
In vivo function of NGF/TrkA signaling in the

cholinergic neurons of the murine basal forebrain

Dissertation

der Fakultät für Biologie der Ludwig-Maximilians-Universität

München

Vorgelegt von
Markus  Müller

München 2005



Dissertation wurde eingereicht am: 10.05.2005

Tag der mündlichen Prüfung: 25.10.2005

Prüfungskommission:

Herr PD Dr. Rüdigher Klein (Vorsitz)
Herr Prof. Dr. Stefan Jentsch

Herr Prof. Dr. Benedikt Grothe
Herr Prof. Dr. Hans-Ulrich Koop

Umlauf:

Herr PD Dr. Mark Hübener
Herr Prof. Dr. George Boyan



2

I TABLE OF CONTENTS _________________________________________________________ 2

II ABBREVIATIONS ______________________________________________________________ 5

III INTRODUCTION_____________________________________________________________ 8

1 NEUROTROPHIN SIGNALING___________________________________________________ 8

1.1 NEUROTROPHINS CONTROL CELL SURVIVAL _______________________________________ 10
1.2 NEUROTROPHINS CONTROL NEURONAL DEVELOPMENT AND FUNCTION __________________ 13

2 NGF AND ITS RECEPTOR TRKA ________________________________________________ 15

2.1 EXPRESSION PATTERN OF NGF AND TRKA ________________________________________ 16
2.1.1 Expression in the PNS __________________________________________________ 16
2.1.2 Expression in the CNS __________________________________________________ 16
2.1.3 Expression in non-neuronal cells __________________________________________ 17

2.2 FUNCTION OF NGF/TRKA SIGNALING____________________________________________ 17
2.2.1 Knockout mice ________________________________________________________ 17
2.2.2 Inhibition studies ______________________________________________________ 21
2.2.3 Transgenic anti-NGF mice _______________________________________________ 21
2.2.4 Neuromodulatory function of NGF/TrkA signaling_____________________________ 22
2.2.5 NGF/TrkA function in immune cells ________________________________________ 23
2.2.6 TrkA mutations in humans _______________________________________________ 24

3 CHOLINERGIC NEURONS _____________________________________________________ 24

3.1 CHOLINERGIC NEUROTRANSMISSION ____________________________________________ 24
3.2 CHOLINERGIC NEURONS IN THE BRAIN ___________________________________________ 26

3.2.1 Cholinergic neurons in the medial septum (Ch1) ______________________________ 28
3.2.2 Cholinergic neurons in the diagonal band (Ch2+Ch3)__________________________ 28
3.2.3 Cholinergic neurons in the nucleus basalis (Ch4) _____________________________ 28
3.2.4 Cholinergic neurons in the striatum ________________________________________ 29
3.2.5 Cholinergic neurons in the brainstem (Ch5+Ch6) _____________________________ 29

3.3 FUNCTION OF CHOLINERGIC NEURONS ___________________________________________ 31
3.3.1 Memory _____________________________________________________________ 32
3.3.2 Attention _____________________________________________________________ 33
3.3.3 Neuroplasticity ________________________________________________________ 34

4 THE CHOLINERGIC SYSTEM, NGF/TRKA SIGNALING AND ALZHEIMER’S DISEASE 35

4.1 ALZHEIMER’S DISEASE _______________________________________________________ 35
4.2 PROTEOLYTIC APP PROCESSING ________________________________________________ 35
4.3 CHOLINERGIC NEURONS AND ALZHEIMER’S DISEASE ________________________________ 38

4.3.1 Cholinergic lesion in Alzheimer’s disease ___________________________________ 38
4.3.2 Links between cholinergic neurotransmission and APP processing ________________ 38

4.4 NGF/TRKA EXPRESSION AND FUNCTION IN ALZHEIMER’S DISEASE _____________________ 39

I  TA B LE  OF  C O N TE N TS



3

5 MAIN AIM OF THIS STUDY ____________________________________________________ 41

IV MATERIAL AND METHODS _________________________________________________ 42

1 GENERAL PROTOCOLS AND MATERIALS USED ________________________________ 42

1.1 BUFFERS AND SOLUTIONS _____________________________________________________ 42
1.2 ANTIBODIES _______________________________________________________________ 45
1.3 PLASMIDS _________________________________________________________________ 46

2 METHODS____________________________________________________________________ 47

2.1 GENERAL MOUSE WORK ______________________________________________________ 47
2.1.1 Mice line used_________________________________________________________ 47

2.2 GENOTYPING OF MICE________________________________________________________ 48
2.3 GENERATION OF TRANSGENIC MICE _____________________________________________ 49

2.3.1 Generation of targeting constructs _________________________________________ 49
2.3.2 Targeting of wild-type alleles _____________________________________________ 50
2.3.3 Isolation of DNA from ES clones and Southern blot analysis _____________________ 50
2.3.4 Injection of ES-cells into C57BL/6 blastocysts ________________________________ 52

2.4 ANALYSIS OF TRANSGENIC MICE________________________________________________ 52
2.4.1 Preparation of floating sections ___________________________________________ 52
2.4.2 Immunohistochemistry __________________________________________________ 53
2.4.3 Cell counting _________________________________________________________ 54
2.4.4 Histochemistry for AChE activity __________________________________________ 55
2.4.5 Preparation of protein lysates_____________________________________________ 55
2.4.6 Immunoblotting (Western blotting) _________________________________________ 55
2.4.7 Immunoprecipitation____________________________________________________ 57
2.4.8 NGF immunoassay (ELISA) ______________________________________________ 57
2.4.9 Statistical analysis _____________________________________________________ 58

V RESULTS_____________________________________________________________________ 59

1 TRKA EXPRESSION IS BRAIN-SPECIFICALLY DISRUPTED IN trkA LOX/LOX; NESCRE +/-
MICE _____________________________________________________________________________ 59

2 TRKA DISRUPTION RESULTS IN A CHOLINERGIC PHENOTYPE IN THE BASAL
FOREBRAIN_______________________________________________________________________ 63

2.1 TRKA DISRUPTION REDUCES SPECIFICALLY THE NUMBER OF CHOLINERGIC NEURONS IN DISTINCT
FOREBRAIN AREAS _________________________________________________________________ 63
2.2 TRKB DISRUPTION HAS ONLY A MINOR EFFECT ON CHOLINERGIC CELL NUMBERS IN THE MEDIAL
SEPTUM _________________________________________________________________________ 71
2.3 TRKA DELETION DECREASES THE EXPRESSION OF THE CHOLINERGIC DIFFERENTIATION MARKER
CHAT _________________________________________________________________________ 72
2.4 CHOLINERGIC INNERVATION OF THE CORTEX AND THE HIPPOCAMPUS IS SEVERELY REDUCED IN
TRKA LOX/LOX; NESCRE+/- MICE ________________________________________________________ 74

3 TRKA DISRUPTION MODIFIES PROCESSING OF APP_____________________________ 77

4 GENERATION OF A FLOXED ngf ALLELE _______________________________________ 85

VI DISCUSSION _______________________________________________________________ 89

1 THE CHOLINERGIC PHENOTYPE IN TRKA DEFICIENT MICE_____________________ 89

1.1 IS THE CHOLINERGIC DEFICIT CAUSED BY INCREASED NEURONAL APOPTOSIS AND/OR BY LOSS OF
CHOLINERGIC DIFFERENTIATION? ______________________________________________________ 89



4

1.2 OTHER NEUROTROPHIC FACTORS INVOLVED IN THE DEVELOPMENT AND SURVIVAL OF
CHOLINERGIC NEURONS _____________________________________________________________ 92
1.3 WHY ARE STRIATAL INTERNEURONS RESISTANT TO TRKA DELETION? ___________________ 94

2 THE APP RELATED PHENOTYPE IN TRKA DEFICIENT MICE _____________________ 97

2.1 DISCREPANCIES AND SIMILARITIES BETWEEN THE OUTCOME OF OUR WORK AND THE RESULTS OF
PREVIOUS STUDIES _________________________________________________________________ 97
2.2 WHAT MAY BE THE MECHANISMS INVOLVED IN THE MODIFICATION OF APP PROCESSING AFTER
TRKA DELETION? __________________________________________________________________ 99
2.3 WHAT COULD BE THE CONSEQUENCES OF THE ALTERATION OF APP PROCESSING IN TRKA-
DEFICIENT MICE?__________________________________________________________________ 100

VII OUTLOOK ________________________________________________________________ 104

VIII BIBLIOGRAPHY___________________________________________________________ 106



5

Aβ Amyloid β

ac anterior commissure

ACh Acetycholine

AchE Acetylcholine-Esterase

AD Alzheimer’s disease

ADAM a disintegrin and a metalloprotease

APP Amyloid precursor protein

BACE β-site APP cleaving enzyme

BDNF Brain-derived neurotrophic factor

bp basepair

Ch cholinergic cell group

ChAT Choline acetyltransferase

CIPA Congenital insensitivity to pain and anhidrosis

CNS Central nervous system

C-ter Carboxy-terminal

DB, hl Diagonal band, horizontal limb

DB, vl Diagonal band, vertical limb

DNA Deoxyribonucleic acid

dNTP Deoxyribonucleotide triphosphate

DRG Dorsal root ganglium

E Embryonic day

ec External capsule

EGFP Enhanced green fluorescent protein

ELISA Enzyme-linked immunosorbent assay

ERK Extracellular signals related kinase
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ES cells Embryonic stem cells

FAD Familial Alzheimer’s disease

FGF Fibroblast growth factor

GABA Gamma aminobutyric acid

Gp Globus pallidum

HRP Horseradish peroxidase

IB Immunoblotting

ic Internal capsule

IHC Immunohistochemistry

IRES Internal ribosomal entry sequence

kDa kilodalton

LTD Long-term depression

LTP Long-term potentiation

mAChR muscarinic acetylcholine receptor

mRNA messenger ribonucleic acid

nAChR           nicotinic acetylcholine receptor

NB Nucleus basalis

Nes Nestin

NGF Nerve growth factor

NT-3 Neurotrophin-3

O.D. Optical density

OD Ocular dominance

P                      Postnatal day

PCR Polymerase chain reaction

PKC Protein kinase C

PNS Peripheral nervous system

PS Presenilin

sAPP soluble amyloid precursor protein

SCG Superior cervical ganglion

St Striatum

TNF Tumor necrosis factor
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Trk                  Tropomyosin-related kinase

VACht Vesicular ACh transporter

WT Wild-type



After a first general part about neurotrophin signaling, this introduction will be focussed

on NGF and its receptors TrkA and p75. Expression pattern and functions of these

molecules will be described in details. In the third part the cholinergic system will be

introduced and in particular the cholinergic neurons of the forebrain and their functions

will be described extensively. Finally, the involvement of the cholinergic neurons and of

the NGF/TrkA signaling in the pathological disorder of the Alzheimer’s disease will be

presented.

1 NEUROTROPHIN SIGNALING

The neurotrophins are a family of secreted proteins that potently regulate diverse

neuronal responses (Bibel and Barde, 2000; Huang and Reichardt, 2001; Segal, 2003).

Family members include nerve growth factor (NGF), brain-derived neurotrophic factor

(BDNF), neurotrophin-3 (NT-3) and neurotrophin 4/5(NT4/5). An additional

neurotrophin has been found in fishes.

Neurotrophins bind two different classes of transmembrane receptor proteins, the

tropomyosin-related kinase (Trk) family of tyrosine kinase receptors and the p75

receptor, a member of the tumor necrosis factor (TNF) receptor superfamily.

The neurotrophins bind the Trks receptor in a specific way. NGF is the preferred ligand

for TrkA, BDNF and NT4/5 for TrkB, and NT3 for TrkC. NT3 is also able to bind TrkA

and TrkB but only does so at much higher concentrations than do NGF and BDNF.

Whereas the tyrosine kinase domains of the different receptors are highly related (80%

amino acid identity), the extracellular domains are more divergent and confer specificity

to the ligand-receptor interaction (see Figure 1).

I I I  IN TR O D U C TIO N
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Figure 1 The Trk receptors.

The Trk receptors are transmembrane glycoproteins of ~140 kD. They are tyrosine kinases with an
extracellular ligand-binding domain containing multiple repeats of leucine-rich motifs (LRR1-3), two
cysteine clusters (C1, C2), two immunoglobulin-like domains (Ig1, Ig2), and a single transmembrane
domain. Binding specificity of the Trk receptors is mostly determined by the second Ig-like domain,
whereby each Trk receptor binds the corresponding ligand through a distinct specific sequence.

Neurotrophin binding to Trk receptors results in a series of events that characterize

receptor tyrosine kinase signaling (Patapoutian and Reichardt, 2001). These include

receptor dimerization and transphosphorylation of activation loop tyrosines leading to

activation of kinase activity, followed by autophosphorylation of tyrosines outside of the

activation loop. These autophosphorylation sites serve as binding sites for specific

signaling proteins and adaptors such as PLCγ and Shc. Subsequent phosphorylation and

activation of accessory proteins lead to the generation of a highly complex system of

intracellular signaling pathways and results finally in a distinct cellular outcome. Each

neurotrophin has numerous functions and the exact mechanisms by which the different

functions are regulated are not yet completely understood.
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1.1 Neurotrophins control cell survival

One of the most extensively studied properties of the neurotrophins is their ability to keep

alive subpopulations of neurons in the peripheral nervous system (PNS) (Davies, 2003).

In this regard, as the central concept of the neurotrophic factor hypothesis, targets of

innervation were postulated to secrete limiting amounts of survival factors. Once a

developing neuron has grown its process into its targets, it competes with other neurons

for the limited supply of neurotrophic factors. Only some neurons are surviving, others

are dying. This mechanism ensures a balance between the size of a target organ and the

number of innervating neurons.

Animal models in which the expression of the different neurotrophins or their receptors is

deleted (termed “knockout” animals) have evidenced clearly the essential role of

neurotrophin signaling in ensuring the survival of peripheral neurons and correct

innervation of the target organs.

NGF signaling through TrkA provides crucial neurotrophic support for the small and

middle-sized sensory neurons (localized mainly in the trigeminal ganglia and in the

dorsal root ganglia (DRG)) and almost all sympathetic neurons of the PNS (Smeyne et

al., 1994). TrkB function is essential for the survival of about half of the sensory neurons

of the trigeminal ganglia (Klein et al., 1993). In the nodose-petrosal ganglion that is

responsible for the visceral sensory innervation almost all neurons are TrkB dependent. In

the DRG, TrkB is responsible for the survival of the sensory neurons that innervate the

mechano-receptors of the Merkel cells. In the ganglia of the vestibular organ, TrkB

signaling upon BDNF binding is essential, while in the cochlear ganglia survival of a

large part of the sensory neurons requires Trk receptor activation through NT-3 (Ernfors

et al., 1995). TrkC controls together with TrkB the survival of the sensory neurons of the

cochlear organ (Schimmang et al., 1997). Additionaly, in TrkC knockout mice, a

subpopulation of the DRG neurons and the proprioceptive neurons that innervate the

spindle organs in skeletal muscles are lost (Klein et al., 1994).

The phenotypes of the neurotrophin knockout mice in general are consistent with the

phenotypes of the receptor knockouts and with what is known about the specificities of

ligand interaction with the receptors. Thus, the phenotype of the NGF knockout is largely
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identical with those of the TrkA receptor, indicating that NGF is the major ligand in vivo

for TrkA (Crowley et al., 1994). Conversely, in the case of the NT-3 knockout phenotype,

which is more severe than the one of the TrkC receptor, there is good evidence that in

vivo NT-3 acts in some neuronal subpopoulations also as an important activator of TrkA

and TrkB (Davies et al., 1995).  Similarly, the phenotypes of the BDNF and of the NT-

4/5 knockout mutants in the trigeminal and the nodose-petrosal ganglia are less severe

than the TrkB knockout phenotype, suggesting that both ligands contribute in these

neurons to the activation of TrkB. Interestingly, in the vestibular ganglia, the BDNF

mutation appeared to have a more dramatic effect compared to the trkB knockout. BDNF

has not been shown to cross-react with TrkA or TrkC receptors indicating that the

differences between ligand and receptor knockouts may have a more general cause. One

explanation might be the presence of non-catalytic isoforms encoded by the trkB and trkC

genes. These isoforms are still expressed in the knockout mice and may mediate some

sort of signal transduction that could partially prevent or delay cell death.

The neuronal losses in the PNS of the distinct neurotrophin and receptor knockout

animals compared to the wild-type animals are summarized in Table 1.

TrkA NGF TrkB BDNF NT-4/5 TrkC NT-3

Sensory  ganglia:

Trigeminal 70% 75% 60% 30% NS 21% 60%

Nodose-Petrosol ND ND 90% 45% 40% 14% 30%

Vestibular NS ND 60% 85% NS 15% 20%

Cochlear NS NS 15% 7% ND 50% 85%

Dorsal root 70 -

90%

70% 30% 35% NS 20% 60%

Sympathetic ganglia:

Superior cervical >95% >95% ND ND NS NS 50%

TABLE 1 : Neuronal losses in the PNS of neurotrophin and Trk-deficient mice
Neuronal losses are expressed as the percentage of neurons lost in the mutants compared with the wild-type
animals. This table is modified from a table in Huang and Reichardt (2001)
NS: not significant; ND: not done
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It is noteworthy that in some cases distinct neuronal subpopulations require more than

one neurotrophic factor – receptor signaling pathway to survive. This fact is particularly

evidenced by the generation of knockout mice, in which more than one neurotrophin or

receptor is disrupted. While in some combinations of different knockouts, the effect on

the distinct neuronal subpopulations were largely additive (e.g. trkA/trkC and trkB/trkC

in the DRG), other combinations of mutant alleles such trkA/trkB (in the DRG) or

trkB/trkC (in the vestibular organ) showed no significant increase in neuron loss over

single trkA (in the DRG) or single trkB (in the vestibular ganglion) knockout mice

(Minichiello et al., 1995). These data indicate that certain subpopulation of neurons

require during development different Trk signaling pathways for survival. This

requirement of two Trk receptors is most likely sequential and does not involve constant

co-expression of both receptor pathways. In this regard, trigeminal sensory neurons have

been shown to switch their neurotrophin specifity from BDNF/NT3 to NGF during

embryonic development, presumably by changing the expression pattern of neurotrophin

receptors. These kind of neurons would be vulnerable to both trkB and trkA mutations

(Davies, 1997).

The survival role of the neurotrophins in the central nervous system (CNS) has been more

difficult to study compared to the PNS. Nevertheless, there is clear evidence that at least

during development neurotrophins provide essential survival signals also for cells of the

CNS. TrkB and TrkC, which are expressed in a large amount of neuronal subpopulations

in the CNS, ensure survival of distinct cells of the hippocampus and of the cerebellum

(Alcantara et al., 1997; Minichiello and Klein, 1996). Interestingly, in this case TrkB and

TrkC act in a redundant fashion; activation of either of the two receptors is sufficient for

neuronal survival in the CNS during development. Later, it was shown that trkB-deficient

mice exhibit also a small increase of apoptotic cells in the cortex, hippocampus and

striatum during the first postnatal weeks (Alcantara et al., 1997). Recently, it was

demonstrated that after development TrkB is no more necessary for the survival of CNS

neurons but rather modulate complex bahavior (Minichiello et al., 2002; Minichiello et
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al., 1999). The survival role of NGF/TrkA signaling for the TrkA-responsive cholinergic

neurons of the basal forebrain will be discussed below in more details.

While neurotrophins in most of the cases promote cell survival, under some

circumstances it may be possible that neurotrophins also invoke cell death. The

neurotrophin receptor involved in the pro-apoptotic effects of neurotrophins appears to be

the p75 receptor (Hempstead, 2002; Lee et al., 2001a). P75 binds all members of the

neurotrophin family with approximately equal affinity. Neurotrophin binding to p75

triggers activation of signaling pathways distinct from these ones activated by the Trk

receptors. In addition, p75 may interact directly with the Trk receptors and modulate their

activity. In vivo, overexpression of p75 causes cell death in certain cell types and

disruption of p75 may induce an increase of certain cell populations that express

endogenously high levels of p75 (as the cholinergic neurons of the basal forebrain). In

general, the effect of p75 activation on cell survival appears to depend crucially on the

cellular context and on the level of expression of the other neurotrophin receptors and

their ligands.

1.2 Neurotrophins control neuronal development and function

Neurotrophins have multiple effects on the functional properties of the neurons of the

PNS and of the CNS beyond regulation of their survival.

There is a large body of evidence both in vitro and in vivo that neurotrophins regulate

potently the growth of dendrites and axons in the PNS and the CNS. In vitro experiments

using many different kind of neurons show that focal application  of neurotrophins

induces a rapid turning of neurite growth cones toward the neurotrophin source

(Gundersen and Barrett, 1979; Ming et al., 1997). In vivo experiments show that

overexpression of neurotrophins lead to an increase in the ingrowth  of sympathetic and

sensory neurons in different target organs (Albers et al., 1996; Hassankhani et al., 1995).

Recently, an elegant in vivo study in mice demonstrated directly the chemo-attractant

function of neurotrophins and the implication of this function in the elongation of

peripheral mixed nerves (Tucker et al., 2001). Moreover, neurotrophin signaling plays a

critical role in determining the phenotype of neurotrophin-responsive neurons. An early
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illustration of this phenomenon has been provided by experiments in which antibodies to

NGF were injected into young rats (Ritter et al., 1991). Reducing NGF levels led to a

phenotypic switch of the sensory nerves that innervate the skin. The Aδ nerve fibers

which innervate mechanoreceptors were replaced by D-hair-type nerve fibers which

respond to low-threshold stimulation of hairs in the skin. This property of NGF signaling

was further evidenced by an elegant mouse model in which the expression of TrkA was

replaced by expression of TrkC (Moqrich et al., 2004). The phenotypical characteristics

of sensory nerves in this mouse were changed importantly. Similar capacities in

determining and maintaining neuronal phenotypes were demonstrated also for the other

neurotrophins (Lewin, 1996). Finally, in the developing brain, neurotrophins are also

involved in the proper timing of neuronal migration in the cortex (Medina et al., 2004).

Furthermore, neurotrophins modulate also the number of synapses and the efficiency of

synaptic transmission. In vitro experiments demonstrated that neurotrophins regulate

neuronal excitability and increase the release of neurotransmitter. One of the most

intriguing functional properties of the neurotrophins is their involvement in

neuroplasticity events (McAllister et al., 1999). Neuroplasticity is a life-long process that

mediates the structural and functional reaction of dendrites, axons, and synapses to

experience, learning, and injury. Characteristics of neuroplasticity can be found on

molecular (e.g., protein phosphorylation states and insertion of receptors at synapses),

synaptic (e.g., long-term-potentiation and –depression), cellular (e.g., number and shape

of spines, dendrites, or axons) and system/circuit level (e.g., cortical representation/maps

reorganization). Neurotrophins mediate various aspects of neuroplasticity. For example,

neurotrophins are importantly involved in the activity-driven synaptic rearrangements of

neurons from the lateral geniculate nucleus of the thalamus that result in formation of

ocular dominance (OD) columns in the layer IV of the visual cortex. The role of

neurotrophins in activity-dependent synaptic arrangement during cortical development

has been tested mainly by using monocular deprivation during the critical period for OD

development. Blocking the input from one eye leads to the shrinkage of the

corresponding neuronal cell bodies and axons in the lateral geniculate nucleus, and the

input from the nondeprived eye takes over. For instance, NT-4 infusion was shown to

prevent many of the consequences of monocular deprivation (Gillespie et al., 2000).
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Also, BDNF-mediated maturation of interneuronal cortical inhibition may be involved

importantly in the regulation of visual cortical plasticity (Huang et al., 1999). Another

important aspect of neuronal plasticity that is controlled by neurotrophin signaling are the

long-term changes in synaptic activity. For instance, in vivo it was shown, that deletion of

BDNF/TrkB signaling results in the inhibition of the formation of  long-term potentiation

of synaptic activity. The inhibition of long-term potentiation can be observed both in

animals where BDNF is disrupted from early development on (Patterson et al., 1996) as

well as in animals where TrkB is disrupted only after development (Minichiello et al.,

1999).  The impaired synaptic plasticity correlates with behavioral deficit in learning

tasks in TrkB conditional mutant.

2 NGF AND ITS RECEPTOR TRKA

The neurotrophin NGF was discovered more than 50 years ago by Rita Levi-Montalcini,

Stanley Cohen and Ernst Hamburger (Cowan, 2001). The ngf gene is located on the

human chromosome 1 and in mice on the chromosome 3. The ngf gene contains 4 exons

(Selby et al., 1987); only the last and largest exon 4 encodes for the NGF protein. Like

the other neurotrophins, NGF is initially synthesized initially as an immature isoform

(called proNGF) that contains a signal sequence and an amino terminal portion, which

allows for correct protein folding. The mature NGF peptide is generated by protease

digestion of proNGF and consists of a dimer of two 13 kDa polypeptides. Interestingly,

recently it was shown that also proNGF is biologically active and binds preferentially the

p75 receptor (Lee et al., 2001b).

TrkA was initially discovered in 1986 as an oncogenic fusion protein isolated from

human colon carcinoma (Martin-Zanca et al., 1986). Genetic analysis revealed that in

normal cells the proto-oncogene encoded for a single transmembrane-spanning

polypeptide chain that make part of the receptor tyrosine kinase superfamily. Only 5

years after its discovery TrkA was identified to be the major receptor for NGF. As NGF,

TrkA is located on the human chromosome 1 and in rodents on chromosome 3. The trkA

gene contains 17 exons (Greco et al., 1996). The exons 1-8 encode for the extracellular

domain of the receptor, while exons 13-17 encode for the kinase domain. Two isoforms

of TrkA exist that differ in their extracellular domain through the inclusion of six
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additional amino acids near the transmembrane domain of one of the variants. Inclusion

of the insert appears to relax the specificity of TrkA activation; NT-3 mediated signaling

is markedly enhanced through this receptor isoform (Clary and Reichardt, 1994).

2.1 Expression pattern of NGF and TrkA

2.1.1 Expression in the PNS
TrkA is expressed during development and in adulthood in sympathetic neurons and

small-diameter peripheral sensory neurons that mediate nociception and thermoception.

The cell bodies of the sensory neurons of the PNS are localized in the dorsal root (DRG)

and in the trigeminal ganglia. TrkA-positive sensory neurons are generated between

embryonic day E11.5 and E13.5 (White et al., 1996).

All the sympathetic neurons are clustered in ganglia in the sympathetic chain alongside

the spinal chord extending from the first thoracic spinal segment to the upper lumbar

segments. One of the major and best-studied components of the sympathetic system is

hereby the superior cervical ganglion (SCG) that contains primarily principal sympathetic

neurons. TrkA expression in the SCG appears first at E13.5, becomes robust from E15.5

onward and remains high through adulthood (Fagan et al., 1996).

Most of the TrkA-positive neurons in the PNS express also p75 (Sobreviela et al., 1994).

During development, p75 is expressed also in many motoneurons and in the myelin-

producing Schwann cells of the PNS (Wheeler et al., 1998; Yan and Johnson, 1988).

NGF is produced during and often also after development in many non-neuronal target

cells of sensory and sympathetic neurons (Wheeler and Bothwell, 1992; Yamamoto et al.,

1996). These include targets in the skin (e.g. keratinocytes and melanocytes), vascular

and other smooth muscle cells, and various endocrine tissues, such as testis and ovary,

pituitary, thyroid and parathyroid, and exocrine salivary (e.g.submandibular) glands.

2.1.2 Expression in the CNS
TrkA and p75 expression in the CNS is found in the different cholinergic cell groups in

the basal forebrain, which are discussed in more details below. Few groups of non-

cholinergic neurons that express TrkA were described in the thalamus and other brain

areas in the brainstem (Holtzman et al., 1995).
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Glial cells are normally not expressing TrkA. Many non-neuronal, and in particularly

oligodendrocytes, express the p75 receptor.

TrkA mRNA can be detected in the rat brain from the late embryonic development on.

The mRNA levels then increase during the first postnatal days and reach adult levels

towards the end of the third postnatal week (Li et al., 1995).

NGF production can be found in the CNS during development and throughout adult life.

NGF-producing cells are most abundant in all the target areas of cholinergic innervation

(Saporito and Carswell, 1995). Most such cells are neurons. In the hippocampus,

pyramidal and dentate granule neurons express NGF, as do subpopulations of

GABAergic interneurons (Rocamora et al., 1996). In the striatum, NGF is produced by

GABAergic interneurons (Bizon et al., 1999).  In the cortex, NGF is produced by neurons

distributed throughout all the different layers except the layer IV, where only very few

NGF-expressing neurons are found (Pitts and Miller, 2000).

NGF is produced occasionally also by astrocytes and microglia cells and this production

can be importantly increased by inflammation or injury processes.

2.1.3 Expression in non-neuronal cells
TrkA is expressed in various non-neuronal tissue types (Shibayama and Koizumi, 1996;

Wheeler et al., 1998) and many non-neuronal cell types were shown to be NGF-

responsive (e.g. keratinocytes and myocytes). In particular, cells of the immune system

were characterized in details in this regard. TrkA-positive cells in the immune system

include mast cells, CD4+ T lymphocytes, B lymphocytes, monocytes, and macrophages.

Also hematopoietic stem cells have been shown to express TrkA (Bracci-Laudiero et al.,

2003). Many of these types of immune cells have also the capacity to express NGF.

2.2 Function of NGF/TrkA signaling

2.2.1 Knockout mice
The transgenic knockout mice, in which the ngf and the trkA genes were disrupted, were

first described in 1994 (Crowley et al., 1994; Smeyne et al., 1994).  Both knockout mice

have a very similar phenotype, indicating that the major NGF functions are mediated in
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vivo through TrkA. Both knockout mice show early lethality: Most of the mice die in the

first 3 days of life and only very few mice get older than 4 weeks.

The first p75 knockout described in 1992 has a relatively mild phenotype and displays no

premature lethality (Lee et al., 1992). More recently, it was shown that the p75 receptor is

expressed also as a short isoform protein (lacking the exon 3 of the p75 gene), which

cannot bind neurotrophins. This isoform is not deleted in the original p75 knockout. The

complete p75 knockout shows a more severe phenotype and displays a perinatal lethality

up to 40% (von Schack et al., 2001). This lethality is most likely due to a blood vessel-

related phenotype, suggesting that p75 signaling has in vivo functions, which are not

related to NGF and TrkA.

2.2.1.1 Function of NGF/TrkA signaling in the PNS

2.2.1.1.1 Sensory neurons
ngf and trkA knockout mice have a severe PNS phenotype. More or less 80% of the

normal complement of DRG sensory neurons are lost. Roughly half of these are small-

and medium sized neurons that express TrkA as well as calcitonine gene-related peptide

in maturity. In addition, a group of nociceptive neurons that downregulate TrkA

postnatally and upregulate glia cell line-derived neurotrophic factor receptor Ret also

require NGF in embryonic life. DRG neurons in trkA and ngf knockout mice start to die

around embryonic day E13.5 (White et al., 1996). The loss of the sensory neurons is the

cause of the decreased responsiveness to pain in the knockout mice.

The complete p75 knockout mice show a reduction of DRG sensory neurons of about

50% (von Schack et al., 2001). It remains unclear whether this reduction is due to a direct

pro-survival effect of p75 in sensory neurons or rather to secondary effects due to the lack

of p75 in Schwann cells.

Because of the early death of sensory neurons in ngf and trkA knockout mice, it was

difficult to analyze these mice in order to assess whether NGF/TrkA signaling in vivo is

required also for the axon growth and differentiation of this neuronal subpopulation. This

question was addressed in an elegant study by Patel et al. (Patel et al., 2000). In this

study, ngf and trkA knockout mice were crossed with mice in which the expression of the

proapoptotic bcl-2 homolog gene BAX is deleted. BAX is known to be essential for
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apoptosis in neurons after withdrawal of neurotrophic support. Indeed, the sensory cell

death in ngf and trkA knockout was efficiently rescued by eliminating the expression of

BAX. In this animal model, it could be shown that NGF signaling is not required for the

elaboration of proximal spinal collateral branches of dorsal root ganglia axons.  In

contrast, axonal outgrowth into distal nerves (e.g. the saphenous nerve in the hindlimb),

peripheral sensory innervation and biochemical differentiation failed to develop in the

double knockout mice. Thus, NGF/TrkA is not only crucial for the survival of sensory

neurons in vivo, but also for the correct peripheral innervation of the target organs as the

skin and for the acquisition of a functional biochemical phenotype.

2.2.1.1.2 In sympathetic neurons
Sympathetic ganglions are severely affected in ngf and trkA knockout mice. While the

progenitor cells of sympathetic neurons develop normally, extensive cell death is present

from embryonic day E17.5 on and develops progressively after birth (Fagan et al., 1996).

By the end of the first postnatal week, sympathetic neurons in the SCG are virtually

absent. Similarly to the studies done on the sensory neurons, it was shown that deletion of

the BAX protein rescues most of the NGF-deficient sympathetic neurons from cell death.

The rescued neurons formed initial axon extensions but failed often to elaborate correct

target innervation (Glebova and Ginty, 2004). The severity of the deficits in target

innervation varies thereby in the different target organs.  For instance, while the

sympathetic innervation of the heart was strongly impaired, innervation of the trachea

was less affected. Thus, while in many target organs NGF signaling is absolutely required

for terminal sympathetic innervation, in other organs target-derived neurotrophic support

may be provided also by other molecules.

2.2.1.2  Function of NGF/TrkA signaling in the CNS
The original analysis of the ngf knockout mouse described no cholinergic cell loss and

normal cholinergic innervation in the basal forebrain. In the case of the trkA knockout

mice, the authors described a deficit in cholinergic innervation in the hippocampus and in

the cortex but not in the striatum. Subsequently, the cholinergic phenotype in trkA-

deficient mice was analyzed more in details (Fagan et al., 1997a). It was shown that in the

few TrkA knockout mice, which survive until postnatal day P25, the cholinergic neurons

in the medial septum were reduced by about 30% compared to wild-type mice. A
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reduction of cholinergic neurons, although at lower extent, was found also in the striatum.

In addition, it was demonstrated, that the cholinergic innervation in the hippocampus is

markedly reduced in trkA knockout mice. Another study analyzed the phenotype of mice

that are heterozygous for the ngf knockout mutation. These mice carrying only ngf allele

are vital and healthy, but display a 75% - reduction of NGF expression in the

hippocampus (Chen et al., 1997). This reduction resulted in adult mice in a 35%-

reduction of cholinergic neurons in the medial septum and a reduction of cholinergic

innervation of the hippocampus in these mice. The cholinergic impairment is

accompanied by spatial memory deficits that were demonstrated by using the Morris

water maze task. The deficits in cholinergic innervation and in memory performance

could be rescued by infusion of NGF.

Interestingly, p75 function in the CNS seems to be related to cell death. While initial

analyzes of the original incomplete p75 knockout gave controversial results (Peterson et

al., 1997; Van der Zee et al., 1996), the study of the complete p75 knockout mice indicate

a substantial 30% increase of the cholinergic neurons of the basal forebrain (Naumann et

al., 2002). This effect may be caused either by a direct pro-apoptotic signaling of p75 in

the basal forebrain cholinergic neurons or by a p75-mediated inhibition of pro-survival

NGF signaling.

The study of the ngf and trkA knockout mice allowed the detailed analysis of the in vivo

role of NGF/TrkA signaling in the neurons of the PNS. The question whether NGF/TrkA

is required also for the survival and function of the cholinergic neurons in the CNS,

however, was more difficult to address in the knockout mice. In fact, the results obtained

from the very few trkA-deficient mice that survive the first week of life, are difficult to

interpret in the light of the very poor health and development of these mice. In addition,

due to the early lethality of the knockout mice, it was not possible to study the CNS

function of NGF and TrkA in aged mice.

For this reason, a number of studies tried to inhibit NGF/TrkA signaling in a brain-

specific way.



____________________________________________________________________________Introduction

21

2.2.2 Inhibition studies
For instance, the injection of hybridoma cells that express a neutralizing antibody against

TrkA in rat brains resulted in the reduction of cholinergic neurons in the medial septum

by about 70% compared to control rats (Cattaneo et al., 1999). However, this effect was

seen only when the injection was done in the first postnatal days and the cholinergic

deficit was only transient and completely reversible. Three weeks after the injection no

more reduction of the cholinergic neurons was observed. Similar results were found by

another study in which an inhibiting antibody against NGF was used (Molnar et al.,

1998). Recently it was shown that inhibition of NGF/TrkA signaling reduces the

cholinergic phenotype of the forebrain also in adults rats (Debeir et al., 1999). This was

demonstrated by injection of either an antibody against NGF or a small TrkA antagonist

peptide. Similarly, reduction in cholinergic neurons in the medial septum of adult rats

could be also induced by antisense oligonucleotides against trkA mRNA (Woolf et al.,

2001). This treatment resulted in downregulation of TrkA expression and subsequently in

reduction of cholinergic marker proteins and impaired performance in a memory

consolidation-related learning task.

All these inhibition studies suggest a neurotrophic function of NGF/TrkA signaling in the

cholinergic neurons of the forebrain, but the spatial and temporal extent of NGF signaling

inhibition achieved by these studies is difficult to ascertain. Furthermore, injection of

both hybridoma cells and antisense oligonucleotides is known to be often associated with

unspecific side effects.

2.2.3 Transgenic anti-NGF mice
A temporal more consistent inhibition of NGF signaling after development is achieved in

mice that express transgenically a neutralizing antibody (αD11) under the promoter of the

human cytomegalovirus promoter (Ruberti et al., 2000). The ubiquitous expression of this

antibody reach detectable levels only in adulthood and does therefore most likely not

impair normal neuronal development. In adult mice, the extent of NGF inhibition varies

in different tissue types and reaches about 50% in the brain. Analysis of the cholinergic

basal forebrain showed no significant defect in the first two postnatal weeks. In adult

mice, however, cholinergic neurons in the forebrain are reduced by about 55% and
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cholinergic innervation of the cortex and the hippocampus was strongly affected.

Behavioral analysis of the transgenic anti-NGF mice shows a reduced ability in spatial

learning tasks (in a radial maze). The authors attributed this deficit to the cholinergic

impairment in the forebrain. In parallel to the CNS phenotype, the adult transgenic anti-

NGF mice display also a severe apoptotic damage of sensory and sympathetic neurons of

the PNS. This is most likely explained by the absolute requirement of PNS neurons for

NGF support also during adulthood.

Outside of the nervous system, the anti-NGF mice demonstrate a severe cell damage in

the spleen and an inflammation-associated dystrophy-like muscle phenotype in the hind

limbs (Capsoni et al., 2000a). It remains questionable, how far these disorders are caused

directly by the lack of NGF signaling or whether there are rather induced by toxic effects

of the forced transgenic antibody expression. For instance, in the case of the phenotype

observed in the spleen, the rather low expression of TrkA in the spleen makes it difficult

to explain the high degree of apoptosis directly by the inhibition of NGF (Lomen-Hoerth

and Shooter, 1995). In summary, the studies of the transgenic anti-NGF mice suggest an

important role of NGF/TrkA signaling in the basal forebrain during adulthood and aging

(see also the part 4.4 of this introduction about the links between NGF and Alzheimer’s

disease). The results of these studies, however, should be interpreted carefully because

they may be confounded by an immune response of the transgenic animal to the antibody

expression. In addition, the strong PNS phenotype in adult anti-NGF mice may confound

the analysis of the brain-specific functions of NGF/TrkA signaling. Finally, the inhibition

of NGF signaling in these mice is not complete and the temporal and spatial extent of this

inhibition is not precisely defined.

2.2.4 Neuromodulatory function of NGF/TrkA signaling
2.2.4.1 NGF and hyperalgesia
Beyond its role as survival and differentiation factor for sensory neurons, NGF modulates

also the activity of mature nociceptive sensory neurons (Shu and Mendell, 1999). In fact,

NGF stimulation of these neurons leads to hypersensitivity to nociceptive stimuli. This

form of hyperalgesia can be observed both in animals and in patients where NGF was

given in clinical trial for peripheral neuropathies. Blockade of NGF signaling by
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inhibiting antibodies in animal models of skin injury and inflammation prevents

development of hyperalgesia (McMahon et al., 1995). This function of NGF includes

induction of mast cell degranulation and regulation of pain-related neuropeptides.

2.2.4.2 NGF and synaptic plasticity
NGF is able to modulate various aspects of synaptic activity. For instance, it is well

known that NGF stimulation can increase neuronal excitability by regulating the

expression of ion channels. Furthermore, NGF stimulation of culture of embryonic

cholinergic forebrain neurons induces also a prolonged release of the neurotransmitter

acetylcholine (Auld et al., 2001). Conversely, in sympathetic neurons of the heart that

form synapses with cardiomyocytes NGF enhances synaptic activity (Lockhart et al.,

1997). In the visual cortex, NGF was shown to be involved in the formation of ocular

dominance columns in the layer IV. For example, in some cases exogenous supply of

NGF is able to prevent the physiological effects induced by monocular deprivation. In

this regard, it was also shown that NGF inhibits efficiently formation of long-term

potentiation (LTP) in the visual cortex (Pesavento et al., 2000). Blockade of NGF rescues

the formation of LTP. This effect is likely to be mediated by muscarinic acetylcholine

receptors.

2.2.5 NGF/TrkA function in immune cells
A large body of in vitro experiments demonstrated that NGF regulates many aspects of

immune cell functions (Vega et al., 2003). The most intriguing data concern the effects of

NGF on B-cell and mast cell function. NGF is capable to regulate immunoglobulin

production and serves as survival factor for memory B cells (Torcia et al., 1996). In vivo,

it was shown that TrkA-deficient mice have major defects in the thymus development

(Garcia-Suarez et al., 2000) and transgenic anti-NGF mice display massive cell death in

the spleen (Ruberti et al., 2000). Recently, however, the in vivo function of NGF in

immune cells were revalidated by the analysis of a mouse model, where TrkA is deleted

from all cell types except from neuronal cells (Coppola et al., 2004). The mice lacking

TrkA in non-neuronal tissues are viable and appear grossly normal. In contrast to the

TrkA knockout mice and to the transgenic anti-NGF mice, these mice display no
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abnormalities in organs related to the immune system and all major immune system cell

population are present normally. Only a subtle but significant increase of certain

immunoglobulin classes and accumulation of a distinct B cell subpopulation was

observed.

2.2.6 TrkA mutations in humans
TrkA mutations have been identified as the cause of a human syndrome, Congenital

Insensitivity to Pain and Anhidrosis (CIPA), also known as hereditary sensory and

autonomic neuropathy IV(Indo et al., 1996). There are three main clinical symptoms of

this disorder. The first feature of CIPA is defects in thermoregulation, with a lack of

sweating and episodes of hyperpyrexia, which frequently are the cause of death. The

defective thermoregulation reflects a lack of sympathetic neurons. The second symptom

of CIPA is an extreme insensitivity to pain, leading to injuries and self-mutilation. This

defect reflects absence of the small nociceptive sensory neurons. The third clinical feature

is mental retardation. This may indicate that NGF/TrkA signaling in humans is needed

not only for nociceptive and sympathetic neurons but also for higher cognitive functions.

3 CHOLINERGIC NEURONS

3.1 Cholinergic neurotransmission

One of the main neurotransmitters in the mammalian nervous system is acetylcholine

(ACh). Neurons that use the neurotransmitter ACh are called cholinergic neurons. ACh is

used as neurotransmitter at all neuromuscular junctions, at some synapses in the

autonomic nervous system and finally at a variety of synaptic sites within the central

nervous system. In the autonomic nervous system all the synapses in the ganglions and all

the synapses of the post-ganglionic parasympathetic nerves are cholinergic, while the

post-ganglionic nerves of the sympathetic system use the neurotransmitter

norepinephrine.

In all cholinergic neurons ACh is synthesized from acetyl coenzyme A and choline, in a

reaction catalyzed by choline acetyltransferase (ChAT) (Figure 2) (Sarter and Parikh,
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2005). The presence of ChAT in a neuron is a very strong indication that ACh is used as

one of its transmitters. The synthesized ACh molecules are packaged into synaptic vesicle

by a vesicular ACh transporter (VACht).

In contrast to most other small-molecule neurotransmitters, the postsynaptic action of

ACh at many cholinergic synapses are not terminated by reuptake but by a powerful

hydrolytic enzyme, acetylcholinesterase (AChE). This enzyme is concentrated in the

synaptic cleft, ensuring a rapid decrease in ACh concentration after its release from the

presynaptic terminal. AChE has a very high catalytic activity and hydrolyzes ACh into

acetate and choline. Cholinergic nerve terminals typically contain a high-affinity Na+-

choline transporter that takes up the choline produced by ACh hydrolysis.

The post-synaptic receptors that bind ACh can be divided largely in two groups. The

group of nicotinic ACh receptor (nAChR) is so named because the CNS stimulant

nicotine also binds to these receptors. Nicotinic receptors are ligand-gated ion channel

receptors. A second class of ACh receptors is activated by muscarine, a poisonous

mushroom alkaloid, and they are referred to as muscarinic ACh receptors. Muscarinic

acetylcholine receptors (mAChR) are G-protein coupled receptors and are the most

abundant ACh receptors in the brain. Several subtypes of mACh receptors are known

(Caulfield, 1993). Muscarinic receptors of the type M1 predominate in the hippocampus

and cerebral cortex, whereas M2 receptors predominate in the cerebellum and brainstem

and M4 receptors are most abundant in the striatum.
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FIGURE 2: Acetylcholine metabolism in cholinergic nerve terminals
From the book “Neuroscience”, 2nd edition. Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C..;
LaMantia, A.-S.; McNamara, J.O.; Williams, S.M.,  Sunderland (MA): Sinauer Associates, Inc. 2001.

3.2 Cholinergic neurons in the brain

All the cholinergic neurons in the brain are interneurons. The cholinergic interneurons

can be largely divided in two different classes: While the cholinergic interneurons of the

striatum form local circuits and their relatively short axons remain confined to the

striatum itself, the large majority of the cholinergic neurons in the brain are projection

interneurons, which send their axon in different areas of the brain. The cholinergic

projection neurons in the brain can be divided in 6 different groups (Ch1-Ch6 after the
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nomenclature of Mesulam (Mesulam et al., 1983) (see also Figure 3 and 4). Most of these

cholinergic cell groups do not respect traditional nuclear boundaries, and their constituent

cholinergic cells are intermixed with other noncholinergic neurons. The first 4 groups

Ch1-Ch4 are located in the basal forebrain, while Ch5 and Ch6 are situated in the upper

brainstem. The different groups of neurons can be distinguished not only by their

anatomical localization but also by the different target areas that they innervate. In

addition, they have distinct molecular characteristics. All of them express typical

molecular markers of cholinergic neurons like ChAT, AChE and VaChT, but only the

cholinergic neurons of the basal forebrain (including the striatal neurons) express TrkA.

While most of the cholinergic projection neurons of the basal forebrain express also the

neurotrophin receptor p75, the neurons in the striatum are p75-negative (Gibbs and Pfaff,

1994). In general, the molecular expression patterns of the cholinergic neurons in the

brain appear rather heterogeneous. For example, a certain subpopulation of the

cholinergic neurons expresses the neuropeptide galanin (Miller et al., 1998) and some

neurons co-express the differentiation factors Islet-1 and bone morphogenetic protein-9

(Lopez-Coviella et al., 2000; Wang and Liu, 2001).

The genetic and developmental mechanisms that control the early formation of forebrain

cholinergic neurons are just beginning to be elucidated. The vast majority of forebrain

cholinergic neurons derive from a region of the subcortical telencephalon. This region

contains different progenitor zones, including the medial ganglionic eminence, anterior

entopeduncular area and preoptic area. It has been proposed that these progenitor

domains contribute projection neurons to the globus pallidus, ventral pallidum, nucleus of

the diagonal band, and parts of the septum and amygdala (Schambra et al., 1989). In

addition, a substantial fraction of striatal interneurons originates from these progenitor

zones and migrate tangentially to reach their final destinations (Marin et al., 2000).

Knockout mouse models have demonstrated that the expression of the homeobox genes

Nkx 2.1 and Lhx8 during early development is essential for correct development of the

cholinergic neurons in the brain (Mori et al., 2004; Zhao et al., 2003).

In the rat forebrain, first weak ChAT mRNA was detected at the late stage of embryonic

development, but adult ChAT mRNA levels are reached only at the end of the second

postnatal week (Bender et al., 1996). Similarly, in the rat spinal chord, northern blot
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analysis has shown that ChAT mRNA is expressed only at relatively low levels at the

moment of birth (Lonnerberg et al., 1995).  Analysis of the ChAT protein expression by

immunostainings showed that in the medial septum of the rat brain ChAT-positive

neurons can be detected only after birth (Bender et al., 1996). In mice, some studies have

found a weak immunoreactivity in the forebrain around the end of the second prenatal

week, while other authors report a consistent ChAT expression only after birth (Schambra

et al., 1989; Villalobos et al., 2001). Generally, ChAT protein expression in the brain of

mice seems to reach adult level at the end of the second postnatal week.

3.2.1 Cholinergic neurons in the medial septum (Ch1)
The Ch1 group of cholinergic neurons is located in the nucleus of the medial septum.

Together with the neurons of the group Ch2, they provide the major cholinergic

innervation of the hippocampus. The cholinergic projections to the hippocampus form

synapses in the hippocampus onto pyramidal cells, dentate granule cells, and inhibitory

interneurons. In the nucleus of the medial septum there is also a large subpopulation of

GABAergic interneurons that express the calcium-binding protein parvalbumin. Like the

cholinergic neurons also the GABAergic interneurons of the medial septum innervate the

hippocampus. The GABAergic projections synapse onto GABAergic hippocampal

interneurons, which in turn synapse onto pyramidal cells (Freund and Antal, 1988). Both

the cholinergic and the GABAergic neurons send their projections to the hippocampus

via the fimbria-fornix structure.

3.2.2 Cholinergic neurons in the diagonal band (Ch2+Ch3)
The neurons of the diagonal band (also called diagonal band of Broca) can be divided

into two groups: the ones that make part of the nucleus of the horizontal limb of the

diagonal band (DB, hl – Ch3) and the neurons of the nucleus of the vertical limb of the

diagonal band (DB, vl – Ch2). The latter ones provide together with the neurons of the

Ch1 group the cholinergic innervation of the hippocampus. The neurons of the Ch3

project intensively to the olfactory bulbs.

3.2.3 Cholinergic neurons in the nucleus basalis (Ch4)
In human, the largest group of cholinergic neurons in the basal forebrain is constituted by

the cholinergic neurons of the nucleus basalis (also called nucleus basalis of Meynert)
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(Mufson et al., 2003). In mice the basal nucleus has less homogenous boundaries than in

humans: The cholinergic cells of the basal nucleus straddle the border between the globus

pallidus, the substantia innominata and the internal capsule, invading all these structures.

The cholinergic cells of the nucleus basalis are responsible for the major part of the

cholinergic innervation of the entire cerebral cortex and of the amygdala.

In the cortex the most abundant ACh receptor is the muscarinic receptor of the type M1.

The major function of the muscarinic receptors in the cortex is to modulate the

polarization state of GABAergic neurons, so that these neurons become more susceptible

to other incoming excitatory inputs (Kawaguchi, 1997). This is why ACh is also known

as excitatory neurotransmitter in the cortex.

3.2.4 Cholinergic neurons in the striatum
The cholinergic interneurons in the striatum (which consist of the four components

nucleus caudate, putamen, olfactory tubercle and nucleus accumbens) are large spiny

neurons that make up about 2% of the striatal neurons (Zhou et al., 2002). The axons of

the striatal cholinergic interneurons remain confined to the striatum and innervate

predominantly the medium spiny neurons. Both muscarinic and nicotinic cholinergic

receptors are found in the striatum. Muscarinic receptors on glutamatergic terminals are

thought to inhibit release of the excitatory transmitter, acting as a modulator of

glutamatergic stimulation of striatal neurons, whereas nicotinic receptor activation

enhances transmitter release.

3.2.5 Cholinergic neurons in the brainstem (Ch5+Ch6)
The brainstem cholinergic neurons are located in the region of the pedunculopontine

tegmental nucleus and laterodorsal pontine tegmentum. They innervate principally the

thalamus. A very small number of the brainstem neurons provide also cholinergic

innervation of the hippocampus, olfactory bulb and neocortex (Mesulam et al., 1983).

The neurons in the brainstem are the only cholinergic neurons in the brain that do not

express TrkA.
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Ch1 Medial septum  Hippocampus

Ch2        Diagonal band, vertical limb  Hippocampus

Ch3 Diagonal band, horizontal limb  Olfactory bulb

Ch4 Nucleus basalis complex  Cortex, Amygdala

Interneurons of the Striatum  Striatum

Ch5, Ch6 Brainstem nuclei  Thalamus

FIGURE 4: Schematic representation of the cholinergic cell subpopulations in the brain
For each neuronal cell group, main target areas of innervartion and expression of some major marker
proteins are indicated.

3.3 Function of cholinergic neurons

A large number of studies have demonstrated that training-induced learning processes

and memory formation activates the cholinergic system in the brain. For instance, maze
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training produces a long-lasting increase in hippocampal ChAT concentration (Park et al.,

1992). Conversely, aged rats that display memory deficits often display correlated

decreases in hippocampal ACh markers (Aubert et al., 1995). More recently, in vivo

microdialysis has allowed analyzing changes in hippocampal extracellular ACh levels in

rats during behavioral tests of leaning and memory. With few exceptions, the results of

such studies show that hippocampal-dependent learning and memory is associated with

an increase in hippocampal extracellular ACh levels (Chang and Gold, 2003). Moreover,

it was shown by electroencephalographic analysis, that neurons of the nucleus basalis are

activated during learning processes (Whalen et al., 1994).

These and many other studies indicate a positive correlation between the activation state

of the cholinergic system and the cognitive functions of the brain. However, none of

these evidences answer the question whether the cholinergic neurotransmission in the

basal forebrain is necessary for memory and learning. This question was addressed more

directly by two main approaches: first, pharmacological modulation of the ACh pathway,

and second, direct lesions of the basal forebrain cholinergic neurons. In particular the

immunotoxin 192 IgG- Saporin was used in many studies with rats as a relatively specific

tool to lesion the cholinergic neurons of the basal forebrain. The immunotoxin binds with

the p75 receptor expressed on the cholinergic neurons of the forebrain, and is then

internalized into these neurons, which allows the cytotoxin saporin to kill the cells.

3.3.1 Memory
The amnestic properties of anticholinergic drugs such as scopolamine and atropine have

long been known (Drachman and Leavitt, 1974). In animals, both systemic and local

(intra-hippocampal) application of anticholinergic drugs consistently inhibit

hippocampal-dependent memory acquisition. In this regard, both nicotinic and especially

muscarinic antagonists were shown to be efficient in impairing memory (Levin, 2002;

Ohno et al., 1994). Conversely, lesions of the fimbria-fornix structure, or lesions of the

medial septum impair hippocampal-dependent learning and memory (Kelsey and Vargas,

1993). These kinds of lesions, however, are rather unspecific and necessarily result in

loss of both cholinergic and non-cholinergic septohippocampal projections.

Surprisingly, findings from experiments using injections of the immunotoxin 192 IgG-

Saporin into the medial septum or the nucleus basalis often fail to cause any impairment
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in spatial learning in the water maze, spatial working memory in the radial arm maze, or

contextual fear conditioning (Baxter et al., 1996; Frick et al., 2004; Kirby and Rawlins,

2003). With few exceptions, deficits in learning performance were observed only in

studies where high concentrations of 192 IgG-Saporin were used and where the

immunotoxin was applied in a rather unspecific fashion by intracerebroventricular

injections. In these cases, however, it is difficult to link the results to a specific

cholinergic lesion. In fact, it was shown that under these kind of circumstances the 192

IgG-Saporin damage also cells of the cerebrellum or other non-targeted cells. In addition,

in rats with different kind of lesions, it was shown that only rats with both cholinergic and

non-cholinergic displayed deficits in a spatial discrimination task. In contrast, rats with

specific cholinergic lesions showed no learning deficits (Cahill and Baxter, 2001).

These controversial results taken together seem to indicate that cholinergic

neurotransmission in the basal forebrain may be involved in some but is definitely not

necessary for all memory functions (Everitt and Robbins, 1997; Parent and Baxter, 2004).

3.3.2 Attention
In contrast to the controversial issue of the involvement of the cholinergic basal forebrain

system in memory functions, there is considerable agreement concerning the importance

of this system to various aspects of attention (Baxter and Chiba, 1999). For instance, rats

that had received a selective lesion of the nucleus basalis by injection of low doses of

192-IgG Saporin failed to maintain sustained visuospatial attention in a Five-Choice

Serial Reaction Time Task. In this study, it was also shown, that particulary the

cholinergic projection from the nucleus basalis complex into the cortex are important for

sustaining attention; the projection from the medial septum into the hippocampus, on the

other hand, seem to be less necessary for attentional functions (Lehmann et al., 2003). In

another study, it was shown that the attention deficit in nucleus basalis-lesioned animals

was accompanied by a decreased cortical ACh efflux (McGaughy et al., 2002). Similarly,

rats with nucleus basalis lesions failed to increase attentional processing under conditions

where expectancies regarding stimulus relationships were violated. In general, the

impairments following selective damage of the nucleus basalis are best described not as

an impairment of attention itself, but rather as an impairment in the ability to respond

appropriately to demands placed on attention.
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3.3.3 Neuroplasticity
Cholinergic neurons are also well known to modulate events related to neuroplasticity. In

particular, the reorganization of adult motor and sensory cortical representations seem to

depend crucially on correct cholinergic innervation of the cortex. In general, cortical

resources are allocated in such a way that discrete subsets of cortical neurons selectively

process information related to a given part of the body. The amount of cortical resource

allocated to a given region of the body is thereby not fixed and can under a certain set of

circumstances be altered. Removal of the cortical cholinergic input inhibits this

remodeling and has therefore a dramatic impact on the regulation of information

processing. For instance, electrical stimulation of the nucleus basalis paired with auditory

cues results in reorganization of the primary auditory cortex, increasing the area of

auditory cortex that respond preferentially to the paired stimulus (Kilgard and Merzenich,

1998). Rats that had received 192 IgG-Saporin lesions did not show any remapping of the

auditory cortex, indicating that this effect is cholinergically mediated. Basal forebrain

neurons also appear to be essential for reorganizing the somatosensory cortex in response

to removal of whiskers (vibrissae). Indeed, removal of the cholinergic nucleus basalis

neurons by application of 192 IgG-Saporin eliminated experience-dependent plasticity in

the somatosensory cortex (Baskerville et al., 1997). Remarkably this latter function of

cholinergic neurons can be enhanced by application of NGF to the cortex (Prakash et al.,

2004). Recently, it was shown that the cholinergic neurons of the nucleus basalis are also

essential for remapping of the motor cortex. Rats that had impaired nucleus basalis

activity showed reduced reorganization of the motor cortex after training and this

impairment was combined with defects in performing complex motor tasks like reaching

the footpad with the forelimb (Conner et al., 2003).

Another form of neuroplasticity, synaptic plasticity, can be also modulated by cholinergic

neurotransmission. For instance, it was shown that activation of acetylcholine receptors

induces long-term depression (LTD) of synaptic activity in the visual cortex and in the

perirhinal cortex (Kirkwood et al., 1999; Massey et al., 2001). In both areas the

cholinergic effect on the synaptic plasticity is transmitted most likely through the M1

muscarinic receptor. Recently, it was shown that in the perirhinal cortex the muscarinic

antagonist scopolamine disrupts efficiently the production of LTD of synaptic plasticity.
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This disruption was accompanied by an impaired performance in a visual recognition

memory task. Thus, the acetylcholine-induced reduction of activity in perirhinal neurons

is an essential event in the formation of recognition memory (Warburton et al., 2003).

4 THE CHOLINERGIC SYSTEM, NGF/TRKA SIGNALING AND
ALZHEIMER’S DISEASE

4.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is clinically

characterized by memory and cognitive dysfunction (Mattson, 2004). Although sporadic

AD is rare in individuals younger than 60 years of age, the incidence steadily increases

with age, affecting up to 40% of those who are more than 85 years old. Brains regions

involved in learning and memory processes, including the temporal and frontal lobes, are

reduced in size in AD patients as the result of degeneration of synapses and death of

neurons. The histopathology of AD brains is characterized mainly by two types of

lesions: senile plaques composed of deposits of amyloid-β peptides (Aβ peptides), and

neurofibrillary tangles composed of aberrantly phosphorylated tau, an microtubule-

associated protein.

Few cases of AD are caused by inherited autosomal dominant mutations. This type of AD

is characterized by the early-onset of the disease and is termed familial AD (FAD). The

mutations identified so far affect the genes encoding the amyloid precursor protein APP

and the proteases presenilin 1 and 2 (Bossy-Wetzel et al., 2004). All these mutations

appear to increase the generation of amyloidogenic Aβ peptides.

4.2 Proteolytic APP processing

One central molecular hallmark of AD is the altered proteolytic processing of the amyloid

precursor protein (APP). This alteration results in production and aggregation of

neurotoxic form of Aβ peptides. APP is a membrane glycoprotein and contains a large

extracellular region, a transmembrane helix and a short cytoplasmatic tail (Figure 5a).

While the functions of full-length APP are largely unknown, the metabolism of APP is
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well characterized (De Strooper and Annaert, 2000). It is mediated by a series of enzymes

termed secretases α,β and γ (Esler and Wolfe, 2001)(Figure 5b). Cleavage of APP by α-

secretase occurs in the middle of the Aβ domain and precludes the formation of full-

length Aβ peptides. α-secretase cleavage releases the extracellular soluble N-terminal

APP domain (APPsα), which has neurotrophic and neuroprotective properties, and leaves

the intracellular 83-amino-acid carboxy-terminal APP fragment (C83)(Figure 5c). The

identity of the α-secretase is still unclear, but various members of the disintegrin-

metalloproteases ADAM family are good candidates.

An aspartyl protease, the β-site APP cleaving enzyme BACE, was identified as being the

major β-secretase (Vassar et al., 1999). BACE cleaves APP at the N-terminus of the Aβ

peptide either at Asp1 or Glu11 (numbering relative to the Aβ peptide) and release

soluble APP domain referred as APPsβ and APPsβ’, respectively. BACE mediating

cleavage at Asp1 leaves a membrane-bound 99-amino-acid carboxy-terminal APP

fragment (C99) in the cell. Conversely, BACE cleavage at Glu11 results in the generation

of the 89-amino-acid carboxy-terminal APP fragment termed C89.

All three membrane-bound carboxy-terminal APP fragments (C83, C89, C99) are

substrates for the γ-secretase complex, which perform an unusual proteolysis in the

middle of the transmembrane domain (Iwatsubo, 2004). The precise composition of the γ-

secretase complex is still under investigation, but Presenilin 1 (PS1) is very likely to be

the active protease into it that is responsible for the generation of Aβ fragments. Other

essential members of the γ-secretase complex are Nicastrin, Aph-1 and Pen-2. They seem

to be required for substrate recognition, complex assembly and targeting the complex to

its site of action. Proteolysis by the γ-secretase complex is heterogenous: Cleavage of the

C99 results mainly in a 40-residue peptide (Aβ1-40) and at smaller proportions in a 42-

residue peptide (Aβ1-42). Conversely, the γ-cleavage outcome of C89 is mostly

represented by the two N-terminally truncated Aβ peptides Aβ11-40 and Aβ11-42. The

various Aβ peptides differ in their neurotoxicity and in their amyloidogenic property.

Commonly the full-length Aβ1-42 is considered the most amyloidogenic Aβ peptide. On

the other hand, cleavage of the C83 by the γ-secretase complex generates a short peptide
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named P3. P3 in contrast to the other Aβ peptides is thought to be not amyloidogenic and

is not found in amyloid plaques. P3 may have some intracellular signaling properties.

Alteration of the APP cleavage can be caused by a variety of different impairments. For

instance, mutations of the APP gene, overexpression or activity alteration of the different

secretases, phosphorylation states of the intracellular domain of the APP protein (Perini et

al., 2002), alteration of the intracellular APP trafficking (Chyung and Selkoe, 2003; Lee

et al., 2005) and disturbances in the metabolism of cholesterol (Wolozin, 2004) have been

shown to modify importantly the net outcome of the APP processing.

4.3 Cholinergic neurons and Alzheimer’s disease

4.3.1 Cholinergic lesion in Alzheimer’s disease
A substantial loss of cholinergic innervation in the cerebral cortex is well accepted as a

major aspect of advanced AD. This is most severe in the temporal lobes, including the

entorhinal cortex, in which up to 80% of cholinergic axons can be depleted (Geula and

Mesulam, 1996). The depletion of cholinergic axons is associated with an equally severe

cell loss in the nucleus basalis complex. On the other side, cholinergic innervation of the

striatum and of the thalamus remains relatively intact.

The cell and innervation losses are accompanied by defects in the expression of the ACh

related enzymes and of the ACh receptors. For instance, decrease of ChAT activity in the

cortex was shown to correlate positively with the severity of dementia in AD (Minger et

al., 2000; Pappas et al., 2000). In addition, M2 muscarinic receptors are reduced in the

brains of individuals with AD (Nordberg et al., 1992). The density of postsynaptic M1

receptors remain unaltered, but there is some evidence for disruption of the coupling

between the receptors, their G-proteins and second messengers (Warpman et al., 1993) .

The specificity of the cholinergic lesion in AD remains controversial. AD is associated

with substantial variability in the involvement of noncholinergic cortical neurotransmitter

like for example serotonin and noradrenaline. In general, however, it seems that

cholinergic defects are more consistent than the loss of other transmitters

4.3.2 Links between cholinergic neurotransmission and APP processing
There is good evidence for a link between cholinergic neurotransmission and APP

metabolism (Rossner et al., 1998b). For instance, in vitro M1 and M3-mediated



____________________________________________________________________________Introduction

39

muscarinic stimulation of cortical neurons has been shown to promote the processing of

APP by the α-cleavage pathway. Also the use of acetylcholinesterase inhibitors in cell

culture assays modifies the APP processing. The effect on the secretion of soluble APP

fragments differs thereby between cell types and depends upon which drug was used (Kar

et al., 2004). In vivo in rats, it was shown that immunolesions by 192-IgG Saporin result

in a significant reduction of secretion of soluble APP fragments without having any

significant effect on the mRNA transcription of APP (Rossner et al., 1997).

On the other hand, numerous experiments have also shown that Aβ peptides affect the

function of cholinergic neurons, in particular ACh synthesis and the signal transduction

events associated with cholinergic neurotransmission (Kar et al., 2004; Zhong et al.,

2003). In this regard, it is also of particular interest that Aβ peptides have been shown to

bind to the p75 receptor (that is expressed in many cholinergic neurons) inducing

apoptotic cell signals (Perini et al., 2002).

It is therefore possible that AD may be associated with a vicious cycle whereby the

cholinergic depletion intensifies both the production and neurotoxicity of Aβ peptides

which in turn further increases the cholinergic deficits.

4.4 NGF/TrkA expression and function in Alzheimer’s disease

There is large number of studies that analyze the expression of neurotrophins and their

receptor in post-mortem brains of AD patients. In individuals with AD, there is typically

a marked loss of TrkA, which correlates with loss of cholinergic neurons (Chu et al.,

2001; Hock et al., 1998; Mufson et al., 1996). Even though there have been some variable

results regarding NGF protein levels in different brain regions of AD patients, most

recent studies agreed that there are unchanged or increased NGF levels in the

hippocampus and cerebral cortex, while the levels in the basal forebrain are decreased

compared with age-matched controls (Hellweg et al., 1998; Mufson et al., 1995; Scott et

al., 1995). These results suggest that the NGF/TrkA signaling defects in AD may not be

due to a problem of NGF synthesis in the target areas of cholinergic innvervation; defects

in NGF release or an impaired retrograde transport of NGF are more likely to be the

cause of the lack of NGF in cholinergic neuronal cell bodies in AD.
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A direct link between NGF/TrkA signaling and APP processing was suggested by various

in vitro studies that tested the effect of NGF application in cell cultures on the

metabolism of APP. For instance, in the pheochromocytoma cell line PC12 it was shown

that both APP mRNA expression and secretion of soluble APP was increased by

stimulation with NGF (Rossner et al., 1998a). In the same cell line it was shown that APP

mRNA expression can be increased also by withdrawal of NGF, an event that drives the

cells into apoptotic cell death (Araki and Wurtman, 1998). A similar effect on APP

mRNA expression after NGF withdrawal was shown also in primary neuronal cell

cultures from the dorsal root ganglia (Nishimura et al., 2003). Interestingly, in these cells

it could be also demonstrated, that the increase of APP expression protects cells from

death.

A strong in vivo suggestion for the implication of NGF/TrkA signaling in the

pathogenesis of AD was provided by the analyses of mice, in which NGF signaling is

inhibited by the transgenic expression of an antibody against NGF. Aged anti-NGF mice

show increase of APP protein levels and histological signs of β-amyloid plaques in the

cortex, hippocampus and thalamus (Capsoni et al., 2002a; Capsoni et al., 2000b).

Furthermore, these mice showed hyperphosphorylation of tau proteins, another typical

molecular hallmark of AD. Thickness of the cortical layers and of the hippocampus was

reduced and many cells showed signs of apoptosis, indicating a loss and atrophy of

neurons in these areas. The neuronal impairments in these mice are accompanied by

behavioral deficits in spatial learning as analyzed by using the eight-arm radial maze task.

Interestingly some of these defects could be rescued by the intranasal application of

exogenous NGF or by the injection of the cholinergic agonist galantamine (De Rosa et

al., 2005).

The studies of aged anti-NGF mice provided an intriguing insight into a potential direct

link between NGF/TrkA signaling and the pathogenesis of AD; they must be, however;

interpreted carefully considering the possible side effects of the technical approach used

in the anti-NGF mouse model.



____________________________________________________________________________Introduction

41

5 MAIN AIM OF THIS STUDY

The aim of the here presented study is to analyze the function of NGF/TrkA signaling in

the basal forebrain of mice during and after development. Therefore, conditional

mutagenesis of the trkA and the ngf gene was performed by using the Cre-loxP system.

This approach circumvents the early lethality of the classical knockouts and provides, in

contrast to the hitherto used inhibition studies and to the transgenic anti-NGF mouse

model, a complete, long-lasting and brain-specific deletion of NGF/TrkA signaling. In

addition, the unspecific side effects of the Cre-loxP system are minimal.

The Cre-loxP system is based on the action of the recombinase Cre that is derived from

the bacteriophage P1 (Nagy, 2000; Tsien et al., 1996). Cre catalyzes the site-specific

recombination between 34 bp long loxP recognition sequences. The loxP sequences can

be inserted into the genome of embryonic stem cells by homologous recombination such

that they flank one or more exons of a gene of interest (called a “floxed gene”). Mice

carrying the floxed gene are crossed to a second mouse that harbors a Cre transgene

under the control of a tissue type – or cell type specific transcriptional promoter. In

progeny that are homozygous for the floxed gene and that carry the Cre transgene, the

floxed gene will be deleted by Cre/loxP recombination but only in those cell types in

which the Cre gene-associated promoter is active. Another recombinase used in

conditional mutagenesis is the yeast-derived Flp recombinase. Flp works identically as

Cre; its consensus recombination site is called Frt sequence.

In this study the generation of the floxed trkA allele will be described. The crossing of the

mouse carrying the floxed trkA allele with a transgenic mouse that express the Cre

recombinase under the brain-specific Nestin promoter allows the deletion of trkA

specifically in the cholinergic neurons of the forebrain. The effects of these deletions on

the development, maintenance and function of the cholinergic neurons will be analyzed.

In addition, the generation of a floxed ngf allele will be described. This mouse provides a

tool for an even more complete analysis of the in vivo function of NGF/TrkA signaling in

the cholinergic neurons of the basal forebrain.



1 GENERAL PROTOCOLS AND MATERIALS USED

Standard protocols for molecular biology were taken from Molecular Cloning Laboratory

Manual (2nd edition). If not otherwise indicated, all chemicals were purchased from

Sigma, Merk and Fluka. All water used to generate solutions and buffers was filtered

with the “Milli-Q-Water-System” from Millipore.  For DNA preparation: MiniPrep,

MaxiPrep, QIAquick PCR purification and Gel extraction kits (Qiagen) were used

according to manufacturer instructions.

1.1 Buffers and solutions

10X PBS 1.3M NaCl

70mM Na2HPO4

30mM NaH2PO4, pH7.2

TE buffer 10mM Tris/HCl

1mM EDTA, pH8

50X TAE 2M Tris-Acetate

50mM EDTA

20X SSC 3M NaCl

0.3M NaCitrate, pH7.0

Tris-buffered saline (TBS) 100 mM Tris-HCl, pH 7.4

150 mM NaCL

IV  MA TE R IA L  A N D  M E TH OD S
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TB buffer 50 mM Tris-HCl, pH 7.4

Sodium phosphate buffer (PB), pH 7.4
77.4 ml of 1M Na2HPO4

22.6 ml of 1M NaH2PO4

Tris-Azide 0.04 M Tris

0.7% NaCl
0.01  Na2HPO4

0.01 M NaH2PO4

0.05% NaN3
Adjust to pH 7.8

LB (Luria-Bertani) medium            10g bacto-trypton
5g yeast extract

5g NaCl
Add H20 to 1l, pH 7,5

LB plates  LB medium supplemented with 15g/l agar

For Southern blots
Denhardt’s reagent     1% Ficoll

                                                1% polyvinylpirrolidone

       1% BSA

Prehybrization buffer 50% deionized formanide,
5X SSC,

5% denhart’s solution,

50 mM Na3PO4 pH 7,2,
1% SDS  and 350 µg/ml DNA salmon sperm



____________________________________________________________________Material and Methods

44

Hybridization buffer 50% deionized formanide
5X SSC

5% denhart’s solution
50 mM Na3PO4 pH 7,2

1% SDS

100 µg/ml DNA salmon sperm,

5% dextran sulfate

For ES cell work

Medium for embryonic stem (ES) cells

Knockout D-MEM with sodium pyrovate (GIBCO

BRL) supplied with:

15% Knockout serum replacement (Gibco BRL),

100IU/ml -100µg/ml penicillin-streptomycin (Gibco

BRL), 2mM glutamine (Gibco BRL),

1:100 Non-essential Amino Acids (Gibco BRL),

0.1 mM β-mercaptoethanol,

10000 U/ml ESGRO (murine leukaemia inhibitory

factor (Gibco BRL).

Freezing medium for ES cells

           Knockout DMEM (Gibco BRL) with

                       20%DMSO
                       35% fetal calf serum (Gibco BRL)

ES lysis buffer 10 mM Tris, pH 7.5

10 mM EDTA pH 8

10 mM NaCl

0.5% sarcosyl

100 µg/ml proteinase K
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For immunoblotting
NP-40 protein lysate buffer 20mM Tris-HCl pH 7.4

140 mM NaCl
10% glycerol

1% NP-40

2xprotein loading buffer 100mM Tris-HCl pH 6.8

200mM dithiothreitol

4% SDS

0.2% bromophenol blue

20% glycerol

For mice genotyping

Tail lysis buffer 100mM Tris-HCl pH7.5

1mM EDTA
250mM NaCl

0.2% SDS

1.2 Antibodies

Primary antibodies

Anti-ChAT CHEMICON (Ab143), rabbit polyclonal

Immunohistochemistry (IHC) 1:500

Anti-ChAT CHEMICON (Ab144), goat polyclonal

Immunoblotting (IB) 1:500

Anti-TrkA Gift from L. Reichardt, rabbit polyclonal

IHC 1:500; IB 1:1000

Anti-p75 CHEMICON (Ab1554), rabbit polyclonal

IHC 1:400

Anti-Parvalbumin SIGMA (Clone Parv-19), mouse monoclonal
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IHC 1:3000

Anti-APP NH-terminal CHEMICON (Clone 22C11), mouse monoclonal

IB 1:3000; IHC 1:100

Anti-APP C-terminal SIGMA, rabbit polyclonal

IB 1:3000; Immunoprecipitation:1µl per

immunoprecipition

Anti-APP Aβ-NT PRO-SCI Incorporated

IB 1:500

Anti-ERK1 ZYMED (Clone ERK-6B11), mouse monoclonal

IB 1:3000

Anti-Tubulin Sigma, mouse monoclonal

IB 1:20000

Secondary antibodies

Anti-mouse HRP JACKSON Immunoresearch

IB 1:5000

Anti-rabbit HRP JACKSON Immunoresearch

IB 1:5000

Anti-goat HRP JACKSON Immunoresearch

IB 1:5000

Anti-mouse biotinylated VECTOR Laboratories

IHC 1:200

Anti-rabbit biotinylated VECTOR Laboratories

IHC 1:100

1.3 Plasmids

The following plasmids were used for subcloning steps in order to generate the targeting

constructs:



____________________________________________________________________Material and Methods

47

PLASMIDS INSERT PROVIDER

pBluescript II KS Multicloning sites STRATAGENE

PTrkA 18 kB genomic locus trkA (Exon 1-17) L.Tessarollo

PNGF 12 kB genomic locus ngf (Exon 4) P.Ernfors

PFLRT3 loxP-loxP-FRT-Neo-cassette-FRT L.Minichiello

pIRES2-EGFP IRES-EGFP CLONTECH

2 METHODS

2.1 General mouse work

Mutant and control mice were maintained on a mix genetic background

(C57/Black6/129). Young mice were separated from their parents at the age of around 3

weeks; males and females were housed separately. All sacrifices were done by cervical

dislocation.

2.1.1 Mice line used
MICE LINE DESCRIPTION FIRST REFERENCE

Lox trkA Conditional targeting of trkA In this study here

Lox ngf - EGFP Conditional targeting of ngf In this study here

Lox trkB Conditional targeting of trkB (Minichiello et al., 1999)

Nestin-Cre Expression of Cre-recombinase under

nestin-promoter

(Tronche et al., 1999);

(Medina et al., 2004)

Flp-deleter Ubiquitous expression of Flp recombinase (Farley et al., 2000)

Cre-deleter Ubiquitous expression of Flp recombinase (Schwenk et al., 1995)
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2.2 Genotyping of mice

Genetic determination of mice was done by PCR analysis. Tail biopsies were taken from

the mice at weaning age of about 3 weeks and mice were ear-tagged using six-digit eartag

(Nationalband). The tails were incubated overnight at 56ºC with tail lysis buffer plus

100 µg/ml of Proteinase K (Roche). DNA was then purified using the DNAeasy kit

(Quiagen) and diluted in a final volume of 150 µl. PCR reaction was performed using

2 µl of the DNA preparation in a final volume of 50 µl containing 50 pmol of each

primer, 200 mM of each dNTPs, 1.5 mM MgCl2, 1X PCR buffer (Applied Biosystem),

and 2.5 units of AmpTaq polymerase (Applied Biosystem). 30 µl of the PCR mix after

PCR amplification were loaded on an 1% agarose gel.

All primers were ordered from Metabion. The primers used for DNA amplification were

the following:

Primer Allele Sequence 5’ → 3’

LF Lox trkA ACACTGGGTGGCTCAAGGTA

SA Lox trkA GTCACTCCCCACATGCCACC

Neo Lox trkA; lox ngf-egfp CTTCTATCGCCTTCTTGACG

Ex4 Lox ngf-egfp GCTTTGATTGCCTCTCTTGA

LA1 Lox ngf-egfp GGTCCCTGCCTTTCTACTCG

LMAR2DN Lox trkB CCAAGGTGATCAACAGCCCAAGT

C

LMEX4UP Lox trkB TGAAGGACGCCAGCGACAATGCA

CG

Cre1 Nestin-Cre; Cre-deleter GCCTGCATTACCGGTCGATGCAA

CGA

Cre2 Nestin-Cre; Cre-deleter GTGGCAGATGGCGCGGCAACACC

ATT

SD 222 Flp-deleter CCCATTCCATGCGGGGTATCG

SD 223 Flp-deleter GCATCTGGGAGATCACTGAG
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2.3 Generation of transgenic mice

2.3.1 Generation of targeting constructs
All subcloning steps were perfomed by using classical “cutting and ligating” methods.

Ligations were performed at room temperature for 2 hrs using T4 DNA ligase from New

England Biolabs. All restriction enzymes were purchased from New England Biolabs.

For generating blunt ends in DNA fragment the Klenow fragment of the DNA

polymerase I (New England Biolabs) was used. For dephosphorylation of DNA

fragments, the Calf intestinal alkaline phosphatase (New England Biolabs) was used. For

transfection and amplification of DNA, the E.Coli bacterial strain XL1-blue was used.

Ampicillin-resistant bacterial clones were grown in LB medium or on LB plates

supplemented with 0.1 mg/ml ampicillin.

2.3.1.1 trkA targeting construct
In the trkA targeting construct the exons 12-14 of the trkA gene are flanked by two loxP

sequences (see also Figure 6). The exons 12-14 encode for the major parts of the

juxtamembrane domain and of the catalytically active kinase domain of the TrkA

receptor. The targeting vector beside the 1.4 kb loxP - flanked segment contains

additional 6.5 kb of trkA genomic sequence (4 kb in the long arm on the 5’ end of the

construct and 2.5 kb in the short arm on the 3’end of the construct). Downstream of the

second loxP sequence the targeting vector contains a neo– cassette, in a transcriptional

orientation opposite to that of the trkA gene. The expression of the neo-cassette confers

resistance to the cytotoxin G418 and is used as selectable marker for successfull

integration of the targeting construct. The neo-cassette is flanked by two FRT sequences.

2.3.1.2 ngf – egfp targeting construct
In the targeting construct the complete exon 4 of the ngf gene and fragments of the

adjacent introns (in total 2.6 Kb) is flanked by two loxP sequences (see also Figure 18).

On the 3’ end of the loxP flanked sequence an IRES (internal ribosomal entry site)

element and a cDNA cassette encoding for the EGFP fluorescent protein was introduced.

EGFP will be expressed under the endogenous ngf promoter only after deletion of the ngf
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exon 4. Additionally, a polyA sequence was introduced directly after the 3’ end of ngf

exon 4. The targeting vector contains furthermore a 3.5 kb 5’ homologous arm and a 4.1

kb long 5’ homologous arm. Downstream of the second loxP sequence the targeting

vector contains a FRT flanked neo-cassette in a transcriptional orientation opposite to that

of the ngf genomic sequence.

2.3.2 Targeting of wild-type alleles
Mice E14.1 embryonic stem (ES) cells were plated on confluent mitomycin-C treated

mouse fibroblasts in ES media. The ES-cells were expanded for 6-7 days until ready for

electroporation.

The targeting vector for the “trkA” transgenic allele was linearized with the SalI

restriction endonuclease, while the “ngf-egfp” targeting vector was linearized with the

EcoRI restriction enzyme. The DNA was purified by phenol extraction and then

precipitated by adding 2 volumes of 96% ethanol and 0.1 volume of 3M Na-acetate

pH 4.6. The DNA pellet was washed twice with 70% ethanol, air dried under sterile

conditions and resuspended  in sterile water.

After linearization, 30 µg of DNA was electroporated into ES cells (107 cells) at 240V

and 500 µF in a Biorad Gene pulser. The cells were incubated for 20 min on ice and

subsequently plated on gelatine coated 10 cm dishes in ES medium. The day after

electroporation the media was changed to ES media supplied with 320 µg/ml G418. The

media was changed every day until the ES cell colonies were ready to pick

(approximately 10 days).

The ES cell clones were picked and placed in a well on a 96-well plate with confluent

feeders and ES medium. Media was changed every day and cells were grown until they

were confluent (3-4 day).

The ES cells were trypsinised and 2/3 of the cells were frozen in freezing medium, while

the rest of the cells were replaced in a gelatinised 96-well plate without feeders and

grown until ready for DNA preparation.

2.3.3 Isolation of DNA from ES clones and Southern blot analysis
For screening of the ES cells, the confluent plates were washed with PBS. 50 µl of ES

lysis buffer was added to each well and incubated overnight at 55ºC. The DNA was



____________________________________________________________________Material and Methods

51

precipitated using 100 µl EtOH/NaCl, washed three times with 70% ethanol, dried and

digested with the appropriate restriction enzyme (as indicated below) overnight at 37ºC.

The digested ES cell DNA was run on a 0.7% agarose gel at 30V for 15-18 hrs.

Before blotting, the gels were stained with ethidium bromide, and then depurinated for 15

min in 0.25 M HCl, denaturated with 0.4 M NaOH, 2 times for 30 min, and finally

neutralized with SSC 20X for 1 hr.

Gels were blotted overnight onto a GeneScreen Plus membrane (Perkin Elmer) in

presence of SSC 20X (capillary blotting). The membrane was baked at 80ºC for 1 hr and

then washed for 1 hr in 0.1X SSC and 0.5% SDS at 65ºC to reduce background.

Prehybridization was then performed in prehybrization buffer for 2 hrs at 42ºC, followed

by hybridization with in hybridization buffer together with labeled probe overnight at

42ºC. The probes were labeled with the radioactive nucleotide α-32P GTP (Amersham)

using the Random Primed DNA Labeling Kit (Roche). Following the hybridization, the

blots were washed in 2X SSC and 1% SDS, twice at room temperature and once at 50ºC,

and then washed in 0.1X SSC and 1%SDS, twice for 30 min at 55ºC. Hybridized probes

were visualized using the phosphoimager system (Fuji).

The probes used for hybridization were the following (see also Figures 6 and 18):

Probe Allele Restriction enzyme Expected band

WT band           Mut. band

TrkA 5’ Lox trkA BamHI   12 kb                   5 kb

TrkA 3’ Lox trkA BamHI   12 kb                   9 kb

Ngf-egfp 5’ Lox ngf-egfp EcoRV   13 kb                   8 kb

Ngf-egfp 3’ Lox ngf-egfp EcoRI   10 kb                   15 kb

All probes used have a length of about 500-600 bp. The probes TrkA 5’, TrkA 3’, Ngf-

egfp 3’ were generated by PCR amplification; the probe Ngf-egfp 3’ was generated by

digesting the pNGF plasmid with the restriction enzymes EcoRI and SpeI. In addition to

the listed probes, an internal probe in the neo-cassette was used. This probe was obtained

by digesting the pFLRT3 with the PSTI enzyme.
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2.3.4 Injection of ES-cells into C57BL/6 blastocysts
Two clones derived from each construct were injected into C57BL/6 blastocysts

following standard protocols. The resulting chimeras were bred for germline

transmission. Agouti animals were genotyped, in order to distinguish the heterozygous

from wild-type animals, using the southern blot analysis as described for the ES cells

screening.

2.4 Analysis of transgenic mice

2.4.1 Preparation of floating sections
Cryostat sections of brains of mice at different ages were used for immunohistochemistry

stainings. Therefore the mice were anesthetized with 2% avertin and intracardially

perfused first with 10ml cold PBS and then with 10ml cold 4% PFA/0.1M PB. The head

of the perfused mice were then left overnight in 4% PFA at C. The next day, the brains

were dissected out of the skulls and postfixed for another 12 hrs in 4% PFA. The brains

were washed in cold PBS and placed in a 30% sucrose / Tris-Azide solution  at 4°C until

they sunk to the bottom of the incubation tube. The brains were then shortly dried and

placed in embedding molds filled with OCT embedding medium (Sakura Finetek).

Subsequently, the embedding molds were placed in isopentane that was in turn

submerged in liquid nitrogen for several minutes in order to harden the embedding

medium. The frozen brains in OCT were stored at –80°C.

30 µm serial coronal sections of the frozen brains were cut at -20°C on a cryostat. The

cryosections were transferred into the wells of a 96-well plate filled with Tris-Azide

solution. These floating sections were stored at 4°C.

For the preparation of sections for the staining of DRG neurons, embryos were dissected

from the uterus at embryonic day E17.5. The embryos were fixed and embedded in OCT

medium as described previously for the brains. 10-16 µm transversal sections of the

spinal chord region were cut on a cyrostat at -20°C and transferred directly onto

“Superfrost plus” slides (Menzel), and airdried. The slides were conserved at -20°C.
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2.4.2 Immunohistochemistry
Immunohistochemistry stainings on floating sections were performed in 24-well plates.

All steps were performed on a rocking platform at room temperature, except the

incubations with the primary and the secondary antibodies that were performed at 4°C.

Sections were washed 3x15 min in PB. To quench endogenous peroxidases, sections

were then incubated for 20 min in 2% H2O2 and washed 2x15 min in TBS. Unspecific

antibody binding was blocked by incubating the sections for 1hr in TBS supplemented

with 10% normal goat serum (NGS, Vector laboratories), 3%BSA and 0,4% Triton X-

100. Primary antibodies were diluted in TBS supplemented with 1% NGS, 3%BSA and

0,4% Triton X-100 and the sections were incubated with the antibody solution for 40-48

hrs. Subsequently, after 3x15 min washing steps with TBS plus 1% and 0.4% Triton X-

100, the sections were incubated for 20-24 hrs with the appropriate biotinylated

secondary antibody diluted in TBS supplemented with 1% NGS, 3%BSA and 0,4%

Triton X-100. The binding of the biotinylated antibodies was then visualized using the

Vectastain ABC kit (Vector Laboratories). Therefore the sections were washed 3x15 min

with after 3x15 min washing steps with TBS plus 1% NGS and 0.4% Triton X-100 and

then incubated for 1 hr with the Vectastain ABC reagent (containing avidin / biotinylated

horseradish peroxidase complexes). After extensive washing first 3x15 min in TBS and

then 2x15 min in TB, peroxidase activity was visualized by incubating the sections for 20

min with the substrate diaminobenzidine tetrahydrochloride (in TB at a concentration of

0.5mg/ml) and finally by adding H2O2 at a final concentration of 0.3%. When the staining

was completed (1-2 min), the color reaction was stopped by washing the sections several

times with cold TB. Sections were transferred onto “Superfrost plus” slides (Menzel),

airdried, dehydrated in a graded series of alcohols, incubated for 10 min in xylene and

coverslipped.

The staining of the spinal chord sections was performed directly on the slides. All

staining and washing steps were identical as described for the floating sections. During

staining steps, the slides were covered with parafilm in order to avoid drying out of the

sections.
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2.4.3 Cell counting
The sections were visualized and imaged under a light microscope (Leica DMR) with a

digital camera (Leica). Further analysis was done using the Photoshop software (Adobe).

The boundaries of the distinct counting areas were defined and cells were counted

manually. Only cells with a clearly stained cell body were counted.

The counting criteria and the boundaries of the distinct areas were defined as following.

As reference the “Mouse Brain” atlas from Paxinos, G and Franklin, KB (Second edition,

Acedemic press) was used (see also Figure 3).

Medial septum: One section every 120 µm of the medial septum throughout its complete

rostrocaudally extent was counted. On average a total number of 8-9 sections were

counted for each animal. Because only every fourth section was analyzed (every 120

µm), it is unlikely that a neuron would be measured twice. The medial septum was

defined as the area triangular with the following anatomical boundaries:  Lateral: Lines

connecting the anterior comissures with the midline of the corpos callosum; Ventral: a

horizontal line connecting the inferior edges of the anterior commissures. The cells in this

area that make part of the nucleus accumbens (which is clearly distinguishable from the

cells of the medial septum and is part of the ventral striatum) were not taken into

consideration.

Nucleus basalis complex: The nucleus basalis complex was defined as the region

containing the cholinergic neurons of the nucleus basalis, the substantia innominata and

the globus pallidus. The cells of this region are not clearly distinguishable from the

cholinergic neurons of the caudal part of the horizontal limb of the diagonal band.

Therefore, in order to avoid counting bias, also the cells of this part of the diagonal band

were included in the counting area for the nucleus basalis complex. This definition

amounted to counting all cholinergic neurons ventrally from the striatum and the internal

capsule. The first section counted was the most rostral section through the decussation of

the anterior commissures. Then a section every 120 µm was counted for a total number of

8 sections. On every section the cell number in the nucleus basalis complex on both

hemispheres was quantified.

Striatum: The striatal tissue is clearly distinguishable from the surrounding areas. The

boundaries are given by the lateral ventricle medially, the external capsule laterally, and
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the anterior commissure ventrally. The first section counted was the section where the

corpus callosum crossed for the first time completely the midline. Then a section every

240 µm was counted for a total number of 7 sections. On every section the cell number in

the striatum on both hemispheres were quantified.

2.4.4 Histochemistry for AChE activity
Stainings for acetylcholinesterase (AChE) were performed using a modified Tago method

(Di Patre et al., 1993). The sections were quickly rinsed in 0.05 M Tris-maleate buffer

(pH 5.7) and then incubated for 10 min in Tris-maleate buffer containing 6µg/ml

promethazine, and washed two additional times in Tris-maleate buffer. Section were

incubated with 30 min in a 32.5 mM Tris-maleate buffer containing 5 mM sodium citrate,

3 mM cupric sulfate, 0.5 mM potassium ferrocynide, and 0.52 mg/ml acetylthiocholine

iodide, then rinsed five times in 50 mM Tris-HCl (pH 7.6). Sections were incubated for 5

min in 50 mM Tris-HCl containing 0.25 mg/ml diaminobenzidine tetrahydrochloride and

3 mg/ml nickel ammonium sulfate. Hydrogen peroxide (final concentration 0.006%) was

added and sections was allowed to incubate for 2-3 more minutes. The reaction was

stopped by washing sections 3-4 times with 50 mM Tris-HCl buffer. Sections were

transferred onto “Superfrost plus” slides, dehydrated in a graded series of alcohols,

incubated for 10 min in xylene and coverslipped.

2.4.5 Preparation of protein lysates
Mice were killed by cervical dislocation and brains were quickly dissected. Total

forebrain or specific subareas of the brain were snap-frozen in liquid nitrogen. For

preparation of total protein lysates, the tissue was lysed in NP-40 lysate buffer using a

dounce tissue homogenizer. The lysate was then cleared from insoluble components by

centrifugation at 14000 rpm for 30 min and conserved at –80°C. For detection of soluble

APP fragments, the tissue was homogenized with a douncer in 20 mM Tris-HCl pH7.4

(supplemented with 2 mM EGTA and 1 mM EDTA) and ultracentrifuged at 100000 rpm

for 1hr. The supernatants were further processed for immunoblotting.

2.4.6 Immunoblotting (Western blotting)
Protein concentrations of the lysates were determined using the Bio-Rad Dc protein assay

(Biorad). 50µg of each sample was used for immunoblotting. Proteins were mixed with
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equal volume of 2xprotein loading buffer and boiled for 5 min by 95°C. Proteins were

usually analyzed on 1 mm thick minigels (Bio-Rad apparatus). The tris-glycine

separating gel contained 8% acrylamide (Bio-Rad, stock solution 30% Acrylamide/bis-

acrylamide 37.5:1 ratio), 375 mM Tris-HCl pH 8.8, 0.1% SDS, 0.1% ammonium

persulfate and 0.001% N,N,N’,N’-tetramethylenediamine (TEMED). The stacking gel

contained 4% acrylamide, 125 mM Tris-HCl pH 6.8, 0.1% SDS, 0.1% ammonium

persulphate and 0.001% TEMED. The gels were run in Laemmli running buffer (25 mM

Tris base, 200 mM glycine, 0.1% SDS) at a current of 20-40 mA per gel. Proteins were

transferred onto Protran nitrocellulose (Schleicher & Schuell) using a Hoefer SemiPhor

apparatus for 1 hr at a constant mA (1mA/cm2 gel area) in transfer buffer (20 mM Tris

base, 150 mM glycine, 0.1% SDS, 20% methanol). Membranes were stained in 0.2%

Ponceau S solution (Serva) and then washed. Unspecific binding was blocked by

incubating membranes in 5% non-fat dry milk in PBS containing 0.1% Tween-20

(BioRad) from 1 hr at room temperature.

Primary antibodies were diluted in PBS, 5% milk, 0.1% Tween-20, added to the blots,

and incubated overnight at 4oC. Following the antibody incubation the membrane was

washed 3-5 times in PBS, 0.1% Tween-20 for a total of 1 hr. Horseradish peroxidase

conjugated secondary antibodies were used in a dilution of 1:5000 and incubation of the

membranes was performed at room temperature for 1hr. After several additional washing

steps for a total time of 1 hr the HRP enzymatic activity of the secondary antibody was

revealed by the ECL chemilumescence method (Amersham Pharmacia).

For reprobing blots, membranes were stripped for 20 min at 62ºC in 5 mM PB with 2%

SDS and 2mM β-mercaptoethanol.

For quantification, the bands of the developed films were digitalized and quantified by

using the NIH Image 1.63 software. This software measures the brightness of each pixel

and the total area of the band, and then calculates the mean optical density (O.D.) for

each sample. In order to compare the O.D. values of different bands, the values were

standardized in regard to protein loading. Therefore on each blot, also expression levels

of the ubiquitously and constitutively expressed control proteins as ERK1 or in some

cases also tubulin were analyzed and quantified. All the results are indicated as relative
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protein levels obtained by calculating the ratio between the O.D. value of the analyzed

protein and the O.D. value of ERK1 or tubulin.

2.4.7 Immunoprecipitation
500 µg of protein lysate were immunoprecipitated with 1µg of antibody 22C11 while

rocking on a rotating wheel for 12 hrs at 4°C. Immunoprecipitates were collected at 4°C

by incubating with protein A-Sepharose CL-4B beads (50 µl of a 1:1 solution in NP-40

protein lysate buffer; Amersham). After 4 washes with NP-40 protein lysate buffer,

Sepharose-bound proteins were eluted in 2x protein loading buffer and processed for

immunoblotting. For the separation of these immunoprecipitates, pre-cast 4-20% gradient

Tris-Glycine gels (Novex gels, Invitrogen) were used. These gels allow a better

separation of low molecular weight proteins.

2.4.8 NGF immunoassay (ELISA)
To measure NGF protein, the Chemikine NGF sandwich enzyme immunoassay kit from

Chemicon was used. According to the manufacturer’s protocol, total forebrains were

lysed in 1ml of immunoassay lysate buffer at 4°C. Lysates were centrifuged for 30 min at

14000 rpm and 50 µl of the supernatants were loaded into the microwells of the ELISA

plates provided by the kit. Each lysate was assayed in triplicate. The microwells are

coated with sheep polyclonal NGF antibodies, which capture NGF from the sample.

Captured NGF was detected by mouse monoclonal NGF antibodies and subsequently by

peroxidase labeled anti-mouse donkey antibodies. Peroxidase activity was finally

visualized by adding substrate solution. The color reaction was stopped after 10 min and

the optical density (O.D.) of each well was quantified by a microplate reader using a

450nm wavelength filter. In each assay, also several NGF standards were analyzed and a

standard curve was calculated that shows a direct relationship between NGF

concentration and the corresponding O.D.s. By using this standard curve, NGF

concentration of each forebrain lysate was determined and normalized to the weight of

the lysed forebrain.
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2.4.9 Statistical analysis
All the experiments were carried out on at least three animals from each genotype (unless

otherwise indicated). The immunoblot analyses were repeated at least three times for each

sample.

All results are indicated as means ± standard error of the mean. Significance of

differences between samples was assessed by using the Student’s t-tests. Differences

were considered significant when p<0.05.



1 TRKA EXPRESSION IS BRAIN-SPECIFICALLY DISRUPTED IN
trkA LOX/LOX; NESCRE +/- MICE

We flanked the exons 12-14 of the trkA gene with two loxP sites by homologous

recombination in ES cells and derived germline targeted offspring carrying one floxed

allele including the neo-cassette (lox neo+ allele) (Figure 6a). This trkA lox neo+/+ mouse

was used to generate mice homozygous for the lox neo+ allele. The homozygous mice

trkA lox neo+/lox neo+ were born in expected Mendelian ratio but died in the first three days of

life. The phenotype of these mice resembles closely the phenotype observed in complete

trkA knockout suggesting that the neo-cassette introduced in the trkA locus interfered

severely with the expression of the TrkA protein. In fact, it is known that the intronic

insertion of the neo cassette may importantly decrease the level of mRNA produced by

the recombinant allele (Meyers et al., 1998; Nagy et al., 1998). The neo sequence could

also introduce cryptic splice sites that could lead to truncation of the protein encoded by

the gene of interest. The neo cassette that is flanked by two FRT sites was therefore

excised in vivo from the recombinant allele by crossing with transgenic mice that express

ubiquitously the Flp recombinase (Flp-deleter mice). Successful excision of the neo

cassette was verified by Southern and PCR analyses and resulted in the generation of the

recombinant neo- allele (Data not shown and Figure 6b). The deletion of the neo-cassette

rescued the lethal phenotype of mice homozygous for the recombinant allele indicating

that the intronic insertion of the neo cassette in the trkA gene caused fatal decrease of

TrkA expression. This effect of the neo-cassette was further verified by immunoblotting

of protein lysates of the forebrain of newborn mice with an antibody against TrkA. While

no TrkA was detected in the forebrain of trkAlox neo+/lox neo+ mice, TrkA expression was

rescued in trkAlox neo-/lox neo- mice and reached levels undistinguishable from those in wild-

type mice (Figure 7a). trkAlox neo-/lox neo– mice are viable, fertile and display no gross

anatomical defects. All subsequent work was done with mice in which the neo-cassette
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was deleted and from now on the lox neo- allele is termed simply lox allele. In order to

verify that Cre-recombinant mediation delete efficiently TrkA expression in the floxed

mice, we crossed the TrkA lox/lox with transgenic mice that express the Cre-recombinase

ubiquitously (Cre-deleter mice). Mice homozygous for the floxed allele that express the

Cre recombinase die in the first days of life and resemble closely the TrkA knockout

mice.

In order to disrupt TrkA expression specifically in the brain, we crossed the mice carrying

the floxed TrkA allele with transgenic mice that express the Cre recombinase under the

nestin promoter (NesCre+/- mice) in order to generate trkA lox/lox; NesCre+/- mice. It was

shown previously that Cre activity is detectable in the NesCre+/- mice from early

development on throughout all the cells of the neural tube (Medina et al., 2004). This

activity results in efficient Cre-mediated loxP recombination in all cells of the CNS.  In

the PNS, on the other hand, very little Cre activity is detectable in NesCre+/- mice. Only

few neurons of the trigmeninal ganglia were found to express Cre, while in others ganglia

of the PNS no Cre expression at all was found.

TrkA lox/lox; NesCre+/- mice are born in the expected Mendelian ratio and they are viable

and fertile. They display no gross anatomical or behavioral abnormalities. Immunoblot

analysis demonstrated that TrkA expression is deleted efficiently from the forebrain of

trkA lox/lox; NesCre+/- mice at the end of the first postnatal week (Figure 7b). We did not

Legend of the FIGURE 6 (previous page):

FIGURE 6: Conditional targeting of the trkA exons 12-14
Panel A shows schematic representation of the exons 11-17 of the mouse trkA locus in the wild-type allele.
The targeting construct is depicted below the wild-type allele. It contains the floxed exons 12-14 and the neo-
cassette flanked by two frt sequences. Some of the restriction enzyme sites that were used for cloning steps
and for further analysis by Southern blotting are indicated. The successful targeting of the wild-type allele with
the targeting construct by homologous recombination in ES-cells leaded to the generation of the recombinant
trkA lox neo+ allele. The neo-cassette was excised in vivo with transgenic mice expressing the Flp-recombinase
ubiquitously. This resulted in the generation of the recombinant trkA lox neo- allele.
Panel B shows Southern blot analysis of successful recombination in the trkA lox neo+ allele. The position of the
two probes at the 5’ and 3’ site of the targeting construct is indicated in Panel A. Southern blot analysis were
done on genomic DNA digested with the restriction enzyme BamHI.
Panel C shows the analysis by PCR of trkA lox neo+ and trkA lox neo- alleles. The position of the primers used for
PCR analysis is indicated in Panel A. The PCR reaction shown on the right side with the Primers LF and SA
allows to differentiate between wild-type mice, and mice heterozygous or homozygous for the trkA lox neo-

allele and was used for routine genotyping of the floxed trkA mice.
.



+/+

+/+ trkA lox/lox trkA lox/lox ; 
NesCre+/-

trk
A lo

x n
eo

- /
 lo

x n
eo

 -

trk
A lo

x n
eo

+ 
/ lo

x n
eo

+

TrkA

TrkA

Tubulin

Tubulin

trkA lox/lox trkA lox/lox; NesCre+/-

Tr
kA

 im
m

u
n

o
re

ac
ti

vi
ty

in
 t

h
e 

d
o

rs
al

 r
o

o
t 

g
an

g
lia

 a
t 

E
17

.5

F
o

re
b

ra
in

 ly
sa

te
s

 P
1

F
o

re
b

ra
in

 ly
sa

te
s

 P
7

A

B

C

Spinal
chord

Spinal
chord

FIGURE 7: Analysis of TrkA deletion in homozygous trkA lox neo+ and trkA lox neo- mice
Panel A: Forebrains of new-born (P1) wild-type, trkA lox neo- / lox neo- and trkA lox neo+ / lox neo+ mice were 
excised and lysed in protein lysis buffer. 50 µg of each protein lysate were analyzed for TrkA expression by 
immunoblotting. While in trkA lox neo+/ lox neo+ mice virtual no TrkA was detectable in the forebrain lysates, TrkA 
expression levels in trkA lox neo / lox neo- mice were undistinguishable from those in wild-type mice.  
Immunoblotting against tubulin protein demonstrates that in each lane similar amount of total protein lysate was 
loaded.
Panel B: Forebrains of one week-old wild-type, trkA lox/lox and trkA lox/lox; NesCre +/- mice were lysed and 
analyzed for TrkA expression levels. While expression levels in wild-type and trkA lox/lox mice were identical, no 
specific TrkA expression was detected in the forebrains of trkA lox/lox; NesCre +/- mice.
Panel C: 10-16 mm transversal cryosections of the spinal chord region of E17.5 embryos were transferred directly 
onto slides and stained with an antibody against TrkA. TrkA staining visualizes clearly the TrkA-positive neurons of 
the dorsal root ganglia. There were no differences observed between the TrkA expression in the dorsal root 
ganglia of trkA lox/lox and trkA lox/lox; NesCre +/- mice. Thus, NestinCre-mediated deletion of TrkA expression 
occurs only in the cells of the CNS, but not in PNS neurons.
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analyze more in details the time course of TrkA deletion through the nestin-directed Cre

transgene, but previous studies performed with the NesCre mouse indicate clearly that

Cre is active already from early development on (Medina et al., 2004). Thus, it is very

likely that TrkA expression is disrupted in trkA lox/lox; NesCre+/- mice already from the

stage where in wild-type mice TrkA is first detectable at late embryonic development. On

the other hand, as demonstrated by immunohistochemistry analysis, no reduction in TrkA

expression was found in PNS neurons of the DRG in trkA lox/lox; NesCre+/- mice (Figure

7c). Thus, in trkA lox/lox; NesCre+/- mice, TrkA is deleted only in CNS cells where Cre is

expressed and not in neurons of the PNS where no Cre activity is detectable.

The TrkA deletion in the basal forebrain of trkA lox/lox; NesCre+/- mice was analyzed

more in details by immunohistochemistry stainings done on coronal sections of the

forebrain (Figure 8). As expected, in wild-type mice expression of TrkA was found in

areas of cholinergic cells in the medial septum, in the diagonal band and in the nucleus

basalis. TrkA-positive neurons were found also in the striatum. There was no difference

between stainings in wild-type mice and in control trkA lox/lox mice (data not shown). On

the other hand, expression of TrkA in trkA lox/lox; NesCre+/- mice was virtually absent in

all the different areas of the basal forebrain. The morphology of the anatomical structures

in the basal forebrain in trkA lox/lox; NesCre+/- was nevertheless grossly unaffected.

2 TRKA DISRUPTION RESULTS IN A CHOLINERGIC
PHENOTYPE IN THE BASAL FOREBRAIN

2.1 TrkA disruption reduces specifically the number of
cholinergic neurons in distinct forebrain areas

We next wanted to assess whether the deletion of TrkA results in a modification of the

cholinergic phenotype in the basal forebrain. We performed immunohistochemistry

stainings for ChAT on coronal sections through the areas of the medial septum and the

nucleus basalis complex and through the striatum (Figure 9). In all these areas, groups of

strongly stained cell bodies were found. The areas of ChAT immunoreactive cells

overlaid the areas where TrkA positive neurons were found. ChAT immunoreactive cells

in the striatum were in general slightly smaller than the stained cells of the other forebrain
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FIGURE 8: TrkA deletion in the forebrain of trkA lox/lox; NesCre+/- mice
30µm serial coronal cryosections from the forebrain of trkA lox/lox; NesCre+/- mice and trkA lox/lox mice at the age of 
one month were prepared and kept as floating sections in Tris-Azide buffer. Sections of the areas of the medial 
septum, nucleus basalis and of the striatum were stained with a polyclonal antibody against TrkA. The sections were 
transferred on slides and analyzed by microscopy. Representative pictures of the different areas in mutant and control 
mice are shown. While strongly stained neurons were found in all the indicated areas in trkA lox/lox mice, virtually no 
stained cells were present in the trkA lox/lox; NesCre+/- mice. Some of the most relevant anatomical structures are 
indicated.
MS - Medial septum; DB,vl - Diagonal band, vertical limb; DB,hl - Diagonal band, horizontal limb; NB - Nucleus 
basalis; St - Striatum; Gp - Globus pallidum; ac - anterior commissure; ic - internal capsule; ec - external capsule

acac
acac

MS MS

DB, vl DB, vl 

DB, hl
DB, hl

St
ic

Gp

NB

St
ic

Gp

NB

St
St

ecec

ac

64



M
ed

ia
l s

ep
tu

m
N

u
cl

eu
s 

b
as

al
is

S
tr

ia
tu

m
trkA lox/lox trkA lox/lox;

NesCre+/-

FIGURE 9: TrkA deletion reduces number of ChAT-positive neurons in the forebrain
Legend see next page
MS - Medial septum; DB,vl - Diagonal band, vertical limb; DB,hl - Diagonal band, horizontal limb; NB - Nucleus 
basalis; St - Striatum; Gp - Globus pallidum; ac - anterior commissure; ic - internal capsule; ec - external capsule

MS
MS

St
St

St

St

ac
ac

ac ac

DB, vl 

DB, vl 

DB, hl DB, hl 

ac
ac

ec
ec

ic
ic

Gp Gp

NBNB

ChAT immunoreactivity at P90

65



________________________________________________________________________________Results

66

areas. In trkA lox/lox; NesCre+/- mice, the number of ChAT-positive cells appears reduced

in many sections through the medial septum and the nucleus basalis. ChAT-

immunoreactive neurons in the trkA lox/lox; NesCre+/- mice seem often hypotrophic and

less strongly stained compared to the neurons in control mice.

Next, ChAT-positive cell bodies were quantified as described in the “Material and

methods” part. We first analyzed the neurons expressing the cholinergic marker ChAT in

the medial septum. At the age of three months (P90), in trkA lox/lox; NesCre+/- the number

of ChAT-positive cell bodies was significantly reduced by 39.5% ± 4.1% compared to the

control trkA lox/lox mice (Figure 10a). However, no significant difference could be found

in the number of ChAT-positive cell bodies of the medial septum between wild-type

mice, Nestin-Cre transgenic mice and trkA lox/lox mice Thus, neither the expression of the

Cre transgene or the lox mutation in the trkA alleles had any effect on ChAT expressing

cell numbers. Taken together, these results suggest that deletion of TrkA is reduces

specifically the number ChAT-positive neurons in the medial septum.

The counts of the ChAT+ positive neurons indicated strongly that TrkA deletion reduces

the number of cholinergic neurons in the medial septum of trkA lox/lox; NesCre+/- mice.

However, by this method it is not possible to assess whether the reduction of ChAT-

positive cells is due to a reduction of cholinergic cells or rather to a downregulation of the

expression of the cholinergic marker ChAT. To address this question, we performed

immunostainings on the medial septum of P90 animals for another marker of cholinergic

neurons, the neurotrophin receptor p75 (Figure 10b). Counts of the p75-positive neurons

in the wild-type medial septum at P90 showed that the number of the p75-positive cells is

slighter smaller than the number of ChAT-positive neurons. This indicates that only about

Legend of the FIGURE 9 (previous page):

FIGURE 9: TrkA deletion reduces number of ChAT-positive neurons in the forebrain
30µm serial coronal cryosections from the forebrain of trkA lox/lox; NesCre+/- mice and trkA lox/lox mice at the
age of 3 months were prepared and kept as floating sections in Tris-Azide buffer. Sections of the areas of the
medial septum, nucleus basalis and of the striatum were stained with a polyclonal antibody against ChAT. The
stained sections were transferred on slides and analyzed by light microscopy. Representative pictures of the
different areas in mutant and control mice are shown. The dashed lines indicate the areas that were considered
for cell counting of the different structures as explained in “Material and Methods”. Some of the most relevant
anatomical structures are indicated.
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75% of the ChAT expressing neurons express also p75 and differs from the results of

previous studies, which demonstrated that virtually all ChAT positive cells in the medial

septum and the nucleus basalis are also p75 positive (Gibbs and Pfaff, 1994; Sobreviela et

al., 1994). Alternatively, the difference in the numbers of ChAT- and p75-positive cells in

our analysis could be explained also by different sensitivities of the antibodies used for

the two proteins. The number of p75-positive was significantly reduced by 33.6% ±

13.1% in trkA lox/lox; NesCre+/- compared to control mice. The reduction of p75-positive

neurons in the medial septum is very similar to the reduction observed in ChAT-positive

neurons. This suggests strongly that TrkA deletion reduces the number of cholinergic cell

bodies and not only the expression of cholinergic markers. On the other hand, we

performed also immunostainings for parvalbumin, a well-characterized marker of

GABAergic neurons (Freund and Antal, 1988) (Figure 10b). GABAergic neurons

constitute an important neuronal subpopulation of the medial septum that is distinct from

the cholinergic neurons and that do not express TrkA. No difference was found between

the expression of parvalbumin in mutant and control mice, indicating that TrkA deletion

affects specifically cholinergic cells and not other neuronal subpopulations.

Next, we analyzed whether the effect of TrkA on cholinergic neurons varies during

postnatal development. Therefore, we quantified the number of ChAT-positive neurons in

the medial septum of control trkA lox/lox and mutant trkA lox/lox; NesCre+/- mice at 4

different time points from 2 weeks (P15) until 9 months (P270) after birth (Figure 11a).

Legend of the FIGURE 10 (previous page):

FIGURE 10: TrkA deletion reduces specifically the number of cholinergic neurons
Panel A: Serial cryosections of the forebrain of wild-type, NesCre+/-, trkA lox/lox and trkA lox/lox; NesCre +/-
mice (at the age of 3 months) were stained with an antibody against ChAT. The ChAT-positive neurons of the
medial septum were quantified following the criteria described in “Material and Methods”. No significant
differences were found between the numbers of medial septum ChAT-positive neurons in all three control
mice. The number of ChAT-positive cells in the medial septum of trkA lox/lox; NesCre +/- mice were
significantly reduced compared to the control mice.
Panel B: Cryosections through the area of the medial septum of trkA lox/lox and trkA lox/lox; NesCre +/- mice
were stained with polyconal antibodies against the neurotrophin receptor p75 and a marker for GABAergic
neurons parvalbumin. Representative pictures of the stainings of the medial septum area are shown. p75-
positive cells were clearly reduced in trkA lox/lox; NesCre +/- mice compared to trkA lox/lox mice while no
differences were found in parvalbumin-positive neurons. The p75-positive neurons in the medial septum were
quantified.
“*” Indicates the result of the Student’s t-test p<0.05
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In control mice, the number of cholinergic cell bodies in the medial septum at the earliest

time point analyzed (P15) was already very similar to cell numbers in adult mice,

indicating that the proliferation of the cholinergic neurons is nearly completed at the end

of the second postnatal week. From P15 to P30 there is only a slight increase in the cell

number; after this time point it remains relatively stable until P270. At all analyzed time

points the differences between control and mutant were highly significant. At P15, the

reduction of cholinergic neurons in the medial septum of trkA lox/lox; NesCre+/- mice was

35.4% ± 6.3% in relation to control mice. The maximum of reduction (39.5% ± 4.1%)

was seen at P90. The reduction of medial septum ChAT-positive neurons in trkA lox/lox;

NesCre+/- did not increase during aging.

We next assessed whether the reduction of cholinergic neurons in trkA lox/lox; NesCre+/-

was specific to the medial septum or was common to all cholinergic cell groups in the

forebrain. We quantified the ChAT-positive cell bodies in P90 animals in the area of the

nucleus basalis and the striatum following the criteria as described in the “Material and

Methods” part (Figure 11b). In the nucleus basalis area, ChAT-positive neurons in

trkA lox/lox; NesCre+/- mice were significantly reduced by 32.4% ± 9.8% compared to

control mice to an extent very similar to those observed in the medial septum. On the

other hand, no difference between mutant and control mice was observed in the striatum.

In this study, the neurons of the diagonal band were not quantified particularly. However,

Legend of the FIGURE 11 (previous page):

FIGURE 11: Analysis of the cholinergic phenotype in the forebrain of TrkA-deficient mice
Panel A: Cryosections of the forebrains of trkA lox/lox and trkA lox/lox; NesCre +/- mice of different ages were
stained with the antibody against ChAT. ChAT-positive neurons in the area of the medial septum were
quantified. The differences between the number of ChAT-positive neurons in the medial septum of trkA lox/lox

and trkA lox/lox; NesCre +/- mice were significant at all time points analyzed.
Panel B: Forebrain cryosections of trkA lox/lox and trkA lox/lox; NesCre +/- mice (at P90) of the areas of the
medial septum, nucleus basalis complex and of the striatum were stained with the ChAT-antibody. ChAT-
positive neurons in the different areas were quantified following the counting criteria described in “Material
and Methods”. ChAT-positive neurons were significantly reduced in the medial septum and the nucleus
basalis complex in trkA lox/lox; NesCre +/- mice compared to trkA lox/lox mice. No differences were found in the
striatum.
Panel C: Mice deficient for TrkA were crossed with mice with brain-specific deletion of the neurotrophin
receptor TrkB (trkB lox/lox; NesCre +/- mice) and brain-specific double-knockout TrkA/TrkB mice (trkA lox/lox;
trkB lox/lox; NesCre +/- mice) were generated. Cryosections of the forebrain of the brain-specific single- and
double knockout mice (at the age of one month) were immunostained with ChAT-antibodies. ChAT-positive
neurons in the medial septum were quantified.
“*” Indicates the result of the Student’s t-test p<0.05
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the caudal part of the horizontal limb of the diagonal band was included into the counts of

the nucleus basalis complex as described in “Material and Methods” and the vertical limb

of the diagonal band exhibited by qualitative visual inspection a similar reduction of

cholinergic neurons compared to those seen in the medial septum (see also image in

Figure 9). Therefore, it is likely that the ChAT-positive neurons in the diagonal band of

the mutant mice were reduced to similar extent to the reduction observed in the medial

septum and the nucleus basalis. Thus, the effect of the TrkA deletion on the cholinergic

neurons in the forebrain appears to be specific to the cholinergic neurons of the groups

Ch1-4, while the number of local striatal interneurons remains unvaried  (at least at P90).

2.2 TrkB disruption has only a minor effect on cholinergic cell
numbers in the medial septum

Cholinergic neurons of the medial septum and of the striatum are known to express the

neurotrophin receptor TrkB (Molnar et al., 1998; Richardson et al., 2000; Yan et al.,

1997). We wanted to assess whether TrkB signaling is essential for survival of

cholinergic neurons in the medial septum and whether this signaling is redundant with the

TrkA signaling in the medial septum. We analyzed therefore the cholinergic neurons in

the medial septum of animals deficient for TrkB and for both TrkB and TrkA in the CNS.

Mice with Cre mediated brain-specific deletion of TrkB (trkB lox/lox; NesCre+/- mice)

have been shown to exhibit severe defects in cell migration, differentiation, and

myelination (Medina et al., 2004). However, until the age of 1 month these mice display

no gross anatomical abnormalities. Therefore, we choose to analyze animals at the age of

one month. The number of analyzed trkA/trkB deficient mice analyzed up to now is not

sufficiently high (for trkB lox/lox;  NesCre+/- mice n=2 and for

trkA lox/lox; trkB lox/lox; NesCre+/- n=1) for obtaining statistically significant final results.

However, the trend of the results allow to get a first insight into the role of TrkB

signaling in cholinergic neurons of the forebrain. At P30, mice with brain-specific TrkB

deletion show only a slight reduction of about 10.66% ± 0.4% of medial septum ChAT-

positive neurons compared to control mice (Figure 11c). We next quantified the

cholinergic neurons in the medial septum of mice deficient for TrkB and TrkA in the

brain (trkA lox/lox; trkB lox/lox; NesCre+/- mice). We found an important reduction of
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48.7% in mice double deficient for TrkA and TrkB compared to control mice. However,

the reduction in trkA lox/lox; trkB lox/lox; NesCre+/- mice was only about 23.2% compared

to trkA lox/lox; NesCre+/- mice. Thus, at P30, the TrkB deletion in the cholinergic neurons

of the medial septum appears to have only a rather small additive effect compared to the

reduction observed after TrkA deletion. In general, the role of TrkB in the cholinergic

neurons seems to have minor importance compared to the role of TrkA.

2.3 TrkA deletion decreases the expression of the cholinergic
differentiation marker ChAT

Next, we aimed to examine whether TrkA deletion affects also the quantitative

expression of the cholinergic marker ChAT. ChAT protein is found not only in the cell

bodies of the cholinergic neurons, but also in their axonal and dendritic elongations.

Therefore, ChAT protein analysis gives an indication about the state of cholinergic

innervation in target areas of cholinergic neurons. First, we determined the ChAT

expression levels in the forebrain of wild-type mice during postnatal development.

Therefore, total forebrain lysates of wild-type mice at different time points from P1 to

P270 were analyzed by immunoblot analysis with a specific antibody against ChAT

(Figure 12a). While no ChAT expression was found in newborn mice, ChAT expression

reached of about 36.2% ± 2% of its maximum levels at P15 and 78.5% ± 11.2% at P30.

ChAT expression was maximal at P90 and remained then relatively stable at P180 and at

P270. This time course of ChAT protein expression during postnatal development is

similar to those observed previously in other studies (Li et al., 1995). Next, we analyzed

the expression of ChAT at 4 different time points in trkA lox/lox; NesCre+/- mice

compared to wild-type mice (Figure 12b). Already, at P15 ChAT expression trkA lox/lox;

NesCre+/- was importantly reduced by 29.4% ± 8.3% compared to trkA lox/lox mice. This

reduction was further increased during postnatal development and reached its maximum

at P180, where ChAT was reduced by 48.3% ± 5.5% in mutant mice compared to wild-

type mice. The increase in the reduction between P15 and P180/P270 was significant

(p=0.047 and p=0.042, respectively) indicating that the loss of the cholinergic marker

ChAT in TrkA deficient mice is a progressive process during the first months of postnatal

development.
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We next analyzed the expression of ChAT protein in different areas of the brain of mice

at the age of 9 months (Figure 12c). As expected, ChAT expression in the striatum is

relatively high compared to the expression in the hippocampus and in the cortex (see

insert in Figure 12c) and virtually no ChAT expression was found in the cerebellum.

Next, we analyzed the reduction of ChAT expression in the different brain areas in TrkA-

deficient mice versus control mice. We found an important reduction of ChAT expression

in the cortex and in the hippocampus. The extent of the reduction was very similar in both

areas: 60.9% ± 7.0% in the cortex and 61.3% ± 8.0% in the hippocampus. Remarkably,

no difference in ChAT expression was found in the striatum of mutant mice compared to

control mice.

Taken together, these data confirmed our results from the cell counting studies, indicating

that TrkA deletion importantly affects the cholinergic phenotype of neurons of the

cholinergic cell groups Ch1-Ch4, without modulating the ChAT expression of the striatal

cholinergic neurons. In addition, they suggested that also the cholinergic target

innervation in the hippocampus and in the cortex is strongly reduced in trkA lox/lox;

NesCre+/- mice.

2.4 Cholinergic innervation of the cortex and the hippocampus
is severely reduced in trkA lox/lox; NesCre+/- mice

In order to analyze more directly the cholinergic innervation state in trkA lox/lox;

Legend of the FIGURE 12 (previous page):

FIGURE 12: TrkA deletion decreases expression of the cholinergic differentiation marker ChAT
Panel A: The forebrains of wild-type mice of different ages were excised and lysed in protein lysis buffer. 50µg
of each protein lysate were analyzed by immunoblotting with ChAT-antibodies. The detected bands were
quantified by densitometric analysis and normalized to the expression of the ERK1 protein. The ChAT
expression at P30 was set to 100%. In the insert, a representative immunoblot is shown.
Panel B: The forebrains of trkA lox/lox and trkA lox/lox; NesCre +/- mice of different ages were analysed for ChAT
expression by immunoblot analysis. ChAT expression was quantified and normalized to ERK1 expression. At
each time point, ChAT expression in control trkA lox/lox mice was set to 100% and relative ChAT expression in
trkA lox/lox; NesCre +/- mice is indicated. The reductions of ChAT expression observed in trkA lox/lox; NesCre +/-
mice compared to control mice were significant at all analysed time points. In addition, the reduction of ChAT
expression in trkA lox/lox; NesCre +/- mice at P180 and at P270 is significantly increased compared to the
reduction observed at P15.
Panel C: Distinct forebrain areas were excised in trkA lox/lox and trkA lox/lox; NesCre +/- mice at 9 months and
analyzed for ChAT expression. ChAT expression was quantified and normalized for ERK1 expression. ChAT
expression in the distinct areas in the control trkA lox/lox mice was set to 100% and relative ChAT expression in
the trkA lox/lox; NesCre +/- mice is indicated. ChAT expression in the cortex and the hippocampus was
significantly reduced in trkA lox/lox; NesCre +/- mice compared to control mice, while no reduction was observed
in the striatum. In the insert, ChAT expression in wild-type mice in total forebrain (FB), striatum (St), cortex
(Cx), hippocampus (Hi) and the cerebellum (Cer) is shown.
“*” Indicates the result of the Student’s t-test p<0.05
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FIGURE 13: Cholinergic innervation of the somatosensory cortex is impaired in trkA lox/lox; 
NesCre+/- mice
30µm coronal cryosections from the forebrain of trkA lox/lox; NesCre +/- mice and trkA lox/lox mice of 
different ages were prepared and kept as floating sections. Sections were stained for the activity of the 
AChE enzyme as described in “Material and Methods”. AChE staining visualizes elongations of cholinergic 
neurons. Sections were transferred onto slides and analyzed by light microscopy. Representative images of 
the somatosensory area of the cortex at different time points are shown. 

Approximate localization of the cortical layers IV and VI is indicated
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FIGURE 14: Cholinergic innervation of the hippocampus is impaired in trkA lox/lox; NesCre+/- mice
Sections were prepared and stained as described in the legend of Figure 13. Representative images of 
the CA1 region of the hippocampus of mutant trkA lox/lox; NesCre +/- mice and control trkA lox/lox mice at 
P30 and P90 are shown.

cc - corpus callosum; SOr - Stratum oriens; SPyr - Stratum pyramidale; SRad - Stratum radiatum
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NesCre+/- mice, acetylcholinesterase (AChE) staining was employed. This staining

visualizes the enzymatic activity of AChE. We used coronal sections of mutant and

control mice of different ages and stained them for AChE activity. In particular the areas

of the somatosensory cortex and the CA1 region of the hippocampus were analyzed. In

the wild-type cortex at P30, intense AChE neuronal processes can be observed through

all different cortical layers (Figure 13). The major accumulations of cholinergic fibers

appear to be localized in the layer IV and VI. A similar expression pattern of AChE in the

cortex of wild-type mouse was reported previously (Kitt et al., 1994). The complexity

and intensity of AChE fibers further increase during postnatal development. This time

course of maturation of the cortical cholinergic innervation correlates with our analysis of

ChAT expression levels, where maximum of ChAT expression levels were reached after

P30. At P90 and P270, the whole cortex is strongly innervated by AChE positive

neuronal processes and laminar distribution is no more recognizable. In trkA lox/lox;

NesCre+/- cortical cholinergic innervation is markedly reduced already at P30 and this

reduction appears to increase further at P90 and at P290. At P290, only a thin band of

AChE positive fibers can be observed in the layer IV, while cholinergic innervation in the

other cortical layers seem to be nearly absent compared to control mice.

In the CA1 region hippocampus, cholinergic innervation is already clearly detectable in

all the different layers in wild-type mice at P30 (Figure 14). Major accumulation of

AChE staining can be observed in the stratum pyramidale. Like in the somatosensory

cortex, the intensity and complexity of the AChE positive fibers further increase

significantly until P90. In trkA lox/lox; NesCre+/- mice, cholinergic innervation seem to be

delayed and only very few AChE positive neuronal processes can be observed at P30. At

P90, cholinergic innervation increases slightly in particular in the region of the stratum

pyramidale, but remains severely compromised compared to control mice.

3 TRKA DISRUPTION MODIFIES PROCESSING OF APP

We investigated the effect of TrkA deletion on APP processing in trkA lox/lox; NesCre+/-

mice at a age of 6 months. First, we analyzed the expression of APP in total forebrain

lysates by using the 22C11 antibody Figure 15a). APP expression was significantly
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increased by 28.2% ± 4.9% in trkA lox/lox; NesCre+/- mice compared to control mice. The

antibody 22C11 recognizes full-length membrane-bound APP and the different soluble

APP forms. In order to differentiate between these different APP forms we analyzed

specifically the expression of the full-length APP by using an APP antibody that

recognizes an epitope at the carboxy-terminal end of APP. In the soluble APP fragments,

the carboxy-terminal end is cleaved off. We found that the expression of the full-length

membrane-bound APP does not differ significantly in TrkA-deficient mice and control

mice. Thus, the increase of APP detected by the 22C11 antibody is most likely due to a

specific increase of the soluble APP forms. To investigate this hypothesis more directly,

we prepared total forebrain lysates that contain only Tris-buffer-soluble proteins. All

proteins bound in cellular membranes or enclosed in vesicles were precipitated by

ultracentrifugation and only proteins in the supernatants were analyzed (Figure 15b).  By

using the 22C11 antibody, we detected a 42.6% ± 14.5% increase of soluble APP proteins

in mutant mice compared to control mice. As control for proper separation of the soluble

proteins from the membrane bound proteins in these protein lysates, we used the APP C-

ter antibody. As expected, no bands were detected by this antibody  in lysates of soluble

proteins at the size of full-length APP (data not shown). Next, we aimed to analyze

further the forms of soluble APP fragment that are increased in the TrkA-deficient. We

used the antibody Aβ-NT, which recognizes an epitope at the N-terminal end of the Aβ-

region. This antibody detects the soluble APP fragments that are cleaved at the α-site and

at the β’-site, while it does not detect the soluble APPβ. The expression of these APP

forms was slightly increased in trkA lox/lox; NesCre+/- mice compared to control mice. At

this moment, we are not able to differentiate between the α- and the β’-form of soluble

APP, but it appears that the increase of one or of both of these components is partly

responsible for the increase of total soluble APP in  TrkA-deficient mice.

Next, we wanted to assess whether the increase of soluble APP fragment is accompanied

by an altered generation of membrane-bound carboxy-terminal fragments of APP.

Therefore, we immunoprecipicated 500µg of total forebrain lysate with the antibody APP

C-ter. The immunoprecipitates were immunoblotted with the same APP C-ter  antibody

(Figure 15c). As a positive control, we used protein lysate from mice that transgenically

overexpress human APP (Moechars et al., 1999). We detected three bands in the size of
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approximately 6-14 kDa that represent the three different forms of carboxy-terminal APP

fragments, C99, C89, C83, which are generated by β-, β’-, and α-secretases, respectively.

On the same blot, we visualized also expression of full-length APP using the antibody

Aβ-NT and not the APP C-ter antibody, which would generate a stronger signal. No

differences between mutant and control mice in the expression of full-length APP were

observed. This confirmed our previous result and indicated that similar amount of total

proteins were used for immunoprecipitation. In addition, the use of the Aβ-NT antibody

allowed also to identify precisely the C99 band, because this antibody recognizes C99,

but not the other carboxy-terminal fragments C89 and C83 (data not shown). As

expected, all APP forms were strongly overexpressed in the transgenic APP mouse. In

wild-type mice, the C89 fragment was relatively little expressed compared to the C99

fragment indicating that the β-cleavage site is the preferred  cleavage site of the β-

secretase in mice. In TrkA-deficient mutant mice, no statistically significant variation in

the pattern of carboxy-terminal APP fragments was found. However, there was a certain

tendency of increased production of C83 and decreased generation of C99 fragments in

mutant mice. Thus, it appears that in TrkA-deficient mice the α-secretase pathway is

preferentially activated compared to control mice, while the β-secretase pathway seems

to be downregulated. The differences in the generation of carboxy-terminal fragments

between control and mutant mice were much less pronounced than the difference

observed in the generation of soluble APP fragments. Both kind of fragments are

generated by the same proteolytic cleavage pathways, but while carboxy-terminal

fragments are further processed by the γ-secretase, soluble APP fragments are more

stable and may accumulate in the tissue. For this reason, differences in the generation of

soluble APP fragments may be easier to appreciate than altered generation of carboxy-

terminal APP fragments. Taken together, our results suggest that the observed increase of

soluble APP fragments may be mainly due to increased generation of the soluble APPα

form, while the soluble APPβ and β’ forms most likely remain unvaried or are even

downregulated.

Next, we wanted to analyze, whether the increase of soluble APP is particularly

pronounced in specific areas of the forebrain. Therefore, we performed immunostainings

of coronal forebrain sections of 9 months old mice with the antibody 22C11. While in
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FIGURE 16: APP immunoreactivity is increased in the forebrain of trkA lox/lox; NesCre+/- mice
30µm coronal cryosections of the forebrain of trkA lox/lox; NesCre +/- mice and trkA lox/lox mice at 
P270 were stained with the monoclonal antibody against APP 22C11. Many strongly stained cells are 
found in the hippocampus of trkA lox/lox; NesCre +/- mice. Note the stained dots in the hippocampus of 
mutant mice. These dots can be found also in control mice but at lesser extent than in mutant mice. In 
some areas of the somatosensory cortex of trkA lox/lox; NesCre +/- mice, a slightly stronger APP-
immunoreactivity than in control mice can be observed. 
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most areas of the forebrain, no obvious staining differences between control and mutant

mice were observed, the hippocampi of trkA lox/lox; NesCre+/- mice displayed a

pronounced increase in immunoreactivity compared to control mice. Many strongly

stained cells were found in mutant mice throughout all the areas of the hippocampus. The

morphology of these cells suggested that they are most likely neurons. Moreover, in some

areas of the hippocampus of the mutant mice, groups of highly stained dots were

observed. At the moment, we were not able to characterize more in details these dots, but

it appears that they are localized extracellularly. These dots were occasionally observed

also in control mice, but in much lesser quantity and staining intensity than in the mutant

mice. In addition, also in some areas of the cortex, we found an increase of

immunoreactivity in TrkA-deficient mice, although to a lower extent than in the

hippocampus.

Next, we aimed to analyze directly by immunoblotting the expression of soluble APP

proteins in the hippocampus of TrkA-deficient mice. We prepared lysates of soluble

proteins from the hippocampus of mutant and control mice. By using the 22C11 antibody,

we confirmed that the deletion of TrkA increases significantly the generation of soluble

APP fragments by 80.1% ± 17.7%. Thus, as suggested by the immunohistochemistry

analysis, the extent of the increase of soluble APP form was much more pronounced in

the hippocampus than in total forebrain lysate (compare Figure 15 to Figure 17). In

contrast, cell membrane-associated full-length APP remains nearly unvaried.

Remarkably, only a very weak expression of the soluble APPα and β’ was found in the

hippocampus of control mice as detected by the Aβ-NT antibody. This is in agreement

with the result of a previous study that reported only a very low level of soluble APP in

wild-type mice as detected by an antibody similar to the Aβ-NT antibody (Stein et al.,

2004). However, in the hippocampus of trkA lox/lox; NesCre+/- the band detected by the

Aβ-NT antibody was strongly increased. As suggested by our previous results, this

increase is most likely due to an important upregulation of the soluble APPα - fragment

rather than of the APPβ’ - fragment.
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4 GENERATION OF A FLOXED ngf ALLELE

We have generated a floxed ngf allele by homologous recombination in ES cells. In this

floxed allele, the exon 4 of ngf is flanked by two loxP sequences (Figure 18). The ngf

exon 4 encodes for the complete NGF protein and deletion of this exon results in the

complete disruption of the protein expression (Crowley et al., 1994). Following the

second loxP sequence, we introduced a reporter gene, egfp, which is preceded by an

IRES sequence that will allow the translation of the egfp transgene. After deletion of the

ngf exon 4 by Cre-mediated recombination, the egfp gene will be expressed in cells that

previously expressed NGF. We derived germline targeted offspring carrying one floxed

ngf allele. These ngf lox neo+ / + mice were used to generate mice homozygous for the

floxed allele. ngf lox neo+ / lox neo+ mice are viable, fertile and show no gross anatomical

defects. In order to delete NGF expression specifically from the brain, we aimed to

generate ngf lox neo+ / lox neo+; NesCre+/- mice. Therefore we crossed ngf lox neo+/ + mice with

NesCre+/- mice. ngf lox neo+ / +; NesCre +/- mice from the progeny of this crossing were

analyzed for proper recombination of the floxed sequence by Southern blotting (Figure

19b). As expected, Cre-mediated recombination was complete in the forebrain of this

mouse, while no recombination was observed in the tail. In parallel, we determined the

NGF concentration of the forebrain of a ngf lox neo+/+; NesCre +/- mouse by a NGF ELISA

assay (Figure 19c). In the wild-type forebrain, we found a NGF concentration of 121.4 ±

4.5 pg NGF / g of forebrain. This is in agreement with the result of a previous study that

found an approximately three times higher NGF concentration in a wild-type

hippocampus (Chen et al., 1997). In deed, it is known that the hippocampus is one of the

forebrain areas with the highest NGF concentration (Saporito and Carswell, 1995). In the

forebrain of the ngf lox neo+ / +; NesCre +/- mouse, we found a reduction of the NGF

concentration of about 50% compared to the wild-type mouse. This suggest that ngf was

successfully deleted from one of two alleles in the ngf lox neo+ / +; NesCre +/- mouse. In

contrast, the forebrain NGF concentration in ngf lox neo+ / lox neo+ mice was unvaried

compared to wild-type. Thus, the insertion of the loxP sequences and the neo-cassette

into the ngf locus seem not to interfere with the NGF expression.
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Moreover, in the ngf lox neo+/ +; NesCre +/- mouse, we aimed to detect expression of EGFP

from the allele in which the ngf exon 4 was deleted. Therefore, we prepared cryosections

from the forebrain of the ngf lox neo+/ +; NesCre +/- mouse and analyzed these sections for

EGFP expression by using a fluorescent microscope. However, we were not able to detect

any EGFP fluorescence in ngf lox neo+/ +; NesCre +/- mice. This may be due to the

relatively weak EGFP expression in these mice from only one allele. In addition, the

analysis by the fluorescent microscope may be not sensitive enough and other technical

approaches may be needed.

Both the normal phenotype and the unaltered NGF expression in the forebrain in

ngf lox neo+ / lox neo+ mice strongly suggest that the neo cassette does not reduce expression

of NGF in these mice. Nevertheless, we excised the neo-cassette in vivo by crossing

ngf lox neo+/ + mice with Flp-deleter mice. Flp-mediated neo deletion was successful as

confirmed by Southern and PCR analyzes (data not shown and Figure 19a).

Legend of the FIGURE 18 (previous page):

FIGURE 18: Conditional targeting of the ngf exon 4
Panel A shows schematic representation of the exon 4 of the mouse ngf locus in the wild-type allele.
Below the wild-type allele the targeting construct is depicted. The targeting construct contains the
floxed exon 4 and the neo-cassette flanked by two frt sites. Some of the restriction enzyme sites that
were used for cloning steps and for further analysis by Southern blotting are indicated. Note that the site
of the restriction enzyme EcoRV on the 5’ side of the exon 4 in the wild-type allele is deleted on the
targeting construct. The successful targeting of the wild-type allele with the targeting construct by
homologous recombination in ES-cells led to the generation of the recombinant ngf lox neo+ allele. The
neo-cassette was excised in vivo with transgenic mice expressing the Flp-recombinase ubiquitously.
This resulted in the generation of the recombinant trkA lox neo- allele. Cre-mediated recombination of the
ngf lox neo+ allele results in the formation of the ngf egfp neo+ allele. In this allele, the ngf exon 4 is
deleted and the green fluorescent protein egfp is expressed under the endogenous ngf promoter.
Panel B shows Southern blot analysis of successful recombination in the ngf lox neo+ allele. The position
of the two probes at the 5’ and 3’ site of the targeting constructed is indicated in Panel A. The genomic
DNA for the Southern blot analysis was digested with the restriction enzyme EcoRI (for the 3’probe) or
with EcoRV (for the 5’probe).





1 THE CHOLINERGIC PHENOTYPE IN TRKA DEFICIENT MICE

1.1 Is the cholinergic deficit caused by increased neuronal
apoptosis and/or by loss of cholinergic differentiation?

The earliest time point at which we analyzed the loss of cholinergic neurons in the medial

septum of TrkA-deficient mice was P15. At this stage, the cell loss in mutant mice

compared to control mice has already fully happened and vary only slightly during later

development. This indicates that the loss of cholinergic neurons in TrkA deficient occurs

mainly during the first postnatal days. We did not investigate whether the cell loss is due

to increased apoptotic death in the mutant mice or rather to defects in differentiation or

migration. However, there are indications that defects in migration do not contribute to

the loss of cholinergic neurons in the forebrain of TrkA-depleted mice. Indeed, at the

stage of late development where first TrkA expression in the CNS can be detected,

migration and differentiation of cholinergic neurons in the forebrain is already mainly

finished (Olsson et al., 1998; Schambra et al., 1989). Therefore, NGF/TrkA signaling is

unlikely to be involved in the migration of cholinergic neurons.

However, the question whether the decrease of cholinergic neurons in TrkA-deficient

mice results from an increase of apoptotic cell death remains open. Alternatively, the

decrease of cholinergic cells could be explained by a severe downregulation of

cholinergic markers in these neurons eventually accompanied by cell shrinkage. In the

PNS, neurotrophin-dependent neurons die by apoptosis briefly after their formation,

when the right neurotrophin support is not provided. Similarly, trkA knockout mice

exhibit an important increase of apoptotic cells in the medial septum at P7 compared to

control mice (Fagan et al., 1997a). At P13, this increase in apoptosis was no more

detectable. This observation would agree with our finding that at P15 the cell loss is

already completed in TrkA-deficient mice and does not further increase in later

development. However, this kind of increased apoptosis in cholinergic neurons was not

V I  D I S C U S S I ON
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observed in other mouse models where TrkA signaling was depleted (Cattaneo et al.,

1999; Ruberti et al., 2000; Smeyne et al., 1994). This may be due to the failure of these

studies to detect the right time window where increased apoptosis can be observed. A

further argument for the apoptotic cell loss in TrkA-depleted mice is provided by the fact

that in this study here and other reports (Ruberti et al., 2000) the decrease of ChAT-

positive neurons was accompanied by the decrease of other cholinergic cell marker like

p75. However, although being a good indication for the loss of cholinergic neurons, the

decrease of p75-positive neurons can not be considered as a definite proof for the death

of the cholinergic cells. In fact, it is known that p75 expression can be positively

regulated by NGF signaling through TrkA (Verdi and Anderson, 1994).

Finally, many studies demonstrated that cholinergic deficits can be rescued by injection

of NGF or are reversible when the inhibition of NGF signaling is eliminated (Bruno et

al., 2004; Capsoni et al., 2002b; Cattaneo et al., 1999; Chen et al., 1997; Cooper et al.,

2001). The cholinergic deficits in these studies were induced either by genetic or

pharmacological manipulation or by physiological aging processes. While in many of

these studies, the cholinergic rescue was mainly induced by hypertrophy of the remaining

cholinergic neurons and formation of new synapses, in other studies also the total number

of cholinergic neurons was rescued by the treatment with NGF (Capsoni et al., 2002b;

Cooper et al., 2001). This phenomenon can be explained principally by two different

mechanisms: First, NGF may “reactivate” neurons that had downregulated all cholinergic

marker due to the absence of appropriate NGF/TrkA signaling or, second, NGF may be

capable to induce in vivo de-novo neurogenesis of cholinergic neurons. However, for the

latter hypothesis, only first preliminary indications and no clear evidences exist so far

(Calza et al., 2003).

At the moment, we have to consider that both cell death and downregulation of

cholinergic marker could contribute to the decrease of cholinergic neurons in our mouse

model. Further accurate studies will be needed to clarify more precisely the fate of

cholinergic neurons in TrkA-deficient mice.

Our studies so far did not allow dissecting definitely whether the decreased cholinergic

target innervation in the cortex and the hippocampus of TrkA deficient mice is
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exclusively due to the decrease of neurons in the cholinergic cell groups or also to a

deficit in axonal outgrowth and expression of cholinergic marker in the cholinergic

neurons that survive in the absence of TrkA signaling. However, several results of our

study suggest that most likely both kind of defects contribute to the severe impairment in

cholinergic target innervation observed in our mouse model. First, the loss of more than

40% of ChAT expression in the total forebrain at P90 is difficult to explain only by the

loss of about 40% of the neurons in the cholinergic cell groups Ch1-4, taking in

consideration that the total forebrain includes also the large area of the striatum where no

neuronal cell loss and ChAT downregulation was detected. Second, the evaluation of the

cell numbers in the medial septum of control and mutant mice during different time

points of postnatal life indicates that the neuronal cell loss has happened already at P15,

while there is no further significant increase of this deficit at least until P270. In contrast,

the analysis of ChAT expression demonstrated that the decrease of ChAT expression in

the mutant mice is already present at P15, but then is further enhanced during adulthood.

Similarly, defects in the cortical and hippocampal innervation by AChE-positive

cholinergic fibers are already detectable at P30, but are further increased at P90 and

P270. Thus, NGF signaling appears to be essential during the perinatal period to ensure

cell survival, while later in life it may play a crucial role in promoting and maintaining

proper cholinergic target innervation.

A support for two distinct NGF functions was provided recently by an in vivo study. In

this study, the lethal phenotype of the ngf knockout mouse was rescued by the

introduction of a ngf transgene that express ngf under the promoter of keratin (Phillips et

al., 2004). In these mice, NGF expression in the brain is strongly reduced compared to

wild-type mice, but still detectable. The remaining NGF expression is probably due to

some aberrant trangene expression and is localized diffusely throughout the CNS without

exhibiting the typical endogenous NGF expression pattern. In these mice, no significant

cholinergic cell loss was observed in the medial septum, while the cholinergic target

innervation in the hippocampus and the cortex was importantly decreased. Thus, the

reduced quantity of NGF expression in the CNS of these mice seems sufficient to

maintain the survival of the cholinergic neurons of the basal forebrain, while for correct

cholinergic target innervation, high NGF expression levels are required. It is possible that
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also the precise spatiotemporal regulation of NGF expression is essential for proper target

innervation. However, in these mice, it was shown that intraventricular injection of high

NGF doses are capable to rescue the impaired cholinergic target innervation. Therefore,

the crucial role of NGF in promoting cholinergic target innervation do not depend on the

formation of a regional NGF gradient.

1.2 Other neurotrophic factors involved in the development and
survival of cholinergic neurons

TrkA deletion decreases the number of the cholinergic neurons in the basal forebrain by

up to 40%. However, more than half of these neurons remains intact also in the absence

of functional TrkA signaling. This suggest that other neurotrophic factors are also

importantly involved in promoting the survival and maintaining the phenotypic

differentiation of the cholinergic neurons in the CNS.

One of the apparently most promising candidate molecules for this function appear to be

the neurotrophin BDNF and its receptors TrkB. It was shown that TrkB-mediated

signaling provides together with the neurotrophin receptor TrkC an essential survival

support for distinct non-cholinergic neuron subpopulations in the hippocampus and in

cerebrellum. TrkB is expressed after development in most of the cholinergic neurons in

the basal forebrain (Molnar et al., 1998; Richardson et al., 2000; Yan et al., 1997).

However, the studies that analyzed the survival role of TrkB for cholinergic neurons gave

controversial outcomes. While the initial analysis of the trkB and bdnf knockout mice and

many subsequent studies did not report any significant loss of cholinergic neurons

(Alcantara et al., 1997; Conover et al., 1995; Klein et al., 1993; Minichiello et al., 2002),

another study reported a significant loss of about 50% of cholinergic neurons in the

medial  septum and the striatum of bdnf knockout mice in the first two weeks of life

(Ward and Hagg, 2000). The results of the study here presented do not confirm this

important role of TrkB in promoting survival of cholinergic neurons in the CNS. We

demonstrated that TrkB deletion in the cholinergic neurons results in the loss of only a

very small part (of about 10%) of these neurons. The effect of TrkB deletion is only

slightly further increase by the deletion of TrkA suggesting that TrkB and TrkA do not

cooperate importantly in promoting survival of cholinergic neurons. Our results are in
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agreement with the initial observation in TrkB-deficient mice and suggest that the

important neuronal loss observed in postnatal bndf knockout mice may be due rather to

the overall poor health state and severe weight loss of these mice than to a specific TrkB

function in the cholinergic neurons. However, as we have analyzed so far in trkB- and the

double trkA/trkB- deficient mice only the neurons of the medial septum at P30, our

results do not exclude that TrkB has a more important role in the survival of cholinergic

neurons in other cholinergic cell groups like the striatum and / or in more aged mice.

Nevertheless, a recent mouse model in which the BDNF production is interrupted in the

cortex from early development on suggest strongly that TrkB by itself has no important

function in promoting survival of cholinergic striatal neurons also in aged mice (Baquet

et al., 2004). In these mice it was demonstrated that cortical BDNF deletion results in

aged mice in an important loss of some neuronal subpopulations of the striatum. In

contrast, the cholinergic neurons in the striatum in these mice are reduced by only 10%.

Another neurotrophin receptor that may be involved in controlling survival of the

cholinergic neurons in the brain is the TrkC receptor. TrkC is expressed in a large amount

of the cholinergic neurons of the basal forebrain (Boissiere et al., 1994; Sandell et al.,

1998). In vitro experiments show that the main TrkC ligand NT-3 can increase the

survival of basal forebrain cholinergic neurons in culture (Ha et al., 1999; Nonner et al.,

1996). However in vivo, neither in trkC- nor in NT-3-knockout mice (Ernfors et al.,

1994; Klein et al., 1994) any significant impairment of the survival of cholinergic

neurons in the perinatal brain was reported. Nevertheless, it is not excluded that NT-

3/TrkC signaling has an important role in the cholinergic neurons of the basal forebrain in

mature mice. In this regard, it was shown that NT-3 is capable to promote importantly the

cholinergic differentiation of sympathetic neurons in the PNS (Brodski et al., 2000). This

effect is completely independent of neuronal survival. Thus, it is possible that rather to

promote cell survival, TrkC may be involved in inducing and in maintaining the

cholinergic differentiation in the cholinergic basal forebrain. Interestingly, mice with

brain-specific deletion of NT-3 show no neuronal loss but exhibit an important reduction

of neuronal projections from the thalamus to the cortex (Ma et al., 2002). The cholinergic

system in the forebrain of these mice was not further analyzed.
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Other neurotrophic factors distinct from neurotrophins were also shown to promote the

survival of cholinergic neurons in the CNS. For instance, the neuropeptide galanin has

been indicated as an essential neurotrophic factor for the basal forebrain cholinergic

neurons. Galanin acts through specific galanin receptors and is expressed in many parts

of the basal forebrain (Melander et al., 1985; Mufson et al., 2003). In galanin-deficient

mice, about 35% of the cholinergic neurons in the medial septum are lost (O'Meara et al.,

2000). Interestingly, NGF was shown to induce expression of galanin and therefore some

of the neurotrophic function of NGF in the cholinergic basal forebrain neurons may be

mediated through galanin (Rokaeus et al., 1998). However, galanin expression is

increased also by stimulation with other molecules and at least part of the galanin

function in the cholinergic neurons in the CNS may be NGF-unrelated (Ozturk and

Tonge, 2001).

Other factors that may be involved in the survival of basal forebrain cholinergic neurons

are members of the fibroblast growth factor (FGF) family. FGFs and their receptors have

been shown to be expressed in many cholinergic neurons of the forebrain including the

interneurons of the striatum (Bizon et al., 1999; Bizon et al., 1996; Yoshida et al., 1994).

FGF-2 was shown both to enhance survival of lesioned medial septum neurons and to

promote target innervation of cholinergic neurons in the hippocampus (Fagan et al.,

1997b; Otto et al., 1989). In addition, FGF-9 was shown to support potently the survival

and the upregulation of cholinergic properties in basal forebrain cholinergic neurons in

culture (Kanda et al., 2000). In contrast to the NGF/TrkA mediated signaling, FGF seems

to exert its effects in cholinergic neurons also in an autocrine manner.

1.3 Why are striatal interneurons resistant to TrkA deletion?

The results of our study suggest strongly that there are functional differences between the

TrkA signaling in the basal forebrain cholinergic cell groups Ch1-Ch4 and the

cholinergic neurons in the striatum. TrkA deletion reduces the number of the cholinergic

neurons Ch1-Ch4, impairs their expression of the cholinergic marker ChAT and affects

severely the cholinergic target innervation provided by these neurons; in contrast, the

number of cholinergic striatal neurons is not varied in TrkA deficient mice and the

expression of ChAT in these neurons remain unaltered. In the original analysis of the
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complete trkA knockout mice similar differences were described. In the subsequent

analysis of the few TrkA-deficient mice that survive until the end of the third postnatal

week a small decrease of cholinergic neurons compared to control mice was observed

also in the striatum. This decrease, however, was not statistically significant and was of

lower extent (about 20%) than the decrease of cholinergic neurons observed in the medial

septum.

What may be the reasons for the different vulnerability of Ch1-Ch4 neurons and of

striatal neurons in TrkA-deficient mice?

Striatal cholinergic neurons differ in many points from the other cholinergic neurons of

the basal forebrain. One of the most evident molecular difference is the lack of

expression of the neurotrophin receptor p75 in the striatum of adult mice, while p75 is

expressed in virtually all cholinergic neurons of the Ch1-Ch4 groups during and after

development (Gibbs and Pfaff, 1994). p75 function in vivo is linked to neuronal cell

death; and it would be conceivable that the lack of the pro-apoptotic p75 signaling in

striatal neurons would spare these neurons from cell death also in the case of the deletion

of the pro-survival signaling of TrkA. In neurons that express both receptors TrkA and

p75, neurotrophins binding to these receptor would activate both pro-apoptotic and pro-

survival pathways that would balance each other. In the case however, that one of these

signaling pathways is inhibited, the other pathway would take over and the cell would be

driven into forced proliferation or cell death.  Therefore, deletion of p75 signaling results

in an increase of cholinergic neurons (Naumann et al., 2002) while TrkA-deficient mice

exhibit less cholinergic neurons (this study here and (Fagan et al., 1997a)). In contrast,

striatal cholinergic neurons that do express only TrkA but not p75 would not receive any

pro-apoptotic input even in the absence of the anti-apoptic TrkA signaling. One finding

that could argue against such a scenario is the observation that some striatal cholinergic

express for a very short perinatal period also the receptor p75 (Van Vulpen and Van Der

Kooy, 1999). These neurons should be lost in TrkA-deficient mice. However, the

expression of p75 in the striatal cholinergic is of very limited quantity and time span and

may not be strong enough to drive the cholinergic neurons in the striatum of trkA

knockout mice into apoptosis. Another argument against the proposed model is provided

by our analysis of the medial septum neurons in TrkA-deficient mice. In fact, we
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demonstrated clearly that at least some of the cholinergic neurons that express p75 can

survive also in absence of TrkA signaling. Thus, the expression pattern of p75 by itself

may not be sufficient to explain the relative resistance of the cholinergic neurons in the

striatum against TrkA-deletion.

Interestingly, the cholinergic neurons of the striatum are known to be particular resistant

also to other forms of neuronal cell death. For instance, after injection of the neurotoxin

quinolinic acid or after induction of cerebral ischemia, cholinergic striatal neurons exhibit

less damage than interneurons of the hippocampus or other interneuronal subpopulations

of the striatum (Larsson et al., 2001). Similarly, also in the pathological state of

Huntington’s disease cholinergic interneurons are relatively spared in relation to other

neurons of the striatum (Cicchetti et al., 2000). Remarkably, under some circumstances,

the resistance of cholinergic interneurons in the striatum accompanied by overexpression

of TrkA and p75 in these neurons (Hanbury et al., 2002; Larsson et al., 2001). In this

regard, it was shown that the resistance against insults is not mediated or modulated by

p75 signaling (Andsberg et al., 2001). However, it is possible that the upregulation of the

pro-survival receptor TrkA may confer to the cholinergic interneurons a relative

resistance to pathological damages. Therefore, it would be interesting to analyze whether

the vulnerability of the cholinergic interneurons in the striatum of TrkA-deficient mice is

increased compared to wild-type mice. In general, very little is known about the cellular

factors that control the variable vulnerability of the different neuron types in the striatum.

For instance, particular expression pattern of specific glutamate receptor subtypes, and

intracellular enzymatic activities have been discussed to be responsible for the relative

high resistance in cholinergic neurons of the striatum (Calabresi et al., 2000a; Chen et al.,

1996; Fass et al., 2000; Medina et al., 1996; Standaert et al., 1996). In addition, distinct

regulation mechanisms of the membrane potential may be also involved in the selective

vulnerability observed in the striatum (Calabresi et al., 2000b). It is possible that some of

these mechanisms are also responsible for the higher resistance of the cholinergic neurons

in the striatum in TrkA-deficient mice compared to the other cholinergic neurons in the

basal forebrain.
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2 THE APP RELATED PHENOTYPE IN TRKA DEFICIENT MICE

2.1 Discrepancies and similarities between the outcome of our
work and the results of previous studies

Our analysis of the APP metabolism in TrkA-deficient mice revealed a significant

increase of detected total APP in the forebrain and in particular in the hippocampus. This

increase is due to an upregulation of the secretion of soluble APP forms. The upregulated

soluble APP form could not be definitely identified, but our results suggest strongly that

it is the soluble APPα generated by the α-secretase. First, we detected a significant

increase of the soluble APP form by using an antibody that recognizes specifically the

soluble APP forms α and β’, but not the soluble APPβ. Second, by analyzing the

intracellular carboxy-terminal APP fragments that are the additional products of the

cleavages mediated by α- and β-secretases, we found that in TrkA-deficient mice the β-

cleavage pathway remains unaltered or is even downregulated, while the product of the

α-cleavage appears to be slightly increased.

The increase of total APP in our mouse model agrees with previous reports that analyzed

APP expression in cells or animals with reduced NGF/TrkA signaling or cholinergic

activity. Most interestingly, the transgenic anti-NGF mouse where NGF signaling is

inhibited by expression of a neutralizing NGF-antibody exhibits an important increase of

total APP expression (Capsoni et al., 2000b). The nature of the increased APP was not

further characterized. Similarly, in vitro it was shown that the withdrawal of NGF from

NGF-dependent cells increases importantly the expression of total APP protein (Araki

and Wurtman, 1998; Nishimura et al., 2003). This increase was accompanied by an

upregulation of APP mRNA transcription and has a potent anti-apoptotic effect. In

addition, also the inhibition of cholinergic activity in mice or rats by pharmacological

modulation or by immunolesions resulted in an increase of APP protein expression

(Rossner et al., 1997; Seo et al., 2002). Conversely, administration of muscarinic agonists

decreases APP protein levels.

On the other side, our finding that the generation of the soluble APPα is increased in

TrkA-deficient mice is rather surprising. Generally, the issue of the effect of NGF/TrkA

signaling and cholinergic activity on the secretion of soluble APP is discussed in a very



_____________________________________________________________________________Discussion

98

controversial manner in the literature. For instance, NGF signaling was shown in cell

culture studies to increase the secretion of soluble APP fragments (Rossner et al., 1998a).

This effect is most likely mediated through both the TrkA and the p75 receptors.

Similarly, activation of cholinergic pathways is to induce in vitro potently the secretion of

soluble APP forms. This effect is transmitted mainly through muscarinic receptors and

involves the activation of the protein kinase C (PKC), which is known to be an important

inducer of soluble APP secretion (Nitsch et al., 1992; Pakaski et al., 2000). In vivo,

overactivation of the PKC enzyme increases secretion of soluble APP fragments (Caputi

et al., 1997). In addition, an animal model with impaired cholinergic activity

demonstrated that decreased cholinergic activity correlates positively with decrease of

secretion of soluble APP fragments (Rossner et al., 1997). However, the in vivo outcome

of the inhibition of the cholinergic system on secretion of soluble APP is controversial.

Under some circumstances, the administration of procholinergic agents results in the

decrease of generation of soluble APP fragments (Haroutunian et al., 1997; Lahiri et al.,

1998; Shaw et al., 2001). Similarly, rats that had received lesions of the nucleus basalis

showed an important increase of soluble APP secretion in the cortex (Wallace et al.,

1995). Remarkably, the effect on APP secretion in these rats was accompanied by slight

increase of the carboxy-terminal APP fragment that are generated by α-secretase. This

confirms the results presented in our study here. Another intriguing outcome from the

latter study with immunolesioned rats was the observation that the effect of cholinergic

depletion on the secretion of soluble APP is time-dependent. While in a short period

directly after lesioning, the secretion of APP is first inhibited, at later time points (from 1

week after lesioning on) the secretion is then importantly enhanced. The secretion is

further increased during aging. In this regard, in vitro it was also shown that the increase

of APP secretion observed after pharmacological activation of cholinergic pathways is

only transitory (Racchi et al., 2001). Thus, the discrepancies between the different

outcomes of the inhibition of the cholinergic system on secretion of soluble APP protein

may be at least partly explained by the different time points at which the animals were

analyzed.
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2.2 What may be the mechanisms involved in the modification
of APP processing after TrkA deletion?

From the analysis we have done up to now, we can only speculate about the mechanisms

that lead to the alteration of APP processing after TrkA deletion. First of all, we have no

clear evidence whether the APP processing is modified directly by the lack of functional

NGF/TrkA signaling or rather by a secondary effect due to the cholinergic deficit. The

finding that we detected cells with increased APP immunoreactivity mainly in the

hippocampus and in the cortex and not in the areas of the cholinergic cell groups

indicates that the increase of APP is preferentially observed in areas with impaired

cholinergic innervation. However, it is not to exclude that also the lack of NGF signaling

in the axons of the cholinergic neurons in the hippocampus and the cortex contribute

directly to the APP-related phenotype.

One of the easiest explanations of the observed increase in total APP protein levels in the

TrkA-deficient would be the contemporary increase also of transcription of the APP gene

in these mice. For instance, in cell culture experiments, the withdrawal of NGF resulted

in the upregulation of APP mRNA (Araki and Wurtman, 1998).  However, our finding

that the full-length membrane-bound APP remains unvaried in TrkA-deficient mice

makes it difficult to explain the APP protein increase only by upregulated APP gene

transcription. In this case, the upregulation of the APP transcription should be

accompanied by an important alteration of the APP cleavage activities in order to give a

final outcome of unvaried full-length APP and increased soluble APP. Finally, the

hypothesis of an upregulated APP gene transcription in TrkA-deficient mice is not

supported by the result of a previous study that showed that cholinergic depletion in rats

has no significant effect on APP mRNA transcription levels (Apelt et al., 1997).

One more likely reason for the observed APP processing alteration in the TrkA-deficient

mice would be the upregulation of the secretases responsible for the α-cleavage and/or

the downregulation of the β-secretase BACE. At the moment however, none of these

kind of links between NGF/TrkA signaling, cholinergic pathways and expression of α-

and β-secretases have been so far reported in the literature. In rats with immunlesioned

cholinergic system, no significant changes in the expression of the BACE-secretase have

been observed (Lushchekina et al., 2002).
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Alternatively, rather than by changes in the expression of the secretases, the APP

phenotype in our mouse model could be induced also by alteration of the activity of the

different secretases. In cell culture studies it was shown that the pharmacological

activation of the cholinergic pathway leads to an increase of the activity of the α-

secretase candidate ADAM10 (Zimmermann et al., 2004). However, this finding that

would be in disagreement with our model was observed only in short-term experiments

and was not verified in in vivo models. More interestingly, it was shown in vivo that the

activity of the BACE secretase can be importantly modified by phosphorylation of the

intracellular part of the APP protein (Lee et al., 2003). Phosphorylation of the T668 site

in APP was shown to facilitate the BACE cleavage and to increase the generation of Aβ-

peptides. Inhibition of this phosphorylation increases cleavage by α-secretase. In this

regard, it is particularly interesting that TrkA signaling was shown to be capable to

phosphorylate the intracellular part of the APP protein (Tarr et al., 2002a; Tarr et al.,

2002b). The preferential phosphorylation site so far identified for TrkA signaling in APP

(T682) is distinct from T668, but is also importantly involved in the regulation of APP

processing.  Indeed, mutation of the T682 site in vitro results in the decrease of

endocytosis of full-length APP (Perez et al., 1999). In turn, this leads to the increase of

soluble APP secreation and the decrease of formation of full-length Aβ-peptides. Thus, it

is particular intriguing to speculate that the lack of NGF/TrkA signaling in TrkA-

deficient mice results in a changing of the APP phosphorylation state and in turn in the

preferential cleavage of APP by α-secretase.

Finally, it is noteworthy that α- and β- secretases have been shown to compete in the

same cellular compartments for intracellular APP cleavage (Skovronsky et al., 2000).

Thus, any kind of inhibition of β-secretase in the TrkA-deficient mice would also result

in the concomitant increase of α-cleavage and viceversa.

2.3 What could be the consequences of the alteration of APP
processing in TrkA-deficient mice?

The preferential cleavage of APP by α-cleavage instead by β-cleavage in TrkA-deficent

has two main consequences:
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First, the soluble APPα is importantly increased in TrkA-deficient mice. The α-form of

soluble APP is known to have neurogenic, neurotrophic and neuroprotective properties

(Caille et al., 2004; Mattson, 1997). It was shown to protect neurons from death by

glutamate toxicity and by neurotoxic Aβ peptides. Moreover, it may provide a protective

support against cell death by neurotrophin withdrawal (Nishimura et al., 2003). In this

regard, it is possible that the increase of soluble APPα in TrkA-deficient mice may be

part of an anti-apoptotic response from cholinergic neurons that suffer from the lack of

pro-survival TrkA-signaling. Alternatively, the increase of soluble APPα may be also

generated by non-cholinergic cells in order to provide a neurotrophic support to the

cholinergic neurons. It is tempting to speculate that the increase of soluble APPα may

contribute to the neuroprotective effect that allow a large part of the cholinergic neurons

to remain intact even in the absence of TrkA signaling.

Second, the preferential α-cleavage of APP in TrkA-deficient mice may result also in the

reduction of neurotoxic Aβ peptides. We did not analyze directly the generation of Aβ

peptides in our mouse model. However, the slight decrease of carboxy-terminal APP

fragment generated by β-secretases in TrkA-deficient mice may suggest that the β-

cleavage pathways are downregulated in these mice. Such a reduction of β-cleavage is

often associated with a decrease of generation of the neurotoxic and amyloidogenic Aβ-

peptides. A support for such an anti-amyloidogenic effect of TrkA deletion was provided

by a recent study that investigated the effect of cholinergic depletion in transgenic mice

overexpressing APP protein (Boncristiano et al., 2002). The very high levels of APP in

these mice result in a strong upregulation of Aβ peptides and frequent formation of

amyloid plaques. Interestingly, the inhibition of cholinergic innervation of the cortex by

immunolesions results in these mice in the decrease of amyloid plaques and

downregulation of Aβ-peptides. Thus, the cholinergic deficit in TrkA-depleted mice may

provide protection against the formation of amyloidogenic Aβ-peptides. An additional

indication for an anti-amyloidogenic effect of TrkA-deletion has been provided by the

finding that the acetylcholinesterase enzyme can form complexes with Aβ-peptides

(Alvarez et al., 1998; Inestrosa et al., 1996). These complexes display higher

amyloidogenic and neurotoxic properties than Aβ-peptides complexes without



_____________________________________________________________________________Discussion

102

acetylcholinesterase. Thus, the strong reduction of acetylcholinesterase in the cortex and

the hippocampus of TrkA-deficient mice may protect these mice additionally from the

aggregation of Aβ-peptides in amyloid plaques.

On the other hand, the transgenic anti-NGF mice have been shown to display an

important amount of pathological signs that resemble closely those observed in

Alzheimer’s disease. These include formation of amyloid plaques and neuronal cell loss

in the brain. How is this phenotype in mice with inhibited NGF signaling reconcilable

with the APP-related changes observed in the TrkA-deficient mice?

First of all, the animals we analyzed in this study were importantly younger than the anti-

NGF mice that show the Alzheimer’s disease-like phenotype. While the anti-NGF

transgenic mice that displayed pathological signs of Alzheimer’s disease had an age of

15-17 months, the animals we analyzed for the APP-related phenotype were 6-9 months

old. It is possible that further aging of these mice will lead to important changes of the so

far observed phenotype. Such changes could be due to distinct phenomenons.

First, it is possible that the primary neuroprotective effect of the increased APP cleavage

by α-secretases may be transformed in aged mice to a rather neurotoxic effect. In this

regard, it was demonstrated that the neuroprotective function of soluble APPα  is

importantly mediated through the upregulation of neuroprotective genes like insulin-like

growth factor 2 and transthyretin (Stein et al., 2004). Inhibition of the transthyretin

expression eliminates the neuroprotective effect of soluble APPα  and leads to

neurodegeneration in transgenic APP mice, even if the level of soluble APPα is high.

Thus, it is possible that in aged TrkA-deficient mice, the neuroprotective effect of soluble

APPα may be neutralized by the concomitant downregulation of genes that mediate the

neurotrophic function of soluble APPα. In addition, it was shown that full-length Aβ-

peptides are not the only products of APP processing that exhibit neurotoxic properties.

Indeed, also small 31-amino acid fragments of the carboxy-terminal end of APP (termed

C31) are potent inducers of apoptosis (Lu et al., 2000). These fragments are generated by

the proteolytic activity of different caspases. Interestingly, all carboxy-terminal APP

fragments (including these fragments produced by α-cleavage) can serve as substrates for
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the generation of C31-fragments. Thus, the upregulation of α-cleavage in TrkA-deficient

mice may result in the increase of neurotoxic C31-fragments that could potentially induce

increased cell death (as observed in the transgenic NGF-mice).

Aditionally, it is possible that the preferred cleavage of APP by α-cleavage in 6-months

old TrkA-deficent mice could switch in older mice for so far unknown reasons to

preferred β-cleavage of APP. This may result in aged mice in the upregulation of

generation of neurotoxic and amyloidogenic full-length Aβ peptides similar to the

situation observed in aged transgenic anti-NGF mice.

Finally, it is important to point out that although our TrkA-deficient mouse and the

transgenic anti-NGF mouse both display inhibited NGF/TrkA signaling, these mice are

not identical. First, in TrkA-deficient mice, the inhibition of NGF/TrkA signaling results

from the depletion of the TrkA receptor. This means that all signaling of TrkA is

completely abolished. On the other side, NGF in these mice is still present and can still

bind to the p75 receptor. In contrast, the modulation of NGF/TrkA signaling in transgenic

anti-NGF mice is produced by the blocking of NGF actions. Thereby, NGF-mediated

activation of both the TrkA and the p75 receptors is eliminated in these mice. However,

TrkA is still expressed and can be eventually activated by other ligands like the NT-3

neurotrophin. In addition, the deletion of TrkA in our mouse is complete and occurs from

early development on, while blocking of NGF in the anti-NGF mice is only partial and

starts at a not precisely defined time point after development. Finally, the forced

expression of NGF-antibodies in transgenic anti-NGF mice could be accompanied by

unspecific toxic effects that may alterate the APP-related phenotype in these mice. All

these differences could importantly contribute to differences in the APP-related

phenotypes in TrkA-deficient mice and in anti-NGF transgenic mice



The further analysis of the cholinergic phenotype of TrkA-deficient mice will be mainly

focused on the functional consequences of the deletion of cholinergic target innervation

in these mice. In this regard, we will investigate whether the behavioral phenotype of the

TrkA-deficient mice is altered due to the deficits of cholinergic innervation in the

hippocampus and the cortex. Mainly behavioral phenotypes related to spatial learning and

attention functions will be investigated. Furthermore, the behavioral analysis will be

combined with the measurement of electrophysiological parameters in specific areas of

the brain. Together these two experiments will help understanding impairments in

synaptic activity in trkA mutant mice.

The APP-related phenotype in TrkA-deficient mice will be characterized in more details.

In this regard, we will focus our study on understanding what could be the mechanisms

that lead to the increased α-secretase-mediated APP cleavage in TrkA-deficient mice.

This will include also the expression analysis of genes involved in the APP processing. In

addition, we will analyze more directly the generation of amyloidogenic Aβ-peptides in

our mouse model. Finally, we will study whether the APP processing is further modified

in more aged TrkA-deficient mice.

In addition, mice carrying the floxed ngf gene will be crossed first of all with two

different transgenic Cre- expressing mice. The use of the transgenic mouse that express

Cre under the nestin-promoter will permit to delete NGF expression from neuronal

precursors in the CNS. The analysis of this mouse will allow to confirm the phenotypes

observed in the Nestin-Cre mediated TrkA-deleted mouse.  Eventual differences between

the NGF- and the TrkA-deficient mouse may give insights into the potential role of p75

and / or NT-3 signaling in controlling the cholinergic and the APP-related phenotype.

Finally, we will cross the floxed ngf mouse also with a transgenic mouse that express the

Cre recombinase under the promoter of the calcium-calmodulin-dependent protein kinase

II (CaMKII) gene (Minichiello et al., 1999). In this mouse, Cre is expressed in principal
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CNS neurons subpopulations but only from the third postnatal week on. The use of the

CaMKII-Cre transgene will allow investigating precisely whether NGF/TrkA signaling

has any specific role in the forebrain also after development.
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