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Cover: Night-time thermal images of the Wuda coalfield in China with corresponding 

energy images, taken with the ETM satellite instrument. Red outlines mark coal fire induced 

surface anomaly zones mapped during the field campaign in September 2002. The energy 

values reflect coal fire related surface radiative energy releases [MW] of the entire 

investigated coal fire zones. The energy retrievals were computed via a new satellite based 

coal fire quantification approach that is presented in the following thesis. Upper left) ETM 

TIR channel, 28th September 2002 (night-time); upper right) energy image 28th September 

2002 (night-time); lower left) ETM TIR channel 25th September 2001 (night-time); lower 

right) energy image 25th September 2001 (night-time). 
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ABSTRACT 

 

Coal  fires cause severe environmental and economic problems. Although satelli te remote sensing has 

been used successfully to detect coal fires, a satelli te data based concept that can quantify the majority 

of the detected coal fires is still missing. Recently, the determination of fire radiative energy (FRE) has 

been introduced as a new remote sensing tool to quantify forest and grassland fires. This thesis tests the 

concept of remotely measured FRE, with a view to ascertaining its potential applicabili ty to coal fires. 

It contains an investigation of a new generation of satelli te instruments, including the operational 

Enhanced Thematic Mapper (ETM) instrument, the experimental Bi-spectral InfraRed Detection 

(BIRD) satelli te sensor and the experimental Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), which explores the potential of these sensors to determine coal fire radiative 

energy (CFRE). Additionally, based on the results of this analysis, the thesis presents a new, automated 

ETM and ASTER data based algorithm, adapted to quantify coal fires in semi-arid to arid regions in 

northern China.  

 

Field observations carried out in September 2002 and 2003 in three coalfields in northern China (the 

Wuda, Gulaben and Ruqigou coalfields) demonstrate that coal fire related, surface anomalies are 

significantly cooler than forest and grassland fires. The theoretical investigation of the ASTER, ETM 

and BIRD instruments outlines the fact that the thermal infrared (TIR) or mid infrared (MIR) spectral 

channels of the ASTER, ETM and BIRD instrument are particularly effective in registering these 

‘warm spots’ , whilst the short wave infrared (SWIR) spectral range is, however, insuff iciently sensitive 

to be able to register spectral coal fire radiances. The commonly used bi-spectral fire quantification 

method (Dozier, 1981) can be applied to BIRD data in order to quantify relatively large and / or hot 

coal fires. However, existing FRE retrieval approaches fail to quantify coal fires via ASTER and ETM 

instrument data. In this thesis, a new CFRE retrieval method is presented, which links the fire and 

background TIR spectral radiances to the CFRE through an empirical relationship.  

  

This newly developed TIR method is applied to visually detected fire clusters from night-time ASTER 

data, and from both day- and night-time ETM data, taken from the three study coalfields in northern 

China. The ASTER and ETM CFRE values, calculated via the TIR method, are compared to CFRE 

estimates from BIRD data, calculated via the existing bi-spectral method. Despite the different spatial 

resolution and spectral properties of the ETM, ASTER and BIRD instruments, CFRE computed from 

ASTER, ETM and BIRD data show good correlations with one another. However, CFRE retrievals 

from daytime data appear to be very undependable to background temperature variations, while CFRE, 

estimated from night-time data, appears to be relatively stable. A comparison between night-time 

ETM-derived CFRE and the figures given by local mining authorities for total coal fire induced, coal 

loss estimates in the Wuda coalfield gives a clear indication that the overall dimension of the coal fire 
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problematic can in fact be approximated via satellite data CFRE retrievals. It is thus expected that 

CFRE derived from night-time satellite data will become a crucial tool in obtaining reliable, 

quantitative information for coal fires.  

 

A multi-temporal comparison of CFRE retrievals from night-time BIRD and ETM data, covering the 

Ruqigou and Wuda coalfields, indicates that only major shifts or activity changes in coal fire induced, 

surface anomalies can be observed by means of these data. These results, which could only partially be 

verified by field observations, indicate that ETM or BIRD data can be used to monitor major changes 

in coal fire related, surface anomalies. These data however cannot entirely replace detailed field 

observations, especially in case of smaller and / or cooler coal fire related, surface anomalies.  
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ZUSAMMENFASSUNG 

 

Kohlefeuer verursachen gravierende ökologische und wirtschaftliche Probleme. In der Vergangenheit 

wurden Kohlefeuer erfolgreich mit Hil fe von Satelli tenbilddaten detektiert, allerdings fehlt ein 

Fernerkundungskonzept, dass eine Quantifizierung der Mehrzahl der anhand der Satelli tenbildaten 

detektierten Kohlefeuer ermöglicht. Vor kurzem wurde ein neues Fernerkundungskonzept für die 

Quantifizierung von Wald- und Steppenfeuern vorgestell t, dass auf der Abschätzung der 

Strahlungsenergie eines Feuers (FRE) beruht. In der vorliegenden Arbeit wird geprüft, inwiefern dieses 

Konzept auf Kohlefeuer übertragen werden kann. Eine neue Generation von Satelli teninstrumenten, die 

das operationelle „Enhanced Thematic Mapper“ (ETM) Instrument, den experimentellen „Bi-spectral 

InfraRed Detection“ (BIRD) Sensor and das „Advanced Spaceborne Thermal Emission and 

Reflection“ (ASTER) Radiometer einschließt, wird analysiert um zu prüfen, inwieweit mit Hil fe diese 

Sensoren die Strahlungsenergie von Kohlefeuern (CFRE) abgeschätzt werden kann. Zusätzlich wird, 

basierend auf den Ergebnissen dieser Analyse, ein automatischer ASTER und ETM Daten Algorithmus 

zur Quantifizierung von Kohlefeuern vorgestell t, der für semi-aride bis aride Gebiete in Nordchina 

angepasst ist.  

 

Geländearbeiten, die im September 2002 und 2003 in drei Kohleabbaugebieten in Nordchina (Wuda, 

Gulaben und Ruqigou) durchgeführt wurden, zeigen, dass Oberflächenanomalien von Kohlefeuern 

wesentlich kälter als Wald- und Steppenfeuer sind. Die theoretische Analyse der ASTER, ETM und 

BIRD Sensoren zeigt, dass die thermalen (TIR) oder mittleren Infrarot Kanäle (MIR) der untersuchten 

Sensoren besonders geeignet sind, diese „warmen Stellen“ aufzuzeichnen. Im Gegensatz hierzu sind 

die kurzwelli gen Infrarot Kanäle (SWIR) nicht ausreichend empfindlich, um spektrale 

Kohlefeuerstrahlung zu registrieren. Die theoretische Studie legt dar, dass die häufig eingesetzte 

Zweikanalmethode zur Quantifizierung von Feuern (Dozier, 1981) nur angewandt werden kann, um 

relative heiße und große Kohlefeuer mit Hil fe von BIRD Daten zu quantifizieren. Für ASTER und 

ETM Daten können existierende Quantifizierungskonzepte für die Analyse von Kohlefeuern nicht 

eingesetzt werden. In dieser Arbeit wird für ASTER und ETM Daten eine neue Methode zur 

Bestimmung der Strahlungsenergie eines Kohlefeuers vorgestell t. Hierbei wird die aufgezeichnete TIR 

Strahlung des Hintergrundes und des Feuers über einen empirischen Ansatz zu der Strahlungsenergie 

des Kohlefeuers in Bezug setzt.  

 

Diese neu entwickelte TIR Methode wird in einer Fallstudie für Gruppen von Bildelementen von 

visuell detektierten Kohlefeuern der untersuchten Sensoren angewandt. Die potentiellen 

„Kohlefeuerbildelemente“ stammen hierbei von ETM Tagdaten, sowie ASTER Nacht- und Tagdaten 

von den drei untersuchten Kohlegebieten in Nordchina. Die über die TIR Methode berechneten 

ASTER und ETM CFRE Werte werden mit CFRE-Abschätzungen von BIRD Daten verglichen, die 
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über die Zweikanalmethode (Dozier, 1981) bestimmt wurden. Trotz der verschiedenen räumlichen und 

spektralen Eigenschaften der BIRD, ASTER und ETM Instrumente, zeigen die berechneten CFRE-

Werte gute Übereinstimmungen.  Allerdings sind die aus den Tagesdaten abgeleiteten CFRE-

Abschätzungen sehr instabil gegenüber ermittelten Schwankungen der Hintergrundtemperatur, 

wohingegen CFRE-Abschätzungen von Nachtdaten wesentlich stabiler sind. Ein Vergleich der aus 

ETM Nachdaten abgeleiteten CFRE des Kohlegebietes Wuda mit Angaben der lokalen Minenbehörden 

über Kohlefeuer bedingte Kohleverluste zeigt an, dass die allgemeine Dimension der 

Kohlefeuerproblematik über CFRE-Abschätzungen gut angenähert werden kann. CFRE von 

Satelli tenbilddaten könnten deshalb ein wichtiges und verlässliches Werkzeug zum Sammeln von 

quantitativen Daten von Kohlefeuern werden.    

 

Ein multi-temporaler Vergleich von CFRE, die anhand von BIRD und ETM Nachtdaten der 

untersuchten Kohleabbaugebiete berechnet wurde, legt dar, dass nur wesentliche Verlagerungen oder 

Veränderungen der Aktivität von Oberflächenanomalien eines Kohlefeuers mit Hil fe von 

Satelli tenbilddaten überwacht werden können. Diese Ergebnisse konnten nur zum Teil über 

Feldbeobachtungen verifiziert werden. Trotzdem deuten sie an, dass ETM und BIRD Nachtdaten dazu 

verwendet werden können, um wesentliche Veränderungen von Oberflächenanomalien eines 

Kohlefeuers zu überwachen. Allerdings können sie besonders im Fall von kleinen und kalten 

Oberflächenanomalien gründliche Felduntersuchungen nicht ersetzen.  
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1 INTRODUCTION 

1.1 Aims and objectives 

Coal fires cause severe environmental and economic problems worldwide. They result in a reduction of 

the coal reserve, lead to atmospheric pollution through the emission of greenhouse related gases, cause 

land subsidence and negatively impact human health in nearby areas.  

 

China is the worlds’ largest coal producer and faces the world’s biggest coal fire problem (Kuenzer et 

al., submitted). Although coal basins are widely distributed in China, coal fires occur mainly in the 

northern part of the country where semi-arid to arid conditions prevail and where most Chinese mining 

activity occurs (Rosema et al., 1999). Major coal fire areas stretch out in a 5000 km long belt from the 

Xinjiang province in the west, to the Pacific in the east (Zhang, 1998; figure 1-1). There is geological 

evidence, as well as historical documentation, that coal fires existed in northern China more than 1000 

years ago, although it is assumed that the number of coal fires increased drastically since large-scale 

mining activities began (Gielisch, 2002; Rosema et al., 1999).  

Figure 1-1: Coal fire distribution in China. Major coal fire areas in China are located in a 5000 km 
long east-west mining belt (adapted from: http://www.gi.alaska.edu/~prakash/coalfires/china.html). 

 

Due to the enormous coal fire induced economic and environmental threat, the Chinese government is 

putting heavy emphasis on the coal fire problem. In 1994 the coal fire problem was mentioned as one 

of the five most serious geological hazards in the ' 21st-Century Agenda' (Guan et al., 1996; Zhang, 

1998). A geo-scientific Sino-German Coal Fire Research Initiative has, since 2003, been investigating 

the coal fire problem in China. The project includes various partners from different geo-scientific fields 

and focuses on developing innovative technologies for exploration, extinction and monitoring of coal 

fires in China. The German Ministry of Education and Science (BMBF) founded a remote sensing 

0            500 km 

coal fires 
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project in 2001, at the German Aerospace Centre (DLR), as part of a preliminary engagement in the 

issue. One of its main objectives is to set up an automated, satellite image based coal fire detection and 

quantification algorithm, that can be used to detect and quantify coal fires in large regions in northern 

China.  

 

Satellite remote sensing has already been used successfully to detect coal fires in the past (e.g. Chen, 

1992; Mansor et al., 1994; Prakash et al., 1995; Prakash et al., 1997; Zhang et al., 1997; Zhang, 1998; 

Prakash et al., 1999; Vekerdy et al., 1999). In 2004 Voigt et al. presented an integrated, remote sensing 

approach to the delineation of coal fires in large regions. Zhang et al. (submitted) have recently 

developed an automated (i.e. non-interactive) coal fire detection algorithm, which has been proven to 

detect coal fires in unknown areas on Enhanced Thematic Mapper (ETM) imagery. However, a remote 

sensing technique, effective in quantifying coal fires in large regions is still missing. Existing coal fire 

quantification approaches have focused on the determination of coal fire size and temperature, have 

been restricted to a few selected coal fire related hot spots (e.g. Zhang et al., 1997; Cassells et al., 1996; 

Prakash et al., 1997) and are not capable of quantifying coal fires on a regional scale.  

 

In this thesis the concept of remotely measured coal fire radiative energy (CFRE) is introduced as a 

powerful tool to quantify coal fires on a regional scale. A new generation of satellite instruments is 

theoretically investigated, examining the instruments’ capability to register spectral coal fire radiance, 

including the operational ETM instrument, the experimental Bi-spectral InfraRed Detection (BIRD) 

satellite sensor and the experimental Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER). In detailed case studies  CFRE are computed from ASTER, ETM and BIRD 

data, for entire coalfields in central China and by comparing these numbers with given numbers of coal 

fire induced coal loss, the possibilities and limitations of a satellite data based coal fire quantification 

approach are outlined. In addition, a comparison is made between CFRE computed from multi-

temporal BIRD and ETM, with the aim of determining if thermal satellite data can be used to map 

movements, or activity changes, of coal fire related surface anomalies. Finally, an automated coal fire 

quantification algorithm, adapted to quantify coal fires in northern China using ASTER and ETM data, 

is presented.  

 

1.2 Previous works 

Airborne and space-borne remote sensing has long been used to quantify forest and grassland fires. A 

few studies, such as Kaufman et al. (1990), directly observed smoke emissions via satellite 

observations, but most research concentrated on deriving thermal properties of vegetation fires via the 

analysis of infrared satellite sensor data. Within the last two decades automated fire detection and 

quantification algorithms have been developed for Advanced Very High Resolution Radiometer 

(AVHRR), Visible Infrared Spin Scan Radiometer and Atmospheric Sounder (VAS), and Moderate 
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Resolution Imaging Spectro-radiometer (MODIS) data (e.g. Prins and Menzel, 1994; Lee and Tag 

1990; Kaufman et al., 1998). The potential of these algorithms to quantify vegetation fires has been 

demonstrated in large number of case studies (e.g. Matson and Holben, 1987; Setzer and Pereira, 

1991). 

 

A common and widely applied fire quantification method is the so-called bi-spectral technique (Dozier, 

1981). This quantification approach uses the radiant energy difference of two thermal channels to 

compute the equivalent temperature and size of a sub-pixel fire component (description in chapter 4, 

section 4.3.1). Giglio and Kendall (2001) recently investigated the bi-spectral method and found large 

errors, unless careful consideration of the accuracy of the inter-channel registration and the background 

temperature characteristics is taken. A major limitation of the bi-spectral technique is the requirement 

of fire induced enhanced pixel values in at least two infrared channels.  

 

In the coal fire context, coal fire related enhanced pixel values in two infrared channels are only 

reported from Landsat-5 Thematic Mapper (TM) data. Zhang et al. (1997) calculated temperatures of 

two sub-pixel coal fires in NE China from TM band 6 data using the bi-spectral approach. Cassells et 

al. (1996) applied the bi-spectral technique on Landsat-5 TM short wave infrared data to compute the 

equivalent fire temperature and area of three surface coal fires in NE China. Prakash and Gupta (1999) 

and Prakash et al. (1997) estimated temperature and area extent of coal fires in the Jharia coalfield 

(India). They derived pixel-integrated temperatures of potential surface and sub-surface coal fires from 

TM band 5, 6 or 7 data and applied the bi-spectral technique on coal fire related anomaly pixels that 

showed enhanced and unsaturated brightness values in both TM channel 5 and 7. Approximately 15 % 

of the detected surface ‘coal fire pixels’  could be quantified in these studies using the bi-spectral 

approach.  

 

To address the requirement of a remote sensing tool, effective in estimating vegetation fire related 

emissions on a global scale, Kaufman et al. (1996) introduced the concept of remotely measured fire 

radiative energy (FRE). They estimated FRE of vegetation fires from MODIS data via the analysis of a 

single infrared channel, using a semi-empirical relationship between the spectral fire radiance and the 

total emitted fire radiative energy (so-called MODIS method). Recently, Wooster et al. (2003) 

presented an alternative approach (the so-called MIR method) to calculate FRE directly via the analysis 

of ‘ fire pixels’ radiances of the BIRD middle infrared (MIR) channel. They computed FRE from forest 

fires in Australia using BIRD and near-simultaneous MODIS data according to the MIR and MODIS 

method. They compared their results to retrievals of FRE based on derived fire temperature and area 

computed via the bi-spectral method and found a good correspondence of derived FRE values. 

Although the concept of remotely measured FRE has been proven to have a high potential to quantify 
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vegetation fires (e.g. Wooster, 2002; Kaufman et al., 1998) it has yet not been applied in the coal fire 

context. 

 

Saraf et al. (1995) and Prakash et al. (1995) evaluated the possibilities and limitations of remote 

sensing data to estimate the depth of sub-surface coal fires. Both used TM thermal infrared data to 

pinpoint sub-surface fire locations and located coal outcrops on TM visible and near infrared channels. 

The depth of the coal fires was computed using field-derived information on the strike and dip of coal 

layers and the location of coal outcrops and coal fires in the satellite data.  

 

1.3 Research approach 

Two field campaigns were carried out between the 5th and the 29th of September 2002 and between the 

10th and the 24th of September 2003, in three coalfields in central China. The three investigated 

coalfields are located in Ningxia Autonomous Region (Ruqigou coalfield) and Inner Mongolia 

Autonomous Region (Gulaben and Wuda coalfields). They include all types of coal fires, have 

different geological and morphological settings and are, like most of the coal fire locations in China, 

sparsely covered by vegetation. During the two field campaigns the coal fire related surface anomalies 

in the study areas were mapped and the surface temperatures of the active coal fires were measured 

(description in chapter 5). These field data are used as ground truth data for the remote sensing 

analysis.  

 

Taking into consideration the sensor specific, spectral response functions, and the thermal coal fire 

properties observed during the field campaign, the potential of the ASTER, ETM and BIRD to register 

coal fire related spectral radiative energy releases is theoretically analysed (description in chapter 6). In 

addition, existing FRE retrieval methods are evaluated towards their potential to estimate coal fire 

related surface energy (CFRE) and a new method to compute CFRE via the analysis of TIR spectral 

radiances is presented (description in chapter 7).  

 

The potential of this new approach to quantify coal fire related surface anomalies is evaluated in two 

case studies. ETM, ASTER and BIRD satellite data covering the test areas were acquired at different 

temporal settings including field campaign simultaneous observations. The satellite data are calibrated, 

geometrically corrected and ‘coal fire pixels’ 1-1) are visually detected. In the first case study 

(description in chapter 8) the potential of ETM, ASTER and BIRD data to quantify coal fires on a 

regional scale is analysed. The newly developed CFRE retrieval method is applied on visually detected 

ETM and ASTER fire clusters, including winter and field campaign simultaneous daytime summer 

                                                   
1-1) The term ‘coal fire pixels’ is used in this thesis to described a satellite data pixel which can be related to a coal 

fire.  
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data from the year 2002 and 2003. In addition,  CFRE are computed via an existing FRE retrieval 

concept using near simultaneous BIRD data. BIRD derived CFRE are compared to ASTER and ETM 

CFRE retrievals. For each investigated satellite scene the total  CFRE is computed for the Wuda, 

Ruqigou and Gulaben coalfield and compared to coal fire induced coal loss reported from the 

corresponding mining companies, outlining both the possibilities and limitations of each sensor to 

quantify coal fires on a regional scale. In the second case study (description in chapter 9) the potential 

of BIRD and ETM data to quantify detailed shifts or activity changes of coal fires is evaluated. Two 

detailed coal fire maps from the Wuda coalfield, as well as ground temperatures observed during an 

ETM night-time and daytime overpass, are carefully compared to the corresponding satellite data. In 

addition, CFRE derived from two BIRD night-time data sets as well as two ETM night-time data sets 

are compared to each other to analyse if multi-temporal thermal satellite data can be used to observe 

shifts or activity changes of coal fire related surface anomalies. 

 

Finally, the results of the theoretical investigations and of the case studies are combined and an 

automated ASTER and ETM data based coal fire quantification algorithm suitable to quantify coal fires 

in northern China (description in chapter 10) is presented.  

 

1.4 Available satellite data 

sensor path  /  row acquisition date 

129  /  33 2001/09/25 (nigh-time) 

129  /  33 2002/09/21 (daytime) 

226  /  221 2002/09/28 (night-time) 

ETM  
 

129  /  33 2003/02/12 (daytime) 

ASTER 35  /  41 2002/09/21 (night-time) 

2002/02/04 (daytime) 

2002/09/21 (daytime) 

2003/01/16 (night-time) 

BIRD  not defined 

2003/09/27 (night-time) 

Table 1-1: Listing of satellite data used in this study. 

 

In this study level 1b 1-2) satellite data sets from the ETM, ASTER and BIRD sensor were investigated. 

A detailed listing of the investigated data sets is provided in table 1-1.  

 

                                                   
1-2) The term level 1b data refers to systematically corrected satellite data sets, i.e. the data is already corrected for 

scan direction and band alignment as well as radiometry.  
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The ETM data sets were either requested as level 1b data directly from the Earth Observing System 

Data Gateway (EOS) or acquired during a DLR acquisition campaign at the mobile ground receiving 

station in Ulan Bator. The level 1b data processing of the Ulan Bator ETM data was performed at the 

DLR. The ASTER data acquisition was requested by the International Institute for Geo-Information 

Science and Earth Observation (ITC, Holland). The raw ASTER data sets were processed to level 1b 

data sets at the ITC. The BIRD data were acquired and processed to level 1b data sets by the DLR 

BIRD team.  
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2 THEORETICAL BACKGROUND OF COAL FIRES 

The term ‘coal fire’ refers to combustion in a coal seam, coal storage pile or coal waste pile. In this 

chapter a short introduction to the coal fire problematic is given, including a description of the coal 

ignition and combustion process, a presentation of different coal fire types, a description of coal fire 

related thermal anomalies and an introduction to coal fire induced hazards in China.  

 

2.1 Coal ignition and combustion 

Coal is a highly combustible material, and, in addition to a capacity for ignition by external sources, 

many coals are prone to self ignition. External ignition sources, capable of igniting coal fires, are 

lightning (Guan et al., 1996), forest fires (Bustin and Mathews, 1985) and man-made fires caused by 

mining accident or careless human interactions (Kuenzer, submitted). In Indonesia coal fires ignited by 

forest fires are a serious hazard. It is known that outcropping coal seams ignited by forest fires continue 

to burn, and can cause forest fires to restart several months after the forest fire was extinguished 

(Zhang et al., 2004).  

 

Self ignition of coal is, according to recent publications, the second greatest cause of coal fires of large 

extent, second only to man-made external fire ignitions (Walker, 1999; Van Genderen and Guan, 1997; 

Kuenzer, submitted). Self-ignition of materials, also referred to as spontaneous combustion, refers to 

the onset of exothermic chemical reaction and a subsequent temperature rise within a combustible 

material, without the action of an additional ignition source (Ackersberg, 2003). The self-ignition of 

coal originates at the interface of coal and atmosphere and occurs when the heat evolved by coal 

oxidation exceeds the amount of heat dissipated by conduction, convection or self-radiation 

(Aeckersberg,, 2003). The low temperature oxidation of coal can be described by the following process 

equations:  

 
I)  C + O2   CO2 + 394 kJ / mol  

 
II)  2C + O2 2CO + 170 kJ / mol  
 
III)  2H2 + O2  H2O + 241 kJ / mol  
 

 
The critical temperature above in which the oxidation and self-heating processes become self-

sustaining is about 50 °C for lignites and 70 – 80 °C for bituminous coals (Ackersberg,, 2003). The risk 

of spontaneous combustion strongly depends on a number of external factors as well as on coal specific 

parameters. Coal specific parameters include, e.g. coal rank (degree of coali fication), petrographic 

composition, methane content, moisture content, as well as particle size and surface area. High coal 

rank, high content of original oxidised plant material, a relatively large particle size and low specific 

internal surface decreases the coal' s self-heating capacity (Ackersberg, 2003).  
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External factors such as climate, geology and geomorphology that might influence the self heating 

process are not yet fully understood and are part of an ongoing research project within the Sino-

German Coal Fire Initiative. A dry desert-like climate and high crack frequency are assumed to 

positively support the self-ignition process (Rosema et al., 1999).  

 

Once a coal fire has started in a coal seam it has a high potential to burn for a long time by spreading 

along the strike and dip of the coal seam. A coal fire that, for example, started at the surface of an 

outcropping, dipping coal seam, can cause overlying bedrocks to collapse, resulting in sufficient 

oxygen supply for the combustion of underground coal. Underground coal fires are known to burn in a 

depth of several hundred meters in north China (Gielisch, 2002). In most Chinese coalfields 

underground coal fires are far more frequent than surface coal fires (Rosema et al., 1999). In addition, 

coal fires can burn for decades, and once a coal fire has started, the problems of extinguishing it are 

remarkable. The oldest known continuously burning coal fire started to burn 2000 years ago in New 

South Wales, Australia (Zhang et al., 2004). 

 

2.2 Classification of coal fires 

A variety of coal fire classification schemes have been applied by different researchers, for example, 

Van Genderen and Guan, 1997; Yang, 1995. Zhang et al. (2004) recently recommended a coal fire 

classification, here illustrated in table 2-1.  

first class second class attributes 

nature coal fire coal seam fire 

coal mine fire 

coal waste fire coal heap fire 

coal stockpile fire 

surface/underground or sub-surface 

paleo/recent 

extinct/dormant /active 

Table 2-1: Coal fire classification according to Zhang et. al. (2004).  

 

Coal fires can occur in-situ directly on coal seams as well as on anthropogenic coal heaps (coal waste 

piles and stockpiles) and consequently, are given a primary classification into coal seam and coal heap 

fires. Zhang et al. (2004) subdivide the coal fires further according to ignition process, into mining 

related coal fires and natural coal fires. In addition, attributes are given for each coal fire, as to whether 

it is surface or sub-surface, paleo (fire was burning in the paleo-time) or recent (fire was burning in 

recent time), extinct (extinct coal fire and incapable of further burning), dormant (fire is not spreading, 

but probably capable of re-burning) or active (fire is burning and spreading).  
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2.3 The thermal surface anomaly of coal fires 

A coal fire induced thermal surface anomaly (CFSA) is an imported fire characteristic that can be 

investigated by ground as well as by airborne and satellite based surveys. Due to the fact that coal fires 

are not restricted to the surface but also occur underground, the CFSA pattern can be rather complex.  

 

The combustion heat of coal is in the order of 30 MJ / kg for standard hard coal to 34 MJ / kg for 

anthracite coal. The combustion energy dissipates into the environment by a variety of processes such 

as direct radiation, convection of the air mass above the fire and conduction into the ground. 

Convection is the physical term used to describe the heat transport by the movements of gases, while 

conduction refers to the heat transport from solid to solid materials. In the absence of solid matter heat 

can be transported by radiation.  

 

During the combustion of outcropping coal layers energy is mainly lost by radiation. According to 

Rosema et al. (1999) conductive heat transports only result in a small, heated rock margin in the 

vicinity of the surface coal fire, not exceeding a width of a few meters. However, the combusted energy 

of surface coal fires is also lost by convection of the air mass above the coal fire. The thermal surface 

pattern of sub-surface coal fires is caused by radiation, conduction and convection. Heat is transported 

to the surface through the overburdened rocks, by means of the transport of exhausted gases in cracks, 

as well as through conduction in the coal fire overlying bedrock. In contrast to surface coal fires, sub-

surface coal fires spread at such a low speed that the conductive heat transport is significant (Rosema et 

al., 1999). The convective heat transport is relatively fast, resulting in a significant CFSA along crack 

zones soon after the fire developed (Rosema et al., 1999). 

 

Zhang (1998) investigated surface temperatures of coal fires in Xinjiang (China) and classified the 

thermal coal fire induced anomalies into low-amplitude thermal anomalies (surface temperature of up 

to 293 K above the background temperature), medium-amplitude thermal anomalies (surface 

temperature between 293 K to 393 K above the background temperature) and high-amplitude thermal 

anomalies (surface temperature from 393 K to over 573 K above the background temperature). 

According to his observation most investigated, coal fire induced, CFSA in Xinjiang can be classified 

as low-amplitude thermal anomalies. Goerlich (2004, pers. communication) investigated coal fires in 

the framework of a German GTZ 2-1) project at various coalfields in Xinjiang and reported that the 

overall majority of the investigated coal fires had surface temperatures below 600 K.  

 

                                                   
2-1) The GTZ is an international cooperation enterprise for sustainable development with worldwide operations. 

Bodo Goerlich is a coal fire expert of this GTZ coal fire project.  
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2.4 Environmental impacts and hazards of coal fires in China 

Environmental impact and hazards of coal fires in China have been investigated by Feng et al. (1973), 

Guan et al. (1996), Cassells and Genderen (1995) and Kuenzer et al. (submitted). Major threats 

include: 

 

• reduction of the coal reserve 

• atmospheric pollution through the emission of toxic and green house related gases 

• land subsidence 

 

Estimates of annual coal fire related coal losses in China range from 10-20 Mt (Guan et al., 1996) to 

200 Mt (Cassells and Genderen, 1995) per year. Taking into consideration that China is the biggest 

coal producer in the world, with an annual production of 1000 Mt of raw coal, the enormous economic 

coal fire threat becomes obvious. It is important to note here that coal fires not only burn out coal 

resources, but also lead to blockage and devaluation of coal resources proximal to the burning coal 

seam (Zhang, 2004).  

 

Coal fire related gaseous emissions have both local and global consequences. They include green house 

related gases like carbon monoxide (CO), carbon-dioxide (CO2), methane (CH4), sulphur-dioxide (SO2) 

as well as toxic gases like hydrogen sulphide (H2S) and nitrous oxide (N2O). The gaseous emissions are 

a long-term health threat for the local population and contribute to the problem of global warming. CO2 

emissions of coal fires in China are currently under evaluation. First estimates range from 0.1 % 

(Kuenzer et al., submitted) to 2 % (Cassells and Genderen, 1995) of the amount of the total annual 

man-made CO2 emission.  

 

In addition, the volume loss caused by burned out coal seams often leads to land subsidence, land 

slides and the development of cracks or burned pits, posing a threat to local infrastructures and 

buildings. Burned pits of up to 10 m in diameter and cracks up to 2.5 m width are reported from 

coalfields in Xinjiang, China (Zhang et al., 2004). According to Zhang et al. (2004) land subsidence is 

mainly restricted to large coal fire areas, whilst significant subsidence rates are most probably caused 

by combined effects of both coal fires and coal mining.  
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3 THEORETICAL BACKGROUND THERMAL REMOTE SENSING 

This chapter consists of an introduction to thermal remote sensing, with a short explanation of general 

principles and an account of thermal correction and calibration techniques. It also contains a brief 

review of existing fire quantification techniques. For a detailed introduction to thermal remote sensing, 

see e.g. Lill esand and Kiefer (1994).  

 

3.1 General background 

3.1.1 Emissivity, Planck’s law, Wien’s displacement law, Stefan-Boltzmann’s law 

All materials above zero K in temperature emit radiation. A perfect emitter, the so-called ‘blackbody’ , 

emits the maximum amount of radiation at each wavelength. No real material is a perfect emitter and 

the emissivity (ε) of a real material describes how closely its emittance approximates a blackbody:  

 

         Lgb, 
� (T)  

ε� � �  =           (3-1)
    L�����	� (T) 

 
where: 

ε�
� �   =  emissivity at a certain wavelength and temperature 

L���
��� (T)=  blackbody radiance at a certain wavelength and temperature 

L	���	� (T)=  real radiance at a certain wavelength and temperature 

 

The emissivity is a function of both temperature and wavelength.  

 

The spectral radiance emitted by a blackbody, at a temperature (T), is given by the Planck Function as: 

 

         c1   
Lbb =           (3-2) 

    
� 5 �  [e ���

�
�
�
 -1] 

 
where:  

Lbb  =  blackbody radiance    [W m-2 sr--1 � � -1] 
�
 = wavelength    [m] 

T = temperature    [K] 

c1 = first radiation constant: 3.742 x 10-22 [W m3 ��� -1] 

c2 = second radiation constant: 0.014 [m K] 
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For each temperature the Planck Function has a single maximum at a certain wavelength: 

 

         2897.9   �
 m =          (3-3)  

        T 
 

where:  �
 m =  wavelength of maximum emission for a blackbody  [ ��� ] 

 

Equation (3-3) is known as Wien’s displacement law and it indicates that the wavelength of maximum 

emission shifts toward lower wavelengths at higher temperatures. Figure 3-1 shows Planck radiances 

plotted versus wavelength and temperature.  

Figure 3-1: Planck radiance versus wavelength for different temperatures. It is important to note that 
the wavelength of maximum emission shifts toward lower wavelengths at higher temperatures.  

 

Thermal satelli te sensors do not register radiances at a discrete spectral wavelength, but rather at a 

wavelength interval defined by the sensor-specific, spectral response functions. Thus, the Planck 

function has to be integrated over an instrument response function to calculate the radiance that 

corresponds to a brightness temperature for a particular instrument channel: 

 

        
� � ��� 	

Lbb 
����� �����  
Ls =           (3-4) 

        � � � �������  
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where:  

Ls  =  radiance observed by the sensor 
�   =  instrument spectral response 

 

The total radiative energy emitted from a blackbody is given by the Stefan-Boltzmann law as:  

 

  Mbb  =  σ T4        (3-5) 

 

where:  

σ  = Stefan-Boltzmann constant: 5.67x10-8    [W m-2 K-4] 

Mbb =  total radiative energy emitted from a blackbody   [W m-2] 

 

3.1.2 Solar and terrestrial radiation  

The solar radiation reaching the earth is very close to that of a 6000 K blackbody. The wavelength of 

maximum emission for a blackbody of 6000 K is near 0.5 � ��������	�
 ’s displacement law equation 3-3, 

see also figure 3-2). Temperatures on the earths’  surface usually range between 250 K and 330 K, and 

thus, the radiation emitted by the earths’  surface peaks, according to the Wien’s displacement law, near ���� ���
 

 

Figure 3-2: Solar and Earth spectral radiance. The solar radiance is plotted for different surface ������������� �"!#���%$ & ')(+*#,.-0/21#3+4�5"6#427%893�,%:;3 *"8)3)3 *#,<:�1"/�8+=>=?8"6#4�8@5#7�,.-0,%8"A�:>5#,%8#=CB�'ED F m, while the radiance emitted 
by the earth peaks near 10 F m.  



3 Theoretical background thermal remote sensing 

17 

In the visible spect ��� � �������	��
����������� �������������  "!�#�$&%('*)	',+.-0/1)(2�-�+.-3'54�6879'5:;$<-�+.=�-3';>(/@?A)CB@D"E�FG#�HJI KL$�?NM.I&MPO� "!
Q�R	SUTWV	XUY3V(Z�[\T�]PQ_^(X�`aR(b�[3Q.[�X,ScY3d9X,e;T�[3Q.fg[�Xih(`@Z.Rkj3l�mon�pGq�rAs\r�T�Zut�s�vxw�y{zPY�Z�f@Q.[P[3Q.S�`@Q5T�`@ZARNS|ZAy"`1R	Q,T�X_Y�Q_R(SCTWV	X
earth’s self-emitted radiation is insignificant. Hot spots like vegetation fires, industrial chimneys or 

volcanoes with temperatures higher than 600 K emit significant amounts of terrestrial radiation in the 

SWIR range and can thus be regarded as exceptions. In the mid infrared spectral region (MIR, 3 to 5 
w�y"z"T&V(XcX,Q.[\TWV ’s self-emitted radiation becomes significant. During daytime both solar radiation and 

terrestrial emission are present in the MIR spectral range. Figure 3-2 indicates that if we assume a 

surface reflectance or emissivity of 1 the terrestrial radiation is about one tenth solar radiation at about 

4.5 w m, at about 5.7 w m solar and terrestrial radiation are equal in magnitude and at about 7.7 w m solar 
}3~.���@~5���@�A�����P�A�(�P���i�.�&�C���,}�}3�����<}��@~.��}3~.���@~5���@�A�����&�C�&�(�P�&�(�,}��"~.���1�(��}�~A}��,�U�3�9�,�;��}�~A��}3~_���(�{�&�0���G�����<�k�i�N���{���W�	�
earth’s self-emitted radiation dominates and solar radiation is insignificant. Table 3-1 summarizes the 

above-mentioned spectral ranges and corresponding radiation sources.  

name wavelength range radiation source surface property of interest 

VIS 
visible spectral range 

�¡  ¢*£�¤¥�(  ¦ § ¨
 solar reflectance 

NIR 
near infrared spectral region 

©¡ª «*¬�{®,ª�®°¯.±
 solar reflectance 

SWIR 
short wave infrared spectral region 

²�³´²¶µ�·¥¸(³�¹Lº.»
 solar reflectance 

MIR 
mid infrared spectral region 

¼	½ ¾*¿�ÀGÁ�½ ¾�Â.Ã
 solar, terrestrial reflectance, temperature 

TIR 
thermal infrared spectral range 

Ä	Å Æ*Ç�È{É�Ê¡Å Æ�Ë.Ì
 terrestrial temperature 

Table 3-1: Spectral ranges and corresponding radiation sources. 

  

3.2 Correction and calibration of thermal satellite data 

3.2.1 Conversion of digital number to at-sensor radiance 

Pixel values in satellite data are usually provided as digital numbers (DN) that can be transferred to at-

sensor radiances as: 

 

L Í1Î Ï  =  Lmin, Ï  + (LÐ(Ñ1Ò�Ó�Ô  - L Õ	Ö ×WØÙ ) *DN / DNmax    (3-6) 

 

where: 

L Ú1Ø Ù  =  spectral radiance received by sensor 

Lmin, Ù  =  radiance at the minimum calibrated data digital number 



3 Theoretical background thermal remote sensing 

18 

L���������  =  radiance at the maximum calibrated data digital number 

DNmax  =  maximum digital number  

 

3.2.2 Atmospheric correction 

The radiance measured by an infrared sensor includes emission, absorption and scattering by several 

components of the earth’s atmosphere. Atmospheric corrections are necessary to remove these effects, 

thus providing only reflected and / or emitted components of the earth surface.  

 

The radiance leaving the surface in the thermal spectral region can be related to the at-sensor radiances 

as: 

 

Ls  =  Lpath
	 
 �

surf Lsurf
������

-
�

GS �������     (3-7) 

 

where: 

Ls  =  at-sensor radiance  

Lsurf  =  blackbody radiance at the ground surface 

Lpath  =  path radiance 
�  =  ground-to-sensor atmospheric transmittance 
�

GS =  ground surface emissivity 

F  =  thermal downwelling flux on the ground 

 

The second term, on the right-hand side of the above given equation, refers to the emitted surface 

radiance reaching the sensor, while the third term is the atmospheric radiance reflected at the surface 

and attenuated by the surface-to-sensor path (Richter and Schlaepfer, 2002). In the MIR spectral range 

the path radiance (Lpath) consists, during daytime, of a reflective and thermal part. For the TIR range, 

and for the MIR range during night-time, only the thermal component, i.e. the emitted radiance of 

different air layers between the ground and the sensor, influences the total at-sensor signal.  

 

The path radiance (Lpath), ground-to- ��� �!��"$#&%('*)+"��-,�.���#0/213'�#-%4�!�-)5/ '6'�%4��14�57 � � %4��85'9.��&'9.���#�)5%;:<8$">=?� -welling 

flux on the ground (F) can be derived by direct measurements during satellite overpasses, or by using a 

radiation transfer model for standard atmospheres, such as for example, the common and widely used 

MODTRAN code (Berk et al., 1998).  

 

3.2.3 Conversion of sensor radiance to brightness temperature 

The computation of the brightness temperature as a function of the at-sensor radiance is an inversion of 

equations 3-2 and 3-4. Unfortunately, equation 3-4 cannot be converted analitically and thus, the 
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solution of the inversion of equation 3-4 can only be calculated numerically. A straightforward 

approximation is to use the central wavelength of the specific sensor instead of the spectral response 

function and to invert equation 3-2 as: 

 
           c2 

Tc =           (3-8) 
    � c ln [c1 ��� � c

5 � Ls) + 1] 
 
where:  

� c  =  central wavelength of sensor      [m] 

Tc =  brightness temperature calculated from central wavelength  [K] 

 

Alternatively, an iterative method can be established that uses the result of the of the equation 3-8 as a 

first guess at the solution of: 

        � � i Lbb(Tc �	� i) 
 �  
Lc =           (3-9) 

        �  i 
 �  
 
 

where:  

Lc  =  radiance calculated from an iterative approach  

 

The disadvantage of the iteration is that it is, although being quite accurate, relatively computer time 

demanding. 

 

Rather than inverting equation 3-2 and 3-3, the equations can be solved numerically by computing an 

expected sensor radiance for each assumed brightness temperature. As a result a lookup table can be 

provided that contains a corresponding sensor radiance value for each brightness temperature. This 

table can be computed for every desired degree of precision by simply enlarging the number of input 

brightness temperature grid points. Instead of inverting equation 3-2 and 3-3, the lookup table can be 

inverted, and thus an exact brightness temperature can be given for each registered sensor radiance. 

Radiance values can be converted to brightness temperatures by simply substituting the registered 

radiance value by the corresponding brightness temperature value.  

 

3.3 Fire quantification via satellite analysis 

Space-borne remote sensing has been widely used to quantify vegetation fires (e.g. Matson and Dozier, 

1981; Flannigan and Vonder Haar, 1986; Lee and Tag, 1990; Setzer and Pereira, 1991; Kaufman et al., 

1998). Infrared spectro-radiometers can be used directly to measure the radiative energy released by a  
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fire source. It is important to note here though, that satellite sensors can only register that part of the 

total fire energy emission that is released as radiation. 

 

When observing fires from space, the pixel that corresponds to a ground segment that includes a fire (in 

the following referred to as a ’fire pixel’) will usually not be homogeneous and will contain both fire 

and other background information. A ground segment that corresponds to a fire pixel will thus consist 

of a background and a fire-related, thermal component covering different portions of an image pixel. 

Taking into consideration equation 3-5 (Stefan-Boltzmann law) the total radiative energy release of the 

sub-pixel fire component can be described as: 

 

Mfire =  Asampl σ εf � qfnTfn
4      (3-10) 

 

where:  

Mfire  =  radiative energy release of the fire (FRE)  [W] 

Asampl  =  ground sampling area      [m2] 

σ  = Stefan-Boltzmann constant: 5.67x10-8    [W m-2 K-4] 

εf  = fire emissivity 

qfn  = fractional area of the nth fire thermal component within the ground  

pixel  

Tfn  =  temperature of the nth fire thermal component   [K] 

 

Several remote sensing techniques were developed to derive sub-pixel fire information from a 

heterogeneous image pixel. A common and widely used technique is the so-called bi-spectral method 

(Dozier, 1981), whereby two measurements of thermal radiances at different wavelength intervals are 

used to calculate the fire temperature and fire area. Wooster et al. (2003) have recently demonstrated 

that the bi-spectral fire temperature and area retrievals can be used to estimate the total amount of 

energy that is emitted as radiation from a fire (the so-called fire radiative energy or FRE). Kaufman et 

al. (1998) and Wooster et al. (2003) have presented two different approaches, the so-called MODIS and 

MIR method, to derive FRE of a sub-pixel fire component directly via the analysis of a single infrared 

measurement. For a detailed review of remote sensing techniques used to compute radiative energy 

releases of vegetation fires see Wooster et al. (2003). 

 

3.3.1 The bi-spectral technique 

The bi-spectral technique is based on the assumption that a hot portion within an image pixel will 

contribute more to the total energy emitted in the short wave infrared range than in the long wave 

infrared range (figure 3-1). So, the equivalent fire temperature (Tf) and equivalent proportion of a fire 

in a pixel (qf) can be computed by solving the system of two equations:  
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Ls1 =  qf Lbb,s1 (Tf) + (1- qf) Lbg,s1     (3-11) 

Ls2 =  qf Lbb,s2 (Tf) + (1- qf) Lbg,s2      (3-12) 

 

 where:  

Ls1 =   atmospherically-corrected pixel radiance of first infrared channel  

[W m-2 sr--1 � m-1] 

Ls2 =   atmospherically-corrected pixel radiance of a second infrared channel 

[W m-2 sr--1 � m-1] 

Lbb,s1 =  band-integrated Planck Function first infrared channel [Wm-2sr--1 ��� -1] 

Lbb,s2 =  band-integrated Planck Function second infrared channel  

[W m-2 sr--1 � m-1] 

Lbg,s1  = atmospherically-corrected mean background radiances of first infrared  

channel [W m-2 sr--1 � m-1] 

Lbg,s2  = atmospherically-corrected mean pixel radiances of second infrared 

channel  [W m-2 sr--1 � m-1] 

 

The equivalent fire temperature and fire area are the temperature and area of a fire component that 

would produce the same signal observed in the investigated spectral regions. Thus, the values of fire 

temperature and size returned by the bi-spectral technique are a clear simplification owing to the fact 

that real fires will have many different thermal components. The mean pixel radiances of the 

background (Lbg,s1, Lbg,s2) are estimated as the mean radiances of neighbouring non-fire pixels in the 

vicinity of the anomaly pixel. The band-integrated Planck Function is given by equations 3-2 and 3-4.  

 

The energy release of a sub-pixel fire (Mfire, bi-spectral) can be estimated using the temperature (Tf) and 

area (Af) provided by the bi-spectral technique according to equation 3-5 (Stefan-Boltzmann law) as: 

 

Mfire, bi-spectral  = ����� f
4 – Tbg

4) Af     (3-13) 

 

where:  

M fire, bi-spectral  =  radiative energy release of the fire derived via the bi-spectral 

technique  [W] 

Tbg   =  background temperature that is assumed to be equal to the  

mean temperature in the vicinity of the investigated fire pixel  

[K] 

Af   =  qf Asampl = equivalent fire area  [m2] 

 

The bi-spectral method is a common tool used to calculate the temperature and area of a sub-pixel hot 

spot (e.g. Prins et al., 1998; Robinson, 1991). Nevertheless, Giglio and Kendall (2001) reviewed the bi-
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spectral method and found large errors if careful consideration is not taken with respect to the accuracy 

of the inter-channel co-registration of the two input channels and of background characteristics 

(Wooster et al., 2003).  

 

A further disadvantage of the bi-spectral technique is the fact that it is restricted to image pixels that 

show anomalous and unsaturated pixel values in at least two input channels, at well-separated 

wavelength intervals. In addition, the bi-spectral retrievals are very sensitive to background 

temperature variations, resulting in for example a temperature retrieval error of a few hundreds of 

Kelvin for small fires (qf < 0.005 % of the pixel area), if the background temperatures varies about +/- 5 

K (Wooster et al., 2003). Due to these error sources, Giglio and Kendall (2001) suggest that reliable bi-

spectral estimates can only be derived if the fire size qf  exceeds 0.005 % of the pixel area. According to 

Wooster et al. (2003) the error induced by background temperature variations can be reduced, if the bi-

spectral technique is applied to hot pixel clusters rather than to individual single pixels. In addition, a 

clustering of anomaly pixels reduces the potentially large bi-spectral retrieval errors due to interchannel 

geometric co-registration errors (Wooster et al., 2003).  

 

3.3.2 The MODIS method 

Kaufman et al. (1996, 1998) first introduced the concept of FRE derivation via the analysis of a single 

infrared measurement. The so-called MODIS method is based on semi-empirical relationships between 

the fire spectral radiances measured in the 3.9 � �������	��
���������������
����������! #"$�&%���')(�*�+�,�-���./��
��0�������,�
132547698*: ;<;�6>=@?BA6�C/DBEFE-G�DHA�6�EI6+J�K,;ML&N�OQPRL6TSUO VXW�8ZY�LD�J�J6�E[G�D\N*N]6>EI6�Y+;�6>=^D\N�;�L�6_:$J\`ba\;�Y�LD�J�J6>E-c�?�C5;ML6dc�:ICe6
analysis, since this spectral range is very sensitive to 600 K to 1000 K hot vegetation fire (see figure 3-

1, Planck Function of a 600 K and 1000 K blackbody).  

 

Kaufman et al. (1998) carried out simulations of vegetation fire scenarios each containing different 
fMgh�i�j*k,l0m�nFioh#k�pq^fMgh>i)jrkBlts&kBu�v\wiox,ybp�qzu�xBj/{&xBph9pHfo|*}�n~fMgn$p�k^{&x�f�h9p,f�nIk,l0�������!���3� �X� �����F�o�_�&�$�&�>���Q�R��+�
plotted brightness and temperature differences between simulated fire and neighbouring background 

pixel, against the total FRE release and found, within the limits of the MODIS sensor saturation, very 

good linear correlations. Thus, a constant factor could be computed that relates the brightness 

temperature difference of a detected fire and neighbouring background pixel directly to the fire total 

radiative energy release:  

 

M fire, MODIS  =  a Asampl (T MIR,p
8 – T MIR,bg

8)    (3-14) 

 

 

where:  

M fire, MODIS  =  radiative energy release of the coal fire derived via the 
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MODIS method (W) 

TMIR,p   =  brightness temperature of potential fire pixel [K] 

TMIR,bg   =  mean brightness temperature of neighbouring non-fire image  

pixels (K) 

a   =  constant factor derived through a best-fit relationship of  

simulated fire scenarios between the FRE and the composite- 
����������	
�����������������������������������������������! ���"$#&%('*),+.-0/21�34�� ����������

 

 

Wooster et al. (2003) adapted the MODIS method to the BIRD MIR channel, where it was seen to have 

large errors in cases where fire temperature is below 600 K. 

 

3.3.3 The MIR method 

Wooster et al. (2003) recently presented an alternative technique, the so-called MIR method, to 

compute FRE directly from spectral radiances recorded in the BIRD MIR channel. The MIR radiance 

method is based on the assumption that the total FRE is linearly proportional to the fire pixel radiance 

recorded in the MIR spectral range: 

 

Mfire, MIR =  b Asampl (LMIR,P - LMIR,BG)    (3-15)

     

where:  

Mfire, MIR  =  radiative energy release of the coal fire derived via the MIR 

method [W] 

b   =  constant derived through a best-fit relationship between  

blackbody temperature and emitted spectral radiance in the 

BIRD MIR range 

LMIR,P  =  atmospherically-corrected MIR radiance of image pixel  

[W m-2 sr--1 1 m-1] 

LMIR,BG =  atmospherically-corrected mean radiance of neighbouring  

non-fire image pixel [W m-2 sr--1 1 m-1] 

 

It is important to note that in contrast to the MODIS method the constant factor b is derived through a 

best-fit relationship, between blackbody temperature and emitted spectral radiance in the BIRD MIR 

range, and not through a semi-empirical relationship. Analogous to the MODIS method, the MIR 

method is only applicable in the case where fire temperature is higher then ~600 K (Wooster et al., 

2003). A major advantage of single-band fire quantification methods (MODIS and MIR methods) is 

the fact that they do not rely on an exact geometric co-registration of different instrument channels.  
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GENERAL OVERVIEW AND FIELD INVESTIGATIONS 

OF THE RUQIGOU, GULABEN AND WUDA 

COALFIELDS  
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4 GEOGRAPHIC AND GEOLOGICAL OVERVIEW OF THE RUQIGOU, 

GULABEN AND WUDA COALFIELDS 

In China, the formation of coal on a geological scale occurred in seven periods: Late Carboniferous to 

Lower Permian, Late Permian, Late Triassic, Early to Middle Jurassic, Late Jurassic to Early 

Cretaceous, Eogene and Neogene. Carboniferous and Middle Permian coal basins are situated in 

northern China, Late Permian and Late Triassic coals occur in southern China, Early to Middle Jurassic 

basins lie in the north-western and northern China, Late Jurassic to Early Cretaceous and Eogene 

basins are located in north-eastern China, while Neogene coal basins are formed in south-western 

China (Ren et al., 1999). Nowadays, the Late Carboniferous to Lower Permian coal bearing strata in 

China are classified as being of Middle to Upper Permian age by many international geologists. The 

classification follows the results of Diaz et al. (1983) and Jones (1995) which consider the former Late 

Carboniferous to Lower Permian to be part of the Cathaysia floral province that developed after a 

Lower Permian transgression.  

 

Figure 4-1: Location of the Wuda, Ruqigou and Gulaben coalfields.  

 

The three coalfields Wuda, Ruqigou and Gulaben investigated in this study are situated in northern 

China (figure 4-1), in the Helan Mountain area and consist of coal-bearing strata of Middle to Late 

Permian (former Permo-Carboniferous) or Middle Jurassic age.  
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4.1 General geological and geographical description of the Helan Mountain area  

The following geological and geographical description mainly follows the description of Halik et al. 

(2003) and Gielisch and Kahlen (2003). The two papers are internal project reports, which summarize 

scientific papers and field reports which are mainly written in Chinese.  

 

The Helan Mountains (Helan Shan) are located in the Ningxia Hui Autonomous Region and the Inner 

Mongolia Autonomous Region in north China. The 300 km long mountain range stretches 

approximately 30° north-east, from the town Wuda in the north to the town Zhongwei in the south. The 

mountains show average altitudes of about 2000 m above sea level. 

The Gobi desert, with its wide and open plains, is located west and north of the Helan Mountains, 

while the alluvial plain of the Yellow River (Huang He) is directly connected to the east. The Helan 

Shan belongs to the central Asian desert region and has a continental desert climate with long cold 

winters and very hot summers (Halik et al., 2003).  

 

The Helan Shan is located in the western margin of the North China platform. Oldest rocks belong to 

the Precambrian and are followed by Cambrian and Ordovician platform limestones and dolomites. A 

wide hiatus separates Ordovician from Middle Permian (former Permo-Carboniferous) sediments. 

During the Middle Permian a transgression took place on the North China Platform, which continued 

during the Late Permian and lead to the development of a paralic environment in the Helan Shan area. 

The Permian in North China ranged successively from upland, through alluvial and fluvial plain, 

paralic delta and tidal flat to shallow marine. Upper Permian marine carbonates represent the last 

marine influence in the Helan Shan. In the Uppermost Permian a major regression resulted in an 

alluvial-fluvial facies that is documented by conglomerates, sandstones and shales.  

 

During the Triassic a fluvio-lacustrine environment prevailed in the Helan Shan area. Lower Jurassic is 

missing, while during Middle Jurassic coal bearing sequences of the Ruqigou Formation reveal an 

environment dominated by rivers and swamps. In the Upper Jurassic the area was upli fted and a 

lacustrine environment developed. Lower Cretaceous coarse grained sandstones and conglomerates 

eroded from older Helan Shan formations reflect the upli ft of the area during the Yanshan ‘Orogeny’ . 

In Tertiary, the Himalaya Orogeny caused repeated upli fting and incision of the older strata and fluvial 

sandstones and conglomerates were deposited in intra-mountainous basins. Precambrian to Tertiary 

rocks in the Helan Shan are partly overlaid by quaternary Yellow River deposits and Gobi sands 

(Gielisch and Kahlen, 2003; Dai et al., 2002).  

 

The Helan Mountains are a typical fault-block that is mainly controlled by an extensional stress field 

(Chen, 1997). The northern and central part of the Helan Shan can be tectonically subdivided into a 

northern Palaeozoic Fold Belt, an archean basement attached to the Fold Belt in the south, a Palaeozoic 



4 Geographic and geological overview of the Ruqigou, Gulaben and Wuda coalfields 

28 

to Mesozoic Fold Belt of the central Helan Shan and an Archean to Lower Paleozoic region in the 

south (Gielisch and Kahlen, 2003).  

 

4.2 Ruqigou and Gulaben coalfields 

The Ruqigou and Gulaben coalfields (figure 4-2) are situated at the border between the Ningxia 

Autonomous Region and the Inner Mongolia Autonomous Region, in the central Helan Mountains, at 

elevations between 1,800 m and 2,500 m above sea level. The Ruqigou coalfield is under 

administration of Ningxia, while the Gulaben coalfield belongs to Inner Mongolia. The Gulaben 

coalfield lies approximately 10 km west of Ruqigou coalfield and the area covered by both coalfields 

stretches between latitudes 39°00’ N to 39°01’ N and longitude 106°03’ E to 106°11’ E and covers 

about 80 km² in total. The coalfields include the mining towns Ruqigou, Baiji gou, Dafeng and 

Gulaben. Chen (1997) reports an annual precipitation of 238 mm for the Ruqigou and Gulaben area 

with a maximum annual potential evaporation of 2720 mm. As the geological situation and many 

mining aspects are identical in Gulaben and Ruqigou, the following subsections cover both coalfields.  

 

a) b) 

c) 

Figure 4-2: Ruqigou and Gulaben 
coalfields. a) Coal town in the Ruqigou 
coalfield; b) burning mountain in the 
Ruqigou coalfield; c) outcropping coal 
layers and small scale mining activities 
in the Gulaben coalfield.  
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4.2.1 Geological situation 

The Ruqigou and Gulaben coalfields are part of the Palaeozoic to Mesozoic Fold Belt of the central 

Helan Shan. The Fold Belt is gently folded and shows a general strike from north-east to south-west. 

Both coalfields are part of a wide, synclinorial structure following the general strike of the Fold Belt 

and including the Chutangou Syncline in the north-west, the Houlugou Anticline (Gulaben coalfield) 

and the Ruqigou Syncline (Ruqigou coalfield) in the south-east. The flanks of the Ruqigou Syncline 

have low dip angles (5° to 30°), while the western flank of the Houlugou Anticline is rather steep (35° 

to 75°) (Gielisch and Kahlen, 2003; DMT, 2001).  

 

The coal seams in both coalfields belong to the Middle Jurassic Ruqigou Formation, which consists of 

alternating sandstone, sil tstone, shale and coal layer. The deposition environment was lacustrine-fluvial 

including swamps and fluvial channels. Zhang (1998) reports a total formation thickness of 349 m, 

while the total average coal seam thickness is about 41 m (Chen, 1997). More than ten coal seams are 

described in the Ruqigou Formation, but only three are regionally distributed in the coalfields (Chen, 

1997). Mining operations mainly focus on coal seam No. 2 which has an average cumulative thickness 

of 19 m and can reach a thickness of up to 40 m in some locations (Chen, 1997).  

 

4.2.2 Mining situation and coal properties 

Mining operations have been carried out in both coalfields since the 1960’s. The seven mines in the 

Gulaben coalfield are mainly operated by the Inner Mongolia Tai Xi Anthracite Group, owned by the 

local government of the Alasag County. The three major mines in the Ruqigou coalfield all belong to 

the Ruqigou Mining Company (Ningxia Industry Bureau of Coal). Next to the major mines, about 50 

privately owned, small-scale mines are still i n operation in both coalfields (figure 4-2), although 

attempts were carried out in recent years to close these mines. The annual coal production in the year 

2000 reported from the major mines is about 4 Mt for the Ruqigou coalfield and about 1 Mt for the 

Gulaben coalfield (Kuenzer et al., submitted; DMT, 2001). 

 

With the exception of the Dafeng Mine (Ruqigou coalfield) and the small-scale private mines, coal is 

produced underground in both coalfields. Due to the steeper dip in the Gulaben coalfield the degree of 

mechanisation of the underground mines is limited. The underground mining in the Ruqigou coalfield 

is mainly restricted to coal seam No. 2 and is carried out by means of mechanized longwall techniques 

at various levels (DMT, 2001).  

 

The coal quali ty is very wide ranging, from low volatile bituminous to anthracite coal. The Federal 

Institute for Materials Research and Testing (BAM, Germany) has recently carried out laboratory 

investigations on coal from the Gulaben and Ruqigou coalfields. The laboratory experiments were 

carried out for only a few coal samples from the Wuda, Gulaben and Ruqigou coalfields and are thus 
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not necessarily representative for natural coal properties. A detailed description of the method and 

results of this primary analysis is given by Krause (2003). The samples from the Gulaben coalfield, 

taken in a depth of 45 m, were given a rank of 2.5 to 3.0, while the Ruqigou coal samples, taken in a 

depth of 70 m, were ranked as 2.0 to 3.5. The results of the element analysis as well as the determined 

water content, ash content and calorific value are listed in table 4-1 and 4-2.  

 

 C in % H in % N in % 

Gulaben 85.720 ± 2.414 3.242 ± 0.042 0.683 ± 0.052 

Ruqigou 74.972 ± 4.586 2.904 ± 0.045 0.653 ± 0.033 

Table 4-1: Content of carbon, hydrogen and nitrogen in coal samples of the Ruqigou and Gulaben 
coalfields (elemental analysis performed at BAM; Krause, 2003).  

 

 Gulaben Ruqigou 

Water content in % of mass  0.97 ± 0.02 2.62 ± 0.11 

Ash content in % of mass  5.1 14.9 

Calorific value in kJ / kg  33661 29226 

Table 4-2: Water content, ash content and calorific value of coal samples of the Ruqigou and Gulaben 
coalfields (elemental analysis performed at BAM; Krause, 2003).  

 

Self-ignition experiments were conducted by the BAM (Krause, 2003) for coal samples from the 

Gulaben coalfield by a so-called hot storage experiment. Here, coal samples are stored in a laboratory 

oven under isothermal conditions. Due to the fact that the self-ignition temperature depends on the 

specific internal surface (description in chapter 2), the experiment was carried out for coal samples of 

different volume and shape. Cubical coal pieces with edge lengths of 1 cm, 4 cm and 6 cm showed 

self-ignition temperatures of 578 K, 568 K and 562 K, respectively. Self-ignition temperatures 

measured for crushed coal of 100 ml, 200 ml and 300 ml were 567 K, 562 K and 552 K, respectively.  

 

In addition, coal samples from the Wuda coalfield were tested for their capacity for ignition from an 

external ignition source. The Wuda coal has a lower coal rank than the Ruqigou and Gulaben coal (see 

next sections) and is thus considered to be more easily ignitable than the Ruqigou and Gulaben coal. 

Using a heated coil , with surface temperatures between 973 K and 1173 K , that was kept in contact 

with the unmodified Wuda coal sample for about 34 hours, it appeared that it was not possible to ignite 

the Wuda coal. Hence, these primary experiments indicate that an external ignition source capable of 

igniting solid coal with a high coal rank from the Gulaben and Ruqigou coalfields needs to be very hot 

and in long direct contact with the coal. Nevertheless, Krause (2003) demonstrated that crushed Wuda 
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coal samples could be externally ignited in a similar experiment. It is important to note here that these 

are only preliminary results and that a more detailed investigation of coal samples from the Ruqigou 

and Gulaben coalfields is to be carried out in the coming years within the Sino-German Coal Fire 

Initiative.  

 

4.2.3 Coal fires 

 

Coal fires in the Gulaben coalfields cover an area of about 960000 m² affecting about 10 Mt of coal 

reserve. In 2002 and 2003 seven active coal fires were reported by the local mining management, 

stretching in a row along the strike direction of coal seam No. 2. Single fires extend more than 1 km in 

the strike direction of the coal seam, with a maximum depth of 200 m in dip direction. Beside sub-

surface coal fires, surface coal fires burning directly on the outcropping coal seam can be observed at 

different locations. According to the Tai Xi Anthracite Group, all coal fires in the Gulaben coalfield are 

strongly linked to mining activities exclusively related to former private mining operations. Fire 

fighting activities were undertaken in recent years in the Gulaben coalfield, mainly by means of the 

injection of water-clay or a special mixture of cement and water clay in open cracks. This method’s 

a) b) 

c) 

Figure 4-3: Fire fighting activities in 
the Ruqigou and Gulaben coalfields. 
Coal fire fighting by a) excavating 
burning coal seams, b) by blurring 
water (arrow) directly on surface coal 
fires, c) by injecting a water / cement 
mixture in open cracks.  
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primary aim is to isolate coal fires from non fire areas, and was successfully applied to cease a coal fire 

close to mining operations (DMT, 2001).  

 

Nineteen active coal seam fires (e.g. figure 4-2) were reported from the Ruqigou coalfield, affecting an 

area of more than 2000000 m². The coal fires are widespread along the Ruqigou syncline and are in 

most cases caused by mining activities. The Ningxia Administration Bureau for Safety Inspection for 

Coal has, since the late 1970's, undertaken intensive fire fighting activities in the Ruqigou coalfield. In 

total, around 80 milli on CNY (~ 8 milli on Euro) has already been spent on fire fighting activities, with 

an additional 30 milli on CNY allocated for the near future. About 80 % of the active coal fires are 

currently covered by extinction activities, resulting in a nearly complete absence of surface coal fires. 

Active fire fighting is commonly undertaken by either covering the fire with a loess blanket, by 

injecting a water-clay-cement mixture in open cracks or by directly excavating the fire (figure 4-3). 

The fire excavation is often carried out by private companies which gain the right to sell the excavated 

'fire coal' (DMT, 2001).  

 

4.3 Wuda coalfield 

The Wuda coalfield (figure 4-4) is located at the northern tip of the Helan Shan Mountains in a 

relatively flat topography region, with elevations ranging between 1100 m and 1300 m above sea level. 

It belongs to the Inner Mongolia Autonomous Region, stretches between latitude 39°26’ N to 39°38’N 

and longitude 106°36’ E to 106°46’ E and is situated west of the coal-town Wuda. In total the Wuda 

coalfield has a spatial extension of 35 km². The Gobi Dessert and the Helan Shan Mountains surround 

the coalfield in northern, southern and eastern direction, while the Yellow River in the east supplies 

enough water to allow agriculture close to the coalfield. Average annual temperatures in the Wuda area 

vary around 9 °C with temperature minimum and maximum of -26 °C and 40 °C. The average annual 

potential evaporation of 3500 mm exceeds vastly the annual average precipitation of 168 mm and 

indicates very dry climatic conditions (Halik et al., 2003). 

 

4.3.1 Geological situation 

The Wuda coalfield is an isolated outcrop of Late Palaeozoic strata and belongs tectonically to the 

northern Palaeozoic Fold Belt of the Helan Shan. The Late Palaeozoic strata are exposed in a 10 km 

wide north-south striking syncline with gently (6° to 10°) dipping western flanks and a north plunging 

fold axis, and the eastern flank of the syncline is cut by a major north-south striking thrust fold (DMT, 

2001). 

 

The coal-bearing strata in the Wuda coalfield are of Middle to Late Permian age (former Permo-

Carboniferous) and include the Benxi Formation, the Taiyuan Formation, the Shanxi Formation, the 
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Xiashihezi Formation and the Shangshihezi Formation.4-1) The major coal bearing formation is the 

Taiyuan Formation, which consists of 5 coal layers (No. 9, No. 10, No. 12, No. 13 and No. 15) 

interbedded in a sequence of alternating sandstone, limestone and mudstone layers. The thickness of 

this formation varies between 70 m and 140 m. In total, 24 coal seams with a various thickness and 

lateral continuity are reported from the Wuda coalfield, including 14 that are presently mined. The coal 

seam thickness ranges between 0.2 m and 6 m (Dai et al., 2002; DMT, 2001).  

 

4.3.2 Mining situation and coal properties 

Mining operations in the Wuda coalfield include three major underground mines (Wuhushan, 

Huangbaici, Suhai-Tu), managed by the Wuda Mining Bureau (Shenhua Group). 27 Mt of mineable 

coal reserves are stated for the Wuda coalfield. The underground mines commonly operate at a depth 

of 100 m and mechanized longwall methods are applied to extract coal. In addition, small-scale mines 

occur within the whole Wuda syncline, although major attempts were undertaken in recent years to 

close these private mines.  

 

The Wuda coalfield is one of the major coking coal mining areas in north China (Dai et al., 2002). 

Besides coking coal, fat and steam coal is extracted from the coal seams. Coal samples, taken in depth 

of 80 m, were determined by the BAM to rank between 1.5 and 2.0 (Krause, 2003). The coal properties 

of these samples are listed in table 4-3 and 4-4.  

 C in wt % H in wt % N in wt % 

Wuda 53.818 ± 1.81 3.611 ± 0.088 0.897 ± 0.054 

Table 4-3: Content of carbon, hydrogen and nitrogen in coal samples of the Wuda coalfield (elemental 
analysis performed at BAM; Krause, 2003).  

 

 Wuda 
 

Water content in % of mass  1.57 ± 0.015 (“dry” ) 
4.4 ± 0.09 (“wet” ) 

Ash content in % of mass  36.1 

Calorific value in kJ / kg  21063 

Table 4-4: Water content, ash content and calorific value of coal samples of the Wuda coalfield 
(elemental analysis performed at BAM; Krause, 2003).  

 

                                                   
4-1) The name convention follows the former classification system and, to avoid confusion, is not adapted to the 

new stratigraphic classification of Diaz et al. (1983) and Jones (1995). 
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Self-ignition experiments had not yet been conducted by the BAM for the Wuda coal samples, but the 

significantly lower coal rank of the Wuda coal indicates lower self-ignition temperatures, cf. self-

ignition temperatures listed in section 4.2.2 for the Gulaben coal samples (see also chapter 2, section 

2.1). As already mentioned in section 4.2.2 a heated coil with surface temperatures between 973 K and 

1173 K could not ignite the unmodified Wuda coal sample, while the crushed coal sample could be 

ignited (Krause, 2003).  

 

4.3.3 Coal fires 

Nowadays, an area of 3700000 m² is affected by a coal fires in the Wuda syncline resulting in an 

estimated annual direct coal loss of 200000 t during the last years. It is estimated that since the 1960s 

about 10 Mt of coal are directly or indirectly destroyed. The first underground coal seam fire started in 

the 1960’s only a few years after the mining operations started (DMT, 2001). In general, it is stated by 

the Wuda Mining Bureau that most coal fires are directly linked to small-scale mining activities. Two 

coal seams are said to be particularly prone to spontaneous combustion (No. 9 and No. 10) and coal  

a) b) 

c) 

Figure 4-4: Wuda coalfield. a) Wuda 
coal factory; b) fire fighting by 
covering near surface coal fires with a 
water / colloid mixture; c) near surface 
coal fires with heavy smoke 
development.  
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stockpiles in the Wuda coalfield ignite due to spontaneous combustion after three to six months 

(Kuenzer et al. submitted; DMT, 2001).  

 

Nowadays, around twenty coal fires in the Wuda coalfield occur underground or near surface and are 

widespread along the western flank of the syncline. Recent fire fighting activities have been restricted 

to coal fires that directly affected large-scale mining operations, resulting in an acceleration of the coal 

fire problem from year to year. Due to the lack of systematic fire fighting activities, near surface coal 

fires with heavy smoke development are widely scattered within the syncline (figure 4-4). In addition 

to coal seam fires, burning stockpiles can be observed in the northern and eastern part of the coalfield.  
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5 FIELD OBSERVATIONS OF THE RUQIGOU, GULABEN AND WUDA 

COALFIELDS 

The coal fires of the Wuda, Ruqigou and Gulaben coalfield were investigated during two field 

campaigns in September 2002 and September 2003. The main task of this field activity was to measure 

surface temperatures of coal fires, in order to determine typical temperatures of coal fire induced 

surface anomalies. In addition, coal fire surface anomalies of the Gulaben, Ruqigou and Wuda 

coalfields were mapped to delineate exact coal fire locations. Because an accurate calibration of the 

satelli te data is crucial for satelli te-based coal fire quantification, measurements were taken of the 

temperature of the most suitable calibration targets situated close to the study areas (Yellow River), 

synchronous with ASTER, ETM and BIRD overpasses. Finally, temperatures of non-fire areas were 

investigated for typical surface materials at different temporal settings, in order to analyse background 

temperature variations.  

 

5.1 Coal fire mapping 

The investigation focussed on coal fire related, surface anomaly zones. The term coal fire related 

surface anomaly (CFSA) refers to coal fire induced anomaly pattern that are developed at the surface of 

an under-ground or surface coal fire. During the investigation in September 2002 the CFSA zones in 

the Wuda, Ruqigou and Gulaben coalfields were mapped at a scale of 1:25000 (figure 5-1). The CFSA 

zones of the Wuda coalfield are numbered according to local coal fire maps, while the CFSA of the 

Ruqigou and Gulaben coalfields are labelled with the author’s own indices. Note that during the field 

investigations only coal seam fires were mapped, while burning stock piles, widespread in the eastern 

and northern part of the Wuda syncline, were not considered.5-1)  

 

Since the Wuda coalfield is easy to access, and the local mining companies strongly supported the field 

activities, all coal fires in this coalfield could be investigated and mapped. Since the Ruqigou and 

Gulaben coalfields are diff icult to access and parts of the coalfields are additionally inaccessible 

because of restrictions from the local authorities, not all coal fire areas could be investigated. If a 

particular coal fire could not be mapped, the coal fire delineation was based on information from local 

fire fighting teams, rather than on the author’s own field observations. In order to clearly differentiate 

between CFSA and abnormal high background temperatures caused by strong sun heating, only 

temperature anomalies that exceeded the maximum background temperature by at least 5 K and 

showed non-thermal burning indicators (e.g. smoke, mineral crystalli sation), were mapped. The CFSA 

of sub-surface coal fires are distinctly heterogeneous and the separation of single CFSA (e.g. single fire 

cracks or fire holes) of one coal fire area was, with respect to the mapping scale, often not possible. 

Therefore, all CFSA that belong to one sub-surface coal fire were mapped as one continuous polygon. 

                                                   
5-1) The term coal fires refers in the following thesis to coal seam fires.  
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Consequently the mapped fire anomalies have to be regarded as zones, each containing a certain 

number of CFSA, rather than as continuous anomaly areas. 

Figure 5-1: Coal fire related surface anomalies (CFSA) mapped during the field campaign in 
September 2002 (red outline) on top of the panchromatic channel of the ETM scene from 29th 
September 2002. The red outlined areas should be regarded as zones each containing a certain 
number of CFSA rather than as continuous anomaly areas. The CFSA zones of the Wuda coalfield are 
numbered according to local fire maps, whilst the CFSA of the Ruqigou coalfield are labelled with the 
author’s own indices. Top) CFSA zones in the Wuda coalfield; bottom) CFSA zones in the Ruqigou and 
Gulaben coalfields. 
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5.2 Temperatures and sizes of coal fire induced surface anomalies in the study areas 

Approximately 800 surface temperature measurements were carried out on representative underground 

fires and surface coal fires in the three study areas. These took place during September 2002 and 

September 2003, using a radiant thermometer and / or a handheld thermal infrared camera. The 

technical characteristics of the radiant thermometer and the thermal camera used for the measurements 

are listed in table 5-1 and table 5-2.  

 type 
 

temperature range temperature resolution  opening angle 

radiant 
thermometer 

Raytec MX2 -30 °C to 900 °C 0.1 K / 1 % of absolute T 19 mm at 1.15 m 

Table 5-1: Technical characteristics of the radiant thermometer used during the field campaigns in 
September 2002 and September 2003. 

 

 type temperature range temperature 
resolution 

opening angle spectral 
range 

size of 
thermal 
image 

thermal 
camera 

CAM/ 
TM E 

-20 °C to 250 °C 0.1 K / 2 % of 
absolute T 

25 ° / 0.3 m 7.5 µm to 13 
µm 

160 x 120 
pixel 

Table 5-2: Technical characteristics of the thermal camera used during the field campaign in 
September 2003. 

 

The temperature measurements were conducted under similar meteorological conditions (blue-sky 

conditions) with air temperatures ranging between 298 K and 311 K. As in the case of the coal fire 

mapping, only CFSA that exceeded the maximum background value of at least 5 K, and that 

additionally showed non-thermal burning indicators (e.g. smoke, mineral crystalli sation), were taken 

into account. 

 

Average and maximum radiant temperatures determined for investigated coal fire areas are listed in 

table 5-3. All observed coal fire areas showed heterogeneous surface temperatures. CFSA on sub-

surface coal fires were mainly restricted to several centimetres and up to two metre wide cracks or 

holes, with a maximum diameter of four metres. Observed burning zones on outcropping coal seams 

(surface coal fires) were mostly in a smouldering stage, and always included non-burning coal or 

burned-out coal ashes. The percentage of CFSA in an ETM pixel, with a corresponding area of 60 m² x 

60 m², was, in all cases, relatively small , and did not exceed 30 %. Mean surface radiant temperatures 

of investigated coal fires range between 339 K and 459 K, while high average temperatures mainly 

correlate with surface coal fires or strongly collapsed near sub-surface fire zones.  
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coal fire 
ID 

date of 
investigation 

fire characteristics 
�

 
measure-

ments 

T 
background 

[K] 

T 
mean 
[K] 

T 
max 
[K] 

 
Wuda  
2 
 

09 / 2003 sub-surface coal fire, 
partly covered by sand 

38 301 to 312 339 407 

Wuda  
3 

09 / 2003 near surface and sub-
surface coal fire, area 
strongly collapsed, 
sandstone or shale 
surface 
 

64 302 to 320 358 810 

Wuda  
5 

09 / 2003 sub-surface coal fire, 
cracks and fire holes 
with max. diameter 5 m 
 

57 301 to 312 355 519 

Wuda  
6 

09 / 2003 sub-surface coal fire, 
partly collapsed, shale 
and sandstone surface, 
fire holes with max. 
diameter 3 m and cracks 
 

51 301 to 320 404 683 

Wuda  
7 

09 / 2003 sub-surface coal fire, 
parts strongly collapsed, 
homogenous sandstone 
plateau 

110 306 to 330 collapse 
zone: 
396 

crack zone: 
375 

collapse 
zone: 638 

 
crack 
zone: 
588 

Wuda  
8 

09 / 2003 near surface sub-surface 
coal fire, collapse and 
crack zone, sandstone 
and shale surface 

80 303 to 333 collapse 
zone: 
459 

crack 
zone: 
359 

collapse 
zone: 
798 

crack 
zone: 
863 

Wuda  
11 

09 / 2003 sub-surface coal fire, 
surface anomalies 
mainly along cracks 
 

96 301 to 322 388 698 

Wuda  
12 

09 / 2003 sub-surface and surface 
coal fire, cracks and fire 
holes 
 

58 298 to 315 419 879 

Wuda  
16 

09 / 2003 sub-surface and surface 
coal fire, surface 
anomalies are mainly 
restricted to outcropping 
coal seam 
 

31 304 to 324 371 474 

Ruqigou 
7 

09 / 2003 surface coal fire along 
outcropping coal seam 
 

62 298 to 326 377 874 

Ruqigou 
11 

09 / 2002 surface coal fire along 
outcropping coal seam 
 

32 303 to 316 410 690 

Gulaben 
9 

09 / 2002 surface coal fire along 
steeply dipping coal 
seam 
 

28 307 to 324 422 713 
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coal fire 
ID 

date of 
investigation 

fire characteristics �  
measure-

ments 

T 
background 

[K] 

T 
mean 
[K] 

T 
max 
[K] 

 
Gulaben 
12 

09 / 2002 surface coal fire along a 
steeply dipping coal 
seam 
 

34 305 to 326 395 658 

Table 5-3: Temperatures of CFSA of representative coal fires taken in the study areas, measured 
during the field campaign in 2002 and 2003. Temperature investigations were performed using a ����������	�
�
 �������������
���������
  � �����  

 

Maximum radiant temperatures measured on the surface of investigated coal fires depend strongly on 

the particular fire characteristics ranging from 407 K to 879 K. Although average anomaly 

temperatures are below 460 K, 460 K to 600 K CFSA components occur in most of the observed 

CFSA. Nevertheless, these relatively hot zones are locally limited and usually cover less than 20 % of 

the CFSA. Hot spots with temperatures of 600 K or higher can be regarded as an absolute exception. 

They only occur along cracks of near-surface coal fires, or directly on surface coal fires, and are always 

restricted to small areas within the investigated coal fire zone, never exceeding more then 15 m² within 

an ETM pixel equivalent area. 

 

5.3 Detailed investigation of a sub-surface and a near-surface coal fire in the Wuda coalfield 

Two coal fires in the Wuda coalfield were investigated in detail: a sub-surface (fire 7) and a near-

surface coal fire (fire 8). Both fires were mapped at a scale of approximately 1: 5000 (figure 5-2) in 

September 2002 and different temperature measurements were undertaken during both field 

campaigns.  

 

An optical image, as well as thermal images of the sub-surface coal fire 7, can be seen in figure 5-3. 

The images were taken along the southernmost edge of the investigated coal fire area. The sub-surface 

coal fire is entirely covered by a nearly horizontal, several metre thick sandstone layer. Parts of this 

sandstone layer are in a state of extreme collapse (dotted and dashed areas in figure 5-2) and several 

metre wide cracks and fire holes, with relatively intensive surface temperature anomalies, are 

developed in this zone. In addition, up to 1 metre wide cracks (red lines figure 5-2) can be observed 

approximately parallel or perpendicular to former mining channels. The CFSA along the coal fire 

cracks were relatively weak during the two field observation campaigns.  
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Figure 5-2: Detailed maps of the coal fires 7 and 8 of the Wuda coalfield. Red lines = coal fire cracks 
with a maximum width of 1 m, red dotted area = strongly collapsed bedrock with active but weak coal 
fire activity, red dashed area = strongly collapsed zone with intensive coal fire activity (fire 7) or a 
near-surface coal fire (fire 8). Left) Sub-surface coal fire 7, upper left corner 4376400 / 641000 (UTM, 
WGS 84); right) near-surface coal fire 8, upper left corner 4374850 / 638900 (UTM, WGS 84).  

 

About 110 temperature measurements were performed with the radiant thermometer, at the site of the 

sub-surface coal fire, and several thermal images were taken in September 2003. In September 2002 

brightness temperatures were measured along two profiles synchronous with Landsat ETM night and 

daytime satellite overpasses. The temperature profiles are shown in figures 9-1 and 9-2. The local 

extent, and the thermal properties of the CFSA, had not changed significantly from September 2002 to 

September 2003.  

 

 
 

350 m 350 m 

N N 
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Figure 5-3: Thermal and optical images taken in September 2003 of the Wuda coal fire number 7. 
Top) Optical image of the coal fire area; middle) thermal image at 11:30 am; bottom) thermal image 
at 11:30 pm. Each image is a mosaic of 4 thermal camera pictures. The images clearly indicate that 
relatively hot coal fire related surface temperatures only occur along a few, locally very limited spots. 

N 
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Figure 5-4: Infrared images (left) and optical photos of corresponding area (right) of crack zones 
along a sub-surface coal fire (coal fire number 7) at the Wuda coalfield. The temperature pattern in a, 
c and e can be regarded as representative for coal fire cracks in the Wuda coalfield, while the 
temperature pattern in g, with temperatures exceeding 500 K, are abnormal high.  
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The radiant temperatures of the CFSA on the investigated sub-surface coal fire ranged between 325 K 

and 638 K in September 2003. Typical temperature pattern of fire cracks and holes of the Wuda coal 

fire 7 are shown in figure 5-4. The average temperature of CFSA measured along fire cracks was 375 

K in September 2003, while the average temperature of CFSA in the collapsed zone was, at 396 K, 

slightly higher. The thermal images in figure 5-3, and the temperature profiles in figures 9-1 and 9-2, 

clearly indicate that the temperatures are not evenly distributed within the mapped CFSA, and that 

CFSA exceeding 400 K are locally very limited. A conductive heat transport could only be observed in 

the direct environment of fire cracks or holes of the investigated coal fire, resulting in a thermal aureole 

of less than 3 m.  

 

Approximately 80 radiant-temperature measurements were carried out at the Wuda near-surface coal 

fire 8, and additionally, thermal images were taken during the second field campaign. Two temperature 

profiles were taken synchronously with a daytime ETM overpass in September 2002 (chapter 9, figure 

9-3). Night-time temperature profiles could not be measured because, this fire area was not accessible 

during night-time. Thermal and optical images of the near-surface coal fire zones are displayed in 

figure 5-5. The map of the CFSA is displayed in figure 5-2.  

 

The burning coal layer of the investigated fire zone is steeply dipping, and CFSA are restricted to an 

approximately 200 m wide zone along the coal seam, including several fire cracks and holes, as well as 

near-surface coal fires. The geological strata in this area are roughly N-S striking, and change from 

white sandstone layers and black shale in the West, to outcropping coal seams and yellow sandstone 

layers in the East. Maximum surface temperatures reached up to 863 K in September 2002, but the size 

of these hot spots with temperatures of more than 600 K was locally very limited, and did not exceed 5 

m2.  

 

Intensive fire activities were observed in the northern and southern part of this CFSA zone, while the 

centre part of this coal fire was relatively inactive. Average temperatures of CFSA of this near-surface 

coal fire were with 459 K higher than average temperatures of the investigated zone of the coal fire 

number 7. The thermal images in figure 5-5 clearly indicate that the temperatures in the CFSA zone 

were rather heterogeneous. High radiant surface temperatures could be observed locally along crack 

zones (figure 5-4, a-d), but as in the case of coal fire number 7 the overall temperatures (figure 5-4, g-j) 

were rather low.  
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Figure 5-5: Infrared images (left), and optical photos of the corresponding area (right), of a near-
surface coal fire (coal fire number 8) at the Wuda coalfield. Temperatures of hot cracks (a – d) exceed 
locally 380 K, while the overall temperatures measured over large areas (e –j) is remarcably lower. 
The infrared pictures were taken with a handheld thermal camera.  

a) b) 

c) d) 

e) f) 

g) h) 

i) j) 

1 m 

1 m 
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5.4 Intraday variations of background and coal fire temperatures 

In order to examine temperature variations of different background materials and different sun facing 

slopes, temperature measurements of typical surface materials (vegetation, sandstone and black shale 

surfaces) and of a representative hill slope were performed with the radiant thermometer. In addition 

intraday temperature measurements of two fire cracks were carried out with the hand-held thermal 

camera. All measurements were undertaken on the 23rd September 2002 and the 18th September 2003, 

under blue-sky conditions, with maximum air temperatures of 311 K.  

 

Intraday temperature plots of a horizontal black shale surface, a horizontal sandstone surface, a 

horizontal vegetation surface and a fire crack are shown in figure 5-6. The plots clearly indicate that at 

the time of the ASTER, ETM and BIRD overpasses (approx. 10:30 am and 12:00 am) the radiant-

temperature difference between surfaces covered with vegetation, and a black shale surface, is 

significant, showing an approx. 15 K difference. Temperature variations of different surface materials 

therefore must be considered as significant during summer daytime satelli te acquisition. At 7:30 pm all 

investigated surfaces show relatively similar radiant temperatures, indicating that background 

variations are rather low after sunset. The temperature of the investigated fire crack varies during the 

day, but the variation is not clearly linked to the sun intensity.  

Figure 5-6: Intraday temperature measurements of a horizontal black shale surface (black), a 
horizontal sandstone surface (yellow), a horizontal vegetation surface (green) and a fire crack (red). 
Ten different measurements were performed on each investigated surface. Dotted lines mark minimum 
and maximum temperatures, while solid lines mark corresponding mean temperatures. The graph 
clearly indicates that background temperature (surfaces including no fire) are significant during 
daytime overpasses (~ 10:30 to 12 am), but are relatively low after sunset (sun set ~ 6 pm). 

 

Figure 5-7 shows intraday, radiant-temperature measurements of an east- and west-facing slope of a 

sandstone hill . The flanks of the investigated hill are gently dipping with a slope of about 25° for the 
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western flank, and a slope of about 10° for the eastern flank. The hill can be considered as 

representative for the topography of the Wuda coalfield, while the relief energy is significantly higher 

in the Ruqigou and Gulaben coalfield. The average temperature difference between the eastern and 

western facing mountain side is maximally 7 K at the time of the satelli te overpass (~ 10:30 to 12 am), 

and therefore significant temperature variations, due to uneven solar heating, can be expected on 

daytime summer data. 

Figure 5-7: Intraday temperature measurements of an approximately east- (10° dip, red) and west- 
facing (25° dip, blue) slope. Dotted lines mark minimum and maximum temperatures, while solid lines 
mark corresponding mean temperatures. The graph clearly indicates that temperature variations, due 
to uneven sun heating, can be signifi cant during daytime summer satellit e overpasses (~ 10:30 to 12 
am), even in a relatively flat topography.  

 

Thermal images of two fire cracks taken from sunrise to noon are ill ustrated in figures 5-8 and 5-9. The 

images were taken on relatively homogeneous surfaces. Both figures clearly indicate that the coal fire 

induced, temperature anomalies can be clearly detected shortly after sunrise. Although the surface 

material close to the two fire cracks is relatively homogeneous, background variations become 

significant at about 10 am, and the CFSA are then much more diff icult to discern than early after sun 

rise. In addition, a CFSA appears along the fire crack 2 (red arrow, figure 5-9) at 10 am which cannot 

be related to the coal fire crack. At 1 pm the temperature anomalies are spread along the crack and are 

diff icult to discern, at least along fire crack 2. Nevertheless it is important to note here, that the 

anomalies are significantly stronger around noon and are superimposed on the relatively warm 

background. The intraday measurements of the two fire cracks clearly indicate that temperature 
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variations during summer daytime definitely limit the recognition of CFSA. However the temperature 

anomalies do not disappear, but are superimposed on the background.  

Figure 5-8: Temperature distribution on fire crack. a) Optical image; b) thermal image 7:00 am; c) 
thermal image 8:30 am; d) thermal image 10:00 am; e) thermal image 11:30 am; f) thermal image 1 
pm.  

1m 

a) b) 

c) d) 

e) f) 
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Figure 5-9: Temperature distribution on fire crack 2. a) Optical image; b) thermal image 7:00 am; c) 
thermal image 8:30 am; d) thermal image 10:00 am; e) thermal image 11:30 am; f) thermal image 
1:00 pm. The red arrow marks a CFSA that is not linked to the coal fire, but appears from the 10:00 
am image onward due to imbalanced sun heating. 

 

5.5 Temperature measurements of the Yellow River water surface 

Temperatures of the Yellow River water surface were measured at one location, synchronous with 

satellite overpasses to provide a relaible calibration traget. The measured radiant temperatures are listed 

in table 5-4.  

a) b) 

c) d) 

e) f) 

1m 
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time T mean 
[°C] 

T min 
[°C] 

T max 
[°C] 

number 
of 

measurements 

2002/09/21 10:30 am 16.1 16.0 16.3 4 

2002/09/21 12:00 am 17.1 16.5 17.3 5 

2002/09/21 10:30 pm 13.7 13.5 13.9 3 

2003/09/28 10:30 pm 15.3 14.7 15.9 4 

Table 5-4: Temperature measurements of the Yellow River water surface during cloud free ASTER, 
ETM and BIRD satellite overpasses in September 2002.  

 

5.6 Conclusions  

With respect to satelli te image based, coal fire quantification, the field observations allow for the 

following conclusions: 

 

• CFSA in all three study areas have average temperatures ranging from 339 K to 459 K. CFSA 

with temperatures of more than 600 K occur very seldom and are locally limited. The 

measured temperatures are similar to typical coal fire related temperatures reported by Zhang 

(1998) from coalfields in Xinjiang (description in chapter 2, section 2.3). The observed 

maximum temperature limit of 600 K, reported from Goerlich (2004, pers. communication) for 

the majority of the coal fires in Xinjiang, is also valid for the three investigated coalfields in 

central China. Thus, a satelli te data based coal fire quantification concept has to target ‘warm’ 

spots rather than ‘hot spots’  with average temperatures of less than 600 K.  

 

• The area of CFSA in our study area is rather small , not exceeding 30 % of ground segments 

corresponding to an ETM pixel. Because BIRD and ASTER pixels are larger than an ETM 

pixel (description in chapter 6), an image pixel that corresponds with a coal fire will always 

contain both fire and background information. A satelli te based coal fire quantification concept 

therefore has to be based on a sub-pixel concept.  
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• Background variations due to different surface materials and sun exposure can be significant 

during summer daytime and can distinctly limit the recognition of CFSA. Thus, optimal 

temporal conditions, for satellite observation of coal fires, are those periods that have low, or 

no sun reflectance (i.e. night-time or winter data).  
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6 THE POTENTIAL OF THE ETM, ASTER AND BIRD INSTRUMENT TO 

REGISTER SPECTRAL COAL FIRE RADIANCES 

This chapter consists of an investigation of the thermal channels of the ETM, ASTER and BIRD 

instruments. The investigation is aimed at ascertaining each instrument’s sensitivity to the registration 

of spectral coal fire radiances, and takes into consideration the sensor-specific, spectral response 

functions and the thermal properties of coal fires observed during the field campaigns. The theoretical 

investigations are performed for different background and coal fire scenarios. In addition, the potential 

of each instrument to observe spectral coal fire radiances in two unsaturated and spectral well-

separated channels is analysed. 

 

6.1 Methods 

6.1.1 Simulated coal fire and background conditions 

Simulated fire temperatures range between 300 K and 900 K, while simulated fire sizes for ASTER 

and ETM simulations range between 1 % and 100 % pixel coverage (max. 3600 m2 ETM, max 8100 m² 

ASTER). For the BIRD sensitivity studies a maximum fire size of 10000 m² was assumed. The 

scenarios include typical temperatures and sizes of investigated coal fire induced, surface anomalies 

(CFSA). 

 

Simulated background scenarios represent typical temperatures or surface reflectances of coal-bearing 

strata in the study areas. In the SWIR spectral range the background radiances consist only of reflected 

sunlight (description chapter 3, section 3.1.2). Five different background conditions are assumed for 

SWIR simulations: 

 

• Night-time: no reflectance  (R I) 

• Daytime homogeneous coal surface: 10 % reflectance (R II) 

• Daytime homogeneous sandstone surface: 27 % reflectance  (R III) 

• Daytime heterogeneous coal surface: 10 % reflectance (background variation 20 % 

reflectance) (R IV) 

• Daytime heterogeneous sandstone surface: 27 % reflectance (background variation 20 % 

reflectance) (R V) 

 

The assumed SWIR background reflectances are averages measured by Claudia Kuenzer (DLR) on 

coal and sandstone surfaces during the field campaign in September 2002 at the Wuda coalfield 

(Kuenzer, 2003, pers. communication).  
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In the TIR range the sun reflectance is absent (description in chapter 3, section 3.1.2). Consequently, 

the TIR background conditions are considered here to be exclusively emissive. In the MIR spectral 

region the self-emitted terrestrial radiation becomes significant (description in chapter 3, section 3.1.2). 

Nevertheless, due to the need for simplification the reflected sun radiation is neglected in this study.  

 

Four different background winter and summer conditions are assumed for MIR and TIR channel 

simulations:  

 

• Winter homogeneous background: temperature 273 K (Th I) 

• Summer homogeneous background: temperature 298 K (Th II) 

• Winter heterogeneous background: temperature 273 K (background variation +/- 5 K, Th 

III) 

• Summer heterogeneous background: temperature 298 K (background variation +/- 10 K, 

Th IV)   

 

Background radiance variations are significantly lower during the night-time than during the daytime 

due to absence of direct sun heating. The homogeneous TIR background simulations are thus 

representative for night-time conditions, while the heterogeneous TIR simulations reflect daytime 

conditions. Due to the fact that the MIR reflectance is neglected in this study, MIR simulations are only 

fully representative for night-time conditions. Summer background variations approximately reflect the 

10:30 am background variation measured during the field campaign (description in chapter 5, section 

5.4), while winter background variations are typical, average background temperature variations, 

observed in ETM or ASTER winter thermal data.  

 

6.1.2 Sensitivity criteria 

Within this study a specific channel of the ASTER, ETM and BIRD instrument is considered to be 

sensitive to the registration of spectral coal fire radiances if:  

 

• the investigated channel has a spectral response function in the SWIR, MIR or TIR spectral 

range. Our field observations revealed that most coal fire related surface temperatures lie 

within the temperature range of 350 K to 600 K. According to Planck' s Law (equation 3-2, 

figure 3-1) 350 K to 600 K blackbodies make no significant emissions in the NIR spectral 

range, but emit in the TIR, MIR or SWIR spectral range. Thus, only SWIR, MIR or TIR 

spectral channels have a potential to register spectral coal fire radiances.  

 

• the spectral radiance of most of the representative coal fire scenarios exceeds the 

background radiance / reflectance and the sensor related errors. The background radiance is 
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considered to represent the atmospherically corrected, band-integrated Planck function at 

the background temperature in case of a homogeneous background. For a heterogeneous 

background the background radiance is considered to be the atmospherically corrected, 

band-integrated Planck function at the background temperature plus the maximum 

background variation. These criteria are referred to in the following study as the lower 

registration limit (LD).  

 

• the spectral radiance of at least one representative coal fire scenario is lower than the 

saturation limit of the investigated instrument channel (= upper registration limit: UD). In 

the case where a coal fire corresponding image pixel is saturated, the absolute magnitute of 

emitted spectral coal fire radiance cannot be determined.  

 

6.1.3 Sensitivity calculations 

In order to study the sensitivity of the specific instrument channels to the registration of spectral coal 

fire radiances, simulated coal fire sizes and temperatures are plotted against pixel integrated spectral 

radiances, recorded in the investigated BIRD, ASTER and ETM spectral channels (figure 6-1 to 6-15). 

The data of each plot in figures 6-1 to 6-10 and 6-12 to 6-15 are model simulations of image pixel 

corresponding ground segments, each containing a fire component of the indicated temperature and 

size, superimposed on a constant background temperature or reflectance. Different plots are performed 

for the different background scenarios described in section 6.1.1. Horizontal dashed lines in figures 6-1 

to 6-10 and 6-12 to 6-15 indicate the ASTER, ETM and BIRD lower registration limit (LD), or the 

ASTER and ETM saturation limit (UD).  

 

Owing to the fact that CFSA in all three investigated study areas are significantly smaller than an 

ASTER, ETM or BIRD pixel (description in chapter 5, section 5.2), a sub-pixel concept was applied to 

compute the channel-integrated, spectral radiances. The sub-pixel computation was performed using 

equation 3-11. Band integrated fire and background blackbody radiances (Lbb,s1 and Lbg,s1 in equation 3-

11) were calculated via equations 3-2 and 3-4. An atmospheric correction was performed, to compute 

corresponding at-sensor radiances, using atmospheric parameters listed in tables 6-1 and 6-2. The 

atmospheric parameters were computed via the MODTRAN radiative transfer model (Berk et al., 

1998) and adapted to dry desert conditions, with an assumed ground height of 1000 m above sea level.  
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 h 
[km] 

Lpath ���������
	��� � ���
 

trans 
 

Flux 
[MW  / m² � m] 

ETM channel 6 (TIR) 1.0 1891.7 0.7557 5141.4 

BIRD MIR channel (visibilit y 20 km, no reflectance) 1.0 32.4 0.7445 304.9 

BIRD TIR channel (visibilit y 20 km) 1.0 
 

1854.1 0.7107 5206.4 

ASTER channel 10 (TIR, visibil ity 20 km) 1.0 980.3 
 

0.8341 4396.1 

ASTER channel 13 (TIR, visibilit y 20 km) 1.0 317.8 0.9538 1460.0 

Table 6-1: Atmospheric parameters used to model MIR and TIR atmospheric effects. Lpath = path 
radiance, trans = transmissivity, h = height above sea level.  

 

 h 
[km] 

Lpath 
[MW  / m² ����� ���  

Edir * trans 
[MW  / cm² � m] 

Ediff * trans 
[MW / cm² 

� ���  

trans 

ETM channel 5 (SWIR, visibilit y 20 
km, solar zenith 40°) 
 

1.0 0.0398382 16.3147 3.41728 0.9569 

ETM channel 7 (SWIR, visibilit y 20 
km, solar zenith 40°) 

1.0 0.0121439 5.68096 1.12056 0.9343 

Table 6-2: Atmospheric parameters used to model SWIR atmospheric effects. Lpath = path radiance, 
trans = transmissivity, Edir * trans = direct flux * transmissivity, Ediff * trans = diffuse flux * 
transmissivity, h = height above sea level. 

 

6.2 ETM sensitivity study 

6.2.1 Satellite and instrument characteristics 

The Enhanced Thematic Mapper (ETM) scanning radiometer, on the Landsat 7 satelli te, is the latest of 

a series of earth observation instruments dating back to 1972. The Landsat Program is managed 

cooperatively by the National Aeronautics and Space Administration (NASA, US), the National 

Oceanic and Atmospheric Administration (NOAA, US) and the US Geological Survey (USGS). 

Landsat 7 was launched in 1999, into a sun-synchronous, near polar orbit. The spacecraft crosses the 

Equator between 10:00 am and 10:15 am on a descending north to south path, completes over 14 orbits 

per day and covers the entire earth every 16 days.  
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The ETM instrument scans the earth with a swath width of 185 km and replicates the capabili ties of the 

Thematic Mapper on Landsat 4 and 5. Unlike its predecessors the ETM includes new features, like a 

panchromatic band with a 15 m spatial resolution, an improved radiometric calibration and a TIR 

channel with a 60 m spatial resolution. The spectral characteristics of the ETM instrument are listed in 

table 6-3.  

band number 
 

spectral range [ �����  ground resolution [m] 

1 (VIS) 0.45 to 0.515 30 

2 (VIS) 0.525 to 0.605 30 

3 (VIS) 0.63 to 0.69 30 

4 (NIR) 0.75 to 0.90 30 

5 (SWIR) 1.55 to 1.75 30 

6 (TIR) 10.4 to 12.5 60 

7 (SWIR) 2.09 to 2.35 30 

Pan (VIS, NIR) 0.52 to 0.90 15 

Table 6-3: Spectral characteristics of the ETM instrument.  

 

The ETM instrument has an 8 bit radiometric resolution and is designed to achieve a radiometric data 

calibration with a 5 % degree of uncertainty. The ETM channels have both low and high gain setting. 

The low gain sensor setting measures a greater radiance with decreased sensitivity, while high gain 

measures a lesser radiance range with an increased sensitivity. The thermal infrared channel 6 has two 

gain settings, a high and a low gain setting. For other channels the instrument registers image data in 

one of two possible gain settings depending on the solar conditions during data acquisition.  

 

The Landsat 7 ETM is an operational satelli te system, i.e. the capacities of the satelli te, instrument and 

ground stations are suff icient to allow continuous acquisition. The ETM instrument is supported by a 

ground network that receives ETM data, via direct downlink, at the primary receiving station at the 

USGS in South Dakota, and throughout a world wide network of receiving stations. The data sets are 

made available on-line via the EROS Data Center. On request systematically corrected level 1b 

products (i.e. corrected for scan direction and band alignment as well as radiometric and geometric 

corrected) are generated and distributed to users.  

 

A mechanical failure of the ETM instrument’s scan line corrector on the 31st May 2003 has made later 

data sets unusable for scientific applications. The scan line corrector normally compensates for the 

significant geometric image distortion, resulting from the satelli te’s rapid forward motion.  
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6.2.2 Sensitivity study  

The two ETM SWIR channels and the TIR channel were investigated in this study. Figures 6-1 to 6-6 

show different fire sizes and temperatures plotted against simulated ETM SWIR and TIR spectral at-

sensor radiances. The SWIR fire scenarios are plotted for background conditions R I to V, while the 

TIR fire scenarios are plotted for background conditions Th I to IV (background conditions: see section 

6.1.1). Tables 6-4 and 6-5 summarize the lower (LD) and upper coal fire registration limits (UD) 

derived from figures 6-1 to 6-6. The upper coal fire registration limits (UD) in tables 6-4 and 6-5 and 

figures 6-1 to 6-6 reflect the saturation limit of the corresponding ETM low gain channel.  
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Figure 6-1: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the ETM channel 5. The dotted lines mark the lower and upper detection limits. Top) night-time: no 
reflectance (R I); middle) daytime homogeneous coal surface: 10 % reflectance (R II); bottom) daytime 
homogeneous sandstone surface: 27 % reflectance (R III). 
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Figure 6-2: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the ETM channel 5. The dotted lines mark the lower and upper detection limits. Top) daytime 
heterogeneous coal surface: 10 % reflectance, max. variation 20 % reflectance (R IV); bottom) 
daytime heterogeneous sandstone surface: 27 % reflectance, max. variation 20 % reflectance (R V). 
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Figure 6-3: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the ETM channel 7. The dotted lines mark the lower and upper detection limits. Top) night-time: no 
reflectance (R I); middle) daytime homogeneous coal surface: 10 % reflectance (R II); bottom) daytime 
homogeneous sandstone surface: 27 % reflectance (R III). 
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Figure 6-4: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire ares and background conditions, recorded by 
the ETM channel 7. The dotted lines mark the lower and upper detection limits. Top) daytime 
heterogeneous coal surface: 10 % reflectance, max. variation 20 % reflectance (R IV); bottom) 
daytime homogeneous sandstone surface: 27 % reflectance, max. variation 20 % reflectance (R V). 
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Figure 6-5: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the ETM channel 6. The dotted lines mark the lower and upper detection limits. Top) winter 
homogeneous background: background temperature 273 K (Th I); bottom) winter background: 
background temperature 273 K, max. background variation 5 K (Th III). 
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Figure 6-6: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire area and background conditions, recorded by 
the ETM channel 6. The ground segment corresponds with an image pixel and contains a sub-pixel fire 
component at various fire temperatures, fire area and background conditions. The dotted lines mark 
the lower and upper detection limits. Top) summer homogeneous background: background 
temperature 298 K (Th II); bottom) summer background: background temperature 298 K, max. 
background variation 10 K (Th IV). 
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channel 5 fire area [m²] channel 7 fire area [m²] background scenar io 

T 
fire 

600 K 
 

T 
fire 

500 K 

T 
fire 

400 K 

T 
fire 

600 K 

T 
fire 

500 K 

T 
fire 

400 K 

R I 
(night-time, no reflectance) 

LD 300 
UD 3600 

- - LD 9 
UD 1000 

LD 100 
UD 3600 

- 

R II 
(daytime, homogeneous 
coal surface) 

- - - LD 10 
UD 1000 

LD 100 
UD 3600 

- 

R III 
(daytime, homogeneous 
sandstone surface) 

- - - LD 30 
UD 1000 

- - 

R IV 
(daytime, heterogeneous 
coal surface 

- - - LD 200 
UD 1000 

- - 

R V 
(daytime heterogeneous 
sandstone surface) 

- - - LD 300 
UD 900 

- - 

Table 6-4: Minimum and maximum coal fire size that can be registered by the ETM channels 5 and 7 
at certain fire temperatures and background conditions. LD = lower detection limit, UD = upper 
registration limit low gain. The different background scenarios are described in detail i n section 6.1.1. 
A 600 K coal fire, for example, can only be registered under night-time conditions (R I) by the ETM 
channel 5, when the fire size, within a ground segment corresponding image pixel, ranges between 300 
m² and 3600 m².  

 
channel 6 fire area [m²] background scenar io 

T 
fire 

600 K 
 

T 
fire 

500 K 

T 
fire 

400 K 

Th I 
(winter, homogeneous background) 

LD 10 
UD 600 

LD 20 
UD 1000 

LD 30 
UD 2100 

Th II 
(summer, homogeneous background) 

LD 10 
UD 500 

LD 20 
UD 900 

LD 70 
UD 2050 

Th III 
(winter, heterogeneous background) 

LD 20 
UD 600 

LD 40 
UD 1000 

LD 100 
UD 2100 

Th IV 
(summer, heterogeneous background) 
 

LD 60 
UD 500 

LD 100 
UD 900 

LD 200 
UD 2050 

Table 6-5: Minimum and maximum coal fire sizes that can be registered by the ETM channel 6 at a 
certain fire temperature and background condition. LD = lower registration limit, UD = upper 
registration limit low gain. The different background scenarios are described in detail , in section 6.1.1. 
A 600 K coal fire, for example, can be registered in winter, on a homogeneous background (Th I) by 
the ETM channel 6, provided that the fire size, within an image pixel-correspondent ground segment, 
ranges between 10 m² and 600 m².  
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Table 6-4 and figures 6-1 to 6-2 clearly indicate that the capacity of the ETM 5 channel to register 

spectral fire radiances is restricted to fires with high temperatures and / or large sizes. 600 K fires can 

only be registered during night-time if the fire size exceeds 300 m². Fires with temperatures of around 

500 K or lower cannot be registered by the ETM 5 channel under the assumed background conditions. 

Investigated CFSA in the study areas are relatively cold, with average temperatures ranging between 

339 K and 459 K (description in chapter 5, section 5.2). Consequently the majority of coal fires that 

were investigated cannot be detected by the ETM channel 5.  

 

During field observations coal fire related, surface hot spots were observed, with temperatures 

exceeding 600 K. These were locally very limited, with a maximum size of 15 m² in a ground segment 

corresponding with an ETM pixel (description in chapter 5, section 5.2). Figure 6-1 demonstrates that 

700 K to 800 K hot spots, with sizes of about 15 m², are close to the lower detection limit of the ETM 

channel 5, under absolutly homogeneous background conditions. Thus, under optimal conditions (e.g. 

night-time) these exceptionally hot surface, or near surface coal fire spots could produce very weak 

signals in the ETM channel 5.  

 

Although the ETM channel 7 can register significantly smaller and / or colder fires, in comparison with 

the ETM channel 5, the majority of investigated CFSA cannot be detected. 600 K fires can be 

registered by the ETM channel 7 under all modelled background conditions, but, due to the relatively 

low saturation limit, the maximum fire size is restricted to about 1000 m² (table 6-4, figures 6-3 to 6-4). 

500 K fires can only be registered if the background surface shows no radiance variations and if the fire 

size exceeds 100 m². Fires with temperatures of 400 K or less cannot be recorded by the ETM 7 

channel. Uppermost average surface temperatures (~ 450 K) of coal fires in the studied coalfields are 

thus at the registration limit of the ETM channel 7. Geological strata in the coalfields consist of closely 

alternating layers, with different surface reflectances (e.g. sandstone and coal layers) and the 

occurrence of large homogeneous surfaces is thus not likely. Consequently, the capabili ty of the ETM 

7 channel to record spectral coal fire radiances is restricted to coal fires with exceptional hot surface 

temperatures during night-time.  

 

The ETM 6 channel has a high potential to register CFSA (table 6-5, figures 6-5 to 6-6). Spectral 

radiances of fires with average temperature of 600 K can be recorded from a minimum size of about 10 

m² (winter, homogeneous background) up to 60 m² onward (summer, heterogeneous background). 

Nevertheless, the low saturation limit of this channel restricts the registration of 600 K fires to a 

maximum size of 600 m². A 500 K fire can be registered up to a size of 1000 m², in winter on a 

homogeneous background, while the minimum detectable fire size of a 500 K fire is about 20 m². On a 

heterogeneous summer background a 500 K fire can be registered if the fire size ranges between 100 

m² and 900 m². CFSA with average temperatures of about 400 K can be recorded by the ETM 6 
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channel for fire sizes ranging between 30 m² and 2100 m² (homogeneous winter background) and 200 

m² to 2000 m² (heterogeneous summer background). Average temperatures of CFSA in the study areas 

range between 339 K and 459 K, while the maximum fire size in an ETM corresponding ground 

segment is smaller than 1000 m². Spectral radiances of the overall majority of CFSA in the study areas 

can thus be recorded by the ETM 6 channel, at least during night-time (homogeneous background).  

 

According to tables 6-4 and 6-5 and figures 6-1 to 6-6, increased and unsaturated pixel values in two 

ETM channels are very unlikely to be found for the investigated coal fires. A 400 K fire does not 

produce increased signals in two channels under the assumed background conditions. 600 K or 500 K 

fires can produce unsaturated signals in two channels, if the fire size ranges between 10 m² and 1000 

m² or 100 m² to 1000 m², respectively. Nevertheless, average temperatures of observed CFSA are 

lower than 500 K and it is thus very unlikely that any investigated coal fire zone in the Wuda, Gulaben 

and Ruqigou coalfield would reveal increased and unsaturated pixels in two ETM channels.  

 

6.2.3 Conclusions 

According to this sensitivity study the ETM channel 6 has a high potential to register spectral coal fire 

radiances, while the capabili ty of the two ETM SWIR channels to record spectral coal fire radiances is 

very limited.  

 

A bi-spectral fire quantification (Dozier, 1981) needs increased and unsaturated pixel values in at least 

two, well-separated input channels (description in chapter 3, section 3.3.1). The ETM SWIR and TIR 

channels are spectrally well-separated, but anomalous and unsaturated pixel values in two channels are, 

according to this study, very unlikely. Prakash et al. (1997) and Zhang et al. (1997) report increased 

and unsaturated pixel values in two TM SWIR channels from surface coal fires in northern China and 

India. The two TM SWIR channels have a lower spatial resolution, but approximately the same 

spectral resolution as the ETM SWIR channels, and have therefore, a lower capacity to register coal 

fire related spectral radiances. Nevertheless, the number of coal fire induced, increased SWIR pixels is 

very limited in both studies. The bi-spectral technique is considered here as a tool that can be applied to 

quantify exceptionally large or hot surface coal fires, but which is not applicable to generally quantify 

coal fires.  

 

Alternative fire quantification techniques (MIR and MODIS methods: described in chapter 3, section 

3.3.2 and 3.3.3) derive CFRE from only one input channel. The optimal ETM channel for such a fire 

quantification concept is, according to this study, definitively the ETM TIR channel. Nevertheless, 

existing approaches are based on MIR pixel radiances, fail for fire temperatures below 600 K, and 

cannot, therefore, be directly applied to an ETM band based coal fire quantification.  
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6.3 ASTER sensitivity study 

6.3.1 Satellite and instrument characteristics 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was launched on 

NASA’s Earth Observing System (EOS) Terra satellite in December 1999. The ASTER program is 

managed in cooperation between the NASA, Japan’s Ministry of Economy, Trade and Industry (METI) 

and the U.S. Earth Remote Sensing Data Analysis Center (ERSDAC).  

 

The Terra satellite is flying on a 705 km sun-synchronous orbit with a 10:30 am equatorial crossing. 

The ASTER instrument includes three different sub-systems: The Visible and Near Infrared (VNIR), 

the Shortwave Infrared (SWIR) and the Thermal Infrared (TIR) sub-system. The VNIR sub-system, 
���������
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ETM, ASTER has five different TIR and six different SWIR channels. The ASTER TIR channels have, 

however, a 50% lower spatial resolution when compared with the ETM TIR channel. The different TIR 

and SWIR channels were primary-designed for geological applications, and are located at carbonate, 

hydrogen and sili cate absorption bands. The characteristics of the ASTER instrument are summarized 

in table 6-6.  

Table 6-6: ASTER instrument characteristics.  

 

characteristic 
 

VNIR 
 

SWIR 
 

TIR 
 

spectral range band 1: 0.52 - 0.60 µm band 4: 1.600 - 1.700 µm band 10: 8.125 - 8.475 µm 

 band 2: 0.63 - 0.69 µm band 5: 2.145 - 2.185 µm band 11: 8.475 - 8.825 µm 

 

band 3: 0.76 - 0.86 µm 
(nadir and background 

observation) 
 

band 6: 2.185 - 2.225 µm band 12: 8.925 - 9.275 µm 

  band 7: 2.235 - 2.285 µm band 13: 10.25 - 10.95 µm 

  band 8: 2.295 - 2.365 µm band 14: 10.95 - 11.65 µm 

  band 9: 2.360 - 2.430 µm  

ground resolution [m] 15 30 90 

swath width [km] 60 60 60 

quantization [bits] 8 8 12 
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The backward looking band 3 provides stereo data allowing the generation of digital elevation models. 

The swath width of the ASTER instrument is 60 km x 60 km. The ASTER TIR sub-system registers 

spectral radiances with a 12 bit radiometric resolution, higher than the ETM TIR channel.  

 

The ASTER is an experimental, on-demand instrument, i.e. ASTER data is only acquired in response 

to a user-submitted, acquisition request. The Earth Remote Sensing Data Analysis Center (ERSDAC) 

is the body responsible for the processing and distribution of ASTER data. The ERSDAC can process a 

wide variety of products, ranging from level 1a (raw data format) to level 4 data (end product). High 

level products include spectral radiances and reflectance of the Earth' s surface, surface temperatures 

and emissivities, digital elevation maps, surface composition and vegetation maps, as well as cloud, 

sea, ice, and polar ice products.  

 

6.3.2 Sensitivity study 

The spectral range of the ASTER SWIR channels is very close to the spectral range of the ETM SWIR 

channels, and as both instrument channels also share an identical spatial resolution, the ASTER SWIR 

channels were not included in this study. The ETM channel 6 covers more or less the entire ASTER 

TIR spectral range, but has, in contrast to the ASTER TIR channels, a higher spatial resolution. In 

order to analyse the effect of the lower spatial resolution of the ASTER system, two ASTER TIR 

channels (channels 10 and 14) were investigated regarding their potential to register spectral fire 

radiances. The spectral range of the two channels reflects both the upper and lower limit of the ASTER 

TIR spectral range. The results of the ASTER sensitivity study are summarised in table 6-7 and 6-8. 

The sensitivity plots are presented in figures 6-7 to 6-10. 
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Figure 6-7: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the ASTER channel 10. The dotted lines mark the lower and upper detection limits. Top) winter 
homogeneous background: background temperature 273 K (Th I); bottom) winter background: 
background temperature 273 K, max. background variation 5 K (Th III). 
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Figure 6-8: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the ASTER channel 10. The dotted lines mark the lower and upper detection limits. Top) summer 
homogeneous background: background temperature 298 K (Th I); bottom) summer background: 
background temperature 298 K, max. background variation 10 K (Th III). 
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Figure 6-9: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the ASTER channel 14. The dotted lines mark the lower and upper detection limits. Top) winter 
homogeneous background: background temperature 273 K (Th I); bottom) winter background: 
background temperature 273 K, max. background variation 5 K (Th III). 
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Figure 6-10: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the ASTER channel 14. The dotted lines mark the lower and upper detection limits. Top) summer 
homogeneous background: background temperature 298 K (Th I); bottom) summer background: 
background temperature 298 K, max. background variation 10 K (Th III). 
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ASTER channel 10 fire area [m²] background scenar io 

T 
fire 

600 K 

T 
fire 

500 K 

T 
fire 

400 K 
 

Th I 
(winter, homogeneous background) 

LD 8 
UD 1100 

LD 18 
UD 2300 

LD 60 
UD 6000 

Th II 
(summer, homogeneous background) 

LD 9 
UD 900 

LD 30 
UD 1900 

LD 90 
UD 5700 

Th III 
(winter, heterogeneous background) 

LD 45 
UD 1100 

 

LD 80 
UD 2300 

 

LD 200 
UD 6000 

Th IV 
(summer, heterogeneous background) 
 

LD 100 
UD 900 

LD 130 
UD 1900 

LD 600 
UD 5700 

Table 6-7: Minimum and maximum coal fire size that can be registered by the ASTER channel 10, at 
certain fire temperatures and background conditions. LD = lower registration limit, UD = upper 
registration limit low gain. The different background scenarios are described in detail in section 6.1.1.  

 

ASTER channel 14 fire area [m²] background scenar io 

T 
fire 

600 K 

T 
fire 

500 K 

T 
fire 

400 K 
Th I 
(winter, homogeneous background) 

LD 23 
UD 1050 

LD 37 
UD 2400 

LD 60 
UD 5700 

Th II 
(summer, homogeneous background) 

LD 25 
UD 1100 

LD 40 
UD 2100 

LD 100 
UD 5000 

Th III 
(winter, heterogeneous background) 

LD 70 
UD 1050 

 

LD 110 
UD 2400 

 

LD 260 
UD 5700 

Th IV 
(summer, heterogeneous background) 
 

LD 150 
UD 1100 

LD 250 
UD 2100 

LD 700 
UD 5000 

Table 6-8: Minimum and maximum coal fire size which can be registered by the ASTER channel 14 at 
certain fire temperatures and background conditions. LD = lower registration limit, UD = upper 
registration limit low gain. The different background scenarios are described in detail in section 6.1.1.  
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Figures 6-7 to 6-10, and tables 6-7 and 6-8, ill ustrate that the two investigated ASTER TIR channels 

have a very similar sensitivity to the registration of spectral coal fire radiances. This reflects the very 

narrow spectral range of the ASTER TIR channels. In general, the ASTER channel 10 has a slightly 

higher sensitivity to register spectral coal fire radiance then the ASTER channel 14.  

 

Due to the spatial resolution of the ASTER TIR sub-system, the investigated ASTER TIR channels 

have a generally higher minimum detection limit than the ETM TIR channel (tables 6-5, 6-7 and 6-8, 

6-9). However, the minimum detectable fires size under homogeneous background conditions, for the 

ASTER 10 channel, is only max. 30 m² higher compared to the ETM TIR channel. Under 

heterogeneous background conditions the minimum detection limit of the ASTER TIR channel 10 is 

with max. 400 m² significantly higher. 

 

The ASTER TIR sub-system performs 5 thermal infrared measurements at different spectral ranges, 

although the spectral range of the individual bands is very narrow. The bi-spectral method (Dozier, 

1981) builds on radiance differences induced by the hot portion within an image pixel at two different 

spectral ranges (description in chapter 3, section 3.3.1). In figure 6-11 band-integrated Planck functions 

for different temperatures are plotted against spectral radiances observed by the different ASTER TIR 

bands. This figure clearly ill ustrates that the radiance difference observed by the different ASTER TIR 

channels is very low in the temperature range that can be expected for CFSA. In addition, the two 

analysed ASTER TIR channels have shown a very similar sensitivity to the registration of spectral coal 

fire radiances, indicating that the coal fire-induced, ASTER TIR radiance differences are very small . 

Consequently, it is not expected here that the bi-spectral technique can be applied to ASTER TIR input 

data in order to derive stable coal fire estimates.  
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Figure 6-11: Band-averaged Planck’s function for the ASTER TIR channels. Due to the fact that the 
ASTER TIR channels have an upper saturation limit, the band-averaged Planck’s function is only given 
in the sensiti vity range of the corresponding TIR bands. The plot indicates that the radiance difference 
observed by the different TIR sensors is very low in the temperature range expected CFSA. [T > 
300K] . Red = channel 10, yellow = channel 11, green = channel 12, light blue = channel 13, blue = 
channel 14. 

 

6.3.3 Conclusions 

This theoretical analysis has demonstrated that the ASTER TIR channels have a high potential to 

register spectral coal fire radiances. The lower spatial resolution of the ASTER TIR channels, when 

compared to the ETM TIR channels, is not critical under homogeneous background conditions (e.g. 

night-time), but might, under daytime conditions, prevent the detection of some of the low radiative 

fire components. This study has revealed that the ASTER channel 10 has a slightly higher sensitivity to 

the registration of spectral coal fire radiance than the ASTER channel 14.  

 

Although the ASTER sensor performs spectral measurements at different TIR spectral ranges, this 

study has shown that the bi-spectral technique can not be applied to retrieve stable coal fire estimates. 

Consequently, any ASTER coal fire quantification approach must be based on a single-band TIR 

approach.  
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6.4 BIRD sensitivity study 

6.4.1 Satellite and instrument characteristics 

The DLR small satellite BIRD is a technology demonstrating mission of new infrared pushbroom 

channels, specifically designed to support the detection and quantification of hot spots on the earth’s 

surface. The BIRD satellite was launched into a sun-synchronous orbit in October 2001 (Briess et al., 

2003).  

 

The satellite carries two imaging instruments, the Hot Spot Recognition System (HSRS) and a Wide-

Angle Optoelectronic Stereo Scanner (WAOSS-B). The HSRS has two well-separated thermal 
������������	�
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-B instrument possesses a nadir-looking, near-infrared band, 
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instruments are summarised in table 6.7.  

 HSRS WAOSS-B 

spectral bands º�»½¼¿¾BÀ�Á Â Ã ÄÆÅ«ÇÉÈ�Ê Ë�Ì�Ä  ÍcÎ½Ï¿ÐBÑ�Ò Ó�Ô ÕÆÖ«×>Ø�Ù Ú�Û�Õ
 

Ü´Ý�Þ ß�à�á â�à�ã äÆå�æ·ç�è é�ê�ë�ä
 ìÉí½îÉï�ð�ñHò�ó·ô«õÉð�ñHö�ð�÷�ø

 
field of view 
 

19° 50° 

ground pixel size 370 m 185 m 

sampling step 185 m 185 m 

swath width 190 km 533 km 

Table 6-9: Technical characteristics of the two BIRD imaging instruments.  

 

BIRD HSRS data areover-sampled by a factor of two, along both x and y axes, resulting in a sampling 

step of 185 m. The sampling step coincides with the resolution of the WAOSS-B. A unique feature of 

the HSRS MIR and TIR channels is a real-time adjustment of their integration time (Skrbek and 

Lorenz, 1998). If on-board processing of HSRS data indicates that detector elements are saturated, or 

close to saturation, in the first exposure, then a second exposure is performed within the same sampling 

interval, with a reduced integration time. This eliminates detector saturation over high temperature 

targets, but preserves a 0.1 - 0.2 K radiometric resolution for pixels at normal temperatures (Lorenz and 

Skrbek, 2001). This high radiometric resolution, combined with the fact that the HSRS does not have 

an upper saturation limit, is a major advantage for fire quantification studies, when compared with 

ETM and ASTER data. According to Wooster et al. (2003) this high level of radiometric resolution is 

required for an accurate application of the bi-spectral method.  
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The BIRD HSRS and WAOSS-B is not an operational satellite system. BIRD data are downloaded by 

the DLR at the ground station in Oberpfaffenhofen (Germany) only on request. The data sets are made 

available for scientific applications as systematically corrected products. A detailed description of the 

BIRD instrument can be found in Skrbek and Lorenz (1998).  

 

6.4.2 Sensitivity study 

The BIRD MIR and TIR channels were analysed in order to ascertain BIRD’s potential to register 

spectral coal fire radiances. Although the HSRS system has a sampling step of 185 m, the IFOV is 370 

m, and thus a spatialresolution of 370 m was assumed for the theoretical investigations. The results of 

the BIRD sensitivity study are shown in figures 6-12 to 6-15 and summarised in tables 6-10 and 6-11. 

As stated in section 6.1, BIRD MIR simulations do not include sun reflectance, and are thus only fully 

representative for night-time observations. Due to the fact that the BIRD HSRS system does not 

saturate, only a lower detection limit is given in figures 6-12 to 6-15 and tables 6-10 and 6-11.  

Figure 6-12: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the BIRD MIR channel. The dotted lines mark the lower detection limits. Top) winter homogeneous 
night-time background: background temperature 273 K (Th I); bottom) winter night-time background: 
background temperature 273 K, max. background variation 5 K (Th III). 
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Figure 6-13: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the BIRD MIR channel. The dotted lines mark the lower detection limits. Top) summer homogeneous 
night-time background: background temperature 298 K (Th I); bottom) summer night-time 
background: background temperature 298 K, max. background variation 10 K (Th III). 
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Figure 6-14: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the BIRD TIR channel. The dotted lines mark the lower detection limits. Top) winter homogeneous 
background: background temperature 273 K (Th I); bottom) winter background: background 
temperature 273 K, max. background variation 5 K (Th III). 
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Figure 6-15: Spectral radiance of an image pixel-correspondent ground segment, containing a sub-
pixel fire component at various fire temperatures, fire areas and background conditions, recorded by 
the BIRD TIR channel. The dotted lines mark the lower detection limits. Top) summer homogeneous 
background: background temperature 298 K (Th I); bottom) summer background: background 
temperature 298 K, max. background variation 10 K (Th III). 
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BIRD HSRS MIR channel fire area[m²] background scenar io 

T 
fire 

600 K 

T 
fire 

500 K 

T 
fire 

400 K 
 

Th I 
(winter, homogeneous background) 

LD  11 
 

LD  15 
 

LD  400 
 

Th II 
(summer, homogeneous background) 

LD  11 
 

LD  80 
 

LD  500 
 

Th III 
(winter, heterogeneous background) 

LD  12 
 

LD  110 
 

LD  620 
 

Th IV 
(summer, heterogeneous background) 
 

LD  120 
 

LD  500 
 

LD  3000 
 

Table 6-10: Minimum coal fire size that can be registered by the BIRD MIR channel under particular 
fire temperature and background conditions. LD = lower registration limit. The different background 
scenarios are described in detail in section 6.1.1.  

 

BIRD HSRS TIR channel fire area [m²] background scenar io 

T 
fire 

600 K 

T 
fire 

500 K 
 

T 
fire 

400 K 

Th I 
(winter, homogeneous background) 

LD 120 
 

LD 270 
 

LD 700 
 

Th II 
(summer, homogeneous background) 

LD 180 
 

LD 370 
 

LD 900 
 

Th III 
(winter, heterogeneous background) 

LD 700 
 

LD 1200 
 

LD 3100 
 

Th IV 
(summer, heterogeneous background) 

LD 1400 
 
 

LD 2100 
 

LD 10000 
 

Table 6-11: Minimum coal fire size that can be registered by the BIRD TIR channel under particular 
fire temperature and background conditions. LD = lower registration limit. The different background 
scenarios are described in detail in section 6.1.1.  
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The BIRD MIR channel is highly effective in registering relatively hot CFSA (figures 6-12 and 6-13, 

table 6-10). Although the spatial resolution of the BIRD MIR channel is about a factor six smaller than 

the spatial resolution of the ETM TIR channel, 500 K to 600 K coal fire components can be detected, 

from a size of approximately 15 m² onward, against an absolute homogeneous night-time winter 

background. On a heterogeneous summer night-time background a 500 K fire component can still be 

detected from a size of approximately 500 m² onward. However, the potential of the BIRD MIR 

channel to detect 400 K CFSA is significantly lower. A 400 K fire can only be detected if the fire size 

is larger than approximately 400 m², under homogeneous night-time winter conditions, while the fire 

size has to be larger than 3000 m², against a warm summer daytime-time background which has 

significant background temperature variations. It is important to note, in figures 6-12 and 6-13, that 

background temperature variations in the MIR range have a significantly lower effect on the overall 

detection limit, as compared with the ETM TIR range (e.g. figure 6-6).  

 

The BIRD TIR channel covers approximately the same spectral range as the ASTER channel 10, but 

when compared to the ASTER TIR system, has a significantly lower spatial resolution. This leads to 

markedly higher minimum detection limits (figures 6-7, 6-8, 6-14, 6-15). Under absolutely 

homogeneous, winter night-time background conditions, 600 K coal fires can only be registered from a 

size of 120 m² onward. Under similar background conditions, a 400 K fire component has to be larger 

than approximately 700 m² to be registered by the BIRD TIR sensor. In contrast to the BIRD MIR 

channel, TIR spectral background-radiance variations have a significant impact on the lower detection 

limit. Against a heterogeneous summer background, the fire size of a 600 K and a 400 K fire 

component has to be larger than 1400 m² and 10000 m², respectively. Consequently, only very large 

CFSA can be recognised by the BIRD TIR channel.  

Figure 6-16: Band-averaged Planck’s function for the BIRD MIR (blue) and TIR (green) channel.  

 

The BIRD MIR and TIR channels are designed for an optimal use of the bi-spectral technique 

(Wooster et al., 2003). Due to the fact that the BIRD MIR and TIR channel do not saturate, relatively  
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large and hot CFSA produce a signal in both the BIRD TIR and MIR channels (table 6-10 and 6-11). 

The band integrated Planck function in figure 6-16 clearly demonstrates that the radiance difference 

observed by the BIRD MIR and TIR channel is significant in the temperature range expected for coal 

fire corresponding CFSA. Thus, the bi-spectral technique can be applied on BIRD data to quantify 

relatively large and / or hot CFSA.  

 

Wooster et al. (2003) have investigated the BIRD MIR data with regard to there potential to derive 

FRE via a single band concept. This study has demonstrated that BIRD MIR based, single band fire 

quantification approaches are ineffective for fire temperatures below 600 K. This is because the 

relationship between MIR spectral radiances and the total coal fire related, radiative energy release is 

distinctly non linear, for fire temperatures below 600 K. Consequently, BIRD MIR data can not be 

used to estimate CFRE via a single band concept.  

 

6.4.3  Conclusions  

The theoretical BIRD analysis has demonstrated that the MIR spectral range is very sensitive to coal 

fire related, radiative emissions. However, this does not compensate for the lower spatial resolution, 

which is considerably inferior to that of the ETM TIR data. This means that only relatively hot, CFSA 

can be registered by the BIRD MIR channel. The low spatial resolution of the BIRD TIR channel 

results in a significantly reduced overall capacity to register coal fire related, spectral radiances, when 

compared with the ASTER or ETM TIR channels.  
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7 CONCEPTUAL APPROACH: THE DERIVATION OF COAL FIRE RADIATIVE 

ENERGY VIA TIR RADIANCES 

This chapter presents a new approach to the derivation of coal fire radiative energy (CFRE) via the 

analysis of coal fire pixel radiance, in the thermal infrared spectral region. In contrast to existing, one 

channel based, FRE retrieval methods (MIR and MODIS method, described in chapter 3, section 3.3), 

this new approach is adapted to fire temperatures below 600 K. The theoretical evaluations in chapter 6 

demonstrate that ASTER and ETM TIR data have a significantly greater potential than BIRD TIR data 

to register spectral coal fire radiances. The following evaluations were, therefore, performed only for 

the ASTER and ETM TIR channels.  

 

7.1 Methods 

The existing MODIS and MIR approaches compute the total FRE of surface anomalies via recorded 

fire pixel and background pixel radiances or temperatures in the MIR spectral region (description in 

chapter 3, section 3.3). In this study a similar concept to the MODIS and MIR method is analysed, but, 

in contrast to the two existing techniques, TIR pixel radiances are used to compute the total CFRE. Fire 

temperatures for both MODIS and MIR method simulations represent typical temperatures of 

vegetation fires (description in chapter 3, section 3.3). Here, fire temperature and size simulations are 

adapted to typical coal fire surface scenarios observed during the two field campaigns.  

 

In order to analyse the relationship between TIR spectral fire radiances and the total CFRE release, an 

approach akin to the MIR method (MIR method, described in chapter 3, section 3.3.3), was used for the 

ASTER and ETM TIR data. This was done by plotting fire temperatures against the ratio of the true 

CFRE emitted from a unit area surface to its TIR spectral radiances. The TIR spectral range analysed in 

this study includes the spectral range of the ETM channel 6 (figure 7-1), the ASTER channel 10, 

channel 12 and the ASTER channel 14 (figure 7-3). The band-integrated TIR spectral radiances were 

computed via equation 3-2 and equation 3-4 (band integrated Planck function), by considering the 

spectral response functions of the different TIR instrument channels. The true CFRE was calculated via 

equation 3-10 assuming a ground surface emissivity of 0.98. 

 

In addition, an investigation was made, using a technique similar to the MODIS method (MODIS 

method: described in chapter 3, section 3.3.2), by simulating data from 1000 coal fire scenarios. In 

contrast to the MODIS method, ETM and ASTER TIR spectral radiances are plotted against total 

CFRE (figure 7-2 and 7-4). Plotted data represents 1000 simulated fire scenarios, each containing a 

random fire temperature, at a random size, with a maximum fire size of 1000 m ², superimposed on a 

random background temperature. Modelled fire temperatures range from 350 K to 600 K, while 

background temperatures range from 273 K to 300 K. The maximum fire size reflects the maximum 
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size of CFSA observed in the study areas within an ETM pixel corresponding ground segment. 

Maximum fire temperatures clearly overestimate average coal fire temperatures of CFSA in the study 

area. TIR spectral radiances were computed in a similar manner to the theoretical analyses in chapter 6, 

using a sub-pixel concept (equation 3-11, see also chapter 6, section 6.1.3).  

 

7.2 Derivation of CFRE via ASTER and ETM TIR radiances 

7.2.1 ETM channel 6 

The ratio of the true fire release radiative energy emitted from a unit area surface to the ETM channel 6 

spectral radiance does not show a strong temperature sensitivity if the temperature of the emitter 
���������
	���������������������������������� �!"�#�"�$��
�%�����&����')(*���,+-�/.�	
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���3�54�	6�7�3�8�:9*��/;<�=�>�&?A@B�C�D@6E��� F)GIH�J7K6G

350 K to 600 K.  

 

Figure 7-1: Surface temperature is here plotted against the ratio of the total fire radiative energy, 
emitted by a unit area surface to its corresponding spectral radiance, recorded in the spectral range of 
the ETM band 6. The red lines mark ratio values in the temperature range 350 K to 600 K.  

A simulation of 1000 sub-pixel fire scenarios (figure 7-2) reveals good correlation between the ETM 6 

spectral coal fire radiance and the total CFRE. If this relationship is approximated liniarly (not 

displayed in figure 7-2) the linear correlation (R2) is 0.98 within the limits of both the ETM high and 

low gain saturation.  
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Figure 7-2: Relationship between spectral radiance, observed by the ETM TIR sensor, and the total 
radiative surface energy release from the coal fire. Data are from 1000 modelled fire scenarios with a 
fire area ranging between 1 m² and 1000 m², a fire temperature ranging between 350 K and 600 K and 
a background temperature ranging between 273 K and 300 K. A polynomial best-fit relationship, 
overlain as a red line, gives a good correlation with the modelled data, within the limits of the TIR 
band saturation. (Dashed line = saturation at a background temperature of 273K, dotted line = 
saturation at a background temperature at 298 K). Top) ETM band 6 high gain; bottom) ETM band 6 
low gain.  

 

Consequently, ETM 6 fire pixel radiances can be directly used to calculate total CFRE. A polynomial 

best-fit relationship such as shown in figure 7-2 leads to: 

 

CFREETM =  6300 + 185500 (LETM,P – LETM,BG)+ 5700 (LETM,P – LETM,BG)2 [W]  (7-1) 

 

where:  

LETM,P   =  atmospherically-corrected ETM band 6 radiance of a potential  

coal fire pixel [W m-2 sr-1 ��� -1],  

LETM,BG   =  mean atmospherically-corrected ETM band 6 radiance of  
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surrounding background pixels [W m-2 sr-1 ��� -1].  

 

7.2.2 ASTER channel 10, ASTER channel 12, ASTER channel 14 

Figure 7-3 indicates that the ratio between the total CFRE, emitted from a unit area surface to its 

corresponding ASTER TIR spectral radiances does not strongly  depend on the temperature for 350 K 

to 600 K emitters. The ratio is very stable for the ASTER channel 10 with values ranging from 37 to 43 
� m sr , while it becomes less stable for ASTER channels with a spectral range at longer wavelengths. 

The ASTER channels 12 and 14 reveal a ratio ranging from 39 to 50 � m sr and 49 to 86 � m sr, 

respictevly. 

 

Composite-fire radiances recorded in the ASTER TIR channels show good correlation to the total 

CFRE (figure 7-4). If we approximated the relationship between simulated fire radiance and CFRE 

linearly (not shown in figure 7-4), the correlation (R2) is 0.99 for the ASTER band 10. The linear 

correlation for the simulated fire scenarios decreases with the increase in wavelength in the ASTER 

TIR bands 10 to 14.  

 

The theoretical studies described in chapter 6, section 6.3 demonstrate that the short wave TIR range is 

very sensitive to the registration of spectral coal fire radiances. The modelled coal fire scenarios show 

an excellent linear correlation between ASTER 10 spectral radiance and total CFRE and the ASTER 

band 10. Thus it is here considered that the ASTER channel 10 is the most suitable of all ASTER TIR 

bands to derive CFRE via the TIR method. A polynomial best-fit relationship for the ASTER channel 

10 such as shown in figure 7-4 leads to: 

  

CFREASTER = 1070 + 262500 (LASTER,P – LTIR,BG)+ 2600 (LTIR,P – LTIR,BG)2 [W]    (7-2) 

 

where:  

LASTER,P   =  atmospherically-corrected ASTER band 10 TIR radiance of a  

potential coal fire pixel [W m-2 sr-1 ��� -1] 

LASTER,BG  =  mean atmospherically-corrected ASTER band TIR radiance of  

surrounding background pixels [W m-2 sr-1 ��� -1].  
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Figure 7-3: Surface temperature, plotted against the ratio of the total fire radiative energy, emitted by 
a unit area surface to its corresponding spectral radiance, recorded in the spectral range of top) the 
ASTER band 10, middle) the ASTER band 12 and bottom) the ASTER band 14. The red lines mark 
ratio values in the temperature range 350 K to 600 K. 
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Figure 7-4: Relationship between the spectral radiance, observed by the ASTER TIR sensor, and the 
coal fire’s total radiative surface  energy release. Data is from 1000 modelled fire scenarios, with a 
fire area ranging from 1 m² to 1000 m², a fire temperature ranging from 350 K to 600 K and a 
background temperature ranging from 273 K to 300 K. All modelled fire scenarios are below the 
saturation limit of the ASTER TIR sensors. Top) ASTER band 10; middle) ASTER band 12; bottom) 
ASTER band 13. A polynomial best-fit relationship overlain as red line is in close correlation with the 
modelled data. The best linear correlation can be observed for the ASTER band 10.  
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7.3 Discussion of limitations of the TIR approach 

The above described TIR band based coal fire quantification concept has several limitations. First of 

all, there are limitations which are introduced by the TIR method itself: 

 

• The above described TIR method is adapted to coal fire temperatures ranging between 350 K 

and 600 K. The total CFRE release of hotter fires will therefore, be significantly 

underestimated. Nevertheless, large coal fires with significantly higher temperatures were not 

observed during the field investigations (description in chapter 5, section 5.2). According to 

Goerlich (2004, pers. communication), the overall majority of the coal fires investigated in the 

framework of the German GTZ project in Xinjiang have surface temperatures below 600 K 

(description in chapter 2, section 2.3). Therefore this method can be applied without major 

concerns in the present project. The theoretical evaluation in this chapter has demonstrated that 

CFRE from this low range of temperatures of CFSA can be reasonably estimated via the TIR 

method. 

 

• The accuracy of the TIR method strongly depends on the accuracy of the estimated TIR 

background signal. The theoretical evaluations in chapter 6 have demonstrated that the TIR 

spectral range is very sensitive to background temperature variations. Coal fire areas consist of 

surfaces with different thermal properties in the TIR range (alternating sandstone, shale and 

coal layers) and are thus prone to show high variations in the TIR background signal. Errors 

induced by background temperature variations can be reduced by applying the sub-pixel fire 

quantification concept to hot pixel clusters rather than to individual single pixels (description 

in chapter 3, section 3.3.1). Nonetheless, the total CFRE can only be estimated, via the TIR 

method, within the expected error range of the TIR background signal. A detailed analysis of 

the TIR background variations, in the direct vicinity of the coal fire clusters, is therefore 

crucial for the accuracy of the TIR method-based coal fire quantification. 

 

• Furthermore, the TIR method presented in this chapter is based on a semi-empirical 

relationship between the spectral TIR coal fire radiance and the total CFRE. Due to the fact 

that both the ASTER and TIR spectral fire radiances do not have an absolute linear 

correspondence with the total CFRE, computed CFRE can differ from real CFRE – even if we 

assume an absolutely homogeneous background in the direct vicinity of CFSA. Nevertheless, 

the derivations of the CFRE, computed via the presented relationship in equations 7-1 and 7-2, 

and the real CFRE, computed for modelled fire scenarios, are relatively small, with 

approximately +/- 30 % of the total calculated CFRE for the ETM channel 6 and 

approximately +/- 10 % of the total calculated CFRE for the ASTER channel 10. 
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It also has to be taken into consideration that the TIR method based satellite data analysis can only 

estimate coal fire related radiative surface energy releases at the time of the satellite acquisition, which 

leads to the following limitations: 

 

•  In the context of coal fires, the coal combustion energy is lost by a variety of processes in 

addition to radiation, such as e.g. conduction into the ground. Consequently, satellite based 

CFRE estimates include only one part of the totally released coal fire combustion energy and 

can thus not be used directly to estimate total coal combustion rates. However, satellite derived 

CFRE can be regarded as a valuable physical coal fire parameter supporting the tools used for 

estimation of the coal fire induced losses and damages, to the environment, by local fire 

fighting authorities. Given numbers of coal combustion computed via satellite CFRE estimates 

reflect a minimum energy loss caused by the fires at the time of data take and can thus outline 

the minimum dimension of the coal fire induced coal loss of a particular coal fire zone. 

 

• Satellite observations can only measure CFRE at the moment of the satellite acquisition. 

According to the field observation, a CFSA can vary significantly due to different 

meteorological conditions (e.g. wind, air circulation and moisture content). Thus satellite data 

CFRE retrievals have to be regarded as a snapshot at one particular time, which does not 

necessarily reflect a long-term fire activity. 

 

When considering all the above obstructions the precision of the methods tested in this thesis might 

appear of insufficient accuracy. However, in the view of the difficulty to estimate the extend of the 

observed processes in nature and of continuous monitoring of the waste area of coal fires, without a 

possibility of depth control of the fires, the here discussed methods of remote sensing are a crucial tool 

in grasping at least some reliable, quantitative information on the coal fires.  
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8 CASE STUDY I: THE ESTIMATION OF COAL FIRE RELATED, SURFACE-

RADIATIVE ENERGY RELEASES IN THE RUQIGOU, GULABEN AND WUDA 

COALFIELDS, USING ETM, ASTER AND BIRD DATA 

In this case study, coal fire related, surface-radiative energy releases (CFRE) are computed for the 

Wuda, Ruqigou and Gulaben coalfields, using ASTER, ETM and BIRD data. Here, the newly-

developed TIR method (described in chapter 7) is applied to multi-temporal ETM and ASTER data, 

and then the resultant calculated CFRE values are compared to CFRE retrievals computed from BIRD 

data, via the existing bi-spectral method. The case study also explores the potential of the investigated 

satellite instrument data to compute CFRE on a regional scale. In addition to this BIRD-derived, 

equivalent coal fire temperatures and sizes are compared with in-situ coal fire measurements, carried 

out during the field campaigns in 2002 and 2003. 

 

8.1 Analysis of ETM data 

8.1.1 Methods  

An analysis was made of data taken from the study coalfields, consisting of summer daytime Landsat 

ETM data, from 21st September 2002, winter daytime ETM data from 12th February 2003 and summer 

night-time ETM data from 28th September 2002. The daytime scenes include ETM, SWIR and TIR 

data, while the night-time data consists only of the TIR band. The two scenes from September 2002 

were recorded synchronously with the field campaigns.  

 

The scenes were geometrically corrected using a nearest-neighbour approach, and using ground control 

points taken with a GPS device during the field campaign. DN-values of ETM level 1b, TIR data were 

transformed into spectral radiance values using equation 3-6. The spectral radiances at the maximum 

und minimum digital number (Lmin, � and L�������	�  in equation 3-6) used for this calculation are listed in 

chapter 10, table 10-1.  

 

Atmospheric correction was performed for the ETM TIR bands, using the ATCOR model (Richter and 

Schlaepfer, 2002), based on look-up tables calculated via the MODTRAN code (Berk et al., 1989). The 

look-up tables contain parameterised values for path radiance, atmospheric ground-to-sensor 

transmittance and for downwelling atmospheric flux for different height levels. The applied 

atmospheric parameters are listed in chapter 10, table 10-3. The ground pixel radiances are calculated 

via equation 3-7. Image pixel-corresponding height levels were provided, via a digital elevation model 
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(DEM).8-1) Since all study areas have a dry-desert climate the MODTRAN dry-desert model was 

applied, with an atmospheric water column of 0.41 cm at sea level. Surface temperatures of the Yellow 

River, measured during satelli te overpasses (see chapter 5, section 5.4), coincide with corresponding 

ETM TIR water temperatures within 1.3 K.  

 

Coal fire correspondent, anomaly pixels in the ETM TIR band were first visually detected, before the 

CFRE were computed. In order to distinguish coal fire related, anomaly pixels from background pixels, 

an adaptive threshold was set, within a visually defined window, around each corresponding coal fire 

area, mapped during the field campaign in September 2002. It is important to note here that only coal 

seam fires were included for this study, i.e., burning coal stock piles, which are widespread, for 

example, in the northern and eastern part of the Wuda syncline, were not considered.  

 

 CFRE were computed from ETM channel 6 data, via the TIR method using equation 7-1. Prior to this 

computation, neighbouring fire pixels were grouped into individual image clusters in order to reduce 

errors introduced by background signal variations. Background radiance (LETM, BG in equation 7-1) was 

calculated as mean radiance from ten background pixels surrounding each fire cluster. Directly 

neighbouring background pixels bordering the fire pixels, were however excluded from the 

computation, because these pixels can be directly influenced by the fire signal and are thus not 

necessarily representative for background radiation. In order to check the stabili ty of the derived 

energy releases against background errors, CFRE estimations were performed for three values of the 

TIR background signal (see table 8-1, 8-2): 

 

• mean background value corresponding to the mean CFRE (‘mean’  in table 8-1, 8-2). 

• mean background value minus one standard deviation corresponding to the maximum 

CFRE (‘mean-SD’ in table 8-1, 8-2). 

• mean background value plus one standard deviation corresponding to the minimum 

CFRE (‘mean+SD’ in table 8-1, 8-2). 

 

8.1.2 Interpretations 

Figure 8-1 shows SWIR bands from the two ETM daytime scenes of the Ruqigou and Gulaben 

coalfields. The coal fire related, surface anomalies (CFSA) in the Gulaben coalfield, investigated 

during the field observations of September 2002, revealed the highest surface temperatures, and should 

thus, according to the ETM sensitivity study in chapter 6, section 6.2, have the greatest potential to be 

                                                   
8-1) The DEM used in this study was provided by the DLR radar team, and is an ERS (ESA Remote Sensing 

Satellit e) DEM sub-sampled to the spatial resolution of the ETM TIR data.  
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registered by one of the ETM SWIR channels. Nevertheless, figure 8-1 clearly indicates that none of 

the mapped coal fire zones of the Gulaben coalfield shows significant raised DN values in a daytime 

SWIR channel. This confirms the theoretical ETM analysis in chapter 6, section 6.2 suggesting that the 

SWIR spectral range is in general not suitable to register spectral coal fire radiances.  

Figure 8-1: ETM SWIR and TIR channels with superimposed coal fire related, surface anomalies 
(CFSA, red outlines). The CFSA were mapped during the field campaign in September 2002. Upper 
left) ETM Band 5, 12.02.2003; upper right) ETM channel 5, 21.09.2002; lower left) ETM channel 7, 
12.02.2003; lower right) ETM channel 7, 21.09.2002. 

 

ETM TIR data (figures 8-2 and 8-3) can, in contrast to the ETM SWIR data, be used to detect coal fire 

zones from the Wuda, Gulaben and Ruqigou coalfields. None of the detected fire pixels is saturated in 

the ETM 6 high gain data that were investigated, reflecting the low temperatures and / or small sizes of 

the CFSA in the study areas.  

 

With the summer daytime ETM TIR data only individual hot pixels or small pixel clusters can be 

outlined for certain fire zones (figures 8-2 and 8-3) and the real extent of the corresponding CFSA zone 
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is very significantly underestimated when compared with the actual field observations. The summer 

daytime TIR data reveal radiant temperature differences of more than 20 K for some coal and 

sandstone-related image pixels, a fact that distinctly limits the potential of summer daytime ETM TIR 

channel to detect coal fires. The background variation of more than 20 K is higher than the assumed 

background variation for the heterogeneous summer background model in chapter 6.  

 

Due to the relatively lower background variations in the winter daytime ETM TIR band, significantly 

more coal fire pixels can be identified in this band than in the summer daytime ETM band (figures 8-2 

and 8-3). This background temperature variation is, at approximately +/- 8 K, slightly higher than the 

assumed background variation, in the heterogeneous winter background model in chapter 6.  

 

Significantly more continuous fire clusters can be detected with night-time ETM TIR data (figures 8-2 

and 8-3). All investigated coal fire zones in the Ruqigou and Gulaben study area, and twelve out of 

seventeen fire areas in the Wuda coalfield, could be clearly identified. This reflects the low night-time, 

background temperature variations (∆T < 6 K), and confirms the theoretical analysis in chapter 6, 

section 6.2, i.e., that ETM TIR data have a high potential to register spectral coal fire radiances.  

 

Figures 8-2 and 8-3 show colour-coded CFRE images of the study areas. Indicated  CFRE correspond 

to mean CFRE values, calculated via the TIR technique. In tables 8-1 and 8-2 the mean, minimum and 

maximum computed CFRE are given for detected coal fire zones in the Ruqigou, Gulaben and Wuda 

coalfields. A summative value is provided in the case where a mapped CFSA comprises more than one 

anomaly cluster. A dash indicates that no CFSA is detectable within the investigated fire zone.  

 

CFRE values, derived from detected summer daytime, ETM anomaly-pixel data, have a high degree of 

uncertainty, with an estimated average uncertainty of  approx. +/-70 % of the CFRE retrievals 8-2) for 

the Ruqigou, Gulaben and Wuda coalfields (tables 8-1 and 8-2). This high level of uncertainty, in the 

CFRE retrievals, results from high background variations in the summer daytime ETM band. 

Consequently, summer daytime ETM data are considered unsuitable for the quantification of CFSA 

 

 CFRE, computed from winter daytime ETM imagery, are more stable than summer daytime ETM- 

CFRE values, allowing CFRE to be estimated with an estimated average uncertainty of +/- 55 % of the 

CFRE retrievals for the Ruqigou, Gulaben and Wuda coalfields. This is due to relatively lower 

background variations in winter than in summer, allowing for a more exact determination of the CFRE. 

                                                   
8-2) The estimated uncertainty range in the retrieved CFRE values refers to the maximum calculated CFRE 

variation due to variations in the TIR background signal. The TIR background radiance is varied according to the 

descriptions in chapter 8.1.1 around the standard deviation of the TIR radiance of the background pixels 

surrounding each fire cluster.  
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Nevertheless, CFRE retrievals derived from winter daytime ETM data are, in general, lower than 

corresponding night-time ETM CFRE values (see tables 8-1 and 8-2). This is due to the fact that the 

detected fire clusters are often spatially more extended in night-time winter ETM data, than in winter 

daytime ETM data (figures 8-2). In a few cases (e.g. Ruqigou / Gulaben fire 16, Ruqigou / Gulaben 4, 

Ruqigou / Gulaben 14, table 8-2 and figure 8-3) the spatial extent of the detected fire clusters is 

significantly lower in winter daytime ETM data than in the summer night-time ETM data, resulting in a 

drastic underestimation of corresponding CFRE. When winter daytime ETM data cover approximately 

the same area (e.g. Wuda fire 1, Ruqigou / Gulaben fire 15, table 8-1 and 8-2), the winter day- and 

night-time ETM-derived CFRE estimates differ by relatively small amounts.  

 

The investigated summer night-time ETM data allow CFRE to be estimated within an estimated 

average uncertainty of approx. +/- 35 % of the CFRE retrievals (tables 8-1 and 8-2). It appears 

therefore to be effective for the deviation of  CFRE. As discussed previously, this indicated low 

uncertainty is due primarily to low night-time background variations. Total computed mean  CFRE, 

derived from night-time ETM imagery, are estimated to be 115 MW for the Ruqigou / Gulaben 

coalfields, and 34 MW for the Wuda coalfield. Computed mean CFRE from winter daytime ETM 

imagery are 18 MW for the Wuda coalfield and 44 MW for the Ruqigou / Gulaben coalfields.  
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Figure 8-2: ETM TIR bands with superimposed CFSA (red outlines) in the Wuda coalfield (left) and 
corresponding radiative energy release images of detected coal fire clusters (right). The CFSA were 
mapped during the field campaign in September 2002. Upper left) ETM TIR Band, 21.09.02 (daytime 
summer); upper right) Radiative energy release of detected coal fire pixels, 21.09.02 (daytime 
summer); middle left) ETM TIR Band, 12.02.03 (daytime winter); middle right) Radiative energy 
release of detected coal fire pixels, 12.02.03 (daytime winter); lower left) ETM TIR Band, 28.09.02 
(night-time summer); lower right) Radiative energy release of detected coal fire pixels, 28.09.02 
(night-time summer).  
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Figure 8-3: ETM TIR bands with superimposed CFSA (red outlines) of the Ruqigou / Gulaben 
coalfields (left) and corresponding radiative energy release images of detected coal fire clusters 
(right). The CFSA were mapped during the field campaign in September 2002. Upper left) ETM TIR 
Band, 21.09.02 (daytime summer); upper right) Radiative energy release of detected coal fire pixels, 
21.09.02 (daytime summer); middle left) ETM TIR Band, 12.02.03 (daytime winter); middle right) 
Radiative energy release of detected coal fire pixels, 12.02.03 (daytime winter); lower left) ETM TIR 
Band, 28.09.02 (night-time summer); lower right) Radiative energy release of detected coal fire pixels, 
28.09.02 (night-time summer). 
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energy release [MW] coal 
fire 

Wuda 

TIR 
background ETM daytime 

summer 
21.09.2002 

ETM daytime 
winter 

12.02.2003 

ETM night 
summer 

28.09.2002 
 

mean 5 .5 3.1 3.9 
mean + SD 1.7 2.1 1.9 

1 

mean – SD 10.7 4.9 6.4 
mean - - 0.8 
mean + SD - - 0.5 

3-2 

mean – SD - - 1.0 
mean - - 0.4 
mean + SD - - 0.3 

5-2 

mean – SD - - 0.5 
mean - 0.8 0.4 
mean + SD - 0.6 0.3 

6 

mean – SD - 1.0 0.5 
mean - - 4.2 
mean + SD - - 2.6 

7-1+7-2 

mean – SD - - 6.0 
mean - 0.6 2.7 
mean + SD - 0.3 2.0 

8 

mean – SD - 0.9 3.7 
mean - 0.6 1.2 
mean + SD - 0.4 0.8 

10 

mean – SD - 0.7 1.9 
mean 7.5 10.3 17.2 
mean + SD 3.3 5.4 11.5 

11 

mean – SD 12.8 16.8 23.9 
mean 0.8 1.4 2.4 
mean + SD 0.2 1.0 1.5 

12 

mean – SD 1.5 1.8 3.1 
mean - - 0.2 
mean + SD - - 0.1 

13 

mean – SD - - 0.2 
mean - 0.9 0.1 
mean + SD - 0.5 0.1 

16 

mean – SD - 1.3 0.2 
 

sum mean 13.8 17.7 33.5 
sun mean – SD 5.2 10.3 21.6 

 

sum mean+ SD 25.0 27.4 47.4 

Table 8-1: Coal fire relate, surface radiative energy releases (CFRE) derived from recognised 
anomaly pixels in the ETM TIR bands, for mapped CFSA of the Wuda coalfield. Mean energy values 
are indicated as ‘mean’ , minimum values as ‘mean + SD’ and maximum values as ‘mean – SD’. In 
case a mapped CFSA includes more than one detected fire cluster, a summative value is provided. A 
dash indicates that no CFSA could be detected within the corresponding fire zone.  
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energy release [MW] coal fire 
Ruqigou/ 
Gulaben 

 

TIR 
background ETM daytime 

summer 
21.09.2002 

ETM daytime 
winter 

12.02.2003 

ETM night-time 
summer 

28.09.2002 
 

mean 0.4 0.1 1.0 
mean + SD 0.2 0.1 0.8 

1 

mean – SD 0.6 0.1 1.2 
mean 2.5 0.7 1.4 
mean + SD 1.5 0.5 1.0 

2 

mean – SD 3.6 1.1 2.0 
mean 2.5 1.6 1.0 
mean + SD 1.4 1.1 0.7 

3 

mean – SD 3.7 2.3 1.3 
mean 12.6 8.3 20.6 
mean + SD 8.0 4.6 14.2 

4 

mean – SD 18.4 12.4 28.1 
mean - - 2.4 
mean + SD - - 2.2 

5 

mean – SD - - 2.6 
mean 21.6 7.7 10.6 
mean + SD 10.7 4.7 6.4 

6 

mean – SD 36.0 11.2 15.8 
mean - - 0.5 
mean + SD - - 0.4 

7 

mean – SD - - 0.6 
mean 2.5 1.2 0.5 
mean + SD 0.9 0.7 0.4 

8 

mean – SD 4.3 1.7 0.6 
mean 3.5 2.1 3.5 
mean + SD 1.8 1.7 2.8 

9 

mean – SD 5.6 2.8 4.1 
mean 4.0 0.8 7.5 
mean + SD 1.2 0.6 5.9 

10 

mean – SD 8.0 1.2 9.1 
mean 7.9 1.3 3.9 
mean + SD 3.3 0.7 3.3 

11 

mean – SD 14.1 2.1 5.7 
mean 3.6 0.5 1.1 
mean + SD 1.5 0.4 0.9 

12 

mean – SD 5.9 0.8 1.2 
mean 0.5 0.8 0.7 
mean + SD 0.3 0.5 0.6 

13 

mean – SD 0.7 1.2 0.8 
mean 9.2 4.7 14.4 
mean + SD 4.1 2.6 9.3 

14 

mean – SD 15.5 7.2 20.5 
mean 9.4 11.0 12.6 
mean + SD 6.3 4.3 8.2 

15 

mean – SD 17.3 19.3 17.8 
mean 3.8 1.0 26.6 
mean + SD 2.6 0.7 19.3 

16 

mean – SD 4.5 1.1 35.2 
mean 2.6 0.9 1.2 
mean + SD 1.6 0.5 1.0 

17 

mean – SD 3.7 1.3 1.4 
mean 2.9 1.5 5.1 
mean + SD 1.2 0.6 3.6 

18 

mean – SD 4.9 2.9 6.8 
 

sum mean 89.5 44.2 114.6 
summean + SD 46.6 24.3 81.0 

 

sum mean - SD 146.8 68.7 154.8 

Table 8-2: CFRE derived from recognised anomaly pixels in the ETM TIR bands for mapped CFSA of 
the Ruqigou / Gulaben coalfield. Mean energy values are indicated as ‘mean’, minimum values as 
‘mean + SD’ and maximum values as ‘mean – SD’. In cases where a mapped CFSA includes more 
than one detected fire cluster, a summative value is provided. A dash indicates that no CFSA could be 
detected within the corresponding fire zone. 
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8.1.3 Conclusions 

This study has demonstrated that summer daytime ETM data are unsuitable for use in the detection and 

quantification of coal fires, due to excessive background variations. Nevertheless, ETM winter daytime 

data can be used to quantify coal fires, although the total CFRE release, computed for an entire 

coalfield, is still approximately a factor two smaller, when compared with total ETM night-time CFRE 

retrievals.  

 

If we assume that the calorific value of the coal of the Ruqigou / Gulaben coalfield is 31.0 MJ / kg (for 

average calorific values of Ruqigou and Gulaben coal, see table 3-2) and that the calorific value of the 

coal of the Wuda coalfield is 21 MJ / kg (for Wuda coal calorific values, see table 3-4), then the total 

CFRE, computed from night-time ETM data, corresponds to approximately 117000 t annual burned 

coal in the Ruqigou / Gulaben coalfield, and approximately 51000 t annual burned coal in the Wuda 

coalfield.  

 

The Wuda mining company estimates the annual coal fire induced coal loss to be approximately 

200000 t. According to Goerlich (2004, pers. communication) this number is realistic for a coalfield of 

the size of the Wuda coalfield, however it has to be regarded as a rough estimate by the local mining 

authorities. ETM TIR-derived CFRE estimates correspond to a lower coal combustion rate. In general, 

this underestimation is expected, and most probably due to the fact that during coal combustion energy 

is lost by a variety of processes in addition to radiation, such as for example, by conduction into the 

ground (description in chapter 2, section 2.3). However, the ETM derived CFRE values only reflect a 

‘snapshot’ of the present coal fire situation, which is not necessarily representative for an annual 

estimate of the coal combustion rate. In addition, coal loss estimated from night-time ETM data clearly 

outlines the overall dimension of the coal fire problem at the Wuda coalfield.  

 

Unfortunately, there are no annual, coal fire induced, coal loss estimations available for the Ruqigou 

and Gulaben coalfields. According to Goerlich (2004, pers. communication) the presented calculated 

figure of 117000 t annual coal loss is too small for coalfields the size of the Ruqigou and Gulaben 

coalfields, but is however within overall expected dimensions.  

 

It is important to note that the relationship between CFRE and combusted coal is not yet fully 

understood and, in fact, could be critical to establish, in the context of sub-surface coal fires. 

Nonetheless, potential coal losses, computed through CFRE derived from night-time ETM TIR data, 

have similar dimensions to reported / expected annual, coal fire induced, coal losses. Therefore, CFRE 

derived from night-time ETM TIR data is here considered as an important tool to grasp at least some 

reliable, quantitative information on the coal fires. 
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8.2 Analysis of BIRD data 

8.2.1 Methods 

BIRD day- and night-time imaging of both the Ruqigou / Gulaben and Wuda coalfields was performed 

on the 21st September 2002, the 4th February 2002 and on the 16th January 2003.  

 

The BIRD datasets were atmospherically corrected using the MODTRAN, dry desert model (Berk et 

al., 1989) with an atmospheric water column of 0.41 cm at sea level. The BIRD data was first 

geometrically corrected, prior to atmospheric correction. For this study an atmospheric correction 

model was programmed for BIRD MIR and TIR data, using equation 3-7, and the atmospheric 

parameters listed in table 8-3. Due to the fact that in the MIR spectral range the path radiance consists, 

during daytime, of a reflective and a thermal part (description in chapter 3, section 3.2.2), different 

atmospheric correction parameters were applied for four different sun zenith classes. As with the ETM 

TIR atmospheric correction, a sub-sampled ERS DEM was used to account for different high levels.  

 high level 
[km] 

Lpath 

[mW / m2 sr � m] 

�
 F 

[mW / m2 � m] 
 

BIRD TIR     
 0.0 2427.2 0.6615 6890.1 
 0.5 2129.5 0.6863 6008.6 
 1.0 1854.1 0.7107 5206.4 
 2.0 1598.1 0.7351 4474.6 
 1.5 1365.6 0.7593 3810.9 
 2.5 1164.2 0.7833 3224.8 
BIRD MIR (sun zenith >0° to 30°)     
 0.0 56.3 0.7091 501.4 
 0.5 47.4 0.7272 430.5 
 1.0 40.7 0.7445 369.3 
 1.5 34.6 0.7612 314.1 
 2.0 29.3 0.7773 271.7 
 2.5 24.8 0.7927 235.9 
BIRD MIR (sun zenith >30° to 50°)     
 0.0 56.0 0.7091 499.1 
 0.5 47.2 0.7272 428.4 
 1.0 40.4 0.7445 367.5 
 1.5 34.4 0.7612 314.9 
 2.0 29.1 0.7773 270.3 
 2.5 24.7 0.7927 234.7 
BIRD MIR (sun zenith >50°)     
 0.0 53.2 0.7099 483.7 
 0.5 46.5 0.7272 423.3 
 1.0 39.8 0.7445 362.9 
 1.5 33.9 0.7612 310.8 
 2.0 28.7 0.7773 266.8 
 2.5 24.3 0.7927 231.6 
BIRD MIR (no reflectance)     
 0.0 46.9 0.7091 428.4 
 0.5 38.9 0.7272 361.6 
 1.0 32.4 0.7445 304.9 
 1.5 26.9 0.7612 256.9 
 2.0 22.2 0.7773 217.3 
 2.5 18.4 0.7927 186.8 

Table 8-3: Path radiance (Lpath), atmospheric ground-to-sensor transmittance (T) and downwelling 
flux of atmosphere (F) used for atmospheric corrections of the BIRD MIR and TIR data.  
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The coal fire detection was performed in a manner similar to the above described coal fire detection 

using ETM data, but because the MIR spectral range is much more sensitive to coal fires than the TIR 

spectral range (description in chapter 6, section 6.4.2), BIRD MIR data, and not BIRD TIR data was 

used to outline potential coal fire pixels. To account for possible co-registration errors of the TIR and 

MIR channel, and to reduce errors introduced through variations in the background signal (description 

in chapter 3, section 3.3.1), continuous fire pixels were clustered, as in the case of the ETM analysis in 

this chapter. The CFRE, the equivalent surface coal fire area and the equivalent surface coal fire 

temperature were estimated for each individual fire cluster by applying the bi-spectral technique 

(description in chapter 3, section 3.3.1) to detected fire pixels in the BIRD MIR and TIR band. The 

transformation of spectral radiance to temperature was performed numerically using spectral radiances 

/ temperature look-up tables.  

 

Background MIR and TIR radiance were derived from ten background pixels surrounding each fire 

cluster, whilst direct neighbours were again not considered. In order to check the stability of the bi-

spectral retrievals coal fire estimations were performed for the following TIR background values (see 

tables 8-4 and 8-5): 

 

• the mean value of the TIR radiance for the neighbouring background pixels (‘mean’ in 

tables 8-4 and 8-5), corresponding to an estimation of the mean equivalent surface fire 

temperature, the mean equivalent surface fire area and the mean radiative energy 

release.  

 

• the mean value minus one standard deviation of the TIR radiance for the neighbouring 

background pixels (‘mean-SD’ in tables 8 -4 and 8-5), corresponding to an estimation 

of the lower limit of the fire temperature, the upper limit for the fire area and the upper 

limit of the radiative energy release. 

 

• the mean value plus one standard deviation of the TIR radiance for the neighbouring 

background pixels (‘mean+SD’ in tables 8 -4 and 8-5), corresponding to an estimation 

of the upper limit of fire temperature, the lower limit for the fire area and the lower 

limit of the radiative energy release. 

 

In addition, quantitative coal fire estimations are marked with brackets in tables 8-4 and 8-5 where the 

cluster-averaged TIR signal exceeded the estimated background level by less then 1 K, since in this 

case, the bi-spectral retrievals are according to Wooster et al. (2003) not reliable. 
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8.2.2 Interpretations 

BIRD MIR bands, with superimposed CFSA, mapped during the field campaign in September 2002, 

and corresponding colour-coded CFRE release images are shown in figures 8-4 and 8-5. In most cases 

the given energy releases correspond to the mean computed CFRE (mean TIR background value) for 

the potential coal fire cluster. In cases in which the TIR radiance of the detected fire cluster did not 

exceed the mean TIR background value, but did exceed the minimum computed TIR background value 

(‘mean-SD’), the corresponding upper limit of the estimated CFRE is given.  

 

A visual coal fire detection of summer daytime BIRD MIR data resulted in two outlined coal fire areas 

in the Wuda coalfield and ten outlined fire areas in the Ruqigou / Gulaben coalfield. Despite the overall 

observation interval of nearly five months, most of the detected summer anomalies are reproduced in 

the MIR channel of the winter daytime BIRD data, and two more coal fire related pixel clusters were  

outlined in the Wuda coalfield. Nevertheless, fewer coal fire areas can be visually detected on winter 

daytime BIRD MIR data than on winter daytime ETM TIR data. Thus, the greater sensitivity to fire 

temperature of the BIRD MIR spectral range, over that of the ETM TIR range, cannot totally 

compensate for the fact that BIRD data have a factor six lower spatial resolution than ETM data. This 

result confirms the theoretical evaluations in chapter 6, section 6.4.2. 

 

On night-time BIRD data, five out of seventeen coal fire areas in the Wuda coalfield, and fourteen out 

of eighteen coal fire areas of the Ruqigou / Gulaben coalfield, can be outlined. As discussed 

previously, this relatively high night-time detectability is caused by low, background temperature 

variations. Most of the anomaly clusters detected in the BIRD MIR channel can also be recognised in 

the BIRD TIR channel, allowing a computation of the equivalent fire temperature, equivalent fire area 

and the radiative energy release of detected clusters, via the bi-spectral technique. Nevertheless, in a 

number of cases the upper limit, and, in a few cases, the mean value of the derived coal fire parameters 

was uncertain (see figures in brackets, tables 8-5 and 8-6) or could not be computed (marked as a 

hyphen ‘–‘, tables 8-4 and 8-5).  

 

The equivalent BIRD-derived, mean temperatures range between 300 K and 600 K. This is in good 

agreement with the field observations. CFRE estimates derived from BIRD data are unstable 8-3) for the 

Wuda coalfield, but relatively certain for the Ruqigou / Gulaben coalfield. In general, CFRE can be 

retrieved from BIRD data with an estimated average uncertainty of approx. + / - 75 % of the CFRE 

retrievals for BIRD daytime and an estimated average uncertainty of approx. + / - 40 % of the CFRE 

retrievals for BIRD night-time data. Night-time BIRD CFRE estimates, computed for the entire 

                                                   
8-3) The term unstable refers to those cases where the cluster-averaged TIR signal exceeded the estimated 

background signal by less then 1 K  
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mapped fire zones of the Ruqigou / Gulaben coalfields, are, in general, smaller than night-time ETM 

CFRE retrievals. Nevertheless, despite two exceptions (fire zones 15 and 16) there are good 

correlations for CFRE, computed for entire fire zones from the winter daytime ETM, and winter night-

time BIRD data (table 8-5 and table 8-2). It seems that the comparatively lower spatial resolution of the 

BIRD data is compensated for by a higher sensitivity to fire temperature in the MIR spectral range and 

under night-time conditions. The good correlation between CFRE retrievals, from winter daytime ETM 

data, and night-time BIRD data proves that despite the high background variations in the TIR range, 

physically meaningful CFRE can be derived via the TIR method.  

 

8.2.3 Conclusions 

The total mean energy releases derived from summer daytime BIRD data, winter daytime BIRD data 

and night-time BIRD data are relatively constant, ranging between 22 MW and 36 MW for the 

Ruqigou / Gulaben coalfields. Compared to ETM night-time data, the total CFRE derived from BIRD 

night-time data is a factor three smaller. Thus, we can consider BIRD data to be useful in the 

quantification of larger, CFSA. In general though, the spatial resolution of the BIRD MIR and TIR 

channels at 370 m is insufficient for the quantification of coal fires on a regional scale. The BIRD 

sensor is a technical demonstrator, and this study has outlined that a future operational system that 

included both MIR and TIR spectral channels, at a high spatial resolution, would definitely have a very 

high potential to quantify coal fires. 
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Figure 8-4: BIRD MIR bands with superimposed CFSA (red outlines) of the Wuda coalfield (left) and 
corresponding radiative energy release images of detected coal fire clusters (right). The CFSA were 
mapped during the field campaign in September 2002. Upper left) BIRD MIR band, 21.09.02 (daytime 
summer); upper right) Radiative energy release of detected coal fire pixels, 21.09.02 (daytime 
summer); middle left) BIRD MIR band, 04.02.02 (daytime winter); middle right) Radiative energy 
release of detected coal fire pixels, 04.02.02 (daytime winter); lower left) BIRD MIR band, 16.01.03 
(night-time winter), lower right) Radiative energy release of detected coal fire pixels, 16.01.03 (night-
time winter).  
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Figure 8-5: BIRD MIR bands with overlain CFSA (red outlines) of the Ruqigou / Gulaben coalfields 
(left) and corresponding radiative energy release images of detected coal fire clusters (right). The 
CFSA were mapped during the field campaign in September 2002. Upper left) BIRD MIR band, 
21.09.02 (daytime summer); upper right) Radiative energy release of detected coal fire pixels, 21.09.02 
(daytime summer); middle left) BIRD MIR band, 04.02.02 (daytime winter) middle right) Radiative 
energy release of detected coal fire pixels, 04.02.02 (daytime winter); lower left) BIRD MIR band, 
16.01.03 (night-time winter); lower right) Radiative energy release of detected coal fire pixels, 
16.01.03 (night-time winter).  
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eq . T 
 

[K ] 

eq . A 
 

[m²] 

energy 
release 
[MW] 

eq . T 
 

[K ] 
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[m²] 

energy 
release 
[MW] 

eq. T 
 

[K ] 

eq. A 
 

[m²] 

energy 
release 
[MW] 

coal 
fire 

Wuda 

TIR 
background 

BIRD daytime 
summer 

21.09.2002 

BIRD daytime 
winter 

04.02.2002 

BIRD night-time 
winter 

16.01.2003 

 
mean - - - 393 1279 1 .3 - - - 
mean + SD - - - (420) (432) (0.6) - - - 

1 

mean – SD 362 2341 0.8 382 2255 1.9 323 15152 4.1 
mean - - - - - - - - - 
mean + SD - - - - - - - - - 

8 

mean – SD - - - - - - 309 2284 0.4 
mean - - - 331 2359 0.8 405 898 1.0 
mean + SD - - - (337) (1318) (0.5) - - - 

11 

mean – SD 347 2667 0.6 310 3342 1.2 371 3230 2.4 
mean - - - - - - - - - 
mean + SD - - - - - - - - - 

12 

mean – SD - - - - - - 340 5818 2.4 
mean - - - 402 229 0.3 - - - 
mean + SD - - - - - - - - - 

13 

mean – SD - - - 360 878 0.5 - - - 
mean - - - (510) (136) (0.5) 355 2932 1.6 
mean + SD - - - - - - - - - 

16 

mean – SD - - - 433 616 1.0 320 26101 6.8 
 

sum mean - 2.9 (2.6) 
summean + SD - (1.1) - 

 

sum mean - SD 1.4 4.6 16.1 

Table 8-4: CFRE, equivalent fire temperatures and equivalent fire sizes, derived from recognised 
anomaly pixels in the BIRD MIR bands, for each mapped CFSA of the Wuda coalfield. Mean energy 
values are indicated as ‘mean’, minimum values as ‘mean + SD’ and maximum values as ‘mean – SD’. 
In cases where a mapped CFSA includes more than one detected fire cluster, a summative value is 
provided. A dash indicates that no CFSA could be detected within the corresponding fire zone.  
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[m²] 

energy 
release 
[MW] 

coal fire 
Ruqigou 

TIR 
background 

BIRD daytime 
summer 

21.09.2002 
 

BIRD daytime 
winter 

04.02.2002 

BIRD night-time 
winter 

16.01.2003 

mean - - - - - - - - - 
mean + SD - - - - - - - - - 

1 

mean – SD - - - - - - 398 4.6 0.1 
mean 373 1235 2.5 363 / 396 3501 / 

542 
2.6 (443) (256) (0.5) 

mean + SD 425 693 0.9 (405) / 
(336) 

(663) / 
(1.5) 

0.8 - - - 

2 

mean – SD 357 11041 4.4 351 / 365 7245 / 
1571 

4.8 392 905 1.0 

mean 357 5803 2.3 339 2462 1.0 (344) (548) (0.3) 
mean + SD 386 1656 1.2 (347) (1330) (0.6) (478) (17.3) (0.1) 

3 

mean – SD 343 13842 3.6 334 3756 1.3 320 1727 0.5 
mean 383 / 

347 
1234 / 
2268 

1.4 362 / 327 3409 / 
11658 

5.2 
 

306 35318 7.3 

mean + SD (-) / 
(340) 

(-) / 
(1647) 

0.3 (555) / 
(311) 

(35) / 
(9231) 

1.6 323 14165 4.6 

4 

mean – SD 348 / 
349 

6230 / 
3041 

2.8 348 / 332 8918 / 
15914 

7.3 298 67757 10.4 

mean 433 4276 6.3 373 14712 11.0 348 14712 8.0 
mean + SD 531 666 2.7 (422) (3153) (4.6) 371 6665 5.2 

6 

mean – SD 399 11949 10.3 355 32278 18.5 335 25986 10.7 
mean 396 1135 1.0 352 2542 1.4 362 2983 2.1 
mean + SD 440 273 0.4 350 1728 0.9 383 1518 1.4 

9 

mean – SD 381 2321 1.6 353 3383 1.9 348 4882 2.7 
mean 342 3482 0.8 336 30253 11.3 324 5173 1.7 
mean + SD (360) (1028) (0.4) (423) (1218) (1.8) (352) (1817) (1.0) 

10 

mean – SD 329 10818 1.3 324 84162 24.9 309 10930 2.5 
mean - - - - - - 600 216 1.5 
mean + SD - - - (467) (402) (1.0) (841) (32) (0.9) 

11 

mean – SD - - - - - - 529 526 2.2 
mean - - - - - - 325 1514 0.5 
mean + SD - - - - - - 334 862 0.4 

12 

mean – SD - - - - - - 320 2247 0.7 
mean - - - 365 1056 0.7 347 921 0.5 
mean + SD - - - (437) (115) (0.2) (390) (224) (0.2) 

13 

mean – SD - - - 348 2565 1.3 330 1978 0.8 
mean 386 4042 2.9 - - - 317 17568 4.9 
mean + SD (521) (184) (0.7) - - - (332) (8626) (3.4) 

14 

mean – SD 358 13665 5.6 - - - 306 30366 6.6 
mean 370 1336 0.6 357 4264 2.4 351 / 336 1749 / 

818 
1.4 

mean + SD (414) (222) (0.3) (422) (373) (0.5) 405 / 437 326 / 43 0.5 

15 

mean – SD 354 2984 1.1 345 9914 4.4 332 / 313 4109 / 
2599 

2.2 

mean 463 1598 3.3 434 474 0.8 368 7854 5.9 
mean + SD (494) (525) (1.9) (565) (46) (0.3) 389 4113 4.7 

16 

mean – SD 435 3158 4.8 404 1156 1.4 354 12643 7.8 
mean 366 1840 0.9 - - - 313 / 316 4930 / 

1790 
1.8 

mean + SD (403) (372) (0.4) - - - 310 / - 387 / - 0.3 

18 

mean – SD 354 4133 1.6 - - - 295 / 299 15753 / 
6191 

 

3.5 

sum mean 22 36.4 36.4 
sum mean +SD 9.2 12.3 22.7 

 

sum mean - SD 37.1 65.3 51.7 

Table 8-5: CFRE, equivalent fire temperatures and equivalent fire sizes, derived from recognised 
anomaly pixels in the BIRD MIR bands, for each mapped anomaly zone of the Wuda coalfield. Mean 
energy values are indicated as ‘mean’, minimum values as ‘mean + SD’ and maximum values as 
‘mean – SD’. In the case where a mapped, CFSA includes more than one detected fire cluster, a 
summative value is provided. A dash indicates that no coal fire related anomaly could be detected 
within the corresponding fire zone.  
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8.3  Analysis of ASTER DATA 

8.3.1 Methods 

For this case study an investigation was made of a night-time ASTER scene, acquired synchronously 

with the field campaign in September 2002, covering the Wuda coalfield, taken on the 21st September 

2002. CFRE retrievals were then directly compared to CFRE estimations derived from the near-

simultaneous night-time ETM scene from the 28th September 2002.  

 

Night-time data from ASTER channels 10 and 14 were geometrically corrected and the digital numbers 

were transformed to radiances using the calibration constants listed in chapter 10, table 10-2. The 

atmospheric correction was performed in a manner similar to the ETM TIR data processing, using 

equation 3-7 and look-up tables for path radiances, atmospheric ground to sensor transmittance and 

downwelli ng atmospheric flux, calculated via the MODTRAN code (Berk et al. 1989). The parameters 

that were applied for the atmospheric correction are listed in chapter 10, table 10-4. Temperatures of 

the Yellow River, measured at one location during satelli te overpasses, coincide with corresponding 

ASTER brightness temperatures within 1.6 K.  

 

CFSA were visually detected, using the ASTER band 10, in a similar manner to the ETM and BIRD 

coal fire detection, by setting an adaptive threshold within a visually defined window around each coal 

fire area that was mapped during the field campaign, in September 2002. Having identified the 

anomaly pixels, neighbouring fire pixels were grouped into individual clusters. The TIR method was 

applied to ASTER band 10 data in order to retrieve CFRE for each detected fire cluster. The ASTER 

band 10 was chosen as input channel because it has the highest capabili ty of all ASTER TIR bands to 

derive accurate CFRE values via the TIR method, according to the theoretical evaluations in chapter 7, 

section 7.2.2. In addition, effective fire temperature and fire areas were computed via the bi-spectral 

technique (equations 3-11 and 3-12) for each fire cluster, using ASTER bands 10 and 14 as input 

sources. As with the BIRD approach, equation 3-13 was applied in order to compute CFRE from bi-

spectral fire size and temperature estimations.  

 

For both the TIR and the bi-spectral method, background radiances were computed from ten 

neighbouring pixels around each cluster, excluding direct neighbours. As with the BIRD and ETM data 

analysis, the stabili ty of derived CFRE to background uncertainties was tested. CFRE was computed 

for the mean background value (“mean” in table 8-6), the mean background value minus one standard 

deviation (“mean-SD” in table 8-6) and the mean background value plus one standard deviation 

(“mean+SD” in table 8-6) when applying both the TIR and the bi-spectral method.  
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8.3.2 Interpretations 

Although ASTER band 10 has a 50 % lower spatial resolution than the ETM TIR band, a significant 

difference could not be observed in the capacity of ASTER band 10 to detect coal fires. With one 

exception, all coal fire areas mapped in September 2002, that were visually detected on night-time 

ETM TIR band data could be as well identified on night-time ASTER TIR band 10 data (see figure 8-6 

and 8-2). The coal fire cluster that could not be delineated on night-time ASTER band 10 is, according 

to the field observations, a sub-surface coal fire with a weak CFSA.  

 

CFRE derived from ASTER TIR data, via the bi-spectral technique and the TIR method, are listed in 

table 8-6. In addition, table 8-6 details CFRE derived from near-simultaneous night-time ETM TIR 

band data, so that a direct comparison can be made between ASTER and ETM CFRE retrievals. Mean 

CFRE estimates derived from ASTER and night-time ETM data are illustrated in figure 8-6.  

 

Night-time ASTER CFRE estimates, derived via the TIR method, are relatively dependable with regard 

to background variations, with an estimated average uncertainty of approx. +/- 25 % of the CFRE 

retrievals. The uncertainty is, therefore, slightly lower compared to the uncertainty level of night-time 

data, at +/- 35 % ETM. The  CFRE derived from ETM and ASTER data for the different coal fire areas 

show good correlations. Nevertheless, table 8-6 clearly indicates that ASTER TIR derived CFRE is in 

general lower than ETM derived values. The lower spatial resolution of the ASTER scene seems to 

prevent the recording of some of the less radiative fire components, resulting in a 27 % lower total 

CFRE when compared with ETM night-time retrievals.  

 

As expected from the sensitivity study in chapter 6, section 6.3.2 the ASTER bi-spectral retrievals are 

absolutely undependable due to variations of the background signal. For some coal fire clusters the 

mean CFRE could not be determined and for many fire clusters, the upper and / or lower limit of CFRE 

retrievals could not be determined either (indicated by a hyphen ‘–‘, table 8-6). Table 8-6 shows that 

mean CFRE energy releases computed for mapped coal fire zones are not in good agreement with ETM 

computed values. This mirrors the very narrow spectral range of the ASTER TIR channels, and 

outlines the fact that the bi-spectral technique applied cannot be applied to the quantification of coal 

fires via ASTER TIR data.  
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Figure 8-6: ASTER and ETM TIR bands with superimposed coal fire related, surface anomalies (red 
outlines) of the Wuda coalfield (left) and radiative energy release images of detected coal fire clusters 
(right). The surface anomaly zones were mapped during the field campaign in September 2002. Upper 
left) ETM TIR Band, 28.09.02 (night-time); upper right) radiative energy release of detected coal fire 
pixels (TIR method), 28.09.02 (night-time); middle left) ASTER TIR Band 10, 21.09.02 (night-time); 
middle right) radiative energy release of detected coal fire pixels (TIR method), 21.09.02 (night-time); 
lower left) ASTER TIR Band 14, 21.09.02 (night-time); lower right) radiative energy release of 
detected coal fire pixels (Dozier method band 10 and band 14, 21.09.02 (night-time). 
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Table 8-6: CFRE, derived from recognised anomaly pixels in the ETM and ASTER TIR bands, for 
mapped CFSA of the Wuda coalfield. Mean energy values are indicated as ‘mean’, minimum values as 
‘mean + SD’ and maximum values as ‘mean – SD’. In cases where a mapped, CFSA includes more 
than one detected fire cluster, a summative value is provided. A dash indicates that no CFSA could be 
detected within the corresponding fire zone. 

 

 

energy release  
[MW] 

T 
[K] 

area 
[m2] 

coal 
fire 

Wuda 

TIR 
background 

ETM night 
28.09.2002 

band 6 
TIR method 

ASTER night 
21.09.2002 

band 10 
TIR method 

ASTER night 
28.09.2002  

band 10 / band 14 
bi-spectral method 

(fire detection band 10) 
 

mean 3.9 3.3 13.2 485 4754 
mean + SD 1.9 2.5 - - - 

1 

mean – SD 6.4 4.2 15.9 324 56991 
mean 0.8 0.3 0.8 360 1394 
mean + SD 0.5 0.2 1.0 797 46 

3-2 

mean – SD 1.0 0.5 - 
- 

- 
- 

- 
- 

mean 0.4 0.2 - - - 
mean + SD 0.3 0.1 - - - 

5-2 

mean – SD 0.5 0.2 1.0 294 13953 
mean 0.4 0.1 0.4 323 1703 
mean + SD 0.3 0.1 0.3 368 488 

6 

mean – SD 0.5 0.1 - - - 
mean 4.2 3.3 0.2 - 

357 
- 

428 
mean + SD 2.6 2.5 0.1 - 

377 
- 

184 

7-1+7-2 

mean – SD 6.0 4.1 0.3 349 704 
mean 2.7 1.6 4 331 

334 
344 

1640 
7315 
1616 

mean + SD 2.0 1.1 3.7 347 
 

1438 
10419 

 

8 

mean – SD 3.7 2.1 4.5 298 
329 
393 
323 
398 
705 

3965 
1936 
5529 
115 
55 

mean 1.2 1..9 5.7 349 
384 
439 

 

1916 
515 
2427 

 
mean + SD 0.8 1.2 0.6 489 232 

10 

mean – SD 1.9 2.5 5.7 315 
610 
598 
350 

2773 
40 

555 
1735 

mean 17.2 11.8 36.8 361 60998 
mean + SD 11.5 9.7 31.5 410 25370 

11 

mean – SD 23.9 14.0 43.3 328 143287 
mean 2.4 2.0 7.9 383 9180 
mean + SD 1.5 1.7 6.6 405 5618 

12 

mean – SD 3.1 2.4 9.3 368 13548 
mean 0.2 - - - - 
mean + SD 0.1 - - - - 

13 

mean – SD 0.2 - - - - 
 

sum mean 33.5 24.5 69.0   
sum mean –SD 21.6 19.0 44.5   

 

sum mean+ SD 47.4 30.1 80.0   

> 
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8.3.3 Conclusions 

The results of this case study confirm the theoretical evaluations in chapter 6, which indicate that 

ASTER data have an approximately similar capacity to ETM data to detect coal fires. The lower spatial 

resolution of the ASTER data prevents some of the less radiative fire components from being recorded, 

and thus, the lower spatial resolution of ASTER data is a disadvantage for coal fire quantification 

studies, when compared with ETM data. However, the total energy release, computed via the TIR 

method, still outlines the dimension of the coal fire problem in the Wuda coalfield, and consequently 

night-time ASTER data are here considered to be effective in the quantification of coal fires on a 

regional scale.  

 

This case study indicates that the five ASTER TIR bands are spectrally too close to each other to derive 

stable CFRE values via the bi-spectral technique. This confirms the theoretical analysis in chapter 6, 

section 6.3.2. Due to the fact that the SWIR spectral range is generally not sufficiently sensitive to the 

general registration of spectral coal fire radiance (description in chapter 6, section 6.3.2 and chapter 8, 

section 8.1.2), the developed TIR method is the only method that can be applied to ASTER data in 

order to quantify coal fires. 

 

8.4 General conclusions 

With regard to a coal fire analysis, this case study has clearly demonstrated that physically meaningful 

CFRE values can be derived from high resolution TIR satellite data. CFRE retrievals from ASTER and 

ETM data, calculated via the presented TIR approach, are in the same order of magnitude as CFRE 

retrievals from BIRD data that have been calculated via the commonly used bi-spectral technique. In 

addition, TIR CFRE retrievals made by two different instruments from near-synchronous TIR satellite 

observations are in good correlation with one another, indicating the robustness of the TIR method.  

 

Nevertheless, TIR channel satellite data can only measure coal fire related surface radiative energy 

emission and can thus only provide an estimate of the minimum amount of coal which is lost due to 

coal fires. The fact that total coal loss estimates derived from calculations of radiative surface energy 

emissions correlate well with coal loss estimates from local mining companies is promising and 

indicates that thermal satellite data can in fact be used to estimate the overall dimension of the coal fire 

problem. Existing estimates of annual, coal fire induced CO2 emission for China vary considerably, and 

differ by about the factor of 20 from each other (description in chapter 2, section 2.4). A satellite-based 

coal fire inventory in China could thus provide an estimate of the minimum amount of coal fire 

induced coal loss in China, and thereby increase the precision of such estimates.  
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9 CASE STUDY II: THE POTENTIAL OF ETM AND BIRD DATA TO QUANTIFY 

MOVEMENTS AND ACTIVITY CHANGES IN COAL FIRE RELATED, 

SURFACE ANOMALIES 

This chapter is concerned with analysing the potential of satellite data to quantify particular coal  fires. 

Here detailed field maps of a sub-surface and a near-surface coal fire from the Wuda coalfield are 

compared with ETM thermal data. In addition, coal fire energy release (CFRE), computed via the TIR 

method or the bi-spectral technique, from multi-temporal BIRD and ETM night-time data, is analysed 

with the aim to evaluate whether or not multi-temporal thermal satellite data can be used to register 

movement or activity changes in coal fire related surface anomalies (CFSA).  

 

9.1 Comparison of ETM brightness temperatures and field observations 

In this section ETM night- and daytime data, acquired during the field campaign in September 2002, 

are compared with detailed field maps and temperature measurements of Wuda coal fires 7 and 8 (field 

descriptions see chapter 5, section 5.3).  

 

9.1.1 Methods 

ETM sensor imaging was performed on the 21st September 2002 under daytime conditions, and on the 

28th September 2002 during night-time conditions. The two data sets were geometrically corrected via 

a nearest-neighbour approach, using ground control points, taken with a GPS device during the field 

campaign in September 2002. Although more than thirty ground control points were used for the 

geometric correction, both night-time and daytime data still evidenced a slight geometric distortion of 

about one ETM pixel (~ 50 m). The digital numbers (DN) of the ETM data were converted to 

brightness temperatures to allow a direct comparison between pixel-integrated brightness temperatures 

and field brightness temperature measurements. Both the transformation of DN to radiances and the 

atmospheric correction were performed in a similar manner to the preparation of ETM data, described 

in chapter 8, section 8.1.1. In addition, radiance values were converted to brightness temperatures by 

means of radiance / brightness temperature look-up tables. The look-up tables were computed via 

equations 3-2 and 3-4, using the ETM channel 6 sensor response function.  

 

The field temperature measurements were undertaken in a time window of about one hour around the 

satellite overpass. Ground temperature data are missing for coal fire 8 night-time observation, as this 

coal fire could not be accessed during night-time. The temperature patterns of the two investigated coal 

fire areas are very complex (description in chapter 5, section 5.3) and a statistically significant quantity 

of temperature data for the entire area could not be measured during satellite overpasses. The ground 

temperatures were measured along two profiles, which do not necessarily reflect the temperature 

pattern of the entire fire zone. Consequently, the overpass synchronous ground temperatures could not 
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be used to compute corresponding ETM pixel brightness temperatures. Nevertheless, the measured 

ground temperatures can be regarded as an indicator for the temperature variations of both the 

background and the CFSA. Both, the temperature profiles and the fire maps were geometrically located 

using a GPS handheld reciever. A comparison of GPS measurements and geographic coordinates of 

three triangulation points in the Wuda coalfield revealed a maximal dislocation of the GPS 

measurements of about 15 m.  

 

For this study both detailed field maps of Wuda coalfield coal fire numbers 7 (sub-surface coal fire) 

and 8 (near-surface coal fire) 9-1) and temperature profiles measured during the satellite overpasses, 

were directly superimposed on the processed ETM data (figures 9-1 to 9-4). The satellite data was 

stretched non-linearly, so that the visualisation would show a maximum contrast between background 

and fire pixels. The pixel brightness temperatures indicated by green numbers in figures 9-1 to 9-4, and 

the grey scales of the displayed satellite images, can thus not be directly linked to each other. 

                                                   
9-1) The term near-surface coal fire is used here to describe a coal fire that is only partly exposed at the surface. 
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Figure 9-1: ETM channel 6 (daytime, 21.09.02) brightness temperatures, superimposed on a detailed 
surface map of the sub-surface coal fire 7 of the Wuda coalfield. The field mapping was performed 
during the first field campaign in September 2002 (details see chapter 5, section 5.3). Red lines = coal 
fire cracks with a maximum width of 1 m, red dotted area = strongly collapsed bedrock with a week 
coal fire activity, red dashed area = strongly collapsed zone with intensive coal fire activity, green 
numbers = ETM pixel brightness temperature [K], blue crosses = location of ground temperature 
measurements, blue numbers = ground brightness temperature [K] measured in a time window of 
about one hour around the satellite overpass.  
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Figure 9-2: ETM channel 6 (night-time, 28.09.02) brightness temperatures, superimposed on a 
detailed surface map of the sub-surface coal fire 7 of the Wuda coalfield. The field mapping was 
performed during the first field campaign in September 2002 (details see chapter 5, section 5.3). Red 
lines = coal fire cracks with a maximum width of 1 m, red dotted area = strongly collapsed bedrock 
with a week coal fire activity, red dashed area = strongly collapsed zone with intensive coal fire 
activity, green numbers = ETM pixel brightness temperature [K], blue crosses = location of ground 
temperature measurements, blue numbers = ground brightness temperature [K] measured in a time 
window of about one hour around the satellite overpass.  
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Figure 9-3: ETM channel 6 brightness temperatures (daytime, 21.09.02), superimposed on a detailed 
surface map of the near-surface coal fire 8 of the Wuda coalfield. The field mapping was performed 
during the first field campaign in September 2002 (details see chapter 5, section 5.3). Red dashed area 
= zone with CFSA, green numbers = ETM pixel brightness temperature [K], blue crosses = location of 
ground temperature measurements, blue numbers = ground brightness temperature [K] measured in a 
time window of about one hour around the satellite overpass.  
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Figure 9-4: ETM channel 6 brightness temperatures (night-time, 28.09.02), superimposed with a 
detailed surface map of the near-surface coal fire 8 of the Wuda coalfield. The field mapping was 
performed during the first field campaign in September 2002 (details see chapter 5, section 5.3). Red 
dashed area = zone with CFSA, green numbers = ETM pixel brightness temperature [K]. 

 

9.1.2 Interpretation 

Slightly higher pixel brightness temperatures can be observed in the daytime ETM channel 6 data, for 

sub-surface coal fire 7 in a strongly collapsed CFSA zone (figure 9-1). During the satellite overpass 

local, on-ground, surface brightness temperatures of up to 487 K were measured in this zone. However, 

anomaly pixels are also present, east of the collapsed zone. This area does not belong to the CFSA and 

constitute to gently dipping, east-facing slopes (see optical image figure 5-3), which can be the reason 

for the relatively high pixel values because of preferential sun radiation. In addition, the CFSA in the 

northern part of the investigated sub-surface coal fire has relatively low brightness temperatures in the 

corresponding ETM pixel. Consequently, the slightly higher pixel values can not, with any degree of 

certainty, be linked to the CFSA of coal fire number 7. The ETM background temperatures correlate 

N 
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closely with measured, background temperatures along the two profiles, indicating that the ETM 

thermal data are well calibrated.  

 

The night-time ETM channel 6 data can be clearly correlated with sub-surface coal fire 7 (figure 9-2). 

The ETM data and the field map have a geometrical offset of about half an image pixel, which is 

probably the outcome of a combination of the GPS error and a slight image misregistration. Nine 

image pixels within the CFSA show high pixel values, but the maximum temperature rise is, at 

approximately 4 K, rather small. The maximum on-ground temperature, measured during the satellite 

overpass, is at 462 K, significantly higher than the pixel-integrated ETM temperatures (T max. 288 K), 

indicating that coal fire related hot spots are locally very limited. It is important to note here that the 

temperature rise is relatively similar for all anomaly pixels, although the strongly collapsed fire zone in 

the southern part of the investigated coal fire area definitely showed the highest surface temperatures. 

This is most probably due to background temperature variations, which are large, averaging approx. 1.5 

K, when compared with the relatively low, coal fire induced, ETM brightness temperature rise. 

Consequently, the ETM night-time data cannot be used to analyse differences in the surface 

temperature pattern of this sub-surface coal fire. In addition, it is important to note that the coal fire 

related cracks in the south eastern and north western part of the investigated fire zone do not lead to 

higher pixel values. These cracks are too locally limited to produce a significant signal. Therefore, the 

ETM night-time data can only be used to locate major CFSA in the investigated sub-surface coal fire.  

 

The ETM daytime data for the near-surface coal fire 8 show slightly higher pixel values in the northern 

part of the CFSA (figure 9-3). For at least one anomaly pixel the brightness temperature difference 

between fire and background pixels is large, at approximately 6 K. Assuming that the geometric offset 

is about 50 m, this significantly hotter image pixel can be related to exceptionally hot, near-surface 

CFSA at the northern edge of the investigated area. Nevertheless, the temperature variations of the 

neighbouring background pixels are large, with an average of 3 K. The maximum temperature 

observed along the northern profile of the CFSA is at 610 K significantly higher than the 

corresponding, pixel-integrated ETM temperature (max. 315 K), which once again outlines the very 

limited size of the coal fire related, surface hot spots. Background temperatures, measured along the 

northern profile of the near-surface coal fire 8 during daytime, are lower than corresponding pixel 

brightness temperatures, while the background temperatures measured along southern profile 

approximately match the corresponding pixel brightness temperatures (figure 9-3). The northern 

temperature profile was measured about thirty minutes prior to the southern profile, which could 

explain the observed temperature differences, if we assume a similar strength of sun heating as was 

present during the intraday measurements referred to in chapter 5 (figure 5-7).  
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In contrast to the daytime observation, the near-surface coal fire 8 can easily be detected on ETM 

night-time data (figure 9-4), and the CFSA in the northern and southern part of the anomaly zone can 

be clearly located. Nevertheless, the CFSA in the central part of the anomaly zone are too small to 

generate a clear signal, and as with the sub-surface coal fire, only major anomaly zones can be 

outlined. The maximum brightness temperature rise, at approximately 6 K, is relatively similar to the 

brightness temperature rise recorded during daytime observations, yet the surface coal fire and 

temperature variations of nearby image pixels are, at approx. 1.5 K, rather high.  

 

9.1.3 Conclusions 

Similar to the results of the regional study in chapter 8, this study outlines, once again, the low 

potential of the ETM summer data to quantify coal  fires. The investigated CFSA of a sub-surface coal 

fire could not be delineated, and only exceptionally hot CFSA of the investigated near-surface coal fire 

produced detectable signals in daytime data.  

 

However, this study has demonstrated, in the case of both the near-surface and sub-surface coal  fires 

under investigation, that major CFSA can be clearly located on geometrically corrected, ETM night-

time data. This result is encouraging and indicates that at least ETM night-time data can be used for 

detailed, satellite-based, coal fire studies. However, weak CFSA of the investigated near-surface and 

sub-surface coal fires could not be detected, and thus the total extend of the CFSA cannot be fully 

outlined on ETM night-time data. Additionally, it is to be noted that due to low, coal fire related, pixel-

temperature rises, in combination with significant background variations, ETM night-time data cannot 

be used to analyse detailed temperature patterns of CFSA.  
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9.2 Analysis of multi-temporal BIRD and ETM night-time data 

In this section CFRE and / or fire temperature and sizes, computed from two ETM and BIRD night-

time data takes, are directly compared to each other in order to analyse the potential of thermal satellite 

data to register movement and activity changes in specified coal fire zones. The ETM channel 6 has the 

highest spatial resolution of all operationally available, thermal satellite systems and was therefore 

chosen for this study. BIRD data has in fact a significantly lower spatial resolution than ETM data. Yet, 

as both the theoretical evaluations in chapter 6 and the case study in chapter 8 have demonstrated, 

BIRD MIR channel background radiance variations are significantly lower than those of the ETM TIR 

channel. So in order to study the effect of the low MIR background radiance variations for a multi-

temporal coal fire study, a temporal series of BIRD derived data was additionally analysed.  

 

9.2.1 Methods 

The data under analysis included ETM night-time acquisitions from 28th September 2002 and 25th 

September 2001 over the Wuda coalfield and BIRD night-time images of the Ruqigou and Gulaben 

coalfields on 16th January and the 27th September 2003. Night-time data was chosen in contrast to 

daytime data, because both ETM and BIRD night-time data have proven to have a significantly higher 

potential to detect and quantify CFSA (description in chapter 8, sections 8.1, 8.2 and chapter 9, section 

9.1). 

 

Field observations coinciding with satellite overpasses were only performed for the September 2002 

ETM Wuda acquisition. Consequently, the multi-temporal analysis of both ETM and BIRD data cannot 

be directly linked to synchronous field observations. Nevertheless, the Wuda coal  fires were frequently 

monitored during recent years by the Wuda Mining Bureau, and indications of shifts and activity 

changes of CFSA were available from Y. Jia, the chief engineer of the Wuda coal fire-fighting team. 

Since only a very limited number of hot spots could be detected on the BIRD night-time data over 

Wuda (see chapter 8, figure 8-4), the multi-temporal BIRD study focused on the Ruqigou and Gulaben 

coalfields, where several CFSA could be detected. Detailed coal fire observations from the local fire 

fighting teams of the Ruqigou and Gulaben coalfields were unavailable for this study.

 

The CFRE and / or fire temperatures and sizes were derived via the bi-spectral or TIR method, 

according to a similar method to that used for the ETM and BIRD data processing, described in chapter 

8, sections 8.1 and 8.2. The data sets used in this study, i.e., ETM data from September 2002 and the 

BIRD data from January 2003 (figures 9-5 and 9-6), are identical to the data sets used in the regional 

study in chapter 8, sections 8.1 and 8.2 (figures 8-5 and 8-2). The ETM September 2001 and BIRD 

September 2003 data, however, were added, and processed for this study.  
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Although the aim of the study is the analysis of temporal shifts and activity changes within particular 

fire zones, only one CFRE and / or one coal fire temperature and size estimation is given for entire fire 

clusters in a particular fire zone. This is in line with the study of Wooster et. al. (2003, description in 

chapter 3, section 3.3.1) indicating that CFRE retrievals of entire fire cluster are significantly more 

stable than CFRE retrievals of one pixel. As with the regional study described in chapter 8, different 

CFRE estimations were performed for three values of the TIR background signal: mean background 

radiance, mean background value minus one standard derivation and mean background value plus one 

standard derivation (tables 9-1 and 9-2, for details see chapter 8, section 8.1.1).  

 

9.2.2 Interpretations and conclusions of the multi-temporal ETM analysis 

The ETM channel 6 data, presented in figure 9-5, clearly indicate that background radiance variations 

in the Wuda area were significantly lower during the acquisition of the ETM 2001 data than during the 

acquisition of the ETM 2002 data. The red arrow in figure 9-5 points towards a small calcareous 

mountain ridge that indicates the different topography-induced, radiance variations in both data sets. 

An additional indication for the differing background variations is the error range given for the CFRE 

retrievals in table 9-1. The 2001 CFRE retrievals vary slightly, due to low background variations, but 

only by approx. +/- 20 % on average, while the 2002 retrievals are significantly less stable, with an 

average estimated uncertainty of approx. +/- 35 %.  

 

This difference in background radiance variation is surprising, because both data sets were acquired 

during similar seasons. The difference could be explained by different, specific weather conditions. 

Due to these considerable differences in background radiance variations, the coal  fires of the Wuda 

coalfield can be more easily detected on the ETM 2001 data than on the ETM 2002 data (figure 9-5).  
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Figure 9-5: ETM night-time TIR channels of the Wuda coalfield with corresponding CFRE images. 
The CFRE images were computed via the TIR method. The red outlines mark CFSA mapped during the 
field campaign in September 2002. The red arrow points towards a mountain ridge indicating that the 
topography induced background temperature variations are significant lower in the 2001 data. Upper 
left) ETM TIR channel 28.09.02 (night-time); upper right) CFRE image 28.09.02 (night-time); lower 
left) ETM TIR channel 25.09.01 (night-time); lower right) CFRE image 25.09.01 (night-time). 

 

Figure 9-5 clearly indicates that due to the different background radiance variations, it is difficult to 

observe detailed, local, temporal shifts in coal  fires 3-2, 7, 10 and 8. 9-2) CFRE computed for these coal  

fires, from both data sets, is relatively constant (see table 9-1), although a significantly larger, fire-

related pixel area can be visually detected in the 2001 ETM data (figure 9-5). According to Jia (2003, 

pers. communication) no significant changes of coal fire activity in the 3-2, 7, 10 and 8 coal  fires were 

                                                   
9-2) The field observations in September 2002 and September 2003 indicate, that CFSA can shift significantly 

within one year. Measured annual shifts exceeded more then 100 m at some locations.  

> 

1 

3-2 2-2 
2-1 5-2 

5-1 6 

8 

7-1 

7-2 

10 9 

11 

16 
12 

1 

3-2 2-2 
2-1 5-2 

5-1 6 

8 

7-1 

7-2 

10 9 

11 

16 
12 

4-2 

13 

> 



 

130 

observed, from September 2001 to September 2002. This indicates that the calculated CFRE accurately 

reflects the relatively stable coal fire situation. The anomaly pixels that were additionally detected on 

the 2001 data seem to have rather low CFRE, and thus the radiative energy contribution of these pixels 

to the total radiative energy budget of the entire coal fire zone is rather small .  

Table 9-1: Coal fire related, surface energy releases (CFSA) derived from two ETM channel 6 night-
time data sets at different temporal settings. The term 'mean’ refers to CFRE retrievals computed using 
the mean background radiances of neighbouring image pixels, the term ' mean + SD’ refers to CFRE 
retrievals calculated via the mean background radiances plus one standard derivation and the term ' 
mean - SD’ refers to CFRE retrievals calculated via the mean background radiances minus one 
standard derivation. In the case where a mapped, CFSA includes more than one detected fire cluster, a 
summative value is provided. A dash indicates that no CFSA could be detected within the 
corresponding fire zone. 

 

In contrast to the coal  fires 3-2, 7, 10 and 8 the number of the detected fire pixels from both data sets 

for coal fire zones 13 and 16 is rather small . CFRE retrievals, computed from small fire clusters are, 

due to background variations, very undependable (Wooster, 2003), and are thus also unreliable for any 

direct comparison. The coal  fires 5-2 and 6 show slightly more anomaly pixels than coal fire zones 13 

and 16 in both data sets. According to Jia (2003, pers. communication) the coal fire activity in fire 

energy release [MW] coal 
fire 

Wuda 

TIR 
background ETM night-time  

25.09.2001 
ETM night-time 

28.09.2002 
 

mean 1.7 3.9 
mean + SD 1.2 1.9 

1 

mean – SD 2.3 6.4 
mean 0.7 0.8 
mean + SD 0.5 0.5 

3-2 

mean – SD 0.8 1.0 
mean 0.2 0.4 
mean + SD 0.2 0.3 

5-2 

mean – SD 0.2 0.5 
mean 0.2 0.4 
mean + SD 0.2 0.3 

6 

mean – SD 0.3 0.5 
mean 3.2 4.2 
mean + SD 2.4 2.6 

7-1+7-2 

mean – SD 3.9 6.0 
mean 3.1 2.7 
mean + SD 2.1 2.0 

8 

mean – SD 4.1 3.7 
mean 1.5 1.2 
mean + SD 1.1 0.8 

10 

mean – SD 1.9 1.9 
mean 8.2 17.2 
mean + SD 6.7 11.5 

11 

mean – SD 9.7 23.9 
mean 1.0 2.4 
mean + SD 0.8 1.5 

12 

mean – SD 0.6 3.1 
mean 0.1 0.2 
mean + SD 0.1 0.1 

13 

mean – SD 0.2 0.2 
mean - 0.1 
mean + SD - 0.1 

16 

mean – SD - 0.2 
 

•  mean 19,9 33.5 
•  mean – SD 15.3 21.6 

 

•  mean+ SD 24.0 47.4 
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number 6 remained relatively constant from September 2001 to 2002, while coal fire 5-2 was almost 

entirely covered by a clay layer during this period, and should thus reveal significantly weaker CFSA 

in September 2002. As a consequence the calculated CFRE rise in coal fires 5-2 and 6 (see table 9-1) 

does not reflect the real coal fire situation or the fire fighting activity at fire 6 was not successful at all.  

 

Despite the different background radiance variations in both data sets a new coal fire zone in the 

southern part of the coal fire number 11 can be clearly detected on the ETM 2002 data (figure 9-5). Jia 

(2003, pers. communication) confirmed the development of this new zone. The CFRE release rise from 

September 2001 to September 2002 is very high, at approximately 9 MW, and indicates a significant 

change of the fire activity in coal fire 11.  

 

The analysis of the two ETM thermal data sets has demonstrated that ETM night-time data can be used 

to register movement in relatively large, CFSA. Although the analysed data sets revealed significantly 

different background radiance variations, a major new CFSA could be clearly located in the Wuda 

coalfield. Nevertheless, the background radiance variations of the two data sets were too dissimilar to 

allow for a visual analysis of detailed spatial shifts, or for the observation of an overall trend in CFSA 

found in the Wuda coalfield. ETM night-time data sets, acquired during winter, could reveal more 

stable background conditions than the two investigated ETM summer night-time data sets, and might 

thus allow a more detailed mapping of movements and shifts of coal fire zones.  

 

The CFRE computed for relatively large CFSA in the Wuda coalfield clearly reflects very well the 

activity of the CFSA, despite the different background radiance variations. Thus, CFRE computed for 

large fire clusters is reliable, even under different night-time TIR background conditions. However, the 

CFRE, computed for small fire clusters, was not representative for the observed CFSA, and has 

therefore to be regarded as unreliable for satellite based, multi-temporal coal fire analysis.  

 

9.2.3 Interpretation and conclusion regarding a multi-temporal BIRD data analysis 

The two BIRD data sets were acquired with an offset of about 9 months, and thus reflect distinctive 

seasonal factors. Nevertheless, the background temperature variations in the summer BIRD MIR night-

time data sets are only slightly higher than the background variations found in the winter BIRD MIR 

night-time data in the direct vicinity of the coal  fires, and in fact some CFSA can be clearly outlined in 

both data sets (figure 9-6).  

 

Coal fire clusters of coal fires 1, 3, 5, 12 and 13 are relatively small and bi-spectral retrievals derived 

from the two BIRD data sets are either rather low or possibly unstable (table 9-2). Consequently, these 

coal  fires were excluded from the multi-temporal comparison.  
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The bi-spectral retrievals, computed from the January 2003 data for fire zone 2 of the Ruqigou 

coalfield, were found to be unstable (table 9-2). However, in addition to the increased coal fire related 

pixel values in the southern part, summer 2003 data show significantly higher MIR radiances in the 

northern part of coal fire 2 (figure 9-6). This suggests a hotter or larger CFSA in the northern part of 

the coal fire zone 2.  

 

The bi-spectral retrievals for coal fire number 4, computed from both data sets, are stable and indicate a 

significant change in fire activity between January 2003 and September 2003 (table 9-2). However, the 

position of the major CFSA of coal fire number 4 remained, according to the visually detected fire 

pixels, relatively constant (figure 9-6).  

 

CFRE estimates for coal fire number 6 are stable and relatively constant. In general, the temperature of 

the CFSA seems to be slightly higher in September 2003 than was the case in January 2003. However, 

the high level of uncertainty in bi-spectral retrievals for low temperatures and small fire sizes 

(description in chapter 3, section 3.3.1) allows only a rough estimate. The detected coal fire pixels in 

both data sets (figure 9-6) indicate stronger CFSA in the eastern part of coal fire 6.  

 

The relatively stable CFRE estimates of coal fire 9 (table 9-2) suggest weaker and / or smaller CFSA in 

September 2003, compared to January of the same year. According to the location of the visually 

detected coal fire pixels the location of major CFSA seems to have slightly shifted.  

 

Both the location of the detected coal fire pixels and the computed energy releases indicate a relatively 

constant surface fire activity for coal fire 14, in both January and September 2003 (figure 9-6, table 9-

2). The CFRE estimates for coal fire 15 indicate a slight increase in surface coal fire activities between 

January and September 2003. Slightly more coal fire related, anomalous pixel values can be observed 

in the southern part of the fire zone in September 2003 data, compared to January 2003 data. This 

indicates an enlargement of the CFSA in this zone.  

 

According to BIRD observations, the CFSA of coal fire 16 are relatively constant. Both the bi-spectral 

retrievals and the location of the detected coal fire pixels indicate relatively stable CFSA. BIRD 

observations also show CFRE retrievals from coal fire 18 to be approx. constant.  

 

Although BIRD thermal data has a significantly lower spatial resolution than ETM thermal data, clear 

indications of shifts or activity changes could be observed for eight coal fire zones of the Ruqigou and 

Gulaben coalfields. This was achieved either by interpreting bi-spectral retrievals, or the location of 

detected coal fire clusters. Field observations, coinciding with the satellite overpass, could not be 

carried out for the two investigated BIRD acquisitions, although the observed shifts and activity 
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changes are clearly identifiable and probably do reflect real changes of corresponding CFSA. Thus the 

low night-time background radiance variations of the MIR channel show BIRD data sets to be very 

effective for the observation of major movements in CFSA.  

 

However, as with the ETM data analysis, only relatively large fire clusters could be meaningfully 

quantified. The majority of observed coal  fires in the Wuda coalfield did not produce increased pixel 

values in the BIRD January 2003 night-time data (see figure 8-4) and thus a multi-temporal, BIRD data 

based, coal fire study is definitely restricted to fire zones with relatively hot and / or large, CFSA 

anomalies.  

Figure 9-6: BIRD night-time MIR channels of the Ruqigou coalfield with corresponding CFRE 
images. The CFRE images were computed via the bi-spectral technique using BIRD MIR and TIR 
channel as input data. The red outlines mark CFSA, mapped during the field campaign in September 
2002. Upper left) BIRD MIR channel 16.01.03 (night-time); upper right) CFRE images 16.01.03 
(night-time); lower left) BIRD MIR channel 27.09.03 (night-time); lower right) CFRE images 27.09.03 
(night-time). 
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Table 9-2: Coal fire related, surface radiative energy releases (CFRE), equivalent fire temperatures 
and equivalent fire sizes, derived from two BIRD data sets (MIR + TIR channels) at different temporal 
settings. Mean energy values are indicated as ‘mean’, minimum values as ‘mean + SD’ and maximum 
values as ‘mean – SD’. In the case where a mapped, CFSA includes more than one detected fire 
cluster, a summative value is provided. A dash indicates that no CFSA could be detected within the 
corresponding fire zone. Brackets indicate unstable bi-spectral estimates.  

 

eq. T  
[K ] 

eq. A  
[ m²] 

energy release 
[MW] 

eq. T 
 [K ] 

eq. A 
 [m²] 

energy release 
[MW] 

coal fire 
Ruqigou 

TIR 
background 

BIRD  night-time 16.01.03 BIRD  night-time 27.09.03 
 

mean - - - 690 22 0.1 
mean + SD - - - - - - 

1 

mean – SD 398 4.6 0.1 440 60 0.1 
mean (443) (256) (0.5) 420 1014 1.4 
mean + SD - - - 714 20.0 0.3 

2 

mean – SD 392 905 1.0 377 3330 2.6 
mean (344) (548) (0.3) 405 642 0.8 
mean + SD (478) (17.3) (0.1) 454 213 0.4 

3 

mean – SD 320 1727 0.5 379 1326 1.0 
mean 306 35318 7.3 375 3719 2.8 
mean + SD 323 14165 4.6 468 426 1.0 

4 

mean – SD 298 67757 10.4 343 11133 4.7 
mean - - - 129 446 0.2 
mean + SD - - - - - - 

5 

mean – SD - - - 540 389 0.5 
mean 348 14712 8.0 413 8909 11.5 
mean + SD 371 6665 5.2 435 5262 8.8 

6 

mean – SD 335 25986 10.7 397 13585 14.3 
mean - - - - - - 
mean + SD - - - - - - 

8 

mean – SD - - - - - - 
mean 362 2983 2.1 395 1200 1.2 
mean + SD 383 1518 1.4 (447) (363) (0.7) 

9 

mean – SD 348 4882 2.7 370 2545 1.8 
mean 324 5173 1.7 380 5029 4.1 
mean + SD (352) (1817) (1.0) 430 1412 2.2 

10 

mean – SD 309 10930 2.5 354 11393 6.1 
mean 600 216 1.5 - - - 
mean + SD (841) (32) (0.9) - - - 

11 

mean – SD 529 526 2.2 500 30 0.1 
mean 325 1514 0.5 (427) (327) (0.1) 
mean + SD 334 862 0.4 - - - 

12 

mean – SD 320 2247 0.7 396 1319 0.1 
mean 347 921 0.5 - - - 
mean + SD (390) (224) (0.2) - - - 

13 

mean – SD 330 1978 0.8 - - - 
mean 317 17568 4.9 356 5607 3.1 
mean + SD (332) (8626) (3.4) 370 3181 2.2 

14 

mean – SD 306 30366 6.6 346 8646 4.0 
mean 351  / 336 1749  / 818 1.4 349  / - 5095  / - 2.4  / - 
mean + SD 405  / 437 326  / 43 0.5 446  / - 333  / - 0.6 

15 

mean – SD 332  / 313 4109  / 2599 2.2 323  / 424 17148 / 401 5.1 
mean 368 7854 5.9 376  / 436 6860  / 29 4.7 
mean + SD 389 4113 4.7 369  / - 2611  / - 2.7 

16 

mean – SD 354 12643 7.8 353  / 394 1267  / 1031 6.8 
mean 313  / 316 4930  / 1790 1.8 394 1246 1.2 
mean + SD 310  / - 387  / - 0.3 416 638 0.9 

18 

mean – SD 295  / 286 
299  / 285 

15753  / 6191 3.5 381 
 
 
 

1973 
 
 
 

1.7 
 
 
 

• mean 36.4 33.6 
• mean + SD 22.7 19.8 

 

• mean - SD 51.7 48.8 
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9.3 General conclusions 

The comparison of satelli te data with detailed field observations, made in conjunction with satelli te 

overpasses, has outlined the fact that BIRD and ETM data can be used to locate major CFSA with a 

degree of accuracy of somewhat less than 100 m. Using these data it was possible to clearly locate a 

sub-surface coal fire area below a highly collapsed bedrock and a major CFSA of a surface coal fires 

with temperatures exceeding locally 500 K. This study contains the first systematic comparison 

between, on the one hand, detailed field measurements of coal fire temperatures, and on the other hand, 

synchronous satelli te data. The field temperature measurements were performed along two profiles, 

which however, are not necessarily representative for the entire satelli te corresponding ground 

segment. An important suggestion for any future field campaign, targeted at validating satelli te coal 

fire temperature retrievals, is that such a study should be performed along a dense grid.  

 

The results of this first satelli te-based, multi-temporal coal fire study indicate that a satelli te-based, coal 

fire monitoring system, is capable of detecting major shifts or activity changes in relatively large and 

hot CFSA. High background-radiance variations in the ETM TIR channel make a direct comparison of 

visually-detected coal fire pixels, derived from two different ETM scenes, rather diff icult. However, 

CFRE retrieved from relatively large ETM pixel clusters seems to be reliable, even under varying 

night-time, background situations, and is therefore suitable for multi-temporal, coal fire monitoring. 

Significant lower background radiance variations in the BIRD MIR channel allow the observation of 

major shifts of CFSA, even though the BIRD sensor has a significantly lower spatial resolution 

compared to the ETM sensor. A newly developed CFSA, with a total area of more than 50000 m² 9-3) 

could be clearly located on multi-temporal ETM night-time data. In addition, CFRE retrieved from four 

major CFSA in the Wuda coalfield via multi-temporal ETM night-time data (total area extend > 30000 

m²) clearly indicates stable coal fire conditions. However, a satelli te-based coal fire monitoring system 

cannot replace field observations in the case of small and relatively cool, CFSA.  

 

The satelli te observations in this multi-temporal case study could only be partially verified by field 

observations, and the results of the case study can therefore only be regarded as primary results which 

form a basis for future studies. In order to verify these primary results it is necessary to make further 

detailed field observations at a variety of temporal settings, and in conjunction with satelli te 

overpasses. Future studies should also include an effective and systematic long-term field monitoring 

campaign. A major focus of this future field campaign has the observations of short-term coal fire 

activity changes, including observations at different times of the day (i.e. effect of solar heating on 

CFSA) and different meteorological conditions (i.e. effect of wind and rain on CFSA). The importance 

                                                   
9-3) The total area refers to the area of the detected coal fire cluster.   
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of this focus lies in the need to ascertain  whether or not the ‘snapshots’  available from polar orbiting 

satelli te observations can form a basis for general conclusions regarding coal fire activity.  

 

The major limitation of the ETM system for coal fire monitoring is the missing MIR channel, while the 

major limitation of the BIRD system is its low spatial resolution. A future sensor system, combining 

both the high resolution of the ETM TIR channel and the bi-spectral capabili ty of the BIRD system, 

could be a valuable tool for a detailed, satelli te data based, coal fire monitoring system. 
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10 AN ASTER AND ETM SATELLITE DATA BASED, AUTOMATED, COAL FIRE 

QUANTIFICATION (CFQ) ALGORITHM  

In this chapter a satellite data based, automated, coal fire quantification (CFQ) algorithm is presented 

and discussed. The algorithm is restricted to ASTER and ETM data and is not designed to work on 

BIRD data. The reason for this is, as discussed in the previous chapters, there are already established 

fire quantification approaches for BIRD data (bi-spectral technique; Dozier, 1981). An example of this 

can be found in the BIRD hotspot detection and quantification algorithm, recently presented by Zhukov 

and Oertel (2001). 

 

10.1 The aim of the CFQ algorithm 

The ASTER / ETM CFQ algorithm is designed to compute coal fire, radiative energy releases (CFRE), 

from potential coal fire pixels of respective satellite image data. The coal fire quantification is 

performed via the TIR method (description in chapter 7), using ETM band 6 or ASTER band 10 

respectively. The CFQ algorithm does not include a coal fire detection element and may thus be seen as 

a post-processing step to an ASTER and ETM data based coal fire detection procedure.  

 

Zhang (2004) recently presented the first non-interactive TIR satellite data based, coal fire detection 

algorithm. The coal fire detection is performed here via a statistical method, using a moving window 

technique to extract thermal anomalies in large areas. For each window a set of statistical tests is 

performed including, e.g., histogram-based, dynamic threshold tests to identify potential coal fire 

related thermal anomalies.  

 

Based on the fact that coal fires often occur on, or in the vicinity of coal-bearing strata and coal 

surfaces like coal storage and coal waste piles, Kuenzer (personal communication, 2004) is developing 

an automated, coal fire area demarcation algorithm. The algorithm mainly aims at the automated 

extraction of coal surfaces from multi-spectral ETM and Aster daytime data, applying a knowledge-

based test sequence and partial unmixing techniques to calibrated and atmospherically corrected data. 

The extracted coal surfaces are then buffered to define a zone in which the occurrence of coal fires is 

likely. These demarcated regions are further modified taking vegetation density and the occurrence of 

pyrometamorphic rocks into account. A first application of the statistically based thermal anomaly 

detection method, combined with coal fire area demarcation on ETM data from two previously non-

studied areas, has demonstrated that coal fires can be reliably detected using this approach (Zhang et 

al., submitted). 
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At the DLR, the algorithms of Zhang (2004) and Kuenzer (personal communication, 2004), and the 

presented CFQ algorithm are currently being combined into an automated, coal fire detection and 

quantification algorithm, suitable to detect and quantify coal fires in northern China on a routine basis.  

10.2 CFQ algorithm description 

10.2.1 Algorithm outline 

The CFQ algorithm presented here mainly performs the different processing steps described in detail in 

chapter 8, sections 8.1.1 (ETM data processing) and 8.3.1 (ASTER data processing). The CFQ 

algorithm requires ASTER channel band 10 data or ETM channel band 6 data, and a coal fire mask (= 

binary file including detected coal fire pixels) as input. The output includes two different CFRE images 

as well as an ASCII file containing the computed CFRE values and a quality assessment.  

Figure 10-1: Outline of QFC algorithm. 

 

In a first processing step the input data sets are calibrated and atmospherically corrected. The 

atmospheric correction is adapted to dry-desert climatic conditions, which are considered to be suitable 

for the semi-arid to arid regions in northern China. Following the results of the theoretical study 

(chapter 6) and the two case studies (chapters 8 and 9), neighbouring fire pixels are then grouped 

together to form continuous fire clusters, in order to minimise computation errors, induced by 

background signal variations. The TIR method (description in chapter 7) is applied to each individual 

coal fire cluster to calculate the respective CFRE. Prior to the preparation of the output data, a quality 

assessment is performed for each computed CFRE value.  

MODULE 1 

calibration of satellite data and atmospheric correction 

 

MODULE 2 
clustering of adjacent image pixel 

computation of CFRE values  

computation of CFRE via the TIR method 

MODULE 3 

preparation of output  

ASTER / ETM data DEM (optional) coal fire mask 

coal fire statistics CFRE images 
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The ASTER / ETM CFQ algorithm can be logically dived into three main modules (figure 10-1). The 

first module performs the calibration and atmospheric correction of the ASTER and ETM data sets. 

The second module clusters adjacent coal fire pixels into coal fire clusters and computes respective 

CFRE for each coal fire cluster via the TIR method, while the last module creates the output CFRE 

images and the tabulated results including the computed CFRE values and a quality assessment.  

 

10.2.2 Module 1: Calibration and atmospheric correction 

This module includes the calibration and atmospheric correction of the ASTER and ETM data. The 

calibration of the ASTER and ETM TIR data is performed via equation 3-6 and the calibration 

parameters listed in tables 10-1 and 10-2. Different calibration parameters are applied for ASTER band 

10, ETM channel 6, high-gain data and ETM channel 6 low-gain data. Due to the fact that a bias of 
���������
	������� � �������������! !"$#% &('*),+.-/)

-launch calibration of the ETM band 6 data that was processed 

before the 20th December 2000, ETM data sets processed before this date are corrected for this bias. 

The configuration parameters are stored in a respective file and can be adapted by the user if required.  

 

Low Gain High Gain 

Lmin 

[W / m² sr 0 m] 
Lmax 

[W / m² sr 0 m] 
Lmin 

[W / m² sr 0 m] 
Lmax 

[W / m² sr 0 m] 

0.0 
 

17.04 3.2 12.65 

Table 10-1: Radiances at the maximum and minimum digital number of the ETM TIR channel, used to 
transform ETM level 1b DN values to spectral radiances (Landsat 7 Science Data Users Handbook: 
http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html) 

 

Lmin 

[W / m² sr 1 m] 
Lmax 

[W / m² sr 1 m] 

0.0 
 

32.7 

Table 10-2: Radiances at the maximum and minimum digital number of the ASTER TIR channel, used 
to transform ETM level 1b DN values to spectral radiances (http://asterweb.jpl.nasa.gov/).  

 

The atmospheric correction of the ASTER and ETM data was optimised to dry desert conditions. The 

atmospheric correction parameters are calculated via the MODTRAN code (Berk et al., 1989), as with 

the data processing described in chapter 8, sections 8.1.1 and 8.3.1. The atmospheric correction is 

performed via equation 3-7 and the atmospheric parameters are listed in tables 10-3 and 10-4. In cases 

where the user provides a digital elevation model (DEM), an atmospheric correction is performed for 

each image pixel in order to account to the changes in atmospheric thickness due to actual topographic 
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elevation. If no DEM is available, all pixel values are corrected using atmospheric parameters 

corresponding to a user-defined, mean terrain elevation. The parameterised atmospheric constants are 

stored in external look-up tables, which can be modified by the user.  

 

high level [km] Lpath [mW / m2 ����� ���  trans �
	���������������������  

0.0 2445.3 0.7080 6803.7 
0.5 2159.1 0.7320 5932.5 

1.0 1891.7 0.7557 5141.4 

1.5 1640.8 0.7793 4423.7 
2.0 1408.9 0.8028 3768.7 

2.5 1201.3 0.8262 3176.3 

Table 10-3: Path radiance (Lpath), atmospheric ground-to-sensor transmittance (T) and downwelling 
flux of atmosphere (F) used for the atmospheric correction of the ETM channel 6.  

 

high level [km] Lpath [mW / m2 sr � m] trans Flux [mW / m2 � m] 
    

0.0 1267.2 0.7814 5817.4 
0.5 1118.9 0.8079 5072.5 
1.0 980.3 0.8341 4396.1 
2.0 850.3 0.8602 3782.4 
1.5 730.1 0.8861 3222.4 
2.5 622.5 0.9119 2715.9 

Table 10-4: Path radiance (Lpath), atmospheric ground-to-sensor transmittance (T) and downwelling 
flux of atmosphere (F) used for the atmospheric correction of the ASTER channel 10.  

 

10.2.3 Module 2: Clustering of adjacent coal fire pixels and computation of CFRE 

In module 2 adjacent fire clusters are aggregated into continuous fire clusters. After the clustering, a 

two-dimensional distance map is calculated, which contains the distance to the nearest background 

pixel for each coal fire cluster. Each element in this distance map is assigned a distance corresponding 

to the number of pixels to be visited when travelling from the current fire cluster to the neighbouring 

background pixel. Based on this distance map, the ten closest neighbours to the fire cluster are selected 

in order to compute the mean background radiance, as well as the respective standard deviation of the 

background radiance. Based on the computed background radiances, CFRE values are computed in a 

next processing step for each coal fire cluster using equations 7-1 (ETM data) and 7-2 (ASTER data).  

 

10.2.4 Module 3: Preparation of output 

In this module a colour-coded CFRE image is created that includes the mean CFRE value for each coal 

fire cluster. Furthermore, a tabulated output file is generated containing the CFRE estimates and the 

quality measures for each cluster.  This allows visual assessment of the results as well as the use in 

further processing steps. 
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10.3 Quality assessment  

The accuracy of the TIR-derived CFRE estimate strongly depends on the accuracy of the estimated 

background signal, as evaluated in chapter 7. Therefore, the quality of the computed CFRE value is 

assessed by calculating CFRE estimates for three different values of the TIR background signal. This is 

done in a similar manner to the ETM and ASTER data analysis in chapter 8, sections 8.1.1 and 8.3.1:  

 

• mean background value (corresponds to the mean CFRE)  

• mean background value minus one standard deviation (corresponds to the maximum 

CFRE) 

• mean background value plus one standard deviation (corresponds to the minimum 

CFRE)  

 

This information can be used directly as a quality indicator for the derived, mean CFRE value. 

Substantial differences between minimum and maximum CFRE values suggest high background 

variations, and thus indicate unreliable mean CFRE estimates.  

 

10.4 Description of required input for the CFQ algorithm, and its output products 

10.4.1 Inputs to the CFQ algorithm 

Satellite data 

The CFQ algorithm has been developed especially for ASTER channel 10 and ETM channel 6 data. It 

has been implemented in such a way that it automatically handles both ETM channel 6 high-gain data 

and ETM channel 6 low-gain data. The ETM and ASTER data, being ingested into the algorithm, are 

sensor-calibrated and geometrically corrected level 1b data sets, with pixel values in digital numbers 

(DN).  

 

Digital elevation model  

A digital elevation model (DEM) can be optionally provided to the algorithm. The DEM has to have 

the same spatial resolution as the corresponding satellite data and must also cover a similar area. DEM 

pixel values have to be assigned in meters above sea level. In the case where no DEM is available, the 

user can specify a mean sea level height that can then be used as a reference height for the atmospheric 

correction. 

 

Coal fire pixel mask 

A coal fire pixel mask is mandatory for the CFQ algorithm. The mask must be derived from the ETM 

or ASTER satellite data, prior to running the quantification algorithm. This can be done either by using 
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an automated, coal fire detection algorithm (e.g. Zhang, 2004), or by visually interpreting the thermal 

anomalies of the corresponding satellite scene. The coal fire mask has to be stored as a binary array, 

with coal fire values set to one (1) and no coal fire values set to zero (0).  

 

10.4.2 CFQ algorithm output products 

The output of the coal fire quantification algorithm consists of four data sets, described below: 

 

Main output  

The main output consists of two TIFF files containing a visualisation of the computed mean CFRE 

values. The first file includes colour-coded, mean CFRE values for each fire clusters, scaled 

logarithmically from 0.1 to 10 MW and 0.1 MW to 100 MW, respectively. The different scaling is 

performed, on the one hand to highlight energy variations of fire clusters with low corresponding 

CFRE values, and on the other, to avoid saturation of fire clusters with high corresponding CFRE 

values. An example of the main output from the CFQ algorithm is displayed in figure 10-2.  

Figure 10-2: An example of the CFQ algorithm main output: CFRE images from the Ruqigou and 
Gulaben coalfields, derived from ETM night-time TIR data. The output includes two CFRE images 
representing mean, computed CFRE estimates for entire fire clusters, scaled logarithmically, left) from 
0.1 to 10 MW and right) from 0.1 to 100 MW. 

 

Tabulated output (ASCII file)  

Beside the main output, an ASCII file is provided, which contains a fire identifier/cluster number (in 

the first column), the upper left x and y coordinates of each fire cluster (second and third column), the 

total size of the fire cluster (fourth column), the computed mean CFRE value of each fire cluster (fifth 

column), the computed maximum CFRE value (sixth column) and the computed minimum CFRE 

value (seventh column). Table 10-5 includes an example of the CFQ output ASCII file.  

 
 

 
 

100 
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Table 10-5: An example of the CFQ output ASCII file.  

 

The upper left x and y coordinates refer to pixel positions and not to geographical coordinates. The 

cluster size is given in m² and refers to the area coverage of the detected coal fire cluster. Due to the 

fact that a coal fire pixel always contains both fire and background information, as described in chapter 

5, the cluster size does not refer to the actual size of the coal fire surface anomaly. The mean, 
���������	�
�����
������
���	�
�����������
�����������! #"$�%��&%'(�!�)"*�+&����,�!-!�%"$�."*�0/1���
�2�3���(465 78�:9;�<"0= >@?	ACB1D

computation of the mean, max and min CFRE is explained in section 10.3 (quali ty assessment).  

 

10.5 Limitations and transferability of the CFQ algorithm  

The atmospheric correction included in the CFQ algorithm is adapted to dry-desert atmospheric 

conditions. In the TIR spectral range, the ground-to-sensor signal is strongly influenced by atmospheric 

water vapour content. The dry desert model used here assumes a very low atmospheric water vapour 

content, limiting the application of the current CFQ algorithm to arid and semi-arid regions. The CFQ 

algorithm can however easily be adapted by the user to other atmospheric conditions, simply by 

replacing the respective look-up tables.  

 

A major limitation of the CFQ algorithm that occurs as a result of the implemented TIR band based, 

coal fire quantification approach is, as described in chapter 7, that the TIR method cannot be applied to 

large and hot CFSA anomalies. ‘Hot’  in this case refers to average surface temperatures of more than 

600 K. Nevertheless CFSA in the three coalfields are in average significantly cooler than 600 K, and 

similarly low, coal fire related, surface temperatures have been reported from other coalfields in 

northern China (see chapter 2, section 2.3). As this algorithm, however, was only tested in three 

coalfields yet, it will be subject of further work to verify the wider applicabili ty of the CFQ algorithm 

for general quantification of coal fires in northern China.  

 

An additional limitation of the TIR method is it’s high sensitivity to background temperature variations 

(description in chapter 7). The CFQ main output (CFRE images) should thus only be interpreted in 

combination with the quali ty assessment figures along with the tabulated output.  

cluster number UL x UL y cluster size mean CFRE max CFRE min CFRE 

1 238 141 25200 1.0003818 1.2221395 0.7880989 

2 245 174 136800 7.7151241 10.9264536 4.9836359 

3 186 178 14400 0.5775985 0.6897060 0.4684574 

4 181 184 32400 0.8871909 1.3476485 0.4675472 

5 22 186 21600 0.9915951 1.3235970 0.6804683 

… … … … … … … 
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Despite the limitations induced by the atmospheric correction and the TIR method, the accuracy of the 

CFRE determination strongly depends on the accuracy of the input coal fire pixel mask. As mentioned 

in the introduction to this chapter, the research of Zhang et al. (submitted) and Zhang (2004) has 

outlined that coal fires can be detected, in previously unknown areas, using ETM data. However, an 

additional, visual interpretation of the automatically detected anomaly pixels, achieved by combing 

geological field information, and the knowledge of local coal fire experts, will definitely improve coal 

fire detection. Additional input information should therefore be considered whenever it is available.  

 

As discussed before, the CFQ algorithm here presented is specifically developed for ASTER and ETM 

TIR band data. It can however, be easily adapted to other high-resolution TIR data (for example to 

high-resolution airborne TIR data) by changing the atmospheric lookup tables and the calibration 

parameters in the configuration file. Thus, the presented algorithm can, in cases where the coal fire 

surface temperatures are lower than 600 K, be regarded as a robust tool for a remote coal fire analysis 

task.   
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11 CONCLUSIONS 

Kaufman et al. (1996) first proposed the remote measurement of fire radiative energy (FRE) as a new 

approach to providing quantitative information on forest and grassland fires. Until recently however, 

this concept has not been tested towards its applicabili ty to coal seam fires. The results from this study 

demonstrate that the ASTER, ETM and BIRD satelli te sensors possess the necessary spectral and 

radiometric characteristics to measure coal fire radiative energy (CFRE). 

 

Field observations clearly demonstrate that coal fire related surface anomalies (CFSA) are significantly 

colder than grassland and forest fires. In addition, the same observations outline that coal fire related 

surface anomalies are generally rather small . As in the case of forest and grassland fires, a satelli te data 

based, coal fire quantification approach needs also to be based on a sub-pixel concept. However, in 

contrast to vegetation fires, a coal fire quantification approach has to target ‘warm spots’  rather than 

‘hot spots’ .  

 

The performed coal fire simulations indicate that the TIR and MIR spectral range is significantly more 

sensitive in registration of coal fire related ‘warm spots’  than the SWIR spectral range. In addition, 

theoretical analysis indicates that amongst existing FRE approaches, only the commonly used bi-

spectral fire quantification approach can be applied to quantify relatively large and warm CFSA, via 

BIRD satelli te data. For ASTER and ETM data, existing FRE retrieval methods including the bi-

spectral technique cannot be applied for the analysis coal fires. In this study an alternative CFRE 

retrieval method is ill ustrated for ASTER and ETM data, which is based on TIR spectral radiances. For 

CFSA with averages temperatures below 600 K and relatively stable TIR background temperature 

conditions, the use of this newly developed TIR method is recommended.  

 

The two case studies presented here outlined the possibili ties and limitations of a satelli te data based 

CFRE retrieval approach. ASTER, ETM and BIRD night-time data appear to be effective in retrieving 

CFRE, allowing CFRE to be estimated within an average of +/- 25 % (ASTER), of +/- 35 % (ETM) 

and of +/- 40 % (BIRD) accuracy. However, the low spatial resolution of the BIRD data prevents some 

of the low radiative coal fire components from being detected and therefore total computed CFRE 

energy releases are on average significantly lower than estimates based on ETM and ASTER data. 

Summer daytime conditions provide the most diff icult situation for reliable CFRE estimates, on 

account of TIR background temperature variations. Thus, night-time conditions have to be regarded as 

optimal for satelli te data based CFRE studies. The good agreement reported for derived CFRE values, 

using satelli te data from different instruments, indicates that physically meaningful values of CFRE can 

be derived via the investigated satelli te instruments.  

 



11 Conclusions 

149 

Although coal fire energy is lost not only by radiation but is also lost by various processes such as for 

example conduction into the ground, the potential coal losses computed via ETM night-time derived 

CFRE values do approximate the overall dimension of the coal fire problem in the investigated 

coalfields. This result provides confidence in the ability of spaceborne sensors to obtain reliable, 

quantitative information on the coal fires. It is once again important to mention here that CFRE 

computed via satellite data only reflects part of the energy lost by coal combustion. Consequently, 

satellite based CFRE retrievals can only be used to provide an estimate of minimum coal combustion 

rates.  

 

One key point that remains to be addressed in the future is the extent of potential CFRE 

underestimation due to undetected, cool CFSA components. This may be examined by means of a 

comparisons between, on the one hand, high-resolution thermal airborne data and, on the other hand, 

satellite data. A further point is that, whilst the presented TIR coal fire quantification technique is only 

applicable for CFSA temperatures below 600 K, more detailed field observations are needed in order to 

justify the application of the presented approach on a regional scale. Furthermore, it is necessary to 

determine to what extent the ‘snapshots’ available from ETM, ASTER or BIRD data are able to 

characterise temporal variations of CFSA. The first multi-temporal comparison of BIRD and ETM 

CFRE values, presented here indicates that only major shifts or activity changes of CFSA can be 

monitored. Especially in case of small and cooler coal fire related surface anomalies satellite 

observations cannot replace a thorough ground monitoring. In order to verify these results, future 

remote sensing studies should include further, more detailed field observations.   

 

The coal fire quantification algorithm presented here can be regarded as a robust tool to derive CFRE 

estimates via ASTER and ETM data. The present author is well aware of that the previously 

operational ETM instrument is not longer functioning. This study has demonstrated that the 

experimental ASTER data can replace ETM data for coal fire analyses. The quality of the coal fire 

quantification strongly depends on the quality of the coal fire detection. Zhang et al. (submitted) and 

Kuenzer (pers. Communication, 2004) have demonstrated that coal fires can be automatically detected 

on thermal night-time satellite data. However, a visual interpretation of the automatically detected 

thermal anomalies, combined with geological field information and expertise from local mining 

authorities will undoubtedly improve the results of the coal fire detection and quantification.  

 

Finally, the results of this study indicate that the BIRD MIR spectral band is much more 

radiometrically sensitive to coal fires than the ETM TIR spectral band. However, the factor 6 higher 

spatial resolution of ETM allows it to perform better than BIRD under night-time and winter daytime 

conditions. In summer daytime conditions coal fires cannot be reliably recognised in ETM TIR data 

due to large background temperature variations. The European Space Agency (ESA) is currently 
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exploiting a complex satellite constellation, the Global Monitoring for Environment and Security Earth 

Observation Component (GMES OC). The GMES OC preparatory activities began in June 2004. An 

activity will include definition studies for infra-red fire detection sensors which are being considered 

for inclusion in the payload of several satellites (European Space Agency Earth Observation 

Programme Board, 2004). It is recommended that such a prospective satellite sensor, dedicated to the 

problem of coal seam fire detection and analysis under both daytime and night-time conditions, should 

have a non-saturating MIR and a TIR channel with a spatial resolution of at least 100 m.  
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