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Summary

We take a multi-faceted approach to study galaxy populations in the local universe, us-
ing the completed Two Degree Field Galaxy Redshift Survey (2dFGRS), the “Millennium
Run” ΛCDM N-body simulation, and a semi-analytic model of galaxy formation. Our in-
vestigation covers both small and large scale aspects of the galaxy distribution. This work
can be broken into three sections, outlined below.

Using the 2dFGRS we explore the higher-order clustering properties of local galaxies
to quantify both (i) the linear and non-linear bias of the distribution relative to the under-
lying matter field, and (ii) the nature of hierarchical scaling in the clustering moments of
the galaxy distribution. This last point is the expected signature of an initially Gaussian
distribution of matter density fluctuations that evolved under the action of gravitational
instability. We show in Chapters 2, 3, and 4 that the 2dFGRS higher-order clustering mo-
ments are indeed hierarchical, which we measure up to sixth order for galaxies brighter
than MbJ − 5 log10 h = −17 and which sample the survey volume out to z ≈ 0.3. The
moments are found to be well described by the negative binomial probability distribution
function, and we rule out, at high significance, other models of galaxy clustering, such as
the lognormal distribution. This result holds in redshift space on all scales where we obtain
a good statistical signal, typically 0.5 < R (h−1Mpc) < 30 (i.e. from strongly non-linear
to quasi-linear regimes). Interestingly, we find that the moments on larger scales can be
significantly altered by two massive superclusters present in the 2dFGRS. The skewness
of the galaxy distribution is found to have a weak dependence on galaxy luminosity. We
show that a simple linear biasing model provides an inadequate description of the higher
order results, suggesting that non-linear biasing is present in the clustering moments of the
2dFGRS.

The large-scale distribution of structure within the 2dFGRS allows us to study the proper-
ties of the galaxy population as a function of local environment. In Chapter 5 we measure
the luminosity function of early and late-types galaxies in survey regions ranging from
sparse voids to dense clusters to reveal the dominant population in each. Fitting each lu-
minosity function with a Schechter function allows us to quantify how the bright and faint
populations transform with changing density contrast. We find that (i) the population in
voids is dominated by late types, with a noticeable deficit of intermediate and bright galax-
ies relative to the mean, and (ii) cluster regions have an excess of very bright early-type
galaxies relative to the mean. When directly comparing faint early and late type galaxies
in void and cluster regions, the cluster population shows comparable abundances of both
types, whereas in voids the late types dominate by almost an order of magnitude. Of in-
terest to many galaxy formation models is our measurement that reveals that the faint-end
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slope of the overall luminosity function depends at most weakly on density environment.
Finally, in Chapter 6, we develop a self-consistent model of galaxy formation and cou-

ple this to the Millennium Run ΛCDM N-body simulation. This simulation represents a
significant step forward in both size and resolution, allowing us to follow the the complete
evolutionary histories of approximately 20 million galaxies down to luminosities as faint
as the Small Magellanic Cloud in a volume comparable to that sampled by the 2dFGRS. In
our galaxy formation model we supplement previous treatments of the growth and activity
of central black holes with a new model for ‘radio’ feedback from those active galactic
nuclei that lie at the centre of a quasistatic X-ray emitting atmosphere in a galaxy group or
cluster. With this we can simultaneously explain (i) the low observed mass drop-out rate in
cooling flows, (ii) the exponential cut-off at the bright end of the galaxy luminosity func-
tion, and (iii) the fact that the most massive galaxies tend to be bulge-dominated systems
in clusters and contain systematically older stars than lower mass galaxies. This success
occurs because static hot atmospheres form only in the most massive structures, and ra-
dio feedback (in contrast, for example, to supernova or starburst feedback) can suppress
further cooling and thus star formation without itself requiring star formation. Matching
galaxy formation models with such observations has previously proved quite challenging.

2



1 Introduction

1.1 Motivation

Much of my work as a PhD student has centred on an attempt to understand two important
aspects of the nature of galaxies in the local universe. The first considers a larger scale
perspective of the galaxy population: (i) How are galaxies distributed across the billions
of light years that we currently observe? (ii) How do these galaxies reflect the underlying
dark matter density field? (iii) What does this tell us about the initial conditions of the
universe, before all the structure that we currently see came into being? On the other
hand, the second aspect of interest can be considered, by comparison, a rather small scale
perspective of the galaxy population: (i) Can we explain the rich diversity of individual
galaxies and galaxy associations seen in the local universe? (ii) Are there key aspects to our
understanding of galaxy formation and evolution that we are missing? (iii) How important
is the environment around a galaxy in determining its final properties, the so called nature
or nurture question. This thesis represents a culmination from the past three years of my
work on these problems. Perhaps not surprisingly, with such a broad range of questions to
be investigated, this research remains ongoing and includes numerous collaborations, both
locally and internationally. Extensions beyond this thesis are discussed in the final chapter.

Any study of the large scale structure of the galaxy distribution and the evolution of
galaxy populations inside this distribution must begin with an understanding of the inter-
play between matter and gravity. Below I provide a brief overview of basic cosmology
theory and the equations which govern it. The evidence for dark matter is presented along
with its place in the larger scheme of structure formation. I give a short introduction
to galaxy clustering and bias, followed by a discussion of the Two Degree Field Galaxy
Redshift Survey and a basic overview of the state of current models of galaxy formation.
Finally, I finish with a outline of the scientific objectives of each chapter in this thesis.

1.2 Essential cosmology

On large enough scales, the universe appears to be statistically homogeneous and isotropic.
In reality, this means that the universe does not possess any privileged positions or direc-
tions. The idea of homogeneity and isotropy is fundamental and forms a basic axiom of
cosmology known as the Cosmological Principle. It is supported by much observational
evidence (e.g. Smoot et al. 1977), and has been the focus of much study and philosophical
interpretation over the last 80 or so years.

3



Introduction

The strongest force by far in the universe on large scales is gravity, and any study of large
scale behaviour must begin with an understanding of it. To formalise the mathematical
theory of gravity, one is required to introduce the concept of a space-time interval between
two events, ds, and look for stationary values of

∫

ds, which correspond to the shortest
distance between any two points being a straight line. This space-time interval defines the
metric, and in general relativity it describes the space-time geometry in which particles
naturally move.

The most general space-time metric describing a universe in which the cosmological
principal is obeyed is the Robertson-Walker metric (Coles & Lucchin 1995):

ds2 = c2dt2 − a(t)2
[ dr2

1 − kr2
+ r2(dθ2 + sin2θ dφ2)

]

, (1.1)

where we have used standard spherical polar coordinates r, θ, φ (all co-moving), t is the
proper-time, a(t) is the cosmic scale factor, and the constant k is the curvature parameter,
which can be scaled to only take on the values -1, 0 or 1. This metric defines a metric
tensor, gi j, with which the Robertson-Walker metric takes the form:

ds2 = gi jdxidx j , (1.2)

where the Einstein summation convention is implied.
Having the Robertson-Walker metric tensor allows us to use general relativity to obtain

equations for the time evolution of the scale factor a(t). The basic Einstein field equations
of general relativity are differential equations which relate the geometry of space-time (the
metric) to the distribution of energy and momentum within it (the source terms for gravity).
These equations can be written as:

Ri j −
1
2

Rgi j = −
8πG

c2
Ti j − Λgi j , (1.3)

where Ti j is the total energy-momentum tensor, Ri j is the Ricci tensor (a function of the
metric gi j), R = Rii is a measure if the curvature of space-time, and Λ is Einstein’s famous
cosmological constant, which has become very important in recent years. If the Robertson-
Walker metric tensor is substituted into the Einstein field equations, along with T i j =

diag(ρ,−p,−p,−p) assuming the simplest case of a perfect fluid, one obtains the following
equations for the time evolution of the scale factor a:

ä
a
= −4πG

3

(

ρ +
3p

c2

)

+
Λ

3
, (1.4)

( ȧ
a

)
2

=
8πG

3
ρ +
Λ

3
− k

a2
. (1.5)

These are the famous Friedmann equations. If, for the moment, we assume no cosmolog-
ical constant (Λ = 0), and using H = ȧ/a (the Hubble parameter) and Ωtot = ρ/ρcrit (the
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1.3 The “dark” universe

density parameter) where ρcrit = 3H2/8πG (the critical density), the second Friedmann
equation can be recast as:

k

H2a2
= Ωtot − 1 . (1.6)

In this form, it is easy to see that, since H2a2 is always greater than zero, there is a corre-
spondence between the sign of the curvature parameter k and the sign ofΩ tot−1. If k equals
1, the density of the universe must exceed the critical density, and its ultimate fate is for
gravity to win and for it to collapse back in on itself. On the other hand, if k equals −1,
the density must be less than critical, and then the expansion must win. The case of k = 0
corresponds to an equilibrium between gravity and expansion, implying that the geometry
of the universe is flat.

In this way, we see that the energy density of the universe describes its underlying ge-
ometry, which in turn has a direct effect on its ultimate fate: expand forever in a big freeze
or collapse back in on itself in a big crunch. The cosmological constant, Λ, adds an ex-
tra element that decelerates or accelerates the expansion, depending on its sign. Current
observations suggest that the universe is flat. We will discuss this and the effects of the
cosmological constant shortly.

1.3 The “dark” universe

Given the importance of Ωtot in understanding the global nature and ultimate fate of the
universe, it is only natural that its accurate measurement is high on the priority list of
astronomers. Numerous methods have been developed to do this, and their conclusions
were as interesting as they were profound. We summarise a few of these below, and refer
the reader to Longair (1998) and Peebles (1980) for a more detailed account.

Possibly the simplest way to determine Ωtot comes from calculating the mean mass den-
sity of galaxies in the universe, ρgal:

ρgal = Lρgal

〈 M
L

〉

, (1.7)

where Lρgal is the mean luminosity density of galaxies, and < M/L > is the mean galaxy
mass-to-light ratio. A value of Lρgal is obtainable from the galaxy luminosity function,
while < M/L > can be determined directly from the rotation curves of spiral galaxies.
From Ωgal = ρgal/ρcrit, the result follows. Putting these measurements together, one finds
that Ωgal ≈ 0.01 − 0.03 for varying galaxy samples, which is a very low result if we have
any reason to expect a critical density universe.

A second method to determine Ωtot utilises observations of galaxy clusters. To measure
the mass of a galaxy cluster, one firstly requires the velocity dispersion 〈σ2〉 of the galaxies
within the cluster. If we assume that the cluster is gravitationally bound, then the mass of
the cluster follows from the cosmic virial theorem:

2KE + PE =
3
2
〈

σ2〉Mvir −
GMvir

Rvir
= 0 . (1.8)

5
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An estimate of ρvir, and hence Ωvir, can thus be obtained by simply summing the masses
of a number of large clusters within some set distance. By this technique, the value of the
density parameter is found to be Ωvir ≈ 0.1 − 0.3, an order of magnitude higher than Ωgal,
but still 3 to 10 times smaller than what is required for a flat universe.

Adding up the luminous matter in galaxies and balancing the energy equation for clus-
ters are not the only indicators of a discrepancy in our accounting of the mass content of
the universe. Strong evidence came in the late 1970’s when the rotation curves of spiral
galaxies were accurately measured (e.g. Freeman 1970) for the first time. Interestingly,
it was found that at large radii from the galactic centre the rotational velocity seemed to
flatten, and by the measurement of gas surrounding the galaxy at radio wavelengths, this
rotational flattening extendeds to greater radii than the visible mass of the galaxy. This is
in contrast to the simplified expected Keplerian behaviour of the visible component, for
which the velocity decreases as the inverse square root of the radius. Such rotation curve
measurements indicate that virtually all spiral galaxies have a dark, diffuse halo associated
with them that contributes at least 3 to 10 times the mass of the visible matter (Kormendy
1982). This conclusion is in line with that found by measuring the mass content of clusters.

Two interesting conclusions follow from these results. First, it indicates that there is a
large dark component dominating cluster and galaxy masses. Understanding the nature of
this “dark matter” has spawned a whole new subfield of cosmology. Second, by the fact
that we’re still a long way short of Ωtot ≈ 1, either the above measurements suggest that
much more mass is hidden somewhere else in the universe away from groups and clusters,
up to 10 times more, or it hints at the existence of a cosmological constant which acts such
that the sum of Ωm+ΩΛ ≈ 1. There is much theoretical motivation (e.g. inflation), as well
as detailed CMB observations (Spergel et al. 2003) and supernovae distance measurements
(Riess et al. 1998), which all indicate that the universe is very nearly flat. This suggests
that some form of “dark energy,” in addition to the dark matter, is required in order to fit
the measured properties of the observable universe.

The theory for cold dark matter was worked out in response to these problems, and
more generally to understand structure formation in the universe. The standard model
for cold dark matter (CDM) typically includes: a cosmological component of dark matter
with negligible thermal velocity, a scale free power spectrum of initial adiabatic density
fluctuations, and a dark energy or cosmological constant component, chosen so as to make
Ωtot ' 1. According to our current best observations, Ωtot can be broken up as Ωm ' 0.25
andΩΛ ' 0.75 (Spergel et al. 2003; Seljak et al. 2004). ΛCDM appears to be in agreement
with the available data on large scales, but issues have arisen on smaller scales, such as the
centres of dark matter halos (Flores & Primack 1994) and the number of small satellites
(Kauffmann et al. 1993) . The solution to these problems appears to lie in a greater
understanding of the non-linear galaxy-scale physics. Despite such issues, however, as a
basis for a cosmological model, CDM has survived the last 20 years or so surprisingly well,
given its simplicity. Thus, an investigation into the density distribution of matter within
the universe has lead to a much greater understanding of its contents, global properties,
and initial and final states.

6
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1.4 Large scale structure, galaxy clustering and bias

Given the above standard model of cosmology, one can investigate the effects of gravita-
tional instability and the evolution of large scale structure in the universe. This is achieved
by tracing the time evolution of the initial matter density perturbation field, δI(x). Un-
der the influence of its own gravity, an initial Gaussian density field will evolve into a
strongly non-Gaussian one, resulting in a rich diversity of form that is characteristic of a
highly evolved distribution of matter. In the favoured ΛCDM scenario discussed above,
the formation of structure is expected to proceed hierarchically from the initial density
perturbations, with galaxies forming first and larger structures following later from the
merging of galaxies. The most striking feature revealed in all large-scale galaxy redshift
surveys has been the way that galaxies are typically distributed along sheets and filaments,
with empty voids between them. These structures have been seen to be as large as 50 to
100 Mpc. Understanding how such structures came to be is one of the primary goals of
modern cosmology.

The observed structure in the universe can be characterised by the clustering moments
of the distribution of density fluctuations, δ(x). Here we model the spatial distribution of
galaxies as realizations of statistically homogeneous and isotropic random point processes.
The 2-point correlation function, or second moment of the distribution, ξ2(R), is defined
by the conditional probability of finding a galaxy in the volume element dV at a distance
R from a galaxy, beyond that expected for a Poisson distribution (Peebles 1993):

dP = N̄ [1 + ξ2(R)] dV , (1.9)

where N̄ is the mean density of galaxies. The 2-point correlation function can also be
understood as the Fourier transform of the power spectrum, P(k) = 〈|δ(k)|2〉. Note that
the 2-point function is a complete description of the field only in the case of a Gaussian
distribution. For more realistic cases, one requires the higher order p-point moments,
ξp(R). We explore the higher order correlation function of the observed galaxy distribution
in detail in Chapters 2, 3, and 4.

Interestingly, it was quickly realised that galaxies had to be a biased tracer of the under-
lying density field. This can be seen by comparing the 2-point galaxy-galaxy correlation
function and cluster-cluster correlation function. Such observations reveal that, although
both correlation functions have the same power law slope, the cluster-cluster correlation
function has an amplitude approximately 20 times larger. If both galaxies and clusters
arise from the same gravitational instability and amplification of the initial density field,
then this observation indicates that distinct samples of galaxies must trace the underlying
mass distribution in different ways. This phenomenon is generally known as galaxy bias.

The bias of galaxies relative to the mass can be understood from the statistics of Gaussian
random fields (Kaiser 1984). Consider that a massive cluster is expected to form at the
centre of a rare high σ density peak in the background matter field and that such peaks
collapse early and tend to occur near other peaks. Because of this, even a relatively weak
correlation on large scales can be amplified with respect to the background by a factor of ν2,
where ν is the number of σ that corresponds to the density fluctuation. For ν2 = 20 above,

7
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the most massive clusters can correspond to ∼ 4σ fluctuations, explaining the very low
spatial density of such rare objects. Density fluctuations of lower amplitude, such as those
which represent isolated galaxies, will collapse on longer timescales and be distributed in
a way that is more representative of the overall mass distribution.

In the simplest picture, bias is usually quantified as the relative clustering strength of
galaxies with respect to the underlying dark matter through the 2-point correlation func-
tion:

ξ
gal
2 = b2 ξDM

2 , (1.10)

where b is the ubiquitous linear biasing term. As always, the true picture is not quite this
simple, however. Both linear and non-linear bias are possible in the galaxy distribution,
and this is an effect we will explore using both the low and higher order clustering moments
of the observed galaxy distribution.

1.5 Observed and mock galaxy populations

In this thesis we will exploit both observed and simulated galaxy catalogues. Both are of
such quality that we can undertake statistical analyses of unprecedented accuracy. We now
give a brief description of both.

The Two Degree Field Galaxy Redshift Survey

The Two Degree Field Galaxy Redshift Survey (2dFGRS) is an international collaboration
which has had the ambitious aim of measuring the redshifts of approximately 250,000
galaxies in the local universe (Colless et al. 2001, 2003). This has been made possible
with the use of the 2dF multi-fibre spectrograph on the Anglo-Australian Telescope, which
is capable of observing 400 objects simultaneously over a 2 degree field. The catalogue is
sourced from a revisited and extended version of the APM galaxy catalogue (Maddox et
al. 1990), and the targets are galaxies with extinction corrected magnitudes brighter than
bJ=19.45.

The main survey area covers approximately 2000 deg2 and has a median depth of z =
0.11. The area is centred on two declination strips, one in the southern galactic hemi-
sphere spanning 80◦×15◦ close to the south galactic pole, and the other in the northern
galactic hemisphere spanning 75◦×10◦ along the celestial equator (Fig. 1.1). In this the-
sis, catalogues will be built with galaxies from both regions. At the effective limit of the
survey, z ≈ 0.3, the strips contain an approximate volume of 108h−1Mpc3 (for Ωm = 0.3,
ΩΛ = 0.7). An additional 99 random fields are distributed around the southern galactic
cap but are not used in this work.

Due to clustering variations across the observed fields, adaptive tiling was adopted to
make efficient use of the 2dF spectrograph. This resulted in field sampling at a near uni-
form rate of 93% across the whole survey region. Redshifts were measured from spectra
covering 3600-8000Å by both cross-correlation with a range of template spectra and by
fitting strong spectral features. All redshifts were visually checked and assigned a quality
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Figure 1.1: An all sky plot of the APM/2dFGRS survey area. The individual 2dFGRS
fields are marked as small circles, with the larger south galactic pole region
lying to the right of the figure, and the smaller more north galactic pole
region on the left.

parameter Q in the range of 1-5, with 5 being of highest quality and 1 being the poorest.
An accurate statistical analysis of the final galaxy catalogue required spatial and magni-
tude incompleteness to be compensated for. This was achieved in the standard way by
defining three masks through which the data was processed: (1) a magnitude limit mask
giving an extinction corrected apparent magnitude limit as a function of position on the
sky, (2) a redshift completeness mask providing the fraction of measured redshifts at each
position, and (3) a magnitude completeness mask linking redshift success rate with appar-
ent magnitude. These masks also include holes, which define the excluded regions from
the survey area due to effects such as foreground stars and plate flaws, for example. The
overall average redshift completeness of the parent catalogue is found to be 91.8%.

Using the masks we pre-filter the 2dFGRS parent catalogue in order to remove any un-
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wanted objects and badly sampled galaxies. To do this, we choose only galaxies with
apparent magnitudes in the range 14.0 < m < mlim, where mlim varies as a function of
angle on the sky (<mlim> = 19.37), redshifts within the range 0.002 < z < 0.5, to avoid
selecting stray stars or quasars, and a redshift quality of at least Q ≥ 3, to ensure accurate
distance estimation. From the 221,414 unique redshifts obtained, the above constraints
provide 194,407 quality redshifts with which to do our analysis – 113,895 in from the SGP
region and 80,512 from the NGP region. This galaxy catalogue forms the basis with which
we undertake our analyses in Chapters 2, 3, 4 and 5.

Galaxy formation models

To understand many problems in astronomy, including those specific to galaxy formation
and the galaxy population as a whole, astronomers have often turned to the exploration of
potential solutions through computer simulations. In this field, two important and com-
plimentary techniques have developed over the last 10 or so years. Hydrodynamic simu-
lations follow the co-evolution of both gas and dark matter explicitly, and this approach
has been integral to understanding many astrophysical phenomena. However, due to the
heavy computational cost of hydrodynamic methods, they are usually limited in either size
or resolution when compared with pure N-body techniques. To circumvent these short-
comings one can instead take a ‘semi-analytic’ approach (e.g. White & Frenk 1991) based
on the galaxy formation paradiam outlined by White & Rees (1978). In the semi-analytic
picture, the physics important to galaxy formation is modelled analytically in parallel to
the numerical evolution of pure N-body dark matter. Its power lies in the relatively minor
computational cost of implementation, and this allows for speedy exploration of parameter
space around many different models relating to the question at hand. We will follow this
second approach.

The galaxy formation model we use in Chapter 6 is implemented on top of a very large
dark matter simulation of the concordance ΛCDM cosmology. We have dubbed this sim-
ulation the ‘Millennium Run’ because of its size and resolution (Springel et al. 2005 – see
Fig. 1.2). The Millennium Run follows the dynamical evolution of 21603 ' 1.0078 × 1010

dark matter particles in a periodic box of 500 h−3Mpc3, which implies a mass resolution
per particle of 8.6×108 h−1M�. We adopt cosmological parameter values consistent with a
combined analysis of the 2dFGRS (Colless et al. 2001) and first year WMAP data (Spergel
et al. 2003; Seljak et al. 2004). They are Ωm = Ωdm + Ωb = 0.25, Ωb = 0.045, h = 0.73,
ΩΛ = 0.75, n = 1, and σ8 = 0.9.

Friends-of-friends (FOF) halos are identified in the simulation using a linking length of
0.2 the mean particle separation, while sub-structure within each FOF halo is found with
an improved and extended version of the SUBFIND algorithm of Springel et al. (2001).
Having determined all halos and subhalos at all output snapshots, we then build the hier-
archical merging trees that describe in detail how structures grow as the universe evolves.
These trees form the backbone onto which we couple our model of galaxy formation.

Inside each tree, virialised dark matter halos at each redshift are assumed to attract am-
bient gas from the surrounding medium, from which galaxies form and evolve. Our model
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Figure 1.2: The Millennium Run ΛCDM N-body simulation. Each panel represents a
magnification by factors of four, highlighting the rich structure the simu-
lation can resolve. The colour coding is by local density and dark matter
velocity dispersion.

effectively tracks a wide range of galaxy formation physics in each halo, including reion-
ization of the inter-galactic medium at high redshift, star formation in the cold disk and the
resulting supernova feedback, black hole growth and AGN feedback through the ‘quasar’
and ‘radio’ epochs of AGN evolution, metal enrichment of the inter-galactic and intra-
cluster medium, and galaxy morphology shaped through mergers and merger induced star-
bursts. In Chapter 6 we describe this model and its application in detail.
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1.6 Thesis overview

This thesis is a collection of five papers, four of which are published in the Monthly No-
tices of the Royal Astronomical Society (MNRAS, Chapters 2–5), and the last of which
has recently been submitted to the MNRAS. In this body of work we cover three main
areas of research: (i) the higher order clustering of the large scale distribution of the lo-
cal galaxy population (Chapters 2–4), (ii) the environmental dependence of the luminosity
function for early and late type galaxy populations (Chapter 5), and (iii) the way in which
the suppression of cooling flows shape the properties of the massive galaxy population
(Chapter 6). We now give a brief overview of each of these chapters in turn.

Higher order clustering in the local universe

The first half of this thesis, Chapters 2, 3, and 4, describe a study of the higher-order
clustering in the 2dFGRS. In Chapter 2 we measure the clustering moments of the local
L∗ galaxy population using a volume limited sample contained a total of 44,931 galaxies
within the magnitude range −19 > MbJ − 5 log10 h > −20 and survey volume defined
by 0.02 < z < 0.13. Using this probe, we investigate if the p-point galaxy correlation
functions, ξ̄p, can be written in terms of the two point correlation function or variance,
ξ̄p = S pξ̄

p−1
2 , for some constant hierarchical scaling values, S p. This is the so-called hi-

erarchical scaling hypothesis, and is expected if an initially Gaussian distribution of den-
sity fluctuations evolves under the action of gravitational instability. The quality of our
measurement is such that we can measure the moments up to sixth order across scales
0.3 < R (h−1Mpc) < 30. We compare our results with those from the Hubble Volume
ΛCDM N-body simulation to look for signatures of non-linear biasing between the galax-
ies and underlying dark matter halo density field. In this chapter, we also discuss the impact
of two rare, massive superclusters in the 2dFGRS volume on the higher order clustering
moments of the L∗ galaxy distribution.

In Chapter 3 we take this analysis one step further by measuring the higher order mo-
ments of the 2dFGRS galaxy distribution as a function of galaxy luminosity. We use the
full survey, approximately 200,000 galaxies, and build volume limited catalogues in one
magnitude bins covering the magnitude range −17 > MbJ − 5 log10 h > −22, sampling the
spatial distribution of galaxies out to scales of z ≈ 0.3 (∼ 750h−1Mpc). With these galaxy
samples, we investigate how hierarchical scaling in the clustering distribution varies with
galaxy luminosity, again up to sixth order. Past analyses have shown that the hierarchical
scaling coefficients, S p = ξ̄p/ξ̄

p−1
2 , are approximately independent of scale, and we look

for this behaviour as well. As in Chapter 2, the influence of two massive superclusters in
the 2dFGRS is quantified, especially on large scales where their presence is most likely to
be seen. Chapter 3 also provides a comprehensive analysis of both linear and non-linear
biasing in the galaxy distribution. We investigate the relative bias in the 2dFGRS, with
respect to the L∗ population, as a function of luminosity using the clustering moments.
The results of this chapter generalise those found in Chapter 2.

Chapter 4 concludes our study of higher order clustering in the 2dFGRS. We take a “re-
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verse” approach to the previous method by measuring the reduced void probability function
(VPF) of the galaxy distribution in volume limited catalogues covering magnitudes from
MbJ − 5 log10 h = −18 to −22. The VPF connects the distribution of voids to the moments
of galaxy clustering of all orders. The reduced VPF can be used to both measure hierar-
chical scaling in the clustering moments and to discriminate between different clustering
models that make predictions for how this scaling should arise. Such models include the
lognormal distribution and the negative binomial model, which we show we can discrimi-
nate between at a high significance. Thus, the predictive power of the reduced VPF makes
this chapter a valuable extension to the previous two. In addition, as the reduced VPF is
weighted more by the lower and intermediate counts in the galaxy probability distribution
function, we show that these results are insensitive to superclusters in the 2dFGRS volume,
unlike the results of the previous two chapters. We also measure the reduced VPF for dark
matter in a ΛCDM universe and compare to that found for the galaxy population.

Environmental dependence of the galaxy luminosity function

In Chapter 5, we shift our focus from the spatial distribution of the local galaxy population
to the properties of galaxies that lie within this distribution. Here we study the luminosity
functions of galaxies in different large-scale density environments, from sparse voids to the
densest cluster regions. To do this, we develop a new method to measure the environmental
dependent luminosity function and demonstrate that it gives comparable results to previ-
ous methods but with the added bonus of simultaneously providing the luminosity function
normalisation as well as shape. Our analysis includes the separation of the galaxy popu-
lation into early and late spectral types. Using the Schechter function parameterisation of
the luminosity function, we measure the characteristic luminosity and faint-end slope in
each environment. This parametrisation allows us to demonstrate the smooth change in
the galaxy population between extremes in density and, when examined as a function of
spectral type, quantifies the differences between the galaxies in clusters, mean density, and
void regions of the universe, for both early and late types. We finish with a discussion of
our results in light of current galaxy formation models.

Cooling flows and the properties of massive galaxies

Finally, in Chapter 6 we couple a self consistent model of galaxy formation to the Mil-
lennium Run ΛCDM N-body simulation to study the effect of cooling flow suppression
on the local galaxy properties. The resolution of the Millennium Run is such that the de-
tailed assembly history of each object in the simulation, as faint as galaxy luminosities
approximately equal to the Small Magellanic Cloud, is accurately followed in a volume
comparable to that of the 2dFGRS. In our galaxy formation model, we supplemented pre-
vious treatments of the growth and activity of central black holes with a new model for
‘radio’ feedback from those AGN that lie at the centre of a quasistatic X-ray emitting at-
mosphere in a galaxy group or cluster. We explore how such radio feedback modifies the
drop-out rate in cooling flows and the effect this has on the properties of massive galaxies,
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such as mean stellar ages and colours. More generally, we examine how cooling flow sup-
pression changes the bright end of the galaxy luminosity function, which previous models
of galaxy formation have had difficulty accounting for.
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2 Hierarchical galaxy clustering in the
2dFGRS1

Abstract

We use the two-degree field Galaxy Redshift Survey (2dFGRS) to test the hierarchical
scaling hypothesis: namely, that the p-point galaxy correlation functions can be written
in terms of the two point correlation function or variance. This scaling is expected if an
initially Gaussian distribution of density fluctuations evolves under the action of gravita-
tional instability. We measure the volume averaged p-point correlation functions using a
counts-in-cells technique applied to a volume limited sample of 44,931 L∗ galaxies. We
demonstrate that L∗ galaxies display hierarchical clustering up to order p = 6 in red-
shift space. The variance measured for L∗ galaxies is in excellent agreement with the
predictions from a Λ-cold dark matter N-body simulation. This applies to all cell radii
considered, 0.3 < (R/h−1Mpc) < 30. However, the higher order correlation functions of
L∗ galaxies have a significantly smaller amplitude than is predicted for the dark matter for
R < 10h−1Mpc. This disagreement implies that a non-linear bias exists between the dark
matter and L∗ galaxies on these scales. We also show that the presence of two rare, mas-
sive superclusters in the 2dFGRS has an impact on the higher-order clustering moments
measured on large scales.

2.1 Introduction

Current theoretical models of structure formation in the Universe are based on the paradigm
of gravitational instability. This process is believed to be responsible for driving the growth
of small primordial density perturbations into the nonlinear collapsed structures such as
galaxies and clusters that are evident in the Universe today.

The premise of gravitational instability has been tested indirectly by comparing the clus-
tering predicted by numerical simulations of the formation of cosmic structures with the
observed distribution of galaxies (e.g. Benson et al. 2001). A direct test of this fundamen-
tal ingredient of structure formation models was made using the 2dFGRS by Peacock et al.
(2001). The size of the 2dFGRS allowed the first accurate measurement of the two-point

1C.M. Baugh, D.J. Croton, E. Gaztañaga, P. Norberg, M. Colless, et al. (the 2dFGRS Team), MNRAS, 351,
44, 2004
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galaxy correlation function on large scales. Peacock et al. demonstrated that the two-point
correlation function at large pair separations displays a form that is characteristic of the
bulk motions of galaxies expected in the gravitational instability scenario.

We present an independent test of the gravitational instability paradigm. For a Gaus-
sian distribution of density fluctuations, the volume averaged correlation functions, ξ̄p, are
identically zero for p > 2; the density field is completely described by its variance, ξ̄2. The
evolution of an initially Gaussian density field due to gravitational instability generates
non-zero ξ̄p (Peebles 1980). A basic test of the gravitational origin of the higher order mo-
ments is to determine their relation to the variance of the distribution. This is traditionally
encapsulated in the hierarchical model:

ξ̄p = S pξ̄
p−1
2 . (2.1)

This model applies to real space clustering; however, in redshift space the scaling still
tends to hold even on small scales where the “fingers-of-God” effect is prominent (Lahav
et al. 1993; Hoyle, Szapudi & Baugh 2000). Perturbation theory predicts that the hier-
archical amplitudes for the mass distribution are independent of the cosmological density
parameter, the cosmological constant and cosmic epoch (Bernardeau et al. 2002).

We use the 2dFGRS (Colless et al. 2001, 2003) to measure the higher order correlation
functions of the galaxy distribution, focusing on the clustering of L∗ galaxies. The size of
the 2dFGRS is exploited to extract a volume limited sample of L∗ galaxies, which greatly
simplifies our analysis (Section 2.2). The results for the volume averaged correlation func-
tions, up to sixth order, are presented in Section 2.3, in which we also test how well the
hierarchical scaling model works. Our conclusions are given in Section 2.4.

2.2 Data and analysis

The density of galaxies is a strong function of radial distance in a magnitude limited sur-
vey. This needs to be compensated for in any clustering analysis by applying a suitable
weighting scheme (e.g. Saunders et al. 1991). Alternatively, one may construct a volume
limited sample by selecting certain galaxies from the full redshift survey. These galaxies
are chosen so that they would appear inside the apparent magnitude range of the survey
if displaced to any redshift within the interval defining the sample. The only radial vari-
ation in galaxy number density in a volume limited sample is due to large scale structure
in the galaxy distribution. This makes volume limited samples much more straightforward
to analyse than flux limited samples. However, only a fraction of the galaxies from the
full redshift survey satisfy the selection criteria in redshift and absolute magnitude. This
reduction in the density of galaxies has curtailed the utility of volume limited subsamples
constructed from earlier redshift surveys.

We construct a volume limited sample of L∗ galaxies from the 2dFGRS. The motivation
for the choice of a sample centred on L∗ is clear; this results in a volume limited sample
with the largest possible number of galaxies for magnitude bins of a given size. As the
luminosity used to define a sample increases, the selected galaxies can be seen out to
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Figure 2.1: The projected galaxy density in the L∗ volume limited sample, smoothed
on two different scales. The galaxy distribution is projected onto the right
ascension–redshift plane and is then smoothed in circular cells of radius
15h−1Mpc (left) and 3h−1Mpc radius (right). Redder colours denote higher
densities as indicated by the key that accompanies each panel. Two “hot-
spots” stand out clearly, particularly in the left hand coneplots; one in the
NGP at z ≈ 0.08 and the other in the SGP at z ≈ 0.11. Right ascension is
given in radians.

larger redshifts and thus sample larger volumes. However, brighter than L∗, the space
density of galaxies drops exponentially (e.g. Norberg et al. 2002b). Hence, the optimum
balance between volume surveyed and intrinsic galaxy space density is achieved for L∗
galaxies. In addition, the higher order clustering of L∗ galaxies provides a benchmark or
reference against which to compare trends in clustering strength with galaxy luminosity
(see Norberg et al 2001; Croton et al. 2004b). We consider the two contiguous areas of the
2dFGRS, referred to as the NGP and SGP regions, which contain around 190,000 galaxies
with redshifts and cover an effective area of approximately 1200 square degrees in total.
After selecting galaxies with absolute magnitudes in the range −19 > MbJ−5 log10 h > −20
(corrected to z = 0 using the global k + e correction quoted by Norberg et al. 2002b), the
volume limited sample contains 44,931 galaxies. The redshift interval of the sample is
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z = 0.021 to 0.130, corresponding to a volume of 7.97 × 106h−3Mpc3 for the combined
NGP and SGP regions.

2.2.1 Counts-in-cells

The distribution of counts-in-cells is estimated by throwing down a large number of spher-
ical cells, on the order of 107 for each cell radius considered, within the L∗ volume limited
2dFGRS sample. Full details of how we deal with the spectroscopic incompleteness and
the angular mask are given in Croton et al. (2004b); the corrections turn out to be small in
any case (see figure 1 of Croton et al.).

The higher order correlation functions, ξ̄p, are the reduced pth order moments of the
distribution of galaxy counts-in-cells. The estimation of the higher order correlation func-
tions from the cell count probability distribution is explained in a number of papers (e.g.
Gaztañaga 1994; Baugh, Gaztañaga & Efstathiou 1995; Croton et al. 2004b). The variance
or width of the count distribution is given by the case p = 2. For p > 2, the correlation
functions probe further out into the tail of the count probability distribution.

We use mock 2dFGRS catalogues to estimate the errors on the measured higher order
correlation functions. Full details of the mocks can be found in Norberg et al. (2002b) and
Croton et al. (2004b).

2.3 Results

The projected density of galaxies in the L∗ volume limited sample is shown in Fig. 2.1. The
galaxy density projected onto the right ascension–redshift plane is smoothed using circu-
lar windows. Two different smoothing radii have been used to produce these maps; the
left-hand panel shows the density after smoothing with a circular cell of radius 15h−1Mpc
and the right hand panel shows the distribution as sampled with a cell of radius 3h−1Mpc.
The redder colours indicate higher galaxy densities, as shown by the scale that accom-
panies each cone plot. Two ‘hot-spots’ are readily apparent, particularly in the cone plot
smoothed on the larger scale. These correspond to superclusters of galaxies that also ap-
pear in the 2dFGRS Percolation Inferred Galaxy Group catalogue (Eke et al. 2004) and
in the reconstructed density field of the 2dFGRS (Erdogdu et al. 2004). The presence of
these superclusters has an impact on the extreme event tail of the count probability distri-
bution. Later in this section, we will investigate the influence of these structures on our
measurement of the higher order correlation functions by excising the volumes that con-
tain the superclusters from our analysis. The ‘cosmic web’ of filamentary structures and
voids is apparent in the cone smoothed on the smaller scale.

The higher order correlation functions measured for L∗ galaxies are plotted in Fig. 2.2.
The correlation functions are only plotted on scales for which a robust measurement is
possible. The correlation functions show a dramatic steepening on small scales as the or-
der p increases. For example, the ratio ξ̄6/ξ̄2 is 105 at R = 1h−1Mpc, falling to ∼ 100 at
R = 6.3h−1Mpc. We also plot the higher order correlation functions for the dark matter dis-
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Figure 2.2: The higher order correlation functions ξ̄p measured for L∗ galaxies in the
2dFGRS (symbols). The orders p = 2–6 are shown, as indicated by the
key. The errorbars show the rms scatter estimated using mock 2dFGRS cata-
logues. The lines show the ξ̄p measured for the dark matter in redshift space
in the ΛCDM Hubble Volume simulation, for orders p = 2 to 6 in sequence
of increasing amplitude for R < 10h−1Mpc.

tribution in the ΛCDM Hubble Volume simulation (Evrard et al. 2002). These theoretical
predictions include the effects of peculiar motions in the distant observer approximation.
The variance of the dark matter in redshift space agrees spectacularly well with the mea-
sured ξ̄2 for L∗ galaxies. This confirms the conclusions reached in independent analyses
of the clustering of L∗ galaxies in the 2dFGRS (Lahav et al. 2002; Verde et al. 2002).
However, for the case of the ΛCDM Hubble Volume simulation, the p > 2 moments of the
dark matter differ from the measurements for L∗ galaxies for R < 10h−1Mpc.

The hierarchical amplitudes, S p, obtained from the ξ̄p by applying Eq. 2.1 are plotted
as a function of cell radius for orders p = 3–5 in Fig. 2.3 (p = 6 is omitted for clarity).
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Figure 2.3: The hierarchical amplitudes, S p, for p = 3, 4 and 5, plotted as a function of
cell radius for the L∗ volume limited sample. The filled symbols connected
by solid lines show the results obtained using the full volume. The best
fit constant values of Sp are shown by the horizontal solid lines, which are
plotted over the range of scales used in the fit. The dotted lines show the
1−σ error on the fit. The open symbols connected by dashed lines show
the hierarchical amplitudes recovered when the two largest superclusters are
masked out of the volume.

For p = 3, S 3 is approximately constant for cells with R < 3h−1Mpc. At larger R, S 3

increases with radius. This behaviour is mirrored for p > 3, with the upturn in S p seen
at progressively smaller radii as p increases. Perturbation theory predicts that, on large
scales, the S p should have only a weak dependence on scale for CDM-like power spectra
(Juszkiewicz, Bouchet & Colombi 1993). In redshift space, the hierarchical amplitudes
are expected to be approximately independent of scale over an even wider range of scales
than those on which perturbation theory is applicable (Hoyle et al. 2000; Bernardeau et al.
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Figure 2.4: The higher order correlation functions, ξ̄p, measured for L∗ galaxies in the
2dFGRS (symbols, as in Fig. 2) compared with the predictions of the hierar-
chical model (Eq. 2.1; solid lines). The hierarchical predictions are plotted
only on the scales used to fit Sp. The dotted lines indicate the errors on these
predictions, with contributions from the error on the fitted value of Sp and
on the measured variance ξ̄2.

2002). We therefore attempt to fit a constant value of S p to the ratios plotted in Fig. 2.3.
We use a principal component analysis to take into account the correlation between the
ξ̄p in neighbouring bins (e.g. Porciani & Givalisco 2002; for further details of our imple-
mentation see Croton et al. 2004b). The results of this analysis are given in Table 2.1. In
Fig. 2.3, the horizontal lines show the best fit constant value for S p, fitted over the scales
0.71 < (R/h−1Mpc) < 7.1. The same range of scales is used to fit the S p for each order
p. (The choice of scales is set by the cell radii for which a reliable measurement of ξ̄6 is
possible.) The dotted lines indicate the 1σ uncertainty on the fit. The errorbars plotted in
Fig. 2.3 show only the diagonal component of the full covariance matrix. The amplitudes
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order S p ±2σ χ2/ndof
3 1.95 0.18 6.1
4 5.50 1.43 2.8
5 17.8 10.5 1.9
6 46.3 50 1.1

Table 2.1: The best fit values for Sp and the 2−σ error (∆χ2 = 4), obtained using the
measurements for cell radii in the range 0.71 ≤ (R/h−1Mpc) ≤ 7.1. The 2−σ
errors are approximately twice the size of the 1−σ errors. The final column
gives the reduced χ2 using the number of degrees of freedom derived from
the principal component analysis.

S p are extremely correlated, with the principal component analysis showing that the first
few eigenvectors contain the bulk of the variance, indicating that there are typically just 2
or 3 independent points. Sample variance leads to measurements which could be coher-
ently shifted either low or high with respect to a fixed value. This therefore drives the best
fit value of S p to lie either below or above a sizeable fraction of the data points. For the
L∗ sample, we note that neither S 3 nor S 4 are particularly well described by a constant fit
(see the reduced χ2 values in Table 2.1).

For purely illustrative purposes, we have carried out the experiment of removing the two
superclusters from the L∗ volume limited sample and repeating our measurement of the
higher order correlation functions. The corresponding results for the hierarchical ampli-
tudes are plotted using open symbols in Fig. 2.3. The upturn in the S p values at large radii
is no longer apparent. Rather than being considered as a correction, the results of this ex-
ercise simply serve to show the influence of the supercluster regions on our measurements
of the ξ̄p. Where the difference matters, it effectively indicates that the volume of even
the 2dFGRS is too small to yield a robust higher-order clustering measurement. A further
discussion of this test is given by Croton et al. (2004b).

Armed with the best fit values of S p, the hierarchical model stated in Eq. 2.1 can be used
to make predictions for the form of the higher order correlation functions and compare
these with the measurements from the 2dFGRS L∗ galaxy sample (symbols in Fig. 2.4,
reproduced from Fig. 2.2). The solid lines in Fig. 2.4 show the ξ̄p predicted from the
hierarchical scaling relation (Eq. 2.1), assuming a constant value for the hierarchical am-
plitudes, S p, and using the measured variance, ξ̄2. The dotted lines show the uncertainty
in the theoretical predictions, derived from the 1−σ error in the fitted values of the S p

and the error on the measured variance, ξ̄2. The theoretical predictions for the different
orders agree spectacularly well with the measured higher order correlation functions over
the range of scales for which the S p are fitted.
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2.4 Conclusions

We have measured the higher order correlation functions of L∗ galaxies up to sixth order
in the 2dFGRS. Previous studies of galaxy clustering in redshift space have been lim-
ited to fourth order (e.g. for optically selected samples: Gaztañaga 1992; Benoist et al.
1999; Hoyle et al. 2000: for infra-red selected samples: Bouchet et al. 1993; Szapudi et
al. 2000). The volume limited sample of L∗ galaxies analysed here contains 100 times
more galaxies and covers 10 times the volume of the previous best measurements from
an optically selected galaxy redshift survey (Hoyle et al. 2000). The measured correla-
tion functions have a form that is in remarkably good agreement with the predictions of
hierarchical scaling, and extend to smaller scales than those for which the perturbation
theory predictions are expected to be valid (Bernardeau et al. 2002). A similar conclusion
was reached by Croton et al. (2004a), who found hierarchical scaling in the reduced void
probability function measured in the 2dFGRS.

On scales larger than about 4h−1Mpc, there is an upturn in the values of S p, which we
have demonstrated is influenced by the presence of two large superclusters in the 2dFGRS
(see Fig. 2.3). This suggests that finite sampling affects our measurements on these scales.
A similar feature was found in the angular Edinburgh-Durham Southern Galaxy Cata-
logue (EDSGC). Szapudi & Gaztañaga (1998) found that the projected S p measured from
the EDSGC displayed an up-turn for scales larger than 0.5 degrees, which corresponds to
≈ 4h−1Mpc at the characteristic depth of the survey. The EDSGC covers a similar part of
the sky to the 2dFGRS. This feature in S p was not found, however, in the APM Survey,
which covers a four times larger solid angle than the EDSGC (Gaztañaga 1994). This
behaviour is not seen in the mock catalogues drawn from the ΛCDM Hubble Volume sim-
ulation. Intriguingly, an upturn in the hierarchical amplitudes on large scales is expected in
structure formation models with non-Gaussian initial density fields (Gaztañaga & Fosalba
1998; Bernardeau et al. 2002).

Finally, we note that the variance of the distribution of cell counts for L∗ galaxies is
in excellent agreement with the predictions for CDM, obtained from the Hubble Volume
ΛCDM simulation, which includes the effects of peculiar motions on the clustering pattern.
However, for cells with radii R < 10h−1Mpc the higher order correlation functions of L∗
galaxies have significantly lower amplitudes than the dark matter. This implies that the
relation between the distribution of galaxies and the underlying dark matter may be more
complicated than the popular linear bias model, suggesting that nonlinear contributions to
the bias may be important on small and intermediate scales (Fry & Gaztañaga 1993; see
also the analyses by Conway et al. 2005 and Wild et al. 2005). We note that on large
scales (R > 10h−1Mpc), the ξ̄p measured for L∗ galaxies agree better with the ΛCDM
predictions, supporting the conclusion reached previously, that on these scales, L∗ galaxies
approximately trace the mass distribution (Gaztañaga & Frieman 1994; Lahav et al. 2002;
Verde et al. 2002).

We explore the distribution of galaxy counts-in-cells for the 2dFGRS in more detail in
Croton et al. (2004b), where we study the dependence of the correlation functions on
luminosity.

23



Hierarchical galaxy clustering in the 2dFGRS

24



3 Higher order clustering in the 2dFGRS1

Abstract

We measure moments of the galaxy count probability distribution function in the two-
degree field galaxy redshift survey (2dFGRS). The survey is divided into volume limited
subsamples in order to examine the dependence of the higher order clustering on galaxy
luminosity. We demonstrate the hierarchical scaling of the averaged p-point galaxy cor-
relation functions, ξ̄p, up to p = 6. The hierarchical amplitudes, S p = ξ̄p/ξ̄

p−1
2 , are ap-

proximately independent of the cell radius used to smooth the galaxy distribution on small
to medium scales. On larger scales we find the higher order moments can be strongly
affected by the presence of rare, massive superstructures in the galaxy distribution. The
skewness S 3 has a weak dependence on luminosity, approximated by a linear dependence
on log luminosity. We discuss the implications of our results for simple models of linear
and non-linear bias that relate the galaxy distribution to the underlying mass.

3.1 Introduction

The pattern of galaxy clustering can be quantified by measuring the galaxy count proba-
bility distribution function (CPDF) on a range of smoothing scales. The CPDF gives the
probability that a randomly chosen region of the universe will contain a particular num-
ber of galaxies, and is typically expressed as a function of both the size of the region
smoothed over and the galaxy number within that volume. Traditionally, most effort has
been directed at measuring the second moment of the count distribution, the variance,
ξ̄2, through the autocorrelation function or, equivalently, its Fourier transform, the power
spectrum (e.g. Percival et al. 2001; Padilla & Baugh 2003; Tegmark et al. 2004). The
higher order moments of the CPDF, expressed as volume averaged correlation functions,
ξ̄p (p = 2, 3, . . . ), provide a much more detailed description of galaxy clustering, probing
the shape of the low and high count tails of the distribution.

The higher order moments of the dark matter distribution are known to display a hier-
archical scaling in which the p-point volume averaged correlation functions, ξ̄p, can be
written in terms of the variance of the count distribution, ξ̄2: ξ̄p = S pξ̄

p−1
2 (e.g. see Pee-

bles 1980, Juszkiewicz, Bouchet & Colombi 1993, Bernardeau 1994, Baugh, Gaztañaga

1D.J. Croton, E. Gaztañaga, C.M. Baugh, P. Norberg, M. Colless, et al. (the 2dFGRS Team), MNRAS, 352,
1232, 2004
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& Efstathiou 1995, Gaztañaga & Baugh 1995, Fosalba & Gaztañaga 1998). This scal-
ing is a signature of the evolution under gravitational instability of an initially Gaussian
distribution of density fluctuations. A remarkable feature of the scaling is that the values
of the hierarchical amplitudes, S p, on scales for which the density field evolves linearly
or in a quasi-linear fashion, are insensitive to cosmic epoch and essentially independent
of the cosmological density parameter or the value of the cosmological constant. For a
comprehensive review of such results see Bernardeau et al. (2002) and references therein.

Departures from the hierarchical scaling of the higher order moments could conceivably
arise in three ways:

(i) A strongly non-Gaussian distribution of primordial density waves as could arise, for
instance, due to a seed non-linear fluctuation such as a global texture (see Gaztañaga
& Mahonen 1996, Gaztañaga & Fosalba 1998, Scoccimarro, Sefusatti & Zaldarriaga
2004 for examples of how the S p scale in this case). This avenue now seems un-
likely, following the clear detection of multiple acoustic peaks in the power spectrum
of cosmic microwave background temperature fluctuations (Netterfield et al. 2002;
Hinshaw et al. 2003; Mason et al. 2003; Scott et al. 2003; Kuo et al. 2004);
such peaks are difficult to reconcile with models that include cosmological defects
(Kamionkowski & Kowsowsky 1999). Moreover strongly non-Gaussian primordial
fluctuations are ruled out by the first year WMAP results (Komatsu et al. 2003;
Gaztañaga & Wagg 2003)

(ii) A weakly non-Gaussian distributed primordial density field, resulting from a non-
linear perturbation to a Gaussian density field. This scenario is difficult to distin-
guish from the evolution of an initially Gaussian field under gravitational instability,
because the perturbation can introduce a shift to the amplitudes S p that is also hierar-
chical. This can happen even in the case where the non-linear perturbation produces
a negligible effect on the power spectrum (Bernardeau et al. 2002).

(iii) The spatial bias between the galaxy distribution and the underlying distribution of
dark matter. Fry & Gaztañaga (1993) demonstrated that, under a local biasing pre-
scription, the hierarchical scaling of the higher order moments is preserved but the
amplitudes S p can change as a function of time or luminosity. This conclusion is
also reached using more sophisticated, physically motivated semi-analytic models
of galaxy formation (Kauffmann et al. 1999; Benson et al. 2000; Scoccimarro et al.
2001).

Previous attempts to measure the higher order correlation functions have been hamstrung
by the small size of the available redshift surveys, a shortcoming that is exacerbated once
volume limited subsamples are constructed (Hui & Gaztañaga 1999). Nevertheless, early
counts-in-cells studies established that the first few higher order moments of the galaxy dis-
tribution displayed the hierarchical scaling expected in the gravitational instability frame-
work (Groth & Peebles 1977; Peebles 1980; Gaztañaga 1992; Bouchet et al. 1993; Fry
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3.1 Introduction

& Gaztañaga 1994, Ghigna et al. 1996, Feldman et al. 2001). Such analyses were typ-
ically limited to measuring the three and four point correlation functions. The nature of
the dependence of the hierarchical amplitudes on luminosity has not been convincingly
established. Recent work to investigate this in the optical (Hoyle et al. 2000) and in the far
infrared (Szapudi et al. 2000) was restricted to probing fairly narrow ranges of luminosity
due to the size of the redshift surveys then available.

The advent of multi-fibre spectrographs exploited by sustained observing campaigns has
led to a new generation of redshift survey which represents order of magnitude advances
over surveys completed in the last millennium. The Sloan Digital Sky Survey (York et al.
2000) and the Two-degree Field Galaxy Redshift Survey (2dFGRS, Colless et al. 2001)
have provided maps of the clustering pattern of galaxies with unprecedented detail. Anal-
ysis of the 2dFGRS clustering has suggested that the flux limited sample could be an
essentially unbiased tracer of the dark matter in the Universe (Lahav et al. 2002; Verde
et al. 2002) 2. These results confirmed previous deductions about galaxy bias (e.g. Gaz-
tañaga 1994, Frieman & Gaztañaga 1999, Gaztañaga & Juszkiewicz 2001) reached using
the parent angular catalogue of the 2dFGRS, the APM Galaxy Survey (Maddox et al. 1990,
1996). The 2dFGRS covers a volume that is an appreciable fraction of that sampled by the
APM Survey, with full redshift coverage (modulo the relatively small redshift incomplete-
ness that still remains). This means that for the first time, a measurement of the higher
order moments is possible in three dimensions with comparable accuracy to that attain-
able in two dimensions, but without the added complication of the effects of projection
(Gaztañaga & Bernardeau 1998; Szapudi & Gaztañaga 1998).

The sheer number of galaxies in the 2dFGRS allows it to be subdivided in order to
probe the dependence of the clustering signal on intrinsic galaxy properties in more detail.
Norberg et al. (2001) found that the amplitude of the projected two point correlation
function scales with luminosity, and characterised this trend using a relative bias factor
with a linear dependence on luminosity. In this paper we extend the work of Norberg et
al. to study the higher order clustering of galaxies in the 2dFGRS and its dependence
on luminosity. Our approach is the same as that followed in Baugh et al. (2004), who
measured the higher order correlation functions of a sample of L∗ galaxies and found that
they follow a hierarchical scaling.

We provide a brief review of the measurement of the moments of the CPDF in Section
3.2. In Section 3.3, we discuss the specific application of this method to the 2dFGRS; an
important feature of our analysis is the use of mock catalogues to estimate the errors on our
measurements (see Section 3.3.3). Our results for the higher order correlation functions
and the hierarchical amplitudes are given in Section 3.4. We quantify the variation of
the higher order moments with luminosity in Section 3.5, and discuss the interpretation
of these results in terms of a simple relative bias model. Our conclusions are set out
in Section 3.6. Throughout, we adopt standard present day values of the cosmological
parameters to compute comoving distance from redshift: a density parameter Ωm = 0.3

2Note that with the weighting scheme adopted to compensate for the radial selection function, the character-
istic luminosity of the flux limited 2dFGRS used in these studies is ≈ 2L ∗.
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and a cosmological constant ΩΛ = 0.7.

3.2 Counts-in-cells statistics

The count probability distribution function (CPDF) and its moments have been used ex-
tensively to quantify the clustering pattern of galaxies (e.g. White 1979; Peebles 1980). In
this Section we give an outline of the counts-in-cells approach, explaining how the volume
averaged p-point correlations are derived from the CPDF and give a brief theoretical back-
ground. A more comprehensive discussion of the counts-in-cells approach can be found in
Bernardeau et al. (2002).

3.2.1 Estimating the p-point volume averaged correlation functions

The p-point moment, or (un-reduced) correlation function, m3(r1, r2, r3) ≡< δ(r1)...δ(rp) >,
can be used to fully characterise the clustering of a fluctuating field δ(r). The reduced
p-point correlation function, ξp(r1, ..., rp), is defined as the connected part of the above p-
point correlation in such a way that for p > 2: ξp = 0 for a Gaussian field (see Bernardeau
et al. 2002 for more details). Following the standard convention, for the remainder of this
paper when we talk about correlations we will always assume they are “reduced" correla-
tions.

The p-point volume averaged galaxy correlation function, ξ̄p(V), can be written as the
integral of the p-point correlation function, ξp, over the sampling volume, V (Peebles
1980):

ξ̄p(V) =
1

V p

∫

V
d3r1 . . . d3rp ξp(r1, . . . , rp) . (3.1)

A practical way in which to estimate ξ̄p(V) is to randomly throw cells down within the
galaxy distribution, recording the number of times a cell contains N galaxies so as to build
up the galaxy CPDF, PN(V). Since we adopt spherical cells, the CPDF is a function of the
sphere radius, R,

PN(R) =
NN

NT
, (3.2)

where NN is the number of cells that contain N galaxies out of a total number of cells
thrown down, NT . The volume averaged correlation functions ξ̄p(V) are then related to the
moments of the CPDF, mp:

mp(R) = 〈(N − N̄)p〉 =
∞
∑

N=0

PN(R)(N − N̄)p , (3.3)

where N̄ is the mean number of galaxies in a cell of volume V and is calculated directly
from the CPDF

N̄ =
∞
∑

N=0

NPN . (3.4)

28



3.2.2 Scaling of the higher order moments

For the case of a continuous distribution, ξ̄p is related to the corresponding cumulant, µp,
through N̄ pξ̄p = µp, where the cumulants are defined as (see Gaztañaga 1994 for details):

µ2 = m2 ; µ3 = m3 ,

µ4 = m4 − 3m2
2 ; µ5 = m5 − 10m3m2 . (3.5)

If instead we are dealing with a discrete distribution, these relations must be corrected. A
Poisson shot noise model is adopted (see Baugh et al. 1995 for a discussion of this point),
to give corrected estimates of the moments, kp:

k2 = µ2 − N̄ ; k3 = µ3 − 3k2 − N̄ ,

k4 = µ4 − 7k2 − 6k3 − N̄ ,

k5 = µ5 − 15k2 − 25k3 − 10k4 − N̄ . (3.6)

The volume-averaged correlation functions, calculated from the galaxy CPDF, follow di-
rectly from the relation ξ̄p = kp/N̄ p.

3.2.2 Scaling of the higher order moments

In the hierarchical model of clustering, all higher-order correlations can be expressed in
terms of the 2-point function, ξ̄2, and dimensionless scaling coefficients, S p:

ξ̄p = S p ξ̄
p−1
2 . (3.7)

Traditionally, S 3 = ξ̄3/ξ̄
2
2 is referred to as the skewness of the distribution and S 4 = ξ̄4/ξ̄

3
2

as the kurtosis. The hierarchical scaling of the higher order moments arises from the
evolution due to gravitational instability of an initially Gaussian distribution of density
fluctuations (see Bernardeau et al. 2002 and references therein).

3.2.3 Systematic effects: biased estimators

In addition to sampling errors (see Section 3.3.3 below), the estimation of the hierarchi-
cal amplitudes can be compromised by systematic effects, as discussed in some detail by
Hui & Gaztañaga (1999). These authors identified two sources of error that could lead
to a systematic bias in the inferred values of S p. The first effect arises from biases in
the estimates of the higher order correlation functions themselves, known as the “integral
constraint bias” (see e.g. Bernstein 1994). The second effect originates in the nonlinear
combination of ξ̄p and ξ̄2 to form S p; this is called the “ratio bias”. The latter effect dom-
inates on large scales and tends to cause the inferred values of the S p to be biased low.
Hui & Gaztañaga wrote down expressions for these biases which accurately reproduce
the systematic effects seen upon estimating the hierarchical amplitudes from sub-volumes
extracted from N-body simulations.

As mentioned above, we will use different volume limited samples to study the luminos-
ity dependence of the hierarchical amplitudes, S p. As the luminosity that defines a sample
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is made brighter, the volume of the sample increases. Thus the estimation biases tend to
cause the S p to increase with sample luminosity. This spurious tendency has already been
reported in the literature (see Hui & Gaztañaga 1999). For volumes of the size used in our
analysis, it turns out that the predicted biases are smaller than the corresponding sampling
errors (e.g. see figure 3 in Hui & Gaztañaga 1999). This is the first time that a redshift
survey has been available which is large enough to overcome such systematic biases.

3.2.4 Galaxy biasing

Galaxy samples constructed using different selection criteria display different clustering
patterns. This leads one to the conclusion that distinct samples of galaxies must trace the
underlying mass distribution in different ways, a phenomenon that is generally known as
galaxy bias.

A simple, heuristic scheme describing the impact of a local bias on the scaling of the
higher order moments was proposed by Fry & Gaztañaga (1993). These authors demon-
strated that in this case, the scaling of the higher order moments of the galaxy distribution
should mirror that of the dark matter, though possibly with different values for the hierar-
chical amplitudes S p. Fry & Gaztañaga made the assumption that the density contrast in
the galaxy distribution, δG, i.e. the fractional fluctuation around the mean density, could
be written as a Taylor expansion of the density contrast of the dark matter, δDM:

δG =

∞
∑

k=0

bk

k!
(δDM)k. (3.8)

On scales where the variance, ξ̄DM
2 , is small, the leading order contribution to the two-point

volume averaged correlation function of galaxies has the form:

ξ̄G2 = b2
1 ξ̄

DM
2 , (3.9)

where b1 is the ubiquitous linear bias b. The leading order forms for the hierarchical
amplitudes, S p, for the cases p = 3 and p = 4 are:

S G
3 =

1
b1

(

S DM
3 + 3c2

)

(3.10)

S G
4 =

1

b2
1

(

S DM
4 + 12c2S DM

3 + 4c3 + 12c2
2

)

, (3.11)

where we use the notation ck = bk/b1. Expressions for the hierarchical amplitudes are
given up to p = 7 in Fry & Gaztañaga (1993).

Mo, Jing & White (1997) give theoretical predictions for the coefficients bk using the
Press & Schechter (1974) formalism and exploiting the framework developed by Cole &
Kaiser (1989) and Mo & White (1996). For halos of mass M, the first two bias factors
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(k = 1 and 2) are given by:

b1 = 1 +
ν2 − 1
δc

(3.12)

b2 = 2

(

1 − 17
21

)

ν2 − 1
δc
+
ν2

δ2c
(ν2 − 3) (3.13)

where ν ≡ δc/σ(M), δc is the linear theory overdensity at the time of collapse (δc = 1.686
for Ω = 1) and σ(M) is the linear rms fluctuation on the mass scale of the halos. This is
a simple model but nevertheless it shows some tendencies that are correct. For example, a
typical mass halo corresponding to ν = 1 displays an unbiased variance with b1 = 1, but
introduces a bias in the skewness, since c2 = b2 = −0.7. As a further illustration, consider
massive halos defined by ν2 > 3; in this case the Mo, Jing & White theory predicts that
c2 > 0, while less massive halos could produce c2 < 0. To get more realistic values of
bk for galaxy bias, a prescription has to be adopted for populating dark matter halos of a
given mass with galaxies of a given luminosity (Benson et al. 2001; Scoccimarro et al.
2001; Berlind et al. 2003).

In the interpretation of the higher order moments presented in this paper we will make
use of a relative bias, which describes the change in clustering compared with that mea-
sured for a reference sample (Norberg et al. 2001, 2002a). Using Eq. 3.9 as a guide, we
define the relative bias, br = b1/b∗1, of a sample as the square root of the ratio of the 2-point
correlation function measured for the sample over that measured for the reference sample,
denoted by an asterisk (the reference sample will be defined explicitly in Section 3.5):

br ≡
b1

b∗1
=

( ξ̄G2

ξ̄G∗2

)1/2
. (3.14)

Thus, we can obtain an estimate of the relative bias from the ratio of the variances.
When the linear bias is a good approximation (ck ' 0 for k > 1), we can relate S G

p in
different galaxy samples regardless of the underlying DM value of S p:

S G
p =

S G∗
p

bp−2
r

. (3.15)

More generally, one can manipulate Eq. 3.10 to write down an expression comparing S G
p

for two galaxy samples, eliminating S DM
3 for the underlying dark matter (e.g. see Eq. 9 in

Fry & Gaztañaga 1993). For the skewness:

S G∗
3 = brS

G
3 − 3

(c2 − c∗2)

b∗1
, (3.16)

where an asterisk denotes a quantity describing the reference sample, and br = b1/b∗1 is
the relative bias defined above. Any second order relative bias effects are thus given by:

c′2 =
(c2 − c∗2)

b∗1
=

1
3

(

brS
G
3 − S G∗

3

)

. (3.17)
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As a special case, if the reference sample is un-biased (i.e. b∗1 = 1 and c∗p = 0), we then
have c′2 = c2.

3.3 Application to the 2dFGRS

In this Section we describe the construction of volume limited samples from the 2dFGRS
(Section 3.3.1) and outline how we deal with the small, remaining incompleteness of the
survey when we measure the CPDF (Section 3.3.2). The estimation of errors on the mea-
sured higher order moments is described in Section 3.3.3. We use the full 2dFGRS as our
starting point. The final spectra were taken in April 2002, giving a total of 221,414 galaxies
with high quality redshifts (i.e. with quality flag Q ≥ 3; see Colless et al. 2001). The me-
dian depth of the full survey, to a nominal magnitude limit of bJ ∼ 19.45, is z ∼ 0.11. We
consider the two large contiguous survey regions, one near the south galactic pole (SGP)
and the other towards the north galactic pole (NGP). After restricting attention to the high
redshift completeness parts of the survey (see Colless et al. 2001; Norberg et al. 2002b),
the effective solid angle covered by the NGP region is 469 square degrees and that of the
SGP is 670 square degrees. Full details of the 2dFGRS and the construction and use of
the mask quantifying the completeness of the survey can be found in Colless et al. (2001,
2003).

We make use of mock 2dFGRS catalogues to test our algorithm for dealing with the
spectroscopic incompleteness of the survey and to estimate errors on the measured higher
order correlation functions. The construction of the mocks is described in Norberg et al.
(2002b). In short, catalogues are extracted from the Virgo Consortium’s ΛCDM Hubble
Volume simulation which covers a volume of 27Gpc3 (Evrard et al. 2002). A heuristic bias
scheme is applied to the smoothed distribution of dark matter in the simulation to select
‘galaxies’ with a specified clustering pattern (Cole et al. 1998). The parameters of the bias-
ing scheme are adjusted so that the extracted galaxies have the same projected correlation
function as measured for the flux limited 2dFGRS by Hawkins et al. (2003). Observers are
placed within the Hubble Volume simulation according to the criteria set out in Norberg
et al. (2002b). Mock catalogues are then extracted by applying the radial and angular
selection functions of the 2dFGRS. Finally, the mock is degraded from uniform coverage
within the angular mask of the survey by applying the spectroscopic completeness mask
of the 2dFGRS.

3.3.1 Construction of volume limited catalogues

In a flux limited sample the density of galaxies is a strong function of radial distance. This
effect needs to be taken into account in clustering analyses (for an example of a technique
appropriate to a counts-in-cells analysis, see Efstathiou et al. 1990). Alternatively, one
may construct volume limited samples in which the radial selection function is constant
and any variations in the density of galaxies are due only to large scale structure. This
greatly simplifies the analysis at the expense of using a subset of the survey galaxies. The
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3.3.1
C

onstruction
ofvolum

e
lim

ited
catalogues

VLC Mag. range Median lum. NG ρave dmean zmin zmax Dmin Dmax Volume
ID MbJ − 5 log10 h L/L∗ 10−3h3Mpc−3 h−1Mpc h−1Mpc h−1Mpc 106h−3Mpc3

1 −17.0 −18.0 0.13 8038 10.9 4.51 0.009 0.058 24.8 169.9 0.74
2 −18.0 −19.0 0.33 23290 9.26 4.76 0.014 0.088 39.0 255.6 2.52
3 −19.0 −20.0 0.78 44931 5.64 5.62 0.021 0.130 61.1 375.6 7.97
4 −20.0 −21.0 1.78 33997 1.46 8.82 0.033 0.188 95.1 537.2 23.3
5 −21.0 −22.0 3.98 6895 0.110 20.9 0.050 0.266 146.4 747.9 62.8

Table 3.1: Properties of the combined 2dFGRS SGP and NGP volume-limited catalogues (VLCs). Column 1 gives the numerical label
of the sample. Columns 2 and 3 give the faint and bright absolute magnitude limits that define the sample. The fourth column
gives the median luminosity of each volume limited sample in units of L∗, computed using the Schechter function parameters
quoted by Norberg et al. (2002b). Columns 5, 6 and 7 give the number of galaxies, the mean number density and the mean
inter-galaxy separation for each VLC, respectively. Columns 8 and 9 state the redshift boundaries of each sample for the
nominal apparent magnitude limits of the survey; columns 10 and 11 give the corresponding comoving distances. Finally,
column 12 gives the combined SGP and NGP volume. All distances are comoving and are calculated assuming standard
cosmological parameters (Ωm = 0.3 and ΩΛ = 0.7).
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2dFGRS contains enough galaxies and covers sufficient volume to permit the construction
of volume limited samples corresponding to a wide baseline in luminosity from which
robust measurements of the higher order correlation functions can be obtained.

We follow the approach taken by Norberg et al. (2001, 2002a) who measured the pro-
jected 2-point correlation function of 2dFGRS galaxies in volume limited samples corre-
sponding to bins in absolute magnitude. The samples are defined by a specified absolute
magnitude range, with absolute magnitudes corrected to zero redshift (this correction is
made using the k + e correction given by Norberg et al. 2002b). As any survey has, in
practice, a bright as well as a faint flux limit, this implies that a selected galaxy should fall
between a minimum (zmin) and a maximum (zmax) redshift. This then guarantees that all
sample galaxies are visible within the flux limits of the survey when displaced to any depth
within the volume of the sample. The properties of the combined NGP and SGP volume
limited samples examined in this paper are given in Table 3.1.

3.3.2 Correcting for incompleteness

There are two possible sources of incompleteness that need to be considered when esti-
mating the galaxy count within a cell. The first is volume incompleteness, which can arise
when some fraction of the cell volume samples a region of space that is not part of the
2dFGRS. This situation can arise because the survey has a complicated boundary and also
because it contains holes excised around bright stars and other interlopers in the parent
APM galaxy catalogue (Maddox et al. 1990, 1996). The second source of incompleteness
is spectroscopic incompleteness. The final 2dFGRS catalogue is much more homogeneous
than the 100k release (contrast the completeness mask of the final survey shown in figure 1
of Hawkins et al. 2003 with the equivalent mask depicted in figure 15 of Colless et al.
2001.) However, the spectroscopic completeness still varies with position on the sky and
needs to be incorporated into the counts-in-cells analysis.

It is therefore necessary to devise a strategy to compensate for the fact that a cell will
sample regions that have varying spectroscopic completeness and which may even straddle
the survey boundary or a hole. We project the volume enclosed by the cell onto the sky
and estimate, using the survey masks, the mean combined spectroscopic and volume com-
pleteness, f , within the sphere. Rather than view the consequence of this incompleteness
as missed galaxies, we instead consider it as missed volume. We compute a new radius
for the sphere given by R′ = f −

1
3 R: such a sphere with radius R′ will have an incomplete

volume equivalent to that of a fully complete sphere of radius R. Spheres for which f is
less than 50% are discarded. The galaxy count within the sphere of radius R′ then con-
tributes to the CPDF at the effective radius R. Each sphere thrown down is individually
scaled in this way according to its local incompleteness, as given by the survey masks. We
note that, due to our chosen acceptable minimum completeness of 50%, the rescaling of
the cell radius is always less than the width of the radial bins we use to plot the higher or-
der correlation functions. Our results are insensitive to the precise choice of completeness
threshold.

An alternative method to correct cell counts is described in Efstathiou et al. (1990). In
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3.3.2 Correcting for incompleteness

Figure 3.1: A test of the scheme used to correct the measured distribution of counts-in-
cells for incompleteness in the 2dFGRS, using mock catalogues. The plot
shows the hierarchical amplitudes, S p, for orders p = 3, 4 and 5. The dotted
lines show the results from fully sampled mocks that have no incomplete-
ness. The dashed lines show how these results change when the complete-
ness mask of the 2dFGRS is applied to the mocks and no compensation is
made for the variable spectroscopic completeness. The circles show the S p

recovered once the correction to the cell radius discussed in the text is made.
The errorbars show the rms scatter estimated from the mock catalogues.

this commonly used approach it is the galaxy counts which are scaled up in proportion to
the degree of incompleteness in the cell, as opposed to the cell volume as we have done.
We have tried both correction methods when calculating the higher order moments and
find the results are essentially identical (see Croton et al. 2004b for further discussion of
the relative strengths and weaknesses of both methods).

A test of our method for dealing with incompleteness is shown in Fig. 3.1. This plot
shows the S p estimated from the higher order correlation functions measured in mock
2dFGRS catalogues (Norberg et al. 2002b). The dotted lines show the results for complete
mocks, with uniform sampling of the galaxy distribution within the full angular bound-
ary of the 2dFGRS. The dashed lines show how these results change once the mocks are
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degraded to mimic the spectroscopic incompleteness and irregular geometry of the 2dF-
GRS, without applying any correction to compensate for this incompleteness. The circles
show the values of S p recovered on application of the correction for incompleteness de-
scribed above. These results are in excellent agreement with those from the fully sampled,
‘perfect’ mocks.

We have carried out two independent counts-in-cells analyses, using different algorithms
to place cells within the survey volume. The results are insensitive to the details of the
counts-in-cells algorithm. The CPDF is measured using 2.5×107 cells for each cell radius.
We have further checked the counts in cells analysis by comparing the measured two point
volume averaged correlation function with the integral of the measured spatial two point
correlation function, given by Eq. 3.1; the integral of the spatial correlation function is in
very good agreement with the direct estimate of the volume averaged correlation function.

3.3.3 Error estimation

We estimate the error on the higher order correlation functions and hierarchical amplitudes
using the set of 22 mock 2dFGRS surveys described by Norberg et al. (2002b). The 1σ
errors that we show on plots correspond to the rms scatter over the ensemble of mocks
(see Norberg et al. 2001a). To recap, we consider one of the mocks as the “data” and
compute the variance around this “mean” using the remaining mock catalogues. This
process is repeated for each mock in turn, and the rms scatter is taken as the mean variance.
We illustrate this approach in Fig. 3.2 for the case of p = 3, for a volume defined by
the magnitude range −19 > MbJ − 5 log10 h > −20. In the upper panel, the skewness
or S 3 measured in each mock is shown by the dotted lines. The points show the mean
skewness averaged over the ensemble of 22 mocks. The errorbars show the rms scatter
on these measurements. The lower panel shows the fractional error that we expect on
the measurement of S 3 for this particular volume limited sample. Beyond 20h−1Mpc,
the fractional error increases rapidly. Our estimate of the fractional error automatically
includes the contribution from sampling variance due to large scale structure (sometimes
referred to as “cosmic variance”). To estimate the error on a measured correlation function,
we simply compute the fractional rms scatter for the equivalent volume limited sample
using the ensemble of mocks, and multiply the measured quantity by the fractional error.

We have compared the estimate of the rms scatter from the ensemble of mocks with an
internal estimate using a jackknife technique (see, for example, Zehavi et al. 2002). In
the jackknife approach, the survey is split into subsamples. The error is then the scatter
between the measurements when each subsample is omitted in turn from the analysis. The
jackknife gives comparable errors to the mock ensemble for low order moments. On large
scales, the higher order moments are particularly sensitive to sample variance and, in these
cases, the jackknife approach can only provide a lower bound to the true scatter.

A more formal error estimation procedure is adopted when computing the best fit values
for the hierarchical amplitudes, S p. In this case, we employ a principal component analysis
to explicitly take into account the correlations between the S p inferred at different cell radii
(see e.g. Porciani & Giavalisco 2002 and Section 6 of Bernardeau et al. 2002). The mock
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3.3.3 Error estimation

Figure 3.2: The upper panel shows the skewness, S 3, recovered from mock 2dFGRS
catalogues in volume limited samples defined by the magnitude range −19 >
MbJ −5 log10 h > −20. The dotted lines show the skewness measured in each
catalogue. The points show the mean skewness. The errorbars show the
mean rms scatter averaged over 22 mocks, as described in the text in Section
3.3.3. The lower panel shows the fractional error as a function of cell radius.
This panel shows how well we can expect to measure the skewness in a
catalogue of this size extracted from the 2dFGRS, including the contribution
from sampling variance.

catalogues are used to compute the full covariance matrix of the S p data points to be fitted.
Next, the eigenvalues and eigenvectors of the covariance matrix are determined. We find
that, typically, the first few eigenvectors are responsible for over 90% of the variance.
Given the number of data points that we consider in the fits, this means that we have
around a factor of two to three times fewer independent points than data points fitted.
(Details of the range of scales used in the fits will be given in Section 3.4.2.) We note
that in most previous work, the S p measured at different cell radii were simply averaged
together ignoring any correlations between bins, resulting in unrealistically small errors in
the fitted values.
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Figure 3.3: The higher order correlation functions measured for 2dFGRS galaxies. The
symbols show the measurements for galaxies in the absolute magnitude
range −19 > MbJ − 5 log10 h > −20; the key gives the order p. The lines
show the results for different luminosity samples; the dashed lines show the
ξ̄p for galaxies with −18 > MbJ − 5 log10 h > −19 and the dotted lines show
the results for galaxies with −20 > MbJ − 5 log10 h > −21.

3.4 Results

3.4.1 Volume-averaged correlation functions

The volume averaged correlation functions estimated from the CPDF constructed from
the combined NGP and SGP cell counts are plotted in Fig. 3.3. The symbols show the
correlation functions for the L∗ sample with −19 > MbJ − 5 log10 h > −20. The lines show
the measurements made for galaxies in magnitude bins adjacent to L∗ (the dashed lines
correspond to a sample that is one magnitude fainter and the dotted lines to a sample that
is one magnitude brighter). The correlation functions steepen dramatically on small scales
as the order p increases.

To better quantify the dependence of the higher order correlation functions on luminos-
ity, we plot the ratio of the ξ̄p to the results for the L∗ reference sample in Fig. 3.4, for

38



3.4.2 Hierarchical clustering

Figure 3.4: The dependence of the higher order correlation functions on luminosity. The
orders p = 3 (top panel) and p = 2 (bottom panel) are shown. The correla-
tion functions for samples of different luminosity are divided by the correla-
tion function measured for L∗ galaxies, with −19 > MbJ − 5 log10 h > −20.

the cases p = 2 and p = 3. The variance in the distribution of counts-in-cells on a given
smoothing scale increases with the luminosity of the volume limited sample (see the bot-
tom panel of Fig. 3.4). This effect is similar to that reported by Norberg et al. (2001,
2002a), who measured the dependence of the strength of galaxy clustering on luminosity
in real space, whereas our results are in redshift space. This behaviour is broadly seen to
extend to the higher order clustering, however the ranking of the amplitude of the higher
order correlation functions with luminosity is not always preserved on large scales. This
issue is investigated further in Section 3.4.3.

3.4.2 Hierarchical clustering

We use the measured volume averaged correlation functions from Fig. 3.3 to test the hi-
erarchical clustering model set out in Section 3.2.2 and Eq. 3.7. In Fig. 3.5, we plot the
p = 3–6 point volume averaged correlation functions as a function of the variance (or
two-point function) measured on the same scale. Small values of the moments correspond
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Figure 3.5: The volume averaged correlation functions, ξ̄p, for p = 3 to 6, plotted as
a function of the variance, ξ̄2. Each panel corresponds to a different order
plotted on the ordinate, as indicated by the legend. (Note that ξ̄5 and ξ̄6 are
not plotted for the brightest sample, as they are too noisy.) The symbols refer
to different magnitude ranges as given by the key in the first panel. The line
styles denote the results for different absolute magnitude ranges, as indicated
by legend. The thick grey lines show power-laws with slopes of 2, 3, 4 and
5 in order of increasing amplitude, which are intended to act as a reference.
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Figure 3.6: The hierarchical amplitudes, S p, for p = 3, 4 and 5, plotted as a function of
cell radius for the galaxy samples defined in Table 3.1. Each panel shows the
results for a different volume limited catalogue, as indicated by the legend.
The points with errorbars show the results obtained from the full volume
limited samples: triangles show S 3, squares show S 4 and pentagons show
S 5. The solid lines show the best fit values and the dotted lines indicate the
1σ errors on the fits, as described in the text. The lines are plotted over the
range of scales used in the fits.
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to large cells. The thick grey lines show the higher order moments expected in the hierar-
chical model. (From Eq. 3.7, the offsets of these lines are the hierarchical amplitudes S p.
We have used the best fit values of S p that we obtain later on in this Section. However,
the width of the lines does not indicate the error on the fit: the lines are intended merely
to guide the eye.) On small scales (large variances), hierarchical scaling is followed. On
intermediate and large scales, for which the variance drops below ∼ 1.3, the measured
moments depart somewhat from the hierarchical scaling behaviour, particularly in the case
of the higher orders.

The hierarchical scaling of the higher order correlation functions is exploited to plot the
hierarchical amplitudes S p = ξ̄p/ξ̄

p−1
2 as a function of cell radius in Fig. 3.6. Each panel

corresponds to a different volume limited sample, where the lines and points correspond
to S 3, S 4 and S 5 in order of increasing amplitude. The hierarchical amplitudes measured
from the two brightest volume limited samples systematically show an increase around
10h−1Mpc. This effect is particularly significant in the −19 > MbJ − 5 log10 h > −20
sample, with the S p increasing by a factor of 2 to 5 depending on p. On smaller scales
the hierarchical amplitudes are essentially independent of the cell radius for all magnitude
ranges considered. It should be noted that the S p measured in real space vary more strongly
in amplitude with scale than in redshift space, particularly at small cell radii (Gaztañaga
1994; Szapudi et al. 1995, Szapudi & Gaztañaga 1998).

We have fit constant values to the measured S p, using the principal component analysis
outlined in Section 3.3.3. This approach takes into account the correlations between the
measurements on different scales. The range of scales used to fit S p is held fixed for each
volume limited sample and is quoted in Table 3.2. Typically, there are ten values of S p in
the range considered in the fits. The principal component analysis reveals that just 2 − 4
linear combinations of these points account for more than 90% of the variance; this gives a
fairer impression of the number of independent data points. The principal eigenvector is in
all cases almost independent of scale, i.e. its effect is to move all the points coherently up
and down (driven by large scale variation in the mean density estimated from the survey).
Therefore, the best fitting constant tends to favour a fit either slightly above or below each
set of data points. This is exactly what is seen in the various panels of Fig. 3.6. The best fit
constants to the measured S p are given in Table 3.2, along with an error from the principal
component analysis. The fits to S 3 and S 4 for the −19 > MbJ − 5 log10 h > −20 sample
are poor in terms of the reduced χ2. There some dependence of the S p with increasing
luminosity. This behaviour is explored in Section 3.5.

3.4.3 Systematic effects: the influence of superclusters

The higher order moments of the CPDF are sensitive to the presence of massive structures
that contribute to the extreme event tail of the count distribution. It is therefore important to
examine the 2dFGRS to look for any rare large scale structures that could exert a significant
influence on the form of the CPDF. The projected density of galaxies in the right ascension-
redshift plane for a volume limited catalogue defined by the magnitude range −19 > MbJ −
5 log10 h > −20 is plotted in figure 1 of Baugh et al. (2004). There are two clear hot spots
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VLC Rmin Rmax S 3 S 4 S 5 S 6 br c′2
ID h−1Mpc h−1Mpc

1 0.71 7.1 2.58 ± 0.37 (0.1) 9.3 ± 4.0 (0.1) 34 ± 32 (0.1) − − − 0.96 ± 0.16 (0.1) 0.17 ± 0.25 (0.1)
2 0.71 7.1 2.38 ± 0.25 (0.1) 8.2 ± 2.3 (0.9) 36 ± 20 (0.4) 185 ± 170(0.1) 0.96 ± 0.08 (0.3) 0.11 ± 0.13 (0.1)
3 0.71 7.1 1.95 ± 0.18 (6.1) 5.5 ± 1.4 (2.3) 18 ± 11 (1.9) 46 ± 50(1.1) 1 0
4 0.80 8.9 2.01 ± 0.17 (1.2) 6.0 ± 1.5 (0.6) 22 ± 12 (0.4) 71 ± 80(0.3) 1.13 ± 0.06 (2.8) 0.10 ± 0.08 (0.3)
5 2.2 11.2 2.39 ± 0.63 (0.5) 6.8 ± 7.0 (0.4) − − − − − − 1.30 ± 0.14 (0.9) 0.33 ± 0.31 (0.5)

Table 3.2: The best fit values and 2−σ error (∆χ2 = 4) for S p (columns 4 to 7). The range of scales used in the fits is given in columns 2
and 3. The number in brackets after each error gives the reduced χ2 value for the fit, using the number of degrees of freedom
derived from the principal component analysis. The last two columns give the relative linear bias, br (defined by Eq. 3.14) and
the second order bias term, c′2 (defined by Eq. 3.17). The reference sample is sample number 3. These values are obtained for
the full volume limited samples. A blank entry indicates that a reliable measurement of the particular hierarchical amplitude
was not possible for the sample in question.
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or superstructures apparent in this figure, one in the NGP at a redshift of z = 0.08 and a
right ascension of 3.4 hours, and the other in the SGP at z = 0.11 at a right ascension of 0.2
hours. These structures are confirmed as superclusters of galaxies in the group catalogue
constructed from the flux limited 2dFGRS (Eke et al. 2004); of the 94 groups in the full
flux limited survey out to z ∼ 0.15 with 9 or more members and estimated masses above
5×1014h−1 M�, 20% reside in these superclusters. As a result of the redshift at which these
superclusters lie, these structures are only influential in volume limited samples brighter
than MbJ − 5 log10 h = −18.

The results presented earlier in this Section show features that could be due to the pres-
ence of these superclusters. For example, the volume averaged correlation functions for
the −19 > MbJ − 5 log10 h > −20 sample plotted in Fig. 3.3 appear to have more power
on large scales than those measured from the other volume limited samples. This is con-
sistent with the theoretical expectations for measurements that are strongly affected by the
presence of a supercluster: a boost in the clustering amplitude on large scales, due to a
structure with a larger bias, and a reduction in the clustering amplitude on small scales
arising from the large velocity dispersions within the clusters making up the structure.

To investigate this hypothesis, we have carried out the test of removing the two super-
clusters from the sample and recomputing the volume averaged correlation functions. The
goal of this exercise is not to “correct” the measured correlation functions but rather to
illustrate the impact of the superclusters on our results. We remove the superclusters by
masking out their central densest regions, corresponding to prohibiting the placement of
cells within a sphere of radius 25h−1Mpc from each supercluster centre (for a different
approach on how to take this type of effect into account see Colombi, Bouchet & Schaeffer
1994 and Fry & Gaztañaga 1994).

Fig. 3.7 shows the effect of the supercluster removal on the tail of the CPDF for 10h−1Mpc
radius cells, calculated for three volume limited catalogues centred on L∗. The mean num-
ber of galaxies in a cell for each galaxy sample is roughly 40, 24, and 6 going from faintest
to brightest. The presence of the two superclusters makes a clear difference to the high
N counts for galaxy samples brighter than MbJ − 5 log10 h = −19. The maximum red-
shift of the faint volume limited catalogue in this figure only marginally includes the NGP
supercluster, and so PN remains essentially unaffected in this case.

Fig. 3.8 shows volume averaged correlation functions of order p = 2, 3, 4 for three vol-
ume limited catalogues from Table 3.1, where each panel corresponds to a fixed abso-
lute magnitude range. The lines correspond to different orders of clustering, starting with
the lowest in amplitude, the two point volume averaged correlation function, and moving
through to the four point function, at which we stop plotting the results for clarity although
the trends shown continue up to sixth order. The solid curves show the correlation func-
tions measured from the full volume limited samples, as shown previously in Fig. 3.6, and
the dashed lines show the results when the regions containing the superclusters are ex-
cluded from the CPDF. The higher order correlation functions are systematically boosted
on intermediate and large scales when the superclusters are included in the analysis. The
precise scale on which the correlation functions become sensitive to the presence of the
superclusters depends upon the order; for the four point function, the two estimates of the
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Figure 3.7: The probability, PN , of finding exactly N galaxies in randomly placed cells
of radius 10h−1Mpc (the CPDF, Eq. 3.2), for different volume limited galaxy
samples. Each bold line shows the full volume CPDF, while the individual
dotted lines give the result after the supercluster regions have been omitted
from the analysis, as described in Section 3.4.3.

correlation function typically deviate for cells of radius 3h−1Mpc and larger.
The impact on the hierarchical amplitudes, S p, of removing the superclusters in shown in

Fig. 3.9, in which we plot the results for the volume limited sample defined by −19 > MbJ−
5 log10 h > −20. In Fig. 3.9, the open points show the hierarchical amplitudes measured
from the full volume limited sample. The filled symbols show the results obtained from
the same volume but with the supercluster regions masked out. The S p obtained when the
two superclusters are removed from the analysis are much closer to being independent of
cell size. The sensitivity of higher orders to rare peaks has been noticed in earlier analyses
of galaxy surveys (Groth & Peebles 1977; Gaztañaga 1992; Bouchet et al. 1993; Lahav et
al. 1993; Gaztañaga 1994; Hoyle et al. 2000).
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Figure 3.8: The volume averaged correlation functions for p = 2 to 4, with each panel
showing the results from a different volume limited sample, as indicated by
the legend. The solid lines show the estimates from the full volumes and
the dashed lines show the results when the supercluster regions are omitted
from the analysis. For clarity, errorbars are only plotted on the solid curves
for order p = 4.
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Figure 3.9: The hierarchical amplitudes, S 3 (triangles), S 4 (squares) and S 5 (pentagons).
The top panel corresponds to galaxies with −19 > MbJ −5 log10 h > −20 and
the bottom panel to −20 > MbJ − 5 log10 h > −21. The open symbols with
errorbars show the results obtained using the full volume limited catalogues.
The filled symbols show how the results change when regions containing the
two superclusters are omitted from the analysis.

3.5 Interpretation and the implications for galaxy bias

In this Section we quantify how the hierarchical amplitudes scale with galaxy luminosity
and discuss the implications of our results for simple models of galaxy bias. We first
test the hypothesis set out in Section 3.2.4 that the variation in clustering with luminosity
apparent in Fig. 3.3 can be described by a single, relative bias factor, as defined by Eq. 3.14.
The relative bias factors, br, computed from the variance and the deviation from the linear
bias model, as quantified by c′2 (Eq. 3.17), are listed in Table 3.2; here the mean value
is given by the best χ2 fit over all cell radii. The change in the amplitude of the relative
bias with sample luminosity, shown in Fig. 3.4, is in excellent agreement with the trend
found by Norberg et al. (2001), who analysed the projected spatial clustering of 2dFGRS
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galaxies. This agreement is remarkable given the different approaches used to measure
the two-point correlations and the fact that the analysis in this paper is in redshift space,
whereas the study carried out by Norberg et al. was unaffected by peculiar motions.

The coefficients c′2 are different from zero at a 1-σ level. These findings are consistent
with a small deviation from the linear biasing model (at a 2-sigma level for the brighter
samples). This is in qualitative agreement with the estimation of c2 using the the bispec-
trum (Scoccimarro 2000, Verde et al. 2002) or the 3-point function measured from the
parent APM galaxy survey (Frieman & Gaztañaga 1999).

The variation of the hierarchical amplitudes with luminosity is plotted in Fig. 3.10. Each
panel corresponds to a different order p. The filled points show the hierarchical amplitudes
averaged over the different cell radii employed (these values and the associated errors are
given in Table 3.2). The dotted line shows the hierarchical amplitudes predicted by the
linear relative bias model (Eq. 3.15), using the best fit bias factors stated in Table 3.2. This
model gives a rough approximation to the data. However, the observed variation of S p with
luminosity is somewhat better described by a linear fit in the logarithm of luminosity, as
shown by the solid lines. This implies that the dependence of the hierarchical amplitudes
on luminosity is more complicated than expected in the simple relative bias model of
Eq. 3.15 (as does the fact that we find some evidence for non-zero values for c′2). The solid
lines show the best linear fit to the hierarchical amplitudes as a function of the logarithm
of the median luminosity of the samples:

S G
p = Ap + Bp log10

(

L
L∗

)

. (3.18)

We find a greater than 2 − σ (∆χ2 > 7.2 for two parameters) detection of a non-zero value
for B3. However, for p > 3, the constraints on Bp are much weaker and there is no clear
evidence for a luminosity dependence in the S p values in these cases. For completeness,
the best fit values for each order are: (A3, B3) = (2.07,−0.40), (A4, B4) = (6.15,−2.51),
(A5, B5) = (21.3,−13.5), (A6, B6) = (58,−39).

3.6 Conclusions

In this paper we have measured the higher order correlation functions of galaxies in vol-
ume limited samples drawn from the 2dFGRS. The most recent comparable work is the
analysis of the Stromlo-APM and UKST redshift surveys by Hoyle, Szapudi & Baugh
(2000). These authors also considered volume limited subsamples drawn from the flux
limited redshift survey. The largest UKST sample considered by Hoyle et al. contained
500 galaxies and covered a volume of 9 × 105h−3Mpc3; the reference sample used in our
work contains 90 times this number of galaxies and covers ten times the volume. In our
analysis, we can follow the variation of clustering over more than a decade in luminosity,
whereas Hoyle et al. had to focus their attention around L∗.

The measurement of the higher order galaxy correlation functions is still challenging,
however. In spite of the order of magnitude increase in size that the 2dFGRS represents
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Figure 3.10: The variation of the hierarchical amplitudes, S p, with absolute magnitude.
The points are plotted at the median magnitude of each volume limited
sample and the horizontal bars indicate the interval in which 25% to 75%
of the galaxies fall, computed using the 2dFGRS luminosity function fit
quoted by Norberg et al. (2002b). Each panel shows the results for a dif-
ferent order of clustering. The dotted line shows predictions of the linear
relative bias model for the variation of the S p with luminosity (Eq. 3.15).
The solid lines show linear fits in log luminosity to the observed trend in
the value of S p with sample luminosity (see text of Section 3.5 for details).
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over previously completed surveys, we have found that the higher order moments that we
measure are somewhat sensitive to the presence of large structures. In particular, there are
two superclusters that influence our measurements, one in the SGP region and the other
in the NGP. These structures contain a sizeable fraction of the cluster mass groups in the
2dFGRS (Eke et al. 2004). The inclusion of these structures has an impact on our estimates
of the three point and higher order volume averaged correlation functions on scales around
4 − 10h−1Mpc and above, depending on the order of the correlation function. For this
reason, we have presented measurements of the higher order correlation functions both
with and without these structures. We stress that the removal of these superclusters should
not be considered a correction to the full catalogue results, but rather as an indication of
the impact of rare structures on our results for the higher order moments. On the other
hand, the up-turn that we find in the values of the hierarchical amplitudes on large scales
is predicted by some structure formation models; for example models with non-Gaussian
initial density fields predict a similar form for the S p as we measure from the full volume
limited samples (Gaztañaga & Mähönen 1996; Gaztañaga & Fosalba 1998; Bernardeau et
al. 2002).

The difficulties in estimating S p values on large, quasi-linear scales (> 10h−1Mpc), pre-
vent a direct comparison with perturbation theory (see Bernardeau et al. 2002). The current
best estimates on these scales are still those measured from the angular APM Galaxy Sur-
vey (Gaztañaga 1994, Szapudi et al. 1995, Szapudi & Gaztañaga 1998). At the time of
writing, the results from the SDSS Early Data Release are still limited to small scales (Gaz-
tañaga 2002, Szapudi et al. 2002). Despite being unable to make a robust measurement
of the higher order correlation functions on the very large scales for which weakly non-
linear perturbation theory is applicable, we are still able to reach a number of interesting
conclusions:

(i) We have demonstrated that the higher order galaxy correlation functions measured
from the 2dFGRS follow a hierarchical scaling. Baugh et al. (2004) showed that
L∗ galaxies display higher order correlation functions that scale in a hierarchical
fashion; we have extended these authors’ analysis to cover a wide range of galaxy
luminosity. The higher order moments of the galaxy count distribution are propor-
tional to the variance raised to a power that depends upon the order of the correlation
function under consideration. This behaviour holds on physical scales ranging from
those on which we expect the underlying density fluctuations to be strongly nonlin-
ear all the way through to quasi-linear scales. This scaling has been tested up to the
six point correlation function for the first time using a redshift survey. This confirms
the conclusions of a complementary analysis carried out by Croton et al. (2004a),
who found hierarchical scaling when measuring the reduced void probability func-
tion of the 2dFGRS.

(ii) We have estimated values of the hierarchical amplitudes, S p = ξ̄p/ξ̄
p−1
2 , for cells of

different radii. The hierarchical amplitudes are approximately constant on small to
medium scales (depending on the order considered), while for the larger volumes, S p
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seem to increase with radius at large scales. Although this could in principle result
from a boundary or mask effect (e.g. see Szapudi & Gaztañaga 1998; Bernardeau
et al. 2002), we have shown with mock catalogues that this is not the case here
(e.g. see Fig. 3.1). If the two most massive superclusters in the survey are removed
from the analysis, the hierarchical amplitudes are remarkably independent over all
scales. That the S p are roughly constant on small scales, with smaller amplitudes
than in real space (e.g. Gaztañaga 1994), has been noted before for measurements in
redshift space. It arises due to a cancellation of the enhanced signal on small scales
in real space by a damping of clustering in redshift space due to peculiar motions
(Lahav et al. 1993; Fry & Gaztañaga 1994; Hivon et al. 1995; Hoyle et al. 2000;
Bernardeau et al. 2002).

(iii) We find that the amplitude of the higher order correlation functions scales with lu-
minosity. The magnitude of the luminosity segregation increases with the order of
the correlation (see Fig. 3.4). For the variance, ξ̄2, the strength of the trend is in
very good agreement with that reported by Norberg et al. (2001), but note that these
authors measured the luminosity segregation in real space, whereas our results are in
redshift space. The strength of the luminosity segregation for higher orders can be
mostly explained as the result of hierarchical scaling ξ̄p ∼ ξ̄p−1

2 , so that most of the
effect can be attributed to luminosity segregation in the variance. This can be seen in
Fig. 3.5 where data from different luminosities trace out the same hierarchical curve
with little scatter.

(iv) We find some evidence for a residual dependence of S p on luminosity, although
the effect is only significant within the errors for the skewness p = 3 (greater than
2σ level). It is not clear whether this is driven by a pure luminosity dependence of
the higher order clustering or by a change in the galaxy mix with luminosity, with
different galaxy types having different S p or by a combination of the two effects: see
Norberg et al. (2002a) for an investigation of this point for the 2-point correlation
function. A simple linear relative bias model (dotted line in Fig. 3.10) does not
reproduce the dependence of the S p on luminosity.

We have interpreted our results in terms of a simple, local bias model, and we have
quantified trends in clustering amplitude with luminosity by estimating relative bias fac-
tors. These measurements, summarised in Table 3.2, extend the constraints upon models
of galaxy formation derived from the two-point correlation function, quantifying the shape
of the tails of the count probability distribution as well as its width.
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4 Voids and hierarchical scaling models1

Abstract

We measure the redshift space reduced void probability function (VPF) for 2dFGRS vol-
ume limited galaxy samples covering the absolute magnitude range MbJ − 5 log10 h = −18
to −22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy
clustering of all orders, and can be used to discriminate clustering models in the weakly
non-linear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement
with the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy
of our measurement is such that we can rule out, at a very high significance, popular mod-
els for galaxy clustering, including the lognormal distribution. We demonstrate that the
negative binomial model gives a very good approximation to the 2dFGRS data over a wide
range of scales, out to at least 20h−1Mpc. Conversely, the reduced VPF for dark matter in
a ΛCDM universe does appear to be lognormal on small scales but deviates significantly
beyond ∼ 4h−1Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy lu-
minosity. Our results hold independently in both the north and south Galactic pole survey
regions.

4.1 Introduction

The galaxy distribution on the largest scales display striking geometrical features, such
as walls, filaments and voids. These features contain a wealth of information about both
the linear and non-linear evolution of galaxy clustering. The nature of such clustering is
dependent on many large and small scale effects, such as the cosmological parameters,
galaxy and cluster environmental effects and history, the underlying dark matter distribu-
tion, and the way in which the dark and luminous components of the Universe couple and
evolve. By probing the lower and higher orders of galaxy clustering, one thus hopes to
shed light on those physical processes on which the clustering is dependent.

The traditional tool used to analyse such distributions has been the 2-point correlation
function (Davis & Peebles 1983, Davis et al. 1988, Fisher et al. 1994, Loveday et al. 1995,
Norberg et al. 2001, Zehavi et al. 2002), providing a description of clustering at the lowest
orders. However despite its usefulness, the 2-point correlation function only provides a

1D.J. Croton, M. Colless, E. Gaztañaga, C.M. Baugh, P. Norberg, et al. (the 2dFGRS Team), MNRAS, 352,
828, 2004
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full clustering description in the case of a Gaussian distribution. A more complete account
of clustering must include correlation functions of higher orders, although these are often
difficult to extract (see Croton et al. 2004b and Baugh et al. 2004 for an analysis of galaxy
clustering in the 2dFGRS up to sixth order).

In light of this researchers have looked towards other clustering statistics to glean higher-
order information from a galaxy distribution. Historically, many astronomers have favoured
using void statistics (e.g. Fry 1986, Maurogordato & Lachieze-Rey 1987, Balian & Scha-
effer 1989, Fry et al. 1989, Bouchet et al. 1993, Gaztañaga & Yokoyama 1993, Vogeley
et al. 1994). This approach is useful in that results are easily obtainable and are well sup-
ported by a solid theoretical framework (White 1979, Fry 1986, Balian & Schaeffer 1989),
which directly relates the void distribution to that of galaxy clustering of higher orders.

In this paper we employ the completed 2dFGRS dataset to undertake a detailed analysis
of the void distribution using the reduced void probability function. We rely heavily on the
well established theoretical framework which connects the void distribution with galaxy
clustering of all orders (Eq. 4.1 below). The distribution of voids and the moments of
galaxy clustering of all orders are known to be intimately linked, and the study of one can
reveal information about the other which would otherwise be difficult to measure. Our goal
is thus to use the reduced void probability function to investigate if galaxy clustering in
the 2dFGRS obeys a hierarchy of scaling, and on what physical scales this scaling holds.
We explore a number of phenomenological models of galaxy clustering which exhibit
hierarchical scaling, and use these models to help clarify the way in which higher-order
clustering is constructed2 .

This paper is organised as follows. In Section 4.2 we give a brief review of the theory
behind the void statistics to be employed in our analysis. In Section 4.3 we present the
2dFGRS data set, and in Section 4.4 the counts-in-cells method we use to measure the
void statistics is explained. Our results are presented in Section 4.5, and in Section 4.6
we provide a discussion and summary of our conclusions. Throughout, we adopt standard
present day values of the cosmological parameters to compute comoving distance from
redshift: a density parameter Ωm = 0.3 and a cosmological constant ΩΛ = 0.7.

4.2 Void statistics

4.2.1 The void probability function

For a given distribution of galaxies, the count probability distribution function (CPDF),
PN(V), is defined as the probability of finding exactly N galaxies in a cell of volume V
randomly placed within the sample. In the case where N = 0 we have the void probability
function (VPF), P0(V). A choice of spherical cells with which to sample the distribution
makes P0 a function of sphere radius R only. The VPF can be related to the hierarchy of

2Recently Hoyle et al. (2004) also measured the VPF of the 2dFGRS galaxy distribution, however their anal-
ysis focused more on the physical properties of voids in the 2dFGRS volume, rather than the hierarchical
nature of galaxy clustering itself.
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p-point correlation functions by (White 1979):

P0(R) = exp

[ ∞
∑

p=1

( −N̄(R) )p

p!
ξ̄p(R)

]

. (4.1)

Here N̄ is the average number of objects in a cell of volume V , and ξ̄p is the pth order
correlation function averaged over V . A completely random (Poisson) distribution has
ξp ≡ 0 for all p > 1, and thus P0 reduces to a simple analytic expression:

P0P(R) = exp[−N̄(R)] . (4.2)

Any departure from this relation is therefore a signature of the presence of clustering.

4.2.2 Hierarchical scaling

The idea that higher-order clustering arises in a hierarchical fashion from the 2-point cor-
relation function appears naturally in perturbation theory and also in the highly non-linear
regime of gravitational clustering (e.g. Peebles 1980), and is supported by much obser-
vational evidence (e.g. Maurogordato & Lachieze-Rey 1987, Fry et al. 1989, Gaztañaga
1992, Bouchet et al. 1993, Bonometto et al. 1995, Benoist et al. 1999, see Bernardeau
et al. 2002 for a review). The concept can be generalised by assuming that each p-point
correlation function depends only on the product of the 2-point correlation function and a
dimensionless scaling coefficient, S p:

ξ̄p(R) = S pξ̄
p−1(R) , (4.3)

where we have dropped the subscript 2 for the 2-point correlation function on the right-
hand side for convenience (see Baugh et al. 2004 and Croton et al. 2004b for the measured
values of S p up to p = 6 in redshift space for the 2dFGRS).

The hierarchical idea is directly applicable to the VPF, which is itself dependent on an
infinite sum of p-point correlation functions. The hierarchical assumption allows us to
remove the higher-order correlation functions from Eq. 4.1:

P0(R) = exp

[ ∞
∑

p=1

(−N̄)p

p!
S pξ̄

p−1
]

. (4.4)

Furthermore, the above scaling relation allows us to express the VPF as a function of
N̄ ξ̄ only, where the scaling variable N̄ ξ̄ approximately represents the average number of
galaxies in a cell in excess of that expected given the mean density of the sample. We
formalise this idea by firstly considering the analytic VPF expression for a purely random
sample (Eq. 4.2). For the hierarchical situation, we can define a parameter χ with P0 =

e−N̄χ, called the reduced void probability function (see Fry 1986):

χ = − ln(P0) / N̄ . (4.5)
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We note here that, independent of the hierarchical assumption, χ normalises out the Pois-
son contribution to the distribution, and it is clear that the effects of clustering will appear
as values of χ < 1. Combining Eq. 4.4 and 4.5, the reduced VPF takes the form

χ(N̄ ξ̄) =
∞
∑

p=1

S p

p!
(−N̄ ξ̄)p−1 . (4.6)

This exhibits the scaling advertised above, and the shape of χ(N̄ ξ̄) thus characterises the
distribution of voids. If the scaling relation assumption holds, we expect different galaxy
samples of different density and clustering strength to all collapse onto one universal curve,
since all are a function of the same scaling variable. The curve will not be universal for
different magnitude ranges if it turns out that the coefficients S p are a strong function of
galaxy magnitude. The values of S p have recently been shown to depend at best only
weakly on magnitude (see Croton et al. 2004b).

In the hierarchical picture, when N̄ξ̄ � 1 one always recovers the Poisson VPF, χ(N̄ ξ̄) =
1, regardless of the actual clustering pattern or its strength. In the regime where N̄ξ̄ < 1 we
see from Eq. 4.6 that the reduced void probability function is dominated by the Gaussian
contribution: 1 − 1

2 N̄ξ̄. Thus the interesting observational window, where we can separate
different clustering models, comes for values of N̄ ξ̄ larger than unity. In practice, this
only seems to happen at scales R larger than a few h−1Mpc, where N̄ ∼ R3 is large and
dominates ξ̄ ∼ R−2. On smaller scales, where ξ̄ > 1, N̄ ξ̄ will always be small, and galaxy
samples will typically be too sparse to show measurable deviations from the Gaussian
contribution. Thus, it should be stressed that the VPF is a good discriminant of weakly
non-linear clustering only. In the highly non-linear regime voids do not provide us with
much information.

Although the expansion given in Eq. 4.6 is technically only valid for small values of
N̄ξ̄, the implications for clustering do extend beyond this. For large values of N̄ ξ̄ models
with different hierarchical amplitudes S p give different reduced void probabilities χ: as N̄ ξ̄
increases the value of χ gets smaller and the resulting VPF gets larger (with respect to the
corresponding Poisson case). The Gaussian CPDF (S p = 0) produces the smallest values
of χ and therefore the largest deviations in the VPF. As we will illustrate with the models
below, larger values of S p > 0 will result in larger values of χ(N̄ ξ̄).

4.2.3 Phenomenological models

In presenting our reduced VPF results, we follow the lead of Fry (1986) and Fry et al.
(1989) and compare with a number of model scaling relations that differ in the way they
fix the scaling coefficients S p. We give a brief description of these models here, and refer
the reader to the cited papers and references therein for further details. In Fig. 4.1 we
summarise the behaviour of each.
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Figure 4.1: Reduced void probability χ for different models (left to right at χ ∼ 0.4):
Gaussian (long-dashed-dotted, Eq. 4.12), minimal (long-dashed, Eq. 4.7),
BBGKY (short-dashed-dotted, Eq. 4.10 with Q = 2/3), negative binomial
(continuous, Eq. 4.8), thermodynamic (dotted, Eq. 4.9), lognormal (short-
dashed) and BBGKY (short-dashed-dotted, Eq. 4.10 with Q = 1).

Minimal model

The first model is the so-called minimal cluster model, the motivation of which is to con-
sider a clumpy galaxy distribution of clusters, the cluster distribution in space itself being
Poisson with a Poisson galaxy occupancy. This is reminiscent of the halo model (e.g.
Cooray & Sheth 2002) but with a Poisson halo/cluster profile. Evaluating the set of S p’s
from the distribution function generated by this model leads to a functional form for χ of

χ = (1 − e−N̄ξ̄)/N̄ ξ̄ (minimal), (4.7)

S p = 1 (Skewness : S 3 = 1) .

Fry (1986) speculated that this model represents a lower bound on the allowable functions
χ(N̄ ξ̄) in any consistent hierarchical model.

Negative binomial model

The second model, commonly called the negative binomial model, has been used in a num-
ber of fields with different physical motivations (Klauder & Sudarshan 1968, Carruthers &

57



Voids and hierarchical scaling models

Shin 1983, Carruthers & Minh 1983, Fry 1986, Elizalde & Gaztañaga 1992, Gaztañaga &
Yokoyama 1993). After a set of T independent trials with probability q for “success” and
p = 1 − q for “failure”, the probability of having S number of successes and F = T − S
number of failures is given by the binomial distribution: P(S ) = (F + S )!/S !/F!(1 − q)FqS .
The negative binomial distribution describes the probability for having S number of suc-
cesses after a fixed number F of failures: P(S ) = (F + S − 1)!/S !/(F − 1)!(1 − q)FqS .
Note that in the binomial case what is fixed is the total number of trials.

We can identify a “success” as finding a galaxy in a cell, so that PN = P(N = S ) is
the CPDF. The fixed number of failures, F, is assumed to be inversely proportional to
ξ̄ (the larger the ξ̄, the smaller the number of failures to count a galaxy in a cell). The
probability for a failure p is assumed to be proportional to the product N̄ξ̄ (because of
clustering there is an N̄ ξ̄ rms excess of galaxies within a cell with N̄ density: the larger
this clumpiness the larger the probability to miss galaxies in a random cell). After fixing
the proportionality constants, this leads to F = 1/ξ̄ and p = N̄ξ̄/(1 + N̄ξ̄) (for a different
derivation see Gaztañaga & Yokoyama 1993). This model is a discrete version of the
gamma probability distribution (see Gaztañaga, Fosalba & Elizalde 2000). The reduced
VPF and cumulants in this case are:

χ = ln(1 + N̄ ξ̄)/N̄ ξ̄ (negative binomial), (4.8)

S p = (p − 1)! (Skewness : S 3 = 2) .

Thermodynamic model

The third model was first suggested by Saslaw and Hamilton (1984) and arose from a
thermodynamic theory of the properties of gravitational clustering. The original model
had a fixed degree of virialization (temperature or density variance) for all cell sizes, but
such behaviour is inconsistent with observations. The model was later extended (see e.g.
Fry 1986) to include a different level of virialization at each scale, to be identified with the
variance ξ̄ as a function of scale. The results is:

χ = [(1 + 2N̄ ξ̄)1/2 − 1]/N̄ ξ̄ (thermodynamic), (4.9)

S p = (2p − 3)!! (Skewness : S 3 = 3) ,

where (2p − 3)!! = (2p − 3).(2p − 5).(2p − 7)... and truncates at zero.

Lognormal distribution

The lognormal distribution (e.g. Coles & Jones 1991, Weinberg & Cole 1993), is often
used as a phenomenological model for galaxy and dark matter clustering. Although no
analytic expression exists for the reduced void probability, it can be estimated numerically
(see above references) and is found to behave similarly to the thermodynamic model, as
shown in Fig. 4.1 (note how the dotted and the short-dashed lines overlap). As in the
thermodynamic model, the lognormal distribution also has a large skewness: S 3 = 3 + ξ̄
(which exactly tends to the thermodynamical value S 3 → 3 on large scales where ξ̄ → 0).
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In fact, it should be noted that the lognormal model is not truly hierarchical, as it does not
have constant moments S p, but in practice the variations have little effect on the reduced
void distribution.

BBGKY model

The BBGKY model of Fry (1984) provides a prescription for χ and S p as an asymptotic
solution to the BBGKY kinetic equations:

χ = 1 − (γ + ln 4QN̄ξ̄)/8Q (BBGKY), (4.10)

S p = (4Q)p−2 p
2(p − 1)

,

where γ = 0.57721... is Euler’s constant. This asymptotic solution is only a good approx-
imation for large values of N̄ ξ̄. When N̄ξ̄ becomes small, for completeness we simply
match it to the nearest model.

The skewness in the BBGKY model contains a free parameter, S 3 = 3Q, with the restric-
tion that Q > 1/3. Fry (1984) used Q ' 1, which was close to the then observed S 3 ' 3
value measured from the 3-point function in real space (inferred from projected maps).
Croton et al. (2004b) and Baugh et al. (2004) have since shown that S 3 is in fact closer
to S 3 = 2 in the 2dFGRS, corresponding to the case where Q = 2/3. Both possibilities
are shown as short-dashed-dotted lines in Fig. 4.1, with the upper curve for Q = 1 and
the lower curve for Q = 2/3. Since we later show that neither of these Q values with
the BBGKY model are able to match the data very well, for the sake of clarity we omit
the lower Q = 2/3 curve in subsequent figures. The upper curve is retained in order to
demonstrate the range of possible χ values that a hierarchical model may have.

Poisson and Gaussian distributions

In addition to the above models we also use the analytic expressions of the reduced VPF
for purely Poisson and Gaussian distributions. Trivially, from Eq. 4.6 we see that

χ = 1 (Poisson), (4.11)

and

χ = 1 − 1
2

N̄ξ̄ (Gaussian), (4.12)

S p = 0 (Skewness : S 3 = 0) .

The later only makes sense for small values of N̄ξ̄, but note that even when the underlying
distribution is not Gaussian, the above expression always gives a good approximation to
the void probability in the limit of small N̄ξ̄.
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4.3 The data sets

4.3.1 The 2dFGRS data set

In our analysis we use the completed 2dFGRS (Colless et al. 2003). The catalogue is
sourced from a revised and extended version of the APM galaxy catalogue (Maddox et
al. 1990), and the targets are galaxies with extinction-corrected magnitudes brighter than
bJ=19.45. Our galaxy sample contains a total of 221,414 high quality redshifts. The
median depth of the full survey, to a nominal magnitude limit of bJ ≈ 19.45, is z ≈ 0.11.
We consider the two large contiguous survey regions, one in the south Galactic pole (SGP)
and one towards the north Galactic pole (NGP), and restrict our attention to the parts of
the survey with high redshift completeness (> 70%). Full details of the 2dFGRS and the
construction and use of the mask quantifying the completeness of the survey can be found
in Colless et al. (2001, 2003).

A model accounting for the change in galaxy magnitude due to redshifting of the b J -
filter bandpass (k-correction) and galaxy evolution (e-correction) was adopted following
Norberg et al. (2002b):

k(z) + e(z) =
z + 6z2

1 + 20z3
. (4.13)

This model gives the mean k+e-correction over the mix of different spectral types observed
in the 2dFGRS sample, and was shown by Norberg et al. to accurately account for such
observational effects when estimating 2dFGRS galaxy absolute magnitudes.

4.3.2 Volume limited catalogues

The 2dFGRS galaxy catalogue is magnitude-limited, meaning the survey is constructed
by observing galaxies brighter than the fixed apparent magnitude limit of b J=19.45. A
magnitude-limited galaxy catalogue is not uniform in space, since intrinsically fainter ob-
jects may be missed even if they are relatively nearby, while the most luminous galaxies
will be seen out to large distances. This non-uniformity of the magnitude-limited catalogue
must be dealt with for a correct statistical analysis, and the simplest way to do this with
a catalogue the size of the 2dFGRS is by constructing a volume limited catalogue (VLC)
from the magnitude-limited sample.

Volume limited catalogues are defined by choosing minimum and maximum absolute
magnitude limits. These limits, along with the intrinsic apparent magnitude limits of
the survey, define minimum and maximum redshift boundaries via standard luminosity–
distance relations (Peebles 1980). The VLC is built by selecting galaxies whose redshift
lies within the minimum and maximum boundaries just determined, and whose absolute
magnitude lies within the specified absolute magnitude limits. Such galaxies can be dis-
placed to any redshift within the VLC volume and still remain within the bright and faint
apparent magnitude limits of the magnitude limited survey. Table 4.1 presents the proper-
ties of the combined NGP and SGP volume limited catalogues used in this paper.
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V

olum
e

lim
ited

catalogues

Mag. range Median mag. NG ρave dmean zmin zmax Dmin Dmax Volume
MbJ − 5 log10 h MbJ − 5 log10 h 10−3/h−3Mpc3 h−1Mpc h−1Mpc h−1Mpc 106h−3Mpc3

−18.0 −19.0 −18.44 23290 9.26 4.76 0.014 0.088 39.0 255.6 2.52
−19.0 −20.0 −19.39 44931 5.64 5.62 0.021 0.130 61.1 375.6 7.97
−20.0 −21.0 −20.28 33997 1.46 8.82 0.033 0.188 95.1 537.2 23.3
−21.0 −22.0 −21.16 6895 0.110 20.9 0.050 0.266 146.4 747.9 62.8

Table 4.1: Properties of the combined 2dFGRS SGP and NGP volume limited catalogues (VLCs). Columns 1 and 2 give the faint and
bright absolute magnitude limits that define the sample. Column 3 gives the median magnitude of the sample, computed
using the Schechter function parameters quoted by Norberg et al. (2002b). Columns 4, 5 and 6 give the number of galaxies,
the mean number density and the mean inter-galaxy separation for each VLC, respectively. Columns 7 and 8 state the redshift
boundaries of each sample for the nominal apparent magnitude limits of the survey; columns 9 and 10 give the corresponding
comoving distances. Finally, column 11 gives the combined SGP and NGP volume. All distances are comoving and are
calculated assuming standard cosmological parameters (Ωm = 0.3 and ΩΛ = 0.7).

61



Voids and hierarchical scaling models

4.4 Measuring the galaxy distribution

To measure the void probability function we use the method of counts-in-cells. The survey
volume is uniformly sampled with a large number (2.5 × 107) of randomly placed spheres
of fixed radius R, and we record the number of times a sphere contains exactly N galaxies.
Our choice of massive oversampling ensures a high level of statistical accuracy in the
calculation (Szapudi 1998). The CPDF can then be found as the probability of finding
exactly N galaxies in a randomly placed sphere:

PN(R) =
NN

NT
, (4.14)

where NN is the number of spheres that contain exactly N galaxies out of the total number
of spheres thrown down, NT . By definition, the void probability function is the probability
of finding an empty sphere:

P0(R) =
N0

NT
. (4.15)

The mean number of galaxies expected inside a sphere of radius R is readily calculated
from

N̄(R) =
∑

NPN (R) , (4.16)

and this estimation of N̄ for each individual VLC is found to be independent of scale and
indistinguishable from that determined from the known mean galaxy density. The volume
averaged 2-point correlation function, ξ̄2, is found directly from the second moment of the
CPDF:

ξ̄2(R) =
〈(N − N̄)2〉 − N̄(R)

N̄(R)2
. (4.17)

We have also carried out an independent counts-in-cells analysis by placing the spheres at
the positions of a regular spatial lattice that homogeneously oversamples the survey area.
The results are insensitive to these details.

The 2dFGRS has an inherent spectroscopic galaxy incompleteness which will change the
results of any void analysis (Colless et al. 2001). In addition, due to the irregular geometry
of the survey boundaries it is difficult to guarantee that every sphere will be completely
contained within the regions we wish to measure. Since the CPDF is sensitive to such
effects we adopt a technique which accurately accounts for such deficiencies. This method
is explained and tested in Appendix 4A (see also Croton et al. 2004b).

4.4.1 Error estimation

We estimate the error on our void statistics using the set of 22 mock 2dFGRS surveys
described by Norberg et al. (2002b; see also Cole et al. 1998). These mock catalogues have
the same radial and angular selection function as the 2dFGRS and have been convolved
with the completeness mask of the survey. The mock catalogues are drawn from the Virgo
Consortium’s ΛCDM Hubble Volume simulation and thus include sample variance due
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to large scale structure (see Evrard et al. 2002 for a description of the Hubble Volume
simulation). The 1σ errors we quote correspond to the rms scatter over the ensemble of
mocks (see Norberg et al. 2001). We have compared this estimate with an internal estimate
using a jack knife technique (Zehavi et al. 2002). In the jack knife approach, the survey is
split into subsamples. The error is then the scatter between the measurements when each
subsample is omitted in turn from the analysis. The jack knife gives comparable errors to
the mock ensemble for the VPF measurement.

4.5 Results

We begin with Fig. 4.2, where we plot the reduced void probability function, χ, individu-
ally as a function of both the mean galaxy number, N̄, and the variance, ξ̄, in the top and
bottom panels respectively. The physical scale given on each top axis corresponds to val-
ues for the −20 > MbJ − 5 log10 > −21 VLC only, and is included for reference (for VLCs
of different mean density the scale at which a given N̄ or ξ̄ will occur will be different).
Note that for VLCs fainter than our reference this scale shifts to the right in the top panel
and to the left in the bottom panel. The converse is true when considering brighter galaxies
than the reference.

The main feature of this figure is that neither N̄ nor ξ̄ individually show hierarchical scal-
ing when plotted against χ. Note that smaller values of χ correspond to larger deviations
from a Poisson distribution. Brighter galaxy samples show behaviour which is closer to
that of the Poisson distribution for any given value of N̄ or ξ̄, however this merely reflects
the fact that the brightest VLCs are also the sparsest (Table 4.1).

We now test for hierarchical scaling in the 2dFGRS, as outlined in Section 4.2.2. In
Fig. 4.3 we plot the reduced void probability function, χ, as a function of the scaling vari-
able N̄ξ̄. In this way we eliminate the dependence of the void probability on the variance
and mean density. This figure shows VLCs ranging in absolute magnitude from −18 to
−22. If a scaling between correlation functions of different orders exits we expect to see
all points for each catalogue fall onto the same line. Again we provide a reference scale on
the top axis, given for the −20 > MbJ − 5 log10 > −21 VLC, and note that for fainter galaxy
samples this scale shifts to the right and conversely for brighter samples. Over-plotted are
the scaling models previously discussed in Section 4.2.3: (bottom to top) the Gaussian
(Eq. 4.12), minimal (Eq. 4.7), negative binomial (Eq. 4.8), thermodynamic (Eq. 4.9), log-
normal, and BBGKY (Eq. 4.10, Q = 1) models respectively.

Fig. 4.3 demonstrates the clear signature of hierarchical scaling in the clustering mo-
ments of the 2dFGRS. All points are seen to follow a tight path (within the error bars) out
to values of N̄ξ̄ ∼ 30, and sit close to the negative binomial model prediction along this
entire range. Such values encompass galaxy clustering from the deeply non-linear to the
linear regime, revealing hierarchical scaling out to scales of ∼ 20h−1Mpc or more.

For comparison, in Fig. 4.3 we also present the dark matter reduced VPF measured
from the ΛCDM Hubble volume simulation (particle mass 2.3×1012h−1 M�) (Evrard et al.
2002). We independently analyse 100 randomly placed cubes of side length 200h−1Mpc
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Figure 4.2: The 2dFGRS reduced VPF, χ = − ln P0/N̄, as a function of (top) the mean
galaxy number, N̄, and (bottom) the variance of the distribution, ξ̄, as mea-
sured for volume limited catalogues in varying luminosity bins (Table 4.1).
Smaller values of χ imply larger deviations from a Poisson distribution. The
reference scale given on the top axis is for the −20 > MbJ − 5 log10 > −21
VLC only (each N̄ and ξ̄ value individually correspond to different scales for
each VLC). Notice that neither variable displays hierarchical scaling when
plotted individually against χ.

(approximately equal in volume to our M∗ galaxy volume limited sample), from which the
rms is then plotted. In contrast to the 2dFGRS galaxies, the dark matter follows a lognor-
mal distribution out to values of N̄ξ̄ ∼ 6 (a scale of approximately R ∼ 4h−1Mpc in the
simulation), but then deviates strongly on larger scales (the last point plotted corresponds
to R = 10h−1Mpc in the simulation).

To highlight the differences between the 2dFGRS galaxy reduced VPF and the nega-
tive binomial prediction, in Fig. 4.4 we show the fractional difference between the two.
Also included are the “bounding” models closest to the negative binomial: the minimal
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Figure 4.3: The reduced VPF, χ = − ln P0/N̄, as a function of the scaling variable N̄ ξ̄
for the four 2dFGRS galaxy VLCs from Table 4.1. The dark matter reduced
VPF, as measured from the ΛCDM Hubble Volume simulation, is shown
as large diamonds. In all cases, smaller values of χ imply larger deviations
from a Poisson distribution. The reference scale given on the top axis is for
the −20 > MbJ − 5 log10 > −21 VLC only (each N̄ξ̄ value corresponds to a
different scale for each VLC). If hierarchical scaling is present in the galaxy
distribution all points should collapse onto a single line, which is clearly
seen. The six curves represent the hierarchical models discussed in Section
4.2.3 (Eq. 4.7 to 4.12).

and thermodynamic models. All 2dFGRS points plotted are consistent with the negative
binomial model at the 2σ level. At larger values of N̄ξ̄ we find some small departures
from the negative binomial model, and it is interesting to note that these deviations appear
the greatest for the faintest VLC. This could be explained by the weak dependence of S p

on galaxy luminosity found by Croton et al. (2004b), where fainter samples typically had
larger S p values than brighter samples (albeit with large error bars). The effect of such an
increase in the hierarchical picture would result in a value of χ closer to unity (Eq. 4.6).

An important feature of Fig. 4.3 is the inconsistency of the reduced void probability
function with a Gaussian distribution across all scales considered (up to approximately
30h−1Mpc). On large scales where the galaxy correlation functions become too small to
measure independently, the value of N̄ is found to increase faster than ξ̄ decreases, and thus
χ is still affected strongly by higher-order correlations. It is clear that even in the quasi-
linear regime, where one would expect galaxy clustering to be very simple, higher-order
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Figure 4.4: The fractional difference between the negative binomial model and the 2dF-
GRS, thermodynamic, and minimal reduced VPFs. The reference scale
given on the top axis is for the −20 > MbJ − 5 log10 > −21 VLC only (each
N̄ξ̄ value corresponds to a different scale for each VLC). Some error bars
have been omitted for clarity. All 2dFGRS results are consistent with the
negative binomial model at the 2σ level.

correlations still play a significant role in the make-up of the large scale distribution.
To evaluate the robustness of the results seen in Fig. 4.3 we apply two tests to illustrate

the degree of confidence we should have in believing the existence of hierarchical scaling
in the 2dFGRS. Firstly, one of the most valuable features of the 2dFGRS is that we have
available data from two totally independent regions on the sky, the SGP and NGP. So far
we have been calculating our void statistics from the combined volume of the two, but it is
useful to check that the scaling properties still exist in the two regions independently. This
we do in the top panel of Fig. 4.5, where the large symbols represent the SGP and small
symbols the NGP. It is immediately clear that galaxies from both the SGP and NPG re-
gions independently obey hierarchical scaling and reproduce the negative binomial results
discussed previously to good accuracy.

Secondly, we test the scaling properties seen in Fig. 4.3 by calculating the reduced VPF
for randomly diluted samples of galaxies. Such dilutions leave the 2-point correlation
function unchanged, and within the hierarchical paradigm the scaling exhibited in Fig. 4.3
should also remain unchanged. This test is shown in the bottom panel of Fig. 4.5, where we
have diluted each of the VLCs used in Fig. 4.3 by factors of 0.5 (large symbols) and 0.25
(small symbols). We again see that the trend for hierarchical scaling exists and follows the
negative binomial model, consistent with our previous conclusions.
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Figure 4.5: Two tests of the scaling properties seen in Fig. 4.3 using the reduced VPF,
χ = − ln P0/N̄, as a function of the scaling variable N̄ ξ̄. (top) Independent
SGP and NGP VLCs show identical scaling to that seen in Fig. 4.3. Here
the large symbols represent the SGP result, and the small represent the NGP
result. (bottom) The same combined VLCs as in Fig. 4.3, but now diluted
by factors of 0.5 (large symbols) and 0.25 (small symbols). If hierarchical
scaling exists in the galaxy distribution, dilution should make little difference
to the results found in Fig. 4.3. For both panels, the dotted curves represent
the same six models plotted in Fig. 4.3 and discussed in Section 4.2.3. Some
error bars have been omitted for clarity.

4.6 Discussion

The 2dFGRS represents an enormous improvement in volume and number of galaxies over
previous surveys, such as the CfA or the SSRS samples. Here we measure the galaxy dis-
tribution over both a wider range in variance (ξ̄ ∼ 0.3 − 20) and mean galaxy number
(N̄ ∼ 10−4 − 102). The impact on the VPF can be seem by comparing Fig. 4.3 above to
Fig. 7 in Gaztañaga & Yokoyama (1993), where the CfA and SSRS data can not discrim-
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inate between the negative binomial and the thermodynamical models. As shown here in
Fig. 4.3 and 4.4, although the agreement is not always perfect, the negative binomial does
much better, by far, than any of the other models considered in the literature. This includes
the lognormal distribution, which is close to the thermodynamical model (Fig. 4.1) and
is widely used as a phenomenological clustering model. These results are valid indepen-
dently in the NGP and SGP regions of the survey, and do not change when we randomly
dilute the galaxy samples (Fig. 4.5). The lognormal distribution does, however, appear to
be a good representation for the distribution of dark matter on smaller scales (less than
∼ 4h−1Mpc), although not at larger scales. The differences between the galaxy and dark
matter reduced VPFs can be understood by noting the differences between their higher-
order volume-averaged correlation functions, as shown by Baugh et al. (2004).

The 2dFGRS reduced void probability function appears to behave differently from the
one presented by Vogeley et al. (1994) for the CfA-1 and CfA-2 samples, which show
more scatter with magnitude and values well above the negative binomial model (compare
their Fig. 4 to our Fig. 4.3). Here we do not observe any significant departure from the
scaling models on scales larger than R ∼ 8.5h−1Mpc as they had previously found. In
contrast, our results indicate hierarchical scaling exists in the galaxy distribution out to
scales of at least R ∼ 20h−1Mpc.

Although some heuristic derivations exist for the negative binomial distribution (see Sec-
tion 4.2.3), we have not found a satisfactory physical explanation for the very good perfor-
mance of this model. The value of the skewness for the negative binomial model, S 3 = 2,
is quite close to the direct measurement in the 2dFGRS: S 3 = 1.86 − 2.03 (Baugh et al.
2004). Other phenomenological models, such as the thermodynamical or the lognormal
distribution, have larger values for the skewness (S 3 ' 3). A similar trend was found by
Baugh et al. for the higher order coefficients S 4, S 5, and S 6. In this respect it is not totally
surprising that the negative binomial does better. The one freedom the reduced VPF has is
in the value of the scaling coefficients which appear in the sum in Eq. 4.6. If these coef-
ficients are found to match that predicted by a particular hierarchical scaling model, then
one would expect their reduced VPFs to look similar.

Perturbation theory with Gaussian initial conditions predict values for the S p’s that are
universal and only depend on the local spectral index. They are therefore a known function
of scale. Such scale dependence, however, breaks the hierarchy in Eq. 4.3, and therefore
the universality of the scaling in Eq. 4.6. On the other hand, redshift space distortions and
biasing tend to wash away this scale dependence (see e.g. Fig. 49 in Bernardeau et al.
2002), an argument which has been used to explain the good performance of the scaling
hierarchy. But, as shown by Baugh et al. (2004) and Croton et al. (2004b), the measured
values of the S p’s do not seem to match the expectations in either dark matter models or
mock galaxy surveys (both in redshift space). The reasons for this, and a more physically
motivated interpretation of the negative binomial model, will provide important constraints
to be matched by models of galaxy formation.
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Appendix 4A: Correcting for incompleteness in the 2dFGRS

The 2dFGRS is spectroscopically incomplete to a small degree resulting in missed galax-
ies (see Colless et al. 2001), and some spheres used in our counts-in-cells analysis may
straddle the survey boundaries or holes resulting in missed volume. Such influences will
induce an artifical “voidness” that will be picked up by our VPF measurements, and any
analysis that neglects these effects will tend to over predict the VPF. Thus it is desirable
to devise a method with which one can confidently correct for such incompleteness. This
is not a trivial exercise, since weighting schemes that work with other statistics (e.g. Efs-
tathiou et al. 1990) cannot necessarily be applied here, as the VPF will remain uncorrected
(how does one weight no galaxies?). Such techniques will lead to an under-estimation of
the mean density of galaxies and an over-estimation of the influence of the voids. Ideally,
we need to ensure that any correction faithfully reproduces the full CPDF of the complete
distribution for all orders of galaxy clustering.

To resolve these problems we have adopted the following method. When a satisfactory
sphere location is found in the 2dFGRS wedge we project the sphere onto the sky and
estimate, using the survey masks (Colless et al. 2001), the average completeness f within
the sphere. Due to the incompleteness effects described above we typically will have f < 1.
Instead of viewing this incompleteness as missed galaxies, we instead consider it as missed
volume, and to compensate we scale the radius of the sphere according to R′ = R/ f

1
3 . This

new radius gives an effective sphere volume with incompleteness equal to that of a 100%
complete sphere with the original radius. Galaxies are counted within the new radius R′,
but contribute their counts to the scale R. Each sphere we place is individually scaled in
this way according to its local incompleteness, as given by the masks. We note that due
to our chosen acceptable minimum incompleteness of 0.7 spheres are never scaled beyond
the radius bin R under consideration. Thus each correction applies only to the value of the
VPF at each radius point plotted.

We have tested the robustness of our method by comparing measurements of the CPDF
using a fully sampled, complete Hubble Volume 2dFGRS mock VLC (Norberg et al.
2002b) with those from the same mock but which have been made artifically incomplete
using the survey masks (spectroscopically, and including irregular boundaries and holes)
and then corrected. In Fig. 4A.1 we show the results for PN vs. radius, where N = 0 (the
VPF), 2, 6, 20 and 70 (note other N’s are omitted for clarity, but all behave similarly over
the scales where the VPF is of interest to us). Here the points with error bars are the com-
plete PN’s, the solid lines are the equivalent corrected incomplete PN’s, and the dashed
lines represent the uncorrected incomplete PN’s. As can be seen, the complete points and
corrected lines are fully consistent, whereas the uncorrected values almost always lie off
the complete points and well outside their error bars (note the steepness of each curve
which is plotted on a log scale). The P0 curve in particular demonstrates that such in-
completeness effects must be accounted for to obtain correct void measurements; simply
building volume limited catalogues is not enough and will lead to an over-prediction of the
scale and frequency of voids in the survey. Our method can be applied to any counts-in-
cells analysis where incompleteness in the galaxy distribution is present.
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Figure 4A.1: Correcting for incompleteness in the 2dFGRS. The CPDF, PN , for a Hub-
ble Volume 2dFGRS mock VLC in the magnitude range −19 > MbJ −
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5 Luminosity functions by density
environment and galaxy type1

Abstract

We use the 2dF Galaxy Redshift Survey to measure the dependence of the bJ-band galaxy
luminosity function on large-scale environment, defined by density contrast in spheres of
radius 8h−1Mpc, and on spectral type, determined from principal component analysis. We
find that the galaxy populations at both extremes of density differ significantly from that at
the mean density. The population in voids is dominated by late types and shows, relative
to the mean, a deficit of galaxies that becomes increasingly pronounced at magnitudes
brighter than MbJ − 5 log10 h <∼ − 18.5. In contrast, cluster regions have a relative excess
of very bright early-type galaxies with MbJ − 5 log10 h <∼ − 21. Differences in the mid to
faint-end population between environments are significant: at MbJ − 5 log10 h = −18 early
and late-type cluster galaxies show comparable abundances, whereas in voids the late types
dominate by almost an order of magnitude. We find that the luminosity functions measured
in all density environments, from voids to clusters, can be approximated by Schechter
functions with parameters that vary smoothly with local density, but in a fashion which
differs strikingly for early and late-type galaxies. These observed variations, combined
with our finding that the faint-end slope of the overall luminosity function depends at most
weakly on density environment, may prove to be a significant challenge for models of
galaxy formation.

5.1 Introduction

The galaxy luminosity function has played a central role in the development of modern
observational and theoretical astrophysics, and is a well established and fundamental tool
for measuring the large-scale distribution of galaxies in the universe (Efstathiou, Ellis &
Peterson 1988; Loveday et al. 1992; Marzke, Huchra & Geller 1994; Lin et al. 1996; Zucca
et al. 1997; Ratcliffe et al. 1998; Norberg et al. 2002b; Blanton et al. 2003a;). The galaxy
luminosity function of the 2dF Galaxy Redshift Survey (2dFGRS) has been characterised
in several papers: Norberg et al. (2002b) consider the survey as a whole; Folkes et al.

1D.J. Croton, G.R. Farrar, P. Norberg, M. Colless, J.A. Peacock, et al. (the 2dFGRS Team), MNRAS, 356,
1155, 2005
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(1999) and Madgwick et al. (2002) split the galaxy population by spectral type; De Propris
et al. (2003) measure the galaxy luminosity function of clusters in the 2dFGRS; Eke et al.
(2004) estimate the galaxy luminosity function for groups of different mass. Such targeted
studies are invaluable if one wishes to understand how galaxy properties are influenced by
external factors such as local density environment (e.g. the differences between cluster and
field galaxies).

A natural extension of such work is to examine a wider range of galaxy environments
and how specific galaxy properties transform as one moves between them, from the very
under-dense ‘void’ regions, to mean density regions, to the most over-dense ‘cluster’ re-
gions. In order to ‘connect the dots’ between galaxy populations of different type and with
different local density a more comprehensive analysis needs to be undertaken. Although
progress has been made in this regard on both the observational front (Bromley et al. 1998;
Christlein 2000; Hütsi et al. 2002) and theoretical front (Peebles 2001; Mathis & White
2002; Benson et al. 2003; Mo et al. 2004), past galaxy redshift surveys have been severely
limited in both their small galaxy numbers and small survey volumes. Only with the recent
emergence of large galaxy redshift surveys such as the 2dFGRS and also the Sloan Digital
Sky Survey (SDSS) can such a study be undertaken with any reasonable kind of precision
(for the SDSS, see recent work by Hogg et al. 2003, Kauffmann et al. 2004, and Hoyle et
al. 2005).

In this paper we use the 2dFGRS galaxy catalogue to provide an extensive description
of the luminosity distribution of galaxies in the local universe for all density environments
within the 2dFGRS survey volume. In addition, the extreme under-dense and over-dense
regions of the survey are further dissected as a function of 2dFGRS galaxy spectral type,
η, which can approximately be cast as early and late-type galaxy populations (Madgwick
et al. 2002, see Section 5.2). The void galaxy population is especially interesting as it
is only with these very large survey samples and volumes possible to measure it with any
degree of accuracy. Questions have been raised (e.g., Peebles 2001) as to whether the stan-
dard ΛCDM cosmology correctly describes voids, most notably in relation to reionisation
and the significance of the dwarf galaxy population in such under-dense regions.

This paper is organised as follows. In Section 5.2 we provide a brief description of
the 2dFGRS and the way in which we measure the galaxy luminosity function from it.
The luminosity function results are presented in Section 5.3, and then compared with past
results in Section 5.4. We discuss the implications for models of galaxy formation in
Section 5.5. Throughout we assume a ΛCDM cosmology with parameters Ωm = 0.3,
ΩΛ = 0.7, and H0 = 100h−1kms−1Mpc−1.

5.2 Method

5.2.1 The 2dFGRS survey

We use the completed 2dFGRS as our starting point (Colless et al. 2003), giving a total of
221,414 high quality redshifts. The median depth of the full survey, to a nominal magni-
tude limit of bJ ≈ 19.45, is z ≈ 0.11. We consider the two large contiguous survey regions,

72



5.2.2 Local density measurement

one in the south Galactic pole and one towards the north Galactic pole. To improve the
accuracy of our measurement our attention is restricted to the parts of the survey with
high redshift completeness (> 70%) and galaxies with apparent magnitude bJ < 19.0, well
within the above survey limit (see also Appendix 5C). Our conclusions remain unchanged
for reasonable choices of both these restrictions. Full details of the 2dFGRS and the con-
struction and use of the mask quantifying the completeness of the survey can be found in
Colless et al. (2001, 2003) and Norberg et al. (2002b).

Where possible, galaxy spectral types are determined using the principal component
analysis (PCA) of Madgwick et al. (2002) and the classification quantified by a spectral
parameter, η. This allows us to divide the galaxy sample into two broad classes, conven-
tionally called late and early types for brevity. The late types are those with η ≥ −1.4 that
have active star formation and the early types are the more quiescent galaxy population
with η < −1.4. Approximately 90% of the galaxy catalogue can be classified in this way.
This division at η = −1.4 corresponds to an obvious dip in the η distribution (Section 5.2.4;
see also Madgwick et al. 2002) and a similar feature in the bJ − rF colour distribution, and
therefore provides a fairly natural partition between early and late types. When calculating
each galaxy’s absolute magnitude we apply the spectral type dependent k+e corrections of
Norberg et al. (2002b); when no type can be measured we use their mean k + e correction.
In this way all galaxy magnitudes have been corrected to zero redshift.

5.2.2 Local density measurement

The 2dFGRS galaxy catalogue is magnitude limited; it has a fixed apparent magnitude limit
which corresponds to a faint absolute magnitude limit that becomes brighter at higher red-
shifts. Over any given range of redshift there is a certain range of absolute magnitudes
within which all galaxies can be seen by the survey and are thus included in the cata-
logue (apart from a modest incompleteness in obtaining the galaxies’ redshifts). Selecting
galaxies within these redshift and absolute magnitude limits defines a volume-limited sub-
sample of galaxies from the magnitude-limited catalogue (see e.g. Norberg et al. 2001,
2002b; Croton et al. 2004b); this sub-sample is complete over the specified redshift and
absolute magnitude ranges.

To estimate the local density for each galaxy we first need to establish a volume-limited
density defining population (DDP) of galaxies. This population is used to fix the density
contours in the redshift space volume containing the magnitude-limited galaxy catalogue.
We restrict the magnitude-limited survey to the redshift range 0.05 < z < 0.13, giving an
effective sampling volume of approximately 7×106h−3Mpc3. Such a restriction guarantees
that all galaxies in the magnitude range −19 > MbJ − 5 log10 h > −22 (i.e. effectively
brighter than M∗ + 0.7) are volume limited, and allows us to use this sub-population as the
DDP. The mean number density of DDP galaxies is 8.6 × 10−3h3Mpc−3. In Appendix 5B
we consider the effect of changing the magnitude range of the DDP and find only a very
small difference in our final results.

The local density contrast for each magnitude-limited galaxy is determined by counting
the number of DDP neighbours within an 8h−1Mpc radius, Ng, and comparing this with
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the expected number, N̄g, obtained by integrating under the published luminosity 2dFGRS
function of Norberg et al. (2002b) over the same magnitude range that defines the DDP:

δ8 ≡
δρg

ρg
=

Ng − N̄g
N̄g

∣

∣

∣

∣

∣

∣

R=8h−1Mpc

. (5.1)

In Appendix 5B we explore the effect of changing this smoothing scale from between
4h−1Mpc to 12h−1Mpc. We find that our conclusions remain unchanged, although, not sur-
prisingly, smaller scale spheres tend to sample the under dense regions differently. Spheres
of 8h−1Mpc are found to be the best probe of both the under and over-dense regions of the
survey.

With the above restrictions, the magnitude-limited galaxy sample considered in our anal-
ysis contains a total of 81, 387 (51, 596) galaxies brighter than MbJ−5 log10 h = −17 (−19),
with 30, 354 (23, 043) classified as early types and 42, 772 (23, 815) classified as late types.
Approximately 70% of all galaxies in this sample are sufficiently within the survey bound-
aries to be given a local density. Details of the different sub-samples binned by local
density and type are given in Table 5.1.

5.2.3 Measuring the luminosity function

The luminosity function, giving the number density of galaxies as a function of luminosity,
is conveniently approximated by the Schechter function (Schechter 1976, see also Norberg
et al. 2002b):

dφ = φ∗(L/L∗)α exp(−L/L∗) d(L/L∗) , (5.2)

dependent on three parameters: L∗ (or equivalently M∗), providing a characteristic lumi-
nosity (magnitude) for the galaxy population; α, governing the faint-end slope of the lumi-
nosity function; and φ∗, giving the overall normalisation. Our method, which we describe
below, will be to use the magnitude-limited catalogue binned by density and type to calcu-
late the shape of each luminosity function, draw on restricted volume-limited sub-samples
of each to fix the correct luminosity function normalisation, then determine the maximum
likelihood Schechter function parameters for each in order to quantify the changing be-
haviour between different environments.

The luminosity function shape is determined in the standard way using the step-wise
maximum likelihood method (SWML Efstathiou, Ellis & Peterson 1988) and the STY
estimator (Sandage, Tammann & Yahil 1979). See Norberg et al. (2002b) for a complete
description of the application of these two techniques to the 2dFGRS. All STY fits are
performed over the magnitude range −17 > MbJ − 5 log10 h > −22.

Such techniques fail to provide the luminosity function normalisation, however, and one
needs to consider carefully how to do this when studying galaxy populations in different
density environments. To normalise each luminosity function we employ a new counts
in cells (CiC) technique which directly calculates the number density of galaxies as a
function of galaxy magnitude from the galaxy distribution. Briefly, this is achieved by
counting galaxies in restricted volume-limited sub-regions of the survey. We discuss our
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Figure 5.1: A comparison of the published 2dFGRS luminosity function (circles and dot-
ted lines) to that calculated by our joint SWML(shape)/CiC(normalisation)
method (squares and triangles) for select galaxy samples. Shown are the
(top) full catalogue luminosity function (Norberg et al. 2002b) and cluster
galaxy population luminosity function (De Propris et al. 2003), and (bottom)
the luminosity function for early and late-type galaxy sub-samples separately
(Madgwick et al. 2002).

CiC method in more detail in Appendix 5A. As we show there, when galaxy numbers
allow a good statistical measurement the luminosity function shape determined by the
SWML and CiC methods agree very well. As the SWML estimator draws from the larger
magnitude-limited survey rather than the smaller CiC volume-limited sub-samples, we
choose the above two-step SWML/CiC approach rather than the CiC method alone to
obtain the best results for each luminosity function. Once the CiC luminosity function
has been calculated for the same galaxy sample, the SWML luminosity function is then
given the correct amplitude by requiring that the number density integrated between the
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Figure 5.2: The distribution of the spectral parameter, η, for the void, mean, and cluster
galaxies used in our analysis (Table 5.1). The vertical dotted line at η =
−1.4 divides the quiescent galaxy population (early types on left) from the
more active star-forming galaxies (late types on right). From void to cluster
environment, the dominant galaxy population changes smoothly from late-
type to early-type.

magnitude range −19 > MbJ − 5 log10 h > −22 be the same as that for the CiC result.

5.2.4 Comparison to previous 2dFGRS results

In Fig. 5.1 we give a comparison of our measured luminosity functions for selected galaxy
populations with the equivalent previously-published 2dFGRS results (see each reference
for complete details). These include (top panel) the full survey volume (Norberg et al.
2002b) and cluster galaxy luminosity functions (De Propris et al. 2003), and (bottom
panel) the luminosity functions derived for late and early-type galaxy populations sepa-
rately (Madgwick et al. 2002). For all, the squares and triangle symbols show our hybrid
SWML/CiC values while the circles and dotted lines give the corresponding published
2dFGRS luminosity function data points and best Schechter function estimates, respec-
tively. The close match between each set of points confirms that our method is able to
reproduce the published 2dFGRS luminosity shape and amplitude successfully.

There are a few points to note. Firstly, the cluster luminosity function is not typically
quoted with a value of φ∗ since the normalisation of the cluster galaxy luminosity distribu-
tion will vary from cluster to cluster (dependent on cluster richness). Because of this we
plot the De Propris et al. cluster luminosity function using our φ∗ value.

Secondly, the Madgwick et al. early and late-type galaxy absolute magnitudes include
no correction for galaxy evolution, which, if included, would have the effect of dimming
the galaxy population somewhat. We have checked the significance of omitting the evolu-
tion correction when determining the galaxy absolute magnitudes and typically find only
minimal differences in our results and no change to our conclusions.

Thirdly, the STY Schechter function values we measure tend to present a slightly ‘flat-
ter’ faint-end slope than seen for the full survey: our all-type STY estimate returns α =
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−1.05 ± 0.02 (Table 5.1) whereas for the completed survey (across the redshift range
0.02 < z < 0.25) the recovered α value is −1.18 ± 0.02 (Cole et al. 2005). This dif-
ference is due primarily to three systematic causes: the minimum redshift cut required
to define the DDP which results in a restricted absolute magnitude range over which we
can measure galaxies; the non-perfect description of the galaxy luminosity function by a
Schechter function together with the existing degeneracies in the M∗ − α plane; the sen-
sitivity of the faint-end slope parametrisation to model dependent corrections for missed
galaxies. For our results, these systematic effects do not hinder a comparison between
sub-samples, but it is essential to take into account the different cuts we imposed for any
detailed comparison with other works. In Appendix 5C we discuss these degeneracies and
correlations further. We test their influence by fixing each α at the published field value
when applying the STY estimator and find a typical variation of less than 0.2 magnitudes
in M∗ from the main results presented in Section 5.3. Such systematics do not change our
conclusions.

Lastly, the 2dFGRS photometric calibrations have improved since earlier luminosity
function determinations, and thus the good match seen in Fig. 5.1 demonstrates that the
new calibrations have not significantly altered the earlier results.

In Fig. 5.2 we show the η distribution for our void, mean, and cluster galaxy samples.
The mean galaxy distribution is essentially identical to that shown in Fig. 4 of Madgwick
et al. (2002) for the full survey, demonstrating that the mean density regions contain a
similar mix of galaxy types to that of the survey as a whole. For under-dense regions late
types progressively dominate, while the converse is true in the over-dense regions. This
behaviour can be understood in terms of the density-morphology relation (e.g. Dressler
1980), and will be explored in more detail in the next section.

5.3 Results

5.3.1 Luminosity functions

The top panel of Fig. 5.3 shows the 2dFGRS galaxy luminosity function estimated for the
six logarithmically-spaced density bins and additional extreme void bin, δ8 < −0.9, given
in Table 5.1. The luminosity function varies smoothly as one moves between the extremes
in environment. Each curve shows the characteristic shape of the Schechter function, for
which we show the STY fit across the entire range of points plotted with dotted lines. The
Schechter parameters are given in Table 5.1, along with the number of galaxies considered
in each density environment and the volume fraction they occupy. A number of points of
interest regarding the variation of these parameters with local density will be discussed
below.

To examine the relative differences in the void and cluster galaxy populations with re-
spect to the mean, in the bottom panel of Fig. 5.3 we plot the ratio of the void and clus-
ter luminosity functions to the mean luminosity function. Also shown is the ratio of the
corresponding Schechter functions to the mean Schechter function (solid lines) and 1σ
uncertainty (dotted lines, where only the error in M∗ and α has been propagated). For a
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Galaxy Galaxy δ8min δ8max NGAL fVOL M∗ α φ∗ 〈ρL〉
Type Sample MbJ − 5 log10 h 10−3h3Mpc−3 108hL�Mpc−3

all types: full volume −1.0 ∞ 81, 387 1.0 −19.65 ± 0.02 −1.05 ± 0.02 21.3 ± 0.5 2.10 ± 0.08
extreme void −1.0 −0.90 260 0.09 −18.26 ± 0.33 −0.81 ± 0.50 3.17 ± 0.90 0.08 ± 0.04
void −1.0 −0.75 1, 157 0.20 −18.84 ± 0.16 −1.06 ± 0.24 3.15 ± 0.56 0.15 ± 0.04

−0.75 −0.43 3, 331 0.19 −19.20 ± 0.10 −0.93 ± 0.11 5.99 ± 0.62 0.36 ± 0.05
mean −0.43 0.32 11, 877 0.30 −19.44 ± 0.05 −0.94 ± 0.05 11.3 ± 0.7 0.86 ± 0.07

0.32 2.1 21, 989 0.24 −19.64 ± 0.04 −0.99 ± 0.04 22.9 ± 1.0 2.16 ± 0.13
2.1 6.0 15, 656 0.07 −19.85 ± 0.05 −1.09 ± 0.04 49.0 ± 3.0 5.95 ± 0.49

cluster 6.0 ∞ 3, 175 0.01 −20.08 ± 0.13 −1.33 ± 0.11 60.7 ± 13.2 11.6 ± 3.4
late type: full volume −1.0 ∞ 42, 772 − −19.30 ± 0.03 −1.03 ± 0.03 15.0 ± 0.5 1.06 ± 0.05

void −1.0 −0.75 855 − −18.78 ± 0.19 −1.14 ± 0.24 2.42 ± 0.55 0.11 ± 0.04
−0.75 −0.43 2, 249 − −19.07 ± 0.12 −0.95 ± 0.14 4.54 ± 0.58 0.25 ± 0.05

mean −0.43 0.32 7, 261 − −19.24 ± 0.07 −1.00 ± 0.07 8.03 ± 0.61 0.53 ± 0.06
0.32 2.1 11, 921 − −19.36 ± 0.06 −1.04 ± 0.05 15.5 ± 1.0 1.17 ± 0.11
2.1 6.0 7, 596 − −19.37 ± 0.07 −1.03 ± 0.07 36.3 ± 2.9 2.73 ± 0.31

cluster 6.0 ∞ 1, 316 − −19.34 ± 0.18 −1.09 ± 0.20 54.0 ± 12.2 4.09 ± 1.31
early type: full volume −1.0 ∞ 30, 354 − −19.65 ± 0.03 −0.65 ± 0.03 8.80 ± 0.22 0.75 ± 0.03

void −1.0 −0.75 220 − −18.62 ± 0.33 −0.15 ± 0.53 0.67 ± 0.10 0.02 ± 0.01
−0.75 −0.43 861 − −19.16 ± 0.14 −0.43 ± 0.24 1.62 ± 0.17 0.88 ± 0.02

mean −0.43 0.32 3, 873 − −19.38 ± 0.08 −0.39 ± 0.11 4.13 ± 0.19 0.27 ± 0.02
0.32 2.1 8, 809 − −19.59 ± 0.05 −0.52 ± 0.06 10.6 ± 0.4 0.84 ± 0.05
2.1 6.0 7, 163 − −19.89 ± 0.06 −0.81 ± 0.06 24.2 ± 1.6 2.67 ± 0.23

cluster 6.0 ∞ 1, 731 − −20.13 ± 0.18 −1.12 ± 0.14 37.1 ± 7.7 6.00 ± 1.75

Table 5.1: Properties of our magnitude-limited galaxy samples, split by spectral type (all, early and late) and in seven density ranges
(defined by δ8min and δ8max , the density contrast in spheres of radius 8h−1Mpc). The all-type sample is also split into an
‘extreme void’ sample. NGAL and fVOL are the number of galaxies in each density bin and the volume fraction these galaxies
occupy, respectively. fVOL is given for all galaxy types only: early/late-type density populations are just sub-divisions of
the associated all-type sample. M∗ and α are the likelihood estimated Schechter function parameters, and φ∗ the associated
normalisation. The integrated luminosity density, as defined by Eq. 5.3 with Lmin = 0, is given in the last column. All errors
on the derived parameters reflect only the associated statistical uncertainty.

78



5.3.1 Luminosity functions

Figure 5.3: (top) The SWML luminosity functions for the 2dFGRS galaxy catalogue
in regions of the survey of varying density contrast, δ8, from void to mean
density to cluster. The best-fit Schechter function parameters for each are
given in Table 5.1 and the corresponding Schechter function curves are over
plotted here with dotted lines. (bottom) The void and cluster luminosity
functions normalised to the mean luminosity function so as to highlight the
relative differences in the shape of each distribution. The solid lines and
bounding dotted lines show the appropriate Table 5.1 Schechter functions
normalised to the mean Schechter function and 1σ uncertainty.
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non-changing luminosity function shape, this ratio is a flat line whose amplitude reflects
the relative abundance of the samples considered. For two Schechter functions differing
in both α and M∗, the faint-end of the ratio is most sensitive to the differences in α and
the bright end to the differences in M∗. We note that the error regions on the Schechter
function fits shown here do not include the uncertainty of the mean sample, as the corre-
lation of its error with the other samples is unknown. This panel reveals significant shifts
in abundances at the bright end: in voids there is an increasing deficit of bright galaxies
for magnitudes MbJ − 5 log h <∼ − 18.5, while clusters exhibit an excess of very luminous
galaxies at magnitudes MbJ − 5 log h <∼ − 21.

It is well-established that early and late-type galaxy populations have very different lu-
minosity distributions (Fig. 5.1). In Fig. 5.4 we explore the density dependence of these
populations. The upper panels show the luminosity functions and their Schechter function
fits, as in Fig. 5.3, but for (left panel) early types and (right panel) late types separately.
In the corresponding lower panels we show the ratio of each extreme density population
to the mean density luminosity function, following the same format as the bottom panel
of Fig. 5.3. (We note that the mean luminosity functions for each type used in this figure
are both very similar in shape to that shown in the bottom panel of Fig. 5.1). The best-
fit Schechter parameters are given in Table 5.1. Again we see a smooth transition in the
galaxy luminosity function as one moves through regions of different density contrast. The
lower left panel of Fig. 5.4 shows a significant variation of the bright end early-type galaxy
population with respect to the mean, while at the faint end the changes are more ambigu-
ous, but with Schechter fits that suggest some evolution into the denser regions. Note that,
although the faint end of our early-type cluster Schechter function is primarily constrained
by the mid-luminosity galaxies in the sample, our maximum liklihood Schechter param-
eters are quite close to that found by De Propris et al. (2003) for a comparable galaxy
population but measured approximately three magnitudes fainter. In contrast to the early
types, in the lower right panel of Fig. 5.4 late-type galaxies show little change in relative
population between the mean and cluster environments and a possible “tilt" favouring the
faint-end for low-density environments. Due to deteriorating statistics we do not consider
the type dependent extreme void luminosity function which was introduced in Fig. 5.3.

The essence of our results is best appreciated when we directly compare the early and
late-type galaxy distributions, separately for the cluster and void regions of the survey, as
shown in Fig. 5.5. This figure reveals a striking contrast: the void population is composed
primarily of medium to faint luminosity late-type galaxies, while for the cluster population
early types dominate down to all but the faintest magnitude considered. This is the central
result of our study, and shows the crucial role of accurately determining the amplitude of
the luminosity function, since the shape alone does not necessarily determine the dominant
population of a region.

5.3.2 Evolution with environment

It is well known that the Schechter function parameters are highly correlated. In Fig. 5.6
we show the 1σ (68% 2-parameter) and 3σ (99% 2-parameter) χ2 contours in the M∗ − α
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5.3.2 Evolution with environment

Figure 5.4: Comparing both the (top) absolute and (bottom) relative distributions of
(left) early-type galaxies in different density environments, and (right) late-
type galaxies in different density environments. In the bottom panels the
luminosity functions have again been normalised to the mean (each to their
respective type) as done previously in Fig. 5.3 (note that the shape of the
mean for each type is very similar to that shown in Fig. 5.1). Here the solid
lines and bounding dotted lines show the appropriate Table 5.1 Schechter
functions normalised to the mean Schechter function and 1σ uncertainty.
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Figure 5.5: A direct comparison of the early and late-type galaxy populations in the
cluster environment (top two luminosity functions) and void regions of the
survey (bottom two luminosity functions). The void population is composed
almost exclusively of faint late-type galaxies, while in the clusters regions
the galaxy population brighter than MbJ − 5 log10 h = −19 consists predomi-
nantly of early types.

plane for the early-type, late-type, and combined type cluster and void populations. For a
given spectral type, all show a greater than 3σ difference in the STY Schechter parameters
between the void and cluster regions. Intermediate density bins are omitted for clarity but
follow a smooth progression with smaller error ellipses between the two extremes shown.
In Appendix 5C we explore in more detail the M∗ − α degeneracy and confirm that our
results are robust.

Our findings show that the galaxy luminosity function changes gradually with environ-
ment. We quantify this behaviour in Fig. 5.7 by plotting the variation of M ∗ and α as a
function of density contrast, where points to the left of δ8 = 0 represent the under-dense to
void regions in the survey, and points to the right of this are measured in the over-dense to
cluster regions. Late-type galaxies display a consistent luminosity function across all den-
sity environments, from sparse voids to dense clusters, with a weak dimming of M ∗ in the
under-dense regions, and an almost constant faint-end slope. In contrast, the luminosity
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5.3.2 Evolution with environment

Figure 5.6: The 1σ (68% 2-parameter) and 3σ (99% 2-parameter) contours of constant
χ2 in the M∗ − α plane for the void and cluster STY estimates (in each case
the void fit is on the left, corresponding to a fainter M*). Galaxy types are
identified by the linestyle given in the legend. Even at the 3σ level significant
differences in the void and cluster Schechter function parameters for each
galaxy type can be seen.

distribution of early-type galaxies differs sharply between the extremes in environment:
M∗ brightens by approximately 1.5 magnitudes going from voids to clusters, while the
faint-end slope moves from α ≈ −0.3 in under-dense regions to around α ≈ −1.0 in the
densest parts of the survey.

Finally, in Fig. 5.8 we plot the mean luminosity per galaxy, 〈ρL〉/〈ρg〉, obtained by in-
tegrating the luminosity function for each set of Schechter function parameters from Ta-
ble 5.1:

〈ρg〉 =
∫ ∞

Lmin

φ(L) dL , 〈ρL〉 =
∫ ∞

Lmin

φ(L)L dL , (5.3)

where Lmin is a somewhat arbitrary observational cutoff chosen at MbJ − 5 log10 h = −17.
This is both the limit down to which we confidently measure our luminosity functions, and
also the limit beyond which the Schechter function no longer provides a good fit to the
early-type luminosity function of Madgwick et al. (2002). The final column of Table 5.1
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Figure 5.7: The maximum liklihood Schechter function M∗ and α parameters for each of
the six density contrast regions in Table 5.1 (Figs. 5.3 and 5.4). Each panel
shows the result for individual samples split by spectral type (early/late) and
both types combined.

gives the total luminosity density in the various density contrast environments, computed
by integrating the Schechter function with no cutoff, to allow easy comparison with past
and future analyses; the contribution to the calculated 〈ρL〉 from luminosities below the
observational cutoff is less than a few percent. We note that 〈ρg〉 is directly related to the
density contrast, δ8, by definition. It is interesting to see that the early-type galaxies in
Fig. 5.8 are, on average, about a factor of two brighter per galaxy than the late types, even
though the late types dominate in terms of both number and luminosity density. For all
galaxy populations, the mean luminosity per galaxy shows a remarkable constancy across
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5.4 Comparison to previous work

Figure 5.8: The mean luminosity per galaxy as a function of density environment for
each galaxy type, calculated from Eq. 6.3 using the Schechter function pa-
rameters given in Table 5.1. The integral is performed by choosing Lmin so
that Mmin −5 log10 h = −17 (Section 5.3.2). The mean luminosity per galaxy
of early types is consistently about a factor of two brighter than their late
type counterparts across all density environments.

the full range of density environments.

5.4 Comparison to previous work

Historically, work on the dependence of the luminosity function on large scale environment
has been restricted primarily to comparisons between cluster and field galaxies, due to
insufficient statistics to study voids. (Note that ‘field’ samples are usually flux-limited
catalogues which cover all types of environments.) One of the aims of this work is to
elucidate the properties of galaxies in void environments and understand the relationship
between clusters and voids. In this section, we briefly summarise previous observations
and compare them with the results presented in Section 5.3.

We have already shown in Fig. 5.1 and Section 5.2 that our cluster and field results are
equivalent to the published 2dFGRS luminosity function results of Norberg et al. (2002b),
Madgwick et al. (2002), and De Propris et al. (2003). The latter paper explains their
cluster luminosity function by demonstrating that the field luminosity function can be ap-
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proximately transformed into the cluster luminosity function using a simple model where
the cluster environment suppresses star formation to produce a dominant bright, early-type
population (see Section 4.4 of their paper for details). We expand upon such models in the
next section.

Bromley et al. (1998) considered 18, 278 galaxies in the Las Campanas Redshift Survey
(LCRS) as a function of spectral type and high and low local density. We confirm (e.g.,
Fig. 5.7) their qualitative finding that for early-type galaxies the faint-end slope steepens
with density whereas late-type objects show little or no significant trend. We cannot make
a quantitative comparison to their result because they do not give the definition of their low
density sample.

Hütsi et al. (2003) use the Early Data Release of the Sloan Digital Sky Survey (SDSS)
and the LCRS to consider the galaxy luminosity function as a function of density field,
but in two-dimensional projection so their results are not directly comparable to ours.
They find a faint-end slope of α ≈ −1.1 in all environments and an increase in M ∗ of
roughly 0.3 magnitudes between the under and over-dense portions of their data. This
is broadly consistent with the more detailed results obtained here with the full 2dFGRS
catalogue when one averages over our two most underdense bins and three most over-
dense. In separate work, these authors also consider the environmental dependence of
cluster and supercluster properties in the SDSS and LCRS (Einasto et al. 2003a, 2003b).
They show an almost order of magnitude increase in the mean cluster luminosity between
extremes in density (defined in two dimensions by smoothing over a projected 10h−1Mpc
radius around each cluster). A comparison of their results to ours (i.e. Fig. 5.7) suggests a
correlation between galaxy, galaxy group, and galaxy cluster properties in a given density
environment. A more detailed exploration would shed light on the connection between
virialised objects of different mass with local density. We defer such an investigation to
later work.

In a series of papers, members of the SDSS team undertook an analysis of the proper-
ties of galaxy samples drawn from under-dense regions in the SDSS (Rojas et al. 2004,
2005; Goldberg et al. 2004; Hoyle et al. 2003). Of most relevance to our study is the
work of Hoyle et al. who completed a preliminary analysis of the SDSS void luminosity
function, defined in regions of δ7 < −0.6 using a smoothing scale of 7h−1Mpc. Their sam-
ple of 1, 010 void galaxies are typically fainter and bluer than galaxies in higher density
environments but with a similar faint-end slope. Their results are consistent with what
we find using a sample which contains about twice the number of void galaxies as de-
fined by Hoyle et al.. Using the same void galaxy catalogue, Rojas et al. (2005) show
that this behaviour is not merely an extrapolation of the density-morphology relationship
(e.g. Dressler 1980) into sparser environments. By measuring the concentration and Ser-
sic indices (Sersic 1968, Blanton et al. 2003b) of void and field galaxies they detect no
significant shift in the morphological mix, even though their void galaxy sample is shown
to be significantly bluer.

Also using the SDSS dataset, Hogg et al. (2003) consider the mean environment as
a function of luminosity and colour of 115, 000 galaxies, on smoothing scales of 1 and
8h−1Mpc. They find that their reddest galaxies show strong correlations of luminosity
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Region Observation Process

Voids 1. galaxies typically reside at the centre
faint, late type of low mass dark halos (⇒ faint)

galaxies dominate 2. gas is available for star formation (⇒ blue)
3. merger rate is low (⇒ spirals)

Clusters 1. typically satellite and central galaxies of
mid-bright, early-type massive dark halos (⇒ mid-bright)

galaxies dominate 2. gas is unavailable for star formation (⇒ red)
3. merger rate is high (⇒ ellipticals)

Table 5.2: A summary of our main results, drawing on the work of De Propris et al.
(2003) and Mo et al. (2004) to interpret the observed behaviour in Figs. 5.5
and 5.7 in terms of physical processes which govern the void and cluster
galaxy populations.

with local density at both the faint and bright extremes, whereas the luminosities of blue
galaxies have little dependence on environment. These conclusions are consistent with
the present results for our early (red) and late (blue) type luminosity functions (Fig. 5.7).
However by restricting attention to the average environment of a galaxy of given luminos-
ity and colour, their sample is by definition dominated by galaxies in over-dense environ-
ments. The measures they consider are therefore insensitive to one of the main questions
of interest to us here, namely whether the characteristic galaxy population in the voids
is distinctively different from that in other density environments. Indeed, we clearly find
evidence for a population which is particularly favoured in void regions, namely faint late-
type galaxies (Fig. 5.5).

5.5 Discussion

As clusters are comparatively well-studied objects, and have already been addressed using
the 2dFGRS by De Propris et al. (2003), we focus here primarily on a discussion of the
voids.

A detailed analysis of void population properties has recently become possible due to
significant improvements in the quality of both theoretical modelling and observational
data, as summarised by Benson et al. (2003). Peebles (2001) has argued that, visually,
observed voids do not match simulated ones and discussed several statistical measures for
quantifying a comparison, primarily the distance to the nearest neighbour in a reference
sample. However the cumulative distributions of nearest neighbour distances shown in
Figs. 4–6 of Peebles (2001) show very little difference between the reference–reference
and test–reference distributions. It is not surprising that these statistical measures are in-
sensitive to a void effect, since they are dominated by cluster galaxies. Our method is
designed to overcome this difficulty by explicitly isolating the void population of galaxies
so that their properties can be studied.

Motivated by the claims of discrepancies in Peebles (2001), Mathis & White (2002) in-
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vestigated the nature of void galaxies using N-body simulations with semi-analytic recipes
for galaxy formation. They call into question the assertion of Peebles (2001) that ΛCDM
predicts a population of small haloes in the voids, concluding that “the population of faint
galaxies...does not constitute a void population”. More specifically, they find that all types
of galaxies tend to avoid the void regions of their simulation, down to their resolution limit
of MB = −16.27 in luminosity and MB = −18.46 in morphology.

The abundance of faint galaxies we find in the void regions of the 2dFGRS seems to
be at odds with the Mathis & White predictions. However their results rely on the Pee-
bles (2001) cumulative distribution of galaxies as a function of over density (their Fig. 3)
which, like cumulative distributions in general, are rather insensitive to numerically-minor
components of the galaxy population. Note that Mathis & White define density contrast
using the dark matter mass distribution smoothed over a 5 h−1Mpc sphere, whereas we
measure the density contrast by galaxy counts. Another possible source of discrepancy is
the uncertainties in their semi-analytic recipes, such as the implementation of supernova
feedback, which can strongly effect the faint-end luminosity distribution.

There has been recent discussion in the literature about the nature of the faint-end galaxy
population and its dependence on group and cluster richness. Most notably, Tully et al.
(2002) show a significant steepening in the faint-end population as one considers nearby
galaxy groups of increasing richness, from the Local Group to Coma. On the surface of
it, this might seem at variance with our results, which are rather better described by a
faint-end slope which is approximately constant with changing density environment for
the full 2dFGRS galaxy sample (Fig. 5.7). However the steepening of the faint-end slope
they find primarily occurs at magnitudes fainter than MB = −17, which is beyond the
limit we can study with our sample. Also, their analysis focuses on individual groups
of galaxies, while we have chosen to work with a much bigger galaxy sample and have
smoothed it over a scale much larger than the typical cluster. Indeed, as discussed in
Appendix 5B, when the smoothing scale is significantly larger than the characteristic size
of the structures being probed it is possible that the Schechter function parameters may
become insensitive to the small scale shifts in population. This effect, of course, would be
less significant for survey regions which host clusters of clusters (i.e. super-clusters), and
which are prominently seen in the 2dFGRS (Baugh et al. 2004, Croton et al. 2004b). When
sampling the 2dFGRS volume the trend with density that one sees using 4h−1 Mpc spheres
in Fig. 5B.1 is consistent with the Tully et al. result, although one needs to additionally
understand the influences of Poisson noise.

Tully et al. attribute their results to a process of photoionisation of the IGM which sup-
presses dwarf galaxy formation. Over-dense regions, which at later times become massive
clusters, typically collapse early and thus have time to form a dwarf galaxy population
before the epoch of reionisation. Under-dense regions, on the other hand, begin their col-
lapse at much later times and are thus subject to the photoionisation suppression of cooling
baryons. This, they argue, explains the significant increase between the dwarf populations
of the Local Group (low density environment) and Coma (over-dense environment). Al-
though suggestive, a deeper understanding of what is happening will require a much more
statistically significant sample.
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Recently Mo et al. (2004) have considered the dependence of the galaxy luminosity
function on large scale environment in their halo occupation model. In this model, the mass
of a dark matter halo alone determines the properties of the galaxies. They create mock
catalogues built with a halo-conditional luminosity function (Yang et al. 2003) which is
constrained to reproduce the overall 2dFGRS luminosity function and correlation length
for both luminosity and type. They analyse their data by smoothing over spheres of radius
8 h−1Mpc in their mock catalogue, and measure the luminosity function as a function of
density contrast. Their work is performed in real space while we are restricted to work in
redshift space. Nonetheless, their predictions qualitatively match our density-dependent
luminosity functions; a quantitative comparison is deferred to subsequent work.

In the framework of the Mo et al. model, the reason the faint-end slope α has such a
strong dependence on local density for early types (Fig. 5.7) is that faint ellipticals tend
to reside predominantly in cluster-sized halos. The α dependence is weaker for late types
because faint later-type galaxies tend to live primarily in less massive haloes, which are
present in all density environments. The correlations between dark halo mass and the prop-
erties of the associated galaxies are not a fundamental prediction of their model, but are
input through phenomenological functions adjusted to give agreement with the 2dFGRS
overall luminosity functions by galaxy type. However it would be a non-trivial result if
the correlations are the same independently of whether the dark matter halo is in a void or
in a cluster. For instance, this property would not apply in models for which reionisation
more efficiently prevented star formation in under-dense environments than in over-dense
environments, as discussed above.

An interesting consequence of the Mo et al. (2004) model is that the luminous galaxy
distribution (which is easy to observe but hard to model) correlates well with the dark halo
mass distribution (which is hard to observe but easy to model). If their predictions prove
to give a good description of the present data it will lend credence to the underlying as-
sumption of their model—that the environmental dependence of many fundamental galaxy
properties are entirely due to the dependence of the dark halo mass function on environ-
ment. Exactly why this is would still need to be explained, however such a demonstration
may facilitate more detailed comparisons between theory and observation than previously
possible.

An important result of our work is presented in Fig. 5.5, where a significant shift in the
dominant population between voids and clusters is seen. Such a result points to substan-
tial differences in the evolutionary tracks of cluster and void early-type galaxies. Cluster
galaxies have been historically well studied: they are more numerous and much brighter
on average, with an evolution dominated by galaxy-galaxy interactions and mergers. In
voids, however, the picture is not so clear. A reasonable expectation would be that the
dynamical evolution of void galaxies should be much slower due to their relative isolation,
with passively evolved stellar populations and morphologies similar to that obtained dur-
ing their formation. Targeted observational studies of void early-type galaxies may reveal
much about the high redshift formation processes that go into making such rare objects.

Table 5.2 summarises our main results and provides a qualitative or mnemonic inter-
pretation based on our observations and the work of Mo et al. (2004) and De Propris
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Figure 5A.1: A comparison of the raw counts in cells luminosity function with the nor-
malised SWML luminosity function, as described in the text (Section 5.2.3
and Appendix 5A). Shown are the cluster, mean, and void populations con-
sisting of all galaxy types only, although all luminosity functions used in
this paper behave equally as well. The shapes estimated by the two very
different methods are in very good agreement over the magnitude ranges
considered.

et al. (2003) (and references therein). Our primary result is the striking change in pop-
ulation types between voids and clusters shown in Fig. 5.5: faint, late-type galaxies are
overwhelmingly the dominant galaxy population in voids, completely the contrary of the
situation in clusters. The existence of such a population in the voids, and more generally
the way populations of different type are seen to change between different density environ-
ments, place important constraints on current and future models of galaxy formation.

Appendix 5A: The counts-in-cells luminosity function
estimator and comparison to the SWML results

Our counts-in-cells (CiC) method to measure the density dependent luminosity function
and obtain its amplitude is simple and will be illustrated with the example of a mock
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galaxy sample in a cubical volume of side-length L. The full luminosity function for such
a sample is trivial. By definition it is simply the number of galaxies in each magnitude
interval divided by the volume of the box:

Φ(M) = N(M) / L3 . (5A.1)

To determine the luminosity function as a function of local galaxy density we require
two additional pieces of information. Firstly we sub-divide the galaxy population into
density bins. The local density for each galaxy is calculated within an 8h−1Mpc radius
as described in Section 5.2.2. This gives us the number of galaxies in each density bin
belonging to each magnitude range, Nδ8(M).

Secondly we determine the volume which should be attributed to the various density
bins. We do this by finding the fraction of the volume in which the galaxies of each
density bin reside, fδ8 . This fraction is measured by massively oversampling the box with
randomly placed 8h−1Mpc spheres, in each of which we estimate a local density in the
same way as before. Once all spheres have been placed we count the number which have a
local density in each density range. The volume fraction of each bin is then just the fraction
of spheres found in each bin. Since the total volume of the box is known, the volume of
each density bin is now also known. The density dependent luminosity function is then
calculated as:

φδ8(M) = Nδ8(M) / fδ8 L3 . (5A.2)

The situation becomes more complicated when dealing with a magnitude limited redshift
survey instead of a simple simulated box. Galaxy counting and volume estimation must
now be restricted to regions of the survey in which the magnitude range being considered
is volume limited. This range of course changes for each magnitude bin in which the
luminosity function is measured. In addition, small corrections (< 10%) are required
when counting galaxies to account for the spectroscopic incompleteness of the survey (see
Croton et al. 2004a,b). In all other respects, however, the calculation of Φδ8 (M) is the
same as in the “box” example given above.

In Fig. 5A.1 we show a comparison of the 2dFGRS CiC and SWML luminosity functions
calculated from the same void, mean, and cluster galaxy samples. The SWML luminos-
ity function has been normalised to the CiC measurement as described in Section 5.2.2.
We see that both methods produce almost identical luminosity distribution shapes. This
gives us confidence that the CiC luminosity function can be used to normalise the SWML
luminosity function in an unbiased way.

Because of the volume-limited restriction of the CiC method, the number of galaxies
used to calculate the luminosity function is smaller than for the SWML method, which
draws from the larger magnitude-limited catalogue. However the benefit of the CiC method
is that it gives a direct measurement of the number density of galaxies rather than just the
shape of the distribution as the SWML estimator does. In addition, the CiC method is very
easy to apply to mock catalogues, as described above. By combining the CiC and SWML
methods we capture the best features of both.
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Figure 5B.1: The difference in the STY Schechter function parameters when the local
density is calculated with an increasingly fainter density defining popula-
tion (DDP): Mmin − 5 log10 h = −20, −19, and −18. Such a change also
changes the redshift range of the included volume as described in the text.
For clarity only results for all galaxy types are shown. The reference sam-
ple is the Mmin − 5 log10 h = −19 DDP used throughout this paper, and the
other DDP results are shown relative to this.

Appendix 5B: The effects of changing the density defining
population and smoothing scale

In our analysis we are required to make two important choices before beginning. The first
is to find the widest possible absolute magnitude range for the density defining population
(DDP, see Section 5.2.2) while maximising the amount of the 2dFGRS survey volume
sampled. The second is the scale over which we smooth the DDP galaxy distribution to
determine the density contours within this volume. We will now consider the effect of
changing each of these choices in turn.

The density defining population

The DDP is important in that it not only sets the mean density of galaxies used to define
the density contours, but also determines the redshift range of the full magnitude-limited
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Figure 5B.2: The difference in the STY Schechter function parameters for different den-
sity bins when calculated by smoothing the local galaxy distribution on
different scales: 4, 8, and 12h−1Mpc. For clarity only results for all galaxy
types are shown. The reference sample is the 8h−1Mpc sphere smoothing
scale used throughout this paper, and the other smoothing scale results are
shown relative to this.

catalogue to be included in the analysis. Clearly one would like as high-statistics a sample
as possible in as large a volume as possible for the best results. In a volume limited galaxy
sample such as the DDP, the maximum galaxy redshift available is constrained by the
specified faint absolute magnitude limit: galaxies beyond this redshift range are no longer
guaranteed to be volume limited and are thus not included. For the DDP faint magnitude
limit of Mmin − 5 log10 h = −19 the maximum survey boundary is z = 0.13. Changing the
faint magnitude limit to Mmin − 5 log10 h = −18 (20), i.e. a denser (sparser) DDP, results
in a maximum redshift boundary of z = 0.088 (0.188), i.e. a smaller (larger) sampling
volume.

In Fig. 5B.1 we show the result found when repeating the analysis of Section 5.3 (Fig. 5.7)
but using DDPs defined by different faint absolute magnitude limits. We plot the STY M ∗

and α values for each density bin relative to the Mmin−5 log10 h = −19 DDP used through-
out this paper. The faintest DDP shown, Mmin − 5 log10 h = −18, is approximately 8 times
denser than the brightest, Mmin − 5 log10 h = −20, but with a volume roughly 30 times
smaller. Even so, almost all measurements shown across all density bins are consistent at
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the 1σ level, demonstrating that our definition of the DDP is a robust representation of the
underlying global density distribution.

The smoothing scale

Now let us examine how changing the smoothing scale with which we define local density
affects the shape of our luminosity functions. In Fig. 5B.2 we examine the values of the
Schechter parameters when measured with spheres of radius 4 and 12h−1Mpc, compared
to when the luminosity function is measured with an 8h−1Mpc sphere.

Fig. 5B.2 shows a typical deviation of < 0.2 magnitudes for M∗ and < 0.2 for α. The
4h−1Mpc smoothing scale deviates strongly from the other values in the under-dense re-
gions (the first two points lie beyond the axis range plotted), however in these environ-
ments such a smoothing scale gives a poor estimate of the local galaxy density due to
Poisson noise in small number counts. Indeed, Hoyle et al. (2004) have shown that in
the extreme under-dense 2dFGRS survey regions the characteristic scale of voids is ap-
proximately 15h−1Mpc. For cluster regions 4h−1Mpc spheres can be employed and would
give a higher resolution discrimination of the structure. The 8h−1Mpc smoothing scale we
have adopted captures the essential aspects of voids while roughly optimising the statisti-
cal signal, and is thus a good probe of both the under and over-dense regions of the survey
volume.

Appendix 5C: Systematic effects when estimating the
Schechter function parameters

One may ask to what degree the trends seen in Fig. 5.7 and Table 5.1 are influenced by the
systematics discussed in Section 5.2.4. We note there that our STY measurements recover
a flatter faint end than the current published 2dFGRS luminosity function for the completed
catalogue. We identify three systematic effects which contribute to this behaviour: the
absolute magnitude range considered when applying the STY estimator, the fact that the
luminosity function is not perfectly described by a Schechter function, and the sensitivity
of the faint-end slope parameterisation to model-dependent corrections included to account
for missed galaxies.

We find that the first two of these effects have the strongest influence on the measured
STY faint-end slope. Indeed, testing the first reveals that any STY estimate of the 2dFGRS
luminosity function over a restricted absolute magnitude range displays a systematic shift
in the recovered STY parameters along a line in the M∗ − α plane. The brighter the faint
magnitude restriction, the flatter the faint-end slope is and the fainter the characteristic
magnitude becomes. Such behaviour is a consequence of small but important deviations
in the galaxy luminosity function shape from the pure Schechter function assumed by
the STY estimator. In addition, Fig. 11 of Norberg et al. (2002) reveals a dip in the
luminosity function between the magnitude range −17 > MbJ − 5 log10 h > −18 and a
steepening faintward of this. In our analysis only galaxies brighter than MbJ − 5 log10 h =
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Figure 5C.1: The shift in the STY Schechter function parameter M∗ when α is kept fixed
at the published field value, compared with that found when α remains
free (Table 5.1 and Fig. 5.7). The points are plotted as a function of local
density and shown for each galaxy type and the combined all-type sample.

−17 are considered due to the restriction of the DDP. This limitation adds extra weight
to the influence of the dip on the STY fit contributing further to a flatter estimation of α.
When mock galaxy catalogues constructed to have a perfect Schechter function luminosity
distribution are analysed in an identical way to the 2dFGRS samples, we find that the
above systematics all but disappear and the “true” M∗ and α values are recovered for any
reasonable choice of STY fitting range.

Finally, we note that the sensitivity of the faint-end slope parametrisation to systematic
corrections for spectroscopically missed galaxies is minimised by restricting our analysis
to galaxies with bJ < 19, for which the spectroscopic incompleteness is typically less than
∼ 8% (see Fig. 16 of Colless et al. 2001).

Given that a full correction of the above systematic effects is not possible in our analysis,
the next best thing we can do is try to quantify to what degree they influence our results and
conclusions. We do this by fixing the faint-end slope α when applying the STY estimator:
at −1.2 for the all-types samples, −1.1 for the late-type samples, and at −0.5 for the early-
type samples. Such choices enforce the published field luminosity function faint end values
found by Norberg et al. (2002b) and Madgwick et al. (2002) and remove the degeneracy
in the M∗ − α plane.

Fig. 5C.1 shows the size of the shift in M∗ when such constraints are applied relative to
that found when α is allowed to remain free (i.e. Table 5.1 and Fig. 5.7). Most notable
here is that, apart from the two most over-dense bins in the early-type sample, there is no
significant difference in the behaviour of M∗ with density environment. The approximate
0.2 magnitude offset seen in this figure can be understood by remembering that because
the faint-end slope we measure when α remains free is slightly flatter than the published
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values (due to the systematics discussed above), by artifically fixing α one forces M ∗ to
move to compensate. The important point is that the trends seen in Fig. 5.7 with changing
local density remain unchanged.

For the two most over-dense early-type samples a shift of up to 0.4 magnitudes is seen.
We note from Table 5.1 that our best-fit (free α) early-type cluster value of α = −1.12±0.14
is well matched by the equivalent 2dFGRS De Propris et al. (2003) result of −1.05 ± 0.04.
In effect, by constraining the early-type cluster faint-end slope to the field value of −0.5
we ignore the real changes in galaxy population seen between the Madgwick et al. (their
Fig. 10) and De Propris et al. (their Fig. 3) luminosity functions (see also our Fig. 5.2).
Such population changes, we argue, result in the strikingly different Schechter function
parameterisation behaviour seen in Fig. 5.7 and Table 5.1 for early and late-type galaxies.
Fig. 5C.1 gives us confidence that the M∗ − α degeneracies and systematics investigated
here are not significantly influencing our results or the conclusions we draw from them.
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6 The many lives of AGN: cooling flows,
black holes and the luminosities and
colours of galaxies1

Abstract

We simulate the growth of galaxies and their central supermassive black holes throughout
a representative region of the universe by implementing a suite of semi-analytic models
on the output of the Millennium Run, a very large simulation of the concordance ΛCDM
cosmogony. Our procedures follow the detailed assembly history of each object and are
able to track the evolution of all objects more massive than the Small Magellanic Cloud
throughout a volume comparable to that of large modern redshift surveys. In this first paper
we supplement previous treatments of the growth and activity of central black holes with
a new model for ‘radio’ feedback from those AGN that lie at the centre of a quasistatic
X-ray emitting atmosphere in a galaxy group or cluster. We show that for energetically
and observationally plausible parameters such a model can simultaneously explain: (i) the
low observed mass drop-out rate in cooling flows; (ii) the exponential cut-off at the bright
end of the galaxy luminosity function; and (iii) the fact that the most massive galaxies
tend to be bulge-dominated systems in clusters and to contain systematically older stars
than lower mass galaxies. This success occurs because static hot atmospheres form only in
the most massive structures, and radio feedback (in contrast, for example, to supernova or
starburst feedback) can suppress further cooling and star formation without itself requiring
star formation. We discuss possible physical models which might explain the accretion
rate scalings required for our phenomenological ‘radio mode’ model to be successful.

6.1 Introduction

The remarkable agreement between recent measurements of cosmic structure over a wide
range of length- and time-scales has established a standard paradigm for structure for-
mation, the ΛCDM cosmogony. This model can simultaneously match the microwave
background fluctuations seen at z ∼ 1000 (e.g. Spergel et al. 2003), the power spectrum
of the low redshift galaxy distribution (e.g. Percival et al. 2002; Tegmark et al. 2004),

1D.J. Croton, V. Springel, S.D.M. White, G. De Lucia, C.S. Frenk, L. Gao, A.R. Jenkins, G. Kauffmann,
J.F. Navarro, N. Yoshida, MNRAS, submitted, 2005
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the nonlinear mass distribution at low redshift as characterised by cosmic shear (e.g. Van
Waerbeke et al. 2002) and the structure seen in the z=3 Ly α forest (e.g. Mandelbaum et
al. 2003). It also reproduces the present acceleration of the cosmic expansion inferred from
supernova observations (Perlmutter et al. 1999; Riess et al. 1998), and it is consistent with
the mass budget inferred for the present universe from the dynamics of large-scale struc-
ture (Peacock et al. 2001), the baryon fraction in rich clusters (White et al. 1993) and the
theory of Big Bang nucleosynthesis (Olive et al. 2000). A working model for the growth
of all structure thus appears well established.

In this cosmogony, galaxies form when gas condenses at the centres of a hierarchically
merging population of dark haloes, as originally proposed by White & Rees (1978). At-
tempts to understand this process in detail have consistently run into problems stemming
from a mismatch in shape between the predicted distribution of dark halo masses and the
observed distribution of galaxy luminosities. Most stars are in galaxies of Milky Way
brightness; the galaxy abundance declines exponentially at brighter luminosities and in-
creases sufficiently slowly at fainter luminosities that relatively few stars are in dwarfs.
In contrast, the theory predicts a much broader halo mass distribution – a constant mass-
to-light ratio would produce more high and low luminosity galaxies than are observed
while underpredicting the number of galaxies like the Milky Way. Attempts to solve these
problems initially invoked cooling inefficiencies to reduce gas condensation in massive
systems, and supernova feedback to reduce star formation efficiency in low mass systems
(White & Rees 1978; White & Frenk 1991). Formation of dwarfs may also be suppressed
by photoionisation heating (Efstathiou 1992). As Thoul & Weinberg (1995) emphasised,
cooling effects alone are too weak to produce the bright end cut-off of the luminosity func-
tion, and recent attempts to fit observed luminosity functions have been forced to include
additional feedback processes in massive systems (e.g. Benson et al. 2003). In this paper
we argue that radio sources may provide the required feedback while at the same time
providing a solution to two other long-standing puzzles.

An important unanswered question is why the gas at the centre of most galaxy clus-
ters is apparently not condensing and turning into stars when the observed X-ray emission
implies a cooling time which is much shorter than the age of the system. This cooling
flow puzzle was noted as soon as the first X-ray maps of clusters became available (Cowie
& Binney 1977; Fabian & Nulsen 1977) and it was made more acute when X-ray spec-
troscopy demonstrated that very little gas is cooling through temperatures even a factor
of three below that of the bulk of the gas (Peterson et al. 2001; Tamura et al. 2001). A
clue to the solution may come from the observation (Burns et al. 1981) that every cluster
with a strong cooling flow also contains a massive and active central radio galaxy. Tabor
& Binney (1993) suggested that radio galaxies might regulate cooling flows, and this idea
has gained considerable recent support from X-ray maps which show direct evidence for
an interaction between radio lobes and the intracluster gas (Fabian et al. 2003; McNamara
et al. 2000, 2005). A number of authors have suggested ways in which the radio source
might replace the thermal energy lost to X-ray emission (Binney & Tabor 1995; Churazov
et al. 2002; Brüggen & Kaiser 2002; Ruszkowski & Begelman 2002; Kaiser & Binney
2003; Omma et al. 2004). We do not focus on this aspect of the problem here, but rather
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demonstrate that if the scaling properties of radio source feedback are set so they can plau-
sibly solve the cooling flow problem they induce a cut-off at the bright end of the galaxy
luminosity function which agrees well with observation.

Another puzzling aspect of the galaxy population is the fact that the most massive galax-
ies, typically ellipticals in clusters, are made of the oldest stars and so finished their star
formation earlier than lower mass galaxies (Kauffmann et al. 2003; Heavens et al. 2004).
Confirming evidence for this comes from look-back studies which show that both star-
formation and AGN activity take place more vigorously and in higher mass objects at
redshifts of 1 to 2 than in the present Universe (e.g. Shaver et al. 1996; Madau et al.
1996). Cowie et al. (1996) termed this phenomenon ‘down-sizing’, and prima facie it
conflicts with hierarchical growth of structure in a ΛCDM cosmogony where massive dark
haloes assemble at lower redshift than lower mass haloes (e.g. Lacey & Cole 1993). This
puzzle is related to the previous two; the late-forming high mass haloes in ΛCDM corre-
spond to groups and clusters of galaxies, and simple theories predict that at late times their
central galaxies should grow to masses larger than those observed through accretion from
cooling flows. In the model we present below, radio galaxies prevent significant accretion,
thus limiting the mass of the central galaxies and preventing them from forming stars at
late times when their mass and morphology can still change through mergers. The result is
a galaxy luminosity function with a sharper high-mass cut-off in which the most massive
systems are red, dead and elliptical.

To make quantitative predictions for the galaxy population in a ΛCDM universe it is
necessary to carry out simulations. Present numerical capabilities allow reliable simulation
of the coupled nonlinear evolution of dark matter and diffuse gas, at least on the scales
which determine the global properties of galaxies. Once gas cools and condenses into
halo cores, however, both its structure and the rates at which it turns into stars and feeds
black holes are determined by small-scale ‘interstellar medium’ processes which are not
resolved. These are usually treated through semi-analytic recipes, parameterised formulae
which encapsulate ‘subgrid’ physics in terms of star formation thresholds, Schmidt ‘laws’
for star formation, Bondi models for black hole feeding, etc. The form and the parameters
of these recipes are chosen to reproduce the observed systematics of star formation and
AGN activity in galaxies (e.g. Kennicutt 1998). With a well-constructed scheme it is
possible to produce stable and numerically converged simulations which mimic real star-
forming galaxies remarkably well (Springel & Hernquist 2003a). In strongly star-forming
galaxies, massive stars and supernovae produce winds which redistribute energy, mass and
heavy elements over large regions (Heckman et al. 1990; Martin 1999). Even stronger
feedback is possible, in principle, from AGN (Begelman et al. 1991). In both cases the
determining processes occur on very small scales and so have to be included in simulations
through parametrised semi-analytic models. Unfortunately, the properties of simulated
galaxies turn out to depend strongly on how these unresolved star-formation and feedback
processes are treated (Di Matteo et al. 2005).

Since the diffuse gas distribution and its cooling onto galaxies are strongly affected by the
description adopted for the subgrid physics, every modification of a semi-analytic model
(or of its parameters) requires a simulation to be repeated. This makes parameter studies or
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tests of, say, the effects of different AGN feedback models into a very expensive computing
exercise. A cost-effective alternative is to represent the behaviour of the diffuse gas also by
a semi-analytic recipe. Since the dark matter couples to the baryons only through gravity,
its distribution on scales of galaxy haloes and above is only weakly affected by the details
of galaxy formation. Its evolution can therefore be simulated once, and the evolution of the
baryonic component can be included in post-processing by applying semi-analytic models
to the stored histories of all dark matter objects. Since the second step is computationally
cheap, available resources can be used to carry out the best possible dark matter simulation,
and then many parameter studies or tests of alternative models for, say, starburst winds or
radio galaxy feedback can be carried out in post-processing. This simulation approach
was first introduced by Kauffmann et al. (1999) and it is the approach we apply here to
the Millennium Run, the largest calculation to date of the evolution of structure in the
concordance ΛCDM cosmogony (Springel et al. 2005).

This paper is organised as follows. In Section 6.2 we describe the Millennium Run and
the post-processing we carried out to construct merging history trees for all the dark haloes
within it. Section 6.3 presents the model for the formation and evolution of galaxies and
their central supermassive black holes that we implement on these merging trees. Section
6.4 describes the main results of our modelling, concentrating on the influence of ‘radio
mode’ feedback on the properties of the massive galaxy population. In Section 6.5 we
discuss physical models for black hole accretion which may explain the phenomenology
required for our model to be successful. Finally, Section 6.6 summarises our conclusions
and suggests some possible directions for future investigation.

6.2 The dark matter skeleton: the Millennium Run

Our model for the formation and evolution of galaxies and their central supermassive black
holes is implemented on top of the Millennium Run, a very large dark matter simulation of
the concordance ΛCDM cosmology with 21603 ' 1.0078×1010 particles in a periodic box
of 500 h−3Mpc3. A full description is given in Springel et al. (2005): here we summarise
the main simulation characteristics and the definition and construction of the dark matter
merging history trees we use in our galaxy formation modelling. The dark matter distribu-
tion is illustrated in the top panel of Fig. 6.1 for a 330×280×15 h−1Mpc slice cut from the
full volume. The projection is colour coded by density and local velocity dispersion, and
illustrates the richness of dark matter structure for comparison with structure in the light
distribution to which we will come later. Dark matter plots on a wider range of scales may
be found in Springel et al. (2005).

6.2.1 Simulation characteristics

We adopt cosmological parameter values consistent with a combined analysis of the 2dF-
GRS (Colless et al. 2001) and first-year WMAP data (Spergel et al. 2003; Seljak et al.
2004). They are Ωm = Ωdm + Ωb = 0.25, Ωb = 0.045, h = 0.73, ΩΛ = 0.75, n = 1,
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and σ8 = 0.9. Here Ωm denotes the total matter density in units of the critical density for
closure, ρcrit = 3H2

0/(8πG). Similarly, Ωb and ΩΛ denote the densities of baryons and dark
energy at the present day. The Hubble constant is given as H0 = 100 h km s−1Mpc−1, while
σ8 is the rms linear mass fluctuation within a sphere of radius 8 h−1Mpc extrapolated to
z=0.

The chosen simulation volume is a periodic box of size 500 h−1Mpc, which implies a
particle mass of 8.6 × 108 h−1M�. This volume is large enough to include interesting
objects of low space density, such as quasars or rich galaxy clusters, the largest of which
contain about 3 million simulation particles at z=0. At the same time, the mass resolution
is sufficient that haloes that host galaxies as faint as 0.1 L? are typically resolved with at
least ∼ 100 particles.

The initial conditions at z = 127 were created by displacing particles from a homoge-
neous, ‘glass-like’ distribution (White 1996) using a Gaussian random field with a ΛCDM
linear power spectrum as given by the Boltzmann code CMBFAST (Seljak & Zaldarriaga
1996). The simulation was then evolved to the present epoch using a leapfrog integration
scheme with individual and adaptive time steps, with up to 11 000 time steps for individual
particles.

The simulation itself was carried out with a special version of the GADGET-2 code
(Springel et al. 2001b; Springel 2005) optimised for very low memory consumption so
that it would fit into the nearly 1 TB of physically distributed memory available on the
parallel IBM p690 computer2 used for the calculation. The computational algorithm used
the ‘TreePM’ method (Xu 1995; Bode et al. 2000; Bagla 2002) to evaluate gravitational
forces, combining a hierarchical multipole expansion, or ‘tree’ algorithm (Barnes & Hut
1986), and a classical, Fourier transform particle-mesh method (Hockney & Eastwood
1981). An explicit force-split in Fourier-space produces a very nearly isotropic force law
with negligible force errors at the force matching scale. The short-range gravitational force
law is softened on comoving scale 5 h−1kpc (Plummer-equivalent) which may be taken as
the spatial resolution limit of the calculation, thus achieving a dynamic range of 105 in
3D. The calculation, performed in parallel on 512 processors, required slightly less than
350 000 processor hours of CPU time, or 28 days of wall-clock time.

6.2.2 Haloes, substructure, and merger tree construction

Our primary application of the Millennium Run in this paper uses finely resolved hierar-
chical merging trees which encode the full formation history of tens of millions of haloes
and the subhaloes that survive within them. These merging history trees are the backbone
of the galaxy formation model that we implement in post-processing in order to study the
wide range of baryonic processes that are important during the formation and evolution of
galaxies and their central supermassive black holes.

We store the full particle data at 64 output times, spaced approximately logarithmically
in expansion factor between z= 20 and z= 0. The logarithmic spacing is, however, made

2This computer is operated by the Computing Centre of the Max-Planck Society in Garching, Germany.
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Figure 6.1: The redshift zero distribution of dark matter (top) and of galaxy light (bot-
tom) for a slice of thickness 15 h−1Mpc, cut from the Millennium Run. For
the dark matter distribution, intensity encodes surface density and colour en-
codes local velocity dispersion. For the light distribution, intensity encodes
surface brightness and colour encodes mean B−V colour. The linear scale is
shown by the bar in the top panel.
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progressively finer towards lower redshift. We note that each snapshot has a total size in
excess of 300 GB, giving a raw data volume of nearly 20 TB.

Together with each particle coordinate dump, the simulation code directly produces a
friends-of-friends (FOF) group catalogue on the fly and in parallel. FOF groups are de-
fined as equivalence classes where any pair of two particles is placed into the same group if
their mutual separation is less than 0.2 of the mean particle separation (Davis et al. 1985).
This criterion combines particles into groups with a mean overdensity of about 200, corre-
sponding approximately to that expected for a virialised group. The group catalogue saved
to disk for each output only kept groups with at least 20 particles.

High-resolution simulations like the present one exhibit a rich substructure of gravi-
tationally bound dark matter subhaloes orbiting within larger virialised structures (e.g.
Ghigna et al. 1998). The FOF group-finder built into our simulation code identifies the
haloes but not their substructure. Since we wish to follow the fate of infalling haloes and
galaxies, which are typically identifiable for a substantial time as a dark matter substruc-
ture within a FOF halo, we apply in post-processing an improved and extended version of
the SUBFIND algorithm of Springel et al. (2001a). This computes an adaptively smoothed
dark matter density field within each halo using a kernel-interpolation technique, and then
exploits the topological connectivity of excursion sets above a density threshold to iden-
tify substructure candidates. Each substructure candidate is subjected to a gravitational
unbinding procedure. If the remaining bound part has more than 20 particles, the sub-
halo is kept for further analysis and some of its basic physical properties are determined
(angular momentum, maximum of its rotation curve, velocity dispersion, etc.). After all
subhaloes are identified they are extracted from the FOF halo so that the remaining feature-
less ‘background’ halo can also be subjected to the unbinding procedure. We also compute
a virial mass estimate for each FOF halo using the spherical-overdensity approach, where
the centre is determined using the minimum of the gravitational potential within the group
and we define the boundary at the radius which encloses a mean overdensity of 200 times
the critical value. The virial mass, radius and circular velocity of a halo at redshift z are
then related by

Mvir =
100
G

H2
0 (z) R3

vir =
V3

vir

10 G H0(z)
(6.1)

where H0(z) is the Hubble constant at redshift z.
At z = 0 our procedures identify 17.7 × 106 FOF groups, down from a maximum of

19.8 × 106 at z = 1.4 when groups were more abundant but lower mass on average. The
z=0 groups contain a total of 18.2× 106 subhaloes, with the largest FOF group containing
2328 of them. (Note that with our definitions, all FOF groups contain at least one subhalo,
the main subhalo which is left over after removal of any substructure and the unbound
component.)

Having found all haloes and subhaloes at all output snapshots, we then characterise struc-
tural evolution by building merging trees that describe in detail how haloes grow as the
universe evolves. Because structures merge hierarchically in CDM universes there can be
several progenitors for any given halo, but in general there is only one descendant. (Typ-
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ically the cores of virialised dark matter structures do not split into two or more objects.)
We therefore construct merger trees based on defining a unique descendant for each halo
and subhalo. This is, in fact, sufficient to define the entire merger tree, since the progenitor
information then follows implicitly. Further details can be found in Springel et al. (2005).

We store the resulting merging histories tree by tree. Since each tree contains the full
formation history of some z=0 halo, the physical model for galaxy formation can be com-
puted sequentially tree by tree. It is thus unnecessary to load all the history information
on the simulation into computer memory at the same time. Actually, this would be cur-
rently impossible, since the trees contain a total of around 800 million subhaloes for each
of which a number of attributes are stored.

6.3 Building galaxies: the semi-analytic model

6.3.1 Overview

In the following sub-sections we describe the baryonic physics of one particular model
for the formation and evolution of galaxies and of their central supermassive black holes.
A major advantage of our simulation strategy is that the effects of parameter variations
within this model (or indeed alternative assumptions for some of the processes) can be
explored at relatively little computational expense since the model operates on the stored
database of merger trees; the simulation itself and the earlier stages of post-processing do
not need to be repeated. We have, in fact, explored a wide model and parameter space
to identify our current best model. We summarise the main parameters of this model,
their ‘best’ values, and their plausible ranges in Table 6.1. These choices produce a galaxy
population which matches quite closely many observed quantities. In this paper we discuss
the field galaxy luminosity-colour distribution; the mean stellar mass – stellar age relation;
the Tully-Fisher relation, cold gas fractions and gas-phase metallicities of Sb/c spirals; the
colour – magnitude relation of ellipticals; the bulge mass – black hole mass relation; and
the volume-averaged cosmic star-formation and black hole accretion histories. In Springel
et al. (2005) we also presented results for galaxy correlations as a function of absolute
magnitude and colour, for the baryonic ‘wiggles’ in the large-scale power spectrum of
galaxies, and for the abundance, origin and fate of high redshift supermassive black holes
which might correspond to the z ∼ 6 quasars discovered by the SDSS (Fan et al. 2001)

In our model we aim to motivate each aspect of the physics of galaxy formation using the
best available observations and simulations. Our parameters have been chosen to repro-
duce local galaxy properties and are stable in the sense that none of our results is critically
dependent on any single parameter choice; plausible changes in one parameter or recipe
can usually be accommodated through adjustment of the remaining parameters within their
own plausible range. The particular model we present is thus not unique. Importantly, our
model for radio galaxy heating in cooling flows, which is the main focus of this paper, is
only weakly influenced by the remaining galaxy formation and black hole growth physics.
As a consequence, most of our inferences about the effect of such feedback on the galaxy
population do not depend strongly on the broader model and its uncertainties.
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The distribution of galaxy light in our ‘best’ model is shown in the bottom panel of
Fig. 6.1 for comparison with the mass distribution in the top panel. For both the volume
is a projected 330 × 280 × 15 h−1Mpc slice cut from the full 0.125 h−3Gpc3 simulation
box. The plot of surface brightness is colour-coded by the luminosity-weighted mean
B−V colour of the galaxies. On large scales light clearly follows mass, but non-trivial
biases become evident on smaller scales, especially in ‘void’ regions. The redder colour
of galaxies in high density regions is also very clear.

6.3.2 Gas infall and cooling

We follow the standard paradigm set out by White & Frenk (1991) as adapted for imple-
mentation on high resolution N-body simulations by Springel et al. (2001a) and De Lucia
et al. (2004). This assumes that as each dark matter halo collapses, its own ‘fair share’ of
cosmic baryons collapse with it (but see Section 6.3.3 below). Thus in our model the mass
fraction in baryons associated with every halo is taken to be fb = 17%, consistent with the
first-year WMAP result (Spergel et al. 2003). Initially these baryons are in the form of dif-
fuse gas with primordial composition, but later they include gas in several phases as well
as stars and heavy elements. The fate of the infalling gas depends on redshift and on the
depth of the halo potential (Silk 1977; Rees & Ostriker 1977; Binney 1977; White & Rees
1978). At late times and in massive systems the gas shocks to the virial temperature and
is added to a quasi-static hot atmosphere that extends approximately to the virial radius of
the dark halo. Gas from the central region of this atmosphere may accrete onto a central
object through a cooling flow. At early times and in lower mass systems the infalling gas
still shocks to the virial temperature but its post-shock cooling time is sufficiently short
that a quasi-static atmosphere cannot form. Rather the shock occurs at much smaller ra-
dius and the shocked gas cools rapidly and settles onto a central object, which we assume
to be a cold gas disk. This may in turn be subject to gravitational instability, leading to
episodes of star formation.

More specifically, the cooling time of a gas is conventionally taken as the ratio of its
specific thermal energy to the cooling rate per unit volume,

tcool =
3
2

µ̄mpkT

ρg(r)Λ(T,Z)
. (6.2)

Here µ̄mp is the mean particle mass, k is the Boltzmann constant, ρg(r) is the hot gas
density, and Λ(T,Z) is the cooling function. The latter depends both on the metallicity Z
and the temperature of the gas. In our models we assume the post-shock temperature of
the infalling gas to be the virial temperature of the halo, T = 35.9(Vvir/km s−1)2K. When
needed, we assume that the hot gas within a static atmosphere has a simple ‘isothermal’
distribution,

ρg(r) =
mhot

4πRvirr2
, (6.3)

where mhot is the total hot gas mass associated with the halo and is assumed to extend to
its virial radius Rvir.
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Table 6.1: A summary of our main model parameters and their best values and plausible ranges, as described in the text. Once set, these
values are kept fixed for all results presented in this paper, in particular for models in which AGN feedback is switched off.

parameter description best value plausible range

fb cosmic baryon fraction (§6.3.3) 0.17 fixed
z0, zr redshift of reionization (§6.3.3) 8, 7 fixed
fBH merger cold gas BH accretion fraction (§6.3.4) 0.03 0.02 − 0.04
κAGN quiescent hot gas BH accretion rate (M�yr−1) (§6.3.4) 6 × 10−6 (4 − 8) × 10−6

αSF star formation efficiency (§6.3.5) 0.07 0.05 − 0.15
εdisk SN feedback disk reheating efficiency (§6.3.6) 3.5 1 − 5
εhalo SN feedback halo ejection efficiency (§6.3.6) 0.35 0.1 − 0.5
γej ejected gas reincorporation efficiency (§6.3.6) 0.5 0.1 − 1.0

Tmerger major merger mass ratio threshold (§6.3.7) 0.3 0.2 − 0.4
R instantaneous recycled fraction of SF to the cold disk (§6.3.9) 0.3 0.2 − 0.4
Y yield of metals produced per unit SF (§6.3.9) 0.03 0.02 − 0.04
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6



6.3.2 Gas infall and cooling

To estimate an instantaneous cooling rate onto the central object of a halo, given its
current hot gas content, we define the cooling radius, rcool, as the radius at which the local
cooling time (assuming the structure of Eq. 6.3) is equal to the age of the system. As
there exists no unique definition for the age of a halo, White & Frenk (1991) proposed to
approximate this time by the Hubble time, tH, which is expected to be correct to within a
factor of a few. Such a definition, however, neglects the fact that halos grow violently and
are unlikely to be in equilibrium for their entire history. To account for this, some authors
have instead taken the the cooling time to be the current equilibrium age of the system.
Somerville & Primack (1999) approximated the equilibrium age of each halo by the time
since it last had a major merger. Here we follow Springel et al. (2001a) and Yoshida
et al. (2002) and instead approximate tcool by the halo dynamical time, Rvir/Vvir ∝ tH,
which represents the mean time scale over which the hot gas has been able to cool quasi-
statically. Note that this definition differs from the one originally given by White & Frenk
(1991) by a factor of ∼ 10, resulting in an enhancement to the cooling rate (below) by
a factor of ∼ 3. Unfortunately, the significant uncertainties in the numerical coefficients
of the cooling model, combined with the simplifying assumptions about infall geometry,
make the cooling rate uncertain to at least this order anyway. Interestingly, our model
appears to favour a higher cooling rate, especially at earlier times, which we find is needed
to adequately reproduce the red sequence luminosity function (Section 6.4.2).

Using the above definition, a cooling rate can now be determined through a simple con-
tinuity equation,

ṁcool = 4πρg(rcool)r
2
cool ṙcool . (6.4)

Despite its simplicity, this equation is a good approximation to the rate at which gas is
deposited at the centre in the Bertschinger (1989) similarity solution for a cooling flow.
Putting it all together we take the cooling rate within a halo containing a hot gas atmo-
sphere to be

ṁcool = 0.5 mhot
rcoolVvir

R2
vir

. (6.5)

We assume this equation to be valid when rcool < Rvir. This is the criterion which White &
Frenk (1991) proposed to separate the static hot halo regime from the rapid cooling regime.
It was checked quantitatively by the detailed high resolution spherical infall calculations
of Forcada-Miró & White (1997).

In low mass haloes or at high redshifts the formal cooling radius lies outside the virial
radius rcool > Rvir. The post-shock gas then cools in less than one sound crossing time
and cannot maintain the pressure needed to support an accretion shock at large radius. The
infall models of Forcada-Miró & White (1997) show that in this situation the accretion
shock moves inwards, the post-shock temperature increases and the mass stored in the
post-shock hot atmosphere decreases, because the post-shock gas rapidly cools onto the
central object. In effect, all infalling material is accreted immediately onto the central disk.
In this rapid cooling regime we therefore set the cooling rate onto the central object to be
equal to the rate at which new diffuse gas is added to the halo.
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Figure 6.2: The ratio of the cooling radius to virial radius for each virialised system at
z = 0 plotted against its dark matter virial mass. Systems identified to be
in the ‘rapid cooling’ regime are shown in the left panel, while those that
have formed a static hot halo are shown on the right (Section 6.3.2). A sharp
transition between the two regimes is seen close to that found by Keres et al.
(2004), marked by the solid vertical line.

Rapid cooling or cold accretion?

Although much simplified, the above model was shown by Yoshida et al. (2002) and Helly
et al. (2003) to give reasonably accurate, object-by-object predictions for the cooling and
accumulation of gas within the galaxies that formed in their N-body+SPH simulations.
These neglected star-formation and feedback effects in order to test the cooling model
alone. In Fig. 6.2 we show the ratio rcool/Rvir as a function of virial mass for haloes
in the ‘rapid cooling’ regime (left panel) and in the ‘static halo’ regime (right panel) at
z = 0 for our ‘best’ galaxy formation model. The two regimes are distinguished by the
dominant gas component in each halo: when the mass of hot halo gas exceeds that of cold
disk gas, we say the galaxy has formed a static halo, otherwise the system is taken to be
in the rapid cooling phase. Many haloes classified as ‘rapidly cooling’ by this criterion
have rcool < Rvir, which would apparently indicate a static hot halo. This is misleading,
however, as systems where cooling is rapid deposit infalling gas onto the central galactic
disk on a short timescale until they have a low-mass residual halo which satisfies rcool ∼
Rvir. This then persists until the next infall event. Averaging over several cycles of this
behaviour, one finds that the bulk of the infalling gas cools rapidly. This is why we choose
to classify systems by their dominant gas component. Note also that a massive hot halo
forms immediately once cooling becomes inefficient, just as in the 1-D infall simulations
of Forcada-Miró & White (1997) and Birnboim & Dekel (2003). Our classification is thus
quite robust.

The transition between the ‘rapid cooling’ and ‘static halo’ regimes is remarkably well
defined. At z = 0 it occurs at a halo virial mass of 2–3 × 1011 M�. This is close to the
transition mass found for the same cosmology by Birnboim & Dekel (2003) using spheri-
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cally symmetric simulations, and by Keres et al. (2004) using fully 3-D simulations. Both
these sets of authors refer to the ‘rapid cooling’ regime as the ‘cold infall’. This is, in fact,
a misnomer. In this mode the accretion shock occurs closer to the central object, and so
deeper in its potential well than when there is a static hot halo. As a result, the pre-shock
velocity of infalling gas is greater in the rapid cooling case, resulting in a larger post-shock
temperature. The two modes do not differ greatly in the temperature to which infalling gas
is shocked, but rather in how long (compared to the system crossing time) the gas spends
at the post-shock temperature before its infall energy is lost to radiation. Finally, we note
that the existence and importance of these two modes was the major insight of the original
work of Silk (1977), Binney (1977) and Rees & Ostriker (1977) and has been built into all
modern theories for galaxy formation. A detailed discussion can be found, for example, in
White & Frenk (1991).

6.3.3 Reionization

Accretion and cooling in low mass haloes is required to be inefficient to explain why
dwarf galaxies contain a relatively small fraction of all condensed baryons (White & Rees
1978). This inefficiency may in part result from photoionisation heating of the intergalac-
tic medium (IGM) which suppresses the concentration of baryons in shallow potentials
(Efstathiou 1992). More recent models identify the possible low-redshift signature of such
heating in the faint end of the galaxy luminosity function, most notably in the abundance
of the dwarf satellite galaxies in the local group (e.g. Tully et al. 2002; Benson et al.
2002).

Gnedin (2000) showed that the effect of photoionization heating on the gas content of a
halo of mass Mvir can be modelled by defining a characteristic mass scale, the so called
filtering mass, MF, below which the gas fraction fb is reduced relative to the universal
value:

f halo
b (z,Mvir) =

f cosmic
b

(1 + 0.26 MF(z)/Mvir)3
. (6.6)

The filtering mass is a function of redshift and changes most significantly around the epoch
of reionization. It was estimated by Gnedin using high-resolution SLH-P3M simulations.
Kravtsov et al. (2004) provided an analytic model for these results which distinguishes
three ‘phases’ in the evolution of the IGM: z > z0, the epoch before the first HII regions
overlap; z0 < z < zr, the epoch when multiple HII regions overlap; z < zr, the epoch when
the medium is almost fully reionized. They find that choosing z0 = 8 and zr = 7 provides
the best fit to the numerically determined filtering mass. We adopt these parameters and
keep them fixed throughout our paper. See Appendix B of Kravtsov et al. (2004) for a full
derivation and description of the analytic model.

6.3.4 Black hole growth, AGN outflows, and cooling suppression

There is a growing body of evidence that active galactic nuclei (AGN) are a critical piece in
the galaxy formation puzzle. Our principal interest in this paper is their role in suppressing
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cooling flows, thereby modifying the luminosities, colours, stellar masses and clustering
of the galaxies that populate the bright end of the galaxy luminosity function. To treat this
problem, we first need a physical model for the growth of black holes within our galaxies.

The ‘quasar mode’

In our model (which is based closely on that of Kauffmann & Haehnelt 2000) supermassive
black holes grow during galaxy mergers both by merging with each other and by accretion
of cold disk gas. We assume that the gas mass accreted during a merger is proportional
to the total cold gas mass present, but with an efficiency which is lower for smaller mass
systems and for unequal mergers. Specifically,

∆mBH,Q =
f ′BH mcold

1 + (280 km s−1/Vvir)2
, (6.7)

where we have changed the original parameterisation by taking

f ′BH = fBH (msat/mcentral) . (6.8)

Here fBH ≈ 0.03 is a constant and is chosen to reproduce the observed local mBH − mbulge

relation (Magorrian et al. 1998; Marconi & Hunt 2003; Häring & Rix 2004). In contrast to
Kauffmann & Haehnelt (2000) we allow black hole accretion during both major and minor
mergers although the efficiency in the latter is lower because of the msat/mcentral term. Thus,
any merger-induced perturbation to the gas disk (which might come from a bar instability
or a merger-induced starburst – see Section 6.3.7) can drive gas onto the central black hole.
In this way, minor merger growth of the black hole parallels minor merger growth of the
bulge. The fractional contribution of minor mergers to both is typically quite small, so
that accretion driven by major mergers is the dominant mode of black hole growth in our
model. We refer to this as the ‘quasar mode’. [Note that a more schematic treatment of
black hole growth would suffice for the purposes of this paper, but in Springel et al (2005)
and in future work we wish to examine the build-up of the black hole population within
galaxies in considerably more detail.]

The ‘radio mode’

In our model, low energy ‘radio’ activity is the result of hot gas accretion onto a central
supermassive black hole once a static hot halo has formed around the black hole’s host
galaxy. We assume this accretion to be continual and quiescent and to be described by a
simple phenomenological model:

ṁBH,R = κAGN

( mBH

108 M�

)( fhot

0.1

)( Vvir

200 km s−1

)3
, (6.9)

where mBH is the black hole mass, fhot is the fraction of the total halo mass in the form of
hot gas, Vvir ∝ T 1/2

vir is the virial velocity of the halo, and κAGN is a free parameter with units
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of M�yr−1 with which we control the efficiency of accretion. We find below that κAGN = 6×
10−6M�yr−1 accurately reproduces the turnover at the bright end of the galaxy luminosity
function. Note that fhotV3

virtH is proportional to the total mass of hot gas, so that our
formula is simply the product of the hot gas and black hole masses multiplied by a constant
efficiency and divided by the Hubble time tH. In fact, we find fhot to be approximately
constant for Vvir

>∼ 150 km s−1 , so the dependence of ṁBH,R on this quantity has little effect.
The accretion rate given by Eq. 6.9 is typically orders-of-magnitude below the Eddington
limit. In Section 6.5 we discuss physical accretion models which may reproduce this
phenomenology.

We assume that ‘radio mode’ feedback injects sufficient energy into the surrounding
medium to reduce or even stop the cooling flow described in Section 6.3.2. We take the
mechanical heating generated by the black hole accretion of Eq. 6.9 to be

LBH = η ṁBH c2 , (6.10)

where η = 0.1 is the standard efficiency with which mass is assumed to produce energy
near the event horizon, and c is the speed of light. This injection of energy compensates in
part for the cooling, giving rise to a modified infall rate (Eq. 6.5) of

ṁ′cool = ṁcool −
LBH
1
2 V2

vir

. (6.11)

For consistency we never allow ṁ′cool to fall below zero. It is worth noting that ṁcool ∝
f 3/2
hot Λ(Vvir)1/2 V2

vir t−1/2
H (Eq. 6.5) and ṁheat ≡ 2LBH/V2

vir ∝ mBH fhot Vvir (Eq. 6.11), so that

ṁheat

ṁcool
∝

mBH t1/2
H

f 1/2
hot Λ(Vvir)1/2 Vvir

. (6.12)

(These scalings are exact for an EdS universe; we have omitted weak coefficient variations
in other cosmologies.) Thus in our model the effectiveness of radio AGN in suppressing
cooling flows is greatest at late times and for large values of black hole mass. This turns
out to be the qualitative behaviour needed for the suppression of cooling flows to reproduce
successfully the luminosities, colours and clustering of low redshift bright galaxies.

The growth of supermassive black holes

Fig. 6.3 shows the evolution of the mean black hole accretion rate per unit volume averaged
over the entire Millennium Simulation. We separate the accretion into the ‘quasar’ and
‘radio’ modes described above (solid and dashed lines respectively). Black hole mass
growth in our model is dominated by the merger-driven ‘quasar mode’, which is most
efficient at redshifts of two to four, dropping by a factor of five by redshift zero. This
behaviour has similar form to but is weaker than the observed evolution with redshift of
the bright quasar population (e.g. Hartwick & Schade 1990). (See also the discussion
in Kauffmann & Haehnelt 2000). In contrast, our ‘radio mode’ is significant only at late
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Figure 6.3: The black hole accretion rate density, ṁBH, as a function of redshift for both
the ‘quasar’ and the ‘radio’ modes discussed in Section 6.3.4. This figure
shows that the growth of black holes is dominated by the ‘quasar mode’ at
high redshift and falls off sharply at z <∼ 2. In contrast, the ‘radio mode’
becomes important at low redshifts where it suppresses cooling flows, but is
not a significant contributor to the overall black hole mass budget.

times, as expected from the scaling discussed above, and for the high feedback efficiency
assumed in Eq. 6.10 it contributes only 5% of the final black hole mass density. We will
show, however, that the outflows generated by this accretion can have a major impact
on the final galaxy properties. Finally, integrating the accretion rate density over time
gives a present day black hole mass density of 3 × 105 M�Mpc3, consistent with recent
observational estimates (Yu & Tremaine 2002; Merloni 2004).

The relationship between black hole mass and bulge mass is plotted in Fig. 6.4 for the
local galaxy population in our ‘best’ model. In this figure, the solid line shows the best
fit to the observations given by Häring & Rix (2004) for a sample of 30 nearby galaxies
with well measured bulge and black hole masses. Their results only probe masses over the
range bounded by the dashed lines. Our model galaxies produces a good match to these
observations with comparable scatter in the observed range (see their Fig. 2).

6.3.5 Star formation

We use a simple model for star formation similar to those adopted by earlier authors. We
assume that all star formation occurs in cold disk gas, either quiescently or in a burst (see
Section 6.3.7). Based on the observational work of Kennicutt (1998), we adopt a threshold
surface density for the cold gas below which no stars form, but above which gas starts to
collapse and form stars. According to Kauffmann (1996), this critical surface density may
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Figure 6.4: The black hole-bulge mass relation for model galaxies at the present day.
The local observational result of Häring & Rix (2004) is given by the solid
line, where the dashed box shows the approximate range over which their fit
was obtained.

be approximated by

Σcrit(M�pc−2) = 0.59 V(kms−1)/R(kpc) . (6.13)

We convert this critical surface density into a critical mass by assuming the cold gas mass
to be evenly distributed over the disk. The resulting critical cold gas mass is:

mcrit = 3.8 × 109
( Vvir

200 km s−1

)( rD

10 kpc

)

M� , (6.14)

where we assume the disk scale length to be rs = (λ/
√

2)Rvir (Mo et al. 1998), and set the
outer disk radius to rD = 3rs, based on the properties of the Milky Way (van den Bergh
2000). Here λ is the spin parameter of the dark halo in which the galaxy resides (Bullock
et al. 2001), measured directly from the simulation. When the mass of cold gas in a galaxy
is greater than this critical value we assume the star formation rate to be

ṁ∗ = αSF (mcold − mcrit) / tdyn,D , (6.15)

where the efficiency αSF is typically set so that 5 to 15 percent of the gas is converted into
stars in a disk dynamical time tdyn,D, which we define to be rD/Vvir. This star formation
model produces a global star formation history consistent with the observed star formation
density of the universe out to at least z=3, as shown in Fig. 6.5.
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Figure 6.5: The star formation rate density of the universe as a function of redshift. The
symbols show a compilation of observational results taken from Fig. 12 of
Springel & Hernquist (2003b). The solid line shows our ‘best’ model, which
predicts that galaxies form much of their mass relatively early. The dashed
line (and right axis) indicate the increase in stellar mass with redshift. Ap-
proximately 50% of all stars form by z=3.

When implemented in our model, Eq. 6.15 leads to episodic star formation that self-
regulates so as to maintain the critical surface density of Eq. 6.13. This naturally repro-
duces the observed spiral galaxy gas fractions without the need for additional parameteri-
sation, as we demonstrate in the top panel of Fig. 6.6 using model Sb/c galaxies identified
as objects with bulge-to-total luminosity: 1.5 ≤ MI,bulge − MI,total ≤ 2.5.

6.3.6 Supernova feedback

As star formation proceeds, newly formed massive stars rapidly complete their evolution
and end their life as supernovae. These events inject gas, metals and energy into the sur-
rounding medium, reheating cold disk gas and possibly ejecting gas even from the sur-
rounding halo.

The observations of Martin (1999) suggest modelling the amount of cold gas reheated
by supernovae as

∆mreheated = εdisk∆m∗ , (6.16)

where ∆m∗ is the mass of stars formed over some finite time interval and εdisk is a parameter
which we fix at εdisk = 3.5 based on the observational data. The energy released in this
interval can be approximated by

∆ESN = 0.5 εhalo ∆m∗V
2
SN , (6.17)

114



6.3.6 Supernova feedback

Figure 6.6: Selected results for Sb/c galaxies (identified by bulge-to-total luminosity, see
Section 6.3.5) for our best model. (top) Gas fractions as a function of B-band
magnitude. The solid line is a representation of the mean behaviour in the
(incomplete) sample of Garnett (2002). (middle) The Tully-Fisher relation,
where the disk circular velocity, Vc, is approximated by Vvir for the dark halo.
The solid line with surrounding dashed lines represents the mean result and
scatter found by Giovanelli et al. (1997). (bottom) Cold gas metallicity as a
function of total stellar mass. The solid line represents the result of Tremonti
et al. (2004).
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where 0.5 V2
SN is the mean energy in supernova ejecta per unit mass of stars formed, and

εhalo parametrises the efficiency with which this energy is able to reheat disk gas. Based
on a standard initial stellar mass function and standard supernova theory we take VSN =

630 km s−1. In addition, for our ‘best’ model we adopt εhalo = 0.35. If the reheated gas
were added to the hot halo without changing its specific energy, its total thermal energy
would change by

∆Ehot = 0.5 ∆mreheatedV2
vir . (6.18)

Thus the excess energy in the hot halo after reheating is just ∆Eexcess = ∆ESN − ∆Ehot.
When ∆Eexcess < 0 the energy transferred with the reheated gas is insufficient to eject any
gas out of the halo and we assume all hot gas remains associated with the halo. When
excess energy is present, i.e. ∆Eexcess > 0, we assume that some of the hot gas is ejected
from the halo into an external ‘reservoir’. Specifically, we take

∆mejected =
∆Eexcess

Ehot
mhot =

(

εhalo
V2

SN

V2
vir

− εdisk

)

∆m∗ , (6.19)

where Ehot = 0.5 mhotV2
vir is the total thermal energy of the hot gas, and we set ∆mejected = 0

when this equation gives negative values (implying ∆Eexcess < 0 discussed above). This is
similar to the traditional semi-analytic feedback recipe, ∆mejected ∝ ∆m∗/V2

vir, but with a
few additions. For small Vvir the entire hot halo can be ejected and then ∆mejected must
saturate at ∆mreheated . Conversely, no hot gas can be ejected from the halo for V 2

vir >

εhaloV2
SN/εdisk, i.e. for halo circular velocities exceeding about 200 km s−1 for our favoured

parameters.
Ejected gas leaves the galaxy and its current halo in a wind or ‘super-wind’, but it need

not be lost permanently. As the dark halo grows, some of the surrounding ejecta may fall
back in and be reincorporated into the cooling cycle. We follow Springel et al. (2001a)
and De Lucia et al. (2004) and model this by assuming

ṁejected = −γej mejected / tdyn , (6.20)

where γej controls the amount of reincorporation per dynamical time; typically we take
γej = 0.3 to 1.0. Such values imply that all the ejected gas will return to the hot halo in a
few halo dynamical times.

The prescriptions given in this section are simple, as well as physically and energetically
plausible, but they have little detailed justification either from observation or from numer-
ical simulation. They allow us to track in a consistent way the exchange of each halo’s
baryons between our four phases (stars, cold disk gas, hot halo gas, ejecta), but should
be regarded as a rough attempt to model the complex astrophysics of feedback which will
surely need significant modification as the observational phenomenology of these pro-
cesses is explored in more depth. In particular, there is substantial evidence for strong
hydrodynamic feedback from optical/UV and X-ray AGN (Arav et al. 2001; de Kool et al.
2001; Reeves et al. 2003; Crenshaw et al. 2003). We have not yet explicitly incorporated
such feedback in our modelling, and it may well turn out to be important (see, for example,
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the recent simulations of di Matteo et al. 2005)). We assume ‘quasar mode’ accretion to be
closely associated with starbursts, so this feedback channel may be partially represented
in our models by an enhanced effective feedback efficiency associated with star formation
and supernovae.

The growth of stellar mass

Supernova feedback and star formation act together to regulate the stellar growth of a
galaxy. This is especially important for L < L∗ galaxies, where feedback can eject most of
the baryons from the system, reducing the supply of star-forming material for time periods
much longer than the cooling/supernova heating cycle. In the middle panel of Fig. 6.6 we
plot the Tully-Fisher relation for model Sb/c galaxies (see Section 6.3.5). The Tully-Fisher
relation is strongly influenced by the link between star formation and supernova heating.
The circular velocity of a galactic disk is (to first order) proportional to the virial velocity
of the host dark matter halo and thus to its escape velocity. In our model (and most others)
this is closely related to the ability of the galaxy to blow a wind. The luminosity of a
galaxy is determined by its ability to turn its associated baryons into stars. The overall
efficiency of this process in the face of supernova and AGN feedback sets the amplitude of
the Tully-Fisher relation, while the way in which the efficiency varies between systems of
different circular velocity has a strong influence on the slope.

The Tully-Fisher relation predicted by our model (middle panel of Fig. 6.6) is a reason-
able match to the observational data of Giovanelli et al. (1997), demonstrating that our
simple star formation and feedback recipes can adequately represent the growth of stellar
mass across a wide range of scales. We find clear deviations from power law behaviour for
log W <∼ 2.3 (approximately Vc

<∼ 100 km s−1), where the efficiency of removing gas from
low mass systems combines with our threshold for the onset of star formation to reduce
the number of stars that can form. The resulting downward bend is qualitatively similar to
that pointed out in real data by McGaugh et al. (2000). These authors show that including
the gaseous component to construct a ‘baryonic’ Tully-Fisher relation brings the observed
points much closer to a power-law, and the same is true in the model we present here.
Limiting star formation in galaxies that inhabit shallow potentials has a strong effect on
the faint-end of the galaxy luminosity function, as will be seen in Section. 6.4.2.

6.3.7 Galaxy morphology, merging and starbursts

In the model we discuss here, the morphology of a galaxy is assumed to depend only on
its bulge-to-total luminosity ratio, which in turn is determined by three distinct physical
processes: disk growth by accretion, disk buckling to produce bulges, and bulge formation
through mergers. We treat disk instabilities using the simple analytic stability criterion
of Mo et al. (1998); the stellar disk of a galaxy becomes unstable when the following
inequality is met,

Vc

(GmD/rD)1/2
≤ 1 , (6.21)
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where we approximate the circular velocity of the disk by Vc = Vvir. For each galaxy at
each time-step we evaluate the left-hand side of Eq. 6.21, and if it is smaller than unity we
transfer enough stellar mass from disk to bulge (at fixed rD) to restore stability.

Galaxy mergers shape the evolution of galaxies, affecting both their morphology and
(through induced starbursts) their star formation history. Mergers can occur in our model
between the central galaxy of a dark halo or subhalo and a satellite galaxy which has
lost its own dark subhalo. Substructure is followed in the Millennium Run down to a
20 particle limit, which means that the orbit of a satellite galaxy within a larger halo is
followed explicitly until its subhalo mass drops below 1.7 × 1010h−1 M�. After this point,
the satellite’s position and velocity are represented by those of the most bound particle of
the subhalo at the last time it was identified. At the same time, however, we start a merger
‘clock’ and estimate a merging time for the galaxy using the dynamical friction formula of
Binney & Tremaine (1987),

tfriction = 1.17
Vvirr2

sat

Gmsat lnΛ
. (6.22)

This formula is valid for a satellite of mass msat orbiting in an isothermal potential of
circular velocity Vvir at radius rsat. We take msat and rsat to be the values measured for
the galaxy at the last time its subhalo could be identified. The Coulomb logarithm is
approximated by lnΛ = ln(1 + Mvir/msat).

The outcome of the merger will depend on the baryonic mass ratio of the two progenitors
. When one dominates the process, i.e. a small satellite merging with a larger central
galaxy, the stars of the satellite are added to the bulge of the central galaxy and a minor
merger starburst (see below) will result. The cold gas of the satellite is added to the disk
of the central galaxy along with any stars that formed during the burst. Such an event is
called a minor merger.

If, on the other hand, the masses of the progenitors are comparable a major merger
will result. Under these circumstances the starburst is more significant, with the merger
destroying the disks of both galaxies to form a spheroid in which all stars are placed.
The dividing line between a major and minor merger is given by the parameter Tmerger:
when the mass ratio of the merging progenitors is larger than Tmerger a major merger re-
sults, otherwise the event is a minor merger. Following Springel et al. (2001a) we choose
Tmerger = 0.3 and keep this fixed throughout.

Our starburst implementation is based on the ‘collisional starburst’ model of Somerville
et al. (2001). In this model, a fraction eburst of the combined cold gas from the two galaxies
is turned into stars as a result of the merger:

eburst = βburst(msat/mcentral)
αburst , (6.23)

where the two parameters are taken as αburst = 0.7 and βburst = 0.56. This model provides
a good fit to the numerical results of Cox et al. (2004) and also Mihos & Hernquist (1994,
1996) for merger mass ratios ranging from 1:10 to 1:1.
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6.3.8 Spectroscopic evolution and dust

The photometric properties of our galaxies are calculated using stellar population synthesis
models from Bruzual & Charlot (1993). Our implementation is fully described in De Lucia
et al. (2004) and we refer the reader there (and to references therein) for further details.

To include the effects of dust when calculating galaxy luminosities we apply the simple
‘plane-parallel slab’ model of Kauffmann et al. (1999). This model is clearly oversim-
plified, but it permits us to make a reasonable first-order correction for dust extinction in
actively star-forming galaxies. For the details of this model we refer the reader to Kauff-
mann et al. (1999) and to references therein.

6.3.9 Metal enrichment

Our treatment of metal enrichment is essentially identical to that described in De Lucia et
al. (2004). In this model a yield Y of heavy elements is returned for each solar mass of
stars formed. These metals are produced primarily in the supernovae which terminate the
evolution of short-lived, massive stars. In our model we deposit them directly into the cold
gas in the disk of the galaxy. (An alternative would clearly be to add some fraction of the
metals directly to the hot halo. Limited experiments suggest that this makes little difference
to our main results.) We also assume that a fraction R of the mass of newly formed stars is
recycled immediately into the cold gas in the disk, the so called ‘instantaneous recycling
approximation’ (see Cole et al. 2000). For full details on metal enrichment and exchange
processes in our model see De Lucia et al. (2004). In the bottom panel of Fig. 6.6 we show
the metallicity of cold disk gas for model Sb/c galaxies (selected, as before, by bulge-
to-total luminosity, as described in Section 6.3.5) as a function of total stellar mass. For
comparison, we show the result of Tremonti et al. (2004) for mean HII region abundances
in SDSS galaxies.

6.4 Results

In this section we examine how the suppression of cooling flows in massive systems affects
galaxy properties. As we will show, the effects are only important for high mass galax-
ies. Throughout our analysis we use the galaxy formation model outlined in the previous
sections with the parameter choices of Table 6.1 except where explicitly noted.

6.4.1 The suppression of cooling flows

We begin with Fig. 6.7, which shows how our ‘radio mode’ heating model modifies gas
condensation. We compare mean condensation rates with and without the central AGN
heating source as a function of halo virial velocity (solid and dashed lines respectively).
Recall that virial velocity provides a measure of the equilibrium temperature of the system
through Tvir ∝ V2

vir, as indicated by the scale on the top axis. The four panels show the
behaviour at four redshifts between six and the present day. The vertical dotted line in
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Figure 6.7: The mean condensation rate, 〈 ṁcool〉 as a function of halo virial velocity Vvir

at redshifts of 6, 3, 1, and 0. Solid and dashed lines in each panel represent
the condensation rate with and without ‘radio mode’ feedback respectively,
while the vertical dotted lines show the transition between the rapid cool-
ing and static hot halo regimes, as discussed in Section 6.3.2. This figure
demonstrates that cooling flow suppression is most efficient in our model for
haloes with Vvir > 150 km s−1 and at z ≤ 3.

each panel marks haloes for which rcool = Rvir, the transition between systems that form
static hot haloes and those where infalling gas cools rapidly onto the central galaxy disk
(see section 6.3.2 and Fig. 6.2). This transition moves to haloes of lower temperature
with time, suggesting a ‘down-sizing’ of the characteristic mass of actively star-forming
galaxies. At lower Vvir gas continues to cool rapidly, while at higher Vvir new fuel for star
formation must come from cooling flows which are affected by ‘radio mode’ heating.

The effect of ‘radio mode’ feedback is clearly substantial. Suppression of condensation
becomes increasingly effective with increasing virial temperature and decreasing redshift.
The effects are large for haloes with Vvir

>∼ 150 km s−1 (Tvir
>∼ 106K) at z <∼ 3. Condensa-

tion stops almost completely between z=1 and the present in haloes with Vvir > 300 km s−1
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(Tvir > 3× 106K). Such systems correspond to the haloes of groups and clusters which are
typically observed to host massive elliptical or CD galaxies at their centres. Our scheme
thus produces results which are qualitatively similar to the ad hoc suppression of cooling
flows assumed in previous models of galaxy formation. For example, Kauffmann et al.
(1999) switched off gas condensation in all haloes with Vvir > 350 km s−1, while Hatton et
al. (2003) stopped condensation when the bulge mass exceeded a critical threshold.

6.4.2 Galaxy properties with and without AGN heating

The suppression of cooling flows in our model has a dramatic effect on the bright end of the
galaxy luminosity function. In Fig. 6.8 we present K- and bJ-band luminosity functions
(left and right panels respectively) with and without ‘radio mode’ feedback (solid and
dashed lines respectively). The luminosities of bright galaxies are reduced by up to two
magnitudes when the feedback is switched on, and this induces a relatively sharp break
in the luminosity function which matches the observations well. We demonstrate this by
overplotting K-band data from Cole et al. (2001) and Huang et al. (2003) in the left panel,
and bJ-band data from Norberg et al. (2002) in the right panel. In both band-passes the
model is quite close to the data over the full observed range. We comment on some of the
remaining discrepancies below.

Our feedback model also has a significant effect on bright galaxy colours, as we show in
Fig. 6.9. Here we plot the B−V colour distribution as a function of stellar mass, with and
without the central heating source (top and bottom panels respectively). In both panels we
have colour-coded the galaxy population by morphology as estimated from bulge-to-total
luminosity ratio (split at Lbulge/Ltotal = 0.4). Our morphological resolution limit is marked
by the dashed line at a stellar mass of ∼ 4 × 109 M�; this corresponds approximately to a
halo of 100 particles in the Millennium Run. Recall that a galaxy’s morphology depends
both on its past merging history and on the stability of its stellar disk in our model. Both
mergers and disk instabilities contribute stars to the spheroid, as described in Section 6.3.7.
The build-up of haloes containing fewer than 100 particles is not followed in enough detail
to model these processes robustly.

A number of important features can be seen in Fig. 6.9. Of note is the bi-modal distri-
bution in galaxy colours, with a well-defined red sequence of appropriate slope separated
cleanly from a broader ‘blue cloud’. It is significant that the red sequence is composed
predominantly of early-type galaxies, while the blue cloud is comprised mostly of disk-
dominated systems. This aspect of our model suggests that that the physical processes
which determine morphology (i.e. merging, disk instability) are closely related to those
which control star formation history (i.e. gas supply) and thus determine galaxy colour.
The red and blue sequences both display a strong metallicity gradient from low to high
mass (c.f. Fig. 6.6), and it is this which induces a ‘slope’ in the colour-magnitude relations
which agrees well with observation (e.g. Baldry et al. 2004).

By comparing the upper and lower panels in Fig. 6.9 we can see how ‘radio mode’
feedback modifies the luminosities and colours of high mass galaxies. Not surprisingly,
the brightest and most massive galaxies are also the reddest when cooling flows are sup-
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Figure 6.8: Galaxy luminosity functions in the K (left) and bJ (right) photometric bands,
plotted with and without ‘radio mode’ feedback (solid and long dashed lines
respectively – see Section 6.3.4). Symbols indicate observational results as
listed in each panel. As can be seen, the inclusion of AGN heating produces
a good fit to the data in both colours. Without this heating source our model
overpredicts the luminosities of massive galaxies by about two magnitudes
and fails to reproduce the sharp bright end cut-offs in the observed luminosity
functions.

pressed, whereas they are brighter, more massive and much bluer if cooling flows continue
to supply new material for star formation. AGN heating cuts off the gas supply to the disk
from the surrounding hot halo, truncating star formation and allowing the existing stellar
population to redden. However, these massive red galaxies do continue to grow through
merging. (The gas required to fuel starbursts is rapidly used up in the absence of contin-
uing condensation.) Through this mechanism the most massive cluster galaxies are able
to gain a factor of two or three in mass without significant star formation, similar to that
recently observed Bell et al. (2005). This late-stage (i.e. z <∼ 1) hierarchical growth moves
objects to higher mass without changing their colours.

It is also interesting to examine effect of AGN heating on the stellar ages of galaxies. In
Fig. 6.10 the solid and dashed lines show mean stellar age as a function of stellar mass for
models with and without ‘radio mode’ feedback, while error bars indicate the rms scatter
around the mean. Substantial differences are seen for galaxies with Mstellar

>∼ 1011 M�:
the mean age of the most massive galaxies approaching 12 Gyr when cooling flows are
suppressed but remaining around 8 Gyr when feedback is switched off. Such young ages
are clearly inconsistent with the old stellar populations observed in the majority of massive
cluster ellipticals.
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Figure 6.9: The B−V colours of model galaxies plotted as a function of their stellar mass
with (top) and without (bottom) ‘radio mode’ feedback (see Section 6.3.4).
A clear bi-modality in colour is seen in both panels, but without a heating
source the most massive galaxies are blue rather than red. Only when heating
is included are massive galaxies as red as observed. Triangles (red) and cir-
cles (blue) correspond to early and late morphological types respectively, as
determined by bulge-to-total luminosity ratio (see Section 6.4.2). The thick
dashed lines mark the resolution limit to which morphology can reliably be
determined in the Millennium Run.

The colour bi-modality in Fig. 6.9 is so pronounced that it is natural to divide our model
galaxies into red and blue populations and to study their properties separately. We do this
by splitting at B−V = 0.8, an arbitrary but natural choice. Fig. 6.11 shows separate bJ

luminosity functions for the resulting populations. For comparison we overplot observa-
tional results from Madgwick et al. (2002) for 2dFGRS galaxies split by spectral type.
Their luminosity functions are essentially identical to that of Cole et al. (2005), who split
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Figure 6.10: Mean stellar ages of galaxies as a function of stellar mass for models with
and without ‘radio mode’ feedback (solid and dashed lines respectively).
Error bars show the rms scatter around the mean for each mass bin. The
suppression of cooling flows raises the mean age of high-mass galaxies to
large values, corresponding to high formation redshifts.

the 2dFGRS catalogue by bJ-rF colour. It thus can serve to indicate the observational ex-
pectations for populations of different colour. The broad behaviour of the red and blue
populations is similar in the model and in the 2dFGRS. The faint-end of the luminosity
function is dominated by late-types, whereas the bright end has an excess of early-types.
The two populations have equal abundance about half to one magnitude brighter than M ∗bJ

(Norberg et al 2002).
Fig. 6.11 also shows some substantial differences between model and observations. The

red and blue populations differ more in the real data than they do in the model. There
is a tail of very bright blue galaxies in the model, which turn out to be objects under-
going strong, merger-induced starbursts. These correspond in abundance, star formation
rate and evolutionary state to the observed population of Ultraluminous Infrared Galaxies
(ULIRG’s) with the important difference that almost all the luminosity from young stars in
the real systems is absorbed by dust and re-emitted in the mid- to far-infrared (Sanders &
Mirabel 1996). Clearly we need better dust modelling than our simple ‘slab’ model (Sec-
tion 6.3.8) in order to reproduce the properties of such systems adequately. If we suppress
starbursts in bright galaxy mergers we find that the blue tail disappears and the observed
behaviour recovered. A second and substantial discrepancy is the apparent overproduc-
tion faint red galaxies in our model, as compared to the 2dF measurements (however see
Popesso et al. 2005; Gonzalez et al. 2005). Further work is clearly needed to understand
the extent and significance of this difference.
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Figure 6.11: The bJ-band galaxy luminosity function split by colour at B−V = 0.8
(Fig. 6.9) into blue (left panel) and red (right panel) sub-populations (solid
lines). The dotted lines in each panel repeat the opposite colour luminosity
function for reference. Symbols indicate the observational results of Madg-
wick et al. (2002) for early and late-type 2dFGRS galaxies, split according
to spectral type. Although our model split by colour captures the broad
behaviour of the observed type-dependent luminosity functions, there are
important differences which we discuss in Section 6.4.2.

6.5 Physical models of AGN feedback

Our phenomenological model for ‘radio mode’ feedback (Section 6.3.4) is not grounded in
any specific model for hot gas accretion onto a black hole or for the subsequent generation
and thermalization of energy through radio outflows. Rather it is based on the observed
properties of cooling flows and their central radio sources, and on the need for a source
of feedback which can suppress gas condensation onto massive galaxies without requiring
the formation of new stars. We have so far focused on the effects of such feedback without
discussing how it might be realised. In this section we present two physical arguments
which suggest how accretion onto the central black hole may lead to activity in a way
which could justify the parameter scalings we have adopted.

6.5.1 Cold cloud accretion

A simple picture for cooling flow evolution, based on the similarity solution of Bertschinger
(1989) for an unperturbed halo in isolation, can be summarised as follows. Cooling flows
develop in any halo where the cooling time of the bulk of the hot gas is longer than the
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age of the system so that a static hot halo can form. Such haloes usually have a strong
central concentration and we approximate their structure by a singular isothermal sphere.
The inner regions then have a local cooling time shorter than the age of the system, and the
gas they contain radiates its binding energy and flows inwards. The flow region is bounded
by the cooling radius rcool where the local cooling time is equal to the age of the system
(see section 6.3.2). This radius increases with time as t1/2. As Bertschinger showed, the
temperature of the gas increases by about 20% as it starts to flow inwards, and its den-
sity profile flattens to ρg ∝ r−3/2. Initially, the flow is subsonic and each gas shell sinks
stably and isothermally in approximate hydrostatic equilibrium. As it sinks, however, its
inward velocity accelerates because its cooling time shrinks more rapidly than the sound
travel time across it, and at the sonic radius, rsonic, the two become equal. At this point
the shell goes into free fall, its temperature decreases rapidly and it may fragment as a
result of thermal instability (Cowie et al. 1980; Nulsen 1986; Balbus & Soker 1989). The
dominant component of the infalling gas is then in the form of cold clouds and is no longer
self-coupled by hydrodynamic forces. Different clouds pursue independent orbits, some
with pericentres perhaps orders of magnitude smaller than rsonic. If these lie within the
zone of influence of the black hole, rBH = GmBH/V2

vir, we assume that some of the cold
gas becomes available for fuelling the radio source; otherwise we assume it to be added to
the cold gas disk.

The parameter scalings implied by this picture can be estimated as follows. The sound
travel time across a shell at the cooling radius is shorter than the cooling time by a factor
∼ rcool/Rvir. At smaller radii the ratio of cooling time to sound travel time decreases as
r1/2 so that rsonic/rcool ∼ (rcool/Rvir)2 implying rsonic ∼ r3

cool/R
2
vir. If we adopt rsonic <

104 rBH ∼ rdisk as the condition for effective fuelling of the radio source, we obtain

mBH > 10−4 Mvir (rcool/Rvir)
3 (6.24)

as the corresponding minimum black hole mass for fragmented clouds to be captured.
Under such conditions, only a small fraction (∼ 0.01%) of the cooling flow mass need be
accreted to halt the flow. The ratio in parentheses on the right-hand side of this equation
scales approximately as rcool/Rvir ∝ (mhot/Mvir)1/2t−1/2

H V−1
vir , so the minimum black hole

mass scales approximately as (mhot/Mvir)3/2t−1/2
H and is almost independent of Vvir. In our

model, the growth of black holes through mergers and ‘quasar mode’ accretion produces a
population where mass increases with time and with host halo mass. As a result, effective
fuelling takes place primarily in the more massive haloes and at late times for this ‘cold
cloud’ prescription.

To test this particular model we switch off our standard phenomenological treatment of
‘radio mode’ feedback (section 6.3.4), assuming instead that feedback occurs only when
Eq. 6.24 is satisfied and that in this case it is sufficient to prevent further condensation of
gas from the cooling flow. All other elements of our galaxy and black hole formation model
are unchanged. The resulting cooling flow suppression is similar to that seen in Fig. 6.7,
and all results presented in Section 6.3 and 6.4 are recovered. An illustration of this is
given by Fig. 6.12, where we compare the K-band luminosity function from this particular
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Figure 6.12: The observed K-band galaxy luminosity function is compared with the re-
sults from models using the two physical prescriptions for ‘radio mode’
accretion discussed in Section 6.5: the Bondi-Hoyle accretion model (solid
line) and the cold cloud accretion model (dashed line). Symbols indicate
observational data from Cole et al. (2001) and Huang et al. (2003). Both
models can produce a luminosity function which matches observation well.

model (the dashed line) to the observational data (c.f. also Fig. 6.8). The model works
so well, of course, because the numerical coefficient in Eq. 6.24 is uncertain and we have
taken advantage of this to choose a value which puts the break in the luminosity function
at the observed position. This adjustment plays the role of the efficiency parameter κAGN

in our standard analysis (see Eq. 6.9).

6.5.2 Bondi-Hoyle accretion

Our second physical model differs from the first in assuming that accretion is not from
the dominant, cold cloud component which forms within the sonic radius, but rather from
a subdominant hot component which fills the space between these clouds. The clouds
themselves are assumed to be lost to the star-forming disk. The density profile of the
residual hot component was estimated by Nulsen & Fabian (2000) from the condition that
the cooling time of each radial shell should remain equal to the sound travel time across it
as it flows inwards. This requires the density of the hot component to vary as 1/r within
rsonic and thermal instabilities must continually convert material into condensed clouds in
order to maintain this structure as the hot gas flows in.
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The rate at which hot gas is accreted onto the black hole can then be estimated from the
Bondi-Hoyle formula (Bondi 1952; Edgar 2004):

ṁBondi = 2.5πG2 m2
BHρ0

c3
s
. (6.25)

Here ρ0 is the (assumed uniform) density of hot gas around the black hole, and in all that
follows we approximate the sound speed, cs, by the virial velocity of the halo, Vvir. Of
course, the density distribution of gas surrounding the black hole is not uniform so the
question immediately arises as to what density we should choose. We follow a suggestion
of E. Churazov and use the value predicted by the ‘maximum cooling flow’ model of
Nulsen & Fabian (2000) at the Bondi radius rBondi ≡ 2GMBH/c2

s = 2rBH, the conventional
boundary of the sphere of influence of the black hole. We therefore equate the sound travel
time across a shell at this radius to the local cooling time there:

2rBondi

cs
≈ 4GmBH

V3
vir

=
3
2

µ̄mpkT

ρg(rBondi)Λ(T,Z)
. (6.26)

Solving for the density gives

ρ0 = ρg(rBondi) =
3µmp

8G
kT
Λ

V3
vir

mBH
. (6.27)

Combining Eq. 6.27 with 6.25 provides us with the desired estimate for the hot gas accre-
tion rate onto the black hole:

ṁBondi ≈ Gµmp
kT
Λ

mBH . (6.28)

Notice that this rate depends only on the black hole mass and on the virial temperature of
the halo. It is independent both of time and of mhot/Mvir, the hot gas fraction of the halo.
It is valid as long as rBondi < rsonic, which is always the case in our models.

To investigate the effects of this model we replace the phenomenological ‘radio mode’
accretion rate of Eq. 6.9 with that given by Eq. 6.28. Since the latter has no adjustable ef-
ficiency, we use the energy generation parameter η of Eq. 6.10 to control the effectiveness
of cooling flow suppression. (This was not necessary before since η always appeared in
the product η κAGN, where κAGN is the efficiency parameter of Eq. 6.9.) With this change of
black hole accretion and taking η = 0.03, we are able to recover the results of Sections 6.3
and 6.4 without changing any other aspects of our galaxy and black hole formation model.
The final galaxy population is, in fact, almost identical to that presented in previous sec-
tions. This is not surprising, perhaps, since Eq. 6.28 has very similar scaling properties
to Eq. 6.9. In Fig. 6.12 we illustrate the success of the model by overplotting its predic-
tion for the K-band luminosity function (the solid line) on the observational data and on
the prediction of the cold cloud accretion model of the last subsection. The two models
agree very closely both with each other and with our standard phenomenological model
(see Fig. 6.8).
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6.6 Conclusions

AGN feedback is an important but relatively little explored element in the co-evolution of
galaxies and the supermassive black holes at their centres. In this paper we set up ma-
chinery to study this co-evolution in unprecedented detail using the very large Millennium
Run, a high-resolution simulation of the growth of structure in a representative region of
the concordance ΛCDM cosmology. Most of our modelling follows earlier work, but in
an important extension we introduce a ‘radio’ feedback mode, based on simple physical
models and on the observed phenomenology of radio sources in cooling flows, which sup-
presses gas condensation at the centres of massive haloes without requiring the formation
of new stars. Our modelling produces large catalogues of galaxies and supermassive black
holes which can be used to address a very wide range of issues concerning the evolution
and clustering of galaxies and AGN. Some clustering results were already presented in
Springel et al. (2005). In the present paper, however, we limit ourselves to presenting the
model in some detail and to investigating the quite dramatic effects which ‘radio mode’
feedback can have on the luminosities and colours of massive galaxies. Our main results
can be summarised as follows:

(i) We study the amount of gas supplied to galaxies in each of the two gas infall modes
discussed by White & Frenk (1991): the ‘static halo’ mode where postshock cool-
ing is slow and a quasistatic hot atmosphere forms behind the accretion shock; and
the ‘rapid cooling’ mode where the accretion shock is radiative and no such atmo-
sphere is present. We distinguish these modes using the criterion of White & Frenk
(1991) which was tested by the 1-D Lagrangian grid simulations of Forcada-Miró
& White (1997) and the SPH simulations of Yoshida et al. (2002) and Helly et al.
(2003). Our results show a sharp transition between the two regimes at a halo mass
of 2–3 × 1011 M� (see also Birnboim & Dekel 2003 and Keres et al. 2004). This
division moves from higher to lower Vvir with time (corresponding approximately
to constant Mvir), suggesting a ‘down-sizing’ of star-formation activity as large sys-
tems progressively lose their supply of new gas from the rapid cooling regime, and
instead must rely on cooling flows to replenish their star-formation reservoirs.

(ii) We have built a detailed model for cooling, star formation, supernova feedback,
galaxy mergers and metal enrichment based on the earlier models of Kauffmann
et al. (1999), Springel et al (2001a) and De Lucia et al. (2004). Applied to the
Millennium Run this model reproduces many of the observed properties of the lo-
cal galaxy population: the Tully-Fisher, cold gas fraction/stellar mass and cold gas
metallicity/stellar mass relations for Sb/c spirals (Fig. 6.6); the field galaxy lumi-
nosity functions (Fig. 6.8 & 6.11); the colour-magnitude distribution of galaxies
(Fig. 6.9); and the increase in mean stellar age with galaxy mass (Fig. 6.10). In
addition the model produces a global star formation history in reasonable agreement
with observation (Fig. 6.5). We also show in Springel et al. (2005) that the z = 0
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clustering properties of this population are in good agreement with observations.

(iii) Our black hole implementation extends the previous work of Kauffmann & Haehnelt
(2000) by assuming three modes of AGN growth: merger-driven accretion of cold
disk gas in a ‘quasar mode’, merging between black holes, and ‘radio mode’ accre-
tion when a massive black hole finds itself at the centre of a static hot gas halo. The
‘quasar mode’ is the dominant source for new black hole mass and is most active
between redshifts of four and two. The ‘radio mode’ grows in overall importance
until z=0 and is responsible for the feedback which shuts off the gas supply in cool-
ing flows. This model reproduces the black hole mass/bulge mass relation observed
in local galaxies (Fig. 6.4). The global history of accretion in the ‘quasar mode’ is
qualitatively consistent with the evolution inferred from the optical AGN population
(Fig. 6.3).

(iv) Although the overall accretion rate is low, ‘radio mode’ outflows can efficiently sup-
press condensation in massive systems (Fig. 6.7). As noted by many authors who
have studied the problem in more detail than we do, this provides an energetically
feasible solution to the long-standing cooling flow ‘problem’. Our analysis shows
that the resulting suppression of gas condensation and star formation can produce lu-
minosity functions with very similar bright end cut-offs to those observed (Fig. 6.8),
as well as colour-magnitude distributions in which the most massive galaxies are red
and old, as observed, rather than blue and young (Figs 6.9 and 6.10).

(v) The B−V colour distribution of galaxies is bi-modal at all galaxy masses. Galaxies
with early-type bulge-to-disk ratios are confined to the red sequence, as are the most
massive galaxies, and the most massive galaxies are almost all bulge-dominated, as
observed in the real universe (Fig. 6.9). This bi-modality provides a natural division
of model galaxies into red and blue subpopulations. The colour-dependent luminos-
ity functions are qualitatively similar to those found for early and late-type galaxies
in the 2dFGRS (Fig. 6.11), although there are significant discrepancies. After ex-
hausting their cold gas, massive central galaxies grow on the red sequence through
‘burstless’ merging, gaining a factor of two or three in mass without significant star
formation i(Bell et al. 2005). Such hierarchical growth does not change a galaxy’s
colour significantly, moving it brightward almost parallel to the colour-magnitude
relation.

(vi) We present two physical models for black hole accretion from cooling flow atmo-
spheres. We suppose that this accretion is responsible for powering the radio out-
flows seen at the centre of almost all real cooling flows. The models differ in their as-
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sumptions about how gas accretes from the inner regions of the cooling flow, where
it is thermally unstable and dynamically collapsing. One assumes accretion of cold
gas clouds if these come within the sphere of influence of the black hole, while the
other assumes Bondi-like accretion from the residual diffuse hot gas component.
The two models produce z=0 galaxy populations similar both to that of our simple
phenomenological model for ‘radio mode’ feedback and to the observed population
(see Fig. 6.12). Our main results are thus not sensitive to the details of the assumed
accretion models.

The presence of heating from a central AGN has long been suspected as the explanation
for the apparent lack of the gas condensation in cluster cooling flows. We have shown that
including a simple treatment of this process in galaxy formation models not only ‘solves’
the cooling flow problem, but also dramatically affects the properties of massive galax-
ies, inducing a cut-off similar to that observed at the bright end of the galaxy luminosity
function, and bringing colours, morphologies and stellar ages into much better agreement
with observation than is the case for models without such feedback. We will extend the
work presented here in a companion paper, where we investigate the growth of supermas-
sive black holes and the related AGN activity as a function of host galaxy properties out
to high redshift. The catalogues of galaxies and supermasive black holes produced by
our modelling machinery are also being used for a very wide range of projects related to
understanding formation, evolution and clustering processes, as well as for interpreting
observational samples.
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7 Concluding remarks

In this thesis, we have used the local galaxy population to examine both the large-scale
density field and the population of galaxies that live within it. This analysis was broken
up into three sections. In the first half, Chapters 2, 3, and 4, we examined the higher
order clustering properties of the two degree field galaxy redshift survey (2dFGRS) galaxy
distribution. In Chapter 5, we proceeded to use the 2dFGRS to examine the luminosity
distribution of galaxies in environments ranging from sparse voids to the densest clusters.
Finally, in Chapter 6, we presented a model of galaxy formation which included AGN
radio feedback and used this to study the suppression of cooling flows in massive cluster
systems. With this, we could quantify the effect such cooling flow suppression has on the
properties of the local galaxy population. We now summarise the results of this work and
the future directions we plan to take it.

7.1 Summary of results

Our study of higher order galaxy clustering began in Chapter 2, where we used the Two
Degree Field Galaxy Redshift Survey (2dFGRS) to measure the higher order clustering
moments of the local L∗ galaxy population. This volume limited sample contained a total
of 44,931 galaxies within the magnitude range −19 > MbJ − 5 log10 h > −20 and survey
volume defined by 0.02 < z < 0.13. Our aim was to test whether the p-point galaxy
correlation functions, ξ̄p, can be written in terms of the two point correlation function
or variance, ξ̄p = S p ξ̄

p−1
2 , for some appropriate hierarchical scaling constants S p. This

is the so-called hierarchical scaling hypothesis and is expected if an initially Gaussian
distribution of density fluctuations evolves under the action of gravitational instability.
We showed that hierarchical scaling is obeyed in the 2dFGRS L∗ sample up to order 6
(Fig. 3.4), which is the limit to which we can measure the higher order moments with
statistical significance. For all cell radii considered, 0.3 < R (h−1Mpc) < 30, the measured
variance was found to be in excellent agreement with the predictions from a ΛCDM N-
body simulation (Fig. 3.2). However, the higher order correlation functions of L∗ galaxies
have a significantly smaller amplitude than is predicted for the dark matter on scales R <
10h−1Mpc. This implies that a non-linear bias exists between the dark matter and L∗
galaxies on these scales (see also Chapter 3). Finally, in this chapter we showed that the
presence of two rare, massive superclusters in the 2dFGRS (Fig. 3.1) has an impact on
the higher order clustering moments of the L∗ galaxy population measured on large scales
(Fig. 3.3).
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In Chapter 3, we extended this analysis by measuring the higher order moments of the
2dFGRS galaxy distribution as a function of galaxy luminosity. We had the full 2dFGRS
available, approximately 200,000 galaxies, and constructed volume limited samples cov-
ering the magnitude range −17 > MbJ − 5 log10 h > −22 in one magnitude width bins.
Together, these volume limited catalogues allowed us to probe the universe out to scales of
z ≈ 0.3 (∼ 750h−1Mpc). We showed that, in an extension to the results of Chapter 2, galax-
ies of all luminosities obey hierarchical scaling, up to 6th order (Fig. 3.5). This behaviour
was found to hold on scales ranging from those where the underlying density fluctuations
have become strongly nonlinear all the way through to the quasi-linear regime. The hi-
erarchical amplitudes, S p = ξ̄p/ξ̄

p−1
2 , were measured to be approximately independent of

the cell radius used to smooth the galaxy distribution on small to medium scales (Fig. 3.6).
On larger scales we found that the higher order moments could be strongly affected by the
presence of the two massive superstructures in the galaxy distribution (Fig. 3.8 and 3.9), as
found for the L∗ sample in Chapter 2. By tracking the evolution of S 3 across different vol-
ume limited samples, we showed that the skewness has a weak dependence on luminosity,
which we approximated by a linear dependence on log luminosity (Fig. 3.10). The higher
order S p’s also suggested a similar luminosity dependence, but we unfortunately lacked
the statistics across the full magnitude range to demonstrate this definitively. We discussed
the implications of our results for simple models of linear and non-linear bias that relate
the galaxy distribution to the underlying mass. A simple linear biasing model was shown
to be an inadequate description of the higher order results, suggesting that non-linear bi-
asing is present in the clustering moments of the 2dFGRS galaxy distribution (Fig. 3.10).
The results of this chapter generalise those found in Chapter 2.

Chapter 4 was the final chapter in our study of higher order clustering in the 2dF-
GRS. Here we measured the reduced void probability function (VPF) for the same vol-
ume limited galaxy samples from Chapter 3, covering the absolute magnitude range MbJ −
5 log10 h = −18 to −22. This statistic is valuable because, theoretically, the VPF connects
the distribution of voids to the moments of galaxy clustering of all orders. It provides a
different measure of hierarchical scaling: when plotting the reduced VPF against the scal-
ing variable N̄ξ̄, all volume limited samples, containing galaxies of different magnitudes,
mean number densities, and clustering amplitude, should all fall onto a common curve if
hierarchical scaling exists in the moments of the galaxy probability distribution function
(PDF). In addition, different hierarchical models of galaxy clustering (i.e. hierarchical
PDFs) make different predictions for the reduced VPF (Fig. 4.1), and our measurement
allowed us to discriminate between these. Reassuringly, the reduced VPF measured from
the 2dFGRS was found to be in excellent agreement with the paradigm of hierarchical
scaling of the galaxy clustering moments (Fig. 4.3), consistent with the results of the pre-
vious two chapters. The accuracy of our measurement was such that we can now rule out,
at a very high significance, many popular models for galaxy clustering, including the log-
normal distribution. We demonstrated that the negative binomial model gives a very good
approximation to the 2dFGRS data over a wide range of scales, out to at least 20h−1Mpc
(Fig. 4.4). Conversely, the reduced VPF for dark matter in a ΛCDM universe does appear
to be lognormal on small scales but was seen to deviate significantly beyond ∼ 4h−1Mpc.
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We found little dependence of the 2dFGRS reduced VPF on galaxy luminosity. We saw
that the results of this chapter had an added robustness in that the reduced VPF is not
sensitive to the two massive superclusters in the survey volume which were seen to so sig-
nificantly affect the larger-scale higher order measurements in Chapters 2 and 3. This is
because the reduced VPF more favourably weights the low and intermediate counts in the
PDF and not the tail where the rare high density peaks are seen. Finally, because the 2dF-
GRS contains inherent spectroscopic incompleteness, corrections were needed for missed
galaxies when undertaking the counts-in-cells analysis. Since weighting galaxy counts
will no longer work (how does one weight no galaxies?), we developed a new volume
weighting technique to account for this. Using mock catalogues, we demonstrated that our
method effectively corrects spectroscopic incompleteness in the cell counts on all scales
that were considered.

In summary, Chapters 2 and 3 demonstrated to high significance that the clustering mo-
ments of the 2dFGRS galaxy PDF are hierarchical, implying that the initial matter density
field, from which the present day structure evolved, is Gaussian. Chapter 4 used this be-
haviour to place constraints on the “actual” hierarchical model of galaxy clustering, of
which there are currently many in the literature. We showed that the negative binomial
model provides a remarkably good fit to the scaling behaviour of the local redshift space
galaxy distribution and ruled out all other clustering models at a high statistical signifi-
cance. Unfortunately, there is currently no adequate physical motivation for the negative
binomial model (but see Section 7.2 below).

In Chapter 5, we shifted our focus to now use the 2dFGRS to measure the dependence
of the bJ-band galaxy luminosity function on large-scale environment. This was defined
by density contrast in spheres of radius 8h−1Mpc, and on spectral type, determined from
principal component analysis. To obtain both luminosity function shapes and normalisa-
tions we developed a new hybrid step-wise maximum likelihood/count-in-cells technique
and showed that this accurately reproduced existing field, cluster, and spectral type pub-
lished luminosity functions (Fig. 5.1). The galaxy populations identified in environments
at both extremes of density were found to differ significantly from that at the mean density
(Fig. 5.3 and 5.4). The population in voids is dominated by late types and shows, rela-
tive to the mean, a deficit of galaxies that becomes increasingly pronounced at magnitudes
brighter than MbJ −5 log10 h <∼ −18.5. In contrast, cluster regions have a relative excess of
very bright early-type galaxies with MbJ −5 log10 h <∼ −21. Differences in the mid to faint-
end population between environments were significant: at MbJ − 5 log10 h = −18 early and
late-type cluster galaxies show comparable abundances, whereas in voids the late types
dominated by almost an order of magnitude (Fig. 5.5). We found that the luminosity func-
tions measured in all density environments, from voids to clusters, could be approximated
by Schechter functions, with parameters that varied smoothly with local density, but in a
fashion that differed strikingly for early and late-type galaxies (Fig. 5.6 and 5.7). Of in-
terest to many galaxy formation models is our measurement that reveals that the faint-end
slope of the overall luminosity function depends at most weakly on density environment.
Our measurements of the luminosity function in different density environments are now
being used for many different purposes, from constraining the statistics of halo occupation
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models (Mo et al. 2004) to studying the detailed formation histories of truly isolated void
galaxies in the local universe.

Finally, in Chapter 6, we extend our analysis of the local galaxy population by devel-
oping a self consistent model of galaxy formation, which we coupled to the Millennium
Run ΛCDM N-body simulation. The resolution of the Millennium Run is such that the
detailed assembly history of each object in the simulation, as faint as galaxy luminosities
approximately equal to the Small Magellanic Cloud, is accurately followed in a volume
comparable to that of the 2dFGRS. In our galaxy formation model we supplemented pre-
vious treatments of the growth and activity of central black holes with a new model for
‘radio’ feedback from those AGN that lie at the centre of a quasistatic X-ray emitting at-
mosphere in a galaxy group or cluster. This AGN feedback mechanism was implemented
to suppress the inflow of cooling gas out of such hot atmospheres. Our main results are im-
portant to an understanding of how galaxies form and evolve. With this model we showed
that one could simultaneously explain (i) the low observed mass drop-out rate in cooling
flows, (ii) the exponential cut-off at the bright end of the galaxy luminosity function, and
(iii) the fact that the most massive galaxies tend to be bulge-dominated systems in clusters
and to contain systematically older stars than lower mass galaxies. This success occurs be-
cause static hot atmospheres form only in the most massive structures, and radio feedback
(in contrast, for example, to supernova or starburst feedback) can suppress further cool-
ing and thus star formation without itself requiring star formation. We finished Chapter 6
with a discussion of some physical models for black hole accretion which may explain the
phenomenology required for our model to be successful.

7.2 Future work

This thesis suggests several directions for future research that will complement and extend
what has been already been achieved. Such programs are either currently proposed or
currently underway, which we will now describe.

Galaxy clustering

Chapters 2, 3, and 4 measured the higher order clustering of galaxies in the 2dFGRS.
This work is currently being extended in three ways. First, we have recently submitted
for publication in the Monthly Notices of the Royal Astronomical Society an analysis of
the 2dFGRS 3-point galaxy correlation function for the full catalogue and also when split
by luminosity and colour (Gaztañaga et al. 2005). Our primary result from this work is
that we demonstrate the first statistically significant measurement of galaxy–dark matter
non-linear bias, which is found to be non-zero at a 3σ level.

Second, we have repeated the analysis of Chapters 2, 3 and 4 for sub-populations of
each volume limited sample split by bJ-rF galaxy colour. This allows us to investigate the
hierarchical nature of early and late-type galaxy populations independently. These new
measurements show that the hierarchical amplitudes and both linear and non-linear bias
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parameters of red and blue galaxies behave differently and in an unexpected way. Our
results are now being written up for publication (Croton et al. 2005, in preparation).

Third, in the near future we plan to investigate both the low and higher order clustering
properties of the semi-analytic model galaxy population described in Chapter 6. Here
the aim is to use the moments of the galaxy distribution to constrain various aspects of
the galaxy formation physics. For example, recent results from the DEEP2 Team suggest
that the lowest order clustering properties of galaxies were already in place at z ∼ 1 and
have changed little up to the present day. However, the higher-order clustering may not
be so insensitive, and the evolution of specific galaxy properties between z = 1 and 0
may leave a signature in the higher order moments of selected sub-populations that can be
measured. If so, models of galaxy formation could be used to identify the physical process
(i.e. star formation efficiency, supernova feedback, reionization, etc.) that produce this
signature. The identification of such would be vastly useful and allow researchers to use
the spatial distribution of a sample of galaxies to indirectly measure physical events which
may otherwise be impossible to observe.

“Void” galaxies

Chapter 5 investigated the environmental dependence of the galaxy luminosity function in
the 2dFGRS. We look to extend this work in the near future in both observational and the-
oretical directions. We have currently secured Hubble Space Telescope time for 10 orbits
during cycle 14 to undertake V and I-band deep imaging of selected early-type extreme-
void galaxies (δ8 < −0.9), identified using the 2dFGRS sample described in Chapter 5.
We expect to derive the isophotal shape of each galaxy and resolve their sub-components
(disks, dust lanes, star-forming regions, etc.) which will provide insight into their forma-
tion histories. These observations will be complemented with detailed modelling of mock
void galaxy populations using the galaxy formation model described in Chapter 6. By
tuning the model to match key observations, the explicit history of each mock void galaxy
can be traced from high redshift to the present. In this way, events in the history of each
galaxy which lead to a particular observational end can be isolated and studied in detail.

Galaxy formation modelling

Finally, the galaxy formation modelling undertaken in Chapter 6 opens up many future
research directions. We summarise only the most interesting here but point out that this
model, in conjunction with the Millennium Run simulation, is currently being used for a
number of diverse projects by researchers both at the Max Planck Institute for Astrophysics
and in other institutions globally.

First, using our semi-analytic model galaxy population, we have investigated the black
hole mass–bulge mass relation and its possible evolution with redshift. This work has
been written up for publication (Croton & White 2005, in preparation). We show in this
paper that if mergers are the primary drivers for both black hole and bulge growth (which
is the the current assumption in most simple models of galaxy formation), then disrupted
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disks can drive evolution in mBH–mbulge. This effect may be seen in future high redshift
observations.

Second, recent results by Gao et al. (2005) have demonstrated that a fundamental as-
sumption in current halo occupation models (e.g. Cooray & Sheth 2002) may be wrong.
This assumption is that the mass of a dark matter halo alone determines the properties of
the galaxies that lie inside it. Gao et al. showed that low mass halos which form at early
epochs cluster differently from those that form at latter times, even when at redshift zero
their virial masses are identical. If correct, this behaviour should also be seen in the galaxy
population. Initial results using the galaxy formation model and Millennium Run simula-
tion described in Chapter 6 reveal that this is indeed the case. We are now looking into
this property of the galaxy population in greater detail. Such tests are important given the
current popularity of the the halo occupation methodology.
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