.77)

We choose a reference luminosityLν(1+z),0 = 4π D2 (1 + z)−1Fν,0 which corresponds to a flux atν = 1 GHz of
Fν,0 = 1 Jy for a source at a luminosity distance ofD = 100 h−1

70 Mpc. This corresponds to a cluster like Coma
which is characterized by a core radius ofrc,0 ∼ 300h−1

70 kpc.

7.6.1. Classical minimum energy criterion in a nutshell

Applying the classical minimum energy criterion, we infer an optimal magnetic field strength by rewriting Eqn. (7.37),

Bclass
min = Bclass

min,0(αν) µG

1+ kp

2
Lν

Lν,0

(
rc

rc,0

)−3

f −1
B

(
ν

1 GHz

)αν ( E1

0.1 GeV

)1−2αν
1/(αν+3)

. (7.78)

HereBclass
min,0(αν) is given by Table7.2, kp denotes the ratio between CRp and CRe energy densities,E1 denotes the

lower cutoff of the CRe population, andfB denotes the filling factor of the magnetic field in the volume occupied
by CRe, which is thought to be of order unity. While deriving Eqn. (7.78) we implicitly assumed thatE2 � E1. We
also applied a lower Coulomb cutoff to the CRe distribution ofE1 = 0.1 GeV (as suggested bySarazin1999), and
adopt a conservative choice for the cosmic ray energy scaling ofkp = 1.

In the case of the classical minimum energy criterion the tolerance region of the magnetic field strength is given
by Eqn. (7.42). The following substitutions might be useful when computing the tolerance levels of the magnetic
field, σln B = σln xB/2, which are equally spaced in logarithmic units ofB. In linear representation ofB, this
definition explicitly implies the tolerance levels given by exp(lnB± σln B). The scaled synchrotron index is given
by δ = (αν − 1)/2, while the dimensionless magnetic energy densityxclass

Bmin
and the constantCclass(αν) are denoted by

xclass
Bmin

=

Bclass
min

Bc

2

=

 Bclass
min

31µG

2 (
ν

1 GHz

)−2
, (7.79)

Cclass(αν) = fclass(αν) f −1
B
Lν

Lν,0

(
rc

rc,0

)−3 (
ν

1 GHz

)−3
, (7.80)

where fclass(αν) is given by Table7.2.

7.6.2. Hadronic minimum energy criterion in a nutshell

In the case of the hadronic scenario the energetically favored magnetic field strengthBhadr
min,0 is given by

Bhadr
min,0 =

√
xBmin Bc = 31µG

√
xBmin

(
ν

1 GHz

)
, (7.81)
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Table 7.2.: Useful numerical values for particular choices of the synchrotron spectral indexαν in the framework of the
minimum energy criterion in a nutshell are given for both scenarios. Note, that a priori, we assume no cutoff in the CRp
distribution. For spectral indicesαν ≤ 1 within the hadronic scenario, an upper cutoff needs to be introduced for deducing
an equipartition magnetic field strength in order to meet the requirements of the regularity conditions.

αν αe Bclass
min,0 fclass Bhadr

min,0 fhadr

[µG] [µG]
0.65 2.3 0.6 3.3× 10−7

0.75 2.5 0.7 3.6× 10−7

0.85 2.7 0.8 4.7× 10−7

0.95 2.9 1.0 6.4× 10−7

1.05 3.1 1.2 9.2× 10−6 4.0 2.1× 10−2

1.15 3.3 1.4 1.3× 10−6 4.2 1.9× 10−2

1.25 3.5 1.7 2.0× 10−6 5.3 3.4× 10−2

1.35 3.7 2.0 3.0× 10−6 7.3 8.2× 10−2

1.45 3.9 2.4 4.5× 10−6 13.0 3.9× 10−1

wherexBmin is given by Eqns. (7.54) through (7.57). Bhadr
min,0 is specified in Table7.2 for a few spectral indicesαν

where we assumed no cutoff of the CRp distribution. Provided the synchrotron indexαν ≤ 1, there must be an upper
cutoff of the CRp distribution in order to ensure a non-divergent CRp energy density. This might be obtained by
means of Eqn. (7.12). Owing to the non-analytic structure of the hadronic minimum energy criterion (7.53) in xBmin,
we were forced to carry out an asymptotic expansion forxBmin which does not admit a comparable simple scaling of
the magnetic field as in the classical case (7.78).

The theoretically expected tolerance levels of the magnetic field,σln B = σln xB/2, are given by Eqn. (7.58) while
neglecting the radial dependence in the nutshell approach. The following substitutions might be useful when com-
puting the magnetic field strengthBhadr

min,0 and the corresponding tolerance region. The scaled synchrotron index is
given byδ = (αν − 1)/2, while the dimensionless energy density of the CMB,xCMB, and the constantChadr(αν) are
denoted by

xCMB =
B2

CMB

B2
c
= 1.08× 10−2

(
ν

1 GHz

)−2
(1+ z)4, (7.82)

Chadr(αν) = fhadr(αν) f −1
B
Lν

Lν,0

(
rc

rc,0

)−3 (
ne

ne,0

)−1 (
ν

1 GHz

)−3
, (7.83)

where fhadr(αν) is given by Table7.2, andne,0 = 10−3 cm−3.

7.7. Conclusions

We investigated the minimum energy criterion of radio synchrotron emission in order to estimate the energy density
of magnetic fields with the main focus on the underlying physical scenario. The classical scenario might find appli-
cation for cosmic ray electrons (CRe) originating either from primary shock acceleration or in-situ reacceleration
processes while the hadronic model assumes a scenario of inelastic cosmic ray proton (CRp) interactions with the
ambient gas of the intra-cluster medium (ICM) and thus leads to extended diffuse synchrotron andγ-ray emission.

Generally, the hadronic minimum energy estimates allow testing the hadronic model for extended radio syn-
chrotron emission in clusters of galaxies. If it turns out that the required minimum non-thermal energy densities
are too large compared to the thermal energy density, the hadronic scenario has to face serious challenges. For
the classical minimum energy estimate, such a comparison can yield constraints on the accessible parameter space
spanned by the lower energy cutoff of the CRe population or the unknown contribution of CRp to the non-thermal
energy density.

For the first time we examine the localization of the predicted minimum energy densities and provide a measure
of the theoretically expected tolerance regions of these energetically favored energy densities. The tolerance regions

97



Estimating galaxy cluster magnetic fields by minimum energy criteria

of the particular energy densities inferred from the classical minimum energy criterion are approximately constant
for varying magnetic field strengthεB. On the contrary, the hadronic minimum energy criterion predicts constant
energy densities for varying magnetic field strength in the case of lowεB compared toεCMB, while the tolerance
region of the CRp energy density decreases at the same rate as the tolerance region ofεB increases for highεB.

Future observations should shed light on the hypothetical realization of such an optimal distribution of energy den-
sities in Nature: combining upper limits on the inverse Compton (IC) scattering of cosmic microwave background
photons off CRe within the ICM provides lower limits on the magnetic field strength. Unambiguous detection of the
π0-decay inducedγ-ray emission owing to hadronic CRp interactions in the ICM together with the observed radio
synchrotron emission yields strong upper limits on the magnetic field strength. These are only upper limits because
the inevitably accompanying hadronically generated CRe could have a non-hadronic counterpart CRe population
which also contributes to the observed synchrotron emission. A combination of IC detection in hard X-rays, radio
synchrotron emission, and hadronically inducedγ-ray emission therefore simultaneously enables the determination
of the CRp population as well as a bracketing of the total magnetic field strength and the CRe population. Applying
the appropriate minimum energy arguments would yield information about both the dynamical state as well as the
fragmentation of the spatial distribution of the magnetic field.

Requiring the sum of cosmic ray and the magnetic field energy densities to be minimal for the observed syn-
chrotron emission of the radio halo of the Coma cluster and the radio mini-halo of the Perseus cluster yields in-
teresting results: within the theoretically expected tolerance regions, equipartition is possible between the energy
densities of CRp and magnetic fields, i.e. the minimum energy criterion always seems to choose equipartition to
be a quasi-optimal case. Applying the hadronic minimum energy criterion to the diffuse synchrotron emission of
the Coma cluster yields a central magnetic field strength ofBComa = 2.4+1.7

−1.0 µG while in the case of the cool core
cluster Perseus we obtainBPerseus= 8.8+13.8

−5.4 µG. These values agree with magnetic field strengths inferred from
Faraday rotation which range in the case of clusters without cool cores within [3µG,6 µG] while cool core clusters
yield values of∼ 12 µG (Vogt & Enßlin 2003). Within the hadronic model for the radio mini-halo in the Perseus
cluster, this results in a confinement for the CRp energy density of 2%±1% of the thermal energy density while the
magnetic energy density reaches only 0.4% of the thermal energy density within large uncertainties. These energetic
considerations show that the hadronic scenario is a very attractive explanation of cluster radio mini-halos.

In order to account for the radio halo of Coma in the hadronic scenario, the product ofεCRp andεB needs to
increase by nearly two orders of magnitude relative to the square of the thermal energy densityεth towards the out-
skirts of the halo. Moving away from the minimum energy solution and adopting for instance a constant magnetic-
to-thermal energy density, it is energetically possible to explain the observed synchrotron emission hadronically by
only requiring the magnetic and CRp energy density to be a few per cent relative to the thermal energy density (and
even less for the CRp in the cluster center, providedαp ∼ 2.3 and the cluster is isothermal). Such a magnetic energy
density corresponds to a central magnetic field strength of 6µG. Assuming a lower magnetic field strength of 3µG
corresponding to a magnetic-to-thermal energy density of approximately 0.5% requires the CRp energy density to
be lower than 10% for the entire range of the radio halo.

The considered hadronic scenario assumes a CRp spectral index which is independent of position and thus the
radio emission does not show any spatial variations over the clusters volume. In principle, one could allow for
radial spectral variations of the CRp and thereby for the radio emission by adopting a particular history of this
population. For instance, one possible scenario would be given by continuous in-situ acceleration of CRp via
resonant pitch angle scattering by turbulent Alfvén waves. We discuss that a moderate radial steepening would not
significantly modify the hadronic minimum energy condition while a confirmation of the strong steepening reported
by Giovannini et al.(1993) would seriously challenge the hadronic scenario.

As a caveat, it should be stressed that the inferred values for the particular energy densities only represent the
energetically least expensive radio synchrotron emission model possible for a given physically motivated scenario.
This minimum is not necessarily realized in Nature. Nevertheless, our minimum energy estimates are also interest-
ing in a dynamical respect: should the hadronic scenario of extended radio synchrotron emission be confirmed, the
minimum energy estimates allow testing for the realization of the minimum energy state for a given independent
measurement of the magnetic field strength. Within the tolerance regions, our minimum energy estimates in Perseus
and Coma agree well with magnetic field strengths inferred from Faraday rotation. Under the hypotheses of correct-
ness of the hadronic scenario, such a possible realization of the minimum energy state would seek an explanation
of a first principle enforcing this extremal value to be realized in Nature.

The results of this chapter were worked out in collaboration with T.A. Enßlin. A paper entitled“Estimating galaxy
cluster magnetic fields by the classical and hadronic minimum energy criterion”has been published in the journal
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Monthly Notices of the Royal Astronomical Societywith the reference:Pfrommer & Enßlin, 2004, MNRAS, 352,
76.
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8. Unveiling the composition of plasma bubbles
in galaxy clusters with the SZ effect

Abstract

The ChandraX-ray Observatory is finding a large number of cavities in the X-ray emitting intra-cluster medium which often
coincide with the lobes of the central radio galaxy. We propose high-resolution Sunyaev-Zel’dovich (SZ) observations to infer the
yet unknown dynamically dominant component of the radio plasma bubbles. This chapter calculates the thermal and relativistic
SZ emission of different compositions of these plasma bubbles while simultaneously allowing for the cluster’s kinetic SZ effect.
As examples, we present simulations of anAtacama Large Millimeter Array (ALMA)observation and of aGreen Bank Telescope
(GBT)observation of the cores of the Perseus cluster and Abell 2052. We predict a 5σ detection of the southern radio bubble
of Perseus in a few hours with theGBT and ALMA while assuming a relativistic electron population within the bubble. In
Abell 2052, a similar detection would require a few tens of hours with either telescope, the longer exposures mainly being
the result of the higher redshift and the lower central temperature of this cluster. Future high-sensitivity multi-frequency SZ
observations will be able to infer the energy spectrum of the dynamically dominant electron population in order to measure its
temperature or spectral characteristics. This knowledge can yield indirect indications for an underlying radio jet model.

8.1. Introduction

TheChandraX-ray Observatory is detecting numerous X-ray cavities in clusters of galaxies, confirming pioneering
detections of theROSATsatellite. Prominent examples include the Perseus cluster (Böhringer et al.1993, Fabian
et al.2000), the Cygnus-A cluster (Carilli et al. 1994), the Hydra-A cluster (McNamara et al.2000), Abell 2597
(McNamara et al.2001), Abell 4059 (Huang & Sarazin1998, Heinz et al.2002), Abell 2199 (Fabian2001), Abell
2052 (Blanton et al.2001), the vicinity of M84 in the Virgo cluster (Finoguenov & Jones2001), the RBS797 cluster
(Schindler et al.2001), and the MKW3s cluster (Mazzotta et al.2002). They are produced by the release of radio
plasma from active galactic nuclei (AGN) which are typically hosted by a cD galaxy located at the cluster center
and mainly reside within the cool cores of galaxy clusters.

While radio synchrotron emission provides evidence for the existence of cosmic ray electrons (CRes) and mag-
netic fields, the detailed composition of the plasma bubble governing its dynamics is still unknown. Minimum
energy or equipartition estimates of the nonthermal pressure in the radio bubbles give values which are typically
a factor of ten smaller than the pressures required to inflate and maintain the bubbles as determined from the sur-
rounding X-ray gas (e.g.,Blanton et al.2001). This indicates that the standard minimum energy or equipartition
radio arguments are missing the main component of the pressure and energy content of the radio lobes. Possibilities
include magnetic fields, cosmic ray proton (CRp) or CRe power-law distributions, or very hot thermal gas. Solv-
ing this enigma would yield further insight into physical processes within cool cores (De Young2003) as well as
provide hints about the composition of relativistic outflows of radio galaxies because plasma bubbles represent the
relic fluid of jets (e.g.Celotti et al.1998, Hirotani et al.1998, Sikora & Madejski2000).

Additionally, some of the clusters exhibit cavities in the X-ray emitting intra-cluster medium (ICM) without
detectable high frequency radio emission, for instance in Perseus, Abell 2597, Abell 4059, and the MKW3s cluster.
This category of X-ray cavities is also believed to be filled with radio plasma, but during the buoyant rise of the light
radio plasma bubble in the cluster’s potential (Gull & Northover1973, Churazov et al.2000, 2001, Brüggen & Kaiser
2001) the resulting adiabatic expansion and synchrotron/inverse Compton losses dwindles the observable radio
emitting electron population producing a so-calledghost cavityor radio ghost(Enßlin1999). Possible entrainment
of the ICM into the plasma bubble and subsequent Coulomb heating by CRes generates further uncertainty of the
composition of the ghost cavity.
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If the radio bubbles contain a significant amount of very hot thermal gas, this might be detected by X-ray obser-
vations. However, this is quite difficult (e.g.,Blanton et al.2003) due to the projected foreground and background
cluster emission, and the fact that the X-ray emissivity is proportional to the square of the density. If most of the
pressure in the radio bubbles were due to the very hot, low density thermal gas, it would have a very low X-ray
emissivity. Observationally, there has been a claim byMazzotta et al.(2002) to have seen hot X-ray emitting gas
within the ghost cavity of the MKW3s cluster. Obviously, it might be more useful to observe the radio bubbles with
a technique which was sensitive to thermal gas pressure, rather than density squared, as pressure is the quantity
which is missing. For this reason, in this chapter we propose high resolution Sunyaev-Zel’dovich (SZ) radio ob-
servations of the radio bubbles and radio ghosts in clusters, as the thermal SZ effect directly measures the thermal
electron pressure in the gas. The thermal SZ effect arises because photons of the cosmic microwave background
(CMB) experience inverse Compton collisions with thermal electrons of the hot plasma inside clusters of galaxies
and are spectrally redistributed (e.g.Sunyaev & Zel’dovich1972, Sunyaev & Zeldovich1980, Rephaeli1995a).
The proposed measurement is able to infer directly the composition of radio plasma bubbles and radio ghosts while
indirectly obtaining indications for a specific underlying jet model.

This chapter is organized as follows: after basic definitions concerning the thermal, kinetic, and relativistic SZ
effect in Sect.8.2, we introduce a toy model in Sect.8.3 describing projected maps of the SZ flux decrement
with spherically symmetric radio plasma bubbles. The models for the cool core regions of the Perseus cluster and
Abell 2052 are described in Sect.8.4. Simulating anAtacama Large Millimeter Array (ALMA)and aGreen Bank
Telescope (GBT)observation of both clusters in Sect.8.5, we examine whether the plasma bubbles are detectable by
the SZ flux decrement. Five physically different scenarios for the plasma composition of the bubbles are investigated
exemplarily using three characteristic SZ frequencies in Sects.8.6and8.7. Finally, we discuss observing strategies
for ALMA andGBT. Throughout the chapter, we assume aΛCDM cosmology and the Hubble parameter at the
present time ofH0 = 70h70 km s−1 Mpc−1.

8.2. Sunyaev-Zel’dovich effect

The SZ effect arises because CMB photons experience inverse Compton (IC) scattering off electrons of the dilute
intra-cluster plasma (for a comprehensive review, seeBirkinshaw1999). At the angular position of galaxy clusters,
the CMB spectrum is modulated as photons are redistributed from the low-frequency part of the spectrum below a
characteristic crossover frequencyνc to higher frequencies. For non-relativistic electron populations,νc ' 217 GHz,
while this characteristic frequency shifts towards higher values for more relativistic scattering electrons.

The relative changeδi(x) in flux density as a function of dimensionless frequencyx = hν/(kTCMB) for a line-of-
sight through a galaxy cluster is given by

δi(x) = g(x) ygas [1+ δ(x,Te)] − h(x)wgas+ [ j(x) − i(x)] τrel , (8.1)

with the Planckian distribution function of the CMB

I (x) = i0i(x) = i0
x3

ex − 1
, (8.2)

and i0 = 2(kTCMB)3/(hc)2 whereTCMB = 2.725 K, k, h andc denote the average CMB temperature, Boltzmann’s
constant, Planck’s constant, and the speed of light, respectively.

The first term in Eqn. (8.1) arises because of the thermal motion of non-relativistic electrons (thermal SZ effect)
and gives the spectral distortion

g(x) =
x4ex

(ex − 1)2

(
x

ex + 1
ex − 1

− 4

)
. (8.3)

The amplitude of the thermal SZ effect is known as the thermal Comptonization parameterygas that is defined as the
line-of-sight integration of the temperature weighted thermal electron density from the observer to the last scattering
surface of the CMB at redshiftz= 1100:

ygas≡
σT

mec2

∫
dl ne,gaskTe. (8.4)

Here,σT denotes the Thompson cross section,me the electron rest mass,Te andne,gas are electron temperature
and thermal electron number density, respectively. For non-relativistic electrons the relativistic correction term is
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zero,δ(x,Te) = 0, but for hot clusters even the thermal electrons have relativistic corrections, which will modify
the thermal SZ effect (Wright 1979). These corrections have been calculated in the literature (see e.g.Rephaeli
1995b, Enßlin & Kaiser2000, Dolgov et al.2001, Itoh & Nozawa2004), and can be used to measure the cluster
temperature purely from SZ observations (e.g.Hansen et al.2002).

The second term in Eqn. (8.1) describes an additional spectral distortion of the CMB spectrum due to the Doppler
effect of the bulk motion of the cluster itself relative to the rest frame of the CMB. If the component of the cluster’s
peculiar velocity is projected along the line-of-sight, then the Doppler effect leads to a spectral distortion referred
to as the kinetic SZ effect with the spectral signature

h(x) =
x4 ex

(ex − 1)2
. (8.5)

The amplitude of the kinetic SZ effect depends on the kinetic Comptonization parameterwgas that is defined as

wgas≡ β̄gasτgas= σT

∫
dl ne,gasβ̄gas, (8.6)

whereτgas is the Thomson optical depth, ¯υgas is the average line-of-sight streaming velocity of the thermal gas,
β̄gas≡ ῡgas/c, andβ̄gas< 0 if the gas is approaching the observer.

Finally, the third term in Eqn. (8.1) takes account of Compton scattering with relativistic electrons that exhibit an
optical depth of

τrel = σT

∫
dl ne,rel. (8.7)

The flux scattered to other frequencies isi(x)τrel while j(x)τrel is the flux scattered from other frequencies tox =
hν/(kTCMB). It is worth noting, that in the limit of ultra-relativistic electrons and forx < 10, one can neglect the
scattered flux, becausej(x) � i(x). In the following, we drop this approximation and consider the general case.
The scattered flux can be expressed in terms of the photon redistribution function for a mono-energetic electron
distributionP(t; p), where the frequency of a scattered photon is shifted by a factort:

j(x) =
∫ ∞

0
dt

∫ ∞

0
dp fe(p) P(t; p) i(x/t). (8.8)

For a given electron spectrumfe(p) dp with the normalized electron momentump = βeγe and
∫

dp fe(p) = 1, this
redistribution function can be derived following the kinematic considerations ofWright (1979) of the IC scattering
in the Thomson regime, whereγe hν � mec2 is valid. We use the compact formula for the photon redistribution
function which was derived byEnßlin & Kaiser(2000):

P(t; p) = −
3|1− t|

32p6t

[
1+ (10+ 8p2 + 4p4)t + t2

]
+

3(1+ t)
8p5

3+ 3p2 + p4√
1+ p2

−
3+ 2p2

2p
[
2 arcsinh(p) − | ln(t)|

] . (8.9)

The allowed range of frequency shifts is restricted to

| ln(t)| ≤ 2 arcsinh(p) , (8.10)

and thusP(t; p) = 0 for | ln(t)| > 2 arcsinh(p). Similar expressions for the photon redistribution function using
different variables can be found in the literature (Rephaeli1995b, Enßlin & Biermann1998, Sazonov & Sunyaev
2000).

The spectral distortions owing to the relativistic SZ effect can be rewritten to include a relativistic Comptonization
parameter ˜y,

δirel(x) = [ j(x) − i(x)]τrel = g̃(x)ỹ, (8.11)
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where

ỹ =
σT

mec2

∫
dl ne kT̃e , (8.12)

kT̃e =
Pe

ne
, (8.13)

g̃(x) = [ j(x) − i(x)] β̃(kT̃e) , (8.14)

β̃(kT̃e) =
mec2

〈kT̃e〉
=

mec2
∫

dl ne∫
dl nekT̃e

. (8.15)

We introduced the normalized pseudo-thermal beta-parameterβ̃(kT̃e) and the pseudo-temperaturekT̃e which are
both equal to its thermodynamic analog in the case of a thermal electron distribution. If the CRe population is
described by the power-law distribution (8.33), the CRe pressure is given by

PCRe=
mec2

3

∫ ∞

0
dp f(p) βe p =

nCRemec2(α − 1)

6
[
p1−α

]p1
p2

[
B 1

1+p2

(
α − 2

2
,
3− α

2

)]p1

p2

, (8.16)

whereβe ≡ υ/c = p/
√

1+ p2 is the dimensionless velocity of the electron,Bq(a,b) denotes the incomplete Beta
function (Abramowitz & Stegun1965). In this case, the normalization of the CRe distribution functionf (p)dp is
determined by the CRe number density,nCRe=

∫
dp f(p). Here, we introduced the abbreviation

[F(p)]p1
p2
= F(p1) − F(p2) (8.17)

in order to account for the lower and upper cutoff p1 andp2 of the CRe population.

8.3. Model for plasma bubbles

This section adopts an analytical formalism to describe buoyant plasma bubbles which was developed for the anal-
ysis of X-ray and radio emission byEnßlin & Heinz(2002). After a phase of supersonic propagation of the radio
plasma into the ambient ICM, the radio lobes quickly reach pressure equilibrium with the surrounding medium once
the AGN activity has terminated. During this stage, the bubble rises with constant velocity governed by the balance
of buoyancy and drag forces while the volume of the bubble expands adiabatically. Meanwhile, the surrounding
gas is approximately in hydrostatic equilibrium with the underlying dark matter potential. Synchrotron, inverse
Compton, and adiabatic losses diminish the observable radio emitting electron population within the plasma bubble
producing a so-called ghost cavity.

As an analytically feasible toy model, we assume spherical geometry of the plasma bubble and adopt the general
n-fold β-profile for the electron pressure of the ICM which might find application for cool-core clusters:

Pe(r) = ne(r)kTe(r) =
N∑

i=1

Pi

1+ (
r

ry,i

)2−3βy,i/2

. (8.18)

The origin of our coordinate system coincides with the cluster center while thex1- and x2-axes define the image
plane, and thez-axis the line-of-sight to the observer. We choose the direction of thex1-axis such that the bubble
center is located in thex1-zplane atrc = (rc cosθ,0, rc sinθ). Its projected distance from the cluster center amounts
to Rc = µrc with µ = cosθ, while the radius of the bubble is denoted byrb. For an unperturbed line-of-sight which
is not intersecting the bubble, the observed thermal Comptonization parameterycl(x1, x2) of the cluster is given by

ycl(x1, x2) =
N∑

i=1

yi

1+ x2
1 + x2

2

r2
y,i

−(3βy,i−1)/2

+ ybg, (8.19)

whereyi = σT(mec2)−1Piry,iB
( 3βy,i−1

2 , 1
2

)
is the central thermal Compton parameter of the respective individualβ-

profile andybg is the background contribution to the Comptonization which we set to zero in our analysis. In the
case of a line-of-sight intersecting the surface of the bubble, the two intersection points are (x1, x2, z±) with

z± = rc

√
1− µ2 ±

√
r2
b − x2

2 − (x1 − rcµ)2. (8.20)
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The thermal Comptonization parametery(x1, x2) for the area covered by the bubble is given by

yb(x1, x2) = ycl(x1, x2) −
N∑

i=1

yi

1+ x2
1 + x2

2

r2
y,i

−(3βy,i−1)/2 [
sgn(z)

2
Iqy,i (z)

(
1
2
,
3βy,i − 1

2

)]z+

z−

, (8.21)

whereIq = Bq(a,b)/B(a,b) denotes the regularized Beta function andqy,i(z) ≡ z2/(r2
y,i + x2

1 + x2
2 + z2).

The amplitude of the kinetic SZ effect is proportional to the line-of-sight integrated electron density for which we
also assume a generaln-fold β-profile:

ne(r) =
N∑

i=1

ni

1+ (
r

rw,i

)2−3βw,i/2

. (8.22)

To avoid confusion, we adopt the notationrw,i andβw,i for the usual core radii and theβ-parameters in analogy to
the thermal SZ effect. For an unperturbed line-of-sight which is not intersecting the bubble, the observed kinetic
Comptonization parameterwcl(x1, x2) of the cluster is given by

wcl(x1, x2) =
N∑

i=1

wi

1+ x2
1 + x2

2

r2
w,i

−(3βw,i−1)/2

, (8.23)

wherewi = β̄gasσTnirw,iB
(

3βw,i−1
2 , 1

2

)
is the central kinetic Compton parameter of the respective individualβ-profile.

The kinetic Comptonization parameterw(x1, x2) for the area covered by the bubble is obtained by analogy to the
previous case:

wb(x1, x2) = wcl(x1, x2) −
N∑

i=1

wi

1+ x2
1 + x2

2

r2
w,i

−(3βw,i−1)/2 [
sgn(z)

2
Iqw,i (z)

(
1
2
,
3βw,i − 1

2

)]z+

z−

. (8.24)

whereqw,i(z) ≡ z2/(r2
w,i + x2

1 + x2
2 + z2).

8.4. Plasma bubbles of Perseus and Abell 2052

Two of the most prominent examples of radio plasma bubbles in nearby galaxy clusters can be observed within
the cool core regions of the Perseus cluster (redshiftzPerseus= 0.0179) and Abell 2052 (zA2052 = 0.0348). Their
proximity makes both clusters suitable targets for plasma bubble observations. Both clusters each host two bubbles
which reflect the relic plasma of a past cycle of jet activity in the cD galaxy at the cluster center. At the current stage,
the two radio lobes are in approximate pressure equilibrium with the surrounding medium and rise with a velocity
governed by the balance of buoyancy and drag forces while the volume of the bubbles expands adiabatically.

As in the previous section, the coordinate origin coincides with the cluster center and the new direction of the
x1-axis points towards positive values of the relative right ascension. Assuming spherical symmetry of the plasma
bubbles, their three dimensional position relative to the cluster center is degenerate because of projection effects.
Together with the cluster center, the center of the bubbles form a plane which we assume to be perpendicular to the
line-of-sightz. The azimuthal angle to the bubble centerφ is measured from thex1-axis.

8.4.1. Perseus

Using deprojected electron density and temperature profiles derived from X-ray observations (Churazov et al.2003),
we obtain a pressure profile by fitting a doubleβ-profile according to Eqn. (8.18). In principle, we want the X-
ray pressure profile in the absence of the radio bubbles. Since the observed X-ray surface brightness profile was
derived assuming spherical symmetry including the region of the bubbles and does not extend into the very center
of the cluster due to the AGN at the center and theXMM/Newtonpoint spread function, our calculations somewhat
underestimate the SZ effect of the bubbles. TableC.6 shows the individual parameters of the two plasma bubbles
which are measured from the X-ray image of the central region of Perseus (Fabian et al.2000).
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In our model, we adopt the peculiar velocity of the Perseus cluster of ¯υgas= −136 km s−1 with respect to the rest
frame of the CMB and approaching the observer (Hudson et al.1997).1 The induced kinetic SZ effect gives rise
to a small attenuation of the SZ decrement at our fiducial frequency. However, it also leads to an interesting effect
at the crossover frequencyνc ' 217 GHz, and produces an enhancement of the SZ increment at higher frequencies
(cf. Sect.8.7).

8.4.2. Abell 2052

Despite the lower central pressure of Abell 2052 compared to Perseus, Abell 2052 lies at higher Galactic latitudes.
Thus, SZ flux confusion with Galactic dust emission is negligible in this case, which might be an observational
advantage.

The electron density profile of Abell 2052 is obtained by deprojecting the X-ray surface brightness profile ofMohr
et al.(1999) by means of the deprojection formula given in Appendix A ofPfrommer & Enßlin(2004a). Since the
X-ray surface brightness is represented by a doubleβ-model, the resulting density profile equals the square root
of two singleβ-profiles added in quadrature. Refitting this electron density profile to match the profile defined by
Eqn. (8.22) yields the parameters given in TableC.6.

In order to model the temperature profilesTe(r) for Abell 2052, we applied the universal temperature profile for
cool core clusters proposed byAllen et al.(2001) to data taken fromBlanton et al.(2001),

Te(r) = T0 + (T1 − T0)

[
1+

(
r

rtemp

)−ηtemp
]−1

, (8.25)

whereT0 = 1.31 keV,T1 = 3.34 keV,rtemp= 20.6 h−1
70 kpc, andηtemp= 4.5. This equation matches the temperature

profile well up to radii of∼ 0.3 rvir , which is sufficient for our purposes since we are especially interested in the
core region of Abell 2052. Combining the electron density and temperature profiles yields the radial variation in
the gas pressure, which we represent as a tripleβ-profile (TableC.6); for two of the components, the normalization
is negative. As noted for Perseus, what we really need is the pressure profile in the absence of the radio bubbles.
The observed X-ray surface brightness profile was derived assuming spherical symmetry including the region of the
bubbles. Probably as a result of this, the adopted pressure profile has more structure and a lower central pressure
than would be true of the pressure profile in the absence of the radio bubbles. Thus, our calculations somewhat
underestimate the SZ effect of the bubbles in Abell 2052. Since the southern bubble has a mushroom shape, we
decided to model it using a half-sphere with the line-of-sight grazing the face.

For our simulation, Abell 2052 is taken to be at rest in the CMB rest frame owing to the large uncertainties of
the velocity determination with the fundamental plane method to measure the Malmquist bias-corrected distance to
early-type galaxies (Hudson et al.2004, Hudson2004).2

8.5. Synthetic observations

8.5.1. Atacama Large Millimeter Array

To simulate anALMA observation of the central region of Perseus, we compute the frequency band-averaged SZ
flux decrement〈δI〉ν0 which is defined by

〈δI〉ν0 =

∫
dν δI (ν)Rν0(ν)∫

dνRν0(ν)
. (8.26)

1Using the fundamental plane,Hudson et al.(1997) measure the Malmquist bias-corrected distance to early-type galaxies of the Perseus
cluster. Comparing these distances to the mean of the individual galaxy redshifts, they infer the peculiar velocity of the galaxy cluster,
υpec = (−136± 307) km s−1, where the uncertainty derives from the distance error added in quadrature with the cluster mean redshift error.
On the other hand, the predicted peculiar velocity derived from the IRAS redshift survey density field yieldsυpec = +180 km s−1 where the
velocity field was smoothed on a scale of 8h−1 Mpc which corresponds to the scale from which the clusters collapsed.

2Hudson et al.(2004) have only 5 galaxies of Abell 2052 in their sample and infer a peculiar cluster velocity ofυpec = (−494± 1062) km s−1

where the error is dominated by the error in the distance but also includes redshift uncertainties and systematic effects such as extinction. On
the other hand, the predicted peculiar velocity of Abell 2052 according the IRAS redshift survey density field isυpec= +208 km s−1.
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8.5.1 Atacama Large Millimeter Array

ALMA: Perseus cluster
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Figure 8.1.: SyntheticALMA observation of the cool core region of Perseus at the frequency band centered on 144 GHz.
The simulated SZ flux decrement of radio plasma bubbles is shown in units of mJy/arcmin2 assuming an ultra-relativistic
electron population within the bubbles (scenario 1). The image is smoothed to the resolution of theALMA compact core
configuration (FWHM' 2.9′′). The contour lines have a linear spacing of 0.16 mJy/arcmin2. For comparison, the size of
theALMAfield of view at this frequency is FWHMfov ' 36′′.

Here,Rν0(ν) denotes the frequency response of theALMA receivers centered on a fiducial frequencyν0 which we
assume to be described by a top-hat function:

Rν0(ν) =

{
1, ν ∈ [ν0 − ∆ν/2, ν0 + ∆ν/2]
0, ν < [ν0 − ∆ν/2, ν0 + ∆ν/2]

(8.27)

We choose theALMA frequency band 4 which samples the extremum of the SZ flux decrement and is characterized
by ν0 = 144 GHz and∆ν = 38 GHz (Brown et al.2000). The requirement of obtaining the highest flux sensitivity
to the largest scales comparable to the field of view at this frequency (FWHMfov ' 36′′) calls for the most compact
configurationALMA Ewith a maximal baseline ofdbl = 150 m. Thus, we convolve the simulated SZ flux decrement
with a Gaussian to obtain the resolution of this configuration, FWHM' c/(ν dbl) ' 2.9′′. Since Perseus lies at more
than 40 degrees of declination and is a Northern object,ALMA will be challenged to observe it, reaching only
up to 25 degrees elevation. However, for the North-South elongatedALMA configuration of about a factor of
(cos 65◦)−1 ' 2.4, the beam will be almost round. Assuming an ultra-relativistic electron population within the
bubbles yields the SZ flux decrement as shown in Fig.8.1which is similar in morphology to the X-ray image.

To investigate whether the plasma bubbles are detectable in the SZ flux decrement, we define the SZ flux contrast
ρ:

ρ =
IA − IB

IA + IB
. (8.28)

Here, IA and IB denote the mean SZ flux decrement of two equally sized solid angle elements within the field of
view, one of which measures the SZ flux inside and the other one outside the bubble. Prior information about
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Unveiling the composition of plasma bubbles in galaxy clusters with the SZ effect

Table 8.1.: Summary of predicted exposure times to obtain a 5σ detection of the plasma bubble (assuming an ultra-
relativistic electron population within the bubble) for the different combinations of telescopes and clusters.IA and IB

denote the mean SZ flux decrement of two equally sized solid angle elements within the field of view, one of which
measures the SZ flux outside and the other one inside the bubble.

Telescope: cluster IA IB exposure
[mJy amin−2] [mJy amin−2] [hours]

ALMA: Perseus 13.25 12.70 5.1
ALMA: Abell 2052 3.930 3.698 38
GBT: Perseus 11.31 10.85 2.1
GBT: Abell 2052 3.272 3.138 31

the angular position of the X-ray cavities allows one to maximize the SZ flux contrast. Adopting Gaussian error
propagation and introducingALMA’s sensitivity per beam in terms of flux density,σALMA, yields the uncertainty in
ρ,

σρ =

√(
∂ρ

∂IA

)2

+

(
∂ρ

∂IB

)2
σALMA
√

Nbeam
(8.29)

=
2
√

I2
A + I2

B

(IA + IB)2

σALMA
√

Nbeam
. (8.30)

Here,Nbeam = f Abeam/(2Afov) is the number of statistically independent beams per flux averaged solid angle el-
ement, f ≤ 0.5 measures the fraction of the solid angle of the bubble within the field of view, and the factor of
Abeam/(2Afov) accounts for the statistically independent degrees of freedom within the field of view. Combining
Eqns. (8.28) and (8.30) yields the signal-to-noise for the 5σ detection of the bubble3:

S

N
≡
ρ

σρ
=

√
Nbeam

(
I2
A − I2

B

)
2σALMA

√
I2
A + I2

B

≥ 5. (8.32)

We choose the field of view to be centered on the inner rim of the southern bubble such that equal solid angle
elements fall inside and outside the bubble, respectively. The simulated mean SZ flux decrements within the two
solid angle elements of the primary beam require only an integration time of 5.1 hours in order to obtain a 5σ
detection of the plasma bubble assuming an ultra-relativistic electron population within the bubble. Uncertainties
in the amplitude of the kinetic SZ effect and the geometrical arrangement and shape of the bubbles may slightly
modify this result. As a word of caution, this observation time allows a single bubble to be observed in a single
pointing while it might be advisable to map the entire central region including both bubbles to get a clearer picture
of the structure, and to be convinced that any holes seen in the SZ map at the radio bubbles were not just fluctuations
also seen elsewhere in the cluster center away from the radio bubbles.

The corresponding observation of Abell 2052 would require an integration time of 38 hours in order to obtain a
5σ detection of the plasma bubble for the same plasma bubble content, the longer exposures mainly being the result
of the higher redshift and the lower central temperature of this cluster.

3The flux density sensitivityσALMA for point sources, which should be approximately applicable in the case of the compact core configuration,
is given byButler et al.(1999):

σALMA =

√
2kTsys

ηAdish Abeam
√
∆t∆νNbl

. (8.31)

Here,Tsys ' 65 K denotes the system temperature,Adish = πD2/4 the collecting area of each dish (D = 12 m), η = 0.75 the aperture
efficiency,Abeam= 1.13 FWHM2 ' 9.3 arcsec2 the area of the secondary beam,∆t the integration time,∆ν = 38 GHz the bandwidth, and
Nbl = n(n− 1)/2 the number of baselines,n = 64 being the number of antennas.
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8.5.2 Green Bank Telescope

Green Bank Telescope: Perseus cluster Green Bank Telescope: Abell 2052
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Figure 8.2.: SyntheticGBTobservations of the cool core regions of Perseus (left panel) and Abell 2052 (right panel) at
the frequency band centered on 90 GHz. The simulated SZ flux decrement of radio plasma bubbles is shown in units of
mJy/arcmin2 assuming an ultra-relativistic electron population within the bubbles (scenario 1). The images are smoothed
to the resolution theGBT3 mm receiver (FWHM' 8.0′′). The contour lines have a linear spacing of 0.16 mJy/arcmin2

(left panel) and 0.08 mJy/arcmin2 (right panel). For comparison, the size of theGBT field of view at this frequency is
32′′ × 32′′.

8.5.2. Green Bank Telescope

To simulate aGBTobservation of the central region of both clusters, we compute the frequency band-averaged
SZ flux decrement〈δI〉ν0 in the frequency interval [86 GHz,94 GHz]. The resulting simulated SZ flux decrement
was convolved with a Gaussian of widthσ ' 3.4′′ to obtain the resolution of theGBT3 mm receiver. Assuming an
ultra-relativistic electron population within the bubbles yields the SZ flux decrement as shown in Fig.8.2.

To investigate whether the plasma bubbles are detectable in the SZ flux decrement, we adopt the concept of SZ
flux contrast of the previous section. The sensitivity of the upcomingGBT Penn Array Receiver in terms of flux
density is given byσGBT = 0.25 (∆t)−1/2 mJy arcmin−2, where∆t is the integration time in hours (Mason2004). We
choose the 32′′ × 32′′ field of view of theGBT to be centered on the inner rim of the southern bubble of Perseus as
described above. Assuming an ultra-relativistic electron population within the bubble, we predict a 5σ detection of
the plasma bubble after an integration time of 2.1 hours owing to the better sensitivity of the bolometric receivers
on theGBT. This observation time assumes a proper foreground subtraction of the Galactic emission components.

The corresponding observation of Abell 2052 would require an integration time of 31 hours in order to obtain a
5σ detection of the plasma bubble for the same plasma bubble content. Again, the integration times correspond to
a single pointing on the southern bubble while mapping the entire central region would take respectively longer.

8.6. Composition study of plasma bubbles

In the following, we study exemplarily five physically different scenarios of the composition of the plasma bubble
which is as a whole in approximate pressure equilibrium with the ambient ICM. Although these scenarios might not
be realized in nature in these pure forms, a realistic SZ flux decrement can be obtained by linearly combining the
different scenarios due to the superposition property of the pressure of different populations:
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Unveiling the composition of plasma bubbles in galaxy clusters with the SZ effect

1. The internal pressure is either dominated by CRps, magnetic fields, or ultra-relativistic CRes being character-
ized by a mean momentum of〈p〉 � 1 in this scenario. This is the most positive case for the detection of the
plasma bubbles in the SZ flux decrement, as the bubble volume does not contribute to the SZ flux decrement
significantly. Although this is the most positive scenario, it also is the one adopted by most analyses of radio
lobes.

2. This scenario assumes the internal pressure to be dominated by a compound of CRp and CRe populations
where the latter is described by a power-law distribution:

fCRe(p, α, p1, p2) =
(α − 1)p−α

p1−α
1 − p1−α

2

. (8.33)

The distribution function is normalized such that its integral over momentum space yields unity. The choice
of p1 = 1, p2 = 103, andα = 2 implies a mean momentum of〈p〉 ' 6.9 as well as a pseudo-temperature of
kT̃CRe' 2.2mec2 ' 1.1 MeV and represents a plausible scenario for the relativistic composition of the bubble.
The CRp and CRe populations each contribute equally to the internal pressure of the bubble representing a
remnant plasma originating from the hadronic jet scenario.

3. The dynamically dominant internal pressure support is contributed to equal amounts by relativistic electron
and positron populations, respectively. Taking the same parameters for the CRe distribution of the previ-
ous scenario, this approach represents the remnant radio plasma originating from the electron-positron jet
scenario.

4. A trans-relativistic thermal proton and electron distribution withkTe = 50 keV dominates dynamically over
the other non-thermal components:

fe,th(p, βth) =
βth

K2(βth)
p2 exp

(
−βth

√
1+ p2

)
. (8.34)

K2 denotes the modified Bessel function of the second kind (Abramowitz & Stegun1965) which takes care
of the proper normalization andβth = mec2/(kTe) is the normalized thermal beta-parameter. The mean
momentum of this distribution amounts to〈p〉 ' 0.55.

5. This scenario assumes a dynamically dominant hot thermal proton and electron distribution withkTe =

20 keV which exhibits a mean momentum of〈p〉 ' 0.33.

In all cases, the bubble’s sound velocity and thus the barometric scale height are much higher than the correspond-
ing values of the ambient ICM which implies a flat pressure distribution within the plasma bubble. This leads to a
reduced internal pressure with respect to the ambient ICM at the inner rim of the bubble and an excess pressure at
the outer rim of the bubble, which is responsible for the buoyant rise of the bubble in the cluster atmosphere.

Figure8.3shows the spectral distortions due to the thermal SZ effectg(x), kinetic SZ effecth(x), and relativistic
SZ effect of the various scenarios for the relativistic populations of the bubble composition. The spectral distortions
of the relativistic SZ effect are given by ˜g(x) which have been defined in Eqns. (8.11) through (8.15). Please note,
that the scenarios 2 and 3 exhibit the same spectral distortion ˜gCRe and that the amplitude of the kinetic SZ effect
wgas is typically one order of magnitude smaller than the amplitude of the thermal SZ effectygas.

The left panel of Fig.8.4shows the unconvolved SZ flux decrement along an impact parameter through the center
of the southern bubble of Perseus at theALMA frequency band centered onν0 = 144 GHz. While the northern
bubble of Perseus would evince qualitatively the same behavior, it shows a shallower depth of its SZ cavity due
to its smaller geometrical size resulting in a weaker SZ flux contrast (cf. Fig.8.1). The depth of the SZ cavity
at this frequency range is a measure how relativistic the respective electron population is, i.e. a deeper SZ cavity
indicates a higher mean momentum of the electron population. Our studies show a strong signature of the different
bubble compositions on the SZ flux decrement. Thus, the combination of X-ray and SZ observations allows one
to circumvent the degeneracy between the effects of the bubble composition and of the bubble extent along the
line-of-sight on the SZ measurement. This enables us to distinguish a relativistic from a thermal electron population
inside the bubble using only a single frequency SZ observation by either a detection or non-detection of the bubble,
respectively.
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8.7 Kinetic Sunyaev-Zel’dovich effect
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Figure 8.3.: Spectral distortions due to the thermal SZ effectg(x), kinetic SZ effect h(x), relativistic SZ effect due to a
population of ultra-relativistic CRes, ˜gUCRe = −i(x) β̃UCRe (with p1 = 3, p2 = 103, andα = 2), relativistic SZ effect due to
a population of power-law CRes, ˜gCRe= [ j(x)− i(x)] β̃CRe (with p1 = 1, p2 = 103, andα = 2), and the relativistic SZ effect
due to a population of trans-relativistic thermal electrons, ˜g50 keV = [ j(x) − i(x)] βth(50 keV), as well as due to electrons
with kTe = 20 keV, respectively.

8.7. Kinetic Sunyaev-Zel’dovich effect

8.7.1. General considerations

If the cluster is moving towards the observer, the CMB temperature in this direction is increased due to the Doppler
effect of the bulk motion of the cluster relative to the rest frame of the CMB (in this case, our convention is such
thatῡgas< 0). This enhanced SZ emission implies a reduced SZ flux decrement for frequencies below the crossover
frequency of the thermal SZ effect atνc ' 217 GHz (for the non-relativistic case). Cosmologically, line-of-sight
cluster velocities follow a Gaussian distribution with vanishing mean since the large scale structure is at rest in the
comoving CMB-frame and with a standard deviation ofσvel ' 310 km s−1 as derived from a cosmological structure
formation simulation comprising the Hubble volume (Jenkins et al.2001, Schäfer et al.2004).

Theoretically, the turbulent motions of the ICM should also contribute to the kinetic SZ effect. The largest impact
is caused by two merging clusters along the line-of-sight which induces a bimodal streaming flow pattern on the
sky. However, radio plasma bubbles are mainly observed within cool-core clusters which represent relaxed clusters
where the ICM is approximately in hydrostatic equilibrium with the underlying dark matter potential. In this case,
only small scale turbulent vortices are expected which exhibit smaller angular momenta. For an isotropic distribution
of vortex orientations, line-of-sight integration and beam convolution average the resulting kinetic SZ effect out to
zero. Thus, these turbulent motions can only contribute in second order to the thermal SZ effect.

It would be useful to know the peculiar velocity of the galaxy cluster in order to remove the degeneracy of the
SZ cavity depth with respect to the different bubble compositions and the kinetic SZ effect. In the case of a general
morphology of a galaxy cluster, in particular for non-axis-symmetric objects, it is impossible to unambiguously
deproject the cluster in order to derive the peculiar velocity given only a single frequency SZ observation and an
X-ray image (Zaroubi et al.1998, 2001). For multi-frequency SZ observations of the entire cluster,Aghanim et al.
(2003) theoretically discuss possibilities in order to break parameter degeneracies between the Compton parame-
ter, the electron temperature and the cluster peculiar velocity for an appropriate choice of observing frequencies.
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Figure 8.4.: Unconvolved SZ flux decrement along an impact parameter through the center of the southern bubble of
Perseus. Theleft panelshows the SZ flux decrement at theALMA frequency band centered onν0 = 144 GHz while
the right panel assumes a central fiducial frequency ofν0 ' 217 GHz. Compared are five different scenarios of the
composition of the plasma bubbles to the undisturbed SZ profile (dotted thin line), respectively. The three (two) set of
lines correspond to three (two) differently assumed average bulk velocities along the line-of-sight, ¯υgas, of the thermal gas
of Perseus.

Considering possible gaseous substructure along the line-of-sight towards the radio plasma bubble and a possibly
non-spherical bubble geometry, it might be impossible to discriminate between morphologically similar bubble
compositions (scenarios 4 and 5) in the case of a single frequencyALMAor GBTobservation.

8.7.2. Perseus plasma bubbles at different frequencies

The left panel of Fig.8.4compares three set of lines corresponding to different average line-of-sight streaming veloc-
ities at theALMA frequency band which samples the extremum of the thermal SZ flux decrement (ν0 = 144 GHz).
The effect of an overall decrease in the SZ flux decrement for the approaching cluster (¯υgas= −300 km s−1) can be
clearly seen. The amplitude of the kinetic SZ effect depends on the dimensionless average velocity of the thermal
gas, which amounts in our case tōβgas = ῡgas/c ' 10−3. On the other hand, the amplitude of the thermal SZ ef-
fect depends on the inverse normalized thermal beta-parameter,β−1

th = kTe/(mec2) ' 10−2, where we inserted the
average temperature of the Perseus cluster. At the extremum of the thermal SZ flux decrement, the kinetic SZ flux
amounts to an approximately 10% correction to the thermal SZ effect for the choice of our fiducial cluster velocity.
However, this small effect is responsible for the qualitative difference of the observable SZ cavities resulting from
plasma bubbles: assuming a receding cluster and a dynamically dominant thermal proton and electron distribution
(scenarios 4 and 5), we still obtain a detectable depth of the SZ cavity which almost disappears for an approaching
cluster.
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8.7.2 Perseus plasma bubbles at different frequencies
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ῡgas = −300 km s−1

Figure 8.5.: Unconvolved SZ flux increment along an impact parameter through the center of the southern bubble of
Perseus at the frequency band centered onν0 ' 470 GHz. Compared are five different scenarios of the composition of
the plasma bubbles to the undisturbed SZ profile (dotted thin line), respectively. The two set of lines correspond to two
differently assumed average bulk velocities along the line-of-sight, ¯υgas, of the thermal gas of Perseus.

The right panel of Fig.8.4 shows the unconvolved SZ flux decrement assuming a central frequency ofν0 =
217.34 GHz and bandwidth of∆ν = 40 GHz. Allowing for finite frequency response of the instrument’s receivers,
this fiducial frequency corresponds to a vanishing frequency band-averaged thermal SZ flux decrement. Thus, the
kinetic SZ effect represents the main effect at this frequency showing a positive SZ flux decrement for a receding
cluster, i.e. we would detect a reduced flux of CMB photons in that direction. At this frequency range, a relativistic
electron population always causes a positive relativistic SZ flux decrement owing to the higher crossover frequency
νc & 217 GHz and irrespective of the cluster’s velocity. This effect causes an enhanced SZ flux contrast of the
bubble for an approaching cluster compared to a receding one, depending on the specific composition of the plasma
bubble.

The interchange of SZ flux decrements for different bubble compositions is remarkable compared to the case of
ν0 = 144 GHz. The largest impact of the bubble’s SZ cavity is provided by the trans-relativistic thermal electron
population of 50 keV owing to its comparably large frequency band-averaged SZ flux decrement. The SZ flux
decrements of the other bubble compositions are smaller because the crossover frequency of the thermal electron
population ofkTe = 20 keV lies closer to the non-relativistic crossover frequency while the amplitudes of the
spectral distortions of the relativistic electron populations are smaller (cf. Fig.8.3). Relativistic corrections to the
thermal SZ flux resulting from the thermal electrons with temperatures ofkTe ' 3 − 7 keV are negligible: the
resulting profiles of the SZ flux decrement are similar in morphology to the kinetic SZ flux decrement and would
correspond at this frequency to an additional kinetic SZ effect of only∼ 10 km s−1.

Owing to the proximity of the Perseus cluster to the Galactic plane, SZ observations at even higher frequencies
might be challenging due to the Galactic dust emission which represents the major Galactic foreground at these
frequencies (see e.g.Schlegel et al.1998, Finkbeiner et al.1999, 2000, Schäfer et al.2004). In an exemplary
manner, we also show the expected SZ cavity around a fiducial frequency which samples the maximum of the SZ
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flux increment.4 For a cluster with a temperature of 5 keV, the normal thermal relativistic corrections disappear at
ν0 = 470 GHz when taking into account the detector’s finite frequency response of∆ν = 40 GHz. Secondly, at this
frequency the kinetic SZ effect has only a small additional contribution (Aghanim et al.2003). Hence, one could
expect that the SZ signal from the bubble could be even more prominent. This is investigated in Fig.8.5 which
shows the unconvolved SZ flux increment along an impact parameter through the center of the southern bubble of
Perseus atν0 = 470 GHz. The different bubble compositions qualitatively show the same behavior as for the SZ
decrement at the frequency band aroundν0 = 144 GHz. However, the SZ flux contrast of the bubble is much higher
as well as the degeneracy owing to the kinetic SZ effect is reduced. Thus, for clusters not being outshone by the
Galactic dust emission, observations at this frequency range seem to be most promising in order to infer the bubble
composition.

8.8. Observing strategy

The previous results imply the following observing strategy for theALMA compact core configuration or theGBT.
A short duration observation (a few hours) of the inner rim of the southern X-ray cavity within the Perseus cool-core
region should either yield a 5σ detection of an SZ cavity or not. The case of a significant detection either proves
the existence of a dynamically dominant CRp population, magnetic fields, or an ultra-relativistic CRe population
within the radio plasma bubble while the contrary excludes this hypothesis on the 5σ level.

Such a non-detection of the bubble would require a longer integration time in order to detect the SZ flux decrement
of the plasma bubble at the desired significance level. A detection of a very shallow SZ cavity indicates a dynam-
ically dominant hot thermal electron population within radio plasma bubbles. The underlying physical scenario is
degenerate for an observed intermediate depth of the SZ cavity (such as an SZ flux level in between our scenarios
3 and 4). Possibilities include trans-relativistic thermal electron distributions or soft CRe power-law distributions
exhibiting a spectral index of approximatelyα = 3 as well as a small lower cutoff p1 implying a mean momentum
of 〈p〉 ∼ 1. Follow-up multi-frequency SZ observations in combination with X-ray spectroscopy could disentangle
the different scenarios and possibly estimate the temperature or spectral characteristics of the dynamically dominant
electron population (Shimon & Rephaeli2002, Enßlin & Hansen2004). The detection of such an SZ flux would en-
able one to draw conclusions concerning the particular jet scenario being responsible for the inflation of the plasma
bubble.

The case of a deep SZ cavity with an associated detection of dynamically dominant CRps, magnetic fields, or
ultra-relativistic CRes leads to an immediate question about the composition of radio ghosts. Thus, an additional
SZ observation of the ghost cavity in Perseus could yield answers about the potential entrainment of ICM into the
plasma bubble during its buoyant rise in the cluster atmosphere. If a large fraction of entrained gas in the bubble
provides significant pressure support, it must have experienced Coulomb heating through CRes in order not to be
detected in X-rays. This would result in a reduced SZ flux contrast of the ghost cavity and leads to a faint or
undetectable SZ flux decrement of the ghost cavity.

8.9. Conclusion and outlook

This chapter provides a theoretical framework for studying the SZ decrement of radio plasma bubbles within clusters
of galaxies. X-ray observations are proportional to the square of the thermal electron density and probe the core
region of the cluster. On the other hand, the SZ effect is proportional to the thermal electron pressure enabling the
detection of plasma bubbles further outwards of the respective clusters. Assuming spherically symmetric plasma
bubbles, we simulate anALMAand aGBTobservation of the cool core regions of the Perseus cluster and Abell 2052.
In this context, we investigate physically different scenarios of the composition of the plasma bubbles: as long as
the bubble is dynamically dominated by relativistic electrons, protons, or magnetic fields, there exists a realistic
chance to detect plasma bubbles in the SZ flux decrement. Non-detection of radio bubbles with the SZ effect at
the position of X-ray cavities hints towards a dynamically dominant hot thermal electron population within radio
plasma bubbles. Detection of a non-thermal pressure support should be possible within a few hours observation
with ALMA or GBT in the case of Perseus and a few tens of hours in the case of Abell 2052.

4This might find application for a galaxy cluster with an X-ray cavity at high Galactic latitude (e.g., Abell 2052) or in the case of Perseus, once
the Galactic dust emission is properly removed.
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Pursuing high-sensitivity multi-frequency SZ observations, it will be challenging but not impossible to infer
the detailed nature of the different possible populations of the bubble. For realistic observations, the frequency
dependence of the relativistic SZ signal is contaminated by the presence of the kinetic SZ signal. It would be optimal
to have a frequency channel centered on the crossover frequency of the thermal SZ effect in order to infer the energy
spectrum of the dynamically dominant population and to measure the temperature or spectral characteristics of the
electron population.

The results of this chapter were worked out in collaboration with T.A. Enßlin and C.L. Sarazin. A paper entitled
“Unveiling the composition of radio plasma bubbles in galaxy clusters with the Sunyaev-Zel’dovich effect” has been
published in the journalAstronomy & Astrophysics (Pfrommer, Enßlin & Sarazin, 2005, A&A, 430, 799).
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9. A description of cosmic ray gas for
cosmological applications

Abstract

Galactic non-equilibrium processes like shock waves and turbulence have generated magnetic fields and cosmic rays (CRs) in
the interstellar medium. Cosmic rays play a decisive role within our Galaxy: their pressure, along with that of the thermal gas,
balances gravity, they trace past energetic events such as supernovae, and they reveal the underlying structure of the baryonic
matter distribution through their interactions. To study the impact of CRs, we develop an approximative framework to treat
dynamical and radiative effects of CRs in cosmological simulations. The guiding principle is a balance between capturing as
many physical properties of CR populations as possible while simultaneously requiring as little extra computational resources as
possible. The CR spectrum is approximated by a single, constant spectral index power-law, with spatially and temporal varying
normalization and low-energy cut-off. Particle number and energy conservation principles are used to derive evolution equations
for the basic variables due to adiabatic and non-adiabatic processes. Such are compression, rarefaction, CR injection via both
shocks of supernova remnants and structure formation shock waves, in-situ re-acceleration of CRs, CR spatial diffusion, CR
energy losses due to Coulomb interactions, Bremsstrahlung, and hadronic interactions with the background gas, including the
associatedγ-ray and radio emission due to subsequent pion decay. Furthermore, we explain how the formalism can be included
into smoothed-particle-hydrodynamics simulations.

9.1. Introduction

9.1.1. Motivation

The interstellar medium (ISM) of galaxies is very complex and its energy budget is composed of thermal and
non-thermal components. The non-thermal components are magnetic fields and cosmic rays which are known to
contribute roughly as much energy and pressure each as the thermal gas contributes to the ISM, at least in our own
Galaxy. Numerical simulations and semi-analytical models of galaxy and large-scale structure formation neglected
the effects of these non-thermal components so far for simplicity despite their dynamical importance.

Although there have been some attempts to equip SPH galaxy formation codes with magnetic field descriptions
on the MHD level (Dolag et al.1999), a fully dynamical treatment of the CR component was not yet attempted
due to the very complex CR physics involved. There has been some effort to furnish grid based MHD codes with
a diffusive CR component in order to study isolated effects like Parker instabilities (Kuwabara et al.2004, Hanasz
& Lesch 2003). However, these codes are not suited for galaxy formation simulations in a cosmological setting
due to the missing adaptive resolution needed and the many extra components like dark matter, stellar populations,
etc. Although there have been numerical implementations of discretized CR energy spectra on top of grid based
cosmological simulations (Miniati 2001), these implementations neglect the hydrodynamical pressure of such a CR
component. Additionally, the amount of computer resources required for these in terms of memory and CPU-time is
substantial. This renders such code to be unattractive for the purpose of galaxy formation and inhibits the inclusion
of CRs into expensive simulation runs in cases where it is not clear ab initio if CRs are crucial or not.

An accurate description of CRs would follow the evolution of their spectral energy distribution as a function of
time and space in addition to the computation of their dynamical, non-linear feedback to hydrodynamics. In order
to allow the inclusion of CRs and their effects into numerical simulations and semi-analytic descriptions of galaxy
formation, we develop a simplified description of the CR dynamics and physics which should be a compromise
between two opposite requirements, namely: (i) as many physical properties and peculiarities of CR populations as
possible should be captured, and (ii) as little extra computational resources as possible should be used. The emphasis
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is given to the dynamical impact of CRs on hydrodynamics, and not on an accurate spectral representation of the
CRs. The guiding principles are energy and particle number conservations, and adiabatic invariants. Non-adiabatic
processes will be mapped onto modifications of these principles.

9.1.2. Approximations and assumptions

1. Only the dominant CR proton population is modeled, assuming that the presence ofα-particles and heavier
ions would not change the dynamical picture. In contrast to heavier ions,α-particles carry a significant
fraction of the total CR energy. Nevertheless, the assumption is a reasonable approximation, since the energy
density ofα-particles can be absorbed into the proton spectrum. As a coarse approximation, a GeV energy
α-particle can be regarded as an ensemble of four individual nucleons traveling together due to the relatively
weak MeV nuclear binding energies compared to the kinetic energy of relativistic protons. For hadronic
interactions the fact that the four nucleons are bound is of minor importance. Since Coulomb cooling is
proportional to the square of the nucleus’ charge, each of the four nucleons of theα-particle is experiencing a
loss of kinetic energy which is identical to the loss that a free CR proton with exactly the same specific energy
would feel.

2. The dynamically relevant physical quantities are the kinetic energy densityεCR and the average energyTCR =

εCR/nCR of the CR population. For an assumed power-law spectrum with steep spectral indexα at high CR
momenta, these two quantities are completely determined by specifying the power-law normalization constant
C and the CR low-momentum cutoff q. No high-momentum cutoff of the spectrum is considered, since for
a sufficiently steep spectrum (α > 2), the high-energy range is dynamically unimportant. The dynamics
is dominated by particles with momenta closest tomp c (the particles at the lower cutoff, or aroundmp c,
whichever is larger).

3. A momentum power-law CR spectrum with spectral indexα is assumed. This is not only consistent with the
observation of Galactic CRs (α ≈ 2.75) but also predicted by typical CR acceleration and diffusion models,
which usually give momentum power-law spectra (seeSchlickeiser2002, for a review).

4. The CR spectral indexα is assumed to be the same everywhere. This suppresses several typical CR effects
like spectral steepening due to transport effects, or spectral flattening due to fresh particle injection. However,
these effects are not believed to be essential for for the global dynamics of the ISM to first order, justifying
our simplification. However, some effects can still be roughly captured by our description.1

9.1.3. Captured Physics

The framework is set up to include a number of essential physical processes of a CR gas like particle acceleration,
diffusion, and particle interactions. This should allow to study the impact of a variety of physical processes on
galaxies, clusters of galaxies, and the large scale intergalactic medium, e.g.:

1. hydrodynamical effects of CRs

2. CR injection by diffusive shock acceleration

3. in-situ re-acceleration by plasma waves

4. non-local feedback from CR injection due to CR diffusion

5. CR modified shock structures

6. heating of cold gas by CRs

7. CR driven galactic winds

8. Parker instabilities of spiral galaxy disks

1Using momentum conservation, the formalisms to be presented in this chapter can be extended to account for a variable spectral index.
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9. morphology of gamma ray emission

10. morphology of radio emission due to secondary electrons

9.1.4. Structure

The basic formalism is introduced in Sect.9.2, in which the approximative description of the CR gas is intro-
duced and its adiabatic evolution described. Non-adiabatic processes are discussed in Sect.9.3: CR injection via
shocks of supernova remnants (Sect.9.3.1), and of structure formation shock waves (Sect.9.3.2); CR spatial dif-
fusion (Sect.9.3.3); in-situ re-acceleration of CRs (Sect.9.3.4); CR energy losses due to Coulomb interactions
(Sect.9.3.5), Bremsstrahlung (Sect.9.3.6), and hadronic interactions with the background gas (Sect.9.3.7), includ-
ing the associatedγ-radiation from theπ0-decays (Sect.9.3.8) and the radio emission of the electrons and positrons
resulting fromπ±-decays (Sect.9.3.9). Sect.9.4 describes how the formalism can be included into a simulation
code based on Smoothed-Particle-Hydrodynamics (SPH). Conclusions and outlook are given in Sect.9.5.

9.2. Formalism

In this section, we develop the description of a CR population in a volume element, which is comoving with the
background fluid. This Lagrangian perspective allows a strongly simplified description, since the advective transport
processes are fully characterized by the description of the effect of adiabatic volume changes. We will introduce
convenient adiabatic invariant variables, which therefore would be constant in time if non-adiabatic processes were
neglected. Certainly, non-adiabatic processes have to be included, and we develop the formulae how the adia-
batic invariant variables change accordingly. The chosen formalism is well suited to be implemented in numerical
simulations. In Sect.9.4, we explain how a SPH code has to be modified to include our CR description.

Since we only consider CR protons, which are at least in our Galaxy the dominant CR species, it is convenient to
introduce the dimensionless momentump = Pp/(mp c). The differential particle momentum spectrum per volume
element is assumed to be a single power-law above the minimum momentumq:

f (p) =
dN

dpdV
= C p−α θ(p− q). (9.1)

θ(x) denotes the Heaviside step function. Note, that we use an effective one-dimensional distribution functionf (p) ≡
4πp2 f (3)(p). The differential CR spectrum can vary spatially and temporally (although for brevity we suppress this
in our notation) through the spatial dependence of the normalizationC = C(x, t) and the cutoff q = q(x, t). α is
assumed to be constant in space and time.

Adiabatic compression or expansion leaves the phase-space density of the CR population invariant, leading to
a momentum shift according top → p′ = (ρ/ρ0)1/3 p for a change in density fromρ0 to ρ. Since this is fully
reversible, it is useful to introduce the invariant cutoff and normalizationq0 andC0 which describe the CR population
via Eqn. (9.1) if the ISM is adiabatically compressed or expanded relative to the reference densityρ0. The actual
parameter are then given by

q(ρ) = (ρ/ρ0)
1
3 q0 and C(ρ) = (ρ/ρ0)

α+2
3 C0. (9.2)

These variables are a suitable choice to be used in a Lagrangian description of the ISM.
The CR number density is

nCR =

∫ ∞

0
dp f(p) =

C q1−α

α − 1
=

C0 q1−α
0

α − 1
ρ

ρ0
, (9.3)

providedα > 1. The kinetic energy density of the CR population is

εCR =

∫ ∞

0
dp f(p) Tp(p) =

C mp c2

α − 1

[
1
2
B 1

1+q2

(
α − 2

2
,
3− α

2

)
+ q1−α

(√
1+ q2 − 1

)]
, (9.4)

whereTp(p) = (
√

1+ p2 − 1)mp c2 is the kinetic energy of a proton with momentump,Bx(a,b) denotes the incom-
plete Beta-function, andα > 2 is assumed. The average CR kinetic energyTCR = εCR/nCR is therefore

TCR =

[
qα−1

2
B 1

1+q2

(
α − 2

2
,
3− α

2

)
+

√
1+ q2 − 1

]
mp c2. (9.5)
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Figure 9.1.: Schematic view of the interplay of thermal and non-adiabatic CR processes that govern the hydrodynamics.
The processes on the left-hand side are cooling processes that simultaneously shed light on the respective component. In
the case of CRs, the relevant observables are radio synchrotron and inverse Compton radiation by secondary electrons and
pion decay inducedγ-ray emission.

The CR pressure is

PCR =
mpc2

3

∫ ∞

0
dp f(p) β p =

C mpc2

6
B 1

1+q2

(
α − 2

2
,
3− α

2

)
, (9.6)

whereβ := v/c = p/
√

1+ p2 is the dimensionless velocity of the CR particle. Note, that for 2< α < 3 the kinetic
energy density and pressure of the CR populations are well defined for the limitq → 0, although the total CR
number density diverges.

The adiabatic exponent of the CR population is defined by

γCR ≡
d logPCR

d logρ

∣∣∣∣∣∣
S

, (9.7)

while the derivative has to be taken at constant entropyS. Using Eqns. (9.2) and (9.6), we obtain for the CR
adiabatic exponent

γCR =
ρ

PCR

(
∂PCR

∂C
∂C
∂ρ
+
∂PCR

∂q
∂q
∂ρ

)
=
α + 2

3
−

2
3

q2−α β(q)

[
B 1

1+q2

(
α − 2

2
,
3− α

2

)]−1

. (9.8)

Note that in contrast to the usual adiabatic exponent, the CR adiabatic exponent is time dependent due to its depen-
dence on the lower cutoff of the CR population,q. Considering a mixture of thermal and CR gas, it is appropriate
to define an effective adiabatic index by

γeff ≡
d log(Pth + PCR)

d logρ

∣∣∣∣∣∣
S

=
γth Pth + γCR PCR

Pth + PCR
. (9.9)

9.3. Non-adiabatic processes

The spectrum of a CR population within a volume is shaped by various physical processes, such as particle injection
and escape, continuous and catastrophic energy losses, and re-acceleration. Although all these processes leave
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their characteristic signatures in the CR spectrum, we have to describe their effects in terms of our two dynamical
variablesC andq (or C0 andq0). In order to resemble the key features of the real CR dynamics using our simplified
description, we have to make the proper choice how to modify our variables by the different processes. The guiding
lines are the energy and particle number conservation.

Imagine a non-adiabatic process leading to a change dnCR in the number density and dεCR in the energy density
of the particles during an infinitesimal time interval dt. This would imply changes in (C,q) which are given by(

dC
dq

)
=

(
∂C/∂nCR ∂C/∂εCR

∂q/∂nCR ∂q/∂εCR

) (
dnCR

dεCR

)
. (9.10)

Using the definitions in Eqns. (9.3) and (9.4) this can be evaluated to

dC = C
dεCR − Tp(q) dnCR

εCR − Tp(q) nCR
(9.11)

dq =
q
α − 1

dεCR − TCR dnCR

εCR − Tp(q) nCR
. (9.12)

These relations are reasonable which can also be demonstrated by the following thought experiments: if a process
increasesεCR and nCR simultaneously by the same factor 1+ δ, so that dεCR/εCR = dnCR/nCR = δ, one gets
only a change in the normalization (dC = δC), but not in the cutoff (dq = 0), as it should be. If one adds an
infinitesimal amount of particles dnCR with exactly the kinetic energy of the cutoff Tp(q), so that dεCR = Tp(q) dnCR,
the normalization is unchanged (dC = 0), but the cutoff is lowered (dq = −qdnCR/((α − 1)nCR) ⇒ nCR ∝ q1−α),
again as it should be.

The adiabatically invariant variables change according to

dC0 =

(
ρ

ρ0

)− α+2
3

dC = C0
dεCR − Tp(q) dnCR

εCR − Tp(q) nCR
, (9.13)

dq0 =

(
ρ

ρ0

)− 1
3

dq =
q0

α − 1
dεCR − TCR dnCR

εCR − Tp(q) nCR
, (9.14)

where we used for convenience a notation which is mixed in the variant and invariant variables. Ways to numerically
implement the evolutions ofC0 andq0 are discussed in Appendix9.4.4.

9.3.1. CR injection by supernovae

Shock waves in supernova remnants are believed to be the most dominant CR injection mechanism in the galactic
context. A significant fractionζSN ∼ 0.1−0.3 of the kinetic energy of a supernova may end up in the CR population.
Therefore we set (dεCR/dt)SN = ζSN dεSN/dt and (dεth/dt)SN = (1− ζSN) dεSN/dt, where dεSN/dt is the SN energy
release rate per volume. The increase in CR number density is given by (dnCR/dt)SN = (dεCR/dt)SN/T

inj
CR, where

T inj
CR = mp c2

q
αinj−1
inj

2
B 1

1+q2

(
α − 2

2
,
3− α

2

)
+

√
1+ q2

inj − 1

 (9.15)

is the average kinetic energy of an injection power-law spectrum with spectral indexαinj and lower momentum
cutoff qinj . A plausible value for the injection spectral index isαinj = 2.4. The low-momentum cutoff can be

set toqinj ∼

√
kT/(mp c2) since the power-law spectrum resulting from shock acceleration reaches down to the

thermal population with temperaturekT. However, in numerical practice it may be more economical to use some
higher value forqinj since in many circumstances Coulomb losses will rapidly remove the lower energy part of
the CR spectrum so that the energy of these CRs is transfered to the thermal gas shortly after injection. A slight
re-calibration ofζSN can take this into account, so that a numerical code does not have to follow the appearance of
a temporarily existing, low energy, super-thermal CR population. A criteria to find an adequateqinj is given by the
requirement that the Coulomb-loss timescaleτC(qinj) = |Tp(qinj)/(dTp(qinj)/dt)C| (see Eqn. (9.48)) of the particles
near the injection cutoff should be on the order of the simulation time-step.
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9.3.2. CR shock acceleration

In this section, we focus on CR acceleration processes at gas accretion and galaxy merger shock waves in the
framework ofdiffusive shock accelerationand modify the description ofMiniati (2001). The shock surface separates
two regions: theupstream regimedefines the region in front of the shock which is causally unconnected for super
sonic shock waves whereas thedownstream regimedefines the wake of the shock wave. The shock front itself is
the region in which the mean plasma velocity changes rapidly on small scales given by plasma physical processes.
Seen from the rest frame of the shock, particles are impinging on the shock surface at a rate per unit shock surface
ρ2v2 = ρ1v1. Herev1 andv2 indicate the plasma velocities (relative to the shock’s rest frame) in the upstream and
downstream regime of the shock, respectively. The mass densities in the respective shock regime are denoted byρ1

andρ2.
We assume that after passing though the shock front most of the gas thermalizes to a Maxwell-Boltzmann distri-

bution with characteristic post-shock temperatureT2:

fth2(p) = 4π nth

(
mpc2

2π kT2

)3/2

p2 exp

(
−

mpc2 p2

2kT2

)
, (9.16)

where the number density of particles of the thermal distribution in the downstream regime,nth = n2, as well as
T2 can be inferred by means of the mass, momentum, and energy conservation laws at the shock surface for a gas
composed of CRs and thermal constituents. For cosmological applications, we have to consider the primordial
composition of the cosmological fluid, i.e. we replace the proton massmp by the mean particle mass ¯µ:

mp→ µ̄ =
4mp

3XH + 1+ Xion
, (9.17)

where the hydrogen mass-fraction of the baryonic matter is denoted byXH = 0.76 and the ionization grade is given
by Xion.

Chapter10 describes the formalism for instantaneously and self-consistently inferring the shock strength and all
other quantities in the downstream regime of the shock within the framework of SPH simulations. Supposing that
a fraction of these particles experiences stochastic diffusive shock acceleration by diffusing back and forth over the
shock front, the test particle theory of diffusive shock acceleration predicts a resulting CR power-law distribution
in momentum space. Within our model, this CR injection process can be treated instantaneously. For a particle
in the downstream region of the shock to return upstream it is necessary to meet two requirements: the particle’s
effective velocity component parallel to the shock normal has to be larger than the velocity of the shock wave
and its energy has to be large enough to escape the “trapping” process by Alfvén waves being generated in the
downstream turbulence (Malkov & Völk 1995, Malkov & Völk 1998). Thus, only particles of the high-energy tail
of the distribution are able to return to the upstream shock regime in order to become accelerated. The complicated
detailed physical processes of the specific underlying acceleration mechanism are conveniently compressed into
a few parameters (Jones & Kang1993, Berezhko et al.1994, Kang & Jones1995), one of which defines the
momentum threshold for the particles of the thermal distribution to be accelerated,

qinj = xinj pth = xinj

√
2kT2

mpc2
. (9.18)

Since Coulomb losses efficiently modify the low energy part of the injected CR spectrum, we propose to follow
the recipe presented at the end of Sect.9.3.1, i.e. increasing the low energy spectral break without changing the
normalization of the CR spectrum.

In the linear regime of CR acceleration, the thermal distribution joins in a smooth manner into the resulting CR
power-law distribution atqinj so thatxinj represents the only parameter in our diffusive shock acceleration model,

fCR,lin(p) = Xion fth(qinj)

(
p

qinj

)−αinj

θ(p− qinj). (9.19)

Fixing the normalization of the injected CR spectrum by such a continuity condition automatically determinesCinj

which depends on the second adiabatic invariant. The slope of the injected CR spectrum is given by

αinj =
r + 2
r − 1

, where r =
ρ2

ρ1
=
v1
v2

(9.20)
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denotes the shock compression ratio (Bell 1978a,b, Drury 1983a). In the linear regime, the number density of
injected CR particles is given by

∆nCR,lin =

∫ ∞

0
dp fCR,lin(p) = Xion fth(qinj)

qinj

αinj − 1
. (9.21)

This enables us to infer the particle injection efficiency which is a measure of the fraction of downstream thermal
gas particles which experience diffusive shock acceleration,

ηCR,lin ≡
∆nCR,lin

nth
= Xion

4
√

π

x3
inj

αinj − 1
e−x2

inj . (9.22)

The particle injection efficiency is independent of the downstream post-shock temperatureT2. These considerations
allows one to infer the dynamically relevant injected CR energy density in the linear regime:

∆εCR,lin = ηCR,linTCR(αinj ,qinj) nth(T2). (9.23)

In our description, the CR energy injection efficiency in the linear regime is defined to be the energy density ratio
of freshly injected CRs to the total dissipated energy density in the downstream regime,

ζlin =
∆εCR,lin

∆εdiss
, where ∆εdiss= εth2 − εth1r

γ. (9.24)

The dissipated energy density in the downstream regime,∆εdiss, is given by the difference of the thermal energy
densities in the pre- and post-shock regime while correcting for the contribution of the adiabatic part of the energy
increase due to the compression of the gas over the shock.

In order not to violate energy conservation as well as conditions of the linear theory of diffusive shock acceleration,
ζlin has to obey a boundary condition which ensures that the dynamical pressure exerted by CRs is smaller than the
ram pressure of the flowρ1v

2
1 yielding

PCR

ρ1v
2
1

=
(α − 1)c2 ηCR,lin

6v1v2
qα−1

inj B 1
1+q2

inj

(
α − 2

2
,
3− α

2

)
< 1, (9.25)

whereα = αinj . For practical purposes, which will be encountered for instance in cosmological SPH simulations,
this boundary condition can be strongly simplified. Thus, we propose the following modification of the CR energy
injection efficiency in order to account for the saturation effect at high values of the Mach number:

ζinj =

[
1− exp

(
−
ζlin
ζmax

)]
ζmax. (9.26)

Numerical studies of shock acceleration suggest a value ofζmax ' 0.5 for the limiting case of the CR energy injection
efficiency (Ryu et al.2003). These considerations allows one to infer the injected CR energy density in terms of the
energy injection efficiency of diffusive shock acceleration processes,

∆εCR,inj = ζinj∆εdiss. (9.27)

The average kinetic energy ofTCR(αinj ,qinj) of an injection power-law spectrum with CR spectral indexαinj is
given by Eqn. (9.15), however with the lower CR momentum cutoff of Eqn. (9.18). In combination with the slope
αinj , the value ofxinj regulates the amount of kinetic energy which is transferred to the CRs. Theoretical studies of
shock acceleration at galactic supernova remnants suggest a range ofxinj ' 3.3 to 3.6 implying an particle injection
efficiency ofηCR,lin ' 10−4 to 10−3 (Drury et al.1989, Jones & Kang1993, Berezhko et al.1994, Kang & Jones
1995, Malkov & Völk 1995).

Fig. 9.2 shows the CR energy injection efficiencyζinj as a function of spectral indexαinj . It can be clearly seen,
that our simplified model for the diffusive shock acceleration fails in the limit of weak shocks and over-predicts
the injection efficiency. Especially in this regime, Coulomb losses have to be taken into account which remove the
low-energetic part of the injected CR spectrum efficiently on a short timescale (cf. Sect.9.3.5). This gives rise to an
effective CR energy efficiencyζCoulomb which is obtained by keeping the normalization of the CR spectrum while
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Figure 9.2.: CR energy injection efficiency for the diffusive shock acceleration process. Shown is the CR energy injec-
tion efficiencyζinj (dotted) for the three post-shock temperatureskT2/keV = 0.01,0.3, and 10. An effective CR energy
efficiencyζCoulomb (solid) is obtained by considering Coulomb losses which remove the low-energetic part of the injected
CR spectrum on a short timescale. We adopted the following values for our model parameters,xinj = 3.5, ζmax = 0.5, and
qCoulomb= 0.03.

simultaneously increasing the cutoff: qinj → qCoulomb. Thus, in the linear regime the effectively injected CR energy
density is given by

∆εCR,lin,Coulomb= ∆nCR,linTCR(αinj ,qCoulomb)

(
qCoulomb

qinj

)1−αinj

. (9.28)

The effective CR energy efficiencyζCoulombin the linear regime is obtained by analogy to the previous considerations,

ζlin,Coulomb=
∆εCR,lin,Coulomb

∆εdiss
. (9.29)

Following our suggestion for saturation effects of the shock acceleration given in Eqn. (9.26), we can obtain the
effectively injected CR energy density in the non-linear regime∆εCR,inj,Coulomb. Assuming a dominant thermal gas
component, the spectral indexαinj can be translated into the Mach number of the shock,M1, depending on the
adiabatic index of the thermal gasγ,

M1 =

√
2 (2+ αinj)

1+ 2αinj − 3γ
. (9.30)

For a pure thermal gas, the spectral indexαinj = 2 formally corresponds to an infinite Mach number.

9.3.3. CR diffusion

The ubiquitous cosmic magnetic fields prevent charged relativistic particles to travel macroscopic distances with
their intrinsic velocity close to the speed of light. Instead, the particles gyrate around, and travel slowly along mag-
netic field lines. Occasionally, they get scattered on magnetic irregularities. On macroscopic scales, the transport
can often be described as a diffusion process if the gyro-radius can be regarded to be small. The diffusion is highly
anisotropic with respect to the direction of the local magnetic field, characterized by a parallelκ‖ and a perpendicular
κ⊥ diffusion coefficient. Both are usually functions of location and particle momentum.
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9.3.3 CR diffusion

Microscopically, the scattering of the CR on magnetic irregularities of MHD waves slows down the parallel trans-
port, but allows the perpendicular transport since it de-places the gyro-center of the CRs. Therefore, both micro-
scopic diffusion coefficients depend on the scattering frequencyνscatt, but with inverse proportionalities:κ‖ ∝ ν−1

scatt
andκ⊥ ∝ νscatt. Particles are best scattered by MHD waves with a wavelength comparable to the CR’s gyro-radii,
which itself depends on the particle momentum. The various wavelength bands are differently strongly populated.
Therefore, the scattering frequency is usually a function of the particle momentum. The exact functionality depends
on the small-scale plasma turbulence spectrum, on scales comparable to the CR gyro-radii.

In this picture (e.g. seeBieber & Matthaeus1997), the diffusion coefficients can be written as

κ‖ =
κBohm

ε
(9.31)

κ⊥ =
ε

1+ ε2
κBohm . (9.32)

Here, ε � 1 is the ratio of scattering frequencyνscatt to the gyro-frequencyΩ = v/rg, andκBohm = v rg/3 =
v p mp c2/(3Z e B) is the Bohm diffusion coefficient. In most circumstances,κ⊥ will be many orders of magnitude
smaller thanκ‖. Thus, from a microscopic point of view CR cross field diffusion seems to be nearly impossible.

Macroscopically, the cross-field particle transport is much faster than the microscopic diffusion coefficient sug-
gests. The reason for this is that any small displacement from the initial field line, which a CR achieved by a
perpendicular microscopic diffusion step, can strongly (often exponentially) be amplified if the CR travels along
its new field line (Rechester & Rosenbluth1978, Duffy et al. 1995). This is caused by diverging magnetic field
lines due to a random walk in turbulent environment. This effect should always be present to some level even if a
large-scale mean field dominates the general magnetic field orientation. The resulting effective diffusion coefficient
κ̄⊥ is difficult to estimate from first principles (see the discussion inEnßlin2003), but its dependence on the particle
momentum is the same as that of the parallel diffusion coefficient, due to the dominant role the parallel diffusion
plays in the effective cross field transport. We therefore assume

κ̄⊥(p) = δ⊥ κ‖(p) (9.33)

with typically δ⊥ ∼ 10−4 − 10−2 (Giacalone & Jokipii1999, Enßlin 2003), but seeNarayan & Medvedev(2001)
for arguments of a largerδ⊥ ∼ 10−1. In order to be flexible about the underlying MHD turbulence which fixes the
momentum dependency ofκ‖ we assume

κ̄‖(p) = κ‖(p) = κ0 β pdp γdγ = κ0 pdp+1 γdγ−1 . (9.34)

The velocity factorβ expresses the reduction of diffusion speed for non-relativistic particles. For a power-law
turbulence spectrumE(k) dk ∝ k−αturb dk one obtainsdp = 2− αturb anddγ = 0, e.g.dp =

1
3 for a Kolmogorov-type

spectrum. We have included the parameterdγ in order to allow for low-energy deviations from a pure momentum
power-law dependence. Such deviations can e.g. be caused by modifications of the turbulence spectrum due to
MHD-wave-damping by the low-energy bulk of the CR population with small gyro-radii.

The equation describing the evolution of the CR spectrumf (x, p, t) due to diffusion is(
∂ f
∂t

)
diff

=
∂

∂xi
κi j
∂ f
∂x j
, (9.35)

where the diffusion tensor

κi j (p) = κ‖(p) [bi b j + δ⊥ (δi j − bi b j)] = κ̃i j pdp+1 γdγ−1 . (9.36)

is anisotropic with respect to the local main magnetic field directionb(x) = B(x)/B(x). Since we are interested in a
simplified description, we have to translate Eqn. (9.35) into changes of CR number and energy density. Integrating
Eqn. (9.35) over p leads to an equation governing the change in CR number density due to diffusion:(

∂nCR

∂t

)
diff

=
∂

∂xi
κ̃i j
∂

∂x j

{
C

α − 2− dp

[
q−α+2+dp

(
1+ q2

)− 1−dγ
2

−
1− dγ

2
B 1

1+q2

(
α − 1− dp − dγ

2
,
4+ dp − α

2

)]}
. (9.37)
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This can only lead to reasonable results if the conditionα > 1+ dp + dγ is fulfilled. For a Kolmogorov-turbulence
diffusion coefficient (dp =

1
3 , dγ = 0), this translates intoα > 1.33.

One could assume that the transported energy is simply (dεCR)diff = TCR (dnCR)diff . However, this ansatz would
ignore that the more energetic particles diffuse faster implying that the effective CR energy diffusion is more rapid
than the CR number diffusion. In order to model this, we multiply Eqn. (9.35) by Tp(p) and integrate overp. This
leads to (

∂εCR

∂t

)
diff

=
∂

∂xi
κ̃i j
∂

∂x j

{
C mp c2

α − 2− dp

[
q−α+2+dp

((
1+ q2

) dγ
2
−

(
1+ q2

) dγ−1
2

)
+

1− dγ
2
B 1

1+q2

(
α − 1− dp − dγ

2
,
4+ dp − α

2

)
+

dγ
2
B 1

1+q2

(
α − 2− dp − dγ

2
,
4+ dp − α

2

)]}
. (9.38)

This equation can only lead to reasonable results if the conditionα > 2 + dp + dγ is fulfilled. For a Kolmogorov-
turbulence diffusion coefficient (dp =

1
3 , dγ = 0), this translates intoα > 2.33.

9.3.4. CR in-situ re-acceleration

The diffusive propagation of CRs implies that CR particles scatter resonantly on plasma waves with wavelength
comparable to their gyro-radii. Since these waves are propagating, the CRs exchange not only momentum, but also
energy with the waves, leading to a re-acceleration of an existing cosmic ray population. Since the CR-number is
not changed by this process, we can state: (

∂nCR

∂t

)
re−acc

= 0 (9.39)

The change in the CR energy can be derived from the according Fokker-Planck equation for the 3-dimensional
momentum distribution functionf (3)(p) = f (p)/(4π p2) of an isotropic CR distribution:(

∂ f (3)(p)
∂t

)
re−acc

=
1
p2

∂

∂p

(
p2 Dp

∂ f (3)

∂p

)
, (9.40)

whereDp is the (pitch-angle averaged) momentum-space diffusion coefficient. Dp is a function ofp, which we
parameterize by

Dp = D0 p1−ap γ1−aγ . (9.41)

Taking the appropriate moments of Eqn. (9.40) leads to evolution equation for the CR number density, Eqn. (9.39),
and for the CR energy density,(
∂εCR

∂t

)
re−acc

= C D0 mpc2(2+ α)

[
1
2
B 1

1+q2

(
α + ap + aγ − 2

2
,
2− α − ap

2

)
+

(√
1+ q2 − 1

)
qα−ap

(
1+ q2

)(1−aγ)/2
]
,

(9.42)
which is valid forα > 2− ap − aγ.

The parameterization of the momentum diffusion coefficient is chosen to be similar to the one of the spatial
diffusion coefficient because of a their related physical background: both are due to scattering on the same plasma
waves. Quasi-linear calculations of the Fokker-Planck transport coefficient of charged particles interacting with
plasma waves (seeSchlickeiser2002) demonstrate that both, the spatial- and the momentum-diffusion coefficient
depend mainly on the pitch-angle diffusion coefficientDµµ = Dµµ(p, µ), whereµ = cosθ is the cosine of the pitch-
angleθ:

Dp =
p2 V2

A

v2

∫ 1

−1
dµDµµ(p, µ) (9.43)

κ‖ =
v2

8

∫ 1

−1
dµ

(1− µ2)2

Dµµ(p, µ)
(9.44)
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9.3.5 Coulomb losses

Here,VA is the phase-velocity of the scattering plasma waves which are usually assumed to be Alfvén waves2 with
VA = B/

√
4π ρ. In the relevant inertia ranges of the MHD-turbulence spectra, it is expected that the amplitude but

not the composition of waves change with wavelength and therefore the pitch-angle diffusion coefficient should be
separable inp andµ, e.g.Dµµ(p, µ) = D1(p) D2(µ). This allows to relate the two diffusion coefficients via:

Dp κ‖ = p2 V2
AX2 , (9.45)

whereX2 is a constant of order unity, and is formally given by

X2 =
1
8

(∫ 1

−1
dµD2(µ)

) (∫ 1

−1
dµ

(1− µ2)2

D2(µ)

)
. (9.46)

Therefore, in the framework of quasi-linear approximation, the parameters describing in-situ re-acceleration and
diffusion are related via

ap = dp , aγ = dγ , and D0 = V2
AX2/κ0 , (9.47)

e.g. for a Kolmogorov-like spectrum of Alfvén wavesap = dp =
1
3 , aγ = dγ = 0, andX2 ∼ O(1).

9.3.5. Coulomb losses

The energy loss of a proton by Coulomb losses in a plasma is given byGould(1972):

−

(
dTp(p)

dt

)
C

=
4π e4 ne

meβ c

[
ln

(
2mec2βp
~ωpl

)
−
β2

2

]
(9.48)

Here,ωpl =
√

4πe2ne/me is the plasma frequency, andne is the number density of free electrons. We note, that in
a neutral gas the Coulomb losses can approximatively be estimated with the same formulae, ifne is taken to be the
total electron number (free plus bound), although atomic charge shielding effects should lower the Coulomb losses
somehow.

In order to obtain the Coulomb energy losses of the CR population, one has to integrate Eqn. (9.48) over the spec-
trum f (p). This integration can certainly be performed numerically. For fast and efficient applications, an approxi-
mative analytical expression might be more practical. We derive such an expression by replacing the termβ p in the
Coulomb logarithm with its mean value for the given spectrum, which can be written as〈β p〉 = 3PCR/(mp c2 nCR).3

The Coulomb energy losses are then

−

(
dεCR

dt

)
C

≈
2πCe4ne

me c

[
ln

(
2mec2 〈β p〉
~ωpl

)
B 1

1+q2

(
α − 1

2
,−
α

2

)
−

1
2
B 1

1+q2

(
α − 1

2
,−
α − 2

2

)]
(9.49)

Since Coulomb losses only affect the lower energy part of the spectrum and therefore should leave the normalization
unaffected we propose to set (dnCR/dt)C = (dεCR/dt)C/Tp(q). This mimics the effect of Coulomb losses on a
spectrum quiet well, since Coulomb losses remove the lowest energy particles most efficiently from the spectrum
and moves them into the thermal pool. Since also their energy is thermalized, (dεth/dt)C = −(dεCR/dt)C and
(dnp/dt)C = −(dnCR/dt)C. The second equation (proton number conservation) can be neglected for convenience due
to the smallness of the effect.

9.3.6. Bremsstrahlung losses

Bremsstrahlung energy losses of protons are usually negligible, since they are suppressed by a factorm2
e/m

2
p ≈ 3 ·

10−7 compared to the usually also small electron bremsstrahlung losses. Therefore, we do not included bremsstrahlung
energy losses of protons in our description.

2Also the stronger damped fast magneto-sonic waves are discussed as efficient accelerators due to their higher phase velocity (e.g.Eilek 1979,
Cassano & Brunetti2005).

3This leads to a slight overestimate of the energy losses. A slight underestimate results by setting〈β p〉 → q2/
√

1+ q2 in Eqn. 9.49. As long
these two terms lead to similar loss rates our approximately treatment is a good description. Otherwise the integration has to be performed
numerically.
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9.3.7. Catastrophic losses

Another important process is the inelastic reaction of CR nuclei with atoms and molecules of interstellar and in-
tergalactic matter. The CR protons interact hadronically with the ambient thermal gas and produce mainly neutral
and charged pions, provided their momentum exceeds the kinematic thresholdqthrmpc2 = 0.78 GeV for the reaction.
The neutral pions decay after a mean lifetime of 9×10−17 s intoγ-rays while the charged pions decay into secondary
electrons (and neutrinos):

π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ
π0 → 2γ .

Using hadronic interactions, only the CR population above the kinematic thresholdqthr is visible through its decay
products inγ-ray and synchrotron emission. Because of baryon number conservation in strong and electro-weak
interactions, we always end up with pions and two protons in this CR-proton hadronic interaction (the possibly
produced neutron will decay after a mean lifetime of 886 s into a second proton). Thus, the CR number density is
conserved, implying dnCR/dt = 0.

To obtain a description of CR catastrophic energy losses, we start from the pion source function which describes
the pion production rate of a single relativistic proton of total energyEp = γmpc2,

sπ(Eπ,Ep) ≡
dN

dEπdEpdVdt
= cnNξσ̄ppδ(Eπ − 〈Eπ〉) θ[pp(Ep) − pthr], (9.50)

whereσ̄pp ' 32 mbarn is the total pion cross section on average andnN = ne/(1− 1
2XHe) denotes the target nucleon

density in the ICM while assuming primordial element composition withXHe = 0.24, which holds approximately.
Note, that this differential pion source function is an approximation with respect to the pion energy. Because we
only use the integrated source function, this treatment is well justified. In Dermer’s model (Dermer1986a,b), which
is motivated by accelerator experiments, the pion multiplicity is independent of energy,ξ ' constant, yielding the
mean pion energy,

〈Eπ〉 (Ep) = Kp
Tp(p)

ξ
= Kp

Ep −mpc2

ξ
, (9.51)

whereKp ' 1/2 denotes the inelasticity of the reaction in the limiting regime (Mannheim & Schlickeiser1994).4

Integrating the pion energy weighted source function over all pion energiesEπ yields the energy loss of a single CR
proton owing to pion production,

−

(
dEp

dt

)
π

=

∫ Eπmax

0
dEπEπ s(Eπ,Ep) = cnNξ σ̄ppKp (Ep −mpc2) θ(pp − qthr). (9.52)

Thus, the total energy loss of CRs is independent on the detailed mechanisms how the energy has been imparted on
pions during hadronic interactions. The change in energy density of CRs because of catastrophic losses is given by

−

(
dεCR

dt

)
cata

=

∫ ∞

0
dp f(p)

(
dEp

dt

)
π

= cnN σ̄ppKp εCR[max(q,qthr)], (9.53)

whereεCR is given by Eqn. (9.4) in which the lower spectral breakq has to be replace by max(q,qthr).

9.3.8. Gamma ray emission

An analytic formula describing the omnidirectional (i.e. integrated over 4π solid angle) differentialγ-ray source
function resulting from pion-decay of a power-law CR population is given inPfrommer & Enßlin(2004a):

sγ(Eγ) dEγ dV '
24C
3α

σpp nN

mpc

(
mp

2mπ0

)α ( 2Eγ
mπ0 c2

)δ
+

(
2Eγ

mπ0 c2

)−δ−α/δdEγ dV. (9.54)

4On average, a leading nucleon and a pion jet leave the interaction site in direction of the incident protons diametrically and carrying the
high longitudinal momenta owing to Lorentz contraction of the interacting nuclei in the center of mass system and Heisenberg’s uncertainty
relation (Nachtmann1990).
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9.3.9 Hadronically induced synchrotron emission

The formalism also includes the detailed physical processes at the threshold of pion production like the velocity
distribution of CRs, momentum dependent inelastic CR-proton cross section, and kaon decay channels. The shape
parameterδ and the effective cross sectionσpp depend on the spectral index of theγ-ray spectrumα according to

δ ' 0.14α−1.6 + 0.44 and (9.55)

σpp ' 32 ·
(
0.96+ e4.4−2.4α

)
mbarn. (9.56)

There is a detailed discussion inPfrommer & Enßlin(2004a) how theγ-ray spectral indexαγ relates to the spectral
index of the parent CR populationα. In Dermer’s model, the pion multiplicity is independent of energy yielding the
relationαγ = α (Dermer1986a,b).

The derivation of the pion-decay inducedγ-ray source function implicitly assumed the kinematic thresholdqthr

to be above the lower break of the CR spectrumq. This assumption is satisfied in the case of our Galaxy where a
flattening of the CR spectrum occurs below the kinematic energy thresholdEthr = 1.22 GeV (Simpson1983). If the
inequalityq < qthr is violated in the simulation for sufficiently long timescales, the resultingγ-ray emission maps
have to be treated with caution: increasing the lower breakq of the CR spectrum implies a lower resulting pion
bump in the differentialγ-ray source function aroundmπ0c2/2 ' 67.5 MeV.

Provided the CR population has a power-law spectrum, the integratedγ-ray source densityλγ for pion decay
inducedγ-rays can be obtained by integrating theγ-ray source functionsγ(Eγ) in Eqn. (9.54) over an energy interval
yielding

λγ = λγ(E1,E2) =
∫ E2

E1

dEγ sγ(Eγ) =
4C
3αδ

mπ0cσppnN

mp

(
mp

2mπ0

)α [
Bx

(
α + 1
2δ
,
α − 1
2δ

)]x2

x1

, (9.57)

xi =

1+ (
mπ0c2

2Ei

)2δ−1

for i ∈ {1,2}. (9.58)

Theγ-ray number fluxFγ is derived by means of volume integration over the emission region and correct accounting
for the growth of the area of the emission sphere on which the photons are distributed:

Fγ(E1,E2) =
1+ z
4π D2

∫
dV λγ[(1 + z)E1, (1+ z)E2]. (9.59)

HereD denotes the luminosity distance and the additional factors of 1+ z account for the cosmological redshift of
the photons.

9.3.9. Hadronically induced synchrotron emission

This sections describes the hadronically induced radio synchrotron emission while employing the steady-state ap-
proximation for the cosmic ray electron (CRe) spectrum. This is only justified if the dynamical and diffusive
timescales are long compared to the synchrotron timescale. Moreover, this section neglects possible re-acceleration
processes of CRes like continuous in-situ acceleration via resonant pitch angle scattering by turbulent Alfvén waves
as originally proposed byJaffe (1977) as well as CRe injection by other processes.

Following for instanceDolag & Enßlin(2000) andPfrommer & Enßlin(2004a), the steady-state CRe spectrum
is governed by injection of secondaries and cooling processes so that it can be described by the continuity equation

∂

∂Ee

(
Ėe(Ee) fe(Ee)

)
= se(Ee) . (9.60)

For Ėe(p) < 0 this equation is solved by

fe(Ee) =
1

|Ėe(Ee)|

∫ ∞

Ee

dE′ese(E
′
e) . (9.61)

For the energy range of interest, the cooling of the radio emitting CRes is dominated by synchrotron and inverse
Compton losses:

−Ėe(Ee) =
4σT c

3m2
e c4

[
εB + εph

]
E2

e , (9.62)
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whereσT is the Thomson cross section,εB = B2/(8π) is the local magnetic field energy density, andεph =

εCMB + εstars is the energy density of the cosmic microwave background (CMB) and starlight photon field.εCMB =

B2
CMB/(8π) can be expressed by an equivalent field strengthBCMB = 3.24 (1+ z)2µG. εstars has to be guessed,

calculated from information of the star distribution, or ignored.
Assuming that the parent CRp population is represented by a power-law (9.1), the CRe population above a GeV

is therefore described by a power-law spectrum

fe(Ee) =
Ce

GeV

( Ee

GeV

)−αe

, (9.63)

and Ce =
162−αe

αe − 2

σpp m2
e c4

σT GeV
nNC
εB + εph

(
mpc2

GeV

)α−1

, (9.64)

where the effective CR-proton cross sectionσpp is given by Eqn. (9.56).
The synchrotron emissivityjν at frequencyν and per steradian of such a CRe population (9.63), which is located

in an isotropic distribution of magnetic fields (Eqn. (6.36) inRybicki & Lightman1979), is obtained after averaging
over an isotropic distribution of electron pitch angles yielding

jν = AEsyn(αe) Ce

[
εB

εBc

](αν+1)/2

∝ εCReBαν+1ν−αν , (9.65)

Bc =
√

8π εBc =
2π m3

e c5 ν

3eGeV2
' 31

(
ν

GHz

)
µG, (9.66)

AEsyn =

√
3π

32π
Bc e3

mec2

αe +
7
3

αe + 1

Γ
(

3αe−1
12

)
Γ
(

3αe+7
12

)
Γ
(
αe+5

4

)
Γ
(
αe+7

4

) , (9.67)

whereΓ(a) denotes theΓ-function (Abramowitz & Stegun1965), αν = (αe−1)/2 = α/2, andBc denotes a (frequency
dependent) characteristic magnetic field strength which implies a characteristic magnetic energy densityεBc. Line-
of-sight integration of the radio emissivityjν yields the surface brightness of the radio emissionSν.

9.4. Smoothed particle hydrodynamics

In this section, we describe how the dynamical effects of a CR population can be included into smoothed particle
hydrodynamics (SPH).

9.4.1. Lagrangian fluid dynamics

The Lagrange density of a magneto-hydrodynamical gas-CR medium is

L(r, ṙ) =
1
2
ρ ṙ2 − εth(ρ,A) − εCR(ρ,C0,q0) − εB , (9.68)

whereεth = ρA0 (ρ/ρ0)γ−1/(γ − 1) is the thermal energy density of a gas with adiabatic indexγ and an entropy
described by the adiabatic invariantA. Any adiabatic invariantX ∈ {A0,C0,q0} is simply advected with an adiabatic
flow:

dX
dt
=

(
dX
dt

)
non−adiabatic

, (9.69)

where the right-hand side allows for non-adiabatic changes discussed in Sect.9.3. The density evolves according to

d lnρ/dt = −∇ · ṙ , (9.70)

and the magnetic field according to the MHD-induction law:

∂B
∂t
= ∇ × (ṙ × B − η∇ × B) (9.71)
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9.4.2. SPH formulation

In smoothed particle hydrodynamics (SPH), the fluid is represented by an ensemble of particles, which carry the
mass, energy, and various properties of the fluid elements. Macroscopic properties of the medium such as the density
at positionr i of the i-th particle are calculated according to

ρi =
∑

j

mj W(|r i − r j |,hi) , (9.72)

wheremj is the mass of thej-th fluid element andW(r,h) is the SPH smoothing kernel. The SPH particle positions
r i are the dynamical variables of the simulation. However, in the approach ofSpringel & Hernquist(2002), which
we extend in this work to an additional CR population and to allow for a general equation of state of the gas, also
the smoothing-kernel lengthshi are dynamical variables of a Lagrangian function.

We introduce the CR spectrum of thei-th SPH particle

mi f̂i(p) = mi
dNCR

dpdm
=

mi

ρ(r i)
dNCR

dpdV
=

mi

ρ(r i)
fi(p) (9.73)

with the help of the CR number per momentum and unit gas massf̂i(p). Our power-law template spectra are then
described by

f̂i(p) = Ĉi p−α θ(p− qi), (9.74)

whereĈi = C(r i)/ρ(r i) denotes the CR normalization constant of thei-th SPH particle. Similarly, we introduce the
CR energy, CR density, and thermal energy per unit gas mass with ˆεCR = εCR/ρ, n̂CR = nCR/ρ, andε̂th = εth/ρ,
respectively. The equations, defining these quantities and their changes due to adiabatic and non-adiabatic processes
in terms ofĈ andq, can be obtained from the corresponding formulae in the article by replacingC with Ĉ. For
instance, Eqn. (9.4) yields

ε̂CR,i =

∫ ∞

0
dp f̂i(p) Tp(p) =

Ĉi mp c2
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1
2
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)
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i
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1+ q2
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, (9.75)

and so on.
An elegant way of deriving the equations of motions for a SPH simulation uses the Lagrange formalism. The

SPH discretized Lagrangian is

L(q, q̇) =
∑

i

mi

2
ṙ2

i −
∑

i

mi ε̂i +
∑

i

λi φi , (9.76)

whereε̂i = ε̂th + ε̂CR is the total energy per mass of thei-th SPH particle, andq = ({r i}, {hi}, {λi}), which is not to
be confused with the CR spectral cutoff q, denotes all degrees of freedom of the system, namely the components
of the SPH particle positionsr i and the smoothing lengthshi and their velocities. Theλis are Lagrange multipliers
introduced bySpringel & Hernquist(2002) in order to incorporate the choice of the smoothing lengthhi into the
Lagrangian via the function

φi(q) =
4π

3
h3

i ρi − MSPH, (9.77)

whereMSPH is the required mass within the smoothing kernel.
Here, we have ignored the description of magnetic fields within the SPH-Lagrangian. We will treat magnetic field

evolution separately from this Lagrangian formalism, and add their forces ad-hoc to the momentum equations of
the SPH particles. This is along the lines ofDolag et al.(1999), and seems to work well in typical cosmological
settings. However, we note that the dynamical influence of magnetic fields could also be included into the SPH
Lagrange-function asPrice & Monaghan(2004a,b) demonstrate.

If one derives the SPH-equation of motion from a Lagrangian, one obtains a dynamical system which obeys
energy and entropy conservation. Non-adiabatic processes, like shock waves, radiative energy losses and energy
exchange of the thermal and relativistic fluids, thermal conduction, and CR diffusion have to be added into these
equations. The way such process should be implemented in case of CR populations should become clear from this
work.
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9.4.3. Equations of motion

The equations of motions (of the adiabatic, non-magnetic part) of the SPH description follow from the Hamilton
principle, namely

d
dt
∂L

∂q
−
∂L

∂q̇
= 0 . (9.78)

The equation determining the smoothing length of thei-th particle follows from the variation of the action with
respect to the Lagrange-multiplierλi . The corresponding part of the Euler-Lagrange equations yields

φi = 0 , (9.79)

which for the special form chosen in Eqn. (9.77) leads to an implicit formula forhi that has to be solved numerically
in practice.

Variation with respect tohi leads to an equation forλi :

λi =
∂ε̂i
∂hi

[
∂φi

∂hi

]−1

=
∂ε̂i
∂ρi

∂ρi

∂hi

[
∂φi

∂hi

]−1

. (9.80)

Using now Eqn. (9.77), one gets

λi =
3mi

4π h3
i

∂ε̂i
∂ρi
gi , with gi ≡

[
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hi

3ρi

∂ρi
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. (9.81)

Furthermore, the thermodynamical pressure is defined as

P = −

(
∂E
∂V

)
S

, (9.82)

whereS = Si denotes the entropy of a SPH particle volume element of sizeV = Vi = ρi/mi and internal energy
E = mi ε̂i . This pressure definition can be used to express the derivative of the SPH particle energy with respect to
the local density in terms of the total (thermal plus CR) thermodynamical pressure:

∂ε̂i
∂ρi
=

Pi

ρ2
i

=
Pth,i + PCR,i

ρ2
i

(9.83)

One might argue that this derivation should only be correct for thermodynamic systems, and therefore not necessar-
ily for CR populations which do not exhibit a Boltzmann distribution function. However, the concept of entropy, and
the concept of adiabatic processes, which do not change phase space density and therefore leave entropy constant,
is well defined for an arbitrary distribution function. Therefore, Eqn. (9.83) is a generally valid result, which can
also be confirmed by an explicit calculation.5

Thus, the Lagrange-formalism for a variable SPH smoothing length introduced bySpringel & Hernquist(2002)
for a polytropic equation of state can easily be generalized to a general equation of state by replacing the thermal
gas pressure by the total pressure of all fluid components. A calculation along the lines ofSpringel & Hernquist
(2002) shows that the SPH-particle equations of motion read

dυi

dt
= −

∑
j

mj

gi
Pi

ρ2
i

∇i Wi j (hi) + g j
P j

ρ2
j

∇i Wi j (h j)

 , (9.84)

with υi = ṙ i , Pi = Pth,i + PCR,i the thermal plus CR pressure, andWi j (hi) =W(|r i − r j |,hi).

5The internal energy per SPH particle of an ideal (thermal and/or relativistic) gas can be written asmi ε̂i = mi
∑

a

∫
dp f̂a,i (p) Ta(p), wherea

is the index over the particle species (electrons, protons, etc.) with momentum-space distribution functionsf̂a,i (p), andTa(p) the relativistic
correct kinetic energy of the particles (Eqn. (9.5)). A straightforward calculation of∂ε̂i/∂ρi , which uses the first equality in Eqn. (9.6), leads
then to Eqn. (9.83).
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9.4.4. Numerically updating the CR spectrum

Update the adiabatic invariant variablesĈ0 andq0 is most conveniently done via Eqn. (9.13) and (9.14). However,
if the relative changes during a numerical time-step are large, e.g. due to rapid CR production at a location without
a substantial initial CR population, these equations would have to be integrated on a refined time-grid, or solved
with an implicit integration scheme. Both methods would be very time-consuming. Therefore, we propose another
updating scheme: from the initial variableŝC0(t0) and q0(t0) at time t0, the corresponding momentary particle
numbern̂CR and energy density ˆεCR, and average particle energyTCR are calculated according to Eqns. (9.2) to
(9.5). Thenn̂CR, ε̂CR, andTCR are updated according to the non-adiabatic CR energy and number losses or gains
during that time-step. And finally, these updated values have to be translated back into updated values ofĈ0(t1) and
q0(t1). This is easiest by first inverting Eqn. (9.5) in order to calculateq, and then to use Eqns. (9.2) and (9.3) to get
the updatedĈ0(t1) andq0(t1). The inversion of Eqn. (9.5) has to be done numerically forTCR ∼ mp c2, e.g. using
pre-calculated numerical tables. However, for the asymptotic regimes we propose the following accurate inversion
formulae based on a Taylor expansion:

q(τ) =


qa +

q4−α
a
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α − 2
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, (9.85)

with qa =
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) 1
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2

)
(9.86)

9.5. Conclusion and outlook

We have shown how various adiabatic and non-adiabatic processes can be described for a simplified CR spectrum,
consisting of a power-law with fixed spectral index, but varying normalization and low-energy cutoff. The CR
spectral index has to be chosen in advance to resemble a typical spectral index for the system under consideration.
We also explained how the CR gas can be self-consistently included into a SPH simulation code, e.g. by keeping
energy and particle number conserved up to numerical accuracy, by keeping CR entropy exactly conserved in
adiabatic processes, and by taking into account the dynamical forces from CR pressure gradients.

This work is aiming to set an initial framework for follow up work on the impact of CR populations on galaxy and
large-scale structure formation. It is accompanied by two papers describing the implementation and testing of (i) the
CR formalism as described here into the GADGET simulation code (Jubelgas et al.2005), and (ii) an SPH shock
capturing method allowing to follow CR injection at structure formation shock waves (see Chapter10or Pfrommer
et al.(2005)). Further applications are in preparation.

The results of this chapter were worked out in a collaboration that was led by T.A. Enßlin, and completed by my-
self, V. Springel, and M. Jubelgas. A paper entitled“A description of cosmic ray gas for cosmological applications”
will be submitted to the journalMonthly Notices of the Royal Astronomical Society.
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10. Structure formation shocks in cosmological
SPH simulations

Abstract

We develop a formalism for the identification and accurate estimation of the strength of structure formation shocksduring
cosmological smoothed particle hydrodynamics (SPH) simulations. Shocks not only play a decisive role for the thermalization
of gas in virializing structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration.
Our formalism is applicable both to ordinary non-relativistic thermal gas, and to plasmas composed of CRs and thermal gas. To
this end, we derive an analytical solution to the one-dimensional Riemann shock tube problem for a composite plasma of CRs
and thermal gas. We apply our methods to study the properties of structure formation shocks in high-resolution hydrodynamic
simulations of theΛCDM model. We find that most of the energy is dissipated in weak internal shocks with Mach numbers
M ∼ 2 which are predominantly central flow shocks or merger shock waves traversing halo centers. Collapsed cosmological
structures are surrounded by external shocks with much higher Mach numbers up toM ∼ 1000, but they play only a minor role
in the energy balance of thermalization. This is because of the higher pre-shock gas densities within non-linear structures, and
the significant increase of the mean shock speed as the characteristic halo mass grows with cosmic time. We show that after
the epoch of cosmic reionization the Mach number distribution is significantly modified by an efficient suppression of strong
external shock waves due to the associated increase of the sound speed of the diffuse gas. Invoking a model for CR acceleration
in shock waves, we find that the average strength of shock waves responsible for CR energy injection is higher than for shocks
that dominate the thermalization of the gas. This implies that the dynamical importance of shock-injected CRs is comparatively
large in the low-density halo infall regions, but is less important for the weaker flow shocks occurring in central high-density
regions of halos. When combined with radiative dissipation and star formation, our formalism can also be used to study CR
injection by supernova shocks, or to construct models for shock-induced star formation in the interstellar medium.

10.1. Introduction

10.1.1. Structure formation shock waves

Cosmological shock waves form abundantly in the course of structure formation, both due to infalling pristine
cosmic plasma which accretes onto filaments, sheets and halos, as well as due to supersonic flows associated with
merging substructures (Quilis et al.1998, Miniati et al. 2000, Ryu et al.2003, Gabici & Blasi 2003, Pavlidou &
Fields2005). Additionally, shock waves occur due to non-gravitational physics in the interstellar and intracluster
media, e.g. as a result of supernova explosions. Structure formation shock waves propagate through the cosmic
tenuous plasma, which is compressed at the transition layer of the shock while a part of the kinetic energy of the
incoming plasma is dissipated into internal energy of the post-shock gas. Because of the large collisional mean
free path, the energy transfer proceeds through collective electromagnetic viscosity which is provided by ubiquitous
magnetic irregularities (Wentzel1974, Kennel et al.1985).

Cosmologically, shocks are important in several respects: (1) shock waves dissipate gravitational energy asso-
ciated with hierarchical clustering into thermal energy of the gas contained in dark matter halos, thus supplying
the intra-halo medium with entropy and thermal pressure support. Radiative cooling is then required to compress
the gas further to densities that will allow star formation. (2) Shocks also occur around moderately overdense
filaments, which leads to a heating of the intragalactic medium. Sheets and filaments are predicted to host a warm-
hot intergalactic medium with temperatures in the range 105 K < T < 107 K whose evolution is primarily driven
by shock heating from gravitational perturbations breaking on mildly nonlinear, non-equilibrium structures (Hell-
sten et al.1998, Cen & Ostriker1999, Davé et al.2001, Furlanetto & Loeb2004, Kang et al.2005). Thus, the
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shock-dissipated energy traces the large scale structure and contains information about its dynamical history. (3)
Besides thermalization, collisionless shocks are also able to accelerate ions of the high-energy tail of the Maxwellian
through diffusive shock acceleration (DSA) (for reviews seeDrury 1983b, Blandford & Eichler1987, Malkov &
Drury 2001). These energetic ions are reflected at magnetic irregularities through magnetic resonances between the
gyro-motion and waves in the magnetized plasma and are able to gain energy in moving back and forth through the
shock front. This acceleration process typically yields a cosmic ray (CR) population with a power-law distribution
of the particle momenta. Nonlinear studies of DSA have shown that a considerable part of the kinetic energy flux
passing through shocks can be channeled into nonthermal populations, up to about one-half of the initial kinetic
energy of the shock (Berezhko et al.1995, Ellison et al.1996, Malkov 1998, 1999, Kang et al.2002). Note that CRs
have sufficient momentum not to resonate with the electromagnetic turbulence in the shock front itself. They hence
experience the shock as a discontinuity, i.e. the CR population is adiabatically compressed by the shock (e.g.,Drury
1983b).

Indeed, CR electrons have been observed in the intra-cluster medium (ICM) of galaxy clusters through their
diffuse synchrotron emission (Kim et al. 1989, Giovannini et al.1993, Deiss et al.1997). In addition to these
extended radio halos which show a similar morphology compared to the thermal X-ray emission, there have been
extended radio relics observed in the cluster periphery (e.g.,Röttgering et al.1997) which might well coincide
with merger shock waves as proposed byEnßlin et al.(1998). Some clusters have also been reported to exhibit an
excess of hard X-ray emission compared to the expected thermal bremsstrahlung of the hot ICM, most probably
produced by inverse Compton up-scattering of cosmic microwave background photons by relativistic electrons
(Fusco-Femiano et al.1999, Sanders et al.2005). It has been proposed that a fraction of the diffuse cosmological
γ-ray background radiation originates from the same processes (Loeb & Waxman2000, Miniati 2002, Reimer et al.
2003, Berrington & Dermer2003, Kuo et al.2005).

To date, there are two different scenarios explaining these non-thermal emission processes: (1) reacceleration
processes of ‘mildly’ relativistic electrons (γ ' 100− 300) being injected over cosmological timescales into the
ICM by sources like radio galaxies, supernova remnants, merger shocks, or galactic winds, which all can provide
an efficient supply of highly-energetic CR electrons. Owing to their long lifetimes of a few times 109 years these
‘mildly’ relativistic electrons can accumulate within the ICM (Sarazin2002), until they experience continuous in-
situ acceleration either via shock acceleration or resonant pitch angle scattering on turbulent Alfvén waves (Jaffe
1977, Schlickeiser et al.1987, Brunetti et al.2001, Ohno et al.2002, Brunetti et al.2004a). (2) In the ICM, the
CR protons have lifetimes of the order of the Hubble time (Völk et al.1996), which is long enough to diffuse away
from the production site and to maintain a space-filling distribution over the cluster volume. These CR protons
can interact hadronically with the thermal ambient gas producing secondary electrons, neutrinos, andγ-rays in
inelastic collisions throughout the cluster volume, generating radio halos through synchrotron emission (Dennison
1980, Vestrand1982, Blasi & Colafrancesco1999, Dolag & Enßlin 2000, Pfrommer & Enßlin2003, 2004a,b).
Cosmological simulations support the possibility of a hadronic origin of cluster radio halos (Miniati et al.2001).

10.1.2. Hydrodynamical simulations

Hydrodynamical solvers of cosmological codes are generally classified into two main categories: (1) Lagrangian
methods like smoothed particle hydrodynamics (SPH) which discretize the mass of the fluid, and (2) Eulerian
codes, which discretize the fluid volume. SPH methods were first proposed byGingold & Monaghan(1977) and
Lucy (1977) and approximate continuous fluid quantities by means of kernel interpolation over a set of tracer
particles. Over the years, the SPH techniques has been steadily improved for cosmological applications (Evrard
1988, Hernquist & Katz1989, Navarro & White1993, Springel & Hernquist2002), where it benefits from an
unmatched ease of including self-gravity.

In contrast, Eulerian methods discretize space and represent continuous fields on a mesh. Originally, Eulerian
codes employed a mesh which is fixed in space (Cen & Ostriker1993, Yepes et al.1995) or adaptively moving (Pen
1998), while more recently, adaptive mesh refinement (AMR) algorithms have been developed for cosmological
applications (Berger & Colella1989, Bryan & Norman1997, Norman & Bryan1999, Kravtsov et al.2002), which
can adapt to regions of interest in a flexible way.

Grid-based techniques offer superior capabilities for capturing hydrodynamical shocks. In some algorithms, this
can be done even without the aid of artificial viscosity, thanks to the use of Riemann solvers at the cell-level, so
that a very low residual numerical viscosity is achieved. However, codes employing static meshes still lack the
resolution and flexibility necessary to tackle structure formation problems in a hierarchically clustering universe,
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which is characterized by a very large dynamic range and a hierarchy of substructure at all stages of the evolution.
For example, techniques based on a fixed mesh are seriously limited when one tries to study the formation of
individual galaxies in a cosmological volume, simply because the internal galactic structure such as disk and bulge
components can then in general not be sufficiently well resolved. A new generation of AMR codes which begin
to be applied in cosmology (Abel et al.2002, Kravtsov et al.2002, Refregier & Teyssier2002) may in principle
resolve this problem. However, a number of grid-based problems remain even here, for example the dynamics is
not Galilean-invariant, and there can be spurious advection and mixing errors, especially for large bulk velocities
across the mesh.

These problems can be avoided in SPH, which thanks to its Lagrangian nature and its accurate treatment of self-
gravity is particularly well suited for structure formation problems. SPH adaptively and automatically increases the
resolution in dense regions such as galactic halos or centers of galaxy clusters, which are the regions of primary
interest in cosmology. One drawback of SPH is the dependence on the artificial viscosity which has to deliver
the necessary entropy injection in shocks. While the parameterization of the artificial viscosity can be motivated in
analogy with the Riemann problem (Monaghan1997), the shocks themselves are broadened over the SPH smoothing
scale and not resolved as discontinuities, but post-shock quantities are calculated very accurately. However, to date
it has not been possible to identify and measure the shock strengths instantaneously with an SPH simulation.

Being interested in dynamical implications of CRs on structure formation and galaxy evolution, one faces not
only the problem of the interplay of gravity and hydrodynamics of a plasma composed of CRs and thermal particles
but in addition radiative processes such as cooling and supernova feedback. To date, AMR codes have not yet
matured to the point that they can address all these requirements throughout a cosmological volume, although there
are recent efforts along these lines (e.g.Kang & Jones2005, Jones & Kang2005). It would therefore be ideal if SPH
codes for structure formation could acquire the ability to detect shocks reliablyduring simulations. Previous work
on shock detection in SPH simulations (Keshet et al.2003) was restricted to a posteriori analysis of two subsequent
simulation time-slices, which can then be used to approximately detect a certain range of shocks as entropy jumps.

10.1.3. Motivation and structure

This chapter seeks to close this gap in order to allow studies of the following questions: (1) the cosmic evolution
of shock strengths provides rich information about the thermal history of the baryonic component of the Universe:
where and when is the gas heated to its present temperatures, and which shocks are mainly responsible for it?
Does the missing baryonic component in the present-day universe reside in a warm-hot intergalactic medium? (2)
CRs are accelerated at structure formation shocks through diffusive shock acceleration: what are the cosmological
implications of such a CR component? (3) Shock waves are modified by nonlinear back-reaction of the accelerated
CRs and their spatial diffusion into the pre-shock regime: Does this change the cosmic thermal history or give rise
to other effects? (4) Simulating realistic CR profiles within galaxy clusters can provide detailed predictions for
the expected radio synchrotron andγ-ray emission. What are the observational signatures of this radiation that is
predicted to be observed with the upcoming new generation ofγ-ray instruments (imaging atmosphericČerenkov
telescopes and the GLAST satellite) and radio telescopes (LOFAR and extended VLA)?

The purpose of this chapter is to study the properties of structure formation shock waves in self-consistent cosmo-
logical simulations, allowing us to explore their role for the thermalization of the pristine plasma, as well as for the
acceleration of relativistic CRs through DSA. In particular, we develop a framework for quantifying the importance
of CRs during cosmological structure formation, including an accounting of the effects of adiabatic compressions
and rarefactions of CR populations, as well as of numerous non-adiabatic processes. Besides CR injection by struc-
ture formation shocks, the latter include CR shock injection of supernova remnants, in-situ re-acceleration of CRs,
spatial diffusion of CRs, CR energy losses due to Coulomb interactions, Bremsstrahlung, and hadronic interactions
with the background gas, and the associatedγ-ray and radio emission due to subsequent pion decay. A full descrip-
tion of these CR processes and their formulation for cosmological applications is described in Chapter9, while the
numerical implementation within the SPH formalism is given byJubelgas et al.(2005). In this work we provide
a crucial input for this modeling: a formalism for identifying and accurately estimating the strength of structure
formation shocks on-the-fly during cosmological SPH simulations.

The chapter is structured as follows: the basic cosmic ray variables are introduced in Sect.10.2. The formalism for
identifying and measuring the Mach number of shock waves instantaneously within an SPH simulation is described
in Sect.10.3 for a purely thermal gas as well as for a composite plasma of CRs and thermal gas. The numerical
implementation of the algorithm is discussed in Sect.10.4. In Sect.10.5, we compare shock tube simulations to
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analytic solutions of the Riemann problem which are presented in AppendicesB.1 andB.2. Finally, in Sect.10.6,
we perform cosmological non-radiative simulations to study CR energy injection at shocks, and the influence of
reionization on the Mach number distribution. A summary in Sect.10.7concludes the chapter.

10.2. Basic cosmic ray variables

Since we only consider CR protons1, which are at least in our Galaxy the dominant CR species, it is convenient to
introduce the dimensionless momentump = Pp/(mp clight). CR electrons withγ < 100 experience efficient Coulomb
losses such that their energy density is significantly diminished compared to the CR energy density (Sarazin2002).
The differential particle momentum spectrum per volume element is assumed to be a single power-law above the
minimum momentumq:

f (p) =
dN

dpdV
= C p−α θ(p− q). (10.1)

θ(x) denotes the Heaviside step function. Note that we use an effective one-dimensional distribution functionf (p) ≡
4πp2 f (3)(p). The differential CR spectrum can vary spatially and temporally (although for brevity we suppress this
in our notation) through the spatial dependence of the normalizationC = C(r, t) and the cutoff q = q(r, t).

Adiabatic compression or expansion leaves the phase-space density of the CR population unchanged, leading
to a momentum shift according top → p′ = (ρ/ρ0)1/3 p for a change in density fromρ0 to ρ. Since this is fully
reversible, it is useful to introduce the invariant cutoff and normalizationq0 andC0 which describe the CR population
via Eqn. (10.1) if the inter-stellar medium (ISM) or ICM is adiabatically compressed or expanded to the reference
densityρ0. The actual parameters are then given by

q(ρ) = (ρ/ρ0)
1
3 q0 and C(ρ) = (ρ/ρ0)

α+2
3 C0. (10.2)

These adiabatically invariant variables are a suitable choice to be used in a Lagrangian description of the CR popu-
lation.

The CR number density is

nCR =

∫ ∞

0
dp f(p) =

C q1−α

α − 1
, (10.3)

provided, thatα > 1. The kinetic energy density of the CR population is

εCR =
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whereTp(p) = (
√

1+ p2 − 1)mp c2
light is the kinetic energy of a proton with momentump, andBx(a,b) denotes the

incomplete Beta-function whereα > 2 is assumed. The CR pressure is

PCR =
mpc2
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)
, (10.5)

whereβ ≡ v/clight = p/
√

1+ p2 is the dimensionless velocity of the CR particle. The CR population can hydro-
dynamically be described by an isotropic pressure component as long as the CRs are coupled to the thermal gas
by small scale chaotic magnetic fields. Note that for 2< α < 3 the kinetic energy density and pressure of the CR
populations are well defined for the limitq→ 0, although the total CR number density diverges.

The adiabatic exponent of the CR population is defined by

γCR ≡
d logPCR

d logρ

∣∣∣∣∣∣
S

, (10.6)

1α-particles carry a significant fraction of the total CR energy. Nevertheless, the assumption of considering only CR protons is a reasonable
approximation, since the energy density ofα-particles can be absorbed into the proton spectrum. A GeV energyα-particle can be approxi-
mated as an ensemble of four individual nucleons traveling together due to the relatively weak MeV nuclear binding energies compared to
the kinetic energy of relativistic protons.
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while the derivative has to be taken at constant entropyS. Using Eqns. (10.2) and (10.5), we obtain for the CR
adiabatic exponent

γCR =
ρ

PCR

(
∂PCR

∂C
∂C
∂ρ
+
∂PCR

∂q
∂q
∂ρ

)
=
α + 2

3
−

2
3

q2−α β(q)

[
B 1

1+q2

(
α − 2

2
,
3− α

2

)]−1

. (10.7)

Note that in contrast to the usual adiabatic exponent, the CR adiabatic exponent is time dependent due to its depen-
dence on the lower cutoff of the CR population,q. Considering a composite of thermal and CR gas, it is appropriate
to define an effective adiabatic index by

γeff ≡
d log(Pth + PCR)

d logρ

∣∣∣∣∣∣
S

=
γth Pth + γCR PCR

Pth + PCR
. (10.8)

10.3. Mach numbers within the SPH formalism

The shock surface separates two regions: Theupstream regime(pre-shock regime) defines the region in front of the
shock whereas thedownstream regime(post-shock regime) defines the wake of the shock wave. The shock front
itself is the region in which the mean plasma velocity changes rapidly on small scales given by plasma physical
processes. All calculations in this section are done in the rest frame of the shock which we assume to be non-
relativistic. This assumption is justified in the case of cosmological structure formation shock waves for which
typical shock velocities are of the order of 103 km s−1.

Particles are impinging on the shock surface at a rate per unit shock surface,j, while conserving their mass:

ρ1v1 = ρ2v2 = j. (10.9)

Herev1 andv2 indicate the plasma velocities (relative to the shock’s rest frame) in the upstream and downstream
regime of the shock, respectively. The mass densities in the respective shock regime are denoted byρ1 andρ2.
Momentum conservation implies

P1 + ρ1v
2
1 = P2 + ρ2v

2
2, (10.10)

wherePi denotes the pressure in the respective regimei ∈ {1,2}. The energy conservation law at the shock surface
reads

(ε1 + P1) ρ−1
1 +

v21
2
= (ε2 + P2) ρ−1

2 +
v22
2
. (10.11)

εi denotes the internal energy density in the regimei ∈ {1,2}. Combining solely these three equations without using
any additional information about the equation of state, we arrive at the following system of two equations:

j2 = ρ2
1M

2
1c2

1 =
(P2 − P1) ρ1ρ2

ρ2 − ρ1
(10.12)

ρ2

ρ1
=

2ε2 + P1 + P2

2ε1 + P1 + P2
. (10.13)

Here we introduced the Mach number in the upstream regime,M1 = v1/c1, which is the plasma velocity in units of
the local sound speedc1 =

√
γP1/ρ1.2

10.3.1. Polytropic gas

Non-radiative polytropic gas in the regimei ∈ {1,2} is characterized by its particular equation of state,

εi =
1
γ − 1

Pi or equivalently Pi = P0

(
ρi

ρ0

)γ
, (10.14)

2Note, that the symbolc (sometimes with subscript) denotes the sound velocity.
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whereγ denotes the adiabatic index. This allows us to derive the well-known Rankine-Hugoniot conditions which
relate quantities from the upstream to the downstream regime solely as a function ofM1:

ρ2

ρ1
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

, (10.15)

P2

P1
=

2γM2
1 − (γ − 1)

γ + 1
, (10.16)

T2

T1
=

[
2γM2

1 − (γ − 1)
] [

(γ − 1)M2
1 + 2

]
(γ + 1)2M2

1

. (10.17)

In cosmological simulations using a Lagrangian description of hydrodynamics such as SPH, it is infeasible to
identify the rest frame of each shock and thusM1 unambiguously, especially in the presence of multiple oblique
structure formation shocks. As an approximative solution, we rather propose the following procedure, which takes
advantage of the entropy-conserving formulation of SPH (Springel & Hernquist2002). For one particle, the instan-
taneous injection rate of the entropic function due to shocks is computed, i.e. dA/dt, whereA denotes the entropic
functionA(s) defined by

P = A(s)ργ, (10.18)

ands gives the specific entropy. Suppose further that the shock is broadened to a scale of order the SPH smoothing
length fhh, where fh ∼ 2 denotes a factor which has to be calibrated against shock-tubes. We can roughly estimate
the time it takes the particle to pass through the broadened shock front as∆t = fhh/v, where one may approximate
v with the pre-shock velocityv1. Assuming that the present particle temperature is a good approximation for the
pre-shock temperature, we can also replacev1 withM1c1.

Based on these assumptions and using∆A1 ' ∆t dA1/dt, one can estimate the jump of the entropic function the
particle will receive while passing through the shock:

A2

A1
=

A1 + ∆A1

A1
= 1+

fhh
M1c1A1

dA1

dt
, (10.19)

A2

A1
=

P2

P1

(
ρ1

ρ2

)γ
= fA(M1), (10.20)

where

fA(M1) ≡
2γM2

1 − (γ − 1)

γ + 1

 (γ − 1)M2
1 + 2

(γ + 1)M2
1

γ , (10.21)

using Eqns. (10.15) and (10.16). Combining Eqns. (10.19) and (10.20), we arrive at the final equation which is a
function of Mach number only: [

fA(M1) − 1
]
M1 =

fhh
c1A1

dA1

dt
. (10.22)

The right hand side can be estimated individually for each particle, and the left side depends only onM1. Deter-
mining the root of the equation hence allows one to estimate a Mach number for each particle.

10.3.2. Composite of cosmic rays and thermal gas

In the presence of a gas composed of cosmic rays and thermal components, Eqns. (10.9) to (10.13) are still applicable
if one identifies the energy densityεi and the pressurePi with the sum of the individual components in the regime
i ∈ {1,2},

εi = εCRi + εthi , (10.23)

Pi = PCRi + Pthi . (10.24)

The sound speed of such a composite gas isci =
√
γeff,iPi/ρi , whereγeff,i is given by Eqn. (10.8). Note that in con-

trast to the single-component fluid, for the general case there is no equivalent to the equation of state (Eqn. (10.14))
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10.3.2 Composite of cosmic rays and thermal gas

in terms of the total energy densityεi , because of the additivity of both pressure and energy density. For later
convenience, we introduce the shock compression ratioxs and the thermal pressure ratioys,

xs =
ρ2

ρ1
and ys =

Pth2

Pth1
. (10.25)

While taking the equation of state (Eqn. (10.14)) for the thermal gas component, we assume adiabatic compression
of the CRs at the shock3,

PCR2 = PCR1x
γCR
s and εCR2 = εCR1x

γCR
s . (10.26)

Here we assume a constant CR spectral index over the shock which holds only approximately owing to the weak
dependence of the CR lower momentum cutoff q on the density (Eqn. (10.2)).

For the composite of thermal and CR gas, it is convenient to define the effective entropic functionAeff and its time
derivative,

Aeff = (Pth + PCR) ρ−γeff , (10.27)
dAeff

dt
=

dAth

dt
ργth−γeff . (10.28)

The expression for the time derivative of the effective adiabatic function uses the approximation of adiabatic com-
pression of the CRs at the shock. Using the same assumptions like in the non-radiative case, we estimate the jump
of the entropic function for the particle on passing through the shock made of composite gas:

Aeff,2

Aeff,1

=

(
PCR2+ Pth2

)
ρ
−γeff,2

2(
PCR1+ Pth1

)
ρ
−γeff,1

1

= 1+
fhh

M1c1Aeff,1

dAeff,1

dt
. (10.29)

Combining Eqns. (10.12), (10.13), (10.26), and (10.29), we arrive at the following system of equations,

f1(xs, ys) = xs
[
P2(xs, ys) − P1

] [
P2(xs, ys)(xsρ1)−γeff,2(xs,ys) − P1ρ

−γeff,1

1

]2

−P2
1(xs − 1)ρ1−2γeff,1

1

(
fhh

Aeff,1

dAeff,1

dt

)2

= 0, (10.30)

f2(xs, ys) = 2ε2(xs, ys) + P1 + P2(xs, ys) − xs [2ε1 + P1 + P2(xs, ys)] = 0. (10.31)

The effective adiabatic index in the post-shock regime is given by

γeff,2(xs, ys) =
γCRPCR2(xs) + γthysPth1

P2(xs, ys)
. (10.32)

Given all the quantities in the pre-shock regime, we can solve for the rootsxs and ys of this system of two
non-linear equations. This system of equations turns out to be nearly degenerate for plausible values of pre-shock
quantities such that it might be convenient to apply the following coordinate transformation:

(xs, ys)→ (xs, zs) with zs =
ys − xs

4
. (10.33)

The Mach numberM1 and the jump of internal specific energies can then be obtained by

M1 =

√
(P2 − P1)xs

ρ1c2
1(xs − 1)

and (10.34)

u2

u1
=
ys
xs

where u =
Pth

(γth − 1)ρ
. (10.35)

3Due to their much larger gyroradii and high velocities, CR protons should not participate in the plasma processes of collisionless shock waves.
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10.4. Numerical implementation

10.4.1. Polytropic gas

Applying the algorithm of inferring the shock strength within the SPH formalism in a straightforward manner will
lead to systematically underestimated values of the Mach number for SPH particles which are locatedwithin the
SPH broadened shock surface: the proposed algorithm of Sect.10.3 assumes that the present particle quantities
such as entropy, sound velocity, and smoothing length are good representations of the hydrodynamical state in the
pre-shock regime, which is not longer the case for particles within the SPH broadened shock surface. To overcome
this problem, we define a decay time interval∆tdec= min[ fhh/(M1c),∆tmax], during which the Mach number is set
to the maximum value that is estimated during the transition from the pre-shock regime to the shock surface. At
this maximum, the corresponding particle quantities are good approximations of the hydrodynamical values in the
pre-shock regime. We thus have a finite temporal resolution for detecting shocks, which is of order the transit time
through the broadened shock front. Note that∆tmax is just introduced as a safeguard against too long decay times
for very weak shocks.

Secondly, there is no universal valuefh which measures the SPH shock broadening accurately irrespective of
the Mach number of the shock, especially in the regime of strong shocks. We therefore use the original algorithm
(with fh = 2) only for estimated Mach numbers withMest < 3, while for stronger shocks, we apply an empirically
determined formula (calibrated against shock-tubes) which corrects for the additional broadening of strong shocks
and smoothly joins into the weak shock regime:

Mcal =
(
aMb

est+ cexp−Mest/3
)
Mest, (10.36)

wherea = 0.09, b = 1.34, andc = 1.66. These numbers may depend on the viscosity scheme of the SPH
implementation.

10.4.2. Composite of cosmic rays and thermal gas

Our formalism of inferring the jump conditions for a composite of cosmic rays and thermal gas yields the density
jump, xs = ρ2/ρ1, and the thermal pressure jump at the shock,ys = Pth2/Pth1 (Sect.10.3.2). As described in the
previous section (Sect.10.4.1), the values for the estimated jump conditions are systematically underestimated in
the regime of strong shocks (M1 & 5) implying an additional broadening of the shock surface. Thus, we proceed
the same way as above: using the value of the density jumpxs, we derive the Mach number of the shock through
Eqn. (10.34) and recalibrate it for strong shocks. In addition, we use the decay time∆tdec as before in the thermal
case to obtain reliable Mach number estimates. The post-shock density is then obtained by multiplying the stored
pre-shock density with the density jumpxs.

In the case of a thermal pressure jump at the shockys, we decided not to derive another empirical formula but
rather exploit CR physics at non-relativistic shocks. Since the CR population is adiabatically compressed at the
shock in the limit of strong shocks, the total pressure jump is nearly solely determined by the jump to the thermal
pressure in the post-shock regime, i.e. we can safely neglect the contribution of CRs to the pressure jump. This
assumption is justified as long as the CR pressure is not dominated by sub-relativistic CRs of low energy which
is on the other hand a very short lived population owing to Coulomb interactions in the ICM. Thus, the thermal
post-shock pressure forM1 & 5 is estimated as

Pth2 '
2γthM

2
1 − (γth − 1)

γth + 1
P1, (10.37)

whereM1 is obtained by Eqn. (10.36), andP1 denotes the stored total pre-shock pressure.

10.5. Shock tubes

To assess the reliability of our formalism and the validity of our numerical implementation, we perform a sequence
of shock-tube simulations with Mach numbers ranging fromM = 1.4 up toM = 100. We use a three-dimensional
problem setup which is more demanding and more realistic than carrying out the computation in one dimension.
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10.5 Shock tubes
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Figure 10.1.: Shock-tube test carried out in a periodic three-dimensional box which is longer inx-direction than in
the other two dimensions where a shock with the Mach numberM = 10 develops. The numerical result of the volume
averaged hydrodynamical quantities〈ρ(x)〉, 〈P(x)〉, 〈vx(x)〉, and〈M(x)〉within bins with a spacing equal to the interparticle
separation of the denser medium is shown in black and compared with the analytic result in color.Left panels:Shock-
tubes are filled with pure thermal gas (γ = 5/3). Right panels:Shock-tubes are filled with a composite of cosmic rays and
thermal gas. Initially, the relative CR pressure isXCR = PCR/Pth = 2 in the left half-space (x < 250), while we assume
pressure equilibrium between CRs and thermal gas forx > 250.
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Figure 10.2.: Mach number distributions weighted by the change of dissipated energy per time interval,
〈
du̇th/(d logM)

〉
for our eight three-dimensional shock-tubes.Left panels:Shock-tubes are filled with pure thermal gas (γ = 5/3). Right
panels: Shock-tubes are filled with a composite of cosmic rays and thermal gas. Initially, the relative CR pressure is
XCR = PCR/Pth = 2 in the left half-space, while we assume pressure equilibrium between CRs and thermal gas.Bottom
panels:Shown are the change of dissipated energy per time interval,〈u̇th〉 (shown with×), the shock-injected CR energy
〈u̇CR,inj〉 (+), and the theoretically expected injected CR energy〈u̇theory

CR,inj〉 (◦) which is calculated following Chapter9.
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10.5.1 Polytropic thermal gas

Here and in the following, we drop the subscript ‘1’ of the pre-shock Mach number for convenience. By comparing
with known analytic solutions, we are able to demonstrate the validity of our implemented formalism.

There exists an analytic solution of the Riemann shock-tube problem in the case of a fluid described by a poly-
tropic equation of state,ε = P/(γ − 1) (cf. AppendixB.1). Unfortunately, a composite of thermal gas and CRs does
not obey this relation. Thus, we derive an analytic solution to the Riemann shock-tube problem for the composite
of CRs and thermal gas in AppendixB.2. This analytic solution assumes the CR adiabatic index (Eqn. (10.6)) to be
constant over the shock-tube and neglects CR diffusion such that the problem remains analytically treatable.

10.5.1. Polytropic thermal gas

We consider eight standard shock-tube tests (Sod1978) which provide a validation of both the code’s solution to
hydrodynamic problems and our Mach number formalism. We consider first an ideal gas withγ = 5/3, initially at
rest. The left half-space (x < 250) is filled with gas at unit density,ρ2 = 1, andP2 = (γ − 1) 105, while x > 250
is filled with low density gasρ1 = 0.2 at low pressure. The exact value of the low pressure gas has been chosen
such that the resulting solutions yield the Mach numbersM = {1.4,2,3,6,10,30,60,100} (cf. AppendixB.1). We
set up the initial conditions in 3D using an irregular glass-like distribution of particles of equal mass in hydrostatic
equilibrium. They are contained in a periodic box which is longer inx-direction than in the other two dimensions,
y andz.

In the left panel of Figure10.1, we show the result for the case of the Mach numberM = 10 obtained with the
GADGET-2 code (Springel2005, Springel et al.2001) at timet = 0.5. Shown are the volume averaged hydrody-
namical quantities〈ρ(x)〉, 〈P(x)〉, 〈vx(x)〉, and〈M(x)〉 within bins with a spacing equal to the interparticle separation
of the denser medium and represented by solid black lines. One can clearly distinguish five regions of gas with
different hydrodynamical states. These regions are separated by the head and the tail of the leftwards propagating
rarefaction wave, and the rightwards propagating contact discontinuity and the shock wave. The overall agreement
with the analytic solution is good, while the discontinuities are resolved within 2− 3 SPH smoothing lengths. De-
spite the shock broadening, the post-shock quantities are calculated very accurately. Our formalism is clearly able to
detect the shock and precisely measure its strength, i.e. the Mach numberM. The pressure quantity drawn is not the
hydrodynamically acting pressure of the SPH dynamics butP = (γ−1)ρu, a product of two fields that are calculated
each using SPH interpolation. Thus, the observed characteristic pressure blip at the contact discontinuity has no
real analogue neither in the averagedx-component of the velocity〈vx(x)〉 nor in the averaged Mach number〈M(x)〉.
The x-component of the velocity〈vx(x)〉 shows tiny post-shock oscillations which might be damped with higher
values of the artificial viscosity on the expense of a broader shock surface. The leftwards propagating rarefaction
wave seems to exhibit a slightly faster signal velocity compared to the sound velocity. This might be attributed to
the SPH averaging process which obtains additional information on the SPH smoothing scale.

In the left panel of Figure10.2, we show the Mach number distributions weighted by the change of dissipated
energy per time interval,

〈
du̇th/(d logM)

〉
for our eight shock-tubes. The sharp peaks of these distributions around

their expected values logM are apparent. This demonstrates the reliability of our formalism to precisely measure
shock strengths instantaneously during SPH simulations. The bottom panel shows their integral, i.e. the change of
dissipated energy per time interval,〈u̇th〉. The rising dissipated energy with growing Mach number reflects the larger
amount of available kinetic energy for dissipation.

We additionally calculate the shock-injected CR energy using our formalism of diffusive shock acceleration de-
scribed in Chapter9. However, the injected CR energy

〈
u̇CR,inj

〉
was only monitored and not dynamically tracked.

For comparison, we also show the theoretically expected injected CR energy
〈
u̇theory

CR,inj

〉
= ζinj 〈u̇th〉, whereζinj is

the energy efficiency due to diffusive shock acceleration (cf. Chapter9 for details). The good comparison of the
simulated and theoretically expected shock-injected CR energy demonstrates that our formalism is reliably able to
describe the on-the-fly acceleration of CRs during the simulation.

10.5.2. Composite of cosmic rays and thermal gas

Again, we consider eight shock-tube simulations containing a composite of cosmic rays and thermal gas, providing
a useful validation of our CR implementation in solving basic hydrodynamic problems as well as our Mach number
formalism in the presence of CRs. In these simulations, we neither inject shock-accelerated CRs nor consider CR
diffusion: these processes would lead to CR modified shock structures and shall be the subject of a companion
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paper.
To characterize this composite fluid, we define the relative CR pressureXCR = PCR/Pth. Our composite gas

is initially at rest, while the left half-space (x < 250) is filled with gas at unit density,ρ2 = 1, XCR2 = 2, and
Pth2 = (γ − 1) 105, while x > 250 is filled with low density gasρ1 = 0.2, XCR1 = 1, at low pressure. The exact
value of the low pressure gas has again been chosen such that the resulting solutions yield the Mach numbers
M = {1.4,2,3,6,10,30,60,100} (cf. AppendixB.2). Otherwise, we use the same initial setup as in Sect.10.5.1.
This CR load represents a rather extreme case and can be taken as the limiting case for our Mach number formalism
in the presence of CRs. Cosmologically, it may find application in galaxy mergers where the outer regions might be
composed of an adiabatically expanded composite gas containing a high CR component.

In the right panel of Figure10.1, we show the result for the case of the Mach numberM = 10 obtained with
GADGET-2 at timet = 0.3. The agreement with the analytic solution is good, while the discontinuities are resolved
within 2 − 3 SPH smoothing lengths. Despite the shock broadening, the post-shock quantities are calculated very
accurately. In the case of composite gas, our formalism is clearly able to detect the shock and measure its strength
with a Mach number accuracy better than 10%. Although the total pressure remains constant across the contact
discontinuity, the partial pressure of CRs and thermal gas interestingly are changing. This behavior reflects the adi-
abatic compression of the CR pressure component across the shock wave. A posteriori, this justifies our procedure
of inferring the thermal pressure jump at the shock for a composite of CRs and thermal gas in Eqn. (10.37).

In the right panel of Figure10.2, we show the Mach number distributions weighted by the change of dissipated
energy per time interval,

〈
du̇th/(d logM)

〉
for our eight shock-tubes. While our formalism is able to measure the

shock strength with a Mach number accuracy better than 10%, the distributions are sharply peaked. This demon-
strates the reliability of our formalism to measure shock strengths for the composite gas instantaneously during SPH
simulations.

The bottom panel shows the change of dissipated energy per time interval,〈u̇th〉 together with the shock-injected
CR energy

〈
u̇CR,inj

〉
. Concerning the amount of injected CR energy, we neglected cooling processes such as

Coulomb interactions with thermal particles: this would effectively result in a density dependent recalibration of
the maximum CR energy efficiencyζmax of the otherwise arbitrary absolute value of our fiducial density. In the case
of high Mach numbers, there is a good agreement between the simulated and theoretically expected shock-injected
CR energy while there are discrepancies at low Mach numbers: our formalism estimates volume averaged Mach
numbers with an accuracy better than 10%; this uncertainty translates to estimates of the density jumpxs and the
thermal pressure jumpys with a scatter among different SPH particles. In the regime of weak shocks, the CR energy
efficiency due to diffusive shock accelerationζinj is extremely sensitive to these two quantities, leading to larger
uncertainties for the shock-injected CR energy in the case of a high CR load. However, the overall trend for the
shock-injected CR energy can still be matched in such an extreme physical environment.

10.6. Non-radiative cosmological simulations

10.6.1. Simulation setup

As a first application of our formalism, we are here interested in studying the spatial distribution of cosmological
structure formation shocks in combination with Mach number statistics. We focus on the “concordance” cosmolog-
ical cold dark matter model with a cosmological constant (ΛCDM). The cosmological parameters of our model are:
Ωm = Ωdm + Ωb = 0.3, Ωb = 0.04,ΩΛ = 0.7, h = 0.7, n = 1, andσ8 = 0.9. Here,Ωm denotes the total matter
density in units of the critical density for geometrical closure,ρcrit = 3H2

0/(8πG). Ωb andΩΛ denote the densities of
baryons and the cosmological constant at the present day. The Hubble constant at the present day is parameterized
asH0 = 100h km s−1Mpc−1, whilen denotes the spectral index of the primordial power-spectrum, andσ8 is therms
linear mass fluctuation within a sphere of radius 8h−1Mpc extrapolated toz= 0. This model yields a reasonable fit
to current cosmological constraints and provides a good framework for investigating cosmological shocks.

Our simulations were carried out with an updated and extended version of the massively parallel TreeSPH code
GADGET-2 (Springel2005, Springel et al.2001) including now self-consistent cosmic ray physics (Enßlin et al.
2005, Jubelgas et al.2005). Our reference simulation employed 2× 2563 particles which were simulated within a
periodic box of comoving size 100h−1Mpc, so the dark matter particles had masses of 4.3×109 h−1 M� and the SPH
particles 6.6× 108 h−1 M�. The SPH densities were computed from 32 neighbors which leads to our minimum gas
resolution of approximately 2×1010 h−1 M�. The gravitational force softening was of a spline form (e.g.,Hernquist
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10.6.2 Visualization of the Mach number

& Katz 1989) with a plummer equivalent softening length of 13h−1Mpc comoving. In order to test our numerical
resolution, we additionally simulated the same cosmological model with 2× 1283 particles, with a softening length
twice that of the reference simulation.

Initial conditions were laid down by perturbing a homogeneous particle distribution with a realization of a Gaus-
sian random field with theΛCDM linear power spectrum. The displacement field in Fourier space was constructed
using the Zel’dovich approximation, with the amplitude of each random phase mode drawn from a Rayleigh dis-
tribution. For the initial redshift we chose 1+ zinit = 50 which translates to an initial temperature of the gas of
Tinit = 57 K. This reflects the fact that the baryons are thermally coupled to the CMB photons via Compton in-
teractions with the residual free electrons after the universe became transparent until it eventually decoupled at
1+ zdec' 100(Ωbh2/0.0125)2/5. In all our simulations, we stored the full particle data at 100 output times, equally
spaced in log(1+ z) betweenz= 40 andz= 0.

In order to investigate the effects of reionization on the Mach number statistics, we additionally perform two
similar simulations which contain a simple reionization model where we impose a minimum gas temperature of
T = 104 K at a redshift ofz = 10 to all SPH particles. We decided to adopt this simplified model to study its
effect on the Mach number statistics rather than a more complicated reionization history. A more realistic scenario
might be to add energy only to gas within halos above a certain density in combination with energy input from QSO
activity, and to describe the merging of the reionization fronts and their evolution into the lower density regions
(e.g.,Ciardi et al.2003).

The simulation reported here follow only non-radiative gas physics. We neglected several physical processes, such
as radiative cooling, galaxy/star formation, and feedback from galaxies and stars including cosmic ray pressure. Our
primary focus are shocks that are mostly outside the cluster core regions. Thus, the conclusions drawn in this work
should not be significantly weakened by the exclusion of these additional radiative processes.

10.6.2. Visualization of the Mach number

In the SPH formalism, continuous fieldsA(x) such as the hydrodynamical quantities are represented by the values
Ai at discrete particle positionsr i = (xi , yi , zi) with a local spatial resolution given by the SPH smoothing length
hi . To visualize a scalar quantity in two dimensions we employ the mass conservingscatterapproach for the
projection, where the particle’s smoothing kernel is distributed onto cells of a Cartesian grid which is characterized
by its physical mesh sizeg. The line-of-sight integration of any quantityA(x) at the pixel at positionr = (x, y, z) is
determined as the average of integration of all lines of sight passing through the pixel,

〈a(x⊥)〉los = g
−2

∑
i

h−3
i

[∫ x+g/2

x−g/2
dxi

∫ y+g/2

y−g/2
dyi

∫ hi

−hi

dzi K

(
r
hi

)
Ai

]
, (10.38)

with r =
√

(xi − x)2 + (yi − y)2 + z2
i , and where the summation is extended over all particles in the desired slice of

projection. The functionK is the dimensionless spherically symmetric cubic spline kernel suggested byMonaghan
& Lattanzio(1985).

The left-hand side of Fig.10.3shows the time evolution of the density contrastδ averaged over the line-of-sight
with a comoving projection lengthLproj = 10h−1 Mpc:〈

1+ δgas(x⊥)
〉

los
=
〈Σ(x⊥)〉los

Lproj ρcritΩb
, (10.39)

whereΣ denotes the surface mass density. The fine-spun cosmic web at high redshift evolves into a much more
pronounced, knotty and filamentary structure at late times, as a result of the hierarchical structure formation process
driven by gravity.

The right-hand side of Fig.10.3 shows the time evolution of the density weighted temperature averaged over
the line-of-sight. Again, the growth of galaxy clusters visible as large bright regions with temperatures around
107K is clearly visible. Through dissipation, the shock waves convert part of the gravitational energy associated
with cosmological structure formation into internal energy of the gas, apart from the additional contribution due
to adiabatic compression caused by the material infalling at later times which itself is compressed at these shock
waves. The large black regions show voids which cool down during cosmic evolution due to two effects: while the
universe expands, non-relativistic gas is adiabatically expanded and cools according toT ∝ V1−γ ∝ a−2 for γ = 5/3
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Figure 10.3.: Visualization of a non-radiative cosmological simulation at redshiftz = 2 (top panels) andz = 0 (bottom
panels). Shown are the overdensity of the gas (left-hand side) and the density weighed gas temperature (right-hand side).
These pictures have a comoving side length of 100h−1 Mpc while the projection length along the line-of-sight amounts to
10h−1 Mpc.
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Figure 10.4.: Mach number visualization of a non-radiative cosmological simulation at redshiftz = 2 (top panels) and
z = 0 (bottom panels). The color hue of the maps on the left-hand side encodes the spatial Mach number distribution
weighted by the rate of energy dissipation at the shocks, normalized to the simulation volume. The maps on the right-
hand side show instead the Mach number distribution weighted by the rate of CR energy injection aboveq = 0.8, the
threshold of hadronic interactions. The brightness of each pixel is determined by the respective weights, i.e. by the energy
production density. These pictures have a comoving length of 100h−1 Mpc on a side. Most of the energy is dissipated in
weak shocks which are situated in the internal regions of groups or clusters, while collapsed cosmological structures are
surrounded by strong external shocks (shown in blue).
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when shock heating is still absent. Secondly, matter is flowing towards filaments during structure formation, hence
the voids get depleted, providing an additional adiabatic expansion of the remaining material.

Figure10.4shows a visualization of the responsible structure formation shocks and their corresponding strengths.
The color scaling represents the spatial Mach number distribution weighted by the rate of energy dissipation at
the shocks, and normalized to the simulation volume (left-hand side). The Mach number distribution weighted by
the rate of CR energy injection is shown in the right hand side, again normalized to the simulation volume. The
brightness of these pixels scales with the respective weights, i.e. by the rates of energy dissipation or injection,
respectively. The spatial Mach number distribution impressively reflects the nonlinear structures and voids of the
density and temperature maps of Fig.10.3. It is apparent that most of the energy is dissipated in weak shocks which
are situated in the internal regions of groups or clusters while collapsed cosmological structures are surrounded by
external strong shocks (shown in blue). These external shocks are often referred to as ‘first shocks’, because here
the compressed gas has been processed for the first time in its cosmic history through shock waves.

FollowingRyu et al.(2003), we classify structure formation shocks into two broad populations which are labeled
asinternalandexternalshocks, depending on whether or not the associated pre-shock gas was previously shocked.
Rather than using a thermodynamical criterion such as the temperature, we prefer a criterion such as the overdensity
δ in order not to confuse the shock definition once we will follow radiatively cooling gas in galaxies (in practice,
we use the criterion of a critical pre-shock overdensityδ > 10 for the classification of an internal shock).External
shocks surround filaments, sheets, and halos whileinternalshocks are located within the regions bound by external
shocks and are created by flow motions accompanying hierarchical structure formation. For more detailed studies,
internal shocks can be further divided into three types of shock waves: (1) accretion shocks caused by infall from
sheets to filaments or halos and from filaments to halos, (2) merger shocks resulting from merging halos, and
(3) supersonic chaotic flow shocks inside nonlinear structures which are produced in the course of hierarchical
clustering.

In contrast to the present time, the comoving surface area of external shock waves surpasses that of internal
shocks at high redshift, due to the small fraction of mass bound in large halos and the simultaneous existence of an
all pervading fine-spun cosmic web with large surface area. Also, there the thermal gas has a low sound velocity
c =

√
γP/ρ =

√
γ(γ − 1)u owing to the low temperature, so once the diffuse gas breaks on mildly nonlinear

structures, strong shock waves develop that are characterized by high Mach numbersM = vs/c. Nevertheless, the
energy dissipation rate in internal shocks is always higher compared to external shocks because the mean shock
speed and pre-shock gas densities are significantly larger for internal shocks.

We use the same color and brightness scale for the Mach number distribution weighted by the injected CR energy
rate normalized to the simulation volume (right-hand side of Fig.10.4). We emphasize two important points which
have fundamental implications for the CR population in galaxy clusters: (1) there is an absence of weak shocks
(shown in yellow) when the Mach number distribution is weighted by the injected CR energy. This reflects the
Mach number dependent energy injection efficiency: the CR injection is saturated for strong shocks which leads to
similar spatial distribution of both weightings, by dissipated energy as well as by injected CR energy. In contrast,
most of the dissipated energy is thermalized in weak shocks and only small parts are used for the acceleration
of relativistic particles (compare Fig.10.5). (2) The mechanism of energy dissipation at shocks is very density
dependent, implying a tight correlation of weak internal shocks and the amount of dissipated energy. This can be
seen by the strongly peaked brightness distribution of the dissipated energy rate towards the cluster centers. For
the CR-weighted case, this correlation is counteracted by the CR energy injection efficiency leading to a smoother
brightness distribution of the CR energy injection. This has the important implication that the ratio of CR injected
energy to dissipated thermal energy is increasing as the density declines. Relative to the thermal non-relativistic
energy density, the CR energy density is dynamically more important at the outer cluster regions and dynamically
less important at the cluster centers.

10.6.3. Mach number statistics

10.6.3.1. Influence of reionization

To quantify previous considerations, we compute the differential Mach number distribution weighted by the dis-
sipated energy normalized to the simulation volume d2εdiss(a,M)/(d logad logM) at different redshifts. The top
left panel of Fig.10.6shows this Mach number distribution for our reference simulation with reionization (showing
a resolution of 2× 2563), while the top right panel shows this distribution for the simulation without reioniza-
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Figure 10.5.:CR energy injection efficiency for the diffusive shock acceleration process. Shown is the CR energy injection
efficiencyζinj = εCR/εdiss for the three post-shock temperatureskT2/keV = 0.01,0.3, and 10. We inject only CRs above the
kinematic thresholdqthreshold= 0.83 of the hadronic CRp-p interaction which are able to produce pions that successively
decay into secondary electrons, neutrinos, andγ-rays. We choose equipartition between injected CR energy and dissipated
thermal non-relativistic energy as saturation value of the CR energy injection efficiency, i.e.ζmax = 0.5 (Ryu et al.2003).

tion. The lower left panel shows both distributions integrated over the scale factor, dεdiss(M)/(d logM), in addi-
tion to the Mach number distribution weighted by the injected CR energy normalized to the simulation volume,
dεCR(M)/(d logM) (see Sect.10.6.3.2). Internal shocks are shown with dotted lines and external shocks with
dashed lines. The lower right panel shows the evolution of the dissipated energy due to shock waves with scale
factor, dεdiss(a)/(d loga), for the models with and without reionization.

Several important points are apparent: (1) The median of the Mach number distribution weighted by the dissipated
energy decreases as cosmic time evolves, i.e. the average shock becomes weaker at later times. (2) There is an
increasing amount of energy dissipated at shock waves as the universe evolves because the mean shock speed
is significantly growing when the characteristic mass becomes larger with time. This trend starts to level off at
redshiftz ' 1 although the median Mach number in shocks continuous to decrease. (3) Reionization influences
the Mach number distribution predominantly at early times (however after reionization took place) and suppresses
strong external shock waves efficiently. The reason is that reionization of the thermal gas increases its sound speed
c =

√
γnkT/ρ dramatically, so that weaker shocks are produced for the same shock velocities. (4) The time

integrated Mach number distribution weighted by the dissipated energy peaks at Mach numbers 1. M . 3. The
main contribution in terms of energy dissipation originates from internal shocks because of enhanced pre-shock
densities and mean shock speeds. (5) External shocks dominate the Mach number distribution at early times while
internal shocks take over atz ' 9 (depending somewhat on the resolution of the simulation). Their amount of
dissipated energy surpasses that in external shocks by over an order of magnitude at the present time. Internal
shocks play a more important role than external shocks in dissipating energy associated with structure formation.

The total shock-dissipated energy in our simulation box amounts toEdiss = 2.27× 1064 erg. This translates to a
mean energy deposition per particle ofEdissµ/(ρcrΩbV) = 0.63 keV, whereµ = 4mp/(3+ 5XH) is the mean particle
weight assuming full ionization andXH = 0.76 is the primordial hydrogen mass fraction. Our results agree well
with those ofRyu et al.(2003) in the case of internal shocks while our external shocks tend to be weaker. This
can be attributed to our differing definition of internal/external shocks as we prefer a density criterion and use the
critical pre-shock overdensityδ > 10 for the classification of an internal shock.
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Figure 10.6.: Influence of reionization on the Mach number statistics of non-radiative cosmological simulations. The
top left panelshows the differential Mach number distribution d2εdiss(a,M)/(d logad logM) for our reference simulation
with reionization while thetop right panelshows this distribution for the simulation without reionization. Thelower
left panelshows both distributions integrated over the scale factor, dεdiss(M)/(d logM) in addition to the Mach number
distribution weighted by the injected CR energy rate normalized to the simulation volume, dεCR(M)/(d logM) (green).
Internal shocks are shown with dotted lines and external shocks with dashed lines. Thelower right panelshows the
evolution of the dissipated energy due to shock waves with scale factor, dεdiss(a)/(d loga). The models with and without
reionization lie on top of each other.
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10.6.3.2. Cosmic ray acceleration

In our non-radiative cosmological simulations we additionally calculate the expected shock-injected CR energy
using our formalism of diffusive shock acceleration described in Enßlin et al. (2005). This formalism follows a
model based on plasma physics for the leakage of thermal ions into the CR population. However, in the present
analysis, the injected CR energy duCR,inj/(d loga) was only monitored and not dynamically tracked. In our model,
the CR population is described by single power-law distribution which is uniquely determined by the dimensionless
momentum cutoff q, the normalizationC, and the spectral indexα. Considering shock injected CRs only, the
spectral index is determined byα = (xs + 2)/(xs − 1), wherexs denotes the density jump at the shock.

Our simplified model for the diffusive shock acceleration fails in the limit of weak shocks and over-predicts the
injection efficiency. Especially in this regime, Coulomb losses have to be taken into account which remove the
low-energetic part of the injected CR spectrum efficiently on a short timescale giving rise to an effective CR energy
efficiency. Thus, the instantaneous injected CR energy duCR,inj/(d loga) depends on the simulation timestep and the
resolution. To provide a resolution independent statement about the injected CR energy, we decided to rethermalize
the injected CR energy below the cutoff qthreshold= 0.83. This cutoff has the desired property, that it coincides with
the kinematic threshold of the hadronic CR p-p interaction to produce pions which decay into secondary electrons
(and neutrinos) andγ-rays:

π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ
π0 → 2γ .

Only CR p above this kinematic threshold are therefore visible through their decay products in both theγ-ray and
radio bands via radiative processes, making them directly observationally detectable.

The lower left panel of Fig.10.6shows the Mach number distribution weighted by the injected CR energy rate and
normalized to the simulation volume, dεCR(M)/(d logM) (solid green). The effect of the CR injection efficiency
ζinj = εCR/εdiss can easily be seen: while the CR injection is saturated for strong shocks toζmax = 0.5, in weak
shocks most of the dissipated energy is thermalized and only small parts are used for the acceleration of relativistic
particles. Effectively, this shifts the maximum and the mean value of the Mach number distribution weighted by the
shock-dissipated energy towards higher values in the case of the distribution weighted by the injected CR energy.
This effect is even stronger when considering only CRs with a lower cutoff q = 10,30 which are responsible for
radio halos observed at frequencies above 100 MHz, assuming typical magnetic field strengths ofB = 10,1µG,
respectively. This follows from the mono-energetic approximation of the hadronic electron production and syn-
chrotron formula,

νs =
3eB

2πmec
γ2

e, where γe '
q
16

mp

me
(10.40)

andedenotes the elementary charge.
As the regime of strong shocks is dominated by external shocks where the CR injection is saturated, CRs are

dynamically more important in dilute regions and dynamically less important at the cluster centers compared to
the thermal non-relativistic gas. As weak shocks are mainly internal shocks we have to distinguish between their
different appearance: strong internal shocks are most probably accretion shocks produced by infalling gas from
sheets or filaments towards clusters, or peripherical merger shocks which steepen as they propagate outwards in
the shallow cluster potential, highlighting the importance of CR injection in the outer cluster regions relative to
thermally dissipated gas at shocks. In contrast, CR injection is dynamically less important in the case of flow
shocks at the cluster centers or merging shock waves traversing the cluster center. From these considerations we
again draw the important conclusion that the ratio of CR injected energy to dissipated thermal energy at shocks is
an increasing function of decreasing density. Such a CR distribution is required within galaxy clusters to explain the
diffuse radio synchrotron emission of galaxy clusters (so-called radio halos) within the hadronic model of secondary
electrons. For that, we assume a stationary CR electron spectrum which balances hadronic injection of secondaries
and synchrotron and inverse Compton cooling processes (Brunetti2002, Pfrommer & Enßlin2004a,b). However, to
make more precise statements about the origin of cluster radio halos, more work is needed which studies the effect
of the CR dynamics including CR diffusion and other CR injection processes such as supernovae driven galactic
winds.
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10.6.3.3. Resolution study

To study numerical convergence we perform two additional simulations with a resolution of 2× 1283, respectively,
for our models with and without reionization. Figure10.7shows this resolution study for non-radiative cosmological
simulations with a reionization epoch atz = 10. The lower right panel of Fig.10.7 shows the evolution of the
density-weighted temperature with redshift,〈(1 + δ)T〉V (z). Shown are different resolutions in our models with
and without reionization. The two differently resolved simulations (2× 2563 and 2× 1283) have converged well
at redshiftsz . 4. In our reference simulation, the adiabatic decay of the mean temperature is halted at slightly
higher redshift: because of the better mass resolution of this simulation, nonlinear structures of smaller mass can
be resolved earlier while converting part of their gravitational binding energy into internal energy through structure
formation shock waves. In the simulation with reionization, the temperature increases discontinuously atz = 10,
declines again with the adiabatic expansion, until shock heating takes over atz∼ 7−8 (depending on the resolution
of the simulation). Atz = 0, all simulations yield a mean density-weighted temperature of' 0.3 keV. Comparing
this density-weighted energy to the shock-deposited mean energy per particle ofEdiss ' 0.63 keV, we obtain the
mean adiabatic compression factor of the cosmic plasma,{kT/[(γ−1)Ediss]}1/(γ−1) ' 0.6. After the plasma has been
shock-heated, relaxation processes in the course of virialization let the plasma expand adiabatically on average.
Secondly, mildly non-linear structures characterized by a shallow gravitational potential are partly effected by the
Hubble flow which forces them to adiabatically expand.

The top left panel shows the differential Mach number distribution d2εdiss(a,M)/(d logad logM) for our ref-
erence simulation with a resolution of 2× 2563 while the top right panel shows this distribution for the simula-
tion with a resolution of 2× 1283. The lower left panel shows both distributions integrated over the scale factor,
dεdiss(M)/(d logM). Internal shocks are shown with dotted lines and external shocks with dashed lines. One im-
mediately realizes that the question if the first shocks are fully converged among simulations of different resolution
is not well posed because nonlinear structures of smaller mass can be resolved collapsing earlier in higher resolu-
tion simulations. Accordingly, the differential Mach number distribution is not well converged at redshiftsz & 6
while the distribution is well converged forz . 3. Since most of the energy is dissipated at late times, where our
differential Mach number distribution is well converged, the integrated distribution dεdiss(M)/(d logM) shows only
marginal differences among the differently resolved simulations. In particular, our statements about CR injection at
structure formation shocks are robust with respect to resolution issues.

10.7. Summary and conclusions

We provide a formalism for identifying and estimating the strength of structure formation shocks in cosmological
SPH simulations on-the-fly, both for non-relativistic thermal gas as well as for a plasma composed of a mixture of
cosmic rays (CRs) and thermal gas. In addition, we derive an analytical solution to the one-dimensional Riemann
shock tube problem for the composite plasma of CRs and thermal gas (AppendixB.2). In the case of non-relativistic
thermal gas, shock-tube simulations within a periodic three-dimensional box that is longer inx-direction than in the
other two dimensions show that our formalism is able to unambiguously detect and accurately measure the Mach
numbers of shocks, while in the case of plasma composed of cosmic rays (CRs) and thermal gas, the Mach numbers
of shocks are estimated with an accuracy better than 10%. In both cases, we find a very good agreement of the
averaged simulated hydrodynamical quantities (such as density, pressure, and velocity) and the analytical solutions.
Using our formalism for diffusive shock acceleration, we additionally calculate and monitor the shock-injected CR
energy, but without dynamically tracking this CR energy component; the latter will be studied in forthcoming work.
The good agreement between the simulated and theoretically expected shock-injected CR energy demonstrates that
our formalism is reliably able to accelerate CRs instantaneously during the simulation.

Subsequently, we identified and studied structure formation shock waves using cosmological N-body/ hydrody-
namical SPH simulations for a concordanceΛCDM universe in a periodic cubic box of comoving size 100h−1Mpc.
We performed simulations with and without a reionization epoch atz = 10 in order to investigate the effects of
reionization on the Mach number distribution. Our sets of simulations follow only non-radiative gas physics where
we neglected additional physical processes, such as radiative cooling, star formation, and feedback from galaxies
and stars including cosmic ray pressure. Since we are mainly interested in shock waves situated mostly outside the
cluster core regions, the conclusions drawn in this chapter should not be significantly weakened by the exclusion
of those radiative processes. Furthermore, these simplifications align our work with the mesh-based simulations of
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Ryu et al.(2003) and enable a direct comparison and verification of our results. We classify cosmological shock
waves as internal and external shocks, depending on whether or not the associated pre-shock gas was previously
shocked (cf.Ryu et al.2003). Rather than using a thermodynamical criterion such as the temperature, we prefer a
density criterion such as the overdensityδ in order not to confuse the shock definition once we will follow radia-
tively cooling gas in galaxies. External shocks surround filaments, sheets, and halos where the pristine adiabatically
cooling gas is shocked for the first time. Internal shocks on the other hand are located within the regions bound by
external shocks and are created by flow motions accompanying hierarchical structure formation. Their population
includes accretion shocks produced by infalling material along the filaments into clusters, merger shocks result-
ing from infalling halos, and flow shocks inside nonlinear structures which are excited by supersonic motions of
subclumps.

The Mach number distribution weighted by the dissipated energy shows in detail that most of the energy is dissi-
pated in weak shocks which are situated in the internal regions of groups or clusters while collapsed cosmological
structures are surrounded by external strong shocks which have a minor impact on the energy balance. The evolu-
tion of the Mach number distribution shows that the average shock strength becomes weaker at later times while
there is an increasing amount of energy dissipated at shock waves as cosmic time evolves because the mean shock
speed increases together with the characteristic mass of halos forming during cosmic structure formation. For the
same reason, internal shocks play a more important role than external shocks in dissipating energy associated with
structure formation, especially at small redshift. The energy input through reionization processes influences the
Mach number distribution primarily during a period following the reionization era and suppresses strong external
shock waves efficiently because of the significant increase of the sound speed of the inter-galactic medium.

Weighting the Mach number distribution by the injected CR energy shows the potential dynamical implications
of CR populations in galaxy clusters and halos: the maximum and the mean value of the Mach number distribution,
weighted by the shock-dissipated energy, is effectively shifted towards higher values of the Mach number when the
distribution is weighted by the injected CR energy. In other words, the average shock wave responsible for CR
energy injection is stronger compared to the average shock which thermalizes the plasma. The fundamental reason
for this lies in the theory of diffusive shock acceleration at collisionless shock waves and can be phenomenologically
described by a CR injection efficiency: while the CR injection is saturated to an almost equipartition value between
injected CR energy and dissipated thermal energy for strong shocks, in weak shocks most of the dissipated energy
is thermalized and only small parts are used for the acceleration of relativistic particles. Relative to the thermal non-
relativistic energy density, the shock-injected CR energy density is dynamically more important at the outer dilute
cluster regions and less important at the cluster centers since weak shock waves predominantly occur in high-density
regions. This has the crucial consequence that the ratio of CR injected energy to dissipated thermal energy is an
increasing function as the density declines. Such a CR distribution within galaxy cluster is required to explain the
diffuse radio synchrotron emission of galaxy clusters (so-called radio halos) within the hadronic model of secondary
electrons. In order to draw thorough conclusions about the origin of cluster radio halos, more work is needed which
studies the effect of the CR dynamics comprising of CR injection and cooling processes as well as CR diffusion
mechanisms.

We note that our new formalism for shock-detection in SPH simulations should have a range of interesting ap-
plications in simulations of galaxy formation. For example, when combined with radiative dissipation and star
formation, our method can be used to study CR injection by supernova shocks, or to construct models for shock-
induced star formation in the interstellar medium (e.g.Barnes2004). It should also be useful to improve the accuracy
of predictions for the production ofγ-rays by intergalactic shocks (e.g.Keshet et al.2003).

The results of this chapter were worked out in collaboration with V. Springel, T.A. Enßlin, and M. Jubelgas. A
paper entitled“Structure formation shocks in cosmological SPH simulations with relativistic particle populations”
will be submitted to the journalMonthly Notices of the Royal Astronomical Society.
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11. Conclusions and theoretical prospects

In each of the proceeding chapters, I gave a discussion and conclusions of the main results found in the corre-
sponding sections. Here, I will reiterate the most important findings and conclusions while putting them into a
cosmological context and pointing out the future perspective.

In this thesis, I studied non-equilibrium processes such as cosmic rays (CRs) and magnetic fields in clusters of
galaxies. The influence of these non-thermal components on structure formation and galaxy evolution has been
neglected so far despite their importance. Although the standard model of concordance cosmology began its tri-
umphant success supported by various observations and numerical simulations, a few observational discrepancies
with the standard model on galactic scales challenge this successful picture. Some of the inconsistencies may be
circumvented by additionally considering the certainly existent non-thermal components. The advent of multi-faced
γ-ray astronomy with the third generation ofČerenkov telescopes and the future satellite mission GLAST (Gamma-
ray Large Area Space Telescope) as well as new development in radio astronomy with the extended VLA (Very
Large Array) and the future LOFAR (LOw Frequency ARray) project call for advances in theoretical and numerical
astrophysics of non-thermal phenomena.

This thesis is organized into two main parts: the first major part is dedicated to an analytical study of CR protons
in clusters of galaxies and their hadronic interactions with the ambient thermal plasma using multi-frequency obser-
vational results. This detailed study is followed by a theoretical proposal for an observation aiming at unveiling the
still unknown dynamically dominant CR component of radio plasma bubbles. In the second part, a description of
CR gas for cosmological applications especially suited for hydrodynamical simulations is presented. In the course,
I focus on developing a formalism of instantaneously identifying and estimating the strength of structure formation
shocks during cosmological simulations to accelerate CRs through diffusive shock acceleration.

The first main part starts with Chapter5, where I provide a theoretical framework for analytically modeling multi-
frequency signatures resulting from hadronic CR proton interactions with protons of the ambient thermal plasma.
These interactions produce charged and neutral pions which successively decay intoγ-rays and relativistic electrons
or positrons. Theγ-ray source function resulting from decaying neutral pions is presented for two analytical models
that describe this hadronic reaction: the simplerfireball modelassumes a state of hot quark-gluon plasma in thermal
equilibrium after the hadronic interaction that subsequently ablates pions with energy dependent multiplicities. Mo-
tivated by accelerator experiments,Dermerproposed a model that is able to make detailed predictions for the pion
decay inducedγ-ray spectrum while including more realistic effects near the pion production threshold. Using the
newly developedγ-ray source function, I derive an analytic relation between theγ-ray and bolometric X-ray fluxes:
this relation can find application in compiling a suitable sample of galaxy clusters which are promising candidates
for future detection of diffuseγ-rays. The stationary spectrum of hadronically originating secondary electrons is
presented furthermore. It allows the calculation of accompanying synchrotron and inverse Compton emission and
yields thus additional and complementary information about the non-thermal energetic content of clusters. Unlike
hadronically inducedγ-ray emission, these non-thermal emission processes of secondary CR electrons provide how-
ever a biased tracer of the underlying CR proton population due to the presence of possibly different CR electron
populations and the degeneracy of the synchrotron emissivity with magnetic energy density.

In Chapter6, I apply this theoretical framework to clusters of galaxies in order to investigate the question of
the dynamical influence of CRs on the intra-cluster medium (ICM). Using the analytic relation betweenγ-ray and
bolometric X-ray fluxes, I identify a sample of observationally promising cluster candidates (including cooling core
clusters) for constraining the CR proton population. The spatial distribution of CRs within the ICM is assumed to
follow three different scenarios: in the isobaric model, the CR energy density is assumed to be proportional to the
thermal energy density of the ICM, i.e.XCR = εCR/εth . In the scenario of adiabatic compression of CRs during the
formation of the cooling core, this proportionality is imposed prior to the transition. A third model assumes a single
central point source injecting the CRs whose final distribution is governed by diffusion. Comparing to EGRET
(Energetic Gamma Ray Experiment Telescope) upper limits on theγ-ray emission, I am able to constrain the CR
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Conclusions and theoretical prospects

proton population in the central regions of nearby galaxy clusters toXCRp < 20%. This demonstrates that CRs
are not dynamically dominating the central cluster regions although the presence of CRs may thermodynamically
stabilize the cooling core. Additionally, I examine the CR proton population within the giant elliptical galaxy
M 87 using the TeVγ-ray detection of the HEGRA (High Energy Gamma Ray Astronomy) collaboration. Both the
expected radialγ-ray profile and the required amount of CRs support this hadronic scenario.

Furthermore, I study the hypothesis that the diffuse radio synchrotron emission of galaxy clusters is produced
by hadronically originating relativistic electrons. Excellent agreement between the observed and theoretical radio
brightness profiles is obtained for the radio mini halo in Perseus. Since the CR proton and magnetic energy densities
necessary to reproduce the observed radio flux are very plausible, I propose synchrotron emission from secondary
electrons as an attractive explanation of the radio mini-halos found in cooling core clusters. To explain the giant
radio halo of Coma with the hadronic model of secondary electrons, the CR proton-to-thermal energy density profile
has to increase radially up to a moderate CR energy density ofXCR ∼ 10% while assuming plausible parameters for
the magnetic field and CRs. This model can be tested with future sensitiveγ-ray observations of the accompanying
π0-decays. Understanding the underlying formation mechanism of radio halos would open up a complementary
observational window for studies of the dynamical evolution and the interplay of different astrophysical processes
in galaxy clusters.

The trilogy of hadronic CR interaction is completed with Chapter7 where I estimate magnetic field strengths and
CR energy densities of radio emitting galaxy clusters by minimizing the non-thermal energy density contained in CR
electrons, protons, and magnetic fields. Theclassicalminimum energy estimate can be constructed independently
of the origin of the radio synchrotron emitting CR electrons yielding thus an absolute minimum of the non-thermal
energy density. Provided the observed synchrotron emission is generated by a CR electron population originating
from hadronic CR proton interactions, I introduce thehadronicminimum energy criterion which is a non-parametric
approach yielding an absolute minimum energy state and provides a solid foundation to scrutinize the hadronic
model on the basis of radio synchrotron emission alone. For both approaches, I derive the theoretically expected
tolerance regions for the inferred minimum energy densities. Application to the radio halo of the Coma cluster and
the radio mini-halo of the Perseus cluster yields equipartition between cosmic rays and magnetic fields within the
expected tolerance regions. In the hadronic scenario, the inferred central magnetic field strength ranges from 2.4 µG
(Coma) to 8.8 µG (Perseus), while the optimal CRp energy density is constrained to 2%±1% of the thermal energy
density (Perseus). Using the non-parametric minimum energy approach, I discuss the possibility of a hadronic
origin of the Coma radio halo while current observations favor such a scenario for the Perseus radio mini-halo.
Combining future expected detections of radio synchrotron, hard X-ray inverse Compton, and hadronically induced
γ-ray emission should allow an estimate of volume averaged cluster magnetic fields and provide information about
their dynamical state.

The previously presented methods for investigating the CR population are predominantly sensitive to the central
cluster regions due the present high plasma densities and magnetic field strengths. TheChandraX-ray Observatory
is finding a large number of cavities in these central cooling core regions of the X-ray emitting intra-cluster medium
which often coincide with the lobes of the central radio galaxy. Usually, it is assumed that these cavities are
partly or completely inflated by CR gas of unknown composition (electron/proton or electron/positron gas). In
Chapter8, I propose high-resolution Sunyaev-Zel’dovich (SZ) observations to infer the still unknown dynamically
dominant component of the radio plasma bubbles. To this end, I calculate the thermal and relativistic SZ emission of
different compositions of these plasma bubbles while simultaneously allowing for the cluster’s kinetic SZ effect. As
examples, I present simulations of an ALMA (Atacama Large Millimeter Array) observation and of a GBT (Green
Bank Telescope) observation of the cores of the Perseus cluster and Abell 2052. I predict a 5σ detection of the
southern radio bubble of Perseus in a few hours with the GBT and ALMA while assuming a relativistic electron
population within the bubble. In Abell 2052, a similar detection would require a few tens of hours with either
telescope, the longer exposures mainly being the result of the higher redshift and the lower central temperature of
this cluster. Future high-sensitivity multi-frequency SZ observations will be able to infer the energy spectrum of
the dynamically dominant electron population in order to measure its temperature or spectral characteristics. This
knowledge can yield indirect indications for an underlying radio jet model.

In the second major part of my thesis, I address the problem of constructing an accurate and self-consistent numer-
ical model for the description of CRs that aims at studying the dynamical influence of CRs on structure formation
and galaxy evolution. Galactic non-equilibrium processes like shock waves and turbulence have generated magnetic
fields and CRs in the interstellar medium. These CRs play a decisive role within our Galaxy: their pressure, along
with that of the thermal gas, balances gravity, they trace past energetic events such as supernovae, and they reveal
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the underlying structure of the baryonic matter distribution through their interactions. In collaboration with Torsten
Enßlin, I develop in Chapter9 an approximative framework to treat dynamical and radiative effects of CRs in cos-
mological simulations. The guiding principle is a balance between capturing as many physical properties of CR
populations as possible while simultaneously requiring as little extra computational resources as possible. The CR
spectrum is approximated by a single, constant spectral index power-law, with spatially and temporal varying nor-
malization and low-energy cutoff. Particle number and energy conservation principles are used to derive evolution
equations for the basic variables due to adiabatic and non-adiabatic processes. Such are compression, rarefaction,
CR injection via both shocks of supernova remnants and structure formation shock waves, in-situ reacceleration
of CRs, CR spatial diffusion, CR energy losses due to Coulomb interactions, Bremsstrahlung, and hadronic inter-
actions with the background gas, including the associatedγ-ray and radio emission due to subsequent pion decay.
Furthermore, we explain how the formalism can be included into smoothed-particle-hydrodynamics simulations.

Finally, in Chapter10, I develop a formalism for the identification and accurate estimation of the strength of
structure formation shocksduring cosmological smoothed particle hydrodynamics simulations. Shocks not only
play a decisive role for the thermalization of gas in virializing structures but also for the acceleration of CRs through
diffusive shock acceleration. The formalism is applicable both to ordinary non-relativistic thermal gas, and to
plasmas composed of CRs and thermal gas. To this end, I derive an analytical solution to the one-dimensional
Riemann shock tube problem for a composite plasma of CRs and thermal gas. I apply these methods to study
the properties of structure formation shocks in high-resolution hydrodynamic simulations of theΛCDM model. I
find that most of the energy is dissipated in weak internal shocks which are predominantly central flow shocks or
merger shock waves traversing halo centers. Collapsed cosmological structures are surrounded by external shocks
with much higher Mach number, but they play only a minor role in the energy balance of thermalization. I show
that after the epoch of cosmic reionization, the Mach number distribution is significantly modified by an efficient
suppression of strong external shock waves due to the associated increase of the sound speed of the diffuse gas.
Invoking a model for CR acceleration in shock waves, I find that the average strength of shock waves responsible
for CR energy injection is higher than for shocks that dominate the thermalization of the gas. This implies that the
dynamical importance of the shock-injected CR energy density is largest in the low-density halo infall regions, but
is dynamically less important for the weaker shocks occurring in central high-density regions of halos.

The developed numerical methods open up new possibilities to investigate the cosmological role of CR protons
while potentially providing the footing for answering some cosmological problems. At the centers of non-merging
galaxy clusters, the relaxation process is instable and would theoretically lead to catastrophic cooling of cluster
cooling cores which is absent in X-ray observations. The interplay of active galactic nuclei with the ambient plasma
in connection with CRs may play a significant role in the solution to this so-calledcluster cooling flow problem
because CRs provide a temperature floor which thermodynamically stabilizes the cooling system. Strong galactic
winds might be driven by CR protons through Parker instabilities of spiral disks leading to the chemical enrichment
of the intergalactic medium. This mechanism might solve theenrichment problemof high iron abundances of
the intra-cluster medium. Hydrodynamical simulations of the CR component allow realistic predictions of radio
synchrotron, inverse Compton, andγ-ray emission. This is indispensable for the interpretation of future observations
in these wavelength regimes.

In our Galaxy, the energy density of the CR component is in equipartition with the thermal and the magnetic en-
ergy density. Tracing this CR population self-consistently may solve problems of the standard cosmological model
on galactic scales. To reconcile the amount of halo substructure in numerical simulations and observations, star
formation has to be efficiently suppressed in low mass substructure within hydrodynamical simulations. The slow
cooling CR component is able to prevent these system from forming stars by blowing up the galactic gas disk which
is an elegant solution to thissubstructure problem. Using the formalism of instantaneously identifying and accu-
rately estimating the strength of shock waves, one can also address the problem of diffusive shock acceleration at
supernova remnants and simulate the resulting radiative processes. Cross-correlating the simulated maps with those
obtained from multi-frequency observations can yield important insight into plasma physical processes at supernova
shocks. Thus, successful studies of non-equilibrium processes in structure formation and galaxy evolution might
provide the opportunity of interesting future discoveries and resolve some cosmological problems. This would be
an important step towards a coherent understanding of cosmology.

159



Conclusions and theoretical prospects

160



A. Deprojection of X-ray surface brightness
profiles represented by double- β profiles

Owing to the enhanced electron density in the central region the X-ray surface brightness profileSX(r⊥) in cooling
flow cluster can be represented by doubleβ models,

SX(r⊥) =
2∑

i=1

Si

1+ (
r⊥
rci

)2−3βi+1/2

, (A.1)

where the X-ray surface brightness profile is a line of sight projection of the squared electron density and the cooling
function relative to the squared electron densityΛ̃X(Te),

SX(r⊥) =

∫ ∞

−∞

dz n2
e

(√
r2
⊥ + z2

)
Λ̃X

[
Te

(√
r2
⊥ + z2

)]
(A.2)
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Thus the electron densityne(r) can be derived fromSX(r⊥) by inverting the Abel equation
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where the prime denotes the derivative. For the second equation we used thatne(r) is bounded forr → ∞. Using
Eq. (A.1) this equation can be solved analytically yielding
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whereB(a,b) denotes the beta-function (Abramowitz & Stegun1965). Provided the central densityne(0) is known
and assuming furthermore the special case of equality of the twoβ parameter,β1 = β2, we arrive at the following
compact formula for the electron density profilene(r)

ne(r) =
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ni = ne(0)

 2∑
j=1

S j rci

Si rc j


−1/2

. (A.8)

Generalizing to n-foldβ-profiles can be obtained by means of induction.
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B. Riemann shock tube problem

B.1. Shock tube with thermal gas

The Riemann shock-tube calculation ofSod(1978) has become a generally accepted test of numerical hydrodynam-
ical codes. As a baseline for later extension, we present in the section the quasi-analytical solution for the Riemann
problem in the standard case of a polytropic gas. Then, in AppendixB.2 we derive the quasi-analytic solution in
the case of a gas composed of CRs and thermal gas, where the effective adiabatic index depends on the different
equations of state and changes across the shock-tube.

In the following, we summarize the key considerations which lead to the solution of the Riemann problem, for
completeness (see e.g.Courant & Friedrichs1948, Toro1997, Rasio & Shapiro1991, for a compact representation).
For the initial state, we assume a state with higher pressure in the left half-space without loss of generality. At any
time t > 0, this leads to the development of five regions of gas with different hydrodynamical states which are
numbered in ascending order from the right. These regions are separated by the head and the tail of the leftwards
propagating rarefaction wave, and the rightwards propagating contact discontinuity and the shock wave. Mass,
momentum and energy conservation laws are represented by the generalized Rankine-Hugoniot conditions for a
given coordinate system:

vd[ρ] = [ρv],

vd[ρv] = [ρv2 + P], (B.1)

vd

[
ρ
v2

2
+ ε

]
=

[(
ρ
v2

2
+ ε + P

)
v

]
.

Herevd denotes the speed of the discontinuity under consideration with respect to our coordinate system and we
introduced the abbreviation [F] = Fi − F j for the jump of some quantityF across the discontinuity. Within the
leftwards propagating rarefaction wave, the generalized Riemann invariants yield an isentropic change of state,
ds= 0, and conserve the quantityΓ+:

Γ+ = v +

∫ ρ

0

c(ρ′)
ρ′

dρ′ = v +
2c(ρ)
γ − 1

= const. (B.2)

For the last step, we assumed a polytropic equation of stateP = Aργ. Appropriately combining these equations, the
solution can be expressed as follows:

ρ(x, t) =
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(B.3)

P(x, t) =
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Riemann shock tube problem

Hereµ2 = (γ−1)/(γ+1), c1 =
√
γP1/ρ1, andc5 =

√
γP5/ρ5 are the speeds of sound,vt is the speed of propagation

of the rarefaction wave’s tail, andvs is the shock speed. The post-shock pressure is obtained by solving (numerically)
the non-linear equation, which is derived from the Rankine-Hugoniot conditions over the shock while ensuring the
conservation of the two Riemann invariants of Eqn. (B.2):
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The density on the left of the contact discontinuity isρ3 = ρ5(P2/P5)1/γ, since the gas is adiabatically connected to
the left. The post-shock densityρ2 is also derived from the Rankine-Hugoniot conditions,

ρ2 = ρ1

(
P2 + µ

2P1

P1 + µ2P2

)
. (B.7)

The post-shock gas velocityv2 is obtained from the rarefaction wave equation,x/t = v−c, and usage of the Riemann
invariantΓ+:

v2 = v3 =
2c5

(γ − 1)
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P5

)(γ−1)/(2γ) , (B.8)

and from Eqn. (B.5) we derive the speed of propagation of the rarefaction wave’s tailvt = c5 − v2/(1− µ2). Finally,
mass conservation across the shock yields

vs =
v2

1− ρ1/ρ2
. (B.9)

B.2. Shock tube for a composite of cosmic rays and thermal gas

B.2.1. Derivation

In contrast to the previous case, the composite of CRs and thermal gas does not obey a polytropic equation of state.
In this section, we present an analytical derivation of the Riemann shock-tube problem for the composite of poly-
tropic gas and a component that is adiabatically compressed at the shock such as relativistic gas or a homogeneous
magnetic field which is parallel to the shock front. For the analytical derivation, we adopt the following two approx-
imations: (i) We assume the CR adiabatic index (Eqn. (10.6)) to be constant over the shock-tube, and (ii) we neglect
CR diffusion. The first assumption is justified as long as the CR pressure is not dominated by trans-relativistic CRs
of low energy while the second assumption is a strong simplification with respect to simulating realistic shocks
including CRs (Kang & Jones2005). However, including CR diffusion complicates the problem significantly such
that it is not any more analytically tractable.

For the initial state, we again assume a state with higher pressure in the left half-space. At any timet > 0, five
regions of gas with different hydrodynamical states coexist, and are numbered in ascending order from the right.
We use the notationPi = PCR,i + Pth,i and εi = εCR,i + εth,i for the composite quantities in regioni. The full
solution of the initial value problem consists of determining 12 unknown quantities in the regions (2) and (3):ρ2,
v2, PCR2, Pth2, εCR2, εth2, andρ3, v3, PCR3, Pth3, εCR3, εth3. The thermal gas obeys a polytropic equation of state,
i.e. εth,i = Pth,i/(γth − 1) for i ∈ {2,3} and the regions (2) and (3) are separated by a contact discontinuity, implying
vanishing mass flux through it and thus,v2 = v3 andP2 = P3. This reduces the dimensionality of our problem to
8 unknowns. In our approximation, the CRs are adiabatically expanded over the rarefaction wave and adiabatically
compressed at the shock while obeying a polytropic equation of state:

PCR3 = PCR5

(
ρ3
ρ5

)γCR

, εCR3 = εCR5

(
ρ3
ρ5

)γCR

,

PCR2 = PCR1

(
ρ2
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)γCR

, εCR2 = εCR1

(
ρ2
ρ1

)γCR

,

(B.10)

which further reduces the dimensionality by 4 unknowns. Moreover, the thermal gas is also adiabatically expanded
over the rarefaction wave yieldingPth3 = Pth5(ρ3/ρ5)γth. Hence, we need 3 more linearly independent equations for
the solution: 2 are obtained by considering the Rankine-Hugoniot conditions (Eqn. (B.1)) in a stationary system of
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B.2.2 Solution of the Riemann problem

reference withvd = vs. The last equation is given by the Riemann invariantΓ+, where the effective speed of sound
is given byc =

√
γeffP/ρ:

Γ+ = v +

∫ ρ
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c(ρ′)
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dρ′ = v + I (ρ) = const. with I (ρ) =
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√
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Here, we use the abbreviationsÃi = γiAi wherei ∈ {th,CR} andAi = Pi ρ
−γi denotes the invariant adiabatic function

over the rarefaction wave. Introducing the difference of the adiabatic indices of the two populations,∆γ = γth−γCR,
the solution to the integralI (ρ) is given by
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)
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Ãth ρ
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ÃCRργCR + Ãth ργth
. (B.12)

Although the second argument of the incomplete Beta-function is always negative,I (ρ) is well defined as long as we
consider a non-zero CR pressure which is characterized byÃCR > 0, andγCR sufficiently far fromγth, i.e. ∆γ > 0.
For ÃCR = 0, the integral can be solved in closed form, yieldingI (ρ) = 2c(ρ)/(γth − 1).

B.2.2. Solution of the Riemann problem

The densities leftwards and rightwards of the contact discontinuity,ρ3 andρ2, are obtained by solving (numerically)
the following non-linear system of equations. It is derived from matching the possible post-shock states (pressure
and density) with the possible post-rarefaction wave states while simultaneously ensuring the conservation laws
over the rarefaction wave and the shock:

f1(xs, xr) ≡ [P2(xr) − P1] (xs − 1)− ρ1xs
[
I (ρ5) − I (xrρ5)

]2
= 0,

f2(xs, xr) ≡ [P2(xr) + P1] (xs − 1)+ 2[xsε1 − ε2(xs, xr)] = 0.
(B.13)

Here we introduced the shock compression ratioxs ≡ ρ2/ρ1 and the rarefaction ratioxr ≡ ρ3/ρ5. Furthermore, the
implicit dependences onxs andxr can explicitly be expressed as follows,

P2(xr) = P3(xr) = PCR5x
γCR
r + Pth5xγth

r , (B.14)

PCR2(xs) = PCR1x
γCR
s , (B.15)

ε2(xs, xr) = εCR1x
γCR
s +

1
γth − 1

[P2(xr) − PCR2(xs)]. (B.16)

The roots of the non-linear system of equations (Eqn. (B.13)) immediately yield the post-shock pressure of the
fluid via Eqn. (B.14). The post-shock velocityv2 = v3 and the shock speedvs are then obtained from the Rankine-
Hugoniot relations,

v2 =

√
[P2(xr) − P1]

ρ2 − ρ1

ρ2ρ1
, (B.17)

vs =
ρ2v2
ρ2 − ρ1

. (B.18)

Using the previous results, we can construct the solution to the generalized Riemann problem for CRs and thermal
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gas as follows:

ρ(x, t) =


ρ5, x ≤ −c5t,
ρ(x, t), −c5t < x ≤ −vtt,
ρ3, −vtt < x ≤ v2t,
ρ2, v2t < x ≤ vst,
ρ1, x > vst,

(B.19)

P(x, t) =


P5, x ≤ −c5t,
ACRρ(x, t)γCR + Ath ρ(x, t)γth, −c5t < x ≤ −vtt,
P2 = P3, −vtt < x ≤ vst,
P1, x > vst,

(B.20)

v(x, t) =


0, x ≤ −c5t,
x
t +

√
ÃCRρ(x, t)γCR−1 + Ãth ρ(x, t)γth−1, −c5t < x ≤ −vtt,

v2 = v3, −vtt < x ≤ vst,
0, x > vst.

(B.21)

Herec5 =
√
γeff5P5/ρ5 is the effective speed of sound,vt is the speed of propagation of the rarefaction wave’s tail,

andvs is the shock speed. Matching the rarefaction wave equation to the density of the post-contact discontinuity
yieldsvt:

vt = I (ρ3) − I (ρ5) +
√

ÃCRρ
γCR−1
3 + Ãth ρ

γth−1
3 . (B.22)

The density within the rarefaction regime is obtained by solving (numerically) the non-linear equation for a given
(x, t), which is derived from the rarefaction wave equation,

I [ρ(x, t)] − I (ρ5) +
x
t
+

√
ÃCRρ(x, t)γCR−1 + Ãth ρ(x, t)γth−1 = 0. (B.23)
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C.1. Parameters of profiles for the sample of nearby galaxy clusters

Parameters of electron density profilesne(r) of our cluster sample are given in TableC.1 where the clusters are
ordered according to their property of containing a cooling flow (upper part) or not (lower part). Note that the
parameters are subject to different formulae (C.1) and (C.2),

ne(r) =

2∑
i=1

ni

(
1+

r2

r2
ci

)−3β/2

, (C.1)

ne(r) =

 Λ̃[Te(0)]

Λ̃[Te(r)]
×

2∑
i=1

n2
i

(
1+

r2

r2
ci

)−3β

1/2

. (C.2)

Equation (C.2) follows from deprojection of X-ray surface brightness profiles which are represented by doubleβ
models. The derivation of this deprojection is given in AppendixA. For simplicity and consistency with the X-ray
surface brightness profiles given inMohr et al.(1999) we ignored the weak dependency onTe(r) in Eq. (C.2).

In order to model the temperature profilesTe(r) for our cooling flow cluster sample we applied the universal
temperature profile for relaxed clusters proposed byAllen et al.(2001) to data taken from the literature,

Te(r) = T0 + (T1 − T0)

[
1+

(
r

rtemp

)−η]−1

. (C.3)

This equation matches the temperature profile well up to radii of∼ 0.3 rvir , which is sufficient for our purposes since
we are especially interested in the core region of clusters. The parameters of the temperature profile for particular
cluster are given in TableC.2.

C.2. Limits on cosmic ray protons in nearby galaxy clusters

Table C.3 shows constraints forXCRp using the isobaric model and the adiabatic CRp model as explained in
Sect.6.3.3. For clusters like Perseus, Virgo, Ophiuchus, and Coma we can obtain quite tight constraints on the
population of CRp. Because in the adiabatic model the CRp scaling parameterXCRp is a function of radius, the
valueXadiabatic

CRp refers to the unprimed quantity in Eq. (6.8) which reflects the outer core region of the cluster.

TableC.4 shows upper limits on the CRp density parameter ˜nCRp,0, the CRp number parameterÑCRp, and the
averaged CRp luminosityLCRp of the central active galaxy as explained in Sect.6.3.4. This shows that within this
conceptually simple model we are able to put constraints onLCRp. The limits which are strongest in the case of M87
in the Virgo cluster represent conservative bounds since we choose the active CRp diffusion scenario resulting in
spectral steepening of the CRp population.

C.3. Prediction of the diffuse γ-ray emission in nearby galaxy clusters

Following the formalism described in Sect.6.3.2and comparing the resultingγ-ray fluxFγ(E > Ethr) to expected
flux sensitivities ofČerenkov telescopesFγ,exp(E > Ethr), we obtain possible upper limits on the CRp scaling
parameterXCRp for an integrated volume out to a radial distance of 3h−1

70 Mpc. TableC.5 shows constraints for
XCRp using the isobaric and the adiabatic model of CRp described in Sect.6.2. By comparing these limits to
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those obtained by analyzing synchrotron emission in the Perseus and Coma cluster (see Table6.1) and assuming
a substantial contribution of hadronically originating CRe to these radio halos there is a realistic chance to detect
extragalactic pion decay inducedγ-ray emission in clusters like Perseus, Virgo, Ophiuchus, and Coma.

C.4. Plasma bubbles in galaxy clusters: profiles of the Perseus cluster
and Abell 2052

The following TableC.6gives supplementary information on the profiles of the Perseus cluster and Abell 2052 for
our investigation concerning the study of the composition of plasma bubbles in galaxy clusters with the SZ effect in
Chapter8.

As an analytically feasible toy model, we assume spherical geometry of the plasma bubble and adopt the general
n-fold β-profile for the electron pressure of the ICM which might find application for cool-core clusters:

Pe(r) = ne(r)kTe(r) =
N∑

i=1

Pi

1+ (
r

ry,i

)2−3βy,i/2

. (C.4)

The amplitude of the kinetic SZ effect is proportional to the line-of-sight integrated electron density for which we
also assume a generaln-fold β-profile:

ne(r) =
N∑

i=1

ni

1+ (
r

rw,i

)2−3βw,i/2

. (C.5)

The bubble parametersrc andrb correspond to the distance from the cluster center to the bubble center and the
bubble radius, respectively, and have been measured from the X-ray maps. The azimuthal angle to the bubble center
φ is measured from the axis defined by positive values of the relative right ascension whileηs denotes the angle of
the normal vector of the mushroom-shaped southern bubble in A 2052 which we model as a half-sphere.
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C.4 Plasma bubbles in galaxy clusters: profiles of the Perseus cluster and Abell 2052
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