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Chapter 1

Introduction

Motto: Therealvoyageofdiscoveryconsistsnot in
seekingnewlandscapes,but in havingneweyes.

(M. Proust)

The magnetic properties of condensedmatter is a subjectwhich hasbeenstudied for nearly
three thousand years. Lodestone, a natural ferric ferrite (Fe3O4) attracted the attention of
greek philosophers being mentioned by Thales who believed lodestone to possessa soul.
The chinese were the �rst to understand and exploit the dir ective properties of lodestone.
From about 100 AD there are referencesin chinese texts to a 'south-pointer ', which was a
lodestone spoon mounted on a top of an earthplate, permitting the rotation upon its bowl in
responseto magnetic torque. The result of the study on the lodestone's properties was oneof
the �rst technological product: the navigational magnetic compass. Although the compass
was certainly used in West Europe by the twelfth century (referencesto it are dated 1175)
only in the 16th century camethe �rst prove that the earth itself is a magnet. William Gilbert
(1544-1603),physicist at the Queen's Elisabeth court, wr ote 'De magnete' giving the �rst ra-
tional explanation to the mysterious ability of the compassneedle to point north-south. This
work opened the serial of scienti�c description of magnetic properties of the matter.
The progressin the following centuries has been more rapid and two major achievements
have emerged which connect magnetism with other physical phenomena. Firstly, in 1820
Hans Christian Oersted showed that a magnetic needle rotates if it is placed near an elec-
tric circuit, demonstrating the inextricably link between magnetism and electricity. Later
Michael Faraday [21, 22] demonstrated the link between light and magnetism, the magneto-
optic Faraday effect which bears his name. Thesecapital discoveries were uni�ed in four
equations, the laws of Amp �ere, Faraday, Biot-Savart and Laplace by Maxwell. Thesefour
equations epitomize the electromagnetic revolution. Richard Feymann claimed that 'ten
thousandyearsfromnow, therecanbelittle doubtthat themostsigni�cant eventof the19th century
will bejudgedasMaxwell'sdiscoveryof thelawsofelectrodynamics'.
With Maxwell's equations the classicalelectromagnetism was complete, but ferromagnetism
remained a mystery. It was in 1907when Peter Weissproduced a theory of ferromagnetism

13
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basedon the assumption that the interaction between magnetic molecules can be described
by an internal 'molecular �eld'. Combining the molecular �eld with the theory by Langevin
of paramagnetic solids gave a description of the phase transition at the Curie temperature
where a ferromagnet lossesits magnetisation and becomesparamagnetic.
The existenceof this 'molecular �eld' produced a strong con�ict between classical theory
of magnetism and experiment, the solution being given by quantum mechanics. Bohr pos-
tulated that the angular momentum of electrons is quantized and the orbital magnetic mo-
ments are associatedwith the orbiting electron currents. In 1922a famous experiment by
Stern and Gerlach proved beyond all doubts that the magnetic moments have a quantized
character. Compton suggested in 1921that the electron possessedalso a magnetic moment
associatedwith an intrinsic spin angular momentum and this was discovered by Goudsmit
and Uhlenbeck in 1925. In 1928 Dirac [23, 24] explained the existence of spins by writ-
ing down a relativistically invariant extension of Schrödinger 's equation where the electron
spin camenaturally out of the calculation. The Weiss�eld was shown by Dirac and Heisen-
berg to arise from the Pauli principle that no two electrons could occupy the samestate.
We mentioned here just few moments in the history of the magnetism. However it is the
magnetism in condensed matter systems, including ferromagnets, spin glassesand low-
dimensional systems,which is still of great interesttoday. Macroscopicsystemsexhibit mag-
netic properties which are fundamental dif ferent from thoseof atoms and molecules,despite
the fact that they are composed of the same basic constituents. This arises becausemag-
netism is a collective phenomenon, involving the mutual cooperation of enormous number
of particles, and in this sensesimilar to the superconductivity and super�uidity .
The technological drive to �nd new materials for use in permanent magnets, sensorsor in
recording applications runs in parallel with the effort to explain theoretically the existent
properties of materials. All new achievements need a strong theoretical support and ac-
cordingly the KKR band structure method in its relativistic version is a valuable tool in the
ground stateproperties of the condensedmatter.
The scope of the present thesis is to give an insight into dif ferent aspectsof magnetism:
Compton magnetic scattering and positron annihilation in the metallic systemsand the mag-
netic properties in Cr-chalcogenidesystems,for which a theoretical description is presented.

1.1 Compton effect

The Compton effect was discovered at the beginning of the 20th century, when it was ob-
served that the scattering processaffectsto someextent the energy spectrum of the radiation.
This revelation arise from experiments with scattered ° -rays, which indicates not only that
the secondary radiation beam was softer than the primary beam,but also that the softening
depends on the scattering angle.
A few years later, Arthur Compton carried out a famous set of measurements with X-rays
(Compton 1923[25, 26]). Using a recently developed wavelength analyser, he determined
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for the �rst time numerically the softening of the scattered radiation. The scattering of the
light on a metallic target was described as an interaction between the photons and indi-
vidual electrons which behave as freeparticles. In classicalphysics, electromagnetic waves
possesno momentum. To assigna momentum to an electromagnetic wave was a revolution-
ary idea at that time and so,Compton scattering emerged asone of the dir ectmanifestations
of the quantum nature of light.
Soon later it was realized that the Compton scattered line is broaden. Jauncey(1925)[27]
was the �rst who linked the motion of the target electrons to a Doppler broadening of the
Compton scattered beam. Unfortunately he choose to base his calculations on the Bohr-
Sommerfeld orbital model and, not surprisingly , his predicted lineshapes were unrealistic.
Du Mond(1929) [28, 29] had more successwhen he used the novel Fermi-Dirac distribu-
tion function to predict the lineshape; indeed, his result on beryllium possibly representthe
earliest dir ect evidence for the validity of Fermi-Dirac as opposed to Maxwell-Bolzmann
statistics for the electron gas.
Nowadays, most of physicists connect the Compton effect with the early vindication of
quantum ideas whereas many would associateit with the high-energy physics, but only
very few of them would link the phenomenon to studies on the electron momentum density
distributions.
Despite this situation, the Compton scattering is still a subject of interest for the solid state
physicists, Compton-scattering studies providing accessto the electron momentum distri-
bution of the target (Cooper 1985 [30], Schülke 1991 [31]). A part of the present work is
an attempt to make the connection between electron momentum density and experimental
accessibleCompton pro�les more transparent.

1.2 Positron annihilation

Positrons entering a solid annihilate mainly by emitting two ° rays in nearly opposite di-
rections. The 2D-ACAR (two-dimensional angular correlation of the annihilation radia-
tion) measurements consist in detecting simultaneously the dir ection of the two ° photons.
The 2D-ACAR spectrum is proportional to the two-dimensional projection of the electron-
positron momentum density n2° (~r ). Thus a 2D-ACAR measurement contains information
on the electron and the positron wave functions, and on the positron-electron and electron-
electron correlations. Also, the positron annihilation is a successfulmethod for Fermi sur-
facemeasurement in metallic systems.

1.3 Cr-chalcogenide systems

The systemCr-chalcogenide is a classof materials possessingmetallic, half-metallic or semi-
conducting character dependent on the anion and on the ratio between Cr and chalcogen
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atoms. Also, Cr-chalcogenidesmay have ferromagnetic, antiferr omagnetic or non-collinear
spin structure for dif ferent structures and compositions. The substitution of Ti or V for Cr
enlarge this class of materials and enable new properties, as spin-glass behaviour for Ti
substituted Cr5Te8. Also, the Te substitution for Sewithin an isostructural serial leads to
a signi�cant change of interatomic distances between metal atoms. As a consequence,the
magnetic interaction between metal neighbours is weaker.
All thesestructural and compositional modi�cations for the Cr-chalcogenidesystemsin dis-
cussion within this thesis have beenvery precisely characterized by experimental measure-
ments performed by the group of Prof. W. Benschfrom University of Kiel. The theoretical
investigations performed by us comesto support the interpr etation of the experimental re-
sults and to enable the understanding of the dif ferent magnetic properties of individual
Cr-chalcogenide systems.

1.4 Scopeof the work

First-principles investigations are performed in the framework of density functional the-
ory (DFT) within the local density approximation as implemented in the spin polarized
relativistic version of the Korringa-Kohn-Rostoker (SPR-KKR)band structure method. The
fundamentals of the density functional theory (DFT) which represent the basis of the self-
consistent band structure calculations, aswell as the method to solve the Kohn-Sham-Dirac
equation basedon the multiple scattering theory treating spin-orbit coupling and spin po-
larisation on an equal footing are presented in detail in Chapter 2. The coherent potential
approximation (CPA) used to deal with random substitutional alloys is presented also in
Chapter 2 .
The basicsof the theoretical approachof the magnetic Compton pro�le is presentedin Chap-
ter 3. The calculations of the dir ectional magnetic Compton pro�le for the pure transitional
metals (Fe and Ni) is compared with the experimental data. The decomposition of the Fe
spectra into s, p and d-like contribution is accomplished. The anisotropic Compton pro�le
for the disordered alloy Ni-Co is calculated and the effect of the disorder in Fe3Pt systems
is discussed. The in�uence of spin-orbit coupling on the magnetic Compton pro�les of Gd
and Y-Gd alloys is considered. Finally, the in�uence of the spin-orbit coupling and orbital
polarisation on the magnetic Compton pro�le of UFe2 is discussedin detail.
The theoretical approach for the electron-positron momentum density and the formalism
for calculating the two-dimensional angular correlation of the annihilation radiation (2D-
ACAR) is presented in Chapter 4. 2D-ACAR spectra for a pure transitional metal (V) is
compared with the experimental data and with LMT O calculations.
In Chapter 5, the connection between the composition, structural characteristics and mag-
netic properties in Cr-chalcogenide systemsis discussed. Ground stateband structure SPR-
KKR calculations have been performed in order to establish the magnetic moments and
magnetic phase stability for binary CrX (X = S, Se,Te) compounds and for CrSexTe1¡ x al-
loys. The magnetic moments and density of statesin the non-stoichiometric Cr1+ x (Te/Se)2
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compounds have been calculated. The preferenceof Cr for one crystallographic site in the
trigonal structure of the spacegroup P¹3m1 is explained using energetic arguments. The
in�uence of Ti substitution for Cr into Cr5Te8 on the structure and the magnetic properties
is discussed. The preferential site occupation of the metal atoms Ti and Cr is determined.
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Chapter 2

Theory

2.1 Density Functional Theory

In the last 30 years, many theoretical techniques were developed to describe the electronic
structure of condensed material using self-consistent �rst principles quantum-mechanical
methods.
One of the dif �culties for a successfultheoretical description of a given material arise from
electron-electron interaction. If one decides to ignore the effectsof electron-electron interac-
tion, then the motion of eachelectron is described by a single-particle wave function. Thus
the ground state of the system could be written (Hartr ee Fock Theory) as a antisymmetric
product of one-electron wave functions. However in this way the properties of the con-
densed material cannot be described correctly. Therefore, one should include the effects of
the interaction between the electrons making some sensible approximations to enable one
to successfully model such a system.
Density Functional Theory (DFT) is a general theoretical framework which enableus to cal-
culate the ground stateenergy Eg of any condensedmatter system consisting of electrons in
someexternal potential.
DFT was intr oduced in 1964by Hohenberg and Kohn [32]. It is a theoretical tool that pro-
vides a general framework for the calculation of the ground state of an ensembleof atoms,
whose nuclei are �xed at speci�ed positions, using the electronic density asa basicvariable
of the total energy functional, which is written E[n(~r )]. The square bracketsare the standard
way to indicate that a function depends on a function rather than a variable; in this case
energy is a function of electronic density n(~r ) which vary with respectto ~r .
DFT dif fers from Hartr ee Fock theory, as it uses the electronic density rather than wave
functions asbasicquantities to describe the properties of a material. DFT also includes both
exchangeand correlation effectsin a mean �eld sense,whereasHartr eeFock theory includes
exchange,but ignorescorrelation effects. DFT has also the advantage that it can be used ef-
�ciently for calculating the properties of systems that contains hundr eds of particles - one
would not attempt to solve such a problem using Hartr ee-Fock-like methods.

19
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2.1.1 Non-relativistic Density Functional Theory

The development of the DFT enable a wide variety of systems to be described correctly by
this theory including systems with degenerate ground states, spin-polarised systems and
many others.
The Hamiltonian for a system of N interacting electrons can be written as:

Ĥ = T̂ + Û + V̂ = Ĥ0 + V̂ : (2.1)

In this equation, T̂ representsthe kinetic energy of the electrons, Û representstheir Coulomb
repulsion and V̂ is their interaction with an external �eld.
The ground stateenergy of the electronic system is:

Eg = < ª jĤ0 + V̂ jª > : (2.2)

The electronic density is written as:

n(~r ) = < ª jn̂(~r )jª > (2.3)

where ª is the many-electron wave function representing the whole system. The operator
n̂(~r ) representsthe electronic density at point ~r . In terms of �eld operators for creation and
annihilation of particles this operator reads:

n̂(~r ) =
X

¾

©+
¾(~r )©¾(~r ) ; (2.4)

where we sum over the particle spin ¾. We can also write down the expressionfor the oper-
ators in Eq. (2.1) in terms of �eld operators:

Û =
1
2

e2

4¼²0

X

¾;¾0

Z Z
©+

¾(~r )©+
¾0(~r 0)

1
j~r ¡ ~r 0j

©¾0(~r 0)©¾(~r )d3r d3r 0 (2.5)

V̂ =
X

¾

Z
vext (~r )©+

¾(~r )©¾(~r )d3r (2.6)
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T̂ = ¡
~2

2m

X

¾

Z
r ©+

¾(~r )r ©¾(~r )d3r : (2.7)

Eq. (2.5) representsthe Coulomb repulsion between the electrons, the factor 1
2 outside oc-

curs becausethe summation for eachpair is done twice. Eq. (2.6)representsthe effect of the
external potential vext and (2.7) is the kinetic energy operator.
Nonr elativistic DFT is basedon two statements,that were derived by Hohenberg and Kohn
[32] and that form the basic theorems for DFT:

1. All ground statepropertiesof a systemof N interacting electronsactedon by the samewell
de�nedexternalpotentialvext (~r ) canbeexpressedasauniquefunctionalsof thedensitydistri-
bution n(~r ). In particular onehasfor thegroundstateenergy:

Eg[n(~r )] =
Z

vext (~r )n(~r )d3r + F [n(~r )] : (2.8)

This �rst term in Eq. (2.8)describesthe energy due to the interaction of the electronswith the
external potential vext and the second term describesthe rest of the energy contributions of
the system. The energy functional F [n(~r )] is actually de�ned asthe ground stateexpectation
value of the Hamiltonian Ĥ0, where Ĥ0 = T̂ + Û, with T̂ describing the kinetic energy of
electrons and Û describing the interactions between electrons, respectively.
It should be mentioned that the energy functional F [n(~r )] is a universal functional and this
implies that F [n(~r )] does not refer solely to a particular system, but is valid for any number
of particles in the system and for any external potential vext (~r ).
It is convenient to separatethe functional F [n(~r )] into two parts. The �rst term is the Hartr ee
energy EH [n(~r )] and the second is the unknown functional G[n(~r )], which is a universal
functional in the samemanner asF [n(~r )].

F [n(~r )] = EH [n(~r )] + G[n(~r )] (2.9)

Furthermor e, one may make the de�nition

G[n(~r )] = T0[n(~r )] + Exc[n(~r )] (2.10)

where T0[n(~r )] is the kinetic energy of a system of non-interacting electrons in the ground
state with density distribution n(~r ) and the only unknown is the so-called exchange-corre-
lation energy Exc[n(~r )] and thus an approximation for this has to be made. The exchange-
correlation energy is de�ned as the part of energy F [n(~r )] not included in EH [n(~r )] nor in
T0[n(~r )]. The physical origin for this term is the fact that electrons tend to avoid eachother
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asa consequenceof the Pauli exclusion principle and Coulomb repulsion.
Under the previous suppositions, the expressionfor the ground stateenergy readsas:

Eg[n(~r )] =
Z

vext (~r )n(~r )d3r + EH [n(~r )] + T0[n(~r )] + Exc[n(~r )]

=
Z

vext (~r )n(~r )d3r +
1
2

e2

4¼²0

Z Z
n(~r )n(~r 0)
j~r ¡ ~r 0j

d3r d3r 0

+ T0[n(~r )] + Exc[n(~r )] : (2.11)

To deal with this expression for the ground state energy one can make use of the second
theorem of DFT:

2. Thegroundstateenergy associatedwith a givenexternalpotentialis foundby minimizing the
total energy functionalwith respectto changesin theelectrondensitywhile thenumberofpar-
ticlesisheld�xed. Thedensitythat yieldstheminimumtotalenergy is thegroundstatedensity.

Next we need to perform the minimization of the total energy. The number of electrons N
in our system doesnot changeand we can write:

K [n(~r )] =
Z

n(~r )d3r = N : (2.12)

To solve the minimization problem the Lagrange multiplier method is used. According to
this method, K [n(~r )] is multiplied by the unknown Lagrange multiplier ¹ (which must have
the unit of energy) and subtracts it from the total energy functional. The result is written as:

E[n(~r )] ¡ ¹K [n(~r )] = T0[n(~r )] +
1
2

e2

4¼²0

Z Z
n(~r )n(~r 0)
j~r ¡ ~r 0j

d3r d3r 0+
Z

n(~r )vext (~r )d3r +

Exc[n(~r )] ¡ ¹
Z

n(~r )d3r : (2.13)

Minimizing this functional with respect to the electronic density distribution n(~r ), one is
now able to determine ¹ from the conservation of particles constraint, K [n(~r )], for a given
electron density distribution. Taking an in�nitesimal variation of Eq. (2.8) and setting the
resultant expressionequal to zero, we end up with:

Z
±n(~r )

h
vext (~r ) +

±T0[n(~r )]
±n(~r )

+
1
2

e2

4¼²0

Z
n(~r 0)

j~r ¡ ~r 0j
d3r 0+

±Exc[n(~r )]
±n(~r )

¡ ¹
i
d3r = 0 : (2.14)
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Eq. (2.14)should be valid for an arbitrary variation in density ±n(~r ) and this can only be
true if the expression between the brackets is zero. The extremal nGS , which is the ground
statedensity for the energy functional is obtained when:

¹ = vext (~r ) +
±T0[n(~r )]

±n(~r )
+

1
2

e2

4¼²0

Z
n(~r 0)

j~r ¡ ~r 0j
d3r 0+

±Exc[n(~r )]
±n(~r )

: (2.15)

This Euler equation for an interacting system of electrons seemsto be not very helpful to
get nGS(~r ), becauseof the unknown quantities ¹ and Exc(~r ). To solve the problem, one
make the following supposition using quantum mechanical theory: for a non-interacting
electronic system, EH [n(~r )] = Exc[n(~r )] = 0, so Eq. (2.15)becomes:

vext (~r ) +
±T0[n(~r )]

±n(~r )
= ¹ (2.16)

If we use the notation:

vef f (~r ) = vext (~r ) +
1
2

e2

4¼²0

Z
n(~r 0)

j~r ¡ ~r 0j
d3r 0+

±Exc[n(~r )]
±n(~r )

(2.17)

we get

vef f (~r ) +
±T0[n(~r )]

±n(~r )
= ¹ (2.18)

and one can notice that the Euler equations for an interacting system and that of a non-
interacting gas are formally identical. Assuming that there is a method to obtain the effec-
tive potential vef f (~r ), one is now able to determine the ground stateof an interacting system
using similar techniques to that for determining the ground state of a non-interacting sys-
tem acted on by the external potential vext (~r ).
For this system, the many body Schrödinger equation can be reduced by separation of vari-
ables to N single-particle Schrödinger equations and the many body wave function is a
product of single-particle wave functions. Accordingly we can write the Schrödinger equa-
tion for eachelectron individually:

h
¡

~2

2m
r 2 + vext (~r )

i
ª i = ² i ª i : (2.19)

Using the de�ned effective potential from Eq. (2.17),the Schrödinger equation for our inter-
acting electronic system is formally identical:

h
¡

~2

2m
r 2 + vef f (~r )

i
ª i = ² i ª i : (2.20)
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The Schrödinger-like equation containing vef f is the so-called the Kohn-Sham equation and
ª i are Kohn-Sham orbitals. ª i and ² i are not the wave function and the corresponding
energy for real electrons and becauseof this they don't have any physical meaning. ª i

and ² i are simply auxiliary quantities for calculating n(~r ) and the total energy using the
expression:

n(~r ) =
NX

i =1

jª i (~r )j2 : (2.21)

The eigenvalues ² i can also be used to express the total energy associatedwith the set of
one-electron equations (seeEq. (2.20)):

NX

i =1

² i = T0[n(~r )] +
Z

vef f (~r )n(~r )d3r

= T0[n(~r )] +
Z

vext (~r )n(~r )d3r +
e2

4¼²0

Z Z
n(~r )n(~r 0)
j~r ¡ ~r 0j

d3r d3r 0

+
Z

±Exc[n(~r )]
±n(~r )

n(~r )d3r : (2.22)

If we substitute T[n(~r )] from Eq. (2.22)into Eq. (2.11)we get:

Eg[n(~r )] =
NX

i =1

² i ¡
1
2

e2

4¼²0

Z Z
n(~r )n(~r 0)
j~r ¡ ~r 0j

d3r d3r 0¡
Z

±Exc[n(~r )]
±n(~r )

n(~r )d3r + Exc[n(~r )] :(2.23)

Let's assumewe have an adequateapproximation for Exc. Then we have a setof self consis-
tent equations to solve. The starting point is to make a guessfor the effective potential in Eq.
(2.17).Using this effective potential one can solve the Kohn ShamEq. (2.20)using standard
single-particle theory (seerefs. [33], [34]). The resulting ª i is used to calculate n(~r ) by Eq.
(2.21).The density n(~r ) is re-used to calculate, by Eq. (2.17),the potential vef f . We continue
going round this loop until the potential at one iteration is the same(within a required accu-
racy) with the potential coming from the previous iteration and we get at the �nal vef f . The
eigenfunctions ² i obtained solving the Kohn-Sham Eq. (2.20)with this effective potential are
used to calculate the total energy Eg[n(~r )] from Eq. (2.23).
This formalism is equally applicable to bosons and fermions, the exchange-correlation en-
ergy is that which takes the statistics into account.
In the formalism presentedabove, all the terms except the exchange-correlation energy are
treated exactly. The critical problem of DFT is to use an appropriate approximation for the
exchange-correlation energy, becausefor solid state systems, except for the caseof a uni-
form electron gas, the explicit form is not known. Due to the Coulomb repulsion, one may
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think that there is a region of depleted charge surrounding eachelectron. At a given point
~r 0 the density depletion associatedwith the electron located at ~r is nh(~r ;~r 0). The exchange-
correlation hole must contain a unit charge, i.e., the sum-rule

Z
nh(~r ;~r 0)d3r 0 = ¡ 1 (2.24)

must be satis�ed.
The derivation of the exchange-correlation energy Exc[n(~r )] can be done using a method
known asadiabatic connection [35, 36,37]. The basicconcept is that while keeping the den-
sity �xed, the non-interacting system is connected to the interacting system via a coupling
constant ¸ , which represent the strength of the electron-electron interaction. ¸ = 0 implies
the non-interacting system and ¸ = 1 is the fully interacting system. Using this method, the
exchange-correlation functional can be written as:

Exc[n(~r )] =
1
2

e2

4¼²0

Z
n(~r )d3r

Z
nh(~r ;~r 0)
j~r ¡ ~r 0j

d3r 0: (2.25)

The exchange-correlation hole nh(~r ;~r 0) is actually averagedover a coupling constant depen-
dent hole nh

¸ (~r ;~r 0):

nh(~r ;~r 0) =
Z 1

0
nh

¸ (~r ;~r 0)d¸ : (2.26)

A useful quantity to de�ne from Eq. (2.25) is the exchange-correlation energy per particle
²xc(n(~r )), otherwise known asenergy density:

²xc(n(~r )) =
1
2

Z
nh(~r ;~r 0)
j~r ¡ ~r 0j

d3~r 0 : (2.27)

Simply said, the electronic many body problem would be solved if nh(~r ;~r 0) were known
exactly in analytic form.
Becauseof the isotropic nature of the Coulomb interaction, the exchange-correlation func-
tion canbeevaluated using exactwave functions and it canbeshown that, although the hole
may be strongly non-spherical, the only contributing parts to the total exchange-correlation
energy are the spherical ones, due to the fact that the non-spherical terms average out to
zero.

The most used approximation method to calculate the exchange-correlation energy is called
Local Density Appr oximation (LDA). In LDA, a slowly varying electron density distribution
is supposed. The exchange-correlation energy of an electronic system is constructed by
assuming that the exchange-correlation energy per electron at a point ~r in the electron gas,
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is equal to the exchange-correlation energy per electron in a homogeneouselectron gasthat
has the sameelectron density at the point ~r . It follows that

Exc[n(~r )] ¼
Z

n(~r )²xc(n(~r ))d3r : (2.28)

The physical meaning of this formula is the following: in performing an integral we divide
the volume up into in�nitesimal volumes and sum all their contribution to the integral. Here
the assumption is made that in eachin�nitesimal volume the density is constant and hence
the exchange-correlation energy will approximately take on the value for the homogeneous
electron gas in that in�nitesimal volume.
The LDA approximation is exactfor two extremecases:slowly varying charge densities and
high electron densities, but in spite of somefamous failur es,it was found that the LDA pro-
duces surprisingly good results for a wide classof systemswith rapidly varying densities.
If the spin degreesof freedom are taken into account, von Barth and Hedin [38] established
a straightforwar d generalization of the Hohenberg-Kohn theorem, founding so-called spin-
density functional theory (SDFT). Within this approach it was assumed that the external
�eld couples only to the spin degreeof freedom which leads to the additional potential term
in the Hamiltonian

¹ B

Z
~Bext (~r ) ~̂m(~r )d3r (2.29)

with Bext , the external magnetic �eld and ~̂m(~r ) the spin density operator

~̂m(~r ) =
X

®;¯

©+
® (~r )~¾®¯ ©¯ (~r ) (2.30)

and ~¾®¯ , the vector of Pauli matrices.
The energy functional depends now not only on the particle density n(~r ) but also on the
spin density ~m(~r ). If the external magnetic �eld Bext and the quantization axis point along
the z dir ection everywhere, one has to consider only the z projection mz of the spin density
and the particle density n as independent variables in the energy functional

Eg[n(~r ; mz(~r )] = F [n(~r ); mz(~r )] +
Z

[vext (~r )n(~r ) ¡ ¹ B Bz(~r )mz(~r )]d3r : (2.31)

Using the notation n+ and n¡ for the spin-pr ojectedparticle densities, we can write the spin
and particle densities as

m(~r ) = n+ (~r ) ¡ n¡ (~r ) (2.32)

n(~r ) = n+ (~r ) + n¡ (~r ) (2.33)
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and one can generalize the Kohn-Sham Eq. (2.20)for eachspin ¾in the following way:

(¡ ~r 2 + V ¾(~r ))©¾
i (~r ) = ²¾

i (~r ) : (2.34)

The effective spin-dependent potential used in this equation is

V ¾ = Vext + VH + V ¾
xc + ¾Bext ; (2.35)

with the exchange-correlation potential

V ¾
xc(~r ) =

@Exc[n+ ; n¡ ]
@n¾(~r )

: (2.36)

Doing some transformations, one can set up the new independent potentials:

Vxc(~r ) =
1
2

(V +
xc (~r ) + V ¡

xc (~r )) =
@Exc[n; m]

@n(~r )
(2.37)

Bxc(~r ) =
1
2

(V +
xc (~r ) ¡ V ¡

xc (~r )) =
@Exc[n; m]

@m(~r )
(2.38)

and re-write the spin-dependent potential as:

V ¾ = Vext + VH + Vxc + ¾Bef f (2.39)

with Bef f = Bext + Bxc. Clearly, due to the de�nition of Bef f , there may exist a magnetic
solution for zero external �eld strength. If such a solution exists, it may have a lower energy
than the non-magnetic caseand the theory may predict magnetic ordering.
Similar with the DFT, a crucial point in SDFT is to supply a reasonableapproximation for
the exchange-correlation energy. Using the same justi�cation like in the caseof LDA, the
most used approximation in the spin-dependent casehas the form:

Exc[n(~r ); mz(~r )] =
Z

n(~r )²xc[n; m]d~r ; (2.40)

where ²xc[n; m] is the correlation energy of a homogeneousspin polarized electron gas.
Parametrizations for ²xc[n; m] canbe found in the work of v. Barth and Hedin [38], Gunnars-
son and Lundqvist [39], Vosko, Wilk and Nusair [40], Perdew and Zunger [41], respectively.
The LSDA provides a realistic description of the structural properties, elasticand vibrational
properties for both solids and molecules, but for certain systemsthe LSDA hasa strong ten-
dency to over-binding.
The Generalized Gradient Appr oximation (GGA) for the exchange-correlation energy im-
proved upon the Local Spin Density Appr oximation (LSDA) description of atoms,molecules
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and solids ([42, 43,44,45,46]). In the Generalized Gradient Appr oximation (GGA) the gra-
dient is included as a new variable and one tries to determine the best schemethat ful�lls
the relation:

E GGA
xc [n(~r )] =

Z
d3r f (n+ ; n¡ ; r n+ ; r n¡ )n(~r ) : (2.41)

There are many parametrizations for the exchangeand correlation functionals, among the
most known one should mention the PW91 [47, 48] exchange and correlation functional,
which was constructed by intr oducing a real-spacecut-off of the spurious long-range part
of the density-gradient expansion for the exchange-correlation hole. The cut-off procedure
was designed in such a way that as many as possible of the known features of the exact
exchangeand correlation energy were obeyed.
It has later been discovered that there are some unphysical wiggles in the PW91 exchange-
correlation potential for small and large reduced density gradients. There are also quite
many parameters in the PW91 functional, and it has been found that more features of the
exchange-correlation energy exist than those satis�ed by the PW91parametrization.
To remedy the weakness of the PW91 functional the Perdew-Burke-Ernzerhof (PBE) func-
tional hasbeenconstructed [49,50]. This is today the most used GGA functional. The second
order expansion for slowly varying or small density variations is ful�lled, as in the caseof
PW91,but this constraint hasbeenrelaxed in the PBEfunctional to give a better description
of the linear responselimit.
In the GGA, the appropriate exchangeenergy form for slowly varying densities is

E GGA
x [n(~r )] ¼

Z
n(~r )²GGA

x (n(~r ); s(~r ))d3r ¼
Z

n(~r )²LD A
x (n(~r ))F GGA

x (s(~r )) (2.42)

where the variable s is the reduced density gradient, given by the formula:

s(n(~r )) =
r n(~r )

2kF n(~r )
(2.43)

and kF is de�ned by n(~r ) = k3
F

3¼2 .
The functional present in Eq. (2.41),F GGA

x (s(~r )), is the exchangeenhancement function of
the GGA and in the caseof PBEit is given by

F P B E
x = 1 + · ¡

·
1 + ¹s 2=·

(2.44)

where, as before, s is the reduced density gradient and the constants ¹ = 0:2195and · =
0:804are chosen in such a way, that the gradient expansion around s = 0 should give the
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correct linear responseof the homogeneous electron gas, and the local Lieb-Oxfor d bound
[51]:

E P B E
x [n+ ; n¡ ] ¸ Exc[n+ ; n¡ ] (2.45)

¸ ¡ 1:679e2
Z

d3r n(~r )4=3

should be satis�ed.
The PBEfunctional is often called asa '�rst principles' functional, becauseit is constructed
from known limits of the homogeneous electron gas and scaling relations. Furthermor e, it
doesn't contain any parameters, which are not either fundamental constantsor determined
to satisfy some speci�c quantum mechanical boundary conditions. It should however be
noted that exceptfor the high and low gradient constraints (linear responseof homogeneous
electron gasand Lieb-Oxfor d bound) the exchangeenhancementfunction is not restricted.
The GGA has the same problems as LDA in calculating properties like densities of states
(DOS), band structuresor photo-emission spectra. Even the correct density functional will
not describe theseproperties exactly. It is beyond the DFT to calculate properties other than
ground state energy and (spin polarized) charge density. In practice LDA gives reasonably
good optical spectra and band structures are looking as expected in many cases,but there
are exceptions. For example, the strongly correlated system La2CuO4 is predicted to be a
metal while in reality it is an insulator. Also in line with this, band-gaps calculated with
GGA or LDA are smaller than the observed values.

2.1.2 Relativistic Density Functional Theory

In the previous section,an explicit form of the Hamiltonian was not speci�ed, so this means
that relativistic effects can be included through various correction terms, like the inclusion
of the rest masseffect or spin-orbit coupling, in this formalism.
Nevertheless,not all the phenomena can get this way an appropriate treatment. Many phe-
nomena appearing in magnetic materials are intrinsically of relativistic origin and because
of that, they require an adapted fully relativistic version of DFT.
The �rst of such a description was made by Rajagopaland Callaway [52]. They generalized
the Kohn-Hohenberg-Shamdescription for the non-relativistic inhomogeneous fermion gas,
with spin effects included. A further development of this model was done later by Ra-
jagopal (1978) [53], Ramana and Rajagopal (1979) [54] and separately, by McDonald and
Vosko (1979)[55].
The interaction of the external magnetic �eld ~Bext (~r ) = ~r £ ~Aext with the electronic sys-
tem is included in the Hamiltonian through the coupling of the Dirac current to the vector
potential ~Aext :

Ĥ = T̂ + Û + V̂ ¡ e
Z

Ĵ (~r ) ~Aext (~r )d3r : (2.46)
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Here the Dirac electronic system is described using four -vector notation, so the scalar po-
tential and the vector potential are combined to get the following expressionfor the external
potential:

A ¹
ext (~r ) = (

1
ec

vext ; ~Aext (~r )) : (2.47)

The four -current electron density distribution has the expression:

J ¹ (~r ) = (cn(~r ); ~J (~r )) : (2.48)

These four components of J ¹ (~r ) must satisfy the continuity equation, ensuring that the
charge within the system is conserved, so the four components of the vector are not all
independent of one other:

±J ¹ (~r )
@x¹

= 0 = r ~J (~r ) +
±n(~r )

@t
: (2.49)

The operatorial form of this vector is:

^~J (~r ) = c' + (~r )~®' (~r ) ; (2.50)

where c is the speedof light, ' + (~r ) and ' (~r ) are Dirac �eld operators and ~® is the 4x4 Dirac
matrix

~® =
µ

0 ~¾
~¾ 0

¶
: (2.51)

The energy operators which enter in the Eq. (2.46)are similar with those used in the non-
relativistic version of DFT ( Eqs. (2.5),(2.6)and (2.7))

Û =
1
2

e2

4¼²0

Z Z
' + (~r )' + (~r 0)

1
j~r ¡ ~r 0j

' (~r 0)' (~r )d3r d3r 0 (2.52)

V̂ =
Z

vext (~r )' + (~r )' (~r )d3r (2.53)

T̂ =
Z

' + (~r )(c~®~p + ¯ mc2)' (~r )d3r (2.54)

where ¯ is a 4£ 4 Dirac matrix (I 2 -the 2£ 2 identity matrix):

¯ =
µ

I 2 0
0 ¡ I 2

¶
: (2.55)
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The Kohn Hohenberg theorems were changed to describe the properties of the total energy
functional W[J ¹ (~r )] of a system of relativistic electrons:
² Thetotal energy per unit volumeof a systemdescribedby Hamiltonian from Eq. (2.46) can be
written asa functionalof theexpectationvalueof thefour-currentdensity

W[J ¹ (~r )] = T[J ¹ (~r )] + G[J ¹ (~r )] + e
Z

J ¹ (~r )A ¹ (~r )d3r : (2.56)

Here T[J ¹ (~r )] = < ©jT̂ j© > is the relativistic kinetic energy of a system of non-interacting
electrons, with the rest mass energy included and G[J ¹ (~r )] = < ©jÛj© > is the internal
potential energy of the system. Making use of the Lagrange multiplier method one can get

±W[J ¹ (~r )] =
Z

±J ¹ (~r )
h ±T(~r )

±J ¹ (~r )
+

±G(~r )
±J ¹ (~r )

+ eA¹
ext ¡ ! ¹

i
d3r = 0 : (2.57)

±J ¹ (~r ) is an arbitrary small change in J ¹ (~r ) so the quantity between the brackets must be
zero to ful�ll this condition:

±T(~r )
±J ¹ (~r )

+
±G(~r )
±J ¹ (~r )

+ eA¹
ext = ! ¹ : (2.58)

Furthermor e, this relation can be arranged in such a way to look similar with that for non-
interacting electronic system, intr oducing the effective potential:

A ¹
ef f [J ¹ (~r )] = eA¹

ext +
1
e

±G(~r )
±J ¹ (~r )

; (2.59)

which can be split into effective scalarand vectorial potentials:

vef f = vext +
±G(~r )
±n(~r )

(2.60)

and

~Aef f = ~Aext +
1
e

±G(~r )

±~J (~r )
: (2.61)

For getting the effective potential, the following internal energy functional expression is
used:

G[J ¹ (~r )] =
1
2

e2

4¼²0

Z Z
n(~r )n(~r 0)
j~r ¡ ~r 0j

d3r d3r 0

¡
1
2

e2

4¼²0c2

Z Z
J (~r )J (~r 0)
j~r ¡ ~r 0j

d3r d3r 0+ Exc[J ¹ (~r )] (2.62)
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Now one can make useof the secondKohn-Hohenberg statement, adapted for the relativis-
tic case:
² Thenon-degenerategroundstateofan inhomogeneousinteractingsystemofN relativisticelectrons
canbedescribedby a setof N singleparticleeffectiveDirac equationswith a suitablede�nedsingle
particle-likescalarandvectorpotential.
The effective single-particle Kohn-Sham-Dirac equation obtained looks as:

³
c®(p̂ ¡ e~Aef f (~r )) + ¯ mc2 + vef f (~r )

´
ª i (~r ) = wi ª i (~r ) : (2.63)

One needsto start with a reasonableguessfor the exchange-correlation energy E xc[n(~r ; ~J (~r )]
which is evaluated by meansof relativistic quantum Monte-Carlo calculations. The second
step is to get the effective potentials (using Eq. (2.62)and then Eqs. (2.60)and (2.61))which
will be inserted in the Kohn-Sham-Dirac equation. Solving this equation and getting wi and
©i will enableus to calculate the new electronic and current densities:

n(~r ) =
NX

i =1

ª +
i (~r )ª i (~r ) (2.64)

and

~J (~r ) = c
NX

i =1

ª +
i (~r )®ª i (~r ) (2.65)

respectively, which will enter in the next loop. One ends up this loop with a self-consistent
determined effective potential and electronic current densities. Thosewill be used to deter-
mine the total energy through the formula:

W[n(~r ); ~J (~r )] =
NX

i =1

wi ¡
1
2

e2

4¼²0

Z Z
n(~r )n(~r 0)
j~r ¡ ~r 0j

d3r d3r 0+ Exc[J ¹ (~r )]

¡
1
2

e2

4¼²0c2

Z Z
J (~r )J (~r 0)
j~r ¡ ~r 0j

d3r d3r 0¡
Z

±Exc[n(~r ); ~J (~r ))]
±n(~r )

n(~r )d3r

¡
Z

±Exc[n(~r ); ~J (~r ))]

±~J (~r )
~J (~r )d3r : (2.66)

It should be emphasized that this equation doesn't contain the vector potential ~A and the
current density ~J has no explicitly dependenceon the vector potential.
The exchange-correlation energy poses the most severe problem as this term include the
current-current interactions. The relativistic exchange-correlation functional, E xc[J¹ (~r )] has
to include all the magnetic exchange-correlation effectswhich are intrinsically relativistic in
nature, like the retardation of the Coulomb interaction between electrons and the magnetic



2.1. DENSITY FUNCTIONAL THEORY 33

interaction between moving electrons, through its dependence on the spatial components
of current. In principle, the exchange-correlation energy can be calculated from the solution
of the self-consistent set of Kohn-Sham equations together with the expression for the total
energy functional but in practice this implementation is done using severalapproximations,
not unlike the non-relativistic Local Density Appr oximation (see[37]).
Such an alternative method of taking relativistic effects into account in DFT has been de-
veloped by Rajagopal and Callaway(1973) [52] and emphasized by MacDonald and Vosko
(1979)[55]. Using this approach, one is able to derive equations that look more like the fa-
miliar non-relativistic DFT for magnetic systems.
Performing a Gordon decomposition of the current density, one is able to separateits orbital
and spin parts, leading to a fully relativistic version of SDFTdescribed above. Ignoring the
diamagnetic effects, i.e. neglecting the terms in ~Aext (~r ) and assuming that the orbital cur-
rents are also negligible, the coupling of the spin part of the current to the vector potential
~Aext (~r ) can be described by a term analogous to that in Eq. (2.31)

¹ B ~m(~r ) ¢~Bef f (~r ) (2.67)

with the spin magnetisation de�ned by:

~m(~r ) =
X

i

©y
i (~r )¯ ~¾©i (~r ) : (2.68)

As in the SDFT, the quantization axis is chosento be the z dir ection. Under thesesupposi-
tions, one gets the approximate Kohn-Sham-Dirac equation

h
ic~~®r + ¯ mc2 + vef f + ¹ B ¾zBef f (~r )

i
©i (~r ) = wi ©i (~r ) (2.69)

with the effective scalar potential vef f (~r ) and the effective magnetic �eld Bef f (~r ) given by
the following expressions:

vef f (~r ) = vext (~r ) +
e2

4¼²0

Z
n(~r 0)

j~r ¡ ~r 0j
+

±Exc[n(~r ); m(~r )]
±n(~r )

(2.70)

Bef f = Bext +
±Exc[n(~r ); m(~r )]

±m(~r )
: (2.71)

In this way, ignoring the orbital current density contribution, one arrives at a Kohn-Sham-
Dirac equation completely analogous to the non-relativistic SDFT Schrödinger equation
(2.31).It should beemphasized that this relativistic DFT approachis derived asa �rst princi-
ple framework to calculate the properties of condensedmater with internal magnetic effects.
However, the implementation of this theory is a complex problem. An adequatemethod for
this implementation will be presentedin the following.
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2.2 Korringa-Kohn-Rostoker Green's Function Method

In the previous chapter it was shown how the many-body problem can be reduced using
DFT to that of single particles moving independently in an effective �eld that describes
all the interactions with the surrounding electrons and nuclei. One has to choosenow an
appropriate numerical band-structure method in order to perform a quantitative ab-initio
description of the electronic structure of the crystal on the basisof the Kohn-Sham scheme.
The basis of all calculations done within this thesis is multiple scattering theory. When
applied to ordered solids, multiple scattering theory leads to the so-called Korringa-Kohn-
Rostoker band theory method. This theory was �rst derived by Korringa [56, 57] and, in-
dependently, a bit later by Kohn and Rostoker [58]. Unlike most other methods, the KKR
aims to calculate the so-called 'single-particle Green'sfunction(GF)' instead of the electronic
wave functions and energy eigenvalues of the crystal. As will be shown later, knowledge of
the Green's function is enough to calculate all single-particle expectation values of a crystal
like particle densities or other quantities important in condensed matter physics, such as
densities of statesand magnetic moments.
It should also be emphasized that the KKR method producesequations that can be used for
the �rst-principle calculations in a manner that is very ef�cient from a computational point
of view and it has the very appealing advantage that it can be easygeneralized to deal with
disordered alloys aswell asperiodic solids.
Between those who brought important contributions to the KKR-GF method, should be
mentioned Faulkner [59, 60], Faulkner and Stocks [61], Györffy and Stocks [62], Stocks,
Temmerman and Györffy [63], Gonis [64, 65, 66], Dederichs et al. [67] and for relativistic
treatment, Strangeet al. [68], Weinberger [69], Strange[37] and Ebert [70, 71,72, 73].
The basicidea of KKR is that an incident wave function to any given site is a superposition of
the outgoing onesfrom all the other sites. In order to determine the Green's function of the
system at a �xed energy, the �rst task is to determine the wave functions and the so-called
t-matrix which describesthe scattering on eachindividual atomic scatterer characterized by
non-overlapping, spatially bounded potentials. Further one has to construct the so-called
T-matrix in order to reproduce the scattering in the whole crystal. Using the appropriate
Dyson equation, the atomic t-matrices and the structure constantsG which depend only on
the crystal structure can be combined to construct the so-called scattering path operator ¿.
This scattering path operator describesall possible scattering events for a single electron on
its way between two individual scattering centers and becauseof this is a central quantity
to construct the Green's function for the whole system.
Becausemuch of the scattering theory is written in terms of the Green's function, the fol-
lowing section will be devoted to intr oduce this very useful mathematical instrument and
to indicate someof its most characteristic featuresand uses.
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2.2.1 Green's Function

Let's consider the following eigenvalue problem, where Ĥ0(~r ) is a general Hermitian oper-
ator:

Ĥ0(~r )©(~r ) = E©(~r ) : (2.72)

The Green's function associatedto this Hamiltonian equation is de�ned by

[E ¡ Ĥ0(~r )]G0(~r ;~r 0; E) = ±(~r ¡ ~r 0) : (2.73)

Here it must be noticed that G(~r ;~r 0; E) must ful�ll the same boundary conditions as the
solution of Eq. (2.72),©(~r ).
The Green'sfunction canbeexpressedthrough the eigenvaluesEn and eigenfunctions ©n (~r )
of the Hamiltonian Ĥ0(~r ). Assuming a complete setof orthonormal wavefunctions with the
property

X

n

©n (~r )©y
n (~r 0) = ±(~r ¡ ~r 0) (2.74)

the spectral representation of the Green's function is given by:

G0(~r ;~r 0; E) =
X

n

©n (~r )©y
n (~r 0)

E ¡ En
: (2.75)

One has to notice that the energy integral of the Green's function is not de�ned at real en-
ergies becauseof the singularities at En and has to be evaluated as a contour integral. In
order to de�ne the Green'soperator for eachreal energy, it is necessaryto specify a limiting
procedure for the parameter E. For this reason,the so-called retarded (-) and advanced (+)
Green's functions are intr oduced:

G§ (~r ;~r 0; E) = lim
² ! 0

X

n

©n (~r )©y
n (~r 0)

E ¡ En § i²
: (2.76)

Thosetwo operators are connected through the following relation:

G+ (~r ;~r 0; E) = G¡ (~r 0;~r ; E)y (2.77)

The Green's function is used in scattering theory as a method of solving inhomogeneous
dif ferential equations. The solution of the equation:

(Ĥ0(~r ) + V(~r ))ª( ~r ) = Eª( ~r ) (2.78)
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where E is an eigenvalue of the Hamiltonian Ĥ0(~r ), can be written as

ª( ~r ; E) = ©(~r ; E) +
Z

G0(~r ;~r 0; E)V(~r 0)ª( ~r 0; E)d3r 0 : (2.79)

This equation is called Lippman-Schwinger equation and ©(~r ; E) is an eigenvector of the
operator Ĥ0. Analogously , the Green's function of a perturbed system is connected to the
Green's function of the unperturbed system by the so-called Dyson equation:

G(~r ;~r 0; E) = G0(~r ;~r 0; E) +
Z

G0(~r ;~r 00; E)V(~r 00)G(~r 00;~r 0; E)d3r 00: (2.80)

We can use this equation to approximate the Green function for the perturbed system, sub-
stituting G(~r 00;~r 0; E) back into this equation and keeping only the n �rst terms. This kind of
approximation is called Born approximation of nth order.
A very useful quantity de�ned in scattering theory is the so-called T-operator. The matrix
of this operator is de�ned in many ways. Two equivalent de�nitions are:

V(~r )G(~r ;~r 0; E) =
Z

T(~r ;~r 2; E)G0(~r2;~r 0; E)d3r2 (2.81)

G(~r ;~r 0; E)V(~r 0) =
Z

G0(~r ;~r2; E)T(~r 2;~r 0; E)d3r2 (2.82)

Substitution of the �rst of theseexpressionsinto the Dyson equation gives:

G(~r ;~r 0; E) = G0(~r ;~r 0; E) +
Z Z

G0(~r ;~r1; E)T(~r 1; r2; E)G0(~r2;~r 0; E)d3r1d3r2 (2.83)

This equation connect via the T-operator the free-particle Green's function to the full scat-
tering Green's function and describesall possible scattering in the system. The Dyson-type
equation for the T-matrix can be written also asfollows:

T(~r ; r 0; E) = V(~r )±(~r ¡ ~r 0) +
Z

V(~r )G0(~r ;~r1; E)T(~r 1;~r 0; E)d3r1 : (2.84)

2.2.2 The Calculation of Observables

The Green's function contains all physical relevant informations about an electronic system
and can be used dir ectly to calculate many observablequantities straightforwar dly. We will
show in this section how the density of states,charge density or magnetic moments can be
calculated.
The starting point will be the retarded Green's function formula (2.76),where ©n and En are
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the eigenfunction and eigenvalues of the Hamiltonian. If one can let ~r and ~r 0 to be in the
sameatomic cell, one has the site-diagonal Green's function. Taking the trace of both sides
of the formula and integrating over ~r we have:

Z
TrG+ (~r ;~r 0; E)d3r = lim

² ! 0

X

n

1
E ¡ En + i²

(2.85)

where the normalization condition
Z

©y
n (~r )©n (~r )d3r = 1 (2.86)

was taken into account. Making use now on the following identity

lim
² ! 0

1
x ¡ a + i²

=
1

x ¡ a
¡ i¼±(x ¡ a) (2.87)

we can write

¡
1
¼

=
Z

TrG+ (~r ;~r 0; E)d3r =
X

n

±(E ¡ En ) : (2.88)

The right side of the previous equation is clearly the density of states,because

Z E +¢ E

E

X

n

±(E ¡ En )dE = N ; (2.89)

where N is the number of statesbetween E and E + ¢ E. Therefore we can write the follow-
ing simple expressionfor the density of statesin terms of the Green's function:

n(E) = ¡
1
¼

=
Z

TrG+ (~r ;~r 0; E)d3r (2.90)

and the number of statesbelow energy Emax as

N (Emax ) = ¡
1
¼

=
Z Emax

¡1

Z
TrG+ (~r ;~r 0; E)d3r : (2.91)

To calculate the charge density, we consider the following expressionfor this quantity:

½(~r ) = e
occX

n

©y
n (~r )©n (~r ) (2.92)
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where the summation extends over all occupied states. Combining this expression with
retarded Green's function expression (2.76), putting then ~r = ~r 0 and integrating over the
energy up to the highest occupied stateat the Fermi level EF , gives

Z EF

¡1
TrG+ (~r ;~r 0; E)dE = lim

² ! 0

X

n

Z EF

¡1
Tr

©n (~r )©y
n (~r 0)

E ¡ En + i²
dE

= lim
² ! 0

X

n

Tr f ©n (~r )©y
n (~r 0)g

Z EF

¡1

1
E ¡ En + i²

dE

=
X

n

©n (~r )©y
n (~r )

Z EF

¡1

µ
1

E ¡ En
¡ i¼±(E ¡ En )

¶
dE (2.93)

where under the trace, the order of ©n and ©y
n canbe reversed. If we take the imaginary part

of eachside and take into account the integration of the ±-function over the speci�ed range
change the summation of all statesto all occupied states,we can write the �nal expression
for the charge density as follows:

½(~r ) = ¡
e
¼

=
Z EF

¡1
TrG+ (~r ;~r ; E)dE : (2.94)

Another quantity of interest is the spin magnetization density, given by:

~m(~r ) = ¡
occX

n

©n (~r )¯ ~¾©y
n (~r ) : (2.95)

Similar to the previous derivation, we obtain the following expressionfor this quantity:

~m(~r ) =
1
¼

=
Z EF

Tr ¯ ~¾G(~r ;~r ; E)dE ; (2.96)

where the trace includes the spin. One can get the spin magnetic moment performing the
integral over ~r :

mspin =
1
¼

= Tr
Z EF

dE
Z

­
¯ ¾̂zG(~r ;~r ; E)d3r (2.97)

The magnetic moment at a site, coming from the orbital motion of electrons, the so called
orbital magnetic moment, can be expressedin an analogous way as

morb =
1
¼

=Tr
Z EF

dE
Z

­
¯ l̂zG(~r ;~r ; E)d3r : (2.98)
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The probability that an electron in the solid will have a momentum ~p and an energy E is
given by the spectral density function,

A(E; ~p) = ¡
1
¼

Z EF

¡1
=G(~p;~p; E)dE : (2.99)

The function G(~p;~p 0; E) that appears in this expression is the double Fourier transform of
G(~r ;~r 0; E), written as

G(~p;~p0; E) =
1

N ­

Z Z
exp

³
i (~p~r ¡ ~p0~r 0)

´
G(~r ;~r 0; E)d3r d3r 0 : (2.100)

The spectral density A(E; ~p) is very useful for interpr eting the results of positron annihila-
tion experiments, but can also be connected with momentum densities, constructed from
magnetic Compton scattering experiments.

2.2.3 The single-site scattering

The �rst step in a �rst-principles study of magnetic and relativistic effects in metals and al-
loys using the KKR-GF method is to get the solutions of the Kohn-Sham-Dirac equations for
an individual scattering center. For that purpose Strangeet al. [74] investigated the associ-
ated Lippman-Schwinger equation and derived a set of radial dif ferential equations for the
single-site solutions.
Before one begins to delve into the details of scattering theory, it is useful to examine the
physical properties of the scattering potential. The overall potential of the material can be
thought of asbeing composed of individual smoothly varying single-site potentials centred
on eachlattice site. As one is dealing with closepacked systems,it is reasonableto assume
that the potential centred on each individual lattice site can be taken to be spherical sym-
metric around this lattice point. This assumption allowed us to use the so-called muf �n-tin
construction for the effective potential: the spaceis divided into non-overlapping at most
touching spheres centered at each atom-site. The potential is supposed to be symmetric
inside this so-called muf �n-tin sphere and to have a constant value between the bounding
spheres. For convenience,this constant value of the potential in the so-called interstitial re-
gion is often chosento be the origin of the energy scale.The expressionof the potential can
be written as:

Vn (~r ¡ ~Rn ) = Vn (~rn ) =
½

Vn (rn ) if j~r n j < r n
mt

0 otherwise
(2.101)

For a system which is subject to a magnetic �eld, one will consider the motion of an electron
in a spherically symmetric potential and an effective magnetic �eld, for simplicity chosento
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point along the z axis: ~B(~r ) = B(r )êz. The corresponding Dirac equation has the following
expression:

[i° 5¾r c(
@
@r

+
1
r

¡
¯
r

~K ) + V + ¯ ¾zB + (¯ ¡ 1)
c2

2
¡ E]ª º = 0 : (2.102)

Here ¾r = r̂ ¢~¾and the matrix ° 5 is given by:

°5 =
µ

0 ¡ I 2

¡ I 2 0

¶
: (2.103)

The spin-orbit operator is de�ned by:

K̂ = ¯ (~¾¢~l + 1) : (2.104)

To solve the Dirac equation, one makes the ansatz:

ª º =
X

¤

ª ¤ º (2.105)

where ª ¤ º have the same form as the linearly independent solutions for a spherical sym-
metric potential:

ª ¤ (~r ; E) =
µ

g· (r; E)Â¤ (r̂ )
if · (r; E)Â¡ ¤ (r̂ )

¶
: (2.106)

Here g· and f · are the large, and respectively the small component of the radial wave func-
tion and Â§ ¤ are the spin angular functions. The spin-orbit quantum number · and mag-
netic quantum number ¹ were combined in the symbol ¤ = (·; ¹ ) and ¡ ¤ = (¡ ·; ¹ ). The
spin-angular functions Â¤ can be expanded further , using the Clebsch-Gordon coef�cients
C(l 1

2 j ; ml ; ms), the complex spherical harmonics Y m l
l and the Pauli-spinors Âms in the fol-

lowing expression:

Â¤ =
X

ms = § 1=2

C(l
1
2

j ; ¹ ¡ ms; ms)Y
¹ ¡ ms

l (r̂ )Âms : (2.107)

The spin-angular functions Â¤ (r̂ ) are simultaneous eigenfunction of the operators j 2, j z and
K̂ , with ~j = ~l + 1

2~¾. The eigenvalues of theseoperators can be connected by the following
relations:

· =
½

¡ l ¡ 1 for j = l + 1
2

l for j = l ¡ 1
2

(2.108)
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j = j· j ¡
1
2

(2.109)

¡ j · ¹ · + j (2.110)

¹l = l ¡ S· : (2.111)

Here S· = ·= j· j is the sign of · and ¹l is the orbital angular momentum quantum number
corresponding to Â¡ ¤ . If one inserts the ansatz (2.106)into the single-site Dirac equation
(2.102)and integrates over the angles,the following radial dif ferential equation areobtained:

P0
¤ º = ¡

·
r

P¤ º +
·

E ¡ º
c2

+ 1
¸

Q¤ º +
B
c2

X

¤ 0

< Â¡ ¤ j¾zjÂ¡ ¤ 0 > Q¤ 0º (2.112)

Q0
¤ º =

·
r

Q¤ º ¡ [E ¡ º ]P¤ º + B
X

¤ 0

< Â¤ j¾zjÂ¤ 0 > P¤ 0º : (2.113)

Here P¤ º = rg¤ º , Q¤ º = crf ¤ º and the coupling coef�cients are given by

< Â¤ j¾zjÂ¤ 0 > = ±¹¹ 0

8
><

>:

¡ ¹
· +1 =2 if · = · 0

¡
q

1 ¡ ( ¹
· +1 =2)2 for · = ¡ · 0¡ 1

0 otherwise

: (2.114)

The selection rules derived from the properties of the angular matrix elementslead to a cou-
pling between the partial waves with the same ¹ , i.e. ¹ is still a good quantum number.
Also, for two coupled partial waves with angular momentum l and l 0one has the restriction
l ¡ l0 = 0; § 2; : : :, i.e. only waves with the same parity are coupled. Even with these re-
strictions, there are an in�nite number of partial waves coupled, but in practice all coupling
terms for which l ¡ l0 = § 2 are ignored. Feder et al. [75] justify this restriction showing
that the error intr oduced by this approximation is of the order 1=c2. On the other hand,
Jenkins and Strange [76] showed that one has to retain the coupling in · (up to l = 5; 6) if
the calculated quantities are very small on the energy scale,such as the magnetocrystalline
anisotropy energy, for example. For the present calculations, only l ¡ l 0 = 0 coupling was
kept, restricting the number of terms in Eq. (2.112)and (2.113)to 2, if j¹ j < j . For the case
¹ = j , there is no coupling at all and one can say that the solutions ª º have pure spin-
angular character ¤ .
Obviously , the Eqs. (2.112)and (2.113)has to be solved numerically . In order to solve these
equations, inside the muf �n-tin sphere one has to set a limit for the angular momentum ex-
pansion lmax . Accordingly a set of 2(lmax + 1)2 linear independent regular solutions ª º can
be created solving the Dirac equation (2.102)numerically . Becausenear the nucleus (r ! 0)
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the magnetic part of the effective potential can be neglected, one can initialize the outwar d
integration with a well-de�ned spin angular character as follows:

ª º =
X

¤ 0

ª ¤ 0º (~r ; E) r ! 0¡ ! ª ¤ º (~r ; E) : (2.115)

Going away from the nucleus, the coupling intr oduced by the magnetic �eld has to be con-
sidered and a possible choice for the index of regular solution is to identify º with ¤ , giving
the asymptotic behaviour for r ! 0:

ª ¤ (~r ; E) =
X

¤ 0

ª ¤ 0¤ (~r ; E) : (2.116)

The radial Dirac equation for the freeparticle has two linearly independent solutions, reg-
ular and irr egular at the origin. Thesesolutions can be written in terms of spherical Bessel
functions j l (x) (the incoming regular solution) and the spherical Hankel function h l (x) (the
outgoing regular solution), as follows:

j ¤ (~r ; E) =

r

1 +
E
c2

µ
j l (pr)Â¤ (r̂ )

icpS·
E + c2 j ¹l (pr)Â¡ ¤ (r̂ )

¶
(2.117)

j £
l (~r ; E) =

r

1 +
E
c2

µ
j l (pr)Â¤

¤ (r̂ )
¡ icpS·
E + c2 j ¹l (pr)Â¤

¡ ¤ (r̂ )

¶ T

(2.118)

h+
¤ (~r ; E) =

r

1 +
E
c2

µ
h+

l (pr)Â¤ (r̂ )
icpS·
E + c2 h+

¹l (pr)Â¡ ¤ (r̂ )

¶
(2.119)

h+ £
¤ (~r ; E) =

r

1 +
E
c2

µ
h+

l (pr)Â¤
¤ (r̂ )

¡ icpS·
E + c2 h+

¹l (pr)Â¤
¡ ¤ (r̂ )

¶ T

; (2.120)

where p =
p

E(1 + E=c2) is the relativistic electronic momentum. The row spinor functions
in Eqs. (2.118)and (2.120)signed by a " £ " denote left hand side eigenfunctions of Ĥ0 , i.e.
they obey the left-hand side free-particle Dirac equation:

< ª £ j(E ¡ Ĥ0) = 0 : (2.121)

The left-hand-side solution < ª £ j can be understood as the Hermitian conjugate of the
right-hand-side solution of the adjoint equation

(E ¤ ¡ Ĥ y
0)jª £y > = 0 (2.122)
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Here E ¤ is the complex conjugated energy including the rest massenergy and Ĥ y
0 = Ĥ0 for

freeparticles [77].
With the functions (2.117)and (2.119)one can construct the regular wave function at the
boundary of the muf �n-tin sphere asa combination of the incoming and outgoing waves:

R¤ (~r ; E) = j ¤ (~r ; E) ¡ ip
X

¤ 0

h+
¤ 0(~r ; E)t¤¤ 0(E) ; (2.123)

which is the asymptotic solution of the Eqs. (2.112)and (2.113). Here t ¤¤ 0 de�nes the ele-
ments of the single-site scattering matrix t. By de�nition, the single-site t-matrix operator
generatesthe scattered wave by a single-site muf �n-tin potential.
A procedureto determine the t-matrix elementst¤¤ 0(E) was intr oduced by Ebert and Györffy
[78]. They de�ned two auxiliary functions f § (~r ; E) with the boundary conditions given by
the Hankel functions

f § (~r ; E) = h§ (~r ; E) if ~r ¸ ~rmt : (2.124)

Becausethesefunctions are a complete setof eigenfunctions of Dirac Hamiltonian, they can
be used to expressthe set of independent solutions ª ¤ (~r ; E) as:

ª ¤ (~r ; E) =
X

¤ 0

ª ¤ 0¤ (~r ; E) =
1
2

X

¤ 0

¡
a¤ 0¤ (E)f +

¤ 0(~r ; E) + b¤ 0¤ (E)f ¡
¤ 0(~r ; E)

¢
(2.125)

where a(E) and b(E) are auxiliary matrices given by

a¤¤ 0(E) = ¡ ipr 2[h¡
¤ (pr); ©¤¤ 0(~r ; E)]r

b¤¤ 0(E) = ipr 2[h+
¤ (pr); ©¤¤ 0(~r ; E)]r : (2.126)

Here [¢¢¢] denotes the relativistic form of the Wronskian

[h+
¤ ; ©¤¤ 0]r = h+

l cf ¤¤ 0 ¡
p

1 + E=c2
S· h+

¹l g¤¤ 0 : (2.127)

Outside the muf �n-tin sphere, one has Vef f = 0 and Bef f = 0. Thus the Dirac equation has
free-particle-like solutions. The solutions given by Eq. (2.123),valid for ~r ¸ r mt and Eq.
(2.125),valid for ~r · r mt have to match at the muf �n-tin boundary. This condition enables
us to determine the t-matrix elements, for which one can �nd the following expression:

t(E) =
i

2p
(a(E) ¡ b(E)) b¡ 1(E) : (2.128)
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An alternative set of linearly independent regular solutions for the Dirac equation, allowed
by the t-matrix symmetry properties, can be obtained by superposition of the wave func-
tions ©¤ according to the boundary conditions

Z¤ (~r ; E) =
X

¤ 0

R¤ (~r ; E)t ¡ 1
¤ 0¤ (E)

=
X

¤ 0

j ¤ 0(~r ; E)t ¡ 1
¤ 0¤ (E) ¡ iph+

¤ (~r ; E) : (2.129)

Thesefunctions are normalized according to the convention of Faulkner and Stocks[61] and
allow straightforwar dly to setup the electronic Green'sfunction. The irr egular solutions are
�xed by the boundary condition:

J¤ (~r ; E) r ! r mt¡ ! j ¤ (~r ; E) (2.130)

and can be obtained just by inwar d integration. The solutions of the Dirac equation, Z¤

and J¤ , outside the potential well can be continued into the sphere in such a way that they
represent the solutions to the Dirac equation in the whole space.The special advantage for
using those freeparticle solutions is that thesefunctions are real for real energies, if the cell
potential satis�es somevery common symmetry properties.

2.2.4 The single-site Green's function

In order to get the single-site Green'sfunction, one hasto start with the free-particle Green's
function, which is a solution of the equation:

¡
c®p̂ + ¯ mc2 ¡ E

¢
G0(~r ;~r 0) = ¡ ±(~r ¡ ~r 0) ~I (2.131)

Intr oducing ~R = ~r ¡ ~r 0 (with R = j ~Rj), the solution can be written as

G0(~r ;~r 0; E) = ¡ (c®p̂ + ¯ mc2 ¡ E)
eipR

4¼R
~I 4 : (2.132)

Here we should note that G0 is a 4x4 matrix and E is the electron energy with the rest mass
mc2 included. Using the plane-wave expansion

eipR

4¼R
= ip

X

¤

j l (pr< )h+
l (pr> )Â¤ (r̂ )Ây

¤ (r̂ 0) ; (2.133)

where r< = min f ~r ;~r 0g and r> = maxf ~r ;~r 0g, together with the Eq. (2.132),one can get the
free-electron relativistic Green's function:

G0(~r ;~r 0; E) = ¡ ip
X

¤ 0

[j ¤ (p~r )h+ £
¤ (p~r 0)£( ~r 0¡ ~r ) + h+

¤ (p~r )j £
¤ (p~r 0)£( ~r ¡ ~r 0)] ; (2.134)
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where µ(~r ) is the well-known step-function. Here the left-hand side solutions of the free
particle Dirac equation appear, j £

¤ (p~r ) and h£
¤ (p~r ), given by the relations (2.118)and (2.120).

The regular and irr egular solutions of the Dirac equation,j ¤ (p~r ) and h¤ (p~r ) are given by the
relations (2.117)and (2.119).The single-site Green'sfunction is now easyto obtain, inserting
the freeelectron Green's function into the Dyson equation (2.80):

Gss(~r ;~r 0; E) = G0(~r ;~r 0; E) +
Z Z

d3r1d3r2G0(~r ;~r1; E)t(~r 1;~r2; E)G0(~r2;~r 0; E) : (2.135)

In order to obtain the single-site t-matrix elements (seeEq. 2.128),one can make use of the
Lippman-Schwinger equation. If one consider for the single-site scattering the asymptotic
solution R¤ (~r ; E) given by the relation (2.123) and j ¤ (~r ; E) as free electron solution, the
Lippman- Schwinger equation reads:

R¤ (~r ; E) = j ¤ (~r ; E) +
Z Z

d3r 0d3r 00G0(~r ;~r 0; E)tn (~r 0;~r 00; E)j ¤ (~r 00; E) : (2.136)

Substituting the expression for G0 into this equation and comparing with the expression
for R¤ (~r ; E) from Eq. (2.123),one can �nd the single-site t-matrix elements in the angular
momentum representation:

tn
¤¤ 0(E) =

Z Z
d3r d3r 0j +

¤ (~r ; E)tn (~r ;~r 0; E)j ¤ 0(~r 0; E) : (2.137)

Now, going back with this expression for the single-site t-matrix into the Dyson equation
(2.135),we arrive at the following expressionfor the single-site Green's function:

Gss(~r ;~r 0; E) =
X

¤¤ 0

Z n
¤ (~r ; E)tn

¤¤ 0(E)Z n£
¤ 0 (~r 0; E)

¡
X

¤

Z n
¤ (~r ; E)J n£

¤ (~r 0; E)£( ~r 0¡ ~r )

¡
X

¤

J n£
¤ (~r ; E)Z n

¤ (~r 0; E)£( ~r ¡ ~r 0) ; (2.138)

where the right and left hand-side solutions of free-particle Dirac equation, Z¤ and respec-
tively Z £

¤ are de�ned by:

Z¤ (~r ; E) =
X

¤ 0

j ¤ 0(p~r )t ¡ 1
¤¤ 0(E) ¡ iph+

¤ (p~r ) (2.139)

Z £
¤ (~r ; E) =

X

¤ 0

j £
¤ 0(p~r )t ¡ 1£

¤¤ 0 (E) ¡ iph+ £
¤ (p~r ) ; (2.140)
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where t£ = tT is the left hand side t-matrix. One hasto note that the left-hand-side solutions
of Dirac equation are obtained from the same dif ferential equations as the conventional
right-hand-side solutions Z¤ and J¤ . For highly symmetric systemsZ £

¤ and J £
¤ are obtained

from Z¤ and J¤ by simple complex conjugation and transposition:

Z £
¤ (~r ; E) =

X

¤ 0

(g¤ 0¤ (~r ; E)Ây
¤ 0(r̂ ); ¡ if ¤ 0¤ (~r ; E)Ây

¹¤ 0(r̂ )) (2.141)

and

J £
¤ (~r ; E) =

X

¤ 0

(~g¤ 0¤ (~r ; E)Ây
¤ 0(r̂ ); ¡ i ~f ¤ 0¤ (~r ; E)Ây

¹¤ 0(r̂ )) (2.142)

since the left and right hand solutions are identical with respectto their radial parts.

2.2.5 Multiple scattering

In order to describe the multiple scattering of electrons by a distribution of scatterers, our
aim is to calculate the Green's function and the T-matrix of the whole system starting from
the single-site scattering on the nth site potential. First, we have to construct the potential
function:

V(~r ) =
NX

i =1

Vi (~r i ) (2.143)

that is a sum of potential wells centered on a set of N siteswhose locations are at the points
~Ri . The vectors ~r i are de�ned by ~r i = ~r ¡ ~Ri and it will be supposed that eachpotential is
zero outside a bounding sphere of radius Si , Vi = 0 if ~r i > Si and that the bounding spheres
do not overlap eachother.
Making use of this potential function, the T-matrix equation (2.84) in operator form will
read:

T(E) = V + VG0(E)T(E) =
NX

i =1

(Vi + Vi G0(E)T(E)) =
NX

i =1

Pi (E) (2.144)

where

Pi (E) = Vi + Vi G0(E)T(E) = Vi + Vi G0(E)Pi + Vi G0(E)
X

j 6= i

Pj (E) (2.145)

Pi (E) =
Vi

1 ¡ Vi G0(E)

Ã

1 +
X

i 6= j

G0(E)Pj (E)

!

(2.146)
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Let's consider now a single site scattering on a potential well centered at ~Ri . The t-matrix
readsas:

t i (E) = Vi + Vi G0(E)t i (E)

t i (E) =
Vi

1 ¡ Vi G0(E)
(2.147)

This expressioncan be substituted in equation (2.145)to give

Pi (E) = t i (E) +
X

i 6= j

t i (E)G0(E)Pj (E) (2.148)

If we intr oduce now the new quantity

¿ij (E) = t i (E)±ij +
X

k6= i

t i (E)G0(E)¿kj (E) (2.149)

it can be shown that the T-matrix of the system has the form:

T(E) =
NX

i;j =1

¿ij (E) (2.150)

The quantities ¿ij (E) is known as scattering path operators and were �rst intr oduced by
Görffy and Stott (1972)[79]. They will help us to write down the solution of multiple scat-
tering problem in terms of the solution of the single-site scattering problem.
As we have already seen,the single-site t-matrix generatesthe scattered wave due to a sin-
gle potential. In multiple scattering, T(E) gives the scattered wave due to a distribution
of scatterers. The scattering path operator ¿ij gives the scattered wave from site j due to a
wave incident upon site i with all scatterings in between (Györffy and Stocks,1980[62]) and
this can be seeneasierexpanding the previous expressionin Born series:

¿ij = t i (E)±ij +
X

k6= j

t i Gotk±kj +
X

k6= i

X

l6= k

t i G0(E)tkG0(E)t l±l j + ¢¢¢ (2.151)

We have seenhow to solve the Kohn-Sham-Dirac equation for scattering an electron from
a single site. The scattering path operator allows us to write the solution to the multiple-
scattering problem in terms of the single-site scattering t-matrix.
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2.2.6 Multiple Scattering Green's function

In order to obtain the Green's function, it can be considered that our referencesystem con-
sists in a single scatterer at position n, surrounded by vacuum. One can consider aspertur -
bation all the restof the scattering centers. In this way, for a crystal system, the perturbation
will be the whole crystal with one atom at site n missing. It is not usual to have the pertur -
bation bigger than the system,but this approachsuggestedby Faulkner and Stocks[61] was
remarkably successful.
We write the Green's function for the whole system in terms of the Green's function for the
single-site scattering as:

G(~r ;~r 0; E) = ~Gn (~r ;~r 0; E) +
Z Z

Gn (~r ;~r1; E)Tnn (~r1;~r2; E)Gn (~r2;~r 0; E)d3r1d3r2 (2.152)

where r1 > r and r 2 > r 0. The quantity Tnn is the scattering matrix for the system of all
scatterers except the nth:

Tnn (E) =
X

i 6= n

X

j 6= n

¿ij (E) : (2.153)

We suppose that ~r is in the nth and ~r 0 is in the mth bounding sphere, so we can write
~r = ~rn + ~Rn and ~r 0 = ~rm + ~Rm . In analogy with Eq. (2.137)we de�ne the spin-angular matrix
elementsof ¿ij asfollowing:

¿ij
¤¤ 0(E) =

Z

­ i
d3r

Z

­ j
d3r 0j £

¤ (p(~r ¡ ~Ri ))¿ij (~r ;~r 0; E)j ¤ 0(p(~r 0¡ Rj )) (2.154)

where the integration volume for ~r and ~r 0 is con�ned to the volume ­ i and ­ j of the cells
i and respectively j . Replacing the single-site Green's function, together with the ¿ij spin-
angular matrix elements into Eq. (2.152),we get the following expression for the multiple
scattering Green's function:

G(~rn + ~Rn ;~rm + ~Rm ; E) =
X

¤¤ 0

Z n
¤ (~rn ; E)¿nm

¤¤ 0(E)Z m£
¤ 0 (~rm ; E)

¡ ±mn

X

¤

[Z n
¤ (~rn ; E)J n£

¤ (~r 0
n ; E)µ(~r 0

n ¡ ~rn )

+ J n
¤ (~rn ; E)Z n£

¤ (~r 0
n ; E)µ(~r n ¡ ~r 0

n )] : (2.155)

Concerning this expression we have to note �rst that we have not made any supposition
upon the array of scatterers, so is it valid for any array of non-overlapping potential func-
tions. Secondly, the multiple scattering information (in ¿nm ) is completely separated from
the wave function information (in Z n and J n ).
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The last task is now to determine the scattering operator for the whole system. We start
putting the operator-equation (2.149)in the coordinate representation:

¿ij (~r ;~r 0; E) = ±ij t i (~r ;~r 0; E) +
X

k6= i

Z Z
d3r1d3r2t i (~r ;~r1; E)G0(~r1;~r2; E)¿kj (~r2;~r 0) : (2.156)

One has to note that t i is non-zero just inside the i th sphere. The free-particle Green's func-
tion G0(~r1;~r2; E) describesthe propagation from site k to site i , so~r 1 is in the i th and ~r 2 is in
the kth bounding sphere. Becauseof this, we can write ~r 1 = ~Ri + ~r i and ~r2 = ~Rk + ~r k . Due to
the translational symmetry of the Green's function, we have

G0(~r1;~r2; E) = G0(~r i ; ~Rk ¡ ~Ri + ~r k ; E) : (2.157)

The following expressionfor G0 will be used, according to Eq. (2.134):

G0(~r i ; ~Rk ¡ ~Ri + ~r k ; E) = ¡ ip
X

¤

j ¤ (~r i ; E)h+ £
¤ ( ~Rk ¡ ~Ri + ~r k ; E) : (2.158)

The spherical Hankel function h+ £
¤ diver gesat ~Ri but is regular at all other points, soanother

expansion, around ~Ri , can be used

¡ iph+ £ ( ~Rk ¡ ~Ri + ~r k ; E) =
X

¤ 0

Gij
¤¤ 0(E)j £

¤ 0(~r k ; E) (2.159)

and we �nally get for the free-particle Green's function the expression:

G0(~r ;~r 0) =
X

¤¤ 0

j ¤ (~r i ; E)Gij
¤¤ 0(E)j £

¤ 0(~r k ; E) : (2.160)

The expansion coef�cients Gij
¤¤ 0(E) arecalled structureconstantsbecausethey don't depend

on the potentials Vi , but only on the relative positions of the scatterers i and j . In the rela-
tivistic theory they have the expression:

Gij
¤¤ 0(E) = ¡ 4¼ip

X

ms

X

¤ 00

i l ¡ l0¡ l00
Cms

¤ Cms
¤ 0 h+

l00(pRij )C¤¤ 0¤ 00 (2.161)

with Rij = j ~Rj ¡ ~Ri j, Cms
¤ = C(l 1

2 j ; ¹ ¡ ms; ms) and the Gaunt coef�cients

C¤¤ 0¤ 00 =
Z

d­ Y ¹ ¡ ms ¤
l (r̂ )Y ¹ 0¡ ms

l0 (r̂ )Y ¹ 00¡ ms
l00 (r̂ ) (2.162)
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Using the angular representation of the scattering path operator (2.154)we can now write
for the scattering path operator the following expression

¿ij
¤¤ 0(E) = ±ij t i

¤¤ 0(E) +
X

¤ 00¤ 000

t i
¤¤ 00(E)

X

k6= i

Gij
¤ 00¤ 000(E)¿j k

¤ 000¤ 0(E) : (2.163)

In the super-matrix notation, the equation of motion for the ¿-matrix is

¿ij = t i ±ij + t i
X

k6= i

Gik ¿kj

= t i ±ij +
X

k6= i

¿ik Gik t i ; (2.164)

where the underline indicates a matrix with respect to ¤ = (·; ¹ ). Here the single site t-
matrix t i is �xed by the solutions to the single-site Dirac equation for site i . Furthermor e,
Gij is the relativistic real spaceGreen'sfunction or structureconstantsmatrix that represents
the propagation of free electron between sites i and j . It is related to its non-relativistic
counterparts Gij

LL 0 = Gij
LL 0±ms m0

s
by the relation

Gij
¤¤ 0 = (1 + E=c2)

X

LL 0

S+
¤ L Gij

LL 0SL 0¤ 0 ; (2.165)

where L and L stand for the sets(l ; ml ; ms) and (l ; ml ), respectively, of non-relativistic quan-
tum numbers. The elements of the unitary transformation matrix S in Eq. (2.165)are given
by the ClebschGordan coef�cients C(l 1

2 j ; ¹ ¡ ms; ms). Furthermor e one can write

¿ij = t i ±ij + t i
X

k

Gik ¿kj (2.166)

t i ¡ 1
¿ij ¡

X

k

Gik ¿kj = ±ij (2.167)

X

k

±ik t i ¡ 1
¿ik ¡ Gik ¿kj = ±ij (2.168)

X

k

[±ik t i ¡ 1
¡ Gik ]¿kj = ±ij (2.169)

(2.170)

where
P

k6= i Gik ¢¢¢has beenreplaced by
P

k Gik ¢¢¢by de�ning Gii = 0. Finally the ¿ matrix
readsas:

¿ = [t ¡ 1 ¡ G]¡ 1 (2.171)
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where eachelement of the supermatrix is

¿ij = f
£
t ¡ 1 ¡ G

¤¡ 1
gij : (2.172)

If we have N scattering centers and angular momentum expansion going up to l max , the
dimension of the ¿ matrix will be 2N

P lmax

l=0 (2l + 1) = 2N (L max + 1)2.
In the calculations we will use the spin polarized relativistic (SPR)KKR program to solve
the Kohn-Sham-Dirac equations, we deal with in�nite crystals, so one can make use of the
periodicity of such an ordered in�nite system. Using the Fourier transformation, we can
write:

¿¤¤ 0(~k; E) =
1
N

X

ij

e¡ i~k( ~R i ¡ ~R j )¿ij
¤¤ 0(E) (2.173)

and

G¤¤ 0(~k; E) =
1
N

X

ij

e¡ i~k( ~R i ¡ ~R j )Gij
0¤¤ 0( ~Ri ¡ ~Rj ; E) : (2.174)

If we assumethe t-matrix is the sameat every lattice site, we �nd that

¿(~k; E) = [t ¡ 1(E) ¡ G(~k; E)]¡ 1 (2.175)

The scattering path operator can be obtained through a Brillouin-zone integration of the
form:

¿ij
¤¤ 0 =

1
VB Z

Z

VB Z

d~k
h
t ¡ 1(E) ¡ G(~k; E)

i ¡ 1

¤¤ 0
ei~k( ~R i ¡ ~R j ) : (2.176)

As usual, one can make use of group theory to restrict the integration in Eq. (2.176)to the
irr educible part of the Brillouin-zone, that depends on the orientation of the magnetization.
Clearly, the scattering path operator in Eq. (2.174)will be singular when

jt ¡ 1(E) ¡ G(~k; E)j = 0 : (2.177)

This is known asthe KKR determinant, after Korringa (1947)and Kohn and Rostoker (1954)
who intr oduced the method. When Eq. (2.177)is satis�ed, the scattering path operator has
a singularity which corresponds to a pole in the Green's function, and poles in the Green's
function occur at the sameenergies as the eigenvalues of the Hamiltonian. Hence, �nding
the zeros of the KKR determinant is a method to �nd electronic energy levels or equiva-
lently, the band structure.
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2.3 Treatment of Disordered Alloys

In order to be able to describe disordered alloys, the theoretical methods presented so far
have to bereconsidered, becausethey weredir ectly relevanceonly to ordered stoichiometric
systems. In practice there are many types of disordered systemswith technological applica-
bility , that's why it was necessaryto develop theoretical methods to describe such systems.
The type of disorder considered within this thesis, is that of a random substitutional binary
alloy. Such a material is assumed to possessstructural order, and so has a clear underly-
ing crystalline lattice structure. However, due to the random distribution of its constituent
atoms, such a material is not translational invariant. Density Functional theory is not af-
fected by the translational invariance, and becauseof this will play a central role in the
description of random substitutional alloys. The dif �culty which arise due to the random
distribution of the constituent atoms is that Bloch's theorem cannot be applied dir ectly.
A viable idea to evade this problem and to be able to solve the Kohm-Sham-Dirac equations
is to replace the disordered system by an ordered one, consisting of effective 'atoms'. In
this way it is possible to regain the translational invariance and one has to solve further the
relevant equations for an ordered system of effective 'atoms'. This approach is known as
'effective medium theory' and, depending on the assumptions made about the properties of
effective 'atoms', can describe successfully the disordered systems.
The calculations done within this thesis in order to describe disordered systems use the
so-called Coherent Potential Appr oximation (CPA) method. This approach, in combination
with KKR method turned out to bea reliable tool to study the electronic structureof random
substitutional binary alloys (seethe contributions of Bansil et al.(1975)[80], Temmerman et
al. (1978)[81], Györffy and Stocks (1980)[62], J.S. Faulkner (1982)[82] and Faulkner and
Stocks(1980)[61]).

2.3.1 The Coherent Potential Approximation Method

The aim of the Coherent Potential approximation is to calculate con�gurationally averaged
properties of a random material in a self consistentway. Essentially onecandescribethe ran-
dom metallic alloy by a lattice of effective potentials in such a way that the averagemotion
of an electron through the effective medium is approximatively the same like through the
actual material. This meansthat if one wishes to describe the system using an(periodic) co-
herent potential V CP A , the Green's function corresponding to this coherent potential should
be equivalent to the true ensemble-averagedGreen's function of the alloy.
The Coherent Potential approximation (CPA) was intr oduced simultaneously by Soven[83]
in connexion with disordered electronic systems,and by Taylor [84] in connection with the
lattice dynamics of massdisordered alloys. The CPA belongs to the classof mean-�eld the-
ories, in which the properties of the entire material are determined from the behaviour at
a localized region, usually taken to be a single site (cell) in the material. In order to create
the con�guration of the random substitutional binary alloy of composition A xB1¡ x it is as-
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sumed that the site occupanciesare uncorrelated and that the probability that a particular
lattice site i is occupied by element A is xA = x and likewise for B is xB = 1 ¡ x. For this
disordered system, one may assumethat there are only two distinct types of potential, V A

and V B , corresponding to the two elementsA and B of the material.
This coherent potential V CP A (which in general is a complex energy-dependent quantity)
is constructed by replacing at any single site in the effective medium the individual con-
stituent potentials of the alloy, given asV A or V B , in such a way that no further scattering is
produced on average.
This medium can be chosenin somephysically and intuitively reasonablemanner in such a
way that averagesover the occupation of a site embedded in the effective medium should
yield quantities indistinguishable from thoseassociatedwith a site of the medium itself. Be-
causea translational invariant medium producesno scattaring of a wave, it is assumedthat
the scattering off of a real atom embedded in the CPA medium must vanish on the average.
This condition, schematicpresentedin Fig. 2.1has the following mathematical expression:

c c c

 x

c c c c c c

c c c c c c c

c c c c c c c c c

=A B+ xBA

Figure 2.1: The schematic representation of the CPA condition. Label 'c' stands for 'effec-
tive atoms' of the coherent medium and the sites labelled 'A ' and 'B' are occupied by the
constituent atoms A or B with relative probability x = xA and respectively 1 ¡ x = xB .

¿C = xA ¿A + xB ¿B ; (2.178)

where ¿c is the scattering path operator corresponding to this hypothetical ordered CPA
medium and ¿A or ¿B describes the total scattering due to a single atom of type A or B,
respectively, which is embedded in the effective coherent-potential medium. Equivalently ,
the site-diagonal part of the Green's function of a real atom embedded in the CPA medium,
averagedover the possibleoccupations of a single site, should beequal with the correspond-
ing Green's function of the medium itself.
The averagesone performs in the CPA involve only the occupation of a single site and con-
sequently the CPA is a single-site (SS)approximation, this averaging procedure neglects
scattering off of clusters of atoms, which may be important in somecases.
Our �rst aim is to obtain approximations for the average < G > over the previously de-
scribed con�guration. As has been shown in the previous chapter, the Green's function
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G(E;~r ;~r 0) for an electron moving in the �eld of a collection of muf �n-tin scatterers can be
written in the form (seealso Eq. (2.155)):

G(~r ;~r 0; E) =
X

¤¤ 0

Z i
¤ (~r i ; E)¿ii

¤¤ 0(E)Z i £
¤ 0 (~r 0

i ; E) ¡
X

¤

Z i
¤ (~r i< ; E)J i £

¤ (~r i 0> ; E) (2.179)

when ~r and ~r 0are both in the neighbourhood of the i th scatterer, so the vectors ~r and ~r 0may
fall inside the i th muf �n-tin sphere, but they must not be in any other sphere. Z i and J i are
the regular and irr egular solutions of the Dirac equation for single-site potential V i (seealso
Eqs. (2.129)and (2.130)).We will refer to Eq. (2.179)as the site-diagonal (SD) expressionof
the Green's function.
If the vector ~r is in the neighbourhood of the i th scatterer and ~r 0 is in the neighbourhood of
the j th scatterer, the Green's function may be written in the form:

G(~r ;~r 0; E) =
X

¤¤ 0

Z i
¤ (~r i ; E)¿ij

¤¤ 0(E)Z j £
¤ 0 (~r 0

j ; E) : (2.180)

This equation (2.180) is the non-site-diagonal (NSD) Green's function expression. Doing
the following step in the CPA description, is now needed to calculate the averageof such a
Green'sfunctions, the averaging being over the ensembleof all alloy con�gurations that can
be formed by distributing xA N atoms of type A and xB N atoms of type B over the lattice
sites.
The ensembleaverageof the site-diagonal (SD) Green's function can be written as:

< G(~r ;~r 0; E) > = xA

X

¤¤ 0

Z i;A
¤ (~r i ; E) < ¿ii;A

¤¤ 0 (E) > Z i;A £
¤ 0 (~r 0

i ; E)

+ xB

X

¤¤ 0

Z i;B
¤ (~r i ; E) < ¿ii;B

¤¤ 0 (E) > Z i;B £
¤ 0 (~r 0

i ; E)

¡
X

¤

[xA Z i;A
¤ (~r i< ; E)J i;A £

¤ (~r 0
i> ; E)

¡ xB Z i;B
¤ (~r i< ; E)J i;B £

¤ (~r 0
i> ; E)] ; (2.181)

where Z i;®
¤ (E;~r i ), respectively J i;®

¤ (E;~r i ), are the wave functions for the casewhen ~r i is in
the i th muf �n-tin sphere and an ® atom is in that site, ® being A or B. < ¿ii;®

¤¤ 0(E) > is the
average over the subset of the ensemblefor which the atom of type ® (A or B) is de�nitely
known to be on the i th site. A similar averagecan be done for the non-site-diagonal (NDS)
Green's function and the result of averaging looks like:

< G(~r ;~r 0; E) > = x2
A

X

¤¤ 0

Z i;A
¤ (~r i ; E) < ¿ij ;AA

¤¤ 0 (E) > Z j ;A £
¤ 0 (~r 0

j ; E)

+ x2
B

X

¤¤ 0

Z i;B
¤ (~r i ; E) < ¿ij ;B B

¤¤ 0 (E) > Z j ;B £
¤ 0 (~r 0

j ; E)
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+ xA xB

X

¤¤ 0

Z i;A
¤ (~r i ; E) < ¿ij ;AB

¤¤ 0 (E) > Z j ;B £
¤ (~r 0

j ; E)

+ xB xA

X

¤¤ 0

Z i;B
¤ (~r i ; E) < ¿ij ;B A

¤¤ 0 (E) > Z j ;A £
¤ (~r 0

j ; E) : (2.182)

Here there is another kind of averagefor the scattering path operator, namely < ¿ij ;®¯
¤¤ 0 (E) > ,

which is the restricted averageover the subsetof ensemblefor which an atom of type ® (A
or B) is known to be on the i th site and another atom of type ¯ (B or A) is known to be on
the j th site. The next step is now to calculate those ensemble averages for the scattering
path operators. For this purpose, we will make use of the so-called single-site approxi-
mation, which means that, if we calculate for example < ¿ii;®

¤¤ 0(E) > we presume that the
effective scattering matrix tC (E) appears on every site except the i th site and t®(E) appears
there. Equations (2.181)and (2.182)are exact, but they can be greatly simpli�ed invoking
the single-site approximation. This derivation ends up with the following result:

< ¿ii;® (E) > = D ii
®¿ii

C ; (2.183)

where

D ii
® = f I + ¿ii

C

£
t ¡ 1
® ¡ t ¡ 1

C

¤
g¡ 1 (2.184)

and

¿ii
C =

­
(2¼)3

Z
¿C (E;~k)d3k : (2.185)

¿C (E;~k) is given by the matrix inversion:

¿C (E;~k) =
h
(tC )¡ 1 ¡ G(E;~k)

i ¡ 1
: (2.186)

We have to note that the average < ¿ii;® (E) > is independent on the site index i and that's
why we canname it < ¿00;®(E) > . For the samereason,the matrix D ii

® will be named further
simpler, namely D 00

® .
In order to obtain the average < ¿ij ;®¯ (E) > , one has to put t®(E) on the i th site, t ¯ (E) on
the j th site and tC (E) on all the others. The result is

< ¿ij ;®¯ (E) > = D 00
® ¿ij

C
~D

00
¯ (2.187)

where the matrix D 00
® is de�ned in Eq. (2.184)and ~D

00
¯ is given by:

~D
00
¯ = f I +

£
t ¡ 1
¯ ¡ t ¡ 1

C

¤
¿ii

Cg¡ 1 (2.188)
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The matrix ¿ij
C is given by the expression:

¿ij
C =

­
(2¼)3

Z
ei~k ~R ij ¿C (E;~k)d3k (2.189)

The ¿ij
C is the samefor the i -j pairs of sites separatedby a vector ~Rij = ~Rj ¡ ~Ri of the same

magnitude and dir ection.
In order to obtain the ensembleaveragedGreen'sfunction within the single-site approxima-
tion, Gc(E;~r ;~r 0) = < G(E;~r ;~r 0) > , the ensemble averages< ¿00;®(E) > and < ¿ij ;®¯ (E) >
have to be substituted into Eqs. (2.181)and (2.182). The site-diagonal (SD) and non-site-
diagonal ensembleaverageGreen's functions are needed for most calculations of electronic
properties in alloys.
It canbe seenfrom the de�ning equations that Gc(~r ;~r 0; E) describesa periodic system in the
sensethat

Gc(~r + ~Rn ;~r 0+ ~Rn ; E) = Gc(~r ;~r 0; E) : (2.190)

No statement has been made so far in this derivation concerning the way that the effec-
tive scattering matrix tC is de�ned. One has to note that the most remarkable feature of
Gc(~r ;~r 0; E) is that the effective wave function for eachsite is dif ferent for the SD and NSD
cases.The theory for electronic statesin an alloy has beendesigned to arrive at an effective
Green's function rather than to get an effective wave function becauseevery property of an
alloy can be calculated using Gc(~r ;~r 0; E). In the following section it will be shown how one
can calculate electronic properties of alloys. Let's consider �rst the averagedensity of states
for a random substitutional alloy, in the single-site approximation. This can be expressedin
the formula:

½C (E) = ¡
1
¼

=
Z

­
Gc(~r ;~r ; E)d3r (2.191)

Becauseonly values of Gc(~r ;~r 0; E) for which ~r = ~r 0 enters in the expression, only the SD
form of Green's function is needed. Inserting Eq. (2.181),with the average scattering path
operator given by Eq. (2.183)into this expression,leads to

½C (E) = ¡
1
¼

X

®= A;B

x®

X

¤¤ 0

=< ¿00;®
¤¤ 0 (E) >

Z

­
Z ®

¤ (~r ; E)Z ®£
¤ 0 (~r ; E)d3r ; (2.192)

where ® = A or B indicates that the site in question is occupied by an atom of type A or B. If
we use the notation

F ®®
¤¤ 0(E) =

Z

­
Z ®

¤ (~r ; E)Z ®£
¤ 0 (~r ; E)d3r (2.193)
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where the underline meansa matrix with respectto ¤ = f ·; ¹ g, one may express½C (E) as

½C (E) = ¡
1
¼

X

®= A;B

x®=TrF ®®(E)D 00
® (E)¿00

C (E) : (2.194)

From the expression given for the average density of states(2.194)it is clear that one may
resolve the total density of states½C (E) into components ½A (E) and ½B (E). Thesequantities
may be thought of as the average density of states (per atomic cell) on an A- or B-type
site in the alloy. Consequently the total density of statesmay be written as the sum of the
concentration weighted component density of statesthus

½C (E) = xA ½A (E) + xB ½B (E) ; (2.195)

where the component density of statescan be identi�ed as

½®(E) = ¡
1
¼

=Tr [F ®®(E)D 00
® (E)¿00

C (E)] (2.196)

with ® = A or B. The expressionsfor the total and component densities of states,which are
identical to those derived by Faulkner and Stocks [61], are given in a completely general
form such that they can be used for both relativistic or non-relativistic calculations.
The charge densities ½A (~r ) and ½B (~r ) associatedwith a given atomic type can be obtained
through a energy integration up to the Fermi energy, as follows:

½®(~r ) = ¡
1
¼

Z EF

¡1
=Tr [F ®®(~r ;~r ; E)D 00

® (E)¿00
C (E)]dE (2.197)

where

F ®®
¤¤ 0(E;~r ;~r ) = Z ®

¤ (~r ; E)Z ®£
¤ 0 (~r ; E) : (2.198)

Another quantity , used by Györffy et al. [62] in order to formulate theories for soft X-ray
emission, electron-photon interaction and other phenomena is so called density matrix, de-
�ned as

½(~r ;~r 0E) = xA ½A (~r ;~r 0; E) + xB ½B (~r ;~r 0; E) : (2.199)

The components of density matrix are (® is A or B):

½®(~r ;~r 0; E) = ¡
1
¼

=Tr [F ®®(~r ;~r 0)D 00
® ¿00

C ] : (2.200)

With the formulas for Gc(~r ;~r 0; E) available, the comparison with experimental data for den-
sity of statesfor example, is straightforwar d (see[82] and [61]). The CPA is regarded asone
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of the bestsingle-site theories for the description of random substitutional binary alloys. On
the other hand, multiple-site scattering effects are implicitly included within the theory as
the single-site approximation is basedon the idea of a single scattering site immersed in an
average 'effective' medium. Consequently, it is appropriate to preceeddeveloping calcula-
tions combining the CPA with the KKR theory. The calculations done in this thesis use this
approach in order to investigate the properties of random substitutional alloys.

2.4 Conclusions

This chapter presentedthe theoretical framework used within this thesis in order to describe
the electronic structure of condensedmatter.
As the description of any solid is in essencea many body problem, it has been presented
how the use of the DFT can reduce and hence simplify considerably such a many body
problem to that of a single electron moving independently of all other electrons in a effec-
tive �eld createdby surrounding electrons and nuclei.
The multiple scattering KKR theory is used to solve the previously simpli�ed problem and
to obtain the full description of the electronic structure of the condensedmatter systemsun-
der investigation.
On the basisof the underlying band structure, one is able to calculate important properties
of materials. Such a classof materials which will be investigated in the following is the Cr-
chalcogenidessystem with dif ferent transitional metals substituting partially the Cr atoms.
In addition, the formalism presentedabove will be extended in order to calculate spectro-
scopic properties, namely the magnetic Compton pro�le for pure metallic systems and for
random substitutional alloys respectively.
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Compton scattering

The purpose of a Compton scattering experiment is to determine the momenta, or momen-
tum distribution of the target electrons. Typically , one employs a primary beam of a known
photon energy E, and measuresthe spectrum of secondary photon energies E' after scatter-
ing from the sample through a known angle µ. When radiation is Compton scattered, the
emerging beam is Doppler broadened becauseof the motion of the target electrons. The
analysis of this broadened spectra, the so-called Compton pro�le, provides informations
about the electron momentum distribution of the scatterers.
Compared with other experimental techniques, Compton scattering offers several advan-
tages. Compton scattering is an inelastic process,in which a high energy photon collides
with a single electron and imparts energy to it. Sincethe scattering is from a single-electron
and (to a good approximation) occurs at a single point in space,the processmust be inco-
herent. Incoherent scattering, asopposed to coherent Bragg scattering, occurs when there is
no phase relationship between the waves scattered by dif ferent atoms in a sample. The in-
coherent nature of Compton scattering means that the processcan only be sensitive to bulk
properties- that it is, an averageover real space.
Due to these features,Compton scattering is dir ectly related to the electronic ground state,
whereas other spectroscopic methods (e.g. photoemission spectroscopy) involve excited
states.Sincetheoretical methods (like density functional theory) are tailor ed to give predic-
tions of the ground state, Compton scattering allows for a rather fundamental test of these
theories. Also, Compton scattering has the advantage that is not much sensitive to the sam-
ple purity , lattice defectsor to the surface,so the Compton experiment samplesthe electrons
in the crystal uniformly .
A limiting factor have beenthe poor momentum resolution achieved in experiments, but the
utilization of solid-state detectors since 1970's,and subsequently the employment of high-
resolution crystal spectrometers at modern synchrotron radiation sourcessince the 1980's
have revived this �eld.
The interpr etation of standard Compton pro�les is far from trivial, becausethe dir ectly ac-
cessiblequantity is a projection of the momentum density n(~p) onto the scattering vector and
somefeaturesof n(~p) are lost becauseof projection. There is a complementary experimental
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technique, the 2D-ACAR (2D angular correlation of the annihilation radiation) which canre-
solve thesedetails. It gives the 2D projection of the 3D electronic momentum density along
the dir ection perpendicular to the detector plane, while the Compton scattering gives the
momentum density n(~p) integrated over the perpendicular plane to the scattering vector.
Obviously , �rst-principles prediction within the conventional band theory model can facili-
tate the interpr etation of Compton data a lot.

3.1 Compton scattering crosssection

Many of the important featuresof Compton scattering can be explained analysing the kine-
matics of this process.In the scattering experiment the total �ux reaching the detector canbe
measured and the dif ferential scattering crosssection d¾

d­ deduced. When inelastic processes
are involved, the spectral distribution can be plotted and the double dif ferential scattering
crosssection d2¾

d­ d! can be obtained (! = ! 1 ¡ ! 2 is the energy transfer). In the past, many ex-
pressionsfor the scattering crosssection were developed, starting with the non-relativistic
Thomson cross-sectionfor unpolarized photons:

d¾
d­

=
r 2

e

2
(1 + cos2 µ) ; (3.1)

where re = e2=mc2 is the classicalelectron radius. However, soon it was found that high en-
ergy radiation doesn't obey this formula (the total cross-sectionwas lower than predicted)
and other approacheswere developed. Klein and Nishina (1929) performed a quantum
electrodynamical calculation of the Compton scattering cross-sectionobtaining the follow-
ing formula [85]:

d¾
d­

=
r 2

e

2
(
E 0

E
)2f (1 + cos2 µ) +

E ¡ E 0

mc2
(1 ¡ cosµ)g (3.2)

valid for a free electron initially at rest and for any photon energy. This formula explains
the puzzling asymmetry between forwar d and back scattering and it contains no parameter
speci�c to the scatterer.
At low photon energies, E » E' and the Klein-Nishina crosssection reducesto the classical
form, asone would expect. When the incident photon energy becomesan appreciable frac-
tion of mc2, the departur e from the Thomson formula becomesprominent.
With very high energy photons, the role of the electron spin starts to be important in the
interaction and the scattering becomessensitive to the magnetic properties of the sample
for incident circularly polarized radiation. A term depending on the electron spin in the
scattering crosssection was �rst derived by Lipps and Tolhoek (1954)[86] and an extension
to electrons in molecules and solids was done by Platzman and Tzoar (1970)[87]. This term



3.2. MAGNETIC COMPTON SCATTERING (MCS) 61

is a �rst order correction which couples the electron spin orientation to the photon circular
polarization:

d¾
d­

=
r 2

e

2
[(1 + cos2 µ + P3 sin2 µ) ¡ 2P2¿(1 ¡ cosµ) < ~S > (q̂ cosµ ¡ q̂0)] ; (3.3)

where P2 and P3 are the Stokesparameters for circular, respectively linear polarization, ~S is
the electron spin vector and q̂ and q̂0are the dir ectionsof the primary and secondaryphoton
beams,respectively.
The term proportional to P2 can be viewed asan interfer encebetween charge and magnetic
amplitude, so this term is sensitive to the momentum spacespin polarization in a magneti-
cally ordered material. The prefactor ¿ = E=m0c2 (E is the incident photon energy and mc2 is
the restmassenergy of the electron) makes this term typically about 1 % of the charge cross
section [13]. If the magnitude and angular variation of the magnetic scattering is compared
with the unpolarized scattering, appreciabledif ferenceswill be observed at high scattering
angles for short wavelengths.
Starting from the supposition enclosed in the previous formula, many ferromagnetic sys-
tems have been studied using magnetic Compton scattering, providing valuable informa-
tions about their spin momentum density, as will be seenin the next sections. In addition,
many theoretical studies have beendone in this �eld and one should mention among others
the work of Wakoh and Kubo (1977)[88], Williams (1977)[89], Mills (1987)[90], Collins et
al. [91], Sakurai et al. [92], Kubo and Asano [11], Y Tanaka et al. [13], Cooper et al. [93],
Cardwell and Cooper (1989)[94] and Dixon et al. [12].
An important role in the development of the Compton scattering cross-sectionmeasure-
ments played the radiation sources,spectrometers and photons detectors. While the �rst
observations of the Compton scattering were made using radioactive sources,the majority
of the Compton scattering experiments use today synchrotron radiation sources. In par-
ticular , magnetic Compton scattering is included in the research program of every thir d
generation synchrotron facility .

3.2 Magnetic Compton Scattering (MCS)

Conventional Compton scattering studies did not involve magnetic properties of the scatter-
ers. However, ashasbeenindicated above, the magnetic term in the scattering crosssection
derived �rst by Lipps and Tolkoek made it possible to investigate the magnetic properties
of the scatterers.
This type of experiment becamefeasible with the advent of the high energy synchrotron ra-
diation sources,in spite of inherently small crosssection involved. Compared to the charge
scattering contribution, the magnetic term is smaller by a factor of ~! =m0c2, where m0c2 is
the rest massenergy of the electron and ~! is the incident photon energy. Therefore, these
experiments must be performed with powerful photon sources, in order to maximize the
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signal connectedwith the crosssection for magnetic scattering.
By alternately measuring the standard Compton pro�les with opposite sample magnetiza-
tion (or photon helicity), magnetic Compton scattering (MCS) provides a measure of the
momentum distribution of the dif ferencebetween the spin-up and spin-down electrons. To
be sensitive to the magnetic electrons, MCS require circularly polarized photons that couple
according to that term in the incoherent scattering crosssectionwhich arisesfrom the charge
and magnetic scattering interfer ence.
The �rst magnetic Compton pro�le measurements were performed by Sakai and Ono [95]
who obtained circularly polarized gamma rays from the cryogenically oriented radioactive
source of 57Co. Although this pioneering experiment suffered from a low count rate, the
result clearly demonstrated the existenceof the magnetic effect predicted theoretically by
Platzman and Tzoar [87].
The interpr etation of the measured Compton scattering crosssection is in most casesmade
within the so-called impulse approximation (IA). In this approximation it is assumed that
the electrons involved in the scattering can be treated like freeand their binding can be only
seen in the spread of their momenta. The physical meaning of this approximation can be
seenas follows: the time the photon spends probing the electron distribution (» ~=! ) is so
short that the other electrons of the sample cannot relax to take into account the hole cre-
ated by the recoiling electron until it has completely escapedfrom the system so that the
scattering is essentially from single electrons which can be thought as free electrons. The
potential energy of the electron distribution V(r ) is considered constant for the duration of
the collision and thus cancelsout in the energy conservation equation.
The deviation from the impulse approximation has been the subject of several theoretical
studies. Ribberfors [96] and Holm and Ribberfors [97] made thorough calculations using
the incident photon energy, the atomic number and the scattering angle as parameters to
�nd a possible deviation from the IA. It turned out that the IA works surprisingly well.
Eisenberg and Platzman [98] studied the in�uence of the potential to the observed spectrum
and expressedthe errors in terms of ( EB

E r
)2, where EB is the binding energy and E r is the

recoil energy of the photons. For small ratio, as it is the casefor most experiments, the IA
works well again.
Within this approximation, if one considers an incident photon with wave vector ~k0 and a

scattered photon with the wave vector ~k0 (seeFig. 3.1),the magnetic Compton crosssection
for a solid can be written as:

·
d2¾

d­ dpz

¸

"

¡
·

d2¾
d­ dpz

¸

#

´
·

d2¾
d­ dpz

¸

¢

= Pcr 2
0

µ
k02

k2
0

¶
ª 2(¾)Jmag (pz); (3.4)

where Pc is the degreeof circular polarization and r 0 is the classicalelectron radius and ª 2

is a geometrical factor, de�ned as:

ª 2 = § ¾(k0 cos®cos' ¡ k0cos(®¡ ' )) (cos' ¡ 1)
~c

m0c2
: (3.5)
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Figure 3.1:The Compton scattering geometry.

In this formula, ¾is the electron spin (§ 1), ® is the angle between the incident photon (~k0)
and the magnetization dir ection ( ~B) and ' is the scattering angle. As can be seenfrom Eqs.
(3.4) and (3.5), the magnetic cross-sectioncan be increasedby making the angle ® smaller
and Á larger. Jmag is the momentum distribution of the unpair ed electrons projected along
the scattering vector (pz), also known asthe magnetic Compton pro�le:

Jmag (pz) =
Z Z ¡

n" (~p) ¡ n#(~p)
¢

dpxdpy : (3.6)

Here the electron momentum density for a given spin orientation is given by n" (#)(~p).
By constraining the sample magnetisation and the incident and scattered wave vector to be
coplanar (seeFig. 3.1),the measured pro�le depends only upon the electron's spin. The tra-
ditional Compton scattering samplesa projection of the electron momentum density, where
the integrated areaunder the Compton pro�le obtained is proportional to the total number
of electrons. The Compton pro�le is a one-dimensional projection of the electron momen-
tum density n(~p) along the scattering vector pz:

J (pz) =
Z Z

n(~p)dpxdpy : (3.7)

The areaunder the pro�le is equal with the number of electrons in the Wigner-Seitz cell, i.e.

Z
J (pz)dpz = Z : (3.8)
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In the magnetic scattering, we are interestedonly on those electrons which contribute to the
spin moment, and which are, therefore, unpair ed. If we consider the total electron momen-
tum density to be composed of spin-up and spin-down electrons, we can write

n(~p) = n" (~p) + n#(~p) : (3.9)

If a spin moment exists, this is given by the dif ference in occupancy of the spin-up and
spin-down bands:

¹ spin =
Z £

n" (~p) ¡ n#(~p)
¤

d3p : (3.10)

This dif ferencecan be measured in a magnetic Compton experiment due to the spin depen-
dent term in the scattering cross section. The area under the magnetic Compton pro�le is
equal to the spin moment per Wigner-Seitz cell:

Z + 1

¡1
Jmag (pz)dpz = ¹ spin : (3.11)

On the basis of this derivation, we can consider the magnetic Compton scattering as an
establishedtechnique for probing the spin-dependent momentum densities and band-struc-
tures of magnetic solids. The orbital momentum is not measured, the magnetic Compton
pro�le is solely sensitive to the spin moments of the scatterers [99, 90,89,87, 100] .
The shape of the magnetic Compton pro�le carries information about the localization of
the electronic moment. This is a useful asset, as the localization of the moment and its
interaction with the surrounding conduction electrons, e.g. via the s-d interaction, is the
mechanism which drives the magnetic ordering.
The experiments of spin-polarized positron angular correlation also probe the spin density,
but in this casethe positron-electron correlation effects have to be considered. The positron
doesn't sample electrons from all statesequally, whilst De Haas-van Alphen measurements
areonly sensitive to the electrons from the Fermi surface. Compared to thesetechniques, the
value of the magnetic Compton scattering stemsfrom its uniform sensitivity to the whole of
electron momentum distribution.

3.3 The expression for the magnetic Compton pro�le

Our aim is to calculate the magnetic Compton pro�le Jmag (pz) including all relativistic ef-
fects. Starting from the expressionof Jmag (pz) from Eq. (3.7),one needsa method to obtain
the momentum density n(~p). It has been shown in the previous chapters how the Green's
function G(~r ;~r 0; E) for a system can be calculated and how certain quantities describing a
system can be connected to the Green's function of that system. In this case,the quantity
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involved is de�ned in the momentum space.As a consequence,a changeof representation
is required for the Green's function, according to the formula:

Gms m0
s
(~p;~p0; E) =

1
N ­

Z
d3r

Z
d3r 0©£

~pms
(~r )=G+ (~r ;~r 0; E)©~p 0m0

s
(~r 0) : (3.12)

Here ­ is the volume of the unit cell and ©~pms are the eigenfunctions of the momentum op-
erator, which can be written as©~pms = U(~p)ei ~p~r = U~pms e

i ~p~r , where U(~p) is a four -component
spinor satisfying the equation:

(c~®~p + ¯ mc2)U~pms = EpU~pms : (3.13)

One may write ~r = ~Rn + ~r0n where ~Rn is the origin of the nth cell and ~r 0n is included into
this cell. In addition, one may consider the real-spaceintegration

R
d3r asa summation over

the cell-integrals
R

d3r =
P

n

R
d3ron. Consequently, the expression for the Green's function

reads:

Gms m0
s
(~p;~p 0; E) =

1
N ­

X

n

Z
d3r0

Z
d3r 0

£ Á£
~pms

( ~Rn + ~r0)=G+ ( ~Rn + ~r0;~r 0; E)Á~p 0m0
s
(~r 0)

=
1

N ­

X

n

Z
d3r0

Z
d3r 0

£ U£
~pms

e¡ i ~p( ~Rn + ~r 0 )=G+ ( ~Rn + ~r0; ~Rn + ~r 0; E)U~p 0m0
s
ei ~p 0( ~Rn + ~r 0) :

(3.14)

If the translational invariance property of the Green's function is taken into account (seeEq.
(2.190))and the Bloch theorem is applied for ©~pms , one gets:

Gms m0
s
(~p;~p0; E) =

1
­

Z
d3r0

Z
d3r 0U£

~pms
e¡ i ~p~r 0 =G+ (~r0;~r 0; E)U~p 0m0

s
ei ~p 0~r 0 1

N

X

n

ei (¡ ~p+ ~p 0) ~Rn

=
1
­

Z
d3r0

Z
d3r 0U£

~pms
e¡ i ~p~r 0 =G+ (~r0;~r 0; E)U~p 0m0

s
ei ~p 0~r 0

¢( ¡ ~p + ~p0)

(3.15)

and �nally , the result is

Gms m0
s
(~p;~p0; E) = Gms (~p;~p0; E)±ms m0

s
±~p~p 0 : (3.16)

This property is very useful for our purpose, becauseperforming an energy integration up
to the Fermi level, one gets the spin-pr ojectedmomentum density, according to the formula:

nms (~p) = ¡
1
¼

Z EF

0
=Gms (~p;~p;E)dE : (3.17)
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This is a quantity depending on the momentum vector which hasto beprojectedon the scat-
tering vector dir ection through integration in aplane perpendicular to it. A two-dimensional
integration in the (px ; py) plane is the �nal step to calculate the magnetic Compton pro�le
by the formula:

Jmag (pz) =
Z Z ¡

n" ¡ n#
¢

dpxdpy : (3.18)

The problem is still unsolved; in order to make our formalism applicable, we have to get a
general formula for Gms (~p;~p; E), equally valid for systems with many atoms per unit cell,
pure systemsand for substitutional disordered alloys.
We will start our calculation from the following formula for momentum's representation
eigenfunctions:

©~pms =
µ

Ep + c2

2Ep + c2

¶ 1
2

µ
Âms

c~¾~p
Ep + c2 Âms

¶
ei ~p~r ;

(3.19)

where

Ep =
c2

2

Ãr

1 +
p2

c2
¡ 1

!

(3.20)

is the electron's total energy, Âms are the Pauli spinors and ms is the spin quantum number.
Using the expansion (seeRose[101])

Âms e
i ~p~r = 4¼

X

¤

i lCms
¤ Y ¹ ¡ ms ¤

l (~p)j l (pr)Â¤ (3.21)

and the properties of the operator ~¾~p, thesefunctions are rewritten as:

©~pms = 4¼
µ

Ep + c2

2Ep + c2

¶ 1
2 X

¤

i lCms
¤ Y ¹ ¡ ms ¤

l (~p)
µ

j l (pr)Â¤ (r̂ )
icSk

Ep + c2 j ¹l (pr)Â¡ ¤ (r̂ )

¶
; (3.22)

where Cms
¤ are the Clebsch-Gordan coef�cients, Y m l

l are the complex spherical harmonics,
Â¤ (r̂ ) are the spin-angular functions and j l (pr) are the spherical Besselfunctions.
Intr oducing this expressionof the momentum operator eigenfunctions into the Green'sfunc-
tion expression(3.12),together with the site-diagonal (SD)(Eq. (2.179))and site-nondiagonal
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(NSD) expressions(Eq. (2.180))of the Green'sfunction in the coordinate representation,one
gets:

Gms (~p;~p;E) =
1
­

Z
d3r0q

Z
d3r 0

0qU
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X
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¤ 0 (~r 0
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i

£ U~pm0
s
ei ~p(~r 0

n 0q0+ ~Rn 0+ ~Rq0) :

(3.23)

The details of the calculations are presented in the Appendix A. The quantities M q®
ms ¤ and

~M q®
ms ¤ m0

s
are the following matrix elements (seeAppendix B) of the regular and irr egular

solutions of the Dirac equation:

Mms ¤ = Mms ¤ (~p; E)

= hÁ~pms jZ¤ i (3.24)

and

Mms ¤ 00m0
s

= Mms ¤ 00m0
s
(~p; E)

= hÁ~pms (~r )j
³

Z¤ 00(~r )J £
¤ 00(~r 0)£( r 0¡ r )

J¤ 00(~r )Z £
¤ 00(~r 0)£( r ¡ r 0)

´
jÁ~pm0

s
(~r 0)i : (3.25)

From this, the following expression for the momentum representation Green's function is
derived (seeAppendix A):
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The �rst term in this formula is the single-site part, with the single-site t-matrix elements
given by Eq. (2.137).For the energy-integration of this term, a path along the real axis will
be used; in this way, the matrices ~M q®

ms ¤ m0
s

can be ignored, becausethey contain the irr egu-
lar solutions of the Dirac equations which can be ignored for real energies becauseonly the
imaginary part has to be considered.
The second term is the so-called backscattering term and can be evaluated through an en-
ergy integration in the complex plane, along an arc-like contour path with only few energy
mesh points. The scattering path operator ¿0q0qCP A is given by the CPA equation (2.183)and
the matrix D q® is de�ned in Eq. (2.184). The thir d term prevents a double-counting com-
ing from the samesite in the non-site diagonal expressionof the Green's function, which is
present in the fourth term. The scattering path operator which appears in the fourth term
was already de�ned in the CPA theory for disordered alloys and is given in Eq. (2.189).
One should emphasizethat this formula enablesus to treatpuresystemsaswell. In this case
the matrix D q® is the identity matrix, xq® = 1 and the ¿0q0qCP A is replacedby the supermatrix
(2.171)de�ned in the multiple scattering section. Also, the systems with many atoms per
unit cell and substitutional disordered alloys are successfully described by this formalism,
aswill be shown in the next sections.

3.4 Application to the transition metals Feand Ni

A �rst test of the formalism presentedbefore hasbeendone for the transition metals Feand
Ni. Ferromagnetic iron hasbeena very popular material for many magnetic measurements,
mainly becauseof its large (spin) magnetic moment at room temperature which maximize
the magnetic Compton cross-section.From a theoretical point of view, Fe is relatively sim-
ple system to model, and several band-structure techniques have beenadapted to calculate
magnetic Compton pro�les. Becauseof thesereasons,there are several studies on the MCP
in Fe, �rst of them published in 1976by Sakai and Ono [95]. The resolution of the experi-
mental data is rather poor in this early study, so we convoluted our calculated pro�les with
a Gaussian having a full width at half maximum (FWHM) equal to the experimental mo-
mentum resolution.
The experimental pro�les we used for comparison are already normalized with the area
under the pro�le equal with the spin magnetic moment and we didn't perform a further
normalization.



3.4. APPLICATION TO THE TRANSITION METALS FEAND NI 69

The magnetic Compton pro�les along the scattering dir ections [001], [110]and [111]are cal-
culated by applying the SPR-KKRpackageto perform electronic structurecalculations based
on the Vosko, Wilk and Nusair parametrization for the exchange-correlation energy. The cal-
culation routine allows to have the magnetic moments rotated away from the global z-axis.
This means that the band-structure problem is solved in a local frame of referencehaving
the scattering vector dir ection as z-axis. The integration in the (px ; py) plane is done up to
px;max = py;max = 10 a.u. in a rectangular grid which consistsof 50£ 50 grid points. The test
calculations we have done to check the validity of this approach showed that any increas-
ing of the number of grid points or the maximum value of the px or py momentum doesn't
change the shape of the calculated pro�les. The energy integration splits into an arc-like
path of 30 points in the complex energy plane and a path parallel to the real energy axis
which consistsof 50energy-points.
The dir ectional pro�les for Fe are presented in Figs. 3.2 and 3.4. The experimental data of

0 1 2 3 4 5
momentum pz(a.u)

0

0.1

0.2

0.3

0.4

M
C

P
 (

ar
bi

tr
ar

y 
un

its
)

experimental

APW 0.7 broad

KKR 0.7 broad

0 1 2 3 4 5
momentum pz(a.u.)

0

0.1

0.2

0.3

0.4
M

C
P

 (
ar

bi
tr

ar
y 

un
its

)

experimental

APW 0.7 broad

KKR 0.7 broad

Figure 3.2:Magnetic Compton pro�les for Fealong the [001] dir ection (left) and [110] dir ec-
tion (right). Experimental data of Collins et al. (circles), APW calculations of Wakoh et al.
(dotted line) and KKR calculations (full line).

dir ectional magnetic pro�les in bccFehave beenmeasured by Collins et al. [91] using circu-
larly polarised 60keV synchrotron radiation with a circularly polarisation degreeof 0.45%.
The total momentum resolution of the spectrometer is 0.7 atomic units. The pro�les have
been normalised to an area in the momentum range -8 to +8 a.u. equal with the spin mag-
netic moment of Fe(2:2¹ B ).
The APW data of Wakoh et al. [91] and our SPR-KKRcalculations have been convoluted
with a Gaussianof FWHM 0.70a.u. to match the experimental resolution. As can be seenin
Figs. 3.2 and 3.4, the KKR Compton pro�les are in good agreement with the experimental
data and with the APW calculations. The dif ferencesappear primarily in the low momen-
tum region, where all the dir ectional pro�les are characterized by a central dip. This dip is
due to the existenceof regions in the momentum spacewhere the momentum density of the
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majority band n" (~p) is decreasedcompared with that of the minority band, n#(~p).
In general, magnetism arises from more than one orbital in a solid state material. Com-
monly, the moments are spatially concentrated around the atomic sites, but with polarized
band electrons playing a crucial role in the exchange interaction responsible for magnetic
ordering. The negative polarization at low momentum is therefore supposed to occur (see
[91, 11, 93]) becausethe s-p bands have opposite polarisation to that of 3d bands. The s-p
statesare spread out in real spaceand therefore are more localized in momentum spacecon-
tributing mainly to the low momentum region near the center of the pro�le.
We checked this supposition, calculating the s-p and d-statescontributions to the magnetic
Compton pro�le for Fealong the [001] dir ection. According to formula (3.26),we can isolate
the dif ferent s-p or d-like contributions if we restrict to the appropriate ¤ = (·; ¹ ) for the cal-
culation of the matrix elementsM q®

ms ¤ . The s-p and d contributions to the MCP are presented
in Fig. 3.3.As canbeseen,for pz · 1:0 a.u. the negative s-p contribution plays an important
role. This result con�rms oncemore the previous theoretical predictions [91, 11,93].
Due to the broadening, the �ne structure of the spectradisappears but a discrepancy is still
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Figure 3.3: The SPR-KKRs, p and d- contribution to the magnetic Compton pro�le of Fe
along the [001] dir ection.

visible between theory and experiment at low momentum in Fig. 3.2. Both APW and KKR
calculations did not reproduce correctly the behaviour for pz < 1 a.u. in any scattering dir ec-
tion, and becauseof this we considered the more accurate experimental data of McCarthy
along [111] dir ection [102] with 0.2 a.u. momentum resolution to check the agreement. In
addition, the FLAPW results of Kubo and Asano [11] convoluted with a 0.2 a.u. FWHM
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Figure 3.4: The MCP for Fe along the [111] dir ection. The momentum resolution of exper-
imental data (Cooper et al.) is 0.7 a.u. (left) and 0.2 a.u. (McCarthy) (right). Both KKR
and FLAPW calculations have been convoluted with a Gaussian of FWHM equal with the
experimental momentum resolution.

parameter have been plotted in Fig. 3.4. Again the discrepancy between theory and exper-
iment is located mostly in the �rst Brillouin zone and the fully relativistic KKR approach
doesn't impr ove too much the agreement. Both theoretical description predict a local peak
at pz ' 0:5 a.u. which is absent in the experimental pro�le. The �ne structure shows some
additional peaks at pz ' 1:5; 2:5 and 3:5 a.u. which are, according to Cooper et al. [102], the
so-called 'umklapp' featuresof the predicted peak at pz ' 0:5 a.u. in the �rst Brillouin zone.
They point out that for momenta greater than thoseof the �rst Brillouin zone boundaries, all
featuresare due to higher moment components of the structure presentin the �rst Brillouin
zone. Thesearise becauseelectrons with a given ~k contribute to the momentum density at
~p = ~k + n ~G, where ~G is the reciprocal lattice vector and n = 0; 1; 2; : : :. Thus somefeaturesin
the momentum density propagatesaccording to reciprocal lattice vectors from those in the
�rst zone.
Unfortunately , the system with one of the highest magnetic effect, Fe, is not necessarily the
most interesting. The �ne structure predicted from calculations on Fe has far lessstructure
than is found for example in the caseof Ni which will be discussedin the following. In it's
ferromagnetic phase,it hasa magnetic moment of 0.61¹ B to which its spin part contributes
0.56¹ B . This net moment is causedby the exchange-splitting of the 3d band and includes,
as in the Fecase,a negative polarisation of the s- and p-like electrons.
The most recent MCP experimental pro�les with the best resolution (0.43a.u.) have been
measured by Dixon et al. [12] at the high-energy X-Ray beamline (ID15) at the ESRF. Even if
powerful sourcesare available, such a good resolution is dif �cult to achieve becauseof the
small magnetic moment of Ni. The experimental pro�les have beennormalized to the spin
magnetic moment (0.56¹ B ). Our calculations and other theoretical pro�les presentedhere
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Figure 3.5: The MCP pro�les of Ni along the [001] dir ection. The FLAPW calculations of
Kubo and Asano [11], the LMT O-LSDA/GGA calculations of Dixon et al. and the KKR
calculations (full line) have beenconvoluted with a Gaussianof 0.43a.u. FWHM., according
to the experimental resolution of Dixon et al.'s data [12].

have not beennormalized to this value. The scaling of the KKR pro�le was adjusted to give
the best �t of the experimental pro�le.
In Fig. (3.5) we present our KKR magnetic Compton pro�le along the [001] dir ection, to-
gether with the experimental data of Dixon et al., the FLAPW calculations of Kubo and
Asano [11] and LMT O-LSDA/GGA calculations of Dixon et al. [12]. The KKR, FLAPW and
LMT O calculated pro�les have been broadened using a Gaussian with FWHM of 0.43a.u.,
according to the experimental resolution.
All the theoretical results �t the data at high momenta, but they all predict spin moments
which are too large. At low momenta, all theoretical MCP are predicting a local peak at '
0.5a.u.,which is absentin the experimental spectra. This is a common failur e of the theories
thought to be most likely due to a failur e of the description of the exchangeand correlation
effects[102, 103]. This result is similar to Fe:although the magnetic pro�le haslessstructure,
the major discrepancy between theory and experiment is again in the �rst Brillouin zone.
Due to the lower resolutions, the 'umklapp' featuresare not very prominent at higher mo-
menta, but still visible at ' 1:2, 1:7, 2:7 and 3:7 a.u.. While LMT O overestimatesthe 1:2 and
1:7 a.u. peaks, the featuresat 2:7 and 3:7 a.u. are good reproduced by all calculations.
Our calculations gives the best �t along the [001] scattering dir ection, but this doesnot hold
for all geometries,ascan be seenin Fig. 3.6.Becausethe LMT O calculations are far from the
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Figure 3.6:The MCP pro�le of Ni along [111] dir ection (left) and [110] dir ection (right). The
FLAPW calculations of Kubo and Asano [11] and the KKR calculations (full line) have been
convoluted with a Gaussian of 0.43a.u. FWHM to �t the experimental data of Dixon et al.
[12].

experiment, they have not beenreproduced in this �gur e.
Along the [110] dir ection, the KKR and FLAPW results are almost identical, both predict a
peak at ' 0:7 a.u. which is absent in the experimental data but reproduce well the features
at ' 2:0, 3:3 and 4:6 a.u.. Also, the �t at 0 a.u. is quite satisfying for both calculations.
Along the [111] dir ection, the peak at pz = 0 a.u. is overestimated by our calculations and
better reproduced by the FLAPW results. Also, the dip at ' 0:6 a.u. in the experimental
data, better reproduced by FLAPW, is shifted by our KKR calculations at ' 0.8a.u..

In conclusion, our KKR fully relativistic calculations of the MCP for pure metallic systems
Fe and Ni are in reasonableagreement with the experimental data and with other non-
relativistic theoretical results. One should note that relativistic effects are small for these
systemsand a noteworthy impr ovement of the agreement with experimental data by fully
relativistic calculations is dif �cult to see.

3.4.1 Three-dimensional spin momentum density

The �rst three-dimensional spin momentum density was reconstructed for Fe from 14 sep-
arate magnetic Compton pro�les by Tanaka et al. [13] using a Fourier transform technique.
The surface perpendicular to the [001] dir ection crossing the ¡ point has a deep minimum
around the ¡ point and four peaks at px = § 1:8 a.u. and py = § 1:8 a.u.. The experimental
two-dimensional projection normal to the [001] dir ection of the spin momentum density is
correctly reproduced by the FLAPW band calculations of Kubo [13]. Becausethe full three-
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Figure 3.7: A two-dimensional projection of the spin momentum density: KKR calculations
(up), FLAPW calculations [13] (middle) and experiment (down) [13].



3.5. APPLICATION TO DISORDEREDALLOYS 75

dimensional momentum density offers an excellent opportunity to test theoretical models,
this was the next application for our KKR method. The result of our calculations, namely the
two-dimensional projection normal to the [001] dir ection (convoluted with the experimental
resolution expressedby a Gaussianof FWHM 0.76a.u.) is shown in the Fig. 3.7. The agree-
ment between the KKR two-dimensional projection and experimental, respectively FLAPW
calculated two dimensional projection of the spin momentum density is good, demonstrat-
ing the reliability of MCP calculation using the KKR method. This encouragedus to develop
our code in order to describemomentum densities of more complex compounds and in dis-
ordered alloys, which will be treated in the next section.

3.5 Application to disordered alloys

3.5.1 Compton anisotropic pro�les in Ni xCo1¡ x alloy

The Compton pro�les along the [001], [110] and [111] dir ections for Ni 0:75Co0:25 disordered
alloy were calculated using the KKR method within the CPA and the atomic sphere approx-
imation. The exchange-correlation part of the potential was described, asbefore, in the local
spin-density (LSDA) approximation. The f ccstructure was used with the experimental lat-
tice parameters of 6.6694for the alloy and 6.6518atomic units [104] for pure nickel. The
parameters for the energy and momentum integration given in the previous section were
used.
The motivation of considering this alloy was the idea that the electronic structure of
Ni 0:75Co0:25 and of pure Ni may dif fer substantially. If one start to add Co in the Ni-system,
the average moment of the alloy will increasebecauseof the open d-shell of Co. Also, the
number of electrons in the unit cell will decreasebecauseCo haslesselectrons in the d-shell.
The KKR band structure calculations show that eachNi atom in the alloy carries a spin mo-
ment of 0.59¹ B , while the Co atoms carried a spin moment of 1.62¹ B giving a net moment
of 0.85¹ B per formula unit. The spin and orbital magnetic moment was 0.63¹ B on Ni atom
and 1.69¹ B on Co atom. Thesevalues are in agreementwith the KKR-CPA computed values
of Bansil et al. [14] (0.64¹ B on Ni atom and 1.63¹ B on Co atom).

Becausethe results for the MCP in Ni and Ni 0:75Co0:25 alloy are quite similar , it is inter-
esting to analyse the �ne structure of the spectra. For this purpose, the theoretical charge
(spin up + spin down) pro�les for Ni 0:75Co0:25 along the high-symmetry were subtracted
two by two, in order to obtain the so-called anisotropic pro�les. In Fig. 3.8 the ¢ J [110]¡ [001]

and ¢ J[111]¡ [110] anisotropic pro�les are presented,together with the experimental data and
the KKR-CPA calculations of Bansil et al. [14]. The experimental data were produced using
a 137Cs ° -ray sourcewithin a total momentum resolution of 0.4atomic units.
The theoretical pro�les wereconvoluted with a Gaussianof FWHM 0.4a.u. in order to simu-
late the experimental resolution and thus to allow a dir ect comparison with the experiment.

As can be seen,our calculations are consistent with the experimental data and with the
KKR-CPA calculations of Bansil et al.. The shapeof the oscillations are similar , but for pz > 3
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Figure3.8:The anisotropic Compton pro�les of Ni 0:75Co0:25. Our SPR-KKRcalculations (full
line) are compared with experimental data and KKR calculations of Bansil et al. [14].
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by the SPR-KKRcalculations.
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Figure 3.10: The anisotropic [110]-[001] spin-up (left) and spin-down (right) pro�les of
Ni 0:75Co0:25 and pure Ni obtained by the SPR-KKR.

a.u. our calculations doesn't reproduce correctly the position of the maxima and minima.
A small shift towards smaller momenta is visible in our [110]-[001] calculated pro�le, the
maximum at ' 4:2 a.u in the experimental spectra is given by our calculations at ' 4:0 a.u..
Also, for pz > 3 a.u. the amplitude of the minimum at ' 3:5 a.u. is underestimated.
In the [111]-[110] anisotropic pro�le, our calculations describe the minima and maxima po-
sitions better, but the amplitude of the spectrum is overestimated at pz < 2:5 a.u. and un-
derestimated for higher momenta. Also, the shift towards smaller momenta is still present
in this spectra for pz > 3 a.u.. Both theoretical calculations show a deviation from the ex-
perimental spectra at pz = 0 in the [110]-[001] pro�le. There are dif ferencesalso between
our KKR calculations and those of Bansil et al., supposed to appear due to the dif ferent
exchange-correlation parametrizations within the LSDA. Nevertheless, the agreement be-
tween both calculation and experiment is reasonable.Our fully relativistic KKR calculation
doesn't impr ove substantially the agreementwith experiment becausethe relativistic effects
in the 3d transition metals are small. The achieved agreement allows us to use our calcula-
tions for Ni and Ni 0:75Co0:25 alloy to investigate possible changesin the anisotropic pro�le
due to alloying.
The anisotropic pro�les for Ni and Ni 0:75Co0:25 alloy are representedin Figs. 3.9and 3.10.As
can be seen,the similarity of the pro�les makes a identi�cation of Co speci�c featuresvery
dif �cult. According to our calculations, the similarity remains when the spin up, respec-
tively spin-down anisotropic pro�les are discussed,so we cannot conclude that the spectral
changesin the alloy are limited mainly to the minority-spin states,as it was concluded by
Bansil et al. [14]. The slight shift towards smaller momenta of the alloy's spectra may have
several reasons.A study of the behaviour of this shift with respectto the alloy's concentra-
tion or exchange-correlation parametrization would be required before one may allow for a
reasonableconclusion.
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3.5.2 Magnetic Compton pro�les in Fe3Pt Invar alloy and ordered
compound

In 1897Guillaume discovered that face-centred cubic alloys of Fe and Ni with Ni concen-
tration around 35 % exhibit anomalously low (almost zero) thermal expansion over a wide
temperature range. This effect, known as the Invar effect, has since been found in vari-
ous ordered and random alloys and even in amorphous materials. One of those systems is
Fe1¡ xPtx , which exhibits the invar effect around the ordered crystallographic phaseFe3Pt.
It was found that also other physical properties of invar systems, such as the atomic vol-
ume, elastic modulus, heat capacity, magnetization and Curie (N éel) temperature show an
anomalous behaviour [105].
There is much theoretical work undertaken on the invar problem, but the mechanism re-
sponsible for it is still subject of debates. The �rst theoretical model, proposed by Weiss
[106], postulates that ° -Fe (f cc) has two dif ferent nearly-degenerate magnetic states:a high
spin (HS) statewith a moment of » 2:8 ¹ B /atom and a larger atomic volume and a low spin
(LS) state with a moment of » 0:5 ¹ B /atom and small atomic volume. The relative popula-
tions of thesestatesdepends upon the system temperature in such a way asto createa large
volume magnetostriction that opposesthe thermal expansion of the lattice.
Until now, there has not beenan experimental evidence that conclusively supports the two
state model. The neutron scattering experiments [107] studying the temperature depen-
dence of the form factor shows no evidence for a charge transfer in the material. Also, the
photoemission data [108] are not conclusive concerning a possible charge transfer.
Recent theoretical studies [105] suggest that the invar ground state is a non-collinear-one,
but the experiment [109] doesn't prove this hypothesis and the invar compound is thought
to have a collinear magnetic structure.
The �rst studies of magnetic Compton pro�les on Fe3Pt compound were done by Srajer et
al. [15]. They determined the [001] MCP pro�le experimentally at 305 K and 490 K and
calculated the pro�le using the FLAPW method with a LSDA potential, showing that the
charge transfer between HS and LS states may exist. Their MCP studies were continued
by Taylor et al. [1] and Major et al. [110], who measured the [110] and [111] pro�les and
found no temperature-dependenceof the pro�le shapes. In addition, the LMT O and KKR
calculations together with the experimental data show that disorder doesn't play a major
role concerning the pro�le's shape.
The FLAPW-GGA calculations of Wakoh et al. [16] seemsto �t the experimental data better
than the LMT O calculations, although they didn't take the disorder into account.
Our work on ordered and disordered Fe3Pt continue the combined efforts to determine the
shapeof the MCP pro�les and to �nd a hint to elucidate the invar mechanism.
Self-consistentpotentials of ferromagnetic Fe3Pt were determined by the SPR-KKRwithin
the atomic sphere approximation (ASA). The Coherent Potential Appr oximation (CPA) was
used for the treatment of the disordered alloy. The Cu3Au structure was used for the or-
dered compound with a lattice parameter a = 7:088a.u.. The same lattice parameter was
kept for the disordered f cc-Fe0:75Pt0:25 alloy. With theseparameters, eachFeatom carried a



3.5. APPLICATION TO DISORDEREDALLOYS 79

spin moment of 2.59¹ B while the spin moment induced on Pt was 0.27¹ B per atom in the
ordered compound. The net magnetic moment was 2.085¹ B /FU, while the spin contribu-

Au

Cu

Figure 3.11:The Cu3Au structure.

Ordered sample Disordered sample
15K MCS experiment [1] 1.85§ 0.02 1.64§ 0.02
300KMCS experiment [1] 1.54§ 0.02 1.47§ 0.02
300KVSM experiment [1] 1.61

KKR-CPA(Major) [110] 2.136 2.156
SPR-KKR(presentwork) 2.009 2.132

LMT O [1] 2.096
FLAPW [16] 2.169

Table 3.1: Spin magnetic moments per formula unit in Fe3Pt compound. Resultsare quoted
as ¹ B per formula unit of Fe0:75Pt0:25. The MCS (magnetic Compton scattering) and VSM
(vibrating sample magnetometer) experimental data stem from Taylor et al. [1].

tion to the total magnetic moment was 2.009¹ B /FU. Here FU meansthe formula unit, taken
asFe0:75Pt0:25 in order to facilitate the comparison with the disordered alloy.
For the disordered alloy, the Fespin moment was determined to be 2.76¹ B per atom, while
the induced spin moment on the Pt atom was determined to be 0.244¹ B . This yields a net
magnetic moment of 2.202¹ B /FU with a spin contribution of 2.132¹ B /FU.
The comparison with the experimental data of Taylor et al. [1] and with the results of other
theoretical calculations is done in Tables3.1 and 3.2. As can be seen,the dif ferent methods
of calculation produce similar results, even if the lattice parameter used is slightly dif ferent.
The calculations do not describe correctly the magnetic moments (Taylor et al. [1]). In par-
ticular , the spin magnetic moments are overestimated by all methods of calculation. As one
notes, the spin magnetic moment on Feat 15K (2.46¹ B ) is higher than in pure Fe(» 2.1¹ B ).
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Ordered sample Disordered sample
15K MCS experiment [1] 2.46 2.18
300KMCS experiment[1] 2.056 1.97
KKR-CPA(Major) [110] 2.73 2.79

SPR-KKR(presentwork) 2.59 2.76
LMT O [1] 2.62

FLAPW [16] 2.77

Table 3.2:Spin magnetic moments per Featom in Fe3Pt compound.

A possible explanation for the low temperature (15K) magnetic moment on Fe to be higher
than that one may expect in pure Fe is a martensitic phasetransition [111, 112] producing a
bctdistortion of the lattice below ¼ 100K.
The magnetic Compton pro�le resolved along the [001] dir ection for ordered Fe3Pt and
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Figure 3.12: Left: The [001] dir ectional MCP of Fe3Pt. The experimental pro�le was mea-
sured at 305K (Srajer et al. [15]) and normalized to the corresponding total spin moment.
The SPR-KKRand FLAPW (Srajeret al. [15]) pro�les have beenbroadened with a Gaussian
of 0.8 a.u. FWHM. Right: The unbroadened [001] dir ectional MCP of Fe3Pt derived from
SPR-KKRand FLAPW GGA (Wakoh et al. [16]) calculations, respectively.

Fe0:75Pt0:25 disordered alloy is shown in Fig. 3.12(left). Our calculations are compared with
experimental data of Srajer et al. [15] measured at 305 K within a momentum resolution
of 0.8 a.u.. The theoretical pro�les have been broadened with a Gaussian of FWHM corre-
sponding to the experimental momentum resolution. The values of the experimental mag-
netic moment have beendetermined from the areaof the measured pro�le, normalized to a
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Fe standard with a known moment. The results of the FLAPW calculations of Srajer et al.,
with the appropriate broadening, have also beenrepresentedin the �gur e.
As can be seen,the broadening parameter that should be used to allow a comparison with
the experiment smearsout the �ne structure of the spectra. Becauseof this, the KKR pro�les
for the ordered structure and the disordered alloy almost coincide.
Our calculation doesn't reproduce the behaviour at pz · 0:5 a.u. presentin Srajer's FLAPW
calculations. A dip around pz = 0:5 a.u. in the KKR calculation can be seenbut it doesn't
extend through pz = 0 a.u.. This is the main dif ferencebetween our SPR-KKRcalculations
and the FLAPW calculations of Srajer et al.. Becauseexperimental data with a better accu-
racy along [001] dir ection are not available, we compared our unbroadenedspectrawith the
FLAPW calculations of Wakoh et al. [16].
As can be seenin Fig. 3.12(right), the agreement between KKR and FLAPW-GGA [16] cal-
culations is good. A dip at pz = 0 a.u. cannot be seen in any of the theoretical spectra.
As a consequence,the dip at pz ' 0 a.u. in Srajer's FLAPW pro�le is questionable. The
dif ferencebetween theory and experiment should be ascribed to shortcomings of LSDA to
deal with electron correlation.
As it has been shown before, the d-like and s-p like contributions to the MCP can be iso-
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Figure 3.13:The SPR-KKRMCP along the [001] dir ection of Fe3Pt decomposed into atomic
type contributions (left). The d orbitals contributions at the MCP along the [001] dir ection
of Fe3Pt, decomposed into atomic type contributions (right), by SPR-KKRcalculations.

lated by a corresponding setting of the quantum number ¤ = (·; ¹ ) in the calculation of the
matrix elements M q®

ms ;¤ from Eq. (3.26). Also, a further decomposition of the MCP is possi-
ble in our SPR-KKRformalism. Considering the formula (3.26)of the Green's function, the
MCP canbewritten asa sum over the atomic types, plus an additional so-called interfer ence
term which takes into account the contribution of pairs of atoms sitting on dif ferent sites.
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The previous described decomposition has been performed for the MCP of ordered Fe3Pt
system. The decomposed spectra are presentedin Fig. 3.13. On the left hand side one can
seethe total spectra decomposed into Fe and Pt contributions, plus the interfer ence term.
On the right hand side, the decomposition on the atomic types has beendone for the d-like
MCP of ordered Fe3Pt system.
As can be seen in Fig. 3.13, the most signi�cant contribution to the MCP comes from Fe.
This result is expected, if one takes into account it's spin magnetic moment (seeTables 3.2
and 3.1)which is responsible for the magnetic Compton effect. The very small spin moment
on Pt is re�ected by its minor contribution to the MCP. Most signi�cant for the MCP shape
is the oscillating interfer enceterm.
Comparing the d-like MCP and the total MCP of Fe3Pt along the [001] dir ection, we can see
that for pz > 1 a.u. there aren't major dif ferencebetween the various spectras. This means
that the major contribution on the MCP for pz > 1 a.u. comesfrom d orbitals of Feand Pt.
The dif ferencesbetween d-like and total MCP spectrasare visible at pz » 0:7 a.u., where the
d-like dip of the MCP spectra is lesspronounced. Responsible for this dif ferenceseemsto
be the negative polarization of s-p orbitals, as in the caseof pure Fe,re�ected in lowering of
the Fe(total) pro�le compared with Fe(d) at pz < 1 a.u.. Also, the interfer enceterm gives a
wider negative contribution at pz < 1 a.u. in the total pro�le compared with the d-d inter-
ferenceterm. Thesecombined in�uences seemsto be decisive for the shape of the MCP of
Fe3Pt.
To allow for a more complete pictur e over the one dimensional projection of the spin mo-
mentum distribution in Fe3Pt we performed calculations of the MCP along the [111] and
[110] dir ections for the ordered system and the disordered alloy.
The experimental data of Taylor et al. [1] with a momentum resolution of 0.4 a.u. at 300K,
normalized to an areaof 1.85¹ B have beenused for comparison. The experiment performed
on a single crystal and on chemically disordered sample, respectively, showed that the MCP
is not sensitive to the degree of order in the sample. This result is in agreement with our
calculations along the [001] dir ection which seemsnot to be affected by disorder.
The MCP for ordered Fe3Pt is presentedin Fig. 3.14. The FLAPW calculations of Wakoh et
al. [16] and LMT O calculations of Major et al. [1] with the 0.4.a.u. FWHM gaussianparam-
eter have beenused for comparison.
The calculated MCP is in good overall agreement with the experimental pro�le, especially
the high momentum components of the experimental pro�le are well reproduced by theory.
As can be seen,our KKR calculations give a �t comparable with the FLAPW calculations,
whereasthe LMT O-calculated MCP is too large for pz · 2 a.u. along both crystallographic
dir ections.
In Fig. 3.15our KKR-CPA magnetic Compton pro�les for disordered Fe0:75Pt0:25 alloy are
presented, together with the KKR-CPA calculations of Major et al. and experimental data
[1]. The value of 0.4FWHM for the gaussian broadening has beenused for both KKR-CPA
calculations, in accordancewith the experimental momentum resolution.
The calculated MCPs are again in good overall agreement with that measured experimen-
tally. Our fully-r elativistic version of KKR-CPA leads to a more satisfying agreement with
the experimental data in the momentum region below 2 a.u.. However, one should note that
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Figure 3.14:The [110] (left) and [111] (right) dir ectional MCP of Fe3Pt. The SPR-KKRpro�le
(full line), the LMT O [1] and FLAPW [16] calculations are compared with experimental data
[1].
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Figure3.15:The [110] (left) and [111] (right) dir ectional MCP for disordered Fe0:75Pt0:25 alloy.
The SPR-KKRcalculations (full line) are compared with KKR-CPA calculations of Major et
al. and experimental data [1]. Both KKR-CPA calculations have been broadened with a
Gaussianof 0.4.a.u. FWHM, in accordancewith the experimental momentum resolution.
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Figure 3.16: The unbroadened [110] (left) and [111] (right) dir ectional MCP of Fe3Pt. The
SRR-KKRcalculations for ordered and disordered compounds, respectively FLAPW-GGA
calculations (Wakoh et al. [16]) are presented.

the calculated spin moments for eachKKR-CPA version are very similar .
As the experimental measurementsdemonstrate [1], the dir ectional magnetic Compton pro-
�les for ordered and disordered compounds are almost identical, within the experimental
resolution. Wecheckedif from a theoretical point of view, one should notice somedif ference
between the MCP for ordered and disordered sample. We investigated the disorder effect
on the MCP along the [110] and the [111] dir ection using the KKR and CPA-KKR code and
the samelattice parameters for Cu3Au and f ccstructure. The result can be seenin Fig. 3.16.
The dif ference in the [110] pro�les between the KKR and KKR-CPA appear at pz · 2 a.u.,
where the dip at » 0.7a.u. and the peak at » 0.5a.u. are lower for a disordered sample. This
means that the negative polarisation in this momentum region is more pronounced for the
ordered sample, supposing that between experimental spectra for ordered and disordered
sample the dif ferenceis negligible.
For the [111] dir ection MCP, the �ne structure of the spectra is reduced, so the information
we can extract comparing the KKR, KKR-CPA and FLAPW spectra is limited. We notice the
existenceof a small hump around 0.7 - 0.9 a.u., present in the KKR spectra for the ordered
system, which cannot be seenin the other spectra.
The very good overall agreementbetween KKR and FLAPW spectramust be emphasized.
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3.6 Magnetic Compton pro�les for rare earth systems

A fully relativistic study of the magnetic Compton pro�les for the rareearth systemsGd and
Y-Gd alloy is presented in this section. Becausethe relativistic effects cannot be neglected
for the rare earth systems, this approach is expected to get a more appropriate description
of the momentum distribution compared with the calculations which have been published
until now [3].
There are several studies [113, 114,115] about the applicability of the local spin-density ap-
proximation (LSDA) in the ground-state description of 4f-electronic systems. Becausethe
LSDA will overestimate the extent of the 4f itineracy leading to an overestimation of the
strength of the 4f bonding, the LSDA may produce poor agreement with experiment [116].
The investigation of Duf fy et al. [3] concerning the validity of LSDA within the LMT O
method for the description of the one-dimensional momentum densities of Gd showed very
similar pro�le shapesfor the LMT O-LSDA and LMT O-GGA calculations. Kubo and Asano
calculated the MCP of Gd by the full-potential linear augmented-plane-wave (FLAPW)
method on the basis of LSDA. They found a good agreement between their calculations
and the experimental data of Sakai et al. [117], concluding that the spin polarization of the
conduction electrons is satisfactorily reproduced by the band structure model basedon the
LSDA. Taking into account these studies, it is expected that the results of our calculations
using LSDA will not suffer due to an inadequate treatment of exchangeand correlation.

3.6.1 Magnetic Compton pro�le of Gd

Compared with the other rare earth systems,the magnetic order in Gd is relatively simple.
Gd is a ferromagnetic system with a Curie-temperatur e of Tc= 293K. The magnetic moment
lies parallel to the c-axis and remains so down to 232K. At lower temperature the moment
moves away from the c-axis, the maximum deviation of about 65o being achieved at 180K,
with the moments canted in a random conestructure.
The magnetic properties of the system originate predominantly from the exchange�eld of
the localized 4f electrons, rather than that of the conduction electrons, as in the caseof fer-
romagnetic transition metals. Due to the high localization of the 4f electrons, the exchange

Calculation method Spin magnetic moment (¹ B )
LMT O-LSDA [3] 7.65
LMT O-GGA [3] 7.52

FLAPW-LSDA [2] 7.70
KKR 7.53

Table 3.3:The theoretical spin magnetic moments in Gd . The SPR-KKRcalculated magnetic
moments arecompared with FLAPW resultsof Kubo and Asano [2] respectively with LMT O
magnetic moments of Duf fy et al. [3].
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interaction driving the magnetism is supposed to be indir ectly mediated via the conduction
electrons.
Before discussing the MCP results, is interesting to examine the ground-state magnetic mo-
ments derived from self consistent calculations. The magnetic moment comprises 7 ¹ B from
the half-�lled 4f shell, plus an induced conduction electron moment. The experimental mag-
netic moment determined at 4.2K is ¹ total = 7.62§ 0.01¹ B [118]. The spin magnetic moments
obtained by dif ferent calculation methods are summarized in Table 3.3.
Many of the early MCP measurements were made at nitr ogen temperature, but a higher
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Figure 3.17: Magnetic Compton pro�le of Gd. Theoretical calculations are broadened with
a Gaussian of FWHM 0.44a.u.. The fully relativistic SPR-KKRpro�les are compared with
FLAPW [2], LMT O [3] MCP and experimental data [3].

temperature is needed to avoid the phase where the c-axis moments are canted. The ex-
perimental Compton pro�les presentedhere were measured at ID15 X-Ray beam line at the
ESRF. The temperature of the sample was 235§ 2 K, such that the moments of the sample
are still parallel to the c-axis. The momentum resolution for the measured pro�les was 0.44
atomic units.
The results of the previous FLAPW and LMT O calculations [3, 2] showed that (a) FLAPW

theory doesn't produce any impr ovement compared to the LMT O calculation, in contrast
to the situation in Ni and (b) GGA doesn't impr ove the results of LSDA, maybe due to the
localized nature of the magnetisation.
The results of our KKR calculations are presented in Fig. 3.17, together with the results
of LMT O and FLAPW calculations. All theoretical predictions were convoluted with the
(Gaussian)experimental resolution function with width 0.44atomic units. The experimen-
tal data were normalized, such that the area under the pro�le is equal with the spin mag-
netic moment determined by experiment [3]. After broadening, the calculated SPR-KKR



3.6. MAGNETIC COMPTON PROFILESFOR RARE EARTH SYSTEMS 87

0 1 2 3 4 5
momentum pz (atomic units)

0

0.5

1

1.5

2

M
C

P
 (

ar
bi

tr
ar

y 
un

its
) KKR

FLAPW LSDA
LMTO GGA
LMTO-LSDA
4f

0 1 2 3 4 5
momentum pz (atomic units)

0

0.5

1

1.5

2

2.5

M
C

P
 (

ar
bi

tr
ar

y 
un

its
) KKR SOC=1

KKR SOC=0

Figure 3.18: Theoretical predictions on the magnetic Compton scattering of Gd. Left: The
SPR-KKRcalculations (full line) together with FLAPW calculations of Kubo and Asano [2]
and respectively LMT O calculations of Duf fy et al. [3]. The gray line is the equivalent free-
atom pro�le for Gd 4f, normalized to 7 electrons. Right: The effect of the spin-orbit coupling
on the SPR-KKRMCP of Gd.

pro�le was normalized to the experimental MCP. The unbroadened theoretical predictions
are represented in Fig. 3.18(left) together with the equivalent free-atom pro�le for Gd 4f,
normalized to sevenelectrons [3].
The 4f electrons contribution to the MCP of Gd is giving a broader pro�le compared with 3d
ferromagnets, with an extension beyond 5 atomic units. At lower momenta (pz · 1:5 a.u.)
there is a small contribution arising from the spin polarisation of the conduction electrons
(6d25d) superimposed on the 4f electrons contribution, ascan be seenin Fig. 3.18.
The resultsof KKR calculations areobtained fully relativistically aswell asin scalarrelativis-
tic way, with the spin-orbit coupling switched off. The effect of the spin-orbit coupling on
the SPR-KKRmagnetic Compton pro�le (MCP) can be seenin Fig 3.18(right). As expected,
the spin-orbit coupling effect is important for the spin momentum density calculations. The
scalar relativistic pro�le overestimates the pro�le at small momenta, whilst the fully rela-
tivistic calculations gives the best �t of the experimental data (seeFig. 3.17). In Fig. 3.18,
the �ne structure of the theoretical magnetic Compton pro�le can be seen.We note that the
shape of the KKR pro�le is very similar to the FLAPW pro�le. The peaks at ' 0.4 a.u. and
' 0.8 a.u. are prominent in both calculations. The dif ferenceis the magnitude of the peaks
and the behaviour at pz = 0 a.u., where the dip in the KKR pro�le is more pronounced. This
behaviour around pz = 0 a.u. seemsto be decisive, after broadening, for a better �t of the
experimental data.
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3.6.2 Magnetic Compton pro�le of Y0:38Gd0:62 alloy

Y has the same structure and similar atomic volume as Gd, and hence the Gd1¡ xYx alloy
readily form over the whole concentration range with only small changesin their lattice pa-
rameter.
The Gd-Y alloy serieshasbeensubjectof investigations [119, 120] in view of the competition
between ferromagnetic order favourable in Gd-rich alloy and the helical magnetism found
in Y-rich alloy. The magnetic behaviour of the bulk alloy is complex; there are threedif ferent
magnetic ordered phasesin competition: for x · 0:3 Y, the ferromagnetic order is present,
for x ¸ 0:4 there is a helical antiferr omagnetic phaseand in between there is a delicate bal-
anceof the two phasesat dif ferent temperatures.
BecauseY is non magnetic, it might be thought that it will act like a diluent on the magnetic
properties of Gd. This assumption was falsi�ed by Thoburn et al. [119] through the evi-
denceof a large additional total moment in the ferromagnetic phaseof GdxY1¡ x alloys. The
behaviour of the total moment can be explained either through the appearanceof an addi-
tional orbital moment due to the crystal �eld modi�cation induced by the presenceof Y, or
an extra-spin moment induced by the hybridisation of the conduction bands in the alloy.
The magnetic Compton investigations of Duf fy et al. [4] evidenced an additional spin mo-
ment of 0.16 § 0.03 ¹ B . The magnetic moment was determined comparing the magnetic
Compton pro�le of the alloy and of pure Gd, normalized to the same4f electronic contribu-
tion in order to take into account the Gd dilution in the alloy. The areaunder the Y0:38Gd0:62

MCP is higher than the corresponding area for pure Gd, the dif ference being attributed
to the extra-spin moment on Y. LMT O calculations support the evidence of the extra-spin
moment, supposed to arise from the polarisation of electrons on Y through a Ruderman-
Kittel-Kasuya-Yoshida (RKKY) type of interaction.

Taking into account the previous work in the �eld, our purpose is to analyse the KKR
predictions for the magnetic moments obtained from electronic band calculations and to
compare them with experiment and with LMT O calculations. Also, the magnetic Compton
pro�les will be calculated and compared with the previous experimental data and theoreti-
cal predictions.
Fully relativistic KKR self-consistent band structure calculation have been performed for
Y0:38Gd0:62 alloy in a hcpstructure with a lattice parameter a = 6:8758a.u. and c=a= 1:584.
The Coherent Potential Appr oximation (CPA) was used for the treatment of the disordered
alloy. The magnetic moments for Gd and Y are presented in Table 3.4, together with the

Calculation method Gd (pure) Gd (alloy) Y (alloy)
LMT O-LSDA 7.64 7.56 0.35
KKR-LSDA 7.53(7.44) 7.53(7.42) 0.245(0.24)

Table 3.4: LMT O [4] and SPR-KKRmagnetic moments of Y0:38Gd0:62 alloy. The SPR-KKR
spin magnetic moments are presentedin parenthesis.
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LMT O based magnetic moments of Duf fy et al. [4]. The KKR spin magnetic moments for
eachatom-type are presentedin parenthesis.Both calculation methods predict a small mag-
netic moments induced by Y. KKR calculations show that the induced moment is associated
with the spin, the orbital component being very small. This extra spin-moment has to be
evidenced by the MCP calculations for Y0:38Gd0:62 alloy, aswill be shown in the following.
The experimental data of the [0001] MCP for Y0:38Gd0:62 alloy were measured at the high
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Figure 3.19: Magnetic Compton pro�le of Y0:38Gd0:62 alloy. SPR-KKR pro�les have been
broadened with a Gaussianof FWHM 0.44a.u. and normalized according to the 4f moment
to be compared with experimental data of Duf fy et al. [4].

energy beamline X-Ray beamline at the ESRFwith an incident energy of 200 keV [4]. The
temperature of the sample was maintained at 70§ 2 K. According to Thoburn et al.[120], for
this temperature and concentration the alloy has a ferromagnetic order. The momentum
resolution achieved during the measurements was 0.44atomic units.
In Fig. 3.19we present the theoretical KKR MCP of Y0:38Gd0:62 convoluted with a Gaussian
of FWHM 0.44a.u. to simulate the experimental resolution and normalized according to the
4f moment. For normalization, the theoretical KKR MCP pro�le of pure Gd has been rep-
resentedin the same�gur e in order to estimate the 4f contribution. The theoretical pro�le
is compared with the experimental data of Duf fy et. al [4]. The KKR MCP gives a new evi-
denceof the extra-spin moment contribution of Y in the Y0:38Gd0:62 alloy, compared with the
pure Gd system. This extra spin contribution to the magnetic moments seemsto be slightly
overestimated by the KKR MCP calculations.
We performed KKR MCP calculations for ferromagnetically ordered Y0:50Gd0:50 alloy, in or-
der to investigate if the trend of the magnetic moments behaviour versus the concentration
of Gd in the GdxY1¡ x is re�ected by the MCP calculations. According to Thoburn et al.
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Figure 3.20:Magnetic Compton pro�les of Y0:38Gd0:62 and Gd0:50Y0:50 alloys. The SPR-KKR
pro�les have beennormalized to freeatom-like 4f contribution.

[119], the magnetic moments in GdxY1¡ x alloy increasewith increasing the Y content, al-
though pure Y is non-magnetic. The theoretical predictions for Y0:50Gd0:50, Y0:38Gd0:62 and
pure Gd are presented in Fig. 3.20. The MCP for the alloys have been normalized to the
same 4f contribution as in pure Gd. The results are in agreement with experimental mag-
netisation data [119], the spin magnetic moment in the Y0:50Gd0:50 alloy being higher than in
Y0:38Gd0:62.

3.7 Magnetic Compton pro�le of UFe2

In recent years, the study of actinides and actinide compounds has attracted much inter-
est becauseof great variety of magnetic behaviour, such as Pauli paramagnetism, local-
ized/itinerant magnetism and heavy fermion behaviour. The complexity of the magnetic
behaviour is connected with the spin-orbit coupling strength, which is rather large com-
pared with the crystal �eld energy. The spin-orbit coupling induced orbital moment can be
appreciable if the strength of the coupling is comparable to the f-band width.
Although f-electrons are usually treated as localized, there are some compounds for which
the f-states are strongly coupled to the conduction band (s, p and d) giving rise to unusual
properties. One consequenceof delocalization is the formation in some compounds with
ordered magnetic moments, much smaller than those anticipated from localized f-electrons
[121]. This 5f electron delocalization has been reported in UFe2 compound [122]. UFe2 is a
soft ferromagnet with a Curie temperature of 160K, which crystallize in the cubic f ccLaves
phaseand has low magnetic anisotropy. Neutr on dif fractions experiments [123, 124] found
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a very small total moment in this system. The orbital and spin magnetic moments, which
individually have a value of » 0:23¹ B , almost completely cancelon the U sublattice.
The theoretical predictions basedon spin-polarized LMT O calculations [122] found an 5f or-
bital moment on the U site ¹ l = 0:47¹ B and an antiparallel spin component of ¹ s = ¡ 0:58¹ B .
Adding the small s, p and d contribution, the total U moment is ¡ 0:24¹ B per atom, antipar -
allel to the larger (0:77¹ B ) Fe moment. The spin and orbital moments on the uranium site
in UFe2 deduced later from circular dichroism data by using the sum rules [125] con�rmed
the neutron dif fraction data, but the spin and orbital contribution on U site are lessthan half
(¹ l ' ¹ s ' 0:23¹ B ) of the values obtained from LMT O calculations.
Neutr on experiments probe the total site magnetization, which for UFe2 is very small. Mag-
netic dichroism experiments are element speci�c, i.e. it doesn't show a complete pictur e of
the UFe2 magnetism. For these reasons,magnetic Compton scattering experiments have
beenperformed by Lawson et al. [17] in order to get information about the spin magnetiza-
tion of this compound.
The measured pro�le is placed on an absolute scaleby calibration with a measurement on
pure metallic Fewhose moment is well known to be 2.1¹ B . This moment is almost entirely
due to spin, while the orbital moment being negligible. The averagemomentum resolution
achieved using an Ge solid state detector was 0.78atomic units. The measured pro�le was
�tted by using free-atom Compton pro�les for Fe 3d, U 5f and a dif fuse component, mod-
eled as the sum of a U 6d free-atom pro�le and a free-electron parabola smeared with the
experimental resolution function. Following this empirical procedure, Lawson et al. [17]
obtained spin moments for 5f U and 3d Fe in agreement with those deduced from neutron
measurements.
Our purpose is a dir ect KKR calculation of the magnetic Compton pro�le for UFe2 and a
investigation concerning the role played by the spin-orbit coupling and by the interactions
responsible for Hund's secondrule.

3.7.1 The orbital polarization

Hund's �rst rule (concerning the exchange interaction between spins) is accounted for by
the LSDA leading to the spin polarization. The second Hund rule (concerning the orbital
exchangeinteraction between atomic orbital moments) is absent in LSDA becausethis the-
oretical approach is basedon the properties of a spin polarized homogeneous electron gas.
Although the interactions leading to Hund's secondrule are usually neglected in an energy
band calculations, they are crucial in atoms. Sincewe are dealing with a very narrow band
system here, the atomic-like interactions play an important role. During the last years, the
energy band calculations including the Hund's secondrule have beenapplied with remark-
ably successto d- aswell as f- electrons [122, 126].
The orbital polarization (OP) term added to the Hamiltonian is meant to account for Hund's
secondrule i.e. to maximize the orbital angular momentum. For f-electron systemsBrooks'
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OP-term has the form

¢ ² lm l ms = ¡ E 3
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ml±l3 : (3.27)

This term describesa shift in energy by ¢ ² lm l ms for an orbital with quantum numbers l = 3,
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Intr oducing the vector potential function

AOP
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= ¡ E 3
ms

(r ) < lz > (3.30)

one can get the Dirac Hamiltonian in the form

H =
~c
i

~®¢~r + ¯ mc2 + Vef f (~r ) + ¯ ~¾¢~Bef f (~r ) + AOP ¯ lz : (3.31)

The in�uence of the OP-term on the magnetic moments of UFe2 has been investigated.
Self-consistentenergy-band calculations were done, using the KKR band structure method
within the local approximation to the density-functional theory (LSDA). The magnetic mo-
ments resulted from a fully-r elativistic calculation, with and without the orbital polarization

U Fe
mspin morb mspin morb

KKR 0.56 -0.29 -0.69 -0.06
KKR OP 0.62 -0.32 -0.74 -0.09

Experiment [123, 124] 0.22 -0.23 -0.59 -
LMT O [122] 0.71 -0.47 -0.75 -0.07

LMT O OP [122] 1.03 -0.88 -0.82 -0.07

Table 3.5:Magnetic moments of U and Fein UFe2 compound.
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term included in Hamiltonian, are presentedin Table 3.5. Theseresults are compared with
the neutron dif fraction experimental data [123, 124] and with results of LMT O calculations
[126]. The theoretical KKR values for the spin and orbital moments comparerather well with
LMT O calculations and with experimental data. Both KKR and LMT O calculated magnetic
moments overestimate the moments, but the KKR results are closer to experiment. This re-
sult enableus to continue the investigations on the magnetic properties of this system.

3.7.2 In�uence of spin-orbit coupling and orbital polarization
on the MCP of UFe2

The KKR-LSDA calculations of MCP with spin-orbit coupling switched on/of f have been
performed for UFe2. The in�uence of the spin-orbit coupling on the magnetic Compton
pro�le of UFe2 is presented in Fig. 3.21(left). The theoretical KKR calculations have been
convoluted with a Gaussian of 0.78a.u., the same as the experimental resolution function.
The experimental data stem from Lawson et al. [17].
As can be seen,in the high-momentum region (pz ¸ 2 a.u.) the spin-orbit coupling doesn't
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Figure 3.21:In�uence of the spin orbit coupling (left) and orbital polarization (right) on the
magnetic Compton pro�le of UFe2. The theoretical spectra have been convoluted with a
Gaussianof FWHM 0.78a.u. to �t the experimental data of Lawson et al. [17]

in�uence the magnetic spin density. It is not the casefor the low momentum region (pz · 2)
a.u.,wherethe calculation with spin-orbit switched off overestimatesthe magnetic Compton
pro�le. This negative polarization of the pro�le in the low momentum region is almost
correctly estimated by the fully relativistic calculations.
The MCP was calculated by the KKR-LSDA method, using the Hamiltonian from the Eq.
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Figure 3.22: The theoretical magnetic Compton pro�le of UFe2. The SOC = 0 labels the
scalar-relativistic calculation and SOC labels the fully relativistic calculation. OP denotes
the SPR-KKRcalculation with orbital polarization included.

(3.31) in order to take into account the orbital polarization (KKR-OP mode). The pro�le
calculated in the OP-mode is representedtogether with the fully relativistic pro�le, with the
OP term missing from the Hamiltonian (KKR mode) and with the experimental data in Fig.
3.21(right). The role played by the orbital polarization in the MCP of UFe2 is lessobvious,
but an impr ovement of the pro�le in the region of 0:5 · pz · 1:7 a.u. is visible, the KKR-
OP pro�le being closer to experiment. BecauseCompton scattering is driven by the spin
magnetism, it is expected that changes in orbital interaction will affect it only if there are
also changesin the spin polarization induced by spin-orbit interaction.
For a more detailed investigation of the role played by spin-orbit, and by the OP in dif ferent
momentum regions of the MCP, the raw calculated spectra have not been convoluted and
the �ne structure of MCP is visible. As can be seen,the OP-mode of calculation enhances
the peaks at 1.5and 2.0,compared with the non-OP-mode. Inside the regions with pz · 1:5
a.u. and pz ¸ 2:5 a.u., the OP and non-OP fully relativistic calculation coincide.
As expected,a non-relativistic band structure treatment is not adequate for this system, but
one should note the big in�uence of the spin-orbit coupling in the MCP, compared with the
smaller effect of the orbital polarization.

3.7.3 Individual atomic-type contributions on the magnetic Compton
pro�le of UFe2

We are interestedto seewhich are the Feand U contributions in the MCP of UFe2. The MCP
spectra can be decomposed into site contributions, making use on the Green's function
formula (3.26). Further, if one associatethe atomic type to each site into the unit cell, the
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Figure 3.23: The magnetic Compton pro�le of UFe2 (full line) decomposed into U (dotted
line), Fe (dashed line) and interfer enceterm (U-Fe) contribution (dashed-dotted line). The
pro�les have beenbroadened with a Gaussianof FWHM = 0.78a.u., according to the exper-
imental momentum resolution. The experimental data of Lawson et al. [17] are represented
by circles.
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Figure 3.24: The partial components: U (circles), Fe (squares) and interfer enceterm (trian-
gles) resulting from the SPR-KKRdecomposition of the magnetic Compton pro�le, together
with the 'Fe-3d' (full line), 'U-5f ' (dotted line) and the 'spd' (dashed line) term used by
Lawson et al. [17] to composethe best �t of the experimental data.



96 CHAPTER 3. COMPTON SCATTERING

MCP spectra can be decomposed into distinct atomic-type contributions plus an interfer -
ence term which takes into account the combined U-Fe contributions. The decomposition
is presented in Fig. 3.23. As can be seen,Fe gives a positive free atom-like contribution,
which is partially compensatedby the negative freeatom-like U contribution, in agreement
with the antiparallel spin coupling determined by experiment [125] and con�rmed by other
theoretical calculations [122].
The decisive term for the �nal shape of the total pro�le is the interfer ence term, which is
negative for pz · 1:2 a.u. and positive for pz ¸ 1:2 a.u.. It is obvious that this term is
responsible for the negative polarization of the total pro�le at pz · 1:2 a.u. and for the
maxima at pz ' 1:7 a.u..
Our decomposition, described below and presented in Fig. 3.23 is compared with the �t-
ting of the experimental data performed by Lawson et al. [17]. They �tted the experimen-
tal pro�le by free-atom Compton pro�le for Fe 3d, U 5f and a dif fuse component, labeled
spd, which is modeled as the sum of a U 6d free-atom pro�le and a free-electron parabola
smeared with the experimental resolution function. The partial components of the MCP are
presentedfor comparison in Fig. 3.24.The �tting realized by the total best-�t curve of Law-
son et al. is comparable with the SPR-KKR�tting of the experimental data and it has not
beenrepresentedin Fig. 3.24.
As can be seen in Fig. 3.24, the Fe contribution is similar in the SPR-KKRdecomposition
with the free atom pro�le for Fe 3d [17]. Also, the shape of the U partial pro�le is similar
with the free atom pro�le for U 5f of Lawson et al.. This suggestsa free atom-like contri-
bution of Fe and U. The dif ferenceappears when the spin magnetic moment is estimated.
If the Fe spin magnetic moment is comparable in the two cases,we conclude that the spin
magnetic moment of U has beenunderestimated by the �tting of Lawson et al..
According to our dir ect calculation of the partial components, there is no reasonof a pos-
sible representation of the interfer ence term (or dif fuse term) as a sum of U 6d free atom
pro�le and a free-electron parabola. Our SPR-KKRband structure calculations gives a spin
moment on s p and d orbitals of U ' 20 % of the U-f spin moment, so there is no evidence
for such a big negative U-6d contribution compared with the U -5f one. As a consequence,
the possibility of �tting the MCP by freeatom-like pro�les is questionable.

3.8 Conclusions

The SPR-KKR magnetic Compton pro�le calculated for Fe and Ni along [001], [110] and
[111] dir ections show good agreement with the experimental data. The decomposition of
the MCP [001] spectra of Fe into s-, p- and d-like contributions show a signi�cant negative
polarisation of s- and p- orbitals in the spin momentum density at small values of momen-
tum.
The SPR-KKRtwo-dimensional projection of the spin momentum density for Feperpendic-
ular to the [001] dir ection crossing the ¡ point is in good agreement with the FLAPW calcu-
lations and with the reconstruction from experimental spectra. This result demonstrates the
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reliability of the SPR-KKRcalculations of the MCP spectra.
The SPR-KKRcalculations of the magnetic Compton pro�les in Fe3Pt Invar alloys show that
the ordering doesn't play a major role for the spin momentum density of the system. The
decomposition of the MCP [001] spectra for Fe3Pt into Fe, Pt and interfer ence terms show
that Fe has the major contribution to MCP. Nevertheless, the shape of the pro�le is in�u-
encedby interfer enceterm which has a changein sign along the momentum axis.
The in�uence of the relativistic effects on the spin momentum density can be seen in the
magnetic Compton pro�les for Gd, Y0:38Gd0:62 and UFe2. Also, the in�uence of the orbital
polarisation (i.e the Hund's rule which describesthe interaction between orbital moments)
in UFe2 systemsis discussed. The decomposition of the MCP spectra of UFe2 [001] into the
U, Fe and interfer enceterms show that the interfer enceterm cannot be neglected. Because
of this, the atomic-like decomposition of the MCP spectra is questionable.
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Chapter 4

Positron annihilation

4.1 Introduction to positron annihilation

There are only few experimental techniques for measuring dir ectly wave-function-r elated
quantities such asreal-spaceelectron density or momentum density. The positron annihila-
tion experiment provide useful information on the electron momentum density and hence,
on the electronic structure of solids. A short description of the positron annihilation experi-
ment will be given in the following.
Solid state positron spectroscopy is based on the annihilation of positrons with electrons
with the creation of, in general, pairs of high energy photons (» 0.5 MeV) which carry in-
formation about both the energies and momenta of the annihilated electron-positron pair
[127, 128]. The schematic processis presented in Fig 4.1. Positrons can be injected in the
sample either dir ectly from a radioactive source, in which casethey have a continuous en-
ergy distribution from 0 to » 1 MeV, or asmonoenergetic beamswith energy typically in the
range 0 - 40 keV. The mean penetration depth depends on the target material. In the sam-
ple positrons rapidly lose their initial kinetic energy �rst via ionization processes,then via
electron-hole excitations, and �nally via phonon-scattering. After losing the excessenergy
positrons exist in thermal equilibrium with the ions and the electrons in the sample. The
thermalization time of the positron is short compared with the life-time and can be ignored
in most cases.
In thermal equilibrium the positron state develop according to a dif fusion processin real
space. The positrons scatters from phonons, electrons and defects of which the phonons
give the dominant contribution. The average dif fusion length is of the order of 1000 	A. In
the caseof periodic crystals and normal experimental conditions there is only one positron
in the sample at a time. Due to Coulomb repulsion the positron wave function is mainly lo-
cated in the interstitial region of the crystal, far from the positive nuclei. Localized positron
statescan be formed at open-volume crystal defects (vacancies,voids or dislocations). In
the caseof semiconductors and insulators, the positrons can be weakly bound by negative
charged defects (impurity ions).

99
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Figure4.1:Positron annihilation in the solid gives rise to the ° -rays detectedby experimental
measurements.

In the center of the momentum frame of a low energy (p << m0c) electron-positron pair, the
two photons are emitted in exactly opposite dir ections. However, in the laboratory frame,
the momentum of the center-of-mass of annihilating pair produces small Doppler shifts (·
2 keV) in the energies of the two photons and a small deviation from antiparallel alignment
(· 0.5 degrees). The deviation can be measured with the one- or two-dimensional angular
correlation of the annihilation radiation (1D- or 2D-ACAR) methods.
The quantity measured in the 2D-ACAR experiment is usually identi�ed with the 2D pro-
jectionsof the three-dimensional electron-positron momentum density distribution function
n2° (~p), given by the formula:

n2° (~p) =
X

i occ

j
Z

­
e¡ i ~p~r ª ep

i (~r ;~r )d3~r j2 : (4.1)

Here ª ep(~r ;~r ) is the two particle wave function when the positron and the electron of state i
reside at the samepoint. The summation is done over all electronic occupied states,~p is the
electron momentum and ­ is the volume of the sample.
The two-particle wave function is usually written in a product form:

ª ep
i (~r ;~r ) = ª p(~r )ª e

i (~r )
p

° i (~r ) ; (4.2)

where ª p(~r ) and ª e
i (~r ) are the positron and electron wave functions for the independent

systems. The effects of the electron-positron interaction are included in the so-called en-
hancement factor ° i (~r ). The positron-electron correlation gives rise to an electronic cloud
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around the positron which screens its positive charge, thereby greatly increasing the elec-
tron charge in its environment. This attraction strongly depends on the electron density.
The enhancement factor ° i (~r ) is de�ned as the ratio of perturbed to unperturbed electron
densities in the initial i state at the positron position ~r . If the electron-positron correla-
tions are neglected, the value of the function ° i (~r ) is approximated by 1. In this case,the
positron annihilation is treated within the independent particle model (IPM). Apart from
the IPM model, several models to determine the enhancement function have been devel-
oped [129, 130,131, 132, 133, 134]. The electron-positron correlation is a complex many-body
problem which will be not dealt within this work.
Instead, the quantity of interest from the electronic point of view is however the electron
momentum distribution function n(~p), given by formula

n(~p) =
X

i occ

j
Z

­
e¡ i ~p~r eª e

i (~re)d3~rej2 : (4.3)

To deduce featuresof n(~p) from measurementsof n2° (~p) one has to understand the positron
annihilation processand the statesof the positron in a metal.
To �rst order in the positron-ion and electron-positron interactions, the most prominent
feature of n2° (~p) is the break that occurs when ~p crossesthe Fermi surface separating the
�lled and un�lled parts of ~p space. The positions of thesebreaks de�ne the Fermi surface.
The effect of the interactions between positrons and ions and respectively between positrons
and electrons is re�ected in the dif ferencesbetween n2° (~p) and n(~p). The importance of the
electron-positron interaction becomesespecially apparent when comparing ACAR spectra
with Compton pro�les.

4.2 The electron-positron momentum density

The purpose of this section is to present a general scheme to calculate n2° (~p) such that it
can be used in a practical determination of the two-dimensional angular correlation of the
annihilation radiation (2D-ACAR) spectra and of the coincidence Doppler broadening (1D-
ACAR) spectra.
One can relate the electron-positron momentum density n2° (~p) to the two particle Green
function Gms m0

s
(~pe; ~pp) in momentum representation, where ms, ~pe , m0

s and ~pp are the spins
and momenta of electron and positron, respectively. In the following calculations we will
neglect the electron-positron correlations, breaking the system consisting of one positron
and n electrons into two non-interacting subsystems: one subsystem consist on n fully in-
teracting electrons and the other subsystem consistsonly in the positron. The Green's func-
tion of the electron-positron pair in momentum representation can be expressedusing the
multiple scattering Green's function given by formula (2.155)and the eigenfunctions of the
momentum operator ©~pms as:

Gms m0
s
(~pe; ~pp) =

1
N ­

Z
d3r

Z
d3r 0Áey

~pems
(~r )=Ge+ (~r ;~r 0; Ee)Áe

~pems
(~r 0)
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Ápy
~pp m0

s
(~r )=Gp+ (~r ;~r 0; Ep)Áp

~pp m0
s
(~r 0) : (4.4)

The eigenfunctions of the momentum operator canbe written as©~pms = U(~p)ei ~p~r = U~pms e
i ~p~r ,

where U(~p) is a four -component spinor (seeEq. (3.13)). This leads to the expression for the
Green's function:

Gms m0
s
(~pe; ~pp) =

1
­

Z
d3r0

Z
d3r 0Uey

~pems
e¡ i ~pe~r 0 =Ge+ (~r0;~r 0; Ee)Ue

~pems
ei ~pe~r 0

Upy
~pp m0

s
e¡ i ~pp~r 0 =Gp+ (~r0;~r 0; Ep)Up

~pp m0
s
ei ~pp~r 0

: (4.5)

The spaceintegral can be written as a summation over the cell-integrals:
R

d3r =
P

q

R
dr0q

and
R

d3r 0 =
P

n0q0

R
dr0

n0q0, where~r 0 = ~r0q + ~Rq and ~r 0 = ~r 0
n0q0 + ~Rn0 + ~Rq0 asin Fig. A.1. With

this, the Green's function readsas:

Gms m0
s
(~pe; ~pp) =

1
­

X

q

X

n0q0

Z
d3r0q

Z
d3r 0

n0q0

Uey
~pems

e¡ i ~pe(~r 0q+ ~Rq)=Ge+ (~r0q;~r 0
n0q0; Ee)Ue

~pems
ei ~pe(~r 0

n 0q0+ ~Rn 0+ ~Rq0)

Upy
~pp m0

s
e¡ i ~pp (~r 0q+ ~Rq)=Gp+ (~r0q;~r 0

n0q0; Ep)Up
~pp m0

s
ei ~pp (~r 0

n 0q0+ ~Rn 0+ ~Rq0) : (4.6)

Splitting the summation for q = q0and q 6= q0, one can write:

Gms m0
s
(~pe; ~pp) =

1
­

X

q

Z
d3r0q

Z
d3r 0

0q

Uey
~pems

e¡ i ~pe(~r 0q+ ~Rq)=Ge+ (~r0q;~r 0
0q; Ee)Ue

~pems
ei ~pe(~r 0

0q+ ~Rq )

Upy
~pp m0

s
e¡ i ~pp (~r 0q+ ~Rq)=Gp+ (~r0q;~r 0

0q; Ep)Up
~pp m0

s
ei ~pp (~r 0

0q+ ~Rq)

+
1
­

X

q

X

n0q0

0
Z

d3r0q

Z
d3r 0

n0q0

Uey
~pems

e¡ i ~pe(~r 0q+ ~Rq)=Ge+ (~r0q;~r 0
n0q0; Ee)Ue

~pems
ei ~pe(~r 0

n 0q0+ ~Rn 0+ ~Rq0)

Upy
~pp m0

s
e¡ i ~pp (~r 0q+ ~Rq)=Gp+ (~r0q;~r 0

n0q0; Ep)Up
~pp m0

s
ei ~pp (~r 0

n 0q0+ ~Rn 0+ ~Rq0) : (4.7)

Taking into account that the sitesq and q0 (q 6= q0) can be occupied with atoms of type ®or ¯
with the probability xq® and xq0̄ , respectively, one can write:

Gms m0
s
(~pe; ~pp) =

1
­

X

q

X

®

xq®

Z
d3r0q

Z
d3r 0

0q
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Uey
~pems

e¡ i ~pe~r 0q =Ge+ ®(~r0q;~r 0
0q; Ee)Ue

~pems
ei ~pe~r 0

0q

Upy
~pp m0
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1
­

X

q

X

n0q0

0X

®¯

xq®xq0̄

Z
d3r0q

Z
d3r 0

n0q0
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n0q0; Ep)Up
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ei ~pp (~r 0
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Extending the summation for arbitrary q and q0, the Green's function reads:

Gms m0
s
(~pe; ~pp) =
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­
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n 0q0+ ~Rn 0+ ~Rq0) : (4.9)

The calculation of the �rst and second term (so-called site-diagonal contribution) is pre-
sented in Appendix C.1, whilst the thir d term (site-off-diagonal contribution) is calculated
in Appendix C.2. Using the matrix elementsM ¹º ®

ms ¤ m0
s ¤ 00and W pº q®q0̄

calculated in Appendix
D and in Appendix C.3, respectively, the Green's function reads:

Gms m0
s
(~pe; ~pp) =

1
­

=
X

q

X

®

xq®

³
= ¿p+ 0q0q;®
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´ X
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ms ¤ 0m0
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¿e+ 0q0q;®
¤¤ 0 (Ee)

¡
1
­

=
X

q
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®¯
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X

¤¤ 0

M ++ ®
ms ¤ m0

s ¤ s
~M ++ ¯

ms ¤ 0m0
s ¤ s

³
D e+ ®¿e+ qq0CP A (~p ¡ ~K m ) ~D e+ ¯

´

¤¤ 0
: (4.10)

In the previous calculation step we took into account the thermalization of the positron.
This means that one may consider the positron to be in a state with ~kp = ~pp = 0 with s-
type symmetry, at the bottom of the positronic band [135, 128]. This implies for the orbital
quantum number of the positron: l(¤ p) = 0. Accordingly , the quantum number for the
positron is given by ¤ p = ¤ s. Also, the positron energy Ep enters into the electron-positron
Green's function as a parameter, Ep = E 0

p , where E 0
p is the energy of the bottom of the

positronic band.
Intr oducing the single-site scattering matrix te+ q®

¤¤ 0 , one cansplit the �rst term into the single-
site and respectively backscattering contributions, as follows:

Gms m0
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­
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: (4.11)

The off-diagonal scattering path operator ¿e+ qq0CP A is de�ned in Eq. (2.189)and the matrices
D e+ ® and ~D e+ ¯

¤¤ 0 are de�ned in Eqs. (2.184)and (2.188),respectively. One has to note that the
solutions of the Dirac equation Z p+ q®

¤ for the positron which enters into the matrix elements
M ++ ®

ms ¤ m0
s ¤ s

expressionare calculated for a positron potential equal to the electronic Coulomb
potential but with the opposite sign.
Basedon the Feynman diagrams and the conservation of the spin angular momentum in the
annihilation process[136] it was demonstrated that in a system where a positron can inter-
act with electrons of both parallel and anti-parallel spin, it will almost always annihilate via
two photons from an antiparallel positron-electron spin con�guration. As consequence,the
electron-positron pair has zero total spin angular momentum and ms = ¡ m0

s holds.
The electron-positron momentum density can be expressed using the electron-positron
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Green's function as:

nms
2° (p) = ¡

1
¼

Z EF

0
Gms (p)dEe : (4.12)

The 2D angular correlation of annihilation radiation (2D-ACAR) spectra,which are usually
identi�ed with the 2D projections of the three-dimensional (3D) electron-positron momen-
tum density is expressedas:

n2D ¡ AC AR (px ; py) =
Z

(n"
2° + n#

2° )dpz ; (4.13)

where the momentum components px;y are perpendicular to the photons propagation dir ec-
tion. The 1D-ACAR or the Doppler broadening spectrum is the one-dimensional momen-
tum distribution:

n1D ¡ AC AR (pz) =
Z Z

(n"
2° + n#

2° )dpxdpy ; (4.14)

where the integration is performed in a plane perpendicular to the photons propagation di-
rection.

4.3 Electron-positron momentum density of V

The formalism described before is used to calculate 2D electron-positron momentum den-
sity projections and the results are compared with the two-dimensional angular correlation
of the annihilation radiation (2D-ACAR) spectra determined by experiments. In order to
seethe impact of the electron-positron correlation on the electron-positron momentum den-
sity, we compare our calculations also with the LMT O spectra with electron-positron cor-
relations included. The two dimensional projections of the electron-positron momentum
density n2° (~p) perpendicular to the [001] and [210] dir ections of bccV have been calculated
using the fully relativistic SPR-KKRpackage.
As a �rst step the electronic structure of V has been calculated self-consistently for the bcc
structure with the lattice parameter alat =5.709a.u.. The band structure calculations for the
positron have been performed using the same calculation code as for the electronic struc-
ture. The positron potential was taken asthe inverse of the electron Coulomb potential.
The integration (see Eq. (4.13)) along the pz dir ection is done up to pz;max = 6 a.u. in a
equidistant grid of 60 points. No signi�cant changeof the spectra appeared when pz;max or
the number of the grid points along pz dir ection was increased.

The energy integration (seeEq. (4.12))splits into an arc-like path of 30 points in a com-
plex plane and a path parallel to the real axis consisting of 50 energy points. The arc-like
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Figure4.2:2D-ACAR for V perpendicular to the [001] dir ection: SPR-KKRcalculations (top),
LMT O calculations [18] (middle), experiment [18] (bottom).
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Figure4.3:2D-ACAR for V perpendicular to the [210]dir ection: SPR-KKRcalculations (top),
LMT O calculations [18] (middle) and experiment [18] (bottom).
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energy path is used to evaluate the backscattering term and the off-diagonal contribution
of electron-positron Green's function in Eq. (4.11),whilst the single-site term is evaluated
through the energy integration path parallel to the real energy axis.
The SPR-KKR2D electron-positron momentum density projected in the plane perpendicu-
lar to the [001] dir ection is presented in Fig. 4.2, together with the LMT O calculations [18]
and the 2D-ACAR experimental data [18]. The resolution of the momenta for SPR-KKR
spectra in the (px ; py) plane is ¢ p = 0.04975a.u. whilst for the LMT O calculated spectra and
for the experimental 2D-ACAR spectra is ¢ p = 0.05489and ¢ p = 0.01344respectively. The
theoretical spectraare scaledto the sameheight as the experimental 2D-ACAR spectra.
As canbeseenin both �gur es,the agreementbetween the SPR-KKRand LMT O calculations
is very good. As the LMT O calculations include the electron-positron correlation effect, one
should notice that this effect is minor in this case. The main features of the SPR-KKRand
LMT O two-dimensional electron-positron momentum density can be traced back to the ex-
perimental spectra if one takes into account that the broadening is presentin the experimen-
tal measurements.

4.4 Comparison with Compton scattering

As it was mentioned, the quantity of interest in Compton scattering is the electron momen-
tum density given by Eq. (4.3),whilst the positron annililation experiment is able to explore
features of the electron-positron momentum density (seeEq. (4.1)). By the procedure de-
scribed above one is able to determine both distribution functions. Between the expressions
for n2° (~p) and n(~p) the dif ferenceappear mostly in the matrix elements which enter the ex-
pression for the Gms (~p) (seethe comparison of the matrix elements in Appendix D) and in
the calculation of the t-matrix and the scattering path operators. The aim in the following
is to demonstrate the dif ferencebetween those two distribution functions. In other wor ds,
we want to see the impact of the positron wave function on the momentum distribution
function in the caseof pure Fe.
We will compare the magnetic Compton pro�le for Fe with the corresponding quantity ,
which is the one-dimensional projection of the (n"

2° ¡ n#
2° ) electron-positron momentum den-

sity (seeEq. (4.12)), given by:

J 2°
mag (pz) =

Z Z
(n"

2° ¡ n#
2° )dpxdpy : (4.15)

The SPR-KKRmagnetic Compton pro�le (here denoted as Jmag (pz)) for Fe along the [001]
and [110] scattering dir ections is representedin Fig 4.4, together with J 2°

mag (pz) constructed
on the basisof the electron-positron momentum density. Also, the comparison between the
SPR-KKRand LMT O calculations [18] of the magnetic Compton pro�le and the one dimen-
sional projection of the (n"

2° ¡ n#
2° ) electron-positron momentum density is shown in Fig 4.4.
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Figure 4.4: Left: The SPR-KKR and LMT O [18] calculated magnetic Compton pro�le
Jmag (pz) of Fe along the [001] (left) and the [110] dir ection (right) is compared with the
positron annihilation spectraJ 2°

mag (pz).

One can seein Fig. 4.4 that the positron annihilation pro�le J 2°
mag (pz) decay more rapidly

than the magnetic Compton pro�le Jmag (pz) along the pz dir ection for both scattering dir ec-
tions. The reasonwhy the positron annihilation pro�le decays more rapidly in p-space is
that the more localized states (at higher momentum) are not sampled by the positron, be-
causethe positron interact in a morepronounced way with the delocalized sand p-electrons
from the interstitial region. Therefore the resulting pro�le is narrower for the positron anni-
hilation spectra than for the Compton case.
Also, the dips at » 0.7a.u in the [001] spectraand at pz » 0 a.u. in the [110] spectraaredeeper
in the positron annihilation spectra. One can explain this feature due to a more pronounced
contribution of the s-and p-orbitals for the positron annihilation spectra. The decomposition
of the MCP spectraof Fealong the [001] dir ection into the s-,p- and d-like contributions has
been presentedin Fig. 3.3and is given once more in Fig. 4.5 (right). As can be seenin Fig.
4.5, the s- and p-orbitals have a negative contribution at the MCP of Fe. Becausethe inter-
action between the positron and the s- and p-electrons is more pronounced in the positron
annihilation experiment, one can expect that the negative contributions of the s- and p-
electrons at the total positron annihilation spectra are increasedcompared with the Comp-
ton pro�le. The effect of this increasednegative contribution is to generate deeper dips in
the positron annihilation spectracompared with the Compton pro�le. In order to verify this
effect, we performed a decomposition of the positron annihilation spectraJ 2°

mag (pz) into s-,p-
and d-like contributions. As expected,the s- and p-like contributions are negative and their
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Figure 4.5: The SPR-KKR s, p and d- contribution to the positron annihilation spectra
J 2°

mag (pz) of Fealong the [001] dir ection (left) compared with the decomposition of the corre-
sponding magnetic Compton pro�le (right).

magnitude is increasedcompared with the s- and p-like contributions at the corresponding
magnetic Compton pro�le. One also has to notice the very good agreement between the
SPR-KKRand LMT O calculations, ascan be seenin Fig. 4.4.

4.5 Conclusions

The SPR-KKR formalism for calculation of the electron-positron momentum density has
been presented. This formalism was applied for the calculation of the two-dimensional
momentum density of V perpendicular to the [001] and [211] dir ections, respectively. The
very good agreement between the SPR-KKRand LMT O theoretical spectra and also with
the experimental 2D-ACAR measurements should be emphasized. Also, the comparison of
the magnetic Compton pro�le Jmag (pz) and the positron annihilation spectraJ 2°

mag (pz) for Fe
along [001] and [110] dir ections is presented.



Chapter 5

Ground-state properties of
Cr-chalcogenide systems

Transition-metal chalcogenideshave attracted much interestin the past due to their largeva-
riety of physical properties, particularly concerning the relationship between the magnetic
ordering and the combination of the metal and chalcogenatom. In this chapter we will sum-
marize �rst the structural and magnetic properties of Cr-chalcogenides,asthey are re�ected
in the investigations of several research groups. After the pictur e of the magnetism in CrX
(X=S,Se,Te) systems- asre�ected in the literatur e - has beensketched,we will presentand
discussnew featuresof the magnetic properties in this systemsfound by our fully relativis-
tic band-structureSPR-KKRcalculations. The relationship between the crystalline structure,
chemical composition and ground-state properties in CrX - CrX2 (X = S,Se,Te) systemswill
be investigated in the following section.
The binary CrX (X = S, Se,Te) systems crystallize in the NiAs-type crystal structure. This
structure (seebelow) consistsof a hexagonal closepacking of the metalloid atoms with the
transition metal atoms located in the interstices in such a way asto form a simple hexagonal
array. In all binary Cr-selenides,sulphides or tellurides magnetic moments - mainly local-
ized on Cr - are present. The exchange interactions are predominantly antiferr omagnetic
in Cr-selenidesand Cr-sulphides (Goodenough 1963[137]), in contrast to the ferromagnetic
Cr-tellurides [138].
NiAs-type Cr1¡ xS,which always has a few per cent Cr vacancies,exists only above 623K.
Below this temperature a Jan-Teller distortion around Cr2+ (d4) results in a monoclinic lat-
tice (Jellinek 1957[139]). High temperature susceptibility data above 900K give µ = -1585K
and ¹ ef f = 5.24¹ B for CrS (Popma and Bruggen 1969[140]). The extrapolated Curie-Weiss
temperature µ is a measure of the overall sign and magnitude of the exchange constants
(positive µ means ferromagnetic state, negative µ, antiferr omagnetic state). The sign of µ
gives the indication for an antiferr omagnetic state in Cr1¡ xSbelow the Néel temperature at
450K [141]. A metal-semiconductor transition is observed for Cr1¡ xSwith x · 0:1 at » 620
K, while Cr1¡ xSwith x ¸ 0:1 are metals.
The magnetic susceptibility measurements(Tsubokawa 1956[142]) on NiAs-type compound
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Cr1¡ xSeperformed on single crystals show a Néel point closeto 300K and an effective mag-
netic moment of 4.90¹ B . The extrapolated Curie-Weisstemperature determined by Lotger-
ing and Gorter (1957)[143] is µ= -185 K, which gives an evidence of an antiferr omagnetic
stateof this compound. Speci�c heat measurements (Tsubokawa 1960[144]) locate the N éel
temperature TN at 320K.
The anomalies presentin both susceptibility data sets[143, 142] below 300K have led these
authors to suggest a magnetic phase transition and a non-collinear spin structure at lower
temperature. The calculations of Hir one and Adachi [145], who considered the magnetic
properties of the NiAs structures in the molecular-�eld approximation, showed that trian-
gular spin con�gurations were stable over certain regions of the molecular-�eld coef�cients
of �rst, secondand thir d nearest neighbours.
This theoretical result seemsto becon�rmed by the neutron dif fraction measurementsof the
magnetic structure for CrSe performed by Corliss et al. [146] which show a umbrella-like
antiferr omagnetic spin structure.
The system Cr1¡ xTe can be found in dif ferent phases,depending on the x value. Accord-
ing to the phase diagram determined by Ipser et al. [147], for x · 0:1, the system has the
hexagonal NiAs structure. The monoclinic structure was found for the Cr3Te4, whilst the
system Cr2Te3 is trigonal. For the system Cr5Te8, both monoclinic and trigonal structures
have beenobserved (Benschet al. [148]). The monoclinic and trigonal structuresare related
to the NiAs structure type by successiveremoval of Cr in every second metal atom layer
parallel to the c axis. The vacancy ordering within the layers can be in�uenced by thermal
treatment. Also, a slight increaseof the Te content leads to an order-disorder transition of
the Cr vacanciesfrom the monoclinic to trigonal phase[148].
Cr1¡ xTe with the hexagonal NiAs structure is a ferromagnet with the Curie temperature TC

» 340K, a saturation moment at 4.2 K of about 2.4 – 2.7 ¹ B and an effective paramagnetic
moment of » 4.0- 4.5¹ B [143, 149, 150,151].
There is a disagreement between the magnetic moments on Cr of 4 ¹ B and higher deter-
mined by paramagnetic susceptibility measurementsor the band structure calculations and
respectively the low values of Cr magnetic moments from the saturation of the magnetisa-
tion at 4.2K (» 2.4¹ B ). The ionic description in Cr+2 Te¡ 2 would give for Cr the 3d4 electronic
con�guration which correspondsto a magnetic moment of about 4.8¹ B (¹ ef f = [qc(qc+ 2)]1=2,
where qc is the number of unpair ed electrons). This disagreement can be explained to some
extent by non-collinear spin structureswhich may occur in this compound. Suchstructures
are suggested by neutron dif fraction studies (Bertaut et al. 1964[152], Lambert-Andr on et
al. [153], Andr esen 1963 [154], Makovetskii and Shakhlevich 1979 [155], Hamasaki et al.
[156]) but the various investigations don't agree concerning the spin structure and magni-
tude of the Cr local magnetic moment. Most investigators conclude that the dif fractograms
of hexagonal Cr1¡ xTe between 0 K and TC can be described in terms of a collinear ferromag-
netic structure. If the spin structure is collinear ferromagnetic, the ratio mc=ms (where mc

and ms are the number of Bohr magnetons derived from the saturation magnetisation and
from paramagnetic susceptibilities, respectively) is 4.0/2.4 » 1.6. This value is bigger than
1, asexpected for itinerant ferromagnets.
The band structure calculations performed for Cr-chalcogenide systems by Dijkstra et al.
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Figure 5.1: The magnetic phase diagram of CrTe1¡ xSex [19] deduced from temperature de-
pendence of magnetisation (crosses),neutron scattering measurements (triangles) and re-
sistivity measurements (circles). The magnetic ordering (ferro-, antiferr omagnetic and non-
collinear) is indicated by arrows.

[8, 138] using the ASW method show for CrS and CrSean antiferr omagnetic ordering, apart
form CrTe which is ferromagnet. This magnetic behaviour is con�rmed by FLAPW band-
structure calculations of Kawakami et al. [157].
There are studies which show that the magnetic ordering in CrX (X = S,Se,Te) is in�uenced
by the pressure. Kanomata et al.[158] found a giant magnetovolume effect for CrTe, which
was suggestedby the earlier FLAPW calculations of Takagaki et al. [159, 160]. From the total
energy calculations asa function of lattice parameter it was found in addition that a pressure
induced ferromagnetic ! antiferr omagnetic transition is expectedfor CrTe at about 40GPa.
The complexity of the magnetic behaviour of Cr-chalcogenides is re�ected in the magnetic
phase diagram of the system CrTe1¡ xSex (seeFig. 5.1). This phase diagram was suggested
by Makovetskii (1986)[19]. The results of magnetic phase transition studies in the system
CrTe1¡ xSex , based on neutron dif fraction measurements (triangles in Fig. 5.1), on analysis
of the temperature dependenceof magnetization (crosses)and electrical resistivity (circles)
are used to obtain this phase diagram. In the region of Se concentration lower than 0.4,
when the temperature is lower than line (a), the ferromagnetic ordering is observed with
the arrangement of the magnetic moments within the basis plane. The Curie temperature
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Figure 5.2:The NiAs structure for the CrX (X = S,Se,Te) systems.

decreasesnearly linear with the increasing of the Secontent. Below the curve (c) the non-
collinear magnetic structure occurs.
The alloys with Seconcentration x between 0.7and 1.0have an antiferr omagnetic order be-
low the line (b), an umbrella-like non-collinear ordering of the magnetic moments being the
most probable. The variation of the Néel temperature with increasing of the Seconcentra-
tion of solid solutions deviates from a linear variation. In the region with Seconcentration
between 0.2and 0.6both ferromagnetic and antiferr omagnetic ordering occurs, at the tem-
peraturesbelow lines (a) and (b).

5.1 Structural properties of binary CrX (X = S, Se,Te)
compounds

The systems CrX (X = S, Se,Te) crystallize in the hexagonal NiAs structure (seeFig. 5.2).
The spacegroup of this structure is P63=mmc or D 4

6h (No. 194 in the International Tableof
Crystallography), with the Cr atoms at the (2a) sites (0; 0; 0) and (0; 0; 1

2) and the chalcogen
atoms at the (2c) sites ( 1

3 ; 2
3 ; 1

4) and (2
3; 1

3; 3
4).

The experimentally determined lattice parameters at room temperature are listed in the
Table 5.1.The c0=a0 ratio is smaller than the ideal value of 1.663for CrTe and bigger than the
ideal value for the other Cr-chalcogenides. Six chalcogenatoms form a trigonally distorted
octahedron around Cr. A Cr atom is further surrounded by six other Cr atoms in the basal
abplane at the distance a0. Much shorter metal-metal distancesare presentalong the c-axis:
a Cr atom has two Cr neighbours at c0=2, as can be seenin the interatomic distances in the



5.2. BAND-STRUCTURE CALCULA TIONS OF CRX (X = S,SE,TE) SYSTEMS 115

CrS CrSe CrTe
a0( 	A) 3.456 3.684 3.997
c0( 	A) 5.761 6.020 6.223
c0=a0 1.667 1.634 1.557

Table 5.1:The experimental [5, 6, 7] lattice parameters for CrX (X = S,Se,Te) systems.

N CrS CrSe CrTe
Cr-X ( 	A) 6 2.461 2.606 2.783
Cr-Cr ( 	A) 2 c 2.881 3.010 3.112
Cr-Cr ( 	A) 6 ab 3.456 3.684 3.997

Table 5.2: The interatomic distances in the NiAs structure for CrX (X = S,Se,Te) systems. N
is the number of neighbours and c and ab distinguish Cr-neighbours along the c-axis and
within the abplane.

NiAs structure for the CrX (X = S, Se,Te) compounds presented in Table 5.2. One should
note that the NiAs structure is not unique for the CrX (X = S,Se,Te) systems,the monoclinic
distorsion for the non-stoichiometric Cr1¡ xS(Jellinek 1957[139]) or the (partial) ordering of
Cr vacanciesin alternate metal layers of Cr1¡ xTe, resulting in the trigonal spacegroup P¹3m1
(or D 3

3d) [138] are often mentioned asalternative crystal structure for thesecompounds.

5.2 Band-structure calculations of CrX (X = S,Se,Te) systems

Electronic band-structure calculations of CrX (X = S, Se, Te) have been performed for a
collinear ferromagnetic and respectively antiferr omagnetic arrangement of the Cr magnetic
moments, as is shown in Fig. 5.6.
The band-structure calculations have beenperformed using the SPR– KKR method within
the atomic sphere approximation (ASA). Exchange and correlation were treated in the lo-
cal spin density approximation (LSDA). The parametrization of Vosko, Wilk and Nusair for
exchange-correlation energy was used.
In the SPR-KKR-ASA, the Wigner-Seitz cells, located at the atomic sites are replaced by
atomic spheres (AS) and the spherically symmetric potential within the spheres is extend-
ing to their boundaries. The sum of the volumes of those spheres is equal to the unit cell
volume. This approximation completely neglects the interstitial part of the crystal. The
coherent potential approximation (CPA) described in the section 2.3.1is used to deal with
disordered/non-stoichiometric compounds.
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5.2.1 Density of states

The total density of states(DOS)of ferromagnetic CrS,CrSeand CrTe obtained by SPR-KKR
calculations are shown in Figs. 5.3,5.4and 5.5. The density of statesof CrS, CrSeand CrTe
systemshave similar features,which are listed in the following.

The band at around 12 eV binding energy has s-anion origin, whilst the higher energy
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Figure 5.3:The spin-resolved KKR density of statesof CrS.

band hasCr(3d)-X(p) character. In the lower part of the d-p band, the p-character is obvious
and the in�uence of the exchange-splitting is minor . The higher part of the d-p band, hav-
ing a Cr(3d) character show a clear exchange-splitting. The dif ferencesbetween the three
compounds appear in the exchange-splitting and d-p peaks separation (in " and # bands),
ascan be seenin the Table 5.3. The SPR-KKRdensity of states(DOS) for CrX (X = S,Se,Te)

Exchangesplitting Cr 3d (eV) CrS CrSe CrTe
KKR 2.2 2.6 2.7

ASW [8] 2.5 2.7 2.9

Table 5.3: The exchange-splitting of the Cr(3d) statesof CrX (X = S,Se,Te) systems in KKR
and ASW calculations (Dijkstra et al. [8]).
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Figure 5.4:The spin-resolved KKR density of statesof CrSe.
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systems are similar with the ASW results of Dijakstra et al. [8] and LMT O calculations of
Knecht [161].

5.2.2 Phasestability

Figure 5.6:The spin con�guration for ferromagnetic/antiferr omagnetic calculation.

As it was suggestedby the extrapolated Curie-Weisstemperature[140, 143], the ground state
in the CrS and CrSecompounds is not ferromagnetic, but rather antiferr omagnetic. For the
CrTe compound, the ferromagnetic state is reported to be more stable [138, 159]. Having
this in mind, we performed SPR-KKRcalculations for the CrX (X = S,Se,Te) systemswith
a ferro- and antiferr omagnetic spin con�guration shown in Fig. 5.6. Comparing the total
energies of the systems,as shown in Table 5.4,we found that the AF state of CrS and CrSe
is indeed lower in energy than the FM state. For CrTe, the FM state is energetically more
favourable. Thesetrends con�rm the previously cited experimental measurements and the
ASW calculations of Dijkstra et al. [8], but doesn't exclude a possible non-collinear spin
con�guration asground stateof thesesystems.

EF M ¡ EAF (mRy) lower in energy
CrS 1.31 AF
CrSe 0.88 AF
CrTe -3.91 FM

Table 5.4: Total energy dif ference EF M ¡ EAF (mRy) in CrX (X = S, Se,Te) systems from
SPR-KKRcalculations.
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5.2.3 Magnetic moments

The dif ferent number of occupied majority and minority statesgives rise to a net magnetic
moment per formula unit of CrX (X = S, Se,Te). The SPR-KKR calculated magnetic mo-
ments are presentedin Table 5.5,together with the magnetic moments resulting from scalar-
relativistic LMT O (Perlov [9]) and from ASW calculations (Dijkstra et al. [8]). As canbe seen

calculation mode CrS CrSe CrTe
Cr magnetic moment (¹ B ) SPRKKR 2.73 3.28 3.44

LMT O 2.63 3.23 3.38
ASW 2.84 3.40 3.51

X magnetic moment (¹ B ) SPRKKR 0.001 0.002 -0.011
LMT O 0.04 0.05 0.04
ASW 0.20 0.24 0.22

Table 5.5: Magnetic moments in CrX (X = S, Se,Te) compounds resulting from SPR-KKR,
LMT O [9] and ASW [8] calculations.

in Table 5.5, the Cr magnetic moments obtained by dif ferent calculation methods are com-
parable. The Cr magnetic moments increasefrom CrS to CrTe, this trend being present in
all calculations. While the dif ferent band-structure calculation are in agreement concerning
the Cr magnetic moment in CrX (X-S,Se,Te) systems,this does not apply for the chalcogen
magnetic moment. The SPR-KKR�nds the chalcogenatom almost non-magnetic, whilst the
LMT O method predict magnetic moments » 0.04¹ B . The ASW predictions for the magnetic
moment of chalcogenatom in those compounds give rather big values of » 0.2 ¹ B , but still
small compared to Cr magnetic moments. Element speci�c magnetic measurements would
be necessaryto allow for a better description of thesecompounds.
Our fully relativistic SPR-KKRmethod allows for the calculations of orbital and spin mag-
netic moments, giving a more detailed pictur e of Cr-chalcogenide magnetism compared
with the scalar-relativistic ASW (Dijkstra et al. [138]) or LMT O (Perlov [9]) methods. The
spin and orbital magnetic moments for Cr, resulting from ferro- and antiferr omagnetic cal-
culations are shown in Table 5.6. As can be seen, the orbital magnetic moment in these
compounds are about » 1%of the value of spin magnetic moments. In the ground state,the
spin and orbital magnetic moments are antiparallel for CrS and CrSeand parallel for CrTe.
For all calculations, the spin magnetic moments of Cr in antiferr omagnetic state is found
to be » 5 % lower than in the ferromagnetic state. The sametrend concerning the AF/FM
Cr magnetic moments was reported by Dijkstra et al. [8] obtained from ASW calculations.
They reported AF total magnetic moments for Cr to be about » 7-10% lower than the FM
magnetic moments.
The orbital magnetic moments are very small, antiparallel with the spin magnetic moment
in Cr Sand CrSecompounds and parallel in CrTe.
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FM AF
ms ml ms ml

CrS 2.736 -0.024 2.606 -0.032
CrSe 3.282 -0.013 3.066 -0.010
CrTe 3.439 0.007 3.284 0.022

Table 5.6: Magnetic moments of Cr in CrX (X = S,Se,Te) compounds resulted from FM/AF
SPR-KKRcalculations.

5.3 Non-collinear spin structures

A complementary approach to investigate the magnetic behaviour of solids is to consider
particular microscopic models making use of magnetic interaction. One of the approaches
widely used to consider magnetic properties of solids is the Heisenberg model that is nor-
mally used to describethe interaction of exchangecoupled localised magnetic moments. An
application of this model to metals requiressome care becauseof the featuresrelated to the
itinerant characterof d-electrons [162, 163, 164,165]. Nevertheless, this approach turned out
to be very useful for the understanding of magnetic properties. Mor eover, it is used very
successfully in studies of magnetic metals and alloys. In line with theseexperiences,it is as-
sumed in the following that the itinerant-electr on system can be described (as is discussed
in [162, 163]) by an effective classicalHeisenberg Hamiltonian

Hex = ¡
X

ij

Jij êi ¢êj ; (5.1)

where the summation is performed over all lattice sites i and j . Here êi and êj are the unit
vectors along the dir ections of the magnetic moments on sites i and j respectively, J ij is
the exchangecoupling parameter for the corresponding magnetic moments. A rigor ous ex-
pressionfor the exchangeparameters J ij can be obtained using local spin density functional
(LDSF) approach together with the KKR method. The approach described by Lichtenstein
et al. [162, 163] is based on the calculation of the variation of the total energy with small
deviations of two magnetic moments from their equilibrium dir ections. The exchangeinter-
action parameter J ij between the magnetic moments located on sites i and j is then given
by the formula:

Jij =
1

4¼
=

Z EF

TrL (t ¡ 1
i " ¡ t ¡ 1

i # )¿̂ij
" (t ¡ 1

j " ¡ t ¡ 1
j # )¿̂j i

# dE : (5.2)

Here t im s and ¿̂ij
ms

are the single-site scattering t-matrix and the scattering path operator for
spin ms and connected with the sites i and j . Tr L means the trace over the orbital states
labelled by the combined quantum number L = (l; ml ).
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Since these parameters are nothing else but the energy changes due to rotations of spin
magnetic moments, they can be used to analyse the stability of a magnetic structure in a
crystal. In particular , if negative values of J ij parameters give the main contribution to the
spin magnetic moment exchange interaction within a crystal implies that the underlying
magnetic con�guration is unstable becausea small deviation results in an energy decrease.
Thus analysing the J ij values one can already draw some conclusions about the stability of
a magnetic con�guration.

5.3.1 Non-collinear spin structure in CrSe system

Figure 5.7: Non-collinear spin con�guration in CrSesystem. The spin orientation is shown
for Cr atoms.

The KKR calculation of the exchange-coupling parameters J ij in CrSehas been done by S.
Mankovsky [20]. The exchange-coupling parameters are represented as a function of dis-
tance in Fig. 5.8considering a ferromagnetic spin con�guration of the system. The origin of
the distance scaleis the Cr(a) site at the position (0; 0; 0) (seeFig. 5.2). The Cr atom located
at the position (0; 0; 1

2) will be denoted Cr(b). The chalcogen atoms are located at ( 2
3; 2

3 ; 1
4)

and ( 1
3; 1

3; 3
4) in crystallographic units. The interatomic distances in the CrSesystem can be

seenin Table 5.2.
As have been discussed in section 5.2.3, the Seatoms have no own spontaneous mag-

netic moments, and the existing magnetic moments are induced on Seby the magnetic Cr
atoms. For this reasontheir magnetic moments values are extremely sensitive to the neigh-
bourhood. Therefore it will be more correct from our point of view if we will consider only
Cr-Cr magnetic interactions and to neglect Cr-Se interactions. For the pair Cr(a)-Cr(b) a
signi�cant negative exchangecoupling parameter has been obtained, but the energy intr o-
duced by the Heisenberg interaction (seeEq.(5.1))is positive, which meansthat the relative
spin orientation of the pair Cr(a)-Cr(b) is energetically not favourable.
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Figure 5.8: The exchangecoupling parameters J ij for ferromagnetic spin con�guration in
the system CrSe[20].
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Figure 5.10:The total energy vs. µ angle for the spin con�guration from Fig. 5.7. SPR-KKR
calculations for CrSesystem.

The pair Cr(a)-Cr(a) has positive exchange-coupling parameter, but the magnitude of the
exchangecoupling parameter J ij is » 12 times smaller than the corresponding value of the
parameter for the Cr(a)-Cr(b) pair. The ferromagnetic spin orientation of the Cr(a)-Cr(a)
pair is energetically favourable, but the ordering energy is much smaller compared with the
contribution of a Cr(a)-Cr(b) pair.
This consideration may give us a hint of a possible alternative spin con�guration of the sys-
tem. The conclusion from studying the nearest-neighbour spin interaction CrSe system is
that the ferromagnetic spin arrangement is not energetically favourable and cannot be the
ground stateof this system.
The band-structure calculations are in agreement with this result, giving for a possible
ground state an antiferr omagnetic arrangement of spins. The calculation of the exchange
coupling parameters hasbeendone (Mankovsky [20]) also for an antiferr omagnetic spin ar-
rangement in CrSe system. The geometry is the same like in the ferromagnetic case. The
exchangecoupling parameters J ij are representedin Fig. 5.9asa function of the distance.
As can be seen,the main features in the spin-spin interaction between nearest neighbours
seemsto be unchanged. The Cr-Semagnetic coupling is negligible. The Cr(a)-Cr(a) mag-
netic interaction is smaller than in the ferromagnetic phase. The highest magnitude of the
coupling occur for the Cr(a)-Cr(b) pairs. The sign of the exchange-coupling parameters
shows us that in the antiferr omagnetic phase,like in the ferromagnetic one discussedbefore
the magnetic energy intr oduced by the spin-spin coupling destabilise the system. As a con-
sequencewe can expect that the magnetic ordering in the ground state of this system have
to be a non-collinear one.
In order to prove this conclusion, we performed SPR-KKRcalculations for a non-collinear



124 CHAPTER 5. GROUND-STATE PROPERTIESOF CR-CHALCOGENIDE SYSTEMS

spin arrangement of the CrSesystem. The spin con�guration is shown in Fig. 5.7.The spins
of Cr(a) and Cr(b) atoms are tilted, having a tilt angle µ=2 in respectto the c axis. Fig. 5.10
shows the total energy as a function of the tilt angle µ=2. One can seein Fig. 5.10that the
spin con�guration with µ = 0o (ferromagnetic phase) is not favourable. Also, the spin con-
�guration for µ = 180o (antiferr omagnetic phase) is not favourable, but is lower in energy
compared with the ferromagnetic phase. The con�guration lowest in energy and in conse-
quence the most favourable one is the non-collinear spin arrangement having the µ angle
about 80o.
On the basis of this result, we conclude that a non-collinear spin arrangement in the CrSe
is preferred. The SPR-KKRenergy-band calculations and the calculations of the exchange
coupling parameters are in full accordance concerning the ground-state spin con�guration
in CrSe system. One has to mention that the non-collinear spin con�guration of the CrSe
system may be more complex and the re�nement of the spin con�guration is possible in
order to con�rm a certain spin structure determined in experiment.

5.3.2 Non-collinear spin structure in CrTe system

The KKR calculation for the exchange-coupling parameters J ij in CrTe has beendone by S.
Mankovsky [20]. The exchange-coupling parameters are represented as a function of dis-
tance in Fig. 5.11for a ferromagnetic spin con�guration and respectively in Fig. 5.12for a
antiferr omagnetic spin con�guration. Analysing the J ij values for both spin con�gurations
one can seesimilarities with the CrSe system. The Cr(a)-Cr(b) exchangeparameters have
considerably large negative values for the �rst coordination shell for both spin con�gura-
tions. For shells farther away, the Cr(a)-Cr(b) exchangeparameters indicate slight magnetic
stabilities in the ferromagnetic case(Fig 5.11),while J ij oscillates in the antiferr omagnetic
con�gurations (Fig. 5.12).

The energy of the exchangeinteraction between Cr(a) magnetic moments is negligible in
the ferromagnetic con�guration, only the second shell gives a small positive contribution.
In the antiferr omagnetic case,the Cr(a) - Cr(a) magnetic exchangeinteraction is positive for
all coordination shells, but the energy of this interaction is signi�cant smaller than the cor-
responding energy of Cr(a)-Cr(b) nearest neighbours.
Our analysis on the J ij values cannot decide whether one of the ferro/antiferr omagnetic
phase of CrTe is more stable. The SPR-KKR calculation for a non-collinear spin arrange-
ment in the CrTe system is required to give a clearer indication concerning the most stable
spin con�guration. Considering the spin con�guration shown in Fig. 5.7, the total energy
dependenceon the half of the tilt angle between the spins is shown in Fig. 5.13.
As in the CrSecase,the spin con�guration with µ = 0o (ferromagnetic phase) and µ = 180o

(antiferr omagnetic phase) are not favourable. The spin con�guration with the highest sta-
bility is non-collinear, as in the CrSecase. This result (seealso [166]) is in agreement with
the phasediagram from Fig. 5.1reproduced from Makovetskii [19]. Also, other experimen-
tal reports about non-collinear spin con�guration in CrTe systems [152, 153,154, 155, 156]
support our result.
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Figure 5.11: The exchangecoupling parameters J ij for ferromagnetic spin con�guration in
the system CrTe [20].
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Figure 5.13: The total energy vs. tilt angle µ for the spin con�guration from Fig. 5.7. SPR-
KKR calculations for the CrTe system.

5.4 Band-structure calculations for the system CrTe1¡ xSex

5.4.1 Magnetic moments

In order to investigate the in�uence of the Se/Te content on the ground state properties
of the CrTe1¡ xSex system, we performed fully relativistic SPR-KKRcalculations for the fer-
romagnetic phase of this system. The lattice parameters a and c used for band-structure
calculations have beenderived considering that they have linear dependenceon the Secon-
centration.

The behaviour of the Cr magnetic moments as a function of the Seconcentration is pre-
sented in Fig. 5.14. As expected from the results for the stoichiometric compounds, the
total magnetic moments decreasewith Seconcentration, from 3.42¹ B at 10%Seto 3.28¹ B

at 90%Se. The spin magnetic moment has a similar behaviour, decreasing with Seconcen-
tration. As a consequenceof fully relativistic calculations, we can give separatepredictions
for the spin and orbital magnetic moments. As can be seenin Fig. 5.14,the orbital and spin
magnetic moments of the compound CrTe1¡ xSex are parallel for x lower than » 0.25% Se
and antiparallel for higher Seconcentrations. The absolute values of the orbital moment are
lower than 0.012¹ B .
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Figure 5.14:The behaviour of the magnetic moments in CrTe1¡ xSex system with increasing
Seconcentration, asresulted from SPR-KKRcalculations.

5.4.2 Magnetic ground state

As it was shown by Makovetskii [19], the magnetic ordering in the system CrTe1¡ xSex is
very complex. As can be seenin the phasediagram in Fig. 5.1,there are several spin con�g-
urations for this system for dif ferent temperature rangesand Seconcentration.

We were interested to determine the magnetic ground state for the concentration points

alat clat c/a
FM 3.559 5.775 1.622
AF 3.535 5.825 1.647
exp 3.777 6.080 1.609

Table 5.7: The SPR-KKR-LSDA equilibrium lattice parameters of CrTe0:30Se0:70 system for
AF and FM, compared with the experimental values ([5, 6, 7]).

close to the ferro- antiferr omagnetic border, where the phase diagram didn't give a clear
answer for the magnetic ground stateof the system.
In order to establish the magnetic ground state, we have chosen the point with a concen-
tration of 70 % Se and performed fully relativistic SPR-KKR calculation for the system
CrTe0:30Se0:70 with ferromagnetic and antiferr omagnetic spin con�guration. The exchange-
correlation treatment was done within the local spin density approximation (LSDA) making
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useof the Voskow, Wilk and Nusair exchange-correlation energy. The band-structure calcu-
lation for both magnetic stateshave beendone with variable lattice parameters a and c. The
magnetic spin orientation within the unit cell is shown in Fig. 5.6.
Fig. 5.15shows the total energy of the system in the ferro- and the antiferr omagnetic states
as a function of lattice parameters a and c. The energy-surface was reproduced from indi-
vidual calculations, in such a way that the total energy �ts the following equation:

ET = ®1a2 + ®2c2 + ®3a2c2 + ®4a2c + ®5ac2 + ®6ac+ ®7a + ®8c + E0 (5.3)

As can be seen, for both magnetic states, the total energy shows a minimum for a pair of
(amin ; cmin ) lattice parameters. The antiferr omagnetic state is lower in energy than the ferro-
magnetic state; the dif ferencebetween the AF and the FM minimum energy of the energy-
surface is 6.1 mRy. The result of our SPR-KKRcalculations gives a clear indication for an
antiferr omagnetic ground state in this system.
The lattice parameters corresponding to the minima of this energy-surface, the so-called
equilibrium lattice parameters are shown in Table 5.7.Thecalculated equilibrium lattice pa-
rameters are smaller by » 6 % than the experimental values. This disagreementbetween the
experimental values and calculations is induced by the treatment of exchange-correlation
within the local spin density approximation (LSDA) which overestimates the binding and
lowers the equilibrium lattice parameters.
As a consequence,we repeated our calculations using the Perdew-Burke-Enzerhof (PBE)
version of the general gradient approximation (GGA) for the exchange-correlation energy.
The total energy surfaceshave beenconstructed in the sameway asfor the SPR-KKR-LSDA
calculations, �tting Eq. (5.3).Fig. 5.16shows the total energy surfacesfor ferro- and antifer-
romagnetic stateasa function of the lattice parametersa and c. Dif ferent from the SPR-KKR-
LSDA calculations, for certain rangesof the (a;c) lattice parameters, the ferromagnetic state
is lower in energy. There is a crossing of the ferro- and antiferr omagnetic energy surfaces,
but the AF phaseis still energetically favour ed becausethe AF minimum is lower in energy
with 0.96mRy than the FM minimum. The equilibrium lattice parameters shown in Table
5.8 are closer to the experimental values, the dif ference to these values being smaller than
2%.

alat clat c/a
FM 3.7132 5.9605 1.605
AF 3.6563 5.9653 1.631
exp 3.777 6.080 1.609

Table 5.8:The SPR-KKR-GGAequilibrium lattice parameters of CrTe0:30Se0:70 system for AF
and FM, compared with the experimental values ([5, 6, 7]).
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5.5 Band-structure calculations for Cr1+x(Te1¡ ySey)2 systems

5.5.1 Structural properties of Cr1+x(Te1¡ ySey)2 compounds

The Cr5Te8 compounds crystallise in a monoclinic or in a trigonal structure, depending
on the actual composition [148, 167]. It is expected that the cation substitution in Cr5Te8

will lead to new phaseswith distinct crystal structures and dif ferent physical properties.
Cr5Te8¡ xSex samples were synthesised recently by Benschet al. [10] dir ectly from the ele-
ments via a high-temperatur e reaction with slowly cooling or quenching the products. An-
other approach was undertaken using the high-pr essure high-temperatur e route [10]. The
crystal structureswere determined with Rietveld re�nements.
The quenched samples crystallise in the CdI 2 type of structure (spacegroup P¹3m1 or D3

3d)

a( 	A) c( 	A) c/a z
Cr1:22(Te0:88Se0:12)2 3.8577 5.9876 1.551 0.2525
Cr1:23(Te0:88Se0:12)2 3.8615 5.9894 1.551 0.2531
Cr1:26(Te0:88Se0:12)2 3.8709 6.0113 1.553 0.2521
Cr1:28(Te0:75Se0:25)2 3.8284 6.0087 1.569 0.2508
Cr1:28(Te0:88Se0:12)2 3.8757 6.0355 1.557 0.2522
Cr1:33(Te0:88Se0:12)2 3.8994 6.0546 1.552 0.2515

Table 5.9: The lattice parameters for Cr1+ x (Se/Te)2 non-stoichiometric trigonal compounds
[10].

shown in Fig. 5.17(left), while a superstructure is identi�ed for the samples Cr5+ x (Te/Se)8

which were slowly cooled to room temperature. Both structures are related to the NiAs-
type structure. In the quenched samples, the Cr atoms are completely disordered over the
Cr sites,while in Cr5+ x (Te/Se)8 the vacanciesin the Cr layers are found partially ordered.
The trigonal symmetry of the quenched samplespossessthe following atom positions: Cr(a)
at (0; 0; 0), Cr(b) at (0; 0; 1=2) and Te/Se at ( 1

3; 2
3; z) and ( 2

3; 1
3; ¡ z). One canseein Fig. 5.17that

Cr(a), Cr(b) and Te/Se crystallographic positions de�ne corresponding atom-layers along
the c axis which alternate in the sequenceCr(a), Te/Se, Cr(b), Te/Se. The value of z is close
to 0.25,which would correspond to equal distancesbetween the Cr(a), Cr(b) and Te/Se lay-
ers.
The SPR-KKRband structure calculations have been performed for the quenched samples
of type Cr1+ x (Te0:88Se0:12)2 and Cr1+ x (Te0:75Se0:25)2 with x between 0.21and 0.33,prepared
by Benschet al. [10]. The lattice parameters and the z values are presentedin Table 5.9.
The neutron dif fraction measurements performed by Benschet al. [10] show that the Cr(a)

plane at z = 0 and the Te/Se planes are fully occupied, whilst the Cr(b) plane at z = 1
2 is

only partially occupied. The coherent potential approximation (CPA) described in section
2.3.1is used to deal with thesecompounds. Using the CPA, a random distribution of Se/Te
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Figure 5.17: The structure of the non-stoichiometric Cr1+ xQ2 (Q=Te/Se) compounds (left).
The crystal structure of Cr5+ xTe8 (right) [10].

atoms within the chalcogen planes and a random distribution of the vacancieswithin the
Cr(b) layer is considered.

5.5.2 Preferential site occupation

The neutron dif fraction data (Benschet al. [10]) concerning the site occupation in the sys-
tems Cr1+ x (Te/Se)2 systemswas questioned. The layer of Cr at z = 0 denoted by a (seeFig.
5.17,left) is fully occupied, whilst the plane of Cr(b) at z = 1=2 is only partially occupied.
The preference of Cr atoms for one of the layers must be energetically determined and it
must be re�ected in the variation of the total energy if a certain percentageof Cr is moved
from Cr(a) to Cr(b) layer.
In order to verify this supposition, we performed SPR-KKRband-structure calculations to
evaluate the variation of the total energy of the system, considering that x % of the Cr(a)
atoms are moved into Cr(b) plane, according to the scheme: Cr1:0Cr0:28(Te0:88Se0:12)2 !
Cra

1¡ xCrb
x+0 :28(Te0:88Se0:12)2. As can be seenin Fig. 5.18,a positive variation in the total en-

ergy of the Cr1:28(Te0:88Se0:12)2 system is produced by moving Cr atoms from Cr(a) to Cr(b)
planes. This variation in the total energy increasesalmost linearly with x, the amount of the
moved Cr atoms. The increasing of the total energy for this transformation shows clearly
that the Cr(a) sites are preferential occupied by Cr atoms. If the Cr concentration would
increasein this system, the Cr(a) plane would be occupied �rst. Only after the Cr(a) plane
have beenfully occupied, the Cr atoms start to populate the Cr(b) plane.
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Figure 5.18: The SPR-KKR total energy variation of the system Cr1:28(Te0:88Se0:12)2 as a
function of Cr concentration x moved from site a to site b, according to the scheme:
Cr1:0Cr0:28(Te0:88Se0:12)2 ! Cra

1¡ xCrb
x+0 :28(Te0:88Se0:12)2.

5.5.3 Density of statesand magnetic moments

The spin-resolved density of statesfor threesystemsof Cr1+ x (Te/Se)2 type are presentedin
Figs. 5.19,5.21and 5.20. The main features of the DOS for thesecompounds are the same
as for the binary Cr chalcogenides, namely the s-band at lower energy and the d-p band
crossing the Fermi level. The dif ferenceappear in exchange-splitting and in the separation
of the p-like and d-like peaks in the d-p band. For both majority and minority states,the d-p
separation is lower in thesetrigonal compounds than in the CrTe/CrSe of NiAs-type.

The magnetic moments for Cr1+ x (Te/Se)2 obtained by SPR-KKR band-structure calcu-
lations are presented in Tables 5.10and 5.11. As can be seen in Table 5.10, the magnetic
moments of Cr on Cr(b) sites are about 25 % smaller than the magnetic moments on Cr(a)
sites. We �nd an increaseof the Cr(a)/Cr(b) magnetic moments with an increaseof the Cr

x = 0:22 x = 0:23 x = 0:26 x = 0:28 x = 0:33
Cr a 2.955 2.965 3.002 3.031 3.107
Cr b 2.199 2.199 2.343 2.43 2.458
Te -0.200 -0.203 -0.202 -0.203 -0.206
Se -0.282 -0.286 -0.283 -0.285 -0.283

Table5.10:Magnetic moments in trigonal Cr1+ x (Te0:88Se0:12)2 non-stoichiometric compounds
(in ¹ B ).
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Figure 5.19:Spin-resolved DOS of the system Cr1:23(Te0:88Se0:12)2 obtained by SPR-KKRcal-
culations.
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Figure 5.20:Spin-resolved DOS of the system Cr1:28(Te0:88Se0:12)2 obtained by SPR-KKRcal-
culations.
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Figure 5.21:Spin-resolved DOS of the system Cr1:28(Te0:75Se0:25)2 obtained by SPR-KKRcal-
culations.

Cr1:28(Te0:88Se0:12)2 Cr1:28(Te0:75Se0:25)2

mspin (¹ B ) morb(¹ B ) mspin (¹ B ) morb(¹ B )
Cr(a) 3.019 0.011 2.962 0.007
Cr(b) 2.407 0.023 2.356 0.020

Te -0.194 -0.008 -0.188 -0.008
Se -0.281 -0.003 -0.270 -0.003

Table 5.11: Magnetic moments in trigonal Cr1:26(Te0:88Se0:12)2 and Cr1:26(Te0:75 Se0:25)2 non-
stoichiometric compounds (in ¹ B ).

content of the system. The averagemagnetic moments on Cr are in theseCr1+ x (Te0:88Se0:12)2

non-stoichiometric compounds about 20 - 25 % smaller compared with the corresponding
values in CrTe1¡ xSex for x = 0:12.
We should note also the magnitude and the sign of the magnetic moment on the chalcogen
atoms. Their magnetic moments are antiparallel with the Cr moments and their magnitude
is signi�cantly increasedcompared with the values of chalcogenatoms magnetic moments
in CrTe1¡ xSex (seeFig. 5.14).The chalcogenmagnetic moment for non-stoichiometric com-
pounds is almost independent on the Cr content. The negative magnetic polarisation of
Te/Se atoms is explained by Dijkstra et al. [138] by a covalent mixing of Cr 3d and chalcogen
p-bands. The calculated DOS of Cr1+ x (Te/Se)2 systems is in agreement with this supposi-
tion [168].
For the compounds with the sameCr content (x = 0:28) but dif ferent Te/Se ratio, the mag-



5.6. BAND-STRUCTURE CALCULA TIONS FOR (CRX TI1¡ X )5TE8 SYSTEMS 135

netic moments are presented in Table 5.11. The magnetic moments on Cr are slightly in-
�uenced by the chalcogen content. The enhancement of Cr magnetic moment with the Te
content follows the general trend, as it was found for CrTe1¡ xSex binary alloys.

5.6 Band-structure calculations for (CrxTi1¡ x)5Te8 systems

Depending on the actual composition and the thermal treatment the binary Cr telluride
Cr5Te8 crystallizes in a monoclinic (m) or trigonal (t) structure [148]. Both structures are
derived from the hexagonal NiAs structure type by successiveremoval of Cr atoms from
every second metal atom layer parallel to the crystallographic c axis. The monoclinic (m)
phase is stable within the composition range Cr5:42Te8 - Cr4:98Te8, whilst the stability of the
trigonal phasecovers the composition range Cr4:96Te8 - Cr4:80Te8. Within the fully occupied
metal atom layers the CrTe6 octahedra share common edges, the connection of the octa-
hedra between full and metal de�cient layers is achieved via common faces. The Cr - Cr
distanceswithin the full metal atom layers are longer than 3.8 	A excluding dir ect magnetic
exchangeinteractions. In contrast, the Cr - Cr separation acrossthe common facesare about
3 	A favouring dir ect magnetic exchange.
By magnetisation measurements on this system Benschet al. [169] found out that the mon-
oclinic to trigonal transition and the changeof Cr content leads to important changesin the
magnetic properties of this system. The system Cr5Te8 is ferromagnetic, but a small change
in the Cr content leads to important changesin the Curie temperature: if for the m-Cr 5:18Te8

phasethe Curie temperature is 180K, for t-Cr 4:85Te8 phasethe Curie temperature is 240K.
Other experimental measurements [170] show for a monocrystalline sample of Cr5Te8 a
Curie temperature of 240 K. Also, the magnetisation measurements along dif ferent dir ec-
tions show a strong magnetocrystalline anisotropy of this system. Unfortunately , the crys-
talline structure characterisation of the samplesused in thesemeasurements are missing.
The pseudo-binary compounds (CrxTi1¡ x )5Te8 crystallize in the trigonal structure. Accord-
ing to the experimental measurementsperformed by Benschet al. [171] for CrTi4Te8 system,
the substitution of Cr by Ti drastically alters the magnetic properties of the samples. A tran-
sition into the ferromagnetic state is observed at about 100K. Susceptibility measurements
performed in the zero �eld cooling (zfc) and �eld cooling (fc) mode show a diver genceof
the zfc and fc curves below about 100K indicating spin glassbehaviour. The magnetic mo-
ments on Cr are smaller than the reported values for binary CrTe compounds, showing a
value of 2.13¹ B .
The magnetic susceptibilities of CdI 2-type (Cr1¡ xTix )5Te8 have been measured by Hatake-
yama et al. [172] for the range 0 · x · 1. The Curie temperature deduced from susceptibil-
ity measurements steeply decreaseswith the increasingof x. The decreasingslope becomes
smaller in the range of higher x (x ¸ 0:3).
A remarkable magnetovolume effect in (Cr1¡ xTix )5Te8 systemshasbeenreported [173]. The
variation of Curie temperature with pressure have been studied for (Cr1¡ xTix )5Te8 and
(Cr1¡ xVx )5Te8 system. The results show that the pressure needed to destroy the ferromag-
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netic phase decreasewith increasing x [173] more pronounced for (Cr1¡ xVx )5Te8 than for
(Cr1¡ xTix )5Te8 systems.This is a secondproof that Ti aswell asV atoms alters the magnetic
phase of the Cr5Te8 system. Also, the measurements of magnetic moments of Cr deduced
from saturation of magnetisation in (Cr1¡ xVx )5Te8 systems[174] show a value of 1.9¹ B /Cr .
This value is remarkably lower than that (» 3.0 ¹ B ) expected on the localized moment for
Cr3+ .
Thesearguments have been brought to underline the strong dependence of the magnetic
properties of (CrxTi1¡ x )5Te8 systemsinto the composition and crystalline structure. The aim
of the SPR-KKRcalculations is to give a new insight on the properties of thesesystems.The
interesting questions about the changeof the magnetic moments with the Cr/T i ratio in the
systems and the preferential occupation of Cr and Ti atoms on dif ferent crystallographic
sitescan get good grounded answers by complementing the experimental work with calcu-
lations of the ground stateproperties.

5.6.1 Structural properties of (CrxTi1¡ x)5Te8 compounds

The crystallographic structureof trigonal Cr5Te8 is complex, being re�ned in the spacegroup
P¹3m1 with four crystallographically dif ferent sites for both Te and Cr. This phase contains
two-dimensional planes of Cr and Te alternating along the c dir ection. The Te layers are
fully occupied, whilst in the Cr layers there are vacancies. The crystallographic structure
determined by Benschet al. [148] takes into account the ordering of the vacancies in the
metal layers. For the presentcalculations we will make use of the reduced model, denoted
Cr1:25Te2. Within this model, the vacancy ordering in the metal layers is not taken into ac-
count and a random distribution of the vacanciesin the metal layers is considered. In this
reduced unit cell, the axes a and c are half as the values reported by Benschet al. [148].
The samereduced model will be used for (CrxTi1¡ x )5Te8 systems,denoted now due to this
simpli�cation as(CrxTi1¡ x )1:25Te2 systems.
The Cr/T i atoms are located on two crystallographically dif ferent sites, namely on (0; 0; 0)
and (0; 0; 1=2). The Te atoms occupy the sites (1=3; 2=3; z) and (2=3; 1=3; ¡ z) where the pa-
rameter z govern the interlayer separation and is not determined by symmetry. This occu-
pation leads to a CdI 2 type of structure. In these CdI 2-like structures, the metal atoms are
surrounded by the octahedral arrangement of Te atoms. For an ideal octahedral arrange-
ment, the z value is 1=4 which is close to the observed value (seeTable 5.12). The lattice
parameters of the systems(CrxTi1¡ x )1:25Te2 are listed in Table 5.12.

The structure is similar to the non-stoichiometric Cr1+ x (Te/Se)2 structure presented in
Fig. 5.17. The Cr and Ti atoms are distributed into the metal-layers at z = 0 and z = 1=2.
From the experimental data it was determined that the layer at z = 0 is fully occupied with
atoms, whilst the vacancies appear into the z = 1=2 layer. The position of Ti cannot be
determined unambiguously making use of the experimental methods [171]. The neutron
dif fraction experiments performed in order to determine the Cr/T i distribution in TiCr 4Te8

showed that a statistical distribution of Cr/T i over the z = 0 and z = 1=2 layers has to be
favour ed.
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x = 0 x = 0:2 x = 0:4 x = 0:6 x = 1:0
a0 ( 	A) 3.8309 3.8434 3.8508 3.8608 3.8735
c0 ( 	A) 6.4076 6.3703 6.3186 6.2598 6.1266
c0=a0 1.6726 1.6575 1.6408 1.6214 1.579

z 0.2622 0.2606 0.2583 0.2547 0.2540

Table 5.12: The lattice parameters for (CrxTi1¡ x )1:25Te2 systems measured by Benschet al.
[10]. The value of z is given in units of c.

From the literatur e it is known [175, 169] that the magnetic properties of Cr-Te systems
are not only in�uenced by the Cr:Ti ratio, but also that they are very sensitive to the in-
teratomic distances and c=a ratio. In order to establish a possible dependence, the inter-
atomic distances in (CrxTi1¡ x )1:25Te2 systems are presented in Table 5.13. The shortest dis-

x = 0:0 x = 0:2 x = 0:4 x = 0:6 x = 1:0
dM ¡ M ( 	A) 3.204 3.185 3.159 3.129 3.063
dM ¡ T e ( 	A) 2.730 2.731 2.727 2.723 2.710
dT e¡ T e ( 	A) 3.893 3.882 3.863 3.843 3.793

Table 5.13:The averageinteratomic distancesin (CrxTi1¡ x )1:25Te2 systems. The Cr/T i atoms
are denoted by M.

tancebetween the metal atoms is c=2 followed by a. The averagedistance between the metal
atoms (M=Cr/T i) and Te atoms is calculated using the formula dM ¡ T e =

p
(a=3)2 + (c=4)2,

whilst for the shortest distance between Te atoms the following formula is used: dT e¡ T e =p
(a=3)2 + (c=2)2. As it can be seen in Table 5.13, the metal-metal and metal-Te distances

steeply decreasewith Cr content. The interatomic distances presented here are in agree-
ment with the interatomic distances (dT e¡ T e between 3.79 and 3.90 	A and dM ¡ T e between
2.71and 2.73 	A) in Cr1¡ xTixTe2 compounds reported by Hatakeyama et al. [173].

5.6.2 Preferential site occupation

As the position of Ti cannot be determined unambiguously by the experimental methods,
we tried to determine it making use of energetic considerations. We performed SPR-KKR
band structure calculations in order to determine the total energy of (CrxTi1¡ x )1:25Te2 sys-
tems. We used in our calculations the lattice parameters measured by Benschet al. [10]. We
started from the supposition that Cr and Ti are statistical distributed on the sites(0; 0; 0) and
(0; 0; 1=2) within the trigonal unit cell described in the previous section. We will denote in
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the following discussion the site (0; 0; 0) assite a and respectively the site (0; 0; 1=2) assite b.
First we tried to determined if one of the crystallographic sites a or b is favour ed when the
metal content of the system is increased. The calculation was performed for Cr1:25Te2 sys-
tem, making the supposition that a certain percentageof Cr content is moved from site a
to site b, according to the scheme: Cr1:25Te2 ! Cra

1¡ xCrb
x+0 :25Te2. The variation of the total

energy asa function of Cr concentration moved from site bto site a is presentedin Fig. 5.22.
The total energy increaseif the Cr atoms are moved from site a to site b, so we can conclude

Figure 5.22: The SPR-KKR total energy variation of the system Cr1:25Te2 as a function
of Cr concentration x moved from site a to site b, according to the scheme: Cr1:25Te2 !
Cra

1¡ xCrb
x+0 :25Te2.

that the site a is occupied �rst. If the Cr concentration would increasein the system, only
after the site a is fully occupied Cr atoms starts to populate the site b. This conclusion is
supported by the experimental results showing the vacancieson the b sites of the Cr1:25Te2

systems.
In order to determine the distribution of Cr and Ti atoms on the sites a and b, we started
�rstly from the supposition that site a is occupied with Cr and Ti. Secondly, we supposed
that the distribution is statistical determined and the occupancy of a certain site (a or b)
is proportional with the concentration of Cr/T i in the compound. This means that for the
(Cr0:4Ti0:6)1:25Te2, the occupation is given by the formula (Cr0:4Ti0:6)a(Cr0:1Ti0:15)bTe2. Wesup-
posenow that a certain percentage(denoted by ±) of Cr atoms is moved from site bto site a,
according to the scheme: (Cr0:4Ti0:6)a(Cr0:1Ti0:15)bTe2 ! (Cr0:4+ ±Ti0:6¡ ±)a(Cr0:1¡ ±Ti0:15+ ±) bTe2.
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Figure 5.23: The SPR-KKR total energy variation of the system (Cr0:4Ti0:6)1:25Te2 as a
function of Cr concentration ± moved from site b to site a, according to the scheme:
(Cr0:4Ti0:6)a(Cr0:1Ti0:15)bTe2 ! (Cr0:4+ ±Ti0:6¡ ±)a(Cr0:1¡ ±Ti0:15+ ±) bTe2.

The SPR-KKR calculations have been performed for the (Cr0:4Ti0:6)1:25Te2 system and the
variation of the total energy asa function of ±(the percentageof Cr moved from site bto site
a) is shown in Fig. 5.23.
The total energy of the system (Cr0:4Ti0:6)1:25Te2 increaseif Cr is moved from site b to site a.
The system with the lowest energy (for ± = ¡ 0:15) is described by the formula:
(Cr0:25Ti0:75)a(Cr0:25)bTe2. This result re�ects the preference of Ti atoms for site a and re-
spectively of Cr atoms for site b. The SPR-KKRcalculations performed for the other systems
of (CrxTi1¡ x )1:25Te2 type with x = 0:2 and x = 0:6 give similar results.
Theseresults allow us to conclude that the occupation rule in the system (CrxTi1¡ x )yTe2 are
the following:

a) increasing the y content, the Cr/T i atoms occupy site a completely

b) if site a is occupied, put Cr on site b

5.6.3 Density of statesand magnetic moments

The density of states for ferromagnetic (CrxTi1¡ x )1:25Te2 systems with 0:2 · x · 1:0 have
beencalculated using the SPR-KKRmethod. The spin-resolved density of statesof the sys-
tems with x = 0:2, x = 0:4, x = 0:6 and x = 1:0 are presented in Figs. 5.24,5.25,5.26and
5.27.One should note that the densities of statespresentedhere have beencalculated for the
systemswhich obey the occupation rules derived in the previous section.
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Figure 5.24:The spin-resolved KKR density of statesof Cr1:25Te2.

-16 -12 -8 -4 0 4

energy (eV)

0

0.8

1.6

2.4

n­ to
t(E

) 
(s

ts
./e

V
) tot

Cr(a)
Ti(a)
Cr(b)
Ti(b)
Te

0

0.8

1.6

2.4

n¯ to
t(E

) 
(s

ts
./e

V
) tot

Cr(a)
Ti(a)
Cr(b)
Ti(b)
Te

Figure 5.25:The spin-resolved KKR density of statesof (Cr0:6Ti0:4)1:25Te2.
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Figure 5.26:The spin-resolved KKR density of statesof (Cr0:4Ti0:6)1:25Te2.
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Figure 5.27:The spin-resolved KKR density of statesof (Cr0:2Ti0:8)1:25Te2.
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x = 0:2 x = 0:4 x = 0:6 x = 1:0
Exchangesplitting Cr(a) (eV) 1.5 2.4 2.5 2.2
Exchangesplitting Cr(b) (eV) - 1.8 1.8 1.8

Table 5.14:The exchangesplitting of Cr 3d in (CrxTi1¡ x )1:25Te2 compounds. Cr(a) and Cr(b)
denote the two crystallographic sitesof Cr in P¹3m1 trigonal symmetry.

A photoemission study (Shimadaet al. [175])hasdisclosed the electronic structureof Cr5Te8.
If one assumethe valence¡ 2 for Te atoms, the nominal number of d electrons in Cr5Te8 sys-
tem is 2.8electrons per Cr atom. BecauseCr atoms are octahedral surrounded by Te atoms,
the Cr 3d orbitals split into threefold degenerated t2g orbitals and respectively twofold de-
generated eg orbitals. If one assumea high spin con�guration for Cr ions, the t2g" orbitals
are almost �lled, whilst the orbital eg " is empty. The t2g# and eg# orbitals are unoccupied.
From the photoemission study of Cr5Te8 system it was found that the electron correlation
effect is very important in this system which means that electrons tend to localize on the
atom rather to extend over all the crystal.
As one can seein the Figs. 5.24,5.25,5.26and 5.27,the density of statesof (CrxTi1¡ x )1:25Te2

systemskeep the characteristics of the DOS of the Cr-Te systems. The contribution of Te is
less affected by the Cr:Ti ratio. Also, the exchange-splitting is less visible in the caseof Te
minority/majority bands. A visible change appear due to the Cr contribution to the total
DOS. One can see in particular changes into the position of the minority/majority d-like
contribution of the Cr partial DOS. One can estimate that the splitting between the d-like
majority/minority peaksof Cr increasewhen increasingthe Cr concentration. The exchange
splitting of Cr-3d estimated from the DOS calculations is listed in Table 5.14.
The Ti contribution is small in the occupied part of the valence band, the prominent peak
of Ti partial DOS being located above the Fermi energy. The exchange splitting of the Ti
contribution to the total DOS is weak and lessaffected by the Ti concentration. One should
note that in Figs. 5.24,5.25,5.26and 5.27the partial DOS of eachcomponent is weighted by
its concentration in order to get the total DOS.
If one considers the rigid band model, becauseTi has lessvalence electrons like Cr, substi-
tution of Ti in the Cr1:25Te2 system would decreasethe number of valence electrons and the
Fermi level EF would shift to lower energies in the t2g band. If one compares the DOS of
(CrxTi1¡ x )1:25Te2 systemswith increasedTi content, the pictur e of band structure looks to be
more complex than it is suggestedin the rigid band model.
The SPR-KKR magnetic moments for (CrxTi1¡ x )1:25Te2 compounds are presented in Table
5.15. The calculation of the magnetic moments has been done respecting the preferenceof
the Cr/T i atoms for one of the two dif ferent metal sites into the unit cell. The calculations
for Ti1:25Te2 show that this system is non-magnetic.
The magnetic moments of Cr on site a are less in�uenced by the Ti content in the system,
an increaseof Ti content to 60 % in the system increasethe magnetic moment of Cr on the
site a by about 2%. The decreaseof the magnetic moments of Cr with the increaseof the Cr
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x=0.2 x=0.4 x=0.6 x=1.0
Cr a 3.114 3.080 3.043
Cr b 2.394 2.417 2.499 2.487
Te -0.014 -0.080 -0.120 -0.206

Ti a 0.056 0.046 0.076
Ti b 0.164 0.178

Table 5.15:The SPR-KKRcalculated magnetic moments in in (CrxTi1¡ x )1:25Te2 compounds.

content in the system (and implicit in the Cr(a) layer) is not unusual. The variation if the
magnetic moment with the Cr:Te ratio in the systemsCrxTiSe2 reported by Titov et al. [176]
show a similar behaviour. The magnetic moment of Cr on site bis more sensitive to the Cr:Ti
ratio in the system. For Cr(b), the magnetic moment increasewith about 4 % with increasing
of the Cr content in the system from x = 0:2 to x = 1:0.
The magnetic moments induced on Ti atoms are rather small compared with the Cr mag-
netic moments. The magnetic moments of Ti atoms are depending very much on the crys-
tallographic site occupied by those atoms. For the Ti atoms sitting on site b, the magnetic
moments are about 2-3 times bigger than the Ti(a) magnetic moments.
As in the Cr1+ x (Te/Se)2 systems, one can see also for the Te atoms in the
(Cr/T i)1:25Te2 systems a small negative magnetic moment. The Te magnetic moments are
sensitive to the Cr:Ti ratio in the system, increasing about 14 times if the Cr content in the
system is reduced with 60%. According to the scheme proposed by Dijkstra et al. [138]
for the polarisation of Te 5p orbitals, one can say that the Cr-Te covalency is producing a
negative magnetic polarisation of Te 5d orbitals, lesspronounced with decreasing of the Cr
content.
Concerning the magnetism of (CrxTi1¡ x )1:25Te2 systems, one can conclude that a) Cr mag-
netic moments are site-dependent, but the magnitude of the magnetic moment is lessin�u-
enced by the Cr:Ti ratio and by the change of the lattice parameters in the system; b) The
magnetism of Ti and Te atoms is negligible compared with Cr magnetic moments.
Our calculations invalidate the supposition that the substitution of Cr by Ti drastic alters the
magnetism of (CrxTi1¡ x )1:25Te2 systems. The drastically decreaseof the Curie temperature
in those systemswith increasingTi content could have other sources.This could be a struc-
tural transition at T · TC for example.
The rather big magnetic moments on Cr (» 3:0¹ B and » 2:5¹ B ) are not in agreement with
the values obtained from magnetisation measurements (2:13¹ B ) [171]. This disagreement
hasbeenoften reported in the literatur e for Cr-Te systems([156, 155, 154,153]), suggesting a
spin glassmagnetic behaviour. We suppose that a non-collinear/spin glassmagnetic struc-
ture in Cr-Ti-Te compounds would explain the disagreement between the measured and
calculated magnetic moments.
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5.7 Conclusions

The band structure calculations performed for Cr-chalcogenide systems show a variety of
magnetic properties of this systems,depending on the composition and on the structure of
the system. We found indications for a non-collinear spin structure in Cr-Seand Cr-Te sys-
tems. Our results are in agreementwith the phasediagram of Makovetskii (1986)[19].
The Cr magnetic moments in the CrSexTe1¡ x alloy show astrong dependenceon the Se:Tera-
tio, in agreementwith the individual magnetic moments of Cr in CrSeand CrTe compounds
[8]. The phase stability of ferro-/ antiferr omagnetic spin con�guration of CrTe1¡ xSex alloy
was discussedfor x = 70%Se.The antiferr omagnetic phasewas found lower in energy.
The band structure calculations for non-stoichiometric Cr1+ xQ2 (Q = Te/Se, Te:Se= 7:1)with
x between 0.21and 0.33show a site occupancy preferenceof Cr atoms within the trigonal
structure. The magnetic moments of Cr depend on the crystallographic site occupied by Cr
atoms and on the Cr content of the system.
Basedon the SPR-KKRband structure calculations, we determined the occupation rules of
Cr and Ti atoms on crystallographic sites inside the unit cell. The Ti substitution in Cr1:25Te2

systems show a slight in�uence on the magnetic moments of Cr atoms despite the pro-
nounced changesof the lattice parameters.



Chapter 6

Summary

Nowadays, the research aiming to discover new materials with technological applications
needs to be supported by reliable theoretical descriptions. The subject of this work was
to use the SPR-KKRformalism to investigate the ground state properties of materials from
Cr-chalcogenideclassand to describe the spectroscopicproperties (Compton scattering and
positron annihilation) of dif ferent metallic systems.
The fundamentals of the theoretical approach applied are presented in Chapter 2. In par-
ticular , the basics of the density functional theory (DFT) used to reduce the many-body
electron-electron interaction to single electrons moving independently in an effective poten-
tial, together with the SPR-KKRformalism used to solve the electronic structure problem
are discussedin detail.
This theoretical formalism is applied to get the description of the (magnetic) Compton pro-
�le, as it was shown in Chapter 3. The experimental MCP of Fe and Ni are very good de-
scribed by the SPR-KKRtheoretical spectra.If for Feand Ni the accuracyof the KKR descrip-
tion of the experimental results is comparable with other theoretical descriptions (FLAPW,
LMT O, APW), the quality of the KKR description of MCP spectra is evidenced when deal-
ing with the systems that contain rare earth or actinide atoms. As can be seenfor Gd, the
KKR method gives better results compared with the full-potential method (FLAPW), show-
ing that the fully relativistic treatment of this systems is decisive for the MCP description.
The investigation of the in�uence of the spin-orbit coupling on the KKR MCP spectraof Gd,
Y0:38Gd0:62 and UFe2 show that the relativistic effects cannot be neglected in the study of
thesesystems. Also, the agreement between theory and experiment in the caseof the MCP
spectraof UFe2 spectra is slightly enhancedwhen the orbital polarization is included.
The description of the 2D projection of the electron momentum density was derived. As it
has been shown, the SPR-KKR2D projection perpendicular to the [001] dir ection of bccFe
gives a good description of the experimental reconstructed spectra.
The KKR formalism allows us to decompose the MCP spectra into partial contributions of
the orbitals, as it was shown for Feand Fe3Pt. As the overall shapeof the MCP is character-
istic of the particular localization of eachorbital, this is a useful method to get informations
about the orbital localizations and the spin polarization of the orbitals. For the systemswith

145



146 CHAPTER 6. SUMMAR Y

many atoms per unit cell, the decomposition of the MCP spectra into the atomic-like partial
contributions and an interfer enceterm show that the contribution coming from interfer ence
term is crucial for the MCP analysis.
The formalism which describe the positron annihilation is presentedin Chapter 4. The 2D
projection of the electron-positron momentum density allows to analyse the experimental
2D-ACAR spectra, as it was shown in the caseof V. A further extension of this formalism
can be done in order to determine the topology of the Fermi surface of metals, which in
practice is reconstructed from 2D-ACAR data.
The experimental work performed by the group of Prof. Bensch on the preparation and
determination of the structure and the magnetic properties of Cr-chalcogenide systemswas
completed by theoretical calculations of the ground-state properties, as it was shown in
Chapter 5. The SPR-KKRmethod was used with successto determine the density of states,
the magnetic moments and the occupation rules of the crystallographic sites for the com-
pounds of type Cr1+ x (Te1¡ ySey)2 and (CrxTi1¡ x )5Te8.
A complementary approach to investigate the magnetic behaviour of solids using a micro-
scopic model of the magnetic interaction was combined with the SPR-KKRband structure
calculations in order to determine the magnetic ground state of the CrSeand CrTe systems.
According to this investigation, the magnetic ground state of CrSe and CrTe systems was
found to have a non-collinear spin con�guration, in agreement with the phase diagram
determined by Makovetskii [19]. Nevertheless, combining this method with the neutron
dif fraction data suggesting a certain type of spin arrangement can be a useful tool to estab-
lish the full spin con�guration of the magnetic systems with non-collinear spin con�gura-
tion.
The in�uence of the exchange-correlation treatment on the equilibrium lattice parameters
for CrSexTe1¡ x alloy was investigated. Using the GGA treatment of the exchange-coupling
energy, the equilibrium lattice parameters dif fer from the experimental values by less than
2%, whilst the LSDA give an error of about 6%. The antiferr omagnetic spin con�gura-
tion found was lowest in energy for the equilibrium lattice parameters for both exchange-
coupling treatments.Further extension for non-collinear spin con�gurations could give more
information about the stability of the magnetic phase.



Appendix A

Green's function in momentum
representation (Compton)

In order to calculate the Green'sfunction in momentum representation,one hasto intr oduce
the site-diagonal and non-site diagonal expressionfor the Green'sfunction in the coordinate
representation, together with the formula describing the eigenfunction in the momentum
representation:
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Fig. A.1 shows the vectors used,with the Bravais vector ~Rn giving the position of the nth cell
origin and the basisvector ~Rq giving the position of the qth site inside the nth cell. According
to this notation and considering that the origin of the referencesystem is the origin of the
nth cell, the momentum representation Green's function readsas:
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Figure A.1: The vectorial con�guration for the Green's function formula A.1
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The formulation presentedallows a dir ect application to disordered system, in which case
the resulting expression representsthe corresponding con�gurational average. In addition
one should note that the �nal expression has been split into four terms: a pure single-site
term, two site diagonal terms and a additional site-off-diagonal term.
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Appendix B

Matrix elements (Compton)

The calculations of the matrix elements which enter in Eq. (3.23)is basedon the expression
for the momentum eigenfunction ©~pms :

Á~pms (~r ) = U~pms e
i ~p~r

=
µ

Ep + c2

2Ep + c2

¶ 1=2 µ
Âms

c~¾~p
Ep + c2 Âms

¶
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= 4¼
µ
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2Ep + c2

¶ 1=2 X

¤

i lCms
¤ Y ¹ ¡ ms ¤
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µ

j l (pr)Â¤ (r̂ )
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Ep + c2 j ¹l (pr)Â¡ ¤ (r̂ )

¶
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2

Ãr

1 + 4
p2

c2
¡ 1

!

Using the previous expressionof the momentum eigenfunction and the regular solutions of
the Dirac equation for a spherical symmetric potential (seeEq. (2.106)),the matrix elements
occurring in the expression for the momentum representation of the Green's function are
given by:
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´
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with

w·p =
cpS·

Ep + c2
:
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Appendix C

Green's function in momentum
representation (Positron Annihilation)

C.1 Site-diagonal contribution

The following section gives the various steps to transform the site-diagonal contribution in
the �rst two terms of Eq. (4.8).
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C.2 Site-of f-diagonal contribution

This section describesin detail the transformation of the site-off-diagonal (thir d) term of Eq.
(4.8).
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assumethe positron to be in a statewith ~kp = ~pp = 0 at bottom of the band
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this implies: l(¤ p) = 0 and ¹ (¤ p) = m0
s ¤ 00= ¤ 000= ¤ s

seeevaluation of lattice sum below
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C.3 Lattice sum

Evaluation of the lattice sum occurring in the positron annihilation (seeEq. (4.8)):
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Appendix D

Matrix elements (Positron Annihilation)

The matrix elementsentering in Eq. (4.10)are worked out in this section:
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Comparison of the positron-annihilation matrix elementswith thoseof Compton scattering:
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[162] A. I. Liechtenstein, M. I. Katsnelson, V. P. Antr opov, and V. A. Gubanov, J. Magn.
Magn. Materials 67, 65 (1987).

[163] A. I. Liechtenstein, M. I. Katsnelson,and V. A. Gubanov, J.Phys.F:Met. Phys.14, L125
(1984).

[164] M. Pajda, J. Kudrnovsky , I. Turek, V. Drchal, and P. Bruno, Phys. Rev. B 64, 174402
(2001).

[165] S.V. Halilov , H. Eschring, A. Y. Perlov, and P. M. Oppeneer, Phys.Rev. B 58, 293(1998).

[166] D. Benea,S.Mankovsky, A. Perlov, and H. Ebert, J.Phys.: Condensed Matter (2004),
submitted.

[167] G. Chattopadhyay, J.PhaseEquilibria 15(4), 1 (1994).

[168] Z. L. Huang, W. Bensch,D. Benea,and H. Ebert, J.Solid StateChem. (2004),submitted.

[169] 11.Vortragstagungf”ur Festk”orperchemieund Materialforschung.

[170] M. Akram and F. M. Nazar, J.Mat. Sci.Lett. 2, 441(1983).

[171] W. Benschand B. Sander, unpublished.

172



[172] K. Hatakeyama, A. Takase,S.Anzai, H. Yoshida, T. Kaneko, S.Abe, and S.Ohta, Jap.
J.Appl. Phys. Suppl. 39(1), 507(2000).

[173] K. Hatakeyama, S. Anzai, H. Yoshida, T. Kaneko, S. Abe, and S. Ohta, J. Phys. Soc.
Japan(2002).

[174] K. Hatakeyama, T. Kaneko, S.Abe, H. Yoshida, Y. Nakagawa, S.Anzai, and S.Ohta, J.
Phys. Soc.Japan71(6), 1605(2002).

[175] K. Shimada, T. Saitoh, H. Natame, A. Fujimori, S. Ishida, S. Asano, M. Matoba, and
S.Anzai, Phys. Rev. B 53(12),7673(1996).

[176] A. N. Titov, A. V. Kuranov, V. G. Pleschev, Y. M. Yaroschenko,M. V. Yablonskikh, A. V.
Postnikov, S.Plogmann, M. Neumann, A. V. Ezhov, and E. Z. Kurmaev, Phys. Rev. B
63, 035106(2001).

173



Publications and presentations

Publications

1. Layer-resolved magnetic moments in Ni/Pt multilayers
F. Wilhelm, P. Poulopoulos, G. Ceballos,H. Wende,K. Baberschke,P. Srivastava,D. Be-
nea, H. Ebert, M. Angelakeris, N. K. Flevaris, D. Niar chos, A. Rogalev and N. B.
Brookes
Phys.Rev. Letters85, 413(2000).

2. X-ray magnetic circular dichroic magnetometry on Ni/Pt multilayers
P. Poulopoulos, F. Wilhelm, H. Wende, G. Ceballos,K. Baberschke,D. Benea,H. Ebert,
M. Angelakeris, N. K. Flevaris, A. Rogalev and N. B. Brookes
J.Appl. Physics89, 3874(2001).

3. Relation between L 2;3 XMCD and the magnetic ground-state properties for the early
3d element V
A. Scherz,H. Wende, K. Baberschke,J.Minar , D. Beneaand H. Ebert
Phys.Rev. B 66, 184402(2002).

4. Dir ect observation of the multisheet Fermi surface in the strongly correlated transition
metal compound ZrZn 2

Zs. Major, S.B. Dugdale, R. J.Watts, G. Santi, M. A. Alam, S.M. Hayden, J.A. Duf fy,
J.W. Taylor, T. Jarlborg, E. Bruno, D. Beneaand H. Ebert
Phys.Rev. Lett., accepted.

5. Substitution Effects on Structure and Magnetism in Chromium Chalcogenide Cr5Te8.
Part one: Cluster Glass Behaviour in Trigonal Cr1+ xQ2 with Basic Cell (Q=Te, Se;
Te:Se=7:1)
Z. L. Huang, W. Bensch,D. Beneaand H. Ebert
J.SolidStateChem., submitted.

6. Magnetic structure of CrTe
D. Benea,S.Mankovsky, A. Perlov and H. Ebert
J.Phys.:CondensedMatter , submitted.

Postersand Presentations

1. A relativistic description of magnetic Compton scattering
for metals
Poster
DPG-Frühjahrstagung, Regensburg, 27.- 31.M ärz 2000

174



2. A relativistic description of magnetic Compton scattering
for metals
Poster
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thanks to Janfor providing a stimulating and friendly atmosphere in the of�ce.
For the pleasant hours I shared with them, thank to my colleaguesand friends Dr. I. Cabria,
M. Kosuth and S.Chadov.
To my parents, for all their love and support is dedicated this thesis.

177



LEBENSLAUF
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