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Zusammenfassung

In dieser Arbeit werden die Eigenschaften von D-Branen auf Calabi-Yau-Radumen untersucht. Kompak-
tifizierungen von Typ II Stringtheorien auf diesen Rdumen, bei denen D-Branen hinzugefiigt werden,
fithren zu N' = 1 supersymmetrischen Eichtheorien auf dem Weltvolumen dieser D-Branen.

Sowohl die Calabi-Yau-Réume als auch die D-Branen besitzen im allgemeinen einen Moduliraum.
Wir untersuchen die Abhéngigkeit der Eichtheorie von der Wahl der Moduli, insbesondere derjenigen
der Kéhlerstrukutur der Calabi-Yau-Mannigfaltigkeit. Dazu wahlen wir zwei Punkte in diesem Moduli-
raum, die dadurch ausgezeichnet sind, dass es eine explizite Beschreibung des Spektrums der D-Branen
gibt. Der eine Punkt entspricht einer Mannigfaltigkeit mit grossem Volumen, auf der die D-Branen
durch klassische Geometrie von Vektorbiindeln beschrieben werden. Am anderen Punkt ist die Aus-
dehnung der Mannigfaltigkeit kleiner als ihre Quantenfluktuationen, so dass die klassische Geometrie
ihre Bedeutung verliert und durch eine konforme Feldtheorie ersetzt werden muss. Der Witten-Index
im offenen String-Sektor ist unabhéngig von der Variation dieser Moduli und dient, zusammen mit der
Mirrorsymmetrie, als Werkzeug um die beiden Beschreibungen zu vergleichen.

Wir geben eine ausfiithrliche und allgemeine Darstellung dieser beiden Beschreibungen fiir die Klasse
der Fermatschen Hyperflachen in gewichtet-projektiven Rédumen. Wir fiihren den Vergleich in vielen,
reprasentativen Beispielen explizit durch. Darunter sind Mannigfaltigkeiten mit elliptischen und K3-
Faserungen und solche, deren Moduliraum sich in einen Moduliraum einer anderen Mannigfaltigkeit
einbetten lasst. Ein Schwerpunkt wird dabei auf D4-Branen, insbesondere die Dimension ihrer Mod-
ulirdume gelegt.

Mit den entwickelten Methoden kénnen wir die modifizierte geometrische Hypothese von Douglas, die
im wesentlichen besagt, dass die Eigenschaften dieser D-branen bzw. dieser Eichtheorien zum einen Teil
durch klassiche Geometrie und zum anderen Teil durch die Mirrorsymmetrie bestimmt werden kénnen,
durch unsere Resultate weiter bestétigen. Eine Besonderheit dieser Eichtheorien ist das Auftreten von
Linien marginaler Stabilitat, an denen BPS-Zusténde zerfallen konnen. Wir zeigen die Existenz solcher
Linien im Rahmen dieser Klasse von Calabi-Yau-Raumen auf zwei verschiedene Weisen und diskutieren
den Zusammenhang zur Bildung gebundener Zustande. Von besonderem Interesse ist die DO-Bran,
deren Auftreten in dieser Beschreibung erklart wird.



Abstract

In this thesis the properties of D-branes on Calabi—Yau spaces are investigated. Compactifications of
type II string theories on these spaces to which D-branes are added lead to N’ = 1 supersymmetric
gauge theories on the world-volume of these D-branes.

Both the Calabi-Yau spaces and the D-branes have in general a moduli space. We examine the
dependence of the gauge theory on the choice of the moduli, in particular those of the Kéhler structure
of the Calabi—Yau manifold. For this purpose we choose two points in this moduli space which are
distinguished by the fact that there exists an explicit description of the spectrum of the D-branes. One
of these points corresponds to a manifold in the large volume limit on which the D-branes are described
by classical geometry of vector bundles. At the other points the size of the manifold is smaller than its
quantum fluctuations such that the classical geometry looses its meaning and has to be replaced by a
conformal field theory. The Witten index in the open string sector is independent of the variation of
these moduli and serves, together with mirror symmetry, as a tool to compare the two descriptions.

We give an extensive and general presentation of these two descriptions for the class of Fermat hyper-
surfaces in weighted projective spaces. We explicitly carry out the comparison in many representative
examples. Among them are manifolds admitting elliptic and K 3-fibrations and manifolds whose moduli
space can be embedded into the moduli space of another manifold. One main focus is on D4-branes, in
particular on the dimension of their moduli space.

Using the methods developed we are able to further confirm with our results the modified geometric
hypothesis by Douglas. It essentially states that the properties of these D-branes or of these gauge
theories can be determined partly by classical geometry, partly by mirror symmetry. A peculiarity of
these gauge theories is the appearance of lines of marginal stability at which BPS states can decay. We
show the existence of such lines in the framework of this class of Calabi—Yau spaces in two different
ways and discuss the connection to the formation of bound states. Of particular interest is the DO-brane
whose appearance in this framework is explained.
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1. Introduction

The realization that, apart from strings, there are further basic, dynamical objects in string theory,
namely D-branes has initiated a revolution in the understanding of this theory [1]. These D-branes
are objects on which open strings can end and their nature is non-perturbative in the closed string
sector. They are extended objects of any dimension p < 10. The massless modes of the open strings
ending on them define a gauge theory on their world-volume. The low-energy limit of this world-volume
theory is the dimensional reduction of N' = 1 Super-Yang-Mills theory in ten dimensions down to p+ 1
dimensions.

One important consequence from their understanding is, in particular, that it opened new ways
of constructing supersymmetric gauge theories embedded in a more fundamental theory which can
encompass the (minimally supersymmetric) Standard Model. The old method was to take the heterotic
string theory in ten dimensions and compactify it on a three-dimensional Calabi—Yau space in order
to get an NV = 1 D = 4 supergravity theory, i.e. a theory with four supercharges. This space is a
complex three-dimensional compact manifold admitting a Ricci-flat Kahler metric. However, up to
date, a realistic model satisfying all the constraints of the Standard Model has never been achieved.

In global supersymmetry, realistic models are only possible for A/ = 1. This follows from a basic
observation in particle physics: the massless fermions of helicity % do not transform under SU(3) x
SU(2) x U(1) the same way the helicity —% fermions transform. By looking at the supersymmetry
algebra one sees that in global supersymmetry with A" > 1, the helicity 1 and helicity —3 fermions
necessarily transform identically. In other words such theories with N' > 1 are non-chiral while the
Standard Model is.

One of the central properties of D-branes is the following. Vacuum states containing a single D-brane
are not annihilated by all of the supercharges but only by half of them. If we want to construct an
N =1 theory in four dimensions, then we should look for an N' > 2 theory and add D-branes to it.
The simplest possibility is to compactify a type II string theory on a flat six-torus and place several
D-branes at specific angles in such a way that only four supercharges remain unbroken. Alternatively,
one might use K3 x T2 as a compactifying space.

While in these cases the D-branes have to be arranged in a particular way, it is possible to com-
pactify the ten-dimensional theory such that the restrictions on the number and angles are less severe,
in particular adding a single D-brane is already sufficient. This is realized by starting with a com-
pactification of type II string theory on a Calabi—Yau space resulting in a theory in four dimensions
whose low-energy limit is A/ = 2 supergravity. Such compactifications come in families parametrized
by the Kéhler and complex structure deformations of the Calabi—Yau manifold. The parameter spaces
are generally called moduli spaces, even though they are not always moduli spaces in the strict math-
ematical sense. We denote the moduli space of a Calabi-Yau manifold by Mcy. The D-branes are
then added by wrapping them around submanifolds of the Calabi-Yau space. If such a configuration
preserves N = 1 supersymmetry, then the submanifold is called a supersymmetric cycle.

We require that the D-brane fills out the four non-compact space-time dimensions and allow it have
p dimensions along the compact Calabi—Yau manifold. Adding D-branes introduces a gauge bundle on
the submanifold wrapped by the D-brane. Parallel D-branes do not exert any force onto each other
and therefore can be stacked on top of each other. The number r of D-branes in this stack determines
the rank of the gauge group and therefore the rank of the gauge bundle. We will assume that, for a
fixed Calabi—Yau space, this bundle has a direct product structure inherited from the base which is the
product of space-time and the supersymmetric cycle in the Calabi—Yau space. Subsequently, we will
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only consider the factor belonging to the Calabi—Yau threefold. Decreasing the size of this manifold,
the world-volume theory will be an N = 1 supersymmetric gauge theory in four space-time dimensions.
This theory comes in a family, too, parametrized by the deformations of the vector bundle and by
the deformations of the supersymmetric cycle. The information contained in the gauge bundle on the
supersymmetric cycle is then encoded e.g. in the superpotential of this gauge theory.

The data of this theory is a gauge group G, a complex manifold X parametrized by chiral superfields
¢ describing these deformations, a Kéhler potential K on X, an action by holomorphic isometries of G
on X, a superpotential W which is a holomorphic and G-invariant function on X and moment maps g
which are the D-terms. If G contains U(1) factors, each of these can have an associated real constant
Cq, the Fayet-Illiopoulos parameter. The space M p describing families of D-branes is then the solution
to gradW = 0 in the symplectic quotient of X by G. However, not all solutions correspond to points
in the quotient, only stable objects do, which depends on the specific moment maps. In addition, there
is a holomorphic function, called the gauge kinetic function, which determines the coupling constants.

We want to know what are the possible gauge theories that can be described in this way. This
is equivalent to looking for a classification of all supersymmetry preserving D-branes at each point in
the Calabi—Yau moduli space and finding their world-volume moduli spaces M p. We are interested in
the change of this moduli space M p if we vary the parameters of the Calabi—Yau manifold and in the
corresponding change of the spectrum of the gauge theory. We want to understand in particular what
happens if we include stringy effects. In this thesis we work in the limit gs — 0 but allow for g—; —1
where R is a characteristic size of the Calabi—Yau manifold. This means that we allow the Calabi-Yau
manifold to become so small that one cannot distinguish the “manifold” from its quantum fluctuations
such that any classical notion of geometry looses its meaning. We can achieve this by tuning the Kéhler
structure parameters to a particular point in their moduli space. At this point we need a quantum
description of the Calabi-Yau which is given by a conformal field theory called the Gepner model.
Since D-branes are naturally described as boundary conditions in a conformal field theory we obtain
two frameworks to study them: classical geometry for large Calabi—Yau spaces and the Gepner model
for small Calabi—Yau spaces.

It is obvious to ask to what extent these effects lead to qualitative changes in the description of the
physics of D-branes, i.e. of the low-energy effective action, the dimension of the moduli space, the types
of singularities, the spectrum and so on. A natural starting point [2] for an answer is to state a geometric
hypothesis that all these properties are the same as predicted by naive geometric considerations. This
is motivated by the fact that in theories with 16 and 8 supercharges, corresponding to flat, toroidal and
K3 compactifications mentioned above this hypothesis is essentially true [3] due to the large amount of
supersymmetry. However, in theories with four supercharges, i.e. the Calabi—Yau compactifications of
our interest, D-branes are much less understood. This makes them very interesting objects to study.

The most important effect on the low-energy theory in the presence of D-branes is the appearance
of new massless states [4] at special points. This phenomenon is roughly described as follows. We can
tune the Ké&hler moduli of the Calabi—Yau threefold to another particular point at which the conformal
field theory breaks down. At this point a cycle of the Calabi—Yau space vanishes. A D-brane wrapping
such a cycle becomes massless and therefore leads to new physical degrees of freedom in the low-energy
theory. Taking these degrees of freedom into account in the description of the theory shows it to be
well-behaved, i.e. the string theory has no singularity. Moreover, these degrees of freedom correspond
to the W-bosons in the gauge theory and therefore lead to an enhancement of gauge symmetry at this
point in moduli space.

This is just one example of effects that can appear when we vary the parameters of the Calabi—Yau
threefold. However, we are interested in the limit where the Calabi—Yau manifold becomes small. Using
the description of D-branes in both of these frameworks — geometry and conformal field theory — we can
answer these questions stated above at least partially. This line of research has been initiated by Douglas
and his collaborators in [5] where the direct comparison of the two descriptions of D-branes has been
performed in a particular example, the quintic threefold. The main tool in this comparison is the Witten
index which can be computed in both limits, at small and at large volume. It contains the necessary



information about the supersymmetric spectrum. A few other examples have been subsequently studied
which shed more and more light on the stringy effects.

It turns out that the changes are not only quantitative, i.e. that the masses and couplings of the
D-branes change, but also qualitative: The spectrum and the moduli space undergo radical changes in
such a way that e.g. geometric branes are destabilized at small volume. These invalidate the geometric
hypothesis. However, we have another important technique at our disposal: mirror symmetry. Almost
all Calabi—Yau threefolds have a mirror manifold. It has been known for a long time that some problems
are easier to study by mapping them to the mirror manifold, solving them there, and mapping the
solution back to the original manifold. Applying this idea to the D-branes on Calabi—Yau spaces leads
to a modified geometric hypothesis [2]. This essentially states that some D-brane questions are geometric
on the original Calabi—Yau threefold and others are geometric on the mirror manifold. The remaining
questions can be answered by applying mirror symmetry. Therefore mirror symmetry provides the
second important tool for this work.

Mirror symmetry has turned out to be a very fascinating concept in mathematics. The investigation
of D-branes on Calabi-Yau spaces includes other mathematically very interesting problems like the
classification of holomorphic vector bundles on a Calabi—Yau threefold. There are almost no results
known in the mathematics literature. However there are quite a few results on the classification of
holomorphic vector bundles on complex surfaces. Since some of these surfaces appear as hypersurfaces
in a Calabi—Yau threefold we can try and use these results and compare them to those obtained in the
Gepner model. For this reason we will focus mostly on D4-branes wrapping divisors in the Calabi-Yau
manifold although we will include other D-branes in the general analysis.

The first part of this thesis provides the necessary background for the closed string sector of our
theories. In Chapter 2 we review the properties of ' = (2,2) superconformal field theories which we
require in order to have an N = 2 supergravity theory in four space-time dimensions. The main points
in this chapter are the introduction of the Gepner model and the interpolation between the different
descriptions of string compactifications on a Calabi—Yau manifold by tuning the Kéhler moduli. This
yields a “geographical” map of the moduli space of the Calabi—Yau manifold which helps navigating
when moving in this space. Also, the concept of the Witten index and the basic facts leading to mirror
symmetry as well as its properties are reviewed.

Chapter 3 is about the geometric side of the closed string sector. A particular class of Calabi—Yau
spaces is introduced, namely hypersurfaces in toric varieties for which mirror symmetry is manifest by
construction. In this chapter many useful properties of such Calabi—Yau spaces are collected. Our main
focus is on hypersurfaces in blown-up weighted projective spaces. We give all the necessary formulas to
determine the geometry and apply them to several interesting examples.

In the second part of this thesis we include the open string sector by introducing the D-branes in
Chapter 4. There they are described as boundary conditions in a conformal field theory, leading to the
concept of boundary conformal field theories. We review the application of this concept to N' = (2,2)
superconformal field theories introduced in Chapter 2 and, in particular, to the Gepner model. The
rational boundary states are constructed and their Witten index and number of moduli are computed.
This provides the properties and data for one side of the comparison of D-branes on Calabi—Yau spaces.

In Chapter 5 we study the geometry of D-branes on the class of Calabi-Yau manifolds discussed
in Chapter 3 by relating their properties to those of vector bundles and sheaves on these manifolds.
The main focus lies on the charge lattice, the BPS central charge and on the moduli of vector bundles.
The BPS central charge is the quantity which connects the classical geometric side to the conformal
field theoretic side. We generalize results that were known for particular examples to the whole class
of Calabi—Yau manifolds in Chapter 3. We also point out that we can obtain more information for
D4-branes which makes them particularly interesting for the comparison.

The main results are given in Chapter 6 where the connection between the two descriptions of D-
branes given in the previous chapters using the Witten index is explained and applied to the examples
discussed in Chapter 3. We motivate and state the modified geometric hypothesis and how it can be
tested. A number of tests will be carried out by using the results of the comparison. We emphasize on



1. Introduction

so-called rational D4-branes in order to make the comparison explicit and make quantitative as well as
qualitative statements. General observations on D-geometric aspects are also presented. In particular,
we extend the comparison to cases where the Kahler moduli space has several large volume limits with
different geometries and several Gepner points corresponding to different Gepner models.

In the Appendices A and B we explain in two examples two different methods how we can quanti-
tatively move around in the Calabi—Yau moduli space, i.e. how to transport the information from the
point where the classical geometry is valid to the point where the description by a Gepner model is
necessary. Finally, Appendix C contains the topological data of those Calabi—Yau spaces we explicitly
use for the comparison.



2. N = (2,2) Superconformal Field Theories

2.1. General facts

N = (2,2) superconformal field theories lie at the heart of compactifications of type II string theories
on Calabi—Yau spaces. In this chapter we review those aspects which will become relevant to the study
of D-branes on these spaces later on. For more details see [6], [7] and [8]

The N = (2, 2) superconformal algebra and its representations

Our main interest lies in the AN/ = 2 superconformal algebra [9], [10], [11]. This algebra is generated by
the energy-momentum tensor T'(z), two weight 3/2 supercurrents G*(z) and G~ (z) as well as a U(1)
current J(z) forming a supermultiplet

TETw) = Sw) -+ (fT(Z}};Q 8;”7(“)) + reg. (2.22)
T(2)GF(w) = (Zgw)QGi(w)—i—W—i—reg. (2.2h)
T()J(w) = (ZJ—(ww))2 + a;,{(:;) + reg. (2.2¢)
GT(2)G~(w) = e _Z;w)?) + (ji(z))z + QT(w)Zt‘?;”J(w) + reg. (2.2d)
J(2)GE(w) = i% (2.2¢)
J(2)J(w) = (Z_?’wp + reg. (2.2f)

Eq. (2.2a) defines the usual (N = 0) conformal algebra with central charge c. Eqns. (2.2b) and (2.2c)
imply that G*(z) and J(z) are primary fields of the Virasoro algebra with weight % and 1, respectively.
(2.2e) implies that G*(z) have the U(1) charges 1. From (2.2f) we see that J(z) can be bosonized
and written as

J(z) = iﬁazgou) (2.3)
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where ¢(z) is a free scalar boson. We can re-express this data in terms of modes by writing

T(z) = i Lyz""? (2.4a)

GE(z) = Z Gnini L (ndnt3)—3 (2.4D)
n=-—oo

J(z) = i Jpz "t (2.4c)

n—=—oo

The parameter 7 in the mode expansion (2.4b) lies in the range 0 < n < 1. This parameter controls the
boundary conditions on the supercurrents. If we change z — e?™*z then

G:I:( 21 )_ e:FQﬂ-inG:I:(Z) (25)

where 7 = 0 corresponds to the Neveu-Schwarz (NS) sector in which G* are periodic and 7 = % to the
Ramond (R) sector in which G* are anti-periodic. In terms of these modes, the N’ = 2 superconformal
algebra takes the form

(L, L] = (1 —m)Lpsm + 1—C2n(n2 — 1)min0 (2.62)
n
Ln,GE) = (5-s) G, (2.60)
[Lnn J, ] = *me—i-n (26C)
(G i1 Gryal = 2Lngn + (0= m+ 20+ 1) Jnim (2.6d)
c 1 1
+§ ((TL + n + 5)2 - 4> 5m+n,0
+ _ +
[J Gmini ] - :l:Gerninj:l (266)
i Ja] = gmButno (2.6)

Here s can be either integral or half-integral.
Out of the combination G(z) = GT(z) + G~ (z) and T(z) one can form the N' = 1 superconformal
algebra with egs. (2.2a), (2.2b) and

G(2)Gw) = B _?’Cw)?) + 22T_(ww) + reg. (2.7)

By adding the right-movers T,,,Gs and J,, we obtain the N' = (2,2) superconformal algebra.

The finite-dimensional subalgebra in the NS sector, generated by Lo +1, Jo and Gi; is OSp(2]2)
2

and corresponds to the N/ = 2 supersymmetry algebra, and similarly in the right-moving sector. Its

automorphism group is O(2). The Hamiltonian and the momentum are H = Lo+ Lo and P = Ly — Ly,
respectively. We define

FV:J0+jo FA:JQ*jO (28)

to be the generators of the vector and axial R-symmetry, respectively.

The spectrum of the A/ = 2 superconformal field theory is determined by the representation theory
of the N/ = 2 superconformal algebra. Unitary (irreducible) representations of this algebra are those
satisfying the hermiticity conditions

Lt =1_, Jh=J_, () = a7, (2.9)
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and satisfying the requirement that the internal product in the Fock space should be positive definite.
They can be built up in a systematic manner using the notion of highest weight states. This is done by
dividing the modes L,,, G and J,, into raising and lowering operators. The zero modes are used to
label the states in a representation. The modes with positive indices can be viewed as lowering operators
as they lower the Ly eigenvalue of a state. Since L is the left-moving part of the Hamiltonian H we
can assume that the eigenvalue is bounded from below. In the NS sector, the highest weight state |¢)
is then defined through the following properties

Lol¢) = hgl®) (2.10a)
Jol¢) = qpld) (2.10b)
Ly¢) = 0 n>0 (2.10¢)
GEg) = 0 r>0 (2.10d)
T | P) 0 m>0 (2.10e)

If we are in the R sector then we also have to deal with the G§ modes. If a state |¢) in the Ramond
sector satisfies

Glg) =0 (2.11)

then we say it is a Ramond ground state. A representation of the ' = 2 superconformal algebra can
is built by acting on |¢) with all possible combinations of the raising operators [[ Ly, Jm,Gr,|9), that
is with modes having negative mode numbers. By the operator-state isomorphism we can think of
the state |¢) as being built from the action of the superconformal primary field ¢(z) according to
|¢) = ¢(0)]|0). The constraint that |¢) be a highest weight state is then equivalent to ¢(z) satisfying

T(z)p(w) = (Zhﬁu)fra:(b(z)ﬂeg. (2.12a)
. (G*, 9)(w)

GHe)o(w) = —E— treg. (2.12b)
J(2)p(w) = Z%}qs(w)ﬂeg. (2.12¢)

where hy is the conformal weight and g, is the U(1) charge of the state |¢). Eventually, we will be
interested in type II string theory. The string consists of left-movers (holomorphic fields) and right-
movers (anti-holomorphic fields). The underlying algebra is then a N' = (2, 2) superconformal algebra,
consisting of a right-moving (holomorphic) /' = 2 superconformal algebra generated by L,,G, and
Jm and a left-moving (anti-holomorphic) A = 2 superconformal algebra generated by L,,G, and J,,,
subject to the level-matching condition Ly = Lg.

Chiral fields

There is a distinguished subset of A/ = 2 superconformal primary fields known as chiral primary fields
whose importance will become clear in the following. By definition, a chiral primary field is a primary
field ¢ that creates a state |¢) which is annihilated by the operator G, , that is

2

GTLle) =0 (2.13)

In the operator product language, this implies that

Gt (2)p(w) = reg. (2.14)
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that is, there is no singularity in the product. Similarly, an antichiral primary field is defined by

G:%|¢> =0 (2.15)

On the anti-holomorphic side chiral and antichiral primary fields are defined by replacing G* with éi.
In this way, we obtain four kinds of particular primary fields, the (¢, ¢) fields which are chiral in both
the holomorphic and anti-holomorphic sense, the (a,c¢) fields which are antichiral in the holomorphic
sense and chiral in the anti-holomorphic sense, as well as their complex conjugates, the (a,a) fields and
the (¢, a) fields. They are interesting because of the following three important properties. First, there
are a finite number of them in any non-degenerate N' = 2 superconformal field theory, for which the
spectrum of Lg is discrete, i.e. for a chiral primary field ¢

hy < (2.16)

(=21 e}

Second, they satisfy

he = i%‘f’ (2.17)
where the plus sign refers to chiral fields and the minus sign to antichiral fields. Finally, third, they
yield a non-singular and closed ring under the operation of operator product, i.e. for chiral primary

fields ¢(z) and x(w) we have no singular terms in

(@x)(2) = lim ¢(w)x(2) (2.18)

w—z

and ¢y is then either again a chiral primary or zero. These properties are all proven by repeated
applications of the N/ = 2 superconformal algebra in (2.6). For the details see [12].

Spectral flow

There is an isomorphism of algebras for all the superconformal algebras parametrized by different values
of n [13]. In terms of the modes, it is explicitly given by

j— Ln+an+§n25n’0 (2.19a)
@t = GE, (2.19b)
J = Jn+§n5n,0 (2.19¢)

This isomorphism can be extended to the representations of the superconformal algebra. Given an (infi-
nite) collection of states |f) with conformal weight h and U(1) charge ¢ providing such a representation
with 7 = 0 we can construct an isomorphic collection of states |f;) that constitute a representation of
the algebra for non-zero 7. If U, is a unitary map which on the level of operator satisfies

L, = U,L,U" (2.20a)
G, = U,GU," (2.20b)
g, = UpU,? (2.20c)

then at the level of states in the representation of the algebra, the corresponding state is

[fa) = Unlf) (2.21)
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with conformal weight and U(1) charge

c

hy = h—ng+ 6772 (2.22)
c

W = =30 (2.23)

Using (2.3) any field f which creates the state

f) with U(1) charge ¢ can be written as
f(z) = f(z)einV e (2.24)

where f(z) is a neutral field. Then the field fr, which creates the state |f,,) in the n-twisted sector can
be explicitly written as

fa(z) = f(z)eVE(am5m)e() (2.25)

i. e. spectral flow is accomplished by shifting the bosonic exponential. From the last two equations we
read off that

U, = e V5% (2.26)

The GSO projection and modular invariance require that both the NS sector (n = 0) and the R
sector (n = %) be included in the Hilbert space of our theory. As the NS sector gives rise to space-time
bosons and the R sector gives rise to space-time fermions, the spectral flow operator U 1 has a space-
time interpretation as supersymmetry generator since it takes chiral primary states to states that are
annihilated by th, i.e. Ramond ground states, and those to antichiral primary states.

The operator U 1 corresponds to the space-time supersymmetry operator which is (at worst) semi-
local with respect to all states in the theory. In fact, when ¢ = 3n, the ground state h = ¢ = 0 of the
NS sector is mapped onto states ©%(z) with h = 2, ¢ = £2% in the R sector. From (2.24) we see that
an arbitrary field f will have such an operator product expansion with U% if its U(1) charge ¢ is an odd
integer. Hence, we can conclude that space-time supersymmetry will ensue if we project our theory (in
the sense of conformal field theory quotients) onto one with odd integer U(1) charges. This has been
established in [14], [15] and [16].

Note that, if we choose n = —1, we see that the (unique) identity operator flows to a (unique)
operator €(z) of charge ¢ = § which is a chiral primary operator that saturates the bound (2.16). This
shows that the top chiral primary operator is unique.

2.2. Examples

Free field theory

The simplest example is a free field theory consisting of a single complex boson ¢ = ¢! + i¢? and
a free complex fermion ¢ = 9! + ip?. It is relevant for the flat space-time part of the superstring
compactification, to be discussed in Section 2.3 and for introducing notation. Being the superpartner
of ¢, ¢ splits into a sum of a left-moving (holomorphic) complex fermion 14 (z) with complex conjugate
Y% (z) and a right-moving (anti-holomorphic) complex fermion ¢ _(Z) with complex conjugate ¥* (Z).
The action then reads

S = /Z A%z (0¢0¢™ + Y004 + b W + = O +Y_OY*) (2.27)
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For the holomorphic part of this theory we compute

T(z) = —0006" + GUL0s + 316,00 (2.283)
GHz) = %wj;&z) (2.28D)
G (z) = %ma(p* (2.28¢)
T = i (2.284)

and one can check that these fields satisfy the operator product expansions of the N' = 2 superconformal
algebra (2.2). This theory has central charge ¢ = 3 (in both the holomorphic and the anti-holomorphic
sectors) coming from the two bosonic degrees of freedom (¢ = 2) and the two fermionic degrees of freedom
(¢ =1). The (c, c) ring consists of {1,v,1_,41p_} while the (a, c) ring consists of {1, ,¢_,¥i¢_}.
Although a very simple theory, this example does play a key role in string theory as we will see in
section 2.3. For further reference we note that the A” =1 supercurrent in (2.7) is G = GT + G~

For later convenience we introduce the superspace formalism which will allow us to simplify the
notation. In superspace with coordinates 20, 2!, %, 6%, supersymmetry is realized geometrically by the
operators

Y
9 (0 0

The supersymmetry generators of (2.29a) and (2.29b) anticommute with the operators

o (8 8
R R A

which will be used in writing Lagrangians. In A" = (2,2) theories, the simplest type of superfield is a
chiral (or (¢, c)) superfield ® which obeys

Di®=0 (2.31)
and can be expanded as
®(x,0) = p(x) + V20T (x) + V20" (x) + 20707 F(x) + ... (2.32)

where the dots involve only the derivatives of ¢, 4. The hermitian conjugate of ® is an anti-chiral (or
(a,a)) superfield obeying D1 ® = 0. A twisted chiral (or (c,a)) superfield Y satisfies [17]

D.Y=DY=0 (2.33)
with an expansion
Y(z,0) = y(z) + V20Tx, (2) + V20 x_(z) + 2070 G(x) + ... (2.34)

In general, the § = 0 component of a (twisted) chiral field labeled by a capital letter &, X, V)Y, ... will
be denoted by the corresponding lower case letter ¢, o, v,y,. ...

10
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Supersymmetric Lagrangians are constructed as superspace integrals. Integrating over the full su-
perspace yields the D-terms while the integration over the chiral and twisted chiral subspaces give the
F-terms and the twisted F-terms, respectively. In our example, the action (2.27) can be written as a
D-term

S = / d?zd*0od (2.35)
b

Non-linear o-model

As a second example we introduce the A/ = 2 superconformal non-linear o-model generalizing the previ-
ous free field theory example by adding more bosonic fields together with their fermionic superpartners
and demanding that the theory need no longer be free. As will see shortly, two copies of it yield a
conformal field theory realization of a Calabi—Yau space. The idea is to interpret the bosonic fields as
coordinates in a target space which might be a curved Riemannian manifold (X, g). In the previous
example one can think of ¢ as a coordinate on the flat manifold C with trivial Euclidean metric. To
define the theory we start with a Riemann surface ¥, a Riemannian manifold (X, ¢g) of dimension n and
amap ¢ : X — X. Let I be the cotangent bundle on 3. Then the fermions can be viewed as sections
of a certain bundle as follows

vp €eT(K2 @ ¢*TX) - eT(K 2 ®¢*"TX) (2.36)
The action then is
$ = [ (30006 (40(0) + B (0) + §UE DU (0 (2.37)

50 (DU 0,0(0) + Ry 0707

where R, - is the Riemann tensor of the metric g of the target space. The B-field B, is a harmonic
2-form on X and is related to the winding degrees of freedom of the string. The covariant derivatives
are

Datp = 0oy + I'50a X Y% (2.38)

This action has A/ = (1, 1) supersymmetry. In general, this theory possesses N' = (2,2) supersymmetry
only if the target space X is a Kihler manifold. In this case TX = T°X & T X and

Y €T(K? ®@¢*THOX) o eT(K 2 ®¢*THOX) (2.39a)
U, eT(K? ¢ TO'X)  ¢_eT(K *@¢"TOX) (2.39b)

and the action reads
S = [ @ (<l 6' 0,07 + g )T (Do = Di)L (2.40)

+igi(9)0" (Do + D1)y’ + Rimiwiw’i@ + Stop

The term involving the B-field has been written as a topological term Sio, = [y ¢*(B), ie. it de-
pends only on the cohomology class of B. If the action is normalized such that exp(27iSiop) is single-
valued, then the B-field has a discrete symmetry, called Peccei-Quinn symmetry, B — B + § B which
must be represented by integer cohomology in order that fz ¢*(6B) will be an integer and hence that
exp(27i [ ¢*(6B)) will equal 1. In other words, B is an element of the torus, B € H*(X,R)/H?(X,Z).
This symmetry will be important in Sections 3.4.2 and 5.6.

11
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In the superspace formalism this action then simplifies to
S = / oA OK (D, T) + Siop (2.41)

where the ® are chiral superfields whose lowest components are the bosonic coordinates above and

o K
T dgiog

(2.42)

is the Kahler metric. Let us also define the Kahler class J = igij—dqﬁi Ad¢? € HYY(X). J combines
with B = B;;d¢" A d¢7 to yield the highest component of a complex chiral multiplet. We will denote
w = B + iJ as the complexified Kahler form although we will often only speak of the Kahler form.
For B, +iJ, € HY(X) we write w = ZZ; to(Bq +iJ,) and denote the ¢, € C as the (complexified)
Kaéhler parameters.

The action (2.37) is conformally invariant only if the S-function of the metric g vanishes. To lowest
order in ¢’ this amounts to [18]

Ri; =0 dB =0 (2.43)

Thus, conformal invariance is achieved by choosing the target manifold to have a Kahler metric with
vanishing Ricci tensor. As we will see in Section 3.1 these properties of a manifold define a Calabi-
Yau manifold. Hence, a non-linear o-model with a Calabi-—Yau target space leads to a N' = (2,2)
superconformal field theory. Note however, that this condition is altered if terms of higher order in
o/ are included [19]. The spin field 3(z) and the field ©(z) from Section 2.1 are the conformal field
theory analogues of the covariantly constant spinor and holomorphic (3,0) form on the Calabi-Yau
manifold, respectively [20].

The generators T, G* and J of the N' = 2 superconformal algebra are as in the free field theory
example in (2.28) with the insertion of the metric g;;, e.g. J = gij—wﬂrwi. In addition the spectral flow
operator (2.26) is

V3% = Qi (2.44)

where J = iv/30p and Q5 is the holomorphic (3,0)-form of the Calabi-Yau manifold (see again
Section 3.1).

Another fact from the superspace formalism that will become important in a moment is that the
R-symmetries act on a superfield F(z, 6%, %) as

e F (3, 0% 0F) = e F(g, e 00F £10hF) (2.45)
S (2,0, 65) = OF(z,cFGE g (2.46)

where gy and g4 are the vector and axial charges of &F.

As we have seen at the end of section 2.1 the (¢, ¢) and (a, ¢) rings can be obtained from the Ramond
ground states by spectral flow. Hence, it is sufficient to study these states which are zero energy
modes. In a supersymmetric theory this implies that these states necessarily have zero momentum.
Zero-momentum states, however, have in the low-energy approximation no spatial dependence on the
world-sheet, hence the spatial dependence of these fields can be dropped in the action thereby effectively
reducing this example to supersymmetric quantum mechanics on a K&hler manifold [21]. This allows
us to find a beautiful characterization of the (¢, ¢) and (a, ¢) rings of the non-linear o-model.

The fermionic zero modes satisfy

(Yo ¥ho) = o Phot =0 (Wi dhol =97 (2.47)

12
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We therefore see that we can interp}"et the @1’0 as creation operators and the 1/1170 as annihilation
operators. Similarly we can choose EJ_@ to be creation operators and W;p to be annihilation operators.

Whether we choose Ei,o or 1/)3-,0 to be the creation operators is just a matter of convention. However,
once this choice is made, it is of utmost importance which of the right-moving operators is chosen to
be the creation operator as will become clear in this and the remaining sections. So, choose a Fock
vacuum |0) for the zero mode sector of the Hilbert space of states such that

¥4 0l0) =9 [0) =0 (2.48)
Then a general state can be written as
i ip T —J
|®) = Z biy i3, 0 ¢_,0¢;70 e ¢j,0|0> (2.49)
P.q

where we also sum over all repeated indices. For a fixed value of the integers p and ¢ the state |®) has
U(1)v x U(1) 4 charges (—p,q).

Because of the anticommuting properties of these Fermi operators, this state is completely antisym-
metric under the interchange of any two holomorphic, or any two anti-holomorphic indices. Therefore,
the space of such states is isomorphic to the space of (p,¢)-forms b on X, AP9(X). Since we are
interested in the Ramond ground states we are looking for states which are annihilated by the two
supercharges @ L~ Ei—,oDj and QQ_ ~ 1/)1'_70D¢ where D; is the covariant derivative with respect to
¢" and this form is valid in the zero mode approximation. The former, acting on |®), is equivalent
to the Dolbeault operator d acting on the corresponding (p, g)-form b, and the latter, acting on |®) is
equivalent to the operator 0 acting on the corresponding (p, ¢)-form b. Hence, demanding that these
operators annihilate the state |®) is mathematically equivalent to finding harmonic (p, ¢)-forms on X.
Therefore, we see that the Ramond ground states are in one-to-one correspondence with the elements
of the Dolbeault cohomology on X. Recalling that these Ramond ground states are related to the (a, c¢)
fields by spectral flow and defining H*(Q) = % with @ = Q_ + Q. we have

1m

H*9 = H*(Q) = H}*(X) (2.50)

Now, remember that we had another choice for the right-moving creation operators. Thus, in addition
to (2.48) we should also consider

¥4 0/0) =97 5l0) =0 (2.51)
In this case, a general state is of the form
@) =D b0 Y04, Pk - U 0l0) (2.52)

b,q

where ¥_o; = gi]—w];o. These states have U(1)y x U(1)a charges (p,q). The same analysis as above
shows that these states are in one-to-one correspondence with (0, q)-forms taking values in APT0X.
Applying the conditions that the supercharges @ L~ Eﬂ-,oDj and Q_ ~ ELOD]— annihilate such a state
shows it again to be harmonic, and by spectral flow it is related to (¢, c¢) fields. Hence

oo = H*(Q) = ]—]g’*()(7 A*TLOX) (2.53)

Note that by using the spectral flow operator (2.44) we can associate to any element in Hg’s(X ,ATTHOX)
a harmonic (3 —r, s)-form on X which corresponds to the contraction with the holomorphic (3, 0)-form
Q. Therefore we actually have the isomorphism

H) = {27 (X) (2.54)

13
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A very important observation [22], [12] is that we were completely free to choose the creation operators
on the right-moving side which in turn means that we have a freedom in the assignment of the relative
sign of the U(1)y x U(1)4 charges (p,q). Hence from a conformal field theory point of view there
is no distinction in the correspondence of the (a,c¢)- and (¢, ¢)-rings to the cohomology groups of the
Calabi-Yau manifold. We will return to this point in Section 2.6 when we discuss the moduli space of
N = (2,2) superconformal field theories.

Landau-Ginzburg Models

In the previous example we have generalized the free field theory by adding more fields and interpreting
them as coordinates on a curved target space. Now we add the F-terms and twisted F-terms mentioned
in the free field theory example. For chiral superfields ®* the F-term is

1 1 L
/d?@W(@) +ee = i/de—de@ngi:O + §/d9_d9+W(<I>)|9i:0 (2.55)

where W (®) is a holomorphic function of the ®%’s and is called a superpotential. This is invariant under
vector and axial R-symmetries only when it is possible to assign R-charges to the ®*’s such that W (®)
has vector and axial charge 2 and 0 respectively. Similarly, for twisted chiral superfields Y’ the twisted
F-term is

o~ 1 _ —~ 1 _ -~ __
/d29W(Y) +cc = 5/d@*de(Y)|@+:,,,:0 + 5/deﬂw*W(Y)|9+:,;,:0 (2.56)

where W(Y) is a holomorphic function of the Y*’s and is called twisted superpotential. For R-invariance,
it is required that R-charges can be assigned to the Y%’s so that W(Y) has vector and axial charge 0
and 2 respectively.

From chiral superfields one can then build an A/ = 2 supersymmetric Landau-Ginzburg theory by
taking an action of the form

S = /d%d‘*aK(qﬂ@i,...,@"@") + </ d?zd?oW (@', ..., ®") +h.c.) (2.57)

Such a theory is generally not scale-invariant. However, if we let the theory flow under the renormal-
ization group to a non-trivial infrared fixed point (assuming such a point exists), the fixed point theory
does not further evolve with changes in scale and hence is a conformally invariant theory. It has been
shown [23], [24] at the non-perturbative level that an ' = 2 Landau-Ginzburg theory indeed flows to a
superconformal field theory at the critical point. All the characteristic features of the superconformal
algebras can be read off from the starting Landau-Ginzburg action since they are completely governed
by the superpotential W. Indeed, an important property of the renormalization group flow which can
be established at least at the level of perturbation theory [25], is that the only renormalization suf-
fered by the superpotential arises from a wavefunction renormalization. If we assume that W (®?) is a
quasi-homogeneous function, i.e. there exist integers k;, d with

W (AR @Y = MW (D7) (2.58)

this renormalization is absorbed by an overall rescaling that in effect leaves the superpotential un-
changed. This assumption in particular implies that the charge of ®* is k;/d. On the other hand, the
kinetic term in (2.57) in general undergoes a substantial renormalization along the flow towards the
conformally invariant fixed point. Therefore we can use the superpotential as a renormalization group
invariant which describes Landau-Ginzburg models.

14
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Let us consider a few important special cases for W(®) together with the central charges of the
corresponding Landau-Ginzburg theories at the conformal point [12]

6

k+2
WAk+1 (@) =0 + c=3— m (2593,)
6
Wp, (@1, ®y) = ¥ &, 02 =3 — 2.59b
Dk( 1, 2) 1 =+ 12 c 2(1€_1) ( )
6
Wg, (@1, y) = &3 + &) c=3-15 (2.59¢)
6
Wg, (@1, ®y) = &3 + O, D3 c=3- 13 (2.59d)
6
W, (@1, ®y) = O3 + &5 c=3-2; (2.59)

There is a strong and useful connection of these theories to the mathematical theory of singulari-
ties [26], [27] as is explained in [28]. For general Landau-Ginzburg theories one can show that

(ce) _ C[®!,...,o" (@) _
H  OpW(®, ..., ®n) H ={ (2.60)
i.e. the (¢, c¢) ring is isomorphic to the Jacobian ring consisting of all polynomials in the chiral fields
modulo relations of the form Jg; W = 0.

In Sections 2.4 and 2.5 we will establish a relationship between certain Landau-Ginzburg theories
and the non-linear o-models discussed in the previous example. If there is any relationship between
their spectra to hold then at least the dimension of the (¢, ¢) and (a, ¢) rings should match. Though, in
a Landau-Ginzburg theory, we will never get more than one (a, ¢) field. However, what has not yet been
taken into account in the theory is the U(1) charge projection onto odd integral states mentioned at the
end of Section 2.1. To compute the relevant spectrum of the Landau-Ginzburg theory this projection
has to be implemented by orbifolding by the operators ¢ = €>™*/0 and § = e>**/0. This leads to the
Landau-Ginzburg orbifold theories [29], [30]. Since the charges are all multiples of %, g generates the
cyclic group Zg4 of order d. Now there will be contributions to the (a,c) ring from the twisted sectors.
The basic observation is that in the [th twisted sector the charges of the states are of the form

(Qu,—Qu) + (r,7) (2.61)
where
Q= Z (lgi — [lgi] — %) (2.62)
lq; €Z

is the contribution coming from the twisted fields and r is any of the charges generated by the subring
of those fields that are invariant under the [-twist. In addition, there can also be contributions from the
twisted sectors to the (¢, c¢) ring. This theory has an extra symmetry which will be discussed in detail
in Section 2.6.

2.3. Superstring compactifications

Consider the most general superstring compactification to D = d + 2 dimensions. We assume that D
is even, d is the number of transverse dimensions. The total central charge of the theory in the light
cone gauge must be ¢ = 12. The flat space-time theory is composed of d free bosons and d free fermions
on the world-sheet. We have considered such a theory in the first example of Section 2.2 and seen
that its contribution to the trace anomaly of the space-time degrees of freedom is cg = %d. The trace
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anomaly of the internal theory is thus ¢, = 12— 37‘1 = 3n. In particular, in order to compactify to D = 4
dimensions we need an internal theory with the trace anomaly ¢;,r = 9. We have seen in Section 2.1 that
the existence of space-time supersymmetry requires the internal theory to have A/ = 2 superconformal
symmetry. Furthermore, it is important that the restriction on the U(1) charges is on the whole theory
including the internal and the four-dimensional part. When we flow by n = % the charge of an NS
state is shifted by “gt = 2. Thus, if the original state has odd integral charge, so does its image in the
R sector. Hence, a string theory of the form My x {¢ = 9, N' = 2 superconformal theory } has space-
time supersymmetry if and only if the superconformal field theory has odd integral U(1); and U(1)g
charge eigenvalues. Although A = (0,2) superconformal symmetry is actually sufficient we will focus
on N = (2,2) superconformal field theories in order make contact to compactifications of type II string
theories. Hence we build string theory with four extended dimensions by the construction My x {c¢ =
9, N' = 2 superconformal theory } where My really refers to a ¢ = 3, N' = 2 free superconformal theory.

The latter theory contains the external fermions which generate a SO(2) current algebra. The field
Q=ctVis (2.63)

where ¢ is given in terms of the total U(1) current J of the total ¢ = 12 theory as in (2.3), is a space
time fermion. We denote the U(1) current of the internal theory by Ji,x and the space-time U(1)
current by Jy which we can express as Jin = iv/30¢ine and Jg = i0py, respectively. In light-cone
gauge the four supersymmetry charges Q%,a = 1,...,4 can be divided into linearly and non-linearly
realized ones [31], [32]. The linear supercharges can be built by substituting into (2.63), noting that all
the central charges are divisible by 3, and using £*(z) from Section 2.1

Q=i+ 7{ (=) (2) Q' = o+ 7( 51(2)5(2) (2.64)

where S = e2¥= is the spin field of the SO(2) current algebra. The nonlinear supercharges are
1 1
U= —7{ 0,0 +1i0,0%) S(2)5T(2) Ut = —7{ D.¢" —i0,¢%) ST(2)27 () (2.65)
= ) = f )

where ¢! and ¢ are two free transverse bosons and pt is the light-cone momentum. There is a
second supersymmetry coming from the right movers, i.e. from J = Ji,; + Jg, hence we have N' = 2
supersymmetry in D = 4. This construction generalizes to compactifications of dimension D = d+ 2 in

which case the current algebra is SO(d); at level 1 and the internal part has central charge ¢,y = 3n.

2.4. Gepner Models

Minimal models

The minimal models are important in three ways. First, they are solvable ' = 2 superconformal field
theories. Second, they are intimately related to the Landau-Ginzburg models and finally, they are the
building blocks for the Gepner models.

As we have seen in Section 2.1, an irreducible highest weight representation is specified by the
numbers (¢, h,q). For values of the central charge in the region ¢ < 3 the unitarity requirement (2.9)
selects a discrete series of theories, the minimal models. They are labeled by three integers (I, m, s) and
are characterized by the following values of the central charge, the conformal weight and U(1) charge

3k

_ 9.

¢ k+ 2 (2.66)
I(1+2)—m? 2

Rt = — 4+ — dl1 2.

m.s ) + 3 mo (2.67)
1 m S

L = —— — = 1 2.

Ty s 12 2 mod (2.68)
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2.4. Gepner Models

where k € Z~o and
l=0,...,k m=—-k—1,-k,....k+2 s=-1,0,1,2 (2.69)

subject to the condition that [ + m + s € 2Z. The corresponding primary fields are denoted by gbﬁng
s = 0,2 and s = 1 correspond to states in the NS and R sector, respectively. Actually, states with
s = 2 are not primary; they are included here because they are needed for constructing the massless
states in the product theory to be discussed below. The different values of s in each sector denote
opposite Zg fermion number. There is a field identification between representations satisfying

(Iym,s)=(k—=Il,m+k+2,s+2) (2.70)

These models can be constructed [33], [34] in terms of unitary irreducible representations of suitable
Kac-Moody algebra by applying the super-GKO construction [35] to the quotient SU(2)x/U(1)2x44 or
by adding [36], [37] a free boson to the Z; parafermionic field theories [38], [39]. For the description of
the N/ = 2 characters one needs to extend s to take values in Z4. Given a field ¢in7s, the corresponding

character xﬁn’S is
Xin,s(Tv z,u) _ e—27rzu tryg veQﬂ'ZZJOeQﬂ"LT(Lo—ﬂ) (271)

where the trace is taken over a projection of Hﬁnys to definite fermion number (mod 2) of a high-
est weight representation of the (right-moving) N' = 2 superconformal algebra with highest weight
vector ¢, (0). Their modular transformations are x%, ,(=+,0,0) = Sé“l ) (U S/)Xin,S(T, 0,0) and

Xt o (T +1,0,0) = TE 0y X, (7,0, 0) with [40]

1 . i mm/ _ ss’
Séﬁl,m’s),(l/,m/,sf) = msm(l,l')ke (%) (2.72)
k i L0E2). wi(—i"ﬁ +ﬁ)
T(l,m,s),(l’,m’}s’) = ™I e 204 T ) 5 10t O (2.73)
where
I+ +1
0,1, = Ww (2.74)

E+2

The modular transformation matrices factor into three pieces, each of which only acts on precisely one
of the three indices labeling the characters. The index [ transforms under the representation of the
modular group carried by level k affine SU(2) characters, while the indices m and s transform under
the representations carried by level —(k + 2) and level 2 O-functions respectively. Modular invariant
combinations of these characters can therefore be constructed by combining known modular invariants
for these three types of objects. Up to discrete quotients, the general modular invariant combination
takes the form

1 k Tw
Zk) — 5 3 AE,Z—)xin,sxfn,s (2.75)
l+7n+ls'26n’smod 2
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2. N = (2,2) Superconformal Field Theories

where A, ; is any of the ADFE classified modular invariants at level & [41]

k+1 N
Ay, > I k>1 (2.76a)
=1
2j—1
D2j+2 Z }Xl +X4j+27l‘2 4 2 |X2j+1|2 k — 4‘7’ ] Z 1 (276b)
Loda
45—1 ) 45—2
Dyjt1 Z }Xl| + ‘X2j|2 + Z (Xlx4j_l* +c.c.) k=4j—-2,7>2 (2.76¢)
lodu Lven
Es X )+ ) k=10 (2.76d)
Er I+ I T k=18 (2.76e)
+ X+ O + XN + e,
s A k=28 (2.76f)

2
+ |X7+X13 T +X23|
In the case of the Ag-, Dgji1- and Eg-type modular invariants the field identifications (2.70) have
to be made in both the left and right sector simultaneously while for the Dgjy9-, E7- and Eg-type
modular invariants one can apply them independently for the holomorphic and antiholomorphic part.
This entails [42], [43] that these theories have a Z, X Zg X Z,, X Zo symmetry with n = k+2 for the A-,

Dsj1- and Eg-type minimal models and n = % for the Dyji9-, E7- and Eg-type minimal models
which acts as
9Pms = TN (2.77)
hqbin,s = (_1)S¢£n,s (278)

and similarly in the anti-holomorphic sector. We will return to these symmetries in Section 4.3 when
discussing the boundary conformal field theory.

That the A/ = 2 minimal models (2.76) and the Landau-Ginzburg theories in (2.59) are both
classified by the ADE groups and that both have for each group the same central charges is not an
accident. Indeed one can give strong arguments [44], [45], [12], [46] that the minimal models are the
infrared fixed points of Landau-Ginzburg theories. At the conformal point one has the map between
chiral primaries of both theories

o' = (1,1,0) = ¢l (2.79)

and hence the Landau-Ginzburg fields provide a simple representation of the chiral ring.

We can take the orbifold of a minimal model with respect to the diagonal group Zgis X Zso to
obtain a new conformal field theory which is isomorphic to the original one with the sign of the U(1)g
eigenvalue associated with each field being reversed. Therefore, the chiral fields & are mapped into
twisted chiral fields Y* and W becomes a twisted chiral superpotential V.

Gepner’s construction

We have seen in Section 2.3 that conformally invariant non-linear o-models with Calabi—Yau target
spaces have central charge ¢ = 3n where n is the complex dimension of the Calabi—Yau space. Given
a collection of r conformal field theories with central charges ¢;, ¢ = 1,...,7, one can build a new
conformal field theory, called the tensor product theory, with central charge ¢ = Y ;_; ¢;. The Hilbert
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2.4. Gepner Models

space of this theory is the tensor product of the Hilbert spaces of the constituent theories and the
energy-momentum tensor takes the form

T=) 10 2ol (2.80)

In fact, since the operation of orbifolding by a finite discrete subgroup does not change the central
charge of a conformal field theory, a quotient of the above tensor product will also have central charge
¢ = Y_,¢. Applying this to the minimal models, we see that if we choose a collection of integers
{k;li =1,...,r} such that

" 3k
< k; +2

=3n (2.81)

then the tensor product of these conformal field theorys and orbifolds thereof will have the appropriate
central charge for a Calabi—Yau compactification. However, not only the central charge has to match
but also the spectrum of this tensor product conformal field theory has to agree with the one from
the non-linear o-model. This has been achieved by Gepner [47], [48] by adjoining external bosons and
fermions and finally employing an orbifold-like projection on the U(1) charges enforcing space-time
supersymmetry and modular invariance as we are going to review.

In order to label the tensor product representations define

(i, ..., 1) (2.82)
n= (So;mla"'amr;slv"'75r) 283)
where [;, m; and s; take values in the range (2.69) and sp = —1,0,1,2 characterizes the irreducible

representations of the SO(d); current algebra that is generated by the external fermions, see Section 2.3.
We assume for the moment that d = 2 mod 4. Accordingly, we write

Xn (@) = Xso (@ me, y (2.84)

where x5, is the SO(d); character. Gepner introduced special (2r + 1)-dimensional vectors Gy with

all entries equal to one and 3;, 7 = 1,...,r having zeroes everywhere except for the first and the
(r 4+ 14 j)th entry which are equal to 2. The scalar product of two vectors p and p' is defined by
ey =— S s+ = Z Sjs} (2.85)
0°0 k + > '

The total U(1) charge of the highest weight state in X,’)(Q) 1S qiot = 200 ® i, so that the projection
onto states with odd [y e p will implement the GSO projection. Similarly, restricting to states with
B; ® i € Z ensures that only states in the tensor product of r + 1 NS sectors (or of r + 1 R sectors) are
admitted. This condition guarantees space-time supersymmetry. Modular invariance of the partition
function can be achieved if the above projections are accompanied by adding “twisted” sectors. Set

=lem(4,2k; +4) and by € {0,1,..., K —1}, b; € {0,1} for j =1,...,r. Then the partition function
of a Gepner model describing a superstring compactification to D dimensions is

a ev
2

_d K— 1
2§)(r.7) = e Z oy e 1A @@ (250)
= by

=0 \u, BjoucZ Jj=1
280 u€2Z+1
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2. N = (2,2) Superconformal Field Theories

where ev means the restriction [; +m; + s; € 2Z. The summation over b- 3 = Z;ZO b;3; introduces

the twisted sectors corresponding to the [-restrictions so that, in particular, the Gepner partition

function is non-diagonal. The 7-dependent factor in front of the sum accounts for the free bosons
1

associated to the d transversal dimensions of flat external space-time while the 57 is due to the field

identification (2.70). Furthermore Al(f’l—j stands for any of the affine modular invariants in (2.76). Using
the modular transformation properties of the SO(d); characters whose S-matrix is

Seowy =€ TE 7 (2.87)
and those of the minimal model characters (2.72) Gepner proved that (2.86) is modular invariant. Note
that for d = 4 consistency requires to replace d by d + 2 in (2.85), (2.86) and (2.87). For an account of
all the possible combinations of modular invariants Al(]kjl—i see [43]. We will denote a Gepner model as
follows

(kigys---rkra,) (2.88)

where k; stands for the level and G; stands for the ADE invariant of the jth subtheory. Since we
will be mostly working with A-type invariants we will often drop this subscript. The symmetry group
for the Gepner model consists of a semi-direct product of the minimal model symmetries in (2.77) in
each subtheory with permutational symmetries S interchanging identical subtheories modded out by
the action of the cyclic group generated by p = (2,2,...,2)

H;:l an

G = 7

xS (2.89)

where

ﬁ{fg all 1 odd (2.00)
K’ otherwise

with K’ = lem(k; 4+ 2). For models with an odd number of factors (in D = 4) n = K’ even if not all k;
are odd.

The importance of these models, first pointed out by Gepner [47], [48], is that their massless spec-
trum is the same as that of a non-linear o-model on a Calabi—Yau manifold given as a hypersurface
in a weighted projective space, or more generally as a complete intersection in a product of weighted
projective spaces. Using the correspondence of A/ = 2 minimal models and Landau-Ginzburg theo-
ries discussed in the previous subsection a one-to-one relation between Gepner models and Landau-
Ginzburg orbifold theories has been established in [49], [50] and by a path-integral argument it was
argued that the following identification holds. Gepner models involving r = 5 A-type modular invari-
ants

(k1,...,ks5) (2.91)

and non-linear o-models on degree K’ hypersurfaces
W(z) = 2112 o phet2 4 phat2 4 phat2 4 o hst2 (2.92)
in the weighted projective space P4, «  (see Section 3.2.2) have the same spectra and symmetries.

R1+20 0 k5+2

Note that (2.92) in the Landau-Ginzburg description is the superpotential (2.58) consisting of five terms
of the form (2.59a). The coordinate z; is identified with the chiral primary field (Z)g%’l in (2.79). The
generalization for the cases with r # 5 factors as well as models including D- and E-type invariants
has been worked out completely in [43]. Note that in the case of r < 5 one can always add quadratic
terms to the superpotential W (z) since they correspond to & = 0 minimal models which have central
charge ¢ = 0 and therefore no dynamics. A precise relationship between Gepner models and Calabi—Yau
manifolds will be given in the following section on gauged linear o-models.
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2.5. Gauged linear o-model

2.5. Gauged linear c-model

In this section we show that a Landau-Ginzburg orbifold theory associated with a suitable quasi-
homogeneous superpotential W (®) and the non-linear o-model with target space being the Calabi-Yau
manifold defined as the vanishing locus of W (z) in a suitable weighted projective space (or more
generally, a toric variety) can be seen as the effective low-energy theories in different phases of the same
theory, the gauged linear o-model. This remarkable connection has been worked out by Witten in [17].

As a first step, we couple the free field theory example of Section 2.2 to abelian gauge fields. For
this purpose, we need to introduce the gauge field in the superspace formalism. This is achieved by the
vector multiplet which consists of a vector field v, Dirac fermions A4, A+ which are conjugate to each
other, and a complex scalar o. It is represented in a vector superfield V satisfying V = VT which is
expanded in the Wess-Zumino gauge as

Vo= 070 (vo—v)+0"0 (vo+v)—00 o—00 7 (2.93)
+V2i070" (87X 48X ) + V20 0 (07N +07A) +207010 0 D

where D is a real auxiliary field. Using the gauge covariant derivatives Dy = e VDieV, Dy =
eV Die V', we can define the field strength as

Y = %{E, D_} (2.94)

= o+iV2 (9+X+ + é’A,) +2070 (D — iFy) (2.95)

where Fp; is the curvature of v,. This is a (covariant) twisted chiral superfield D, = D_% = 0.

The gauged linear o-model with target space X and gauge group G = U(1)"~? is obtained by
coupling n chiral matter multiplets ®; with charges Q¢ under G to the n — d abelian gauge superfields
V,, and introducing Fayet-Illiopoulos terms for the abelian gauge symmetry'. The Lagrangian for this
theory is

n n—d n—d n—d
— 1 —
_ 2,94 _ a _ - —
S = /Ed zd*0 <;<I>Zexp (22@%) D ;%gzaza ;rava>
n—d 9
d? L F.01— [ A2d®0W(®)|gr—-—o + c.c. 2.96
b3 gt R [ @V @s g b (2.96)
The third and fourth terms in (2.96) can be rewritten as
n—d 9 o
Sp.o = ; /E a2z (raDa + 27:iFam) = /Zd22d20W(2)|6,:g+:0 +c.c. (2.97)
where
~ 1 n—d
WE)=——= TaXa 2.98
=552 (2:99)
with
Uq
To = ira + - (299)

2w

Here n and d are not related to those of the previous sections.
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2. N = (2,2) Superconformal Field Theories

This interaction is a twisted superpotential for the twisted chiral fields ¥,. ¥, is an angular variable
and the corresponding term is topological (the analog of the ¥-angle in D = 4 Yang-Mills theory).

The preservation of the R-symmetry group U(1)y x U(1)4 at the quantum level is a necessary
condition for the emergence of a superconformal theory. U(1)y is an exact symmetry of the theory
but U(1)4 is subject to the chiral anomaly. The axial rotation by e’® shifts the theta angle by ¥, —
Vo —2a >, QF. Thus U(1)4 is unbroken if

ZQ?:O fora=1,....n—d (2.100)

i=1

Without a superpotential, this theory has additional global symmetries that act on the chiral superfields
as

®; — exp (iak;) ®; (2.101)

with arbitrary k; and commute with supersymmetry. In the presence of a superpotential YW one must
add such a transformation to the right-moving R-symmetry under which W — e~ **W to preserve R-
symmetry. The superpotential W is said to be quasi-homogeneous if k; exist such that W transforms
in this way, cf. (2.58). The twisted superpotential W(s) violates R-symmetry unless it takes the linear
form given in (2.98).

We will now show that we can describe Calabi—Yau spaces by means of the gauged linear o-model.
Consider adding an additional chiral superfield ®, with charges Qf = — Y. | Q¢. This ensures con-
dition (2.100) for R invariance. We pick the superpotential to be the holomorphic, gauge invariant
function

W(D) =Dy - W (Py,...,P,) (2.102)

where W has charge @ under the ath copy of U(1)"~?. This charge assignment has to be made in
order to preserve R-symmetry. We assume that W be transverse in the sense that the equations

ow
09;

=0 Vi=1,...,n (2.103)

have no common root except at ®; = 0. The bosonic potential is

U(¢os- -+ s n,0a) = iﬁ Zn;m +2 g oaobz;Q 2Q o] (2.104)
a1 2¢a = abm1 =
with
=—c; (Z Q ¢il* — ra> (2.105)
i=0
and

ZIFI

where we have used the equations of motion for D, and F;. The space V of supersymmetric (classical)
ground states of this theory is given by the symplectic reduction of C"*! by G determined by the
“moment map” D : C"*! — Lie(G)

(2.106)

3%

V(r)=D"Y0)/G (2.107)
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2.5. Gauged linear o-model

The space V(r) is not necessarily smooth or of dimension d, there will in general be values of r for which
it is altogether empty. If it is of dimension d, it carries a natural complex structure in which the reduced
symplectic form becomes a Kahler form w. Now let us discuss the low-energy physics for various values of
7. The classical moduli space is the entire complexified Kiihler space C"~4/Z"~4 = R"~4 x U(1)"~4.
The classical theory is singular along certain cones in r-space, dividing (real) r-space into regions
corresponding to different “phases”. These singularities occur whenever there are solutions to D = 0
which leave a large continuous subgroup of G unbroken.

If we restrict to those values of r for which dim V' (r) = d then requiring the vanishing of (2.104)
will set ¢g = 0 (restricting to V) and then (2.104) requires that the remaining fields satisfy W = 0,
in other words that the image of the world-sheet lie in a hypersurface X of V. A closer study of this
model shows that the massless modes are precisely the variations of ¢ tangent to X together with their
superpartners so we have as the low-energy limit precisely the non-linear o-model on the Calabi—Yau
hypersurface X. This region of r-space in general includes hypersurfaces in various birational models
of V, including models with unresolved orbifold singularities.

The other regions of r-space correspond to phases in which the space of vacua is of dimension less
than d. In these cases there are massless excitations about these vacua, governed by the superpotential
interaction. When the space of vacua is a point the model is a Landau-Ginzburg theory, intermediate
cases in which there are massless fluctuations about a non-trivial space of vacua are termed “hybrid”
models. In many vacua there are discrete subgroups of G unbroken by the expectation values; the
low-energy theory is then a quotient by this subgroup. The physics of the hybrid phases is not well
understood.

Let us exhibit these concepts in an example following [51] which will be taken up again in Section 3.5.
Let G = U(1)? act on the chiral superfields ®, ..., ¢ as

e (-6 0 0 1 1 3 1
QF = ( 0 1 1 0 0 0 -2 ) (2.108)
corresponding to the action of the complexified gauge group G¢ on the ¢; as

g1 ()‘) :(¢0a ¢1a ¢27 ¢37 ¢4, ¢5; ¢6) = ()‘76¢0a ¢17 ¢27 >‘¢)37 >‘¢)47 )\3¢5» )‘¢6) (21093’)
92()\) :(¢05 ¢1a ¢2a ¢37 ¢47 ¢5) ¢6) = (¢07 A(2317 A(2527 ¢3a ¢4a ¢)57 )‘_2¢6) (2109b)

Note that the group element

glgg()\) :((ZSO’ d)la ¢2a ¢37 ¢47 ¢57 d)G) = (>\76¢0a )\d)la )‘d)?a /\2¢37 )\2¢47 A6¢5a ¢6) (2109C)

defines the C* action of a weighted projective space in the variables ¢; to ¢s5.
For simplicity we choose the couplings to be equal, e, = e for all a. The D-terms (2.105) are then

Dy = ¢ ([oal* + |6af* + 310s]’ + [06l* ~ 6160[ — 1) (2.110a)

Dy = = (Io:f* + 6ol — 20l —r2) (2:110)

The phase boundaries are determined by those values of r for which an unbroken continuous symmetry
is consistent with D, = 0 using (2.104). We see from (2.109a) that g; is unbroken if ¢3 = ¢4 = ¢5 =
¢s = ¢o = 0, which from (2.110a) can happen at zero energy if r; = 0, ro > 0. Similarly, because
of (2.109b) go is unbroken if ¢1 = ¢ = ¢¢ = 0 which implies 7o = 0 but leads in fact to two rays
because both signs of r; are possible. Finally, if ¢ is the only nonvanishing coordinate, then we see
from (2.109c) that g?g, is unbroken. This implies r; > 0, 2r; + ro = 0. Figure 2.1 shows the structure
in r-space. There are four phases, labeled I - TV.
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(D

(IT)

(I11)

24

P,

Phase IV Phase |
Hybrid Smooth CY

Phase |11 Phase ||
LG Orbifold

Figure 2.1.: The phase diagram for X taking into account the shift in (2.112).

Requiring the vanishing of (2.104) for r; > 0, ro > 0 implies that in each of the sets {¢1, 2}
and {¢s,...,¢e} there must be one nonvanishing ¢;. Hence not all % can vanish, implying
¢o = 0. Since at least one ¢; # 0, the o, must be zero and so W = 0. Therefore the low-energy
modes describe a non-linear o-model on the Calabi—Yau hypersurface X in a space V' which can
be described as follows

_CO\F

4 2
(C)

(2.111)

where F is the excluded set {¢; = ¢ = 0} U {¢h3 = ¢4 = ¢5 = ¢ = 0} and the (C*)? action is
given by (2.109). This is a smooth toric variety describing a blown-up weighted projective space
P{ 1296 as a holomorphic quotient, see also [52]. We will return to this model in great detail
in Section 3.5.2. Since X is a smooth Calabi-Yau manifold we call this phase the smooth or the
Calabi—Yau phase.

In this phase the excluded regions are {¢¢ = 0} U {1 = ¢2 = ¢3 = ¢a = ¢5 = 0}. Again,
U = 0 implies ¢9 = 0. This corresponds to the original (unresolved) weighted projective space;
the low-energy limit is the non-linear o-model with target space a hypersurface in this space. This
is the orbifold phase.

In this phase the excluded regions are {¢9 = 0} U {¢)g¢ = 0}. Then U = 0 implies the vanishing
of all the other coordinates, leading to a unique vacuum configuration given by W(¢;) = 0 in
which G is broken to Zs x Zg. Therefore, the fields ¢; live in C? /Zs X Zg. Although their
expectation values are set to zero, their quantum fluctuations are massless and governed by the
superpotential W. We note that this Zs x Zg action is nothing but the action of e?™*/0 and hence
constitutes the required U(1) projection discussed in Section 2.2. The region thus corresponds to
the Landau-Ginzburg orbifold phase.
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(IV) In this phase the excluded regions are {¢g = 0} U {¢1 = ¢ = 0}. Here U = 0 implies ¢35 =
¢4 = ¢5 = ¢ = 0, so that gy is broken to a discrete subgroup Zg. The expectation values of
@1, 2 parametrize (after setting Do = 0 and taking the G quotient) a moduli space isomorphic
to P'. The fluctuations of ¢3, ¢, and ¢5 are massless; they interact via a superpotential with
coefficients depending upon the point in P'. The model is in a so-called hybrid phase combining
the properties of a gauged linear o-model on P! with those of a Landau-Ginzburg theory.

The identification with the non-linear o-model must be made more precise. The metric on X is
classically just the restriction of the metric on V. Since this metric is not Ricci-flat the non-linear
o-model is not conformally invariant. This is related to the fact we have not the correct degrees of
freedom of the non-linear o-model. Besides the fields that are constrained to live in the target space
X there are additional massive fields in the gauged linear o-model that are not confined to lie in X.
Hence we have to integrate out these massive states and take into account the instanton corrections
coming from additional zero size instantons in the gauged linear o-model. This amounts to the following
relation between the parameter 7, in (2.99) and the Kéhler parameter ¢, [51]

ta=Ta+ Do+ > Kpe®™™ 4 ... (2.112)

m=1

where A, = ﬁ o Q% log QY is the one-loop contribution and K, represent the first order effect from
zero size instantons and ... represents the higher orders. Hence, in the classical limit we can identify
re, > 0 with the Kahler parameter Im¢,.

Similarly, it can be shown that the other phases undergo instanton corrections. Thus, by varying the
values of the r,, we may switch between a target space of a blown-up Calabi—Yau space, a target space
of a singular Calabi—-Yau space (for which the only massless modes lie within these spaces), a target
space which is a point with massless Landau-Ginzburg-type fluctuations about it, and a hybrid model.
Each of these theories has instantons and in each case the action of them goes as |r| so that their effects
become negligible in the large |r| limit. That is, we have e.g. exactly a theory on a Calabi—Yau space for
r1 = 00,73 = o0 and exactly a Landau-Ginzburg orbifold theory for 1y = —o0, 79 = —00 between which
we can interpolate via the gauged linear o-model. More generally, the gauged linear o-model provides
us with a technique for interpolating between non-linear o-models with birationally equivalent target
spaces, obtained by varying the D-terms.

Let us say a few words about the phase boundaries where the theory becomes singular. Their locus
in t-space is called the discriminant locus. In figure 2.1 we have not indicated the 9, which are related to
the B-field. In fact, it was argued in [17], [53] that by a judicious choice of this B-field the boundary set
can be avoided while keeping the theory conformal. When the boundary is actually approached then the
Calabi—Yau manifold becomes singular. The best-known type of such a singularity is the conifold [54]
where the Calabi—Yau manifold acquires a nodal singularity or, in other words, a three-cycle shrinks to
zero size. By deforming this singularity one obtains a topologically different Calabi—Yau manifold and
it was argued in [4], [55] that the transition from one to the other is physically well behaved. There are
other, more complicated types of singularities, e.g. the codimension of the phase boundary can be bigger
than one, leading to further kinds of transitions between different Calabi—Yau manifolds [56], [57], [58].
We will discuss some of these singularities in Section 3.3.3.

2.6. Moduli spaces of N’ = (2,2) Superconformal Field Theories
and Mirror Symmetry

Families of A/ = (2,2) Superconformal Field Theories

We can obtain a family of N' = (2,2) superconformal field theories by deforming a given theory by
marginal operators, i.e. operators having conformal weight h + h = 2. Here, we will focus on spinless
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2. N = (2,2) Superconformal Field Theories

operators with h = h = 1 which are truly marginal. Those are marginal operators which continue to
be of type (1,1) after a perturbation of the theory by any other marginal operator. By the supercon-
formal Ward identities [22], [59] it can be shown that among these operators there are two particularly
important ones. Let ¢ € H(“%) with h = h = %, q=q=1. Then

(1,1 (w, W) = ]{szé_ (2)G™ (2)p(w, w) (2.113)

is a truly marginal operator and corresponds to chiral superfield. If ¢ € H(®*9) with h = h = %,
q= —q =1 then

Q1 1) (w,w) = %d%G*(z)éi(z)qﬁ(w,u‘;) (2.114)

is also a truly marginal operator, but corresponds to a twisted chiral superfield. The moduli space
of N' = (2,2) superconformal field theories is then given by all the possible deformations built from
these two types of operators. It can be shown [60] that, at least locally, the conformal field theory
Zamolodchikov metric on this moduli space is block diagonal between the ®(; ;)- and the ®_; 1)-
type marginal operators and hence we can think of this moduli space as being a metric product of
two spaces [61] M%%FT = M(1,1) X M(_1,1)- These two types of marginal operators can be given a
geometrical interpretation by recalling the association between the (¢, ¢)- and (a, ¢)-rings and harmonic
differential forms. The (c,c)-fields with (h,h) = (%, 1) correspond therefore to harmonic (2, 1)-forms
while the (a, c)-fields with (h, k) = (3, ) correspond to harmonic (1,1)-forms. We will see in Section 3.1
that the former parametrize the deformations of the complex structure of the Calabi—Yau manifold X
while the latter parametrize the deformations of the Kéahler structure of X. Hence we can identify the
moduli spaces of the ®(; 1)- and the ®_; ;) operators with the moduli spaces of complex structure of
X and of the Kéahler structure of X, respectively, and locally write

MEFT = MEFT x MEEFT (2.115)

This result can be shown to be a consequence of the N’ = (2,2) superconformal algebra in (2.6) [62].
In spite of this picture it should be emphasized that the moduli space of N' = (2,2) superconformal
field theories is not a product of the complex structure and Kéhler moduli spaces of the Calabi—Yau
manifold, not even locally. In fact, the Kéhler moduli space of w can depend on the complex structure
of X [56]. However, in the limit of large volume where we have the description in terms of an exact
non-linear o-model the picture persists.

The large volume limit

A discrepancy comes from world-sheet instanton effects [63], [64], [65] and [59]. Non-perturbative
corrections arise in the non-linear o-model because of classical solutions of maps of the string world-
sheet into the target space which are not homotopic to a point. For tree-level instantons (recall that
we are working at gs = 0) we need to consider algebraic curves of genus zero, i.e. we consider mo(X)
which is equivalent to Ho(X,Z) if X is simply connected [66]. We also assume that h>?(X) = 0 (see
Section 3.1). It was shown in [63] that a map S? — X given by ¢'(c) contributes exp(—I) to the path
integral, where

1>

~ Ao’

¢t g7
2, 7. 08 b
52 doJiye Ao dob

(2.116)

and J;; is the Kahler form. The equality is satisfied when ¢'(0) is an algebraic curve. Thus the rational
algebraic curves give the instantons we want. In this case, (2.116) can be rewritten as

Ioc/ J (2.117)
$(F1)
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2.6. Moduli spaces of N' = (2,2) Superconformal Field Theories and Mirror Symmetry

In order to have small instanton contributions the cohomology class of the Kéhler form must be such
that (2.117) is large for any C' € H5(X,Z). Since the Kéahler form J is a real (1, 1)-form, its cohomology
class can be considered as a point in R""". In order to have a smooth Calabi-Yau manifold X , the
Kahler form must satisfy

/J/\J/\J>O /J/\J>0 /J>0 (2.118)
X D C

for homologically non-trivial surfaces D and curves C' embedded in X, i.e. J must lie in the Kahler cone.
Hence, (2.117) implies that one obtains the results of classical algebraic geometry when the cohomology
class of the Kéahler form lies in the deep interior of the Kéhler cone. This is what we will refer to as the
large volume limit. Recall that the FI parameters r, in the gauged linear o-model in Section 2.5 are
related to the Kahler parameters t,. Hence we can identify the Kéhler cone with the cone r; > 0, ro > 0
representing the smooth phase I in figure 2.1.

The Gepner point

There is another important point deep inside phase III which will be referred to as the Gepner point
since from Section 2.5 we know that this phase is described by a Landau-Ginzburg orbifold theory
which for ry = —o0, r5 = —oo has no instanton contributions, and from Section 2.4 we know that
this description via an exact Landau-Ginzburg orbifold theory is equivalent to the description by the
corresponding Gepner model. At this point the residual symmetry group Zs x Zg gets enhanced to Zqs.
In general, this enhanced symmetry group will be Z; where d is the degree of W (®%). Let us look for
the origin and the meaning of this symmetry.

If we start with a conformal field theory having a symmetry group H and take an orbifold by H
then the resulting conformal field theory always has some symmetries governed by the existence of
the group structure: in the string interactions, strings in sectors g;, g join to give a string in the
sector g3 = g192 [67], [68]. For any one-dimensional representation of H, defined by assigning phases
g(h), to elements h € H, the theory modded out by H has a symmetry which sends a string state
in the h twisted Hilbert space to itself times the phase £(h). The fact that the interactions respect
the group law implies that this is a well defined symmetry of the orbifoldized theory. If the group
is e.g. Zg the one-dimensional representations form again a Z,; which is a symmetry of the orbifold
theory. The generator of this Z, acts by multiplying an element in the r twisted sector by exp(2wir/d).
In this case, twisting the orbifold theory by this Z; symmetry returns the original theory we started
with [69]. An application of this argument to the Z4 orbifold of a Landau-Ginzburg theory discussed in
Section 2.2. Suppose that there are N elements of the (¢, ¢) ring come from the untwisted sector of the
orbifold theory. By the discussion at the beginning of this subsection, there is a N parameter family
of complex deformations for which we obtain a theory with an enhanced Z4 symmetry [70] if we adjust
the Kahler parameters suitably. This Z; quantum symmetry acts on the chiral primary fields (2.79) in
the Landau-Ginzburg orbifold theory or the Gepner model by

27 27 ]) 1

(@) = o) — B2 (@) = e o) (2.119)

Note that this is a quantum symmetry of a conformal field theory which has no classical analog even
though the underlying conformal field theory is not exactly solvable.

As we try to move from one phase to another conformal perturbation theory about one of these
deep interior points breaks down. In the non-linear o-model region this means that if the Calabi-Yau

space gets too small, the expansion parameter %; gets big and perturbation theory will be invalid.

However, using the interpolating gauged linear o-model we have seen that the conformal field theories
corresponding to almost all points in the moduli space are well defined and hence we can smoothly
follow a path in the moduli space beyond the smooth region. An important point is that if we allow
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2. N = (2,2) Superconformal Field Theories

for analytic continuation, then we can make sense of a perturbative expression about the deep interior
point of the 1 > 0, ro > 0 sector for essentially any point in the moduli space, even with r; < 0 for
some ¢. Thus, in this sense, we can think of the deep interior point in Landau-Ginzburg phase as being
the analytic continuation of a Calabi-Yau non-linear o-model with a particular K&hler class. In terms
of the parameters r;, we see that this special choice seems to require (an analytic continuation to) a
negative Kahler class. However, it was shown [71] that the physical parameters 7; (and their analytic
continuations) which arise from integrating out massive modes in the gauged linear o-model are non-
trivial functions of the r; which appear to always be non-negative.

This quantum symmetry will be taken advantage of at several places in this thesis. In Section 3.2.2
it will be related to the symmetry group of the Gepner model and the complex structure deformations of
the Calabi—Yau space and further in Section 3.4.2 to the periods of the Calabi—Yau space. In this section
we will also make use of the analytic continuation in order to go from the Landau-Ginzburg orbifold
phase to the smooth Calabi—Yau phase and back. Finally, the symmetry will reappear in Section 4.3
where the so-called B-type boundary states constructed for the Gepner models come in orbits of this
symmetry group.

Mirror symmetry

Here we discuss the consequences of two observations we made on the relative sign of the U(1) charges.
At the end of the example of the non-linear o-model in Section 2.2 we noted that the (¢, c¢)- and the
(a,c)-rings differ only by the conventional sign of the relative U(1) charges, while their geometrical
counterparts, the cohomology groups H>!(X) and H*!(X) differ far more significantly as they are
completely different mathematical objects. The resolution of this paradox is given by the claim of [12]
that to each Calabi-Yau manifold X there is a second Calabi—Yau manifold X* corresponding to the
same conformal field theory but with the association of H'(X*) and H*(X*) to conformal field
theory marginal operators reversed relative to that of X. Since the Hodge diamonds of X and X* (see
Section 3.1) are obtained from each other by a reflection along the diagonal, the pair (X, X*) is called
a mirror pair, and the symmetry relating the two manifolds is called mirror symmetry.

In Section 2.4 we noted that the orbifold of a minimal model with respect to its left-right symmetry
group is isomorphic to the original minimal model with the relative sign of the U(1) charges switched.
Greene and Plesser [72] realized that this orbifoldizing applied to Gepner models can be used to give
an explicit construction of such mirror manifolds. They have shown that

(K1, k)
G

1%

(k1,.. . k) (2.120)
where G is the maximal subgroup of H;=1 Zy;+2 by which one can orbifold and preserve the integrality
of the U(1) charges of the theory. The isomorphism between the two theories is a reversal of all the
U(1)g eigenvalues of the fields in the left hand side relative to those in the right hand side. If we use
the fact from (2.79) that the fields in the Gepner model can be represented as fields in the associated
Landau-Ginzburg orbifold theory the action of G is

((I)la-"7(b7‘) = (eQWi%élv'-'ae2ﬂ—i%©T) (2121)

for arbitrary integers (nq, ..., n,) such that Z§=1 Z—j is an integer. Since this operation of orbifolding is
independent of the Kéhler moduli of the theory, it can be transported from the Landau-Ginzburg phase
to the smooth phase where it now acts on the coordinates of the corresponding weighted projective
space 7 in the same way. The integrality condition translates into the preservation of the holomorphic
3-form Q on X.

Mirror symmetry can actually be proven physically in the context of the gauged linear o-model [73].

Let us briefly review the most important consequence of the existence of such mirror pairs (X, X*).
Consider a (non-vanishing) three-point function of conformal field theory operators corresponding to
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(2,1) forms on X. It can be shown [74] that it is given by

Fik(x) = / QG AT A TP A0 (2.122)
X

where the b are (2,1)-forms expressed as elements of H'(X,TX) with their subscripts being tangent
space indices. Due to a non-renormalization theorem proven in [59] we know that this expression is
the exact conformal field theory result. By mirror symmetry the same conformal field theory operators
correspond to particular (1,1)-forms on the mirror X* which we can label b6®. Due to the absence of
such a non-renormalization theorem the expression for this coupling in terms of geometric quantities
on X* is comparatively complicated [64], [65]

FEEX = [ 6O A Ap® 4 3T e D) (/E u*(b“))/gu*(b(j))/Eu*(b““))) (2.123)

X m,{u}

where the b € H'(X*, T(19*) {u} is the set of holomorphic maps u : ¥ = P! — T' to rational curves
I' on X*, 7, is an m-fold cover P! — P! and w,,, = wom,,. The first term is the intersection form on X*
while the second term arises from the infinite series of corrections due to world-sheet instantons (2.117).

Since these expressions are the same three-point function in the same conformal field theory, they must
be equal [72].

FIHX) = Fll(x) (2.124)

Superconformal Ward identities can be used to show [62] that each factor in (2.115) is a so-called special
Kéhler manifold (see Section 3.4). The three-point functions in (2.124) are the third derivatives of the
prepotentials Fo(X) of MEFT and Fi (X*) of MEEFT | respectively.

(2.122) is directly calculable while (2.123) requires the knowledge of the rational curves of every de-
gree on X*. Turned around, one can use (2.122) to determine the number of rational curves of arbitrary
degree on X*, a question of mathematical interest in the context of enumerative geometry [75], [76].

Since (2.123) contains corrections from world-sheet instantons which vanish only in the large volume
limit the Kihler moduli space M5SFT differs from M5°™. However, the moduli space of complex struc-
ture deformations M%CFT coincides with ME°™ due to the non-renormalization theorem mentioned
above. Using mirror symmetry we can now define M3¢FT(X*) to be ME™(X). In particular, we can
compute Fr (X*) = Fo(X).

2.7. Witten index

The Witten index will be one of main computational tools in Chapter 6. Since it can be defined in
any supersymmetric theory, we will review it in this chapter on superconformal field theories. In any
supersymmetric theory there is the operator (—1)f that distinguishes bosonic from fermionic states in
the Hilbert space and anticommutes with the supersymmetry generators ). The crucial observation [21]
is that the states of non-zero energy are paired by the action of @) in two-dimensional supermultiplets
while, on the other hand, the zero-energy states form trivial one-dimensional supermultiplets. In general,
there may be an arbitrary number nE=0 of zero-energy bosonic states, and an arbitrary number nZ=°

of zero-energy fermionic states. The difference n5=% — n£=0 does not change under the variation of the

parameters of the theory due to the different multiplet structure. Formally, the quantity n£=% — n£=0
may be regarded as the trace of the operator (—1)¥. States of non-zero energy do not contribute to
tr(—1)¥ because for any bosonic state of non-zero energy that contributes +1 to the trace, there is a
fermionic state of non-zero energy that contributes —1 and cancels the bosonic contribution. Therefore

the Witten index tr(—1)f can be evaluated among the zero-energy states only [21]

tr(—1)F = tr(=1)Fe PH = nE=0 _nE=0 (2.125)
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2. N = (2,2) Superconformal Field Theories

The insertion of e #H for arbitrary positive 3 is necessary to regularize the infinite summation over
all states in the Hilbert space which is ill-defined not being absolutely convergent. This is actually
independent of § because the states of E # 0 do not contribute. If the Witten index is non-zero, then
supersymmetry is spontaneously broken.

The Witten index can be interpreted mathematically as the index of an operator. If we split the
Hilbert space H of our theory into bosonic and fermionic subspaces, Hg and Hp, then the supersym-
metry charge Q which maps bosons into fermions and vice versa takes the following form

0= ( 1\04 z\gT ) (2.126)

where the split of Q) corresponds to H = Hp ®Hp. The zero energy eigenstates are given by the kernels
of M and MT and therefore

tr(—1)F = dimker M — dimker MT = ind M (2.127)

Hence the independence of the Witten index on the parameters of the theory translates into the fact
that it is a topological quantity. Therefore, it can be calculated in a convenient limit. One strategy
is to reduce the supersymmetric theory under consideration to a supersymmetric quantum mechanics
in the zero momentum limit. This is precisely what we have done in Section 2.2 for the non-linear
o-model with target space a Calabi-Yau manifold. We have seen that the Hamiltonian is H = Q,.Q L+
@+Q+ +Q_Q_ + Q_Q_ acting on (r,s)-forms. We can interpret r + s as the number of fermions
present, so (r, s)-forms are to be regarded as bosonic or fermionic depending on whether r + s is even
or odd. Therefore (anticipating (3.3) and (3.4))

3
tr(—1)" = Y (=1)7Fhm = 2(hMt = 1) = x(X) (2.128)

r,s=0

The computation of the Witten index at the Gepner point has been performed in [77] based on the
Witten index for the minimal models and the Landau-Ginzburg theories in [46] and on properties of the
characters of the N/ = 2 superconformal algebra worked out in [78]. The open string version of these
computations will be discussed in Sections 4.3.1 and 6.1.
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3.1. General properties of Calabi—Yau spaces

There are several ways to define a Calabi—Yau space. The following statements are equivalent and any
of them can be taken as the definition of a Calabi—Yau space. A Calabi—Yau manifold X of dimension
n

(a) is a compact Kahler manifold of vanishing first Chern class.
(b) admits a Levi-Civita connection with SU(n) holonomy.

(¢) admits a nowhere vanishing holomorphic (n,0)-form .

(d) is a compact manifold with a Ricci-flat Kéhler metric.

(e) has a trivial canonical bundle Kx = Ox.

That (d) follows from (a) has been conjectured by Calabi [79] and proven by Yau [80]. We assume that
the holonomy group is not a subgroup of SU(n) which is equivalent to demanding that [81]

hPO(X) = h"P(X) =0 p#0,n (3.1)
Furthermore, the existence of € implies that
r0(X) =1 PO(X) =h"PY%X) p=0,...,n (3.2)

By complex conjugation and Poincaré duality, the Hodge diamond for a Calabi—Yau threefold then has
the form

h0-0 1
hl,O hO,l 0 0
h2,0 hl,l h0’2 0 h1’1 0
h3,0 h?,l hl,Q hO,B = 1 hQ,l h2,1 1 (33)
h3,1 h2’2 h1,3 0 hl,l 0
32 p28 00
B3 1
The Euler number of X is
X(X) = 2(hH1(X) = h*1(X)) (3.4)

From the exponential cohomology sequence one gets Pic(X) = H?(X,Z) and p(X) = h%(X), where
p(X) denotes the Picard number of X. This space is naturally associated with the Kéhler deformations
of X which are parametrized by M%°™. On the other hand, the second non-trivial Hodge number
h'2(X) of X expresses the number of parameters for the complex structure on X. The first order
deformations of a Calabi—Yau threefold X are unobstructed and the corresponding local moduli space
ME™ of X is smooth and has dimension dim ME°™(X) = A (X, TX) = h'2(X) [82], [83] and [84].
For a sufficiently generic Calabi-Yau threefold X the Kéhler moduli of the complexified Kéahler class
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w = B+ iJ is independent of the complex structure of X [56]. So locally, the moduli space of a
Calabi—Yau threefold consists of a product of the moduli space of complex structure deformations and
the moduli space of Kahler structure deformations

MES™ = MEE™ 5 pEO™ (3.5)

Furthermore, the holomorphic (3,0)-form 2 only depends on the complex structure of X. For more
details see [85].

The Hodge numbers do not exhaust the topological information available. There is considerable
information available in the numbers

Koppe = / Jo NIy N J, (3.6)
X

cordy = / ca(X) A Ja (3.7)
X

where the J,, are a basis for the harmonic (1,1)-forms. These numbers are topological i.e. they do not
involve the complex structure in virtue of two facts. The Hodge number h*° vanishes so H(X) =
H?(X) and the Pontrjagin class p;(X) = c¢1(X)? — 2c2(X) = —2co(X) is proportional to co(X) and
is defined for a real manifold independent of any complex structure. A theorem of Wall [86] shows
that the data (3.6) and (3.7), together with b3 = 2+ 2h?! classify simply connected real six-manifolds.
The classification of Calabi—Yau manifolds is more complicated since not every real six-manifold is a
Calabi—Yau manifold and a real manifold may admit distinct complex structures in such a way that
they may not be continuously deformed into each other. For further properties see [87], [88] and [89].
We will also need singular Calabi—Yau spaces but we defer their introduction to Section 3.2.1.

3.2. Calabi—Yau spaces as hypersurfaces in toric varieties

3.2.1. General facts about toric varieties and dual polyhedra

Although there is no classification of three-dimensional Calabi—Yau spaces yet available, there exist
several methods of constructing classes of such spaces and their mirrors [85], [90]. The most prominent
ones are Calabi—Yau spaces as hypersurfaces or complete intersections in toric varieties (for which there
exists a classification [91]). The reason is that toric varieties have an underlying group structure which
allows to reduce almost all of the topological properties of these varieties to calculations of a set of
combinatorial data, so-called fans. They provide an elegant framework to carry out the physical ideas
by explicit computations. From a physical point of view, the combinatorial data have a direct inter-
pretation in the gauged linear o-model, as has been discussed in 2.5. Although the formalism applies
to general complete intersections in toric varieties, we will restrict ourselves to a simple subclass con-
sisting of Fermat hypersurfaces in weighted projective spaces. As will become clear in later chapters,
the reasons are that for Calabi—Yau spaces in weighted projective spaces (as opposed to general toric
varieties) there exists a Gepner point in the Kahler moduli space with an enhanced symmetry and that
the construction of boundary states in the Gepner model is known only for minimal models with A-type
or diagonal invariants which means that we have to take Fermat hypersurfaces.

We will not give an introduction to toric varieties here. Instead we refer to the books by Oda [92]
and Fulton [93] and the survey article by Danilov [94]. Mathematical introductions for physicists can
be found in [51] and [7]. We will follow mostly [95] and [85].

To describe a toric variety Pa, let us consider an n-dimensional convex integral polyhedron A €
R™ with vertices v;, ¢ = 1,...,p containing the origin vy = (0,...,0). An integral polyhedron is
a polyhedron whose vertices v; are integral with respect to the lattice M = Z" C R™. Let N =
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Hom(M,Z) = Z™ be the dual lattice. We define the dual polyhedron by
A" ={zx e R"|(z,y) > -1 Yye A} C Mg (3.8)

whose vertices are v}, ¢ = 1,...,p*. In the examples in Section 3.5 and in Appendix C the vertices v
will be used.

A polyhedron is called reflexive if its dual polyhedron is again an integral polyhedron. We associate
to A a complete rational fan 3(A) as follows [96]: For every l-dimensional face ©; € A we define
an n-dimensional cone ¢(0;) by 0(0;) = {Ap' — p)|A € Ry,p € A,p’ € ©;}. X(A) is then given
as the collection of (n — [)-dimensional dual cones ¢*(0;), I = 1,...,n for all faces of A. Similarly,
we can associate a fan Y (A*) to A*. To each pair of reflexive polyhedra (A, A*) one can associate a
pair of complete fans (X(A),X(A*)) and in turn a pair of n-dimensional toric varieties (Pa-,Pa) =
(Ps(a-),Ps(a)). Each toric variety Py contains an algebraic torus T = (C*)" whose coordinates we will
denote by X;,...,X,,. It admits an action T x Py, — Py of T that extends the natural action of T on
itself.

In each of the toric varieties P(A), there is a family of Calabi—Yau hypersurfaces given by the closure
of the zero section Zy, of the anticanonical bundle of P(A)

P
fa(X,a) =Y a; X" € CIX{, ... X (3.9)

i=0
which is a Laurent polynomial in T. The coefficients ao, . . ., a, are coordinates on an affine space CP*!
and X = [[,_, X,"*. fa and Z;, are called A-regular if for all ] = 1,...,n the fo, and the Xi%f@“
Vi =1,...,n do not vanish simultaneously in T. The variation of the parameters a; under the condition

of A-regularity leads to a family of Calabi—Yau varieties.

The ambient space Po and so Zy, are in general singular. A-regularity ensures that the only
singularities of Zy, are the ones inherited from the ambient space. Here comes the reflexivity in. In
order to obtain a smooth Calabi—Yau manifold we need to resolve the singularities which can be done if
and only if Pa is Gorenstein which is the case if and only if A is reflexive [96]. For Gorenstein spaces and
singularities see [97], [98] and in the context of toric varieties see [92]. Singularities and their resolution
will be discussed in Section 3.3.

We can also define a Calabi—Yau manifold in exactly the same way from the dual polyhedron A*.
We denote the families obtained this way by Xa = {Zs,|a € CPT1} and by Xa- = {Zf,.|a € CPT1}.
Batyrev showed that from a pair of reflexive polyhedra (X(A),3(A*)) one can naturally construct a
pair of mirror Calabi—Yau families (Xa~, Xa). In particular, the mirror map on the Hodge numbers
can be explicitly seen through the following formulae [96]

hl’l(XA) — hn_Q’l(XA*)
= (A -+ = D re)+ > re)e) (3.10)
codim ©*=1 codim ©*=2
A (Xas) = h"PN(Xa)
= A -+ - > U©)+ > UO)N®e) (3.11)
codim ©=1 codim ©=2

where [(©) and I’(©) are the number of integral points on a face © € A and in its interior, respectively.
Recall that the complex parameters (ao,...,a,) represent the deformations of the defining equation f.
The monomial deformations of f provide the complex structure deformations of XA, however not all of
them. The contribution from the last term in (3.10) and (3.11) can not be associated with a monomial in
the Laurent polynomial f. In the language of Landau-Ginzburg theories, if appropriate, they correspond
to contributions from twisted sectors, see Section 2.2. They are called non-toric contributions and we
denote the Hodge numbers without these contributions by At (Xa) and h"~%1(X,). They will play a
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role in Sections 3.3.3 and 6.2. In general, there is a rather subtle relationship between deformations of
the polynomials defining the Calabi—Yau variety X and deformations of the complex structure, see [99]
for a thorough treatment of this question.

3.2.2. Calabi—Yau hypersurfaces in weighted projective spaces

As mentioned above we will restrict ourselves to toric ambient varieties which are weighted projective
spaces. An n-dimensional weighted projective space is defined as an (n + 1)-dimensional space modded

out by a C* action given by the weights w = (w1, ..., w, 1) as follows
Cn+1 0
Pr = \ {0} , ANeCr (3.12)
(Zl, ey zn+1) ~ ()\wlzh RN )\w"+12’n+1)

An extensive study of the properties of such spaces can be found in [100] and [101]. Consider the zero

locus of quasi-homogeneous polynomials Wy, i = 1,...,m of degree d; = deg(W;)
X:{(ZlZn+1)€]PZ)|WZ(Zl,,Zn+1):O7 z:l,,m} (313)
In order to ensure that the embedding X — P is smooth, the polynomials W; must be transversal,
i.e. W;(z) = 0 and dW;(z) = 0 have no simultaneous solution except at z9 = ... = z, = 0. The first
n+1

Chern class of Xvanishes precisely if >\, d; = > j=1 wj and hence X will be a Calabi-Yau variety.
We will consider only the case of hypersurfaces where we have a single polynomial W of degree d [101].
We have seen that these varieties come in families which we will denote by X = P [d].

We can connect this description to the previous one by noting that one can associate to such a Calabi—
Yau hypersurface a reflexive polyhedron if P? is Gorenstein which is the case if lem(ws, ..., wyp41)
divides the degree d [101]. In this case we can define a simplicial reflexive polyhedron A(w) in terms
of the weights w as the convex hull of the integral vectors u of the exponents of all quasi-homogeneous
monomials z# of degree d shifted by (—1,...,—1)

A(w) = {z e R (w,2) =0, 2, > —1,i=1,...,n+ 1} (3.14)

Note that this implies that the origin is the only point in the interior.

The next restriction we will consider is that of the Fermat hypersurfaces. We call a polynomial W
a Fermat polynomial if it consists of monomials zf / Y i=1,...,n+ 1. In this case P? is Gorenstein
and (A, A*) are simplicial. Hence, the toric variety Psa(y)) is isomorphic to P¢ with XA isomorphic
to some X = P"[d]!. Then the mirror hypersurface Xa- can be understood [96] as an orbifold of Xa
in Py;(a+) giving the orbifold construction of Greene and Plesser [72] explained in Section 2.6.

If furthermore at least one weight is one (say w; = 1) we may choose e¢; = (—w;,0,0,...,1,...,0),
i=2,...,n+1 as generators for A, the lattice induced from the Z"*! cubic lattice on the hyperplane
H = {(x1,...,2041) € RSz, = 0}, For this type of models we then always obtain as
vertices of A(w)

d d

—(-1,-1,-1,-1 (L 1,1,-1,1 — (-1, % 11,1
141 ( 3 5 ) ) 1] (’lUQ ) ) ) ) V3 ( 7’(1}3 ) ) )
(-1,-1,-L _1, 1) (-1,-1,-1,4 1) (3.15)
Vg = (— — _— — Vs = (— — — _— .
4 ) 7’[1)4 ; 5 ; ) ”LU5

and for the vertices of the dual simplex A*(w) one finds

Vi = (—w2, —ws3, —w4, —ws) v; =(1,0,0,0) v; =(0,1,0,0)
VZ = (0707170) V; = <0,070,1> (316)

LFor general hypersurfaces of non-Fermat type, P? and PA(w) are only birational. In fact, the fan X(A(w)*) is a
refinement of the fan of P7,. The hypersurfaces X = Py, [d] and X () are related by flop transitions [102].
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3.3. Divisors and Curves in Calabi—Yau spaces

There is a particular point in the complex structure moduli space of X at which the defining polyno-
mial W exhibits particular symmetries. Let the group in the Greene-Plesser mirror construction (2.120)
be G. The most general G-invariant hypersurface X in P has an equation of the form

5 P
W = Z a;izl + Z a; 2" (3.17)
i=1 =6

where 2™ =[] 2;""* are G-invariant monomials given by the monomial-divisor mirror map [103], [96]

5 1+E?:1 M
(H¢:1 Zt)
= (:ula M2, U3, /1'4) — 4 wid/w; (318)
Lz 2
There is a natural ((C*)5 action on the space of a’s which allows us to set a; = 1,7 =1,...,5. We can
then define new coordinates, generalizing [104], [105] by
A5+j ; 71,1
V= ———— j=1,...,h" (3.19)
N T
where the N; are some normalization constants related to the monomials 2™/ by N; = ﬁ for
any ¢ such that m;; # 0. Following [105] we extend the action of G on (z1,...,25) to an action

of G on (21525591, .., Yj00). If we mod the family {W = 0} by G then the parameter space
{(¢1,...,%51.1)} must be modded out by a Zg whose generator g acts by

(1, Wjan) — (@ Ny, o Ny ) (3.20)

where « is a dth root of unity. Now we can define the Gepner point of the complex structure moduli
space to be the point which exhibits this additional Z; symmetry. Regarding this space as the Kahler
moduli space of the mirror X* then this point corresponds to the one where the description by a Gepner
model is valid as was discussed in Section 2.6. So this symmetry is nothing but the quantum symmetry
introduced there. We will take up the discussion of the importance of these coordinates in Section 3.4.1
where we study the action of this Z; on the periods of the Calabi—Yau manifold.

3.3. Divisors and Curves in Calabi—Yau spaces

Divisors in a three-dimensional toric Calabi—Yau manifold are algebraic surfaces. These are well-studied
and classified to a certain extent. Moreover, while there is almost nothing known about stable bundles
or sheaves on Calabi—Yau threefolds, there are many results on stable bundles on algebraic surfaces.
Since our main interest lies in D-branes which are described by bundles, we will discuss divisors and
therefore algebraic surfaces in this subsection in detail. The relation to D-branes and bundles will be
elucidated in Chapters 5 and 6.

Recall that an analytic hypersurface V' C X in a projective variety X is given, for any p € V, in a
neighborhood of p as the zero set of a single holomorphic function f. A divisor D on X is a locally finite
formal linear combination D = Y n; - V; of irreducible analytic hypersurfaces V; of X. For example,
the Calabi-Yau hypersurface X is a divisor in P};. Such a divisor D is called effective if n; > 0 for all
1; we then write D > 0. If the function f is the coefficient of a holomorphic top form on X, then the
corresponding divisor is called the canonical divisor and denoted Kx.

There is an important relation between divisors on X and line bundles on X. A line bundle L is
characterized by its first Chern class c¢;(L) = [L] € HY!(X) which is Poincaré dual to an algebraic
submanifold of codimension one, a divisor L € Ha,_2(X). In a coordinate patch U; the divisor is
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3. Calabi-Yau Spaces

defined as the zero of a meromorphic function f; such that on the intersection U; NUj, ¢;; = fi/ f; is the
transition function of the line bundle L. The trivial line bundle on X will be denoted by Ox. If H is
a hyperplane in P}, then the line bundle with Chern class mH on PP}, is denoted Opr (mH) = Opn (m).
The line bundle associated to the canonical divisor Kx is called the canonical line bundle X = O x (Kx).
In general, the line bundle associated with D will be written as Ox (D). Note that we will often confuse
the divisor D, its homology class [D], its Poincaré dual [D] and its representative and assume that it is
clear from the context which notion is appropriate.

As a further example take again the Calabi-Yau manifold X as a hypersurface in P};. The associated
line bundle is then Opr (—Kpr ). Such a line bundle is again a toric variety whose vertices are 7" = (v}, 1),
called the extended vertices. In terms of the gauged linear o-model in Section 2.5 the total space of this
line bundle is the space V of classical ground states (2.107), (2.111). For the computations described
in the following subsections it is more convenient to work with these extended vertices.

Toric geometry provides us naturally with a set of divisors. Each integral point v, i =1,...,pin
A* N Z"™ corresponds to an irreducible T-invariant divisor D;. For a Calabi-Yau hypersurface X we
will denote the restriction of these divisors to the hypersurface by the same letter D;. There are two
main classes of divisors in a Calabi—Yau threefold of our interest, those coming from the resolution of
singularities and those defining fibrations. We will discuss them in turn after a short overview over the
algebraic surfaces. But first we discuss the Mori cone and its intersection ring in order to be able to
compute the properties of the divisors from those of the Calabi—Yau hypersurface.

3.3.1. The Mori cone and the intersection ring

The parameters a; in (3.9) or in (3.17) can be used to describe ME™ (after subtracting those corre-
sponding to reparametrizations of P7}), but they form an affine space which must be compactified. This
is achieved via the secondary fan, the central object in the study of mirror symmetry of toric Calabi—Yau
spaces, which is roughly defined as follows [102], [85]. The main idea is to compactify MZ ™ such that
it becomes a toric variety where the torus action corresponds to the action of the U(1) gauge groups in
the gauged linear o-model. Let Z be the set of the one-dimensional cones of 3(A*) (i.e. those in (3.16)
together with the additional cones coming from the resolution of singularities in Section 3.3.3) and
=t = (EU{0}) x 1. Furthermore, if we denote by A,,_; the Chow group of Weil divisors modulo linear
equivalence then A(Z) = A,,_1 ® R coincides with the affine space of the a;. Then determine all regular
triangulations 7 of the convex hull ZF. The vertices of the simplices in 7 must be elements of 2+, and
regularity means that each of them contains the interior point #§. To 7 one can associate in a unique
way a cone C(7) [106], [107]. The cones C(7) are the maximal cones of the secondary fan, which is a
complete fan in A(E).

Its importance lies in the fact that it provides a convenient compactification of both M&™ and
ME™ In particular, it is such that the compactification of ME™(X) is essentially the same as the
compactification of M5 (X*) [85]. Furthermore, the latter contains the affine toric variety associated
to the Kéahler cone. From the physical point of view, the secondary fan “is” the phase diagram of
the gauged linear o-model. An example has been given in Figure 2.1. The different phases correspond
to the maximal cones C(7), i.e. the triangulations 7. The minimal triangulation, i.e. the one which
consists only of the five basic simplices corresponds to the Landau-Ginzburg orbifold phase. A maximal
triangulation, i.e. one which uses all the points of A* corresponds to a smooth Calabi—Yau phase.

The basic object to consider in this compactification is the following lattice, the so-called lattice of
relations among the vertices

p
L= {(zo, o lp) € ZPTD Lt = o} (3.21)
i=0

The secondary fan is then a rational polyhedral complete fan in Ly for the dual lattice LY. According to
the general construction of toric varieties, the complete fan defines a toric compactification of the torus
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3.3. Divisors and Curves in Calabi—Yau spaces

Homy (L, C*), which is our compactification of the affine space of a;’s. There is a natural non-degenerate
pairing Al(PE(A*)) x Lg — R which identifies this fan with the one in A(Z). Among the cones in the
secondary fan, there is a distinguished cone, called the Mori cone, whose geometric meaning is the dual
of the Kéhler cone of Py(a-). We assume that it is simplicial (for the non-simplicial case see [102]

and [85]) and denote the generators of the Mori cone IV .. 1M where 1k H?*(Psya), Z) = Rl
Then the Mori cone is L>g = Rzol(l) + ot Rzol(hl’l).
In order to determine the Mori cone we can use a particular maximal triangulation 7. In general this

triangulation is not unique. For a chosen 7 one proceeds as follows [108]. Consider every pair (S, S;)

of four-dimensional simplices in 7 which have a common three-dimensional simplex s; = S N S;. For
6 (k)
1

5k
i=1"1

v,

all such pairs find the unique linear relation »_ Z

= 0 among the six points 7} of S; U .S; in
which the lgk’l) are minimal integers and the coefficients of the two points in (S; U S;) \ (S N S;) are
non-negative. Finally, find the minimal integer 1(*) by which every [®!) can be expressed as positive
integer linear combination. These are generators of the Mori cone.

The Mori generators define the following linear relations

p
119D, =0 (3.22)
=0

where D; is an (overcomplete) basis of H? (Ps(ax),Z) given by the vertices /. These relations define
the ideal Ilin in the ring Q[Do, Dl, ceey Dp]

A primitive collection is a collection o of vertices that do not form a cone but is such that any subset
o' C o is a cone [109]. For any such primitive collection o = {v{ ,..., v} } we get a non-linear equation
for the divisors

D -...-D;, =0 (3.23)

These non-linear relations define the Stanley-Reisner ideal Zgg in the ring Q[Dg, D1, . .., Dp]. Moreover,
if the toric variety Px(a« is non-singular for every collection of k vectors o = {v}, ..., } which does
not contain or is not itself a primitive collection, we have

D -...-D;, =1 (3.24)
If the toric variety is singular then the equation is
1
! f|det(vy v )| (3.25)

Now let us turn to the description of the intersection ring A*(IPga«y,Z) which is isomorphic to
the cohomology ring H 2*(IP2( A=), Z) of the nonsingular toric variety Px(a-) in order to determine the
necessary topological data of Xa. In the case of toric varieties, it has a simple description in terms of
the invariant divisors D;, t =0,...,p

(@[DO, Dq,..., Dp]
Zsr + Liin

A*(Psaxy) = (3.26)
By the non-degenerate pairing AI(IP’E( A#)) X Lg — R we see that the dual of the Mori cone L\éo lies
in Al(IP’E(N)), the group of 1-cycles which is dual to A,_1(Px(a-)) over Q. In fact, according to the
construction of L>g, LY, is the Kéihler cone of the ambient space Ps(ax). We will denote the dual basis

to the generators [V ... 1) by Jy, ..., J,.
If D is a hypersurface in X with dim X = n, then the following standard restriction formula [110]
relates the intersection form on D to the intersection form on X

Diy-...-Ds, |, =Di-...-Di,_, - D| (3.27)

X
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3. Calabi-Yau Spaces

where D;, are some divisors on X on the right-hand side of (3.27) and their restrictions to D on
the left-hand side of (3.27). We apply this formula to the Calabi-Yau hypersurface in P. From the
p l(a)

Calabi-Yau condition we have —Kpg .., = Do = > ;_; ;"' D; and hence the intersection numbers (3.6)

can be written as

Kabc:_/ KPE(A*) 'Ja'Jb'Jc:Ja'Jb’Jc (328)
Psax)

where the symbol sz(m means to take the coefficient of the highest degree element of (3.26) with

)
the normalization determined by the requirement that it gives the Euler number x(Xa) from the top
Chern class ¢,(Xa) [102]. The toric part of the even cohomology HEY2(Xa, Q) may be described by

A*(Pgaxy)r/Ann([Xa]), where Ann([Xa]) = {v € A*(Px(a-))|[Xalv = 0}.
The Chern classes of X are computed using the adjunction formula [111]

P (1-Dy)
X) == 2
o(X) = 5 (329)
and we will frequently write c; instead of ¢;(X). Similarly, the Todd class of X is
1 — exp(—Dy) & D;
td(X) = .
== i (350

From (3.29) and (3.22) the topological numbers cg -J, in (3.7) can be determined. In addition, there
are useful relations [112] between the intersection numbers (3.28), the linear forms (3.7), the Euler

number (3.4) and the Mori generators 1\

1 Bl’l P
2l = g > < 1191&’) Kabe (3.31)

b,c=1 \1i=

1 ill’l P
X)= [ cn = = IRNYICR N 3.32
W= [ o 32(2 b 3:32)

If we describe the divisor D of the Calabi-Yau manifold X by an embedding ¢ : D — X then from
the associated exact sequence

0—>TD—’TX|D_>NX/D_)O (333)
and Nx,p = O(D)|p we compute
(1 +c1+cCo2 —‘ng)‘D = ((1 +Cq (D) + CQ(D)) . (1 + D))D (334)

where the subscript indicates that the intersection is to be performed on D. Together with the restriction
formula (3.27) we obtain

c1(D)=-D (3.35)
ci(Np/x)? =D* =ca(X) —c2(D) (3.36)
c2(X) - D+ D* = x(D) (3.37)

which gives the relation between the Chern classes of D and the topological numbers of X.
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3.3. Divisors and Curves in Calabi—Yau spaces

3.3.2. Classification of algebraic surfaces and some of their properties

We will outline here only some properties which are necessary to get a geometric picture of the divisors
in a toric Calabi-Yau manifold. For more details and other properties we refer to [113], [114], [98]
and [115].

The most important properties of an algebraic surface D are described by its topological and holo-
morphic invariants. The main topological invariants are its fundamental group (D, ), the Betti
numbers b; (D) and the intersection pairing on Hy (D, Z), in particular its signature. The most basic holo-
morphic invariants are the irregularity ¢(D) = h'(D,0p) and the geometric genus p, (D) = h?(D,Op).
Additional invariants are given by h''(D) and ¢;(D)? = K% where Kp is the canonical line bundle
of D. The latter is also an important object by itself. Finally, we will need the Euler character-
istic x(D) = >;(=1)"; = [, c2(D) and the holomorphic Euler characteristic x(Op) which by the
Hirzebruch-Riemann-Roch theorem (see (5.48)) is

X(D,0p) = 1—¢q(D)+py(D)
- /le(cl(D)2+02(D)) (3.38)
D

which is also known as Noether’s formula. Since in our case D is a divisor in X, there is a simple way
to compute x(Op) from the data of X. From (3.35) and (3.36) and (3.38) we find

x(0p) = %(QDB +c2-D) (3.39)

This means that we can compute either ¢(D) or py(D) from the toric data of X but not both. Therefore
we need more information which will be given in the remainder of this section.

A very useful way to get more information is the Lefschetz theorem for hyperplane sections [116]
which states that for an m-dimensional submanifold Y of P, m > 2 and a hyperplane H € P" such
that H NY is again a complex manifold, the following inclusion homomorphisms

H(YNHZ) — H(Y,Z) (3.40)
m(YNHZ) — m((Y,Z) (3.41)

are isomorphisms for 0 < ¢ < n — 2. From this it follows that if Y is a smooth complete intersection
of m — 2 hypersurfaces in P™ of degree dy, ..., d,;,—2 respectively, then 71(Y) = 0. This holds true for
general toric varieties. Applying this to the intersection of a T-invariant divisor D with the anticanonical
divisor X (the Calabi-Yau hypersurface) gives

q(D)=0 (3.42)

and pg(D) is determined by (3.38).

A divisor D is called nef if D - C > 0 for all irreducible curves C. A curve E on a smooth surface D
such that £ = P! and E? = —1 is called an exceptional curve. An algebraic surface D is minimal if it
contains no exceptional curves, i.e. all exceptional curves have been blown down.

Rational and ruled surfaces

The simplest surface D is the projective plane P2. It has c;(P?) = 3h, ¢1(P?)? = 9 and x(P?) = 3 where
h is a line in P2, Furthermore p,(P?) = ¢(P?) = 0.

A surface D is ruled if there exists a fibration 7 : D — C, where C is a smooth curve, such
that the generic fiber of 7 is isomorphic to P!. Every ruled surface over C = P! is of the form
F,, = P(Op1 ®Op1(n)) for some n > 0 and is denoted a Hirzebruch surface. Its Picard group is generated
by two elements, the class of the fiber f and the class of the zero section Cy with Cy-Cy = —n, f-f =0
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3. Calabi-Yau Spaces

and Cy - f = 1. There is another section Co, = Cy + nf satisfying C - Coo = n, Cy - Cs = 0 and
Cw - f = 1. The canonical class is given by Ky, = —2Cy — (n+ 2) f. The characteristic numbers of the
Hirzebruch surfaces are c1(F,)? = 8, x(F,) = 4 and p,(F,) = ¢(F,,) = 0. Note that Fy = P! x P!. A
rational surface is a surface that is birationally equivalent to P2. A minimal rational surface is either
P? or IF,, for some n # 1.

Let us now consider general ruled surfaces D whose base curve C'is a smooth curve of genus g. Their
Picard group is PicD 2 PicC & Z while the numerical equivalence classes are Num(D) =Z - f®Z o
where f is the fiber and o a section of 7. If we write O,(0) = 7*O¢(d)|, for some divisor d on C,
then Kp = —20 + 7*(K¢ + d). Thus if degd = d, then the numerical equivalence class of Kp is
—20 4 (29 — 2 +d)f and ¢1(D)? = —8(g — 1). The other invariants are x(D) = 2x(C), py(D) = 0 and
q¢(D) = g. Finally, given a minimal surface D such that Kp is not nef, then D is rational or ruled.

K3 surfaces

A K3 surface X is defined to be a surface with ¢(X) = 0 and Kx = Ox, hence ¢;(X) = 0. Its Euler
number is x(X) = 24, hence p,(X) = 1. It is the only two-dimensional Calabi—Yau manifold (apart
from the complex 2-torus 7% which has ¢(7%) = 2 and trivial holonomy group). Algebraic K3 surfaces
can be constructed as complete intersections of toric varieties in the same way as it has been described in
Section 3.2.1 for Calabi-Yau threefolds. They have been classified in [117]. Here we are only interested
in hypersurfaces in weighted projective spaces [118], in particular those of Fermat type for which we
can use the results of Section 3.2.2 in one dimension less.

The homology group Ha(X,Z) is equipped with the structure of a lattice via the intersection form
I53) Tt is even and integral [119]. By Poincaré duality it is unimodular and can be identified with
the lattice H?(X,Z). The Picard group Pic X is naturally identified with the sublattice M of algebraic
cycles in Ho(X,Z), called Picard lattice, of signature (1, p—1) where the rank p = rk M is given by (3.10)
for n = 3. The periods associated to these cycles vanish. The orthogonal lattice N = M~ of the Picard
lattice in H2(X,Z) is the transcendental lattice which is of signature (2,20 — p). We will denote the
restriction of 753 to N @ R by the same symbol. We decompose N = U L M* where U is the lattice
of the hyperbolic plane and has signature (1,1). If there is a K3 surface X* whose Picard lattice is
M* then X* is called the mirror surface to X [120]. Mirror symmetry in addition exchanges U with
H°(X,Z) ® H*(X,Z). This agrees with the mirror symmetry from toric polyhedra A, A* associated
with X = XA and X* = Xa» [117]. The ranks p(X) and p(X*) add up to 20 minus the non-toric
contributions in (3.11). The subspace M ® R of H?(X,R) corresponds to the Kihler deformations
while the subspace N ® R corresponds to the complex structure deformations of X [121]. The possible
lattices M and M* for hypersurfaces in weighted projective spaces have been studied in [122]. The
lattice M = (2n) = Z - e is generated by e such that 153 (e, e) = 2n.

Elliptic surfaces

An elliptic surface is a fibration 7 : S — C from a smooth surface S to a smooth curve C' of genus g
such that the general fiber is connected and the genus of all smooth fibers is one. Consider the sheaf
R7,0g on C. It can be shown [114] that it is actually a line bundle on C. We denote its dual line
bundle by L and set d = deg L. One can show [115] that d is non-negative and that if L is not trivial
then ¢(S) = g and p,(S) = d+g—1. On the other hand if L is trivial then ¢(S) = g+1 and p4(S) = g.
In both cases we have x(Og) = d. Suppose that all exceptional curves in the fibers have been blown
down and that F1, ..., Fy are the multiple fibers of 7 with multiplicity m;. The canonical bundle is then
Kg =7m*(Kc ® L) @ Os(Y;(m; — 1)F;). Furthermore K2 = 0 and therefore x(S) = 12x(0g). Since a
K3 surface can be an elliptic fibration we define properly elliptic surfaces to be those with Kg # 0.
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Surfaces of general type

Surfaces of general type are general in the same sense as are curves of genus > 2. One example of
such surfaces which will frequently appear in the examples below are complete intersections in weighted
projective spaces P of sufficiently high degree. Other examples are products (or more generally fi-
brations) of curves of genus g > 2 and ramified double coverings of P2. For this type of surfaces only
some inequalities are known [114]. We have ¢1(D)? > 0 and x(D) > 0 as well as ¢1(D)? + x(D) =0
mod 12. Furthermore there is Noether’s inequality py(D) < 3 ¢1(D)? +2 and the Miyaoka-Yau inequal-
ity c1(D)? < 3x(D).

There is a classification for these surfaces due to Enriques and Kodaira, see[114], [123], [115]. Let
P,(D) = dim H°(D, K3") be the n-th plurigenus. Thus P;(D) = py(D). For each of these surfaces the
Kodaira dimension k(D) is then defined as

(D) = min{k € Z|P,(D)/n" is a bounded function of n > 1} (3.43)

For example, it follows formally that if P,(D) = 0 for all n, then x(D) = —oo. It turns out that the
possible values of k(D) are —00,0,1,2. The classification is then given in table 3.1. We have only

k(D) | ¢(D) | py(D) | Kp | K% [ Surface type
s 0 0 >0 | > 0 | Rational surface
g 0 < 0| <0 | Ruled surface over a curve of genus g > 0
0 0 1 0 0 | K3
1 >0 | 0 | Properly elliptic surface
2 >0 | > 0 | Surface of general type

Table 3.1.: The (partial) Enriques-Kodaira classification of minimal algebraic surfaces

indicated the surfaces that will appear in our discussion.
Finally, let us discuss curves in a surface. Let C' be a smooth, irreducible curve on D. By the
adjunction formula it follows that
Kp-C+C-C
g(C) = Df +1 (3.44)
For a general, not necessarily smooth curve C, the arithmetic genus p,(C) is defined by the expression
on the right-hand side of (3.44).

3.3.3. Singularities and their resolutions

We will only consider weighted projective spaces P}, whose weights are relatively prime. If some subset
{w;|i € S} of the weights has a non-trivial common factor N then, due to the T action, the weighted
projective space P? has singular strata Hg = {z € P}|z; = 0 for i ¢ S}. In the case of our interest, the
singular locus of a Calabi—-Yau hypersurface X in (3.13) which is the intersection X N Hg consists of
points and curves. For singular points these singularities are locally of the form C?/Zy while the normal
bundle of a singular curve has locally a C2/Zy singularity [95], also known as cyclic quotient or Ax_1
singularity (see also [124]). Among the singular points one has to distinguish between isolated points
and exceptional points, the latter being singular points on singular curves or the points of intersection
of singular curves. The order N of exceptional points exceeds that of the curve. The situation for
isolated singular points has been discussed in great detail in [125].

Both types of singularities and their resolution can be described by the methods of toric geome-
try [92], [93]. The singularities are resolved by the process of blowing them up in the ambient space
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and taking the proper transform of X [111]. This smooth Calabi—Yau variety will be denoted momen-
tarily X. We will describe this explicitly in an example in Section 3.5.2. Each singular set leads to an
exceptional divisor. We will denote by E; and F; the proper transforms of the exceptional divisors on
X coming from the resolution of the singular curves and singular points, respectively. H will be the
proper transform of the hyperplane class on P? restricted to X. The Hodge number h'1(X) is then
equal to # exceptional divisors + 1. Furthermore, there are non-toric complex structure deformations

of X coming from the blow-ups of curves C with Zy singularities whose number is [96], [57]
B3l — p2 = g(N —1) (3.45)

where ¢ is the genus of C. The corresponding exceptional 3-cycles are seen as follows. For each of the
exceptional divisors F;, there is a map Hy(C) — H3(X) given by sending a one-cycle v of the curve C
to the three-cycle swept out by the fibers of E; lying over ~ [126].

In toric geometry singularities are described by cones o which are not basic, i.e. which can not be
generated by a basis of the lattice in which o lies. A standard result now states that a toric variety
Py, has only quotient singularities if ¥ is a simplicial fan, i.e. if all cones in X are simplicial. Given a
singular cone one resolves the singularities by subdividing the cone into a fan such that each cone in
the fan is basic. X has a singular curve precisely when A* has an edge joining two vertices v, v} with
N — 1 equally spaced lattice points vj,...,v3_; in the interior of the edge. The edges corresponding
to these lattice points correspond to toric divisors F; which resolve a surface S of Ax_; singularities
in P . Restricting to the hypersurface X, we see that there are N — 1 divisors F; in X which resolve
the curve C of Ay_; singularities. It can be shown [93], [96] that these divisors are locally the product
of a curve C' and a Hirzebruch-Jung sphere-tree [127]. If the order is N = 1 then the corresponding
exceptional divisor is a ruled surface, otherwise it is a blow-up at N — 1 points thereof. The genus g
can be determined as follows. By duality, the edge ©F = (1§, %) determines a two-dimensional face
O of A. The number of interior points of O4 is equal to g. We refer again to Section 3.5 for explicit
examples.

In the case of point singularities the T action on the normal bundle is (21, 22, 23) — (Az1, A%22, )\ng,)
with 1+ a+b= N, a,b e Z and A\ € C*. The singular cone is generated by e;, i = 1,2,3 in a
lattice basis n; = %(el + aes + bes), ny = ez, ng = e3). Then all endpoints of the additional vectors
generating the nonsingular fan must lie on the plane ), x;n; = 1. The exceptional divisors are then in
one-to-one correspondence with the lattice points inside the cone on this hyperplane. The corresponding
divisors can all be described by compact toric surfaces which have been classified [93]. These are P2
and the Hirzebruch surfaces F, and their blow-ups at T-fixed points. The resolution is in general not
unique if there are more than one lattice points inside this cone. In this case there are several ways to
triangulate this cone, each of which leading to a different resolution. The resulting smooth manifolds
are all topologically different with the same Hodge numbers but different intersection numbers.

3.3.4. Fibrations

For general properties of fibered Calabi—Yau threefolds see [128]. We summarize here some results
which will be useful in Section 3.5 and Chapters 5 and 6.

Elliptic fibrations

The conditions for a Calabi-Yau threefold to admit elliptic or K3-fibrations have been found in [129]
and are as follows: A Calabi-Yau threefold admits an elliptic fibration 7 : X — B if there exists an
effective divisor S such that

S-T >0 for all curves T’ (3.46a)
53 =0 (3.46b)
S%. F # 0 for some divisor F # S (3.46¢)
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3.3. Divisors and Curves in Calabi—Yau spaces

In order to have an elliptic fibration with a section one needs in addition the condition that S and F
can be chosen such that S? - F is a small number.

It is known [130], [131], [129] that for any elliptic fibration 7 : X — B of a Calabi-Yau threefold
X, the base B has at worst orbifold singularities. In fact, the singularities are more constrained than
that: together with the collection of curves ¥; which specify where the elliptic fibration is singular,
the singularities have a special property known as log-terminal. Under the assumption (3.1) the base
B has the following properties [132], [131]: If the singularities of B are resolved then B is either an
Enriques surface, or a blow-up of P? or of a Hirzebruch surface F,, with n < 12. Note that the latter
two appear also in the list of exceptional divisors coming from the resolution of point singularities in the
Calabi—Yau space, see Section 3.3.3. The divisor S may be identified with the restriction of 7 : X — B
on the section Cy, of F,. Hence, S itself is an elliptic fibration over C,. If we represent X in the
Weierstrass form [132] the discriminant divisor A C B is given by [119] A = 24Cy + (24 +12n) f. Hence
A-f=24, A-Cyx =24+ 12n and therefore x(S) =24 + 12n = c5 -S.

There are three types of elliptic curves given as hypersurfaces in weighted projective spaces which
can appear as generic fibers: P7 , [c] with (a,b) = (1,1), (1,2) or (2,3) and ¢ = 1 4 a + b. Note that
a, b, c are the same as those that appeared in Section 3.3.3 when discussing the resolution of the point
singularities. If Jp is the dual homology element to the cohomology class of the elliptic fiber and J;
are the remaining basis elements of Hy(X,Z) then the intersection numbers and linear forms can be
written as [133]

Jp - Ji - Jp = kJ; - Ty J% - Ji=kci(B)-J;  Jb=kci(B)? (3.47)
12
C2 Jz = 12]601(B)Ji Co -JB = k‘CQ(B) =+ k‘ (k — 1) C1(B)2 (348)
where B is the base of the fibration and on the left-hand side we integrate over X while on the right-
hand side we integrate over B. k is the number of sections of the fibration for the various fibers: k = 3
for (a,b) = (1,1), k =2 for (a,b) = (1,2) and k = 1 for (a,b) = (2, 3).

K 3 fibrations

Similarly, a Calabi-Yau threefold admits a K3-fibration 7/ : X — P! if there exists an effective divisor
L such that

L-T >0 for all curves I' (3.49a)
L?. D = 0 for all divisors D (3.49b)

Note that the latter implies that L3 = 0. We will assume that all the singular fibers of 7’ are irreducible.
In order to have both an elliptic and a K 3-fibration, the fibrations will be compatible if

S2.L=0 (3.50)

This implies that a generic fiber of 7’ is an elliptic K3 surface. We will denote the divisors defining
elliptic and K3 fibrations by S and L, respectively.

For K3-fibrations in weighted projective spaces given by Fermat polynomials there is a second way
to see the fibration structure. Let the weights of P4 be w = (1,1—1,lwb, lw}, lw)}). Then, by the Calabi—
Yau condition, the defining polynomial W (z) must have degree d = ld’ where d' = 1 + w}, + w} + w}.
Define the divisor L by a parameter A\ € P! and the hypersurface z; = (A\z;)'~! in X. By the scaling

properties of P , we can set 2, = z{. Then we have

1,1—=1, 1w} lw, lw)

W(z) = (1+ A%, @ /0D 4 @ we g A/ | d/wh (3.51)

3
/ ’
1wy, ws,w

4
a two-dimensional Calabi—Yau manifold by (3.13), i.e. a K3 surface. The base of the fiber is given by

But this is precisely the defining equation for a degree d’ hypersurface in P , which is in turn
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3. Calabi-Yau Spaces

the P! whose coordinate is A\. A similar argument can be made in order to exhibit an elliptic fibration
of a Fermat hypersurface. K3 fibrations of this type with { = 2 have been studied in [134] and with
general { in [135]. If there exists a K3 fibration then the reflexive polyhedron Ay of the K3 surface
L is embedded in the reflexive polyhedron Ax of the Calabi-Yau threefold X [102]. These toric K3
fibrations have been analyzed in detail in [136].

Since the Picard lattice Pic(L) of a K3 surface is an even integral lattice the intersection numbers

)

Kra = L - D, - Dy which are equivalent to the intersection form Iffg on Pic(L) are always even.

Combined with (3.49b) we see that
Kope € 27 (3.52)

if any of the indices a, b or ¢ corresponds to the divisor L.

3.4. Special Geometry

We have mentioned in Section 2.6 that M and MEFT are both special Kéhler manifolds. This
property is very important for mirror symmetry and understanding monodromies on the moduli space
M%%FT, so we are briefly reviewing it here. A Ké&hler manifold M is a Hodge manifold if and only
if there exists a line bundle L — M such that ¢;(L) = [J] where J is the Kahler form. If H is a
Sp(2h*! + 2, R) vector bundle over M and —i( | ) the compatible hermitean metric on H then M is
special Kahler [137] if, for some choice of H, there exists a IT € T'(M,H ® L) with the property that
J = 5-001og (—i(II[II)). The metric can be defined as —i(I[II) = —iIIFSWIT with () being the
standard symplectic matrix.

Equivalently, M is special Kahler if locally there exist complex projective coordinates z, and a

homogeneous, degree two holomorphic function F(z) which is related to the Kéhler potential K by

K = —log (—i (zaéaf — EaaaF)) (3.53)

The Kéhler potential K is related to the norm of II by K = —log||II||? = — log(—i(II|TI)). There is a

particular choice of coordinates for M, the special coordinates, defined by t, = z—g,a =1,...,h0 If
we define F(t) = z5 2F(2) then the Kihler potential is expressed by

K(t,t) = —logi (2(F = F) = (0aF + 0aF) (20 — Za)) (3.54)

and Fope = 0,050 F (t). The function F(t) is called the prepotential. Below, we will only work in these
special coordinates.

Special geometry also arises naturally in A/ = 2 supergravity theories in four dimensions [138].
Type IIB string theory compactified on a general Calabi—Yau manifold X has as its low-energy effective
theory an N = 2, D = 4 supergravity theory with h%!(X) + 1 vector fields coming from h?*!(X) vector
multiplets and the graviphoton and h'!'(X) + 1 hypermultiplets (including the dilaton in D = 4).
In type IIA string theory the identifications for A"! and h?! are reversed. The scalars in the vector
multiplets parametrize a special Kahler manifold. Hence its geometry is determined by the prepotential
Fc of complex structure moduli in the type IIB case, and by the prepotential Fx of Kéhler moduli
in the type ITA case. We have seen in Section 2.6 that Fc does not get any o' corrections. Since
the dilaton sits in a hypermultiplet, F¢ is exact already at string tree level [4], [139] and is therefore
entirely computable in terms of classical geometry. On the other hand, Fx gets quantum corrections
because in doing the perturbation expansion around the large volume limit, the expansion parameter
IZ—? is controlled by the Kéhler moduli which, being in the vector multiplets, are now varied. However
the dilaton is still in a hypermultiplet, so Fx is still computable at string tree level. For more details
about the form of Fo and Fg see [140]. In the first case the fibers of the bundle H over ME™ are
given by H3(X,Z). A given basis in H3(X,Z) will undergo a monodromy in Sp(2h'! + 2,Z) as it is
transported around singularities in ME™.
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3.4. Special Geometry

3.4.1. Periods

Another way of expressing special geometry is the following. Taking subsequent derivatives of the
holomorphic (3,0)-form Q with respect to the complex structure moduli a yields elements in H3Y @
H*'q¢ HY2 @ H%3. Since bs is finite, there must be linear relations between derivatives of 2 of the form
L = dn where L is a linear differential operator whose coefficients depend on the a’s. If we integrate
this equation over a closed 3-cycle, we will get a differential equation LII; = 0 satisfied by the periods
of Q. They are defined as

() = /F ) T; € Hy(X,7Z) (3.55)

In general we will get a system of coupled linear partial differential equations for the periods of €2, the
so-called extended A (or A*) hypergeometric system [141], [142]. These equations are also known as
Picard-Fuchs equations. They have only regular singularities. The period integrals for Xa« are the
most relevant quantities for the application of mirror symmetry to the determination of the quantum
geometry of Xa. For example [143],

n

1 1 dX;
II(a) = - 3.56
@ = e Jo, o U, (3.56)
is the period integral over the torus cycle Cy = {|X1| = |X2| = -+ = |X,,| = 1} in T. For other periods,

one has to analyze the differential equation satisfied by (3.56). The Mori cone L>o describes the affine
chart Hom(L>o, C*) of the compactification of ME™ given by the secondary fan A(Z) as discussed in
Section 3.3.1 with coordinates

k k
1) 1 ®

xp = (=1) k=1,...,r (3.57)

It has been proved in general [144] that the origin z; = - -+ = x,, = 0 provides a large complex structure
limit [145] and there we only have one regular period integral

r(1- nplP
wo(x) = (1 2 ko) " (3.58)

n€ZLy, i T (1 + 2k nklgk)>

the so-called fundamental period [146]. All other period integrals at the large complex structure limit
contain logarithmic singularities and can be generated by the classical Frobenius method [142].
Now we describe the local solutions of the Picard-Fuchs equations about the large complex structure

limit. To this aim let us introduce in (3.58) the indices p1, ..., pr
wolw,p) = 3 elnt p)at? (3:59)
nGZTZO
Using the basis Ji,-- -, J,. of the Kéhler cone of Ps; a+y and restricting them to the hypersurface Xa,

there is a convenient way to keep track of the hypergeometric series [147]

27

wo (m J ) — wol@) 1+ 3w + (3.60)
a=1

s

IR 1
to7 D Wan(@)Jady + Wabe(®) Ja ST

T ab=1 " a,be=1

where the products of the Ji’s are taken in the cohomology ring H{ e (Xa, Q). For the remainder of
this section we will drop the subscript toric. It’s crucial to choose the correct normalization of this

solution in order to obtain an integral, symplectic basis for the period integrals [148].
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3. Calabi-Yau Spaces

Let us introduce a basis 1, J,, JIEQ), J®) for He*"(X ) by the property

(1,J®) = -1 (Jas 1) = 60 (3.61)
with (4,B) = [ Xa AANB. For reasons to become clear in section 5.1 we also introduce a skew-symmetric

form on H®*(X,Q). First we consider an involution * which acts on H*(X,Q) by (—1)%. Using this
involution we define the Mukai form [149]

(0,8) = —/aA*ﬂAth (3.62)
X

= / (cwfs — a2fa + cufla — apfo) td X (3.63)
X

for a, 8 € H®*™(X,Q). Then there exists [148] a canonical symplectic basis of the skew-symmetric
form (3.62) on H*V**(X, Q)

1, JS, J® @ (3.64)

a

where

(J —ZAabJ(2> (td X)) (3.65)

with some rational constants A,, = Ap,. Corresponding to this basis, we have an integral symplectic
basis for the period integrals about the large complex structure limit through

J s I 4 D@y (3)
w(, 5 ) z)1 + Z DWwg(z)JS + Z D’ + DB (z)J (3.66)
where
D(l) - .
27”8 (3.67a)
DY = Ops + Y Ay DY (3.67b)
a=1
™ -J
DB — _ Z Kavc0p,0p,0p. — > %apgw (3.67¢)
a,b,c=1 a=1

and the notation D((ll)wo(x), for example, means an operation lim, .o D,(ll)wo(m,p). We define the
periods in the large volume limit to be the coefficients of J in (3.66), i.e. me (x) = Dt(f)wo(x) for
i =1,2 and w® (z) = D@ wg(z). If we evaluate the skew-symmetric form (3.62) on the basis (3.64),
we find that it has the standard matrix form of the symplectic form which we denote by I¥). Then
the hypergeometric series appearing in the coefficients of (3.64) are integral symplectic with respect to
1) [148).
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3.4. Special Geometry

3.4.2. The prepotential
The corresponding prepotential has the following form [112]

Ft) = ;100(136)2( o(@)D®wo (z +ZD wo(z) DPwo (2 )) (3.68)
= 3'a§1Kath atvte + = aglAabt aty — az:l 24{ a (3.69)
S x(X) + 0™
where
(1)
. QLD;O(;) (3.70)

is the mirror map. The t, are the coordinates on the Kahler moduli space while the xz; are the coordinates
on the complex structure moduli space. The period vector

T
I1(t) = (Mo, Mo, Wi g, Mty qpn) (2]—‘— ng ta, g?f, 1, ta> a=1,...,ht! (3.71)

is then obtained from (3.68)

Kabct tpte + co - Jyty
H(t) _ Kabctbt + fabtb +co- J (372)

la

The constants A, have to be fixed such that the basis for the period vectors is integral and symplectic.
The integer part is irrelevant as it can be absorbed by an Sp(2h!'! +2, Z) transformation due to the fact
that the periods are only defined up to such a transformation. The fractional part can be determined
as [112]

1
Aab = iKaab mod Z (373)

From (3.52) we see that if any index corresponds to a divisor L representing a K3 surface
Agpy =0 (3.74)

If TI(t) is a solution to the Picard-Fuchs equations at a point ¢, then by analytically continuing IT
around a singularity ¢; of the equations we arrive at a new solution at ¢. This must be expressible as
linear combination of the basis II: II — A, IT where the b3 x b3 non-singular matrix A;, characterizes
the monodromy around ¢;. If the equation has r singular points we obtain r monodromy matrices
Aty ..., As,.. The relation between the monodromy properties of the Picard-Fuchs equations and special
geometry has been studied in detail in [150].

As mentioned above, the (quantum) geometry of the Calabi-Yau manifold is encoded in the periods.
If we want to make use of the fact discussed in Sections 2.5 and 2.6 that we can relate the description of
the Calabi—Yau at the Gepner point to the one in the large volume limit we must have a way to translate
the periods from one point to the other. This can be done by analytic continuation as follows. (This is
the analytic continuation we referred to in Section 2.6.) We have introduced two sets of local coordinates
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3. Calabi-Yau Spaces

on the complex structure moduli space that are well-adapted to these two points, respectively. At the
Gepner point we have local coordinates 1;,i = 1,...,h%! defined in (3.19). Here and in the following
we restrict ourselves to the toric part H*(X,Z) of the cohomology H*(X,Z), see Section 3.2.1. At this
point there is a Zg monodromy A : (Y1,...,%5:.) — (aipy,...,a" ;1) induced by the discrete
quantum symmetry (2.119) where « is a dth root of unity and n,; are some definite integers depending
on the k; with ny = 1. We represent the action of the symmetry generator g on the toric part of the
even cohomology H®V*" (X, Z) = H*(X*,Z) by a bs x b3 matrix A(@), by = 2h11 42, which is determined
as follows. There is a basis of periods on the mirror manifold X*

@@ = (wy, w1, ..., @, 1) (3.75a)
defined by

(i) = wo(@F™ey)  k=1,...bs—1 (3.75Db)
which behaves under this monodromy as

0 1

=@ 5 Am(@ with A© = . (3.76)
0 1
g1 gy " Qg1 p Apapy

satisfying A? = 1. Here w(v) is the period obtained by analytic continuation of the fundamental period
wy at large volume; i.e. wy is the unique logarithm-free solution of the Picard-Fuchs equations. A(%) is
the matrix representing the monodromy A around the Gepner point in the Gepner basis. This choice
of basis is indicated by the superscript (G). The entries of the bottom row satisfy ag,; € {-1,0,1},i =
1,...,bs. Since bg(X) < d in general, the periods @y are not linearly independent. There are relations
between them which we will discuss shortly.

On_the other hand, in the large complex structure limit we have the local coordinates z;,i =
1,...,hYY defined in (3.57). In these coordinates the periods take the natural form (3.66)

o) = (wo,wgl) M) 53 (P (2) ) (3.77)

s Wi Wy W
They are related to (3.75b) by a basis transformation M,
o) = Mo@ (3.78)

In Chapter 5 we will need the action of A on the periods expressed in the large complex structure
coordinates, i.e. we need the monodromy matrix A = MA@ M~ in the large volume basis, the
latter being indicated by the superscript (L). Therefore we need to know M which can be obtained
by analytically continuing either set of periods to the other point. This can in principle be done as is
shown in Appendix A in the example P{ ; ,,4[12] but is very tedious especially for h'! > 2. Using
the insights of the study of D-branes on Calabi—Yau spaces [151], [152] it is however possible [153] to
reduce the computation to linear algebra. This is shown and explained in the example ]P"iz,&g’g[lS] in
Appendix B. These two examples are discussed in Sections 3.5.2 and C.1.3, respectively. In the process
of computing this analytic continuation we also obtain the relations among the periods @y mentioned
above, see (A.28) and (B.12).

Furthermore, we will also need the Mukai intersection form (3.62) which we denoted IX) in terms
of the basis (3.75) which is

T

19 = M= (MY (3.79)
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The extra Z; symmetry at the Gepner point allows us to express (@) as a polynomial (%) (g9) in the
generator g. This generator can be represented on H? (X*,Z) by a bs X by matrix obtained from the
d x d shift matrix satisfying ¢g¢ = 1 subjected to the relations satisfied by the periods. For explicit
examples see [154].

In the remainder of this section we consider the effect of two important monodromies in the Kéahler
moduli space. Let us consider the effect of the Peccei-Quinn symmetry making the replacement on the
period vector II(t) [105]

to — ta + 00 (3.80)

This induces a monodromy of the periods about the large complex structure corresponding to an integral
matrix S,

1 =67 Koo+ 15¢2Ja KL + AT
. 0 1 1K+ A -K
— 2 aa a a
I — S,II with S, 0 0 1 0 (3.81)
0 0 5, 1

where we have introduced the vectors (8,)p = 0%, (Kua)p = Kaap and (Ay)p = Aap as well as the matrix
(Ko)be = Kape. If we set R, = S, — 1 then we observe that

[Ra, Ry] = 0 (3.82)
RaRbRc = Kach (383)
R.RyR.Ry = 0 (3.84)

where Y is a matrix independent of a. These relations give a characterization of the large complex
structure limit independent of the choice of basis for the periods. The large complex structure limit
consists, in the general case, of h! codimension 1 hypersurfaces (i.e. divisors) in the (compactification
of the) moduli space given by the secondary fan meeting transversely in a point and such that the
monodromies of the period vector about these divisors correspond to the properties (3.82) to (3.84).

Another type of monodromies are those obtained by going around the discriminant locus in the
secondary fan. The discriminant locus generally consists of several components. The primary component
is the one which separates the smooth Calabi—Yau and the orbifold phases from the remaining ones.
In the example in Figure 2.1 it corresponds to the vectors (0,1) and (1, —2). This is also known as the
conifold locus. In the basis (3.77) the monodromy matrix takes the following form [104]

II—TI with T = (3.85)

O = O O
= O O O

O = O =
O O r O

where 1 is the A'! x A1 unit matrix.
The matrices S, and T will be reinterpreted in Section 5.6 as natural automorphisms of the
Grothendieck group Ky(X) of X.

3.5. Specific examples
There are 7555 weighted projective spaces P which admit transverse hypersurfaces. They have been
classified in [155] and [156]. We are interested in Fermat hypersurfaces with a few Kéahler moduli for

computational reasons. In table 3.2 we list all such Calabi-Yau manifolds with h''! < 6 together with
their Hodge numbers and the corresponding Gepner model. The purpose of this section is twofold.
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First, we want to apply the concepts and methods of Sections 3.2 to 3.4 explicitly to some examples.
Second, we want to introduce the families of Calabi—Yau hypersurfaces which will be used in the context
of the study of D-branes in chapter 6. Furthermore, this section together with Appendix C can also
serve as a reference for the toric data of these Calabi—Yau manifolds.

We will now discuss the geometry of some of these spaces more closely. The examples in table 3.2
can be grouped into sets of families having similar geometric properties. The families 1 to 4 do not
meet the singularities of their ambient space and therefore only possess one Kéhler modulus which is
the one inherited from the ambient space. They will be briefly discussed in Section 3.5.1. Then the
families 5, 11 and 20 are K3-fibrations with fiber P$ , ; ;[4] while 6, 13 and 25 are K3-fibrations with
fiber IP"%_M,P,[G]. These are the only one-parameter K3 Fermat hypersurfaces. The geometry of these
families will be described in detail in Section 3.5.2 and Section C.1. Next, the families 9, 10 and 15 are
elliptic fibrations which are not K3-fibrations, all with a IP? base, and with fibers P{ | ;[3], P§ | 5[4] and
IP? , 3[6], respectively. Their properties are studied in Section C.2. The families 17, 21, 23 and 26 are
also only elliptically fibered but will not be discussed in detail. The families 14, 16 and 18 are both K 3-
and elliptically fibered over the Hirzebruch surface Fy. We will explain their geometry in Section C.3.
The families 22 and 24 also admit both an elliptic and K3 fibration, but will not be studied further.
The remaining ones, 7, 8, 12 and 19 do not have a fibration structure and are not discussed.
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No. | Family X Gepner model | A%t | pLL | p12 | p12
1 Pt 111100 (3,3,3,3,3) 1 1 [ 1011 101
2 PT, 1.1.0[6] (4,4,4,4,1) 1 1 [ 1031103
3 Pf 111408 (6,6,6,6,0) 1 1 [ 149 | 149
4 | Pi,,95010] (8,8,8,3,0) 1 1 [ 145 ] 145
5 P11 02.2[8] (6,6,2,2,2) 2 2 ] 8 | 83
6 | Plio06[12] [ (10,10,4,4,0) | 2 2 128 126
7 | Ploosall?] (10,4,4,2,1) 2 2 | 74 | 70
8 | Pfyq,,[14] (12,5,5,5,0) 2 2 122 ] 107
9 | Pli160018] [(16,16,16,1,0) | 2 2 | 272 272
10 [ P, 136[12] [(10,10,10,2,0) [ 3 2 [ 165 ] 165
11 [ Pi,333[12] (10,4,2,2,2) 3 3 169 | 63
12 | Pl3335[15] (13,3,3,3,1) 3 3 75 | 63
13 | Ply330[18] (16,7,4,4,0) 3 3 199 ] 95
14 | Pl og10[24] | (22,22,10,1,0) | 3 3 | 243 | 242
15 | P{,13309] (7,7,7,1,1) 4 2 [112 ] 112
16 | P} 124816] | (14,14,6,2,0) | 4 3 [ 148 | 147
17 [Pl 99.10.1530] [ (28,13,13,1,0) [ 4 4 12081195
18 [ P1,,44012] | (10,10,4,1,1) | 5 3 | 101 ] 100
19 [ Pl 454012] | (10,10,2,2,1) | 5 2 | 89 | 89
20 | P} 4555020] (18,3,2,2,2) 5 5 | 65 | 53
21 | Pl131015[30] | (28,28,8,1,0) [ 5 4 | 251 | 251
22 | Pl 5 31018(36] | (34,16,10,1,0) [ 5 5 | 185 | 182
23 | Plaas.10[20] [ (18,8,8,2,0) 6 4 1207 116
24 | PT,5610024] | (22,10,6,2,0) | 6 5 | 114 | 111
25 | Plga412[24 | (22,6,4,4,0) 6 5 90 | 84
26 [ Pl331401[42] [ (40,12,12,1,0) | 6 6 | 180 | 168

Table 3.2.: Fermat hypersurfaces with Al < 6.




3.5. Specific examples

3.5.1. The one-parameter families

The family P{ , ; ; ;[5] = P*[5], also known as the quintic in P* has served as the most important Calabi-
Yau manifold because it is the simplest non-trivial Calabi—Yau space. In [104] Candelas et al have put
the mirror symmetry conjecture to work for the first time by explicitly computing the prepotentials
on both sides of (2.124) and calculating the instanton contributions. It was also the quintic for which
Douglas et al. [5] started the study of D-branes on Calabi—Yau spaces as will be explained in more
details in Chapter 6. The other one-parameter families were explored from the point of view of mirror
symmetry in analogy to the quintic in [157] and [158]. The cohomology for these models is generated
by the restriction of the hyperplane class H of the ambient weighted projective space. Using (3.24),

(3.23), (3.28), (3.29), (3.37), (3.38) and (3.42) yields
H? = co-H = 50 x(0g) =5 pg(H) =4 for P14 1.1[5] (3.86)
H?*=3 co-H =42 x(Om) =4 py(H) =3 for P 11 5[6] (3.87)
H3 =2 co-H = 44 x(Om) =4 pg(H) =3 for P 11 48] (3.88)
H3 =1 co-H =34 x(Og) =3 pg(H) =2 for P11 55[10] (3.89)

The families P} | ; 5[6] and P{ ;| 4[8] can be described as triple covering of P* branched over a
sextic and a double covering of P? branched over an octic, respectively [74]. These descriptions can be
useful for studying vector bundles on these Calabi-Yau hypersurfaces by relating them to bundles over
P3. The case of rank 2 vector bundles on a double covering of a P? branched over a quartic has been
extensively studied in [159]. The method used there can be generalized to the octic case, however it
seems as if one gets only results for non-generic octics.

Let us explain briefly the Kahler moduli space in these examples [104]. The affine one-dimensional
complex structure parameter space of the mirror X* admits a torus action which can be used to
compactify it and obtain a P!. The manifold degenerates however at three particular points which
correspond to the regular singular points of the Picard-Fuchs equation for the periods w: At ¥ = 0
there is a Z4 singularity which can be removed by going to the d-fold cover of the moduli space. At
1) = 1 there is the conifold singularity where one three-cycle shrinks to zero. And at @ = oo the
manifold degenerates to five P3’s intersecting one another in one point. In the Kihler moduli space
of X they correspond to the Gepner point, the conifold point and the large volume limit, respectively.
This example can serve as a prototype for the general structure of such moduli spaces.

3.5.2. The family P}, ,,4[12]
General description of P{ | , , [12]

The geometry of this family has been thoroughly studied in [105] and [142]. In the first part of this
subsection we follow closely [105]. In the second we will translate the geometry into the combinatorial
data of the corresponding toric variety. The purpose of this redundant description is the following.
For more complicated families having, say h'*' > 2, it is straightforward to compute all the topological
properties. However, these are given as pure numbers and it is generally difficult to recognize known (and
simple) topological and geometric structures. Therefore it is useful to have a geometric understanding
of the same properties, as well. In the Appendix C we have only collected the toric data for the other
families that have been investigated in order to study D-branes on them. In many cases one will have
to appeal to the geometric picture in order to get the relevant information. Due to lack of space we
restrict ourselves to show this geometric picture explicitly only for the following family.

Consider the Calabi-Yau threefold X which is obtained by resolving the singularities of degree twelve
hypersurfaces X C Pi‘71727276. A typical defining polynomial for such a hypersurface is

W(2) = 212 4+ 232 + 25 4+ 28 + 22. (3.90)
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3. Calabi-Yau Spaces

2 ~

Following the general discussion in Section 3.3.3 the singularities occur along the surface P5 5 5 = IP’%L3
defined by z; = z5 = 0, where there is a curve C of A;-singularities which is described by

21 =22 =0, Z+ 2 +22=0 (3.91)

In general it will be a smooth cubic curve in P}, 5 which has genus go = 2 [160]. We desingularize

by using an auxiliary P! with coordinates (y1,y2) and define the blow-up P* C P11 526 X P! by the
equations

YiZj = YjZi, ,7=1,2

The exceptional divisor is just P%’lﬁ x P!, where the two projective spaces have coordinates (z3, 24, 25)
and (y1,y2) respectively. The proper transform of a general degree twelve hypersurface X is seen to
intersect the exceptional divisor in a surface defined by a polynomial g(z3, 24, 25, Y1, y2) which is sextic
in the z’s and linear in the y’s. The fibers of the projection of this surface to the sextic curve C' C IP’%LB

are lines; thus the desingularized Calabi—Yau manifold X contains a ruled surface with C as its base.

There is a linear system |L| [111] on X generated by polynomials of degree one (i.e. by z; and z2).
Every divisor in |L| is the proper transform on X of the zero locus of such a polynomial on X. These
divisors are described by means of a parameter A € P! and noting that the weights w; are of the form
discussed in Section 3.3.4 with [ = 2 the equation of the proper transform of L becomes that of a surface
of degree six in ]P):il’l’?)

A+ + 28 +254+22=0 (3.92)

Note that this is precisely of the form (3.51). Thus, the linear system |L| is thus a one-parameter family
of degree six K3 surfaces. In other words, this linear system projects X to P! with the fibers being K3
surfaces [111]. Note that any two distinct members of |L| are disjoint, i.e. L-L = 0. There is a second
linear system on X which we denote by |H| that is generated by polynomials of degree two (i.e. by
linear combinations of 27, 2129, 23, z3 and z4). The divisors in |H| are total transforms on X of the zero
locus on X of the corresponding polynomial. A typical polynomial will have non-zero coefficient on zs,
and allows one to solve for z5 in terms of the other variables, producing a proper transformed equation
which defines a surface of degree twelve in P}, , 5. This is a surface of general type. These two linear
systems are related to each other as follows. If we look at |2L|, the quadratic polynomials in z; and zs,
we get a subsystem of |H| which can be characterized by the property that the polynomials from |2L]
vanish on the singular curve C. Interpreted on the resolution X, this means that the total transform
of the zero locus of such a polynomial has the form 2L + E where 2L describes the proper transform
and FE is the exceptional divisor. Hence, we have

|H|=|2L + E| (3.93)
We will need the intersection products of these divisors. Since L - L = 0, we automatically have
H-L*=0, L*=0 (3.94)

Since |H| defines a birational map on X whose image has degree four (the number of common intersection
points of three members of |H|), we have

H3 =4 (3.95)

When we restrict the linear system |H| to one of the K3 surfaces L, we get a quadric linear system on
L. Tt follows that

H?>.L=(HNL)-(HNL)=2. (3.96)

52
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This tells us that the Picard lattice of L is
Pic(L) = (2). (3.97)

The intersection numbers with F can be obtained by replacing H by E + 2L in the above which leads
to

E3=-8 E?.L=2 E-L>=0,

E?. H=-4, E-H?2=0, H-E-L=2 (3.98)

Next, we consider two classes of some 2-cycles on X. The first class is [, the fiber of the ruling £ — C.
One can identify its cohomology class by noting that H N E consists of two fibers lying over the two
points of intersection of the hyperplane with C' so that

1 1
l:iH-EzthH.L (3.99)

The second class is the intersection of general members of |H| and |L|,

1
h=3H-L (3.100)

The intersection relations between linear systems and curves read

L-1=1 L-h=0 (3.101)
H-1=0 H-h=1 (3.102)

Finally, from (3.37) and the topological properties of the surfaces E and L given in Section 3.3.2 we
find for the second Chern classes

co-H=52,  ¢y-L=24, c¢y-E=4 (3.103)

Toric description of P}, , , [12]

According to (3.16) the extended vertices of the dual polyhedron for this family are

i=(0 0,0 0, 1) vf=(-1,-2-2-6, 1) =( 1, 0, 0, 0, 1)
7Z=(0 10 01 z=(0 01,0, 1) z=(0 0 0 1, 1) (3.104)
7 =( 0,-1,-1,-3, 1)

where 7§ = %(Df + 3) corresponds to the resolution of the A; singularity coming from the weights 2, 2

and 6 as explained in Section 3.3. The dual face O3 to the face OF = (¥}, 73) is spanned by (3.15) U5 =
(-1,5,-1,-1), oy = (—1,—1,5,—1) and 5 = (—1,—1,—1,1) and has two interior points (—1,1,0,0)
and (—1,0,1,0). Thus the genus of the singular curve is g = 2. We have explained in Section 2.6 that
such a singularity corresponds to a phase boundary. In the present case this is the horizontal line in
Figure 2.1.

The vertices (3.104) satisfy the relations (3.22)

vy +oy =205 = 0 (3.105a)
—60) + U3 +0; + 305 +75 = 0 (3.105b)

which correspond to the D-term equations in (2.110) of the gauged linear o-model. In this example
there is a unique maximal triangulation and it turns out that the Mori generators can be read off
from (3.105)

M=o, 1,1, 0, 0, 0,~2) I®=(-6, 0, 0, 1, 1, 3, 1) (3.106)
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3. Calabi-Yau Spaces

In general, one has to work through the algorithm given in Section 3.3.1 to obtain the Mori generators.
Observe that these are precisely the U(1)? charge vectors (2.108) of the example we studied in the
context of the gauged linear o-model in Section 2.5. It is useful to arrange this information in a table
as follows:

C, Oy
Dy O 0 0 0 1|-6 0 K=-6H
D, -1 -2 -2 -6 1| 0 1 L
Ds 1 0 0 o0 1| 0 1 L
D o 1 0 o0 1| 1 0 H (3.107)
D, o o 1 o0 1| 1 o0 H
Ds o 0 o0 1 1| 3 0 3H
Ds 0 -1 -1 -3 1| 1 -2 E=H-2L

hool

The left-hand side of the vertical line is simply an arrangement of the set = of the vertices 7} and
we have labelled the corresponding T-invariant divisors by D;. Let us now explain the right-hand
side which corresponds to the two Mori generators written as column vectors. The row vectors
(—6,0),(0,1),(1,0),(3,0), (1, —2) span the secondary fan A(Z). We can drop (3,0) since it spans the
same edge as (1,0) and replace (—6,0) by (—1,0) for the same reason. These are precisely the bound-
aries of the phases in figure 2.1 we found when analyzing the low-energy effective theory of the gauged
linear o-model in Section 2.5. From the discussion above we see that the divisor L corresponds to (0, 1),
the divisor E to (1,—2) and the divisor H to (1,0). We also see that there are linear equivalences
Dy ~ Dy and D3y ~ Dy and 3D4 ~ Ds. We have renamed the divisors according to their geometric
meaning as explained at several places in Section 3.3.

The Mori generators (¥, ¢ = 1,2 are dual to curves in Ho (X,7Z) which we denote by C, in the top
row. The entries on the right-hand side then correspond to the intersection numbers of these curves
with the divisors D;, or E, H and L. From (3.101) we can identify [(Y) with [ and [® with h which
explains the bottom line. Furthermore, the classes J; = H and J, = L are dual to the Mori generators
and hence generate the Kédhler cone. It follows that the Kéahler cone corresponds to the first quadrant.
This is in complete agreement with the corresponding phase in the gauged linear o-model being the
geometric or smooth Calabi-Yau phase.

Next, we want to compute the intersection ring of X. Applying the method from section 3.3.1 we find
that there are two primitive collections, {v;,v5} and {v3, v}, vd, ¢}, and by (3.23) the Stanley-Reisner
ideal is

Isp={Dy-Dy=L*=0,D3-Dy-Ds5-Dg=3H*—6H® L =0} (3.108)

Note that the primitive collections also determine the excluded set F' in (2.111). This allows us to
compute the intersection ring (3.26) of the ambient toric variety P{, 5, from (3.108) and (3.25)
applied to Ds, ..., D5 as follows

L*=H-L’=H*-L*=0, H*-L=3%, H'=% (3.109)

The fractional intersection numbers indicate that we have not blown up the codimension one singular-
ities. The Calabi—Yau hypersurface X is a section of the anti-canonical bundle, i.e. the anti-canonical
divisor —K = Zle D; = —Dy which is indicated in the first row of the table. By using the restriction
formula (3.27) we find

I?=H -L*?=0, H?>. L=2, H3=4 (3.110)

which agrees with the results from the previous subsection and further justifies the identification of the
divisors D; with E, H and L.
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From the table (3.107) and the intersection ring (3.110) we can get additional information about
the geometry of these divisors. First we can apply the criteria for elliptic and K3 fibrations. The only
effective divisor whose triple self-intersection is zero are multiples of L (which define the K3 fibration)
and of 3H —2L. But if we take the curve [ then we find that (3H —2L)-l = —2 hence condition (3.46a) of
the elliptic fibration is not met. From (3.110) we see that the divisor L does not satisfy condition (3.46¢).
Hence X is not elliptically fibered. On the other hand, L does satisfy conditions (3.49a) and (3.49b)
so X is K 3-fibered in agreement with what we discussed above. We can also study the geometry of E.
Since [ - E < 0, [ is contained in F. Furthermore, from the last line of the table, we have a fibration
T: F — ]P’fls. The base intersects X in a curve C' of genus 2. From [ - Dy =1-D3 =1-D4 =0 we
conclude that [ NP%; = pt. Hence [ is the fiber of m. The restriction of E to X is therefore a ruled
surface over the curve C.

Finally, we need the topological and holomorphic characteristics of the surfaces £, H and L. The
second Chern classes are obtained from the degree 2 term in the expansion of (3.29) as well as from
the intersection ring (3.110) and agree with (3.103). The Euler characteristics can then be computed
from (3.37) and are

X(E) = -8 x(L) = 24 X(H) = 56 (3.111)
The holomorphic Euler characteristic can be calculated from (3.38)

() = -1 X(Or) =2 X(Om) =5 (3.112)

Now, in order to compute py(D) and ¢(D) the toric data is not sufficient, we need to know more. E is
a ruled surface over a curve of genus 2. From Section 3.3.2 we find py(E) =0 and ¢(F) =3. H and L
are both T-invariant divisors and we can use (3.42) to obtain ¢(H) = ¢(L) = 0 and by (3.38) py(H) =4
and pg(L) = 1. The latter agrees with the fact that L is a K3 surface, see Section 3.3.2.

3.6. Nested moduli spaces

In [105], [142] and [161] it was observed that many Calabi—Yau families are birationally equivalent to
a different Calabi—Yau manifold when restricted to specific codimension one subspaces in the Kahler
moduli space. These are defined by those singularities of the Picard-Fuchs equations where the conformal
field theory and therefore the Calabi—Yau space becomes singular. This has been briefly discussed at
the end of Section 2.5. We have mentioned there that a singularity occurs if the Kéahler class approaches
a face of the Kahler cone of X or, in other words, a phase boundary. Each face of the K&hler cone
determines a collection of holomorphic 2-spheres whose area shrinks to zero as the face is approached.
These 2-spheres can be contracted to points at the expense of introducing singularities into the new
space X’. Due to non-perturbative effects the string theory is still well-behaved at these points [4].

There are two cases in which we are interested. In the first case, only a finite number of 2-spheres
on X are contracted by this process. This is the mirror description of the conifold singularity [4], [55].
Consider the example P{ | 5, 5[12] given in Section 2.5 and further studied in Section 3.5.2, now using
the language of Mori generators of Section 3.3.1. The conifold transition corresponds to contracting the
curve ! = 1) which is dual to the face given by L.

In the second case, a collection of divisors is contracted to a smooth curve. This is precisely the
inverse process of the resolution of singular Zy curves discussed in Section 3.3.3. It can be shown [57]
that in the example above, this corresponds to approaching the phase boundary determined by H, i.e.
contracting the Mori generator (V). In both cases, the transition from X to X’ can be studied in detail
by analyzing e.g. the Picard-Fuchs operators or the periods.

In general, denote the two spaces in question by X = Pi[d] and by X' = P4,[d']. A simple
interpretation of the contraction X — X’ is given in terms of toric geometry [108], [102]. Their reflexive
polyhedra are nested into each other: A*(w’) C A*(w). This nesting phenomenon is ubiquitous among
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Figure 3.1.: The secondary fans of X =P} 3 5 ¢[18] and X' =P}, ,, [12].

the reflexive polyhedra and has the following implications for the Kéhler and complex structure moduli
spaces of the manifolds X, X'.

A (w') € &"(w) = Alw) € Aw)
— MEEI(X) € MEETT(X),  MEPFT(X) € MECT (X)) (3.113)

We will now discuss this inclusion of Kéahler moduli spaces in detail the example of X = P{ , 3 5 ¢[18]
discussed in Section C.1.3 and X’ = P} | 5, [12]. The secondary fan describing the Kihler moduli space
(see Section 3.3.1) of X has dimension three, therefore we project its real part onto a sphere. This is
displayed in figure 3.1. Let us explain in detail the information contained in this figure. We start by
noting from (3.107) and (C.24) that the toric polyhedron A*(1,1,2,2,6) is contained in A*(1,2,3,3,9)
because they differ only by the vertex v* = (=2, —3,—3,—9). Next, we determine the triangulations of
A*(1,2,3,3,9) and find eight of them, one of them being maximal, another one being minimal. Using
the algorithm given in Section 3.3.1 the generators of the Mori cone of X, IV, 1®) and I©®) are computed,
the result is also contained in (C.24). The row vectors of the right-hand side of the vertical line in (C.24)
are drawn in figure 3.1 as lines starting from the origin and ending on the sphere, and are labeled by the
corresponding divisor. Note that the vertex v* corresponds to the divisor D;. By applying the method
of [106], [107] to associate a maximal cone of the secondary fan to a triangulation we find the following
maximal cones: (0,H, Dy, L), (0,Dy,L,K), (0,L,K,Ey), (0,H,FE,L), (0,H, Ey, Es), (0,H, D1, E5),
(0, Es, D1, K) and (0, K, E7, Es). The maximal triangulation corresponds to the cone spanned by H,
L and D; emphasized back on the left which contains the Kéhler cone (0, H, L, Jo = Dy + H). This
contains the large volume limit as deep interior point which we have indicated by an arrow pointing
from the sphere on outwards. The minimal triangulation corresponds to the cone spanned by K, E;
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and Fy emphasized in the front on the right. This cone contains the Gepner point which is indicated
by another arrow.

Recall that the Mori cone generates the lattice of relations L for X and L’ for X’. The Mori cone
of X’ can be obtained from the one of X by restricting the latter to the sublattice L' C L. The Mori
generators of X’ are then related to those of X by IV = 1) 412 and 1" = [®), We see that in
this contraction the entries corresponding to K, H, L and E5 remain unchanged. Hence, if we identify
E5 in X with E in X', we expect that the secondary fan of X’ given in figure 2.1 will be contained
in the one of X. To confirm this, we need to take into account that the topology of the divisors H
in X and X’ is different. We noted, however, in Section C.1.3 that the divisor Jo in X has the same
topological properties as H in X'. We therefore identify the secondary of X’ as the two vertical half-
disks emphasized in figure 3.1. Unfolding them reproduces precisely the secondary fan in figure 2.1.
From the discussion in Section 2.5 we know where the large volume limit and the Gepner point of X’
are and we have indicated them again by arrows pointing outwards. It is important to note that the
large volume limit of X’ is contained in the boundary of the Kéhler cone of X and that there is a similar
relation between the Gepner points of X and X'.

We will return to this picture in Section 6.4.5 when we discuss the D4-branes wrapping these divisors.
As a different kind of inclusion relation it has been observed in [102] that the dual polyhedron A% ,(w’)
for some K3 hypersurface L sits in the polyhedron A*(w) for a Calabi-Yau hypersurface X« (,) where
w and w’ are related as in (3.51). In this case Xa«(y) is a K3 fibration with fiber L as discussed in
Section 3.3.2. This observation has been studied in detail in [162].
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4. Boundary Conformal Field Theories

D-branes are defined to be objects on which open strings can end. As often in string theory, there are
two descriptions for these objects, one from a geometric point of view and another in terms of conformal
field theory. In this chapter we will focus on the latter and describe D-branes in the conformal field
theory description of the Calabi—Yau manifold, namely the Gepner model introduced in Section 2.4.
The geometry of D-branes will then be the subject of chapter 5. In order to give such a description
we need to introduce boundaries into the conformal field theory which leads to so-called boundary
conformal field theories.

4.1. Generalities and Definitions

A conformal field theory on a Riemann surface with a boundary requires specifying boundary conditions
on the operators. For non-linear o-models these conditions can be derived by imposing Dirichlet and /or
Neumann boundary conditions directly on the o-model fields. For more general conformal field theories
such as the Gepner model we do not have a Lagrangian description, so the construction, classification
and interpretation of boundary conditions is not as straightforward.

If the conformal field theory has a chiral symmetry algebra A(= A = Ag) one may simplify the
problem by demanding that the boundary conditions are invariant under this symmetry. We start with
a rational conformal field theory which have a finite set Z of (classes of) irreducible highest weight
representations V;, j € Z. The Hilbert space of the bulk conformal field theory is decomposable into a
finite sum of irreducible representations of two copies of A, H = P ;.5 N7V @ V; with the multiplicity
Nj; € N of the left and right copies of A. If x; is a character of A, then S;; is the matrix representation
of the modular transformation S : 7 — —1/7

Xi(9) =Y Sijx;(d) (4.1)
jez

27i

where ¢ = €2™7 and § = e~ "+ . The matrix S satisfies ST = §, ST = §—1, (Si;)* = Si=j = S+ and
S% = C where C is the conjugation matrix defined by C;; = &;;-. Here i* denotes the representation
conjugate to ¢ under some involution of 7, e.g. complex conjugation. The representations V; define the
fusion algebra

Vix V=Y Ni*Vi (4.2)
k

where the fusion coefficients Nl-jk € N satisfy the Verlinde formula [163]

SuSii (Sw)*

k_ il 951 Pkl

Nij _E T (43)
leZ

The Virasoro algebra is contained in A and must be preserved. Let the boundary be at z = Z in some
local coordinates on the Riemann surface corresponding to the half-plane. Reparametrizations should
leave the boundary fixed, so we must impose [164]

T(z) =T(2) at z =72 (4.4)
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4. Boundary Conformal Field Theories

In other words, no momentum flows across the boundary. If the remaining symmetry algebra is gen-
erated by chiral currents W () of half-integer or integer conformal dimension h,., then the boundary
conditions are more general [165], [166], [167]

W) =W et atr=z (4.5)

where (2 is an outer automorphism of .A. The action by € is allowed since there is no equally fundamental
meaning of W (z) = W(2) as in the case of the energy-momentum tensor in (4.4). We can conformally
map the (punctured) half-plane to an infinite strip. Due to the boundary conditions, the Hilbert space
of states on the boundary decomposes on irreducible representations of a single copy of A according to
Hpa = P nia”Vi with a new set of multiplicities n;,” € N, called annulus coefficients. Here, a and
[ label some boundary conditions on the left and right boundary of the strip, respectively. Note that
these multiplicities satisfy nioP = nixg<.

Next, we consider a one-loop diagram in the open string channel, i.e. a conformal field theory on an
annulus. By world-sheet duality this can also be studied in the closed string channel where time flows
from one boundary to the other. The boundaries appear as initial and final conditions on the path
integral and are described in the operator formalism by coherent boundary states [168], [169]. By a
conformal mapping and world-sheet duality, (4.4) and (4.5) become conditions on the boundary states

lo)a

(Ln—L_y)]a)ye = 0 (4.6)
(i = (fa (W) e = 0 (4.7)
The solution to these conditions are linear combinations of the Ishibashi states [170], [171]
iNa=>Y_li,N)®UQ,N) (4.8)
N

Here |i) is a highest weight state of the chiral algebra A, the sum is over all descendants of |i); and
U is an anti-unitary operator with U[7,0) = [7*,0) acting only on the right-moving generators as
UWZ)UT = (fl)h’“Wff). The Ishibashi states are normalized such that o((j||j')a = 0,;,51;. In terms
of this basis, a boundary state |a)q can be expanded as

(4.9)

where £ = {j € Z|j = w(j), Nu(5;7 # 0}. One defines an involution o — a* on the boundary states by
Yo = Y = (1/)&)* and the conjugate boundary state [166]

LV
(8] = (1 (4.10)
il = i

World-sheet duality requires that calculations in either channel give the same result. This gives
powerful restrictions on possible boundary states. In the closed string channel we find for the tree-level
propagation of a closed string from a boundary state |a)q to a boundary state |5)q

Zga( ) <ﬁ|q2(Lo+Lo |Oé Q= Zw] (11[15) XJ(qN) (411)

S .
jEE Lj
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with ¢ = e~47% where L and T are the length and the circumference of the cylinder, respectively. In
the open string channel we find for the one-loop evolution of an open string in the Hilbert space Hgq

Zgalq) =Y nig®xi(q) (4.12)
i€T
with g = e L. Cardy required that after a modular transformation the two expressions should be the
same [164] and obtained a fundamental equation, referred to as the Cardy equation

nig® =y
jeE

In the following, we assume that the boundary states |a)q in (4.9) are orthonormal and complete [172], [173].
The latter implies that the number of boundary states is equal to the number of independent Ishibashi
states and is equal to |£]. One can show that the matrices (ni)aﬂ = n;,” form a representation of the
fusion algebra [172], [173]

;; vl (v) (4.13)

keT

and they thus commute. Moreover, they satisfy ny = 1, n] = n;-.

4.2. Boundary states in A/ = (2,2) superconformal field theories

We are interested in describing BPS D-branes which preserve four supercharges, i.e. A' = 1 space-time
supersymmetry in D = 4. We have seen in Section 2.3 that the closed string sector will have (at least)
N = (0,2) world-sheet supersymmetry. We have required N’ = (2,2) supersymmetry in order to have
an underlying superconformal field theory for a type II string theory. The requirement of N' = 1 space-
time supersymmetry translates into the condition that the boundary conditions (4.5) must preserve a
diagonal N/ = 2 subalgebra of the N = (2,2) world-sheet supersymmetry [15], [16].

Thus we require the boundary state to be invariant under a linear combination of the left and right
N = 2 superconformal algebra extended by the spectral flow operators. Consistency restricts the linear
combination to correspond to the automorphism group of the algebra which is O(2) for the NV = 2
superconformal algebra and Zs for N = 1. Thus [174], the condition (4.5) leads to two classes of
boundary conditions: the A-type boundary conditions

T=T J=-7 Gt =+G et = ¢? (4.15)
and the B-type boundary conditions
T=T J=1J Gt =+G" e = ¢fei? (4.16)

all at 2 = z. Both A-type and B-type boundary conditions preserve the N’ = 1 superconformal
algebra in (2.7)

T=T G=4+G (4.17)

at z = Z. These conventions correspond to the open string channel where the boundary propagates
in world-sheet time. In the closed string channel, the boundary conditions (4.15) and (4.16) can be
rewritten as operator conditions on the boundary states. For the A-type boundary states we have

Ln=1T_, Jy=Jn GF=—-inG", (4.18)

- —
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4. Boundary Conformal Field Theories

and for the B-type boundary states we have

Ln=T_, Jn =T n GE = —inG, (4.19)
The relative sign change in the U(1) current from (4.15) and (4.16) can be understood as the result
of a 7/2 rotation on the components of the spin one current J which corresponds to the open-closed
string duality. It is important to observe that mirror symmetry exchanges the A-type and the B-type
boundary conditions since it switches the relative sign of the U(1) charges as discussed in Section 2.6.
This relative sign is precisely what distinguishes (4.18) from (4.19).
The boundary state can be expanded in terms of the Ishibashi state as in (4.9)

[ado=2>_Bili)e (4.20)

where the sum is over the highest weight states of the N' = 2 superconformal algebra which appear in
the Hilbert space of the non-linear o-model for the Calabi—Yau space X. They may be chiral primary
states or non-chiral primary states. The conditions on the currents in (4.18) and (4.19) at the boundary
implies that ¢ = ¢ and ¢ = —¢, respectively. This means that the A-type states are charged under (¢, ¢)
operators and the B-type states under (a, ¢) operators. One can show [174] that the B/, are independent
of the K&hler moduli ¢, for the A-type boundary states and that, in the large volume limit, its chiral
primary part is completely determined by

BY = / Q (4.21)
where 7, is the supersymmetric 3-cycle on which the corresponding D-brane wraps (see Section 5.2).
The other coefficients can be obtained by taking the covariant derivative of [ € on the vacuum line
bundle £ over the moduli space of the N' = 2 superconformal field theories witharespect to the complex
structure moduli z; (cf. Section 3.4). Due to the non-renormalization theorem reviewed in Section 2.6
this means in particular that these coefficients are exact.

The coefficients of the B-type boundary states can similarly be shown to be independent of the
complex structure moduli z; but they depend on the Kéahler moduli and therefore receive instanton
corrections. Similar to the case above, it can be shown that the chiral primary part of the coefficient
B (v) corresponding to the top cohomology H33(X) is holomorphic with respect to the Kihler moduli.
Furthermore, the other coefficients are again computed by taking derivatives of B2 () with respect to
the t,. Since it is holomorphic in the t, the instanton approximation is exact and it can be expressed
as a sum over holomorphic maps from the disk to X such that boundary of the disk is mapped to the
supersymmetric cycle 7, it wraps (see Section 5.2)

BY = / JP 4 O(e*™) (4.22)

o

where 2p is the dimension of the cycle 7,. Note that if p = 0 or p = 1 there are no instanton corrections
since the image of a holomorphic map of the disc does not intersect with the homology dual to J in
these cycles. We will discuss the geometry of these objects more deeply in Section 5.2.

4.3. Boundary states in Gepner models

We have reviewed the Gepner models in Section 2.4. We will use the notation introduced there. We
have also discussed in Section 2.5 that they describe Calabi-Yau compactifications at small volume.
In this section we will construct the D-branes in a compactification on a Calabi—Yau manifold at the
Gepner point.
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4.3. Boundary states in Gepner models

Since the Gepner model is not rational with respect to the Super-Virasoro algebra, the construction
of the most general boundary state has not yet been achieved. Recknagel and Schomerus [166] have
found a way to describe a certain subset of boundary states, called rational boundary states, which
respect a larger symmetry algebra, namely the A/ = 2 world-sheet algebras of each minimal model
factor separately, and can be found by Cardy’s technique. We have reviewed this in Section 4.1 and
apply it first to a minimal factor theory. Since minimal models are coset theories of SU(2), WZW
theories, (4.14) yields a recursion relation for the annulus coefficients

n; =nNaNj—1 — Nj—2, ) :3,...,9 (423)

It can be shown [172] that they are classified by the ADE groups. This classification coincides with (2.76)
which means that for a given modular invariant for the group G the annulus coefficients are determined
by G as follows. If G is the adjacency matrix of the Dynkin diagram of the group G with Coxeter
number g = k + 2, then the boundary conditions « are labeled by the vertices of G. Hence £ = Exp(G)
are the exponents of G and p = |£| = dimn; = |G|. Moreover, np = G and n, = 0. All groups G
having even exponents, i.e. A;, Daj11 and Eg have a Zy automorphism + acting on the nodes of G and
preserving G, i.e. Go° = GW(Q)A’(B). Choosing v = id for the other groups, one has

ng_@a'Y(ﬂ) = nmﬂ (424)

We will need later on an extension of these matrices to values of i up to 2g = 2k + 4. From (4.23) we
have the relation

Ng4s = —Ng—i (425)

Hence the matrices n; are periodic in i with period 2g. Finally, the coefficients v in (4.9) are the
components of the orthonormal eigenvectors 17 of the symmetric matrix G.
Now, we turn to the boundary states of the Gepner models. A priori, they are labeled by

e = |({L;}j =1, AM; =1, {S5}5=1) D (4.26)

where € is an outer automorphism of the chiral symmetry algebra, but, as we will see shortly, there are
some simplifications. We have seen in Section 4.2 that there are two choices of Q giving either A- or
B-type boundary conditions. In the generic case, i.e. if the levels k; of the minimal models are pairwise
different, the only way to maintain the tensor product symmetry in the presence of a boundary state
is to require that €2 have the same action on every factor of the tensor product. In special cases, when
kj, = kj,, there are permutation automorphisms of the tensor product algebra with which one can glue
the left-moving generators of the subtheory j; to the right-moving generators of subtheory js. These
will, however, not be considered.
The internal part of these boundary states is [166], [175]

1
laYa=—5 D> 0Bl X\ pu)a (4.27a)

A+1€Exp(G),pn

where

1.
r j M
1 ij iﬂ.mJMJ S

11 : Ri¥7 minly (4.27D)
U e vt

Ap
Byt =

dq denotes the constraint that the Ishibashi state | A, u ))o must appear in the closed string partition
function. For A-type boundary conditions this is no constraint as the Ishibashi states are already built
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4. Boundary Conformal Field Theories

on diagonal primary states and dg already enforces that the total U(1) charge is integral. However, the
B-type Ishibashi states have opposite U(1) charge in the holomorphic and the anti-holomorphic sector,
and these only appear as a consequence of the GSO projection; so the dg constraint requires that all
the m; are the same modulo k; + 2. The normalization &S} is determined later.

It follows from (4.27) that the action of the Zy, 5 and Z; symmetries in (2.77) and (2.78) is M; —
M; +2 and S; — S; + 2, respectively. As a result of the dg constraint, two physically inequivalent
choices for S; are S =3_,5; =0,2 mod 4. The S; = odd case seems to be inconsistent because their
RR charges do not fit into a charge lattice together with the S = even states [5]; thus they will violate
the charge quantization conditions (5.4) and will not be considered further. In the end, due to the Z,
symmetry, it is sufficient to consider only boundary states with S = 0. A boundary state in the Gepner
model can be written as

My My

laVa =012 ... h3| Ly,...., Ly My, ... My S )o
My—Ly My—Ly g
=g, 2 ...gp ® h7|Li,..., LM =1Ly, ..., M. =L;5 =0)q (4.28)

By the symmetry considerations above, A-type boundary states form representations of the Gepner
model group G in (2.89). For B-type boundary states, the 3 constraint implies in addition that the
physically inequivalent choices of M; can be described by the the single label

!

T M s
M:Zk_+32=2wjz\4j (4.29)
j=1" j=1

where K’ = lem(k; +2) and w; = K'/(kj +2) is the weight of the jth minimal model, cf. (3.12). Hence
the B-type boundary states form representations of the quantum symmetry group Zy introduced in
Section 2.6 and are singlets under G.

Note that for a chiral primary field in a Gepner model p = (0; A; 0,0, 0,0, 0). Hence the corresponding
coefficients in (4.27b) can be identified with (4.21) and (4.22) for A-type and B-type boundary states,
respectively. The remaining boundary state coefficients in the Gepner model have no direct geometric
interpretation yet.

These boundary states do not include the contribution from the twisted sectors in the corresponding
Landau-Ginzburg orbifold theory described in Section 2.2. D-branes at orbifold singularities have been
studied in [176] while boundary states at orbifold singularities were discussed in [177] where it was
argued that after blowing up the singularity they correspond to D-branes wrapping the exceptional
divisor. Boundary states corresponding to branes away from the orbifold fixed points are obtained by
summing over the brane’s pre-images in the covering space. At the fixed points, however, the expressions
for boundary states can involve contributions from the twisted sectors of the theory, leading to a charge
under RR potentials coming from these sectors. In [178] it was argued that the boundary states (4.27)
described in [166] do not carry charge in the twisted RR sector, in other words they are not elementary.
Furthermore, additional, elementary boundary states for the Gepner model which are charged under
the twisted sector were given, see Section 4.3.3.

4.3.1. Witten index in Gepner models

To explore the charge lattice of the boundary states, and to find the geometric interpretation of given
boundary states, we compute the interaction I,z of two D-brane configurations | « ))g and | & ). We
will argue in Section 6.1 that the corresponding conformal field theory quantity is IS = trf}& r(=DF,
i.e. the Witten index in the open string sector [179]. This will be interpreted as an intersection form
on the charge lattice of the boundary states. It can be computed by starting in the closed string sector
and performing a modular transformation to the open string sector. In the closed string sector this
trace corresponds to the amplitude between the RR parts of the boundary states with a (—1)f* on the
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4.3. Boundary states in Gepner models

world-sheet inserted. For A-type boundary states one obtains [5]

K-1 r

1 s=5 440y, 2u0+M;— M,
Iz = ﬂ(*l) : Z:(*l)(2+ o nL;ij Y (4.30)
vo=0 Jj=1
and for the B-type boundary states with g -+ r even
1 s—§ K’ - m’,—1
B = — (-1 Y s ) n 4.31a
CB( ) - Al;]v!+z;':1 215-;-4 (m/+1) ]1;[1 L;,L; ( )
while for % + r odd
1 s-5 1 M_M 4 5~ $ K'/2 L m—1
IB~ _ _1 5 - _1 K J kj+2 5( /~) I 431b
an CB( ) Z/ 2( ) MEMJFX:JT_:1 2kf;;4(m9+1)‘]1;[1nL7’Lj ( )

J

where

5 =

(4.32)

1 2=0 modn
0 otherwise

We choose the normalization C4 = k44K and CP = kBrZ H;:1 kﬂ;2 in order to satisfy Cardy’s
condition. The formulas (4.31a) and (4.31b) are valid for d = 2 mod 4. For d = 4 they have to be
exchanged. The intersection matrix depends only on the differences M — M which agrees with the
discrete symmetry (2.89). We also see that the Zy action S — S + 2 changes the orientation of one
of the branes. Recall from Section 2.4 the fact that the Ramond ground states are given by ¢! 1.1
which are identified with ¢]i761171 _1- Only these states contribute to the Witten index. In deriving
this result [5] one then crucially needs the periodic continuation of the annulus coefficients in (4.25).

From these intersection forms we will be able to extract the charges and the open string spectrum
for a given brane in Chapter 6. The intersection form can be represented by a matrix I acting on the
space of boundary states. Since it commutes with the symmetry group G of the Gepner model, it can
be written as a polynomial in the generators g; of G. For the remainder of this section we restrict
ourselves to the A-type modular invariants. In this case, the 1/)lL in (4.27b) are the modular S-matrix
elements S% and from (4.13), (4.3) it follows that n ;' = NLZl are the SU(2) fusion coefficients. They
are NLZI —1for |L—L| <1 <min{L + L,2k — L — L} with [ + L + L € 2Z and NLZl = 0 otherwise.
Using their properties, (4.30) and (4.31) can be simplified as follows. In these equations the labels Mj,
]\A/[/j can be thought of as indices of a matrix acting on the states. Let us first consider the case of
A-type boundary states. Using the action of the Z; symmetry and (4.25) the sum over 1y in (4.30) for
L=L=0 boundary states can be written as

K—1 . K-1 -
Z Ng;o-i-Mj—Mj _ Z 92V0+]\/[j7M]‘ =(1 793‘_1) (4.33)

vo=0 vo=0

so that we can effectively replace

K—-1 N
STNGEETM g o= (1 - g7t (4.34)

vo =0

In the last step in (4.33) we have used the periodicity of the M; labels and the fact that we sum over
the full orbit. The difference M; — M; just indicates the starting point of the summation on the orbit,
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4. Boundary Conformal Field Theories

but due to the symmetry it does not matter where we actually start, hence the dependence on this
difference drops out!.

For the B-type boundary states we have noted in (4.29) that all the m; have to be identified and
hence the M; reduce to a single label M such that for fixed L the states with different (M, .S) form
an orbit under the Zgs quantum symmetry. We will denote the single generator of this symmetry by
g. Accordingly, the B-type boundary states are | L; M;S )gp = | L1,...,Ly,; M; S ))p where 0 < L; <
|k;j/2],0< M < K'—1and S =0,2. The restriction on the L; is due to the field identification (2.70).
Since the two values of S correspond to a brane and its anti-brane, we restrict ourselves to the states
with S = 0. We denote the set of states obtained from a given state | L1,..., L,;0;0 )) g by applying g
to it as its L-orbit

| Ly,.... Ly Yp = {g™| L1,..., L300 )| M =0,..., K" — 1} (4.35)

Again, due to the symmetry, the expression in (4.31) can be shortened by noting that the delta function
constraint in (4.31) is a shifted U(1) projection we can build a Zg invariant polynomial in g such that

each factor NZLJ; in (4.31) can be replaced by
I3

|L—L| |L—L| |L+L|

npp=9 % +g = 4eodg T —g!

_|L—L|
—z

(4.36)

In particular, for L = L = 0 we find

’

m’—1 _
Nod  —mnoo=01-g;") (4.37)

where in this case g; = g"7 is the generator of the Zg, 12 subgroup of Zk. For both types of boundary
states there is a linear transformation ¢, which generates the different factors for L; # 0 from ng . In
the case of B-type boundary states there is a particularly nice way to represent tr,, [180]

Ly
2

tr,=t; = > g (4.38)

and therefore
Ny, E, = tr;nootg, (4.39)
Hence starting from the boundary state | 0; M;0 ) = | 0,0,0,0,0; M;0 )) 5 we can obtain all the other
boundary states by
| L;M;0 ) g = [[ £, 0: M;0 )5 (4.40)
j=1

The intersection form for the B-type boundary states then becomes
() =11 ns, z, (4.41)
j=1

Note that in particular for the ) L; = 0 states we have

s

Igh(9) = [T —g7) (4.42)

j=1

INote that this n; 7 having two indices is not related to the matrix ny having one index and its entries having three
indices

66



4.3. Boundary states in Gepner models

As we have seen, this representation of the intersection form I® emerges naturally from the boundary
conformal field theory through the extension of the annulus coefficients (4.25), but it is highly redundant.
There are many non-trivial relations between the boundary states | L; M; S ) 5 and this redundancy is
encoded in I5.

4.3.2. Number of moduli of boundary states in Gepner models

We are interested in counting the number of moduli for a D-brane state; these will be the massless
bosonic i.e. NS open string states. To find their contribution to the open string partition function, it
is sufficient to examine the NS-NS part of a transition amplitude in the internal part of space-time.
The reason is that the open string NS characters arising from the modular transformations of the RR
part of the transition amplitude come with an insertion of (—1) [181], [182]. Therefore the transition
amplitude between two A-type boundary states is [5]

NS K—-1 r
1 I . ’
A E E I | J (2k;+4) A
Zoa = cA "L,.L 62V0+MJ‘*M]' s X (9) (4.43)

)\/,,LL/ VUZOj=1 J

and between two B-type boundary states

1 NS , T y
B _ § : (K") j by
Zaa - @ 671\471%4!‘277 K m'. H nLj7i’j X'u/ (Q) (4.44)
)‘lvﬂl 2 j=12k;+4""] j=1
AgAK BB .
Here, CA = —fafa™  and OB = f2fs where k2 and k° are again chosen such that Cardy’s

jagu— T
22 T15_, kj+2 22 «

condition is satisfied. We see that the massless open string spectrum can also be expressed in terms of

the annulus coefficients nlLJ IR
I
In the closed string case we have two important conditions that guarantee supersymmetry, namely
Boep €2Z+1and 5, e €Z, see Section 2.4, in particular (2.86). By (4.43) and (4.44) this leads to
additional conditions on the open string labels . Assuming that o and & have the same external part,

then two D-brane boundary states | a ) and | & ))q preserve the same supersymmetries if [166]

o S-§ M-I
= — c 27 4.4
Qo @) = =257 + Y S e (4.45)

This condition ensures that there is no tachyon in the open string spectrum such that a single such
brane is stable and supersymmetric.

If the two boundary states are the same, there are v vacuum operators and one spectral flow
operator in the open string channel. v accounts for the fact that in the case that k; is even the states
with L; = k;/2 appear twice due to the field identification (2.70). If [ is the number of L; which equal
k;/2 then v is determined by

~ l n+r odd
v=2" l=¢1—1 n+reven,l>0 (4.46)
0 n+reven, [ =0

If they are not the same, neither state propagates. If ¥ = 1 then the unbroken world-volume gauge
group is U(1) corresponding to the center-of-mass degree of freedom and the brane can be viewed as
single object. If the number of vacua v is different from one, the boundary state can be thought of as
two different D-branes sitting at one point. This would fit with picture of a Coulomb branch in the
world-volume theory in which the gauge group is U(1)”. Finally, we come to the number of moduli for
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a D-brane state. The supersymmetry preserving moduli of the D-branes are constructed from chiral
vertex operators [5]. The Witten index counts these operators, but with a sign depending on their
chirality. We have to remove this sign by hand, and thus the total number of chiral fields is calculated
using (4.30) and (4.31) with the fusion matrices replaced by their absolute values. In other words, in
contrast to (4.25) we define |n|y1; = [ng—;|. We can again write this modified matrix as a polynomial
P9 (gj) in the generators g;. For the remainder of this section we again restrict ourselves to the case
with A-type modular invariant. For the B-type boundary states this polynomial then is

PEg) =] Ins,z,] (4.47)

where |np, L;| are the annulus coefficients in (4.39) written out as a polynomial in g and then all minus
signs replaced by plus signs. For A-type boundary states one changes the sign in (4.37) and the right
hand side of (4.30) yields then the corresponding polynomial P4 (gi, ..., g,).

Next, we have to figure out which of the chiral fields are marginal and can be used as a deformation
and where they appear in (4.47). If space-time supersymmetry is preserved, the chiral fields have integer
U(1) charges. Besides the charge 1 chiral fields one has to take into account charge 2 chiral fields in
Z 2& that are related to charge —1 antichiral fields in Zga by spectral flow; the latter are the hermitian
conjugate of charge 1 fields in Zga. One can show that therefore ), my, in the open string channel will
be a multiple of K’ for marginal, chiral vertex operators. The number of massless chiral superfields is
then given [5] by the constant term in

1
m(CFT) — §PB(g) —v (4.48)

Let us briefly look at the special case of the )" L; = 0 states. Replacing the plus signs in (4.42) by
minus signs there will be exactly one term with ¢~ = 1 since 3 w; = K'. Together with the constant
term 1 and (4.46) we see that m(“FT) = 0 for this L-orbit. For a reason to be explained in Section 5.5.3
such boundary states might be called rigid or exceptional states. It has been argued in [152] that these
states correspond to the fractional D-brane boundary states in C®/T" where I' & Zg is the discrete
subgroup of SU(5) acting as

2miw;

2z > e Kz i=1,...,5 (4.49)

This fact is of central importance for the computation in Appendix B.

4.3.3. Twisted boundary states

The boundary states with at least one label satisfying L; = %J can be understood in a more precise

manner [178], [183] and contain additional information about the D-brane configuration [184]. Since
we will make extensive use of this information in Section 6.3, we discuss these results in detail in this
section.

The important observation is that L; = % is the fixed point of a certain simple current that
generically appear in the boundary conformal field theory and not in the bulk conformal field theory of
a minimal model and this fixed point must be resolved [178], [183] in order to have a complete description
of the boundary conformal field theory. Using the notation of Section 4.1 consider a non-trivial class of

irreducible representations Vg, g € Z such that the fusion product (4.2)
Vg * Vj = Vg.j (4.50)

gives a single class Vy.;,g-j € Z. Such classes are called simple currents [185], [186] and the set C of all
these simple currents forms an abelian subgroup of C C Z. Let T be a subgroup of C. Due to (4.2) T
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4.3. Boundary states in Gepner models

acts on the index set Z and splits it into orbits. The length of the orbit of the identity 1 € 7 is given by
the order of |T'| of the group I'. Other orbits may be shorter since there can be fixed points, i.e. labels
j € Z for which

g-j=7 for some g € T’ (4.51)
The subgroup of all simple currents leaving some j € 7 fixed is called the stabilizer of j

Sj={9€Tlg-j=} (4.52)

Given a commutator 2-cocycle describing an element of H?(S;,U(1)), i.e. a pairing € : S; x §; —
C* compatible with the group law and equal to one on the diagonal, one can define the untwisted
stabilizer [187]

Uj = {h S Sj|e(g, h) =1Vg e SJ} (453)

The quantity €(g,h) is also known as discrete torsion [188]. The most important simple currents
in a minimal model are v = (0,0,2) (the world-sheet supercurrent), s = (0,1,1) (the spectral flow
operator), p = (0,2,0) (giving the phase symmetries in the Greene-Plesser construction in Section 2.6)
and f = (k,0,0). Note that the dimensions of these simple currents are generically non-integer and
therefore can only appear on the boundary. The last one is the only one with potential fixed points,
namely due to (2.70) it is precisely the one mentioned at the beginning of this section. The order of the
stabilizer Sy is exactly v as in (4.46) [184]. In can be shown in general [189] that the number of L-orbits
of independent boundary states associated to a given L is not given by the order v of the stabilizer
Sy but rather by the order v of the untwisted stabilizer Uy, which differs from v multiplicatively by a
square number

v=N?% (4.54)
where N = 2[z], This equation means that a fixed point boundary state can be resolved into v
independent components that are not further decomposable. A similar relation, |I'| = ZfV:Rl (dg,)?,

was derived for orbifolds with discrete torsion C3/T" in [190], [179], [177] (see also [191]). dg, is the
dimension of the irreducible projective representation R; of I'. The quantities corresponding to I', dp,
and Ng are in the minimal model Sy, N and v, respectively. If the discrete torsion €(g, k) is non-trivial,
ie. £=N 2 > 1, we can only have a projective realization of Sy. We will describe the large volume
interpretation of this result in Section 6.3.

The method of simple currents allows to construct new boundary states by considering the combi-
nation of currents vj, s; and p;, 7 = 1,...,r which form the vectors (o, ..., 5, defined in Section 2.4.
Gepner used them to implement the GSO projection on the tensor product of the minimal models. They
generate the orbifold group I'. When analyzing the RR charges of the A-type boundary states (4.27) of
Recknagel and Schomerus one notes that they are charged under the untwisted (c, ¢) fields only [178].

It is possible to take into account some states which are charged under the “twisted” fields that
have to be added in order to preserve modular invariance. In addition they have to be in short orbits
of the orbifold group I'. These short orbits appear precisely when k; is even and L; = %, hence they
are again related to the fixed point of the simple current f. Recall that the quantum symmetry group
Zk C T acts on the chiral primary fields by multiplication of a phase factor (2.119). Suppose there

is a subgroup Zy C Zg for which the w; = j €S cC{l,...,r} have a non-trivial common

K
kj+2°
factor N. By generalizing the construction of twijsted boundary states in flat space [177] it is possible
to construct new A-type boundary states arising from the resolution of the fixed point which are linear
combinations of states in the untwisted sector and the %—twisted sector [178]. If one restricts to the
situation that the left- and right-moving charges be the same in all individual models then one can

show that NV = 2 is the only possibility. Other values for IV require a more general gluing condition on
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the factor theories. These boundary states have geometrical interpretation which will be discussed in
Section 6.2. A thorough and complete analysis of the A-type boundary states in Gepner models with
the simple gluing condition has been given in [183]. In terms of this analysis, the twisted boundary
states are called elementary, as opposed to the original unresolved boundary states.
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5.1. General facts on D-branes

D-branes are defined to be objects on which open strings can end. While we have adopted the conformal
field theory point of view for their description in the previous chapter, we will study their geometry in
the present chapter. D-branes can absorb the momentum of then open strings attached on them and
are therefore dynamical objects. Besides this their most important properties are that they are charged
under the RR-fields C*) and that they are BPS saturated states. Furthermore, they are intrinsically
non-perturbative objects in closed string theory as their mass goes like ¢~ s For a detailed account of
their properties see [192] and [193].

Since we are interested in D-branes on Calabi—Yau spaces, we assume that space-time M to be of
the form M = X x R*>! where X is a Calabi-Yau threefold. A configuration of r coincident D-branes
with p + 1 dimensional world-volume W = ¥ x R, where the factor R denotes the time coordinate, is
specified by an embedding f : W — M. The ten-dimensional gauge field from the open string sector
AM M =0,...,9 becomes in the presence of these D-branes a U(r) gauge field A*, 4 =0,...,pon W,
with field strength F' = d A + [A, A] and Higgs fields ®;, i = 1,...,9 — p which are r X r anti-hermitian
matrices. The fields from the closed string sector, i.e. the metric g, the 2-form B, the dilaton ¢ and
the RR ¢-forms C(9 are pulled back to W by f. ¢ has to be odd in type IIA string theory and even
in type IIB. The tangent bundle of M decomposes as TM|w = TW @ Ny with curvature tensors
f*Rr and Ry, respectively. The D-brane action is

S = —Tp/ dpge ?stry/—det (f* (E + E(Q=1 — 1)E) + 27/ F) det(Q) (5.1)
w
2 2
<1 -5 <‘R(4)‘g +2|f*Ry|2 -2 |RN§) + 0(0/4)>

~

I oY R et P E L )
W 7 A(2ra/Ry)

where E = g+ B, Q} = 6} 4 i[®;, ®x] Ey;, |R(4)|$27 is a certain combination of the Riemann tensor [194]
and the sum is over odd j in type IIA and over even j in type IIB. str stands for the symmetrized trace
over F', D®;, [®;,®,] and ;. iy is the interior derivative with respect to the vector & = (1, ..., Pg_,).
The tension 7, and the charge p, of a Dp-brane are 7, = p,g; ' = (2m) _pa’_%ﬂgs_l. In the following
we will set o’ = 5-. The kinetic term has been derived in [1], [195], [194] and [196]. The Wess-Zumino
term is due to the fact that the gauge theories on the D-branes can be anomalous. This anomaly can
be canceled by an inflow from the bulk theory [197] and a topological argument [198], [199] as well
as T-duality [196] yield these Wess-Zumino couplings. The terms involving ig induce couplings to RR
fields of higher degree than p + 1 and will not be considered in the following.

Restricting to D-branes living on the Calabi—Yau part of M, the charges of the unbroken U(1) gauge
symmetries are naturally associated with a vector @ € H*(X,Z) where * is even or odd depending on
the type of string theory and the number of directions in flat space of the D-brane. The reason is that
the U(1) gauge fields are obtained by Kaluza-Klein reduction of RR (p 4 1)-form fields C*»*1) and for
each homology p-cycle ¥; C X we may define a U(1) gauge field A; = fEi CP*1 | The charge lattice
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should have a basis dual to the basis of gauge fields and will therefore correspond to the cohomology
lattice.
For a single D-brane the second term in (5.1) reduces in this case to

Swz = Mp/E (Z C(i)@FJrB) V A(X) (5.2)

from which we can read off the RR charge of a D-brane to be [200]
Q(E) = / ch(E)\/A(X) = / ch(E)/td(X) (5.3)
b by

where the second equality holds for Calabi-Yau spaces using the fact that A(X) = ez ©1(X) td(X). The

expression for td(X) has been given in (3.30). E is the K-theory class representing the (twisted) gauge

bundle with connection A, see Section 5.3.3. (unless stated differently, we will set B = 0.) For reasons

to become clear in Section 5.3.1 Q(FE) is also called the (generalized) Mukai vector. The RR charges of

D-branes satisfy a generalization of Dirac’s quantization condition

2m
2

QG—pQP = (5-4)

263

where 2k = 167G yg;? and G is Newton’s constant in ten dimensions.

5.2. Supersymmetric cycles

In this section we will discuss the condition for having supersymmetric cycles. A supersymmetric cycle
W is defined by the condition that a world-volume theory on W is supersymmetric [201], [139]. The
(p + 1)-cycle is supersymmetric if the global supersymmetry transformation can be undone by a k-
transformation which implies that (1 —I')n® = 0 for the constant spinors n* on M corresponding to the
supersymmetry generators. I' is a certain combination of F and the ten-dimensional T-matrices [202].
Those 1’ which are solutions form the unbroken generators. For D-branes on a Calabi—Yau threefold X
whose part of the world-volume inside X is denoted by X, there are two types of solutions which will
be discussed in turn.

A-type D-branes

An A-type D-brane wraps a three-dimensional special Lagrangian submanifold ¥ [203], [139] given by

wlg =0 (5.5a)
ReeQls =0 (5.5b)
F=0 (5.5¢)

where Q is the holomorphic (3,0)-form, and 6 an arbitrary phase. This is the same phase as in the
boundary state definition of an A-type D-brane (4.16) and determines which of the original ' = 2
supersymmetries is broken. Two branes of different 6 together break all supersymmetry. Equivalently
to (5.5b) we can require that € pulls back to a constant multiple of the volume element on 3. A
nice introduction to the theory of special Lagrangian submanifolds is [204] and [205]. w% can be
used to get an isomorphism between T*% and Ny x which is the space of deformations of the special
Lagrangian submanifold and has real dimension b'(X) [206]. The space of flat U(1) connections also
has real dimension b*(¥), thus the deformations of ¥ pair up with the Wilson lines to form b!(3)
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complex moduli [207]. There are not many examples of special Lagrangian submanifolds in a Calabi—
Yau manifold known. The only general construction known is as the fixed point of an involution, i.e.
by taking a real section

2mim;

Ime 7 2z, =0 (5.6)

where d is the degree of the Calabi-Yau hypersurface and m,; are integers.

B-type D-branes

B-type D-branes wrap holomorphic cycles and are solutions to the generalized Hitchin equations [208], [3]

F e oYY(X) (5.7a)
WIANF = MPid (5.7b)
D,® = 0 (5.7¢)
(@i, ;] = 0 (5.7d)

27i deg(E)

where w is the complexified Kéahler form and A = . In the case of D-branes wrapping the

Vol(X
entire Calabi—Yau manifold there are no scalar fields and Sch)e system reduces to (5.7a) and (5.7b) which
are known as the Hermitian Yang-Mills equations [115] (see also [209]). Connections d4 on a C*
bundle E (with a fixed Hermitian structure) that satisfy (5.7a) are in one-to-one correspondence with
holomorphic structures on E [210]. Since this holomorphic connection also has to satisfy (5.7b), the
corresponding holomorphic vector bundle E will be p-semi-stable, see Section 5.3.2. In the case that
the D-brane does not wrap the entire Calabi—Yau manifold, the ®; are sections of the normal bundle
with values in End E and represent the normal motions of the D-brane in X. Moreover, from (5.7¢) we
see that if @, is non-diagonal then the vector bundle on X must in general be reducible. In the case
where X is a K3 surface and ¥ is a Riemann surface embedded in X, (5.7) reduces [208] to the system
of equations studied by Hitchin [211].

For a fixed RR charge vector @ we will define M'5(Q) to be the moduli space of solutions of
the system (5.7) modulo the gauge group U(r). By equation (5.7d) M’,(Q) has a natural projection
to a configuration space of points m : M/, (Q) — Sym'(R?) given by the eigenvalues of the ®;, i. e.
(A4, P)— {agl), . aET)} where ®; = diag(agl), . az(.T)). These give the positions of the r wrapped
branes. We will restrict ourselves to the case where all constituents of a D-brane configuration sit at
the same point in the non-compact space R3. From (5.7a) and (5.7b) one can see that over the diagonal
A ¢ Sym" (R?) where all points coincide we have the moduli space of solutions to the Hermitian
Yang-Mills equations. Hence, the moduli space of D-brane configurations that will be investigated is
defined according to [3] as

Mp(@Q)=7""p) peal? (5.8)

Mirror symmetry

First a point of notation. Since we are interested in N’ = 1 D = 4 supersymmetric gauge theories on
the world-volume of a D-brane system it must be extended in the 3 4+ 1 non-compact dimensions. In
most of the discussions in this and the next chapter we will however use other realizations of this D-
brane system, mostly as particles in 3 + 1 dimensions. Hence, we will ignore its space-filling Minkowski
dimensions and denote by p only the part in the Calabi—Yau manifold. Therefore, by (5.5a) A-type
D-branes are D3-branes, and by (5.7a) B-type D-branes are either DO-, D2-, D4- or D6-branes.

In Section 4.2 we have argued that the A- and B-type boundary states are mirror to each other.
Based on the assumption that type IIA string theory on X is really identical to type IIB string theory
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5. D-branes and their Geometry

on X* Strominger, Yau and Zaslow [212] gave the following interpretation of mirror symmetry in terms
of T-duality. Start with a DO-brane in type ITA theory on X. Its moduli space is X itself. By the
assumption there must be a D3-brane on X* wrapping a special Lagrangian submanifold ¥ whose
moduli space is also X. Therefore, this D3-brane must have b;(X) = 3 moduli. Furthermore, if we fix a
point in the moduli space of the special Lagrangian cycle and only look at the Wilson lines, they give
rise to a T factor in the moduli space of the wrapped brane. Therefore, X should be a T3 fibration
m: X — B. Repeating the argument with the roles of X and X* switched yields that X* must also
be a T2 fibration 7* : X* — B*. Hence, they conjecture that both X and X* are fibered by special
Lagrangian three-tori, and in particular the mirror of the D0-brane on X is a D3-brane wrapping the
fiber T2 on X*. Furthermore the D6-brane wrapping X is mapped to D3-brane on the base B* and
vice versa. This can be interpreted as T-duality: Performing a T-duality on the 3 circles of the 72 turns
IIB theory into the ITA theory and change the D3-brane on the T2 into a D0O-brane while the D3-brane
wrapping the base becomes a D6-brane. The existence of torus fibrations has been discussed and proven
in special cases in [213], [214], [215], [216]. Assuming that X and X* are mirror T°-fibrations it was
argued in [217] that a real version of the Fourier-Mukai transform [218] carries conditions (5.5) into
conditions (5.7). We will return to the argument given above in Section 6.5.1.

It is important to note that the conditions (5.5b) and (5.7b) are not believed to be the correct physical
conditions except in the large volume limit. This is related to the fact mentioned in Section 2.2 that
Ricci-flatness (2.43) for Calabi-Yau manifolds only holds in the large volume limit. All these equations
will be corrected when moving away from this limit in the Kahler moduli space. In a first step, one
can replace F by F + 52— B in (5.5) and (5.7) and obtain a deformed version of these equations [219].
As mentioned above, we will work however with B = 0. In general, one must use the definition of a
D-brane as a boundary condition in the conformal field theory of the world-sheet as in Chapter 4. It can
be shown that A- and B-type D-branes as defined above appear in the large volume limit interpretation
of the boundary non-linear o-model and the boundary Landau-Ginzburg theory as solutions of the A-
and B-type boundary conditions (4.18) and (4.19), respectively [220], [151]. The boundary conditions
in the interpolating gauged linear o-model have been analyzed in [221].

5.3. Vector bundles versus sheaves

5.3.1. Sheaves

The moduli space Mp(Q) as defined in (5.8) has to be compactified by adding boundary points (more
precisely divisors with normal crossings). These correspond to certain singular vector bundles. There are
several compactifications known in mathematics and we will discuss in this section the compactification
which is chosen by string theory.

First, we include bundles in M p(Q) bundles whose connections are reducible [3], [222]. From a
qualitative point of view, the reducible connections are the connections for which the gauge field can

be made block diagonal
AM

This will happen when we can split the gauge bundle as E = E’ @& E”. On the reducible locus the
moduli space is approximately a product of smaller moduli spaces. We will see examples of D-brane
configurations corresponding to vector bundles admitting reducible connections in Section 6.4.

The second kind of singular bundles are sheaves. Very roughly speaking, sheaves are vector bundles
whose rank can vary over the base space. We will give here a physical approach to sheaves. For general
mathematical definitions and statements see [111], [223], [224] and [225]. Particularly useful in the
context of stability are [210] and [226]. Let us for the time being take our Calabi-Yau space X to be a
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K3 surface. The RR charge vector (5.3) then coincides with the Mukai vector [149]

v(E) = (rk(E), c1(E), % c1(E)? —ca(EB) + rk(E)) (5.10)

after integration. Consider now a single D4-brane wrapped on X. On flat space it would correspond to
a flat U(1) bundle. However, in this case the Mukai vector (5.10) is

v(E) = (1,07 Cﬁ()) (5.11)

and hence the D4-brane induces a DO-brane charge via the term i Jx co(X)CW from (5.2), where
C™ is the RR 1-form. We will take the convention that the DO-brane charge is Q(DO0) = (0,0, —1).
After integrating over X, the RR charge vector for single D4-brane is (1,0, 1) and induces the D0-brane
charge —1. The D-brane moduli space can be viewed as the moduli space of vector bundles F on X as
motivated in Section 5.2.

We will now argue that we need not only consider bundles but more generally semi-stable simple
coherent sheaves. The definition of semi-stable is deferred to Section 5.3.2. Simple means that the sheaf
has no non-trivial automorphisms which is the analog of an irreducible connection. Finally, coherent
sheaves will be characterized below. When discussing properties of D-branes, we will simply speak
of sheaves, thereby dropping the attributes semi-stable, simple and coherent if they are not necessary
in the context. A notable difference between coherent sheaves and vector bundles is that while the
dimension of a fiber of a vector bundle is constant as we move along the base X, the dimension of the
fiber of a coherent sheaf is allowed to jump.

For illustration, consider a configuration of one D4-brane on X and n DO-branes at points in X. Its
charge vector is (1,0,1 — n)*. There is no vector bundle whose Mukai vector takes this form, since no
line bundle can have non-zero second Chern number 1 — n. But there is indeed such a sheaf. It is the
sheaf J,, ... p, of holomorphic functions on X vanishing at n points p,..., pr?. This simple example
indicates that the use of this generalized notion of a vector bundle enables us to describe the D-brane
moduli spaces of various charges on the same footing, including those whose charge vector is not realized
as the Mukai vector of a vector bundle. The sheaf J,, ., fits into an exact sequence

0—Jp..pn — Ox — Op,,..p, — 0 (5.12)

n

The three objects all have a natural physical interpretation. The first one, as we have just argued, is
an ideal sheaf and corresponds to a bound state of a D4-brane with n D0-branes. The second one is
the trivial bundle over X, or in the language of sheaves, the structure sheaf of X. The last one is a
new object, called a skyscraper sheaf. It corresponds to n D0O-branes and its fibers are supported at n
points. This is an example of a sheaf whose rank is non-constant. In general, sheaves whose support
is a proper subset of X are called torsion sheaves. We see that the language of sheaf theory places
configurations with D4-branes on an equal footing with configurations without D4-branes.

A coherent sheaf is essentially any of the sheaves introduced above, i.e. vector bundles (which are
also called locally free sheaves), ideal sheaves and torsion sheaves. For a precise definition of coherent
sheaves as well as for their properties we refer again to [111] and [223]. One important property which
characterizes coherent sheaves nicely is that for a coherent sheaf F there exists a complex

0—&, —&_1—...— & — & —F—0 (5.13)

called a projective resolution, where the &; are locally free, i.e. vector bundles. This means that a
coherent sheaf can always be described by a finite set of maps between vector bundles.

1Such a configuration exists by duality to the heterotic string on T%.
2Such a “U(1) instanton” on X can also be viewed as a non-commutative instanton on X [227].
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A DO-brane looks like a zero size instanton on a D4-brane wrapping X [228], [229], [230]. While
coherent sheaves are objects of algebraic geometry, instantons are objects of differential geometry. Small
instantons are needed for the Donaldson-Uhlenbeck compactification of the instanton moduli space [231],
while the coherent sheaves are needed for the Gieseker compactification of the moduli space of stable
vector bundles, and on algebraic complex surfaces the two compactifications are related [232]. The
relation between small instantons and coherent sheaves on a K3 surface can be made rather explicit [233].
For K&hler threefolds there is a natural analogue of the Donaldson-Uhlenbeck compactification [234]
which involves ideal instanton singularities along holomorphic curves in the manifold, but also some
more complicated codimension 3 singularities.

Everything we have said generalizes to Calabi—Yau threefolds. In particular, the exact sequence (5.12)
now describes a configuration of D6- and DO-branes. We will discuss this case in more detail in Sec-
tion 6.5.1. Another exact sequence of this type which is important for the discussion in this and the
next chapter is

0— O0x(-D) — 0x — 0Op — 0 (5.14)

Here D is a divisor in X, Op is the structure sheaf on D, i.e. the trivial line bundle on D, but viewed
from X it is a torsion sheaf with support on D. Ox(—D) is the ideal sheaf of holomorphic functions
vanishing on the divisor D and is actually a line bundle. In the physical language they correspond
to a D6-D4-brane bound state, a D6-brane and a D4-brane wrapping the supersymmetric cycle D.
All lower-dimensional D-branes can be described in this way. The sequence (5.14) is an example of a
projective resolution (5.13) with ¥ = Op.

The D4-branes will be of our main interest due to the fact that they wrap complex compact surfaces.
The deformation theory of sheaves on those is reasonably well understood and can provide us the
necessary information for studying the spectrum of these D4-branes. In addition, since they wrap
divisors in the Calabi-Yau threefold they can be related to sheaves thereon via (5.14). This will be
done in the following sections and in Chapter 6.

5.3.2. Stability

We have seen in Section 5.2 that as a consequence of the requirement that a D-brane configuration
preserve supersymmetry, the sheaf that describes this configuration must be semi-stable. This was
encoded in (5.7b). Roughly speaking, if this requirement is not satisfied, the configuration is unstable
and will decay into stable, supersymmetric constituents. From this point of view it is very interesting
to observe that these two totally different concepts of stability — mathematical and physical — agree.
We are therefore led to investigate semi-stable sheaves which will be the content of this section.

We begin with the definition of semi-stable sheaves for which we first need to introduce some
technicalities. We assume that all our sheaves are over a toric Calabi-Yau threefold X. For a coherent
sheaf F we define its Chern character ch(J) by means of a projective resolution (5.13) as follows

ch(¥) = Z ch(&;) (5.15)

This definition is independent of the choice of the resolution. Furthermore we define the degree of F to
be

deg,,(F) = /X c1(F) A w? (5.16)

where w is the (uncomplexified) Kéhler form and we define the normalized degree or the slope of F to
be
deg,, (F)

peo(F) = W (5.17)
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We will suppress the dependence on w from now on. A coherent sheaf € is said to be p-semi-stable, if
for every coherent subsheaf F with rk(F) > 0 we have

w(F) < p() (5.18)

If strict inequality holds for every subsheaf F with 0 < rk(F) < rk(€) then we say that & is p-stable.
If equality holds then we say that € is strictly p-semi-stable. Since p-stability is the only notion of
stability we will use, we will drop the g from now on. A holomorphic vector bundle E is said to be
semi-stable (stable) if the sheaf of holomorphic sections O(F) is semi-stable (stable). Note that even if
we are only interested in vector bundles we need to consider not only subbundles but also subsheaves.
This is a further motivation why we need to introduce coherent sheaves.

Note that there are different notions of stability in mathematics, e.g. there is also Gieseker sta-
bility [235]. It is not yet clear which one is physically relevant, e.g. Gieseker stable objects appeared
in [219] and [236]. It is conceivable that string theory needs both of them as limits of II-stability [237].

Let us give a few examples and simple criteria for stability. A torsion-free coherent sheaf of rank 1
is always stable. If F is a torsion free coherent sheaf and L is a line bundle then F ® L is semi-stable
(stable) if and only if F is semi-stable (stable). F is semi-stable (stable) if and only if its dual FV is
semi-stable (stable). Furthermore, if

0—Ly—TF — L, —0 (5.19)

is a non-trivial extension with line bundles Ly and L7 of degree 0 and 1, respectively, then F is stable.
If ¥, and F; are torsion-free coherent sheaves then F; @ F5 is semi-stable if and only if F; and Fy are
both semi-stable with u(F;) = u(Fz). However, if F; and Fy are nonzero, then F; @& Fa can never be
stable.

One more notion that we will need is S-equivalence. Suppose that &€ is a semi-stable torsion-free
sheaf with p(€) = p. Then there is a filtration {0} = F° ¢ F' C --- € F¥ = € such that F*/F~!
is torsion-free and stable for every i and u(JF?/F~1) = p for all i. Such a (generally non-canonical)
filtration is called a Jordan-Holder filtration of €. The associated graded sheaf gr& = @, F/F ! is
independent of the choice of the filtration. Two sheaves £, and €s are S-equivalent if gr; = gr€s.
This has the following meaning. Points on a moduli space of sheaves that are strictly semi-stable do not
necessarily correspond to unique semi-stable sheaves but to S-equivalence classes of strictly semi-stable
sheaves. What will be important for us is that each S-equivalence class contains a unique representative
that is split, i.e. is a direct sum of stable sheaves [235]. Such a sheaf is also called polystable. The
physical relevance of S-equivalence classes has been pointed out in different contexts in [238] and [239].

We have seen that the vector bundles we are interested in satisfy the Hermitian Yang-Mills equa-
tion (5.7b). The Donaldson-Uhlenbeck-Yau theorem [240], [241], [115] (see also [209]) now states that if
the vector bundle € admits an irreducible Hermitian Yang-Mills connection then E is p-stable. More-
over, if the connection is reducible, then € is strictly semi-stable and is split, i.e. &€ =&, &; where &;
admit irreducible Hermitian Yang-Mills connections and are therefore stable. Hence, the representative
of the S-equivalence class that is relevant for the physics of D-branes is the split representative. This
fact will be often used in Section 6.3.

The most important necessary criterion for stability is the Bogomolov inequality [235]. If F is a
semi-stable torsion free coherent sheaf, then

/ AF)INT >0 (5.20)
X

where A(F) = 21k(F) ca(F) — (tk(F) — 1) c1(F)? = c2(éndF). On manifolds with AH1(X) > 1 this
describes an explicit dependence on the Kéhler class w as described in [239]. Equality in (5.20) defines

a boundary within the Kéhler cone on which stability degenerates to semi-stability [242]. Physically,
this means that the connection on the D-brane becomes reducible, and an enhanced gauge symmetry
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appears. Furthermore, as sheaves generally do not admit connections, this allows us to define the
analog of reducible connections on vector bundles for sheaves and hence to consider those objects which
represent both kinds of singularities on M p discussed in Section 5.3.1. There is a beautiful relation
between these sheaves leading to enhanced gauge symmetry and certain boundary states in the Gepner
model [184]. This will be explained in Section 6.3.

5.3.3. The Grothendieck-Riemann-Roch Theorem
Holomorphic K-theory

It was argued in [243] that D-brane charges are actually described by topological K-theory. However,
topological K-theory encodes only C'*° bundles while we have seen in Section 5.2 that our bundles carry
a holomorphic structure. Therefore we need a holomorphic version of topological K-theory which is the
Grothendieck group [244]. The Grothendieck group Ko(X) [245], [246] is defined to be the quotient of
the free abelian group generated by all the coherent sheaves (up to isomorphisms) on X by the subgroup
generated by the elements 3 — & — G for each short exact sequence

0 —E&—3F—G—0 (5.21)

of coherent sheaves on X. Note that the main differences between topological and holomorphic K-theory
are the following. Ky(X) contains less than K (X) e.g. the non-holomorphic bundles are not in Ko(X)
but at the same time it distinguishes objects which in K-theory are the same, namely what we identify
with zero are extensions instead of direct sums (topologically they are both the same).

Physically, it allows to interpret tachyon condensation between stable D-branes [247] and descent
relations [248] (for the K-theoretic interpretation see also [249]) in terms of projective resolutions and
to treat both at the same level [250]. The tachyon condensation can be seen as follows. If we have a
brane configuration € and an anti-brane configuration JF there are open strings with tachyonic modes
between them. The low-energy effective field theory has solitonic solutions whose energy is localized
around the core of the tachyon, i.e. around the locus where it vanishes. This locus is a source for RR
fields of lower dimensions. If the tachyon condenses, i.e. if it reaches its minimal energy, the brane and
the anti-brane annihilate and this locus is identified with a new D-brane of lower dimension, supported
on the zeroes of the tachyon. The tachyon can be viewed as a section of the sheaf € @ FV [243].

Let us consider for example the system consisting of € = Ox and F = Ox(—D) described in (5.14).
From this we get that Op = Ox — Ox(—D) and so the tachyon is a section of & ® F¥ = Ox(D).
Now since Ox (D) are the holomorphic functions on X having a pole on D, the sections of this bundle
have a simple zero at D. Hence D is the locus where the tachyon vanishes and, by the preceding
discussion, describes a new brane of real codimension 2. This coincides exactly with the interpretation
of Op as a D4-brane wrapping the cycle D. The D-branes of higher codimension can be obtained [250]
from the Koszul complex (a particular projective resolution (5.13) [111]) which gives the analog of
the Thom isomorphism and the Atiyah-Bott-Shapiro construction in topological K-theory used by
Witten [243]. The holomorphic K-theory also captures the cases of D-branes with lower RR-charges
and of stacks of D-branes. Note that when stability issues are taken into account this naive setup must
be improved and one has to work with complexes of sheaves and their derived categories instead of
sheaves only [251], [252], [253], [254].

The Theorem

We first need to introduce the Gysin homomorphisms f,. in cohomology and f; in K-theory [255]. If
X, Y are compact connected oriented manifolds, and f : X — Y is a continuous map, there is a
homomorphism of H*(Y,Z)-modules f, : H*(X,Q) — H*(Y,Q) which maps classes of codimension ¢
in X to classes of codimension ¢ in Y. The action of f, on H*(X,Q) is defined as

fo(x) = Dy (fIDx(x)) =€ H'(X,Q) (5.22)
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where Dx is the Poincaré duality map Dx : HP(X,Q) — H,_,(X,Q) and f! is the map induced by f
on homology. If g : Y — Z is another continuous map of compact connected oriented manifolds then

(f-9)x = frgs (5.23)

Consider the special case in which in Y is point, f is the constant map. Then
f*(v):/ v-1 ve H(X,Q) (5.24)
X

where 1 € HO(Y) is the identity element. Next, we assume that f : X — Y is a holomorphic map
between algebraic manifolds X,Y and that b € K(X) is represented by a coherent sheaf F. Then one
can define a homomorphism f : Ko(X) — Ko(Y) by

n

A& =) (V'R (5.25)

i=0
where R!f,J are the direct image sheaves [111]. Similar to (5.23) f, satisfies
(f -9 = fig (5.26)

and in the special case where Y is a point and F is locally free it reduces to

[(F) = x(X,9) (5.27)
where
dim X
XX, F) =Y (1) dim H'(X, ) (5.28)
=0

is the holomorphic Euler characteristic. We can now state the Grothendieck-Riemann-Roch theorem.
The equation

ch(fib) - td(Y) = f.(ch(b) - td(X)) (5.29)
holds in H*(Y, Q) for all b € Ko(X) [245], [255].

Some Applications

Let us consider two special cases which will be of use in the following sections. Suppose that i : X — Y
is an embedding of X as a submanifold of Y. Then we have the following short exact sequence of
bundles (3.33)

0 —TX — i*TY — Ny;x — 0 (5.30)

By the multiplicative property of the Todd class, i.e. for an exact sequence of sheaves (5.21) we have
td(F) = td(&) td(G) thus

td(X) = (td(Ny,x)) " td(i*TY) = (td(Ny,x)) "i* td(Y) (5.31)
An application of the Gysin homomorphism (5.22) to the embedding i : X — Y gives

ix(uwi*v) =i (uw)v, Yu e H*(Y,Q), ve H*(X,Q) (5.32)
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Therefore (5.29) implies the Riemann-Roch theorem for an embedding [245], [255]
ch(in) = i, ch(b) - (td(Ny,/x))" (5.33)

We now apply this to the case of curves and divisors in a Calabi—Yau threefold X. Here we general-
ize [180]. If i : D — X is an embedding of a divisor D in X, then ¢, = 4, [245]. This map is of degree
1 and i,1 = D. Let b € Ko(X) be the element represented by the coherent sheaf O(FE) of germs of
local holomorphic sections of a complex analytic vector bundle E over D. Expansion of eq. (5.33) and
comparing terms of the same degree we find

rk(i.E) 0 (5.34)
chi(i.E) = 1k(E)D (5.35)
cho(iE) = i, (chi(E)— 1k(E)chi(Nx,/p)) (5.36)
chs(ixE) = iy (cha(E) + & rk(E) chi(Nx,p)? — & chy(E) chi (Nx,p)) (5.37)
By using ch;(Np,x) = D and (3.36) we can bring eqns. (5.36) and (5.37) into the form
chy(ivE) = ix (chi(E) — 1 rk(E)D) (5.38)
ch3(ixE) = i. (che(E) + grk(E)(c2(D) — c2(X)) — 4 chy (E)D) (5.39)

If j : C — X is an embedding of a curve C' in X, then j, is of degree 2 and j,1 = C. Repeating the
computation above leads to

tk(j.E) = (5.40)
chi(j.E) = (5.41)
chy(juE) = 1k(E)C (5.42)
chs(j+E) = ji (chi(E) — 31k(E)c1(Nx/c)) (5.43)

By (5.30) and the Calabi-Yau condition we find j. ci1(Nx/c) = j« c1(C) = deg C = 2p,(C) — 2 where
the last step follows from Riemann-Roch [110]. Hence

ch3(j. E) = j« ch1(E) + rk(E)(1 — pa(C)) (5.44)

We will also need the characteristic classes of i, E for an embedding ¢ : C — X of a curve into a K3
surface X. These are obtained in the same way

rk(i,E) = 0 (5.45)
ch,(i.E) = rk(E)C (5.46)
chy(ixE) = id.chy(E)+rk(E)(1—p.(C)) (5.47)

Everything continues to hold if we replace O(E) by a general coherent sheaf F [110].

Let’s turn to the second special case in which Y is a point, f is the constant map and F = O(F) is the
sheaf of holomorphic sections of a complex analytic vector bundle F over X. Then, by (5.24) and (5.27)
the Grothendieck-Riemann-Roch theorem (5.29) yields the Hirzebruch-Riemann-Roch theorem [255]

X(X,E) = /X td(X) ch(E) (5.48)

Note that the last equation together with (5.28) give the index theorem for a Dirac operator coupled
to the vector bundle E. More generally, for two coherent sheaves £, F we define [149]

dim X

X(X;€,9) = > (—1)extl, (€,F) (5.49)

=0
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where Extl) < (€,9) are the global Ext groups [111] and extf, (€,F) denotes their dimension. The
following properties of these groups are noteworthy. To a short exact sequence (5.21) two long exact
sequences (similar to cohomology) can be associated depending on whether one uses the first or the
second argument. Furthermore, if € is locally free, then

Exth (6,F) 2 H'(X,&Y ®9F) (5.50)
In particular, for any coherent sheaf F
Exty  (Ox,F) = H(X,9) (5.51)
Finally, we will also need Serre duality [224], [256], [257]
Extf (€, ) = Exty (F,€ © Kx)” (5.52)

where €, F are coherent sheaves and n is the dimension of the smooth variety X.

5.4. The Central Charge of the D-branes
5.4.1. The D-brane charge

In the following we will use the same notation F for both a coherent sheaf on X and its image in Ko(X).
Now note that the Mukai vector

v(F) = ch(F)/td(X) (5.53)
defines a module homomorphism v : Ko(X) — H®V**(X,Q). This definition is such that
V(X5 €, F) = (u(€), v(3)) (5.54)

where the intersection form on the right-hand side was defined in (3.62). Now, recall that for €, F locally
free, i.e. vector bundles, this is just the index of the Dirac operator coupled to €Y ®F ind ifgvgg. This
observation will be taken up in Section 6.1. Note that v induces an isomorphism between Ky(X) ®z Q
and H*V*"(X,Q) [200].

Let @ : Ko(X) — Heven(X, Q) be defined by

€ Q&) = v(&) N[X] (5.55)

By abuse of language we are still using the notion of Chern classes in @ although they are really Chern
numbers. We call Q(€) the D-brane charge of € with its component in Hy, representing the D2p-brane
charge. Since @ is a module homomorphism, it follows that

Q(F) = Q&) +Q(S) (5.56)

for each exact sequence (5.21) of coherent sheaves in X. This is interpreted as the charge conservation
law when making a D-brane state associated with F out of those associated with € and G.

The charge “lattice” H®V*(X, Q) has several distinguished isometries. For instance, for an invertible
sheaf £ on the Calabi-Yau threefold X, the map v(F) — v/(F) with

V'(F) = ch(L)v(F) (5.57)
= v(¥)+ (O,rk(ﬂ’) c1(L),c1(F)er (L) + rkéﬂ") c1(L)?, (5.58)
1 rk(F)

chao(F) c1 (L) + 3 a1 (F)er(L)? +
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gives an isometry of H¢V*" (X, Q). We will give an interpretation of this isometry in terms of monodromy
transformations on the complex structure moduli space of the mirror X* in Section 5.6.

The N = 2 space-time supersymmetry algebra allows for a central charge Z (&) which determines
the mass of a BPS state € as

m=Z(8)] (5.59)

Its phase is used to define the grade of a BPS configuration &
1
o(&) = = Imlog Z(€) (5.60)

which is important to study stability questions [237] (see Chapter 6 and in particular (6.1)).
For an A-type D-brane given by a charge vector (Q wrapped about the cycle ¥ = 2?3:61 i[2i] the

central charge is [258]
7 = / Q= Q,II; (5.61)
)

It has been observed that mirror symmetry not only maps H®V**(X,Z) to H°d4(X*, 7Z), but it does so
while respecting the integral structure of the cohomologies [259]. The BPS charge lattice of the low
energy effective theory for B-type D-branes is an integral symplectic lattice which can be identified with
the middle cohomology lattice of the mirror manifold H3(X*,Z). The BPS central charge corresponding
to a vector

"= (nGanélla cee 7n21’17n07n%7 ceey ngl,l) € HB(X*7Z) = Zbg (562)
is
hl,l hl,l
Z(n) =Iyng + Zﬂini + prang + Zth,l_H-_Hné (5.63)

=1 i=1

where h''! refers to X and the periods are given in (3.72). The nép is a suggestive notation for the
number of D2p-branes wrapping a cycle of the ith basis element of Heyen (X, Z).

On the other hand, in the large volume limit, the lattice of D-brane charges is an integral quadratic
lattice identified with the K-theory lattice Ky(X). The map between these lattices is a non-trivial
question in mirror symmetry and is not known in a closed form. In the present case we will construct
such a map between the low energy charges n and the topological invariants of the K-theory class [&]
by exploiting the exact form of the D-brane charge Q(€) in (5.55). The central charge associated to a
state described by [€] is then [180]

Z2@Q) = - /X eI AQ (5.64)

where J = t,.J, is the Kéhler form. The factor e~ takes into account the normalization by the volume,
where the volume of a 2p-cycle ¥ is determined by Wirtinger’s theorem to be 1% fz JP.

The comparison of (5.63) and (5.64) gives the relation between the low energy charges and the
topological invariants of [€]. We derive explicit formulae for the cases when [€] describes either D6-
branes wrapped on X or D4-branes and D2-branes wrapped on holomorphic submanifolds of X.

Recall from Section 2.6 and Section 3.4 that the prepotential in compactified type IIB theory is
classically exact and depends only on the complex structure moduli. This is the most basic quantity
as it determines the central charges (5.61) and (5.63) through the periods (3.72). Hence, since A-type
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D-branes (having an even number of non-compact space dimensions) are controlled by the complex
structure moduli, their central charges and masses are exact while those of the B-type D-branes (having
an odd number of non-compact space dimensions) receive world-sheet instanton corrections in agreement
with the discussion in Section 4.3. The latter can be computed by invoking mirror symmetry. We will
take this up when we discuss D-geometry and stability in Chapter 6.

5.4.2. DG6-branes

We now consider systems with non-zero D6-brane charge ng # 0 which can be represented by coherent
sheaves F on X. Recall from section 5.2 that the corresponding D-brane configuration is stable only if
F is stable. Expanding (5.53) gives

24

Q = <I‘k(3’~),C1(3~)7Ch25’r+ ECQ(X),Chg(H:') + 2

Lo cQ<X>) (5.65)

Q is interpreted as a vector of electric and magnetic charges. The shift by 52 is a geometric version
of the Witten effect [260]. Indeed, choosing an electric/magnetic polarization so that HY @ H? is the
lattice of magnetic charges one observes a shift in the electri