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Zusammenfassung

In dieser Arbeit werden die Eigenschaften von D-Branen auf Calabi-Yau-Räumen untersucht. Kompak-
tifizierungen von Typ II Stringtheorien auf diesen Räumen, bei denen D-Branen hinzugefügt werden,
führen zu N = 1 supersymmetrischen Eichtheorien auf dem Weltvolumen dieser D-Branen.

Sowohl die Calabi-Yau-Räume als auch die D-Branen besitzen im allgemeinen einen Moduliraum.
Wir untersuchen die Abhängigkeit der Eichtheorie von der Wahl der Moduli, insbesondere derjenigen
der Kählerstrukutur der Calabi-Yau-Mannigfaltigkeit. Dazu wählen wir zwei Punkte in diesem Moduli-
raum, die dadurch ausgezeichnet sind, dass es eine explizite Beschreibung des Spektrums der D-Branen
gibt. Der eine Punkt entspricht einer Mannigfaltigkeit mit grossem Volumen, auf der die D-Branen
durch klassische Geometrie von Vektorbündeln beschrieben werden. Am anderen Punkt ist die Aus-
dehnung der Mannigfaltigkeit kleiner als ihre Quantenfluktuationen, so dass die klassische Geometrie
ihre Bedeutung verliert und durch eine konforme Feldtheorie ersetzt werden muss. Der Witten-Index
im offenen String-Sektor ist unabhängig von der Variation dieser Moduli und dient, zusammen mit der
Mirrorsymmetrie, als Werkzeug um die beiden Beschreibungen zu vergleichen.

Wir geben eine ausführliche und allgemeine Darstellung dieser beiden Beschreibungen für die Klasse
der Fermatschen Hyperflächen in gewichtet-projektiven Räumen. Wir führen den Vergleich in vielen,
repräsentativen Beispielen explizit durch. Darunter sind Mannigfaltigkeiten mit elliptischen und K3-
Faserungen und solche, deren Moduliraum sich in einen Moduliraum einer anderen Mannigfaltigkeit
einbetten lässt. Ein Schwerpunkt wird dabei auf D4-Branen, insbesondere die Dimension ihrer Mod-
uliräume gelegt.

Mit den entwickelten Methoden können wir die modifizierte geometrische Hypothese von Douglas, die
im wesentlichen besagt, dass die Eigenschaften dieser D-branen bzw. dieser Eichtheorien zum einen Teil
durch klassiche Geometrie und zum anderen Teil durch die Mirrorsymmetrie bestimmt werden können,
durch unsere Resultate weiter bestätigen. Eine Besonderheit dieser Eichtheorien ist das Auftreten von
Linien marginaler Stabilität, an denen BPS-Zustände zerfallen können. Wir zeigen die Existenz solcher
Linien im Rahmen dieser Klasse von Calabi-Yau-Räumen auf zwei verschiedene Weisen und diskutieren
den Zusammenhang zur Bildung gebundener Zustände. Von besonderem Interesse ist die D0-Bran,
deren Auftreten in dieser Beschreibung erklärt wird.



Abstract

In this thesis the properties of D-branes on Calabi–Yau spaces are investigated. Compactifications of
type II string theories on these spaces to which D-branes are added lead to N = 1 supersymmetric
gauge theories on the world-volume of these D-branes.

Both the Calabi–Yau spaces and the D-branes have in general a moduli space. We examine the
dependence of the gauge theory on the choice of the moduli, in particular those of the Kähler structure
of the Calabi–Yau manifold. For this purpose we choose two points in this moduli space which are
distinguished by the fact that there exists an explicit description of the spectrum of the D-branes. One
of these points corresponds to a manifold in the large volume limit on which the D-branes are described
by classical geometry of vector bundles. At the other points the size of the manifold is smaller than its
quantum fluctuations such that the classical geometry looses its meaning and has to be replaced by a
conformal field theory. The Witten index in the open string sector is independent of the variation of
these moduli and serves, together with mirror symmetry, as a tool to compare the two descriptions.

We give an extensive and general presentation of these two descriptions for the class of Fermat hyper-
surfaces in weighted projective spaces. We explicitly carry out the comparison in many representative
examples. Among them are manifolds admitting elliptic and K3-fibrations and manifolds whose moduli
space can be embedded into the moduli space of another manifold. One main focus is on D4-branes, in
particular on the dimension of their moduli space.

Using the methods developed we are able to further confirm with our results the modified geometric
hypothesis by Douglas. It essentially states that the properties of these D-branes or of these gauge
theories can be determined partly by classical geometry, partly by mirror symmetry. A peculiarity of
these gauge theories is the appearance of lines of marginal stability at which BPS states can decay. We
show the existence of such lines in the framework of this class of Calabi–Yau spaces in two different
ways and discuss the connection to the formation of bound states. Of particular interest is the D0-brane
whose appearance in this framework is explained.
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1. Introduction

The realization that, apart from strings, there are further basic, dynamical objects in string theory,
namely D-branes has initiated a revolution in the understanding of this theory [1]. These D-branes
are objects on which open strings can end and their nature is non-perturbative in the closed string
sector. They are extended objects of any dimension p < 10. The massless modes of the open strings
ending on them define a gauge theory on their world-volume. The low-energy limit of this world-volume
theory is the dimensional reduction of N = 1 Super-Yang-Mills theory in ten dimensions down to p + 1
dimensions.

One important consequence from their understanding is, in particular, that it opened new ways
of constructing supersymmetric gauge theories embedded in a more fundamental theory which can
encompass the (minimally supersymmetric) Standard Model. The old method was to take the heterotic
string theory in ten dimensions and compactify it on a three-dimensional Calabi–Yau space in order
to get an N = 1 D = 4 supergravity theory, i.e. a theory with four supercharges. This space is a
complex three-dimensional compact manifold admitting a Ricci-flat Kähler metric. However, up to
date, a realistic model satisfying all the constraints of the Standard Model has never been achieved.

In global supersymmetry, realistic models are only possible for N = 1. This follows from a basic
observation in particle physics: the massless fermions of helicity 1

2 do not transform under SU(3) ×
SU(2) × U(1) the same way the helicity − 1

2 fermions transform. By looking at the supersymmetry
algebra one sees that in global supersymmetry with N > 1, the helicity 1

2 and helicity − 1
2 fermions

necessarily transform identically. In other words such theories with N > 1 are non-chiral while the
Standard Model is.

One of the central properties of D-branes is the following. Vacuum states containing a single D-brane
are not annihilated by all of the supercharges but only by half of them. If we want to construct an
N = 1 theory in four dimensions, then we should look for an N ≥ 2 theory and add D-branes to it.
The simplest possibility is to compactify a type II string theory on a flat six-torus and place several
D-branes at specific angles in such a way that only four supercharges remain unbroken. Alternatively,
one might use K3× T 2 as a compactifying space.

While in these cases the D-branes have to be arranged in a particular way, it is possible to com-
pactify the ten-dimensional theory such that the restrictions on the number and angles are less severe,
in particular adding a single D-brane is already sufficient. This is realized by starting with a com-
pactification of type II string theory on a Calabi–Yau space resulting in a theory in four dimensions
whose low-energy limit is N = 2 supergravity. Such compactifications come in families parametrized
by the Kähler and complex structure deformations of the Calabi–Yau manifold. The parameter spaces
are generally called moduli spaces, even though they are not always moduli spaces in the strict math-
ematical sense. We denote the moduli space of a Calabi–Yau manifold by MCY. The D-branes are
then added by wrapping them around submanifolds of the Calabi–Yau space. If such a configuration
preserves N = 1 supersymmetry, then the submanifold is called a supersymmetric cycle.

We require that the D-brane fills out the four non-compact space-time dimensions and allow it have
p dimensions along the compact Calabi–Yau manifold. Adding D-branes introduces a gauge bundle on
the submanifold wrapped by the D-brane. Parallel D-branes do not exert any force onto each other
and therefore can be stacked on top of each other. The number r of D-branes in this stack determines
the rank of the gauge group and therefore the rank of the gauge bundle. We will assume that, for a
fixed Calabi–Yau space, this bundle has a direct product structure inherited from the base which is the
product of space-time and the supersymmetric cycle in the Calabi–Yau space. Subsequently, we will

1



1. Introduction

only consider the factor belonging to the Calabi–Yau threefold. Decreasing the size of this manifold,
the world-volume theory will be an N = 1 supersymmetric gauge theory in four space-time dimensions.
This theory comes in a family, too, parametrized by the deformations of the vector bundle and by
the deformations of the supersymmetric cycle. The information contained in the gauge bundle on the
supersymmetric cycle is then encoded e.g. in the superpotential of this gauge theory.

The data of this theory is a gauge group G, a complex manifold X parametrized by chiral superfields
φi describing these deformations, a Kähler potential K on X, an action by holomorphic isometries of G
on X, a superpotential W which is a holomorphic and G-invariant function on X and moment maps µ
which are the D-terms. If G contains U(1) factors, each of these can have an associated real constant
ζa, the Fayet-Illiopoulos parameter. The space MD describing families of D-branes is then the solution
to gradW = 0 in the symplectic quotient of X by G. However, not all solutions correspond to points
in the quotient, only stable objects do, which depends on the specific moment maps. In addition, there
is a holomorphic function, called the gauge kinetic function, which determines the coupling constants.

We want to know what are the possible gauge theories that can be described in this way. This
is equivalent to looking for a classification of all supersymmetry preserving D-branes at each point in
the Calabi–Yau moduli space and finding their world-volume moduli spaces MD. We are interested in
the change of this moduli space MD if we vary the parameters of the Calabi–Yau manifold and in the
corresponding change of the spectrum of the gauge theory. We want to understand in particular what
happens if we include stringy effects. In this thesis we work in the limit gs → 0 but allow for α′

R2 → 1
where R is a characteristic size of the Calabi–Yau manifold. This means that we allow the Calabi–Yau
manifold to become so small that one cannot distinguish the “manifold” from its quantum fluctuations
such that any classical notion of geometry looses its meaning. We can achieve this by tuning the Kähler
structure parameters to a particular point in their moduli space. At this point we need a quantum
description of the Calabi–Yau which is given by a conformal field theory called the Gepner model.
Since D-branes are naturally described as boundary conditions in a conformal field theory we obtain
two frameworks to study them: classical geometry for large Calabi–Yau spaces and the Gepner model
for small Calabi–Yau spaces.

It is obvious to ask to what extent these effects lead to qualitative changes in the description of the
physics of D-branes, i.e. of the low-energy effective action, the dimension of the moduli space, the types
of singularities, the spectrum and so on. A natural starting point [2] for an answer is to state a geometric
hypothesis that all these properties are the same as predicted by naive geometric considerations. This
is motivated by the fact that in theories with 16 and 8 supercharges, corresponding to flat, toroidal and
K3 compactifications mentioned above this hypothesis is essentially true [3] due to the large amount of
supersymmetry. However, in theories with four supercharges, i.e. the Calabi–Yau compactifications of
our interest, D-branes are much less understood. This makes them very interesting objects to study.

The most important effect on the low-energy theory in the presence of D-branes is the appearance
of new massless states [4] at special points. This phenomenon is roughly described as follows. We can
tune the Kähler moduli of the Calabi–Yau threefold to another particular point at which the conformal
field theory breaks down. At this point a cycle of the Calabi–Yau space vanishes. A D-brane wrapping
such a cycle becomes massless and therefore leads to new physical degrees of freedom in the low-energy
theory. Taking these degrees of freedom into account in the description of the theory shows it to be
well-behaved, i.e. the string theory has no singularity. Moreover, these degrees of freedom correspond
to the W -bosons in the gauge theory and therefore lead to an enhancement of gauge symmetry at this
point in moduli space.

This is just one example of effects that can appear when we vary the parameters of the Calabi–Yau
threefold. However, we are interested in the limit where the Calabi–Yau manifold becomes small. Using
the description of D-branes in both of these frameworks – geometry and conformal field theory – we can
answer these questions stated above at least partially. This line of research has been initiated by Douglas
and his collaborators in [5] where the direct comparison of the two descriptions of D-branes has been
performed in a particular example, the quintic threefold. The main tool in this comparison is the Witten
index which can be computed in both limits, at small and at large volume. It contains the necessary
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information about the supersymmetric spectrum. A few other examples have been subsequently studied
which shed more and more light on the stringy effects.

It turns out that the changes are not only quantitative, i.e. that the masses and couplings of the
D-branes change, but also qualitative: The spectrum and the moduli space undergo radical changes in
such a way that e.g. geometric branes are destabilized at small volume. These invalidate the geometric
hypothesis. However, we have another important technique at our disposal: mirror symmetry. Almost
all Calabi–Yau threefolds have a mirror manifold. It has been known for a long time that some problems
are easier to study by mapping them to the mirror manifold, solving them there, and mapping the
solution back to the original manifold. Applying this idea to the D-branes on Calabi–Yau spaces leads
to a modified geometric hypothesis [2]. This essentially states that some D-brane questions are geometric
on the original Calabi–Yau threefold and others are geometric on the mirror manifold. The remaining
questions can be answered by applying mirror symmetry. Therefore mirror symmetry provides the
second important tool for this work.

Mirror symmetry has turned out to be a very fascinating concept in mathematics. The investigation
of D-branes on Calabi–Yau spaces includes other mathematically very interesting problems like the
classification of holomorphic vector bundles on a Calabi–Yau threefold. There are almost no results
known in the mathematics literature. However there are quite a few results on the classification of
holomorphic vector bundles on complex surfaces. Since some of these surfaces appear as hypersurfaces
in a Calabi–Yau threefold we can try and use these results and compare them to those obtained in the
Gepner model. For this reason we will focus mostly on D4-branes wrapping divisors in the Calabi–Yau
manifold although we will include other D-branes in the general analysis.

The first part of this thesis provides the necessary background for the closed string sector of our
theories. In Chapter 2 we review the properties of N = (2, 2) superconformal field theories which we
require in order to have an N = 2 supergravity theory in four space-time dimensions. The main points
in this chapter are the introduction of the Gepner model and the interpolation between the different
descriptions of string compactifications on a Calabi–Yau manifold by tuning the Kähler moduli. This
yields a “geographical” map of the moduli space of the Calabi–Yau manifold which helps navigating
when moving in this space. Also, the concept of the Witten index and the basic facts leading to mirror
symmetry as well as its properties are reviewed.

Chapter 3 is about the geometric side of the closed string sector. A particular class of Calabi–Yau
spaces is introduced, namely hypersurfaces in toric varieties for which mirror symmetry is manifest by
construction. In this chapter many useful properties of such Calabi–Yau spaces are collected. Our main
focus is on hypersurfaces in blown-up weighted projective spaces. We give all the necessary formulas to
determine the geometry and apply them to several interesting examples.

In the second part of this thesis we include the open string sector by introducing the D-branes in
Chapter 4. There they are described as boundary conditions in a conformal field theory, leading to the
concept of boundary conformal field theories. We review the application of this concept to N = (2, 2)
superconformal field theories introduced in Chapter 2 and, in particular, to the Gepner model. The
rational boundary states are constructed and their Witten index and number of moduli are computed.
This provides the properties and data for one side of the comparison of D-branes on Calabi–Yau spaces.

In Chapter 5 we study the geometry of D-branes on the class of Calabi–Yau manifolds discussed
in Chapter 3 by relating their properties to those of vector bundles and sheaves on these manifolds.
The main focus lies on the charge lattice, the BPS central charge and on the moduli of vector bundles.
The BPS central charge is the quantity which connects the classical geometric side to the conformal
field theoretic side. We generalize results that were known for particular examples to the whole class
of Calabi–Yau manifolds in Chapter 3. We also point out that we can obtain more information for
D4-branes which makes them particularly interesting for the comparison.

The main results are given in Chapter 6 where the connection between the two descriptions of D-
branes given in the previous chapters using the Witten index is explained and applied to the examples
discussed in Chapter 3. We motivate and state the modified geometric hypothesis and how it can be
tested. A number of tests will be carried out by using the results of the comparison. We emphasize on
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1. Introduction

so-called rational D4-branes in order to make the comparison explicit and make quantitative as well as
qualitative statements. General observations on D-geometric aspects are also presented. In particular,
we extend the comparison to cases where the Kähler moduli space has several large volume limits with
different geometries and several Gepner points corresponding to different Gepner models.

In the Appendices A and B we explain in two examples two different methods how we can quanti-
tatively move around in the Calabi–Yau moduli space, i.e. how to transport the information from the
point where the classical geometry is valid to the point where the description by a Gepner model is
necessary. Finally, Appendix C contains the topological data of those Calabi–Yau spaces we explicitly
use for the comparison.
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2. N = (2, 2) Superconformal Field Theories

2.1. General facts

N = (2, 2) superconformal field theories lie at the heart of compactifications of type II string theories
on Calabi–Yau spaces. In this chapter we review those aspects which will become relevant to the study
of D-branes on these spaces later on. For more details see [6], [7] and [8]

The N = (2, 2) superconformal algebra and its representations

Our main interest lies in the N = 2 superconformal algebra [9], [10], [11]. This algebra is generated by
the energy-momentum tensor T (z), two weight 3/2 supercurrents G+(z) and G−(z) as well as a U(1)
current J(z) forming a supermultiplet

T (z)

G+(z) G−(z) (2.1)
J(z)

They have the following operator product expansions

T (z)T (w) =
c
2

(z − w)4
+

2T (w)
(z − w)2

+
∂wT (w)
z − w

+ reg. (2.2a)

T (z)G±(w) =
3
2

(z − w)2
G±(w) +

∂wG±(w)
z − w

+ reg. (2.2b)

T (z)J(w) =
J(w)

(z − w)2
+

∂wJ(w)
z − w

+ reg. (2.2c)

G+(z)G−(w) =
2c
3

(z − w)3
+

2J(w)
(z − w)2

+
2T (w) + ∂wJ(w)

z − w
+ reg. (2.2d)

J(z)G±(w) = ±G±(w)
z − w

(2.2e)

J(z)J(w) =
c
3

(z − w)2
+ reg. (2.2f)

Eq. (2.2a) defines the usual (N = 0) conformal algebra with central charge c. Eqns. (2.2b) and (2.2c)
imply that G±(z) and J(z) are primary fields of the Virasoro algebra with weight 3

2 and 1, respectively.
(2.2e) implies that G±(z) have the U(1) charges ±1. From (2.2f) we see that J(z) can be bosonized
and written as

J(z) = i

√
c

3
∂zϕ(z) (2.3)

5



2. N = (2, 2) Superconformal Field Theories

where ϕ(z) is a free scalar boson. We can re-express this data in terms of modes by writing

T (z) =
∞∑

n=−∞
Lnz−n−2 (2.4a)

G±(z) =
∞∑

n=−∞
G±

n±η± 1
2
z−(n±η± 1

2 )− 3
2 (2.4b)

J(z) =
∞∑

n=−∞
Jnz−n−1 (2.4c)

The parameter η in the mode expansion (2.4b) lies in the range 0 ≤ η < 1. This parameter controls the
boundary conditions on the supercurrents. If we change z → e2πiz then

G±(e2πiz) = e∓2πiηG±(z) (2.5)

where η = 0 corresponds to the Neveu-Schwarz (NS) sector in which G± are periodic and η = 1
2 to the

Ramond (R) sector in which G± are anti-periodic. In terms of these modes, the N = 2 superconformal
algebra takes the form

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δm+n,0 (2.6a)

[Ln, G±s ] =
(n

2
− s

)
G±n+s (2.6b)

[Ln, Jm] = −mJm+n (2.6c)
{G+

n+η+ 1
2
, G−

m−η− 1
2
} = 2Lm+n + (n−m + 2η + 1)Jn+m (2.6d)

+
c

3

(
(n + η +

1
2
)2 − 1

4

)
δm+n,0

[Jn, G±
m±η± 1

2
] = ±G±

m+n±η± 1
2

(2.6e)

[Jm, Jn] =
c

3
mδm+n,0 (2.6f)

Here s can be either integral or half-integral.
Out of the combination G(z) = G+(z) + G−(z) and T (z) one can form the N = 1 superconformal

algebra with eqs. (2.2a), (2.2b) and

G(z)G(w) =
2c
3

(z − w)3
+

2T (w)
z − w

+ reg. (2.7)

By adding the right-movers Tn, Gs and Jm we obtain the N = (2, 2) superconformal algebra.
The finite-dimensional subalgebra in the NS sector, generated by L0,±1, J0 and G±± 1

2
is OSp(2|2)

and corresponds to the N = 2 supersymmetry algebra, and similarly in the right-moving sector. Its
automorphism group is O(2). The Hamiltonian and the momentum are H = L0 +L0 and P = L0−L0,
respectively. We define

FV = J0 + J0 FA = J0 − J0 (2.8)

to be the generators of the vector and axial R-symmetry, respectively.
The spectrum of the N = 2 superconformal field theory is determined by the representation theory

of the N = 2 superconformal algebra. Unitary (irreducible) representations of this algebra are those
satisfying the hermiticity conditions

L†n = L−n J†n = J−n

(
G±s

)† = G∓−s (2.9)

6



2.1. General facts

and satisfying the requirement that the internal product in the Fock space should be positive definite.
They can be built up in a systematic manner using the notion of highest weight states. This is done by
dividing the modes Ln, G±r and Jm into raising and lowering operators. The zero modes are used to
label the states in a representation. The modes with positive indices can be viewed as lowering operators
as they lower the L0 eigenvalue of a state. Since L0 is the left-moving part of the Hamiltonian H we
can assume that the eigenvalue is bounded from below. In the NS sector, the highest weight state |φ〉
is then defined through the following properties

L0|φ〉 = hφ|φ〉 (2.10a)
J0|φ〉 = qφ|φ〉 (2.10b)
Ln|φ〉 = 0 n > 0 (2.10c)
G±r |φ〉 = 0 r > 0 (2.10d)
Jm|φ〉 = 0 m > 0 (2.10e)

If we are in the R sector then we also have to deal with the G±0 modes. If a state |φ〉 in the Ramond
sector satisfies

G±0 |φ〉 = 0 (2.11)

then we say it is a Ramond ground state. A representation of the N = 2 superconformal algebra can
is built by acting on |φ〉 with all possible combinations of the raising operators

∏
LniJmj Grk

|φ〉, that
is with modes having negative mode numbers. By the operator-state isomorphism we can think of
the state |φ〉 as being built from the action of the superconformal primary field φ(z) according to
|φ〉 = φ(0)|0〉. The constraint that |φ〉 be a highest weight state is then equivalent to φ(z) satisfying

T (z)φ(w) =
hφ

(z − w)2
+

∂wφ(w)
z − w

+ reg. (2.12a)

G±(z)φ(w) =
(G±− 1

2
φ)(w)

z − w
+ reg. (2.12b)

J(z)φ(w) =
qφ

z − w
φ(w) + reg. (2.12c)

where hφ is the conformal weight and qφ is the U(1) charge of the state |φ〉. Eventually, we will be
interested in type II string theory. The string consists of left-movers (holomorphic fields) and right-
movers (anti-holomorphic fields). The underlying algebra is then a N = (2, 2) superconformal algebra,
consisting of a right-moving (holomorphic) N = 2 superconformal algebra generated by Ln, Gr and
Jm and a left-moving (anti-holomorphic) N = 2 superconformal algebra generated by L̄n, Ḡr and J̄m

subject to the level-matching condition L0 = L̄0.

Chiral fields

There is a distinguished subset of N = 2 superconformal primary fields known as chiral primary fields
whose importance will become clear in the following. By definition, a chiral primary field is a primary
field φ that creates a state |φ〉 which is annihilated by the operator G+

− 1
2
, that is

G+
− 1

2
|φ〉 = 0 (2.13)

In the operator product language, this implies that

G+(z)φ(w) = reg. (2.14)

7



2. N = (2, 2) Superconformal Field Theories

that is, there is no singularity in the product. Similarly, an antichiral primary field is defined by

G−− 1
2
|φ〉 = 0 (2.15)

On the anti-holomorphic side chiral and antichiral primary fields are defined by replacing G± with G
±

.
In this way, we obtain four kinds of particular primary fields, the (c, c) fields which are chiral in both
the holomorphic and anti-holomorphic sense, the (a, c) fields which are antichiral in the holomorphic
sense and chiral in the anti-holomorphic sense, as well as their complex conjugates, the (a, a) fields and
the (c, a) fields. They are interesting because of the following three important properties. First, there
are a finite number of them in any non-degenerate N = 2 superconformal field theory, for which the
spectrum of L0 is discrete, i.e. for a chiral primary field φ

hφ ≤ c

6
(2.16)

Second, they satisfy

hφ = ±qφ

2
(2.17)

where the plus sign refers to chiral fields and the minus sign to antichiral fields. Finally, third, they
yield a non-singular and closed ring under the operation of operator product, i.e. for chiral primary
fields φ(z) and χ(w) we have no singular terms in

(φχ)(z) = lim
w→z

φ(w)χ(z) (2.18)

and φχ is then either again a chiral primary or zero. These properties are all proven by repeated
applications of the N = 2 superconformal algebra in (2.6). For the details see [12].

Spectral flow

There is an isomorphism of algebras for all the superconformal algebras parametrized by different values
of η [13]. In terms of the modes, it is explicitly given by

L′n = Ln + ηJn +
c

6
η2δn,0 (2.19a)

G′r
± = G±r±η (2.19b)

J ′n = Jn +
c

3
ηδn,0 (2.19c)

This isomorphism can be extended to the representations of the superconformal algebra. Given an (infi-
nite) collection of states |f〉 with conformal weight h and U(1) charge q providing such a representation
with η = 0 we can construct an isomorphic collection of states |fη〉 that constitute a representation of
the algebra for non-zero η. If Uη is a unitary map which on the level of operator satisfies

L′n = UηLnU−1
η (2.20a)

G′r = UηGrU
−1
η (2.20b)

J ′n = UηJnU−1
η (2.20c)

then at the level of states in the representation of the algebra, the corresponding state is

|fη〉 = Uη|f〉 (2.21)
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with conformal weight and U(1) charge

hη = h− ηq +
c

6
η2 (2.22)

qη = q − c

3
η (2.23)

Using (2.3) any field f which creates the state |f〉 with U(1) charge q can be written as

f(z) = f̂(z)eiq
√

3
c ϕ(z) (2.24)

where f̂(z) is a neutral field. Then the field fη which creates the state |fη〉 in the η-twisted sector can
be explicitly written as

fη(z) = f̂(z)ei
√

3
c (q− c

3 η)ϕ(z) (2.25)

i. e. spectral flow is accomplished by shifting the bosonic exponential. From the last two equations we
read off that

Uη = e−i
√

c
3 ηϕ (2.26)

The GSO projection and modular invariance require that both the NS sector (η = 0) and the R
sector (η = 1

2 ) be included in the Hilbert space of our theory. As the NS sector gives rise to space-time
bosons and the R sector gives rise to space-time fermions, the spectral flow operator U 1

2
has a space-

time interpretation as supersymmetry generator since it takes chiral primary states to states that are
annihilated by G±0 , i.e. Ramond ground states, and those to antichiral primary states.

The operator U 1
2

corresponds to the space-time supersymmetry operator which is (at worst) semi-
local with respect to all states in the theory. In fact, when c = 3n, the ground state h = q = 0 of the
NS sector is mapped onto states Σ±(z) with h = n

8 , q = ±n
2 in the R sector. From (2.24) we see that

an arbitrary field f will have such an operator product expansion with U 1
2

if its U(1) charge q is an odd
integer. Hence, we can conclude that space-time supersymmetry will ensue if we project our theory (in
the sense of conformal field theory quotients) onto one with odd integer U(1) charges. This has been
established in [14], [15] and [16].

Note that, if we choose η = −1, we see that the (unique) identity operator flows to a (unique)
operator Ω(z) of charge q = c

3 which is a chiral primary operator that saturates the bound (2.16). This
shows that the top chiral primary operator is unique.

2.2. Examples

Free field theory

The simplest example is a free field theory consisting of a single complex boson φ = φ1 + iφ2 and
a free complex fermion ψ = ψ1 + iψ2. It is relevant for the flat space-time part of the superstring
compactification, to be discussed in Section 2.3 and for introducing notation. Being the superpartner
of φ, ψ splits into a sum of a left-moving (holomorphic) complex fermion ψ+(z) with complex conjugate
ψ∗+(z) and a right-moving (anti-holomorphic) complex fermion ψ−(z̄) with complex conjugate ψ∗−(z̄).
The action then reads

S =
∫

Σ

d2z
(
∂φ∂̄φ∗ + ψ∗+∂̄ψ+ + ψ+∂̄ψ∗+ + ψ∗−∂ψ− + ψ−∂ψ∗−

)
(2.27)

9



2. N = (2, 2) Superconformal Field Theories

For the holomorphic part of this theory we compute

T (z) = −∂φ∂φ∗ +
1
2
ψ∗+∂ψ+ +

1
2
ψ+∂ψ∗+ (2.28a)

G+(z) =
1
2
ψ∗+∂φ (2.28b)

G−(z) =
1
2
ψ+∂φ∗ (2.28c)

J(z) =
1
4
ψ∗+ψ+ (2.28d)

and one can check that these fields satisfy the operator product expansions of the N = 2 superconformal
algebra (2.2). This theory has central charge c = 3 (in both the holomorphic and the anti-holomorphic
sectors) coming from the two bosonic degrees of freedom (c = 2) and the two fermionic degrees of freedom
(c = 1). The (c, c) ring consists of {1, ψ+, ψ−, ψ+ψ−} while the (a, c) ring consists of {1, ψ∗+, ψ−, ψ∗+ψ−}.
Although a very simple theory, this example does play a key role in string theory as we will see in
section 2.3. For further reference we note that the N = 1 supercurrent in (2.7) is G = G+ + G−.

For later convenience we introduce the superspace formalism which will allow us to simplify the
notation. In superspace with coordinates x0, x1, θ±, θ̄±, supersymmetry is realized geometrically by the
operators

Q± =
∂

∂θ±
+ iθ±

(
∂

∂x0
± ∂

∂x1

)
(2.29a)

Q± = − ∂

∂θ̄±
− iθ±

(
∂

∂x0
± ∂

∂x1

)
(2.29b)

The supersymmetry generators of (2.29a) and (2.29b) anticommute with the operators

D± =
∂

∂θ±
− iθ̄±

(
∂

∂x0
± ∂

∂x1

)
(2.30a)

D± = − ∂

∂θ̄±
+ iθ±

(
∂

∂x0
± ∂

∂x1

)
(2.30b)

which will be used in writing Lagrangians. In N = (2, 2) theories, the simplest type of superfield is a
chiral (or (c, c)) superfield Φ which obeys

D±Φ = 0 (2.31)

and can be expanded as

Φ(x, θ) = φ(x) +
√

2θ+ψ+(x) +
√

2θ−ψ−(x) + 2θ+θ−F (x) + . . . (2.32)

where the dots involve only the derivatives of φ, ψ±. The hermitian conjugate of Φ is an anti-chiral (or
(a, a)) superfield obeying D±Φ = 0. A twisted chiral (or (c, a)) superfield Y satisfies [17]

D+Y = D−Y = 0 (2.33)

with an expansion

Y (x, θ) = y(x) +
√

2θ+χ+(x) +
√

2θ̄−χ−(x) + 2θ+θ̄−G(x) + . . . (2.34)

In general, the θ = 0 component of a (twisted) chiral field labeled by a capital letter Φ,Σ, V, Y, . . . will
be denoted by the corresponding lower case letter φ, σ, v, y, . . . .
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Supersymmetric Lagrangians are constructed as superspace integrals. Integrating over the full su-
perspace yields the D-terms while the integration over the chiral and twisted chiral subspaces give the
F -terms and the twisted F -terms, respectively. In our example, the action (2.27) can be written as a
D-term

S =
∫

Σ

d2xd4θΦΦ (2.35)

Non-linear σ-model

As a second example we introduce the N = 2 superconformal non-linear σ-model generalizing the previ-
ous free field theory example by adding more bosonic fields together with their fermionic superpartners
and demanding that the theory need no longer be free. As will see shortly, two copies of it yield a
conformal field theory realization of a Calabi–Yau space. The idea is to interpret the bosonic fields as
coordinates in a target space which might be a curved Riemannian manifold (X, g). In the previous
example one can think of φ as a coordinate on the flat manifold C with trivial Euclidean metric. To
define the theory we start with a Riemann surface Σ, a Riemannian manifold (X, g) of dimension n and
a map φ : Σ 7→ X. Let K be the cotangent bundle on Σ. Then the fermions can be viewed as sections
of a certain bundle as follows

ψ+ ∈ Γ(K 1
2 ⊗ φ∗TX) ψ− ∈ Γ(K− 1

2 ⊗ φ∗TX) (2.36)

The action then is

S =
∫

Σ

d2z

(
1
2
∂φµ∂̄φν (gµν(φ) + iBµν(φ)) +

i

2
ψµ

+(Dψ+)νgµν(φ) (2.37)

+
i

2
ψµ
−(Dψ−)νgµν(φ) +

1
4
Rµνρσψµ

+ψν
+ψρ

−ψσ
−

)

where Rµνρσ is the Riemann tensor of the metric g of the target space. The B-field Bµν is a harmonic
2-form on X and is related to the winding degrees of freedom of the string. The covariant derivatives
are

Dαψν
± = ∂αψν

± + Γν
ρσ∂αXρψσ

± (2.38)

This action has N = (1, 1) supersymmetry. In general, this theory possesses N = (2, 2) supersymmetry
only if the target space X is a Kähler manifold. In this case TX = T 1,0X ⊕ T 0,1X and

ψ+ ∈ Γ(K
1
2 ⊗ φ∗T 1,0X) ψ− ∈ Γ(K− 1

2 ⊗ φ∗T 1,0X) (2.39a)

ψ+ ∈ Γ(K
1
2 ⊗ φ∗T 0,1X) ψ− ∈ Γ(K− 1

2 ⊗ φ∗T 0,1X) (2.39b)

and the action reads

S =
∫

Σ

d2z
(
−gi̄(φ)∂αφi∂αφ̄ + igi̄(φ)ψ

̄

+(D0 −D1)ψi
+ (2.40)

+ igi̄(φ)ψ
̄

−(D0 + D1)ψi
− + Rik̄jl̄ψ

i
+ψj

−ψk̄
−ψl̄

+

)
+ Stop

The term involving the B-field has been written as a topological term Stop =
∫
Σ

φ∗(B), i.e. it de-
pends only on the cohomology class of B. If the action is normalized such that exp(2πiStop) is single-
valued, then the B-field has a discrete symmetry, called Peccei-Quinn symmetry, B → B + δB which
must be represented by integer cohomology in order that

∫
Σ

φ∗(δB) will be an integer and hence that
exp(2πi

∫
Σ

φ∗(δB)) will equal 1. In other words, B is an element of the torus, B ∈ H2(X,R)/H2(X,Z).
This symmetry will be important in Sections 3.4.2 and 5.6.
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2. N = (2, 2) Superconformal Field Theories

In the superspace formalism this action then simplifies to

S =
∫

d2zd4θK(Φi,Φ
ı̄
) + Stop (2.41)

where the Φi are chiral superfields whose lowest components are the bosonic coordinates above and

gi̄ =
∂2K

∂φi∂φ̄
(2.42)

is the Kähler metric. Let us also define the Kähler class J = igi̄dφi ∧ dφ̄ ∈ H1,1(X). J combines
with B = Bi̄dφi ∧ dφ̄ to yield the highest component of a complex chiral multiplet. We will denote
ω = B + iJ as the complexified Kähler form although we will often only speak of the Kähler form.
For Ba + iJa ∈ H1,1(X) we write ω =

∑h1,1

a=1 ta(Ba + iJa) and denote the ta ∈ C as the (complexified)
Kähler parameters.

The action (2.37) is conformally invariant only if the β-function of the metric g vanishes. To lowest
order in α′ this amounts to [18]

Ri̄ = 0 dB = 0 (2.43)

Thus, conformal invariance is achieved by choosing the target manifold to have a Kähler metric with
vanishing Ricci tensor. As we will see in Section 3.1 these properties of a manifold define a Calabi–
Yau manifold. Hence, a non-linear σ-model with a Calabi–Yau target space leads to a N = (2, 2)
superconformal field theory. Note however, that this condition is altered if terms of higher order in
α′ are included [19]. The spin field Σ(z) and the field Ω(z) from Section 2.1 are the conformal field
theory analogues of the covariantly constant spinor and holomorphic (3, 0) form on the Calabi–Yau
manifold, respectively [20].

The generators T , G± and J of the N = 2 superconformal algebra are as in the free field theory
example in (2.28) with the insertion of the metric gi̄, e.g. J = gi̄ψ

i
+ψ̄

+. In addition the spectral flow
operator (2.26) is

ei
√

3ϕ = Ωijkψi
+ψj

+ψk
+ (2.44)

where J = i
√

3∂ϕ and Ωijk is the holomorphic (3, 0)-form of the Calabi–Yau manifold (see again
Section 3.1).

Another fact from the superspace formalism that will become important in a moment is that the
R-symmetries act on a superfield F(x, θ±, θ̄±) as

eiαFV F(x, θ±, θ̄±) = eiαqV F(x, e−iαθ±, eiαθ̄±) (2.45)
eiαFAF(x, θ±, θ̄±) = eiαqAF(x, e∓iαθ±, e±iαθ̄±) (2.46)

where qV and qA are the vector and axial charges of F.
As we have seen at the end of section 2.1 the (c, c) and (a, c) rings can be obtained from the Ramond

ground states by spectral flow. Hence, it is sufficient to study these states which are zero energy
modes. In a supersymmetric theory this implies that these states necessarily have zero momentum.
Zero-momentum states, however, have in the low-energy approximation no spatial dependence on the
world-sheet, hence the spatial dependence of these fields can be dropped in the action thereby effectively
reducing this example to supersymmetric quantum mechanics on a Kähler manifold [21]. This allows
us to find a beautiful characterization of the (c, c) and (a, c) rings of the non-linear σ-model.

The fermionic zero modes satisfy

{ψi
±,0, ψ

j
±,0} = {ψı̄

±,0, ψ
̄

±,0} = 0 {ψi
±,0, ψ

̄

±,0} = gi̄ (2.47)
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We therefore see that we can interpret the ψ
̄

+,0 as creation operators and the ψi
+,0 as annihilation

operators. Similarly we can choose ψ
̄

−,0 to be creation operators and ψi
−,0 to be annihilation operators.

Whether we choose ψ
̄

+,0 or ψi
+,0 to be the creation operators is just a matter of convention. However,

once this choice is made, it is of utmost importance which of the right-moving operators is chosen to
be the creation operator as will become clear in this and the remaining sections. So, choose a Fock
vacuum |0〉 for the zero mode sector of the Hilbert space of states such that

ψi
+,0|0〉 = ψ

̄

−,0|0〉 = 0 (2.48)

Then a general state can be written as

|Φ〉 =
∑
p,q

bi1...ip ̄1...̄q
ψi1
−,0 . . . ψ

ip

−,0ψ
̄1
+,0 . . . ψ

̄q

+,0|0〉 (2.49)

where we also sum over all repeated indices. For a fixed value of the integers p and q the state |Φ〉 has
U(1)V × U(1)A charges (−p, q).

Because of the anticommuting properties of these Fermi operators, this state is completely antisym-
metric under the interchange of any two holomorphic, or any two anti-holomorphic indices. Therefore,
the space of such states is isomorphic to the space of (p, q)-forms b on X, Λp,q(X). Since we are
interested in the Ramond ground states we are looking for states which are annihilated by the two
supercharges Q+ ∼ ψ

̄

+,0D̄ and Q− ∼ ψi
−,0Di where Di is the covariant derivative with respect to

φi and this form is valid in the zero mode approximation. The former, acting on |Φ〉, is equivalent
to the Dolbeault operator ∂̄ acting on the corresponding (p, q)-form b, and the latter, acting on |Φ〉 is
equivalent to the operator ∂̄† acting on the corresponding (p, q)-form b. Hence, demanding that these
operators annihilate the state |Φ〉 is mathematically equivalent to finding harmonic (p, q)-forms on X.
Therefore, we see that the Ramond ground states are in one-to-one correspondence with the elements
of the Dolbeault cohomology on X. Recalling that these Ramond ground states are related to the (a, c)
fields by spectral flow and defining H∗(Q) = ker Q

im Q with Q = Q− + Q+ we have

H(a,c) ≡ H∗(Q) ∼= H∗,∗
∂̄

(X) (2.50)

Now, remember that we had another choice for the right-moving creation operators. Thus, in addition
to (2.48) we should also consider

ψi
+,0|0〉 = ψj

−,0|0〉 = 0 (2.51)

In this case, a general state is of the form

|Φ〉 =
∑
p,q

b
i1...ip

̄1...̄q
ψ−,0,i1 . . . ψ−,0,ipψ

̄1
+,0 . . . ψ

̄q

+,0|0〉 (2.52)

where ψ−,0,i = gi̄ψ
̄
−,0. These states have U(1)V × U(1)A charges (p, q). The same analysis as above

shows that these states are in one-to-one correspondence with (0, q)-forms taking values in ΛpT 1,0X.
Applying the conditions that the supercharges Q+ ∼ ψ

̄

+,0D̄ and Q− ∼ ψ
̄

−,0D̄ annihilate such a state
shows it again to be harmonic, and by spectral flow it is related to (c, c) fields. Hence

H(c,c) ≡ H∗(Q) ∼= H0,∗
∂̄

(X, Λ∗T 1,0X) (2.53)

Note that by using the spectral flow operator (2.44) we can associate to any element in H0,s

∂̄
(X, ΛrT 1,0X)

a harmonic (3− r, s)-form on X which corresponds to the contraction with the holomorphic (3, 0)-form
Ω. Therefore we actually have the isomorphism

H(c,c) ∼= H3−∗,∗
∂̄

(X) (2.54)
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2. N = (2, 2) Superconformal Field Theories

A very important observation [22], [12] is that we were completely free to choose the creation operators
on the right-moving side which in turn means that we have a freedom in the assignment of the relative
sign of the U(1)V × U(1)A charges (p, q). Hence from a conformal field theory point of view there
is no distinction in the correspondence of the (a, c)- and (c, c)-rings to the cohomology groups of the
Calabi–Yau manifold. We will return to this point in Section 2.6 when we discuss the moduli space of
N = (2, 2) superconformal field theories.

Landau-Ginzburg Models

In the previous example we have generalized the free field theory by adding more fields and interpreting
them as coordinates on a curved target space. Now we add the F -terms and twisted F -terms mentioned
in the free field theory example. For chiral superfields Φi the F -term is

∫
d2θW (Φ) + c.c. =

1
2

∫
dθ−dθ+W (Φ)|θ̄±=0 +

1
2

∫
dθ̄−dθ̄+W (Φ)|θ±=0 (2.55)

where W (Φ) is a holomorphic function of the Φi’s and is called a superpotential. This is invariant under
vector and axial R-symmetries only when it is possible to assign R-charges to the Φi’s such that W (Φ)
has vector and axial charge 2 and 0 respectively. Similarly, for twisted chiral superfields Y i the twisted
F -term is

∫
d2θ̃W̃ (Y ) + c.c. =

1
2

∫
dθ̄−dθ+W̃ (Y )|θ̄+=θ−=0 +

1
2

∫
dθ̄+dθ−W̃ (Y )|θ+=θ̄−=0 (2.56)

where W̃ (Y ) is a holomorphic function of the Y i’s and is called twisted superpotential. For R-invariance,
it is required that R-charges can be assigned to the Y i’s so that W̃ (Y ) has vector and axial charge 0
and 2 respectively.

From chiral superfields one can then build an N = 2 supersymmetric Landau-Ginzburg theory by
taking an action of the form

S =
∫

d2zd4θK(Φ1,Φ
1̄
, . . . , Φn, Φ

n̄
) +

(∫
d2zd2θW (Φ1, . . . , Φn) + h.c.

)
(2.57)

Such a theory is generally not scale-invariant. However, if we let the theory flow under the renormal-
ization group to a non-trivial infrared fixed point (assuming such a point exists), the fixed point theory
does not further evolve with changes in scale and hence is a conformally invariant theory. It has been
shown [23], [24] at the non-perturbative level that an N = 2 Landau-Ginzburg theory indeed flows to a
superconformal field theory at the critical point. All the characteristic features of the superconformal
algebras can be read off from the starting Landau-Ginzburg action since they are completely governed
by the superpotential W . Indeed, an important property of the renormalization group flow which can
be established at least at the level of perturbation theory [25], is that the only renormalization suf-
fered by the superpotential arises from a wavefunction renormalization. If we assume that W (Φi) is a
quasi-homogeneous function, i.e. there exist integers ki, d with

W (λkiΦi) = λdW (Φi) (2.58)

this renormalization is absorbed by an overall rescaling that in effect leaves the superpotential un-
changed. This assumption in particular implies that the charge of Φi is ki/d. On the other hand, the
kinetic term in (2.57) in general undergoes a substantial renormalization along the flow towards the
conformally invariant fixed point. Therefore we can use the superpotential as a renormalization group
invariant which describes Landau-Ginzburg models.
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Let us consider a few important special cases for W (Φ) together with the central charges of the
corresponding Landau-Ginzburg theories at the conformal point [12]

WAk+1(Φ) = Φk+2 c = 3− 6
k + 2

(2.59a)

WDk
(Φ1, Φ2) = Φk−1

1 + Φ1Φ2
2 c = 3− 6

2(k − 1)
(2.59b)

WE6(Φ1, Φ2) = Φ3
1 + Φ4

2 c = 3− 6
12

(2.59c)

WE7(Φ1, Φ2) = Φ3
1 + Φ1Φ3

2 c = 3− 6
18

(2.59d)

WE8(Φ1, Φ2) = Φ3
1 + Φ5

2 c = 3− 6
30

(2.59e)

There is a strong and useful connection of these theories to the mathematical theory of singulari-
ties [26], [27] as is explained in [28]. For general Landau-Ginzburg theories one can show that

H(c,c) =
C[Φ1, . . . , Φn]

∂Φj W (Φ1, . . . , Φn)
H(a,c) = {1} (2.60)

i.e. the (c, c) ring is isomorphic to the Jacobian ring consisting of all polynomials in the chiral fields
modulo relations of the form ∂Φj W = 0.

In Sections 2.4 and 2.5 we will establish a relationship between certain Landau-Ginzburg theories
and the non-linear σ-models discussed in the previous example. If there is any relationship between
their spectra to hold then at least the dimension of the (c, c) and (a, c) rings should match. Though, in
a Landau-Ginzburg theory, we will never get more than one (a, c) field. However, what has not yet been
taken into account in the theory is the U(1) charge projection onto odd integral states mentioned at the
end of Section 2.1. To compute the relevant spectrum of the Landau-Ginzburg theory this projection
has to be implemented by orbifolding by the operators g = e2πiJ0 and ḡ = e2πiJ̄0 . This leads to the
Landau-Ginzburg orbifold theories [29], [30]. Since the charges are all multiples of 1

d , g generates the
cyclic group Zd of order d. Now there will be contributions to the (a, c) ring from the twisted sectors.
The basic observation is that in the lth twisted sector the charges of the states are of the form

(Ql,−Ql) + (r, r) (2.61)

where

Ql =
∑

lqi∈Z
(lqi − [lqi]− 1

2
) (2.62)

is the contribution coming from the twisted fields and r is any of the charges generated by the subring
of those fields that are invariant under the l-twist. In addition, there can also be contributions from the
twisted sectors to the (c, c) ring. This theory has an extra symmetry which will be discussed in detail
in Section 2.6.

2.3. Superstring compactifications

Consider the most general superstring compactification to D = d + 2 dimensions. We assume that D
is even, d is the number of transverse dimensions. The total central charge of the theory in the light
cone gauge must be c = 12. The flat space-time theory is composed of d free bosons and d free fermions
on the world-sheet. We have considered such a theory in the first example of Section 2.2 and seen
that its contribution to the trace anomaly of the space-time degrees of freedom is cst = 3d

2 . The trace

15



2. N = (2, 2) Superconformal Field Theories

anomaly of the internal theory is thus cint = 12− 3d
2 ≡ 3n. In particular, in order to compactify to D = 4

dimensions we need an internal theory with the trace anomaly cint = 9. We have seen in Section 2.1 that
the existence of space-time supersymmetry requires the internal theory to have N = 2 superconformal
symmetry. Furthermore, it is important that the restriction on the U(1) charges is on the whole theory
including the internal and the four-dimensional part. When we flow by η = 1

2 the charge of an NS
state is shifted by cint

6 = 2. Thus, if the original state has odd integral charge, so does its image in the
R sector. Hence, a string theory of the form M4 × {c = 9, N = 2 superconformal theory } has space-
time supersymmetry if and only if the superconformal field theory has odd integral U(1)L and U(1)R

charge eigenvalues. Although N = (0, 2) superconformal symmetry is actually sufficient we will focus
on N = (2, 2) superconformal field theories in order make contact to compactifications of type II string
theories. Hence we build string theory with four extended dimensions by the construction M4 × {c =
9, N = 2 superconformal theory } where M4 really refers to a c = 3, N = 2 free superconformal theory.
The latter theory contains the external fermions which generate a SO(2) current algebra. The field

Q = e
i
2

√
c
3 ϕ (2.63)

where ϕ is given in terms of the total U(1) current J of the total c = 12 theory as in (2.3), is a space
time fermion. We denote the U(1) current of the internal theory by Jint and the space-time U(1)
current by Jst which we can express as Jint = i

√
3∂ϕint and Jst = i∂ϕst, respectively. In light-cone

gauge the four supersymmetry charges Qa, a = 1, . . . , 4 can be divided into linearly and non-linearly
realized ones [31], [32]. The linear supercharges can be built by substituting into (2.63), noting that all
the central charges are divisible by 3, and using Σ±(z) from Section 2.1

Q =
√

p+

∮
S(z)Σ+(z) Q† =

√
p+

∮
S†(z)Σ−(z) (2.64)

where S = e
i
2 ϕst is the spin field of the SO(2) current algebra. The nonlinear supercharges are

U =
1√
p+

∮ (
∂zφ

1 + i∂zφ
2
)
S(z)Σ+(z) U† =

1√
p+

∮ (
∂zφ

1 − i∂zφ
2
)
S†(z)Σ−(z) (2.65)

where φ1 and φ2 are two free transverse bosons and p+ is the light-cone momentum. There is a
second supersymmetry coming from the right movers, i.e. from J̄ = J̄int + J̄st, hence we have N = 2
supersymmetry in D = 4. This construction generalizes to compactifications of dimension D = d+2 in
which case the current algebra is SO(d)1 at level 1 and the internal part has central charge cint = 3n.

2.4. Gepner Models

Minimal models

The minimal models are important in three ways. First, they are solvable N = 2 superconformal field
theories. Second, they are intimately related to the Landau-Ginzburg models and finally, they are the
building blocks for the Gepner models.

As we have seen in Section 2.1, an irreducible highest weight representation is specified by the
numbers (c, h, q). For values of the central charge in the region c ≤ 3 the unitarity requirement (2.9)
selects a discrete series of theories, the minimal models. They are labeled by three integers (l,m, s) and
are characterized by the following values of the central charge, the conformal weight and U(1) charge

c =
3k

k + 2
(2.66)

hl
m,s =

l(l + 2)−m2

4(k + 2)
+

s2

8
mod 1 (2.67)

ql
m,s =

m

k + 2
− s

2
mod 1 (2.68)
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2.4. Gepner Models

where k ∈ Z>0 and

l = 0, . . . , k m = −k − 1,−k, . . . , k + 2 s = −1, 0, 1, 2 (2.69)

subject to the condition that l + m + s ∈ 2Z. The corresponding primary fields are denoted by φl
m,s.

s = 0, 2 and s = ±1 correspond to states in the NS and R sector, respectively. Actually, states with
s = 2 are not primary; they are included here because they are needed for constructing the massless
states in the product theory to be discussed below. The different values of s in each sector denote
opposite Z2 fermion number. There is a field identification between representations satisfying

(l,m, s) ≡ (k − l, m + k + 2, s + 2) (2.70)

These models can be constructed [33], [34] in terms of unitary irreducible representations of suitable
Kac-Moody algebra by applying the super-GKO construction [35] to the quotient SU(2)k/U(1)2k+4 or
by adding [36], [37] a free boson to the Zk parafermionic field theories [38], [39]. For the description of
the N = 2 characters one needs to extend s to take values in Z4. Given a field φl

m,s, the corresponding
character χl

m,s is

χl
m,s(τ, z, u) = e−2πiu trHl

m,s
e2πizJ0e2πiτ(L0− c

24 ) (2.71)

where the trace is taken over a projection of Hl
m,s to definite fermion number (mod 2) of a high-

est weight representation of the (right-moving) N = 2 superconformal algebra with highest weight
vector φl

m,s(0). Their modular transformations are χl′
m′,s′(− 1

τ , 0, 0) = Sk
(l,m,s),(l′,m′,s′)χ

l
m,s(τ, 0, 0) and

χl′
m′,s′(τ + 1, 0, 0) = T k

(l,m,s),(l′,m′,s′)χ
l
m,s(τ, 0, 0) with [40]

Sk
(l,m,s),(l′,m′,s′) =

1√
2(k + 2)

sin(l, l′)ke
πi
�

mm′
k+2 − ss′

2

�
(2.72)

T k
(l,m,s),(l′,m′,s′) = eπi

l(l+2)
2(k+2) e

πi
�
− m2

2(k+2)+
s2
4

�
δl,l′δm,m′δs,s′ (2.73)

where

(l, l′)k = π
(l + 1)(l′ + 1)

k + 2
(2.74)

The modular transformation matrices factor into three pieces, each of which only acts on precisely one
of the three indices labeling the characters. The index l transforms under the representation of the
modular group carried by level k affine SU(2) characters, while the indices m and s transform under
the representations carried by level −(k + 2) and level 2 Θ-functions respectively. Modular invariant
combinations of these characters can therefore be constructed by combining known modular invariants
for these three types of objects. Up to discrete quotients, the general modular invariant combination
takes the form

Z(k) =
1
2

∑
l,l̄,m,s

l+m+s=0 mod 2

A
(k)

l,l̄
χl

m,sχ
l̄∗
m,s (2.75)
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2. N = (2, 2) Superconformal Field Theories

where Al,l̄ is any of the ADE classified modular invariants at level k [41]

Ak

k+1∑

l=1

∣∣χl
∣∣2 k ≥ 1 (2.76a)

D2j+2

2j−1∑

l=1
l odd

∣∣χl + χ4j+2−l
∣∣2 + 2

∣∣χ2j+1
∣∣2 k = 4j, j ≥ 1 (2.76b)

D2j+1

4j−1∑

l=1
l odd

∣∣χl
∣∣2 +

∣∣χ2j
∣∣2 +

4j−2∑

l=2
l even

(
χlχ4j−l ∗ + c.c.

)
k = 4j − 2, j ≥ 2 (2.76c)

E6

∣∣χ1 + χ7
∣∣2 +

∣∣χ4 + χ8
∣∣2 +

∣∣χ5 + χ11
∣∣2 k = 10 (2.76d)

E7

∣∣χ1 + χ17
∣∣2 +

∣∣χ5 + χ13
∣∣2 +

∣∣χ7 + χ11
∣∣2 k = 18 (2.76e)

+
∣∣χ9

∣∣2 + (χ3 + χ15)χ9 ∗ + c.c.

E8

∣∣χ1 + χ11 + χ19 + χ29
∣∣2 k = 28 (2.76f)

+
∣∣χ7 + χ13 + χ17 + χ23

∣∣2

In the case of the Ak-, D2j+1- and E6-type modular invariants the field identifications (2.70) have
to be made in both the left and right sector simultaneously while for the D2j+2-, E7- and E8-type
modular invariants one can apply them independently for the holomorphic and antiholomorphic part.
This entails [42], [43] that these theories have a Zn×Z2×Zn×Z2 symmetry with n = k+2 for the Ak-,
D2j+1- and E6-type minimal models and n = k+2

2 for the D2j+2-, E7- and E8-type minimal models
which acts as

gφl
m,s = e2πi m

n φl
m,s (2.77)

hφl
m,s = (−1)sφl

m,s (2.78)

and similarly in the anti-holomorphic sector. We will return to these symmetries in Section 4.3 when
discussing the boundary conformal field theory.

That the N = 2 minimal models (2.76) and the Landau-Ginzburg theories in (2.59) are both
classified by the ADE groups and that both have for each group the same central charges is not an
accident. Indeed one can give strong arguments [44], [45], [12], [46] that the minimal models are the
infrared fixed points of Landau-Ginzburg theories. At the conformal point one has the map between
chiral primaries of both theories

Φl = (l, l, 0) = φl
l,0 (2.79)

and hence the Landau-Ginzburg fields provide a simple representation of the chiral ring.
We can take the orbifold of a minimal model with respect to the diagonal group Zk+2 × Z2 to

obtain a new conformal field theory which is isomorphic to the original one with the sign of the U(1)R

eigenvalue associated with each field being reversed. Therefore, the chiral fields Φi are mapped into
twisted chiral fields Y i and W becomes a twisted chiral superpotential W̃ .

Gepner’s construction

We have seen in Section 2.3 that conformally invariant non-linear σ-models with Calabi–Yau target
spaces have central charge c = 3n where n is the complex dimension of the Calabi–Yau space. Given
a collection of r conformal field theories with central charges ci, i = 1, . . . , r, one can build a new
conformal field theory, called the tensor product theory, with central charge c =

∑r
i=1 ci. The Hilbert
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2.4. Gepner Models

space of this theory is the tensor product of the Hilbert spaces of the constituent theories and the
energy-momentum tensor takes the form

T =
r∑

i=1

1⊗ · · · ⊗ Ti ⊗ · · · ⊗ 1 (2.80)

In fact, since the operation of orbifolding by a finite discrete subgroup does not change the central
charge of a conformal field theory, a quotient of the above tensor product will also have central charge
c =

∑r
i=1 ci. Applying this to the minimal models, we see that if we choose a collection of integers

{ki|i = 1, . . . , r} such that

c =
r∑

i=1

3ki

ki + 2
= 3n (2.81)

then the tensor product of these conformal field theorys and orbifolds thereof will have the appropriate
central charge for a Calabi–Yau compactification. However, not only the central charge has to match
but also the spectrum of this tensor product conformal field theory has to agree with the one from
the non-linear σ-model. This has been achieved by Gepner [47], [48] by adjoining external bosons and
fermions and finally employing an orbifold-like projection on the U(1) charges enforcing space-time
supersymmetry and modular invariance as we are going to review.

In order to label the tensor product representations define

λ = (l1, . . . , lr) (2.82)
µ = (s0; m1, . . . , mr; s1, . . . , sr) (2.83)

where lj , mj and sj take values in the range (2.69) and s0 = −1, 0, 1, 2 characterizes the irreducible
representations of the SO(d)1 current algebra that is generated by the external fermions, see Section 2.3.
We assume for the moment that d = 2 mod 4. Accordingly, we write

χλ
µ(q) = χs0(q)

r∏

j=1

χlj
mj ,sj

(q) (2.84)

where χs0 is the SO(d)1 character. Gepner introduced special (2r + 1)-dimensional vectors β0 with
all entries equal to one and βj , j = 1, . . . , r having zeroes everywhere except for the first and the
(r + 1 + j)th entry which are equal to 2. The scalar product of two vectors µ and µ′ is defined by

µ • µ′ = −d

8
s0s

′
0 +

1
2

r∑

j=1

(
mjm

′
j

k + 2
− sjs

′
j

2

)
(2.85)

The total U(1) charge of the highest weight state in χλ
µ(q) is qtot = 2β0 • µ, so that the projection

onto states with odd β0 • µ will implement the GSO projection. Similarly, restricting to states with
βi • µ ∈ Z ensures that only states in the tensor product of r + 1 NS sectors (or of r + 1 R sectors) are
admitted. This condition guarantees space-time supersymmetry. Modular invariance of the partition
function can be achieved if the above projections are accompanied by adding “twisted” sectors. Set
K = lcm(4, 2kj + 4) and b0 ∈ {0, 1, . . . ,K − 1}, bj ∈ {0, 1} for j = 1, . . . , r. Then the partition function
of a Gepner model describing a superstring compactification to D dimensions is

Z
(r)
G (τ, τ̄) =

1
2r

(Im τ)−
d
2

|η(q)|2d
K−1∑

b0=0

1∑

b1,...,br=0

ev∑

λ,µ, βj•µ∈Z
2β0•µ∈2Z+1

(−1)s0

r∏

j=1

A
(kj)

lj ,l̄j
χλ

µ(q)χλ
µ+b·β(q̄) (2.86)
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2. N = (2, 2) Superconformal Field Theories

where ev means the restriction lj + mj + sj ∈ 2Z. The summation over b · β =
∑r

j=0 bjβj introduces
the twisted sectors corresponding to the β-restrictions so that, in particular, the Gepner partition
function is non-diagonal. The τ -dependent factor in front of the sum accounts for the free bosons
associated to the d transversal dimensions of flat external space-time while the 1

2r is due to the field
identification (2.70). Furthermore A

(kj)

lj ,l̄j
stands for any of the affine modular invariants in (2.76). Using

the modular transformation properties of the SO(d)1 characters whose S-matrix is

Sf
s0,s′0

=
1
2
e−iπ d

2
s0s′0

2 (2.87)

and those of the minimal model characters (2.72) Gepner proved that (2.86) is modular invariant. Note
that for d = 4 consistency requires to replace d by d + 2 in (2.85), (2.86) and (2.87). For an account of
all the possible combinations of modular invariants A

(kj)

lj ,l̄j
see [43]. We will denote a Gepner model as

follows

(k1G1 , . . . , krGr
) (2.88)

where kj stands for the level and Gj stands for the ADE invariant of the jth subtheory. Since we
will be mostly working with A-type invariants we will often drop this subscript. The symmetry group
for the Gepner model consists of a semi-direct product of the minimal model symmetries in (2.77) in
each subtheory with permutational symmetries S interchanging identical subtheories modded out by
the action of the cyclic group generated by µ = (2, 2, . . . , 2)

G =

∏r
j=1 Znj

Zen o S (2.89)

where

ñ =

{
K′
2 all ki odd

K ′ otherwise
(2.90)

with K ′ = lcm(kj + 2). For models with an odd number of factors (in D = 4) ñ = K ′ even if not all ki

are odd.
The importance of these models, first pointed out by Gepner [47], [48], is that their massless spec-

trum is the same as that of a non-linear σ-model on a Calabi–Yau manifold given as a hypersurface
in a weighted projective space, or more generally as a complete intersection in a product of weighted
projective spaces. Using the correspondence of N = 2 minimal models and Landau-Ginzburg theo-
ries discussed in the previous subsection a one-to-one relation between Gepner models and Landau-
Ginzburg orbifold theories has been established in [49], [50] and by a path-integral argument it was
argued that the following identification holds. Gepner models involving r = 5 A-type modular invari-
ants

(k1, . . . , k5) (2.91)

and non-linear σ-models on degree K ′ hypersurfaces

W (z) = zk1+2
1 + zk2+2

2 + zk3+2
3 + zk4+2

4 + zk5+2
5 = 0 (2.92)

in the weighted projective space P4
K′

k1+2 ,..., K′
k5+2

(see Section 3.2.2) have the same spectra and symmetries.

Note that (2.92) in the Landau-Ginzburg description is the superpotential (2.58) consisting of five terms
of the form (2.59a). The coordinate zi is identified with the chiral primary field φ

(i),1
1,0 in (2.79). The

generalization for the cases with r 6= 5 factors as well as models including D- and E-type invariants
has been worked out completely in [43]. Note that in the case of r < 5 one can always add quadratic
terms to the superpotential W (z) since they correspond to k = 0 minimal models which have central
charge c = 0 and therefore no dynamics. A precise relationship between Gepner models and Calabi–Yau
manifolds will be given in the following section on gauged linear σ-models.
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2.5. Gauged linear σ-model

In this section we show that a Landau-Ginzburg orbifold theory associated with a suitable quasi-
homogeneous superpotential W (Φ) and the non-linear σ-model with target space being the Calabi-Yau
manifold defined as the vanishing locus of W (z) in a suitable weighted projective space (or more
generally, a toric variety) can be seen as the effective low-energy theories in different phases of the same
theory, the gauged linear σ-model. This remarkable connection has been worked out by Witten in [17].

As a first step, we couple the free field theory example of Section 2.2 to abelian gauge fields. For
this purpose, we need to introduce the gauge field in the superspace formalism. This is achieved by the
vector multiplet which consists of a vector field vµ, Dirac fermions λ±, λ± which are conjugate to each
other, and a complex scalar σ. It is represented in a vector superfield V satisfying V = V † which is
expanded in the Wess-Zumino gauge as

V = θ−θ
−

(v0 − v1) + θ+θ
+
(v0 + v1)− θ−θ

+
σ − θ+θ

−
σ (2.93)

+
√

2iθ−θ+
(
θ
−

λ− + θ
+
λ+

)
+
√

2iθ
−

θ
+ (

θ−λ− + θ+λ+

)
+ 2θ−θ+θ

+
θ
−

D

where D is a real auxiliary field. Using the gauge covariant derivatives D± = e−V D±eV , D± =
eV D±e−V , we can define the field strength as

Σ =
1
2
{D+,D−} (2.94)

= σ + i
√

2
(
θ+λ+ + θ

−
λ−

)
+ 2θ+θ

−
(D − iF01) (2.95)

where F01 is the curvature of vµ. This is a (covariant) twisted chiral superfield D+Σ = D−Σ = 0.
The gauged linear σ-model with target space X and gauge group G = U(1)n−d is obtained by

coupling n chiral matter multiplets Φi with charges Qa
i under G to the n− d abelian gauge superfields

Va, and introducing Fayet-Illiopoulos terms for the abelian gauge symmetry1. The Lagrangian for this
theory is

S =
∫

Σ

d2zd4θ

(
n∑

i=1

Φi exp

(
2

n−d∑
a=1

Qa
i Va

)
Φi −

n−d∑
a=1

1
4e2

a

ΣaΣa −
n−d∑
a=1

raVa

)

+
∫

Σ

d2z

n−d∑
a=1

ϑa

2πi
Fa,01 −

∫

Σ

d2zd2θW(Φ)|θ̄+=θ̄−=0 + c.c. (2.96)

The third and fourth terms in (2.96) can be rewritten as

SD,θ =
n−d∑
a=1

∫

Σ

d2z

(
−raDa +

ϑa

2πi
Fa,01

)
=

∫

Σ

d2zd2θ̃W̃(Σ)|θ−=θ̄+=0 + c.c. (2.97)

where

W̃(Σ) =
1

2
√

2

n−d∑
a=1

τaΣa (2.98)

with

τa = ira +
ϑa

2π
(2.99)

1Here n and d are not related to those of the previous sections.
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2. N = (2, 2) Superconformal Field Theories

This interaction is a twisted superpotential for the twisted chiral fields Σa. ϑa is an angular variable
and the corresponding term is topological (the analog of the ϑ-angle in D = 4 Yang-Mills theory).

The preservation of the R-symmetry group U(1)V × U(1)A at the quantum level is a necessary
condition for the emergence of a superconformal theory. U(1)V is an exact symmetry of the theory
but U(1)A is subject to the chiral anomaly. The axial rotation by eiα shifts the theta angle by ϑa →
ϑa − 2α

∑n
i=1 Qa

i . Thus U(1)A is unbroken if

n∑

i=1

Qa
i = 0 for a = 1, . . . , n− d (2.100)

Without a superpotential, this theory has additional global symmetries that act on the chiral superfields
as

Φi −→ exp (iαki)Φi (2.101)

with arbitrary ki and commute with supersymmetry. In the presence of a superpotential W one must
add such a transformation to the right-moving R-symmetry under which W → e−iαW to preserve R-
symmetry. The superpotential W is said to be quasi-homogeneous if ki exist such that W transforms
in this way, cf. (2.58). The twisted superpotential W̃(s) violates R-symmetry unless it takes the linear
form given in (2.98).

We will now show that we can describe Calabi–Yau spaces by means of the gauged linear σ-model.
Consider adding an additional chiral superfield Φ0 with charges Qa

0 = −∑n
i=1 Qa

i . This ensures con-
dition (2.100) for R invariance. We pick the superpotential to be the holomorphic, gauge invariant
function

W(Φ) = Φ0 ·W (Φ1, . . . , Φn) (2.102)

where W has charge Qa
0 under the ath copy of U(1)n−d. This charge assignment has to be made in

order to preserve R-symmetry. We assume that W be transverse in the sense that the equations

∂W

∂Φi
= 0 ∀i = 1, . . . , n (2.103)

have no common root except at Φi = 0. The bosonic potential is

U(φ0, . . . , φn, σa) =
n−d∑
a=1

1
2e2

a

D2
a +

n∑

i=0

|Fi|2 + 2
n−d∑

a,b=1

σaσb

n∑

i=0

Qa
i Qb

i |φi|2 (2.104)

with

Da = −e2
a

(
n∑

i=0

Qa
i |φi|2 − ra

)
(2.105)

and
n∑

i=0

|Fi|2 = |W (φi)|2 + |φ0|2
n∑

i=1

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

(2.106)

where we have used the equations of motion for Da and Fi. The space V of supersymmetric (classical)
ground states of this theory is given by the symplectic reduction of Cn+1 by G determined by the
“moment map” D : Cn+1 → Lie(G)∨

V (r) = D−1(0)/G (2.107)
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The space V (r) is not necessarily smooth or of dimension d, there will in general be values of r for which
it is altogether empty. If it is of dimension d, it carries a natural complex structure in which the reduced
symplectic form becomes a Kähler form ω. Now let us discuss the low-energy physics for various values of
ra. The classical moduli space is the entire complexified Kähler space Cn−d/Zn−d = Rn−d × U(1)n−d.
The classical theory is singular along certain cones in r-space, dividing (real) r-space into regions
corresponding to different “phases”. These singularities occur whenever there are solutions to D = 0
which leave a large continuous subgroup of G unbroken.

If we restrict to those values of r for which dim V (r) = d then requiring the vanishing of (2.104)
will set φ0 = 0 (restricting to V ) and then (2.104) requires that the remaining fields satisfy W = 0,
in other words that the image of the world-sheet lie in a hypersurface X of V . A closer study of this
model shows that the massless modes are precisely the variations of φ tangent to X together with their
superpartners so we have as the low-energy limit precisely the non-linear σ-model on the Calabi–Yau
hypersurface X. This region of r-space in general includes hypersurfaces in various birational models
of V , including models with unresolved orbifold singularities.

The other regions of r-space correspond to phases in which the space of vacua is of dimension less
than d. In these cases there are massless excitations about these vacua, governed by the superpotential
interaction. When the space of vacua is a point the model is a Landau-Ginzburg theory, intermediate
cases in which there are massless fluctuations about a non-trivial space of vacua are termed “hybrid”
models. In many vacua there are discrete subgroups of G unbroken by the expectation values; the
low-energy theory is then a quotient by this subgroup. The physics of the hybrid phases is not well
understood.

Let us exhibit these concepts in an example following [51] which will be taken up again in Section 3.5.
Let G = U(1)2 act on the chiral superfields Φ0, . . . , Φ6 as

Qa
i =

( −6 0 0 1 1 3 1
0 1 1 0 0 0 −2

)
(2.108)

corresponding to the action of the complexified gauge group GC on the φi as

g1(λ) :(φ0, φ1, φ2, φ3, φ4, φ5, φ6) 7→ (λ−6φ0, φ1, φ2, λφ3, λφ4, λ
3φ5, λφ6) (2.109a)

g2(λ) :(φ0, φ1, φ2, φ3, φ4, φ5, φ6) 7→ (φ0, λφ1, λφ2, φ3, φ4, φ5, λ
−2φ6) (2.109b)

Note that the group element

g1g
2
2(λ) :(φ0, φ1, φ2, φ3, φ4, φ5, φ6) 7→ (λ−6φ0, λφ1, λφ2, λ

2φ3, λ
2φ4, λ

6φ5, φ6) (2.109c)

defines the C∗ action of a weighted projective space in the variables φ1 to φ5.
For simplicity we choose the couplings to be equal, ea = e for all a. The D-terms (2.105) are then

D1 = −e2
(
|φ3|2 + |φ4|2 + 3 |φ5|2 + |φ6|2 − 6 |φ0|2 − r1

)
(2.110a)

D2 = −e2
(
|φ1|2 + |φ2|2 − 2 |φ6|2 − r2

)
(2.110b)

The phase boundaries are determined by those values of r for which an unbroken continuous symmetry
is consistent with Da = 0 using (2.104). We see from (2.109a) that g1 is unbroken if φ3 = φ4 = φ5 =
φ6 = φ0 = 0, which from (2.110a) can happen at zero energy if r1 = 0, r2 ≥ 0. Similarly, because
of (2.109b) g2 is unbroken if φ1 = φ2 = φ6 = 0 which implies r2 = 0 but leads in fact to two rays
because both signs of r1 are possible. Finally, if φ6 is the only nonvanishing coordinate, then we see
from (2.109c) that g2

1g2 is unbroken. This implies r1 ≥ 0, 2r1 + r2 = 0. Figure 2.1 shows the structure
in r-space. There are four phases, labeled I - IV.
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r1

r2

Phase I
Smooth CY

Phase IV
Hybrid

Phase III
LG

Phase II
Orbifold

Figure 2.1.: The phase diagram for X taking into account the shift in (2.112).

(I) Requiring the vanishing of (2.104) for r1 > 0, r2 > 0 implies that in each of the sets {φ1, φ2}
and {φ3, . . . , φ6} there must be one nonvanishing φi. Hence not all ∂W

∂φj
can vanish, implying

φ0 = 0. Since at least one φi 6= 0, the σa must be zero and so W = 0. Therefore the low-energy
modes describe a non-linear σ-model on the Calabi–Yau hypersurface X in a space V which can
be described as follows

V =
C6 \ F

(C∗)2
(2.111)

where F is the excluded set {φ1 = φ2 = 0} ∪ {φ3 = φ4 = φ5 = φ6 = 0} and the (C∗)2 action is
given by (2.109). This is a smooth toric variety describing a blown-up weighted projective space
P4

1,1,2,2,6 as a holomorphic quotient, see also [52]. We will return to this model in great detail
in Section 3.5.2. Since X is a smooth Calabi–Yau manifold we call this phase the smooth or the
Calabi–Yau phase.

(II) In this phase the excluded regions are {φ6 = 0} ∪ {φ1 = φ2 = φ3 = φ4 = φ5 = 0}. Again,
U = 0 implies φ0 = 0. This corresponds to the original (unresolved) weighted projective space;
the low-energy limit is the non-linear σ-model with target space a hypersurface in this space. This
is the orbifold phase.

(III) In this phase the excluded regions are {φ0 = 0} ∪ {φ6 = 0}. Then U = 0 implies the vanishing
of all the other coordinates, leading to a unique vacuum configuration given by W (φi) = 0 in
which G is broken to Z2 × Z6. Therefore, the fields φi live in C5/Z2 × Z6. Although their
expectation values are set to zero, their quantum fluctuations are massless and governed by the
superpotential W . We note that this Z2×Z6 action is nothing but the action of e2πiJ0 and hence
constitutes the required U(1) projection discussed in Section 2.2. The region thus corresponds to
the Landau-Ginzburg orbifold phase.
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(IV) In this phase the excluded regions are {φ0 = 0} ∪ {φ1 = φ2 = 0}. Here U = 0 implies φ3 =
φ4 = φ5 = φ6 = 0, so that g1 is broken to a discrete subgroup Z6. The expectation values of
φ1, φ2 parametrize (after setting D2 = 0 and taking the G quotient) a moduli space isomorphic
to P1. The fluctuations of φ3 , φ4 and φ5 are massless; they interact via a superpotential with
coefficients depending upon the point in P1. The model is in a so-called hybrid phase combining
the properties of a gauged linear σ-model on P1 with those of a Landau-Ginzburg theory.

The identification with the non-linear σ-model must be made more precise. The metric on X is
classically just the restriction of the metric on V . Since this metric is not Ricci-flat the non-linear
σ-model is not conformally invariant. This is related to the fact we have not the correct degrees of
freedom of the non-linear σ-model. Besides the fields that are constrained to live in the target space
X there are additional massive fields in the gauged linear σ-model that are not confined to lie in X.
Hence we have to integrate out these massive states and take into account the instanton corrections
coming from additional zero size instantons in the gauged linear σ-model. This amounts to the following
relation between the parameter τa in (2.99) and the Kähler parameter ta [51]

ta = τa + ∆a +
∞∑

m=1

Kme2πiτm + . . . (2.112)

where ∆a = i
2π

∑n
i=1 Qa

i log Qa
i is the one-loop contribution and Km represent the first order effect from

zero size instantons and . . . represents the higher orders. Hence, in the classical limit we can identify
ra ≥ 0 with the Kähler parameter Im ta.

Similarly, it can be shown that the other phases undergo instanton corrections. Thus, by varying the
values of the ra, we may switch between a target space of a blown-up Calabi–Yau space, a target space
of a singular Calabi–Yau space (for which the only massless modes lie within these spaces), a target
space which is a point with massless Landau-Ginzburg-type fluctuations about it, and a hybrid model.
Each of these theories has instantons and in each case the action of them goes as |r| so that their effects
become negligible in the large |r| limit. That is, we have e.g. exactly a theory on a Calabi–Yau space for
r1 = ∞, r2 = ∞ and exactly a Landau-Ginzburg orbifold theory for r1 = −∞, r2 = −∞ between which
we can interpolate via the gauged linear σ-model. More generally, the gauged linear σ-model provides
us with a technique for interpolating between non-linear σ-models with birationally equivalent target
spaces, obtained by varying the D-terms.

Let us say a few words about the phase boundaries where the theory becomes singular. Their locus
in t-space is called the discriminant locus. In figure 2.1 we have not indicated the ϑa which are related to
the B-field. In fact, it was argued in [17], [53] that by a judicious choice of this B-field the boundary set
can be avoided while keeping the theory conformal. When the boundary is actually approached then the
Calabi–Yau manifold becomes singular. The best-known type of such a singularity is the conifold [54]
where the Calabi–Yau manifold acquires a nodal singularity or, in other words, a three-cycle shrinks to
zero size. By deforming this singularity one obtains a topologically different Calabi–Yau manifold and
it was argued in [4], [55] that the transition from one to the other is physically well behaved. There are
other, more complicated types of singularities, e.g. the codimension of the phase boundary can be bigger
than one, leading to further kinds of transitions between different Calabi–Yau manifolds [56], [57], [58].
We will discuss some of these singularities in Section 3.3.3.

2.6. Moduli spaces of N = (2, 2) Superconformal Field Theories
and Mirror Symmetry

Families of N = (2, 2) Superconformal Field Theories

We can obtain a family of N = (2, 2) superconformal field theories by deforming a given theory by
marginal operators, i.e. operators having conformal weight h + h̄ = 2. Here, we will focus on spinless
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2. N = (2, 2) Superconformal Field Theories

operators with h = h̄ = 1 which are truly marginal. Those are marginal operators which continue to
be of type (1, 1) after a perturbation of the theory by any other marginal operator. By the supercon-
formal Ward identities [22], [59] it can be shown that among these operators there are two particularly
important ones. Let φ ∈ H(c,c) with h = h̄ = 1

2 , q = q̄ = 1. Then

Φ(1,1)(w, w̄) =
∮

d2zG
−

(z̄)G−(z)φ(w, w̄) (2.113)

is a truly marginal operator and corresponds to chiral superfield. If φ ∈ H(a,c) with h = h̄ = 1
2 ,

q = −q̄ = 1 then

Φ(−1,1)(w, w̄) =
∮

d2zG+(z)G
−

(z̄)φ(w, w̄) (2.114)

is also a truly marginal operator, but corresponds to a twisted chiral superfield. The moduli space
of N = (2, 2) superconformal field theories is then given by all the possible deformations built from
these two types of operators. It can be shown [60] that, at least locally, the conformal field theory
Zamolodchikov metric on this moduli space is block diagonal between the Φ(1,1)- and the Φ(−1,1)-
type marginal operators and hence we can think of this moduli space as being a metric product of
two spaces [61] MSCFT

CY = M(1,1) ×M(−1,1). These two types of marginal operators can be given a
geometrical interpretation by recalling the association between the (c, c)- and (a, c)-rings and harmonic
differential forms. The (c, c)-fields with (h, h̄) = ( 1

2 , 1
2 ) correspond therefore to harmonic (2, 1)-forms

while the (a, c)-fields with (h, h̄) = ( 1
2 , 1

2 ) correspond to harmonic (1, 1)-forms. We will see in Section 3.1
that the former parametrize the deformations of the complex structure of the Calabi–Yau manifold X
while the latter parametrize the deformations of the Kähler structure of X. Hence we can identify the
moduli spaces of the Φ(1,1)- and the Φ(−1,1) operators with the moduli spaces of complex structure of
X and of the Kähler structure of X, respectively, and locally write

MSCFT
CY = MSCFT

C ×MSCFT
K (2.115)

This result can be shown to be a consequence of the N = (2, 2) superconformal algebra in (2.6) [62].
In spite of this picture it should be emphasized that the moduli space of N = (2, 2) superconformal
field theories is not a product of the complex structure and Kähler moduli spaces of the Calabi–Yau
manifold, not even locally. In fact, the Kähler moduli space of ω can depend on the complex structure
of X [56]. However, in the limit of large volume where we have the description in terms of an exact
non-linear σ-model the picture persists.

The large volume limit

A discrepancy comes from world-sheet instanton effects [63], [64], [65] and [59]. Non-perturbative
corrections arise in the non-linear σ-model because of classical solutions of maps of the string world-
sheet into the target space which are not homotopic to a point. For tree-level instantons (recall that
we are working at gs = 0) we need to consider algebraic curves of genus zero, i.e. we consider π2(X)
which is equivalent to H2(X,Z) if X is simply connected [66]. We also assume that h2,0(X) = 0 (see
Section 3.1). It was shown in [63] that a map S2 → X given by φi(σ) contributes exp(−I) to the path
integral, where

I ≥ 1
4πα′

∣∣∣∣
∫

S2
d2σJi̄ε

αβ ∂φi

∂σα

∂φ̄

∂σβ

∣∣∣∣ (2.116)

and Ji̄ is the Kähler form. The equality is satisfied when φi(σ) is an algebraic curve. Thus the rational
algebraic curves give the instantons we want. In this case, (2.116) can be rewritten as

I ∝
∫

φ(P1)
J (2.117)
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In order to have small instanton contributions the cohomology class of the Kähler form must be such
that (2.117) is large for any C ∈ H2(X,Z). Since the Kähler form J is a real (1, 1)-form, its cohomology
class can be considered as a point in Rh1,1

. In order to have a smooth Calabi–Yau manifold X, the
Kähler form must satisfy

∫

X

J ∧ J ∧ J > 0
∫

D

J ∧ J > 0
∫

C

J > 0 (2.118)

for homologically non-trivial surfaces D and curves C embedded in X, i.e. J must lie in the Kähler cone.
Hence, (2.117) implies that one obtains the results of classical algebraic geometry when the cohomology
class of the Kähler form lies in the deep interior of the Kähler cone. This is what we will refer to as the
large volume limit. Recall that the FI parameters ra in the gauged linear σ-model in Section 2.5 are
related to the Kähler parameters ta. Hence we can identify the Kähler cone with the cone r1 > 0, r2 > 0
representing the smooth phase I in figure 2.1.

The Gepner point

There is another important point deep inside phase III which will be referred to as the Gepner point
since from Section 2.5 we know that this phase is described by a Landau-Ginzburg orbifold theory
which for r1 = −∞, r2 = −∞ has no instanton contributions, and from Section 2.4 we know that
this description via an exact Landau-Ginzburg orbifold theory is equivalent to the description by the
corresponding Gepner model. At this point the residual symmetry group Z2×Z6 gets enhanced to Z12.
In general, this enhanced symmetry group will be Zd where d is the degree of W (Φi). Let us look for
the origin and the meaning of this symmetry.

If we start with a conformal field theory having a symmetry group H and take an orbifold by H
then the resulting conformal field theory always has some symmetries governed by the existence of
the group structure: in the string interactions, strings in sectors g1, g2 join to give a string in the
sector g3 = g1g2 [67], [68]. For any one-dimensional representation of H, defined by assigning phases
ε(h), to elements h ∈ H, the theory modded out by H has a symmetry which sends a string state
in the h twisted Hilbert space to itself times the phase ε(h). The fact that the interactions respect
the group law implies that this is a well defined symmetry of the orbifoldized theory. If the group
is e.g. Zd the one-dimensional representations form again a Zd which is a symmetry of the orbifold
theory. The generator of this Zd acts by multiplying an element in the r twisted sector by exp(2πir/d).
In this case, twisting the orbifold theory by this Zd symmetry returns the original theory we started
with [69]. An application of this argument to the Zd orbifold of a Landau-Ginzburg theory discussed in
Section 2.2. Suppose that there are N elements of the (c, c) ring come from the untwisted sector of the
orbifold theory. By the discussion at the beginning of this subsection, there is a N parameter family
of complex deformations for which we obtain a theory with an enhanced Zd symmetry [70] if we adjust
the Kähler parameters suitably. This Zd quantum symmetry acts on the chiral primary fields (2.79) in
the Landau-Ginzburg orbifold theory or the Gepner model by

(Φj)l = φ
(j),l
l,0 −→ e

2πi
kj+2 (Φj)l = e

2πi
kj+2 φ

(j),l
l,0 (2.119)

Note that this is a quantum symmetry of a conformal field theory which has no classical analog even
though the underlying conformal field theory is not exactly solvable.

As we try to move from one phase to another conformal perturbation theory about one of these
deep interior points breaks down. In the non-linear σ-model region this means that if the Calabi–Yau
space gets too small, the expansion parameter α′

r2 gets big and perturbation theory will be invalid.
However, using the interpolating gauged linear σ-model we have seen that the conformal field theories
corresponding to almost all points in the moduli space are well defined and hence we can smoothly
follow a path in the moduli space beyond the smooth region. An important point is that if we allow
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for analytic continuation, then we can make sense of a perturbative expression about the deep interior
point of the r1 > 0, r2 > 0 sector for essentially any point in the moduli space, even with ri < 0 for
some i. Thus, in this sense, we can think of the deep interior point in Landau-Ginzburg phase as being
the analytic continuation of a Calabi–Yau non-linear σ-model with a particular Kähler class. In terms
of the parameters ri, we see that this special choice seems to require (an analytic continuation to) a
negative Kähler class. However, it was shown [71] that the physical parameters r̃i (and their analytic
continuations) which arise from integrating out massive modes in the gauged linear σ-model are non-
trivial functions of the ri which appear to always be non-negative.

This quantum symmetry will be taken advantage of at several places in this thesis. In Section 3.2.2
it will be related to the symmetry group of the Gepner model and the complex structure deformations of
the Calabi–Yau space and further in Section 3.4.2 to the periods of the Calabi–Yau space. In this section
we will also make use of the analytic continuation in order to go from the Landau-Ginzburg orbifold
phase to the smooth Calabi–Yau phase and back. Finally, the symmetry will reappear in Section 4.3
where the so-called B-type boundary states constructed for the Gepner models come in orbits of this
symmetry group.

Mirror symmetry

Here we discuss the consequences of two observations we made on the relative sign of the U(1) charges.
At the end of the example of the non-linear σ-model in Section 2.2 we noted that the (c, c)- and the
(a, c)-rings differ only by the conventional sign of the relative U(1) charges, while their geometrical
counterparts, the cohomology groups H1,1(X) and H2,1(X) differ far more significantly as they are
completely different mathematical objects. The resolution of this paradox is given by the claim of [12]
that to each Calabi–Yau manifold X there is a second Calabi–Yau manifold X∗ corresponding to the
same conformal field theory but with the association of H1,1(X∗) and H2,1(X∗) to conformal field
theory marginal operators reversed relative to that of X. Since the Hodge diamonds of X and X∗ (see
Section 3.1) are obtained from each other by a reflection along the diagonal, the pair (X, X∗) is called
a mirror pair, and the symmetry relating the two manifolds is called mirror symmetry.

In Section 2.4 we noted that the orbifold of a minimal model with respect to its left-right symmetry
group is isomorphic to the original minimal model with the relative sign of the U(1) charges switched.
Greene and Plesser [72] realized that this orbifoldizing applied to Gepner models can be used to give
an explicit construction of such mirror manifolds. They have shown that

(k1, . . . , kr) ∼= (k1, . . . , kr)
G

(2.120)

where G is the maximal subgroup of
∏r

j=1 Zkj+2 by which one can orbifold and preserve the integrality
of the U(1) charges of the theory. The isomorphism between the two theories is a reversal of all the
U(1)R eigenvalues of the fields in the left hand side relative to those in the right hand side. If we use
the fact from (2.79) that the fields in the Gepner model can be represented as fields in the associated
Landau-Ginzburg orbifold theory the action of G is

(Φ1, . . . , Φr) 7→ (e2πi
n1
q1 Φ1, . . . , e

2πi nr
qr Φr) (2.121)

for arbitrary integers (n1, . . . , nr) such that
∑r

j=1
nj

qj
is an integer. Since this operation of orbifolding is

independent of the Kähler moduli of the theory, it can be transported from the Landau-Ginzburg phase
to the smooth phase where it now acts on the coordinates of the corresponding weighted projective
space Pn

w in the same way. The integrality condition translates into the preservation of the holomorphic
3-form Ω on X.

Mirror symmetry can actually be proven physically in the context of the gauged linear σ-model [73].
Let us briefly review the most important consequence of the existence of such mirror pairs (X, X∗).

Consider a (non-vanishing) three-point function of conformal field theory operators corresponding to
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(2, 1) forms on X. It can be shown [74] that it is given by

F ijk
C (X) =

∫

X

Ωabcb̃(i)
a ∧ b̃

(j)
b ∧ b̃(k)

c ∧ Ω (2.122)

where the b̃
(i)
a are (2, 1)-forms expressed as elements of H1(X,TX) with their subscripts being tangent

space indices. Due to a non-renormalization theorem proven in [59] we know that this expression is
the exact conformal field theory result. By mirror symmetry the same conformal field theory operators
correspond to particular (1, 1)-forms on the mirror X∗ which we can label b(i). Due to the absence of
such a non-renormalization theorem the expression for this coupling in terms of geometric quantities
on X∗ is comparatively complicated [64], [65]

F ijk
K (X∗) =

∫

X∗
b(i) ∧ b(j) ∧ b(k) +

∑

m,{u}
e−
R
Σ u∗m(J)

(∫

Σ

u∗(b(i))
∫

Σ

u∗(b(j))
∫

Σ

u∗(b(k))
)

(2.123)

where the b(i) ∈ H1(X∗, T (1,0)∗), {u} is the set of holomorphic maps u : Σ = P1 → Γ to rational curves
Γ on X∗, πm is an m-fold cover P1 → P1 and um = u◦πm. The first term is the intersection form on X∗

while the second term arises from the infinite series of corrections due to world-sheet instantons (2.117).
Since these expressions are the same three-point function in the same conformal field theory, they must
be equal [72].

F ijk
C (X) = F ijk

K (X∗) (2.124)

Superconformal Ward identities can be used to show [62] that each factor in (2.115) is a so-called special
Kähler manifold (see Section 3.4). The three-point functions in (2.124) are the third derivatives of the
prepotentials FC(X) of MSCFT

C and FK(X∗) of MSCFT
K , respectively.

(2.122) is directly calculable while (2.123) requires the knowledge of the rational curves of every de-
gree on X∗. Turned around, one can use (2.122) to determine the number of rational curves of arbitrary
degree on X∗, a question of mathematical interest in the context of enumerative geometry [75], [76].

Since (2.123) contains corrections from world-sheet instantons which vanish only in the large volume
limit the Kähler moduli spaceMSCFT

K differs from Mgeom
K . However, the moduli space of complex struc-

ture deformations MSCFT
C coincides with Mgeom

C due to the non-renormalization theorem mentioned
above. Using mirror symmetry we can now define MSCFT

K (X∗) to be Mgeom
C (X). In particular, we can

compute FK(X∗) = FC(X).

2.7. Witten index

The Witten index will be one of main computational tools in Chapter 6. Since it can be defined in
any supersymmetric theory, we will review it in this chapter on superconformal field theories. In any
supersymmetric theory there is the operator (−1)F that distinguishes bosonic from fermionic states in
the Hilbert space and anticommutes with the supersymmetry generators Q. The crucial observation [21]
is that the states of non-zero energy are paired by the action of Q in two-dimensional supermultiplets
while, on the other hand, the zero-energy states form trivial one-dimensional supermultiplets. In general,
there may be an arbitrary number nE=0

B of zero-energy bosonic states, and an arbitrary number nE=0
F

of zero-energy fermionic states. The difference nE=0
B −nE=0

F does not change under the variation of the
parameters of the theory due to the different multiplet structure. Formally, the quantity nE=0

B − nE=0
F

may be regarded as the trace of the operator (−1)F . States of non-zero energy do not contribute to
tr(−1)F because for any bosonic state of non-zero energy that contributes +1 to the trace, there is a
fermionic state of non-zero energy that contributes −1 and cancels the bosonic contribution. Therefore
the Witten index tr(−1)F can be evaluated among the zero-energy states only [21]

tr(−1)F = tr(−1)F e−βH = nE=0
B − nE=0

F (2.125)
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The insertion of e−βH for arbitrary positive β is necessary to regularize the infinite summation over
all states in the Hilbert space which is ill-defined not being absolutely convergent. This is actually
independent of β because the states of E 6= 0 do not contribute. If the Witten index is non-zero, then
supersymmetry is spontaneously broken.

The Witten index can be interpreted mathematically as the index of an operator. If we split the
Hilbert space H of our theory into bosonic and fermionic subspaces, HB and HF , then the supersym-
metry charge Q which maps bosons into fermions and vice versa takes the following form

Q =
(

0 M†

M 0

)
(2.126)

where the split of Q corresponds to H = HB⊕HF . The zero energy eigenstates are given by the kernels
of M and M† and therefore

tr(−1)F = dimkerM − dimkerM† = ind M (2.127)

Hence the independence of the Witten index on the parameters of the theory translates into the fact
that it is a topological quantity. Therefore, it can be calculated in a convenient limit. One strategy
is to reduce the supersymmetric theory under consideration to a supersymmetric quantum mechanics
in the zero momentum limit. This is precisely what we have done in Section 2.2 for the non-linear
σ-model with target space a Calabi–Yau manifold. We have seen that the Hamiltonian is H = Q+Q+ +
Q+Q+ + Q−Q− + Q−Q− acting on (r, s)-forms. We can interpret r + s as the number of fermions
present, so (r, s)-forms are to be regarded as bosonic or fermionic depending on whether r + s is even
or odd. Therefore (anticipating (3.3) and (3.4))

tr(−1)F =
3∑

r,s=0

(−1)r+shr,s = 2(h1,1 − h2,1) = χ(X) (2.128)

The computation of the Witten index at the Gepner point has been performed in [77] based on the
Witten index for the minimal models and the Landau-Ginzburg theories in [46] and on properties of the
characters of the N = 2 superconformal algebra worked out in [78]. The open string version of these
computations will be discussed in Sections 4.3.1 and 6.1.
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3.1. General properties of Calabi–Yau spaces

There are several ways to define a Calabi–Yau space. The following statements are equivalent and any
of them can be taken as the definition of a Calabi–Yau space. A Calabi–Yau manifold X of dimension
n

(a) is a compact Kähler manifold of vanishing first Chern class.

(b) admits a Levi-Civita connection with SU(n) holonomy.

(c) admits a nowhere vanishing holomorphic (n, 0)-form Ω.

(d) is a compact manifold with a Ricci-flat Kähler metric.

(e) has a trivial canonical bundle KX
∼= OX .

That (d) follows from (a) has been conjectured by Calabi [79] and proven by Yau [80]. We assume that
the holonomy group is not a subgroup of SU(n) which is equivalent to demanding that [81]

hp,0(X) = h0,p(X) = 0 p 6= 0, n (3.1)

Furthermore, the existence of Ω implies that

hn,0(X) = 1 hp,0(X) = hn−p,0(X) p = 0, . . . , n (3.2)

By complex conjugation and Poincaré duality, the Hodge diamond for a Calabi–Yau threefold then has
the form

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(3.3)

The Euler number of X is

χ(X) = 2(h1,1(X)− h2,1(X)) (3.4)

From the exponential cohomology sequence one gets Pic(X) ∼= H2(X,Z) and ρ(X) = h1,1(X), where
ρ(X) denotes the Picard number of X. This space is naturally associated with the Kähler deformations
of X which are parametrized by Mgeom

K . On the other hand, the second non-trivial Hodge number
h1,2(X) of X expresses the number of parameters for the complex structure on X. The first order
deformations of a Calabi–Yau threefold X are unobstructed and the corresponding local moduli space
Mgeom

C of X is smooth and has dimension dimMgeom
C (X) = h1(X, TX) = h1,2(X) [82], [83] and [84].

For a sufficiently generic Calabi–Yau threefold X the Kähler moduli of the complexified Kähler class
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ω = B + iJ is independent of the complex structure of X [56]. So locally, the moduli space of a
Calabi–Yau threefold consists of a product of the moduli space of complex structure deformations and
the moduli space of Kähler structure deformations

Mgeom
CY = Mgeom

K ×Mgeom
C (3.5)

Furthermore, the holomorphic (3, 0)-form Ω only depends on the complex structure of X. For more
details see [85].

The Hodge numbers do not exhaust the topological information available. There is considerable
information available in the numbers

Kabc =
∫

X

Ja ∧ Jb ∧ Jc (3.6)

c2 ·Ja =
∫

X

c2(X) ∧ Ja (3.7)

where the Ja are a basis for the harmonic (1, 1)-forms. These numbers are topological i.e. they do not
involve the complex structure in virtue of two facts. The Hodge number h2,0 vanishes so H1,1(X) ∼=
H2(X) and the Pontrjagin class p1(X) = c1(X)2 − 2 c2(X) = −2 c2(X) is proportional to c2(X) and
is defined for a real manifold independent of any complex structure. A theorem of Wall [86] shows
that the data (3.6) and (3.7), together with b3 = 2 + 2h2,1 classify simply connected real six-manifolds.
The classification of Calabi–Yau manifolds is more complicated since not every real six-manifold is a
Calabi–Yau manifold and a real manifold may admit distinct complex structures in such a way that
they may not be continuously deformed into each other. For further properties see [87], [88] and [89].
We will also need singular Calabi–Yau spaces but we defer their introduction to Section 3.2.1.

3.2. Calabi–Yau spaces as hypersurfaces in toric varieties

3.2.1. General facts about toric varieties and dual polyhedra

Although there is no classification of three-dimensional Calabi–Yau spaces yet available, there exist
several methods of constructing classes of such spaces and their mirrors [85], [90]. The most prominent
ones are Calabi–Yau spaces as hypersurfaces or complete intersections in toric varieties (for which there
exists a classification [91]). The reason is that toric varieties have an underlying group structure which
allows to reduce almost all of the topological properties of these varieties to calculations of a set of
combinatorial data, so-called fans. They provide an elegant framework to carry out the physical ideas
by explicit computations. From a physical point of view, the combinatorial data have a direct inter-
pretation in the gauged linear σ-model, as has been discussed in 2.5. Although the formalism applies
to general complete intersections in toric varieties, we will restrict ourselves to a simple subclass con-
sisting of Fermat hypersurfaces in weighted projective spaces. As will become clear in later chapters,
the reasons are that for Calabi–Yau spaces in weighted projective spaces (as opposed to general toric
varieties) there exists a Gepner point in the Kähler moduli space with an enhanced symmetry and that
the construction of boundary states in the Gepner model is known only for minimal models with A-type
or diagonal invariants which means that we have to take Fermat hypersurfaces.

We will not give an introduction to toric varieties here. Instead we refer to the books by Oda [92]
and Fulton [93] and the survey article by Danilov [94]. Mathematical introductions for physicists can
be found in [51] and [7]. We will follow mostly [95] and [85].

To describe a toric variety P∆, let us consider an n-dimensional convex integral polyhedron ∆ ∈
Rn with vertices νi, i = 1, . . . , p containing the origin ν0 = (0, . . . , 0). An integral polyhedron is
a polyhedron whose vertices νi are integral with respect to the lattice M ≡ Zn ⊂ Rn. Let N =
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Hom(M,Z) ∼= Zn be the dual lattice. We define the dual polyhedron by

∆∗ = {x ∈ Rn|(x, y) ≥ −1 ∀y ∈ ∆} ⊂ NR (3.8)

whose vertices are ν∗i , i = 1, . . . , p∗. In the examples in Section 3.5 and in Appendix C the vertices ν∗i
will be used.

A polyhedron is called reflexive if its dual polyhedron is again an integral polyhedron. We associate
to ∆ a complete rational fan Σ(∆) as follows [96]: For every l-dimensional face Θl ∈ ∆ we define
an n-dimensional cone σ(Θl) by σ(Θl) = {λ(p′ − p)|λ ∈ R+, p ∈ ∆, p′ ∈ Θl}. Σ(∆) is then given
as the collection of (n − l)-dimensional dual cones σ∗(Θl), l = 1, . . . , n for all faces of ∆. Similarly,
we can associate a fan Σ(∆∗) to ∆∗. To each pair of reflexive polyhedra (∆, ∆∗) one can associate a
pair of complete fans (Σ(∆), Σ(∆∗)) and in turn a pair of n-dimensional toric varieties (P∆∗ ,P∆) =
(PΣ(∆∗),PΣ(∆)). Each toric variety PΣ contains an algebraic torus T = (C∗)n whose coordinates we will
denote by X1, . . . , Xn. It admits an action T× PΣ → PΣ of T that extends the natural action of T on
itself.

In each of the toric varieties P(∆), there is a family of Calabi–Yau hypersurfaces given by the closure
of the zero section Zf∆ of the anticanonical bundle of P(∆)

f∆(X, a) =
p∑

i=0

aiX
νi ∈ C[X±1

1 , . . . , X±1
n ] (3.9)

which is a Laurent polynomial in T. The coefficients a0, . . . , ap are coordinates on an affine space Cp+1

and Xνi =
∏n

k=1 X
νi,k

k . f∆ and Zf∆ are called ∆-regular if for all l = 1, . . . , n the fΘl
and the Xi

∂
∂Xi

fΘl
,

∀i = 1, . . . , n do not vanish simultaneously in T. The variation of the parameters ai under the condition
of ∆-regularity leads to a family of Calabi–Yau varieties.

The ambient space P∆ and so Zf∆ are in general singular. ∆-regularity ensures that the only
singularities of Zf∆ are the ones inherited from the ambient space. Here comes the reflexivity in. In
order to obtain a smooth Calabi–Yau manifold we need to resolve the singularities which can be done if
and only if P∆ is Gorenstein which is the case if and only if ∆ is reflexive [96]. For Gorenstein spaces and
singularities see [97], [98] and in the context of toric varieties see [92]. Singularities and their resolution
will be discussed in Section 3.3.

We can also define a Calabi–Yau manifold in exactly the same way from the dual polyhedron ∆∗.
We denote the families obtained this way by X∆ = {Zf∆ |a ∈ Cp+1} and by X∆∗ = {Zf∆∗ |a ∈ Cp+1}.
Batyrev showed that from a pair of reflexive polyhedra (Σ(∆),Σ(∆∗)) one can naturally construct a
pair of mirror Calabi–Yau families (X∆∗ , X∆). In particular, the mirror map on the Hodge numbers
can be explicitly seen through the following formulae [96]

h1,1(X∆) = hn−2,1(X∆∗)

= l(∆∗)− (n + 1)−
∑

codim Θ∗=1

l′(Θ∗) +
∑

codim Θ∗=2

l′(Θ∗)l′(Θ) (3.10)

h1,1(X∆∗) = hn−2,1(X∆)

= l(∆)− (n + 1)−
∑

codim Θ=1

l′(Θ) +
∑

codim Θ=2

l′(Θ)l′(Θ∗) (3.11)

where l(Θ) and l′(Θ) are the number of integral points on a face Θ ∈ ∆ and in its interior, respectively.
Recall that the complex parameters (a0, . . . , ap) represent the deformations of the defining equation f .
The monomial deformations of f provide the complex structure deformations of X∆∗ , however not all of
them. The contribution from the last term in (3.10) and (3.11) can not be associated with a monomial in
the Laurent polynomial f . In the language of Landau-Ginzburg theories, if appropriate, they correspond
to contributions from twisted sectors, see Section 2.2. They are called non-toric contributions and we
denote the Hodge numbers without these contributions by h̃1,1(X∆) and h̃n−2,1(X∆). They will play a
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role in Sections 3.3.3 and 6.2. In general, there is a rather subtle relationship between deformations of
the polynomials defining the Calabi–Yau variety X and deformations of the complex structure, see [99]
for a thorough treatment of this question.

3.2.2. Calabi–Yau hypersurfaces in weighted projective spaces

As mentioned above we will restrict ourselves to toric ambient varieties which are weighted projective
spaces. An n-dimensional weighted projective space is defined as an (n + 1)-dimensional space modded
out by a C∗ action given by the weights w = (w1, . . . , wn+1) as follows

Pn
w =

Cn+1 \ {0}
(z1, . . . , zn+1) ∼ (λw1z1, . . . , λwn+1zn+1)

, λ ∈ C∗ (3.12)

An extensive study of the properties of such spaces can be found in [100] and [101]. Consider the zero
locus of quasi-homogeneous polynomials Wi, i = 1, . . . ,m of degree di = deg(Wi)

X = {(z1 : · · · : zn+1) ∈ Pn
w|Wi(z1, . . . , zn+1) = 0, i = 1, . . . ,m} (3.13)

In order to ensure that the embedding X ↪→ Pn
w is smooth, the polynomials Wi must be transversal,

i.e. Wi(z) = 0 and dWi(z) = 0 have no simultaneous solution except at z0 = . . . = zn = 0. The first
Chern class of Xvanishes precisely if

∑m
i=1 di =

∑n+1
j=1 wj and hence X will be a Calabi–Yau variety.

We will consider only the case of hypersurfaces where we have a single polynomial W of degree d [101].
We have seen that these varieties come in families which we will denote by X = Pn

w[d].
We can connect this description to the previous one by noting that one can associate to such a Calabi–

Yau hypersurface a reflexive polyhedron if Pn
w is Gorenstein which is the case if lcm(w1, . . . , wn+1)

divides the degree d [101]. In this case we can define a simplicial reflexive polyhedron ∆(w) in terms
of the weights w as the convex hull of the integral vectors µ of the exponents of all quasi-homogeneous
monomials zµ of degree d shifted by (−1, . . . ,−1)

∆(w) = {x ∈ Rn+1|(w, x) = 0, xi ≥ −1, i = 1, . . . , n + 1} (3.14)

Note that this implies that the origin is the only point in the interior.
The next restriction we will consider is that of the Fermat hypersurfaces. We call a polynomial W

a Fermat polynomial if it consists of monomials z
d/wi

i , i = 1, . . . , n + 1. In this case Pn
w is Gorenstein

and (∆, ∆∗) are simplicial. Hence, the toric variety PΣ(∆(w)) is isomorphic to Pd
w with X∆ isomorphic

to some X = Pn
w[d]1. Then the mirror hypersurface X∆∗ can be understood [96] as an orbifold of X∆

in PΣ(∆∗) giving the orbifold construction of Greene and Plesser [72] explained in Section 2.6.
If furthermore at least one weight is one (say w1 = 1) we may choose ei = (−wi, 0, 0, . . . , 1, . . . , 0),

i = 2, . . . , n + 1 as generators for Λ, the lattice induced from the Zn+1 cubic lattice on the hyperplane
H = {(x1, . . . , xn+1) ∈ Rn+1|∑n+1

i=1 wixi = 0}. For this type of models we then always obtain as
vertices of ∆(w)

ν1 = (−1,−1,−1,−1) ν2 = (
d

w2
− 1,−1,−1,−1) ν3 = (−1,

d

w3
− 1,−1,−1)

ν4 = (−1,−1,
d

w4
− 1,−1) ν5 = (−1,−1,−1,

d

w5
− 1) (3.15)

and for the vertices of the dual simplex ∆∗(w) one finds

ν∗1 = (−w2,−w3,−w4,−w5) ν∗2 = (1, 0, 0, 0) ν∗3 = (0, 1, 0, 0)
ν∗4 = (0, 0, 1, 0) ν∗5 = (0, 0, 0, 1) (3.16)

1For general hypersurfaces of non-Fermat type, Pn
w and P∆(w) are only birational. In fact, the fan Σ(∆(w)∗) is a

refinement of the fan of Pn
w. The hypersurfaces X = Pn

w[d] and X∆(w) are related by flop transitions [102].
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There is a particular point in the complex structure moduli space of X at which the defining polyno-
mial W exhibits particular symmetries. Let the group in the Greene-Plesser mirror construction (2.120)
be G. The most general G-invariant hypersurface X in P4

w has an equation of the form

W =
5∑

i=1

aiz
ki
i +

p∑

j=6

ajz
mj (3.17)

where zmj =
∏

z
mj,i

i are G-invariant monomials given by the monomial-divisor mirror map [103], [96]

µ = (µ1, µ2, µ3, µ4) 7−→

(∏5
i=1 zi

)1+
P4

j=1 µj

∏4
i=1 z

µid/wi

i

(3.18)

There is a natural (C∗)5 action on the space of a’s which allows us to set ai = 1, i = 1, . . . , 5. We can
then define new coordinates, generalizing [104], [105] by

ψj = − a5+j

Nj

∏5
i=1 a

mj,i/ki

i

j = 1, . . . , h̃1,1 (3.19)

where the Nj are some normalization constants related to the monomials zmj by Nj = d
mj,iwi

for
any i such that mj,i 6= 0. Following [105] we extend the action of G on (z1, . . . , z5) to an action
of Ĝ on (z1, . . . , z5; ψ1, . . . , ψh̃1,1). If we mod the family {W = 0} by Ĝ then the parameter space
{(ψ1, . . . , ψh̃1,1)} must be modded out by a Zd whose generator g acts by

(ψ1, . . . , ψh̃1,1) 7−→ (αd/N1ψ1, . . . , α
d/Nh̃1,1 ψh̃1,1) (3.20)

where α is a dth root of unity. Now we can define the Gepner point of the complex structure moduli
space to be the point which exhibits this additional Zd symmetry. Regarding this space as the Kähler
moduli space of the mirror X∗ then this point corresponds to the one where the description by a Gepner
model is valid as was discussed in Section 2.6. So this symmetry is nothing but the quantum symmetry
introduced there. We will take up the discussion of the importance of these coordinates in Section 3.4.1
where we study the action of this Zd on the periods of the Calabi–Yau manifold.

3.3. Divisors and Curves in Calabi–Yau spaces

Divisors in a three-dimensional toric Calabi–Yau manifold are algebraic surfaces. These are well-studied
and classified to a certain extent. Moreover, while there is almost nothing known about stable bundles
or sheaves on Calabi–Yau threefolds, there are many results on stable bundles on algebraic surfaces.
Since our main interest lies in D-branes which are described by bundles, we will discuss divisors and
therefore algebraic surfaces in this subsection in detail. The relation to D-branes and bundles will be
elucidated in Chapters 5 and 6.

Recall that an analytic hypersurface V ⊂ X in a projective variety X is given, for any p ∈ V , in a
neighborhood of p as the zero set of a single holomorphic function f . A divisor D on X is a locally finite
formal linear combination D =

∑
ni · Vi of irreducible analytic hypersurfaces Vi of X. For example,

the Calabi–Yau hypersurface X is a divisor in Pn
w. Such a divisor D is called effective if ni ≥ 0 for all

i; we then write D ≥ 0. If the function f is the coefficient of a holomorphic top form on X, then the
corresponding divisor is called the canonical divisor and denoted KX .

There is an important relation between divisors on X and line bundles on X. A line bundle L is
characterized by its first Chern class c1(L) = [L] ∈ H1,1(X) which is Poincaré dual to an algebraic
submanifold of codimension one, a divisor L ∈ H2n−2(X). In a coordinate patch Ui the divisor is
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3. Calabi-Yau Spaces

defined as the zero of a meromorphic function fi such that on the intersection Ui∩Uj , gij = fi/fj is the
transition function of the line bundle L. The trivial line bundle on X will be denoted by OX . If H is
a hyperplane in Pn

w then the line bundle with Chern class mH on Pn
w is denoted OPn

w
(mH) = OPn

w
(m).

The line bundle associated to the canonical divisor KX is called the canonical line bundle K = OX(KX).
In general, the line bundle associated with D will be written as OX(D). Note that we will often confuse
the divisor D, its homology class [D], its Poincaré dual [D] and its representative and assume that it is
clear from the context which notion is appropriate.

As a further example take again the Calabi–Yau manifold X as a hypersurface in Pn
w. The associated

line bundle is then OPn
w
(−KPn

w
). Such a line bundle is again a toric variety whose vertices are ν̄∗i = (ν∗i , 1),

called the extended vertices. In terms of the gauged linear σ-model in Section 2.5 the total space of this
line bundle is the space V of classical ground states (2.107), (2.111). For the computations described
in the following subsections it is more convenient to work with these extended vertices.

Toric geometry provides us naturally with a set of divisors. Each integral point ν∗i , i = 1, . . . , p in
∆∗ ∩ Zn corresponds to an irreducible T-invariant divisor Di. For a Calabi–Yau hypersurface X we
will denote the restriction of these divisors to the hypersurface by the same letter Di. There are two
main classes of divisors in a Calabi–Yau threefold of our interest, those coming from the resolution of
singularities and those defining fibrations. We will discuss them in turn after a short overview over the
algebraic surfaces. But first we discuss the Mori cone and its intersection ring in order to be able to
compute the properties of the divisors from those of the Calabi–Yau hypersurface.

3.3.1. The Mori cone and the intersection ring

The parameters ai in (3.9) or in (3.17) can be used to describe Mgeom
C (after subtracting those corre-

sponding to reparametrizations of Pn
w), but they form an affine space which must be compactified. This

is achieved via the secondary fan, the central object in the study of mirror symmetry of toric Calabi–Yau
spaces, which is roughly defined as follows [102], [85]. The main idea is to compactify Mgeom

C such that
it becomes a toric variety where the torus action corresponds to the action of the U(1) gauge groups in
the gauged linear σ-model. Let Ξ be the set of the one-dimensional cones of Σ(∆∗) (i.e. those in (3.16)
together with the additional cones coming from the resolution of singularities in Section 3.3.3) and
Ξ+ = (Ξ∪{0})× 1. Furthermore, if we denote by An−1 the Chow group of Weil divisors modulo linear
equivalence then A(Ξ) = An−1⊗R coincides with the affine space of the ai. Then determine all regular
triangulations T of the convex hull Ξ+. The vertices of the simplices in T must be elements of Ξ+, and
regularity means that each of them contains the interior point ν̄∗0 . To T one can associate in a unique
way a cone C(T ) [106], [107]. The cones C(T ) are the maximal cones of the secondary fan, which is a
complete fan in A(Ξ).

Its importance lies in the fact that it provides a convenient compactification of both Mgeom
C and

Mgeom
K . In particular, it is such that the compactification of Mgeom

C (X) is essentially the same as the
compactification of Mgeom

K (X∗) [85]. Furthermore, the latter contains the affine toric variety associated
to the Kähler cone. From the physical point of view, the secondary fan “is” the phase diagram of
the gauged linear σ-model. An example has been given in Figure 2.1. The different phases correspond
to the maximal cones C(T ), i.e. the triangulations T . The minimal triangulation, i.e. the one which
consists only of the five basic simplices corresponds to the Landau-Ginzburg orbifold phase. A maximal
triangulation, i.e. one which uses all the points of ∆∗ corresponds to a smooth Calabi–Yau phase.

The basic object to consider in this compactification is the following lattice, the so-called lattice of
relations among the vertices

L =

{
(l0, . . . , lp) ∈ Zp+1|

p∑

i=0

liν̄
∗
i = 0

}
(3.21)

The secondary fan is then a rational polyhedral complete fan in L∨R for the dual lattice L∨. According to
the general construction of toric varieties, the complete fan defines a toric compactification of the torus
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3.3. Divisors and Curves in Calabi–Yau spaces

HomZ(L,C∗), which is our compactification of the affine space of ai’s. There is a natural non-degenerate
pairing A1(PΣ(∆∗)) × LR → R which identifies this fan with the one in A(Ξ). Among the cones in the
secondary fan, there is a distinguished cone, called the Mori cone, whose geometric meaning is the dual
of the Kähler cone of PΣ(∆∗). We assume that it is simplicial (for the non-simplicial case see [102]
and [85]) and denote the generators of the Mori cone l(1), . . . , l(h̃

1,1) where rk H2(PΣ(∆∗),Z) = h̃1,1.
Then the Mori cone is L≥0 = R≥0l

(1) + · · ·+ R≥0l
(h̃1,1).

In order to determine the Mori cone we can use a particular maximal triangulation T . In general this
triangulation is not unique. For a chosen T one proceeds as follows [108]. Consider every pair (Sk, Sl)
of four-dimensional simplices in T which have a common three-dimensional simplex si = Sk ∩ Sl. For
all such pairs find the unique linear relation

∑6
i=1 l

(k,l)
i ν̄∗i = 0 among the six points ν̄∗i of Sk ∪ Sl in

which the l
(k,l)
i are minimal integers and the coefficients of the two points in (Sk ∪ Sl) \ (Sk ∩ Sl) are

non-negative. Finally, find the minimal integer l(a) by which every l(k,l) can be expressed as positive
integer linear combination. These are generators of the Mori cone.

The Mori generators define the following linear relations
p∑

i=0

l
(a)
i Di = 0 (3.22)

where Di is an (overcomplete) basis of H2(PΣ(∆∗),Z) given by the vertices ν̄∗i . These relations define
the ideal Ilin in the ring Q[D0, D1, . . . , Dp].

A primitive collection is a collection σ of vertices that do not form a cone but is such that any subset
σ′ ⊂ σ is a cone [109]. For any such primitive collection σ = {ν∗i1 , . . . , ν∗ik

} we get a non-linear equation
for the divisors

Di1 · . . . ·Dik
= 0 (3.23)

These non-linear relations define the Stanley-Reisner ideal ISR in the ring Q[D0, D1, . . . , Dp]. Moreover,
if the toric variety PΣ(∆∗) is non-singular for every collection of k vectors σ = {ν∗i1 , . . . , ν∗ik

} which does
not contain or is not itself a primitive collection, we have

Di1 · . . . ·Dik
= 1 (3.24)

If the toric variety is singular then the equation is

Di1 · . . . ·Dik
=

1∣∣det(ν∗i1 , . . . , ν
∗
ik

)
∣∣ (3.25)

Now let us turn to the description of the intersection ring A∗(PΣ(∆∗),Z) which is isomorphic to
the cohomology ring H2∗(PΣ(∆∗),Z) of the nonsingular toric variety PΣ(∆∗) in order to determine the
necessary topological data of X∆. In the case of toric varieties, it has a simple description in terms of
the invariant divisors Di, i = 0, . . . , p

A∗(PΣ(∆∗)) =
Q[D0, D1, . . . , Dp]

ISR + Ilin
(3.26)

By the non-degenerate pairing A1(PΣ(∆∗)) × LR → R we see that the dual of the Mori cone L∨≥0 lies
in A1(PΣ(∆∗)), the group of 1-cycles which is dual to An−1(PΣ(∆∗)) over Q. In fact, according to the
construction of L≥0, L∨≥0 is the Kähler cone of the ambient space PΣ(∆∗). We will denote the dual basis
to the generators l(1), . . . , l(r) by J1, . . . , Jr.

If D is a hypersurface in X with dim X = n, then the following standard restriction formula [110]
relates the intersection form on D to the intersection form on X

Di1 · . . . ·Din−1

∣∣
D

= Di1 · . . . ·Din−1 ·D
∣∣
X

(3.27)
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where Dik
are some divisors on X on the right-hand side of (3.27) and their restrictions to D on

the left-hand side of (3.27). We apply this formula to the Calabi–Yau hypersurface in P4
w. From the

Calabi–Yau condition we have −KPΣ(∆∗) = D0 =
∑p

i=1 l
(a)
i Di and hence the intersection numbers (3.6)

can be written as

Kabc = −
∫

PΣ(∆∗)
KPΣ(∆∗) · Ja · Jb · Jc = Ja · Jb · Jc (3.28)

where the symbol
∫
PΣ(∆∗)

means to take the coefficient of the highest degree element of (3.26) with
the normalization determined by the requirement that it gives the Euler number χ(X∆) from the top
Chern class cn(X∆) [102]. The toric part of the even cohomology Heven

toric(X∆,Q) may be described by
A∗(PΣ(∆∗))R/Ann([X∆]), where Ann([X∆]) = {v ∈ A∗(PΣ(∆∗))|[X∆]v = 0}.

The Chern classes of X are computed using the adjunction formula [111]

c(X) =
∏p

i=1(1−Di)
1−D0

(3.29)

and we will frequently write ci instead of ci(X). Similarly, the Todd class of X is

td(X) =
1− exp(−D0)

D0

p∏

i=1

Di

1− exp(−Di)
(3.30)

From (3.29) and (3.22) the topological numbers c2 ·Ja in (3.7) can be determined. In addition, there
are useful relations [112] between the intersection numbers (3.28), the linear forms (3.7), the Euler
number (3.4) and the Mori generators l

(a)
i

c2 ·Ja =
1
2

h̃1,1∑

b,c=1

(
p∑

i=1

l
(b)
i l

(c)
i

)
Kabc (3.31)

χ(X) =
∫

X

c3 =
1
3

h̃1,1∑

a,b,c=1

(
p∑

i=1

l
(a)
i l

(b)
i l

(c)
i

)
Kabc (3.32)

If we describe the divisor D of the Calabi–Yau manifold X by an embedding i : D −→ X then from
the associated exact sequence

0 −→ TD −→ TX |D −→ NX/D −→ 0 (3.33)

and NX/D
∼= O(D)|D we compute

(1 + c1 +c2 +c3)|D = ((1 + c1(D) + c2(D)) · (1 + D))D (3.34)

where the subscript indicates that the intersection is to be performed on D. Together with the restriction
formula (3.27) we obtain

c1(D) = −D (3.35)

c1(ND/X)2 = D2 = c2(X)− c2(D) (3.36)

c2(X) ·D + D3 = χ(D) (3.37)

which gives the relation between the Chern classes of D and the topological numbers of X.
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3.3. Divisors and Curves in Calabi–Yau spaces

3.3.2. Classification of algebraic surfaces and some of their properties

We will outline here only some properties which are necessary to get a geometric picture of the divisors
in a toric Calabi–Yau manifold. For more details and other properties we refer to [113], [114], [98]
and [115].

The most important properties of an algebraic surface D are described by its topological and holo-
morphic invariants. The main topological invariants are its fundamental group π1(D, ∗), the Betti
numbers bi(D) and the intersection pairing on H2(D,Z), in particular its signature. The most basic holo-
morphic invariants are the irregularity q(D) = h1(D,OD) and the geometric genus pg(D) = h2(D, OD).
Additional invariants are given by h1,1(D) and c1(D)2 = K2

D where KD is the canonical line bundle
of D. The latter is also an important object by itself. Finally, we will need the Euler character-
istic χ(D) =

∑
i(−1)ibi =

∫
D

c2(D) and the holomorphic Euler characteristic χ(OD) which by the
Hirzebruch-Riemann-Roch theorem (see (5.48)) is

χ(D, OD) = 1− q(D) + pg(D)

=
∫

D

1
12

(c1(D)2 + c2(D)) (3.38)

which is also known as Noether’s formula. Since in our case D is a divisor in X, there is a simple way
to compute χ(OD) from the data of X. From (3.35) and (3.36) and (3.38) we find

χ(OD) =
1
12

(2D3 + c2 ·D) (3.39)

This means that we can compute either q(D) or pg(D) from the toric data of X but not both. Therefore
we need more information which will be given in the remainder of this section.

A very useful way to get more information is the Lefschetz theorem for hyperplane sections [116]
which states that for an m-dimensional submanifold Y of Pn, m ≥ 2 and a hyperplane H ∈ Pn such
that H ∩ Y is again a complex manifold, the following inclusion homomorphisms

Hi(Y ∩H,Z) → Hi(Y,Z) (3.40)
πi(Y ∩H,Z) → πi(Y,Z) (3.41)

are isomorphisms for 0 ≤ i ≤ n − 2. From this it follows that if Y is a smooth complete intersection
of m− 2 hypersurfaces in Pm of degree d1, . . . , dm−2 respectively, then π1(Y ) = 0. This holds true for
general toric varieties. Applying this to the intersection of a T-invariant divisor D with the anticanonical
divisor X (the Calabi–Yau hypersurface) gives

q(D) = 0 (3.42)

and pg(D) is determined by (3.38).
A divisor D is called nef if D ·C ≥ 0 for all irreducible curves C. A curve E on a smooth surface D

such that E ∼= P1 and E2 = −1 is called an exceptional curve. An algebraic surface D is minimal if it
contains no exceptional curves, i.e. all exceptional curves have been blown down.

Rational and ruled surfaces

The simplest surface D is the projective plane P2. It has c1(P2) = 3h, c1(P2)2 = 9 and χ(P2) = 3 where
h is a line in P2. Furthermore pg(P2) = q(P2) = 0.

A surface D is ruled if there exists a fibration π : D → C, where C is a smooth curve, such
that the generic fiber of π is isomorphic to P1. Every ruled surface over C = P1 is of the form
Fn = P(OP1⊕OP1(n)) for some n ≥ 0 and is denoted a Hirzebruch surface. Its Picard group is generated
by two elements, the class of the fiber f and the class of the zero section C0 with C0 ·C0 = −n, f ·f = 0
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3. Calabi-Yau Spaces

and C0 · f = 1. There is another section C∞ = C0 + nf satisfying C∞ · C∞ = n, C0 · C∞ = 0 and
C∞ · f = 1. The canonical class is given by KFn = −2C0 − (n + 2)f . The characteristic numbers of the
Hirzebruch surfaces are c1(Fn)2 = 8, χ(Fn) = 4 and pg(Fn) = q(Fn) = 0. Note that F0 = P1 × P1. A
rational surface is a surface that is birationally equivalent to P2. A minimal rational surface is either
P2 or Fn for some n 6= 1.

Let us now consider general ruled surfaces D whose base curve C is a smooth curve of genus g. Their
Picard group is PicD ∼= PicC ⊕ Z while the numerical equivalence classes are Num(D) = Z · f ⊕ Z · σ
where f is the fiber and σ a section of π. If we write Oσ(σ) = π∗OC(d)|σ for some divisor d on C,
then KD = −2σ + π∗(KC + d). Thus if deg d = d, then the numerical equivalence class of KD is
−2σ + (2g − 2 + d)f and c1(D)2 = −8(g − 1). The other invariants are χ(D) = 2χ(C), pg(D) = 0 and
q(D) = g. Finally, given a minimal surface D such that KD is not nef, then D is rational or ruled.

K3 surfaces

A K3 surface X is defined to be a surface with q(X) = 0 and KX = OX , hence c1(X) = 0. Its Euler
number is χ(X) = 24, hence pq(X) = 1. It is the only two-dimensional Calabi–Yau manifold (apart
from the complex 2-torus T 4 which has q(T 4) = 2 and trivial holonomy group). Algebraic K3 surfaces
can be constructed as complete intersections of toric varieties in the same way as it has been described in
Section 3.2.1 for Calabi–Yau threefolds. They have been classified in [117]. Here we are only interested
in hypersurfaces in weighted projective spaces [118], in particular those of Fermat type for which we
can use the results of Section 3.2.2 in one dimension less.

The homology group H2(X,Z) is equipped with the structure of a lattice via the intersection form
I(K3). It is even and integral [119]. By Poincaré duality it is unimodular and can be identified with
the lattice H2(X,Z). The Picard group Pic X is naturally identified with the sublattice M of algebraic
cycles in H2(X,Z), called Picard lattice, of signature (1, ρ−1) where the rank ρ = rk M is given by (3.10)
for n = 3. The periods associated to these cycles vanish. The orthogonal lattice N = M⊥ of the Picard
lattice in H2(X,Z) is the transcendental lattice which is of signature (2, 20 − ρ). We will denote the
restriction of I(K3) to N ⊗R by the same symbol. We decompose N = U ⊥ M∗ where U is the lattice
of the hyperbolic plane and has signature (1, 1). If there is a K3 surface X∗ whose Picard lattice is
M∗ then X∗ is called the mirror surface to X [120]. Mirror symmetry in addition exchanges U with
H0(X,Z) ⊕ H4(X,Z). This agrees with the mirror symmetry from toric polyhedra ∆, ∆∗ associated
with X = X∆ and X∗ = X∆∗ [117]. The ranks ρ(X) and ρ(X∗) add up to 20 minus the non-toric
contributions in (3.11). The subspace M ⊗ R of H2(X,R) corresponds to the Kähler deformations
while the subspace N ⊗R corresponds to the complex structure deformations of X [121]. The possible
lattices M and M∗ for hypersurfaces in weighted projective spaces have been studied in [122]. The
lattice M = 〈2n〉 ≡ Z · e is generated by e such that I(K3)(e, e) = 2n.

Elliptic surfaces

An elliptic surface is a fibration π : S → C from a smooth surface S to a smooth curve C of genus g
such that the general fiber is connected and the genus of all smooth fibers is one. Consider the sheaf
R1π∗OS on C. It can be shown [114] that it is actually a line bundle on C. We denote its dual line
bundle by L and set d = deg L. One can show [115] that d is non-negative and that if L is not trivial
then q(S) = g and pg(S) = d+ g−1. On the other hand if L is trivial then q(S) = g +1 and pg(S) = g.
In both cases we have χ(OS) = d. Suppose that all exceptional curves in the fibers have been blown
down and that F1, . . . , Fk are the multiple fibers of π with multiplicity mi. The canonical bundle is then
KS = π∗(KC ⊗ L)⊗OS(

∑
i(mi − 1)Fi). Furthermore K2

S = 0 and therefore χ(S) = 12χ(OS). Since a
K3 surface can be an elliptic fibration we define properly elliptic surfaces to be those with KS 6= 0.
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Surfaces of general type

Surfaces of general type are general in the same sense as are curves of genus ≥ 2. One example of
such surfaces which will frequently appear in the examples below are complete intersections in weighted
projective spaces Pn

w of sufficiently high degree. Other examples are products (or more generally fi-
brations) of curves of genus g ≥ 2 and ramified double coverings of P2. For this type of surfaces only
some inequalities are known [114]. We have c1(D)2 > 0 and χ(D) > 0 as well as c1(D)2 + χ(D) = 0
mod 12. Furthermore there is Noether’s inequality pg(D) ≤ 1

2 c1(D)2 +2 and the Miyaoka-Yau inequal-
ity c1(D)2 ≤ 3χ(D).

There is a classification for these surfaces due to Enriques and Kodaira, see[114], [123], [115]. Let
Pn(D) = dim H0(D, K⊗n

D ) be the n-th plurigenus. Thus P1(D) = pg(D). For each of these surfaces the
Kodaira dimension κ(D) is then defined as

κ(D) = min{k ∈ Z|Pn(D)/nk is a bounded function of n ≥ 1} (3.43)

For example, it follows formally that if Pn(D) = 0 for all n, then κ(D) = −∞. It turns out that the
possible values of κ(D) are −∞, 0, 1, 2. The classification is then given in table 3.1. We have only

κ(D) q(D) pg(D) KD K2
D Surface type

0 0 > 0 > 0 Rational surface−∞
g 0 < 0 ≤ 0 Ruled surface over a curve of genus g > 0

0 0 1 0 0 K3
1 > 0 0 Properly elliptic surface
2 > 0 > 0 Surface of general type

Table 3.1.: The (partial) Enriques-Kodaira classification of minimal algebraic surfaces

indicated the surfaces that will appear in our discussion.
Finally, let us discuss curves in a surface. Let C be a smooth, irreducible curve on D. By the

adjunction formula it follows that

g(C) =
KD · C + C · C

2
+ 1 (3.44)

For a general, not necessarily smooth curve C, the arithmetic genus pa(C) is defined by the expression
on the right-hand side of (3.44).

3.3.3. Singularities and their resolutions

We will only consider weighted projective spaces Pn
w whose weights are relatively prime. If some subset

{wi|i ∈ S} of the weights has a non-trivial common factor N then, due to the T action, the weighted
projective space Pn

w has singular strata HS = {z ∈ Pn
w|zi = 0 for i 6∈ S}. In the case of our interest, the

singular locus of a Calabi–Yau hypersurface X in (3.13) which is the intersection X ∩ HS consists of
points and curves. For singular points these singularities are locally of the form C3/ZN while the normal
bundle of a singular curve has locally a C2/ZN singularity [95], also known as cyclic quotient or AN−1

singularity (see also [124]). Among the singular points one has to distinguish between isolated points
and exceptional points, the latter being singular points on singular curves or the points of intersection
of singular curves. The order N of exceptional points exceeds that of the curve. The situation for
isolated singular points has been discussed in great detail in [125].

Both types of singularities and their resolution can be described by the methods of toric geome-
try [92], [93]. The singularities are resolved by the process of blowing them up in the ambient space
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and taking the proper transform of X [111]. This smooth Calabi–Yau variety will be denoted momen-
tarily X̃. We will describe this explicitly in an example in Section 3.5.2. Each singular set leads to an
exceptional divisor. We will denote by Ei and Fj the proper transforms of the exceptional divisors on
X̃ coming from the resolution of the singular curves and singular points, respectively. H will be the
proper transform of the hyperplane class on P4

w restricted to X. The Hodge number h1,1(X̃) is then
equal to # exceptional divisors + 1. Furthermore, there are non-toric complex structure deformations
of X coming from the blow-ups of curves C with ZN singularities whose number is [96], [57]

h2,1 − h̃2,1 = g(N − 1) (3.45)

where g is the genus of C. The corresponding exceptional 3-cycles are seen as follows. For each of the
exceptional divisors Ei, there is a map H1(C) → H3(X) given by sending a one-cycle γ of the curve C
to the three-cycle swept out by the fibers of Ei lying over γ [126].

In toric geometry singularities are described by cones σ which are not basic, i.e. which can not be
generated by a basis of the lattice in which σ lies. A standard result now states that a toric variety
PΣ has only quotient singularities if Σ is a simplicial fan, i.e. if all cones in Σ are simplicial. Given a
singular cone one resolves the singularities by subdividing the cone into a fan such that each cone in
the fan is basic. X has a singular curve precisely when ∆∗ has an edge joining two vertices ν∗0 , ν∗N with
N − 1 equally spaced lattice points ν∗1 , . . . , ν∗N−1 in the interior of the edge. The edges corresponding
to these lattice points correspond to toric divisors Ei which resolve a surface S of AN−1 singularities
in P4

w. Restricting to the hypersurface X, we see that there are N − 1 divisors Ei in X which resolve
the curve C of AN−1 singularities. It can be shown [93], [96] that these divisors are locally the product
of a curve C and a Hirzebruch-Jung sphere-tree [127]. If the order is N = 1 then the corresponding
exceptional divisor is a ruled surface, otherwise it is a blow-up at N − 1 points thereof. The genus g
can be determined as follows. By duality, the edge Θ∗1 = 〈ν∗0 , ν∗N 〉 determines a two-dimensional face
Θ2 of ∆. The number of interior points of Θ2 is equal to g. We refer again to Section 3.5 for explicit
examples.

In the case of point singularities the T action on the normal bundle is (z1, z2, z3) → (λz1, λ
az2, λ

bz3)
with 1 + a + b = N , a, b ∈ Z and λ ∈ C∗. The singular cone is generated by ei, i = 1, 2, 3 in a
lattice basis n1 = 1

N (e1 + ae2 + be3), n2 = e2, n3 = e3). Then all endpoints of the additional vectors
generating the nonsingular fan must lie on the plane

∑
i xini = 1. The exceptional divisors are then in

one-to-one correspondence with the lattice points inside the cone on this hyperplane. The corresponding
divisors can all be described by compact toric surfaces which have been classified [93]. These are P2

and the Hirzebruch surfaces Fa and their blow-ups at T-fixed points. The resolution is in general not
unique if there are more than one lattice points inside this cone. In this case there are several ways to
triangulate this cone, each of which leading to a different resolution. The resulting smooth manifolds
are all topologically different with the same Hodge numbers but different intersection numbers.

3.3.4. Fibrations

For general properties of fibered Calabi–Yau threefolds see [128]. We summarize here some results
which will be useful in Section 3.5 and Chapters 5 and 6.

Elliptic fibrations

The conditions for a Calabi–Yau threefold to admit elliptic or K3-fibrations have been found in [129]
and are as follows: A Calabi–Yau threefold admits an elliptic fibration π : X → B if there exists an
effective divisor S such that

S · Γ ≥ 0 for all curves Γ (3.46a)

S3 = 0 (3.46b)

S2 · F 6= 0 for some divisor F 6= S (3.46c)
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3.3. Divisors and Curves in Calabi–Yau spaces

In order to have an elliptic fibration with a section one needs in addition the condition that S and F
can be chosen such that S2 · F is a small number.

It is known [130], [131], [129] that for any elliptic fibration π : X → B of a Calabi–Yau threefold
X, the base B has at worst orbifold singularities. In fact, the singularities are more constrained than
that: together with the collection of curves Σi which specify where the elliptic fibration is singular,
the singularities have a special property known as log-terminal. Under the assumption (3.1) the base
B has the following properties [132], [131]: If the singularities of B are resolved then B is either an
Enriques surface, or a blow-up of P2 or of a Hirzebruch surface Fn with n ≤ 12. Note that the latter
two appear also in the list of exceptional divisors coming from the resolution of point singularities in the
Calabi–Yau space, see Section 3.3.3. The divisor S may be identified with the restriction of π : X → B
on the section C∞ of Fn. Hence, S itself is an elliptic fibration over C∞. If we represent X in the
Weierstrass form [132] the discriminant divisor ∆ ⊂ B is given by [119] ∆ = 24C0 +(24+12n)f . Hence
∆ · f = 24, ∆ · C∞ = 24 + 12n and therefore χ(S) = 24 + 12n = c2 ·S.

There are three types of elliptic curves given as hypersurfaces in weighted projective spaces which
can appear as generic fibers: P2

1,a,b[c] with (a, b) = (1, 1), (1, 2) or (2, 3) and c = 1 + a + b. Note that
a, b, c are the same as those that appeared in Section 3.3.3 when discussing the resolution of the point
singularities. If JB is the dual homology element to the cohomology class of the elliptic fiber and Ji

are the remaining basis elements of H4(X,Z) then the intersection numbers and linear forms can be
written as [133]

JB · Ji · Jk = kJi · Jk J2
B · Ji = k c1(B) · Ji J3

B = k c1(B)2 (3.47)

c2 ·Ji = 12k c1(B)Ji c2 ·JB = k c2(B) + k

(
12
k
− 1

)
c1(B)2 (3.48)

where B is the base of the fibration and on the left-hand side we integrate over X while on the right-
hand side we integrate over B. k is the number of sections of the fibration for the various fibers: k = 3
for (a, b) = (1, 1), k = 2 for (a, b) = (1, 2) and k = 1 for (a, b) = (2, 3).

K3 fibrations

Similarly, a Calabi–Yau threefold admits a K3-fibration π′ : X → P1 if there exists an effective divisor
L such that

L · Γ ≥ 0 for all curves Γ (3.49a)

L2 ·D = 0 for all divisors D (3.49b)

Note that the latter implies that L3 = 0. We will assume that all the singular fibers of π′ are irreducible.
In order to have both an elliptic and a K3-fibration, the fibrations will be compatible if

S2 · L = 0 (3.50)

This implies that a generic fiber of π′ is an elliptic K3 surface. We will denote the divisors defining
elliptic and K3 fibrations by S and L, respectively.

For K3-fibrations in weighted projective spaces given by Fermat polynomials there is a second way
to see the fibration structure. Let the weights of P4

w be w = (1, l−1, lw′2, lw
′
3, lw

′
4). Then, by the Calabi–

Yau condition, the defining polynomial W (z) must have degree d = ld′ where d′ = 1 + w′2 + w′3 + w′4.
Define the divisor L by a parameter λ ∈ P1 and the hypersurface z2 = (λz1)l−1 in X. By the scaling
properties of P4

1,l−1,lw′2,lw′3,lw′4
we can set z′1 = zl

1. Then we have

W (z) = (1 + λd)z′1
d′/(l−1) + z

d′/w′2
3 + z

d′/w′3
4 + z

d′/w′4
5 = 0 (3.51)

But this is precisely the defining equation for a degree d′ hypersurface in P3
1,w′2,w′3,w′4

which is in turn
a two-dimensional Calabi–Yau manifold by (3.13), i.e. a K3 surface. The base of the fiber is given by
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3. Calabi-Yau Spaces

the P1 whose coordinate is λ. A similar argument can be made in order to exhibit an elliptic fibration
of a Fermat hypersurface. K3 fibrations of this type with l = 2 have been studied in [134] and with
general l in [135]. If there exists a K3 fibration then the reflexive polyhedron ∆L of the K3 surface
L is embedded in the reflexive polyhedron ∆X of the Calabi–Yau threefold X [102]. These toric K3
fibrations have been analyzed in detail in [136].

Since the Picard lattice Pic(L) of a K3 surface is an even integral lattice the intersection numbers
KLab = L · Da · Db which are equivalent to the intersection form I

(K3)
ab on Pic(L) are always even.

Combined with (3.49b) we see that

Kabc ∈ 2Z (3.52)

if any of the indices a, b or c corresponds to the divisor L.

3.4. Special Geometry

We have mentioned in Section 2.6 that MSCFT
K and MSCFT

C are both special Kähler manifolds. This
property is very important for mirror symmetry and understanding monodromies on the moduli space
MSCFT

CY , so we are briefly reviewing it here. A Kähler manifold M is a Hodge manifold if and only
if there exists a line bundle L → M such that c1(L) = [J ] where J is the Kähler form. If H is a
Sp(2h1,1 + 2,R) vector bundle over M and −i〈 | 〉 the compatible hermitean metric on H then M is
special Kähler [137] if, for some choice of H, there exists a Π ∈ Γ(M, H ⊗ L) with the property that
J = i

2π ∂∂̄ log
(−i〈Π|Π〉). The metric can be defined as −i〈Π|Π〉 = −iΠ†Σ(L)Π with Σ(L) being the

standard symplectic matrix.
Equivalently, M is special Kähler if locally there exist complex projective coordinates za and a

homogeneous, degree two holomorphic function F (z) which is related to the Kähler potential K by

K = − log
(−i

(
za∂̄aF − z̄a∂aF

))
(3.53)

The Kähler potential K is related to the norm of Π by K = − log ||Π||2 ≡ − log(−i〈Π|Π〉). There is a
particular choice of coordinates for M, the special coordinates, defined by ta = za

z0
, a = 1, . . . , h1,1. If

we define F(t) = z−2
0 F (z) then the Kähler potential is expressed by

K(t, t̄) = − log i
(
2

(F − F)− (
∂aF + ∂āF

)
(za − z̄ā)

)
(3.54)

and Fabc = ∂a∂b∂cF(t). The function F(t) is called the prepotential. Below, we will only work in these
special coordinates.

Special geometry also arises naturally in N = 2 supergravity theories in four dimensions [138].
Type IIB string theory compactified on a general Calabi–Yau manifold X has as its low-energy effective
theory an N = 2, D = 4 supergravity theory with h2,1(X) + 1 vector fields coming from h2,1(X) vector
multiplets and the graviphoton and h1,1(X) + 1 hypermultiplets (including the dilaton in D = 4).
In type IIA string theory the identifications for h1,1 and h2,1 are reversed. The scalars in the vector
multiplets parametrize a special Kähler manifold. Hence its geometry is determined by the prepotential
FC of complex structure moduli in the type IIB case, and by the prepotential FK of Kähler moduli
in the type IIA case. We have seen in Section 2.6 that FC does not get any α′ corrections. Since
the dilaton sits in a hypermultiplet, FC is exact already at string tree level [4], [139] and is therefore
entirely computable in terms of classical geometry. On the other hand, FK gets quantum corrections
because in doing the perturbation expansion around the large volume limit, the expansion parameter
R2

α′ is controlled by the Kähler moduli which, being in the vector multiplets, are now varied. However
the dilaton is still in a hypermultiplet, so FK is still computable at string tree level. For more details
about the form of FC and FK see [140]. In the first case the fibers of the bundle H over Mgeom

C are
given by H3(X,Z). A given basis in H3(X,Z) will undergo a monodromy in Sp(2h1,1 + 2,Z) as it is
transported around singularities in Mgeom

C .
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3.4. Special Geometry

3.4.1. Periods

Another way of expressing special geometry is the following. Taking subsequent derivatives of the
holomorphic (3, 0)-form Ω with respect to the complex structure moduli a yields elements in H3,0 ⊕
H2,1⊕H1,2⊕H0,3. Since b3 is finite, there must be linear relations between derivatives of Ω of the form
LΩ = dη where L is a linear differential operator whose coefficients depend on the a’s. If we integrate
this equation over a closed 3-cycle, we will get a differential equation LΠi = 0 satisfied by the periods
of Ω. They are defined as

Πi(a) =
∫

Γi

Ω(a) Γi ∈ H3(X,Z) (3.55)

In general we will get a system of coupled linear partial differential equations for the periods of Ω, the
so-called extended ∆ (or ∆∗) hypergeometric system [141], [142]. These equations are also known as
Picard-Fuchs equations. They have only regular singularities. The period integrals for X∆∗ are the
most relevant quantities for the application of mirror symmetry to the determination of the quantum
geometry of X∆. For example [143],

Π(a) =
1

(2πi)n

∫

C0

1
f∆∗(X, a)

n∏

i=1

dXi

Xi
(3.56)

is the period integral over the torus cycle C0 = {|X1| = |X2| = · · · = |Xn| = 1} in T. For other periods,
one has to analyze the differential equation satisfied by (3.56). The Mori cone L≥0 describes the affine
chart Hom(L≥0,C∗) of the compactification of Mgeom

C given by the secondary fan A(Ξ) as discussed in
Section 3.3.1 with coordinates

xk = (−1)l
(k)
0 al(k)

k = 1, . . . , r (3.57)

It has been proved in general [144] that the origin x1 = · · · = xr = 0 provides a large complex structure
limit [145] and there we only have one regular period integral

w0(x) =
∑

n∈Zr
≥0

Γ
(
1−∑

k nkl
(k)
0

)

∏p
i=1 Γ

(
1 +

∑
k nkl

(k)
i

)xn (3.58)

the so-called fundamental period [146]. All other period integrals at the large complex structure limit
contain logarithmic singularities and can be generated by the classical Frobenius method [142].

Now we describe the local solutions of the Picard-Fuchs equations about the large complex structure
limit. To this aim let us introduce in (3.58) the indices ρ1, . . . , ρr

w0(x, ρ) =
∑

n∈Zr
≥0

c(n + ρ)xn+ρ (3.59)

Using the basis J1, · · · , Jr of the Kähler cone of PΣ(∆∗) and restricting them to the hypersurface X∆,
there is a convenient way to keep track of the hypergeometric series [147]

w0

(
x,

J

2πi

)
= w0(x)11 +

r∑
a=1

wa(x)Ja + (3.60)

+
1
2!

r∑

a,b=1

wab(x)JaJb +
1
3!

r∑

a,b,c=1

wabc(x)JaJbJc

where the products of the Jk’s are taken in the cohomology ring Heven
toric(X∆,Q). For the remainder of

this section we will drop the subscript toric. It’s crucial to choose the correct normalization of this
solution in order to obtain an integral, symplectic basis for the period integrals [148].
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3. Calabi-Yau Spaces

Let us introduce a basis 11, Ja, J
(2)
b , J (3) for Heven(X∆) by the property

(11, J (3)) = −1 (Ja, J
(2)
b ) = δab (3.61)

with (A,B) =
∫

X∆
A∧B. For reasons to become clear in section 5.1 we also introduce a skew-symmetric

form on Heven(X,Q). First we consider an involution ∗ which acts on H2i(X,Q) by (−1)i. Using this
involution we define the Mukai form [149]

〈α, β〉 = −
∫

X

α ∧ ∗β ∧ td X (3.62)

=
∫

X

(α0β6 − α2β4 + α4β2 − α6β0) td X (3.63)

for α, β ∈ Heven(X,Q). Then there exists [148] a canonical symplectic basis of the skew-symmetric
form (3.62) on Heven(X,Q)

11, JS
a , J

(2)
b , J (3) (3.64)

where

JS
a =

(
Ja −

r∑

b=1

AabJ
(2)
b

)
(td X)−1 (3.65)

with some rational constants Aab = Aba. Corresponding to this basis, we have an integral symplectic
basis for the period integrals about the large complex structure limit through

w0(x,
J

2πi
) = w0(x)11 +

r∑
a=1

D(1)
a w0(x)JS

a +
r∑

b=1

D
(2)
b w0(x)J (2)

b + D(3)w0(x)J (3) (3.66)

where

D(1)
a =

1
2πi

∂ρa (3.67a)

D
(2)
b =

1
2!(2πi)2

r∑

c,d=1

Kbcd∂ρc∂ρd
+

r∑
a=1

AabD
(1)
a (3.67b)

D(3) = − 1
3!(2πi)3

r∑

a,b,c=1

Kabc∂ρa∂ρb
∂ρc −

r∑
a=1

c2 ·Ja

12
D(1)

a (3.67c)

and the notation D
(1)
a w0(x), for example, means an operation limρ→0 D

(1)
a w0(x, ρ). We define the

periods in the large volume limit to be the coefficients of J in (3.66), i.e. w
(i)
a (x) = D

(i)
a w0(x) for

i = 1, 2 and w(3)(x) = D(3)w0(x). If we evaluate the skew-symmetric form (3.62) on the basis (3.64),
we find that it has the standard matrix form of the symplectic form which we denote by I(L). Then
the hypergeometric series appearing in the coefficients of (3.64) are integral symplectic with respect to
I(L) [148].
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3.4.2. The prepotential

The corresponding prepotential has the following form [112]

F(t) =
1
2

1
w0(x)2

(
w0(x)D(3)w0(x) +

r∑
a=1

D(1)
a w0(x)D(2)

a w0(x)

)
(3.68)

=
1
3!

r∑

a,b,c=1

Kabctatbtc +
1
2

r∑

a,b=1

Aabtatb −
r∑

a=1

c2 ·Ja

24
ta (3.69)

+
ζ(3)

2(2πi)3
χ(X) + O(e2πit)

where

ta =
1

2πi

D
(1)
a w0(x)
w0(x)

(3.70)

is the mirror map. The ta are the coordinates on the Kähler moduli space while the xi are the coordinates
on the complex structure moduli space. The period vector

Π(t) = (Π0,Πa, Πh1,1+1, Πh1,1+a+1)
T =

(
2F − ∂F

∂ta
ta,

∂F
∂ta

, 1, ta

)T

a = 1, . . . , h1,1 (3.71)

is then obtained from (3.68)

Π(t) =




− 1
6Kabctatbtc + c2 ·Jata

1
2Kabctbtc + Aabtb + c2 ·Ja

1
ta


 (3.72)

The constants Aab have to be fixed such that the basis for the period vectors is integral and symplectic.
The integer part is irrelevant as it can be absorbed by an Sp(2h1,1 +2,Z) transformation due to the fact
that the periods are only defined up to such a transformation. The fractional part can be determined
as [112]

Aab =
1
2
Kaab mod Z (3.73)

From (3.52) we see that if any index corresponds to a divisor L representing a K3 surface

Aab = 0 (3.74)

If Π(t) is a solution to the Picard-Fuchs equations at a point t, then by analytically continuing Π
around a singularity t1 of the equations we arrive at a new solution at t. This must be expressible as
linear combination of the basis Π: Π → At1Π where the b3 × b3 non-singular matrix At1 characterizes
the monodromy around t1. If the equation has r singular points we obtain r monodromy matrices
At1 , . . . , Atr . The relation between the monodromy properties of the Picard-Fuchs equations and special
geometry has been studied in detail in [150].

As mentioned above, the (quantum) geometry of the Calabi–Yau manifold is encoded in the periods.
If we want to make use of the fact discussed in Sections 2.5 and 2.6 that we can relate the description of
the Calabi–Yau at the Gepner point to the one in the large volume limit we must have a way to translate
the periods from one point to the other. This can be done by analytic continuation as follows. (This is
the analytic continuation we referred to in Section 2.6.) We have introduced two sets of local coordinates
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3. Calabi-Yau Spaces

on the complex structure moduli space that are well-adapted to these two points, respectively. At the
Gepner point we have local coordinates ψi, i = 1, . . . , h1,1 defined in (3.19). Here and in the following
we restrict ourselves to the toric part H̃∗(X,Z) of the cohomology H∗(X,Z), see Section 3.2.1. At this
point there is a Zd monodromy A : (ψ1, . . . , ψh̃1,1) → (αψ1, . . . , α

nh̃1,1 ψh̃1,1) induced by the discrete
quantum symmetry (2.119) where α is a dth root of unity and ni are some definite integers depending
on the kj with n1 = 1. We represent the action of the symmetry generator g on the toric part of the
even cohomology H̃even(X,Z) = H̃3(X∗,Z) by a b̃3× b̃3 matrix A(G), b̃3 = 2h̃1,1+2, which is determined
as follows. There is a basis of periods on the mirror manifold X∗

$(G) = ($0, $1, . . . , $b̃3−1) (3.75a)

defined by

$k(ψi) = $0(αkniψi) k = 1, . . . , b̃3 − 1 (3.75b)

which behaves under this monodromy as

$(G) −→ A$(G) with A(G) =




0 1
0

. . . . . .
. . . . . .0

0 1
ab̃31

ab̃32
· · · ab̃3−1,p ab̃3b̃3




(3.76)

satisfying Ad = 1. Here $0(ψ) is the period obtained by analytic continuation of the fundamental period
w0 at large volume; i.e. w0 is the unique logarithm-free solution of the Picard-Fuchs equations. A(G) is
the matrix representing the monodromy A around the Gepner point in the Gepner basis. This choice
of basis is indicated by the superscript (G). The entries of the bottom row satisfy ab̃3i ∈ {−1, 0, 1}, i =
1, . . . , b̃3. Since b̃3(X) < d in general, the periods $k are not linearly independent. There are relations
between them which we will discuss shortly.

On the other hand, in the large complex structure limit we have the local coordinates xi, i =
1, . . . , h̃1,1, defined in (3.57). In these coordinates the periods take the natural form (3.66)

$(L) = (w0, w
(1)
1 , . . . , w

(1)

h̃1,1 , w
(3), w

(2)
1 , . . . , w

(2)

h̃1,1) (3.77)

They are related to (3.75b) by a basis transformation M ,

$(L) = M$(G) (3.78)

In Chapter 5 we will need the action of A on the periods expressed in the large complex structure
coordinates, i.e. we need the monodromy matrix A(L) = MA(G)M−1 in the large volume basis, the
latter being indicated by the superscript (L). Therefore we need to know M which can be obtained
by analytically continuing either set of periods to the other point. This can in principle be done as is
shown in Appendix A in the example P4

1,1,2,2,6[12] but is very tedious especially for h1,1 > 2. Using
the insights of the study of D-branes on Calabi–Yau spaces [151], [152] it is however possible [153] to
reduce the computation to linear algebra. This is shown and explained in the example P4

1,2,3,3,9[18] in
Appendix B. These two examples are discussed in Sections 3.5.2 and C.1.3, respectively. In the process
of computing this analytic continuation we also obtain the relations among the periods $k mentioned
above, see (A.28) and (B.12).

Furthermore, we will also need the Mukai intersection form (3.62) which we denoted I(L) in terms
of the basis (3.75) which is

I(G) = M−1I(L)
(
M−1

)T
(3.79)
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The extra Zd symmetry at the Gepner point allows us to express I(G) as a polynomial I(G)(g) in the
generator g. This generator can be represented on H̃3(X∗,Z) by a b̃3 × b̃3 matrix obtained from the
d × d shift matrix satisfying gd = 11 subjected to the relations satisfied by the periods. For explicit
examples see [154].

In the remainder of this section we consider the effect of two important monodromies in the Kähler
moduli space. Let us consider the effect of the Peccei-Quinn symmetry making the replacement on the
period vector Π(t) [105]

ta → ta + δb
a (3.80)

This induces a monodromy of the periods about the large complex structure corresponding to an integral
matrix Sa

Π → SaΠ with Sa =




1 −δT
a

1
6Kaaa + 1

12 c2 ·Ja
1
2KT

aa + AT
a

0 11 − 1
2Kaa + Aa −Ka

0 0 1 0
0 0 δa 11


 (3.81)

where we have introduced the vectors (δa)b = δb
a, (Kaa)b = Kaab and (Aa)b = Aab as well as the matrix

(Ka)bc = Kabc. If we set Ra = Sa − 11 then we observe that

[Ra, Rb] = 0 (3.82)
RaRbRc = KabcY (3.83)

RaRbRcRd = 0 (3.84)

where Y is a matrix independent of a. These relations give a characterization of the large complex
structure limit independent of the choice of basis for the periods. The large complex structure limit
consists, in the general case, of h1,1 codimension 1 hypersurfaces (i.e. divisors) in the (compactification
of the) moduli space given by the secondary fan meeting transversely in a point and such that the
monodromies of the period vector about these divisors correspond to the properties (3.82) to (3.84).

Another type of monodromies are those obtained by going around the discriminant locus in the
secondary fan. The discriminant locus generally consists of several components. The primary component
is the one which separates the smooth Calabi–Yau and the orbifold phases from the remaining ones.
In the example in Figure 2.1 it corresponds to the vectors (0, 1) and (1,−2). This is also known as the
conifold locus. In the basis (3.77) the monodromy matrix takes the following form [104]

Π → TΠ with T =




1 0 0 0
0 11 0 0
1 0 1 0
0 0 0 11


 (3.85)

where 11 is the h1,1 × h1,1 unit matrix.
The matrices Sa and T will be reinterpreted in Section 5.6 as natural automorphisms of the

Grothendieck group K0(X) of X.

3.5. Specific examples

There are 7555 weighted projective spaces P4
w which admit transverse hypersurfaces. They have been

classified in [155] and [156]. We are interested in Fermat hypersurfaces with a few Kähler moduli for
computational reasons. In table 3.2 we list all such Calabi–Yau manifolds with h1,1 ≤ 6 together with
their Hodge numbers and the corresponding Gepner model. The purpose of this section is twofold.
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First, we want to apply the concepts and methods of Sections 3.2 to 3.4 explicitly to some examples.
Second, we want to introduce the families of Calabi–Yau hypersurfaces which will be used in the context
of the study of D-branes in chapter 6. Furthermore, this section together with Appendix C can also
serve as a reference for the toric data of these Calabi–Yau manifolds.

We will now discuss the geometry of some of these spaces more closely. The examples in table 3.2
can be grouped into sets of families having similar geometric properties. The families 1 to 4 do not
meet the singularities of their ambient space and therefore only possess one Kähler modulus which is
the one inherited from the ambient space. They will be briefly discussed in Section 3.5.1. Then the
families 5, 11 and 20 are K3-fibrations with fiber P3

1,1,1,1[4] while 6, 13 and 25 are K3-fibrations with
fiber P3

1,1,1,3[6]. These are the only one-parameter K3 Fermat hypersurfaces. The geometry of these
families will be described in detail in Section 3.5.2 and Section C.1. Next, the families 9, 10 and 15 are
elliptic fibrations which are not K3-fibrations, all with a P2 base, and with fibers P2

1,1,1[3], P2
1,1,2[4] and

P2
1,2,3[6], respectively. Their properties are studied in Section C.2. The families 17, 21, 23 and 26 are

also only elliptically fibered but will not be discussed in detail. The families 14, 16 and 18 are both K3-
and elliptically fibered over the Hirzebruch surface F2. We will explain their geometry in Section C.3.
The families 22 and 24 also admit both an elliptic and K3 fibration, but will not be studied further.
The remaining ones, 7, 8, 12 and 19 do not have a fibration structure and are not discussed.

No. Family X Gepner model h1,1 h̃1,1 h1,2 h̃1,2

1 P4
1,1,1,1,1[5] (3, 3, 3, 3, 3) 1 1 101 101

2 P4
1,1,1,1,2[6] (4, 4, 4, 4, 1) 1 1 103 103

3 P4
1,1,1,1,4[8] (6, 6, 6, 6, 0) 1 1 149 149

4 P4
1,1,1,2,5[10] (8, 8, 8, 3, 0) 1 1 145 145

5 P4
1,1,2,2,2[8] (6, 6, 2, 2, 2) 2 2 86 83

6 P4
1,1,2,2,6[12] (10, 10, 4, 4, 0) 2 2 128 126

7 P4
1,2,2,3,4[12] (10, 4, 4, 2, 1) 2 2 74 70

8 P4
1,2,2,2,7[14] (12, 5, 5, 5, 0) 2 2 122 107

9 P4
1,1,1,6,9[18] (16, 16, 16, 1, 0) 2 2 272 272

10 P4
1,1,1,3,6[12] (10, 10, 10, 2, 0) 3 2 165 165

11 P4
1,2,3,3,3[12] (10, 4, 2, 2, 2) 3 3 69 63

12 P4
1,3,3,3,5[15] (13, 3, 3, 3, 1) 3 3 75 63

13 P4
1,2,3,3,9[18] (16, 7, 4, 4, 0) 3 3 99 95

14 P4
1,1,2,8,12[24] (22, 22, 10, 1, 0) 3 3 243 242

15 P4
1,1,1,3,3[9] (7, 7, 7, 1, 1) 4 2 112 112

16 P4
1,1,2,4,8[16] (14, 14, 6, 2, 0) 4 3 148 147

17 P4
1,2,2,10,15[30] (28, 13, 13, 1, 0) 4 4 208 195

18 P4
1,1,2,4,4[12] (10, 10, 4, 1, 1) 5 3 101 100

19 P4
1,1,3,3,4[12] (10, 10, 2, 2, 1) 5 2 89 89

20 P4
1,4,5,5,5[20] (18, 3, 2, 2, 2) 5 5 65 53

21 P4
1,1,3,10,15[30] (28, 28, 8, 1, 0) 5 4 251 251

22 P4
1,2,3,12,18[36] (34, 16, 10, 1, 0) 5 5 185 182

23 P4
1,2,2,5,10[20] (18, 8, 8, 2, 0) 6 4 120 116

24 P4
1,2,3,6,12[24] (22, 10, 6, 2, 0) 6 5 114 111

25 P4
1,3,4,4,12[24] (22, 6, 4, 4, 0) 6 5 90 84

26 P4
1,3,3,14,21[42] (40, 12, 12, 1, 0) 6 6 180 168

Table 3.2.: Fermat hypersurfaces with h1,1 ≤ 6.
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3.5. Specific examples

3.5.1. The one-parameter families

The family P4
1,1,1,1,1[5] = P4[5], also known as the quintic in P4 has served as the most important Calabi–

Yau manifold because it is the simplest non-trivial Calabi–Yau space. In [104] Candelas et al have put
the mirror symmetry conjecture to work for the first time by explicitly computing the prepotentials
on both sides of (2.124) and calculating the instanton contributions. It was also the quintic for which
Douglas et al. [5] started the study of D-branes on Calabi–Yau spaces as will be explained in more
details in Chapter 6. The other one-parameter families were explored from the point of view of mirror
symmetry in analogy to the quintic in [157] and [158]. The cohomology for these models is generated
by the restriction of the hyperplane class H of the ambient weighted projective space. Using (3.24),
(3.23), (3.28), (3.29), (3.37), (3.38) and (3.42) yields

H3 = 5 c2 ·H = 50 χ(OH) = 5 pg(H) = 4 for P4
1,1,1,1,1[5] (3.86)

H3 = 3 c2 ·H = 42 χ(OH) = 4 pg(H) = 3 for P4
1,1,1,1,2[6] (3.87)

H3 = 2 c2 ·H = 44 χ(OH) = 4 pg(H) = 3 for P4
1,1,1,1,4[8] (3.88)

H3 = 1 c2 ·H = 34 χ(OH) = 3 pg(H) = 2 for P4
1,1,1,2,5[10] (3.89)

The families P4
1,1,1,1,2[6] and P4

1,1,1,1,4[8] can be described as triple covering of P3 branched over a
sextic and a double covering of P3 branched over an octic, respectively [74]. These descriptions can be
useful for studying vector bundles on these Calabi-Yau hypersurfaces by relating them to bundles over
P3. The case of rank 2 vector bundles on a double covering of a P3 branched over a quartic has been
extensively studied in [159]. The method used there can be generalized to the octic case, however it
seems as if one gets only results for non-generic octics.

Let us explain briefly the Kähler moduli space in these examples [104]. The affine one-dimensional
complex structure parameter space of the mirror X∗ admits a torus action which can be used to
compactify it and obtain a P1. The manifold degenerates however at three particular points which
correspond to the regular singular points of the Picard-Fuchs equation for the periods $: At ψ = 0
there is a Zd singularity which can be removed by going to the d-fold cover of the moduli space. At
ψ = 1 there is the conifold singularity where one three-cycle shrinks to zero. And at ψ = ∞ the
manifold degenerates to five P3’s intersecting one another in one point. In the Kähler moduli space
of X they correspond to the Gepner point, the conifold point and the large volume limit, respectively.
This example can serve as a prototype for the general structure of such moduli spaces.

3.5.2. The family P4
1,1,2,2,6[12]

General description of P4
1,1,2,2,6[12]

The geometry of this family has been thoroughly studied in [105] and [142]. In the first part of this
subsection we follow closely [105]. In the second we will translate the geometry into the combinatorial
data of the corresponding toric variety. The purpose of this redundant description is the following.
For more complicated families having, say h1,1 > 2, it is straightforward to compute all the topological
properties. However, these are given as pure numbers and it is generally difficult to recognize known (and
simple) topological and geometric structures. Therefore it is useful to have a geometric understanding
of the same properties, as well. In the Appendix C we have only collected the toric data for the other
families that have been investigated in order to study D-branes on them. In many cases one will have
to appeal to the geometric picture in order to get the relevant information. Due to lack of space we
restrict ourselves to show this geometric picture explicitly only for the following family.

Consider the Calabi–Yau threefold X which is obtained by resolving the singularities of degree twelve
hypersurfaces X̃ ⊂ P4

1,1,2,2,6. A typical defining polynomial for such a hypersurface is

W (z) = z12
1 + z12

2 + z6
3 + z6

4 + z2
5 . (3.90)
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3. Calabi-Yau Spaces

Following the general discussion in Section 3.3.3 the singularities occur along the surface P2
2,2,6

∼= P2
1,1,3

defined by z1 = z2 = 0, where there is a curve C of A1-singularities which is described by

z1 = z2 = 0, z6
3 + z6

4 + z2
5 = 0 (3.91)

In general it will be a smooth cubic curve in P2
1,1,3 which has genus gC = 2 [160]. We desingularize

by using an auxiliary P1 with coordinates (y1, y2) and define the blow-up P̃4 ⊂ P4
1,1,2,2,6 × P1 by the

equations

yizj = yjzi, i, j = 1, 2

The exceptional divisor is just P2
1,1,3 × P1, where the two projective spaces have coordinates (z3, z4, z5)

and (y1, y2) respectively. The proper transform of a general degree twelve hypersurface X is seen to
intersect the exceptional divisor in a surface defined by a polynomial g(z3, z4, z5, y1, y2) which is sextic
in the z’s and linear in the y’s. The fibers of the projection of this surface to the sextic curve C ⊂ P2

1,1,3

are lines; thus the desingularized Calabi–Yau manifold X̃ contains a ruled surface with C as its base.
There is a linear system |L| [111] on X generated by polynomials of degree one (i.e. by z1 and z2).

Every divisor in |L| is the proper transform on X of the zero locus of such a polynomial on X̃. These
divisors are described by means of a parameter λ ∈ P1 and noting that the weights wi are of the form
discussed in Section 3.3.4 with l = 2 the equation of the proper transform of L becomes that of a surface
of degree six in P3

1,1,1,3

(1 + λ12)y6
1 + z6

3 + z6
4 + z2

5 = 0 (3.92)

Note that this is precisely of the form (3.51). Thus, the linear system |L| is thus a one-parameter family
of degree six K3 surfaces. In other words, this linear system projects X to P1 with the fibers being K3
surfaces [111]. Note that any two distinct members of |L| are disjoint, i.e. L · L = 0. There is a second
linear system on X which we denote by |H| that is generated by polynomials of degree two (i.e. by
linear combinations of z2

1 , z1z2, z
2
2 , z3 and z4). The divisors in |H| are total transforms on X of the zero

locus on X̃ of the corresponding polynomial. A typical polynomial will have non-zero coefficient on z5,
and allows one to solve for z5 in terms of the other variables, producing a proper transformed equation
which defines a surface of degree twelve in P3

1,1,2,2. This is a surface of general type. These two linear
systems are related to each other as follows. If we look at |2L|, the quadratic polynomials in z1 and z2,
we get a subsystem of |H| which can be characterized by the property that the polynomials from |2L|
vanish on the singular curve C. Interpreted on the resolution X, this means that the total transform
of the zero locus of such a polynomial has the form 2L + E where 2L describes the proper transform
and E is the exceptional divisor. Hence, we have

|H| = |2L + E| (3.93)

We will need the intersection products of these divisors. Since L · L = 0, we automatically have

H · L2 = 0, L3 = 0 (3.94)

Since |H| defines a birational map on X whose image has degree four (the number of common intersection
points of three members of |H|), we have

H3 = 4 (3.95)

When we restrict the linear system |H| to one of the K3 surfaces L, we get a quadric linear system on
L. It follows that

H2 · L = (H ∩ L) · (H ∩ L) = 2. (3.96)
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3.5. Specific examples

This tells us that the Picard lattice of L is

Pic(L) = 〈2〉. (3.97)

The intersection numbers with E can be obtained by replacing H by E + 2L in the above which leads
to

E3 = −8, E2 · L = 2, E · L2 = 0,
E2 ·H = −4, E ·H2 = 0, H · E · L = 2 (3.98)

Next, we consider two classes of some 2-cycles on X. The first class is l, the fiber of the ruling E −→ C.
One can identify its cohomology class by noting that H ∩ E consists of two fibers lying over the two
points of intersection of the hyperplane with C so that

l =
1
2
H · E =

1
2
H2 −H · L (3.99)

The second class is the intersection of general members of |H| and |L|,

h =
1
2
H · L (3.100)

The intersection relations between linear systems and curves read

L · l = 1 L · h = 0 (3.101)
H · l = 0 H · h = 1 (3.102)

Finally, from (3.37) and the topological properties of the surfaces E and L given in Section 3.3.2 we
find for the second Chern classes

c2 ·H = 52, c2 · L = 24, c2 · E = 4 (3.103)

Toric description of P4
1,1,2,2,6[12]

According to (3.16) the extended vertices of the dual polyhedron for this family are

ν̄∗0 = ( 0, 0, 0, 0, 1) ν̄∗1 = (−1,−2,−2,−6, 1) ν̄∗2 = ( 1, 0, 0, 0, 1)
ν̄∗3 = ( 0, 1, 0, 0, 1) ν̄∗4 = ( 0, 0, 1, 0, 1) ν̄∗5 = ( 0, 0, 0, 1, 1)
ν̄∗6 = ( 0,−1,−1,−3, 1)

(3.104)

where ν̄∗6 = 1
2 (ν̄∗1 + ν̄∗2 ) corresponds to the resolution of the A1 singularity coming from the weights 2, 2

and 6 as explained in Section 3.3. The dual face Θ2 to the face Θ∗1 = 〈ν̄∗1 , ν̄∗2 〉 is spanned by (3.15) ν̄3 =
(−1, 5,−1,−1), ν̄4 = (−1,−1, 5,−1) and ν̄5 = (−1,−1,−1, 1) and has two interior points (−1, 1, 0, 0)
and (−1, 0, 1, 0). Thus the genus of the singular curve is g = 2. We have explained in Section 2.6 that
such a singularity corresponds to a phase boundary. In the present case this is the horizontal line in
Figure 2.1.

The vertices (3.104) satisfy the relations (3.22)

ν̄∗1 + ν̄∗2 − 2ν̄∗6 = 0 (3.105a)
−6ν̄∗0 + ν̄∗3 + ν̄∗4 + 3ν̄∗5 + ν̄∗6 = 0 (3.105b)

which correspond to the D-term equations in (2.110) of the gauged linear σ-model. In this example
there is a unique maximal triangulation and it turns out that the Mori generators can be read off
from (3.105)

l(1) = ( 0, 1, 1, 0, 0, 0,−2) l(2) = (−6, 0, 0, 1, 1, 3, 1) (3.106)
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3. Calabi-Yau Spaces

In general, one has to work through the algorithm given in Section 3.3.1 to obtain the Mori generators.
Observe that these are precisely the U(1)2 charge vectors (2.108) of the example we studied in the
context of the gauged linear σ-model in Section 2.5. It is useful to arrange this information in a table
as follows:

C1 C2

D0 0 0 0 0 1 −6 0 K = −6H
D1 −1 −2 −2 −6 1 0 1 L
D2 1 0 0 0 1 0 1 L
D3 0 1 0 0 1 1 0 H
D4 0 0 1 0 1 1 0 H
D5 0 0 0 1 1 3 0 3H
D6 0 −1 −1 −3 1 1 −2 E = H − 2L

h l

(3.107)

The left-hand side of the vertical line is simply an arrangement of the set Ξ of the vertices ν̄∗i and
we have labelled the corresponding T-invariant divisors by Di. Let us now explain the right-hand
side which corresponds to the two Mori generators written as column vectors. The row vectors
(−6, 0), (0, 1), (1, 0), (3, 0), (1,−2) span the secondary fan A(Ξ). We can drop (3, 0) since it spans the
same edge as (1, 0) and replace (−6, 0) by (−1, 0) for the same reason. These are precisely the bound-
aries of the phases in figure 2.1 we found when analyzing the low-energy effective theory of the gauged
linear σ-model in Section 2.5. From the discussion above we see that the divisor L corresponds to (0, 1),
the divisor E to (1,−2) and the divisor H to (1, 0). We also see that there are linear equivalences
D1 ∼ D2 and D3 ∼ D4 and 3D4 ∼ D5. We have renamed the divisors according to their geometric
meaning as explained at several places in Section 3.3.

The Mori generators l(a), a = 1, 2 are dual to curves in H2(X,Z) which we denote by Ca in the top
row. The entries on the right-hand side then correspond to the intersection numbers of these curves
with the divisors Di, or E, H and L. From (3.101) we can identify l(1) with l and l(2) with h which
explains the bottom line. Furthermore, the classes J1 ≡ H and J2 ≡ L are dual to the Mori generators
and hence generate the Kähler cone. It follows that the Kähler cone corresponds to the first quadrant.
This is in complete agreement with the corresponding phase in the gauged linear σ-model being the
geometric or smooth Calabi-Yau phase.

Next, we want to compute the intersection ring of X. Applying the method from section 3.3.1 we find
that there are two primitive collections, {ν∗1 , ν∗2} and {ν∗3 , ν∗4 , ν∗5 , ν∗6}, and by (3.23) the Stanley-Reisner
ideal is

ISR = {D1 ·D2 = L2 = 0, D3 ·D4 ·D5 ·D6 = 3H4 − 6H3 · L = 0} (3.108)

Note that the primitive collections also determine the excluded set F in (2.111). This allows us to
compute the intersection ring (3.26) of the ambient toric variety P4

1,1,2,2,6 from (3.108) and (3.25)
applied to D2, . . . , D5 as follows

L4 = H · L3 = H2 · L2 = 0, H3 · L = 1
3 , H4 = 2

3 (3.109)

The fractional intersection numbers indicate that we have not blown up the codimension one singular-
ities. The Calabi–Yau hypersurface X is a section of the anti-canonical bundle, i.e. the anti-canonical
divisor −K =

∑6
i=1 Di = −D0 which is indicated in the first row of the table. By using the restriction

formula (3.27) we find

L3 = H · L2 = 0, H2 · L = 2, H3 = 4 (3.110)

which agrees with the results from the previous subsection and further justifies the identification of the
divisors Di with E, H and L.
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From the table (3.107) and the intersection ring (3.110) we can get additional information about
the geometry of these divisors. First we can apply the criteria for elliptic and K3 fibrations. The only
effective divisor whose triple self-intersection is zero are multiples of L (which define the K3 fibration)
and of 3H−2L. But if we take the curve l then we find that (3H−2L)·l = −2 hence condition (3.46a) of
the elliptic fibration is not met. From (3.110) we see that the divisor L does not satisfy condition (3.46c).
Hence X is not elliptically fibered. On the other hand, L does satisfy conditions (3.49a) and (3.49b)
so X is K3-fibered in agreement with what we discussed above. We can also study the geometry of E.
Since l · E < 0, l is contained in E. Furthermore, from the last line of the table, we have a fibration
π : E → P2

113. The base intersects X in a curve C of genus 2. From l · D2 = l · D3 = l · D4 = 0 we
conclude that l ∩ P2

113 = pt. Hence l is the fiber of π. The restriction of E to X is therefore a ruled
surface over the curve C.

Finally, we need the topological and holomorphic characteristics of the surfaces E, H and L. The
second Chern classes are obtained from the degree 2 term in the expansion of (3.29) as well as from
the intersection ring (3.110) and agree with (3.103). The Euler characteristics can then be computed
from (3.37) and are

χ(E) = −8 χ(L) = 24 χ(H) = 56 (3.111)

The holomorphic Euler characteristic can be calculated from (3.38)

χ(OE) = −1 χ(OL) = 2 χ(OH) = 5 (3.112)

Now, in order to compute pg(D) and q(D) the toric data is not sufficient, we need to know more. E is
a ruled surface over a curve of genus 2. From Section 3.3.2 we find pg(E) = 0 and q(E) = 3. H and L
are both T-invariant divisors and we can use (3.42) to obtain q(H) = q(L) = 0 and by (3.38) pg(H) = 4
and pg(L) = 1. The latter agrees with the fact that L is a K3 surface, see Section 3.3.2.

3.6. Nested moduli spaces

In [105], [142] and [161] it was observed that many Calabi–Yau families are birationally equivalent to
a different Calabi–Yau manifold when restricted to specific codimension one subspaces in the Kähler
moduli space. These are defined by those singularities of the Picard-Fuchs equations where the conformal
field theory and therefore the Calabi–Yau space becomes singular. This has been briefly discussed at
the end of Section 2.5. We have mentioned there that a singularity occurs if the Kähler class approaches
a face of the Kähler cone of X or, in other words, a phase boundary. Each face of the Kähler cone
determines a collection of holomorphic 2-spheres whose area shrinks to zero as the face is approached.
These 2-spheres can be contracted to points at the expense of introducing singularities into the new
space X ′. Due to non-perturbative effects the string theory is still well-behaved at these points [4].

There are two cases in which we are interested. In the first case, only a finite number of 2-spheres
on X are contracted by this process. This is the mirror description of the conifold singularity [4], [55].
Consider the example P4

1,1,2,2,6[12] given in Section 2.5 and further studied in Section 3.5.2, now using
the language of Mori generators of Section 3.3.1. The conifold transition corresponds to contracting the
curve l = l(2) which is dual to the face given by L.

In the second case, a collection of divisors is contracted to a smooth curve. This is precisely the
inverse process of the resolution of singular ZN curves discussed in Section 3.3.3. It can be shown [57]
that in the example above, this corresponds to approaching the phase boundary determined by H, i.e.
contracting the Mori generator l(1). In both cases, the transition from X to X ′ can be studied in detail
by analyzing e.g. the Picard-Fuchs operators or the periods.

In general, denote the two spaces in question by X = P4
w[d] and by X ′ = P4

w′ [d
′]. A simple

interpretation of the contraction X → X ′ is given in terms of toric geometry [108], [102]. Their reflexive
polyhedra are nested into each other: ∆∗(w′) ⊂ ∆∗(w). This nesting phenomenon is ubiquitous among
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3. Calabi-Yau Spaces

Gepner point of X’

E2 Gepner point of X

D1 K
J2

H

E1

Large volume limit of X’
LLarge volume limit of X

Figure 3.1.: The secondary fans of X = P4
1,2,3,3,9[18] and X ′ = P4

1,1,2,2,6[12].

the reflexive polyhedra and has the following implications for the Kähler and complex structure moduli
spaces of the manifolds X, X ′.

∆∗(w′) ⊂ ∆∗(w) ⇐⇒ ∆(w) ⊂ ∆(w′)

=⇒MSCFT
K (X ′) ⊆MSCFT

K (X), MSCFT
C (X) ⊆MSCFT

C (X ′) (3.113)

We will now discuss this inclusion of Kähler moduli spaces in detail the example of X = P4
1,2,3,3,9[18]

discussed in Section C.1.3 and X ′ = P4
1,1,2,2,6[12]. The secondary fan describing the Kähler moduli space

(see Section 3.3.1) of X has dimension three, therefore we project its real part onto a sphere. This is
displayed in figure 3.1. Let us explain in detail the information contained in this figure. We start by
noting from (3.107) and (C.24) that the toric polyhedron ∆∗(1, 1, 2, 2, 6) is contained in ∆∗(1, 2, 3, 3, 9)
because they differ only by the vertex ν∗ = (−2,−3,−3,−9). Next, we determine the triangulations of
∆∗(1, 2, 3, 3, 9) and find eight of them, one of them being maximal, another one being minimal. Using
the algorithm given in Section 3.3.1 the generators of the Mori cone of X, l(1), l(2), and l(3) are computed,
the result is also contained in (C.24). The row vectors of the right-hand side of the vertical line in (C.24)
are drawn in figure 3.1 as lines starting from the origin and ending on the sphere, and are labeled by the
corresponding divisor. Note that the vertex ν∗ corresponds to the divisor D1. By applying the method
of [106], [107] to associate a maximal cone of the secondary fan to a triangulation we find the following
maximal cones: 〈0,H, D1, L〉, 〈0, D1, L, K〉, 〈0, L, K,E1〉, 〈0,H,E1, L〉, 〈0,H,E1, E2〉, 〈0,H,D1, E2〉,
〈0, E2, D1,K〉 and 〈0,K, E1, E2〉. The maximal triangulation corresponds to the cone spanned by H,
L and D1 emphasized back on the left which contains the Kähler cone 〈0, H, L, J2 = D1 + H〉. This
contains the large volume limit as deep interior point which we have indicated by an arrow pointing
from the sphere on outwards. The minimal triangulation corresponds to the cone spanned by K, E1
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and E2 emphasized in the front on the right. This cone contains the Gepner point which is indicated
by another arrow.

Recall that the Mori cone generates the lattice of relations L for X and L′ for X ′. The Mori cone
of X ′ can be obtained from the one of X by restricting the latter to the sublattice L′ ⊂ L. The Mori
generators of X ′ are then related to those of X by l(1)′ = l(1) + l(2) and l(2)′ = l(3). We see that in
this contraction the entries corresponding to K, H, L and E2 remain unchanged. Hence, if we identify
E2 in X with E in X ′, we expect that the secondary fan of X ′ given in figure 2.1 will be contained
in the one of X. To confirm this, we need to take into account that the topology of the divisors H
in X and X ′ is different. We noted, however, in Section C.1.3 that the divisor J2 in X has the same
topological properties as H in X ′. We therefore identify the secondary of X ′ as the two vertical half-
disks emphasized in figure 3.1. Unfolding them reproduces precisely the secondary fan in figure 2.1.
From the discussion in Section 2.5 we know where the large volume limit and the Gepner point of X ′

are and we have indicated them again by arrows pointing outwards. It is important to note that the
large volume limit of X ′ is contained in the boundary of the Kähler cone of X and that there is a similar
relation between the Gepner points of X and X ′.

We will return to this picture in Section 6.4.5 when we discuss the D4-branes wrapping these divisors.
As a different kind of inclusion relation it has been observed in [102] that the dual polyhedron ∆∗

K3(w
′)

for some K3 hypersurface L sits in the polyhedron ∆∗(w) for a Calabi–Yau hypersurface X∆∗(w) where
w and w′ are related as in (3.51). In this case X∆∗(w) is a K3 fibration with fiber L as discussed in
Section 3.3.2. This observation has been studied in detail in [162].
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4. Boundary Conformal Field Theories

D-branes are defined to be objects on which open strings can end. As often in string theory, there are
two descriptions for these objects, one from a geometric point of view and another in terms of conformal
field theory. In this chapter we will focus on the latter and describe D-branes in the conformal field
theory description of the Calabi–Yau manifold, namely the Gepner model introduced in Section 2.4.
The geometry of D-branes will then be the subject of chapter 5. In order to give such a description
we need to introduce boundaries into the conformal field theory which leads to so-called boundary
conformal field theories.

4.1. Generalities and Definitions

A conformal field theory on a Riemann surface with a boundary requires specifying boundary conditions
on the operators. For non-linear σ-models these conditions can be derived by imposing Dirichlet and/or
Neumann boundary conditions directly on the σ-model fields. For more general conformal field theories
such as the Gepner model we do not have a Lagrangian description, so the construction, classification
and interpretation of boundary conditions is not as straightforward.

If the conformal field theory has a chiral symmetry algebra A(= AL = AR) one may simplify the
problem by demanding that the boundary conditions are invariant under this symmetry. We start with
a rational conformal field theory which have a finite set I of (classes of) irreducible highest weight
representations Vj , j ∈ I. The Hilbert space of the bulk conformal field theory is decomposable into a
finite sum of irreducible representations of two copies of A, H =

⊕
j,̄ Nj̄Vj ⊗ V ̄ with the multiplicity

Nj̄ ∈ N of the left and right copies of A. If χj is a character of A, then Sij is the matrix representation
of the modular transformation S : τ → −1/τ

χi(q) =
∑

j∈I
Sijχj(q̃) (4.1)

where q = e2πiτ and q̃ = e−
2πi
τ . The matrix S satisfies ST = S, S† = S−1, (Sij)∗ = Si∗j = Sij∗ and

S2 = C where C is the conjugation matrix defined by Cij = δij∗ . Here i∗ denotes the representation
conjugate to i under some involution of I, e.g. complex conjugation. The representations Vj define the
fusion algebra

Vi ? Vj =
∑

k

Nij
kVk (4.2)

where the fusion coefficients Nij
k ∈ N satisfy the Verlinde formula [163]

Nij
k =

∑

l∈Z

SilSjl (Skl)
∗

S1l
(4.3)

The Virasoro algebra is contained in A and must be preserved. Let the boundary be at z = z̄ in some
local coordinates on the Riemann surface corresponding to the half-plane. Reparametrizations should
leave the boundary fixed, so we must impose [164]

T (z) = T (z̄) at z = z̄ (4.4)
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4. Boundary Conformal Field Theories

In other words, no momentum flows across the boundary. If the remaining symmetry algebra is gen-
erated by chiral currents W (r) of half-integer or integer conformal dimension hr, then the boundary
conditions are more general [165], [166], [167]

W (r)(z) = ΩW
(r)

(z̄)Ω† at z = z̄ (4.5)

where Ω is an outer automorphism ofA. The action by Ω is allowed since there is no equally fundamental
meaning of W (z) = W (z̄) as in the case of the energy-momentum tensor in (4.4). We can conformally
map the (punctured) half-plane to an infinite strip. Due to the boundary conditions, the Hilbert space
of states on the boundary decomposes on irreducible representations of a single copy of A according to
Hβα =

⊕
niα

βVi with a new set of multiplicities niα
β ∈ N, called annulus coefficients. Here, α and

β label some boundary conditions on the left and right boundary of the strip, respectively. Note that
these multiplicities satisfy niα

β = ni∗β
α.

Next, we consider a one-loop diagram in the open string channel, i.e. a conformal field theory on an
annulus. By world-sheet duality this can also be studied in the closed string channel where time flows
from one boundary to the other. The boundaries appear as initial and final conditions on the path
integral and are described in the operator formalism by coherent boundary states [168], [169]. By a
conformal mapping and world-sheet duality, (4.4) and (4.5) become conditions on the boundary states
|α〉Ω

(
Ln − L̄−n

) |α〉Ω = 0 (4.6)(
W (r)

n − (−1)hrΩ
(
W

(r)

−n

))
|α〉Ω = 0 (4.7)

The solution to these conditions are linear combinations of the Ishibashi states [170], [171]

| i 〉〉Ω =
∑

N

|i,N〉 ⊗ UΩ|̄ı, N〉 (4.8)

Here |i〉 is a highest weight state of the chiral algebra A, the sum is over all descendants of |i〉; and
U is an anti-unitary operator with U |̄ı, 0〉 = |̄ı∗, 0〉 acting only on the right-moving generators as
UW

(r)

n U† = (−1)hrW
(r)

n . The Ishibashi states are normalized such that Ω〈〈j||j′〉〉Ω = δjj′S1j . In terms
of this basis, a boundary state |α〉Ω can be expanded as

|α〉Ω =
∑

j∈E

ψj
α√
S1j

| j 〉〉Ω (4.9)

where E = {j ∈ I|j = ω(̄), Nω(̄)̄ 6= 0}. One defines an involution α → α∗ on the boundary states by
ψj

β∗ ≡ ψj∗
α =

(
ψj

α

)∗ and the conjugate boundary state [166]

Ω〈β| =
∑

j∈E
Ω〈〈j|

ψj
β∗√
S1j

(4.10)

World-sheet duality requires that calculations in either channel give the same result. This gives
powerful restrictions on possible boundary states. In the closed string channel we find for the tree-level
propagation of a closed string from a boundary state |α〉Ω to a boundary state |β〉Ω

Zβα(q̃) = Ω〈β|q̃ 1
2 (L0+L̄0− c

12 )|α〉Ω =
∑

j∈E
ψj

α

(
ψj

β

)∗ χj(q̃)
S1j

(4.11)
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4.2. Boundary states in N = (2, 2) superconformal field theories

with q̃ = e−4π L
T where L and T are the length and the circumference of the cylinder, respectively. In

the open string channel we find for the one-loop evolution of an open string in the Hilbert space Hβα

Zβα(q) =
∑

i∈I
niβ

αχi(q) (4.12)

with q = e−π T
L . Cardy required that after a modular transformation the two expressions should be the

same [164] and obtained a fundamental equation, referred to as the Cardy equation

niβ
α =

∑

j∈E

Sij

S1j
ψj

α

(
ψj

β

)∗
(4.13)

In the following, we assume that the boundary states |α〉Ω in (4.9) are orthonormal and complete [172], [173].
The latter implies that the number of boundary states is equal to the number of independent Ishibashi
states and is equal to |E|. One can show that the matrices (ni)α

β = niα
β form a representation of the

fusion algebra [172], [173]

ninj =
∑

k∈I
Nij

knk (4.14)

and they thus commute. Moreover, they satisfy n1 = 11, nT
i = ni∗ .

4.2. Boundary states in N = (2, 2) superconformal field theories

We are interested in describing BPS D-branes which preserve four supercharges, i.e. N = 1 space-time
supersymmetry in D = 4. We have seen in Section 2.3 that the closed string sector will have (at least)
N = (0, 2) world-sheet supersymmetry. We have required N = (2, 2) supersymmetry in order to have
an underlying superconformal field theory for a type II string theory. The requirement of N = 1 space-
time supersymmetry translates into the condition that the boundary conditions (4.5) must preserve a
diagonal N = 2 subalgebra of the N = (2, 2) world-sheet supersymmetry [15], [16].

Thus we require the boundary state to be invariant under a linear combination of the left and right
N = 2 superconformal algebra extended by the spectral flow operators. Consistency restricts the linear
combination to correspond to the automorphism group of the algebra which is O(2) for the N = 2
superconformal algebra and Z2 for N = 1. Thus [174], the condition (4.5) leads to two classes of
boundary conditions: the A-type boundary conditions

T = T J = −J G+ = ±G
−

eiφ = eiφ̄ (4.15)

and the B-type boundary conditions

T = T J = J G+ = ±G
+

eiφ = eiθeiφ̄ (4.16)

all at z = z̄. Both A-type and B-type boundary conditions preserve the N = 1 superconformal
algebra in (2.7)

T = T G = ±G (4.17)

at z = z̄. These conventions correspond to the open string channel where the boundary propagates
in world-sheet time. In the closed string channel, the boundary conditions (4.15) and (4.16) can be
rewritten as operator conditions on the boundary states. For the A-type boundary states we have

Ln = L−n Jn = J−n G±r = −iηG
∓
−r (4.18)
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4. Boundary Conformal Field Theories

and for the B-type boundary states we have

Ln = L−n Jn = −J−n G±r = −iηG
±
−r (4.19)

The relative sign change in the U(1) current from (4.15) and (4.16) can be understood as the result
of a π/2 rotation on the components of the spin one current J which corresponds to the open-closed
string duality. It is important to observe that mirror symmetry exchanges the A-type and the B-type
boundary conditions since it switches the relative sign of the U(1) charges as discussed in Section 2.6.
This relative sign is precisely what distinguishes (4.18) from (4.19).

The boundary state can be expanded in terms of the Ishibashi state as in (4.9)

| α 〉〉Ω =
∑

j

Bj
α| j 〉〉Ω (4.20)

where the sum is over the highest weight states of the N = 2 superconformal algebra which appear in
the Hilbert space of the non-linear σ-model for the Calabi–Yau space X. They may be chiral primary
states or non-chiral primary states. The conditions on the currents in (4.18) and (4.19) at the boundary
implies that q = q̄ and q = −q̄, respectively. This means that the A-type states are charged under (c, c)
operators and the B-type states under (a, c) operators. One can show [174] that the Bj

α are independent
of the Kähler moduli ta for the A-type boundary states and that, in the large volume limit, its chiral
primary part is completely determined by

B0
α =

∫

γα

Ω (4.21)

where γα is the supersymmetric 3-cycle on which the corresponding D-brane wraps (see Section 5.2).
The other coefficients can be obtained by taking the covariant derivative of

∫
γα

Ω on the vacuum line
bundle L over the moduli space of the N = 2 superconformal field theories with respect to the complex
structure moduli xj (cf. Section 3.4). Due to the non-renormalization theorem reviewed in Section 2.6
this means in particular that these coefficients are exact.

The coefficients of the B-type boundary states can similarly be shown to be independent of the
complex structure moduli xj but they depend on the Kähler moduli and therefore receive instanton
corrections. Similar to the case above, it can be shown that the chiral primary part of the coefficient
B0

α(γ) corresponding to the top cohomology H3,3(X) is holomorphic with respect to the Kähler moduli.
Furthermore, the other coefficients are again computed by taking derivatives of B0

α(γ) with respect to
the ta. Since it is holomorphic in the ta the instanton approximation is exact and it can be expressed
as a sum over holomorphic maps from the disk to X such that boundary of the disk is mapped to the
supersymmetric cycle γα it wraps (see Section 5.2)

B0
α =

∫

γα

Jp + O(e2πit) (4.22)

where 2p is the dimension of the cycle γα. Note that if p = 0 or p = 1 there are no instanton corrections
since the image of a holomorphic map of the disc does not intersect with the homology dual to J in
these cycles. We will discuss the geometry of these objects more deeply in Section 5.2.

4.3. Boundary states in Gepner models

We have reviewed the Gepner models in Section 2.4. We will use the notation introduced there. We
have also discussed in Section 2.5 that they describe Calabi-Yau compactifications at small volume.
In this section we will construct the D-branes in a compactification on a Calabi–Yau manifold at the
Gepner point.
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4.3. Boundary states in Gepner models

Since the Gepner model is not rational with respect to the Super-Virasoro algebra, the construction
of the most general boundary state has not yet been achieved. Recknagel and Schomerus [166] have
found a way to describe a certain subset of boundary states, called rational boundary states, which
respect a larger symmetry algebra, namely the N = 2 world-sheet algebras of each minimal model
factor separately, and can be found by Cardy’s technique. We have reviewed this in Section 4.1 and
apply it first to a minimal factor theory. Since minimal models are coset theories of SU(2)k WZW
theories, (4.14) yields a recursion relation for the annulus coefficients

ni = n2ni−1 − ni−2, i = 3, . . . , g (4.23)

It can be shown [172] that they are classified by the ADE groups. This classification coincides with (2.76)
which means that for a given modular invariant for the group G the annulus coefficients are determined
by G as follows. If G is the adjacency matrix of the Dynkin diagram of the group G with Coxeter
number g = k +2, then the boundary conditions α are labeled by the vertices of G. Hence E = Exp(G)
are the exponents of G and p ≡ |E| = dim ni = |G|. Moreover, n2 = G and ng = 0. All groups G
having even exponents, i.e. Aj , D2j+1 and E6 have a Z2 automorphism γ acting on the nodes of G and
preserving G, i.e. Gα

β = Gγ(α)
γ(β). Choosing γ = id for the other groups, one has

ng−i,α
γ(β) = niα

β (4.24)

We will need later on an extension of these matrices to values of i up to 2g = 2k + 4. From (4.23) we
have the relation

ng+i = −ng−i (4.25)

Hence the matrices ni are periodic in i with period 2g. Finally, the coefficients ψj
α in (4.9) are the

components of the orthonormal eigenvectors ψj of the symmetric matrix G.
Now, we turn to the boundary states of the Gepner models. A priori, they are labeled by

|α〉〉Ω =
∣∣({Lj}r

j=1, {Mj}r
j=1, {Sj}r

j=1

)〉〉
Ω

(4.26)

where Ω is an outer automorphism of the chiral symmetry algebra, but, as we will see shortly, there are
some simplifications. We have seen in Section 4.2 that there are two choices of Ω giving either A- or
B-type boundary conditions. In the generic case, i.e. if the levels kj of the minimal models are pairwise
different, the only way to maintain the tensor product symmetry in the presence of a boundary state
is to require that Ω have the same action on every factor of the tensor product. In special cases, when
kj1 = kj2 , there are permutation automorphisms of the tensor product algebra with which one can glue
the left-moving generators of the subtheory j1 to the right-moving generators of subtheory j2. These
will, however, not be considered.

The internal part of these boundary states is [166], [175]

| α 〉〉Ω =
1

κΩ
α

∑

λ+1∈Exp(G),µ

δβδΩBλ,µ
α | λ, µ 〉〉Ω (4.27a)

where

Bλ,µ
α =

r∏

j=1

1√√
2(kj + 2)

ψ
lj
Lj√

sin(lj , 0)kj

e
iπ

mjMj
kj+2 e−iπ

sjSj
2 (4.27b)

δΩ denotes the constraint that the Ishibashi state | λ, µ 〉〉Ω must appear in the closed string partition
function. For A-type boundary conditions this is no constraint as the Ishibashi states are already built
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4. Boundary Conformal Field Theories

on diagonal primary states and δβ already enforces that the total U(1) charge is integral. However, the
B-type Ishibashi states have opposite U(1) charge in the holomorphic and the anti-holomorphic sector,
and these only appear as a consequence of the GSO projection; so the δβ constraint requires that all
the mj are the same modulo kj + 2. The normalization κΩ

α is determined later.
It follows from (4.27) that the action of the Zkj+2 and Z2 symmetries in (2.77) and (2.78) is Mj →

Mj + 2 and Sj → Sj + 2, respectively. As a result of the δβ constraint, two physically inequivalent
choices for Sj are S =

∑
j Sj = 0, 2 mod 4. The Sj = odd case seems to be inconsistent because their

RR charges do not fit into a charge lattice together with the S = even states [5]; thus they will violate
the charge quantization conditions (5.4) and will not be considered further. In the end, due to the Z2

symmetry, it is sufficient to consider only boundary states with S = 0. A boundary state in the Gepner
model can be written as

| α 〉〉Ω = g
M1
2

1 . . . g
Mr
2

r h
S
2 | L1, . . . , Lr; M1, . . . , Mr; S 〉〉Ω

= g
M1−L1

2
1 . . . g

Mr−Lr
2

r h
S
2 | L1, . . . , Lr; M ′

1 = L1, . . . , M
′
r = Lr;S′ = 0 〉〉Ω (4.28)

By the symmetry considerations above, A-type boundary states form representations of the Gepner
model group G in (2.89). For B-type boundary states, the δβ constraint implies in addition that the
physically inequivalent choices of Mj can be described by the the single label

M =
r∑

j=1

K ′Mj

kj + 2
=

r∑

j=1

wjMj (4.29)

where K ′ = lcm(kj +2) and wj = K ′/(kj +2) is the weight of the jth minimal model, cf. (3.12). Hence
the B-type boundary states form representations of the quantum symmetry group ZK′ introduced in
Section 2.6 and are singlets under G.

Note that for a chiral primary field in a Gepner model µ = (0; λ; 0, 0, 0, 0, 0). Hence the corresponding
coefficients in (4.27b) can be identified with (4.21) and (4.22) for A-type and B-type boundary states,
respectively. The remaining boundary state coefficients in the Gepner model have no direct geometric
interpretation yet.

These boundary states do not include the contribution from the twisted sectors in the corresponding
Landau-Ginzburg orbifold theory described in Section 2.2. D-branes at orbifold singularities have been
studied in [176] while boundary states at orbifold singularities were discussed in [177] where it was
argued that after blowing up the singularity they correspond to D-branes wrapping the exceptional
divisor. Boundary states corresponding to branes away from the orbifold fixed points are obtained by
summing over the brane’s pre-images in the covering space. At the fixed points, however, the expressions
for boundary states can involve contributions from the twisted sectors of the theory, leading to a charge
under RR potentials coming from these sectors. In [178] it was argued that the boundary states (4.27)
described in [166] do not carry charge in the twisted RR sector, in other words they are not elementary.
Furthermore, additional, elementary boundary states for the Gepner model which are charged under
the twisted sector were given, see Section 4.3.3.

4.3.1. Witten index in Gepner models

To explore the charge lattice of the boundary states, and to find the geometric interpretation of given
boundary states, we compute the interaction Iαeα of two D-brane configurations | α 〉〉Ω and | α̃ 〉〉Ω. We
will argue in Section 6.1 that the corresponding conformal field theory quantity is IΩ

αeα = trΩαeα,R(−1)F ,
i.e. the Witten index in the open string sector [179]. This will be interpreted as an intersection form
on the charge lattice of the boundary states. It can be computed by starting in the closed string sector
and performing a modular transformation to the open string sector. In the closed string sector this
trace corresponds to the amplitude between the RR parts of the boundary states with a (−1)FL on the
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4.3. Boundary states in Gepner models

world-sheet inserted. For A-type boundary states one obtains [5]

IA
αeα =

1
CA

(−1)
S− eS

2

K−1∑
ν0=0

(−1)(
d
2 +r)ν0

r∏

j=1

n
2ν0+Mj−fMj

Lj ,L̃j
(4.30)

and for the B-type boundary states with d
2 + r even

IB
αeα =

1
CB

(−1)
S− eS

2

∑

m′
j

δ
(K′)
M−fM

2 +
Pr

j=1
K′

2kj+4 (m′
j+1)

r∏

j=1

n
m′

j−1

Lj ,L̃j
(4.31a)

while for d
2 + r odd

IB
αeα =

1
CB

(−1)
S− eS

2

∑

m′
j

1
2
(−1)

M−fM
K′ +

P
j

m′j+1

k′
j
+2 δ

(K′/2)
M−fM

2 +
Pr

j=1
K′

2kj+4 (m′
j+1)

r∏

j=1

n
m′

j−1

Lj ,L̃j
(4.31b)

where

δ(n)
x =

{
1 x = 0 mod n

0 otherwise
(4.32)

We choose the normalization CA = κA
ακAeαK and CB = κB

α κBeα ∏r
j=1

kj+2
K in order to satisfy Cardy’s

condition. The formulas (4.31a) and (4.31b) are valid for d = 2 mod 4. For d = 4 they have to be
exchanged. The intersection matrix depends only on the differences M − M̃ which agrees with the
discrete symmetry (2.89). We also see that the Z2 action S → S + 2 changes the orientation of one
of the branes. Recall from Section 2.4 the fact that the Ramond ground states are given by φl

l+1,1

which are identified with φk−l
−k+l−1,−1. Only these states contribute to the Witten index. In deriving

this result [5] one then crucially needs the periodic continuation of the annulus coefficients in (4.25).
From these intersection forms we will be able to extract the charges and the open string spectrum

for a given brane in Chapter 6. The intersection form can be represented by a matrix I acting on the
space of boundary states. Since it commutes with the symmetry group G of the Gepner model, it can
be written as a polynomial in the generators gj of G. For the remainder of this section we restrict
ourselves to the A-type modular invariants. In this case, the ψl

L in (4.27b) are the modular S-matrix
elements Sl

L and from (4.13), (4.3) it follows that nLeLl = NLeLl are the SU(2) fusion coefficients. They
are NLeLl = 1 for |L− L̃| ≤ l ≤ min{L + L̃, 2k − L− L̃} with l + L + L̃ ∈ 2Z and NLeLl = 0 otherwise.
Using their properties, (4.30) and (4.31) can be simplified as follows. In these equations the labels Mj ,
M̃j can be thought of as indices of a matrix acting on the states. Let us first consider the case of
A-type boundary states. Using the action of the Zkj symmetry and (4.25) the sum over ν0 in (4.30) for
L = L̃ = 0 boundary states can be written as

K−1∑
ν0=0

N
2ν0+Mj−fMj

0,0 =
K−1∑
ν0=0

g2ν0+Mj−fMj = (1− g−1
j ) (4.33)

so that we can effectively replace

K−1∑
ν0=0

N
2ν0+Mj−fMj

0,0 → n0,0 ≡ (1− g−1
j ) (4.34)

In the last step in (4.33) we have used the periodicity of the Mj labels and the fact that we sum over
the full orbit. The difference Mj − M̃j just indicates the starting point of the summation on the orbit,
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4. Boundary Conformal Field Theories

but due to the symmetry it does not matter where we actually start, hence the dependence on this
difference drops out1.

For the B-type boundary states we have noted in (4.29) that all the mj have to be identified and
hence the Mj reduce to a single label M such that for fixed L the states with different (M, S) form
an orbit under the ZK′ quantum symmetry. We will denote the single generator of this symmetry by
g. Accordingly, the B-type boundary states are | L; M ; S 〉〉B ≡ | L1, . . . , Lr; M ; S 〉〉B where 0 ≤ Lj ≤
bkj/2c, 0 ≤ M ≤ K ′− 1 and S = 0, 2. The restriction on the Lj is due to the field identification (2.70).
Since the two values of S correspond to a brane and its anti-brane, we restrict ourselves to the states
with S = 0. We denote the set of states obtained from a given state | L1, . . . , Lr; 0; 0 〉〉B by applying g
to it as its L-orbit

| L1, . . . , Lr 〉〉B ≡ {
gM | L1, . . . , Lr; 0; 0 〉〉B

∣∣ M = 0, . . . , K ′ − 1
}

(4.35)

Again, due to the symmetry, the expression in (4.31) can be shortened by noting that the delta function
constraint in (4.31) is a shifted U(1) projection we can build a ZK′ invariant polynomial in g such that

each factor N
m′

j−1

Lj ,L̃j
in (4.31) can be replaced by

nL,L̃ = g
|L−L̃|

2 + g
|L−L̃|

2 +1 + · · ·+ g
|L+L̃|

2 − g−1− |L−L̃|
2 − · · · − g−1− |L+L̃|

2 (4.36)

In particular, for L = L̃ = 0 we find

N
m′

j−1

0,0 → n0,0 = (1− g−1
j ) (4.37)

where in this case gj = gwj is the generator of the Zkj+2 subgroup of ZK′ . For both types of boundary
states there is a linear transformation tLj which generates the different factors for Lj 6= 0 from n0,0. In
the case of B-type boundary states there is a particularly nice way to represent tLj [180]

tLj = tTLj
=

Lj
2∑

l=−Lj
2

gl
j (4.38)

and therefore

nLj ,eLj
= tLj n0,0teLj

(4.39)

Hence starting from the boundary state | 0;M ; 0 〉〉B = | 0, 0, 0, 0, 0;M ; 0 〉〉B we can obtain all the other
boundary states by

| L; M ; 0 〉〉B =
r∏

j=1

tLj | 0;M ; 0 〉〉B (4.40)

The intersection form for the B-type boundary states then becomes

IB(g) =
r∏

j=1

nLj ,eLj
(4.41)

Note that in particular for the
∑

Lj = 0 states we have

IB
0,0(g) =

r∏

j=1

(1− g−wj ) (4.42)

1Note that this n
L,eL having two indices is not related to the matrix nL having one index and its entries having three

indices
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4.3. Boundary states in Gepner models

As we have seen, this representation of the intersection form IB emerges naturally from the boundary
conformal field theory through the extension of the annulus coefficients (4.25), but it is highly redundant.
There are many non-trivial relations between the boundary states | L; M ;S 〉〉B and this redundancy is
encoded in IB .

4.3.2. Number of moduli of boundary states in Gepner models

We are interested in counting the number of moduli for a D-brane state; these will be the massless
bosonic i.e. NS open string states. To find their contribution to the open string partition function, it
is sufficient to examine the NS-NS part of a transition amplitude in the internal part of space-time.
The reason is that the open string NS characters arising from the modular transformations of the RR
part of the transition amplitude come with an insertion of (−1)F [181], [182]. Therefore the transition
amplitude between two A-type boundary states is [5]

ZA
αeα =

1
CA

NS∑

λ′,µ′

K−1∑
ν0=0

r∏

j=1

n
l′j
Lj ,L̃j

δ
(2kj+4)

2ν0+Mj−fMj+m′
j

χλ′
µ′(q) (4.43)

and between two B-type boundary states

ZB
αeα =

1
CB

NS∑

λ′,µ′
δ
(K′)
M−fM

2 +
Pr

j=1
K′

2kj+4 m′
j

r∏

j=1

n
l′j
Lj ,L̃j

χλ′
µ′(q) (4.44)

Here, CA = κA
α κAeα K

2
r
2
Qr

j=1 kj+2
and CB = κB

α κBeα
2

r
2

where κA
α and κB

α are again chosen such that Cardy’s

condition is satisfied. We see that the massless open string spectrum can also be expressed in terms of
the annulus coefficients n

l′j
Lj ,L̃j

.
In the closed string case we have two important conditions that guarantee supersymmetry, namely

β0 • µ′ ∈ 2Z+ 1 and βj • µ′ ∈ Z, see Section 2.4, in particular (2.86). By (4.43) and (4.44) this leads to
additional conditions on the open string labels α. Assuming that α and α̃ have the same external part,
then two D-brane boundary states | α 〉〉Ω and | α̃ 〉〉Ω preserve the same supersymmetries if [166]

Q(α, α̃) ≡ −S − S̃

2
+

r∑

j=1

Mj − M̃j

kj + 2
∈ 2Z (4.45)

This condition ensures that there is no tachyon in the open string spectrum such that a single such
brane is stable and supersymmetric.

If the two boundary states are the same, there are ν vacuum operators and one spectral flow
operator in the open string channel. ν accounts for the fact that in the case that kj is even the states
with Lj = kj/2 appear twice due to the field identification (2.70). If l is the number of Lj which equal
kj/2 then ν is determined by

ν = 2el, l̃ =





l n + r odd
l − 1 n + r even, l > 0
0 n + r even, l = 0

(4.46)

If they are not the same, neither state propagates. If ν = 1 then the unbroken world-volume gauge
group is U(1) corresponding to the center-of-mass degree of freedom and the brane can be viewed as
single object. If the number of vacua ν is different from one, the boundary state can be thought of as
two different D-branes sitting at one point. This would fit with picture of a Coulomb branch in the
world-volume theory in which the gauge group is U(1)ν . Finally, we come to the number of moduli for
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4. Boundary Conformal Field Theories

a D-brane state. The supersymmetry preserving moduli of the D-branes are constructed from chiral
vertex operators [5]. The Witten index counts these operators, but with a sign depending on their
chirality. We have to remove this sign by hand, and thus the total number of chiral fields is calculated
using (4.30) and (4.31) with the fusion matrices replaced by their absolute values. In other words, in
contrast to (4.25) we define |n|g+i = |ng−i|. We can again write this modified matrix as a polynomial
PΩ(gj) in the generators gj . For the remainder of this section we again restrict ourselves to the case
with A-type modular invariant. For the B-type boundary states this polynomial then is

PB(g) =
r∏

j=1

|nLj
eLj
| (4.47)

where |nLjL′j | are the annulus coefficients in (4.39) written out as a polynomial in g and then all minus
signs replaced by plus signs. For A-type boundary states one changes the sign in (4.37) and the right
hand side of (4.30) yields then the corresponding polynomial PA(g1, ..., gr).

Next, we have to figure out which of the chiral fields are marginal and can be used as a deformation
and where they appear in (4.47). If space-time supersymmetry is preserved, the chiral fields have integer
U(1) charges. Besides the charge 1 chiral fields one has to take into account charge 2 chiral fields in
ZΩ

αeα that are related to charge −1 antichiral fields in ZΩ
αeα by spectral flow; the latter are the hermitian

conjugate of charge 1 fields in ZΩeαα. One can show that therefore
∑

k mk in the open string channel will
be a multiple of K ′ for marginal, chiral vertex operators. The number of massless chiral superfields is
then given [5] by the constant term in

m(CFT) =
1
2
PB(g)− ν (4.48)

Let us briefly look at the special case of the
∑

Lj = 0 states. Replacing the plus signs in (4.42) by
minus signs there will be exactly one term with g−K′

= 1 since
∑

wj = K ′. Together with the constant
term 1 and (4.46) we see that m(CFT) = 0 for this L-orbit. For a reason to be explained in Section 5.5.3
such boundary states might be called rigid or exceptional states. It has been argued in [152] that these
states correspond to the fractional D-brane boundary states in C5/Γ where Γ ∼= ZK′ is the discrete
subgroup of SU(5) acting as

zi → e
2πiwi

K′ zi i = 1, . . . , 5 (4.49)

This fact is of central importance for the computation in Appendix B.

4.3.3. Twisted boundary states

The boundary states with at least one label satisfying Lj = kj

2 can be understood in a more precise
manner [178], [183] and contain additional information about the D-brane configuration [184]. Since
we will make extensive use of this information in Section 6.3, we discuss these results in detail in this
section.

The important observation is that Lj = kj

2 is the fixed point of a certain simple current that
generically appear in the boundary conformal field theory and not in the bulk conformal field theory of
a minimal model and this fixed point must be resolved [178], [183] in order to have a complete description
of the boundary conformal field theory. Using the notation of Section 4.1 consider a non-trivial class of
irreducible representations Vg, g ∈ I such that the fusion product (4.2)

Vg ? Vj = Vg·j (4.50)

gives a single class Vg·j , g · j ∈ I. Such classes are called simple currents [185], [186] and the set C of all
these simple currents forms an abelian subgroup of C ⊂ I. Let Γ be a subgroup of C. Due to (4.2) Γ
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4.3. Boundary states in Gepner models

acts on the index set I and splits it into orbits. The length of the orbit of the identity 1 ∈ I is given by
the order of |Γ| of the group Γ. Other orbits may be shorter since there can be fixed points, i.e. labels
j ∈ I for which

g · j = j for some g ∈ Γ (4.51)

The subgroup of all simple currents leaving some j ∈ I fixed is called the stabilizer of j

Sj = {g ∈ Γ|g · j = j} (4.52)

Given a commutator 2-cocycle describing an element of H2(Sj , U(1)), i.e. a pairing ε : Sj × Sj →
C∗ compatible with the group law and equal to one on the diagonal, one can define the untwisted
stabilizer [187]

Uj = {h ∈ Sj |ε(g, h) = 1 ∀g ∈ Sj} (4.53)

The quantity ε(g, h) is also known as discrete torsion [188]. The most important simple currents
in a minimal model are v = (0, 0, 2) (the world-sheet supercurrent), s = (0, 1, 1) (the spectral flow
operator), p = (0, 2, 0) (giving the phase symmetries in the Greene-Plesser construction in Section 2.6)
and f = (k, 0, 0). Note that the dimensions of these simple currents are generically non-integer and
therefore can only appear on the boundary. The last one is the only one with potential fixed points,
namely due to (2.70) it is precisely the one mentioned at the beginning of this section. The order of the
stabilizer Sf is exactly ν as in (4.46) [184]. In can be shown in general [189] that the number of L-orbits
of independent boundary states associated to a given L is not given by the order ν of the stabilizer
Sf but rather by the order ν̃ of the untwisted stabilizer Uf , which differs from ν multiplicatively by a
square number

ν = N2ν̃ (4.54)

where N = 2[
el
2 ]. This equation means that a fixed point boundary state can be resolved into ν̃

independent components that are not further decomposable. A similar relation, |Γ| =
∑NR

i=1(dRi)
2,

was derived for orbifolds with discrete torsion C3/Γ in [190], [179], [177] (see also [191]). dRi is the
dimension of the irreducible projective representation Ri of Γ. The quantities corresponding to Γ, dRi

and NR are in the minimal model Sf , N and ν̃, respectively. If the discrete torsion ε(g, h) is non-trivial,
i.e. νeν = N2 > 1, we can only have a projective realization of Sf . We will describe the large volume
interpretation of this result in Section 6.3.

The method of simple currents allows to construct new boundary states by considering the combi-
nation of currents vj , sj and pj , j = 1, . . . , r which form the vectors β0, . . . , βr defined in Section 2.4.
Gepner used them to implement the GSO projection on the tensor product of the minimal models. They
generate the orbifold group Γ. When analyzing the RR charges of the A-type boundary states (4.27) of
Recknagel and Schomerus one notes that they are charged under the untwisted (c, c) fields only [178].

It is possible to take into account some states which are charged under the “twisted” fields that
have to be added in order to preserve modular invariance. In addition they have to be in short orbits
of the orbifold group Γ. These short orbits appear precisely when kj is even and Lj = kj

2 , hence they
are again related to the fixed point of the simple current f . Recall that the quantum symmetry group
ZK′ ⊂ Γ acts on the chiral primary fields by multiplication of a phase factor (2.119). Suppose there
is a subgroup ZN ⊂ ZK′ for which the wj = K′

kj+2 , j ∈ S ⊂ {1, . . . , r} have a non-trivial common
factor N . By generalizing the construction of twisted boundary states in flat space [177] it is possible
to construct new A-type boundary states arising from the resolution of the fixed point which are linear
combinations of states in the untwisted sector and the K′

N -twisted sector [178]. If one restricts to the
situation that the left- and right-moving charges be the same in all individual models then one can
show that N = 2 is the only possibility. Other values for N require a more general gluing condition on
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4. Boundary Conformal Field Theories

the factor theories. These boundary states have geometrical interpretation which will be discussed in
Section 6.2. A thorough and complete analysis of the A-type boundary states in Gepner models with
the simple gluing condition has been given in [183]. In terms of this analysis, the twisted boundary
states are called elementary, as opposed to the original unresolved boundary states.
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5. D-branes and their Geometry

5.1. General facts on D-branes

D-branes are defined to be objects on which open strings can end. While we have adopted the conformal
field theory point of view for their description in the previous chapter, we will study their geometry in
the present chapter. D-branes can absorb the momentum of then open strings attached on them and
are therefore dynamical objects. Besides this their most important properties are that they are charged
under the RR-fields C(i) and that they are BPS saturated states. Furthermore, they are intrinsically
non-perturbative objects in closed string theory as their mass goes like e−

1
gs . For a detailed account of

their properties see [192] and [193].
Since we are interested in D-branes on Calabi–Yau spaces, we assume that space-time M to be of

the form M = X × R3,1 where X is a Calabi–Yau threefold. A configuration of r coincident D-branes
with p + 1 dimensional world-volume W = Σ × R, where the factor R denotes the time coordinate, is
specified by an embedding f : W → M . The ten-dimensional gauge field from the open string sector
AM , M = 0, . . . , 9 becomes in the presence of these D-branes a U(r) gauge field Aµ, µ = 0, . . . , p on W ,
with field strength F = dA + [A,A] and Higgs fields Φi, i = 1, . . . , 9− p which are r× r anti-hermitian
matrices. The fields from the closed string sector, i.e. the metric g, the 2-form B, the dilaton φ and
the RR q-forms C(q) are pulled back to W by f . q has to be odd in type IIA string theory and even
in type IIB. The tangent bundle of M decomposes as TM |W = TW ⊕ NM/W with curvature tensors
f∗RT and RN , respectively. The D-brane action is

S = −τp

∫

W

dµge
−φstr

√
− det (f∗ (E + E(Q−1 − 1)E) + 2πα′F ) det(Q) (5.1)

(
1− π2

768

(∣∣∣R(4)
∣∣∣
2

g
+ 2 |f∗RT |2g − 2 |RN |2g

)
+ O(α′4)

)

+µp

∫

W

str


f∗


e2πα′iΦiΦ

∑

j

C(j)


 e2πα′F




√
Â(2πα′RT )

Â(2πα′RN )

where E = g + B, Qi
j = δi

j + i[Φi,Φk]Ekj , |R(4)|2g is a certain combination of the Riemann tensor [194]
and the sum is over odd j in type IIA and over even j in type IIB. str stands for the symmetrized trace
over F , DΦi, [Φi, Φj ] and Φi. iΦ is the interior derivative with respect to the vector Φ = (Φ1, . . . , Φ9−p).

The tension τp and the charge µp of a Dp-brane are τp = µpg
−1
s = (2π)−pα′−

p+1
2 g−1

s . In the following
we will set α′ = 1

2π . The kinetic term has been derived in [1], [195], [194] and [196]. The Wess-Zumino
term is due to the fact that the gauge theories on the D-branes can be anomalous. This anomaly can
be canceled by an inflow from the bulk theory [197] and a topological argument [198], [199] as well
as T-duality [196] yield these Wess-Zumino couplings. The terms involving iΦ induce couplings to RR
fields of higher degree than p + 1 and will not be considered in the following.

Restricting to D-branes living on the Calabi–Yau part of M , the charges of the unbroken U(1) gauge
symmetries are naturally associated with a vector Q ∈ H∗(X,Z) where ∗ is even or odd depending on
the type of string theory and the number of directions in flat space of the D-brane. The reason is that
the U(1) gauge fields are obtained by Kaluza-Klein reduction of RR (p + 1)-form fields C(p+1) and for
each homology p-cycle Σi ⊂ X we may define a U(1) gauge field Ai =

∫
Σi

C(p+1). The charge lattice
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5. D-branes and their Geometry

should have a basis dual to the basis of gauge fields and will therefore correspond to the cohomology
lattice.

For a single D-brane the second term in (5.1) reduces in this case to

SWZ = µp

∫

Σ

(∑

i

C(i)eF+B

) √
Â(X) (5.2)

from which we can read off the RR charge of a D-brane to be [200]

Q(E) =
∫

Σ

ch(E)
√

Â(X) =
∫

Σ

ch(E)
√

td(X) (5.3)

where the second equality holds for Calabi–Yau spaces using the fact that Â(X) = e
1
2 c1(X) td(X). The

expression for td(X) has been given in (3.30). E is the K-theory class representing the (twisted) gauge
bundle with connection A, see Section 5.3.3. (unless stated differently, we will set B = 0.) For reasons
to become clear in Section 5.3.1 Q(E) is also called the (generalized) Mukai vector. The RR charges of
D-branes satisfy a generalization of Dirac’s quantization condition

Q6−pQp =
2π

2κ2
0

(5.4)

where 2κ2
0 = 16πGNg−2

s and GN is Newton’s constant in ten dimensions.

5.2. Supersymmetric cycles

In this section we will discuss the condition for having supersymmetric cycles. A supersymmetric cycle
W is defined by the condition that a world-volume theory on W is supersymmetric [201], [139]. The
(p + 1)-cycle is supersymmetric if the global supersymmetry transformation can be undone by a κ-
transformation which implies that (1−Γ)ηi = 0 for the constant spinors ηi on M corresponding to the
supersymmetry generators. Γ is a certain combination of F and the ten-dimensional Γ-matrices [202].
Those ηi which are solutions form the unbroken generators. For D-branes on a Calabi–Yau threefold X
whose part of the world-volume inside X is denoted by Σ, there are two types of solutions which will
be discussed in turn.

A-type D-branes

An A-type D-brane wraps a three-dimensional special Lagrangian submanifold Σ [203], [139] given by

ω|Σ = 0 (5.5a)

Re eiθΩ|Σ = 0 (5.5b)
F = 0 (5.5c)

where Ω is the holomorphic (3, 0)-form, and θ an arbitrary phase. This is the same phase as in the
boundary state definition of an A-type D-brane (4.16) and determines which of the original N = 2
supersymmetries is broken. Two branes of different θ together break all supersymmetry. Equivalently
to (5.5b) we can require that Ω pulls back to a constant multiple of the volume element on Σ. A
nice introduction to the theory of special Lagrangian submanifolds is [204] and [205]. ωij can be
used to get an isomorphism between T ∗Σ and NX/Σ which is the space of deformations of the special
Lagrangian submanifold and has real dimension b1(Σ) [206]. The space of flat U(1) connections also
has real dimension b1(Σ), thus the deformations of Σ pair up with the Wilson lines to form b1(Σ)
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complex moduli [207]. There are not many examples of special Lagrangian submanifolds in a Calabi–
Yau manifold known. The only general construction known is as the fixed point of an involution, i.e.
by taking a real section

Im e
2πimi

d zi = 0 (5.6)

where d is the degree of the Calabi–Yau hypersurface and mi are integers.

B-type D-branes

B-type D-branes wrap holomorphic cycles and are solutions to the generalized Hitchin equations [208], [3]

F ∈ Ω1,1(X) (5.7a)
ω2 ∧ F = λω3 id (5.7b)
DµΦi = 0 (5.7c)

[Φi, Φj ] = 0 (5.7d)

where ω is the complexified Kähler form and λ = 2πi deg(E)
Vol(X) . In the case of D-branes wrapping the

entire Calabi–Yau manifold there are no scalar fields and the system reduces to (5.7a) and (5.7b) which
are known as the Hermitian Yang-Mills equations [115] (see also [209]). Connections dA on a C∞

bundle E (with a fixed Hermitian structure) that satisfy (5.7a) are in one-to-one correspondence with
holomorphic structures on E [210]. Since this holomorphic connection also has to satisfy (5.7b), the
corresponding holomorphic vector bundle E will be µ-semi-stable, see Section 5.3.2. In the case that
the D-brane does not wrap the entire Calabi–Yau manifold, the Φi are sections of the normal bundle
with values in End E and represent the normal motions of the D-brane in X. Moreover, from (5.7c) we
see that if Φi is non-diagonal then the vector bundle on X must in general be reducible. In the case
where X is a K3 surface and Σ is a Riemann surface embedded in X, (5.7) reduces [208] to the system
of equations studied by Hitchin [211].

For a fixed RR charge vector Q we will define M′
D(Q) to be the moduli space of solutions of

the system (5.7) modulo the gauge group U(r). By equation (5.7d) M′
D(Q) has a natural projection

to a configuration space of points π : M′
D(Q) → Symr(R3) given by the eigenvalues of the Φi, i. e.

π : (Aµ, Φi) 7→ {a(1)
i , . . . , a

(r)
i } where Φi

∼= diag(a(1)
i , . . . , a

(r)
i ). These give the positions of the r wrapped

branes. We will restrict ourselves to the case where all constituents of a D-brane configuration sit at
the same point in the non-compact space R3. From (5.7a) and (5.7b) one can see that over the diagonal
∆(r) ⊂ Symr(R3) where all points coincide we have the moduli space of solutions to the Hermitian
Yang-Mills equations. Hence, the moduli space of D-brane configurations that will be investigated is
defined according to [3] as

MD(Q) = π−1(p) p ∈ ∆(r) (5.8)

Mirror symmetry

First a point of notation. Since we are interested in N = 1 D = 4 supersymmetric gauge theories on
the world-volume of a D-brane system it must be extended in the 3 + 1 non-compact dimensions. In
most of the discussions in this and the next chapter we will however use other realizations of this D-
brane system, mostly as particles in 3 + 1 dimensions. Hence, we will ignore its space-filling Minkowski
dimensions and denote by p only the part in the Calabi–Yau manifold. Therefore, by (5.5a) A-type
D-branes are D3-branes, and by (5.7a) B-type D-branes are either D0-, D2-, D4- or D6-branes.

In Section 4.2 we have argued that the A- and B-type boundary states are mirror to each other.
Based on the assumption that type IIA string theory on X is really identical to type IIB string theory

73



5. D-branes and their Geometry

on X∗ Strominger, Yau and Zaslow [212] gave the following interpretation of mirror symmetry in terms
of T-duality. Start with a D0-brane in type IIA theory on X. Its moduli space is X itself. By the
assumption there must be a D3-brane on X∗ wrapping a special Lagrangian submanifold Σ whose
moduli space is also X. Therefore, this D3-brane must have b1(Σ) = 3 moduli. Furthermore, if we fix a
point in the moduli space of the special Lagrangian cycle and only look at the Wilson lines, they give
rise to a T 3 factor in the moduli space of the wrapped brane. Therefore, X should be a T 3 fibration
π : X → B. Repeating the argument with the roles of X and X∗ switched yields that X∗ must also
be a T 3 fibration π∗ : X∗ → B∗. Hence, they conjecture that both X and X∗ are fibered by special
Lagrangian three-tori, and in particular the mirror of the D0-brane on X is a D3-brane wrapping the
fiber T 3 on X∗. Furthermore the D6-brane wrapping X is mapped to D3-brane on the base B∗ and
vice versa. This can be interpreted as T-duality: Performing a T-duality on the 3 circles of the T 3 turns
IIB theory into the IIA theory and change the D3-brane on the T 3 into a D0-brane while the D3-brane
wrapping the base becomes a D6-brane. The existence of torus fibrations has been discussed and proven
in special cases in [213], [214], [215], [216]. Assuming that X and X∗ are mirror T 3-fibrations it was
argued in [217] that a real version of the Fourier-Mukai transform [218] carries conditions (5.5) into
conditions (5.7). We will return to the argument given above in Section 6.5.1.

It is important to note that the conditions (5.5b) and (5.7b) are not believed to be the correct physical
conditions except in the large volume limit. This is related to the fact mentioned in Section 2.2 that
Ricci-flatness (2.43) for Calabi–Yau manifolds only holds in the large volume limit. All these equations
will be corrected when moving away from this limit in the Kähler moduli space. In a first step, one
can replace F by F + 1

2πα′B in (5.5) and (5.7) and obtain a deformed version of these equations [219].
As mentioned above, we will work however with B = 0. In general, one must use the definition of a
D-brane as a boundary condition in the conformal field theory of the world-sheet as in Chapter 4. It can
be shown that A- and B-type D-branes as defined above appear in the large volume limit interpretation
of the boundary non-linear σ-model and the boundary Landau-Ginzburg theory as solutions of the A-
and B-type boundary conditions (4.18) and (4.19), respectively [220], [151]. The boundary conditions
in the interpolating gauged linear σ-model have been analyzed in [221].

5.3. Vector bundles versus sheaves

5.3.1. Sheaves

The moduli space MD(Q) as defined in (5.8) has to be compactified by adding boundary points (more
precisely divisors with normal crossings). These correspond to certain singular vector bundles. There are
several compactifications known in mathematics and we will discuss in this section the compactification
which is chosen by string theory.

First, we include bundles in MD(Q) bundles whose connections are reducible [3], [222]. From a
qualitative point of view, the reducible connections are the connections for which the gauge field can
be made block diagonal

A =
(

A(1) 0
0 A(2)

)
(5.9)

This will happen when we can split the gauge bundle as E = E′ ⊕ E′′. On the reducible locus the
moduli space is approximately a product of smaller moduli spaces. We will see examples of D-brane
configurations corresponding to vector bundles admitting reducible connections in Section 6.4.

The second kind of singular bundles are sheaves. Very roughly speaking, sheaves are vector bundles
whose rank can vary over the base space. We will give here a physical approach to sheaves. For general
mathematical definitions and statements see [111], [223], [224] and [225]. Particularly useful in the
context of stability are [210] and [226]. Let us for the time being take our Calabi–Yau space X to be a
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K3 surface. The RR charge vector (5.3) then coincides with the Mukai vector [149]

v(E) =
(

rk(E), c1(E),
1
2

c1(E)2 − c2(E) +
c2(X)

24
rk(E)

)
(5.10)

after integration. Consider now a single D4-brane wrapped on X. On flat space it would correspond to
a flat U(1) bundle. However, in this case the Mukai vector (5.10) is

v(E) =
(

1, 0,
c2(X)

24

)
(5.11)

and hence the D4-brane induces a D0-brane charge via the term 1
24

∫
X

c2(X)C(1) from (5.2), where
C(1) is the RR 1-form. We will take the convention that the D0-brane charge is Q(D0) = (0, 0,−1).
After integrating over X, the RR charge vector for single D4-brane is (1, 0, 1) and induces the D0-brane
charge −1. The D-brane moduli space can be viewed as the moduli space of vector bundles E on X as
motivated in Section 5.2.

We will now argue that we need not only consider bundles but more generally semi-stable simple
coherent sheaves. The definition of semi-stable is deferred to Section 5.3.2. Simple means that the sheaf
has no non-trivial automorphisms which is the analog of an irreducible connection. Finally, coherent
sheaves will be characterized below. When discussing properties of D-branes, we will simply speak
of sheaves, thereby dropping the attributes semi-stable, simple and coherent if they are not necessary
in the context. A notable difference between coherent sheaves and vector bundles is that while the
dimension of a fiber of a vector bundle is constant as we move along the base X, the dimension of the
fiber of a coherent sheaf is allowed to jump.

For illustration, consider a configuration of one D4-brane on X and n D0-branes at points in X. Its
charge vector is (1, 0, 1− n)1. There is no vector bundle whose Mukai vector takes this form, since no
line bundle can have non-zero second Chern number 1− n. But there is indeed such a sheaf. It is the
sheaf Ip1,...,pn of holomorphic functions on X vanishing at n points p1, . . . , pn

2. This simple example
indicates that the use of this generalized notion of a vector bundle enables us to describe the D-brane
moduli spaces of various charges on the same footing, including those whose charge vector is not realized
as the Mukai vector of a vector bundle. The sheaf Ip1,...,pn fits into an exact sequence

0 −→ Ip1,...,pn −→ OX −→ Op1,...,pn −→ 0 (5.12)

The three objects all have a natural physical interpretation. The first one, as we have just argued, is
an ideal sheaf and corresponds to a bound state of a D4-brane with n D0-branes. The second one is
the trivial bundle over X, or in the language of sheaves, the structure sheaf of X. The last one is a
new object, called a skyscraper sheaf. It corresponds to n D0-branes and its fibers are supported at n
points. This is an example of a sheaf whose rank is non-constant. In general, sheaves whose support
is a proper subset of X are called torsion sheaves. We see that the language of sheaf theory places
configurations with D4-branes on an equal footing with configurations without D4-branes.

A coherent sheaf is essentially any of the sheaves introduced above, i.e. vector bundles (which are
also called locally free sheaves), ideal sheaves and torsion sheaves. For a precise definition of coherent
sheaves as well as for their properties we refer again to [111] and [223]. One important property which
characterizes coherent sheaves nicely is that for a coherent sheaf F there exists a complex

0 −→ En −→ En−1 −→ . . . −→ E1 −→ E0 −→ F −→ 0 (5.13)

called a projective resolution, where the Ei are locally free, i.e. vector bundles. This means that a
coherent sheaf can always be described by a finite set of maps between vector bundles.
1Such a configuration exists by duality to the heterotic string on T 4.
2Such a “U(1) instanton” on X can also be viewed as a non-commutative instanton on X [227].
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A D0-brane looks like a zero size instanton on a D4-brane wrapping X [228], [229], [230]. While
coherent sheaves are objects of algebraic geometry, instantons are objects of differential geometry. Small
instantons are needed for the Donaldson-Uhlenbeck compactification of the instanton moduli space [231],
while the coherent sheaves are needed for the Gieseker compactification of the moduli space of stable
vector bundles, and on algebraic complex surfaces the two compactifications are related [232]. The
relation between small instantons and coherent sheaves on a K3 surface can be made rather explicit [233].
For Kähler threefolds there is a natural analogue of the Donaldson-Uhlenbeck compactification [234]
which involves ideal instanton singularities along holomorphic curves in the manifold, but also some
more complicated codimension 3 singularities.

Everything we have said generalizes to Calabi–Yau threefolds. In particular, the exact sequence (5.12)
now describes a configuration of D6- and D0-branes. We will discuss this case in more detail in Sec-
tion 6.5.1. Another exact sequence of this type which is important for the discussion in this and the
next chapter is

0 −→ OX(−D) −→ OX −→ OD −→ 0 (5.14)

Here D is a divisor in X, OD is the structure sheaf on D, i.e. the trivial line bundle on D, but viewed
from X it is a torsion sheaf with support on D. OX(−D) is the ideal sheaf of holomorphic functions
vanishing on the divisor D and is actually a line bundle. In the physical language they correspond
to a D6-D4-brane bound state, a D6-brane and a D4-brane wrapping the supersymmetric cycle D.
All lower-dimensional D-branes can be described in this way. The sequence (5.14) is an example of a
projective resolution (5.13) with F = OD.

The D4-branes will be of our main interest due to the fact that they wrap complex compact surfaces.
The deformation theory of sheaves on those is reasonably well understood and can provide us the
necessary information for studying the spectrum of these D4-branes. In addition, since they wrap
divisors in the Calabi–Yau threefold they can be related to sheaves thereon via (5.14). This will be
done in the following sections and in Chapter 6.

5.3.2. Stability

We have seen in Section 5.2 that as a consequence of the requirement that a D-brane configuration
preserve supersymmetry, the sheaf that describes this configuration must be semi-stable. This was
encoded in (5.7b). Roughly speaking, if this requirement is not satisfied, the configuration is unstable
and will decay into stable, supersymmetric constituents. From this point of view it is very interesting
to observe that these two totally different concepts of stability – mathematical and physical – agree.
We are therefore led to investigate semi-stable sheaves which will be the content of this section.

We begin with the definition of semi-stable sheaves for which we first need to introduce some
technicalities. We assume that all our sheaves are over a toric Calabi-Yau threefold X. For a coherent
sheaf F we define its Chern character ch(F) by means of a projective resolution (5.13) as follows

ch(F) =
n∑

i=0

ch(Ei) (5.15)

This definition is independent of the choice of the resolution. Furthermore we define the degree of F to
be

degω(F) =
∫

X

c1(F) ∧ ω2 (5.16)

where ω is the (uncomplexified) Kähler form and we define the normalized degree or the slope of F to
be

µω(F) =
degω(F)
rk(F)

(5.17)
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We will suppress the dependence on ω from now on. A coherent sheaf E is said to be µ-semi-stable, if
for every coherent subsheaf F with rk(F) > 0 we have

µ(F) ≤ µ(E) (5.18)

If strict inequality holds for every subsheaf F with 0 < rk(F) < rk(E) then we say that E is µ-stable.
If equality holds then we say that E is strictly µ-semi-stable. Since µ-stability is the only notion of
stability we will use, we will drop the µ from now on. A holomorphic vector bundle E is said to be
semi-stable (stable) if the sheaf of holomorphic sections O(E) is semi-stable (stable). Note that even if
we are only interested in vector bundles we need to consider not only subbundles but also subsheaves.
This is a further motivation why we need to introduce coherent sheaves.

Note that there are different notions of stability in mathematics, e.g. there is also Gieseker sta-
bility [235]. It is not yet clear which one is physically relevant, e.g. Gieseker stable objects appeared
in [219] and [236]. It is conceivable that string theory needs both of them as limits of Π-stability [237].

Let us give a few examples and simple criteria for stability. A torsion-free coherent sheaf of rank 1
is always stable. If F is a torsion free coherent sheaf and L is a line bundle then F ⊗ L is semi-stable
(stable) if and only if F is semi-stable (stable). F is semi-stable (stable) if and only if its dual F∨ is
semi-stable (stable). Furthermore, if

0 −→ L0 −→ F −→ L1 −→ 0 (5.19)

is a non-trivial extension with line bundles L0 and L1 of degree 0 and 1, respectively, then F is stable.
If F1 and F2 are torsion-free coherent sheaves then F1 ⊕ F2 is semi-stable if and only if F1 and F2 are
both semi-stable with µ(F1) = µ(F2). However, if F1 and F2 are nonzero, then F1 ⊕ F2 can never be
stable.

One more notion that we will need is S-equivalence. Suppose that E is a semi-stable torsion-free
sheaf with µ(E) = µ. Then there is a filtration {0} = F0 ⊂ F1 ⊂ · · · ⊂ Fk = E such that Fi/Fi−1

is torsion-free and stable for every i and µ(Fi/Fi−1) = µ for all i. Such a (generally non-canonical)
filtration is called a Jordan-Hölder filtration of E. The associated graded sheaf gr E =

⊕
i Fi/Fi−1 is

independent of the choice of the filtration. Two sheaves E1 and E2 are S-equivalent if gr E1 = grE2.
This has the following meaning. Points on a moduli space of sheaves that are strictly semi-stable do not
necessarily correspond to unique semi-stable sheaves but to S-equivalence classes of strictly semi-stable
sheaves. What will be important for us is that each S-equivalence class contains a unique representative
that is split, i.e. is a direct sum of stable sheaves [235]. Such a sheaf is also called polystable. The
physical relevance of S-equivalence classes has been pointed out in different contexts in [238] and [239].

We have seen that the vector bundles we are interested in satisfy the Hermitian Yang-Mills equa-
tion (5.7b). The Donaldson-Uhlenbeck-Yau theorem [240], [241], [115] (see also [209]) now states that if
the vector bundle E admits an irreducible Hermitian Yang-Mills connection then E is µ-stable. More-
over, if the connection is reducible, then E is strictly semi-stable and is split, i.e. E =

⊕
i Ei where Ei

admit irreducible Hermitian Yang-Mills connections and are therefore stable. Hence, the representative
of the S-equivalence class that is relevant for the physics of D-branes is the split representative. This
fact will be often used in Section 6.3.

The most important necessary criterion for stability is the Bogomolov inequality [235]. If F is a
semi-stable torsion free coherent sheaf, then

∫

X

∆(F) ∧ J ≥ 0 (5.20)

where ∆(F) ≡ 2 rk(F) c2(F) − (rk(F) − 1) c1(F)2 = c2(EndF). On manifolds with h1,1(X) > 1 this
describes an explicit dependence on the Kähler class ω as described in [239]. Equality in (5.20) defines
a boundary within the Kähler cone on which stability degenerates to semi-stability [242]. Physically,
this means that the connection on the D-brane becomes reducible, and an enhanced gauge symmetry
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appears. Furthermore, as sheaves generally do not admit connections, this allows us to define the
analog of reducible connections on vector bundles for sheaves and hence to consider those objects which
represent both kinds of singularities on MD discussed in Section 5.3.1. There is a beautiful relation
between these sheaves leading to enhanced gauge symmetry and certain boundary states in the Gepner
model [184]. This will be explained in Section 6.3.

5.3.3. The Grothendieck-Riemann-Roch Theorem

Holomorphic K-theory

It was argued in [243] that D-brane charges are actually described by topological K-theory. However,
topological K-theory encodes only C∞ bundles while we have seen in Section 5.2 that our bundles carry
a holomorphic structure. Therefore we need a holomorphic version of topological K-theory which is the
Grothendieck group [244]. The Grothendieck group K0(X) [245], [246] is defined to be the quotient of
the free abelian group generated by all the coherent sheaves (up to isomorphisms) on X by the subgroup
generated by the elements F − E− G for each short exact sequence

0 −→ E −→ F −→ G −→ 0 (5.21)

of coherent sheaves on X. Note that the main differences between topological and holomorphic K-theory
are the following. K0(X) contains less than K(X) e.g. the non-holomorphic bundles are not in K0(X)
but at the same time it distinguishes objects which in K-theory are the same, namely what we identify
with zero are extensions instead of direct sums (topologically they are both the same).

Physically, it allows to interpret tachyon condensation between stable D-branes [247] and descent
relations [248] (for the K-theoretic interpretation see also [249]) in terms of projective resolutions and
to treat both at the same level [250]. The tachyon condensation can be seen as follows. If we have a
brane configuration E and an anti-brane configuration F there are open strings with tachyonic modes
between them. The low-energy effective field theory has solitonic solutions whose energy is localized
around the core of the tachyon, i.e. around the locus where it vanishes. This locus is a source for RR
fields of lower dimensions. If the tachyon condenses, i.e. if it reaches its minimal energy, the brane and
the anti-brane annihilate and this locus is identified with a new D-brane of lower dimension, supported
on the zeroes of the tachyon. The tachyon can be viewed as a section of the sheaf E⊗ F∨ [243].

Let us consider for example the system consisting of E = OX and F = OX(−D) described in (5.14).
From this we get that OD = OX − OX(−D) and so the tachyon is a section of E ⊗ F∨ = OX(D).
Now since OX(D) are the holomorphic functions on X having a pole on D, the sections of this bundle
have a simple zero at D. Hence D is the locus where the tachyon vanishes and, by the preceding
discussion, describes a new brane of real codimension 2. This coincides exactly with the interpretation
of OD as a D4-brane wrapping the cycle D. The D-branes of higher codimension can be obtained [250]
from the Koszul complex (a particular projective resolution (5.13) [111]) which gives the analog of
the Thom isomorphism and the Atiyah-Bott-Shapiro construction in topological K-theory used by
Witten [243]. The holomorphic K-theory also captures the cases of D-branes with lower RR-charges
and of stacks of D-branes. Note that when stability issues are taken into account this naive setup must
be improved and one has to work with complexes of sheaves and their derived categories instead of
sheaves only [251], [252], [253], [254].

The Theorem

We first need to introduce the Gysin homomorphisms f∗ in cohomology and f! in K-theory [255]. If
X, Y are compact connected oriented manifolds, and f : X → Y is a continuous map, there is a
homomorphism of H∗(Y,Z)-modules f∗ : H∗(X,Q) −→ H∗(Y,Q) which maps classes of codimension q
in X to classes of codimension q in Y . The action of f∗ on H∗(X,Q) is defined as

f∗(x) = D−1
Y (fh

∗DX(x)) x ∈ H∗(X,Q) (5.22)
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where DX is the Poincaré duality map DX : Hp(X,Q) → Hn−p(X,Q) and fh
∗ is the map induced by f

on homology. If g : Y → Z is another continuous map of compact connected oriented manifolds then

(f · g)∗ = f∗g∗ (5.23)

Consider the special case in which in Y is point, f is the constant map. Then

f∗(v) =
∫

X

v · 1 v ∈ H∗(X,Q) (5.24)

where 1 ∈ H0(Y ) is the identity element. Next, we assume that f : X → Y is a holomorphic map
between algebraic manifolds X, Y and that b ∈ K0(X) is represented by a coherent sheaf F. Then one
can define a homomorphism f! : K0(X) → K0(Y ) by

f!(F) =
n∑

i=0

(−1)iRif∗F (5.25)

where Rif∗F are the direct image sheaves [111]. Similar to (5.23) f! satisfies

(f · g)! = f!g! (5.26)

and in the special case where Y is a point and F is locally free it reduces to

f!(F) = χ(X, F) (5.27)

where

χ(X, F) =
dim X∑

i=0

(−1)i dim Hi(X, F) (5.28)

is the holomorphic Euler characteristic. We can now state the Grothendieck-Riemann-Roch theorem.
The equation

ch(f!b) · td(Y ) = f∗(ch(b) · td(X)) (5.29)

holds in H∗(Y,Q) for all b ∈ K0(X) [245], [255].

Some Applications

Let us consider two special cases which will be of use in the following sections. Suppose that i : X → Y
is an embedding of X as a submanifold of Y . Then we have the following short exact sequence of
bundles (3.33)

0 −→ TX −→ i∗TY −→ NY/X −→ 0 (5.30)

By the multiplicative property of the Todd class, i.e. for an exact sequence of sheaves (5.21) we have
td(F) = td(E) td(G) thus

td(X) = (td(NY/X))−1 td(i∗TY ) = (td(NY/X))−1i∗ td(Y ) (5.31)

An application of the Gysin homomorphism (5.22) to the embedding i : X → Y gives

i∗(u i∗v) = i∗(u)v, ∀u ∈ H∗(Y,Q), v ∈ H∗(X,Q) (5.32)
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Therefore (5.29) implies the Riemann-Roch theorem for an embedding [245], [255]

ch(i!b) = i∗ ch(b) · (td(NY/X))−1 (5.33)

We now apply this to the case of curves and divisors in a Calabi–Yau threefold X. Here we general-
ize [180]. If i : D → X is an embedding of a divisor D in X, then i! = i∗ [245]. This map is of degree
1 and i∗1 = D. Let b ∈ K0(X) be the element represented by the coherent sheaf O(E) of germs of
local holomorphic sections of a complex analytic vector bundle E over D. Expansion of eq. (5.33) and
comparing terms of the same degree we find

rk(i∗E) = 0 (5.34)
ch1(i∗E) = rk(E)D (5.35)
ch2(i∗E) = i∗

(
ch1(E)− 1

2 rk(E) ch1(NX/D)
)

(5.36)

ch3(i∗E) = i∗
(
ch2(E) + 1

6 rk(E) ch1(NX/D)2 − 1
2 ch1(E) ch1(NX/D)

)
(5.37)

By using ch1(ND/X) = D and (3.36) we can bring eqns. (5.36) and (5.37) into the form

ch2(i∗E) = i∗
(
ch1(E)− 1

2 rk(E)D
)

(5.38)

ch3(i∗E) = i∗
(
ch2(E) + 1

6 rk(E)(c2(D)− c2(X))− 1
2 ch1(E)D

)
(5.39)

If j : C → X is an embedding of a curve C in X, then j∗ is of degree 2 and j∗1 = C. Repeating the
computation above leads to

rk(j∗E) = 0 (5.40)
ch1(j∗E) = 0 (5.41)
ch2(j∗E) = rk(E)C (5.42)
ch3(j∗E) = j∗

(
ch1(E)− 1

2 rk(E) c1(NX/C)
)

(5.43)

By (5.30) and the Calabi–Yau condition we find j∗ c1(NX/C) = j∗ c1(C) = deg C = 2pa(C) − 2 where
the last step follows from Riemann-Roch [110]. Hence

ch3(j∗E) = j∗ ch1(E) + rk(E)(1− pa(C)) (5.44)

We will also need the characteristic classes of i∗E for an embedding i : C → X of a curve into a K3
surface X. These are obtained in the same way

rk(i∗E) = 0 (5.45)
ch1(i∗E) = rk(E)C (5.46)
ch2(i∗E) = i∗ ch1(E) + rk(E)(1− pa(C)) (5.47)

Everything continues to hold if we replace O(E) by a general coherent sheaf F [110].
Let’s turn to the second special case in which Y is a point, f is the constant map and F = O(E) is the

sheaf of holomorphic sections of a complex analytic vector bundle E over X. Then, by (5.24) and (5.27)
the Grothendieck-Riemann-Roch theorem (5.29) yields the Hirzebruch-Riemann-Roch theorem [255]

χ(X, E) =
∫

X

td(X) ch(E) (5.48)

Note that the last equation together with (5.28) give the index theorem for a Dirac operator coupled
to the vector bundle E. More generally, for two coherent sheaves E, F we define [149]

χ(X; E, F) =
dim X∑

i=0

(−1)i exti
OX

(E,F) (5.49)
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where Exti
OX

(E,F) are the global Ext groups [111] and exti
OX

(E, F) denotes their dimension. The
following properties of these groups are noteworthy. To a short exact sequence (5.21) two long exact
sequences (similar to cohomology) can be associated depending on whether one uses the first or the
second argument. Furthermore, if E is locally free, then

Exti
OX

(E,F) ∼= Hi(X, E∨ ⊗ F) (5.50)

In particular, for any coherent sheaf F

Exti
OX

(OX ,F) ∼= Hi(X, F) (5.51)

Finally, we will also need Serre duality [224], [256], [257]

Exti
OX

(E,F) ∼= Extn−i
OX

(F,E⊗KX)∨ (5.52)

where E, F are coherent sheaves and n is the dimension of the smooth variety X.

5.4. The Central Charge of the D-branes

5.4.1. The D-brane charge

In the following we will use the same notation F for both a coherent sheaf on X and its image in K0(X).
Now note that the Mukai vector

v(F) = ch(F)
√

td(X) (5.53)

defines a module homomorphism v : K0(X) → Heven(X,Q). This definition is such that

χ(X; E,F) = 〈v(E), v(F)〉 (5.54)

where the intersection form on the right-hand side was defined in (3.62). Now, recall that for E, F locally
free, i.e. vector bundles, this is just the index of the Dirac operator coupled to E∨⊗F ind i/∂E∨⊗F. This
observation will be taken up in Section 6.1. Note that v induces an isomorphism between K0(X)⊗Z Q
and Heven(X,Q) [200].

Let Q : K0(X) → Heven(X,Q) be defined by

E 7→ Q(E) = v(E) ∩ [X] (5.55)

By abuse of language we are still using the notion of Chern classes in Q although they are really Chern
numbers. We call Q(E) the D-brane charge of E with its component in H2p representing the D2p-brane
charge. Since Q is a module homomorphism, it follows that

Q(F) = Q(E) + Q(G) (5.56)

for each exact sequence (5.21) of coherent sheaves in X. This is interpreted as the charge conservation
law when making a D-brane state associated with F out of those associated with E and G.

The charge “lattice” Heven(X,Q) has several distinguished isometries. For instance, for an invertible
sheaf L on the Calabi–Yau threefold X, the map v(F) 7→ v′(F) with

v′(F) = ch(L)v(F) (5.57)

= v(F) +
(

0, rk(F) c1(L), c1(F) c1(L) +
rk(F)

2
c1(L)2, (5.58)

ch2(F) c1(L) +
1
2

c1(F) c1(L)2 +
rk(F)

6
c1(L)3

)
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gives an isometry of Heven(X,Q). We will give an interpretation of this isometry in terms of monodromy
transformations on the complex structure moduli space of the mirror X∗ in Section 5.6.

The N = 2 space-time supersymmetry algebra allows for a central charge Z(E) which determines
the mass of a BPS state E as

m = |Z(E)| (5.59)

Its phase is used to define the grade of a BPS configuration E

φ(E) =
1
π

Im log Z(E) (5.60)

which is important to study stability questions [237] (see Chapter 6 and in particular (6.1)).
For an A-type D-brane given by a charge vector Q wrapped about the cycle Σ =

∑b3−1
i=0 Qi[Σi] the

central charge is [258]

Z =
∫

Σ

Ω = QiΠi (5.61)

It has been observed that mirror symmetry not only maps Heven(X,Z) to Hodd(X∗,Z), but it does so
while respecting the integral structure of the cohomologies [259]. The BPS charge lattice of the low
energy effective theory for B-type D-branes is an integral symplectic lattice which can be identified with
the middle cohomology lattice of the mirror manifold H3(X∗,Z). The BPS central charge corresponding
to a vector

n =
(
n6, n

1
4, . . . , n

h1,1

4 , n0, n
1
2, . . . , n

h1,1

2

)
∈ H3(X∗,Z) ∼= Zb3 (5.62)

is

Z(n) = Π0n6 +
h1,1∑

i=1

Πin
i
4 + Πh1,1+1n0 +

h1,1∑

i=1

Πh1,1+i+1n
i
2 (5.63)

where h1,1 refers to X and the periods are given in (3.72). The ni
2p is a suggestive notation for the

number of D2p-branes wrapping a cycle of the ith basis element of Heven(X,Z).
On the other hand, in the large volume limit, the lattice of D-brane charges is an integral quadratic

lattice identified with the K-theory lattice K0(X). The map between these lattices is a non-trivial
question in mirror symmetry and is not known in a closed form. In the present case we will construct
such a map between the low energy charges n and the topological invariants of the K-theory class [E]
by exploiting the exact form of the D-brane charge Q(E) in (5.55). The central charge associated to a
state described by [E] is then [180]

Z(Q) = −
∫

X

e−J ∧Q (5.64)

where J = taJa is the Kähler form. The factor e−J takes into account the normalization by the volume,
where the volume of a 2p-cycle Σ is determined by Wirtinger’s theorem to be 1

p!

∫
Σ

Jp.
The comparison of (5.63) and (5.64) gives the relation between the low energy charges and the

topological invariants of [E]. We derive explicit formulae for the cases when [E] describes either D6-
branes wrapped on X or D4-branes and D2-branes wrapped on holomorphic submanifolds of X.

Recall from Section 2.6 and Section 3.4 that the prepotential in compactified type IIB theory is
classically exact and depends only on the complex structure moduli. This is the most basic quantity
as it determines the central charges (5.61) and (5.63) through the periods (3.72). Hence, since A-type
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D-branes (having an even number of non-compact space dimensions) are controlled by the complex
structure moduli, their central charges and masses are exact while those of the B-type D-branes (having
an odd number of non-compact space dimensions) receive world-sheet instanton corrections in agreement
with the discussion in Section 4.3. The latter can be computed by invoking mirror symmetry. We will
take this up when we discuss D-geometry and stability in Chapter 6.

5.4.2. D6-branes

We now consider systems with non-zero D6-brane charge n6 6= 0 which can be represented by coherent
sheaves F on X. Recall from section 5.2 that the corresponding D-brane configuration is stable only if
F is stable. Expanding (5.53) gives

Q =
(

rk(F), c1(F), ch2 F +
rk F

24
c2(X), ch3(F) +

1
24

c1(F) c2(X)
)

(5.65)

Q is interpreted as a vector of electric and magnetic charges. The shift by c2
24 is a geometric version

of the Witten effect [260]. Indeed, choosing an electric/magnetic polarization so that H0 ⊕H2 is the
lattice of magnetic charges one observes a shift in the electric vector [3]: qe → qe + c2

24 . Expanding (5.64)
gives for the associated central charge

Z(Q) =
rk(F)

6
J3 − 1

2
ch1(F) · J2 +

(
ch2(F) +

rk(F)
24

c2(X)
)

J −
(

ch3(F) +
1
24

c1(F) c2(X)
)

(5.66)

By a direct comparison of (5.63) using (3.72) and (5.66) using J = Jiti we obtain the Chern characters
of F

rk(F) = n6 (5.67)

ch1(F) =
h1,1∑

i=1

nJi
4 Ji (5.68)

ch2(F) =
h1,1∑

i=1

(
nCi

2 + Aijn
Jj

4

)
Ci (5.69)

ch3(F) = −n0 − 1
12

h1,1∑

i=1

nJi
4 c2 ·Ji (5.70)

where the Ji and the Ci form a basis for H4(X,Z) and H2(X,Z) respectively, satisfying Ji · Cj = δij .
The Aij have been defined in (3.73). The Chern classes will be more convenient for the discussion in
chapter 6. We will explicitly give them for the families studied in Section 3.5 and Appendix C .

In these terms the Bogomolov inequality (5.20) becomes

∆(F) · J = nJi
4 n

Jj

4 tkKijk − 2n6

(
nCi

2 + Aijn
Jj

4

)
ti ≥ 0 (5.71)

5.4.3. D4-branes

A different class of D-brane states can be obtained by wrapping D4-branes on divisors i : D → X.
D-brane configurations are described as above by a coherent sheaf F of rank r on D which is required
to be stable. The associated K-theory class in K0(X) is defined as the torsion sheaf i!F which is
the extension of F by zero to X. Then, the Mukai vector can be computed by an application of the
Grothendieck-Riemann-Roch theorem (5.33). Indeed, (5.34), (5.35), (5.38), (5.39) and (5.53) yield

Q =
(

0, rD, i∗ c1(F) +
r

2
i∗ c1(D), ch2(F) +

1
2

c1(F) c1(D) +
r

8
c1(D)2 +

r

24
c2(D)

)
(5.72)
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Therefore, in the large volume limit, the associated central charge reads

Z(Q) = −r

2
J2 ·D +

(
i∗ c1(F) +

r

2
i∗ c1(D)

)
J (5.73)

− ch2(F)− 1
2

c1(F) c1(D)− r

8
c1(D)2 − r

24
c2(D)

We again compare (5.63) using (3.72) and (5.73) using J = Jiti to obtain the Chern characters of F. If
we assume that D = miJi where Ji is a basis of H4(X,Z) and mi ∈ Z then

rk(F) =
nJi

4

mi
∀ i (5.74)

c1(F) =
h1,1∑

i=1

(
nCi

2 + Aijn
Jj

4 +
n

Ji0
4

2mi0

mjmkKijk

)
Ci (5.75)

ch2(F) = −n0 +
n

Ji0
4

12mi0

mimjmkKijk +
1
2
nCi

2 mi (5.76)

−
(

n
Ji0
4

mi0

mi + nJi
4

)
c2 ·Ji

24
+

1
2
miAijn

Jj

4

A few comments are in order here. If mi = 0 then obviously also nJi
4 = 0. The index i0 can be chosen

from any of the i for which mi 6= 0. The formulas become simplest if one chooses it to be such that
mi0 = 1, if possible. If one chooses another basis for H4(X,Z) than Ji one has to transform the nJi

4

correspondingly. It can happen that some of the curves Ci in (5.75) do not appear. This has to be
analyzed separately before the use of the formulas for c1(F) and ch2(F). In this case, we have to set
the corresponding coefficient to zero which gives h2(X) − h2(D) relations between the corresponding
nCi

2 and some of the nJk
4 . We will see this explicitly in the examples in chapter 6.

The case of a K3 fibration can be worked out in general. Assume that J1 = L is the K3 fiber, and
that i∗ c1(F) can be written as i∗ c1(F) = αiJi|L for some αi. From the fact that Ji|L = βi1l+

∑
j>1 βijCj

and 0 = Ji · L|L = βi1l · L = βi1 for all i we see that the curve l does not appear in (5.75). Hence its
coefficient must vanish. Using that nJi

4 = 0 for i 6= 1 and that the A1j = 0 for K3-fibrations (3.74) one
finds

rk(F) = nL
4 (5.77)

c1(F) =
h1,1∑

i=2

nCi
2 Ci (5.78)

ch2(F) = −n0 − 2nL
4 (5.79)

5.4.4. D2-branes

We can repeat this computation also for D2-branes. Let i : C ↪→ X be a curve of arithmetic genus
pa(C) embedded in a Calabi–Yau threefold X. Then (5.42) and (5.44) give for the Mukai vector

Q = (0, 0, rk(F)C, i∗ c1(F) + rk(F)(1− pa(C))) (5.80)

Therefore, in the large volume limit, the associated central charge reads

Z(Q) = rk(F)J · C − i∗ c1(F)− rk(F)(1− pa(C)) (5.81)
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If we assume that C = miCi where Ci is a basis of H2(X,Z) and mi ∈ Z then by repeating the
comparison of Z(n) and Z(Q) one more time we get

rk(F) =
nCi

2

mi
∀ i (5.82)

c1(F) = −n0 + (pa(C)− 1)
n

Ci0
2

mi0

(5.83)

If mi = 0 then obviously also nCi
2 = 0. The index i0 can be chosen from any of the i for which mi 6= 0.

The formulas become simplest if one chooses it to be such that mi0 = 1, if possible.

5.5. Moduli of D-branes

Let us now turn to the dimension of the moduli space of these sheaves which we will compare in
Section 6.3 with the predictions from conformal field theory in Section 4.3.2. As mentioned in the
previous sections, our focus lies on D4-branes wrapping a divisor D. Here we have to consider two
problems. First, we can study and compute the dimension of the moduli space of the sheaves F as
sheaves on the complex surface D. Second, we have to take into account the changes when we consider
them as torsion sheaves i∗F on the Calabi–Yau X, supported on the divisor D. Roughly speaking, what
we have in addition to bear in mind is the possibility that the surface D can move inside X. As we
will see, the answer to the first question is rather easy while the second is more difficult. Let us discuss
them in turn.

5.5.1. Deformations of vector bundles and sheaves

In this subsection we will see how to describe the deformations of vector bundles or in other words, how
to describe the moduli space of vector bundles.

Before treating the general case, let us first look at line bundles. By means of the exponential
sequence, the set Picc1(X) of all line bundles L with fixed first Chern class c1 can be identified with
the Abelian variety H1(X, OX)/H1(X,Z). Therefore it will have dimension

m(geom)(L) = h0,1(X) (5.84)

Hence, all line bundles on a Calabi–Yau manifold X will have a zero dimensional moduli space. For
line bundles on a surface D the dimension of its moduli space will be q(D) and on a curve C of genus
g it will be g.

Next, we are going to review deformations of bundles and sheaves, mainly following [261], [262],
[263], [264] and [115]. We start with a family of simple vector bundles E of rank r over some parameter
space T , or in other words a single vector bundle E over X ×T . We assume that T has a distinguished
point t0 = 0 and that we are given a fixed isomorphism from the restriction of E to the slice X × {0}
to E. For simplicity we assume that T is smooth of dimension 1, with coordinate t. We denote the set
of isomorphism classes of simple vector bundles on X by MD. Let gij : Ui ∩ Uj → GL(r,C) be the
transition functions for E with respect to some open cover {Ui} of X. The gij can be viewed as sections
of GL(r,OX) and satisfy

gijgjkgki = 1 ∀ Ui ∩ Uj ∩ Uk (5.85)

Hence the set {gij} is a multiplicative 1-cocycle with values in GL(r,OX). (For definition see [263].)
The transition functions for E can be taken of the form

Gij(t) = gij(1 + taij) + O(t2) (5.86)
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where aij ∈ GL(r,OX). The main idea of deformation theory is to consider the 1-cochain {Gij(t)} as
a first order deformation of {gij}. It is a 1-cocycle if and only if

g−1
jk aijgjk + ajk = aik (5.87)

This condition says [264] that aij is an additive 1-cocycle with values in the bundle (more generally
sheaf) EndE of (local) endomorphisms of E. One can show that different choices of aij lead to a 1-
coboundary for EndE, so that we have intrinsically defined an element in H1(X, EndE). This element
is the Kodaira-Spencer class of the family E 7→ X × T [263]. This can be reformulated as follows [264].
The Zariski tangent space of MD at the point [E] is canonically isomorphic to the cohomology group
H1(X, EndE). Hence the dimension of MD is h1(X, EndE).

In general, the infinitesimal deformations α(ν) = ∂Et

∂tν
|t=0, ν = 1, . . . , N , along tν at t = (t1, . . . , tN ) =

0 form a basis of H1(X, End E) and can be represented by 1-cocycles {a(1)
ij }, . . . , {a(N)

ij }. In this case

Gij(t) ≡
∑

µ=(µ1,...,µN )

g
(µ)
ij tµ = g

(0)
ij (1 +

N∑
ν=1

a
(ν)
ij )tν + O(t2) (5.88)

where we use the multi-index notation for µ and t. Define the 2-cocycles {ob(µ)
ijk} with coefficients in

the sheaf EndE by

ob(µ)
ijk = a

(µ)
ij gija

(µ)
jk g−1

ij (5.89)

Their cohomology classes are denoted by ob(µ) and are the obstructions to finding {g(µ)
ij } of order

|µ| = n + 1 so that {Gij(t)} satisfies (5.85) up to order n + 2 provided that the {g(µ)
ij } are defined up

to order |µ| = n such that {Gij(t)} satisfies (5.85) up to order n + 1 [263]. It is possible to find such
{g(µ)

ij } if and only if ob(µ) vanishes for every µ with |µ| = n + 1. In particular, MD is smooth at [E] if

H2(X, EndE) = 0 (5.90)

This condition can be improved by noting that if {Gij(t)} is a 1-cocycle up to order n + 1, then so is
{detGij(t)}. Let us define ad E to be the kernel of the trace map tr : EndE → OX . Then it can be
shown [264] that every obstruction for the moduli space MD to be smooth at [E] lies in the kernel of
the trace map H2(tr) : H2(X, EndE) → H2(X, OX). From the exact sequence

0 −→ adE −→ EndE −→ OX −→ 0 (5.91)

we can determine h0(X, EndE) = h0(X, adE) + h0,0(X) and h2(X, EndE) = h2(X, ad E) + h0,2(X). In
this terminology, E being simple means

H0(X, adE) = 0 (5.92)

Note that stability of a vector bundle implies simplicity [265].
All these statements can be generalized to the case where E is a sheaf [262], [149], [235]. One can

similarly define a trace map tri : Exti
OX

(F,F) → Hi(OX) induced from tr as above. Let Exti
OX

(F, F)0
denote the kernel of tri, and let exti

OX
(F, F)0 be its dimension. In this case, the tangent space to

the moduli space MD at [F] is given by Ext1OX
(F,F)0 and the smoothness condition translates into

Ext2OX
(F, F)0 = 0. Note that in the case where F corresponds to a singular point in the moduli space,

i.e. when dimExt2OX
(F, F)0 > 0 then (5.99) gives an upper bound on the dimension. More precisely,

one can show [235] that

ext1OX
(F, F)0 ≤ dimMD(F) ≤ ext1OX

(F, F)0 − ext2OX
(F, F)0 (5.93)
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The right hand side is called the expected dimension of the moduli space MD.
In general, the dimension of the moduli space is not necessarily constant – the moduli space can

have branches of different dimension, and can depend on the moduli of the Calabi–Yau manifold as
well. In particular, the expected dimension for a sheaf on a Calabi–Yau threefold is always zero. From
a physical point of view, the moduli space MD is the moduli space of D-branes wrapping a cycle X
introduced in Section 5.2. In [5], [266] it was argued that obstructions to deformations of curves C in a
Calabi–Yau threefold X will appear as higher order terms in the superpotential for a D-brane wrapped
around this curve C. Analogously, the obstructions in (5.89) will appear as higher-order terms in the
superpotential of the N = 1 D = 4 world-volume theory of the D-brane described by E and will lift
M = h2(X, End E) of the flat directions. r Dp-branes wrapping a single supersymmetric cycle Σ ⊂ X
extended in flat space-time have a U(r) vector multiplet arising from massless open string excitations
polarized completely in in R3,1. Massless open string excitations polarized in X form adjoint U(r)
chiral multiplets Φi. The first-order deformations in (5.88) are the scalars in the chiral multiplets, i.e.
they parametrize MD. We claim that if there exists a local obstruction of the form

∑

|µ|=2n

ob(µ)tµ ∼
∑

i1,...,iM

Wi1,...,iM
tµ1
i1

. . . tµM

iM
(5.94)

in (5.89) it will contribute to the superpotential of the world-volume theory a term of the form

W (Φ) ∼
∑

i1,...,iM

Wi1,...,iM

(
Φi1

)µ′1 . . .
(
ΦiM

)µ′M (5.95)

with |µ′| = n + 1. For related ideas see [203] and [253].

5.5.2. Bundles and sheaves on algebraic surfaces

In this section we consider the extension the previous general statements to the special case of a
algebraic surface D. The computation of the dimension of the moduli space of sheaves F on D is a
simple application of the Hirzebruch-Riemann-Roch theorem [210] as we will review shortly. Let us
assume for the moment that F is simply a vector bundle. Then the dimension is given by h1(D, EndF).
This is part of the holomorphic Euler characteristic of F (5.28)

χ(D, EndF) =
2∑

i=0

(−1)ihi(D,EndF) (5.96)

The Hirzebruch-Riemann-Roch theorem (5.48) tells us that this can be determined from the Chern
classes of F.

χ(D, EndF) =
∫

D

td(D) ch(F) ch(F∨) (5.97)

=
∫

D

rk(F)2

12
(c1(D)2 + c2(D)) + (rk(F)− 1) c1(F)2 − 2 rk(F) c2(F) (5.98)

Collecting (5.96), (5.97) and (3.38) we obtain

h1(D, EndF) = c1(F)2 − 2 rk(F) ch2(F)− rk(F)2χ(OD) + 1 + pg(D) (5.99)

where we have expressed c2 by ch2 since the latter expression simpler in terms of the charges n (5.76).
Recall that for a surface D embedded as a divisor in a Calabi–Yau X, its holomorphic Euler characteristic
χ(OD) can be computed in terms of the toric data of X using (3.39). While this discussion applies to
bundles one can show with more work that the same formula also holds for sheaves F when we replace
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h1(D, EndF) by ext1OD
(F,F), see [262]. We denote this dimension by m(geom,D)(F). According to [210]

the moduli space of Hermitian vector bundles admitting an irreducible Einstein-Hermitian connection
over a compact Kähler surface D is a non-singular Kähler manifold of dimension h1(D, EndF) if

deg KD = −
∫

D

c1(D) ∧ J (D) = −D2 · J |X ≤ 0 (5.100)

By the Donaldson-Uhlenbeck-Yau theorem [240], [241] such bundles are stable. The condition on the
degree of the canonical bundle allows to distinguish four cases. First, if deg KD < 0 then KD has no
holomorphic sections, i.e. pg(D) = 0. If deg KD = 0 and KD 6= OD then every holomorphic section
is parallel so that pg(D) = 0, too. If KD = OD, i.e. if D is a torus or a K3 surface then pg(D) = 1.
Finally, if c1(D) > 0, then q(D) = pg(D) = 0.

In the special case of the K3 surface L, the moduli space carries a holomorphic symplectic structure
and the dimension formula reduces to the well-known Mukai formula [149], [264]

m(geom,L)(F) = c1(F)2 − 2 rk(F) ch2(F)− 2 rk(F)2 + 2 (5.101)

or in terms of the D-brane charge vector n

m(geom,L)(F) = nCi
2 n

Cj

2 I(K3),ij + nL
4 (2nL

4 + n0) + 2 (5.102)

where I(K3),ij is the inverse of the intersection matrix I
(K3)
ij on the Picard lattice Pic L, see Section 3.3.4.

In general, i.e. without the assumption on the degree of the canonical bundle, the moduli space will
be singular and reducible. However, one might hope that at least for comparison to the results from
conformal field theory the dimension formula will continue to hold for some non-singular subset, say a
point, of a component of the moduli space.

5.5.3. Sheaves on Calabi–Yau threefolds

The tangent bundle

It has been proven [241] that the holomorphic tangent bundle T 1,0(X) of a Calabi–Yau manifold X
with h1,0(X) = 0 is stable. For the tangent bundle there is a general method using spectral sequences
and the Koszul complex to compute h1(X, ad T 1,0). This is explained in detail in [88], following [267]
and [268]. This dimension can, in principle, also be computed by counting E6 singlets in a Gepner
model compactification of the heterotic string as in [40] and [43].

Torsion sheaves

With the knowledge of the dimension of the moduli space of sheaves F on the surface D we can
now turn to the second question, the dimension of the moduli space of these sheaves considered as
torsion sheaves i∗F supported on a divisor D inside the Calabi–Yau X. We denote this dimension by
m

(geom,D)
X (i∗F) = Ext1OX

(i∗F, i∗F) which we have to compare to Ext1OD
(F, F). This can actually be

done. For coherent sheaves E and F on a divisor D ∈ X with normal bundle NX/D = OD(D) there
exists a long exact sequence [269]

−→ Exti
OD

(E, F) −→ Exti
OX

(i∗E, i∗F) −→ Exti−1
OD

(E, F(D)) δ−→ Exti+1
OD

(E, F) −→ (5.103)

Assuming that F is a simple vector bundle, it can be shown [270] that

0 −→ Ext1OD
(F, F) −→ Ext1OX

(i∗F, i∗F) −→ H0(D, End(F)⊗NX/D) −→ 0 (5.104)
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which using H0(D, NX/D) = H0(D, KD) = H2(D, OD)∨ simplifies to

0 −→ H1(D, EndF) −→ Ext1OX
(i∗F, i∗F) −→ H0(D,End(F))⊗H2(D, OD)∨ −→ 0 (5.105)

so that

ext1OX
(i∗F, i∗F) = h1(D,End(F)) + pg(D) (5.106)

or, in general,

m
(geom,D)
X (i∗F) = m(geom,D)(F) + pg(D) (5.107)

We will see in Section 6.4, that there is a high agreement with the result from conformal field the-
ory (4.48).

The FMW construction

Let us say a few words about sheaves supported on the whole Calabi–Yau manifold. One would like
to compute the dimension of the moduli space also in this case. If one tries to repeat the Hirzebruch-
Riemann-Roch computation in subsection 5.5.2 then one runs immediately into the difficulty that
because of (5.51) and Serre duality (5.52)

3∑

i=0

(−1)i dim Hi(X, EndV ) = 0 (5.108)

One way out, presented in [271], is to use the fact that elliptically fibered Calabi–Yau manifolds π : X →
B with a section σ have an additional symmetry τ . This Z2 symmetry is generated by an involution
that leaves σ invariant and acts as −1 on each fiber. In terms of a Weierstrass model y2 = 4x3−g2x−g3,
τ is just the operation y → −y with fixed x. Hence we will assume that we are in a component of the
moduli space where τ lifts to an action on the bundles on X and the condition for τ -invariance of a
bundle V becomes τ∗(V ) = V ∨. This allows us to compute the Z2 index and therefore the dimension
of the moduli space with the help of a character-valued index theorem [272] applied to the group Z2.

3∑

i=0

(−1)i trHi(X,ad V ) τ =
∑

j

∫

Uj

ch(adVe|Uj )− ch(adVo|Uj )

1 + e
c1(NX/Uj

)
td(Uj) (5.109)

where the subscripts e and o correspond to the subbundles on which τ acts by 1 and −1 respectively,
and the Uj are the components of the fixed point set of τ . If we write Hi

e and Hi
o for the subspaces

of Hi that are even or odd under τ and assume that the bundle is simple, i.e. H0
e = H0

o = 0 then the
dimension of the moduli space is

I = h1(X, adVe)− h2(X, adVe) = −1
2

3∑

i=0

(−1)i trHi(X,ad V ) τ (5.110)

where we have used (5.108). In [271] I was evaluated for an SU(n) bundle V to be

I = n− 1−
∫

U1

c2(V )−
∫

U2

c2(V ) (5.111)

The two components of the fixed point set are U1 which is the section σ and hence its cohomology class
is that of σ and U2 which is given by y = 0. Since y is a section of O(σ)3 ⊗K−3

B the cohomology class
of U2 is 3σ − 3 c1(KB). The authors of [271] have also determined c2(V ) to be

c2(V ) = ησ − c1(KB)(n3 − n)
24

− nη(η + n c1(KB))
8

(5.112)

where η = c1(B) mod 2. We will check in Section 6.3 for the elliptic fibrations discussed in Appendix C
whether such bundles can be found in the boundary state construction of Section 5.4.2.
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Exceptional Sheaves

A class of coherent sheaves with very interesting properties with respect to mirror symmetry are
the exceptional sheaves [273], [151]. An exceptional sheaf E on a weighted projective space Y has
Ext0OY

(E, E) = C and Exti
OY

(E, E) = 0 for i > 0. An exceptional collection E of sheaves is an ordered
collection of exceptional sheaves E = {E1, . . . , EN} such that Exti

OY
(Ea,Eb) = 0 for a > b and for a < b

except at most for a single degree i = i0. In particular, the index (5.49) has at most one non-trivial term
equal to (−1)i0 Exti0

OY
(Ea, Eb). The computation in Appendix B relies heavily on the concept of helices

of sheaves. A helix is defined as an infinite collection HE = {Ea} such that the set {En0+1, . . . , En0+N}
is an exceptional collection for any n0. It can be shown that one can obtain a helix starting from a
particular exceptional collection which is called the foundation of the helix. We will briefly use the
restriction of exceptional sheaves to Calabi–Yau hypersurfaces in Section 6.4.

A comment on sheaves supported on curves

Everything we have said for divisors in a Calabi–Yau threefold X carries in principle over to curves
j : C → X embedded in X. However, there are important difficulties. As in the case of D4-branes we
can decompose the question about the dimension of the moduli space of sheaves F on C into two parts.
First, we can restrict ourselves to the moduli space of the sheaves F as sheaves on the curve C. This
has been studied in e.g. [226], [115]. We have computed the dimension of the moduli space of a line
bundle L on a curve C of genus g in (5.84) to be h0,1(OC) = g. For genus g ≥ 2, the higher rank case
can be reduced to line bundles by the following observation. A rank r vector bundle E over C describes
a collection of r D-branes wrapped on the curve C which should physically be equivalent to a single D-
brane wrapped on a curve C ′ in the homology class of rC [208]. By the Riemann-Hurwitz theorem [111]
the genus g′ of C ′ is related to the genus g of C by g′ = r2(g − 1) + 1. This is then the dimension
of the moduli space of E. The same result is obtained by applying the Hirzebruch-Riemann-Roch
theorem (5.48) to EndE assuming that E is simple.

m(geom)(E) = rk(E)2(g − 1) + 1 (5.113)

Second, we have to take into account the possibility that the curve C can move inside X, i.e.
consider them as torsion sheaves j∗F on the Calabi–Yau X, supported on the curve C. This may lead
to additional contributions to the dimension of the moduli space of the torsion sheaf j∗F. Infinitesimal
supersymmetric deformations of the cycle C are holomorphic sections of the normal bundle NX/C whose
number is given by the dimension of the space of these sections, H0(X,NX/C) [263]. These first-order
deformations of the cycle can be obstructed either at higher order or by deformations of the complex
structure. This obstruction space is H1(X,NX/C) and we need to know its dimension as well. Since
rkNX/C = 2 this is in general a difficult question, even for rational curves [274]. For further discussion
see [105] and [266]. For this reason, we will not say much about D2-branes here and in Chapter 6.

5.6. D-branes and Monodromies

Transporting a D-brane configuration about closed, non-trivial cycles of MK will induce an associated
Sp(2h1,1 + 2,Z) monodromy on the B-type branes. In the following we will consider the effect of some
of these monodromies on the charges of D-brane configurations.

5.6.1. Monodromy transformation about the large complex structure limit

Since the B-field is an element of the torus H2(X,C)/H2(X,Z) it induces a monodromy about the large
complex structure limit: B → B +D where D is any of the divisors corresponding to the large complex
structure limit of the mirror X∗ as explained in Section 3.4.2. Therefore we get an isometry on the Mukai
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lattice (5.57) with L = O(D). For a related discussion see [275]. Hence, v(F) → v(F) ch(O(D)) [180].
There it was shown in an example how this transformation acts on the charges n. Here we show
the general case. By using (5.67) to (5.70) we can show that for D = Ja the linear transformation
v(F) → v(F) ch(O(Ja)) acts on n by the matrix M(Ja)

n → M(Ja)n with M(Ja) =




1 δT
a

1
6Kaaa + 1

12 c2 ·Ja
1
2KT

aa + AT
a

0 11 1
2Kaa + Aa Ka

0 0 1 0
0 0 δa 11


 (5.114)

which is precisely the inverse of the monodromy matrix Sa in (3.81)

M(Ja) = S−1
a (5.115)

This therefore proves that the monodromy transformations Sa on H3(X∗,Z) of the mirror X∗ are
converted into automorphisms of K0(X) of the form

F → F ⊗ OX(Ja) (5.116)

This preserves stability and the dimension of the moduli space. This is a simple particular case of
a more ambitious program initiated by Kontsevich [276] which proposes an interpretation of mirror
symmetry as an equivalence between the derived category of complexes of coherent sheaves on X and
the Fukaya-Floer category of isotopy classes of graded special Lagrangian submanifolds of the mirror
X∗ and elaborated systematically in [107].

5.6.2. Monodromy transformation about the discriminant locus

Here we check that all bundles constructed from boundary states satisfy another monodromy transfor-
mation proposed by Kontsevich. He suggested that the monodromy T about the conifold locus, the
primary component of the discriminant locus, of the mirror X̂ corresponds to the automorphism K0(X)
whose effect on the cohomology can be described by

S : γ −→ γ −
(∫

X

γ ∧ td(X)
)
· 1X (5.117)

which corresponds to a change in the topological invariants of the sheaf F

ch(F) −→ ch(F)− ch1(F) c2(X)
12

+ ch3(F) (5.118)

Now from (5.67) to (5.70) we have

ch1(F) c2(X)
12

+ ch3(F) =
nJi

4 c2 ·Ji

12
− n0 − nJi

4 c2 ·Ji

12
= −n0 (5.119)

hence we get that

n6 −→ n6 + n0 (5.120)

Now recall from (3.85) that the monodromy matrix about the conifold locus in this basis is

T = 11− E1,h1,1+2 (5.121)

where Eij is the matrix with zeroes everywhere except at the (i, j)-th entry. Comparing the last two
results, we see that

S = T−1 (5.122)
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This can be generalized to the other components of the discriminant locus. In general, given a spherical
sheaf E [277], one can define a twisted sheaf TE(F) whose Chern character is

ch(TE(F)) = ch(F)− 〈E, F〉 ch(E) (5.123)

Any line bundle is spherical. Note that in general this transformation does not preserve the dimension
of the moduli space. For the primary component, we need to choose E = OX then we obtain (5.119).
If the component corresponds to an exceptional divisor i : F → X shrinking down to a point, then
E = i∗OF is spherical. If Op represents a D0-brane, then ch(Op) = p ∈ H6(X,Z) is the Poincaré dual
to a point p. Hence 〈OY ,Op〉 6= 0 if and only if Y = X. The D0-brane therefore only undergoes
a monodromy if we transport it around the primary component of the discriminant locus [278]. For
the component corresponding to the contraction of an exceptional divisor to a curve, one has to use
spherical complexes instead of only sheaves [277], [278].
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It is important to note that the geometrical structure which one sees emerging from some particular
situation can depend in part on precisely which probe one uses to study it. If one uses a string probe one
quantum geometrical structure will be accessed while if one uses for instance a D-brane of a particular
dimension, another geometry will become manifest. D-geometry [279] is the study of geometry of M-
theory or string theory compactifications as seen by a D-brane. This geometry can differ from the
conventional, classical geometry which describes e.g. D-branes as solution of the supergravity equations
of motions. “Unconventional” geometry will appear if e.g. we include stringy (α′) and quantum (gs)
corrections. The world-volume actions for D-branes get affected by these corrections as can be seen e.g.
from (5.1). Other qualitative effects visible at finite α′ include T-duality and mirror symmetry as has
been discussed in 2.6. There are further effects [279].

In this chapter we will see that we need to modify the geometric hypothesis stated in the Introduction.
The core of this chapter will then consist of checking this modified hypothesis in many examples. Hereby
we will focus mainly on two aspects, the spectrum of the D-branes and the dimension of their moduli
space.

As an example of how the geometry can change consider a supergravity 0-brane at a point in the
Calabi–Yau threefold X. Its moduli space is X itself and the metric on the moduli space is just the
Ricci-flat metric on X. Now due to α′ corrections the moduli space metric of a D0-brane at a point in
X will provide a canonical non-Ricci-flat metric for each point in the Calabi–Yau moduli space [279].
We will briefly discuss D0-branes in the Gepner model description in Section 6.4.8.

Another example provides us with the most important difference to theories satisfying the geometric
hypothesis. Consider the fact that D-branes are BPS states in string theory and reduce to BPS states
in the supersymmetric gauge theory in four dimensions. By the work of Seiberg and Witten [280], [281]
it is known that in pure N = 2 SU(2) gauge theory the strong coupling spectrum is very different from
the semi-classical spectrum. There are lines of marginal stability defined by the condition

Im
Z(Q1)
Z(Q2)

= 0 (6.1)

for the central charges (5.63) of two BPS configurations with charges Q1 and Q2. The purely electric
W-bosons which are the lightest states in the semi-classical regime are not present in the strong coupling
spectrum. In that spectrum the magnetic monopoles are the lightest states. One can try to compare
the situation of pure N = 2 SU(2) gauge theory with the N = 1 gauge theory obtained from a
compactification of Type II string theory on a quintic threefold with D-branes since the Seiberg-Witten
moduli space and the Kähler moduli space of the quintic have the same form: they are both a P1 with
three points removed. There are however some important differences. In pure SU(2) N = 2 gauge
theory there is a single line of marginal stability which goes through the massless monopole and dyon
points and separates strong and weak coupling limits. On the other hand, at the conifold point of
the quintic moduli space it is the D6-brane which becomes massless [4] and there seem to be infinitely
many lines in the D-brane world-volume theory [236]. In addition, there can be BPS states whose mass
appears to go to zero at a non-singular point in the moduli space [279]. Nevertheless, one concludes that
the spectrum of the D-branes depends on the particular point in the moduli space of the Calabi–Yau
manifold, but the story is not as simple as in the Seiberg-Witten theory. We will discuss this further in
Sections 6.3.1 and 6.5.
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6.1. Witten index and intersection matrix

We want to determine the D-brane spectrum at various points of the Calabi–Yau moduli space. With
the obvious candidate for a comparison of the spectra, namely the D-brane charges, one runs into the
difficulty of normalization of the charges. A better quantity to use is the intersection form governing
the Dirac charge quantization condition (5.4) which is canonically normalized, as already noted in [192].

Checking the Dirac quantization condition (5.4) for a D0-brane requires introducing a D6-brane and
computing their interaction from an annulus diagram. From the open string point of view, restricting
to the massless sector, this computation can be done as follows. It was argued in [279], [179] that by
carrying over the results of [282] to the magnetic monopole interaction between a Dp- and a D(6− p)-
brane, the D0-brane sees the magnetic RR potential of the D6-brane as a Berry phase [283] associated
with the Hamiltonian

H = E0 +
3∑

i=1

χ̄σiχXi (6.2)

describing fermionic strings stretched between these objects. The fermions χ are a doublet of the SO(3)
transverse to both branes and E0 is a constant shift of energy coming from the massive open strings.
The massive string modes will always come in pairs with canceling Berry phase. Thus the interaction
relevant for the Dirac quantization condition can be computed by counting fermionic open strings. The
matrix Iαβ = trαβ, R(−1)F counting massless Ramond doublets (with chirality) between the D-brane
α and the D-brane β is then the conformal field theory analog of the intersection form in a geometric
compactification. It is the Witten index in the Ramond sector and from Section 2.7 we know that it
does not vary under continuous deformations. In the geometric case, if we consider a set of branes
wrapping an integral homology basis this form must be integral and unimodular by Poincaré duality,
proving that (5.4) is satisfied [179]. By computing Iαβ in the conformal field theory as in Section 4.3.1
one can check that a particular set of D-branes also satisfies (5.4).

In the nonlinear σ-model introduced in Section 2.2 we can give another argument [151]. Assume
for simplicity that there is a single D-brane wrapping X entirely. We can couple the left and right
boundaries of the world-sheet to U(1) Chan-Paton gauge fields A(α) and A(β) respectively that define
holomorphic line bundles Eα and Eβ on X. We use that the boundary term is

∫

∂Σ

dx0 {∂0φ
µAµ + iFµνψµψν} (6.3)

where µ, ν are real coordinates as in (2.37) and the boundary condition is

∂1φ
µ = 0 ψµ

− − ψµ
+ = 0 (6.4)

The theory is invariant under B-type supersymmetry generated by Q = Q+ + Q− and Q† = Q+ + Q−.
Since the boundary term (6.3) includes the time derivatives of the fields, the Noether charges are
modified. Thus the supercharge Q is expressed as

Q =
√

2
(∫ π

0

dx1
{

gi̄

(
ψ

̄

+ + ψ
̄

−
)

∂0φ
i − gi̄

(
ψ

̄

+ − ψ
̄

−
)

∂1φ
i
}

(6.5)

+
(
ψ

̄

+ + ψ
̄

−
)

A
(β)
̄

∣∣∣
x1=π

−
(
ψ

̄

+ + ψ
̄

−
)

A
(α)
̄

∣∣∣
x1=0

)

As in the argument given in Section 2.2 we can focus on the zero modes. Then from the boundary
condition (6.4), the left and right fermionic zero modes are related as ψi

−,0 = ψi
+,0 and ψ

ı̄

−,0 = ψ
ı̄

+,0. We
can identify the quantum mechanical Hilbert space as the space of sections of the bundle ∧T (0,1)∗X ⊗
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E∗
α ⊗ Eβ , on which the fermionic zero modes act as

1√
2

(
ψ

ı̄

+,0 + ψ
ı̄

−,0

)
←→ dz̄ ı̄ ∧ (6.6)

1√
2
gi̄

(
ψi

+,0 + ψi
−,0

) ←→ i ∂
∂z̄ı̄

(6.7)

Then the supercharge Q corresponds to the Dolbeault operator on the bundle E∨
α ⊗Eβ :

Q ←→ 2∂̄A = 2dz̄ ı̄
(
∂̄ı̄ + A

(β)
ı̄ −A

(α)
ı̄

)
(6.8)

Thus the Witten index is in this case equal to the index of this Dolbeault operator. By the standard
index theorem (5.48), we obtain

Iαβ = χ(Eα, Eβ) =
∫

X

ch(E∨
α ⊗ Eβ) td(X) (6.9)

It is easy to extend this analysis to the case where the bundles Eα and Eβ have higher ranks. By (5.54)
this is the intersection form on the Mukai lattice.

It is important to mention a subtlety here. Strictly speaking, the Dirac operator is only defined when
coupled to a locally free sheaf, i.e. a vector bundle. It is only in this case that we can define a connection
and the covariant derivative D = ∂+A. Hence the Dirac index is only defined when the Dirac operator is
coupled to a vector bundle. We are, however, interested in general coherent sheaves. We can circumvent
this point by counting the chiral fermions directly instead of computing the Dirac index. For two sheaves
E and F this is achieved by χ(E,F) as defined in (5.49). The index theorem (Hirzebruch-Riemann-Roch
theorem (5.48)) is then replaced by the more general Grothendieck-Riemann-Roch theorem (5.29) which
reduces in the case of locally free sheaves to the former as discussed in Section 5.3.3.

Combining the two arguments we can say that the conformal field theory analog of the intersection
number of geometric branes is the overlap integral of the corresponding boundary states weighted with
(−1)F . Furthermore, since the Witten index is a topological invariant, it is in particular independent
of the Kähler moduli. As mentioned in Section 2.7 we can choose convenient limits to compute it which
are of course the Gepner point and the large volume limit. We will turn to the comparison of the
spectra of B-type branes at these points in Section 6.3. But first, let us make a few remarks on the
A-type boundary states.

6.2. A-type boundary states

The intersection matrix for A-type boundary states with
∑

Lj = 0 in the Gepner model (k1, . . . , k5) is

IA(g2, g3, g4, g5) =


1−

5∏

j=2

gj




5∏

j=2

(
1− g

kj+1
j

)
(6.10)

where gi, i = 2, . . . , 5 are the generators of the symmetry group of the Gepner model (2.89) satisfying
gki+2

i = 1. We have used the diagonal identification in this group
∏

gj = 1 to eliminate g1. To determine
the rank of IA we can count the number of nonzero eigenvalues [5]. The gj can be diagonalized

as gj = diag(1, e
2πi

kj+2 , . . . , e
2πi(kj+1)

kj+2 ). Zero eigenvalues appear if a gj = 1 or if g2g3g4g5 = 1. The
combinatorics lead to the following result [154]. The rank of the intersection matrix can be related to
the following quantity

rk(IA) = b̃3(X) (6.11)
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where b̃3(X) denotes the third Betti number of the corresponding Calabi–Yau family without the con-
tributions from non-polynomial deformations of the complex structure, see Section 3.2.1 and table 3.2.
It can be checked that this holds for any Fermat hypersurface X irrespective of h1,1(X). This means
that the rank of this intersection matrix counts the number of independent 4-cycles on the mirror
Calabi–Yau manifold X∗ except those which are coming from a non-toric blow-up or in other words the
non-toric complex structure deformations of X whose number was given in (3.45). D-branes wrapping
the non-toric divisors have been studied in [57] and [284]. It has been argued in [266] that these complex
structure deformations can lead to a superpotential in the non-compact space-time.

The result (6.11) can be viewed as a reflection of the fact mentioned in Section 4.3.3 that the bound-
ary states used to compute (4.30) and hence (6.10) came only from the untwisted sector. What seems
to be missing in (6.11) are the contributions from the twisted sector in the Landau-Ginzburg orbifold
theory, or in other words, the contributions from exceptional 3-cycles. Recall from Section 3.3.3 that
there can be singular ZN curves whose resolution contributes twice (3.45) to b3. This group ZN is
precisely the group assumed in Section 4.3.3. It was argued in [178] that the boundary states coming
from the K/N -twisted sector should be charged under the twisted (c, c) fields that arise from resolving a
ZN singularity along the curve C. However, as noted in Section 4.3.3 this identification works presently
only for N = 2, and seems to be unclear [183]. The contribution of these twisted boundary states to
the Witten index presumably accounts for the difference between the rank of IA and the number of
independent 3-cycles b3 according to (3.45).

Recall from Section 5.4.1 that the central charge (5.61), i.e. the masses and the grades of A-type
D-branes are exact. Comparing with (6.1) this means that lines of marginal stability are everywhere
in Kähler moduli space the same as in the large volume limit. In Section 5.5 we have studied rather
extensively the deformations of B-type D-branes. Let us add here a few words about deformations of
A-type D-branes. Apart from those which are intrinsic to the special Lagrangian cycle and have already
been considered in Section 5.2 there are deformations coming from the variation of the moduli of the
Calabi–Yau manifold X. They have been studied by Joyce [285] and physically interpreted in [286]
and [2]. The result is that two intersecting D3-branes Σ1, Σ2 can intercommute to produce a single
D3-brane, or the reverse. There is a criterion, called the angle theorem [206], which says which of the
two configurations is stable, and furthermore says that the decay takes place when Z(Q1) and Z(Q2)
are collinear, i.e. when (6.1) is satisfied, i.e. at a line of marginal stability. We will come back to this
point in the next section as well as in Section 6.5.1.

6.3. B-type boundary states in some specific examples

6.3.1. The mirror geometric hypothesis

We have almost everything said in order to state the modified or mirror geometric hypothesis of Dou-
glas [2]. The last ingredient we need are some general considerations on the world-volume effective
action of a D-brane. The simplest quantities to look at are the superpotential and the gauge kinetic
term because they are holomorphic. Since we are working at tree level and with dB = 0 (see (2.43))
the gauge kinetic term is trivial. However, we can have a non-trivial superpotential W at gs ∼ 0. In
this case, the bosonic potential then gets a contribution this F -term. Douglas has argued in [5], [2]
that there might be a counterpart for the non-renormalization theorem which protects FC from correc-
tions from the Kähler moduli ta of X. The superpotential W should depend only on the ta for A-type
branes and not on the complex structure moduli xi of X. A concrete realization of W has been given
in [207], [266] and [287] which supports this claim.

On the other hand, for a B-type D-brane W should be independent of the ta and only depend on
the xi, and furthermore be exact, i.e. equal to the large volume result. This is also referred to as the
decoupling statement. More precisely the statement is

W = m(ta)W (xi, vr) (6.12)
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where vr are the intrinsic D-brane moduli and m(ta) is the mass of the D-brane (5.59). As a consequence
of this statement, the moduli space MD of B-type D-branes would everywhere in Kähler moduli space
be the same as in the large volume limit. In particular, one could compute W at the Gepner point using
the methods developed in [288] and would know the result in the large volume limit. As mentioned at
the end of Section 4.3.2, the

∑
Lj = 0 boundary states in the Gepner model are equivalent [152] to the

fractional D-brane states in a corresponding Landau-Ginzburg orbifold theory. These can be translated
into a so-called quiver gauge theory [176]. In this setup it is possible to write down an ansatz for the
superpotential [236], [152] which is to be compared with the results from the Gepner model and the
ansatz (5.95) for obstructions to deformations of sheaves.

The superpotential can also contain Fayet-Illiopoulos (FI) D-terms which naturally depend on the
Kähler moduli. For A-type D-branes these D-terms are related to stability and the Joyce transitions in
Section 6.2 [286]. For the B-type D-branes they are also related to stability [2], more precisely to the
phenomenon of enhanced gauge symmetry that appears at the walls in the Kähler cone mentioned in
Section 5.3.2. This will be discussed in the next section in more detail.

Having said all this, we can now state the mirror geometric hypothesis of Douglas [2]. Some prop-
erties of A-type D-branes, and others of B-type D-branes are determined by geometry. The remaining
properties of A-type D-branes can then be determined via mirror symmetry by those of the B-type
D-branes, and vice versa. More precisely, the D-brane spectrum, i.e. the central charges and stability
can be understood geometrically for A-type D-branes. The D-brane moduli spaces, i.e. their dimen-
sion, the superpotential can be studied classically for B-type D-branes. Finally, it may be possible to
determine the D-terms, i.e. singularities in the moduli space, for A-type D-branes by geometry. Mirror
symmetry should then allow us to compute the remaining properties of the respective type of D-branes.
This hypothesis is another, strong manifestation of D-geometry.

In the remainder of this chapter we will explicitly test part of this conjectured hypothesis as well
as the underlying conjectured decoupling statement. We will compare the moduli spaces of B-type
D-branes, in particular their dimension, at the Gepner point and in the large volume limit. According
to the conjecture they should coincide because they are supposed to be independent of the Kähler
moduli. We will also compare the spectra at both points in Kähler moduli space and we expect to find
discrepancies due to world-sheet instanton effects. We will do this for a representative subset of the
families discussed in the examples in Section 3.5 and in Appendix C.

6.3.2. The comparison

We compute and compare the charges not only to know the spectrum but also to work out the stability
issue. Remember that a D-brane boundary state is stable if it satisfies (4.45) which is in principle
expressed through the charges of the boundary states. On the other hand, we have a notion of stability
in the large volume limit in terms of stable sheaves. The Bogomolov criterion (5.20) is expressed in
terms of their Chern classes, i.e. of the D-brane charges.

For this comparison we need to express the charges of the B-type boundary states in terms of the
large volume charges. A precise form of this comparison is to choose a path in Kähler moduli space
and use the flat Sp(2h̃1,1 +2,Z) connection provided by special geometry (see Section 3.4) to transport
the charge lattices between the two regimes. This has been performed in the previous chapters, mainly
in Section 5.4. In Sections 2.6, 3.3.1, 3.4 and 3.6 we have provided the results necessary to understand
the Kähler moduli space and the prepotential. In particular, we can transport the information from the
Gepner point to the large volume limit by the analytic continuation matrix M in (3.78). This matrix
can be determined by the methods shown in the Appendices A and B.

However, as noted in Section 3.4.2 there is an Sp(2h̃1,1+2,Z) ambiguity in the periods. Most of it can
be resolved by using an important result from mirror symmetry computations on the quintic [104], [289]
and [290]. We mentioned in Section 3.5.1 that at the conifold point of the mirror quintic a three-cycle
degenerates, i.e. has vanishing period. It turns out that the mirror cycle on the original quintic is the
quintic itself, hence the central charge (5.63) of this cycle corresponds to the “pure” D6-brane, i.e. with
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large volume charges n(D6)(L) = (1, 0, . . . , 0) in (5.62). This allows us to fix the ambiguity in such a
way that the matrix M remains unchanged [5]. Now, that we have a relation between the large volume
limit and the conifold point, we need a relation between the latter and the Gepner point. This is given
by the fact [104] that this vanishing period can be computed in terms of the periods at the Gepner
point (3.75) to be Π = $1 − $0. Hence, the charge vector of this state in the Gepner basis reads
n(D6)(G) = (−1, 1, 0, . . . , 0).

Next, we need to figure out which boundary state corresponds to the state with charges n(D6)(G).
As explained in Section 6.1 due to difficulties in normalization it is more convenient to compute the
Witten index instead of comparing the charges directly. In that section we also reviewed the argument
that the Witten index corresponds to the intersection form IB , see (6.9). Now at the Gepner point,
the left-hand side of this equation is the intersection form (4.41), while the right-hand side is by (5.49)
and (3.62) related to I(G) in (3.79). Both expressions can be written as polynomials in the generator
g of the quantum symmetry Zd in (2.119), where d = K ′ in order to connect with the notation used
in Section 4.3. Comparing the polynomials we see that the one for the

∑
j Lj = 0 boundary states

in (4.42) exactly matches the one from (3.79). Therefore we can associate the state | 0; M ; 0 〉〉B for,
say M = 0, with the state n(D6)(G)1.

We can obtain the charges for different M by acting with A(G) on n(D6)(G), or equivalently with
A(L) on n(D6)(L) which implements the action of g : M → M + 2. The action of h : S → S + 2 is
similarly implemented by n(L) → −n(L). The charges of the states with

∑
j Lj > 0 can be obtained

from n(D6)(G) by replacing g in (4.40) with A(L). When
∑

j Lj is odd, we also have to multiply the
boundary states by g

1
2 . The number of moduli m(CFT) is obtained from (4.48) by the same replacement.

Note that the number of marginal operators we obtain are only upper bounds for the dimension of the
moduli space as in general these theories will have superpotentials (see also Section 5.5.1).

We have one more important information at our disposal, namely the numbers ν and ν̃ in (4.46)
and (4.54), respectively. It was suggested in [180], observed in [291] for D4-branes and in [154] for
D0-branes that boundary states with ν > 1 may not describe single branes but collections of several
branes, and this would correspond to reducible sheaves. In [184] it was shown that each of the ν̃ vertex
operators that describe the emission of U(1) gauge bosons on the boundary in fact has additional
degrees of freedom in terms of N ×N matrices, i.e. each of these vertex operators is associated with a
U(N) gauge symmetry. The relation (4.54) therefore reflects the splitting of the collection of ν gauge
fields into ν̃ separate families, each containing N2 gauge fields carrying the adjoint representation of
U(N). In other words, the D-brane boundary states at the fixed point split into ν̃ independent N -fold
bound states. Furthermore, consistency requires that the allowed charges Q are an integral multiple of
some minimal charge Qmin. Recall that (4.54) is due to the analog of non-trivial discrete torsion in the
minimal models. It is known [190] that for orbifolds with discrete torsion the RR charge is a multiple
of a minimal charge determined by the orbifold group, Q = dR

|Γ| . The analog for Gepner models is [184]

Q = NQmin (6.13)

The appearance of an enhanced gauge symmetry is a hallmark of a singularity. As mentioned in
Section 4.3.3 the simple current responsible for this effect appears generically on the boundary, hence
the singularity should lie in the sheaf describing the D-brane. Indeed [184], the sheaves corresponding
to these N -fold bound states are precisely the properly semi-stable sheaves E discussed in Section 5.3.2.
If E is a bundle then it has a reducible connection since the gauge group is U(N)eν . For such sheaves
the geometry of the moduli space is more intricate than for irreducible ones as the relative positions
of the configurations correspond to Coulomb branches of additional moduli [222]. This agreement is a
first non-trivial test of the mirror geometric hypothesis which will be used to the describe the sheaves
below.

In the following sections we give the results of this comparison.
1Note that in [5], [180], [291], [154] and [175] the two polynomials were related by an additional basis transformation:

IB
00 = (1−g)I(G)(1−g−1). In the method described in Appendix B this is automatically taken into account, see (B.13).
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6.3.3. D-branes on P4
1,1,2,2,2[8]

D6-branes

Here n = (n6, n
E
4 , nL

4 , n0, n
h
2 , nl

2) and we need the intersections numbers in (C.1), (C.2) and (C.8)2

rk(F) = n6 (6.14)
c1(F) = nE

4 E + nL
4 L (6.15)

c2(F) =
(
2nE

4 (nL
4 − nE

4 )− nh
2

)
h +

(
(nE

4 )2 − nl
2

)
l (6.16)

c3(F) =
2
3

(
nE

4

)2 (
3nL

4 − 4nE
4

)
+ nE

4

(
2nl

2 − nh
2

)− nL
4 nl

2 (6.17)

−2n0 − 4nL
4 +

1
3
χCnE

4

where χC = −4 for P4
1,1,2,2,2[8] (see Section C.1.1). Let us shortly explain the appearance of χC

in (6.17). The terms linear in the n’s come from ch3(F) with an additional factor of 2 since c3 =
2 ch3− ch1 ch2 + 1

6 ch3
1. Furthermore, by using χ(E) = 4(1 − gC) for a ruled surface (see Section 3.3.2)

and (3.37) as well as E3 = 4χC [142] the contribution of the divisor E to c3(F) is

−1
2
nE

4 c2 ·E = −1
2
(χ(E)− E3)nE

4 = (−2 + 2gC + 2χC)nE
4 = χCnE

4 (6.18)

D4-branes

• The divisor L, a K3 surface
For this divisor we have n = (0, 0, nL

4 , n0, n
h
2 , 0). We have already computed the Chern classes for

a sheaf F on L in (5.77) to (5.79) which for this family become

rk(F) = nL
4 (6.19)

c1(F) = nh
2h (6.20)

ch2(F) = −2nL
4 − n0 (6.21)

From (5.102) the dimension of the moduli space of the sheaves F on L is

m(geom, L)(F) =
1
4

(
nh

2

)2
+ 2nL

4

(
nL

4 + n0

)
+ 2 (6.22)

The boundary states corresponding to D4-branes wrapped on L are displayed in table 6.1. We
observe that

∆(L) = m(CFT,L) −m(geom,L) = 3ν − 2 (6.23)

Since the quantum symmetry group of the K3 surface is Z4 we would expect four states per orbit.
Generally, the states come in pairs of a brane and its anti-brane and we indicate only the brane.
Here, however, in the first orbit, the states do not come in pairs which is due to the fact that the
matrix A does not satisfy A4 = −11. We will come back to this observation in Section 6.5.

• The divisor E, a ruled surface over a g = 3 curve
For this divisor we have n = (0, nE

4 , 0, n0, n
h
2 , nl

2) since D · E = 0 and (5.74) to (5.76) reduce to

rk(F) = nE
4 (6.24)

c1(F) =
(
nh

2 − 4nE
4

)
h +

(
nl

2 + 2nE
4

)
l (6.25)

ch2(F) = −2nE
2 +

1
2
nh

2 − nl
2 − n0 (6.26)

2Note that in Sections 6.3.3, 6.3.4, and 6.3.5 we use a non-canonical symplectic intersection form I(L) in (3.79), see [154]
and [180]
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6. D-geometry

L-orbit Mukai vector v = (nL
4 , nh

2 ,−nL
4 − n0) m(CFT,L) ν m(geom,L) ∆(L)

(3,−4, 1) (3,−8, 3)| 1, 0, 0, 0, 0 〉〉B (1,−4, 3) (1, 0, 1)
1 1 0 1

| 3, 0, 0, 0, 0 〉〉B (0, 4,−2) (2,−4, 0) 7 1 6 1
| 3, 0, 1, 0, 0 〉〉B (2,−8, 2) (2, 0,−2) 14 2 10 4
| 3, 0, 1, 1, 0 〉〉B (4,−8, 0) (0, 8,−4) 28 4 18 10
| 3, 0, 1, 1, 1 〉〉B (4, 0,−4) (4,−16, 4) 56 8 34 22

Table 6.1.: The boundary states corresponding to D4-branes wrapped on the K3 surface L

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E

m(geom,E) = 2
(
nE

4

)2
+ 2n0n

E
4 +

1
2
nh

2nl
2 + 1 (6.27)

The boundary states with nE
4 6= 0 corresponding to D4-branes wrapped on E are displayed in

table 6.2. We note that

∆(E) = m(CFT,E) −m(geom,E) = ν − 1 (6.28)

The rank one bundles in the first line are OE and OE(−4h). The rank two bundles in the second
line are topologically equivalent to O⊕2

E and O⊕2
E (−4h). According to the discussion in Section 6.3.2

they have ν̃ = 1 and N = 2 and are therefore U(2) bundles and not holomorphic direct sums.

L-orbit n = (nE
4 , n0, nh

2 , nl
2) m(CFT,E) ν m(geom,E) ∆(E)

| 0, 0, 1, 0, 0 〉〉B (1, 2, 4,−2) (1, 0, 0,−2) 3 1 3 0
| 0, 0, 1, 1, 1 〉〉B (2, 4, 8,−4) (2, 0, 0,−4) 12 4 9 3

Table 6.2.: The boundary states corresponding to D4-branes wrapped on the ruled surface E

• The divisor H
For this divisor we have n = (0, nE

4 , 2nE
4 , n0, n

h
2 , nl

2) and (5.74) to (5.76) reduce to

rk(F) = nE
4 (6.29)

c1(F) =
(
nh

2 + 4nE
4

)
h +

(
nl

2 + 2nE
4

)
l (6.30)

ch2(F) = −4nE
4 +

1
2
nh

2 − n0 (6.31)

The dimension of the moduli space of the sheaves F on H is according to (5.99)

m(geom,H) = 4
(
nE

4

)2
+ 2nE

4 n0 +
1
2
nl

2

(
nh

2 − nl
2

)
+ 6 (6.32)

The boundary states with nE
4 6= 0 corresponding to D4-branes wrapped on the divisor H are

displayed in table 6.3. Here there is no obvious relationship between m(CFT,H) and m(geom,H).
However, we like to point out the fact that in the cases where there are several sheaves in one
L-orbit, all of them have the same dimension of the geometric moduli space. Note also that the
states in the two orbits, | 3, 3, 0, 0, 0 〉〉B and | 2, 0, 1, 1, 1 〉〉B , which have the same charges and
twice the charges of the states in the orbit | 2, 0, 1, 0, 0 〉〉B but differ in the number of moduli and
vacua. We will come back to this observation in Section 6.4.
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6.3. B-type boundary states in some specific examples

L-orbit n = (nE
4 , nh

2 , nl
2, n0) m(CFT,H) ν m(geom,H) ∆(H)

| 2, 0, 1, 0, 0 〉〉B (1,−4,−2,−2) (1, 0,−2, 0) 11 1 8 3
| 3, 2, 0, 0, 0 〉〉B (2,−4,−4,−2) 23 1 14 9
| 3, 3, 0, 0, 0 〉〉B (2,−8,−4,−4) (2, 0,−4, 0) 30 2 14 16
| 2, 0, 1, 1, 1 〉〉B (2,−8,−4,−4) (2, 0,−4, 0) 44 4 14 30
| 3, 2, 1, 1, 0 〉〉B (4,−8,−8,−4) 92 4 38 54
| 3, 3, 1, 1, 0 〉〉B (4,−16,−8,−8) (4, 0,−8, 0) 120 8 38 82

Table 6.3.: The boundary states corresponding to D4-branes wrapped on the divisor H

6.3.4. D-branes on P4
1,1,2,2,6[12]

D6-branes

Due to the great similarity of P4
1,1,2,2,6[12] to P4

1,1,2,2,2[8], the formulae (6.14) to (6.17) hold also in this
case. We only need from Section 3.5.2 that χC = −2.

D4-branes

• The divisor L, a K3 surface
For this divisor we have n = (0, 0, nL

4 , n0, n
h
2 , 0). We have already computed the Chern classes for

a sheaf F on L in (5.77) to (5.79) which for this model become

rk(F) = nL
4 (6.33)

c1(F) = nh
2h (6.34)

ch2(F) = −2nL
4 − n0 (6.35)

From (5.102) the dimension of the moduli space of the sheaves F on L is

m(geom, L)(F) =
1
2

(
nh

2

)2
+ 2nL

4

(
nL

4 + n0

)
+ 2 (6.36)

The boundary states corresponding to D4-branes wrapped on L are displayed in table 6.4. We
observe that

∆(L) = m(CFT,L) −m(geom,L) = 3ν − 2 (6.37)

L-orbit Mukai vector v = (nL
4 , nh

2 ,−nL
4 − n0) m(CFT,L) ν m(geom,L) ∆(L)

| 1, 0, 0, 0, 0 〉〉B (2,−2, 1) (1, 0, 1) (1,−2, 2) 1 1 0 1
| 3, 0, 0, 0, 0 〉〉B (1, 0,−1) (0, 2,−1) (1,−2, 0) 5 1 4 1
| 3, 0, 1, 0, 0 〉〉B (1,−4, 1) (2,−2,−1) (1, 2,−2) 9 1 8 1
| 3, 0, 1, 1, 0 〉〉B (0, 6,−3) (3,−6, 0) (3, 0,−3) 21 1 20 1
| 5, 0, 0, 0, 0 〉〉B (2, 0, 0) (0, 0, 2) (2,−4, 2) 6 2 2 4
| 5, 0, 1, 0, 0 〉〉B (2,−4, 0) (2, 0,−2) (0, 4,−2) 14 2 10 4
| 5, 0, 1, 1, 0 〉〉B (2,−8, 2) (4,−4,−2) (2, 4,−4) 30 2 26 4
| 5, 0, 2, 0, 0 〉〉B (0, 4, 0) (4,−4, 0) (0, 4,−4) 20 4 10 10
| 5, 0, 2, 1, 0 〉〉B (4,−8, 0) (4, 0,−4) (0, 8,−4) 44 4 34 10
| 5, 0, 2, 2, 0 〉〉B (4,−12, 4) (4,−4,−4) (4, 4,−4) 64 8 42 22

Table 6.4.: The boundary states corresponding to D4-branes wrapped on the K3 surface L
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6. D-geometry

• The divisor E, a ruled surface over a g = 2 curve
For this divisor we have n = (0, nE

4 , 0, n0, n
h
2 , nl

2) and (5.74) to (5.76) reduce to

rk(F) = nE
4 (6.38)

c1(F) =
(
nh

2 − 2nE
4

)
h +

(
nl

2 + nE
4

)
l (6.39)

ch2(F) = −nE
2 +

1
2
nh

2 − nl
2 − n0 (6.40)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E

m(geom,E) =
(
nE

4

)2
+ 2n0n

E
4 + nh

2nl
2 + 1 (6.41)

The boundary states with nE
4 6= 0 corresponding to D4-branes wrapped on E are displayed in

table 6.5. We note that except for the last boundary state we have

∆(E) = m(CFT,E) −m(geom,E) = ν − 1 (6.42)

The two line bundles in the first line are OE and OE(−2h). The rank two bundles in the second line
are topologically equivalent to O⊕2

E and O⊕2
E (−2h). According to the discussion in Section 6.3.2

they have ν̃ = 2 and N = 1 and are therefore U(1) × U(1) bundles and also holomorphic direct
sums. The rank two sheaves in the third line have Chern classes (−4h ± 2l,∓2) and (∓2l, 0).
Finally, the rank two sheaves in the last line have Chern classes (−8h − 2l, 8) and (4h + 2l, 6).
Both of them have ν̃ = 1 and N = 2 and hence gauge group U(2).

L-orbit n = (nE
4 , n0, nh

2 , nl
2) m(CFT,E) ν m(geom,E) ∆(E)

| 0, 0, 1, 0, 0 〉〉B (1, 1, 2,−1) (1, 0, 0,−1) 2 1 2 0
| 0, 0, 2, 1, 0 〉〉B (2, 2, 4,−2) (2, 0, 0,−2) 6 2 5 1

(2, 0, 0,−4)(2, 0, 0, 0)| 0, 0, 2, 2, 0 〉〉B (2, 4, 4,−4) (2, 0, 4, 0)
8 4 5 3

| 2, 0, 2, 2, 0 〉〉B (2, 0,−4,−4) (2, 4, 8, 0) 32 4 21 11

Table 6.5.: The boundary states corresponding to D4-branes wrapped on the ruled surface E

• The divisor H
For this divisor we have n = (0, nE

4 , 2nE
4 , n0, n

h
2 , nl

2) and (5.74) to (5.76) reduce to

rk(F) = nE
4 (6.43)

c1(F) =
(
nh

2 + 2nE
4

)
h +

(
nl

2 + nE
4

)
l (6.44)

ch2(F) = −4nE
4 +

1
2
nh

2 − n0 (6.45)

The dimension of the moduli space of the sheaves F on H is according to (5.99)

m(geom,H) = 4
(
nE

4

)2
+ 2nE

4 n0 + nl
2

(
nh

2 − nl
2

)
+ 5 (6.46)

The boundary states with nE
4 6= 0 corresponding to D4-branes wrapped on the divisor H are

displayed in table 6.6. Here there is no obvious relationship between m(CFT,H) and m(geom,H).
There is a boundary state for which there are more geometric moduli than conformal field the-
ory moduli. In the cases where there are several sheaves in one L-orbit, all of them have the same
dimension of the geometric moduli space.
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6.3. B-type boundary states in some specific examples

L-orbit n = (nE
4 , n0, nh

2 , nl
2) m(CFT,H) ν m(geom,H) ∆(H)

| 3, 1, 0, 0, 0 〉〉B (1,−1,−2,−1) (1, 0, 0,−1) 10 1 8 2
| 4, 0, 1, 0, 0 〉〉B (1,−1,−2,−1) (1, 0, 0,−1) 12 1 8 4
| 2, 2, 1, 0, 0 〉〉B (2,−2,−4,−2) (2, 0, 0,−2) 23 1 17 6
| 4, 3, 0, 0, 0 〉〉B (2,−1,−2,−2) 25 1 17 8
| 3, 3, 1, 0, 0 〉〉B (3,−3,−6,−3) (3, 0, 0,−3) 42 1 32 10
| 5, 3, 0, 0, 0 〉〉B (2,−2,−4,−2) (2, 0, 0,−2) 30 2 17 13

(2,−4,−8,−4) (2, 0,−4,−4)| 2, 2, 2, 0, 0 〉〉B (2, 0, 0, 0) (2, 0, 4, 0)
34 2 21 13

| 5, 3, 1, 1, 0 〉〉B (6,−6,−12,−6) (6, 0, 0,−6) 126 2 113 13
| 2, 2, 2, 1, 0 〉〉B (4,−4,−8,−4) (4, 0, 0,−4) 70 2 53 17
| 4, 0, 2, 1, 0 〉〉B (2,−2,−4,−2) (2, 0, 0,−2) 38 2 17 21
| 5, 4, 1, 0, 0 〉〉B (4,−2,−4,−4) 78 2 53 25
| 4, 4, 2, 0, 0 〉〉B (4,−2,−8,−6) (4, 0, 0,−2) 98 2 65 33
| 2, 0, 2, 2, 0 〉〉B (2,−4,−4, 0) (2, 0, 0,−4) 32 4 5 27
| 5, 2, 2, 0, 0 〉〉B (0, 4, 12, 4) (4,−4,−4,−4) 68 4 37 31

(2,−4,−8,−4) (2, 0,−4,−4)| 4, 0, 2, 2, 0 〉〉B (2, 0, 0, 0) (2, 0, 4, 0)
56 4 21 35

| 5, 5, 1, 0, 0 〉〉B (4,−4,−8,−4) (4, 0, 0,−4) 92 4 53 39
| 5, 4, 2, 1, 0 〉〉B (8,−4,−8,−8) 236 4 197 39
| 4, 2, 2, 2, 0 〉〉B (6,−4,−12,−8) (6, 0, 0,−4) 176 4 133 43

(4, 0, 4, 0) (4, 0,−4,−4)| 5, 4, 2, 0, 0 〉〉B (4,−4,−12,−8)
116 4 69 47

(4,−8,−16,−8) (4, 0,−8,−8)| 5, 5, 2, 0, 0 〉〉B (4, 0, 0, 0) (4, 0, 8, 0)
136 4 69 67

| 5, 5, 2, 1, 0 〉〉B (8,−8,−16,−8) (8, 0, 0,−8) 280 8 197 83

| 4, 3, 1, 1, 0 〉〉B (6,−3,−6,−6) 105 1 113 −8

Table 6.6.: The boundary states corresponding to D4-branes wrapped on the divisor H

6.3.5. D-branes on P4
1,1,1,6,9[18]

D6-branes

Here J1 = H, J2 = S but we use F and S as basis, hence n = (n6, n
F
4 , nS

4 , n0, n
h
2 , nl

2) and we need the
intersections numbers in (C.64), (C.66) to (C.69) and (C.73).

rk(F) = n6 (6.47)
c1(F) = nF

4 F + nS
4 S (6.48)

c2(F) =
1
2

((
nS

4

)2
+ nF

4 + nS
4 − 2nh

2

)
h +

1
2

(
−3

(
nF

4

)2
+ 2nF

4 nS
4 + nF

4 − nl
2

)
l (6.49)

c3(F) =
1
2

(
3

(
nF

4

)3 − 3
(
nF

4

)2
nS

4 + nF
4

(
nS

4

)2
)

+
nF

4

2
(
nF

4 + 3nS
4

)
(6.50)

−nF
4 nh

2 − nS
4 nl

2 + nF
4 − 6nS

4 − 2n0

The FMW construction

Here we repeat the argument given in [270] and check whether corresponding boundary states exist.
We have seen in Section C.2 that the base of the elliptic fibration π : X → B, and therefore the section
σ, is a P2. Furthermore the curve l can be identified with a degree 1 curve in P2, i.e. a P1. Recall from
Section 3.3.2 that the canonical bundle of P1 is KP2 = −3l = −3S|F . A general bundle V will have
topological invariants (6.47) to (6.50). Setting nF

4 = 0 and using (C.66), (6.49) and (5.111) yields for
the dimension of the moduli space [270]

n6 − 3nl
2 + 6nS

4 + 4nh
2 − 2

(
nS

4

)2
(6.51)

103



6. D-geometry

On the other hand, the bundles constructed in [271] satisfy c1(V ) = c3(V ) = 0, η = a c1(P2) for a odd
and n has to be even. In this case, (5.112) gives

c2(V ) = 3al − 3
8

(
(n3 − n) + 3a(a− n)n

)
h (6.52)

and by comparison with (6.49) one finally obtains

n6 = n (6.53)

nh
2 =

3
8

(
n3 − n + 3a(a− n)n

)
(6.54)

nl
2 = −3a (6.55)

n0 = nF
4 = nS

4 = 0 (6.56)

We do not find any boundary states leading to these charges n, because a is never integral and odd. We
note that all bundles with n6 even and nS

4 = nF
4 = 0 have the property that nl

2 = 3nh
2 . This equation

has no real solutions for a given n an even integer.

D4-branes

• The divisor S, an elliptic surface
For this divisor we have n = (0, 0, nS

4 , n0, n
h
2 , nl

2) and (5.74) to (5.76) reduce to

rk(F) = nS
4 (6.57)

c1(F) =
(
nh

2 + 2nS
4

)
h + nl

2l (6.58)

ch2(F) = −3nS
4 +

1
2
nl

2 − n0 (6.59)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on S

m(geom,S) = 3
(
nS

4

)2
+ 2nS

4 n0 + nl
2

(
3nS

4 + 2nh
2 − 3nl

2

)
+ 3 (6.60)

The boundary states corresponding to D4-branes wrapped on S are displayed in table 6.7. Here
we have for the sheaves in the first part of the table

∆(S)
1 = m(CFT,S) −m(geom,S) = 5(ν − 1) + 2 (6.61)

for the sheaves in the second part

∆(S)
2 = m(CFT,S) −m(geom,S) = 7(ν − 1) + 4 (6.62)

while for the sheaves in the last part we don’t see an obvious relation.

• The divisor F , a P2

For this divisor we have n = (0, nF
4 , 0, n0, 0, nl

2) since H · F = 0 and (5.74) to (5.76) reduce to

rk(F) = nF
4 (6.63)

c1(F) = nl
2l (6.64)

ch2(F) = −nF
4 −

3
2
nl

2 − n0 (6.65)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on F

m(geom,F ) = nF
4

(
2n0 + nF

4

)
+ nl

2

(
3nF

4 + nl
2

)
+ 1 (6.66)
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6.3. B-type boundary states in some specific examples

L-orbit n = (nS
4 , n0, nh

2 , nl
2) m(CFT,S) ν m(geom,S) ∆(S)

| 7, 0, 0, 0, 0 〉〉B (1,−1,−1, 0) (0, 0, 2, 1) (1,−1,−3,−1) 6 1 4 2
| 5, 1, 0, 0, 0 〉〉B (1,−1,−5,−2) (2,−2,−4,−1) (1,−1, 1, 1) 8 1 6 2
| 6, 1, 0, 0, 0 〉〉B (1, 1, 0, 0) (0, 1, 4, 1) (1, 0,−4,−1) 10 1 8 2

(1,−1,−4,−1) (1, 0,−3,−1) (1, 0,−1, 0)| 2, 2, 0, 0, 0 〉〉B (1, 0, 0, 0) (0, 1, 3, 1) (0, 0, 3, 1)
8 1 6 2

| 4, 2, 0, 0, 0 〉〉B (1,−1,−6,−2) (2,−1,−4,−1) (1, 0, 2, 1) 12 1 10 2
(2, 0,−3,−1) (1, 1, 2, 1) (1, 0, 3, 1)| 5, 2, 0, 0, 0 〉〉B (1,−2,−7,−2) (1, 0,−6,−2) (2,−1,−5,−1)

14 1 12 2

| 6, 2, 0, 0, 0 〉〉B (1,−1,−7,−2) (2, 0,−4,−1) (1, 1, 3, 1) 16 1 14 2
| 4, 3, 0, 0, 0 〉〉B (2, 0,−1, 0) (0, 1, 6, 2) (2,−1,−7,−2) 17 1 15 2
| 5, 3, 0, 0, 0 〉〉B (1,−1,−8,−2) (2, 1,−4,−1) (1, 2, 4, 1) 20 1 18 2
| 5, 4, 0, 0, 0 〉〉B (3,−1,−2, 0) (0, 1, 8, 3) (3,−2,−10,−3) 26 1 24 2

(3,−3,−12,−3) (3, 0,−9,−3) (3, 0,−3, 0)| 5, 5, 0, 0, 0 〉〉B (3, 0, 0, 0) (0, 3, 9, 3) (0, 0, 9, 3)
32 1 30 2

| 6, 5, 0, 0, 0 〉〉B (3, 1,−1, 0) (0, 2, 10, 3) (3,−1,−11,−3) 38 1 36 2
| 8, 1, 0, 0, 0 〉〉B (2,−2,−2, 0) (0, 0, 4, 2) (2,−2,−6,−2) 14 2 7 7

(2,−2,−8,−2) (2, 0,−6,−2) (2, 0,−2, 0)| 8, 2, 0, 0, 0 〉〉B (2, 0, 0, 0) (0, 2, 6, 2) (0, 0, 6, 2)
22 2 15 7

| 8, 3, 0, 0, 0 〉〉B (2, 2, 0, 0) (0, 2, 8, 2) (2, 0,−8,−2) 30 2 23 7
| 8, 4, 0, 0, 0 〉〉B (2,−2,−12,−4) (4,−2,−8,−2) (2, 0, 4, 2) 38 2 31 7

(2, 0, 6, 2) (2,−4,−14,−4) (2, 0,−12,−4)| 8, 5, 0, 0, 0 〉〉B (4,−2,−10,−2) (4, 2,−6,−2) (2, 2, 4, 2)
49 2 39 7

| 8, 6, 0, 0, 0 〉〉B (2,−2,−14,−4) (4, 0,−8,−2) (2, 2, 6, 2) 54 2 47 7
(4,−4,−16,−4) (4, 0,−12,−4) (4, 0,−4, 0)| 8, 8, 0, 0, 0 〉〉B (4, 0, 0, 0) (0, 4, 12, 4) (0, 0, 12, 4)

68 4 51 17

| 7, 2, 0, 0, 0 〉〉B (2, 0,−1, 0) (0, 1, 6, 2) (2,−1,−7,−2) 19 1 15 4
| 7, 5, 0, 0, 0 〉〉B (2, 1, 5, 2) (2,−2,−13,−4) (4,−1,−8,−2) 43 1 39 4
| 7, 8, 0, 0, 0 〉〉B (4, 0,−2, 0) (0, 2, 12, 4) (4,−2,−14,−4) 62 2 51 11

| 3, 3, 1, 0, 0 〉〉B (3, 1,−1, 0) (0, 2, 10, 3) (3,−1,−11,−3) 28 1 36 −8
| 5, 2, 1, 0, 0 〉〉B (2, 1, 5, 2) (2,−2,−13,−4) (4,−1,−8,−2) 29 1 39 −10
| 4, 4, 1, 0, 0 〉〉B (5,−1,−3, 0) (0, 2, 14, 5) (5,−3,−17,−5) 44 1 68 −24
| 5, 5, 1, 0, 0 〉〉B (6, 0,−3, 0) (0, 3, 18, 6) (6,−3,−21,−6) 65 1 111 −46
| 8, 2, 1, 0, 0 〉〉B (4, 0,−2, 0) (0, 2, 12, 4) (4,−2,−14,−4) 46 2 51 −5
| 8, 5, 1, 0, 0 〉〉B (4, 2, 10, 4) (8,−2,−16,−4) (4,−4,−26,−8) 94 2 147 −53
| 8, 8, 1, 0, 0 〉〉B (8, 0,−4, 0) (0, 4, 24, 8) (8,−4,−28,−8) 140 4 195 −55

Table 6.7.: The boundary states corresponding to D4-branes wrapped on the elliptic fibration S

The boundary states with nF
4 6= 0 corresponding to D4-branes wrapped on F are displayed in

table 6.8. We note that

∆(F ) = m(CFT,F ) −m(geom,F ) = ν − 1 (6.67)

The sheaves in the first line correspond to OP2 , OP2(−l) and ΩP2(l) where ΩP2 is the cotangent bun-
dle on P2. These are exactly the exceptional sheaves that have been found in the study [177], [236]
of D-branes on the orbifold C3/Z3 whose large volume limit is the blow-up OP2(−3l) which is a
non-compact Calabi–Yau space. In the second line we have Ip and Ip(−l) where Ip is the ideal
sheaf of a point p. These can be interpreted as bound states of the boundary states in the or-
bit | 0, 0, 0, 0, 0 〉〉B with the D0-brane which lives in the orbit | 2, 0, 0, 0, 0 〉〉B . The fact that
m(CFT,F ) and m(geom,F ) are both two and not three supports the interpretation that this D0-
brane is constrained to live on the divisor F = P2. Finally, in the last line we have a sheaf which
is topologically equivalent to (OP2 ⊕ OP2(−l))⊗ Ip. However, since ν̃ = 1 it cannot be the direct
sum. Hence, it could correspond to a non-trivial extension of Ip(−l) by Ip or vice versa.
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6. D-geometry

L-orbit n = (nF
4 , n0, nl

2) m(CFT,F ) ν m(geom,F ) ∆(F )

| 0, 0, 0, 0, 0 〉〉B (1,−1, 0) (1, 0,−1) (2, 0,−1) 0 1 0 0
| 1, 0, 0, 0, 0 〉〉B (1, 1,−1) (1, 0, 0) 2 1 2 0
| 1, 1, 0, 0, 0 〉〉B (2, 1,−1) 4 1 4 0

Table 6.8.: The boundary states corresponding to D4-branes wrapped on P2

• The divisor H
For this divisor we have n = (0, nF

4 , 3nF
4 , n0, 3nl

2, n
l
2) and (5.74) to (5.76) reduce to

rk(F) = nF
4 (6.68)

c1(F) =
(
nl

2 + 3nF
4

)
(3h + l) (6.69)

ch2(F) = −11
2

nF
4 +

1
2
nh

2 − n0 (6.70)

The dimension of the moduli space of the sheaves F on H is according to (5.99)

m(geom,H) = 10
(
nF

4

)2
+ 2nF

4 n0 + nl
2

(
3nF

4 + nl
2

)
+ 10 (6.71)

The boundary states with nF
4 6= 0 corresponding to D4-branes wrapped on the divisor H are

displayed in table 6.9. Here there is no obvious relationship between m(CFT,H) and m(geom,H). In
the cases where there are several sheaves in one L-orbit, all of them have the same dimension of
the geometric moduli space.

L-orbit n = (nF
4 , n0, nl

2) m(CFT,H) ν m(geom,H) ∆(H)

| 7, 3, 0, 0, 0 〉〉B (1,−1,−1) 27 1 16 11
(1, 0,−2) (1, 0,−1)| 6, 4, 0, 0, 0 〉〉B (1,−1,−3)

31 1 18 13

| 8, 3, 1, 0, 0 〉〉B (2,−2,−4) 62 2 34 28
| 6, 4, 1, 0, 0 〉〉B (2,−1,−5) (2, 0,−3) 62 1 41 21
| 6, 2, 2, 0, 0 〉〉B (2,−1,−4) 53 1 38 15

(2, 0,−4) (2, 0,−2)| 8, 2, 2, 0, 0 〉〉B (2,−2,−6)
70 2 42 28

| 6, 4, 2, 0, 0 〉〉B (3,−1,−6) 93 1 76 17
(3, 0,−6) (3, 0,−3)| 5, 5, 2, 0, 0 〉〉B (3,−3,−9)

97 1 82 15

| 8, 6, 2, 0, 0 〉〉B (4,−2,−8) 166 2 122 44
| 7, 7, 2, 0, 0 〉〉B (4,−1,−8) 171 1 130 41
| 8, 7, 2, 0, 0 〉〉B (4,−2,−10) (4, 0,−6) 190 2 134 56

(4, 0,−8) (4, 0,−4)| 8, 8, 2, 0, 0 〉〉B (4,−4,−12)
212 4 138 74

| 8, 6, 4, 0, 0 〉〉B (6,−2,−12) 278 2 274 4
| 6, 5, 5, 0, 0 〉〉B (6,−3,−12) 221 1 262 −41
| 7, 5, 5, 0, 0 〉〉B (6,−3,−15) (6, 0,−9) 254 1 289 −35

(6, 0,−12) (6, 0,−6)| 8, 5, 5, 0, 0 〉〉B (6,−6,−18)
286 2 298 −12

| 6, 6, 6, 0, 0 〉〉B (7,−3,−14) 301 1 360 −59
| 8, 8, 6, 0, 0 〉〉B (8,−4,−16) 500 4 458 42
| 8, 7, 7, 0, 0 〉〉B (8,−2,−16) 510 2 490 20
| 8, 8, 7, 0, 0 〉〉B (8,−4,−20) (8, 0,−12) 572 4 506 66

(8, 0,−16) (8, 0,−8)| 8, 8, 8, 0, 0 〉〉B (8,−8,−24)
640 8 522 118

Table 6.9.: The boundary states corresponding to D4-branes wrapped on the divisor H
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6.3. B-type boundary states in some specific examples

6.3.6. D-branes on P4
1,1,1,3,6[12]

• The divisor S, an elliptic surface
For this divisor we have n = (0, 0, nS

4 , n0, n
h
2 , nl

2) and (5.74) to (5.76) reduce to

rk(F) = nS
4 (6.72)

c1(F) =
(
nh

2 + nS
4

)
h + nl

2l (6.73)

ch2(F) = −3nS
4 + 1

2nl
2 − n0 (6.74)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on S

m(geom,S) = 3
(
nS

4

)2
+ 2nS

4 n0 + 1
2nl

2

(
2nh

2 − 3nl
2

)
+ 3 (6.75)

The boundary states corresponding to D4-branes wrapped on S are displayed in table 6.10. Here
we have for the sheaves in the first part of the table

∆(S)
1 = m(CFT,S) −m(geom,S) = 5(ν − 1) + 2 (6.76)

while the sheaves in the second part satisfy

∆(S)
2 = m(CFT,S) −m(geom,S) = 7(ν − 1) + 4 (6.77)

The last three boundary states satisfy

∆(S)
3 = m(CFT,S) −m(geom,S) = −(ν − 1)− 4 (6.78)

Furthermore, one can check that there are no line bundles.

• The divisor F , a sum of two P2’s
For this divisor we have n = (0, nF

4 ,−3nF
4 , n0, 0, nl

2) since H · F = 0 and (5.74) to (5.76) reduce
to

rk(F) = nF
4 (6.79)

c1(F) =
(
nl

2 − 3nE
4

)
l (6.80)

ch2(F) = 5
2nF

4 − 3
2nl

2 − n0 (6.81)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on F

m(geom,F ) = − 5
2

(
nF

4

)2
+ 2n0n

F
4 + 1

2

(
nl

2

)2
+ 3 (6.82)

The boundary states corresponding to D4-branes wrapped on F are displayed in table 6.11. We
note that

∆(F ) = m(CFT,F ) −m(geom,F ) = ν − 1 (6.83)

Recall from Section C.2 that F is not irreducible but consists of two P2’s. Denote the degree 1
curves in each P2 by l1 and l2. By analogy to the family P4

1,1,1,6,9[18] we interpret the sheaves
in the first row as OF and OF (−l1 − l2) and ΩF (−l1 − l2) where ΩF is the cotangent bundle
of F . In the second line we then have Ip1+p2 and Ip1+p2(−l1 − l2) where p1, p2 are points on
each of the P2’s. Finally, in the last line we have a sheaf which is topologically equivalent to
(OF ⊕OF (−l1− l2))⊗ Ip1+p2 . This interpretation is supported by the fact that although we have
ν = 2 which would indicate that we have U(1)×U(1) bundles, the invertible sheaves found above
contradict this. Rather we should think in this case of ν as counting the number of components
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6. D-geometry

L-orbit n = (nS
4 , nh

2 , nl
2, n0) m(CFT,S) ν m(geom,S) ∆(S)

| 4, 0, 0, 0, 0 〉〉B (1,−3,−2,−1) (1, 1, 0,−1) 6 1 4 2
| 2, 1, 0, 0, 0 〉〉B (2,−2,−2,−2) (0, 4, 2, 0) 6 1 4 2
| 3, 1, 0, 0, 0 〉〉B (1,−5,−2,−1) (1, 3, 0, 1) 10 1 8 2

(2,−4,−2,−2) (2, 0,−2, 0)| 2, 2, 0, 0, 0 〉〉B (0, 6, 2, 2) (0, 6, 2, 0)
11 1 9 2

| 3, 2, 0, 0, 0 〉〉B (2,−2,−2, 0) (0, 8, 2, 2) 15 1 13 2
| 4, 1, 1, 0, 0 〉〉B (3,−11,−6,−3) (3, 5, 0,−1) 26 1 24 2
| 4, 0, 0, 1, 0 〉〉B (2,−2,−2,−2) (0, 4, 2, 0) 12 2 5 7
| 5, 1, 0, 0, 0 〉〉B (2,−6,−4,−2) (2, 2, 0,−2) 14 2 9 7
| 3, 1, 0, 1, 0 〉〉B (2,−2,−2, 0) (0, 8, 2, 2) 20 2 13 7

(2,−6,−4, 0) (2,−10,−4,−4)| 5, 2, 0, 0, 0 〉〉B (2, 2, 0, 0) (2, 6, 0, 0)
22 2 15 7

| 5, 3, 0, 0, 0 〉〉B (2,−10,−4,−2) (2, 6, 0, 2) 30 2 23 7
| 4, 1, 1, 1, 0 〉〉B (6,−6,−6,−4) (0, 16, 6, 2) 52 2 45 7
| 5, 1, 0, 1, 0 〉〉B (4,−4,−4,−4) (0, 8, 4, 0) 28 4 11 17

(4,−8,−4,−4) (4, 0,−4, 0)| 5, 2, 0, 0, 0 〉〉B (0, 12, 4, 4) (0, 12, 4, 0)
44 4 27 17

| 5, 3, 0, 1, 0 〉〉B (4,−4,−4, 0) (0, 16, 4, 4) 60 4 43 17
(4,−20,−8,−8) (4,−12,−8, 0)| 5, 5, 1, 0, 0 〉〉B (4, 4, 0, 0) (4, 12, 0, 0)

88 8 51 37

| 4, 2, 0, 0, 0 〉〉B (2,−8,−4,−2) (2, 4, 0, 0) 19 1 15 4
| 4, 5, 0, 0, 0 〉〉B (4,−4,−4,−2) (0, 12, 4, 2) 38 2 27 11
| 4, 5, 0, 1, 0 〉〉B (4,−16,−8,−4) (4, 8, 0, 0) 76 4 51 25

| 2, 2, 1, 0, 0 〉〉B (4,−4,−4,−2) (0, 12, 4, 2) 23 1 27 −4
| 5, 2, 1, 0, 0 〉〉B (4,−16,−8,−4) (4, 8, 0, 0) 46 2 51 −5
| 5, 5, 1, 0, 0 〉〉B (8,−8,−8,−4) (0, 24, 8, 4) 92 4 99 −7
| 5, 5, 1, 1, 0 〉〉B (8,−32,−16,−8) (8, 16, 0, 0) 184 8 195 −11

Table 6.10.: The boundary states corresponding to D4-branes wrapped on the elliptic fibration S

in F . Hence we find a new interpretation of ν which differs from the one given in [184] and
used so far for the irreducible divisors, namely that it is related to the reducibility of the bundle.
It is also related to the reducibility of the divisor. It would be interesting to study a reducible
divisor which supports reducible bundles. Having clarified this point, we need of course to modify
table 6.11. m(geom,F ) should really be 0, 4 and 8 and hence ∆(F ) = ν − 2 = 0. With this mind
we can interpret the last bundle in the same way as for P4

1,1,1,6,9[18], namely that it could be a
non-trivial extension of Ip1+p2 by Ip1+p2(−l1 − l2) or vice versa.

L-orbit n = (nF
4 , nl

2, n0) m(CFT,F ) ν m(geom,F ) ∆(F )

| 0, 0, 0, 1, 0 〉〉B (1, 3,−2) (1, 1, 0) (2, 4, 0) 0 2 −1 1
| 1, 0, 0, 1, 0 〉〉B (1, 1, 2) (1, 3, 0) 4 2 3 1
| 1, 1, 0, 1, 0 〉〉B (2, 4, 2) 8 2 7 1

Table 6.11.: The boundary states corresponding to D4-branes wrapped on P2

• The divisor H
For this divisor we have n = (0, nH

4 , 0, n0, 3nl
2, n

l
2) and (5.74) to (5.76) reduce to

rk(F) = nH
4 (6.84)

c1(F) =
(
nl

2 + 3nH
4

)
(3h + l) (6.85)

ch2(F) = − 13
2 nH

4 + 3
2nh

2 − n0 (6.86)
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The dimension of the moduli space of the sheaves F on H is according to (5.99)

m(geom,H) = 13
2

(
nH

4

)2
+ 2nH

4 n0 + 1
2

(
nl

2

)2
+ 11 (6.87)

The boundary states corresponding to D4-branes wrapped on the divisor H are displayed in
table 6.12. Here there is no obvious relationship between m(CFT,H) and m(geom,H). In the cases
where there are several sheaves in one L-orbit, all of them have the same dimension of the geometric
moduli space.

L-orbit n = (nF
4 , n0, nl

2) m(CFT,H) ν m(geom,H) ∆(H)

| 3, 1, 1, 0, 0 〉〉B (1,−3,−1,−1) 20 1 16 4
| 4, 3, 0, 0, 0 〉〉B (1,−3,−1,−1) 26 1 16 10
| 4, 2, 2, 0, 0 〉〉B (2,−12,−4,−2) (2, 0, 0, 0) 59 1 37 22
| 3, 3, 3, 0, 0 〉〉B (3,−9,−3,−3) 84 1 56 28
| 3, 2, 2, 0, 0 〉〉B (2,−6,−2,−2) 47 2 31 16
| 5, 3, 1, 0, 0 〉〉B (2,−6,−2,−2) 62 2 31 31

(2,−18,−6,−4) (2,−6,−2, 0)| 5, 2, 2, 0, 0 〉〉B (2, 6, 2, 0)
70 2 39 31

| 5, 4, 4, 0, 0 〉〉B (4,−12,−4,−2) 198 2 107 91
| 5, 5, 3, 0, 0 〉〉B (4,−12,−4,−4) 188 4 91 97
| 5, 5, 4, 0, 0 〉〉B (4,−24,−8,−4) (4, 0, 0, 0) 236 4 115 121

(4,−36,−12,−8) (4,−12,−4, 0)| 5, 5, 5, 0, 0 〉〉B (4, 12, 4, 0)
280 8 123 157

Table 6.12.: The boundary states corresponding to D4-branes wrapped on the divisor H

6.3.7. D-branes on P4
1,1,1,3,3[9]

• The divisor S, an elliptic surface
For this divisor we have n = (0, 0, nS

4 , n0, n
h
2 , nl

2) and (5.74) to (5.76) reduce to

rk(F) = nS
4 (6.88)

c1(F) =
(
nh

2 + nS
4

)
h + nl

2l (6.89)

ch2(F) = −3nS
4 +

1
2
nl

2 − n0 (6.90)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on S

m(geom,S) = 3
(
nF

4

)2
+ 2nF

4 n0 +
1
3
nl

2

(−nS
4 + 2nh

2 − 3nl
2

)
+ 3 (6.91)

The boundary states corresponding to D4-branes wrapped on S are displayed in table 6.13. Here
we have for the sheaves above the double line

∆(S) = m(CFT,S) −m(geom,S) = 5(ν − 1) + 2 (6.92)

where we have chosen the factor in front of (ν − 1) such that it agrees with the previous families
P4

1,1,1,6,9[18] and P4
1,1,1,3,6[12] where the elliptic surface was the same and the states with the

corresponding charges satisfied the same relationship.

• The divisor F , a collection of 3 P2’s
For this divisor we have n = (0, nF

4 ,−3nF
4 , n0,−nF

4 , nl
2) and (5.74) to (5.76) reduce to

rk(F) = nF
4 (6.93)

c1(F) =
(
nl

2 − 5nF
4

)
l (6.94)

ch2(F) =
9
2
nF

4 −
3
2
nl

2 − n0 (6.95)

109
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L-orbit n = (nS
4 , nh

2 , nl
2, n0) m(CFT,S) ν m(geom,S) ∆(S)

| 2, 0, 0, 0, 0 〉〉B (0, 3, 0, 3) (0, 3, 0, 3) (0, 3, 0, 0) 3 1 3 0
| 2, 1, 0, 0, 0 〉〉B (3, 0,−3,−3) (3,−6,−6,−3) (0, 6, 3, 0) 8 1 6 2

(3,−12,−6,−6) (3,−3,−6, 0) (3, 6,−3, 0)| 2, 2, 0, 0, 0 〉〉B (0, 9, 3, 3) (0, 9, 3, 0) (3,−3,−3,−3)
14 1 12 2

| 2, 3, 0, 0, 0 〉〉B (3,−9,−6,−3) (3, 3,−3, 0) (0, 12, 3, 3) 20 1 18 2

| 2, 2, 1, 0, 0 〉〉B (6, 3,−6,−3) (6,−15,−12,−6) (0, 18, 6, 3) 29 1 39 −10

Table 6.13.: The boundary states corresponding to D4-branes wrapped on the elliptic surface S

as well as (5.99) yields for the dimension of the moduli space of the sheaves on F

m(geom,F ) = −11
3

(
nF

4

)2
+ 2n0n

F
4 +

1
3
nl

2

(
nl

2 − nF
4

)
+ 1 (6.96)

We don’t find any boundary states corresponding to sheaves on the exceptional divisor F .

• The divisor H
For this divisor we have n =

(
0, nH

4 , 0, n0, 3nl
2,

1
3

(
nl

2 + nH
4

))
and (5.74) to (5.76) reduce to

rk(F) = nF
4 (6.97)

c1(F) =
1
3

(
nl

2 + 13nH
4

)
(3h + l) (6.98)

ch2(F) = −11
2

nH
4 +

1
2
nh

2 − n0 (6.99)

The dimension of the moduli space of the sheaves F on H is according to (5.99)

m(geom,H) =
142
27

(
nH

4

)2
+ 2nH

4 n0 +
1
27

(−nH
4 + nl

2

)
+ 12 (6.100)

The only boundary states we found are | 2, 2, 0, 0, 0 〉〉B and | 2, 2, 1, 0, 0 〉〉B which contain three
sheaves supported on the curve 9h + 3l which already appeared among the boundary states on
the divisor S. This curve has genus 7.

6.3.8. D-branes on P4
1,1,2,8,12[24]

D6-branes

Here n = (n6, n
F
4 , nE

4 − 2nF
4 , nL

4 − 2nE
4 , n0, n

h
2 , nd

2, n
l
2) and we need the intersections numbers in (C.75),

(C.77) and (C.78).

rk(F) = n6 (6.101)
c1(F) = nF

4 F + nE
4 E + nL

4 L (6.102)
ch2(F) = nh

2h + nd
2d + nl

2l (6.103)

ch3(F) = −n0 +
1
3
nF

4 − 2nL
4 (6.104)

The FMW construction

Here we follow closely the argument given in Section 6.3.5. We have seen in section C.3 that the base
of the elliptic fibration π : X → B is a Hirzebruch surface F2. Furthermore the curve l can be identified
with the section of p : F2 → P1 and the curve d is a fiber of F2. Recall that the canonical bundle of
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6.3. B-type boundary states in some specific examples

the Hirzebruch surface is KF2 = −2D|F . A general bundle V will have topological invariants (6.101)
to (6.104). Setting nF

4 = 0 and using (C.77), (6.102), (6.103) and (5.111) yields for the dimension of
the moduli space

n6 + 4(nE
4 )2 − nE

4 nL
4 + 4nh

2 − 2nd
2 (6.105)

On the other hand, the bundles constructed in [271] satisfy c1(V ) = c3(V ) = 0, η = a c1(F2) for a odd
and n has to be even. In this case (5.112) gives

c2(V ) = 2a(2d + l)− 1
3
(n3 − n + 3a(a− n)n)h (6.106)

and comparison with (6.103) finally gives

n6 = n (6.107)

nh
2 =

1
3
(n3 − n + 3a(a− n)n) (6.108)

nd
2 = −4a (6.109)

nl
2 = −2a (6.110)

n0 = nF
4 = nE

4 = nL
4 = 0 (6.111)

The comparison with the bundles obtained from the boundary states that none of them satisfies all
these conditions. On the other hand, it is interesting to note, that all bundles with nF

4 = nE
4 = nL

4 = 0
have the property that nh

2 = 2nd
2 = 4nl

2. The conditions that are then not satisfied are either a is not
integral and odd or, most notably, that nh

2 does not have the required value. The equation nh
2 = 2nd

2

has no positive, real solutions for a if n is an even integer.

D4-branes

• The divisor L, a K3 surface
For this divisor we have n = (0, 0, 0, nL

4 , n0, n
h
2 , nd

2, 0). We have already computed the Chern
classes for a sheaf F on L in (5.77) to (5.79) which for this model become

rk(F) = nL
4 (6.112)

c1(F) = nh
2h + nd

2d (6.113)
ch2(F) = −2nL

4 − n0 (6.114)

From (5.102) the dimension of the moduli space of the sheaves F on L is

m(geom, L)(F) = 2nd
2

(
nh

2 − nd
2

)
+ 2nL

4

(
nL

4 + n0

)
+ 2 (6.115)

The boundary states corresponding to D4-branes wrapped on L are displayed in table 6.14. We
observe that

∆(L) = m(CFT,L) −m(geom,L) = 3ν − 2 (6.116)

• The divisor F , a Hirzebruch surface F2

For this divisor we have n = (0, nF
4 ,−2nF

4 , 0, n0, 0, nd
2, n

l
2) since H · F = 0 and (5.74) to (5.76)

reduce to

rk(F) = nF
4 (6.117)

c1(F) =
(
nd

2 − 2nF
4

)
d +

(
nl

2 − nF
4

)
l (6.118)

ch2(F) = nF
4 − nd

2 − n0 (6.119)
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6. D-geometry

L-orbit Mukai vector v = (nL
4 , nh

2 , nd
2,−nL

4 − n0) m(CFT,L) ν m(geom,L) ∆(L)

(1,−1, 0, 1) (0, 0,−1,−1) (0, 0, 1, 0)| 1, 0, 0, 0, 0 〉〉B (1, 0,−1, 0) (1, 0, 0, 1) (1,−1,−1, 1)
1 1 0 1

(1,−1,−1, 0) (0, 0, 0,−1) (1, 0, 0, 0)| 3, 0, 0, 0, 0 〉〉B (0, 1, 0,−1) (0, 1, 1, 0) (0, 0, 1, 0)
3 1 2 1

(1,−1, 0, 0) (1, 0,−1,−1) (0, 1, 1,−1)| 5, 0, 0, 0, 0 〉〉B (1, 1, 0, 0) (1,−2,−1, 1) (0,−1,−1,−1)
3 1 2 1

(1,−3,−2, 0) (1,−2,−1,−1) (2,−1,−1,−1)| 5, 0, 1, 0, 0 〉〉B (1, 1, 0,−2) (1, 2, 1,−1) (0, 3, 1,−1)
7 1 6 1

(2,−1,−1, 0) (0, 1, 0,−2) (1, 1, 1, 0)| 7, 0, 0, 0, 0 〉〉B (0, 2, 0,−1) (1,−2,−2, 0) (0,−1, 0,−1)
3 1 2 1

(1,−4,−2, 1) (1,−3,−2,−1) (2,−2,−1,−1)| 7, 0, 1, 0, 0 〉〉B (2, 0,−1,−2) (1, 2, 1,−2) (1, 3, 1,−1)
9 1 8 1

(3, 1, 0,−2) (1, 4, 1,−3) (0, 5, 3,−1)| 7, 0, 2, 0, 0 〉〉B (1,−5,−2, 0) (3,−4,−3,−1) (2,−1,−1,−1)
15 1 14 1

(3,−6,−3, 0) (3,−3,−3,−3) (3, 0, 0,−3)| 7, 0, 3, 0, 0 〉〉B (3, 3, 0,−3) (0, 6, 3,−3) (0, 6, 3, 0)
21 1 20 1

(1, 0, 0,−1) (1, 1, 0,−1) (0, 2, 1,−1)| 9, 0, 0, 0, 0 〉〉B (0, 2, 1, 0) (1,−2,−1, 0) (1,−1,−1,−1)
5 1 4 1

(1,−4,−2, 0) (2,−3,−2,−1) (2,−1,−1,−2)| 9, 0, 1, 0, 0 〉〉B (2, 1, 0,−2) (1, 3, 1,−2) (0, 4, 2,−1)
11 1 10 1

(2, 3, 1,−3) (1, 5, 2,−2) (1,−6,−3, 1)| 9, 0, 2, 0, 0 〉〉B (2,−5,−3,−1) (3,−3,−2,−2) (3, 0,−1,−3)
19 1 18 1

(2,−7,−4, 0) (3,−5,−3,−2) (4,−2,−2,−3)| 9, 0, 3, 0, 0 〉〉B (3, 2, 0,−4) (2, 5, 2,−3) (0, 7, 3,−2)
27 1 26 1

(1, 7, 3,−3) (1,−8,−4, 1) (3,−7,−4,−1)| 9, 0, 4, 0, 0 〉〉B (4,−4,−3,−3) (4, 0,−1,−4) (3, 4, 1,−4)
33 1 32 1

(2, 0, 0, 0) (0, 2, 0,−2) (0, 2, 2, 0)| 11, 0, 0, 0, 0 〉〉B (0, 2, 0, 0) (2,−2,−2, 0) (0, 0, 0,−2)
6 2 2 4

(2,−4,−2, 0) (2,−2,−2,−2) (2, 0, 0,−2)| 11, 0, 1, 0, 0 〉〉B (2, 2, 0,−2) (0, 4, 2,−2) (0, 4, 2, 0)
14 2 10 4

(2, 4, 2,−2) (0, 6, 2,−2) (2,−6,−4, 0)| 11, 0, 2, 0, 0 〉〉B (2,−4,−2,−2) (4,−2,−2,−2) (2, 2, 0,−4)
22 2 18 4

(2,−8,−4, 2) (2,−6,−4,−2) (4,−4,−2,−2)| 11, 0, 3, 0, 0 〉〉B (4, 0,−2,−4) (2, 4, 2,−4) (2, 6, 2,−2)
30 2 26 4

(0, 8, 4,−2) (2,−8,−4, 0) (4,−6,−4,−2)| 11, 0, 4, 0, 0 〉〉B (4,−2,−2,−4) (4, 2, 0,−4) (2, 6, 2,−4)
38 2 34 4

(4,−8,−4, 0) (4,−4,−4,−4) (4, 0, 0,−4)| 11, 0, 5, 0, 0 〉〉B (4, 4, 0,−4) (0, 8, 4,−4) (0, 8, 4, 0)
44 4 34 10

Table 6.14.: The boundary states corresponding to D4-branes wrapped on the K3 surface L

as well as (5.99) yields for the dimension of the moduli space of the sheaves on F

m(geom,F ) = nF
4

(
2n0 − nF

4

)
+ 2nl

2

(
nd

2 − nl
2

)
+ 1 (6.120)

The boundary states with nF
4 6= 0 corresponding to D4-branes wrapped on F are displayed in

table 6.15. We note that

∆(F ) = m(CFT,F ) −m(geom,F ) = ν − 1 (6.121)

The sheaves corresponding to the boundary states in the first line are OF2 , OF2(−l− d), OF2(−d)
and OF2(−l). Note that in [153] these bundles have been given an interpretation as pull-back
bundles of twisted tangent bundles on d and l. The sheaves for | 2, 0, 0, 0, 0 〉〉B are Ip and
Ip(−l − d). The latter corresponds to a D4-D0 bound state and the dimensions being equal to 2
corresponds to the fact that the D0 is only allowed to move on F2. In the orbit of | 1, 1, 0, 0, 0 〉〉B
we find a sheaf with Chern classes (2,−l − 2d, 2) and one with (2,−l, 1). Finally the last one
corresponds to (2,−l − d, 2). For these sheaves we do not yet have a geometric interpretation.
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6.3. B-type boundary states in some specific examples

L-orbit n = (nF
4 , nd

2, nl
2, n0) m(CFT,F ) ν m(geom,F ) ∆(F )

(1, 2, 1,−1) (1, 1, 0, 0)| 0, 0, 0, 0, 0 〉〉B (1, 1, 1, 0) (1, 2, 0, 0)
0 1 0 0

(2, 3, 1, 0) (0, 1, 0, 0)| 1, 0, 0, 0, 0 〉〉B (0, 1, 0,−1)
1 1 1 0

| 2, 0, 0, 0, 0 〉〉B (1, 1, 0, 1) (1, 2, 1, 0) 2 1 2 0
| 1, 1, 0, 0, 0 〉〉B (2, 2, 1, 1) (2, 4, 1, 0) 3 1 3 0
| 2, 1, 0, 0, 0 〉〉B (2, 3, 1, 1) 5 1 5 0

Table 6.15.: The boundary states corresponding to D4-branes wrapped on the Hirzebruch surface F =
F2

• The divisor E, a ruled surface over an elliptic curve
For this divisor we have n = (0, 0, nE

4 ,−2nE
4 , n0, n

h
2 , 0, nl

2) since D · E = 0 and (5.74) to (5.76)
reduce to

rk(F) = nE
4 (6.122)

c1(F) =
(
nh

2 − nE
4

)
h + nl

2l (6.123)

ch2(F) = −nl
2 − n0 (6.124)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E

m(geom,E) = 2nE
4 n0 + 2nh

2nl
2 + 1 (6.125)

The boundary states with nE
4 6= 0 corresponding to D4-branes wrapped on E are displayed in

table 6.16. We note that

∆(E) = m(CFT,E) −m(geom,E) = ν − 1 (6.126)

The bundles corresponding to the boundary state | 0, 0, 1, 0, 0 〉〉B we find OE , OE(−h) and OE(−l).
The remaining three are the ideal sheaf Ip(−h−l) and the torsion sheaves j∗Ol and j∗Ip(−1) where
j : l → E is the embedding of the fiber of E. In the second line we find two bundles, O(l) and
O(−2l). The sheaves in the last line can all be thought of as direct sums of twice a sheaf in the
first line since ν̃ = 1 and N = 2 indicates that they are U(1)× U(1) bundles.

L-orbit n = (nE
4 , nh

2 , nl
2, n0) m(CFT,E) ν m(geom,E) ∆(E)

(1, 0, 0, 0) (0, 0, 1, 0) (1, 1,−1, 1)| 0, 0, 1, 0, 0 〉〉B (1, 1, 0, 0) (0, 0, 1,−1) (1, 0,−1, 0)
1 1 1 0

(1, 0, 1, 0) (1, 1,−2, 2) (2, 2,−1, 1)| 0, 0, 3, 0, 0 〉〉B (1, 1, 1,−1) (1, 0,−2, 0) (2, 0,−1, 0)
1 1 1 0

(0, 0, 2, 0) (2, 2,−2, 2) (2, 2, 0, 0)| 0, 0, 5, 0, 0 〉〉B (0, 0, 2,−2) (2, 0,−2, 0) (2, 0, 0, 0)
2 2 1 1

Table 6.16.: The boundary states corresponding to D4-branes wrapped on the ruled surface E

• The divisor D, an elliptic surface
For this divisor we have n = (0, 0, nD

4 , 0, n0, n
h
2 , 2nl

2, n
l
2) and (5.74) to (5.76) reduce to

rk(F) = nD
4 (6.127)

c1(F) =
(
nh

2 + nD
4

)
h + nl

2f (6.128)

ch2(F) = −4nD
4 + nl

2 − n0 (6.129)
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6. D-geometry

where f = 2d+ l as introduced in Section C.3. (5.99) yields for the dimension of the moduli space
of the sheaves on D

m(geom,D) = 4
(
nD

4

)2
+ 2nD

4 n0 + 2nl
2

(
nh

2 − 2nl
2

)
+ 4 (6.130)

The boundary states with nD
4 6= 0 corresponding to D4-branes wrapped on D are displayed in

table 6.17. Here we have for the sheaves above the double line

∆(D)
1 = m(CFT,D) −m(geom,D) = 7(ν − 1) + 3 (6.131)

while the three sheaves in the second part satisfy

∆(D)
2 = m(CFT,D) −m(geom,D) = 11(ν − 1) + 7 (6.132)

For the last three sheaves we do not see an obvious relation. Furthermore, one can check that
there are no line bundles.

L-orbit n = (nD
4 , nh

2 , nl
2, n0) m(CFT,D) ν m(geom,D) ∆(D)

| 3, 2, 0, 0, 0 〉〉B (1,−2,−1,−1) (1, 1, 0,−1) (0, 3, 1, 0) 9 1 6 3
(1,−3,−1,−1) (1,−2,−1, 0) (1, 1, 0, 0)| 3, 3, 0, 0, 0 〉〉B (1, 2, 0, 0) (0, 4, 1, 1) (0, 4, 1, 0)

11 1 8 3

| 3, 4, 0, 0, 0 〉〉B (1, 2, 0, 1) (0, 5, 1, 1) (1,−3,−1, 0) 13 1 10 3
| 3, 6, 0, 0, 0 〉〉B (2,−1,−1,−1) (1, 5, 1, 0) (1,−6,−2,−1) 17 1 14 3
| 3, 8, 0, 0, 0 〉〉B (1, 6, 1, 1) (1,−7,−2,−1) (2,−1,−1, 0) 21 1 18 3
| 7, 2, 0, 0, 0 〉〉B (2,−1,−1,−2) (1, 4, 1,−1) (1,−5,−2,−1) 13 1 10 3

(1,−7,−2,−2) (1,−6,−2, 0) (2,−2,−1,−1)| 7, 3, 0, 0, 0 〉〉B (2, 0,−1,−1) (1, 5, 1, 1) (1, 6, 1, 0)
19 1 16 3

(2,−6,−2,−2) (2,−4,−2, 0) (2, 2, 0, 0)| 5, 5, 0, 0, 0 〉〉B (2, 4, 0, 0) (0, 8, 2, 2) (0, 8, 2, 0)
23 1 20 3

| 7, 4, 0, 0, 0 〉〉B (1, 7, 1, 2) (1,−8,−2,−1) (2,−1,−1, 1) 25 1 22 3
| 7, 6, 0, 0, 0 〉〉B (3, 4, 0,−1) (0, 11, 3, 1) (3,−7,−3,−2) 37 1 34 3

(3,−9,−3,−3) (3,−6,−3, 0) (3, 3, 0, 0)| 7, 7, 0, 0, 0 〉〉B (3, 6, 0, 0) (0, 12, 3, 3) (0, 12, 3, 0)
43 1 40 3

| 7, 8, 0, 0, 0 〉〉B (0, 13, 3, 2) (3,−8,−3,−1) (3, 5, 0, 1) 49 1 46 3
| 11, 2, 0, 0, 0 〉〉B (2, 2, 0,−2) (0, 6, 2, 0) (2,−4,−2,−2) 22 2 12 10

(2,−6,−2,−2) (2,−4,−2, 0) (2, 2, 0, 0)| 11, 3, 0, 0, 0 〉〉B (2, 4, 0, 0) (0, 8, 2, 2) (0, 8, 2, 0)
30 2 20 10

| 11, 4, 0, 0, 0 〉〉B (0, 10, 2, 2) (2,−6,−2, 0) (2, 4, 0, 2) 38 2 28 10
| 11, 6, 0, 0, 0 〉〉B (2, 10, 2, 0) (2,−12,−4,−2) (4,−2,−2,−2) 54 2 44 10

(2,−14,−4,−4) (2,−12,−4, 0) (4,−4,−2,−2)| 11, 7, 0, 0, 0 〉〉B (4, 0,−2, 0) (2, 10, 2, 2) (2, 12, 2, 0)
62 2 52 10

| 11, 8, 0, 0, 0 〉〉B (2,−14,−4,−2) (4,−2,−2, 0) (2, 12, 2, 2) 70 2 60 10
(4,−12,−4,−4) (4,−8,−4, 0) (4, 4, 0, 0)| 11, 11, 0, 0, 0 〉〉B (4, 8, 0, 0) (0, 16, 4, 4) (0, 16, 4, 0)

92 4 68 24

| 10, 3, 0, 0, 0 〉〉B (2, 3, 0, 0) (0, 8, 2, 1) (2,−5,−2,−1) 27 1 20 7
| 10, 7, 0, 0, 0 〉〉B (2, 11, 2, 1) (2,−13,−4,−2) (4,−2,−2,−1) 59 1 52 7
| 10, 11, 0, 0, 0 〉〉B (0, 16, 4, 2) (4,−10,−4,−2) (4, 6, 0, 0) 86 2 68 18

(1,−3,−1,−1) (1,−2,−1, 0) (1, 1, 0, 0)| 10, 0, 1, 0, 0 〉〉B (1, 2, 0, 0) (0, 4, 1, 1) (0, 4, 1, 0)
13 1 8 5

(1,−7,−2,−2) (1,−6,−2, 0) (2,−2,−1,−1)| 10, 0, 3, 0, 0 〉〉B (2, 0,−1,−1) (1, 5, 1, 1) (1, 6, 1, 0)
29 1 16 13

(2,−6,−2,−2) (2,−4,−2, 0) (2, 2, 0, 0)| 10, 0, 5, 0, 0 〉〉B (2, 4, 0, 0) (0, 8, 2, 2) (0, 8, 2, 0)
42 2 20 22

Table 6.17.: The boundary states corresponding to D4-branes wrapped on the elliptic surface D
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6.3. B-type boundary states in some specific examples

• The divisor H
For this divisor we have n = (0, nH

4 , 0, 0, n0, 2nd
2, n

d
2, n

l
2) and (5.74) to (5.76) reduce to

rk(F) = nH
4 (6.133)

c1(F) =
(
nd

2 + 2nH
4

)
(2h + d) +

(
nl

2 + nH
4

)
l (6.134)

ch2(F) = −7nH
4 + nd

2 − n0 (6.135)

The dimension of the moduli space of the sheaves F on H is according to (5.99)

m(geom,H) = 7
(
nH

4

)2
+ 2nH

4 n0 + 2nl
2

(
nd

2 − nl
2

)
+ 9 (6.136)

6.3.9. D-branes on P4
1,2,3,3,3[12]

• The divisor L, a K3 surface
For this divisor we have n = (0, 0, 0, nL

4 , n0, n
h
2 , nh

2 , 0). We have already computed the Chern
classes for a sheaf F on L in (5.77) to (5.79) which for this model become

rk(F) = nL
4 (6.137)

c1(F) = nh
2 (h + d) (6.138)

ch2(F) = −2nL
4 − n0 (6.139)

From (5.102) the dimension of the moduli space of the sheaves F on L is

m(geom, L)(F) =
1
2

(
nh

2

)2
+ 2nL

4

(
nL

4 + n0

)
+ 2 (6.140)

The boundary states corresponding to D4-branes wrapped on L are displayed in table 6.18. We
observe that

∆(L) = m(CFT,L) −m(geom,L) = 3ν − 2 (6.141)

Note that we find precisely the same states as in the case of the K3 divisor in P4
1,1,2,2,2[8], see

table 6.1. Due to the fact that A6 6= −1 the states in the first line do not come in brane anti-brane
pairs.

L-orbit Mukai vector v = (nL
4 , nh

2 ,−nL
4 − n0) m(CFT,L) ν m(geom,L) ∆(L)

(1,−4, 1) (3,−8, 3)| 2, 0, 0, 0, 0 〉〉B (1,−4, 3) (1, 0, 1)
1 1 0 1

| 5, 0, 0, 0, 0 〉〉B (0, 4,−2) (2,−4, 0) 7 1 6 1
| 5, 0, 1, 0, 0 〉〉B (2, 0,−2) (2,−8, 2) 14 2 10 4
| 5, 0, 1, 1, 0 〉〉B (0, 8,−4) (4,−8, 0) 28 4 18 10
| 5, 0, 1, 0, 0 〉〉B (4, 0,−4) (4,−16, 4) 44 4 34 10

Table 6.18.: The boundary states corresponding to D4-branes wrapped on the K3 surface L

• The divisor E1, a ruled surface over a genus g = 3 curve
For this divisor we have n = (0, nE1

4 , 0, 0, n0, n
h
2 , nd

2, 0) since L ·E1 = 0 and (5.74) to (5.76) reduce
to

rk(F) = nE1
4 (6.142)

c1(F) =
(
nh

2 − 4nE1
4

)
h + nd

2d (6.143)

ch2(F) = −2nE1
4 + nh

2 − nd
2 − n0 (6.144)
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6. D-geometry

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E1

m(geom,E1) = 2
(
nE1

4

)2

+ 2nE1
4 n0 +

1
4
nh

2

(
2nd

2 − nh
2

)
+ 1 (6.145)

The boundary states with nE1
4 6= 0 corresponding to D4-branes wrapped on E1 are displayed in

table 6.19. We note that

∆(E1) = m(CFT,E1) −m(geom,E1) = ν − 1 (6.146)

The rank one bundles in the first and second line are OE1 and OE1(−4h − 4d). The rank two
bundles in the third and fourth line are topologically equivalent to O⊕2

E1
and O⊕2

E1
(−4h−4d). They

have ν̃ = 1 and N = 2 and are therefore U(2) bundles and not holomorphic direct sums.

L-orbit n = (nE1
4 , nh

2 , nd
2, n0) m(CFT,E1) ν m(geom,E1) ∆(E1)

| 0, 0, 1, 0, 0 〉〉B (1, 0,−4, 0) 3 1 3 0
| 0, 1, 1, 0, 0 〉〉B (1, 4, 0, 2) 3 1 3 0
| 0, 0, 1, 1, 1 〉〉B (2, 0,−8, 0) 12 4 9 3
| 0, 1, 1, 1, 1 〉〉B (2, 8, 0, 4) 12 4 9 3

Table 6.19.: The boundary states corresponding to D4-branes wrapped on the ruled surface E1

• The divisor E2, a ruled surface over a genus g = 3 curve
For this divisor we have n = (0, 0, nE2

4 , 0, n0, n
h
2 , nh

2 , nl
2) since L ·E2 = 2h+2d and H ·E2 = D ·E2

and (5.74) to (5.76) reduce to

rk(F) = nE2
4 (6.147)

c1(F) =
(
nh

2 − 4nE2
4

)
(h + d) +

(
nl

2 + 2nE2
4

)
l (6.148)

ch2(F) = −nE2
4 +

1
2
nh

2 − nl
2 − n0 (6.149)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E2

m(geom,E2) = 2
(
nE2

4

)2

+ 2nE
4 n0 +

1
2
nh

2nl
2 + 1 (6.150)

The boundary states with nE2
4 6= 0 corresponding to D4-branes wrapped on E2 are displayed in

table 6.20. We note that

∆(E2) = m(CFT,E2) −m(geom,E2) = ν − 1 (6.151)

The rank one bundles in the first and second line are OE2 and OE2(−4h − 4d). The rank two
bundles in the third and fourth line are topologically equivalent to O⊕2

E2
and O⊕2

E2
(−4h−4d). These

are exactly the same bundles as those on the divisor E1. Since 4h + 4d is the class of the section
of both rulings π1 : E1 → C and π2 : E2 → C we could try to interpret these bundles as bundles
on the whole Hirzebruch-Jung A2 sphere-tree fibration over C. If this interpretation were correct,
then we had an interesting phenomenon, namely that a stable D-brane configuration in the large
volume limit splits into two different stable configurations at the Gepner point. They are different
because e.g. the bundles OE1 and OE2 come from different boundary states, | 0, 1, 1, 0, 0 〉〉B and
| 1, 0, 1, 0, 0 〉〉B , respectively. Note also that all these bundles are the same as those obtained in
table 6.2 for the ruled surface E in the family P4

1,1,2,2,2[8].
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6.3. B-type boundary states in some specific examples

L-orbit n = (nE2
4 , nh

2 , nl
2, n0) m(CFT,E2) ν m(geom,E2) ∆(E2)

| 0, 0, 1, 0, 0 〉〉B (1, 0,−2, 0) 3 1 3 0
| 1, 0, 1, 0, 0 〉〉B (1, 4,−2, 2) 3 1 3 0
| 0, 0, 1, 1, 1 〉〉B (2, 0,−4, 0) 12 4 9 3
| 1, 0, 1, 1, 1 〉〉B (2, 8,−4, 4) 12 4 9 3

Table 6.20.: The boundary states corresponding to D4-branes wrapped on the ruled surface E2

• The divisor D1, a P2 blown up in seven points
For this divisor we have n = (0,−nE1

4 , 0, nE1
4 , n0, n

h
2 , 0, 0) and (5.74) to (5.76) reduce to

rk(F) = 2nL
4 (6.152)

c1(F) = (nh
2 − 2nL

4 )h (6.153)

ch2(F) = −nL
4 −

1
2
nh

2 − n0 (6.154)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on D1

m(geom,D1) = 2nL
4

(
nL

4 + 2n0

)
+

1
2

(
nh

2

)2
+ 1 (6.155)

The boundary states with corresponding to D4-branes wrapped on D1 are displayed in table 6.21.
We note that

∆(D1) = m(CFT,D1) −m(geom,D1) = ν − 1 (6.156)

The rank two sheaves have the following Chern classes: (−6h,−12), (−8h,−22), and (−4h,−4).
The first of them has gauge group U(1) and the remaining two have gauge group U(1) × U(1)
since ν̃ = 2 and N = 1. The rank four sheaves are characterized by (12h,−42), (−16h,−76), and
(−8h,−16). Although their charges are twice the charges of the rank two sheaves they do not
correspond to direct sums. The first one has gauge group U(2) because ν̃ = 1 and N = 2. The
other two have gauge group U(2)×U(2) since ν̃ = 2 and N = 2. By (3.44) the curve 2h has genus
1 and by (5.83) the line bundle supported on this curve in the first line is O2h(−2). The rank two
bundle supported on this curve is topologically equivalent to O2h(−2)⊕2 but not holomorphically
split since ν̃ = 1 and N = 2.

L-orbit n = (2nL
4 , nh

2 , n0) m(CFT,D1) ν m(geom,D1) ∆(D1)

| 0, 2, 0, 0, 0 〉〉B (0, 2, 2) (2,−4,−2) 3 1 3 0
| 0, 2, 1, 0, 0 〉〉B (2,−6,−4) (2,−2, 0) 6 2 5 1
| 0, 2, 1, 1, 0 〉〉B (0, 4, 4) (4,−8,−4) 12 4 9 3
| 0, 2, 1, 1, 1 〉〉B (4,−12,−8) (4,−4, 0) 24 8 17 7

Table 6.21.: The boundary states corresponding to D4-branes wrapped on D1

• The divisor J2

For this divisor we have n = (0, 0, nE2
4 , 2nE2

4 , n0, n
h
2 , nh

2 , nl
2) and (5.74) to (5.76) reduce to

rk(F) = nE2
4 (6.157)

c1(F) =
(
nh

2 + 4nE2
4

)
(h + d) +

(
nl

2 + 2nE2
4

)
l (6.158)

ch2(F) = −4nE
4 +

1
2
nh

2 − n0 (6.159)
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as well as (5.99) yields for the dimension of the moduli space of the sheaves on J2

m(geom,J2) = 4
(
nE2

4

)2

+ 2nE
4 n0 +

1
2
nl

2

(
nh

2 − nl
2

)
+ 6 (6.160)

The boundary states with nE2
4 6= 0 corresponding to D4-branes wrapped on J2 are displayed in

table 6.22. We have noted in Section C.1.2 that the topology of this divisor is the same as the
topology of the divisor H in P4

1,1,2,2,2[8]. We note here that the Chern classes (6.157) to (6.159)
and the dimension of the moduli space (6.160) of the sheaves F on J2 agree with those of the
sheaves on the divisor H of P4

1,1,2,2,2[8], (6.29) to (6.31) and (6.32), respectively. All the sheaves
obtained this way are contained in the sheaves in table 6.3. In particular, the sheaves in the orbits
| 3, 0, 1, 0, 0 〉〉B and | 4, 0, 1, 0, 0 〉〉B have the same dimensions although they are in different orbits
which agrees with the same sheaves being in the single orbit | 2, 0, 1, 0, 0 〉〉B for P4

1,1,2,2,2[8]. All
the dimensions agree.

L-orbit n = (nE2
4 , nh

2 , nl
2, n0) m(CFT,J2) ν m(geom,J2) ∆(J2)

| 3, 0, 1, 0, 0 〉〉B (1,−4,−2,−2) 11 1 8 3
| 4, 0, 1, 0, 0 〉〉B (1, 0,−2, 0) 11 1 8 3
| 5, 1, 1, 0, 0 〉〉B (2,−8,−4,−4) 30 2 14 16
| 3, 0, 1, 1, 1 〉〉B (2,−8,−4,−4) 44 4 14 30
| 4, 0, 1, 1, 1 〉〉B (2, 0,−4, 0) 44 4 14 30
| 5, 1, 1, 1, 1 〉〉B (4,−16,−8,−8) 120 8 38 82

Table 6.22.: The boundary states corresponding to D4-branes wrapped on J2

• The divisor H
For this divisor we have n =

(
0, 1

2nE2
4 , nE2

4 , 3
2nE2

4 , n0, n
h
2 , nd

2, n
l
2

)
and (5.74) to (5.76) reduce to

rk(F) = nE2
4 (6.161)

c1(F) =
(
nh

2 + nE2
4

)
h +

(
nd

2 + 2nE2
4

)
d +

(
nl

2 + nE2
4

)
l (6.162)

ch2(F) = −7
2
nE2

4 +
1
2
nh

2 − n0 (6.163)

The dimension of the moduli space of the sheaves F on H is according to (5.99)

m(geom,H) = 3
(
nE2

4

)2

+ nE2
4

(
nh

2 − nd
2 + 2n0

)− (
nh

2

)2
(6.164)

− (
nd

2

)2 − (
nl

2

)2
+ nd

2

(
2nh

2 + nl
2

)
+ 4

6.3.10. D-branes on P4
1,2,3,3,9[18]

• The divisor L, a K3 surface
For this divisor we have n = (0, 0, 0, nL

4 , n0, n
h
2 , nh

2 , 0). We have already computed the Chern
classes for a sheaf F on L in (5.77) to (5.79) which for this model become

rk(F) = nL
4 (6.165)

c1(F) = nh
2 (h + d) (6.166)

ch2(F) = −2nL
4 − n0 (6.167)

From (5.102) the dimension of the moduli space of the sheaves F on L is

m(geom, L)(F) =
1
2

(
nh

2

)2
+ 2nL

4

(
nL

4 + n0

)
+ 2 (6.168)
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6.3. B-type boundary states in some specific examples

The boundary states corresponding to D4-branes wrapped on L are displayed in table 6.23. We
observe that for the boundary states in the first part of the table

∆(L) = m(CFT,L) −m(geom,L) = 3ν − 2 (6.169)

However, we observe a new phenomenon here. There are boundary states on the K3 fiber which
do not appear in the Gepner model of the corresponding K3 surface and which, moreover, do not
satisfy (6.169). In particular, we observe that the boundary states | 0, 3, 1, 0, 0 〉〉B , | 0, 3, 1, 1, 0 〉〉B
and | 0, 3, 2, 1, 0 〉〉B have the same charges as the states | 5, 0, 0, 0, 0 〉〉B , | 5, 0, 1, 0, 0 〉〉B and
| 8, 0, 1, 0, 0 〉〉B , respectively, but the dimension of their CFT moduli space differs. Another
observation is that the charges of the states with L1 = 8, L2 = 0 are twice the charges of the
states with L1 = 0, L2 = 3. However, while the number of marginal operators of the former are
also twice the number of marginal operators of the latter, the geometric dimension of the moduli
differs by a factor of four (up to an additive constant of 2).

L-orbit Mukai vector v = (nL
4 , nh

2 ,−nL
4 − n0) m(CFT,L) ν m(geom,L) ∆(L)

| 2, 0, 0, 0, 0 〉〉B (2,−2, 1) (1, 0, 1) (1,−2, 2) 1 1 0 1
| 5, 0, 0, 0, 0 〉〉B (1,−2, 0) (1, 0,−1) (0, 2,−1) 5 1 4 1
| 5, 0, 1, 0, 0 〉〉B (1,−4, 1) (2,−2,−1) (1, 2,−2) 9 1 8 1
| 5, 0, 1, 1, 0 〉〉B (3,−6, 0) (3, 0,−3) (0, 6,−3) 21 1 20 1
| 8, 0, 0, 0, 0 〉〉B (2,−4, 2) (2, 0, 0) (0, 0,−2) 6 2 2 4
| 8, 0, 1, 0, 0 〉〉B (2,−4, 0) (2, 0,−2) (0, 4,−2) 14 2 10 4
| 8, 0, 1, 1, 0 〉〉B (4,−4,−2) (2, 4,−4) (2,−8, 2) 30 2 26 4
| 8, 0, 2, 0, 0 〉〉B (4,−4, 0) (0, 4,−4) (0, 4, 0) 20 4 10 10
| 8, 0, 2, 1, 0 〉〉B (4,−8, 0) (4, 0,−4) (0, 8,−4) 44 4 34 10
| 8, 0, 2, 2, 0 〉〉B (4,−12, 4) (4,−4,−4) (4, 4,−4) 64 8 42 22

| 0, 3, 0, 0, 0 〉〉B (1,−2, 1) (0, 0,−1) (1, 0, 0) 3 1 2 1
| 0, 3, 1, 0, 0 〉〉B (1,−2, 0) (1, 0,−1) (0, 2,−1) 7 1 4 3
| 0, 3, 1, 1, 0 〉〉B (1,−4, 1) (2,−2,−1) (1, 2,−2) 15 1 8 7
| 0, 3, 2, 0, 0 〉〉B (2,−2, 0) (0, 2,−2) (0, 2, 0) 10 2 4 6
| 0, 3, 2, 1, 0 〉〉B (2,−4, 0) (2, 0,−2) (0, 4,−2) 22 2 10 12
| 0, 3, 2, 2, 0 〉〉B (2,−6, 2) (2,−2,−2) (2, 2,−2) 32 4 12 20

Table 6.23.: The boundary states corresponding to D4-branes wrapped on the K3 surface L

• The divisor E1, a ruled surface over a genus g = 2 curve
For this divisor we have n = (0, nE1

4 , 0, 0, n0, n
h
2 , nd

2, 0) since L ·E1 = 0 and (5.74) to (5.76) reduce
to

rk(F) = nE1
4 (6.170)

c1(F) =
(
nh

2 − 3nE1
4

)
h + nd

2d (6.171)

ch2(F) = −2nE1
4 + nh

2 − nd
2 − n0 (6.172)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E1

m(geom,E1) =
1
2

(
nE1

4

)2

+ nE1
4

(
nh

2 − nd
2 + 2n0

)
+

1
2
nh

2

(
2nd

2 − nh
2

)
+ 1 (6.173)

The boundary states with nE1
4 6= 0 corresponding to D4-branes wrapped on E1 are displayed in

table 6.24. We note that

∆(E1) = m(CFT,E1) −m(geom,E1) = ν − 1 (6.174)
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The first two line bundles are OE1(−2h − 2d) and OE1 . The next two rank two bundles are
topologically equivalent to O⊕2

E1
(−2h − 2d) and O⊕2

E . They have ν̃ = 1 and N = 2 and are
therefore U(2) bundles and not holomorphic direct sums. The remaining rank two sheaves have
Chern classes (−4h− 6d, 4), (−4h− 2d, 0), and (±2d, 0).

L-orbit n = (nE1
4 , nh

2 , nd
2, n0) m(CFT,E1) ν m(geom,E1) ∆(E1)

| 0, 0, 1, 0, 0 〉〉B (1, 1,−2, 0) 2 1 2 0
| 0, 1, 1, 0, 0 〉〉B (1, 3, 0, 1) 2 1 2 0
| 0, 0, 2, 1, 0 〉〉B (2, 2,−4, 0) 6 2 5 1
| 0, 1, 2, 1, 0 〉〉B (2, 6, 0, 2) 6 2 5 1
| 0, 0, 2, 2, 0 〉〉B (2, 2,−6, 0) (2, 2,−2, 0) 8 4 5 3
| 0, 1, 2, 2, 0 〉〉B (2, 6, 2, 0) (2, 6,−2, 4) 8 4 5 3

Table 6.24.: The boundary states corresponding to D4-branes wrapped on the ruled surface E1

• The divisor E2, a ruled surface over a genus g = 2 curve
For this divisor we have n = (0, 0, nE2

4 , 0, n0, n
h
2 , nh

2 , nl
2) since L ·E2 = 2h+2d and H ·E2 = D ·E2

and (5.74) to (5.76) reduce to

rk(F) = nE2
4 (6.175)

c1(F) =
(
nh

2 − 2nE2
4

)
(h + d) +

(
nl

2 + nE2
4

)
l (6.176)

ch2(F) = −nE2
4 +

1
2
nh

2 − nl
2 − n0 (6.177)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E2

m(geom,E2) =
(
nE2

4

)2

+ 2nE
4 n0 + nh

2nl
2 + 1 (6.178)

The boundary states with nE2
4 6= 0 corresponding to D4-branes wrapped on E2 are displayed in

table 6.25. We note that except for the last two boundary states

∆(E2) = m(CFT,E2) −m(geom,E2) = ν − 1 (6.179)

The rank one bundles are OE2(−2h− 2d) and OE2 . The rank two bundles in the third and fourth
line are topologically equivalent to O⊕2

E2
(−2h−2d) and O⊕2

E2
. The remaining rank two sheaves have

Chern classes (−4d − 4h ∓ 2l,±2), (±2l, 0), (−8h − 8d − 2l,−8) and (4h + 4d + 2l, 6). The first
four bundles are precisely the same as the first four in table 6.24 on the divisor E1. Since 2h + 2d
is the class of the section of both rulings π1 : E1 → C and π2 : E2 → C we can interpret them as
bundles on the Hirzebruch-Jung A2 sphere-tree fibration over C in the same way as in the family
P4

1,2,3,3,3[12]. Note also that all the configurations found here coincide with those in table 6.5 on
the ruled surface E in the family P4

1,1,2,2,6[12].

• The divisor D1, a P2 blown up at eight points
For this divisor we have n = (0,−nE1

4 , 0, nE1
4 , n0, n

h
2 , 0, 0) and (5.74) to (5.76) reduce to

rk(F) = 2nL
4 (6.180)

c1(F) = nh
2h (6.181)

ch2(F) = −2nL
4 −

1
2
nh

2 − n0 (6.182)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on D1

m(geom,D1) = 4
(
nL

4

)2
+ 2nL

4

(
nh

2 + 2n0

)
+

(
nh

2

)2
+ 1 (6.183)
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L-orbit n = (nE2
4 , nh

2 , nl
2, n0) m(CFT,E2) ν m(geom,E2) ∆(E2)

| 0, 0, 1, 0, 0 〉〉B (1, 0,−1, 0) 2 1 2 0
| 1, 0, 1, 0, 0 〉〉B (1, 2,−1, 1) 2 1 2 0
| 0, 0, 2, 1, 0 〉〉B (2, 0,−2, 0) 6 2 5 1
| 1, 0, 2, 1, 0 〉〉B (2, 4,−2, 2) 6 2 5 1
| 0, 0, 2, 2, 0 〉〉B (2, 0,−4, 0) (2, 0, 0, 0) 8 4 5 3
| 1, 0, 2, 2, 0 〉〉B (2, 4, 0, 0) (2, 4,−4, 4) 8 4 5 3
| 3, 0, 2, 2, 0 〉〉B (2,−4,−4, 0) 32 4 21 11
| 4, 0, 2, 2, 0 〉〉B (2, 8, 0, 4) 32 4 21 11

Table 6.25.: The boundary states corresponding to D4-branes wrapped on the ruled surface E2

The boundary states with nL
4 6= 0 corresponding to D4-branes wrapped on D1 are displayed in

table 6.26. We note that

∆(D1) = m(CFT,D1) −m(geom,D1) = ν − 1 (6.184)

We are not discussing all the bundles that appear in the table. Among all the rank one sheaves
there is only bundle, namely OD1(−h) in the third line. There are also bundles topologically
equivalent to O⊕m

D1
(−h) for m = 2, 3 and 4 in the orbits | 0, 2, 2, 0, 0 〉〉B , | 0, 2, 1, 1, 0 〉〉B and

| 0, 2, 2, 2, 0 〉〉B , respectively. The gauge groups are U(1)×U(1), U(1) and U(2), respectively. An
interesting sheaf appears in the fourth line, the ideal sheaf of two points Ip+q. Interpreting the
two points as D0-branes, they are restricted to move in D1 giving each of them two moduli for a
total of four. We also find a sheaf topologically equivalent to I⊕2

p+q with gauge group U(1)×U(1).

L-orbit n = (2nL
4 , nh

2 , n0) m(CFT,D1) ν m(geom,D1) ∆(D1)

| 0, 0, 0, 0, 0 〉〉B (1,−1,−1) 0 1 0 0
| 0, 1, 0, 0, 0 〉〉B (1,−2,−2) 0 1 0 0
| 0, 2, 0, 0, 0 〉〉B (1,−1, 0) (0, 1, 1) (1,−2,−1) 2 1 2 0
| 0, 2, 1, 0, 0 〉〉B (1, 0, 1) (1,−3, 2) (2,−3,−1) 4 1 4 0
| 0, 2, 1, 1, 0 〉〉B (3,−3, 0) (0, 3, 3) (3,−6,−3) 10 1 10 0
| 0, 2, 2, 0, 0 〉〉B (2,−2, 0) (0, 2, 2) (2,−4,−2) 6 2 5 1
| 0, 2, 2, 1, 0 〉〉B (2, 0, 2) (2,−6, 4) (4,−6,−2) 14 2 13 1
| 0, 2, 2, 2, 0 〉〉B (4,−4, 0) (0, 4, 4) (4,−8,−4) 20 4 17 3

Table 6.26.: The boundary states corresponding to D4-branes wrapped on D1

• The divisor J2

For this divisor we have n = (0, 0, nE2
4 , 2nE2

4 , n0, n
h
2 , nh

2 , nl
2) and (5.74) to (5.76) reduce to

rk(F) = nE2
4 (6.185)

c1(F) =
(
nh

2 + 2nE2
4

)
(h + d) +

(
nl

2 + nE2
4

)
l (6.186)

ch2(F) = −4nE
4 +

1
2
nh

2 − n0 (6.187)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on J2

m(geom,J2) = 4
(
nE2

4

)2

+ 2nE2
4 n0 + nl

2

(
nh

2 − nl
2

)
+ 5 (6.188)

The boundary states with nE2
4 6= 0 corresponding to D4-branes wrapped on J2 are displayed in

table 6.27. We have noted in Section C.1.3 that the geometry of this divisor is the same as the
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6. D-geometry

geometry of the divisor H in P4
1,1,2,2,6[12]. We note here that the Chern classes (6.185) to (6.187)

and the dimension of the moduli space (6.188) of the sheaves F on J2 agree with those of the
sheaves on the divisor H of P4

1,1,2,2,6[12], (6.43) to (6.45) and (6.46), respectively. All the sheaves
obtained this way are contained in the sheaves in table 6.6. In particular, the sheaves in the orbits
| 3, 0, 2, 2, 0 〉〉B and | 4, 0, 2, 2, 0 〉〉B have the same dimensions although they are in different orbits
which agrees with the same sheaves being in the single orbit | 2, 0, 2, 2, 0 〉〉B for P4

1,1,2,2,6[12]. All
the dimensions agree.

L-orbit n = (nE2
4 , nh

2 , nl
2, n0) m(CFT,J2) ν m(geom,J2) ∆(J2)

| 5, 1, 0, 0, 0 〉〉B (1,−2,−1,−1) 10 1 8 2
| 6, 0, 1, 0, 0 〉〉B (1,−2,−1,−1) 12 1 8 4
| 7, 0, 1, 0, 0 〉〉B (1, 0,−1, 0) 12 1 8 4
| 5, 1, 1, 1, 0 〉〉B (3,−6,−3,−3) 42 1 32 10
| 8, 1, 1, 0, 0 〉〉B (2,−4,−2,−2) 30 2 17 13
| 6, 0, 2, 1, 0 〉〉B (2,−4,−2,−2) 38 2 17 21
| 7, 0, 2, 1, 0 〉〉B (2, 0,−2, 0) 38 2 17 21
| 3, 0, 2, 2, 0 〉〉B (2,−4, 0,−4) 32 4 5 27
| 4, 0, 2, 2, 0 〉〉B (2, 0,−4, 0) 32 4 5 27
| 6, 0, 2, 2, 0 〉〉B (2,−8,−4,−4) (2, 0, 0, 0) 56 4 21 35
| 7, 0, 2, 2, 0 〉〉B (2,−4,−4, 0) (2, 4, 0, 0) 56 4 21 35
| 8, 1, 2, 1, 0 〉〉B (4,−8,−4,−4) 92 4 53 39
| 8, 1, 2, 2, 0 〉〉B (4,−16,−8,−8) (4, 0, 0, 0) 136 8 69 67

Table 6.27.: The boundary states corresponding to D4-branes wrapped on J2

• The divisor H
For this divisor we have n =

(
0, 1

2nE2
4 , nE2

4 , 3
2nE2

4 , n0, n
h
2 , nd

2, n
l
2

)
and (5.74) to (5.76) reduce to

rk(F) = nE2
4 (6.189)

c1(F) =
(
nh

2 + nE2
4

)
h +

(
nd

2 + 2nE2
4

)
d +

(
nl

2 + nE2
4

)
l (6.190)

ch2(F) = −7
2
nE2

4 +
1
2
nh

2 − n0 (6.191)

The dimension of the moduli space of the sheaves F on H is according to (5.99)

m(geom,H) = 3
(
nE2

4

)2

+ nE2
4

(
nh

2 − nd
2 + 2n0

)− (
nh

2

)2
(6.192)

− (
nd

2

)2 − (
nl

2

)2
+ nd

2

(
2nh

2 + nl
2

)
+ 4

6.3.11. D-branes on P4
1,4,5,5,5[20]

• The divisor L, a K3 surface
Here we have n = (0, 0, 0, 0, 0, nL

4 , n0, n
C5
2 , 3nC5

2 , 0, 2nC5
2 , nC5

2 ). We have already computed the
Chern classes for a sheaf F on L in (5.77) to (5.79) which for this model become

rk(F) = nL
4 (6.193)

c1(F) = nC5
2 (C1 + 3C2 + 2C4 + C5) (6.194)

ch2(F) = −2nL
4 − n0 (6.195)

From (5.102) the dimension of the moduli space of the sheaves F on L is

m(geom, L)(F) =
1
4

(
nC5

2

)2

+ 2nL
4

(
nL

4 + n0

)
+ 2 (6.196)
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The boundary states corresponding to D4-branes wrapped on L are displayed in table 6.28. We
make the same observation as in [291] that

∆(L) = m(CFT,L) −m(geom,L) = 3ν − 2 (6.197)

However, we observe here the same phenomenon as in Section 6.3.10. There are boundary states
on the K3 fiber which do not appear in the Gepner model of the corresponding K3 surface
and which, moreover, do not satisfy (6.197). In particular, we observe that the boundary states
| 1, 1, 1, 1, 0 〉〉B and | 1, 1, 1, 1, 1 〉〉B have the same charges as the states | 9, 0, 0, 0, 0 〉〉B and
| 9, 0, 1, 0, 0 〉〉B , respectively, but the dimension of their CFT moduli space differs. Another
observation is again that the charges of the states with L1 = 9, L2 = 0, L3 = 1 are twice
the charges of the states with L1 = 0, L2 = 1, L3 = 1. However, while the number of marginal
operators of the former are also twice the number of marginal operators of the latter, the geometric
dimension of the moduli differs by a factor of four (up to an additive constant of 2).

L-orbit Mukai vector v = (nL
4 , nC5

2 ,−nL
4 − n0) m(CFT,L) ν m(geom,L) ∆(L)

| 4, 0, 0, 0, 0 〉〉B (1, 0, 1) (3,−8, 3) 1 1 0 1
| 9, 0, 0, 0, 0 〉〉B (0, 4,−2) (2,−4, 0) 7 1 6 1
| 9, 0, 1, 0, 0 〉〉B (2, 0,−2) (2,−8, 2) 14 2 10 4
| 9, 0, 1, 1, 0 〉〉B (0, 8,−4) (4,−8, 0) 28 4 18 10
| 9, 0, 1, 1, 1 〉〉B (4, 0,−4) (4,−16, 4) 56 8 34 22

| 1, 1, 1, 0, 0 〉〉B (1, 0,−1) (1,−4, 1) 7 1 4 3
| 1, 1, 1, 1, 0 〉〉B (2,−4, 0) (0, 4,−2) 14 2 6 8
| 1, 1, 1, 1, 1 〉〉B (2,−8, 2) (2, 0,−2) 28 4 10 18

Table 6.28.: The boundary states corresponding to D4-branes wrapped on the K3 surface L

• The divisor E1, a ruled surface over a genus g = 3 curve
For this divisor we have n = (0, nE1

4 , 0, 0, 0, 0, n0, n
C1
2 , nC2

2 , 0, 0, 0) and (5.74) to (5.76) reduce to

rk(F) = nE1
4 (6.198)

c1(F) =
(
nC1

2 − 6nE1
4

)
C1 +

(
nC2

2 − 4nE1
4

)
C2 (6.199)

ch2(F) = −6nE1
4 + 2nC1

2 − nC2
2 − n0 (6.200)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E1

m(geom,E1) = nE1
4

(
−nE1

4 + 3nC1
2 − nC2

2 + 2n0

)
+

1
4
nC1

2

(
2nC2

2 − 3nC1
2

)
+ 1 (6.201)

The boundary states corresponding to D4-branes wrapped on E1 are displayed in table 6.29. We
note that

∆(E1) = m(CFT,E1) −m(geom,E1) = ν − 1 (6.202)

The two states correspond to OE1(−4C1 − 12C2) and a bundle which is topologically equivalent
to O⊕2

E1
(−4C1 − 12C2). It has ν̃ = 1 and N = 2 and hence gauge group U(2).

• The divisor E2, a ruled surface over a genus g = 3 curve
For this divisor we have n = (0, 0, nE2

4 , 0, 0, 0, n0, n
C1
2 , 3nC1

2 , 0, nC4
2 , 0) and (5.74) to (5.76) reduce

to

rk(F) = nE2
4 (6.203)

c1(F) =
(
nC1

2 − 4nE2
4

)
(C1 + 3C2) +

(
nC4

2 − 2nE2
4

)
C4 (6.204)

ch2(F) = −2nE2
4 +

3
2
nC1

2 − nC4
2 − n0 (6.205)
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L-orbit n = (nE1
4 , nC1

2 , nC2
2 , n0) m(CFT,E1) ν m(geom,E1) ∆(E1)

| 0, 0, 1, 0, 0 〉〉B (1, 2,−8, 0) 3 1 3 0
| 0, 0, 1, 1, 1 〉〉B (2, 4,−16, 0) 12 4 9 3

Table 6.29.: The boundary states corresponding to D4-branes wrapped on the ruled surface E1

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E2

m(geom,E2) = 2nE2
4 n0 +

1
2
nC1

2

(
nC4

2 − nC1
2

)
+ 1 (6.206)

The boundary states corresponding to D4-branes wrapped on E2 are displayed in table 6.30. We
note that

∆(E2) = m(CFT,E2) −m(geom,E2) = ν − 1 (6.207)

The two states correspond to OE2(−4C1 − 12C2 − 8C4) and a bundle which is topologically
equivalent to O⊕2

E2
(−4C1 − 12C2 − 8C4). It has ν̃ = 1 and N = 2 and hence gauge group U(2).

L-orbit n = (nE2
4 , nC1

2 , nC4
2 , n0) m(CFT,E2) ν m(geom,E2) ∆(E2)

| 0, 0, 1, 0, 0 〉〉B (1, 0,−6, 0) 3 1 3 0
| 0, 0, 1, 1, 1 〉〉B (2, 0,−12, 0) 12 4 9 3

Table 6.30.: The boundary states corresponding to D4-branes wrapped on the ruled surface E2

• The divisor E3, a ruled surface over a genus g = 3 curve
For this divisor we have n = (0, 0, 0, nE3

4 , 0, 0, n0, n
C1
2 , 3nC1

2 , 0, 2nC1
2 , nC5

2 ) and (5.74) to (5.76)
reduce to

rk(F) = nE3
4 (6.208)

c1(F) =
(
nC1

2 − 4nE3
4

)
(C1 + 3C2 + 2C4) + nC5

2 C5 (6.209)

ch2(F) = −2nE3
4 + nC1

2 − nC5
2 − n0 (6.210)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E3

m(geom,E3) = 2nE3
4

(
nE3

4 + n0

)
+

1
4
nC1

2

(
2nC5

2 − nC1
2

)
+ 1 (6.211)

The boundary states corresponding to D4-branes wrapped on E3 are displayed in table 6.31. We
note that

∆(E3) = m(CFT,E3) −m(geom,E3) = ν − 1 (6.212)

The two states correspond to OE3(−4C1− 12C2− 8C4− 4C5) and a bundle which is topologically
equivalent to O⊕2

E3
(−4C1 − 12C2 − 8C4 − 4C5). It has ν̃ = 1 and N = 2 and hence gauge group

U(2).

• The divisor E4, a ruled surface over a genus g = 3 curve
For this divisor we have n = (0, 0, 0, 0, nE4

4 , 0, n0, n
C1
2 , 3nC1

2 , nC3
2 , 2nC1

2 , nC1
2 ) and (5.74) to (5.76)

reduce to

rk(F) = nE4
4 (6.213)

c1(F) =
(
nC1

2 − 4nE4
4

)
(C1 + 3C2 + 2C4 + C5) +

(
nC3

2 + 2nE4
4

)
C3 (6.214)

ch2(F) = −2nE4
4 +

1
2
nC1

2 − nC3
2 − n0 (6.215)
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6.3. B-type boundary states in some specific examples

L-orbit n = (nE3
4 , nC1

2 , nC5
2 , n0) m(CFT,E3) ν m(geom,E3) ∆(E3)

| 0, 0, 1, 0, 0 〉〉B (1, 0,−4, 0) 3 1 3 0
| 0, 0, 1, 1, 1 〉〉B (2, 0,−8, 0) 12 4 9 3

Table 6.31.: The boundary states corresponding to D4-branes wrapped on the ruled surface E3

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E4

m(geom,E4) = 2nE5
4

(
nE4

4 + n0

)
+

1
2
nC1

2 nC3
2 + 1 (6.216)

The boundary states corresponding to D4-branes wrapped on E4 are displayed in table 6.32. We
note that

∆(E4) = m(CFT,E4) −m(geom,E4) = ν − 1 (6.217)

The two states correspond to OE4(−4C1 − 12C2 − 8C4 − 4C5) and OE4 and bundles which are
topologically equivalent to O⊕2

E4
(−4C1 − 12C2 − 8C4 − 4C5) and O⊕2

E4
. Both of them have ν̃ = 1

and N = 2 and hence gauge group U(2).

L-orbit n = (nE4
4 , nC1

2 , nC3
2 , n0) m(CFT,E4) ν m(geom,E4) ∆(E4)

| 0, 0, 1, 0, 0 〉〉B (1, 0,−2, 0) 3 1 3 0
| 3, 0, 1, 0, 0 〉〉B (1, 4,−2, 2) 3 1 3 0
| 0, 0, 1, 1, 1 〉〉B (2, 0,−4, 0) 12 4 9 3
| 3, 0, 1, 1, 1 〉〉B (2, 8,−4, 4) 12 4 9 3

Table 6.32.: The boundary states corresponding to D4-branes wrapped on the ruled surface E4

• The divisor D1, a P2

For this divisor we have n = (0,−3nL
4 ,−2nL

4 ,−nL
4 , 0, nL

4 , n0, n
C1
2 , 0, 0, 0, 0) and (5.74) to (5.76)

reduce to

rk(F) = 4nL
4 (6.218)

c1(F) = nC1
2 C1 (6.219)

ch2(F) = −4nL
4 −

3
2
nC1

2 − n0 (6.220)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on D1

m(geom,D1) = 4nL
4

(
4nL

4 + 3nC1
2 + 2n0

)
− 3

2

(
nC1

2

)2

+ 1 (6.221)

We have not found any boundary states with these charges.

• The divisor H
For this divisor we have n =

(
0, 1

4nE4
4 , 1

2nE4
4 , 3

4nE4
4 , nE4

4 , 5
4nL

4 , n0, n
C1
2 , nC2

2 , nC3
2 , nC4

2 , nC5
2

)
and (5.74)

to (5.76) reduce to

rk(F) = nE4
4 (6.222)

c1(F) =
(
nC1

2 + 2nE4
4

)
C1 +

(
nC2

2 + 8nE4
4

)
C2 (6.223)

+
(
nC3

2 + 2nE4
4

)
C3 +

(
nC4

2 + 6nE4
4

)
C4 +

(
nC5

2 + 4nE4
4

)
C5

ch2(F) = −4nE4
4 +

1
2
nC1

2 − n0 (6.224)
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6. D-geometry

The dimension of the moduli space of the sheaves F on H is according to (5.99)

m(geom,H) = 3
(
nE4

4

)2

+ nE4
4

(
3nC1

2 − nC2
2 + 2n0

)
− 3

(
nC1

2

)2

(6.225)

−1
2

((
nC2

2

)2

+
(
nC3

2

)2

+
(
nC4

2

)2

+
(
nC5

2

)2
)

−1
2

(
−nC2

2

(
4nC1

2 + nC4
2

)
− nC5

2

(
nC3

2 + nC4
2

))
+ 5

6.3.12. D-branes on P4
1,3,4,4,12[24]

• The divisor L, a K3 surface
Here we have n = (0, 0, 0, 0, 0, nL

4 , n0, 3nC4
2 , 3nC4

2 , 3nC4
2 , nC4

2 , 3nC5
2 ). We have already computed

the Chern classes for a sheaf F on L in (5.77) to (5.79) which for this model become

rk(F) = nL
4 (6.226)

c1(F) = nC4
2 (3C1 + 3C2 + 3C3 + C4 + 3C5) (6.227)

ch2(F) = −2nL
4 − n0 (6.228)

From (5.102) the dimension of the moduli space of the sheaves F on L is

m(geom, L)(F) =
1
2

(
nC4

2

)2

+ 2nL
4

(
nL

4 + n0

)
+ 2 (6.229)

The boundary states corresponding to D4-branes wrapped on L are displayed in table 6.33. We
note that

∆(L) = m(CFT,L) −m(geom,L) = 3ν − 2 (6.230)

L-orbit Mukai vector v = (nL
4 , nC5

2 ,−nL
4 − n0) m(CFT,L) ν m(geom,L) ∆(L)

| 3, 0, 0, 0, 0 〉〉B (2,−2, 1) (1, 0, 1) (1,−6, 2) 1 1 0 1
| 7, 0, 0, 0, 0 〉〉B (1, 0,−1) (0, 2,−1) (1,−2, 0) 5 1 4 1
| 7, 0, 1, 0, 0 〉〉B (1,−4, 1) (2, 2,−1) (1, 2,−2) 9 1 8 1
| 7, 0, 1, 1, 0 〉〉B (0, 6,−3) (3,−6, 0) (3, 0,−3) 21 1 20 1
| 11, 0, 0, 0, 0 〉〉B (2, 0, 0) (2,−4, 2) (0, 0,−2) 6 2 2 4
| 11, 0, 1, 0, 0 〉〉B (2,−4, 0) (2, 0,−2) (0, 4,−2) 14 2 10 4
| 11, 0, 1, 1, 0 〉〉B (2,−8, 2) (4,−4,−2) (2, 4,−4) 30 2 26 4
| 11, 0, 2, 0, 0 〉〉B (0, 4, 0) (4,−4, 0) (0, 4,−4) 20 4 10 10
| 11, 0, 2, 1, 0 〉〉B (4,−8, 0) (4, 0,−4) (0, 8,−4) 44 4 34 10
| 11, 0, 2, 2, 0 〉〉B (4,−12, 4) (4,−4,−4) (4, 4,−4) 64 8 42 22

Table 6.33.: The boundary states corresponding to D4-branes wrapped on the K3 surface L

• The divisor E1, a ruled surface over a genus g = 2 curve
For this divisor we have n = (0, nE1

4 , 0, 0, 0, 0, n0, 3nC3
2 , nC2

2 , nC3
2 , 3nC3

2 , 2nC3
2 ) and we set C =

3C1 + C3 + 3C4 + 2C5. Then (5.74) to (5.76) reduce to

rk(F) = nE1
4 (6.231)

c1(F) =
(
nC3

2 − 2nE1
4

)
C +

(
nC2

2 − 3nE1
4

)
C2 (6.232)

ch2(F) = −nE1
4 +

5
2
nC3

2 − nC2
2 − n0 (6.233)
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as well as (5.99) yields for the dimension of the moduli space of the sheaves on E1

m(geom,E1) = nE1
4

(
nE1

4 + 2n0

)
+ nC3

2

(
nC2

2 − 2nC3
2

)
+ 1 (6.234)

The boundary states with nE1
4 6= 0 corresponding to D4-branes wrapped on E1 are displayed in

table 6.34. We note that

∆(E1) = m(CFT,E1) −m(geom,E1) = ν − 1 (6.235)

The first state corresponds to the sheaf OE1(−2C − 6C2) ⊗ Ip1,p2 . Since ν̃ = 2 the second state
is the direct sum of twice the first one. The remaining three rank two sheaves have gauge group
U(2) and Chern classes (−4C − 14C2, 6), (−4C − 10C2, 2), and (−2C2, 0).

L-orbit n = (nE1
4 , nC2

2 , nC3
2 , n0) m(CFT,E1) ν m(geom,E1) ∆(E1)

| 0, 0, 1, 0, 0 〉〉B (1,−3, 0, 0) 2 1 2 0
| 0, 0, 2, 1, 0 〉〉B (2,−6, 0, 0) 6 2 5 1
| 0, 0, 2, 2, 0 〉〉B (2,−8, 0, 0) (2,−4, 0, 0) 8 4 5 3
| 0, 2, 2, 2, 0 〉〉B (2, 4, 4, 4) 8 4 5 3

Table 6.34.: The boundary states corresponding to D4-branes wrapped on the ruled surface E1

• The divisor E2, a ruled surface over a genus g = 2 curve
For this divisor we have n = (0, 0, nE2

4 , 0, 0, 0, n0, 3nC3
2 , 3nC3

2 , nC3
2 , 3nC3

2 , nC5
2 ) and we set C =

3C1 + 3C2 + C3 + 3C4. Then (5.74) to (5.76) reduce to

rk(F) = nE2
4 (6.236)

c1(F) =
(
nC3

2 − 2nE2
4

)
C +

(
nC5

2 − 4nE2
4

)
C5 (6.237)

ch2(F) = −nE2
4 + 3nC3

2 − nC5
2 − n0 (6.238)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E2

m(geom,E2) = nE2
4

(
nE2

4 + 2n0

)
+

1
2
nC3

2

(
2nC5

2 − 5nC3
2

)
+ 1 (6.239)

The boundary states with nE2
4 6= 0 corresponding to D4-branes wrapped on E2 are displayed in

table 6.3.12. We note that

∆(E2) = m(CFT,E2) −m(geom,E2) = ν − 1 (6.240)

The first state corresponds to the bundle OE2(−2C − 6C5). Since ν̃ = 2 the second state is the
direct sum of twice the first one. The remaining rank two sheaves have gauge group U(2) and
Chern classes (−4C − 14C5, 4), and (−4C − 10C5, 0).

L-orbit n = (nE2
4 , nC3

2 , nC5
2 , n0) m(CFT,E2) ν m(geom,E2) ∆(E2)

| 0, 0, 1, 0, 0 〉〉B (1, 0,−2, 0) 2 1 2 0
| 0, 0, 2, 1, 0 〉〉B (2, 0,−4, 0) 6 2 5 1
| 0, 0, 2, 2, 0 〉〉B (2, 0,−2, 0) (2, 0,−6, 0) 8 4 5 3

Table 6.35.: The boundary states corresponding to D4-branes wrapped on the ruled surface E2
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• The divisor E3, a ruled surface over a genus g = 2 curve
For this divisor we have n = (0, 0, 0, nE3

4 , 0, 0, n0, 3nC3
2 , 3nC3

2 , nC3
2 , nC4

2 , 3nC3
2 ) and we ste C =

C1 + 3C2 + C3 + 3C5. Then (5.74) to (5.76) reduce to

rk(F) = nE3
4 (6.241)

c1(F) =
(
nC3

2 − 2nE3
4

)
C +

(
nC4

2 − 5nE3
4

)
C4 (6.242)

ch2(F) = −nE3
4 +

7
2
nC3

2 − nC4
2 − n0 (6.243)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on E3

m(geom,E3) = nE3
4

(
nE3

4 + 2n0

)
+ nC3

2

(
nC4

2 − 3nC3
2

)
+ 1 (6.244)

The boundary states with nE3
4 6= 0 corresponding to D4-branes wrapped on E3 are displayed in

table 6.3.12. We note that except for the last two boundary states we have

∆(E3) = m(CFT,E3) −m(geom,E3) = ν − 1 (6.245)

The first two states correspond to the bundles OE3(−2C − 6C4) and OE3 , respectively. Since
ν̃ = 2 the next two states are the direct sums of twice the first two states each, respectively.
The remaining rank two sheaves have gauge group U(2) and Chern classes (−4C − 14C4, 2),
(−4C − 10C4,−2), (−2C4, 0), (2C4, 0), (−8C − 26C4, 8), and (4C + 14C4, 6).

L-orbit n = (nE3
4 , nC3

2 , nC4
2 , n0) m(CFT,E3) ν m(geom,E3) ∆(E3)

| 0, 0, 1, 0, 0 〉〉B (1, 0,−1, 0) 2 1 2 0
| 2, 0, 1, 0, 0 〉〉B (1, 2, 5, 1) 2 1 2 0
| 0, 0, 2, 1, 0 〉〉B (2, 0,−2, 0) 6 2 5 1
| 2, 0, 2, 1, 0 〉〉B (2, 4, 10, 2) 6 2 5 1
| 0, 0, 2, 2, 0 〉〉B (2, 0,−4, 0) (2, 0, 0, 0) 8 4 5 3
| 2, 0, 2, 2, 0 〉〉B (2, 4, 8, 4) (2, 4, 12, 0) 8 4 5 3
| 4, 0, 2, 2, 0 〉〉B (2,−4,−16, 0) 32 4 21 11
| 6, 0, 2, 2, 0 〉〉B (2, 8, 24, 4) 32 4 21 11

Table 6.36.: The boundary states corresponding to D4-branes wrapped on the ruled surface E3

• The divisor F , a collection of 2 P2’s
For this divisor we have n = (0, 0, 0, 0, nF

4 , 0, n0, 0, nC2
2 , 3nC2

2 , nC2
2 , 2nC2

2 ) and we set h = C2 +
3C3 + C4 + 2C5. Then (5.74) to (5.76) reduce to

rk(F) = nF
4 (6.246)

c1(F) =
(
nC2

2 − 3nF
4

)
h (6.247)

ch2(F) =
5
2
nF

4 −
3
2
nd

2C2 − n0 (6.248)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on F

m(geom,F ) =
1
2
nF

4

(
4n0 − 5nF

4

)
+

1
2

(
nC2

2

)2

+ 1 (6.249)

The boundary states with nF
4 6= 0 corresponding to D4-branes wrapped on F are displayed in

table 6.37. We note that

∆(F ) = m(CFT,F ) −m(geom,F ) = ν − 1 (6.250)
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Recall from Section C.1.5 that F is not irreducible but consists of two P2’s. Denote the degree 1
curves in each P2 by h1 and h2. By analogy to the family P4

1,1,1,3,6[12] we interpret the sheaves
in the first row as OF and OF (−h1 − h2) and ΩF (−h1 − h2) where ΩF is the cotangent bundle
of F . In the second line we then have Ip1+p2 and Ip1+p2(−h1 − h2) where p1, p2 are points on
each of the P2’s. As in the case of the family P4

1,1,1,3,6[12] we see that ν must be interpreted as
counting the number of components in F . Therefore, we need to modify table 6.37. m(geom,F )

should really be 0 and 4 and hence ∆(F ) = ν − 2 = 0.

L-orbit n = (nF
4 , nC2

2 , n0) m(CFT,F ) ν m(geom,F ) ∆(F )

| 0, 3, 0, 0, 0 〉〉B (2, 4, 0) (1, 3,−2) (1, 1, 0) 0 2 −1 1
| 1, 3, 0, 0, 0 〉〉B (1, 1, 2) (1, 3, 0) 4 2 3 1

Table 6.37.: The boundary states corresponding to D4-branes wrapped on F

• The divisor D1, a P2 blown up at seven points
For this divisor we have n = (0,−2nL

4 ,−nL
4 , 0,−nL

4 , nL
4 , n0, n

C1
2 , nC2

2 , nC2
2 , 3nC2

2 , 2nC2
2 ) and we set

C = C2 + C3 + 3C4 + 2C5. Then (5.74) to (5.76) reduce to

rk(F) = 3nL
4 (6.251)

c1(F) =
(
nC1

2 − 6nL
4

)
C1 +

(
nC2

2 − 3nL
4

)
C (6.252)

ch2(F) = −3
2
nL

4 −
1
2
nC1

2 +
1
2
nC2

2 − n0 (6.253)

as well as (5.99) yields for the dimension of the moduli space of the sheaves on D1

m(geom,D1) =
3
2
nL

4

(
3nL

4 + 4n0

)
+

1
2

(
2nC1

2 − 3nC2
2

)
+ 1 (6.254)

The boundary states with nL
4 6= 0 corresponding to D4-branes wrapped on D1 are displayed in

table 6.38. We note that

∆(D1) = m(CFT,D1) −m(geom,D1) = ν − 1 (6.255)

These are two rank one sheaves with Chern classes (−4C1−2C, 2) and (−6C1−2C, 2), a rank two
sheaf with gauge group U(1)× U(1) and Chern classes (−12C1 − 6C, 12), a rank four sheaf with
gauge group U(2) and Chern classes (−24C1 − 12C, 42) and two rank four sheaves with gauge
group U(2)× U(2) and Chern classes (−20C1 − 12C, 12) and (−28C1 − 12C, 72).

L-orbit n = (3nL
4 , nC1

2 , nC2
2 , n0) m(CFT,D1) ν m(geom,D1) ∆(D1)

| 0, 0, 0, 0, 0 〉〉B (1,−2,−1,−1) 0 1 0 0
| 0, 1, 0, 0, 0 〉〉B (1,−4,−1,−2) 0 1 0 0
| 0, 3, 1, 0, 0 〉〉B (2,−8,−4,−2) 4 2 3 1
| 0, 3, 2, 0, 0 〉〉B (0,−4,−4, 0) 4 4 1 3
| 0, 3, 2, 1, 0 〉〉B (4,−16,−8,−4) 12 4 9 3
| 0, 3, 2, 2, 0 〉〉B (4,−12,−8, 0) (4,−20,−8− 8) 16 8 9 7

Table 6.38.: The boundary states corresponding to D4-branes wrapped on D1

• The divisor D3

For this divisor we have n =
(
0, 1

3nE3
4 , 2

3nE3
4 , nE3

4 ,− 1
3nE3

4 ,− 4
3nE3

4 , n0, n
C1
2 , nC2

2 , nC3
2 , nC4

2 , nC5
2

)
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and (5.74) to (5.76) reduce to

rk(F) = nE3
4 (6.256)

c1(F) =
(
nC1

2 + 4nE3
4

)
C1 +

(
nC2

2 + 4nE3
4

)
C2 (6.257)

+
(
nC3

2 + nE3
4

)
C3 +

(
nC4

2 + 4nE3
4

)
C4 +

(
nC5

2 + 4nE3
4

)
C5

ch2(F) = −7
2
nE3

4 +
1
2
nC3

2 − n0 (6.258)

The dimension of the moduli space of the sheaves F on D3 is according to (5.99)

m(geom,D3) =
7
2

(
nE3

4

)2

+ 2nE3
4 n0 − 1

2

(
nC1

2

)2

(6.259)

−
(
nC2

2

)2

−
(
nC4

2

)2

− 15
2

(
nC3

2

)2

−
(
nC5

2

)2

+nC2
2

(
nC1

2 + nC5
2

)
+ nC4

2

(
4nC3

2 + nC5
2

)
+ 4

• The divisor H
For this divisor we have n =

(
0, 1

4nE4
4 , 1

2nE4
4 , 3

4nE4
4 , nE4

4 , 5
4nL

4 , n0, n
C1
2 , nC2

2 , nC3
2 , nC4

2 , nC5
2

)
and (5.74)

to (5.76) reduce to

rk(F) = nE4
4 (6.260)

c1(F) =
(
nC1

2 + 2nE4
4

)
C1 +

(
nC2

2 + 8nE4
4

)
C2 (6.261)

+
(
nC3

2 + 2nE4
4

)
C3 +

(
nC4

2 + 6nE4
4

)
C4 +

(
nC5

2 + 4nE4
4

)
C5

ch2(F) = −4nE4
4 +

1
2
nC1

2 − n0 (6.262)

The dimension of the moduli space of the sheaves F on H is according to (5.99)

m(geom,H) = 3
(
nE4

4

)2

+ nE4
4

(
3nC1

2 − nC2
2 + 2n0

)
− 3

(
nC1

2

)2

(6.263)

−1
2

((
nC2

2

)2 (
nC3

2

)2

+
(
nC4

2

)2

+
(
nC5

2

)2
)

−1
2

(
−nC2

2

(
4nC1

2 + nC4
2

)
− nC5

2

(
nC3

2 + nC4
2

))
+ 5

6.4. Results on D-branes on toric Calabi-Yau hypersurfaces

We have seen in the previous section that in many cases of D4-branes wrapping divisors we were able
to express the discrepancy ∆ between the number of moduli of the boundary states in the boundary
conformal field theory and the dimension of the moduli space of the corresponding sheaf in a simple
formula involving the number of vacua ν. In the following sections we will collect these results and
comment on them.

6.4.1. D4-branes on K3 fibers

The most important observation from (6.23), (6.37), (6.141), (6.169), (6.116), (6.197) and (6.230) is
that

∆(L) = 3ν + 2 (6.264)
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for all K3 fibrations. We like to point out, however, that we also found two collections of boundary
states in the families P4

1,2,3,3,9[18] and P4
1,4,5,5,5[20] which do not satisfy (6.264). We have thought of

several possibilities to explain this, however, without success. The simplest one is to assume that these
states lie on a branch of the moduli space of different dimension. However, since for a K3 surface
L we have by (5.52) ext2OL

(E, E) = ext0OL
(E, E) and hence the moduli space is everywhere smooth of

dimension m(geom,L). A further possibility is the following. We notice that the Li characterizing the
different boundary states have a structure. This structure can be understood from the boundary states
on the K3 itself and the relation between the weights of the ambient space of the K3 and the weights of
the ambient space of the Calabi–Yau threefold as explained in Section 3.3.4. For example, in the case
where l = 2 in (3.51) we can write the charge vector using (4.38)

|n〉 =

Lj
2∑

l′=−Lj
2

gl′(1− g)| 0 〉〉B

= g−
1
2

Lj−1
4∑

l′=−Lj−1
4

g2l′(1− g2)| 0 〉〉B

= g−
1
2

L̃j
2∑

l̃′=− L̃j
2

g̃l̃′(1− g̃)| 0 〉〉B (6.265)

where g̃ = gl and the tilde refers to the boundary conformal field theory of the Gepner model of the
K3 surface. The Gepner models for the K3 surfaces appearing as fibers in our examples are (2, 2, 2, 2)
for P3

1,1,1,1[4], (4, 4, 4, 0) for P3
1,1,1,3[6] and (10, 10, 1, 0) for P3

1,1,4,6[12]. We can repeat the comparison
outlined in Section 6.3.2 in precisely the same way as for Calabi–Yau threefolds. The only important
change is that 2h̃1,1 + 2 has to be replaced by ρ + 2 where ρ is the rank of the Picard lattice, see
Section 3.3.2. It turns out that the boundary states are precisely the ones given in the tables 6.1, 6.4
and 6.14, respectively. From this result and (6.265) we find

2L̃1 = L1 − 1 (6.266)

which explains the labels of the boundary states in the K3 fibers in these tables. Using the relation

(1− g)
n∑

l′=0

gl′ = (1− g)

(
l−1∑

i=0

gi

)


n+1
l −1∑

j=0

glj


 = (1− gl)

n+1
l −1∑

j=0

glj (6.267)

for l|n + 1 this argument can be generalized to any l ≥ 2. A similar argument applied to both L1 and
L2 might also explain the additional boundary states for the families P4

1,2,3,3,9[18] and P4
1,4,5,5,5[20].

We observe that in all K3 fibrations considered there are configurations with charges v(F) = (2, 0, 2−
2n), n ≥ 2 which have ν = 2. According to [222] such configurations can have a decomposition of the
form F = L ⊕ L∨ into two branes with charges v(L) = (1,± c1(L), 1

2 c1(L)2) where L is a line bundle
with c1(L)2 = 1 − n. The Higgs branches of these U(1) × U(1) theories happen to coincide with the
moduli spaces of SU(2) bundles with Chern classes (2, 0, 2n). In the present case, L can, however, not
be a line bundle because c1(L) = 0. It is the ideal sheaf at n points on L, Ip1,...,pn which appeared
in our introduction to sheaf theory in Section 5.3.1. Since this sheaf is stable the configuration with
charges v(F) = (2, 0, 2 − 2n) corresponds therefore to a polystable sheaf. (For both statements see
Section 5.3.2.) This is a concrete example of the relationship between enhanced gauge symmetry and
strictly semi-stable bundles [291], [184] mentioned in Sections 5.3.2, 6.3.1 and 6.3.2.
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6.4.2. D4-branes on rational or ruled surfaces

Collecting (6.28), (6.42), (6.126), (6.146), (6.151), (6.174), (6.179), (6.202), (6.207), (6.212), (6.217),
(6.235), (6.240) and (6.245) yields

∆(E) = ν − 1 (6.268)

for all ruled surfaces over curves of genus g > 0. We note, however, that we find several states which
do not satisfy (6.268). These are | 2, 0, 2, 2, 0 〉〉B in table 6.5, | 3, 0, 2, 2, 0 〉〉B and | 4, 0, 2, 2, 0 〉〉B in
table 6.25, and | 4, 0, 2, 2, 0 〉〉B and | 6, 0, 2, 2, 0 〉〉B in table 6.3.12. All of them appear in K3 fibrations
with the fiber being P3

1,1,1,3[6] and obviously have a similar structure. We have not been able to either
explain them or rule them out. One possibility is that since ext2OE

(E,E) 6= ext0OE
(E, E ⊗ KE) is not

equal to ext0OE
(E,E) they might be in a component of different dimension.

Similarly for the rational surfaces we find from (6.67), (6.83), (6.121), (6.156), (6.184), (6.250)
and (6.255) that

∆(F ) = ν − 1 (6.269)

Furthermore, we observe from the tables 6.8, 6.11, 6.15 and 6.37 that for D-branes wrapping rational
surfaces arising from blow-ups of singular points (see Section 3.3.3) ∆(F ) = 0 always. We found that the
number of irreducible components of F must be taken into account as explained after (6.83) and (6.250).
Hence we conclude that these D-branes do not gain any moduli when moving from the Gepner point to
the large volume limit. We will return to them in Section 6.5.

The sheaves appearing on these rational surfaces share many common properties. First, among
the exceptional sheaves, i.e. those whose moduli space is a point, there is always the trivial line
bundle corresponding to a single D4-brane as well as the line bundles with first Chern classes being
the generators of the Picard group corresponding to D4-D2 bound states with the D2-brane wrapping
either the hyperplane in P2 or the fiber and the section of the Hirzebruch surfaces, respectively. This
is because the moduli space of the line bundle is b1(F ) = 0, see Sections 5.5.1 and 5.5.3. Exceptional
sheaves on toric rational surfaces have been studied in detail in [151]. Second, we find states which
correspond to adding a D0-brane to the previous configurations. The D0-brane is allowed to move
on the surface and hence these states have dimension two. Finally, the remaining configurations are
all of rank two and can be written as extensions of two rank one sheaves corresponding to D-brane
configurations that appeared in the first two cases. Hence, starting from the exceptional sheaves and
the D0-brane, all the remaining states can be obtained as bound states of these. This supports the
suggestion by Douglas (scattered in [236], [152], [251], [292], [293], [254]) that all D-branes obtained
by this boundary state construction are bound states of elementary D-branes. However, while these
elementary D-branes should have no moduli, we need here the D0-brane which has two moduli.

We note that there are only rank one and two sheaves on rational and ruled surfaces corresponding
to Gepner model boundary states. The classification of stable rank two bundles on these surfaces is
reviewed in [115].

6.4.3. D4-branes on elliptically fibered surfaces

Elliptically fibered surfaces do not satisfy the smoothness condition (5.100). But this just means that
we cannot expect to find a smooth moduli space. We can nevertheless use (5.99) (as we actually have
done in the corresponding cases) to compute the dimension of the tangent space of the moduli space
at a smooth point. We have to take into account that Ext2(F, F) is generally not zero. But for the
moment, we take the naive point of view and try to compare to the smooth points. The results for the
main part of the boundary states wrapping elliptic surfaces in (6.61), (6.76) and (6.92) yield

∆(S) = 5(ν − 1) + 2 (6.270)
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and from (6.131)

∆(S) = 7(ν − 1) + 3 (6.271)

We have noted in Sections 6.3.5, 6.3.6, 6.3.7 and 6.3.8 that there are more boundary states satisfying
different relationships. We expect that these remaining boundary states do not correspond to smooth
points in the moduli space and we will not consider them in the following discussion.

6.4.4. D4-branes on surfaces of general type

The same comment given at the beginning of the previous section also applies here. From the previous
cases we see that we have to look for a relation between ∆(D3) = m(CFT,D3) − m(geom,D3) and the
number of vacua ν. For illustrative purposes, we only consider a particular example, namely the divisor
D3 in X = P1,3,4,4,12[24]. This is shown in figure 6.1. In this example the linear relations emerge more
clearly than in other examples we have computed. We find similar to the case of the elliptic fibrations

20

40

60

80

∆

1 2 3 4 5 6 7 8ν

Figure 6.1.: The relation between the excess moduli ∆ and the number of vacua ν for the divisor D3 in
P4

1,3,4,4,12[24].

in Section 6.4.3 that there are several of these relations:

∆(D3) = (2k + 1)ν − 1− 3 (6.272)
= (2k + 1)(ν − 1) + 2k − 3 (6.273)

for k = 1, . . . , 5. We do not yet have an understanding of (6.272).

6.4.5. General results for D4-branes

If we collect the results for ∆ for the different kinds of divisors, (6.264), (6.268), (6.269), (6.270), (6.271)
and (6.272) then we obtain the following interesting table

Surface pg ∆
P2,F2, ruled surfaces 0 1 · (ν − 1) + 0
K3 1 3(ν − 1) + 1
elliptic fibration 2 5(ν − 1) + 2
elliptic fibration 3 7(ν − 1) + 3
surface of general type 3 (2k + 1)(ν − 1) + 2k − 3

(6.274)
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Looking at the first four lines of this table we conjecture the general relation

∆ = m(CFT,D) −m(geom,D) = cD(ν − 1) + pg(D) (6.275)

where cD is a constant depending on the surface D. A natural guess for cD would be

cD = 2pg(D) + 1 (6.276)

Now note that in computing ∆ we have used (5.99) and not (5.107), i.e. we have not yet allowed for
the motions of the divisor D inside the Calabi-Yau manifold X. Therefore, if we take into account that
we are not really dealing with sheaves F on the surface D but with torsion sheaves i∗F on X supported
on the divisor D and hence have to work with the dimension m

(geom,D)
X in eq. (5.107) then we find a

high agreement between conformal field theory results and geometric expectations, namely

m(CFT,D) − cD(ν − 1) = m
(geom,D)
X (6.277)

and, in particular, for the ν = 1 boundary states

m(CFT,D) = m
(geom,D)
X (6.278)

Let us comment on this result. Independently of the meaning of cD this result gives a very strong con-
firmation of both the decoupling statement and the mirror geometric hypothesis stated in Section 6.3.1.
Note that we have arbitrarily chosen subsets of the boundary states in the cases of elliptic surfaces and
surfaces of general type. We can now give an a posteriori justification which still has to supported by
more evidence. Since these subsets of boundary states satisfies the same relation as for the rational,
ruled and K3 surfaces for which the moduli space is smooth, they should correspond to smooth points
in the moduli space. Of course, we need much more evidence, or even an a priori argument to justify
this claim. We recall here that even in the cases of ruled and K3 surfaces there are few boundary
states which do net yet fit into this formula. In addition, it would be interesting to understand both
the geometric and the conformal field theoretic meaning of the constant cD.

6.4.6. D6-branes

In Section 5.5.3 we essentially discussed three classes of sheaves which can correspond to configurations
involving D6-branes: the tangent bundle, the FMW bundles and the exceptional sheaves. Our analysis
shows that there is no boundary state in any of the examples of Section 6.3 which corresponds to a
tangent bundle of a Calabi–Yau threefold. Similarly, in all the examples we investigated which admit
elliptic fibrations, there are no FMW bundles. In both cases it would be interesting to understand the
reason for their absence in the spectrum of rational boundary states.

The exceptional sheaves, however, play an important role for the
∑

j Lj = 0 boundary states. We
pointed out in Section 5.5.3 that there are exceptional rational boundary states. The reason for calling
them in this way is that they correspond to the restriction of a foundation of a helix on the ambient
space of the Calabi–Yau threefold [152], [294], [295] and [153]. This foundation contains the trivial
bundle which by restriction to the Calabi–Yau hypersurface gives again the trivial bundle describing
the pure D6-brane used in Section 6.3.2 to relate the charge vectors at the different points in moduli
space. Interpreting the intersection form (6.9) as an inner product, the dual foundation of the dual helix
is generated by the line bundles O(Ji) where the Ji are the generators of the Kähler cone [153]. This is
related to the conjectured generalization of the McKay correspondence. In the above references it has
been checked in several examples that this conjecture works and this has then be used in Appendix B
to determine the analytic continuation matrix A.

For later reference we display the
∑

j Lj = 0 boundary states and the corresponding sheaves E,
as well as their duals F with respect to (6.9) in table 6.39. Here S is a sheaf with Chern character
ch(S) = 3− (2H − L) + 1

12 (2H − L)3. The last column will be explained in Section 6.5.2.
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M n = (n6, nE
4 , nL

4 , n0, nh
2 , nl

2) (r, c1, c2, c3) E F ∆ · J
0 ( 1, 0, 0, 0, 0, 0) (1, 0, 0, 0) OX OX 0
1 (−1, 0, 1,−2, 0, 0) (−1, L, 0, 0) −OX(−L) OX(−L) 0
2 (−3, 1,−2,−2, 4, 2) (−3, E,−4l, 0) −S∨(−E − L) OX(−H) 16(t1 + t2)
3 ( 3,−1,−1, 6, 0,−2) (3,−H − L, 8h + 4l,−2) S∨(−H) OX(−H − L) 16(t1 + t2)
4 ( 3,−2, 4, 0,−8, 0) (3,−2E, 8l− 8h, 0) S(L) OX(−2H) 16(t1 + t2)
5 (−3, 2,−1,−6, 0, 0) (−3, 2H − L,−8h− 8l, 0) −S OX(−2H − L) 16(t1 + t2)
6 (−1, 1,−2, 2, 4,−2) (1, E, 0, 0) OX(−E) OX(−3H) 0
7 ( 1,−1, 1, 2, 0, 2) (−1, H − L, 0, 0) −OX(−H + L) OX(−3H − L) 0

Table 6.39.: Sheaves corresponding to the
∑

j Lj = 0 boundary states

6.4.7. D2-branes

We have explained in Section 5.5.3 that it is difficult in general to make precise statements about sheaves
supported on curves C which correspond to D2-branes wrapping C. Let us discuss a few examples.

For the family P4
1,1,2,2,2[8] we find two boundary states representing D2-branes with support on the

curve C = 4h. This curve lies in the K3 fiber L and has, by (3.44), genus g(C) = 3. The charges of
the boundary state in the L-orbit | 3, 0, 0, 0, 0 〉〉B are n2 = 4 and n0 = 2. By (5.82) and (5.83) this
corresponds to the trivial line bundle on C. We find m(CFT) = 7 and by (5.113) m(geom) = 3. If we
naively assume that the curve C can move inside L it will get g = 3 additional moduli which together
with the one modulus from the motion of L inside X makes up the difference of four between m(CFT)

and m(geom). The bundle corresponding to the boundary state in the L-orbit | 3, 0, 1, 1, 0 〉〉B has twice
the charges, hence is the rank 2 trivial bundle. Since ν = 4 and ν̃ = 1 it has gauge group U(2). We
find m(CFT) = 28 and m(geom) = 9. We are not able to explain the difference in moduli.

For the family P4
1,1,2,2,6[12] the set of boundary states corresponding to D2-brane configurations is

much richer and is displayed in table 6.40. For the boundary states in the second part of the table we
have not been able to determine the corresponding geometry in a unique way and we list them only for
completeness. The last three columns have been computed using (3.44), (5.82), (5.83) and (5.113). It

L-orbit n = (nh
2 , nl

2, n0) m(CFT) ν C pa(C) (r, d) m(geom)

| 3, 0, 0, 0, 0 〉〉B (2, 0, 1) 5 1 2h 2 (1, 0) 2
| 5, 0, 1, 0, 0 〉〉B (4, 0, 2) 14 2 2h 2 (2, 0) 5

(4, 0, 0) 2h 2 (2, 2) 5| 5, 0, 2, 0, 0 〉〉B (4, 0, 4)
20 4

2h 2 (2,−2) 5
| 5, 0, 2, 1, 0 〉〉B (8, 0, 4) 44 4 4h 5 (2, 0) 17
| 3, 0, 1, 1, 0 〉〉B (6, 0, 3) 21 1 6h 10 (1, 9) 10

(2, 0,−2) l 0 (2, 0) 0| 0, 0, 2, 0, 0 〉〉B (2, 0, 0)
2 2

l 0 (2,−2) 0
(4, 2, 2) 4h + 2l 5 (1, 2) 5| 2, 2, 0, 0, 0 〉〉B (4, 2, 0)

11 1
4h + 2l 5 (1, 4) 5

| 5, 4, 0, 0, 0 〉〉B (8, 4, 2) 38 2 4h + 2l 5 (2, 6) 17
(8, 4, 4) 4h + 2l 5 (2, 4) 17| 5, 5, 0, 0, 0 〉〉B (8, 4, 0)

44 4
4h + 2l 5 (2, 8) 17

(4, 2, 2) 2h + l| 4, 0, 2, 0, 0 〉〉B (4, 2, 0)
18 2

2h + l
| 5, 0, 2, 0, 0 〉〉B (4, 4, 0) 20 4 2h + 2l
| 5, 2, 2, 0, 0 〉〉B (12, 4, 4) 68 4 6h + 2l

Table 6.40.: D2-brane configurations in P4
1,1,2,2,6[12]

seems as if the curves in the last three lines of the table do not lie in any of the divisors H, L and E
and hence (3.44) can not be applied. Of course, it is again interesting to compare m(CFT) and m(geom).
However, we can only repeat the argument given above for the line bundles on the curves 2h and 6h.
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Both of them lie in the K3 fiber L, so they can get additional 2 and 10 moduli, respectively, from the
motion of these curves inside L. Adding the modulus from the motion of L inside X yields the 5 and
21 moduli expected from conformal field theory. Similarly, since l is the fiber of the ruled surface E
(see Section 3.5.2) there is an extra modulus from the motion of l inside E. The exceptional divisor E
has no moduli. However since ν̃ = 2 the bundle is holomorphically split and this accounts for the two
conformal field theory moduli.

6.4.8. D0-branes

In the development of the understanding of D-branes on Calabi-Yau spaces, the D0-brane has always
been of most interest. It is the simplest D-brane and we expect it to be in the spectrum and to have a
moduli space of dimension 3, since it can move everywhere on the Calabi–Yau manifold which is therefore
its moduli space. In [5] it has been observed that the D0-brane was not in the D-brane spectrum of
the rational boundary states in the quintic. This absence can be argued to be consistent with the
geometric hypothesis as follows [2]. Any location we might pick for the D0-brane would break some of
the symmetry group Z4

5, but all of the rational B-type boundary states are singlets under this group
(see Section 4.3) and hence we should not find the D0-brane in this analysis. However, in [180] and [154]
the D0-brane was found in the spectrum of other Gepner models. The existence of the D0-brane in
many of the families listed in table 3.2 is documented in table 6.41. As we have seen in Section 6.3.2

X L-orbit n0 m(CFT) ν
P4
1,1,1,1,1[5] – – – –

P4
1,1,1,1,2[6] – – – –

P4
1,1,1,1,4[8] | 3, 0, 0, 0, 0 〉〉B 2 6 2

| 0, 0, 0, 1, 0 〉〉B 1 3 1P4
1,1,1,2,5[10] | 3, 0, 0, 0, 0 〉〉B 2 6 2
P4
1,1,2,2,2[8] – – – –

P4
1,1,2,2,6[12] | 5, 0, 0, 0, 0 〉〉B 2 6 2

P4
1,2,2,3,4[12] – – – –

| 0, 2, 0, 0, 0 〉〉B 1 3 1P4
1,2,2,2,7[14] | 6, 0, 0, 0, 0 〉〉B 2 6 2

| 2, 0, 0, 0, 0 〉〉B 1 3 1P4
1,1,1,6,9[18] | 8, 0, 0, 0, 0 〉〉B 2 6 2
P4
1,1,1,3,6[12] | 5, 0, 0, 0, 0 〉〉B 2 6 2

P4
1,1,1,3,3[9] – – – –

P4
1,2,3,3,3[12] – – – –

| 0, 3, 0, 0, 0 〉〉B 1 3 1P4
1,2,3,3,9[18] | 8, 0, 0, 0, 0 〉〉B 2 6 2

| 3, 0, 0, 0, 0 〉〉B 1 3 1P4
1,1,2,8,12[24] | 11, 0, 0, 0, 0 〉〉B 2 6 2
P4
1,1,2,4,8[16] | 7, 0, 0, 0, 0 〉〉B 2 6 2

P4
1,1,2,4,4[12] – – – –

Table 6.41.: The boundary states corresponding to D0-branes for different families X

a central ingredient in computing this table is the monodromy matrix around the Gepner point in
Kähler moduli space A in (3.76). We find that there is a rational D0-brane in the spectrum precisely
if this matrix satisfies A

d
2 = −11 where d is the degree of the Calabi–Yau hypersurface. Another way

to state this condition is to look at the symmetries of the boundary states. Looking at the
∑

j Lj = 0
boundary states we see that if the condition is satisfied, then these states form a representation of the
Z2 symmetry acting as S → S + 2 on the boundary states, see Section 4.3. In other words, S → S + 2
and M → M + K ′ have the same effect. Therefore we have to look for a Z2 subgroup in the Gepner
model group G in (2.89). There is such a Z2 subgroup if and only if the Gepner model contains a k = 0
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6.5. Lines of marginal stability

factor theory whose symmetry group is this Z2. Looking at the table 6.41 confirms this statement. The
D0-brane appears in the spectrum of Gepner model boundary state if and only if the Gepner model has
a trivial subtheory [296].

6.4.9. D-branes and nested moduli spaces

In this section we point out an interesting fact about D-branes in different Calabi–Yau manifolds whose
moduli spaces are nested as explained in Section 3.6. Note that in this particular case we have more than
only two points in the moduli space to compare D-brane spectra. This therefore allows us to extend
the comparison to more complicated situations. Due to the fact that we can get more information
from D4-branes than from any other kind of D-brane we will mainly argue by referring to the results
obtained for them. We focus on the example explained in detail in Section 3.6: The Kähler moduli space
of X ′ = P4

1,1,2,2,6[12] is embedded in the Kähler moduli space of X = P4
1,2,3,3,9[18]. In Section 6.3.10

we found that the sets of all rational D4-branes wrapping the divisors H, L and E of X ′ are contained
in the sets of rational D4-branes wrapping the divisors J2, L and E2 of X ′. This means that this part
of the spectra at the four different points in Kähler moduli space is the same. As seen in Section 6.3.9
we can make the same statement for X ′ = P4

1,1,2,2,2[8] and X = P4
1,2,3,3,3[12] due to the great similarity

of these families. Note that in all these cases note only the spectra agree but also the formulae for the
Chern classes and, in particular, for the dimension of the moduli space. This is further strong evidence
for the decoupling statement and the mirror geometric hypothesis stated in Section 6.3.1.

This extension from lower- to higher-dimensional moduli spaces does not always work as easy. For
example, the reflexive polyhedron for P4

1,1,1,1,4 is contained in the reflexive polyhedron for P4
1,2,2,2,7.

However, the vertex ν∗ = (−1,−1,−1,−4) corresponds to a codimension one face in ∆(1, 2, 2, 2, 7) and
hence does generically not meet the degree 14 hypersurface in P4

1,2,2,2,7.

6.5. Lines of marginal stability

6.5.1. Non-supersymmetric configurations

Next, we are going to consider bound states of D0- and D6-branes. In the large volume limit, when
the Calabi–Yau manifold can be approximated by a flat space, unbroken supersymmetry requires that
a Dp-Dq-brane bound state can only exist if p = q mod 4 [192]. Hence, a bound state of a D0- and
a D6-brane is unstable and cannot exist. This can actually be shown by computing the static force
between them which turns out to be repulsive [297]. The configuration can be made supersymmetric if
a very large B-field is turned on [298].

At the Gepner point, however, we find supersymmetric D-brane configurations which correspond to
D0-D6-brane bound states in the large volume limit. They are described by the boundary states in
table 6.42. The first of these has first been observed in [180] in the case of the family P4

1,1,1,6,9[18]. It

n = (n6, n0) mCFT ν
(1, 1) 3 1
(1, 2) 6 1
(2, 2) 6 2
(2, 4) 14 2

Table 6.42.: D0-D6-brane bound states

occurs also in P4
1,1,1,2,5[10], P4

1,2,2,2,7[14], P4
1,2,3,3,9[18] and in P4

1,1,2,8,12[24]. All the other bound states
appear in the spectra of all Calabi–Yau families in table 6.41 except those for which the D0-brane
did not appear in the spectrum. Some of them were noted in [154]. We make two very interesting
observations here [154], [296].
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6. D-geometry

The supersymmetric boundary state in the Gepner model corresponding to a D0-D6 brane bound
state decays into a non-supersymmetric configuration of D-branes at the large volume limit. The
authors of [180] have given an interesting interpretation from the point of view of the mirror X∗ which
we briefly repeat here. Recall the argument of Strominger, Yau and Zaslow given in Section 5.2. Under
mirror symmetry the D0-brane and the D6-brane are mapped to the base B∗ and the T 3 fiber of X∗,
respectively. The above decay process now tells us that the corresponding homology class B∗+T 3 should
not support a special Lagrangian cycle in a neighborhood of the large complex structure limit of X. It
should support it instead in a region of the moduli space of X∗ which is mapped to a neighborhood of
the Gepner point of X by mirror symmetry. This yields a prediction of the Joyce transitions discussed
in Section 6.2 in several concrete families. Returning to the original Calabi–Yau manifold X, this decay
process indicates the presence of a line of marginal of marginal stability in Kähler moduli space. On
one side, near the Gepner point, the D0-D6 bound state is supersymmetric and therefore stable, on the
other side near the large volume limit its constituents are supersymmetric and stable.

A second interesting observation is that those families admitting a D0-brane also admit a D0-D6
bound state. The latter is nothing but the state obtained by a Fourier-Mukai monodromy transform
about the conifold locus (5.120) from the former. The same happens with the 2 D0-brane states and the
2 D0-D6 brane states in all the families admitting them. One can furthermore check that these pairs of
states always appear in the same L-orbit of the Gepner model. However, there are no states consisting
of n D0-branes or of n D0-D6 brane bound states with n > 2. Following an argument in [236] this
suggests the presence of another line of marginal stability along which these states decay into simpler
configurations. A mathematical description of these bound states and the monodromy transform in
terms of complexes of sheaves has been given in [252].

Finally, we discuss the number of moduli. The D0-D6 bound state has three moduli corresponding to
the fact that the D6 brane has no moduli and the D0-brane has 3 moduli. We note that the monodromy
transformation does not change the number of moduli in this case. The bound state of the D6-brane with
2 D0-brane branes has 6 moduli from the two independent motions of the D0-branes. The configuration
with 2 D0-D6-brane bound states has 6 moduli and 2 vacua suggesting that it actually is a bound state
of two D0-D6-bound states [296].

6.5.2. Unstable configurations

Since the prepotential FK determining the central charges of the B-type D-branes receives world-sheet
instanton corrections, we expect that the mathematical stability condition (5.20) is modified in the
stringy regime in accordance with the discussion in Section 6.3.1. One way to check this is to compare
the stability condition in the stringy regime (4.45) with the Bogomolov condition (5.20) for stable
sheaves. It turns out that there are D-brane configurations corresponding to unstable sheaves in the
large volume limit and to a supersymmetric boundary state at the Gepner point. Hence, this gives
a further indication that there must be lines of marginal stability which have been crossed in the
comparison.

We first consider the family P4
1,1,2,2,2[8]. Substituting (C.2) and (C.1) in (5.71) yields

∆(F) · J = −2n6(nh
2 t1 + nl

2t2) + 8nH
4 (nH

4 + nL
4 )t1 + 4

(
nH

4

)2
t2 (6.279)

The unstable sheaves that we find in the spectrum of rational boundary states are displayed in table 6.43.
For the family P4

1,1,2,2,6[12] we can analogously proceed. Substituting (3.110) and (3.107) in (5.71) yields

∆(F) · J = −2n6(nh
2 t1 + nl

2t2) + 4nH
4 (nH

4 + nL
4 )t1 + 2

(
nH

4

)2
t2 (6.280)

The unstable sheaves that we find in the spectrum of rational boundary states are displayed in table 6.44.
Since these two these two tables look very similar, and indeed the processes we are going to discuss are
the same, we will restrict ourselves to the first one. Note that due to (4.38) two consecutive boundary
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6.5. Lines of marginal stability

L-orbit M n = (n6, nE
4 , nL

4 , n0, nh
2 , nl

2) (r, c1, c2, c3) ∆ · J
| 1, 0, 0, 0, 0 〉〉B 7 (2,−1, 1, 2, 0, 2) (2,−E − L, 0, 0) −4t2
| 2, 0, 0, 0, 0 〉〉B 6 (1, 0,−1, 4, 4, 2) (1,−L,−4h,−4) −8t1
| 2, 0, 0, 0, 0 〉〉B 7 (1,−1, 2, 0, 0, 2) (1,−E,−4h, 0) −8t1
| 1, 1, 0, 0, 0 〉〉B 6 (2,−1, 0, 6, 4, 2) (2,−E − 2L, 0, 0) −8t1 − 4t2
| 1, 1, 0, 0, 0 〉〉B 7 (2,−1, 2, 0, 0, 2) (2,−E,−4h, 0) −8t1 − 4t2
| 2, 1, 0, 0, 0 〉〉B 6 (2,−1, 1, 4, 4, 2) (2,−L− E,−4h, 0) −16t1 − 4t2

Table 6.43.: Unstable configurations in P4
1,1,2,2,2[8]

states with
∑

j Lj = 0, B0
M and B0

M+1 will form a bound state B1
M = B0

M + B0
M+1 which appears in

the L-orbit with
∑

j Lj = 1. Hence, the first boundary state in table 6.43 is such a bound state of the
two states with M = 7 and M = 0 in table 6.39 corresponding to OX and OX(−E − L). The latter
two have ∆ · J = 0 in (5.20). Recall from Section 5.3.2 that ∆ · J = 0 defines a wall in the Kähler
cone on which stability degenerates to semi-stability. After crossing such a wall a stable configuration
will be unstable, and vice versa. This means that we try to form a bound state out of two bundles
that sit on a wall of the Kähler cone. Moving away from this wall towards the Gepner point it will be
a supersymmetric and stable boundary state. However, moving away from this wall towards the large
volume limit, we will obtain the unstable sheaf with Chern classes (2,−E − L, 0, 0).

Now, we can repeat this argument with the state B1
M ′−1 precedent to B1

M ′ , and the state B1
M ′+1

subsequent to B1
M ′ . They form bound states B11

M ′ = B1
M ′ + B1

M ′+1 in the L-orbit | 1, 1, 0, 0, 0 〉〉B . We
have M ′ = 7, so B1

6 and B1
0 correspond to the bundles OL(−4h) and OL, respectively, on the K3 fiber

L and have ∆ = 0. (These bundles are listed in the first line of table 6.1.) The bound state formation
of an unstable state and one on a wall in the Kähler cone will again yield an unstable state. The bound
state of B11

6 and B1
7 yields the state B11

6 in the fourth line of table 6.43, the bound state of B1
7 and B1

0

yields the state B11
7 in the fifth line.

We can also consider three consecutive boundary states with ∆ · J = 0 in table 6.43 which again
by (4.38) give rise to bound states B2

M ′′ = B0
M ′′ + B0

M ′′+1 + B0
M ′′+2 in the L-orbit | 2, 0, 0, 0, 0 〉〉B .

Taking M ′′ = 6 yields the state in the second line of table 6.43, M ′′ = 7 yields the state in the third
line. Two consecutive boundary states B2

M ′′ and B2
M ′′+1 form a bound state B21

M ′′ = B2
M ′′ + B2

M ′′+1

in the L-orbit | 2, 1, 0, 0, 0 〉〉B . The two unstable states with M ′′ = 6 and M ′′ = 7 give rise to the
boundary state in the last line of table 6.43 which is again unstable.

If we consider the bound state formed from the four consecutive boundary states with ∆ · J = 0
in table 6.43 with M = 6, 7, 0, 1, it appears in the L-orbit | 3, 0, 0, 0, 0 〉〉B and has charges n =
(0, 0, 0,−2,−4, 0) with ∆ · J = 0, too. This is the D2-brane configuration discussed in Section 6.4.7
corresponding to the trivial line bundle on the curve 4h. The Bogomolov criterion does not imply that
it is unstable. But since it is a line bundle the configuration is expected to be stable.

It seems as if bound states of configurations with positive ∆ · J and configurations with negative
∆ · J or zero have positive ∆ · J and therefore no other unstable states can be found. As mentioned
above this does not necessarily mean that there are no further unstable configurations. At any rate,
this example indicates again the existence of lines of marginal stability. We are however only able to
give a glimpse of the full picture and this question definitely has to be investigated in much more detail.

Important questions that we are presently not able to answer concern the number of these lines of
marginal stability and their location in the Kähler moduli space. Crossing a given a line of marginal
stability not all the states will decay. So one might ask which ones do decay. We have seen in Sec-
tion 6.4.2 that D-branes wrapping rational surfaces arising from blow-ups of singular points do not gain
any moduli when moving from the Gepner point to the large volume limit and are therefore expected
to be stable everywhere. Naively applying (5.20) to these sheaves is not allowed as they are torsion
sheaves.
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6. D-geometry

L-orbit M n = (n6, nE
4 , nL

4 , n0, nh
2 , nl

2) (r, c1, c2, c3) ∆ · J
| 1, 0, 0, 0, 0 〉〉B 5 (2,−1, 1, 2, 0, 1) (2,−E − L, 0, 0) −2t2
| 2, 0, 0, 0, 0 〉〉B 4 (1, 0,−1, 3, 2, 0) (1,−L,−2h,−2) −4t1
| 2, 0, 0, 0, 0 〉〉B 5 (1,−1, 2, 0, 0, 1) (1,−E,−2h, 0) −4t1
| 1, 1, 0, 0, 0 〉〉B 4 (2,−1, 0, 5, 2, 1) (2,−E − 2L, 0, 0) −4t1 − 2t2
| 1, 1, 0, 0, 0 〉〉B 5 (2,−1, 2, 0, 0, 1) (2,−E,−2h, 0) −4t1 − 2t2
| 1, 2, 0, 0, 0 〉〉B 4 (2,−1, 1, 3, 2, 1) (2,−L− E,−2h, 0) −8t1 − 2t2

Table 6.44.: Unstable configurations in P4
1,1,2,2,6[12]
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D-branes on Calabi–Yau spaces are a very exciting though difficult to understand topic in string theory.
It is only in the past two years that a lot of progress has been made. Their role in string theory has to be
further elucidated. We have mentioned in the introduction that the ultimate goal is a classification of all
supersymmetry preserving D-branes at each point in the Calabi–Yau moduli space. This necessitates a
good mathematical framework that incorporates all their physical properties. We have seen that in the
large volume limit this is provided by the coherent sheaves. On the other hand, at the Gepner point, the
D-brane boundary states can be translated into quiver representations of a Landau-Ginzburg orbifold
theory [152]. Both of these frameworks are known to form abelian categories [236]. At any other point
in the moduli space such an explicit description of the D-branes is not yet known, and therefore one has
to try and formulate it in terms of the known descriptions at these two special points. At present, this
is claimed to be achieved by the construction of a larger, in particular non-abelian category of so-called
topological D-branes [251], [252], [253], [254], [299]. This category contains a list of all the possible
D-branes at all the points in Calabi–Yau moduli space. The physical D-brane spectrum at a given
point in this moduli space is then believed to be a certain abelian subcategory of this large category.
The reason for this is that abelian categories contain among their objects kernels and cokernels which
have been recognized to be necessary for the notion of stability and bound state formation or tachyon
condensation, respectively. It is not known how to explicitly determine this subcategory. For this
purpose more physical information is required that can be provided by e.g. a more detailed study of
the lines of marginal stability in other threefolds than the quintic. The present work provides a basis
for such investigations.

On a more concrete level, there are many questions left open in this work. Just to recall a few we
mention those boundary states for D4-branes that have not been understood, and the formula relating
the conformal field theory dimension and the geometric dimension of a D-brane state which deserves a
deeper understanding. In particular, one should be able to derive it from first principles and give a proof
for it. This might involve a classification of the divisors in toric Calabi–Yau hypersurfaces. This formula
together with the decoupling statement could allow for the computation of the dimension of the moduli
space of coherent sheaves in terms of conformal field theory. Another method to proceed is to give a more
direct geometric interpretation of the number of marginal boundary operators in the Gepner model.
It is well-known that the number of marginal operators in the bulk theory can be determined by the
Poincaré polynomial for the chiral ring which coincides with the Poincaré polynomial of the Calabi–Yau
space. Similarly, the number of marginal operators in the boundary Gepner model should be encoded
in the Poincaré polynomial for the boundary chiral ring. This should then be related to the Poincaré
polynomial for the endomorphism bundle of the bundle describing the D-brane state. One important
point that has to be taken into account in this argument is that the moduli space of the bundle will
generally have several components of different dimensions. While the Gepner model often provides only
one dimension, the quiver gauge theory obtained from the corresponding Landau-Ginzburg orbifold
theory can provide more than one [236].

One of the most interesting phenomena in the moduli space of Calabi–Yau manifolds are the topology
changing phase transitions [53], [55]. There are basically two types of such transitions. The first type
involves transitions from a smooth Calabi–Yau phase to another smooth Calabi–Yau phase in which
only the intersection numbers are altered. The second type in which the moduli of the Calabi–Yau space
are tuned in such a way as to approach a phase boundary is more drastic since also the Hodge numbers
are changed. We have discussed this type in detail in an example and found that the D4-branes are
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preserved in this process. The methods provided in this thesis also allow for the study of the first type
of transitions which appear only in Fermat hypersurfaces with large h1,1. Furthermore, they can be
directly generalized to complete intersection Calabi–Yau spaces which are often the resulting manifolds
after a phase transition of the second type.

Once the knowledge of the D-brane spectrum is sufficiently big, the most interesting physical applica-
tion of these results might be the construction of type I compactifications on Calabi–Yau manifolds [300].
The supersymmetric vacua might yield to realistic world-volume theories. However, there is an impor-
tant issue that has to be taken care of. In order to satisfy Gauss’ law for the various RR charges
in the non-compact four-dimensional space-time, one should either consider branes wrapping cycles in
non-compact Calabi–Yau spaces, or consider configurations containing both branes and orientifolds for
tadpole cancellation [301]. It is known that the superpotential is essentially a topological quantity and
can be computed in an appropriately twisted theory. Since N = 2 world-sheet supersymmetry is a
consequence of N = 1 D = 4 space-time supersymmetry, the twisted theories will still make sense in
the presence of orientifolds. Much work in this direction still has to be done.
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A. Analytic continuation of the periods

Analysis of the periods of P4
1,1,2,2,6[12]

Definitions and general properties

As we have pointed out in Section 3.4.2, there are two distinguished bases of H3(X∗,Z) for the periods
of X∗. In this Appendix we explicitly show in the example of the family X = P4

1,1,2,2,6[12] and its mirror
X∗ how the periods can be analytically continued from the Gepner point to the large volume limit.
We use here the method developed in [105] but modified in such a way that the calculation simplifies
considerably. In particular, due to the fact that (3.77) is an integral symplectic basis for H3(X∗,Z) it
is not necessary any more to first analyze the divisors in the secondary fan A(Ξ) and determine the
corresponding monodromy matrices. Instead one can perform the analytic continuation directly.

We have h1,1 = 2 and h3 = 6. Let us introduce the variables corresponding to (3.57) and (3.19)

x = x1 y = x2 (A.1)
ψ = ψ1 φ = ψ2 (A.2)

The two sets of variables are related by

x = − 2φ

(12ψ)6
, y =

1
4φ2

(A.3)

The fundamental period (3.58) then reads

w0(x, y) =
∞∑

n=0

[ n
2 ]∑

m=0

(6n)!
(3n)!(n!)2(m!)2(n− 2m)!

xnym (A.4)

or

$0(ψ, φ) =
∞∑

n=0

[ n
2 ]∑

m=0

(6n)!(−2φ)n−2m

(3n)!(n!)2(m!)2(n− 2m)!(12ψ)6n
(A.5)

=
∞∑

n=0

(6n)!(−1)n

(3n)!(n!)3(12ψ)6n
un(φ) (A.6)

where

un(φ) =
[ n
2 ]∑

m=0

n!
(m!)2(n− 2m)!(2φ)2m

(A.7)

and is valid in the range
∣∣∣∣
φ± 1
864ψ6

∣∣∣∣ < 1 (A.8)
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The periods in the large volume limit

For the periods at the large volume point we set [95]

c(n,m) =
(6n)!

(3n)!(n!)2(m!)2(n− 2m)!
(A.9)

then we define

w0(x, y; ρ, σ) =
∞∑

n=0

[ n
2 ]∑

m=0

c(n + ρ,m + σ)xn+ρym+σ (A.10)

Furthermore, using differential operators (3.67) the periods at the large volume limit are defined by [95]

w(1)
a (x, y) = lim

ρ,σ→0
D(1)

a w0(x, y, ρ, σ) (A.11)

w(2)
a (x, y) = lim

ρ,σ→0
D(2)

a w0(x, y, ρ, σ) (A.12)

w(3)(x, y) = lim
ρ,σ→0

D(3)w0(x, y, ρ, σ) (A.13)

where ρ1 = ρ, ρ2 = σ. The intersection numbers are given in (3.110) from which it follows that
Aab = 0,∀a, b. Similarly, the linear forms can be read off from (3.103). Hence we see that we have to
compute only the following derivatives

∂ρ, ∂σ, ∂2
ρ , ∂ρ∂σ, ∂3

ρ , ∂2
ρ∂σ (A.14)

If we define

Φ(n,m) = 6ψ(6n + 1)− ψ(3n + 1)− 2ψ(n + 1)− ψ(n− 2m + 1) (A.15)
Ψ(n,m) = −2ψ(m + 1) + 2ψ(n− 2m + 1) (A.16)

this yields for the periods

w
(1)
1 (x, y) =

log x

2πi
w0(x, y) +

1
2πi

∞∑
n=0

[ n
2 ]∑

m=0

Φ(n,m)c(n, m)xnym (A.17)

w
(1)
2 (x, y) =

log y

2πi
w0(x, y) +

1
2πi

∞∑
n=0

[ n
2 ]∑

m=0

Ψ(n,m)c(n,m)xnym (A.18)

w
(2)
1 (x, y) =

2
(2πi)2

( (
log2 x + log x log y

)
w0(x, y) (A.19)

+
∞∑

n=0

[ n
2 ]∑

m=0

(
log x (2Φ(n,m) + Ψ(n,m)) + log yΦ(n,m)

+Φ(n,m)2 + Φ(n,m)Ψ(n,m) + Φ′(n,m) + Ψ′(n, m)
)
c(n,m)xnym

)

w
(2)
2 (x, y) =

1
(2πi)2

log2 xw0(x, y) (A.20)

+
1

(2πi)2

∞∑
n=0

[ n
2 ]∑

m=0

(
2 log xΦ(n,m) + Φ(n,m)2 + Φ′(n,m)

)
c(n, m)xnym
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w(3)(x, y) = − 2
3(2πi)3

(
log3 x w0(x, y) + (A.21)

+
∞∑

n=0

[ n
2 ]∑

m=0

(
3 log2 xΦ(n,m)3 log x

(
Φ′(n, m) + Φ(n,m)2

)

Φ′′(n,m) + Φ′(n,m)Φ(n,m) + Φ(n,m)3
)
c(n,m)xnym

)

− 1
(2πi)3

(
log x log y w0(x, y) +

+
∞∑

n=0

[ n
2 ]∑

m=0

(
log2 xΨ(n,m) + 2 log x log y Φ(n,m)

+ 2 log x (Φ(n,m)Ψ(n,m) + Ψ′(n,m)) + log y Φ′(n,m)
+ Ψ′′(n,m) + 2Φ(n,m)Ψ′(n,m)

+ Ψ(n,m)
(
Φ′(n,m) + Φ2(n,m)

) )
c(n,m)xnym

)

− 1
(2πi)

∞∑
n=0

[ n
2 ]∑

m=0

(
13
3

(log x + Φ(n, m)) + 2 (log y + Ψ(n, m))
)

c(n,m)xnym

The periods at the Gepner point

We can relate uν(φ) to the hypergeometric function [105]

uν(φ) = (2φ)ν
2F1

(
−ν

2
,−ν

2
+

1
2
; 1;

1
φ2

)
(A.22)

We will need the analytic continuation of (A.5) to small values of ψ by means of Barnes’ integral
representation [302, §1.19, §2.1.3].

$0(ψ, φ) =
∞∑

n=0

Γ(6n + 1)
Γ(3n + 1)Γ(n + 1)2

(−1)n

Γ(n + 1)
un(φ)

(12ψ)6n
(A.23)

= − 1
2πi

∫

C

Γ(6ν + 1)Γ(−ν)
Γ(3ν + 1)Γ(ν + 1)2

uν(φ)
(12ψ)6ν

dν (A.24)

= −1
6

∞∑
m=0

Γ(m
6 )

Γ(1− m
2 )Γ(1− m

6 )2
(−1)m

Γ(m)
(12ψ)mu−m

6
(φ) (A.25)

Since Γ(1 − m
6 ) has a pole for m = 6k and Γ(1 − m

2 ) has a pole for m = 2k the sum runs only over
m = 6k + r, r = 1, 3, 5. By the reflection formula for the Γ-function we have

$0(ψ, φ) = − 1
6π3

∑
r=1,3,5

(−1)
r+1
2 sin2

(πr

6

)
(A.26)

∞∑

k=0

(−1)kΓ(k + r
6 )3Γ(3k + r

2 )
Γ(6k + r)

(126ψ6)k+ r
6 u−k− r

6
(φ)

The other periods are defined through(3.75b)

$j(ψ, φ) = $0(αjψ, βjφ) (A.27)
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A. Analytic continuation of the periods

where α12 = 1 and β2 = 1. Due to the pole of Γ(1 − m
6 ) in the denominator of (A.25) the periods

satisfy the relations

$j + $j+6 = 0 j = 0, 1, . . . , 5 (A.28)

hence we set j = 2a + σ, a = 0, 1, 2(, 3, 4, 5) and σ = 0, 1. The periods then read

$2a+σ(ψ, φ) = − 1
6π3

∑
r=1,3,5

(−1)
r+1
2 α2ar sin2

(πr

6

)
(A.29)

·
∞∑

k=0

(−1)kΓ(k + r
6 )3Γ(3k + r

2 )
Γ(6k + r)

(126ψ6)k+ r
6 βσ(k+ r

6 )u−k− r
6
(βσφ)

From the last expression we see that it is useful to introduce the following functions

uσ
ν (φ) = β−νσuν(βσφ), σ = 0, 1 (A.30)

or, in other words,

u0
ν(φ) = uν(φ), u1

ν(φ) = e−iπνuν(−φ) (A.31)

We can write the periods then as follows

$2a+σ(ψ, φ) = − 1
6π3

∑
r=1,3,5

(−1)
r+1
2 α2ar sin2

(πr

6

)
ξσ
r (ψ, φ) (A.32)

where

ξσ
r (ψ, φ) =

∞∑

k=0

(−1)kΓ(k + r
6 )3Γ(3k + r

2 )
Γ(6k + r)

(126ψ6)k+ r
6 uσ
−k− r

6
(φ) (A.33)

Analytic continuation of uσ
ν (φ)

We also need a description of the analytic continuation of (A.7) to small values of φ by means of Barnes’
integral representation which gives certain linear transformation formulae for hypergeometric functions.
I.e. applying the linear transformation formula [303, (15.3.7)]

2F1

(
−ν

2
,−ν

2
+

1
2
; 1;

1
φ2

)
=

π
1
2 e

iπ
2 ν

Γ(− ν
2 + 1

2 )Γ(1 + ν
2 )

1
φν 2F1

(
−ν

2
,−ν

2
;
1
2
; φ2

)
(A.34)

− 2π
1
2 e

iπ
2 (ν−1)

Γ(−ν
2 )Γ( 1

2 + ν
2 )

1
φν−1 2F1

(
−ν

2
+

1
2
,−ν

2
+

1
2
;
3
2
; φ2

)

to (A.22) yields

uν(φ) =
2νπ

1
2 e

iπ
2 ν

Γ(−ν
2 + 1

2 )Γ(1 + ν
2 ) 2F1

(
−ν

2
,−ν

2
;
1
2
; φ2

)
(A.35)

− 2ν+1π
1
2 e

iπ
2 (ν−1)φ

Γ(−ν
2 )Γ(1

2 + ν
2 ) 2F1

(
−ν

2
+

1
2
,−ν

2
+

1
2
;
3
2
; φ2

)

We will have to analytically continue the functions uσ
ν (φ) to large values of φ. Let us first consider

only u0
ν(φ) = uν(φ). We could use the same formula [303, (15.3.7)] as before, however, we have to be

careful, since the parameters a and b in (A.35) are equal and hence will produce logarithmic terms. In
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this case we can apply the linear transformation formula [303, (15.3.13)] to each of the hypergeometric
functions in eq. (A.35). Note that by the reflection formula for the ψ-function [303, (6.3.7)] and by the
duplication formula for the ψ-function [303, (6.3.8)] we have

ψ
(− ν

2 + r
)

+ ψ
(

ν
2 + 1

2 − r
)

= 2ψ(1− 2r + ν)− ln
(
22

)
+ π cot

(πν

2

)
(A.36)

Using this as well as [303, (15.3.13)] we obtain

2F1

(
−ν

2
,−ν

2
;
1
2
; φ2

)
=

√
πe−

iπ
2 ν

2νΓ
(−ν

2

)
Γ

(
1
2 + ν

2

) (2φ)ν
∞∑

r=0

Γ(ν + 1)
Γ(ν − 2r + 1)(r!)2

1
(2φ)2r

(A.37)

·
(

ln
(−(2φ)2

)
+ 2ψ(r + 1)− 2ψ(1− 2r + ν)− π cot

(πν

2

))

and

2F1

(
−ν

2
+

1
2
,−ν

2
+

1
2
;
3
2
;φ2

)
=

√
πe−

iπ
2 (ν−1)

2νΓ
(−ν

2

)
Γ

(
1
2 + ν

2

) (2φ)(ν−1)
∞∑

r=0

Γ(ν + 1)
Γ(ν − 2r + 1)(r!)2

1
(2φ)2r

(A.38)

·
(

ln
(−(2φ)2

)
+ 2ψ(r + 1)− 2ψ(1− 2r + ν)− π cot

(π

2
(ν − 1)

))

Substituting (A.37) and (A.38) into (A.35) returns the original definition of uν(φ) in (A.7). Next, we
turn to the analytic continuation of u1

ν(φ) to large φ. It is here where we choose a different method
than [105]. Plugging (A.35) into the second equation of (A.31) results in a change of the relative sign
of the two summands of u1

ν(φ) as compared to u0
ν(φ)

u1
ν(φ) =

2νπ
1
2 e

iπ
2 (ν−2)

Γ(− ν
2 + 1

2 )Γ(1 + ν
2 ) 2F1

(
−ν

2
,−ν

2
;
1
2
;φ2

)
(A.39)

+
2ν+1π

1
2 e

iπ
2 (ν−3)φ

Γ(−ν
2 )Γ(1

2 + ν
2 ) 2F1

(
−ν

2
+

1
2
,−ν

2
+

1
2
;
3
2
; φ2

)

To perform the analytic continuation, we again substitute (A.37) and (A.38) into (A.39) and find

u1
ν(φ) = e−iπν

(
cos(πν)uν(φ)− sin(πν)

π
(2φ)ν

∞∑
r=0

Γ(ν + 1)
Γ(ν − 2r + 1)(r!)2

1
(2φ)2r

(A.40)

(
ln

(−(2φ)2
)

+ 2ψ(r + 1)− 2ψ(1− 2r + ν)
)
)

The two solutions uν(φ) and uν(−φ) are linearly independent except at the integers [105] and we
therefore define

vν(φ) =
π

sinπν
(uν(φ) cos(πν)− uν(−φ)) (A.41)

Using (A.40), recalling that the prefactor e−iπν stems from the definition of u1
ν(φ) in (A.31) we see that

vν(φ) can explicitly be written as

vν(φ) = (2φ)ν
∞∑

r=0

Γ(ν + 1)
Γ(ν − 2r + 1)(r!)2

1
(2φ)2r

(A.42)

· (ln (−(2φ)2
)

+ 2ψ(r + 1)− 2ψ(1− 2r + ν)
)
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A. Analytic continuation of the periods

Analytic continuation of $j(ψ, φ)

Let us turn to the periods written in terms valid for small ψ and φ, (A.32)) and (A.33). Their analytic
continuation to large values of ψ and φ is again performed by using Barnes’ integral representation for
ξσ
r (ψ, φ). This yields

ξσ
r (ψ, φ) =

∞∑

k=0

Γ(k + r
6 )3Γ(k + 3r

2 )Γ(k + 1)
Γ(6k + r)

(−1)k

Γ(k + 1)
(126ψ6)k+ r

6 uσ
−k− r

6
(φ) (A.43)

=
∫

C′

Γ(−ν)3Γ(−3ν)
Γ(−6ν)

1
2i sin

(
π

(
ν + r

6

)) (126ψ6)−νuσ
ν (φ)dν (A.44)

where the contour C ′ encloses the poles on the negative ν-axis. In order to obtain an integral repre-
sentation valid for large ψ we wish to rotate the contour so as to run parallel to the imaginary axis, as
usual in Barnes type arguments. It turns out that we have to treat ξ0

r and ξ1
r separately. For σ = 0 the

arcs at infinity give a vanishing contribution so for this case we have

ξ0
r (ψ, φ) =

∫

C

Γ(−ν)3Γ(−3ν)
Γ(−6ν)

1
2i sin

(
π

(
ν + r

6

)) (126ψ6)−νuν(φ)dν (A.45)

Closing the contour to the right, noting that the poles are of third order, and summing over the residues
yields

ξ0
r (x, y) = π

∞∑
n=0

∞∑
m=0

(
Φ′(n) + π2 cot2

(πr

6

)
− 7π2 (A.46)

+
(
Φ(n)− π cot

(πr

6

)
+ ln x + iπ

)2
)

c(n, m)
xnym

sin
(

πr
6

)

The case σ = 1 requires a consideration of the convergence of the integrals and the contributions of
the arcs at infinity [105]. Due to the exponential factor in u1

ν(φ) the integrand of ξ1
r (ψ, φ) will not

converge for large ν. Note however that the value of the integral is unchanged if we replace u1
ν(φ) by

an appropriate linear combination of the uσ
ν (φ). There are several possible choices. We follow [105] and

set

ũ1
ν(φ) = −u0

ν(φ)
sin(π(ν + r

6 ))
sin(πν)

− eiπνu1
ν(φ)

sin(πr
6 )

sin(πν)
(A.47)

so that the integral for ξ1
r (ψ, φ) converges. When ψ is large the contours can be closed to the right so

as to encompass the poles where ν is an integer. The poles are of fourth order, however, using (A.41)
the integrand can be transformed so as to make the evaluation of the residues slightly easier

ξ1
r (ψ, φ) = − 1

2i

∫

C

Γ(−ν)3Γ(−3ν)
Γ(−6ν)

(126ψ6)−ν uν(φ)
sin(πν)

(
1 +

cos(πν) sin
(

πr
6

)

sin
(
π

(
ν + r

6

))
)

dν

+
1

2πi

∫

C

Γ(−ν)3Γ(−3ν)
Γ(−6ν)

(126ψ6)−νvν(φ)
sin

(
πr
6

)

sin
(
π

(
ν + r

6

))dν (A.48)
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Note that the second integrand involving vν(φ) has now only third order poles. A straightforward
computation then gives

ξ1
r (x, y) =

∞∑
n=0

∞∑
m=0

(
1
3

(
−23π2

(
−π cot

(πr

6

)
+ 2 (Φ(n) + lnx + iπ)

)
(A.49)

− 2π3 cot
(πr

6

)(
1 + 3 cot2

(πr

6

))

+ 6 (Φ(n) + ln x + iπ)π2 cot2
(πr

6

)

− 3
(
(Φ(n) + lnx + iπ)2 + Φ′(n)

)
π cot

(πr

6

)

+ 2
(
Φ′′(n) + 3Φ′(n) (Φ(n) + ln x + iπ)

+ (Φ(n) + ln x + iπ)3
))

+
(
Φ′(n) + π2 cot2

(πr

6

)
− 7π2

+
(
Φ(n)− π cot

(πr

6

)
+ ln x + iπ

)2
)

(ln y − iπ + Ψ(n))

+
(
2

(
Φ(n)− π cot

(πr

6

)
+ ln x + iπ

)
Ψ′(n) + Ψ′′(n)

) )

c(n,m)xnym

The basis transformation

Now we can finally come back to (A.32). Let us first consider the case σ = 0. By (A.46) we have

$2a(x, y) =
1

(2πi)2

∞∑
n=0

∞∑
m=0

c(n,m)xnym (A.50)

·2
3

∑
r=1,3,5

(−1)
r+1
2 α2ar sin

(πr

6

) (
Φ′(n) + π2 cot2

(πr

4

)
− 7π2

+
(
Φ(n)− π cot

(πr

6

)
+ ln x + iπ

)2
)

The different r-dependent terms S1(n, a) = 2
3

∑
r=1,3,5(−1)

r+1
2 α2ar sin

(
πr
6

)
cotn

(
πr
6

)
yield

S1(0, a) = 0, −1, 1, 0, 1, −1 (A.51)
S1(1, a) = 0, −i, −i, 0, i, i (A.52)
S1(2, a) = −2, −1, 1, 2, 1, −1 (A.53)
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A. Analytic continuation of the periods

for a = 0, . . . , 5. Hence we get $0(x, y) = w(0) and

$2(x, y) =
1

(2πi)2
2
3

∞∑
n=0

∞∑
m=0

Γ(1 + 6n)
Γ(1 + 3n)Γ(1 + n)2Γ(m + 1)2Γ(n− 2m + 1)

xnym

(
−Φ′(n) + 4π2 − (lnx + Φ(n))2

)

= −w
(2)
2 − w(0) (A.54)

$4(x, y) =
1

(2πi)2

∞∑
n=0

∞∑
m=0

Γ(1 + 6n)
Γ(1 + 3n)Γ(1 + n)2Γ(m + 1)2Γ(n− 2m + 1)

xnym

(
2Φ′(n)− 8π2 + 2 (ln x + Φ(n))2 + 2(2πi) (ln x + Φ(n))

)

= w
(2)
2 + 2w

(1)
1 − 2w(0) (A.55)

and similarly for $6, $8, $10. For the case σ = 1 we have by (A.49)

$2a+1(x, y) =
1

(2πi)3

∞∑
n=0

∞∑
m=0

c(n,m)xnym (A.56)

·2i

3

∑
r=1,3,5

(−1)
r+1
2 α(2a+1)r sin2

(πr

6

)

·
(−1

3

(
−23π2

(
−π cot

(πr

6

)
+ 2 (Φ(n) + ln x + iπ)

)

− 2π3 cot
(πr

6

)(
1 + 3 cot2

(πr

6

))

+ 6 (Φ(n) + ln x + iπ)π2 cot2
(πr

6

)

− 3
(
(Φ(n) + ln x + iπ)2 + Φ′(n)

)
π cot

(πr

6

)

+ 2
(
Φ′′(n) + 3Φ′(n) (Φ(n) + ln x + iπ)

+ (Φ(n) + ln x + iπ)3
))

−
((

Φ′(n) + π2 cot2
(πr

6

)
− 7π2

+
(
Φ(n)− π cot

(πr

6

)
+ ln x + iπ

)2
)

(ln y − iπ + Ψ(n))

+
(
2

(
Φ(n)− π cot

(πr

6

)
+ ln x + iπ

)
Ψ′(n) + Ψ′′(n)

) ))
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The different r-dependent terms S2(n, a) = 2i
3

∑
r=1,3,5(−1)

r+1
2 α(2a+1)r sin2

(
πr
6

)
cotn

(
πr
6

)
yield

S2(0, a) = −1
2
, 1, −1

2
,

1
2
, −1,

1
2

(A.57)

S2(1, a) = − i

2
, 0,

i

2
,

i

2
, 0, −1

2
(A.58)

S2(2, a) =
1
2
, 1,

1
2
, −1

2
, −1, −1

2
(A.59)

S2(3, a) = −3i

2
, 0,

3i

2
,

3i

2
, 0, −3i

2
(A.60)

where a = 0, . . . , 5. Hence

$1(x, y) =
1

(2πi)3

∞∑
n=0

∞∑
m=0

Γ(1 + 6n)
Γ(1 + 3n)Γ(1 + n)2Γ(m + 1)2Γ(n− 2m + 1)

xnym

(
2
3

(
(lnx + Φ(n))3 + 3 (ln x + Φ(n)) (Φ′(n) + Ψ′(n)) + Φ′′(n)

)

+
(
(ln y + Ψ(n))

(
(lnx + Φ(n))2 + Φ′(n)

)
+ Ψ′′(n)

)

−13
3

(2πi)2 (lnx + Φ(N))− 2(2πi)2 (ln y + Ψ(N)) + (2πi)3
)

= −w(3) + w(0) (A.61)

$3(x, y) =
1

(2πi)3

∞∑
n=0

∞∑
m=0

Γ(1 + 6n)
Γ(1 + 3n)Γ(1 + n)2Γ(m + 1)2Γ(n− 2m + 1)

xnym

(
−4

3

(
(lnx + Φ(n))3 + 3 (ln x + Φ(n)) (Φ′(n) + Ψ′(n)) + Φ′′(n)

)

− 2
(
(ln y + Ψ(n))

(
(lnx + Φ(n))2 + Φ′(n)

)
+ Ψ′′(n)

)

− 2(2πi) ((ln x + Φ(n)) (ln y + Ψ(n)) + Ψ′(n))

− (2πi)
(
(ln x + Φ(n))2 + Φ′(n)

)

−20
3

(2πi)2 (lnx + Φ(n))− 3(2πi)2 (ln y + Ψ(n))− 2(2πi)3
)

= 2w(3) − w
(2)
1 + w

(2)
2 + 2w

(1)
1 + w

(1)
2 − 2w(0) (A.62)

$5(x, y) =
1

(2πi)3

∞∑
n=0

∞∑
m=0

Γ(1 + 6n)
Γ(1 + 3n)Γ(1 + n)2Γ(m + 1)2Γ(n− 2m + 1)

xnym

(
2
3

(
(lnx + Φ(n))3 + 3 (ln x + Φ(n)) (Φ′(n) + Ψ′(n)) + Φ′′(n)

)

+ 3
(
(ln y + Ψ(n))

(
(ln x + Φ(n))2 + Φ′(n)

)
+ Ψ′′(n)

)

+ 2(2πi) ((lnx + Φ(n)) (ln y + Ψ(n)) + Ψ′(n))
+ 1(2πi) ((lnx + Φ(n)) + Φ′(n))

−13
3

(2πi)2 (ln x + Φ(n))− (2πi)2 (ln y + Ψ(n)) + (2πi)3
)

= −w(3) + w
(2)
1 − w

(2)
2 + w

(1)
2 + w(0) (A.63)
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A. Analytic continuation of the periods

and similarly for the remaining periods. Now we are finally able to write down the matrix of the basis
transformation (3.78). We read off from (A.54) to (A.55) and (A.61) to (A.63) that

M−1 =




1 0 0 0 0 0

1 0 0 −1 0 0

−1 0 0 0 0 −1

−2 2 1 2 −1 1

2 2 0 0 0 1

1 0 1 −1 1 −1




(A.64)

The monodromy matrix in the Gepner basis A(G) can be read off from (3.76) and (A.28)

A(G) =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0




(A.65)

Note that this matrix satisfies A6 = −11. Then

A(L) = MA(G)M−1 =




1 0 0 −1 0 0

−1 1 1 1 0 0

1 0 −1 −1 0 0

2 0 0 −1 0 1

0 −2 0 0 1 0

1 −2 −1 −1 1 −1




(A.66)

One can also explicitly check that the periods $j(x, y) satisfy the relations (A.28).
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B. McKay correspondence

Here we review the method developed by Mayr [153] known as the generalized McKay correspondence
to compute the analytic continuation of the periods. The idea is to consider an orbifold C5/Γ for a
discrete subgroup Γ ⊂ SU(5) and to blow up the singularity at the origin. The exceptional divisor that
is created in this process is a weighted projective space Y = P4

w. The Calabi-Yau manifold X is then
defined as usual as the zero set of a generic section of the hyperplane bundle of Y (see Section 3.2.2). The
D-branes that can be constructed in the orbifold theory give rise to the so-called fractional D-branes on
Y which are D-branes wrapped on the compact homology of Y [176]. They are the basic objects in the
small volume limit and correspond to the generators Sa of the basis of the Grothendieck group K(Y ).
Diaconescu and Douglas [152] have conjectured that the restrictions of these fractional brane states to
the Calabi-Yau X represent the rational B-type boundary states of the Gepner model describing the
small volume limit of X (see Sections 4.3.2 and 4.3.3). Let us denote the restrictions of the fractional
branes to the Calabi-Yau by V a = Sa|X . Then we have a relation between the intersection form on
K(Y ) given by (cf. (3.62) and (5.54)) [153]

〈E, F 〉Y =
∫

Y

c1(Y ) ch(E) ch(F ∗) td(Y ) (B.1)

and the intersection form on the L = 0 boundary states (4.42)

IB,ab
0,0 = 〈V a, V b〉Y = χab − χba (B.2)

where χab is the inverse of

χab =
r∏

j=1

(1− hwj ) (B.3)
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B. McKay correspondence

and h is the d × d shift matrix satisfying hd = 0 where d =
∑

j wj . Let us take Y = P4
1,2,3,3,9 and

X = P4
1,2,3,3,9[18] as a concrete example. Then we have

χ =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 2 4 5 7 11 13 17 24 28 35 46 53 64 80 91 107

0 1 1 2 4 5 7 11 13 17 24 28 35 46 53 64 80 91

0 0 1 1 2 4 5 7 11 13 17 24 28 35 46 53 64 80

0 0 0 1 1 2 4 5 7 11 13 17 24 28 35 46 53 64

0 0 0 0 1 1 2 4 5 7 11 13 17 24 28 35 46 53

0 0 0 0 0 1 1 2 4 5 7 11 13 17 24 28 35 46

0 0 0 0 0 0 1 1 2 4 5 7 11 13 17 24 28 35

0 0 0 0 0 0 0 1 1 2 4 5 7 11 13 17 24 28

0 0 0 0 0 0 0 0 1 1 2 4 5 7 11 13 17 24

0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 11 13 17

0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 11 13

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 11

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(B.4)

and for the intersection matrix IB,00 at the Gepner point

IB,00 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 −1 −1 −1 2 2 −1 −1 −1 0 1 1 1 −2 −2 1 1 1

1 0 −1 −1 −1 2 2 −1 −1 −1 0 1 1 1 −2 −2 1 1

1 1 0 −1 −1 −1 2 2 −1 −1 −1 0 1 1 1 −2 −2 1

1 1 1 0 −1 −1 −1 2 2 −1 −1 −1 0 1 1 1 −2 −2

−2 1 1 1 0 −1 −1 −1 2 2 −1 −1 −1 0 1 1 1 −2

−2 −2 1 1 1 0 −1 −1 −1 2 2 −1 −1 −1 0 1 1 1

1 −2 −2 1 1 1 0 −1 −1 −1 2 2 −1 −1 −1 0 1 1

1 1 −2 −2 1 1 1 0 −1 −1 −1 2 2 −1 −1 −1 0 1

1 1 1 −2 −2 1 1 1 0 −1 −1 −1 2 2 −1 −1 −1 0

0 1 1 1 −2 −2 1 1 1 0 −1 −1 −1 2 2 −1 −1 −1

−1 0 1 1 1 −2 −2 1 1 1 0 −1 −1 −1 2 2 −1 −1

−1 −1 0 1 1 1 −2 −2 1 1 1 0 −1 −1 −1 2 2 −1

−1 −1 −1 0 1 1 1 −2 −2 1 1 1 0 −1 −1 −1 2 2

2 −1 −1 −1 0 1 1 1 −2 −2 1 1 1 0 −1 −1 −1 2

2 2 −1 −1 −1 0 1 1 1 −2 −2 1 1 1 0 −1 −1 −1

−1 2 2 −1 −1 −1 0 1 1 1 −2 −2 1 1 1 0 −1 −1

−1 −1 2 2 −1 −1 −1 0 1 1 1 −2 −2 1 1 1 0 −1

−1 −1 −1 2 2 −1 −1 −1 0 1 1 1 −2 −2 1 1 1 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(B.5)

Now recall the definition of helices in Section 5.5.3. From the foundation {Ra} of the helix HR,
{Ra} = {O(−(d− 1)KY ), . . . , O}, in our example

{Ra} = {O(−17), O(−16), . . . , O(−1),O} (B.6)

one can construct the basis {R̃a} for the geometric bundles on the (partial) resolution X̃ of X

{R̃a} = {O(−5, 0,−1), O(−4,−1, 0),O(−5, 0, 0), O(−4, 0,−1),O(−3,−1, 0),
O(−4, 0, 0), O(−3, 0,−1), O(−2,−1, 0), O(−3, 0, 0), O(−2, 0,−1),
O(−1,−1, 0), O(−2, 0, 0), O(−1, 0,−1), O(0,−1, 0), O(−1, 0, 0),
O(0, 0,−1), O(1,−1, 0),O(0, 0, 0)} (B.7)
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Here we use the standard notation [O(a)] = aK and [O(a, b, c)] = aJ1 + bJ2 + cJ3 where Ji are the
(1, 1)-forms on X̃ related to the Mori generators l(a) as explained in 3.3.1 and given for this model
in (C.24). We note that the single Mori generator l(LG) of the Landau-Ginzburg phase is related to the
Mori generators of the large volume phase by l(LG) = 3l(1) + 4l(2) + 2l(3). Then the dual foundation
{S∗a}∗ of the dual helix HS restricted to X consists of the fractional branes V a = χabR∗b |X . We won’t
give the explicit expressions here for our example but only note that taking the dual includes also
reversing the order of the foundation. Given the sheaves V a, we can repeat the process of comparison
explained in Section 5.4.2 of the central charges Za = Z(V a) given by (5.66). Using (5.67) to (5.70) we
can determine the charge matrix N = (na

i ) for the L = 0 boundary states. In our example this is

N =




−1 1 0 −1 −1 1 0 −1

0 1 −1 1 −1 0 −2 0

1 −2 1 1 −1 −3 0 1

2 −2 1 0 2 −2 0 −1

0 0 0 −1 2 1 0 0

−2 2 −1 −1 −1 3 2 1

−1 1 −1 1 −1 1 0 0

0 −1 1 0 −1 −1 0 0

1 0 0 0 0 0 0 0

1 −1 0 1 1 −1 0 1

0 −1 1 −1 1 0 2 0

−1 2 −1 −1 1 3 0 −1

−2 2 −1 0 −2 2 0 1

0 0 0 1 −2 −1 0 0

2 −2 1 1 1 −3 −2 −1

1 −1 1 −1 1 −1 0 0

0 1 −1 0 1 1 0 0

−1 0 0 0 0 0 0 0




(B.8)

This provides us with the starting point for (4.40).
The last ingredient we need is the representation matrix A(L) of the generator g of the Zd action on

H3(X∗,Z) in the large volume basis. This is given by the solution to the equation [153]

gT ·N = N ·A(L) (B.9)

where g = h + Ed,1 is the d× d shift matrix satisfying gd = 11. This yields

A(L) =




0 −1 1 0 −1 −1 0 0

1 1 0 0 1 1 −1 0

0 2 −1 1 0 3 1 0

−1 2 −1 0 −1 3 2 1

1 0 0 0 1 0 0 0

−1 0 0 0 −1 1 2 0

0 0 0 0 0 0 0 1

1 0 0 0 1 0 −1 −1




(B.10)

This is then used in (4.40) to compute the matrix tLL′ in order to get the charges of the boundary states
with L > 0. At the Gepner point we have d periods as in (3.75a) corresponding to the d central charges
of the d fractional D-brane states. One may use 2h1,1 + 2 of them as basis for the period vector at the
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B. McKay correspondence

Gepner point and express the remaining ones through linear combinations of this basis as in (3.76).
This gives the intersection matrix I(G) on H3(X∗,Z) by restriction of IB,00 in (B.5) to the first 2h1,1 +2
basis vectors

I(G) =




0 −1 −1 −1 2 2 −1 −1

1 0 −1 −1 −1 2 2 −1

1 1 0 −1 −1 −1 2 2

1 1 1 0 −1 −1 −1 2

−2 1 1 1 0 −1 −1 −1

−2 −2 1 1 1 0 −1 −1

1 −2 −2 1 1 1 0 −1

1 1 −2 −2 1 1 1 0




(B.11)

and a matrix of relations R which consists of the zero eigenvectors of the matrix IB,00 in (B.5)

R =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−1 1 −1 1 −1 1 −1 1

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

1 −1 1 −1 1 −1 1 −1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(B.12)

The transformation matrix M representing the analytic continuation is then the solution the equa-
tion [153]

N ·M = (1− g) ·R (B.13)
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yielding

M =




−1 1 0 0 0 0 0 0

2 1/2 1 −1 3/2 −1 0 −1/2

2 −1/2 2 0 1/2 0 0 −1/2

1 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

−1 0 0 1 −1 1 0 0

1/2 0 0 −1/2 1 −1 1/2 0

0 1/2 0 0 −1/2 1 −1 1/2




(B.14)

so that we finally can check that the representation A(L) of the Zd generator g in the Gepner basis is

A(G) =




0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−1 1 −1 1 −1 1 −1 1




(B.15)

which is of the form given in (3.76).
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C. Data of toric Calabi-Yau manifolds

C.1. The families P4
1,1,2,2,2[8], P4

1,2,3,3,3[12], P4
1,2,3,3,9[18], P4

1,4,5,5,5[20] and
P4

1,3,4,4,12[24]

C.1.1. Toric description of P4
1,1,2,2,2[8]

The family X = P4
1,1,2,2,2[8] has a singular Z2-curve C = P2[4] with genus 3. A similar analysis yields

for the toric data

C1 C2

D0 0 0 0 0 1 −4 0 K = −4H
D1 −1 −2 −2 −2 1 0 1 L
D2 1 0 0 0 1 0 1 L
D3 0 1 0 0 1 1 0 H
D4 0 0 1 0 1 1 0 H
D5 0 0 0 1 1 1 0 H
D6 0 −1 −1 −1 1 1 −2 E = H − 2L

h l

(C.1)

for the intersection numbers and linear forms

L3 = H · L2 = 0, H2 · L = 4, H3 = 8 (C.2)
c2 ·H = 56 c2 ·L = 24 (C.3)

The divisors H, L and E are the restriction of the hyperplane class of P4
1,1,2,2,2, a K3 fiber described

as P3
1,1,1,1[4] and a ruled surface over the curve C, respectively. They are characterized by

χ(H) = 64 χ(OH) = 6 q(H) = 0 pg(H) = 5 (C.4)
χ(L) = 24 χ(OL) = 2 q(L) = 0 pg(L) = 1 (C.5)
χ(E) = −16 χ(OE) = −2 q(E) = 3 pg(E) = 0 (C.6)

The Picard lattice of L is

Pic(L) = 〈4〉 (C.7)

A basis for H2(X,Z) dual to H and L is

h =
1
4
H · L l =

1
4
H · E (C.8)
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C. Data of toric Calabi-Yau manifolds

C.1.2. Toric description of P4
1,2,3,3,3[12]

The family X = P4
1,2,3,3,3[12] has a singular Z3-curve C = P2[4] with genus 3. The toric data are

C1 C2 C3

D0 0 0 0 0 1 −4 0 0 K = −4H
D1 −2 −3 −3 −3 1 −1 1 0
D2 1 0 0 0 1 0 0 1 L
D3 0 1 0 0 1 1 0 0 H
D4 0 0 1 0 1 1 0 0 H
D5 0 0 0 1 1 1 0 0 H
D6 −1 −2 −2 −2 1 2 −2 1 E1

D7 0 −1 −1 −1 1 0 1 −2 E2

h d l

(C.9)

while the intersection numbers and linear forms read

E3
1 = −16 E2

1 · E2 = 0 E2
1 · L = 0

E1 · E2
2 = 4 E1 · E2 · L = 0 E1 · L2 = 0 (C.10)

E3
2 = −16 E2

2 · L = 4 E2 · L2 = 0

L3 = 0
c2 ·E1 = 8 c2 ·E2 = 8 c2 ·L = 24 (C.11)

The divisors H, L, E1, E2 and D1 are characterized by

χ(H) = 54 χ(OH) = 5 q(H) = 0 pg(H) = 4 (C.12)
χ(L) = 24 χ(OL) = 2 q(L) = 0 pg(L) = 1 (C.13)

χ(Ei) = −8 χ(OEi) = −2 q(Ei) = 3 pg(Ei) = 0 (C.14)
χ(D1) = 10 χ(OD1) = 1 q(D1) = 0 pg(D1) = 0 (C.15)

The divisor H is again the restriction of the hyperplane class of the ambient space. The divisor L is a
K3 fiber given as P3

1,1,1,1[4]. The divisors E1 and E2 are each ruled surfaces over the curve C whose
fibers form together the A2 Hirzebruch-Jung sphere tree. Finally, D1 is a blown-up rational surface.
The Picard lattice of L is Pic(L) = 〈4〉. The generators of the Kähler cone are

J1 = H J2 = D1 + H J3 = L (C.16)

We note that the divisor J2 has the same topological properties as the divisor H in P4
1,1,2,2,2[8]

χ(J2) = 64 χ(OJ2) = 6 q(J2) = 0 pg(J2) = 5 (C.17)

A basis for H2(X,Z) dual to H, J2 and L is

h =
1
4
D1 · E1 d =

1
4
H · E1 l =

1
4
H · E2 (C.18)

We further note that

L2 = 0 (C.19)
D1 · L = 0 (C.20)
E1 · L = 0 (C.21)

D1 · E2 = 0 (C.22)

H ·D1 = −D2
1 = 2h (C.23)
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C.1. The families P4
1,1,2,2,2[8], P4

1,2,3,3,3[12], P4
1,2,3,3,9[18], P4

1,4,5,5,5[20] and P4
1,3,4,4,12[24]

C.1.3. Toric description of P4
1,2,3,3,9[18]

For X = P4
1,2,3,3,9[18] the toric data are

C1 C2 C3

D0 0 0 0 0 1 −6 0 0 K = −6H
D1 −2 −3 −3 −9 1 −1 1 0
D2 1 0 0 0 1 0 0 1 L
D3 0 1 0 0 1 1 0 0 H
D4 0 0 1 0 1 1 0 0 H
D5 0 0 0 1 1 3 0 0 H
D6 −1 −2 −2 −6 1 2 −2 1 E1

D7 0 −1 −1 −3 1 0 1 −2 E2

h d l

(C.24)

while the intersection numbers and linear forms read

E3
1 = −8 E2

1 · E2 = 0 E2
1 · L = 0

E1 · E2
2 = 2 E1 · E2 · L = 0 E1 · L2 = 0 (C.25)

E3
2 = −8 E2

2 · L = 2 E2 · L2 = 0

L3 = 0
c2 ·E1 = 4 c2 ·E2 = 4 c2 ·L = 24 (C.26)

The divisors H, L, E1, E2 and D1 are characterized by

χ(H) = 45 χ(OH) = 4 q(H) = 0 pg(H) = 3 (C.27)
χ(L) = 24 χ(OL) = 2 q(L) = 0 pg(L) = 1 (C.28)

χ(Ei) = −4 χ(OEi) = −1 q(Ei) = 2 pg(Ei) = 0 (C.29)
χ(D1) = 11 χ(OD1) = 1 q(D1) = 0 pg(D1) = 0 (C.30)

The divisor H is the restriction of the hyperplane class of the ambient space. The divisor L is a K3
fiber given as P3

1,1,1,3[6]. The divisors E1 and E2 are each ruled surfaces over the curve C whose fibers
form together the A2 Hirzebruch-Jung sphere tree. Finally, D1 is a blown-up rational surface. The
Picard lattice of L is Pic(L) = 〈2〉. The generators of the Kähler cone are

J1 = H J2 = D1 + H J3 = L (C.31)

We note that the divisor J2 has the same topological properties as the divisor H in P4
1,1,2,2,6[12]

χ(J2) = 56 χ(OJ2) = 5 q(J2) = 0 pg(J2) = 4 (C.32)

A basis for H2(X,Z) dual to H, J2 and L is

h =
1
2
D1 · E1 d =

1
2
H · E1 l =

1
2
H · E2 (C.33)

We further note that

L2 = 0 (C.34)
D1 · L = 0 (C.35)
E1 · L = 0 (C.36)

D1 · E2 = 0 (C.37)

H ·D1 = −D2
1 = h (C.38)

161



C. Data of toric Calabi-Yau manifolds

C.1.4. Toric description of P4
1,4,5,5,5[20]

For X = P4
1,4,5,5,5[20] the toric data are

C1 C2 C3 C4 C5

D0 0 0 0 0 1 −4 0 0 0 0 K = −4H
D1 −4 −5 −5 −5 1 −3 1 0 0 0
D2 1 0 0 0 1 0 0 1 0 0 L
D3 0 1 0 0 1 1 0 0 0 0 H
D4 0 0 1 0 1 1 0 0 0 0 H
D5 0 0 0 1 1 1 0 0 0 0 H
D6 −3 −4 −4 −4 1 4 −2 0 1 0 E1

D7 −2 −3 −3 −3 1 0 1 0 −2 1 E2

D8 −1 −2 −2 −2 1 0 0 1 1 −2 E3

D9 0 −1 −1 −1 1 0 0 −2 0 1 E4

(C.39)

while the non-zero intersection numbers and linear forms in the basis {E1, E2, E3, E4, L} read

E3
i = −16 i = 1, . . . , 4

E1 · E2
2 = 12 E2

1 · E2 = −8 E2 · E2
3 = 8 (C.40)

E3 · E2
2 = −4 E3 · E2

4 = 4 E2
4 · L = 4

c2 ·Ei = 8 i = 1, . . . , 4 c2 ·L = 24 (C.41)

The divisors H, L, E1, . . . , E4, and D1 are characterized by

χ(H) = 55 χ(OH) = 5 q(H) = 0 pg(H) = 4 (C.42)
χ(L) = 24 χ(OL) = 2 q(L) = 0 pg(L) = 1 (C.43)

χ(Ei) = −8 χ(OEi) = −2 q(Ei) = 3 pg(Ei) = 0 (C.44)
χ(D1) = 3 χ(OD1) = 1 q(D1) = 0 pg(D1) = 0 (C.45)

The divisor H is the restriction of the hyperplane class of the ambient space. The divisor L is a K3
fiber given as P3

1,1,1,1[4]. The divisors E1 . . . E4 are each ruled surfaces over the curve C whose fibers
form together the A4 Hirzebruch-Jung sphere tree. Finally, D1 is a P2. The Picard lattice of L is
Pic(L) = 〈4〉. The generators of the Kähler cone are

J1 = H J2 = D1 + 3H (C.46)
J3 = L J4 = E3 + 2E4 + 3L J5 = E4 + 2L (C.47)

A basis for H2(X,Z) dual to J1, . . . , J5 is

C1 =
1
4
D1 · E1 C2 =

1
4
H · E1 C3 =

1
4
H · E4 (C.48)

C4 =
1
4
H · E2 C5 =

1
4
H · E3 (C.49)
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C.1. The families P4
1,1,2,2,2[8], P4

1,2,3,3,3[12], P4
1,2,3,3,9[18], P4

1,4,5,5,5[20] and P4
1,3,4,4,12[24]

C.1.5. Toric description of P4
1,3,4,4,12[24]

For X = P4
1,3,4,4,12[24] the toric data are

C1 C2 C3 C4 C5

D0 0 0 0 0 1 −2 0 0 0 0 K = −2H
D1 −3 −4 −4 −12 1 −1 1 0 0 0
D2 1 0 0 0 1 0 0 −3 1 0 L
D3 0 1 0 0 1 0 0 1 0 0
D4 0 0 1 0 1 0 0 1 0 0
D5 0 0 0 1 1 1 0 0 0 0 H
D6 −2 −3 −3 −9 1 1 −2 0 0 1 E1

D7 −1 −2 −2 −6 1 0 1 0 1 −2 E2

D8 0 −1 −1 −3 1 0 0 4 −2 1 E3

D9 −1 −1 −1 −4 1 1 0 −3 0 0 F

(C.50)

while the non-zero intersection numbers and linear forms in the basis {E1, E2, E3, F, L} read

E3
i = −8 E2

3 · L = 2 F 3 = 18 (C.51)

E1 · E2
2 = 4 E2

1 · E2 = −2 E2 · E2
3 = 2 (C.52)

c2 ·Ei = 4 c2 ·F = −12 c2 ·L = 24 (C.53)

where i = 1, . . . , 3. The divisors H, L, E1, . . . , E3, F , D1 and D3 are characterized by

χ(H) = 192 χ(OH) = 22 q(H) = 0 pg(H) = 21 (C.54)
χ(L) = 24 χ(OL) = 2 q(L) = 0 pg(L) = 1 (C.55)

χ(Ei) = −4 χ(OEi) = −1 q(Ei) = 2 pg(Ei) = 0 (C.56)
χ(F ) = 6 χ(OF ) = 2 q(F ) = 0 pg(F ) = 0 (C.57)

χ(D1) = 10 χ(OD1) = 1 q(D1) = 0 pg(D1) = 0 (C.58)
χ(D3) = 46 χ(OD3) = 4 q(D3) = 0 pg(D3) = 3 (C.59)

The divisor H is the restriction of the hyperplane class of the ambient space. The divisor L is a K3 fiber
given as P3

1,1,1,3[6]. The divisors E1 . . . E3 are each ruled surfaces over the curve C whose fibers form
together the A3 Hirzebruch-Jung sphere tree. The divisor F is a collection of two P2’s. The divisor D1

is a blown-up rational surface. Finally, the divisor D3 is a surface of general type, and is the same as the
divisor H in the family P4

1,1,1,1,4[8] in (3.88). The Picard lattice of L is Pic(L) = 〈2〉. The generators of
the Kähler cone are

J1 = H J2 = D1 + H J3 = L + 3D3 (C.60)
J4 = D3 J5 = E1 + H + 2D1 (C.61)

A basis for H2(X,Z) dual to J1, . . . , J5 is

C1 =
1
2
D1 · E3 C2 =

1
6
H · E1 C3 =

1
6
H · E3 (C.62)

C5 =
1
6
H · E2 (C.63)

The curve C4 cannot be written as the intersection of two of the listed divisors.
Note that this family has one non-toric divisor (see Section 3.2.1 and table 3.2). This accounts for

having a reducible divisor F consisting of two P2’s as will be explained in more detail in Section C.2.
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C. Data of toric Calabi-Yau manifolds

C.2. The families P4
1,1,1,6,9[18], P4

1,1,1,3,6[12] and P4
1,1,1,3,3[9]

The geometry of the first of these families has been studied in great detail in [142], [161] and [304].
These three families can be treated uniformly by writing P4

1,1,1,3a,3b[3c] with (a, b) = (2, 3), (1, 2) and
(1, 1) for P4

1,1,1,6,9[18], P4
1,1,1,3,6[12] and P4

1,1,1,3,3[9], respectively, and c = 1 + a + b. The toric data of
these families can be summarized in the following table

C1 C2

D0 0 0 0 0 1 − c 0 K = −cH
D1 −1 −1 −3a −3b 1 0 1 S
D2 1 0 0 0 1 0 1 S
D3 0 1 0 0 1 0 1 S
D4 0 0 1 0 1 a 0 aH
D5 0 0 0 1 1 b 0 bH
D6 0 0 −a −b 1 1 −3 F = H − 3S

h l

(C.64)

which is built in the same way as in section 3.5.2 and in the Stanley-Reisner ideal

ISR = {D1 ·D2 ·D3 = S3 = 0, D4 ·D5 ·D6 =
c

k
H4 − 3c

k
H3 · S = 0} (C.65)

which follows from the primitive collections {ν∗1 , ν∗2 , ν∗3} and {ν∗4 , ν∗5 , ν∗6}. Here k = 1, 2, 3 are associated
to (a, b) = (2, 3), (1, 2), (1, 1), respectively. The intersection ring of X is generated by H and S satisfying

S3 = 0, H · S2 = k, H2 · S = 3k, H3 = 9k (C.66)

From these intersections we see that no linear combination af H and S satisfies condition eq. (3.49b)
for a K3 fibration. However, X is elliptically fibered as can be seen by taking D = S,D′ = H which
satisfy conditions (3.46a) to (3.46c). The fiber is P2

1,a,b[c], see Section 3.3.4. Although the Kähler cone
is generated by J1 = H and J2 = S we will use F and S as basis for H4(X,Z). Hence the intersection
numbers (3.47) and linear forms (3.48) read

S3 = 0 S2 · F = k (C.67)

F 2 · S = −3k F 3 = −9k (C.68)
c2 ·F = −6k c2 ·S = 36 (C.69)

The divisors H, S and F are characterized by

χ(H) = 108 + 3k χ(OH) = 9 + k q(H) = 0 pg(H) = 8 + k (C.70)
χ(S) = 36 χ(OS) = 3 q(S) = 0 pg(S) = 2 (C.71)
χ(F ) = 3k χ(OF ) = 1 q(F ) = 0 pg(F ) = 0 (C.72)

A basis for H2(X,Z) dual to H and S is

h = S2 l = F · S (C.73)

From (C.64) and (C.72) we see that F is a collection of k P2’s, the section of the fibration. As l ·F = −3,
l must be contained in this P2, and from l ·Di = 1, i = 1, 2, 3 it follows that l lies in this P2 with degree
1. h · F = 1, hence h meets the section once and must be a curve in the fiber direction.

Note that P4
1,1,1,3,6[12] and P4

1,1,1,3,3[9] have one and two non-toric divisors, respectively (see Sec-
tion 3.2.1 and table 3.2). We are not able to treat them with our toric methods without loosing the
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C.3. The families P4
1,1,2,8,12[24], P4

1,1,2,4,8[16] and P4
1,1,2,4,4[12]

Landau-Ginzburg orbifold phase and therefore the Gepner point. It is possible to modify the polyhedron
∆∗ in such a way that h1,1(X) and h2,1(X) remain unchanged, but h̃1,1 becomes equal to h1,1 [108]. This
is at the expense of introducing additional non-toric complex structure moduli, i.e. of making h̃2,1(X)
smaller, and more importantly of changing the phase structure such that the Landau-Ginzburg orbifold
phase disappears. We are however interested precisely in this phase and want to keep it. Therefore we
can not treat these non-toric divisors as single divisors. Instead the divisor F contains besides the toric
blow-up of the singularity one or two more P2’s and is therefore reducible in these cases. This will play
a role when we wrap D4-branes around it in Section 6.3.

C.3. The families P4
1,1,2,8,12[24], P4

1,1,2,4,8[16] and P4
1,1,2,4,4[12]

In this section we will study in detail [305] the families X = P1,1,2,8,12[24], P4
1,1,2,4,8[16] and P4

1,1,2,4,4[12]
which have h1,1(X) = 3. We first collect some results already obtained in [142] and [306] and extend
these to get the geometric description from the toric data. Typically, a member of these families has
the following form

x4c
1 + x4c

2 + x2c
3 + x

c
a
4 + x

c
b
5 = 0 (C.74)

where (a, b) = (2, 3) for P4
1,1,2,8,12[24], (a, b) = (1, 2) for P4

1,1,2,4,8[16] and (a, b) = (1, 1) for P4
1,1,2,4,4[12]

and c = 1 + a + b. The space P4
1,1,2,4a,4b has singularities which intersect the degree 4c hypersurface in

a curve C of Z2 singularities given by x2c
3 + x

c
a
4 + x

c
b
5 = 0 with an additional Z4 singular point. The

curve C is isomorphic to P2
1,a,b[c] which is an elliptic curve, see Section 3.3.4. Our Calabi–Yau X is then

obtained as the proper transform of the blow-up of these singularities which introduces the exceptional
divisors E which is a ruled surface over the curve C and F which is a Hirzebruch surface F2. The (toric)
data of X are most conveniently summarized in table C.75.

C1 C2 C3

D0 0 0 0 0 1 −c 0 0 K = −cH
D1 −1 −2 −4a −4b 1 0 0 1 L
D2 1 0 0 0 1 0 0 1 L
D3 0 1 0 0 1 0 1 0 D
D4 0 0 1 0 1 a 0 0 aH
D5 0 0 0 1 1 b 0 0 bH
D6 0 −1 −2a −2b 1 0 1 −2 E = D − 2L
D7 0 0 −a −b 1 1 −2 0 F = H − 2D

h d l

(C.75)

The generators of the Kähler cone are identified as J1 = H, J2 = D and J3 = L. They form a basis of
H2(X,Z) and the dual basis in H2(X,Z) is h, d and l. The Stanley-Reisner ideal is

ISR = {D1 ·D2 = L2 = 0, D3 ·D6 = D2 − 2D · L = 0,

D4 ·D5 ·D7 =
ac

k
H3 − 2ac

k
H2 ·D = 0} (C.76)

which follows from the primitive collections {ν∗1 , ν∗2}, {ν∗3 , ν∗6} and {ν∗4 , ν∗5 , ν∗7}. Here k = 1, 2, 3 are
associated to (a, b) = (2, 3), (1, 2), (1, 1), respectively. The intersection ring of X is generated by E, F
and L satisfying

L3 = 0 F · L2 = 0 F 2 · L = −2k
F 3 = 8k E · L2 = 0 E · F · L = k

E · F 2 = 0 E2 · L = 0 E2 · F = −2k
E3 = 0

(C.77)
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C. Data of toric Calabi-Yau manifolds

From (3.29) we find for the second Chern class of X

c2 ·E = 0 c2 ·F = −4k c2 ·L = 24 (C.78)

We can also give a geometric picture to these divisors and curves. First, note that the divisor L
satisfies (3.46a) to (3.46c), hence X is a K3 fibration with L being a fiber. From (C.77) we see that its
Picard lattice is Pic(L) = U (see Section 3.3.2). Furthermore, the divisor D satisfies (3.49a) and (3.49b)
for D′ = H. Therefore X is also an elliptic fibration with h being a curve in the elliptic fiber. Finally,
since D2 · L = 0, the two fibrations are compatible according to (3.50) and we have therefore the
well-known fact that X admits both an elliptic and a K3 fibration. Since h · F = 1, we can identify
F with the section of the elliptic fibration. From the intersection relations we see that h is a class of
the intersection E ∩ L, d is a class of the intersection F ∩ L and l is a class of the intersection E ∩ F .
Since d2|F = 0, d · l|F = 1 and l2|F = −2, d and l are the fiber and the section of the Hirzebruch surface
F2, respectively1. Its canonical divisor is then KF2 = −2l − 4d = −2D|F . Since h2|E = 0, h · l|E = 1
and l2|E = 0, l and h are the fiber and the section of the ruled surface E, respectively, whose canonical
divisor is KE = −2h. Furthermore, also the divisor D has a fibration structure. Its canonical divisor
is KD = 2h which satisfies K2

D = 0. Hence it is an elliptic fibration. Setting f = 2d + l, we have
f2|D = −4, f · h|D = 1 and h2|D = 0 and hence D is an elliptic fibration with section f . Note, that
this agrees also with the general relation for elliptically fibered surfaces, χ(D) = −12f2. Finally, we
also need the holomorphic Euler characteristics, given by (3.39)

χ(OD) = 4, χ(OE) = 0, χ(OF ) = 1, χ(OH) = 9 + k, χ(OL) = 2 (C.79)

and the geometric genera

pg(D) = 3, pg(E) = 0, pg(F ) = 0, pg(L) = 1, pg(H) = 8 + k (C.80)

Note that P4
1,1,2,4,8[16] and P4

1,1,2,4,4[12] have one and two non-toric divisors, respectively (see Sec-
tion 3.2.1 and table 3.2). Here the same comment as in Section C.2 applies.

1Note that we are at a special point of the moduli space. A generic point is actually an elliptic fibration over F0 = P1×P1
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Eidgenössischen Technischen Hochschule (ETH)
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