DYNAMIK UND LOKALISATION DES
DOSISKOMPENSATIONSKOMPLEXES IN
DROSOPHILA MELANOGASTER

Dissertation
zum Erwerb des Doktorgrades der Medizin
an der Medizinischen Fakultät der
Ludwig-Maximilians-Universität zu München

vorgelegt von
Martin Neumann
aus
Hannover

2005
Mit Genehmigung der Medizinischen Fakultät
der Universität München

1. Berichterstatter: Prof. Dr.rer.nat. Peter Becker
2. Berichterstatter: Prof. Dr. T. Haferlach

Mitberichterstatter: Prof. Dr. A. Roscher
 Priv.Doz. Dr. P. Lohse

Mitbetreuung durch den
promovierten Mitarbeiter: Dr.med. Tobias Straub

Dekan: Prof. Dr.med. D. Reinhardt

Tag der mündlichen Prüfung: 30.06.2005

Teile dieser Arbeit wurden veröffentlicht in
Morales V, Straub T, Neumann MF, Mengus G, Akhtar A and Becker PB.
Functional integration of the histone acetyltransferase MOF into the dosage
compensation complex
EMBO J. 2004, 23:2258-2268

Straub T*, Neumann MF*, Prestel M, Kaether C, Haass C and Becker PB.
Stable chromosomal association of Drosophila MSL2 forms a functional genomic
compartment
2004 eingereicht
*Co-Erstautoren
1 THEORETISCHER TEIL...6
1.1 Epigenetische Regulierung der Genexpression und Folgen der Deregulierung...6
 1.1.1 Chromatin und Genexpression...7
 1.1.2 DNA-Methylierung ...8
 1.1.3 Histon-Modifikationen ..10
 1.1.3.1 Histon-Acetylierung ..11
 1.1.3.2 Histon-Methylierung ..12
 1.1.4 Nucleosome remodeling..13
 1.1.5 Drosophila als Modellsystem..14
1.2 Der Dosiskompensationskomplex..15
 1.2.1 Aufbau des Dosiskompensationskomplexes.....................................17
 1.2.2 MSL2 in zentraler Position ...19
 1.2.3 Die Histone-Acetyl-Transferase MOF ...21
 1.2.4 Parallelen zur X-Inaktivierung beim Menschen22
1.3 Dynamik des Zellkerns...23
 1.3.1 Architektur des Zellkerns ...24
 1.3.2 Dynamik nuklearer Proteine ..26
 1.3.3 Das Heterochromatin-Protein1 (HP1) ..29
 1.3.4 Positionierung von Chromosomen-Territorien31
1.4 GFP und konfokale Mikroskopie..33
 1.4.1 GFP als Fusionsprotein ...33
 1.4.2 Photobleichen ..35
 1.4.2.1 FRAP-Experimente ..35
 1.4.2.2 FLIP-Experimente ..37
 1.4.3 Konfokale Mikroskopie ...38
1.5 Fragestellung..41
2 ERGEBNISSE ..42
2.1 Vorbemerkungen..42
 2.1.1 Expression von GFP in Drosophila-Zelllinien42
 2.1.2 Sequenzvergleich für MSL2 ..42
 2.1.3 Promotorenvergleich ...44
2.2 Expression von MSL2-GFP in SF4-Zellen ..46
 2.2.1 MSL2-GFP wird schnell abgebaut...46
 2.2.2 Transiente Transfektion von hsp-msl2-gfp in SF4-Zellen48
 2.2.3 Induktion des Metallothioneinpromoters ..49
 2.2.4 Stabile Zelllinien für MSL2-GFP ...49
 2.2.5 Lokalisation von MSL2-GFP ..52
2.3 Funktionelle Aktivität von MSL2-GFP ...54
 2.3.1 MSL2-GFP ersetzt das endogene MSL2 in vivo54
 2.3.2 MSL2-GFP interagiert mit dem DCC in vivo55
 2.3.3 MSL2-GFP interagiert mit MSL1 in vitro ..57
 2.3.4 MSL2-GFP stabilisiert MSL1 in KC-Zellen58
2.4 GFP-Fusionen von MSL1 und MOF ..60
2.5 Punktmutationen von MOF-GFP ..62
2.6 Dynamische Untersuchungen ... 66
2.6.1 Mitose ... 66
2.6.2 HP1α als Kontrollsystem ... 69
2.6.3 Dynamik von MSL2 ... 74

3 DISKUSSION ... 79
3.1 Mit GFP fusionierte MSL-Proteine lokalisieren am X-Chromosom .. 79
3.2 Expressionsniveau von MSL2 .. 81
3.3 Integration von MOF in den DCC ... 83
3.4 Schnelle Dynamik von HP1α ... 84
3.5 Stabile Assoziation von MSL2 mit dem X-Chromosom ... 86

4 ZUSAMMENFASSUNG .. 90

5 METHODEN ... 92
5.1 Manipulation von Nukleinsäuren .. 92
 5.1.1 Gel-Elektrophorese .. 92
 5.1.2 Klonierungen .. 92
 5.1.2.1 Konstruktion von pEGFP-hsp-msl2 und pEGFP-sv40-msl2 .. 92
 5.1.2.2 Konstruktion von mtn-msl2-gfp .. 93
 5.1.2.3 Konstruktion von pEGFP-C1-hsp-msl2 und pEGF-C1-sv40-msl2 93
 5.1.2.4 Konstruktion von pEGFP-hsp-msl1 und pEGFP-hsp-mof ... 94
 5.1.2.5 Konstruktion der Plasmide mit MOF-Punktmutationen ... 94
 5.1.2.6 Konstruktion von pFastBac-msl2-gfp .. 95
 5.1.3 RT-PCR ... 95
 5.1.4 Sequenzierung ... 96

5.2 Manipulation von Proteinen .. 96
 5.2.1 Baculovirus-Expression ... 96
 5.2.2 Western-Blots .. 97
 5.2.3 Immunpräzipitation .. 98

5.3 Zellbiologische Methoden ... 98
 5.3.1 Zelllinien .. 98
 5.3.2 Transiente Transfektion und stabile Zelllinien ... 99
 5.3.3 Einfrieren von Zelllinien .. 100
 5.3.4 Zellextrakt ... 100
 5.3.5 Immunfluoreszenz ... 100
 5.3.6 Mikroskope ... 101

6 ANHANG ... 103
6.1 Plasmide .. 103
6.2 Sequenzen ... 105
 6.2.1 Sequenz von MSL2 .. 105
 6.2.2 Primer .. 108

7 LITERATURVERZEICHNIS ... 109
<table>
<thead>
<tr>
<th>Seite</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>LEBENSLAUF</td>
<td>122</td>
</tr>
<tr>
<td>9</td>
<td>DANKSAGUNG</td>
<td>123</td>
</tr>
</tbody>
</table>
1 Theoretischer Teil

1.1 Epigenetische Regulierung der Genexpression und Folgen der Deregulierung

1.1 Epigenetische Regulierung der Genexpression und Folgen der Deregulierung

1.1.1 Chromatin und Genexpression

werden hierbei hauptsächlich über die N-terminalen Domänen der Histone des
Histonoktamers (core histones) vermittelt. Diese flexiblen N-terminalen Arme ragen aus
dem Nukleosomenkern weit hinaus und sind auf Grund ihres hohen Anteils an basischen
Aminosäuren Arginin und Lysin positiv geladen.

Die dichte Verpackung der DNA im Chromatin hat einen entscheidenden Einfluss auf die
Genexpression. Da der DNA-Metabolismus, wie Transkription, Reparatur oder
Replikation, in der Regel über DNA-binde nde Proteine vermittelt wird, hat die
Chromatinverpackung zunächst eine repressive Funktion [146]. Auch mikroskopisch ist
dies in der Unterscheidung zwischen Heterochromatin als dicht gepackter DNA mit eher
repressiven Charakter und dem Euchromatin als Region eher aktiver Gene mit einer
niedrigeren DNA-Dichte sichtbar. Für die Bindung dieser Proteine muss also zunächst die
Chromatinstruktur gelockert werden [19]. Dies betrifft sowohl die Ebene der
übergeordneten Faltung als auch die Ebene der einzelnen Nukleosomen [193]. Zwei
grundlegende Mechanismen werden beschrieben, die die inhibitorische Natur des
Chromatins zumindest partiell überwinden und die Chromatinstruktur dynamisch gestalten
[210]. Der erste greift durch nucleosome-remodeling-Faktoren an den Histon-DNA-
Wechselwirkungen an und hat zunächst einen lokalen, transienten Charakter (Kapitel
1.1.4). Der zweite betrifft Modifikationen der N-terminalen Arme der Histone, wie z. B.
die Acetylierung des Histons H4 durch MOF, und damit eine Änderung der
Wechselwirkung zwischen Nukleosomen und in der Folge der Chromatinstruktur (Kapitel
1.1.3). Weiterhin haben diese Modifikationen eine Funktion in der Erkennung der
Nukleosomenstruktur und der Rekrutierung von Proteinen [191].

1.1.2 DNA-Methylierung

Ein klassisches Beispiel für eine epigenetische Regulierung der Genexpression ist die
DNA-Methylierung von Cytosin-Basen, die in CpG-Dinukleotiden positioniert sind [24].
Auch wenn diese CpG-Folgen im gesamten Genom generell unterrepräsentiert sind,
existieren kürzere DNA-Sequenzen, so genannte CpG-Inseln, die einen hohen Anteil an
CpG-Dinukleotiden aufweisen [196]. Diese Inseln sind vorwiegend in proximalen
Promotor-Regionen von nahezu der Hälfte aller Gene zu finden und in differenzierten
Zellgeweben normalerweise unmethyliert. Eine Hypermethylierung dieser Promotor-
Region führt zu einer Inaktivierung der betreffenden Genexpression. Die Repression der
Genexpression ist hierbei nicht eine reine Folge der DNA-Methylierung, sondern ein

Eine weitere charakteristische Eigenschaft der DNA-Methylierung ist die Vererbung des DNA-Musters auf die Tochterzelle. Die Festlegung und Beibehaltung des Musters der DNA-Methylierung wird hierbei im Wesentlichen über drei Methyl-Transferasen gesteuert. Für die Neumethylierung sind Dnmt3a und Dnmt3b (DNA-Methyl-Transferasen 3a und 3b) verantwortlich, während Dnmt1 ein zum Teil früh in der Entwicklung festgelegtes Methylierungsmuster über Zellgenerationen hinweg propagierte [142]. Hierbei bindet Dnmt1 bevorzugt an hemimethylierte DNA [162], methyliert direkt nach der Replikation die neu replizierten DNA-Stränge [105] und ermöglicht so die epigenetische Informationsweitergabe auf die Tochterzelle.

Angesichts dieser Involvierung der DNA-Methylierung in fundamentale Zellprozesse ist es nicht überraschend, dass eine Deregulation der DNA-Methylierung auf einer der genannten
Ebenen zu vielfältigen Krankheitsbildern führt. So ist in vielen, wenn nicht sogar in den meisten Neoplasien eine Hypermethylierung von Cytosin-Basen zu finden, was eine irreversiblen Stilllegung von Genen zur Folge hat [17;171]. Hiermit einhergehend ist auch in vielen Tumoren eine Überexpression der Methyltransferasen zu finden [92;170]. Störungen der genomischen Prägung liegen Krankheitsbildern wie dem Prader-Willi-Syndrom (PWS) oder dem Angelman-Syndrom (AS) zu Grunde, in denen Deletionen im Bereich des Chromosoms 15 ausschließlich das paternale (PWS) oder das maternale (AS) Chromosom betreffen [14]. Und schließlich sei noch erwähnt, dass das methyliertes Cytosin bindende Protein MECP2 (Methyl-CpG-Bindeprotein 2) beim Rett-Syndrom mutiert ist und es dadurch zur unkontrollierten Expression von normalerweise inaktiven Genen kommt. Dies führt bei fast ausschließlich betroffenen Mädchen im Alter von ca. 2 Jahren zu einer fortschreitenden geistigen Behinderung [100].

1.1.3 Histon-Modifikationen

1.1 Epigenetische Regulierung der Genexpression und Folgen der Deregulierung

1.1.3.1 Histon-Acetylierung

Die Histon-Acetylierung von Lysin-Resten in den aminoterminalen flexiblen Histon-Domänen ist die am ausführlichsten untersuchte Histonmodifikation [210]. Die Histone H2B (K5, K12, K15, K20), H3 (K9, K14, K18, K23) und H4 (K5, K8, K12, K16) können an vier, Histon H2a (K5, K9) an zwei Lysin-Resten acetyliert werden [190]. Die Acetylierung wird durch eine ganze Familie von Histon-Acetyl-Transferasen (HAT), die meist in größeren Proteinkomplexen vorliegen, vermittelt. Sie werden zum einen entsprechend ihrer subzellulären Lokalisierung in zwei Typen (zytoplasmatisch vs. subnuklear) oder auf Grund ihrer Sequenzhomologien in sechs verschiedene Familien eingeteilt [190]. Es wird allgemein angenommen, dass durch die Acetylierung die positive Ladung der Histone teilweise neutralisiert wird und damit die Wechselwirkungen mit der DNA sowie die Nukleosom-Nukleosom-Wechselwirkungen geschwächt werden [64;220]. Hierdurch entsteht eine gelockerte Struktur, die den Zugang für Proteine, wie z.B. Transkriptionsfaktoren, erleichtert [104] und die Histonacytylierung generell mit transkriptioneller Aktivierung in Verbindung bringt [173]. Hinzu treten noch Transkriptionsfaktoren, die spezifisch acetyliertes Lysin erkennen und durch die Histonmodifikation rekrutiert werden können [22]. Interessanterweise ist hierunter auch die Bromodomäne, die in fast allen Histon-Acetyl-Transferasen vorkommt [222] und somit
einen Mechanismus der Selbstrekrutierung beinhaltet. Dies impliziert auch ein mögliches Modell, wie die Acetylierung als Histonmodifikation über die Replikation und die Mitose als stabile Markierung aufrechterhalten werden könnte (s. a. das Kapitel „Dynamik des Zellkerns“).

Störungen im Zusammenspiel von HAT und HDAC stehen auf vielfältige Weise mit der Entwicklung von Tumoren in Verbindung [112;201;207]. So wurden in kolorektalen, gastralen und anderen epithelialen Tumoren, aber auch in hämatologischen Malignomen, vermehrt Mutationen oder Translokationen der beiden Histon-Acetyl-Transferasen CBP und p300 gefunden [72]. Das Rubinstein-Taybi-Syndrom, eine Entwicklungsstörung mit erhöhter Tumorentstehung, wurde ebenfalls auf eine Mutation von CBP zurückgeführt [135].

1.1.3.2 Histone-Methylierung

1.1 Epigenetische Regulierung der Genexpression und Folgen der Deregulierung

1.1.4 Nucleosome remodeling

Für eine strukturelle Änderung der Nukleosomenkette steht außer den schon angesprochenen Histomodifikationen noch eine zweite Gruppe von Protein(komplex)en zur Verfügung, die Gruppe der so genannten chromatin remodeling-Faktoren. Diese gewinnen aus der Hydrolyse von ATP Energie, um in der Regel Histon-DNA-Wechselwirkungen zu schwächen [211], was zu einer erhöhten Mobilität und Nukleosomenverschiebung führen kann. Die Familie der chromatin remodeling-Faktoren

1.1.5 Drosophila als Modellsystem

1.2 Der Dosiskompensationskomplex

Abbildung 3 Die Abbildung veranschaulicht die im Text besprochenen Mechanismen der Dosiskompensation, die gewährleisten, dass X-chromosomale Gene (mit Ausnahmen) zwischen männlichen und weiblichen Organismen gleich stark exprimiert werden. Die Abbildung ist modifiziert nach [4].

Ein Großteil dieser Gene ist in der pseudoautosomalen Region am Ende der kleinen Chromosomenarme zu finden [100].

Ein anderer Weg der Dosiskompensation ist im Wurm *Caenorhabditis elegans* zu finden. Hier wird die Transkription der Gene beider X-Chromosome in allen weiblichen Zellen auf die Hälfte reduziert, so dass die Gesamtmenge an exprimierten X-chromosomalen Genen in weiblichen und männlichen Zellen wieder gleich ist [126].

grundlegende Wechselwirkungen zwischen Proteinen (Strukturproteinen wie dem Histon H4 und den Proteinen des DCC), nichtkodierender RNA und DNA. Und schließlich bildet die Lokalisation des DCC in einem wohldefinierten Kompartiment des Nucleus, dem X-Chromosom, eine Basis für Untersuchungen über die nukleare Architektur und seine Dynamik (s. a. das Kapitel „Dynamik des Zellkerns“). Im Folgenden wird der DCC beschrieben, wobei der Schwerpunkt auf den in dieser Arbeit näher untersuchten Proteinen des DCC, MOF und MSL2, liegt.

1.2.1 Aufbau des Dosiskompensationskomplexes

Wie wird durch diesen Komplex die zweifache Hypertranskription von X-chromosomal Genen vermittelt? Einen entscheidenden Einfluss hierauf scheint die Acetylierung von Histon H4 am Lysin 16, die durch die Acetyl-Transferase MOF vermittelt wird, zu haben.

Der Weg zu dieser epigenetischen Modifikation, insbesondere der korrekten Lokalisation von MOF am X-Chromosom, scheint jedoch über mehrere Zwischenschritte zu verlaufen. Zunächst besitzt MSL2 eine gewisse Schlüsselposition in der Initiierung des Komplexes, da es in weiblichen Zellen nicht exprimiert wird und in Folge dessen auch nicht zur Ausbildung eines DCC kommt [151]. Für die fehlende Expression von MSL2 ist das Protein SXL (sex lethal), welches das Verhältnis von X-Chromosomen zu Autosomen „misst“, verantwortlich (eine Übersicht über SXL findet sich in [159]). Nachdem MSL2 in

1.2.2 MSL2 in zentraler Position

Wie schon angesprochen, besitzt MSL2 eine Schlüsselposition innerhalb des DCC. Zum einen hemmt SXL die Translation von MSL2 in weiblichen Zellen [16]. Zum anderen bindet MSL2 zusammen mit MSL1 an den Eintrittsstellen, wenn MLE, MOF oder MSL3 mutiert werden, während im Gegenzug die Mutation von MSL2 jegliche Bindung an das X-Chromosom verhindert [96]. Auf Grund dieser Befunde bot sich MSL2 als erstes Protein an, um es mit dem fluoreszierenden Marker GFP zu versehen und so ein Werkzeug
in der Hand zu haben, Lokalisation und Funktion von MSL2 in vivo untersuchen zu können.

Abbildung 5 Schematische Struktur von MSL2. RING steht für die Ring-Finger-Domäne, MT für die Metallothionein-artige Domäne, PC für eine Region von positiv geladenen und NC für eine Region von negativ geladenen Aminosäuren.

Über die Funktion der Motive von MSL2 ist viel spekuliert worden, aber wenig experimentell bestätigt. Beschrieben ist, dass der N-Terminus mit dem Ring-Finger-Motiv (AS 1-190) eine entscheidende Rolle für die direkte Wechselwirkung mit MSL1 und die Lokalisation von MSL2 am X-Chromosom spielt [45], was durch Mutationen in der Region des Ring-Fingers in einem two-hybrid-System gezeigt wurde. Auf Seiten von MSL1 ist ebenfalls der N-Terminus (AS 1-84) für die Lokalisation am X-Chromosom sowie die Aminosäuren 85-186 für die Wechselwirkung mit MSL2 verantwortlich [150;177].

Eine weitere Funktion von MSL2 besteht in der Stabilisierung von Proteinen des DCC. Während beim weiblichen Wildtyp kein MSL2 und MSL1 nur stark vermindert gegenüber dem männlichen Wildtyp nachweisbar sind, führt die ektope Expression von MSL2 in transgenen Fliegenstämmen zu einem Anstieg der MSL1-Konzentration und der Lokalisation von MSL1, MLE und MSL2 am X-Chromosom in weiblichen Fliegen [97]. Als Folge kam es hierbei zu einer signifikanten Entwicklungsverspätung und einer erhöhten Letalität von weiblichen Fliegen.
Diese vorliegenden Experimente führten zu der Annahme, dass MSL2 eine Schlüsselrolle innerhalb des DCC einnimmt. Jedoch ist in einer aktuellen Veröffentlichung die Frage aufgeworfen worden, ob die zygote Transkription von MSL2 einen bereits existenten DCC nur komplimentiert [122].

1.2.3 Die Histone-Acetyl-Transferase MOF

Während dieses Experiment die Art der Enzymaktivität beleuchten, bleibt noch offen, wie MOF über den DCC seine Lokalisation am X-Chromosom findet und wie die Enzymaktivität reguliert wird. Dass hierfür nicht alleine die Präsenz von MOF in den Zellen ausreicht, wird dadurch deutlich, dass MOF auch in weiblichen Zellen exprimiert wird, hier aber zu keiner selektiven Histone-Acetylierung von Lysin 16 an den X-Chromosomen führt [83]. Ein bedeutsamer Einfluss auf den Einbau in den DCC scheint hierbei der roX-RNA zuzukommen. So bindet MOF, wie auch MSL3 und MLE, RNA [76;123;156]. Darüber hinaus wurde gezeigt, dass MOF, ebenso wie auch MSL3 [32], nach RNase-Einwirkung seine Lokalisation am X-Chromosom verliert. Aus selbigem Experiment stammt im Übrigen auch die Vermutung, dass die Acetylierung von H4K16

1.2.4 Parallelen zur X-Inaktivierung beim Menschen

Obwohl die Dosiskompensation zwischen weiblichen (XX) und männlichen (XY) Zellen beim Menschen und der Fruchtfliege auf den ersten Blick völlig unterschiedlich voneinander zu sein scheint, lassen sich überraschenderweise doch einige gemeinsame Mechanismen entdecken, auch wenn sich der DCC in der Drosophila sicherlich nicht in allen Einzelheiten auf den Menschen übertragen lässt. Neben einigen gemeinsamen und grundsätzlichen Eigenschaften der Dosiskompensation wie der Erkennung des X-Chromosoms, der geschlechtsabhängigen embryonalen Differenzierung sowie der Beibehaltung der Dosiskompensation über Zellgenerationen hinweg, ist besonders auffällig, dass auch in der X-Inaktivierung beim Menschen eine nichtkodierende RNA, die XIST-RNA, eine zentrale Rolle spielt. Und wie auch die roX-RNA als Eintrittsstelle Ausgangspunkt für die Ausbreitung über das gesamte X-Chromosom ist, nimmt die Initiierung der Inaktivierung des menschlichen X-Chromosoms ihren Anfang in der XIC (X inactivation centre)-Region, wo auch das XIST-Gen kodiert ist, und verläuft dann von hier aus bidirektional in cis über fast das gesamte X-Chromosom [30;43]. Allerdings scheint XIST vor allem in der Phase der Initiierung von Bedeutung zu
1.3 Dynamik des Zellkerns

Hilfe der konfokalen Mikroskopie zu nennen (s. a. das Kapitel „GFP und konfokale Mikroskopie“). Diese führte zu einer deutlichen Änderung des Verständnisses des Nucleus, welcher als relativ statische, dicht gepackte Entität angesehen wurde und sich jetzt als ein höchst dynamisches Gebilde darstellt [77;127].

1.3.1 Architektur des Zellkerns

Auf den ersten Blick scheint der Nucleus ein homogenes Gebilde zu sein, als das Zytoplasma mit seinen verschiedenen Organellen, doch bei genauerer Betrachtung besteht auch der Nucleus aus vielen einzelnen Kompartimenten, die in fundamentalen Prozessen der Zelle wie Transkription, Spleißen, RNA-Synthese etc. ihre speziellen Aufgaben übernehmen. Im Gegensatz zu den meisten Untereinheiten des Zytoplasmas sind diese jedoch nicht durch eine Membran abgegrenzt. Als Hauptstruktur ist die DNA zuerst in Form von Chromatin in verschiedenen Chromosomen-Territorien während der Interphase.

ist. Auf Basis dieser Einteilung ist ein Modell entwickelt worden, nachdem das Interchromatin-Kompartiment für Proteinkomplexe zugänglich ist, und dort an das Interchromatin-Kompartiment angrenzende oder auf in das Interchromatin-Kompartiment hineinreichenden Chromatinschleifen liegende active Gene transkribiert werden können [46].

1.3.2 Dynamik nuklearer Proteine

Auch wenn sich viele biologisch aktive Proteine erstaunlich schnell innerhalb des Nucleus bewegen, so sind sie doch langsamer als biologisch inaktive Proteine vergleichbarer Größe. Für diese Verlangsamung müssen, nachdem durch den Vergleich mit gleich großen Proteinen eine reine Einschränkung der Diffusion durch Kollisionen ausgeschlossen ist, die biologischen Eigenschaften des Proteins, wie Integration in einen größeren Makromoleküll-Komplex, Wechselwirkung mit dem Chromatin oder der Kernmembran etc, verantwortlich sein.
Tabelle 1 Dynamik nuklearer Proteine in FRAP-Experimenten.

Die Größen in der dritten Spalte geben entweder den effektiven Diffusionskoeffizient (D_{eff}) in μ^2/s oder die Halbwertszeit ($t_{1/2}$) in s an. Die Zusammenstellung wurde aus [34] übernommen.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Protein</th>
<th>D_{eff} bzw. $t_{1/2}$</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleoplasma</td>
<td>EGFP</td>
<td>57 μ^2/s</td>
<td>[84]</td>
</tr>
<tr>
<td></td>
<td>Topoisomerase II α & β</td>
<td>6-10 s (Nucleolus), 2-3 s (Nucleoplasma)</td>
<td>[199]</td>
</tr>
<tr>
<td></td>
<td>Topoisomerase I</td>
<td>14,3 s (Nucleoplasma), 12,5 s (Nucleolus)</td>
<td>[39]</td>
</tr>
<tr>
<td></td>
<td>ZAP-70</td>
<td>>1 μ^2/s (Nucleoplasma)</td>
<td>[182]</td>
</tr>
<tr>
<td></td>
<td>Protein-Phosphatase</td>
<td>< 30 s (Nucleolus)</td>
<td>[202]</td>
</tr>
<tr>
<td>DNA-Reparatur</td>
<td>XRCC1, XPA, XPB</td>
<td>6-15 μ^2/s</td>
<td>[84]</td>
</tr>
<tr>
<td></td>
<td>Ku70, Ku86</td>
<td>0,35 μ^2/s</td>
<td>[172]</td>
</tr>
<tr>
<td></td>
<td>Rad-Proteine</td>
<td>7,5-15 μ^2/s</td>
<td>[57]</td>
</tr>
<tr>
<td>Proteine v. subnuklearen Kompartimenten</td>
<td>ASF/SF2</td>
<td>0,24 μ^2/s</td>
<td>[101;160]</td>
</tr>
<tr>
<td></td>
<td>Nucleoläre Proteine</td>
<td><0,16 μ^2/s (Nucleolus), 0,51-1,6 μ^2/s (Nucleopl.)</td>
<td>[36;160;185]</td>
</tr>
<tr>
<td></td>
<td>PML, Sp100</td>
<td>Immobil über 15 Minuten</td>
<td>[26]</td>
</tr>
<tr>
<td></td>
<td>HP1</td>
<td>4-100 s s</td>
<td>[38;61]</td>
</tr>
<tr>
<td>Chromatin assoziiert</td>
<td>Histon H1</td>
<td>220-250 s s</td>
<td>[106;128]</td>
</tr>
<tr>
<td></td>
<td>Nucleosomale Histone</td>
<td>>2h</td>
<td>[98]</td>
</tr>
<tr>
<td></td>
<td>HMG17</td>
<td>0,45 μ^2/s</td>
<td>[160]</td>
</tr>
<tr>
<td>Transkriptionsfaktoren</td>
<td>Stat1</td>
<td>ca. 50 μ^2/s</td>
<td>[107]</td>
</tr>
<tr>
<td></td>
<td>Östrogen-Rezeptor</td>
<td>0,8-6s</td>
<td>[189]</td>
</tr>
<tr>
<td></td>
<td>Glucocorticotoid-Rez.</td>
<td>im Sekundenbereich</td>
<td>[120]</td>
</tr>
<tr>
<td></td>
<td>SRC</td>
<td>ca. 10s</td>
<td>[189]</td>
</tr>
<tr>
<td>Kern-Poren</td>
<td>Nup98</td>
<td>1,2 s (Nucleoplasma), >12 s (Kern-Poren)</td>
<td>[74]</td>
</tr>
<tr>
<td></td>
<td>POM121</td>
<td>20 h (Kern-Poren)</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td>Nup153</td>
<td>15 s</td>
<td>[50]</td>
</tr>
<tr>
<td>Kernmembran</td>
<td>Lamin B-Rezeptor</td>
<td>immobilisiert</td>
<td>[56]</td>
</tr>
<tr>
<td></td>
<td>Emerin</td>
<td>0,1 μ^2/s</td>
<td>[147]</td>
</tr>
<tr>
<td></td>
<td>HA-95</td>
<td>immobil über 15 Minuten</td>
<td>[118]</td>
</tr>
<tr>
<td></td>
<td>Lamin A, B1</td>
<td>Immobil während der Interphase</td>
<td>[130]</td>
</tr>
</tbody>
</table>

Somit bietet die Möglichkeit von Experimenten mit Photobleichen ein gutes Instrument, um von der Kinetik der Proteine auf die Art ihrer Wechselwirkung, soweit sie bekannt sind, zurück zu schließen.

Hiernach lassen sich die nuklearen Proteine von eher stabilen, immobilen Proteinen bis zu sehr mobilen Proteinen klassifizieren. Nicht überraschend gehören zur ersten Klasse von Proteinen die Histone, mit Ausnahme eines kleinen *Pools* von Histon H2B, des Histon-Oktamers, die als essentielle Bestandteile des Chromatins eine Art Fundament des Zellkerns darstellen [98]. Aber auch Proteine wie die RNA-Polymerase II [18] oder PCNA [186], die über eine Ringklemme eine besonders feste Assoziation zur DNA besitzen und als Basis für die Bindung weiterer Proteine und deren biologischer Funktion dienen,
gehören zu dieser Gruppe. All diese Proteine zeigen Austauschkinetiken mit einer Halbwertszeit von etlichen Minuten (RNA-Polymerase II) bis hin zu einigen Stunden (Histone H3). Der Großteil der bis dato untersuchten nuklearen Proteine zeigt allerdings ein deutlich mobileres Verhalten mit Austauschdynamiken von $T_{1/2}$ im Bereich von Sekunden bis hin zu wenigen Minuten. Hierunter sind Proteine, denen eine eher strukturelle Bedeutung zugeschrieben wird wie H1 [106;129], Chromatin-bindende Proteine wie HMG-17 [160], Splicefaktoren wie SF2/ASF [160], Proteine von Steroid-Rezeptoren [120], aber auch das heterochromatinbindende HP1 [38;61] sowie etliche andere Proteine (für eine unvollständige Übersicht siehe Tabelle 1). Unter diesen Proteinen sind auch Proteine, die in spezifischen subnuklearen Kompartimenten lokalisiert sind. Zum Beispiel Fibrillarin, welches in den Nucleoli in den Prozess der rRNA-Synthese involviert ist [160], oder das noch zu besprechende HP1 (s. a. das Kapitel „Das Heterochromatin-Protein 1“).

Wie können Proteine, die über eine hohe Mobilität verfügen, morphologisch stabile Kompartimente wie z.B. den Nucleolus bilden? Am ehesten ist dies als ein permanenter Zu- und Abstrom von Proteinen, welche miteinander im dynamischen Gleichgewicht stehen, zu sehen, ähnlich einem Gebirgssee, der als morphologisch stabiles Gebilde erscheint, aber doch durch ein dynamisches Gleichgewicht von zu- und abfließendem...

Abbildung 7 Bildung eines Kompartiments. Proteine werden beständig zwischen einem Kompartiment und dem Nucleoplasma ausgetauscht. Während eines bestimmten Zeitintervalls können im wesentlichen vier Vorgänge erfolgen: a) Proteine im Nucleoplasma (ungebunden) können dort bleiben, b) Proteine im Kompartiment (gebunden) bleiben dort gebunden oder wechseln auf einen anderen Bindungsplatz, c) Proteine aus dem Nucleoplasma können im Kompartiment gebunden werden, d) gebundene Proteine im Kompartiment können ins Nucleoplasma abdiffundieren. Die Vorgänge c) und d) entscheiden über die Bildung ($\Sigma_c > \Sigma_d$), die Beibehaltung ($\Sigma_c = \Sigma_d$) oder den Abbau ($\Sigma_c < \Sigma_d$) eines Kompartiments.
Wasser aufrecht erhalten wird, allerdings mit dem Unterschied, dass die abwandernden Proteine in der Zelle auch wieder dem Pool der zu wandernden Proteine zur Verfügung stehen (Abbildung 7).

Ein Phänomen, welches im Rahmen dieses stochastischen, dynamischen Modells sicherlich gut erklärt ist, ist die Möglichkeit der Zelle, schnell auf externe Einflüsse reagieren zu können. Sobald eine bestimmte Fraktion eines Proteins modifiziert wird, erhöht sich auch die Wahrscheinlichkeit, dass ein modifiziertes Protein seinen Reaktionspartner findet und damit gegebenenfalls zu einer unterschiedlichen Reaktion führt. Dies wäre, falls das Protein statisch an seinen Reaktionspartner gebunden wäre, ein deutlich langwierigerer Prozess, da zuerst das Protein von seiner Position gelöst werden müsste, modifiziert werden könnte und dann wieder seinem Reaktionspartner zugeführt werden müsste.

1.3.3 Das Heterochromatin-Protein1 (HP1)

Als ein besonders prominentes Beispiel für die überraschend hohe Dynamik nuklearer Proteine soll im Folgenden das Heterochromatin-Protein 1 (HP1) besprochen werden, zumal in dieser Arbeit die Austauschdynamik, die erst kürzlich in Säugetierzellen beschrieben wurde [38;61], in Drosophila-Zellen bestätigt wurde und als Kontrollmodell für die dynamischen Untersuchungen von MSL2 dient.

HP1 ist ein während der Evolution hoch konserviertes Protein, wie sein Vorkommen in der Hefe Schizosaccharomyces pombe über die Drosophila melanogaster bis hin zu den Säugetieren zeigt [168]. Es kommt in allen Organismen in zumindest drei homologen Formen (HP1α, HP1β, HP1γ) vor, von denen in der Drosophila zunächst HP1α mit einer
bevorzugten Lokalisation am Chromozentrum nachgewiesen wurde [87]. HP1 wird bevorzugt in heterochromatischen Regionen nachgewiesen und mit Transkriptionsrepression in Verbindung gebracht. Allerdings zeigen die unterschiedlichen Homologe von HP1 auch unterschiedliche Lokalisationen innerhalb des Nucleus, welche auch Bindung in euchromatischen Regionen einschließen [139;184]. Dies könnte jedoch gut im Einklang mit der Funktion als Transkriptionssuppressor stehen, da auch im Euchromatin einzelne Gene blockiert sind.

Abbildung 8 Schematische Struktur von HP1α, unterhalb der Struktur sind Bindungspartner von HP1α aufgeführt. Die Bindungen sind zum Großteil im Text besprochen, über die Chromo-Shadow-Domäne kann durch die Bindung an HP1α, HP1β eine Dimerisierung erfolgen, ebenso können auch die Methyltransferasen Dmnt1 und Dmnt3a gebunden werden. Die Abbildung orientiert sich an einer Abbildung in [113].

HP1 ist ein relativ kleines Protein mit ungefähr 200 Aminosäuren, je nach Homolog und Organismus etwas verschieden, HP1α in der Drosophila z.B. mit 206 Aminosäuren, und zwei konservierten Domänen, der Chromodomäne am N-Terminus und der Chromo-Shadow-Domäne am C-Terminus, sowie einer dazwischen liegenden Hinge-Region, welche eine große Variation zwischen den Homologen von HP1 aufweist (Abbildung 8). Über seine Chromodomäne ist HP1 in der Lage, an Lysin 9 methyliertes, besonders trimethyliertes, Histon H3 zu binden [13;62], einer Modifikation, die z.B. durch SUV39h1 vermittelt wird, welches wieder als Bindungspartner von HP1 -vermutlich über die Chromo-Shadow-Domäne- auftritt [1;165]. Da methyliertes H3K9 jedoch auch in Zellregionen nachgewiesen wird, in denen HP1 nicht vorkommt, kann die Lokalisation nicht allein über diese Bindung durch die Chromodomäne vermittelt werden. Hier scheint zusätzlich die RNA bindende Eigenschaft von HP1 eine Rolle zu spielen, die anders als z.B. bei MOF nicht über die Chromodomäne, sondern über einen Teil der Hinge-Region vermittelt wird [114;133]. Die Variation dieser Hinge-Region, könnte zusammen mit der zusätzlichen DNA- und Chromatin bindenden Eigenschaft zwischen den Homologen damit auch den Grund für die spezifische Lokalisation der einzelnen Homologe liefern [184]. Insgesamt wirkt HP1 durch seine Assoziation mit Heterochromatin als einer besonders
1.3 Dynamik des Zellkerns

hoch kondensierten, scheinbar schwer zugänglichen Region und seinen reichhaltigen Wechselwirkungen mit Proteinen (eine Auflistung der bekannten Wechselwirkungen findet man z.B. in [181]), RNA und DNA als ein relativ fest in seine Umgebung eingebundenes Protein. Umso erstaunlicher war daher die Erkenntnis, dass auch HP1 eine äußerst hohe Mobilität aufweist [38;61]. In den beiden genannten Veröffentlichungen wurde gezeigt, dass in FRAP (fluorescence recovery after photobleaching)-Experimenten mit HP1 die Fluoreszenz im gebleichten Areal innerhalb kurzer Zeit wiedergewonnen wurde, wobei die Halbwertszeit zwischen beiden Veröffentlichungen leicht differiert. Die Erholung erfolgt wie erwartet im Euchromatin schneller als im Heterochromatin, interessanterweise aber auch für eine Mutation im Bereich der Chromo-Shadow-Domäne, was nahe legt, dass auch die Chromo-Shadow-Domäne Einfluss auf die Lokalisation von HP1 und seine dortige Verankerung hat. Eine Veröffentlichung dieses Jahres berichtet darüber hinaus von einer langsamen Fraktion von HP1 (ca. 5-7%), die eventuell eine stabile Grundlage für die dynamische Formierung des Heterochromatins bilden könnte (s. a. Diskussion) [176].

Insgesamt weisen die Daten aber auf ein dynamisches Modell für HP1 und die Bildung des Kompartiments hin, wie es im vorigen Kapitel dargelegt wurde und zeigen, dass Heterochromatin sehr wohl zugänglich für regulatorische Proteine ist.

1.3.4 Positionierung von Chromosomen-Territorien

Chromosomen sind, wie schon angesprochen, auch in der Interphase radial in einzelnen, zum großen Teil nicht überlappenden Regionen angeordnet [46]. Diese Anordnung verläuft nicht zufällig, allerdings sind die Regeln, nach denen sie verläuft und welche Auswirkung sie auf die Genexpression haben, noch weitestgehend unverstanden [153]. Während der Interphase bleiben die Chromosomen-Territorien im Wesentlichen erhalten [228] und stabil, unterliegen aber innerhalb der Grenzbedingungen des Chromosomenterritoriums lokal der Brownschen Bewegung [40;82]. Neben der radialen Anordnung weisen die Chromosomen darüber hinaus noch die Tendenz auf, dass genreiche Abschnitte eher in der Mitte des Nucleus, genarme eher am Rande in der Nähe der Zellkernmembran zu liegen kommen [198]. Auch Präferenzen in der Anordnung einzelner Chromosomen zueinander sind beobachtet worden [154].

Ob, und wenn wie, Chromosomen-Territorien über die Mitose hinweg an die nächste Zellgeneration weiter vermittelt werden, ist Gegenstand zweier Veröffentlichungen des letzten Jahres [69;214]. Hier wurden Chromosomen-Territorien mit Hilfe von

1.4 GFP und konfokale Mikroskopie

1.4.1 GFP als Fusionsprotein

GFP (green fluorescent protein) ist innerhalb des letzten Jahrzehnts zu einer der meistgebrauchten Werkzeuge in der Zellbiologie geworden. Es wurde in der Qualle Aequarea entdeckt [180] und hat die Eigenschaft, von Licht im ultravioletten bis blauen Bereich angeregt zu werden und in der Folge Licht im grünen Bereich zu emittieren [91]. Dass dieses Protein als Werkzeug eine so breite Anwendung erfährt, verdankt es der Tatsache, dass es als ektop exprimiertes Protein in anderen Organismen seine Fluoreszenz beibehält und auch behält, wenn es mit anderen Proteinen fusioniert wird. Das Protein liefert also selbst alle nötigen Informationen und ist nicht auf Aequarea-spezifische Enzyme angewiesen [86;163].

GFP besteht aus 238 Aminosäuren, von denen die Aminosäuren 65-67 das Chromophor bilden, welches für die Lichtanregung und –abstrahlung verantwortlich ist (Abbildung 9) [163]. Über Veränderung dieses Chromophors sind mittlerweile etliche GFP-Varianten mit unterschiedlichen Anregungs- und Emissionsspektren eingeführt worden und somit auch Doppel- oder sogar Dreifachfärbungen möglich geworden. Das in dieser Arbeit verwendete EGFP hat dabei ein Erregungsmimum von $\lambda_{\text{ex}} = 488\text{nm}$ sowie ein Emissionsmaximum von $\lambda_{\text{em}} = 507-511\text{nm}$. Andere bekannte Varianten emittieren im blauen (ECFP, EBFP) oder gelben (EYFP) Farbbereich (eine Übersicht findet man z.B. in [203]). Die verschiedenen Varianten sind unterschiedlich sensitiv gegenüber pH-Änderungen, sowohl im basischen als auch im sauren Bereich, z.B. ist die Effizienz von EGFP bei pH= 5.5 auf 50% reduziert [157]. Während die Veränderungen im basischen Bereich erst bei pH-Werten von 11-12 auftreten [27] (Werten, die im zellbiologischen
Kontext so gut wie nie auftreten) können die Veränderung im sauren Milieu, z.B. auch in Lysomen, Endosomen oder im Golgi-Apparat, durchaus eine Funktionseinbuße von GFP bewirken. Eine weitere Einschränkung der Verwendung erfährt GFP im anaeroben Bereich, da es während der Formation zwingend auf \(\text{O}_2 \) angewiesen ist [80]. Dagegen treten Modifikationen der Spektren bei Temperaturerhöhung erst ab 65°C auf und können so in den meisten zellbiologischen Experimenten vernachlässigt werden [203].

Abbildung 9 Die dreidimensionale Struktur von GFP. Es zeigt die Fassstruktur des Proteins, in dessen Inneren das Chromophor, welches hierdurch gut geschützt liegt, zu erkennen ist. Die Abbildung wurde [203] entnommen.

Die breiteste Anwendung erfährt GFP als Markerprotein, fusioniert an ein biologisch aktives Protein und folgender Expression in den interessierenden Zellen und Organismen. Diese Markierung macht es möglich, ein Protein auf seine subzelluläre Lokalisation, die Regulation seiner Expression oder auch sein Auftreten während der Entwicklung eines Organismus zu untersuchen. Auch wenn nicht alle Fusionen die biologisch aktive Funktion des zu untersuchenden Proteins intakt lassen, ist die Liste von erfolgreichen GFP-Fusionen, sowohl C- als auch N-terminal, mittlerweile lang und umfasst nahezu alle subzellulären, insbesondere auch subnuklearen Lokalisationen [203]. Diese Anwendung liegt auch der vorliegenden Arbeit zu Grunde, um die Lokalisation von Proteinen des DCC sowie ihren Mutanten *in vivo* zu untersuchen. Es sei noch erwähnt, dass -auch wenn GFP seine großen Vorteile in Experimenten mit lebenden Zellen hat- die GFP-Fluoreszenz auch
1.4 GFP und konfokale Mikroskopie

nach Fixierung mit Formaldehyd sichtbar bleibt und somit Immunfluoreszenz-Methoden zur Verfügung steht [35].

1.4.2 Photobleichen

1.4.2.1 FRAP-Experimente

Theoretischer Teil

natürlich nicht nur über Diffusion zu Stande kommen, sondern auch die Art der Wechselwirkungen des Proteins mit anderen zellulären Strukturen beinhaltet. Theoretisch sind auch noch Expression und Abbau, sowie Import und Export des Proteins zu berücksichtigen, welche allerdings in einer Gleichgewichtssituation vernachlässigt werden können. Für die Berechnung von D_{eff}, welcher partielle Differentialgleichungen erster und zweiter Ordnung beinhaltet, sind verschiedene mathematische Modelle aufgestellt worden, die vor allem unterschiedliche Grenzbedingungen in Betracht ziehen und berücksichtigen müssen, dass den Datenaufnahmen in 2D eine komplexe dreidimensionale Topologie zu Grunde liegt (für eine Übersicht siehe z.B. [34]). Oft ist aber eine semiquantitative Aussage ausreichend, so dass eine Halbwertszeit $t_{1/2}$ angegeben wird, welche die Zeit der Wiedererlangung der Hälfte der Intensität, die insgesamt wiedergewonnen wird, angibt. Dieses Endniveau an Intensität ist absolut jedoch immer niedriger als das Ausgangsniveau,

1.4.2.2 FLIP-Experimente

Der theoretische Teil

Abbildung 11 Typischer Aufbau eines FLIP-Experimentes. Zu den Zeiten \(t_1, t_2, \ldots, t_i, \ldots \) erfolgt jeweils ein Bleichpuls in gleichmäßigen Zeitabständen und direkt vor dem nächsten Bleichpuls die Messung der Intensität im oben gekennzeichneten Areal, außerhalb der Bleichregion. Die gemessene Intensität ist unten über die Zeit aufgetragen. \(I_b \) gibt die Hintergrundintensität wieder, unter die kein weiteres Bleichen mehr möglich ist.

1.4.3 Konfokale Mikroskopie

Die konfokale Mikroskopie ist ein wesentliches Werkzeug für viele biomedizinische Anwendungen und Bildgebungen. Der wesentliche Unterschied zur konventionell Fluoreszenzmikroskopie besteht darin, dass zwei Linsen so arrangiert werden, dass sie auf
1.4 GFP und konfokale Mikroskopie

1.5 Fragestellung

2 Ergebnisse

2.1 Vorbemerkungen

2.1.1 Expression von GFP in Drosophila-Zelllinien

Da soweit kaum Daten von mit GFP verknüpften Proteinen, die in Drosophila-Zelllinien transfiziert wurden, vorliegen, waren zu Beginn der Arbeit Vorarbeiten notwendig, um zu testen, ob die Zellen exprimiertes GFP akzeptieren und ob in diesem Fall die Lichtausbeute durch das Mikroskop ausreichen würde, um Strukturen, insbesondere subnukleare Strukturen, sichtbar werden zu lassen. Hier schien insbesondere, die -im Vergleich zu humanen Zellen- kleine Zellgröße der Zelllinien mit 8-10 µm Durchmesser mit einem Nucleus von ca. 5 µm Durchmesser eine limitierende Rolle zu spielen. So wurde zunächst ein Plasmid transfiziert, welches für GFP allein kodiert und unter der Kontrolle des Hitzeschockpromotors HSP70 stand. Nach Transfektion konnte unter dem Mikroskop recht schnell (nach ca. 6 Stunden) ein GFP-Signal gesehen werden, welches in der gesamten Zelle, also sowohl im Nucleus als auch im Zytoplasma, lokalisiert war. Dieses Signal konnte bis zu 10 Tage nach transienter Transfektion nachgewiesen werden, ohne dass sich die Zellen im Wachstumsverhalten oder in der Morphologie von einer Kontrollzelllinie unterschieden hätten. Dies diente als erstes Indiz dafür, dass die Drosophila-Zelllinie GFP-Produkte exprimiert und toleriert.

2.1.2 Sequenzvergleich für MSL2

In der Literatur sind verschiedene Sequenzen für MSL2 beschrieben. Bei der Sequenzierung der im Labor vorliegenden MSL2-Klone zeigte sich, dass deren Sequenz mit keiner der beschriebenen Sequenzen übereinstimmte (für einen Sequenzvergleich siehe Abbildung 13). Dies war der Anlass für eine Reklonierung von MSL2. Mit Hilfe reverser Transkriptase und anschließender PCR wurde die Ausgangssequenz aus SF4-Zelllinien gewonnen. Die so gewonnene Sequenz entsprach der Sequenz aus der Genomdatenbank, so dass diese Nukleotidsequenz für unsere Plasmidkonstrukte verwendet wurde. Im Folgenden ist immer diese Sequenz gemeint, wenn von der MSL2-Sequenz die Rede ist. Die vollständige Sequenz ist im Anhang aufgeführt. Es sei darauf hingewiesen, dass die vorliegende Sequenz immerhin in sieben Aminosäuren sowie in

2.1.3 Promotorenvergleich

Eine weitere Frage im Vorfeld der Experimente richtete sich nach einem geeigneten Promotor für die Expression von mit GFP fusioniertem MSL2. Ein geeigneter Promotor sollte eine möglichst geringe, aber detektierbare Expression des gewünschten Proteins zeigen, um so eine Fluoreszenz im gewünschten Territorium bei niedrigem Hintergrundsignal zu zeigen. Hierdurch wäre auch gewährleistet, dass das endogene MSL2 weiterhin seine Funktion ausüben könnte und nur zu einem kleinen Prozentsatz durch MSL2-GFP ersetzt würde, welches potenziell Funktionsdefizite gegenüber dem endogenen MSL2 besitzen könnte. Im Idealfall wäre hierdurch eventuell auch eine Clusterbildung innerhalb des Territoriums des X-Chromosoms, die einer gewissen Topologie der bekannten Eintrittsstellen entsprechen könnte, besser sichtbar. Aus in der Literatur [9;90;143] bekannten Vergleichsstudien für Promotoren in der S2-Drosophila-Zelllinie (siehe Tabelle 2 und Tabelle 3) schien der Affenviruspromotor SV40, dessen Expressionsstärke ca. hundertfach niedriger als die des Drosophila-Promotors MTN ist [143], ein unter diesen Gesichtspunkten geeigneter Promotor zu sein. Darüber hinaus entschied ich mich als zweiten Promotor für das aus vielen Experimenten etablierte System
2.1 Vorbemerkungen

<table>
<thead>
<tr>
<th>Promotor</th>
<th>Relative Proteinexpression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TPA</td>
</tr>
<tr>
<td>Mtn (CuSO₄ 0.5mM)</td>
<td>1.3</td>
</tr>
<tr>
<td>a1-Tubulin</td>
<td>0.37</td>
</tr>
<tr>
<td>Actin 5C distal</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Tabelle 2 Die Tabelle zeigt relative Proteinexpressionen für ausgewählte Promotoren für die beiden Reporterproteine TPA und GP120. Die Proteinexpression wurde mittels Western-Blot, die Anzahl der integrierten Plasmidkopien mittels Southern-Blot bestimmt und aus dem Quotient eine relative Proteinexpression bezogen auf GP120 unter dem Metallothioneinpromotor errechnet. n. d. = nicht detektierbar. Die Daten stammen aus [9].

<table>
<thead>
<tr>
<th>Promotor</th>
<th>Proteinlevel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FKP2</td>
</tr>
<tr>
<td>Mtn</td>
<td>7</td>
</tr>
<tr>
<td>Copia 5’LTR</td>
<td>0.02</td>
</tr>
<tr>
<td>SV40 Early</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Tabelle 3 Die Tabelle zeigt unterschiedliche Expressionsstärken unter verschiedenen Promotoren für die Reporterproteine FKP2 und GalK. n. d. = nicht detektierbar. Die Daten stammen aus [90] und [143].

2.2 Expression von MSL2-GFP in SF4-Zellen

2.2.1 MSL2-GFP wird schnell abgebaut

Anschließend fiel die Konzentration von MSL2-GFP jedoch kontinuierlich ab und hatte bereits neun Stunden nach dem Ende der Induktion ein Niveau erreicht, das vergleichbar mit dem Ausgangsniveau direkt nach dem Hitzeschock und gering höher als vor dem Hitzeschock war. Während des gesamten beobachteten Zeitraumes zeigte sich keine signifikante Reduktion von endogenem MSL2. Die Konzentration blieb stets konstant auf dem Ausgangsniveau, was dafür spricht, dass das exogen zugeführte MSL2-GFP innerhalb der beobachteten zehn Stunden nicht in der Lage war, das endogene MSL2 zu ersetzen, wie das zum Beispiel in der weiter unten besprochenen stabilen Zelllinie der Fall ist. Ob hierfür anstatt des kurzzeitigen Pulses, die Induktion durch einen Hitzeschock über 30 Minuten, eine langfristige Expression des exogenen MSL2-GFP auf einem bestimmten Niveau nötig ist, oder ob die Heterogenität der betrachteten Zellen, in denen einige Zellen eine massive Steigerung der Expression von MSL2-GFP zeigten, bei anderen dagegen auch nach Hitzeschock, überhaupt keine Fluoreszenz detektiert werden konnte, dafür verantwortlich sind, dass MSL2 nicht durch MSL2-GFP ersetzt wird, muss letztendlich offen bleiben. Allerdings spricht die Tatsache, dass auch 24 Stunden nach dem Hitzeschock nicht mehr Zellen gefunden werden, die ein fluoreszierendes X-Chromosom-Territorium zeigten, als vor dem Hitzeschock, eher für die erste These. Ansonsten sollten zumindest die Zellen, die eine deutliche Überexpression von MSL2-GFP zeigten, nach Abbau des überschüssigen MSL2-GFP noch eine Integration von MSL2-GFP in den DCC zeigen, welches sich unter anderem darin äußern sollte, dass sie am X-Chromosom lokalisieren. Ein weiteres Indiz, welches dafür spricht, dass es einer länger andauernden Expression des mit GFP fusionierten MSL2-Proteins bedarf, stammt aus dem Verhalten nach transienter Transfektion. Hier kam es ebenfalls erst nach vier bis fünf Tagen zum Maximum des Prozentsatzes von Zellen, die eine Lokalisation im Territorium des X-Chromosoms zeigen. Darüber hinaus ist auffällig, wie rasch das überschüssige MSL2-GFP abgebaut wurde. Dass dies nicht an einem generellen Abbau von GFP-Produkten liegt, sieht man daran, dass die Zellen GFP, dessen Expression ebenfalls durch einen Hitzeschock induziert wurde, allein deutlich besser tolerierten und auch noch nach zwei bis drei Tagen eine deutlich gesteigerte Expression gegenüber Zellen ohne Induktion zeigten. Auch MOF-GFP und HP1α-GFP scheinen die Zellen in hoher Konzentration besser zu akzeptieren.
2.2.2 Transiente Transfektion von hsp-msl2-gfp in SF4-Zellen

2.2 Expression von MSL2-GFP in SF4-Zellen

Absterben, sondern dessen Konsequenz. Innerhalb der ersten zwei Tage waren jedoch nahezu keine Zellen zu finden, die eine Lokalisation von MSL2-GFP im Territorium des X-Chromosoms aufwiesen. Erst nach drei bis vier Tagen begannen mehrere Zellen in der Immunfluoreszenz eine Kolokalisation von MSL2-GFP und MSL1 zu zeigen. Das Maximum lag um den vierten Tag herum, mit einer Lokalisation am X-Chromosom in 10-40\% aller Zellen (Abbildung 15). Es konnten dann noch über mehrere Tage bis zum ca. achten Tag nach Transfektion abnehmend Zellen nachgewiesen werden, die diese Kolokalisation zeigten. Insgesamt erfolgte die Bindung von MSL2-GFP im Nucleus an das X-Chromosom selbst am Maximum in relativ wenigen Zellen und verglichen mit anderen Proteinen, z.B. MOF-GFP und HP1\(\alpha\)-GFP, später.

2.2.3 Induktion des Metallothioneinpromotors

Wie oben schon erwähnt, ist der MTN-Promotor ein gut etabliertes System für die Expression exogener Promotoren. Seine Expressionsstärke kann durch die Zugabe von Cadmium bzw. \(\text{CuSO}_4\) auf das 30-100fache gesteigert werden [31]. Cadmium hat gegenüber \(\text{CuSO}_4\) den Nachteil, dass es zusätzlich eine unerwünschte Hitzeschockreaktion der Zellen ausübt und bei niedrigerer Konzentration als \(\text{CuSO}_4\) das Wachstum der Zellkultur hemmt, so dass in den Experimenten \(\text{CuSO}_4\) verwendet wurde. Wie auch Bunch [31] wurde die Beobachtung gemacht, dass eine Induktion von bis zu 1mM \(\text{CuSO}_4\) das Wachstumsverhalten von SF4-Zellen nicht wesentlich beeinflusste. Eine Induktion mit 0,5 mM \(\text{CuSO}_4\), wie sie in der vorliegenden Arbeit in den meisten Fällen verwendet wurde, wurde von den Zellen mehrere Wochen toleriert. Bei einer Induktion mit Konzentrationen von 1.5mM oder höher kam es jedoch zu einer deutlichen Hemmung des Zellwachstums nach drei bis fünf Tagen.

2.2.4 Stabile Zelllinien für MSL2-GFP

Es wurden mehrere stabile Zelllinien generiert, die das MSL2-GFP-Fusionsprotein exprimierten, sowohl unter der Kontrolle des HSP-Promotors als auch unter der Kontrolle des MTN-Promotors. Nach einigen Wochen Selektion unter Geneticin wurde eine stabile Zelllinie unter der Kontrolle des HSP-Promotors erhalten, die recht homogen das gewünschte Protein auf basalem Niveau des Hitzeschockpromotors exprimierte (Abbildung 16 und Abbildung 17). Eine weitere Induktion durch Hitzeschock war nicht notwendig. In
Ergebnisse
dieser Zelllinie zeigte sich das fluoreszierende Protein fast ausschließlich im beschriebenen Territorium mit einem niedrigen Niveau im übrigen Nucleoplasma. Diese Zelllinie wurde im Weiteren für die dynamischen Untersuchungen verwendet.

2.2 Expression von MSL2-GFP in SF4-Zellen

Nach vier bis sechs Wochen Selektion unter Geneticin ohne Induktion durch CuSO₄ entwickelte sich eine Zelllinie, die basal keine oder nur eine sehr geringe Expression des fusionierten Proteins zeigte. Durch Induktion mit CuSO₄ konnte jedoch eine erneute Expression des Proteins MSL2-GFP angeregt werden, welches auch in einem signifikanten Prozentsatz zu einer Lokalisation im X-Territorium führte. Es wurden Konzentrationen zwischen 0,2 und 2 mM verwendet (Abbildung 19). Diese Konzentrationen führten nach ca. drei Tagen zu einem sichtbaren Anstieg von Zellen, die eine Lokalisation von MSL2-GFP im Territorium des X-Chromosoms zeigten (Abbildung 18). Auch hier benötigten die Zellen also eine gewisse Zeit, bis sie MSL2-GFP an der korrekten Position am X-Chromosom integrierten. Je länger die Zellen selektiert wurden, desto niedriger konnte die Konzentrationen von CuSO₄ gewählt werden. Zuletzt wurde in der Regel mit einer Induktion von 0,5 mM über vier Tage gearbeitet. Dieses Verhalten nach mehreren Wochen Selektion spricht wie auch im Falle der stabilen Zelllinie unter dem Hitzeschockpromotor für eine Selektion von zwei Richtungen. Zum einen hatten

Abbildung 17 Stabile Zelllinie für hsp-msl2-gfp. Die Abbildung zeigt die Kolokalisation von MSL2-GFP mit MSL1 in der Immunfluoreszenz mit Antikörpern gegen MSL1. Im rechten Bild sind die GFP und MSL1-Färbungen übereinander gelegt, Stellen gleicher Lokalisation erscheinen gelb. Die DNA (blau) wurde mit To-Pro 3 gegen gefärbt. Der Maßstab im linken Bild entspricht einer Länge von 5 µm.

Abbildung 18 Die Abbildung zeigt eine Immunfluoreszenz der stabilen Zelllinie mtn-msl2-gfp nach drei Tagen Induktion mit 2 mM CuSO₄. In der rechten oberen Ecke jedes Bild ist eine einzelne Zelle vergrößert dargestellt.
Ergebnisse

Abbildung 19 Verschiedene Induktionsbedingungen für die stabile Zelllinie von mtn-msl2-gfp ca. drei Monate nach Transfektion. Im linken Bild wurde die Konzentration von CuSO$_4$ konstant bei 2 mM gehalten und die Expression von MSL2-GFP sowie MSL2 über neun Tage beobachtet. Ab dem dritten Tag wird MSL2-GFP verstärkt exprimiert und MSL2 supprimiert. Im rechten Bild wurden verschiedene Induktionsbedingungen (von 0 mM bis zu 2 mM CuSO$_4$) über fünf Tage durchgeführt. Schon bei einer Konzentration von 0.2 mM wird MSL2-GFP exprimiert, bei 0.5 mM liegen MSL2-gfp und MSL2 in ungefähr gleicher Konzentration vor. Dieses Verhältnis verschiebt sich bei höheren Konzentrationen zu MSL2-GFP hin. Es wurden jeweils 10 µg Proteine aufgetragen, allerdings sind im rechten Bild in der dritten und vierten Bahn offensichtlich weniger Protein aufgetragen worden.

2.2.5 Lokalisation von MSL2-GFP

Das Signal von MSL2-GFP stimmt mit der in der indirekten Immunfluoreszenz gefundenen Lokalisation von MSL1 perfekt überein. Das Territorium erstreckt sich außerhalb des Nucleolus innerhalb des Nucleus auf einem Volumen von ca. 12% des Nucleus der Zelle. Auch in vivo ist das GFP-Signal innerhalb dieses Territoriums klar lokalisierbar, nur vereinzelt sind außerhalb des Territoriums, aber innerhalb des Nucleus schwach fluoreszierende Punkte zu erkennen (Abbildung 20). Theoretisch könnten dies autosomale Stellen sein, die der DCC oder zumindest MSL2 erkennt. Von MLE und MOF ist bekannt, dass sie auch autosomal zu finden sind. Ebenfalls bekannt ist, dass der DCC
2.3 Funktionelle Aktivität von MSL2-GFP

Die Funktionalität von MSL2-GFP wurde durch mehrere komplementäre Ansätze überprüft.

2.3.1 MSL2-GFP ersetzt das endogene MSL2 in vivo

Schon die Tatsache, dass MSL2-GFP in der oben beschriebenen stabilen Zelllinie wie das endogene MSL2 und die übrigen Proteine des DCC vorwiegend im Territorium des X-Chromosoms im Zellkern lokalisiert ist, zeigt, dass MSL2-GFP in der Lage ist, seine Zielregion zu erkennen. Dass MSL2-GFP nicht nur „auch“ am X-Chromosom band,

2.3.2 MSL2-GFP interagiert mit dem DCC in vivo

Die Frage, die sich anschließt, ist, ob MSL2-GFP nicht nur wie MSL2 lokalisiert, sondern ob es auch dieselben bekannten Wechselwirkungen mit den anderen Proteinen des DCC besitzt. Hierzu wurden sowohl mit der stabilen HSP-MSL2-GFP-Zelllinie als auch mit der Wildtyp SF4-Zelllinie Immunpräzipitationen durchgeführt. MSL2 bzw. MSL2-GFP wurden mit Antikörpern gegen MSL2 aus Gesamt-Zellextrakt immunpräzipitiert. Im so gewonnenen Überstand fanden sich MSL2 sowie zusätzlich in der stabilen
Abbildung 22 Immunpräzipitation von Gesamt-Zellextrakt von SF4-Wildtypzellen, sowie von der stabilen Zelllinie für hsp-msl2-gfp. MSL2 und MSL2-GFP wurden mit Antikörpern gegen MSL2, GFP sowie einem unspezifischen Antikörper (α-rabbit) immunpräzipitiert. Das obere Bild zeigt einen Western-Blot des Präzipitats mit Antikörpern gegen MOF. Unten sind der Input (10% des Materials, welches für die Immunpräzipitation verwendet wurde) sowie der Überschuss der verschiedenen Immunpräzipitationen aufgetragen.

Zelllinie MSL2-GFP, mit dem bekannten Übergewicht von MSL2-GFP gegenüber dem endogenen MSL2. Darüber hinaus konnten in beiden Überständen MSL1 sowie MOF nachgewiesen werden (Abbildung 22). Eine explizite Quantifizierung wurde nicht durchgeführt, aber tendenziell wurden MSL1 und MOF bei gleichem Input in der stabilen Zelllinie in größerem Umfang gefunden als in der Wildtyp-Zelllinie, zumindest aber in der gleichen Größenordnung. In der Kontrolle mit unspezifischen Antikörpern konnte keines der Dosiskompensations-Proteine nachgewiesen werden. Um sicherzugehen, dass das nachgewiesene MOF und MSL1 nicht nur über die Interaktion mit dem endogenen MSL2 nachzuweisen war, wurden die beiden Zellextrakte auch mit einem Antikörper gegen GFP immunpräzipitiert. Im Extrakt aus der Wildtyp-SF4-Zelllinie konnte keines der Proteine des DCC detektiert werden. Dagegen war für die stabile Zelllinie dasselbe Ergebnis wie für die Immunpräzipitation mit dem Antikörper gegen MSL2 zu verzeichnen, mit Ausnahme des Fehlens von endogenem MSL2. Auch die Effizienz war vergleichbar, was als indirektes Zeichen dafür gewertet werden kann, dass mit der Suppression des endogenen
2.3 Funktionelle Aktivität von MSL2-GFP

MSL2 durch MSL2-GFP dieses auch in gleichem Maße die Funktion des endogenen MSL2 übernommen hat.

2.3.3 MSL2-GFP interagiert mit MSL1 in vitro

<table>
<thead>
<tr>
<th>Baculovirus</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>msl2-gfp</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>msl2</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>msl1</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP mit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
</tr>
<tr>
<td>.msl1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
</tr>
<tr>
<td>(S)</td>
</tr>
</tbody>
</table>

210kD MSL2-GFP
125kD MSL2

ergeinigt und anschließend in Western-Blots mit Antikörpern gegen MSL1 sowie MSL2 nachgewiesen. Als positive Kontrolle wurde MSL2 mit MSL1, als negative Kontrolle MSL1 bzw. MSL2-GFP allein exprimiert sowie -als eine zweite negative Kontrolle- die Koexpression von MSL1 und MSL2-GFP mit einem unspezifischen Antikörper gereinigt. In beiden Koinfektionen ließ sich MSL1 nach Reinigung mit anti-MSL2 nachweisen, in den negativen Kontrollen gelang dies wie erwartet nicht. Dies bestätigte somit das bekannte Resultat, dass MSL1 und MSL2 direktmiteinander interagieren, und zeigte, dass diese Wechselwirkung nicht durch die Fusion mit GFP am C-terminalen Ende von MSL2 gestört wird, dass also auch MSL1 und MSL2-GFP direkt miteinander interagieren (Abbildung 23).

2.3.4 MSL2-GFP stabilisiert MSL1 in KC-Zellen

Als weiterer Indikator dafür, dass sich MSL2-GFP funktionell wie MSL2 verhält, wurde MSL2 bzw. MSL2-GFP in die weibliche Zelllinie KC transfiziert. Hintergrund hierfür war die Beobachtung, dass in genetischen Experimenten an weiblichen Fliegen gezeigt wurde, dass transgen exprimiertes MSL2 die übrigen Proteine des DCC stabilisieren konnte [151]. In der vorliegenden KC-Zelllinie konnte in Western-Blots kein MSL2 nachgewiesen werden und nur geringe Mengen an MSL1. Darüber hinaus lagen auch die übrigen Proteine des DCC in deutlich niedrigerer Konzentration als in den Schneider-Zelllinien vor (Diskussion mit Violette Morales). Diese Beobachtungen stimmen mit denen an weiblichen Fliegen überein, dass die Expression von MSL2 in weiblichen Zellen vollständig unterdrückt ist und es in der Folge auch nicht zum Assemblieren des DCC und der Lokalisation am X-Chromosom kommt. Die Frage war nun, inwieweit es in der KC-Zelllinie durch eine Transfektion von für MSL2 bzw. MSL2-GFP kodierenden Plasmiden zu einer Stabilisierung der übrigen Proteine des DCC kommt und ob es zu einer Bildung des gesamten Komplexes kommt. Hierzu wurden die Plasmide mtn-msl2-gfp bzw. mtn-msl2 transient in KC-Zellen transfiziert. In Western-Blots konnten die exogen zugeführten Proteine MSL2 bzw. MSL2-GFP nachgewiesen und ebenfalls eine deutliche Zunahme von MSL1 in den transfizierten Zellen gezeigt werden (Abbildung 24). Die Konzentration von MSL1 erreichte zwar nicht das Niveau von MSL1 in den SF4-Zellen, was aber angesichts der starken Heterogenität innerhalb der transfizierten Zellen auch nicht zu erwarten war. Auffällig war, dass für die Expression des exogenen MSL2 bzw. MSL2-GFP eine Induktion des MTN-Promotors mit CuSO₄ benötigt wurde, und dass bei basaler Expression
nahezu kein exogenes MSL2 bzw. MSL2-GFP nachgewiesen werden konnte. Dies unterscheidet sich von der Transfektion in SF4-Zellen, wo bei transizenter Transfektion auch ohne Induktion MSL2-GFP zu sehen war, wenn auch in geringer Menge. Ob hierfür ein verstärkter Abbau in KC-Zellen oder eine Selektion gegen KC-Zellen, die das exogene Protein verstärkt exprimieren, verantwortlich ist, muss letztlich offen bleiben. Bei der Mikroskopie der transizierten Zellen konnten die exogenen Proteine nicht in einem bestimmten Territorium des Zellkerns nachgewiesen werden, auch wenn in den transizierten Zellen einige lokalisierte Punkte in der Immunfloureszenz mit Antikörpern gegen MSL2 existierten, die in den nicht transizierten KC-Zellen nicht zu finden waren. Diese Punkte waren vorwiegend randständig vom Zellkern zu detektieren, eventuell handelt es sich hierbei um durch Abbauprozesse inkomplette und funktionell inaktive MSL2- bzw. MSL2-GFP-Proteine. Es gelang leider nicht, eine stabile Zelllinie für MSL2 in KC-Zellen zu etablieren, so dass nicht geklärt werden konnte, ob es bei längerer Expression in einem bestimmten Niveau zu einer DCC-Formation kommen kann und ob dieser dann an den X-Chromosomen lokalisiert oder ob die KC-Zellen eine andauernde

Abbildung 24 Nachweis von MSL1 bzw. MSL2 in KC-Zellen. Transiente Transfektionen in KC-Zellen von GFP allein, MSL2-GFP sowie von MSL2 unter der Kontrolle des Metallothionein-Promotors, mit und ohne Induktion durch CuSO₄, wurden nach fünf Tagen im Western-Blot auf die Expression von MSL1 bzw. MSL2 untersucht. Als Kontrolle ist der KC-Wildtyp mit aufgeführt. Es wurden jeweils 10 µg Gesamt-Zellextraks pro Bahn aufgetragen. Bei den KC-Zellen ist eine unspezifische Bande im Western-Blot bei Inkubation mit α-MSL2 zu sehen, die auf derselben Höhe wie MSL2-GFP läuft. „Old“ und „new“ bezieht sich auf die unterschiedlichen Sequenzen für MSL2. „Old“ steht für die im Labor in der Plasmidbibliothek vorliegende Sequenz, „new“ für die durch rT-PCR gewonnene Sequenz aus SF4-Zellen (s. a. das Kapitel „Sequenzvergleich für MSL2“).
MSL2-Zufuhr nicht verkraften würden. Der rasche Untergang der KC-Zelllinie bei Zugabe von Geneticin zur Selektion nach Transfektion könnte die zweite Vermutung stützen, allerdings reagierten KC-Zelllinien insgesamt sehr sensibel auf Transfektionen, so dass hier sicherlich noch der Bedarf weiterer Untersuchungen besteht. Für die funktionelle Aktivität von MSL2-GFP bleibt festzuhalten, dass MSL2-GFP genauso wie MSL2 in der Lage war, MSL1 in weiblichen KC-Zellen zu stabilisieren. Dies steht in Einklang mit früheren genetischen Arbeiten [151].

2.4 GFP-Fusionen von MSL1 und MOF

Nachdem im vorigen Abschnitt gezeigt wurde, dass MSL2, mit GFP sowohl am N-Terminus als auch am C-Terminus verbunden, in einem spezifischen Territorium im Nucleus, welches dem X-Chromosom entspricht, lokalisiert und dass sich darüber hinaus MSL2-GFP auch funktionell wie das endogene MSL2 verhält, lag es nahe, auch andere Proteine des DCC mit dem fluoreszierenden Reporteren GFP zu verbinden. Zum einen wurde hierfür MSL1 als frühen Bindungspartner von MSL2, zum zweiten MOF als Vermittler der epigenetischen Markierung des X-Chromosoms, der Acetylierung von Lysin

Abbildung 25 Lokalisation von MSL1-GFP in vivo. Die Bilder sind Schnitte in der z-Ebene im Abstand von 1 µm.
konventionellen Mikroskopie ein GFP-Signal homogen im Nucleus aufzuweisen schienen, konnte mit Hilfe der konfokalen Mikroskopie bei klein gewählter Tiefe der Bildebene, also klein gewählter Lochblende, Zellen gefunden werden, die bei so gewählter Einstellung ein Verteilungsmuster mit einer stärkeren Intensität in einem wohl definiertem Bereich des Nucleus aufwiesen. Wenn man eine größere Dicke der Bildtiefe wählte, war dieses Signal bei starkem GFP-Hintergrund in diesen Zellen nicht abgrenzbar. Eine andere Möglichkeit die Affinität von MOF-GFP zum X-Chromosom auch bei insgesamt hohem Expressionsniveau nachzuweisen, bestand darin, das Nucleoplasm einen starken Bleichpuls auszusetzen. Falls die Bleichregion außerhalb des X-Chromosoms lag, zeigten etliche der Zellen, die vorher eine homogene Distribution von MOF-GFP im Nucleus aufwiesen, nach diesem Bleichpuls ein klar abgegrenztes Territorium. Solch ein Verhalten wurde im Falle von MSL2-GFP oder MSL1-GFP nie nachgewiesen.

2.5 Punktmutationen von MOF-GFP

![Diagramm der Punktmutationen von MOF-GFP](image)

Abbildung 27 Die schematische Darstellung von MOF mit seinen bekannten Domänen zeigt die Lokalisation der verwendeten Mutationen. CD = Chromodomäne, Zn = Zink-Finger-Motiv, Ac = Bindungsdomäne für Acetyl-CoA als Teil der HAT-Domäne, HAT=Histone-Acetyl-Transferase-Domäne.

Nachdem für die Proteine MSL1, MSL2 und MOF des DCC nachgewiesen wurde, dass sie im Bereich des X-Chromosoms in vivo lokalisieren, stand ein Werkzeug zur Verfügung, den Einfluss verschiedener Manipulationen auf diese Lokalisation zu untersuchen und Einblick in den Aufbau des DCC und den Charakter der Affinität zum X-Chromosom zu gewinnen. Als Beispiel hierfür wurde MOF, als der Vermittler der epigenetischen Markierung, ausgewählt. Im Labor standen hierzu schon aus früheren Arbeiten verschiedene Punktmutationen von MOF zur Verfügung. Aus diesen Arbeiten war
2.5 Punktmutationen von MOF-GFP

hierfür nicht die entscheidende Rolle spielt. Diese Tatsache unterstützt den Fund von V. Morales in unserem Labor, die eine starke direkte Protein-Protein-Interaktion zwischen MOF und MSL1 über den C-Terminus von MSL1 gefunden hat [132]. Die Assoziation von MOF mit MSL1 erfolgt hierbei über die Zinkfingerdomäne von MOF. Genau die Doppel-Mutation (L578G/Y580G) innerhalb der Zinkfingerdomäne, die diese Interaktion \textit{in vitro} reduziert, zeigt auch \textit{in vivo} keine Lokalisation am X-Chromosom. Somit scheint die Zinkfingerdomäne über die direkte Protein-Protein-Wechselwirkung einen substantiellen Einfluss auf die korrekte Lokalisation am X-Chromosom zu haben.
2.6 Dynamische Untersuchungen

2.6.1 Mitose

Bleicheffekts und damit eine Restriktion der maximal möglichen Beobachtungsdauer. Eine Verdichtung des Chromatins in der Prophase, die es erlauben würde, Zellen vor ihrer Teilung zweifelsfrei herauszufiltern, war unter dem Mikroskop im Hellfeld auch retrospektiv nicht zu erkennen.

Bei den beobachteten Mitosen war in den Minuten vor der Mitose das GFP-Signal konstant in einem wohl definierten Territorium zu beobachten, es kam hierbei zu keinen auffälligen Änderungen in der Morphologie der Zellen oder des fluoreszierenden Territoriums. Das GFP-Signal war dann während der Metaphase in der Äquatorialebene der Zelle nachweisbar. Ob die Größe des Territoriums hierbei gegenüber der Interphase kleiner war, konnte auf Grund des fehlenden Relativbezuges des Zellkerns und der Kompromisse in der dreidimensionalen Darstellung kaum quantifiziert werden. Tendenziell wirkte das GFP-

Signal während dieser Phase etwas kompakter. Anschließend zog sich das Territorium des GFP-Signals in die Länge und trennte sich schließlich in zwei getrennt wahrnehmbare GFP-Signale, die zu den entgegen gesetzten Polen der Zelle wanderten. Dies entspricht der Trennung der Chromatiden und ihrer anschließenden Wanderung zu den entgegen gesetzten Polen der Zelle während der Anaphase. Anschließend kam es zum Wiederaufbau der Kern-Hülle in der Telophase und schließlich zur Trennung der Zelle in der Mitte zwischen beiden GFP-Territorien. Eine Größenzunahme des GFP-Signals in seiner Ausdehnung während dieser Phase war allenfalls diskret wahrnehmbar. Von besonderem Interesse ist die Tatsache, dass das GFP-Signal während der gesamten Mitose am X-Chromosom lokalisiert blieb. Es kommt also zu keiner Dissoziation vom X-

2.6 Dyna
tische Untersuchungen

2.6.2 HP1α als Kontrollsystem

HP1α bindet in Drosophila-Zellen, wie in der Einführung schon beschrieben, in heterochromatinreichen Regionen, welche das Chromozentrum bilden [87;184]. Dies wurde für die in dieser Arbeit verwendete SF4-Zelllinie durch Immunfluoreszenz mit einem monoklonalen Antikörper gegen HP1α, der uns freundlicherweise von S. Henikoff zu Verfügung gestellt wurde, verifiziert. Die Immunfluoreszenz von Kernen in der Interphase ergab einen auf eine einzige relativ große Region beschränkten Signalintensitätsanstieg mit einzelnen lokalen Intensitätsmaxima um den Nucleolus gruppiert, wie es schon für mehrere Drosophila-Zelllinien beobachtet

Abbildung 31 Lokalisation von HP1α in der Immunfluoreszenz mit Antikörpern gegen HP1α (a) sowie von HP1α-GFP in vivo in einer stabilen Zelllinie fünf Wochen nach Transfektion (b). Unten ist die Lokalisation von HP1α-GFP in einer einzelnen lebenden Zelle zu sehen. Die Bilder entsprechen Ebenen im Abstand von 0,75 µm.
wurde [161;209]. Dieses Muster fand sich in nahezu allen Interphasenkernen, womit eine hohe Reproduzierbarkeit, wie sie für die folgenden dynamischen Untersuchungen nötig ist, gegeben war (Abbildung 31a).

Das Fusionsplasmid HP1α-GFP, welches uns von S. Henikoff zur Verfügung gestellt wurde, exprimiert in KC-Zellen HP1α-GFP mit einer bevorzugten Lokalisation am heterochromatinreichen Chromozentrum [184]. Dieses Plasmid wurde zunächst transient in SF4-Zellen transfiziert. Ein bis zwei Tage nach Transfektion zeigte sich eine Anreicherung des GFP-Signals in der heterochromatinreichen Region, welche durch Gegenfärbung mit dem Antikörper gegen HP1α als die Region des Chromozentrums verifiziert wurde. Dass sich HP1α-GFP in Säugetierzellen wie endogenes HP1α verhält, wurde durch Bindungsassays mit an Lysin 9 methylierten Histonen-H3-Peptiden [38], durch die Bildung von Homo- und Heterodimeren mit endogenem HP1α-Isofromen [139] und in einem „in vivo“-Inversionsassay [99] gezeigt. Für uns war an diesem Punkt von entscheidender Bedeutung, dass HP1α-GFP dieselbe Lokalisation wie HP1α zeigt und dadurch eine subnukleare Struktur entsteht, die Kinetikexperimenten zugänglich ist. Vor diesem Hintergrund wurde eine stabile Zelllinie unter Selektion mit Geneticin etabliert, welche HP1α-GFP kontinuierlich unter der Kontrolle des Hitzeschock-Promotors exprimierte. HP1α-GFP lokalisierte wie aus den transienten Transfektionen erwartet in einer intensitätsreichen subnuklearen Struktur vor einem diffusen schwächeren GFP-Hintergrundsignal im übrigen Nucleoplasma (Abbildung 31b,c). Der Nucleolus blieb hierbei, wie auch schon bei der transienten Transfektion und in der Immunfluoreszenz, ausgespart. Ca. 30-40% aller Zellen zeigten ohne Induktion durch Hitzeschock die beschriebene GFP-Anreicherung, allerdings bei stark heterogenen Hintergrundintensitäten. Um die Bindungseigenschaften von HP1α zu untersuchen, wurden an dieser HP1α-GFP exprimierenden, stabilen Zelllinie FRAP-Experimente durchgeführt. In der stabilen SF4-Zelllinie wurde ein Teil des im Chromozentrums lokализierten HP1α-GFP gebleicht und die Wiederzunahme des GFP-Signals über die Zeit beobachtet. In der beobachteten Ebene des Zellkerns betrug der räumliche Anteil des gebleichten Areals etwa ein Drittel der intensitätsreichen Region des Chromozentrums (Abbildung 32). Wie auch in den Experimenten mit Säugetierzellen beobachtete man einen raschen Wiederanstieg der Fluoreszenzintensität in der gebleichten Region. Innerhalb von zehn Sekunden war das relative Niveau der Intensität im Heterochromatin im Verhältnis zur Intensität im Nucleoplasma wieder nahezu auf dem Ausgangsniveau vor dem Bleichpuls. Innerhalb der ersten Sekunde wurden hierbei schon 75% der ursprünglichen Intensität wiedergewonnen
2.6 Dynamische Untersuchungen

(Abbildung 33). Dies war jedoch noch deutlich langsamer als die Erholungskurve für GFP alleine, dessen Wiederanstieg schon bei der ersten Bilddatei nach dem Bleichpuls im Nucleus komplett war und dessen Kinetik auf Grund seiner Schnelligkeit mit der gegebenen Hard- und Software nicht weiter aufgelöst werden konnte. Somit spiegelt die im Verhältnis zu GFP langsamere Kinetik eine Einschränkung der freien Diffusion von HP1α-GFP wieder, die wahrscheinlich auf die Bindung von HP1α-GFP an das Chromatin zurückzuführen ist. Diese Ergebnisse standen in Einklang mit den Ergebnissen, die für die Dynamik von HP1α in Säugetierzellen gewonnen wurden [38;61]. Bei der Untersuchung der Dynamik von HP1α-Proteinen in Zellen von Säugetieren durch FRAP-Experimente zeigte sich erst kürzlich ein unerwartet rascher Austausch von HP1α-Proteinen im Heterochromatin [38;61]. Ein Wiederanstieg der Fluoreszenzintensität auf 85% des

Abbildung 33 Quantitative Analyse von 13 FRAP-Experimenten (s.a. Abbildung 32) an einer stabilen Zelllinie für HP1α-GFP. Aufgetragen ist die relative Intensität im gebleichten Areal gegenüber der Zeit.
Ausgangswertes erfolgte hierbei innerhalb von zehn Sekunden. Diese Daten bestätigten, dass unser System schnelle Bindungsdynamiken aufzulösen vermag. Darüber hinaus lieferte uns HP1α-GFP ein gutes Kontrollsystem für die weiter unten zu besprechende Dynamik von MSL2, die deutlich langsamer verläuft.

Die durch FRAP erhaltenen Resultate wurden noch durch weitere FLIP-Experimente bestätigt. Die Zellen wurden in einer Region des Nucleoplasma außerhalb des Chromozentrums wiederholt im Abstand von 15 Sekunden gebleicht. Jeder Bleichschritt bestand aus fünf einzelnen Pulsen bei einer Laserenergie von 22,5 mW. Der Intensitätsverlauf des GFP-Signals wurde sowohl im Chromozentrum als auch im Nucleoplasma außerhalb des Chromozentrums beobachtet (Abbildung 34). In beiden Regionen wurde eine kontinuierliche, beinahe identische Abnahme des GFP-Signals beobachtet. Nach ca. 400 Sekunden, was 20 ausgeführten Bleichschritten entsprach, war das Niveau nahe Null, wie es bei einem schnellen Austausch zwischen gebundenem HP1α-GFP im Chromozentrum und frei diffusiblen HP1α-GFP im Nucleoplasma zu erwarten war (Abbildung 35). Auf den ersten Blick überraschend scheint die Tatsache, dass die Intensität sowohl im Nucleoplasma als auch im Chromozentrum fast identisch sank, obwohl es sich theoretisch einmal um das Signal von frei diffusiblen HP1α-GFP und das andere Mal um das Signal von gebundenem HP1α-GFP handelt. Die Erklärung findet sich im Versuchsablauf, in welchem erst 15 Sekunden nach jedem Bleichschritt die Bildaufnahme erfolgte. Wie aus den FRAP-Experimenten bereits bekannt war, erholte sich die Intensität im Chromozentrum allerdings schon nach zehn Sekunden komplett. Das heißt nach 15 Sekunden hatte sich bereits ein neues Gleichgewicht zwischen Nucleoplasma und Chromozentrum ausgebildet, welches dieselben relativen Intensitäten bei allerdings reduziertem Gesamtpool an HP1α-GFP zeigte. Hierdurch bestätigte sich indirekt die rasche Austauschdynamik von HP1α-GFP am Chromozentrum auch in den FLIP-Experimenten durch den Verlauf der beiden Intensitätskurven im Nucleoplasma und Chromozentrum.

Als Kontrolle wurden die FLIP-Experimente auch an fixierten HP1α-GFP exprimierenden Zellen durchgeführt (Abbildung 35). Es wurden dieselben Bleichschritte (alle 15 Sekunden fünf Iterationen bei 22,5mW) wie bei den lebenden Zellen ausgeführt. Die fixierten Zellen zeigten wie erwartet einen deutlich geringeren Abfall der Intensität, der auch nicht den Verlauf einer Hyperbel aufwies, sondern ein annähernd konstanten Abfall entsprach. Nach 400 Sekunden, was wiederum 20 Bleichschritten entsprach, betrug die Endintensität ca. 70-80% der Ausgangsintensität, wobei der Abfall im Chromozentrum tendenziell etwas stärker ausfiel. Im Idealfall wäre an fixierten Zellen natürlich überhaupt kein
Intensitätsverlust zu erwarten. Für den hier auftretenden Intensitätsabfall, welcher den gesamten Zellkern betrifft, sind zwei Hauptfaktoren verantwortlich, die in der Natur des betrachteten Systems liegen. Zum einen ist durch die geringe Größe des Zellkerns (ein Durchmesser von ca. 5 \(\mu \)m) nicht zu vermeiden, dass die gebleichte Region in unmittelbarer Nähe zum Chromozentrum liegt. Auch bei optimaler Justierung des Zeiss LSM 510 Meta Systems ist es nicht zu umgehen, dass ein geringer Bleicheffekt, mit der Entfernung von der Bleichregion abnehmend, auch außerhalb der definierten Bleichregion auftritt. Dies beobachtete man an fixierten Zellen, die GFP alleine exprimierten, sowie an einer stabilen Zelllinie für H3-GFP (Daten nicht gezeigt). Insbesondere spielte dies eine Rolle, wenn, wie in unserem Fall, die Intensität des Fluoreszenzsignals insgesamt sehr gering war. Der

Abbildung 34 FLIP-Experiment an einer stabilen Zelllinie, die HP1\(\alpha \)-GFP exprimiert. Im linken oberen Bild ist der Versuchsaufbau dargestellt. Es wurden wiederholte Bleichpulse im Nucleoplasma der Zelle ausgeführt (weißes Rechteck). Dann wurde die Intensität im Verlauf der Zeit sowohl im Chromozentrum (grünes Quadrat) als auch im Nucleoplasma (rotes Quadrat) gemessen.

Abbildung 35 Quantitative Analyse der Flip-Experimente von HP1\(\alpha \)-GFP sowohl an lebenden (schwarze Kurve) als auch an fixierten (grüne Kurve) Zellen. Die Fehlerbalken repräsentieren den Standardfehler.
Ergebnisse

tweite Einflussfaktor, der zur Abnahme der Gesamtintensität auch in fixierten Zellen führte, ist der schon besprochene Bleicheffekt durch die Bildaufnahme. Bei den hier durchgeführten wiederholten Bildaufnahmen führte dies zu einer konstanten Abnahme der Gesamtintensität, wie sie in der Tat auch zu beobachten war. Auch der etwas höhere Abfall im Chromozentrum ließe sich hierdurch erklären, da die Funktion des Intensitätsverlusts in Abhängigkeit der Ausgangsintensität keinen streng linearen Verlauf zeigt, sondern für höhere Ausgangswerte einen prozentual höheren Abfall als für niedrigere Ausgangswerte bedingt. Zusammenfassend lässt sich durch die geringe Ausdehnung des Zellkerns und die vorhandenen niedrigen Fluoreszenzintensitäten, die zu einer notwendig größeren Verstärkung führten, die vorhandene Abnahme des Fluoreszenzsignals auch an fixierten Zellen erklären.

2.6.3 Dynamik von MSL2

dass hierdurch eine gewisse Selektion in Richtung sich schwächer bewegender Zellen erfolgte, die in die quantitative Auswertung einflossen. Dies erklärt auch die relativ geringe Anzahl an Zellen, die in die quantitative Analyse einflossen. Für die FRAP-Experimente waren dies elf Zellen aus unabhängigen Experimenten, für die FLIP-Experiment neun. Allerdings war auch in den übrigen Zellen, die sich oft erst nach Minuten so stark bewegten, dass sie für die quantitative Analyse unbrauchbar wurden, mit Schnitten durch mehrere Ebenen qualitativ dasselbe Verhalten reproduzierbar.

Der Bleichpuls in den FRAP-Experimenten bestand wiederum aus fünf Iterationen mit einer Laserenergie von 22,5 mW. Anschließend wurde direkt nach dem Bleichpuls sowie

Abbildung 37 Quantitative Analyse von elf unabhängigen FRAP-Experimenten von MSL2-GFP. Die relative Intensität der Fluoreszenz wurde gegen die Zeit aufgetragen. Die Messpunkte sind jeweils mit ihren Standardfehlern eingezeichnet.
jede weitere Minute eine Aufnahme durchgeführt. Direkt nach dem Bleichpuls war nahezu keine Fluoreszenzintensität im gebleichten Areal mehr feststellbar.

2.6 Dynamische Untersuchungen

Abbildung 38 FLIP-Experimente von MSL2-GFP exprimierenden Zellen. Die Zellen wurden wiederholt im Nucleoplasma (weißes Rechteck im linken oberen Bild) gebleicht und jeweils 15 Sekunden später gescannt. Die Intensität wurde jeweils im Nucleoplasma (rotes Quadrat) sowie im Territorium des X-Chromosoms (grünes Quadrat) gemessen.

Abbildung 39 Quantitative Analyse der n unabhängigen Flip-Experimente von MSL2-GFP sowohl an lebenden (schwarze Kurve) als auch an fixierten (grüne Kurve) Zellen. Im linken Graphen ist die relative Intensität im X-Chromosom aufgetragen, im rechten Graphen die Kinetik im Nucleoplasma. Die Messpunkte sind mit ihrem Standardfehler als relative Intensität gegen die Zeit aufgetragen.

Allerdings könnten sie dazu beitragen, dass der gesamte Intensitätsabfall im Nucleoplasma etwas geringer ausfällt als der Verlust an Intensität im Nucleoplasma der HP1α-GFP exprimierenden Zellen (auf ca. 25% versus 10%), so dass es im Nucleoplasma neben einer mobilen, nicht gebundenen Fraktion noch eine stabile, gebundene Fraktion an autosomalen Bindungsstellen geben könnte. Diese Überlegung bleibt allerdings höchst spekulativ und lässt sich durch die vorliegenden Experimente nicht weiter untermauern. Eine weitere Limitation in der Interpretation der Experimente könnte durch die äußerst geringe Gesamtintensität von MSL2-GFP im Nucleoplasma entstehen, die auf die bereits besprochene strikte Regulierung von MSL2 zurückzuführen und auch im Vergleich zu den HP1α–GFP exprimierenden Zelle nochmals deutlich niedriger ist. Weil auf Grund der sehr
niedrigen Gesamtintensität die Verstärkung sehr hoch gewählt werden musste, spielten kleinste Bewegungen der Zelle sowie das Hintergrundrauschen verstärkt eine wichtige Rolle, da kleine Änderungen schon zu großen Ausschlägen führen können, wie es sich auch in der Kurve des Intensitätsverlaufs im Nucleoplasma niederschlägt.
3 Diskussion

3.1 Mit GFP fusionierte MSL-Proteine lokalisieren am X-Chromosom

In dieser Arbeit wurde gezeigt, dass GFP-fusionierte Proteine erfolgreich in SF4-Zellen exprimiert werden können (Kapitel 2.1). Im Falle von drei Proteinen des DCC (MSL1, MSL2 sowie MOF) wurde nachgewiesen, dass auch ihre GFP-Fusionen eine Lokalisation am X-Chromosom zeigen (Kapitel 2.2.5 und 2.4). Allein die Tatsache der korrekten Lokalisation eröffnet die Möglichkeit, diese fusionierten Proteine für Experimente in transiente Transfektion bzgl. dieser Eigenschaft zu nutzen. So können z. B. Mutationen oder Deletionen der MSL-Proteine an GFP gebunden werden und auf ihre Lokalisation hin untersucht werden. Dies geschah in dieser Arbeit am Beispiel von MOF (Kapitel 2.5). Einschränkend wirkt hierbei allerdings die Tatsache, dass bei transiente Transfektion unter verschiedenen Bedingungen und Beobachtungszeitpunkten in maximal 40% aller Zellen eine Lokalisation am X-Chromosom gefunden werden konnte. Diese Quote ermöglicht es durchaus, klar zu unterscheiden, ob eine Lokalisation erfolgt oder komplett verhindert wird. Schwieriger fällt es, einen quantitativen Effekt auf die Zahl der Zellen, die eine Lokalisation zeigen, zu bestimmen. Dies ist z. B. denkbar, wenn eine Mutante nach wie vor die Bindungseigenschaften besitzt, um am X-Chromosom zu lokalisieren, es aber durch einen andersweitigen Funktionsverlust zu einer Selektion gegen diese Zellen kommt.

Die niedrige Anzahl an Zellen, die ein Fluoreszenzsignal am X-Chromosom zeigen, ist keine Folge der Transfektionseffizienz. Dies sieht man daran, dass nach Transfektion des Plasmids pEGF-hsp, welches für GFP alleine kodiert, nahezu 100% aller Zellen, wenn auch bei stark unterschiedlicher Intensität, innerhalb der ersten zwei Tage ein fluoreszentes Signal innerhalb der gesamten Zelle zeigen. Die Ursachen für den niedrigen Prozentsatz liegen also eher in der Natur der MSL-Proteine (s. a. Diskussion Kapitel 3.2).

Da bei transiente Transfektion nur eine begrenzte Aussage über die funktionelle Integration des fusionierten Proteins getroffen werden kann und auch vorübergehende Faktoren einen Einfluss haben können, wurden stabile Zelllinien für die genannten Proteine etabliert (Kapitel 2.2.4 und 2.4). Im Falle von MSL2 wurden hierbei Zelllinien sowohl unter der Kontrolle des Hitzeschockpromotors als auch unter Kontrolle des MTN-Promotors untersucht (Kapitel 2.2.4). Die Tatsache, dass die stabilen Zelllinien über mehrere Wochen in Kultur gehalten werden konnten, ohne dass sich signifikante Veränderungen hinsichtlich Morphologie, Größe des X-Chromosoms oder
Generationenzeit gegenüber einer Wildtyp-Zelllinie feststellen ließen, spricht dafür, dass MSL2-GFP zumindest keinen negativen Einfluss auf die Funktion des DCC hatte. Es zeigt sich darüber hinaus, dass das fusionierte Protein genau wie das endogene MSL2 in vitro mit MSL1 wechselwirkt (Kapitel 2.3.3), in einer weiblichen Zelllinie MSL1 stabilisiert (Kapitel 2.3.4) sowie über GFP-Antikörper MOF immunpräzipitiert werden kann (Kapitel 2.3.2). Somit scheint MSL2 durch die GFP-Fusion nicht in seiner Funktion eingeschränkt zu sein und das endogene MSL2 durch MSL2-GFP ersetzbar, was für die weiteren dynamischen Untersuchungen von zentraler Bedeutung ist. Theoretisch bliebe die Möglichkeit, dass ein Fehlen von MSL2 oder dessen Ersetzen durch ein nicht voll funktionsfähiges Ersatzprodukt nicht letal für die männliche SF4-Zelllinie ist. Somit wäre zwar die Lokalisation am X-Chromosom sichtbar und MSL2-GFP hätte ähnliche Wechselwirkungen wie MSL2, aber der DCC käme seiner Aufgabe der Dosiskompensation nicht in vollem Umfang nach. Auch wenn dieser Einwand angesichts gleichzeitiger Lokalisation von MSL2-GFP am X-Chromosom und der Acetylierung von H4K16 bei deutlich reduziertem Niveau von endogenem MSL2 (s. a. Diskussion Kapitel 3.2) unwahrscheinlich erscheint, beseitigt ein Experiment von M. Prestel in unserem Labor auch diesen Zweifel. Hierbei wurde eine Fliegenlinie etabliert, die transgen MSL2 fusioniert mit VenusYFP unter der Kontrolle des Hitzeschockpromotors exprimiert. Dieses Fusionsprodukt war in der Lage, eine MSL2-Nullmutante [21], die eine Mutation im RING-Finger-Motiv trägt, zu komplementieren und zeigt sowohl eine Lokalisation am X-Chromosom als auch eine deutlich gesteigerte männliche Überlebensrate.

Für die Erzeugung einer homogenen stabilen Zelllinie waren mehrere Wochen Selektion unter Geneticin nötig. Im Falle von MSL2 unter der Kontrolle des Hitzeschockpromotors ergab sich hierbei eine Zelllinie, in der über 90% aller Zellen eine Fluoreszenz am X-Chromosom auf vergleichbarem Intensitätsniveau zeigten (Kapitel 2.2.4). Mit dieser Zelllinie steht somit ein Werkzeug zur Verfügung, das die Beobachtung eines Markerproteins des DCC unter manipulativen Experimenten an der lebenden Zelle ermöglicht. Denkbar wären hier z. B. RNAi (RNA interference)-Experimente gegen MSL-Proteine oder ISWI und deren Auswirkungen auf die Lokalisation am X-Chromosom oder die Größe des X-Chromosoms.

Weiterhin ist durch diese stabile Zelllinie auch ein einziges Chromosom selektiv in der lebenden Zelle markiert und kann somit über den Zellzyklus verfolgt werden (Kapitel 2.6.1). Im Hinblick auf die Frage, wie sich Chromosomen-Territorien über den Zellzyklus und insbesondere nach der Mitose anordnen (s. Kapitel 1.3.4), eröffnet sich die
Die Translation von MSL2 wird in weiblichen Zellen durch die Expression von SXL gehemmt [16]. In der Folge sind auch das Expressionsniveau zumindest von MSL1 und MSL2 stark herunter reguliert. Durch eine ektope Expression von MSL2 kann jedoch MSL1 sowohl in genetischen Experimenten [97] als auch in der weiblichen Drosophila-Zelllinie KC (Kapitel 2.3.4) stabilisiert werden. Aber auch in männlichen Zellen scheint das Expressionsniveau von MSL2 streng reguliert zu werden. In der stabilen Zelllinie für hsp-msl2-gfp ist die Menge von endogenem MSL2 deutlich reduziert, während das Gesamtniveau von MSL2-GFP und endogenem MSL2 vergleichbar mit dem MSL2-Niveau in einer Wildtyp-Zelllinie ist (Kapitel 2.3.1). Dies spricht zum einen für den Ersatz von endogenem MSL2 durch MSL2-GFP, wirft auf der anderen Seite aber die Frage auf, auf welcher Ebene die Expression von MSL2 gehemmt wird. Zum einen könnte das endogene MSL2, durch einen Promotor, der auf die Menge des vorhandenen MSL2 reagiert, auf Transkriptionsniveau supprimiert werden („feed back regulation“). Als Alternative könnten MSL2 und MSL2–GFP in einer Konkurrenzsituation um freie Bindungsplätze stehen, wobei überschüssiges MSL2 von der Zelle direkt abgebaut wird. Somit wäre die Reduktion des endogenen MSL2-Niveaus nicht auf eine supprimierte Transkription oder Translation zurück zu führen, sondern auf einen vermehrten Abbau von nicht benötigtem MSL2. Für diese zweite Möglichkeit spricht auch die Tatsache, dass durch einen halbstündigen Hitzeschock einer MSL2-GFP exprimierenden stabilen Zelllinie innerhalb der folgenden zwei Stunden die Expression von MSL2-GFP stark anstieg. Im Anschluss sank diese jedoch rasch wieder und lag nach wenigen Stunden schon wieder auf dem Ausgangsniveau (Kapitel 2.2.1). In diesem Verhalten unterscheidet sich MSL2 auch deutlich von MOF-GFP oder GFP allein, welche erst über Tage abgebaut werden. Hier ist der rasche Abbau von MSL2-GFP sichtbar. Ob dies für das endogene MSL2 ebenfalls zutrifft, ist durch die vorliegenden Experimente nicht restlos zu klären. Zwei hier nicht durchgeführte Experimente könnten zu diesem Punkt noch weiteren Aufschluss geben.
Zum einen wäre dies die Bestimmung des mRNA-Levels für MSL2 in der stabilen Zelllinie für hsp-msl2-gfp, zum anderen die Wiederholung des Hitzeschockexperiments mit einer stabilen Zelllinie, die zusätzlich MSL2 unter der Kontrolle des Hitzeschockpromotors exprimiert. Auch für die Integration von MSL2-GFP in den DCC und für die Lokalisation am X-Chromosom ist ein bestimmtes Expressionsniveau erforderlich. So war von den getesteten Promotoren die Expression durch den SV40-Promotor nicht ausreichend, um ein detektierbares Fluoreszenzsignal zu erzielen. Sowohl unter dem Hitzeschockpromotor als auch dem Metallothionein-Promotor konnte in transienter Transfektion eine Lokalisation am X-Chromosom beobachtet werden (Kapitel 2.2.2). Hierbei kam es jedoch zu keiner messbaren Repression des endogenen MSL2 (Daten nicht gezeigt), was zum einen an dem sehr heterogenen Expressionsniveau zwischen den einzelnen Zellen, zum anderen auch an dem insgesamt nur begrenzten Prozentsatz aller Zellen, der eine Lokalisation am X-Chromosom zeigt, liegen mag. In den stabilen Zellen reichte das basale Niveau des MTN-Promotors nicht aus, um ein detektierbares Fluoreszenzsignal am X-Chromosom aufzuweisen. Beim Hitzeschockpromotor dagegen, wenn auch erst nach etlichen Wochen Selektion, war auf basalem Niveau eine Integration von MSL2-GFP in den DCC zu beobachten (Kapitel 2.2.4). Interessanterweise ist im Falle des Hitzeschockpromotors durch eine Induktion mittels eines 30-minütigen Hitzeschocks wie schon erwähnt eine Steigerung der MSL2-GFP-Expression zu sehen. Dies hat jedoch keine Auswirkungen auf die Integration von MSL2-GFP am X-Chromosom. Dagegen kann über eine Induktion des Metallothionein-Promotors durch CuSO₄ über drei Tage sowohl eine Steigerung der Expression als auch der Integration erfolgen (Kapitel 2.2.4). Somit scheint neben einer bestimmten Mindestexpression von MSL2-GFP eine gewisse Dauer der Expression von entscheidender Bedeutung zu sein, was angesichts des schnellen Abbaus von MSL2-GFP auch nahe liegt, allerdings noch nicht vollständig erklärt wird, da direkt im Anschluss an die Expression unter Hitzeschock keine Integration erfolgt. Dies ist ein erster Hinweis auf die geringe Austauschkinetik von MSL2 (s. a. Diskussion Kapitel 3.5). Auf der anderen Seite scheint ein zu hohes Niveau an exprimierten MSL2-GFP von den Zellen nicht gut toleriert zu werden. So sind in den ersten Tagen nach der Transfektion sehr stark fluoreszente Zellen zu finden, die in der Folgezeit verschwinden (Kapitel 2.2.2). Ebenso sind bei längerer Induktion des MTN-Promotors mit CuSO₄ zu Beginn viele sehr stark exprimierende Zellen zu sehen, die sich nach einigen Tagen deutlich reduzieren.
3.3 Integration von MOF in den DCC

Beobachtung von V. Morales, dass die Enzymaktivität von MOF durch die Anwesenheit von MSL1 und MSL3 reguliert wird[132]. Entscheidend könnte hierbei die Tatsache sein, dass MSL3 und MOF an benachbarte Regionen von MSL1 binden. Auch scheint der Zink-Finger für die Substratbindung entscheidend zu sein.

3.4 Schnelle Dynamik von HP1\(\alpha\)

Um für die dynamischen Untersuchungen von MSL2 ein Vergleichssystem zu besitzen, wurde für HP1\(\alpha\)-GFP ebenfalls eine stabile Zelllinie etabliert. HP1\(\alpha\) erschien als Markerprotein für Heterochromatin vergleichbar mit MSL2 in der Hinsicht, dass es ebenfalls in einem bestimmten Kompartiment des Nucleus akkumuliert, welches stabil über Zellgenerationen hinweg weitergegeben wird. Im Laufe der Arbeit erschienen dann zwei Arbeiten, die von der sehr schnellen Austauschdynamik von HP1\(\alpha\) berichteten[38;61]. Somit war HP1\(\alpha\) auch insofern eine gute Referenz für unser System, als dass in
unserem System eine schnelle Dynamik detektierbar ist und sich klar von einer langsameren Dynamik unterscheidet.

Heterochromatin mit seinem Strukturprotein HP1α schien auf Grund der Repression der Transkription und seiner dicht gepackten Chromatinstruktur als relativ starres, rigides Kompartiment innerhalb des Nukleus. Umso erstaunlicher war daher die Erkenntnis der erwähnten Arbeiten des letzten Jahres, dass HP1α eine äußerst hohe Austauschkinetik zwischen dem freien Pool und der an das Heterochromatin gebundenen Fraktion zeigt [38;61]. Diese Eigenschaft von HP1α in Säugetierzellen bestätigt die vorliegende Arbeit auch für *Drosophila*-Zellen (Kapitel 2.6.2). Die in FRAP-Experimenten gemessene Halbwertszeit im Bereich von ca. 0,6 Sekunden liegt in derselben Größenordnung, evtl. geringfügig schneller, wie die in den Säugetierzellen. In Hinblick auf die wiedergewonnene Gesamtintensität gab es in den beiden genannten Arbeiten einen Unterschied. Während Cheutin et al. eine komplette Wiedererlangung der Anfangsintensität sowohl im Euchromatin als auch im Heterochromatin beobachteten, deuten die Daten von Festenstein et al. lediglich auf eine 90%ige Wiedererlangung im Euchromatin sowie eine 70%ige im Heterochromatin hin. Die in dieser Arbeit gewonnenen Daten unterstützen eher die erste Beobachtung, in der innerhalb der ersten zehn Sekunden eine nahezu 100%ige Wiedererlangung des Ausgangsniveaus erreicht wird. Nicht auszuschließen ist allerdings, dass doch eine kleine Fraktion von HP1α stabil gebunden bleibt [176;192]. Dies wäre insofern von entscheidender Bedeutung, als diese stabile Fraktion ein Fundament für die Ausbreitung des Heterochromatins bilden könnte. Hierfür käme auch ein anderer stabiler Faktor wie z. B. das an K9 methylionierte Histin H3 in Frage.

Insgesamt beruht die Bildung des Heterochromatins, welches sich morphologisch als ein stabiles Kompartiment des Nukleus darstellt, auf Proteinebene dennoch auf einer raschen, dauerhaft anhaltenden Erneuerung, zumindest eines seiner Hauptbestandteile, dem Heterochromatin-Protein HP1α. Ob es allerdings noch einen stabilen Proteinbestandteil des Heterochromatins oder evtl. auch eine kleine stabile Fraktion von HP1α gibt, die der raschen Kinetik zu Grunde liegt, ist hiermit natürlich nicht geklärt. Zumindest zeigt es sich aber, dass das Heterochromatin trotz seiner dichten Packung regulatorischen Proteinen zugänglich ist.

Suv39h1 ist in der Lage, H3K9 zu methylieren. HP1α bindet sowohl methyliertes H3K9 als auch Suv39h1 [113]. Basierend auf dieser Erkenntnis liegt die Idee nahe, dass von einer Initiationsstelle aus Heterochromatin über eine selbstrückkoppelnde Schleife propagiert werden kann. Dies wird noch durch ein positives Feedback von Histon- und DNA-
Methylierung unterstützt [197]. Zusammen mit der raschen Dynamik von HP1\(\alpha\) sowie der Assoziation von HP1\(\alpha\) an CAF1 (chromatin assembly factor 1), welcher während DNA-Replikation und -Reparaturen in Histon-Positionierung involviert ist [136], bietet dies einen Rahmen für die Informationsweitergabe über die DNA-Replikation, ohne dass HP1\(\alpha\) gezielt von einem Bindungsplatz gelöst und an einen anderen gebracht werden müsste [113]. Ein interessanter Seitenaspekt ist auch die Tatsache, dass diese zahlreichen Wechselwirkungen von HP1\(\alpha\) seine Dynamik nicht wesentlich einschränken. Darüber hinaus bietet die rasche Dissoziation von HP1\(\alpha\) vom Heterochromatin einen eleganten Mechanismus für die Regulation von Chromatin-Zuständen [38]. Falls HP1\(\alpha\) von methyliertem H3K9 dissoziiert, kann der freierdende Bindungsplatz natürlich neben HP1\(\alpha\) auch von anderen, potentiellen Bindungsfaktoren besetzt werden. Somit entscheidet allein die relative Konzentration verschiedener Proteine und ihre Bindungsaffinität stochastic, wie sich der Chromatin-Zustand verändert. Unterstützt wird dies durch die Beobachtung, dass Suppression eines Gens durch „position effect variegation“ über die reine Expression einer Aktivators überwunden werden kann [3].

3.5 Stabile Assoziation von MSL2 mit dem X-Chromosom

Nachdem ein Großteil von untersuchten nuklearen Proteinen eine äußerst hohe Dynamik zeigten (Kapitel 1.3.2), stellt sich die Frage, wie stabile Genexpressionsmuster über mehrere Zellgenerationen beibehalten werden können. Hierbei legen die Beobachtungen von HP1\(\alpha\) als Markerprotein für das Heterochromatin mit einer bestimmten Chromatinstruktur und entsprechender epigenetischer Markierung nahe, dass dieses Gedächtnis ebenfalls höchst dynamisch aufrecht erhalten werden kann. Dabei muss offen bleiben (s. a. Diskussion 3.4), ob HP1\(\alpha\) wirklich das entscheidende Protein für die Bildung des Heterochromatins ist. Aber selbst wenn die Informationsweitergabe des Heterochromatins ausschließlich über eine dynamische Stabilisierung mit den impliziten Vorteilen für die Erklärung von regulatorischen Steuerungsmöglichkeiten verläuft, bleibt die Frage, ob es sich hierbei um ein universelles Verfahren für die Weitergabe epigenetischer Informationen handelt.

Das in dieser Arbeit verwendete Modellsystem der Dosiskompensation in der *Drosophila* und das dazu gehörige Protein MSL2 teilt gewisse Aspekte mit dem Protein HP1\(\alpha\). So ist auch der DCC mit einem streng bestimmten Kompartment und einer entsprechenden Histon-Modifikationen, dem acetylierten H4K16, verknüpft. Dieses Kompartment in der
3.5 Stabile Assoziation von MSL2 mit dem X-Chromosom

männlichen Fliege wird früh während der Entwicklung durch die Stilllegung von SXL und die Expression von MSL2 festgelegt [41] und im Folgenden über Zellgenerationen hinweg beibehalten. Und wie HP1α ist auch MSL2 über Protein-Protein-Wechselwirkungen in einen Protein-RNA-Komplex eingebunden, in dessen Rahmen auch die Acetylierung von H4K16 erfolgt. Anders als bei HP1α ist aber unbekannt, wie MSL2, zusammen mit MSL1, an das Chromatin assoziiert ist. Trotz gewisser grundsätzlicher Ähnlichkeit, bei im Detail natürlich unterschiedlicher Struktur und Funktion, unterscheidet sich die Dynamik von MSL2 grundsätzlich von der von HP1α. MSL2 wird über längere Zeiträume praktisch nicht ausgetauscht. Es erfolgt weder ein Austausch zwischen der an das X-Chromosom gebundenen und der im Nukleoplasma ungebundenen Fraktion noch innerhalb der am X-Chromosom gebundenen Fraktion (Kapitel 2.6.3). Dieses Verhalten wurde in FRAP- und FLIP-Experimenten bestätigt, lässt sich aber auch indirekt durch das Verhalten von SF4-Zellen nach transierter Transfektion mit hsp(mtn)-msl2-gfp untermauern. Denn anders als für GFP allein oder HP1α-GFP zeigten die Zellen nicht nach ein bis zwei Tagen, sondern erst nach vier bis fünf Tagen ein Maximum an Zellen, die die korrekte Lokalisation am X-Chromosom aufweisen (Kapitel 2.2.2). Dies könnte dafür sprechen, dass erst einige Replikationen benötigt werden, damit MSL2-GFP in einer detektierbaren Menge am X-Chromosom in den DCC eingebaut wird. Auf jeden Fall scheint kein kontinuierlicher Austausch von gebundenem MSL2 mit der freien Fraktion zu erfolgen. Hierfür spricht auch, dass es nach einem kurzen Hitzeschock einer stabilen Zelllinie für hsp-msl2-gfp zwar einen starken Expressionsanstieg von MSL2-GFP gibt, es aber zu keiner Integration in den DCC innerhalb einiger Stunden kommt (Kapitel 2.2.1). Ebenso muss auch die stabile Zelllinie für mtn-msl2-gfp bis zur Inkorporation von MSL2-GFP einige Tage mit CuSO₄ inkubiert werden (Kapitel 2.2.4).

Hier schließt sich die Frage an, an welcher Stelle des Zellzyklus MSL2 ausgetauscht oder ergänzt wird. Gibt es einen speziellen Zeitpunkt, an dem MSL2 und hiermit evtl. der gesamte DCC dissoziiert und es damit die Möglichkeit gibt, durch ein bis dahin ungebundenes MSL2 ersetzt zu werden? Oder verläuft die Austauschkinetik zwar kontinuierlich, aber so langsam, dass innerhalb des hier beobachteten Zeitraums (im FRAP-Experiment 20 Minuten) keine nennenswerte Erholung des Fluoreszenzsignals erfolgt? Gegen das zweite Szenario spricht neben der Tatsache, dass in einzelnen Zellen auch über einen längeren Zeitraum kein Austausch gesehen wurde (Daten nicht gezeigt und nicht quantifiziert), dass bei einem insgesamt recht kurzen Zellzyklus von ca. 20 Stunden auch innerhalb von 20 Minuten ein geringer Austausch festgestellt werden sollte,
wenn der gesamte Pool an MSL2-Proteinen zumindest einmal während des Zellzyklus ausgetauscht werden sollte.

Insgesamt zeigt MSL2 eine Stabilität wie sie bislang nur für wenige nukleare Proteine beschrieben wurde. Diese waren entweder wie z. B. die Histone fest in die Architektur des Chromatins eingebunden [98] oder übernahmen wie z. B. PCNA für einen gewissen Zeitraum eine bestimmte Funktion an einem definierten Ort [186]. Durch die Assoziation mit dem X-Chromosom bekommt MSL2 hierdurch den Charakter eines festen Strukturproteins und wird damit zum Kandidaten für eine stabile Plattform, die den DCC rekrutiert und schließlich zur funktionell bedeutenden Histone-Acetylierung führt.

In RNA-Interferenz (RNAi)-Experimenten mit SL2-Zellen, die Tobias Straub in unserem Labor durchführte, fand sich, dass bei der Ausschaltung von MSL2, MOF oder MSL3 nach sechs Tagen weder eines der drei Proteine noch eine Acetylierung von H4K16 in der Immunfluoreszenz am X-Chromosom mehr gefunden werden konnte. Wie auch bei transienter Transfektion ist die Wirkung der RNAi erst nach einigen Tagen zu beobachten, was als Zeichen für einen längeren Austausch gewertet werden kann, der sich erst über mehrere Zellgenerationen bemerkbar macht. Zum zweiten ist interessant, dass auch MSL2 nach der Ausschaltung von MOF vom X-Chromosom dissoziiert. Dies könnte durchaus in Einklang mit den Experimenten an polytenen Chromosomen stehen, wo nach der
4 Zusammenfassung

Die Dosiskompensation in der *Drosophila melanogaster* ist ein markantes Beispiel für eine epigenetische Regulierung der Genexpression eines subnuklearen Kompartmenten. Ein Komplex (DCC) aus Proteinen und nichtkodierender RNA bindet hierbei spezifisch an das männliche X-Chromosom und führt durch eine zweifache Hypertranskription der X-chromosomalen Gene zu einem Expressionsausgleich zwischen männlichen und weiblichen Zellen. Um die Dynamik dieser Proteine und ihrer Lokalisation *in vivo* untersuchen zu können, fehlten zu Beginn dieser Arbeit entsprechende GFP-Fusionsproteine.

In dieser Arbeit wurden Promotoren und Bedingungen untersucht, unter welchen GFP-Fusionsplasmide in *Drosophila*-Zelllinien exprimiert werden können. Für drei mit GFP fusionierte Proteine des DCC sowie für HP1α-GFP wurden stabile SF4-Zelllinien etabliert. In jedem dieser Fälle zeigte sich, dass die fusionierten Proteine wie die endogenen Proteine im entsprechenden subnuklearen Kompartment lokalisieren. Durch diese stabile Zelllinien standen Werkzeuge zur Verfügung, um den DCC *in vivo* untersuchen zu können. Weiterhin ist durch die Zelllinien für die DCC-Proteine ein einzelnes Chromosom *in vivo* selektiv markiert.

Die Funktionalität des fusionierten Schlüsselproteins des DCC, MSL2, wurde durch mehrere komplementäre Ansätze bestätigt. MSL2-GFP konnte das endogene MSL2 *in vivo* ersetzen, interagiert mit MSL1 und MOF wie das endogene MSL2 und konnte MSL1 in weiblichen Zellen stabilisieren.

Für MOF, die Histon-Acetyl-Transferase des DCC, wurden verschiedene Derivate mit Punktmutationen in seinen beschriebenen Domänen auf die korrekte Lokalisation am X-Chromosom getestet. Es zeigte sich überraschend, dass die Zink-Finger-Domäne entscheidend für die korrekte Integration in den DCC am X-Chromosom ist, während Mutationen der HAT- oder Chromodomäne die Lokalisation nicht beeinflussten.

Die Dynamik von HP1α und MSL2 wurde mit Hilfe der Photobleich-Technik untersucht. Hierbei bestätigten sich für HP1α die aus Säugetierzellen bekannten schnellen Austauschdynamiken, mit einer Rekstitution des fluoreszenten heterochromatischen Kompartmenten innerhalb weniger Sekunden. Im auffälligen Kontrast hierzu zeigte sich für MSL2 eine außergewöhnlich stabile Assoziation mit dem X-Chromosom, wo sich über einen längeren Zeitraum weder ein Austausch zwischen Nukleoplasma und X-Chromosom noch ein Austausch innerhalb des X-Chromosoms detektieren lässt. Dies spricht gegen
einen kontinuierlichen Austauschprozess des DCC während der Interphase mit direkten Implikationen auf die Funktion des DCC und seiner Ausbreitung am X-Chromosom. Darüber hinaus ist MSL2 ein Beispiel dafür, dass für die Beibehaltung eines funktionalen subnuklearen Kompartiments ein dynamischer Austauschprozess kein universelles Prinzip darstellt, sondern auch durchaus molekulare Interaktionen von ausgesprochener Stabilität beinhalten kann.
5 Methoden

5.1 Manipulation von Nukleinsäuren

5.1.1 Gel-Elektrophorese

Die Gel-Elektrophorese für analytische und präparative Zwecke wurde in der Regel mit 1% Agarosegelen (Agarose von SeaKerm Agarose, Marine Colloids Inc. Rockland, Main, USA) durchgeführt. Als Gel- und Laufpuffer wurde 0,5x TBE-Puffer (Tris-Borat-EDTA, 108g Tris, 55g Borsäure, 40ml Na₂EDTA, ad 1l H₂O) verwendet. Das Agarosegel enthielt 2,5µg/50ml Ethidiumbromid.

Für die Gewinnung von DNA-Fragmenten wurde das QIAquick Gel Extraktion Kit der Firma Qiagen verwendet und die Reinigung entsprechend den Empfehlungen des Herstellers durchgeführt.

5.1.2 Klonierungen

Alle in dieser Arbeit verwendeten und im Folgenden beschriebenen Plasmide und Primer sind im Anhang mit Karte und wichtigsten Restriktionsenzymen aufgeführt. Der richtige Einbau der Fragmente wurde durch Spaltung mit geeigneten Restriktionsnukleasen und in der Regel durch Sequenzierung des Übergangs verifiziert.

5.1.2.1 Konstruktion von pEGFP-hsp-msl2 und pEGFP-sv40-msl2

Als Ausgangsvektor für die Konstruktion eines Plasmids für MSL2, am C-Terminus mit GFP fusioniert, unter der Kontrolle des Promoters HSP70 bzw. SV40 wurde der Vektor pEGFP-1 von der Firma Clontech verwendet. Der Vektor wurde mit der Restriktionsnuklease EcoRI innerhalb der multiplen Klonierungsstelle des Vektors linearisiert. Der Hitzeschockpromotor HSP70 wurde aus dem genomischen Klon 122X14 [119], welcher einen Teil des HSP70 Lokus umschließt, mit Hilfe der Restriktionsnukleasen XbaI und XmnI ausgeschnitten. Mit Hilfe des Klenow-Enzyms wurden die Einzelstränge des Vektors sowie des Fragments aufgefüllt und anschließend ligiert. Für den SV40-Promotor extrahierte ich aus dem Vektor pSV40-ZEO (Invitrogen) den Promotor mit BclI, dessen Überhang wiederum durch das Klenow-Fragment unter Zugabe von Nukleotiden aufgefüllt wurde, und XhoI. Dieses Fragment wurde mit pEGFP-

5.1.2.2 Konstruktion von mtn-msl2-gfp

5.1.2.3 Konstruktion von pEGFP-C1-hsp-msl2 und pEGFP-C1-sv40-msl2

Um das fluoreszierende Reportergen GFP auch am N-Terminus von MSL2 beobachten zu können, ging die vorliegende Arbeit für die Konstruktion der entsprechenden Plasmide vom Vektor pEGFP-C1 (Firma Clontech) aus. Zunächst wurde die multiple Klonierungsstelle des Vektors genutzt, welche sich am C-terminalen Ende der GFP-Sequenz befindet, um mit Hilfe der Restriktionsnukleasen KpnI und SmaI den Vektor aufzuschneiden und hierin das MSL2-Fragment zu ligieren. Das MSL2-Fragment wurde diesmal über eine PCR mit den bekannten Primern, die eine Schnittstelle für KpnI bzw. AgeI besitzen, aus dem Plasmid PBB-HB-MSL2 (Plasmidbibliothek des Labors, geklont von G. Mengus) gewonnen. Das PCR-Produkt wurde mit KpnI und AgeI verdaut und an

5.1.2.4 Konstruktion von pEGFP-hsp-msl1 und pEGFP-hsp-mof

Für die Konstruktion von Plasmiden, die MOF bzw. MSL1 unter die Kontrolle des HSP70-Promotors stellen und das fluoreszierende Gen GFP am C-Terminus enthalten, wurden Primer für MOF und MSL1 konstruiert, die am N-Terminus wiederum eine KpnI-Schnittstelle sowie am C-Terminus eine AgeI-Schnittstellen besitzen (s. a. Anhang). Die PCR benutzte für MOF das Plasmid mof-myb2 (Plasmidbibliothek des Labors, geklont von A. Akhtar) als Ursprung sowie für MSL1 pBB-HisB-MSL1 (Plasmidbibliothek des Labors, geklont von G. Mengus). Die PCR-Produkte wurden jeweils mit KpnI und AgeI gespalten und in pEGFP-hsp-msl2, aus welchem ebenfalls mit AgeI und KpnI die MSL2-Sequenz herausgeschnitten wurde, hineinligiert. Die PCR-Primer waren so gewählt, dass das Leseraster berücksichtigt wurde.

5.1.2.5 Konstruktion der Plasmide mit MOF-Punktmutationen

5.1 Manipulation von Nukleinsäuren

5.1.2.6 Konstruktion von pFastBac-msl2-gfp

5.1.3 RT-PCR

Für die cDNA-Gewinnung wurde die reverse Transkription mit der SuperScript RNase H-Reverse Transkriptase der Firma Invitrogen durchgeführt. 5 µg RNA-Extrakt wurden mit 1 µl des gewünschten Primers (Konzentration 500 µg/ml), 1 µl von 10 mM dNTP-Mix (je 10 mM von dATP, dCTP, dGTP und dTTP) und mit sterilem, destilliertem Wasser auf 12 µl aufgefüllt, für fünf Minuten bei 65°C inkubiert und anschließend für fünf Minuten direkt auf Eis gegeben. Nach kurzer Zentrifugation wurden 4 µl 5x First-Strand-Puffer (Firma Invitrogen), 2 µl 0.1 M DTT sowie 1 µl RNaseOUT Rekombinant Ribonuclease Inhibitor (40 Units/µl) hinzugefügt und bei 42°C zwei Minuten inkubiert. Anschließend wurde die Reverse Transkriptase SuperScriptII (1 µl = 200 Units) hinzugegeben, durch Pipettieren gemischt und für 50 Minuten bei 42°C inkubiert. Die Reaktion wurde durch 15-minütiges Erhitzen auf 70°C beendet.

Die so gewonnene cDNA wurde durch PCR amplifiziert. In einem 50 µl-Ansatz waren enthalten: 2 µl cDNA aus der obigen Synthesereaktion, 5 µl 10xPCR-Puffer (200 mM Tris-HCl, pH 8.4, 500 mM KCl), 1 µl von 10 mM dNTP-Mix, je 10 µl (entspricht 10 pmol) der beiden Amplifikationsprimer, 21,5 µl destilliertes H2O sowie 0,5 µl Taq-DNA-Polymerase (Konz. 5 U/l). Die PCR wurde in einer PCR-Maschine von MWG über 25 Zyklen (Denaturierung: 30 Sekunden bei 95°C, Hybridisierung 30 Sekunden bei 60°C, Synthese eine Minute bei 72°C) durchgeführt. Anschließend wurde das gewonnene DNA-Produkt komplett sequenziert.
5.1.4 Sequenzierung

Für die Sequenzierung der Plasmidklone wurde ein Ansatz aus 2 µl Sequenase-Puffer (Firma Amersham Bisoscience), 3 µl (~500 ng) Plasmid-DNA, 1 µl (=2,5 pmol) Primer-DNA, 2 µl Sequenase (Firma Amersham Bisoscience) und 12 µl H₂O gebildet. Je 4,5 µl dieses Ansatzes wurde in vier Reaktionsgefäße gegeben und mit je 2 µl dNTP-Mix und 0,5 µl ddNTP (wobei hier das N für je eines der vier Nukleotide steht) aufgefüllt. Für die Sequenase-Reaktion wurden 40 Zyklen (Denaturierung: 30 Sekunden bei 95°C, Hybridisierung: 30 Sekunden bei 55°C, Synthese 90 Sekunden bei 72°C) in der PCR-Maschine durchgeführt. Anschließend wurde die Reaktion durch Zugabe von 4 µl StopSolution der Firma Amersham Bisoscience und fünfminütiger Inkubation bei 72°C gestoppt und sofort wieder auf Eis gegeben. Die Auftrennung der synthetisierten Einzelstrangfragmente erfolgte in 6%igen Acrylamidgelen unter der Zugabe von 1/1000 Volumen TEMED sowie 1/1000 Volumen 40%igem APS (Ammoniumpersulfat) bei 40 W. Es wurden 4 µl jeder Probe geladen. Als Laufpuffer wurde 1xTBE-Puffer (s. oben) verwendet. Nach erfolgter Auftrennung wurde das Gel für 2h auf Filterpapier in Vakuum getrocknet. Zur Analyse wurde ein Kodak Bio Max Film über Nacht bei -18°C belichtet.

5.2 Manipulation von Proteinen

5.2.1 Baculovirus-Expression

5.2 Manipulation von Proteinen

5.2.2 Western-Blots

Die Präparation des Zellproteins erfolgte durch Extraktion mit RIPA-Puffer (s. a. das Kapitel „Zellextrakt“). Die Bestimmung der Proteinkonzentration wurde nach der Methode von Bradford durchgeführt [29]. Die Proteinproben werden für zehn Minuten bei 70°C in 1x Laemmlli (10x Laemml: 1,25 M Tris-HCL (pH 6,8), 10% SDS, 0,2% Bromphenol blau, mit HCl auf pH 6.8), 10% Glycerol und 25 mM DTT denaturiert, abgekühlt und mit 1 µl DTT (1 M) versehen. Jeweils gleiche Mengen an Protein (zwischen 10-20 µg) wurden in einem 4,5%igem Sammelgel (für 5 ml: 750µl PAA (30%), 1,5 ml Stack-Puffer (0,5 M Tris-HCl, 0,1% SDS, ad 100 ml ddH₂O, auf pH 6.8 mit HCl), 3 µl Temed. 7,5 µl APS(40%), ad 5 ml H₂O) zusammengeführt und anschließend in einem 7,5%igem Laufgel (für 10 ml: 2,5 ml PAA(30%), 2,5 ml Separation-Puffer (1,5 M Tris-HCl (pH 8,8), 0,4% SDS, ad 300 ml ddH₂O, auf pH 8.8 mit HCl), 6 µl Temed, 15 µl APS(40%), ad 10 ml H₂O) aufgetrennt. Die Elektrophorese erfolgte je nach Größe der Proteine für ein bis zwei Stunden bei konstantem Stromfluss von 20 mA/Gel in einem Laufpuffer aus 0,025 M Tris, 0,192 M Glycin und 0,1% SDS.

Das Gel wurde im semi-dry-Verfahren mit einem Semi-Dry-Blotter (Fa. BioRad) auf eine Hybond-P PVDF-Membran der Firma Amersham Bisosciente transferiert. Von der Anode zur Kathode hin wurde dabei ein Stapel aus zwei Lagen Filterpapier, in Puffer A1 (0,3 M Tris, 20%MeOH) vorrequilbiert, einer Lage in Puffer A2 (25 mM Tris, 20% MeOH), der Membran ebenfalls in Puffer A2 vorrequilbiert, dem Gel im Puffer K (70 mM CAPS, pH 10,5, 10% MeOH), sowie weiteren vier Lagen in Puffer K errichtet. Der Transfer erfolgte bei konstanter Stromstärke von 0,8 mA/cm² für ca. 90 Minuten.

5.2.3 Immunpräzipitation

Ca. 3*10^8 SF4-Zellen wurden in 400µl Extraktionspuffer (Endkonzentrationen: Hepes, pH7,6 30mM, KCl 250mM, MgCl₂ 2mM, EDTA 1mM, NP40 0,01%, DTT 1mM, sowie Protease-Inhibitoren) resuspendiert, 45 Minuten auf Eis gestellt, bei 4°C 15 Minuten mit 15000U/min zentrifugiert, der Überstand abgenommen und die Proteindichte bestimmt. Je 130µl wurden für vier Stunden mit den entsprechenden Antikörpern inkubiert. 40µl resuspendierte Beads (Firma Pharmacia Biotech) wurden in 1ml Extraktionspuffer ohne DTT mit 20µl BSA für zehn Minuten equilibriert und anschließend mit den Proben und 300µl Extraktionspuffer ohne DTT über Nacht bei 4°C rotierend inkubiert. Die Präzipitate wurden dreimal im selben Puffer für je 15 Minuten gewaschen. Schließlich wurden die Beads in 50 µl Probenpuffer bei 90°C denaturiert und der Überstand mit den Proteinen durch Western-Blot analysiert.

5.3 Zellbiologische Methoden

5.3.1 Zelllinien

Die in der Arbeit vorwiegend benutzte Zelllinie Drosophila SF4 wurde uns von D. Arndt-Jovin (Max-Planck-Institut für biophysikalische Chemie, Göttingen) zur Verfügung gestellt. Sie wurde als diploide Zelllinie in ihrem Labor aus der Drosophila S2 Schneider-

Alle Zellen wurden in Schneider Drosophila Medium (Invitrogen), welches mit Penicillin (50 U/ml), Streptomycin (50 µg/ml), Glutamin (10%) und mit 10% fetalem Kalbserum ergänzt wurde, gehalten. Eine Ausnahme bildete hierbei die KC-Zelllinie, wo zum Teil auf den Zusatz von Kalbserum verzichtet wurde, da hierdurch die ansonsten suspendierten Zellen deutlich adhärenter wurden und so für Immunfluoreszenzverfahren zur Verfügung standen. Die Zellen wurden bei 26°C im Inkubator gehalten, tolerierten aber auch längere Temperaturabweichungen erstaunlich gut, z. B. zeigten die Zellen bei Temperaturen von 30°C zur Induktion des Hitzeschockpromotors über mehrere Zellzyklen keine Wachstumseinschränkung. Bei der Dauer eines Zellzyklus von ca. 24-30 Stunden wurden die Zellen alle drei bis vier Tage im Verhältnis 1:10 in neues Medium transferiert. Für die Baculo-Virus-Expression wurden Schmetterling-Zellen (SF9) verwendet.

5.3.2 Transiente Transfektion und stabile Zelllinien

Transfektionen wurden mit Hilfe der Effectene Transfection Reagenz (Qiagen) durchgeführt. Für transiente Transfektionen wurden 0,5-1*10⁶ Zellen in einer 6-Lochplatte ausgesät und am folgenden Tag mit 0,4 µg Plasmid-DNA entsprechend dem Handbuch von Qiagen transfiziert. Die Zellen wurden zwischen 24 Stunden und sechs Tagen bei 26°C gehalten und anschließend weiterverwendet. Für stabile Transfektionen wurden am Tag vor der Transfektion ca. 4*10⁶ Zellen in einer Petrischale mit 10cm Durchmesser ausgesät. Die Transfektion wurde wieder entsprechend dem Handbuch mit 1,8 µg Plasmid-DNA und der Co-Transfektion von 0,2 µg des Plasmids pUChsNeo [188], welches für eine Neomycin/Geneticin-Resistenz codiert, durchgeführt. 24 Stunden nach der Transfektion wurden die Zellen 1:5 gesplittet und 1 mg/ml Geneticin hinzugegeben. Nach zwei bis drei Wochen wurde die Konzentration von Geneticin auf 0,5 mg/ml gesenkt. Alle in dieser Arbeit beschriebenen stabilen Zelllinien wurden mit Geneticin selektiert. Auch wenn hierdurch eine effizientere Selektion möglich ist, könnte eine Selektion mit Hygromycin eine raschere und effizientere Selektion ergeben. Zumindest wurden in den ersten Tagen nach der Selektion mit Hygromycin eine deutlich raschere Abnahme der Zellzahl und eine höhere Anzahl positiver Zellen beobachtet. Dies gilt für eine Konzentration von 0,5 mg/ml Hygromycin. Über einen längeren Zeitraum wurden im Rahmen dieser Arbeit keine Beobachtungen mit Hygromycin durchgeführt.
5.3.3 Einfrieren von Zelllinien

Für das Aufbewahren von Zelllinien wurden die Zellen in 1 ml des entsprechenden Mediums versetzt mit 10% fetalem Kalbsserum und 10% DMSO resuspendiert. Anschließend wurden sie schrittweise abgekühlt und ca. eine Stunde auf Eis gestellt. Dannach wurden sie eine Stunde bei -20°C und schließlich über Nacht bei -70°C inkubiert. Die Aufbewahrung erfolgte in flüssigem Stickstoff.

5.3.4 Zellextrakt

Für den Nachweis von Proteinen mittels Western-Blot wurden die Zellen mit RIPA-Puffer extrahiert. Der RIPA-Puffer bestand aus 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% NP40, 0.5% Deoxycholat, 0.1% SDS, 1 mM EDTA, 1 mM DTT sowie einem Mix aus Protease-Inhibitoren (PMSF, Leupeptin, Aprotinin und Pepstatin). Für einen Gesamt-Zellextrakt für die weitere Analyse mittels Immunpräzipitation wurden die Zellen mit einem Lyse-Puffer (50 mM Hepes pH 7.6, 300 mM KCl, 0.5 mM EDTA, 0.1% NP40, 1 mM DTT, Potease-Inhibitoren: PMSF, Leupeptin, Aprotinin und Pepstatin) suspendiert und 15 Minuten auf Eis inkubiert. Anschließend wurden sie mit Pulsen von 15 Sekunden bei 20-25%iger Amplitude sonifiziert (Branson digital sonifier model 250-D) und für 30 Minuten bei 4°C mit 14.000 Umdrehungen/Minute zentrifugiert. Die Zellextrakte wurden jeweils entweder direkt verwendet oder zur späteren Verwendung bei -80°C aufbewahrt.

5.3.5 Immunfluoreszenz

Für die Immunfluoreszenz von SF4 Zellen wurden 0.5-1x10^6 Zellen auf einem Deckglas innerhalb eines hydrophoben Ringes von ca. 1,5 cm Durchmesser ausgesät. Die Zellen wurden anschließend in einer feuchten Box für ein bis zwei Stunden bei Raumtemperatur gehalten. Für eine längere oder Übernacht-Inkubation wurden die Deckgläser in 4-well-Platten gegeben, nach einer Stunde 5 ml Medium hinzugefügt und mit Parafilm verschlossen. Vor Verwendung wurde das überstehende Medium abgezogen und die Deckgläser kurz in PBS gewaschen. Anschließend wurden die Zellen in 2%iger Paraformaldehyd-Lösung auf Eis für 7,5 Minuten fixiert. Dann, wiederum auf Eis, für 7,5 Minuten in 1% PFA, 0,25% Triton, PBS (phosphate buffered saline) permeabilisiert. Nach
zweimaligem kurzem Waschen in PBS wurden die Zellen in 2% BSA, 5% Ziegen-Serum, PBS (ca. 130 µl) in einer feuchten Kammer bei Raumtemperatur für 1 Stunde geblockt. Die Blocklösung wurde abgezogen und anschließend mit dem ersten Antikörper (entsprechend in Blocklösung verdünnt, z.B. für anti-msl1 1:600) für eine Stunde inkubiert. Die Zellen wurden zweimal für je fünf Minuten in PBS gewaschen und mit dem zweiten Antikörper (wieder entsprechend in Blocklösung verdünnt, z.B. für Cy3-anti-Hase 1:1500) für eine Stunde inkubiert. Nach erneutem Waschen (zweimal für fünf Minuten in PBS) wurde die DNA mit Hoechst 33258 (1 µg/µl) oder für die konfokale Mikroskopie mit DRAQ5 (Verdünnung 1:1000) oder TO-PRO3 (Verdünnung 1:1000) für fünf Minuten in PBS gegengefärbt. Für die Betrachtung unter dem Mikroskop wurden auf die Zellen ca. 30 µl Mounting-Lösung (1,5% N-Propyl-Gallat, 60% Glycerol, PBS) gegeben und anschließend mit einem Objektträger verschlossen.

5.3.6 Mikroskope

Für Betrachten der Zellkultur in vivo wurde ein Lichtmikroskop der Firma Zeiss verwendet, mit dem es auch möglich war, durch Zuschalten einer UV-Lampe das fluoreszierende Signal von GFP zu beobachten. Allerdings war selbst bei absoluter Abdunkelung die Lichtausbeute relativ gering, so dass nur Zellen, die ein extrem hohes Niveau an GFP-Proteinen exprimierte, gesehen werden konnten. So konnte hiermit nur ein erster Test vorgenommen werden, ob das gewünschte Protein überhaupt exprimiert wurde. Subnukleare Lokalisation konnte hiermit nicht nachgewiesen werden.

Apertur 1.4) durchgeführt, detailliertere Aufnahmen mit einem 100x Planapochromat Ölimmersionsoptiv (Numerische Apertur 1.4), Übersichtsaufnahmen mit einem 40x Planapochromat Ölimmersionsoptiv (Numerische Apertur 1.4). Die Energie des Lasers war für die Aufnahmen möglichst niedrig gehalten, um unerwünschte Bleich-Effekte so zu minimieren. Typischerweise lagen sie zwischen 1 und 2mW, was immer noch einen Photobleicheffekt während der Aufnahmen verursachte, so dass idealerweise eine noch kleinere Energie gewählt werden sollte [55]. Für noch kleinere Energien war die Intensität des GFP-Signals jedoch nicht ausreichend. Als Ausgleich für die geringe Energie wurde die Verstärkung der emittierten Strahlung relativ hoch gewählt und lag typischerweise im Bereich von 800-850, so hoch, dass Rauscheffekte noch nicht störend wirkten. Der Zoomfaktor des Mikroskops wurde tendenziell niedriger gewählt, da der auftretende Photobleicheffekt proportional zum Quadrat des Zoomfaktors ansteigt. Also wurde in der Regel eine 63fache an Stelle der 100fachen Vergrößerung gewählt. Ein weiterer Kompromiss musste in der Länge der Dauer der Belichtung gefunden werden, da hier ebenfalls eine zu lange Belichtung zu starken Bleich-Effekten führte. So wurde die Belichtungszeit pro Pixel so niedrig, wie es für die Intensität des Signals möglich war, gehalten. Indirekt wurde diese auch durch die eingestellte Mittelung, und damit die Qualität der Auflösung, beeinflusst. Für immunfixierte Zellen für das Signal der sekundären Antikörper wurde in der Regel der Faktor 8 gewählt, für das GFP-Signal der Faktor 2 oder 4, für das GFP-Signal in den FLIP- und FRAP-Messreihen der Faktor 2. Für die Bleichpulse bei den FLIP- und FRAP-Experimenten wurden bei einer Energie von 22,5mW in fünf Schritten durchgeführt. Die Quantifizierung der Daten erfolgte mit Image J. Die Berechnung erfolgte für die FLIP- und FRAP-Experimente etwas anders. Im Falle der FRAP-Experimente wurde die Intensität im Bleichareal gemessen und zur Gesamtintensität der Zelle zum jeweiligen Zeitpunkt in Relation gesetzt. Bei den FLIP-Experimenten wurde jeweils in den gezeigten Arealen, einmal im Nukleoplasma und einmal in der Region des Fluoreszenzmaximums, die Gesamtintensität bestimmt und in Relation zu der Gesamtintensität einer benachbarten Zelle gesetzt, um den Bleacheffekt durch die Aufnahme zu eliminieren. Die gewonnenen Daten wurden mit Microsoft Excel weiterverarbeitet. Die gezeigten Bilder wurden mit Adobe Photoshop 7 sowie Adobe Illustrator 10 weiter bearbeitet.
6 Anhang

6.1 Plasmide

Im Folgenden Kapitel sind schematische Karten der in dieser Arbeit verwendeten Plasmide mit einigen ausgewählten Restriktionsenzymen dargestellt. Die Konstruktion der Plasmide findet sich in Kapitel 5.1.2.
6.2 Sequenzen

6.2.1 Sequenz von MSL2

ATGGCCCAAGACGGCATACTTGAAGTGACACCGATCGCTCCGCTTCGAATCTT
MAQTAYLKVTRIAMRASASNML

TCCAAACGGCGGGTGGAGGAGCTGAACTCCGGGCTCGGCGAGCTACGGCAGCTGCTGTCT
SKRREVELNSGLGERQLLS

TGCATTGTTCTGTGCCAGCTTGTGAGATCCCTACTCGCCCAGGAACGCTGTGCAG
CVCCQLLLVDPYSPKKGKRQ

CACAACGTGTGCCCGGCTGTGCTCAGTTGATTCCAGAGACTCTGACCGAGAGAGAT
HNVCRLCLRGKHKLFPSCTQ

TGCAGGGTGTGGCTCGACCTTTCAAGACCTACGAGAGAGTATGTAGCGCCCAGCAGTA
CEGCSDFKTYEEENRNMMMAAQQL

CTGTGCTACAAGACGCCTGCTCCACCTGCTCCACTCGGCAATTATTTGTGAGCTGGCC
LCKTLCLVHLLHSALFGELA
Anhang

390
GGGATGCGGCCACAGTGCCAGGACGCTGTCCTCAGATCAAGTGCCTCCCAAAACC
GMRPFQVARELVPRIKLPPKT

450
ACACAGGAGATTTCATTCGCGAGGGTCACCTCAACACTCTCGGACTCACTTTTCGCCC
TQEFIREGSNISDTFDIFLP

510
CAGCCCGGATTTGCGGCTTCTCAAGGACATGCCACACATCGTCGCCGGAGAAGCGAGGCCCT
QPDLPFLKDMPTSLPAETPP

570
ACGTCGCGGGTCACGACTCCGGAAATGCCCCTATGACACCCACATACCATGCGAGCGATT
TSAVTTPPLEPYDHHLNISDI

630
GAGGGAGGGCCGGCGCCACACAGCGAGAGGCGACCTTTCTCGCCGTTCCCTCGTCGCC
EAAATAEQGHFSPLPLL

690
ACAGGATCTCGCATGCGCTCTCTCAGCCGAGGCAATATGCTATGCACCCGAGAGC
TGSRMGMLSHAGQIVATES

750
TCGGAGTGCCGCTTCTGAGCCTGGCGACATCTCTGCTCTCAGCCGCGGCAAAATAGCTATGCACCGAGCT
SESFGMDQAWTDQVDLSGTV

810
TCGGTGTCGAAATACACAAATAGCCGAACACACTTTTGCTGTCTCTACGTGATGGCTCCACT
SVSKYTNSGGNFFAVSYVMP

870
TCCTCGCCACGAGATCTCGATCCACCACTCGCCAGGTTGCAAAATCGCCAGGCTGTCGCCA
SATTKFDPQELQIGQVVQMA

930
GACTCCACTCATGGCTGCTGCTTCGAGCTCGAGCTGCTAGTTGAGAGGCCACCGCGAGCTACAG
DSTQLAVLAAVEETVESTSTQ

990
TTGACTGTCCTCACCACCCGTTGAGAGACCGTTGGAACATCCACGACGCTTAAAGTG
LTVLSTTVVEETVESTSTQLENV

1050
CTTACCTCCGCTGAGGAGCCACACGAACTTCTGATCATTGCTAATCTGCAAGTGGAG
LTSAAEPNEISDQLANLQVE

1110
GAATCTGATGAGCTGCTGCTTGGTGAAGAGACCGTTGGAAGAGGCGAGGGAACCTCAACTC
ESDEALVEETVEAEAGTSIP

1170
TCAGAGGTTGTAGCTGAGCACATGGAGGAGGACATCCACTTTGGATGTCACACTTCCACAG
SEVVAEHMEDIQHLVDVHTSQ
6.2 Sequenzen

```
1230 1260
TCACCTACACAAACGGAAATGGGAAGCAGTGGAGGAGCATGTTGCCACAAAAACACAA
S P T Q T E M E E A V E E H V A T K T Q

1290 1320
TTGGGTACATGTGCAAACAACTATTGCGAGGATGCCGGATGCCGTTGCAAAAGATTTTGGAC
L G H V Q T E L Q D A E S L Q K D F E D

1350 1380
GCAAAGGCAGCGGCTGAAGGAGGAAAGGAGGAGAAGGACCTGGCAACATCAATTCAGT
A K A A A E E A K E K E K D L H A I S A

1410 1440
GAGCTGCAGAAGGAGGACAGTGACGAGCCAACACTTAAGCGAAGAAGAAGCTACTCTC
E L Q K E D S D E P T L K R K R T R T L

1470 1500
AAAGCGTCACAAGCTGGCAAAATTTGAGGCTCTCTCGGTACAGTACAAATAGTGCAAA
K A S Q A A K I E P V P S E V K T K V Q

1530 1560
TCTGGAAAGGGCCGCTCTTCGCGAGGATGCGGAGTCGTTGCAGAAAGATTTTGAGGAC
L G H V Q T E L Q D A E S L Q K D F E D

1590 1620
CAGCTGCAGAAGGAGGACAGTGACGAGCCAACACTTAAGCGAAGAAGAAGCTACTCTC
E L Q K E D S D E P T L K R K R T R T L

1650 1680
AATTCCCGATGTCCTTGCTACAAGAGTTACAACAGCTGGCCGGGTGTCATTTGCGGTGC
K A S Q A A K I E P V P S E V K T K V Q

1710 1740
TGCAAGAATCCGCAACAAGGAGGACTACCTGGGGAAGGAGGAGAAGGACACTTAAGTGCAAA
K A S Q A A K I E P V P S E V K T K V Q

1770 1800
TTCGAAATGCCGAAGGAGCAGCGCCGCTGGTATACCTCGCCGAGCAATACCCTCACACTGCC
P K P K C R C I G S S N T L T T C R

1830 1860
GAGCTAGGCAGGAGGAGAACAGTATGGCGGAACTGTCGGAGGAGCCGGTGGTAGCT
E P R Q E E N S M A P P D S S A P I S L

1890 1920
GTGCCGCTAAATAATTTGCAGCAATCCCAGCATCCTTTGGTGCTTGTTCAGAATGAGAAA
V P L N N L Q Q S Q H P L V L V Q N E K

1950 1980
GGCGAGTACCAGGGCTTCAATATCTTCCAGGGCAGCAAGCCCCTTGATCCGGTCACCGTT
G E Y Q G F N I F Q G S K P L D P V T V

2010 2040
GGCTTCACTATTGCTGCGAGCAGCAACCCGATGGCTTTGCTCTTCCCTTCCTCAATT
G F T I R V Q L Q H T D G F G S L P Q Y
```
6.2.2 Primer

Folgende Primer wurde in dieser Arbeit für Sequenzierungen und Konierungen benutzt:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>msl22422.rv</td>
<td>TCT CAT TCT GAA CAA GCA CC</td>
</tr>
<tr>
<td>MSL2.fw</td>
<td>CGC GGT ACC ATG GCC CAG ACG GCA</td>
</tr>
<tr>
<td>MSL2.rv</td>
<td>CCC GAC CGG TGG CAA GTC ATC CGA GCC CGA</td>
</tr>
<tr>
<td>KpnEGFP.fw</td>
<td>GGG GTA CCA TGG TGA GCA AGG GCG AG</td>
</tr>
<tr>
<td>KpnEGFP.rv</td>
<td>CCG GTA CCC TTT TAG AGC TCG TCC ATG CC</td>
</tr>
<tr>
<td>EGFP-C</td>
<td>CAT GGT CCT GCT GGA GTC GCT G</td>
</tr>
<tr>
<td>EGFP-N</td>
<td>CGT CGC CGT CCA GCT CGA CCA G</td>
</tr>
<tr>
<td>gfpsms12_821.fw</td>
<td>CGA ATC TTC TCT CCA AAC GGC GG</td>
</tr>
<tr>
<td>gfpsms12_1037.rv</td>
<td>TAG GTC TTG AAG TCG GAG CAA CCC</td>
</tr>
<tr>
<td>msl1_170.rv</td>
<td>TGT CCT CCA CAG CCA TTT</td>
</tr>
<tr>
<td>msl1.fw</td>
<td>CGC GGT ACC ATG GAC AAG CGA TTC AAG TGG</td>
</tr>
<tr>
<td>msl1.rv</td>
<td>CCC GAC CGG TGG ACG ATT CTT CTG GCG CTT GC</td>
</tr>
<tr>
<td>mof.fw</td>
<td>CGC GGT ACC ATG TCT GAA GCG GAG CT</td>
</tr>
<tr>
<td>mof.rv</td>
<td>CCC GAC CGG TGC GCC GAA ATT TCC CGG A</td>
</tr>
<tr>
<td>mtn.fw</td>
<td>CCC GGC CCC AAT ACG CGA ACC GCC TCT C</td>
</tr>
<tr>
<td>msl21483.rv</td>
<td>TGG TGG AGA GCA CAG TCA AC</td>
</tr>
<tr>
<td>msl22059.rv</td>
<td>CAC CTT TTC CTC CTT GTC C</td>
</tr>
<tr>
<td>msl22422.rv</td>
<td>TCT CAT TCT GAA CAA GCA CC</td>
</tr>
<tr>
<td>msl2984.rv</td>
<td>GGG CAG CAA GAT GTC AAA AG</td>
</tr>
</tbody>
</table>

Für die Rekonstruktion von MSL2 wurde für die reverse Transkriptase der Primer msl22422.rv verwendet. Die anschließende PCR wurde mit den Primern msl22422.rv sowie MSL2.fw durchgeführt.
7 Literaturverzeichnis

204. Turner BM: **Cellular memory and the histone code.** Cell 2002, **111:**285-291.

208. van der PM: **Cytochemical nucleic acid research during the twentieth century.** Eur.J.Histochem. 2000, **44:**7-42.

211. Varga-Weisz P: **ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions.** Oncogene 2001, **20:**3076-3085.

221. Wright SJ, Wright DJ: **Introduction to confocal microscopy.** *Methods Cell Biol.* 2002, **70**:1-85.

223. Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX, Harbour JW, Dean DC: **Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF.** *Cell* 2000, **101**:79-89.

8 Lebenslauf

Persönliche Daten
Familienname: Neumann
Vorname: Martin Friedrich
Geburtsort: Hannover
Geburtsdatum: 12. März 1973

Schulausbildung
08/1979 – 07/1983 Grundschule Büren
Juni 1992 Abitur am Kardinal-von-Galen-Gymnasium

Hochschulausbildung
Februar 1995 Aufnahme in die Studienstiftung des Deutschen Volkes
01/1997 – 12/1997 Diplomarbeit „Projektoreinzugang zum Quantensuperraum“ am Lehrstuhl für mathematische Physik bei Prof. Dr. J.Wess
Januar 1998 Diplom Physik
04/1998 – 04/2000 Studium der Humanmedizin an der LMU München
April 2000 Ärztliche Vorprüfung
04/2000 – 04/2004 Studium der Humanmedizin an der TU München
April 2004 Ärztliche Prüfung

Promotion
seit 09/2001 Promotion am Butenandt-Institut der med. Fakultät der Ludwig-Maximilians-Universität München, Lehrstuhl Prof. Dr. P.B. Becker
9 Danksagung

Mein herzlichster Dank gilt Prof. Dr. Peter Becker für die freundliche Aufnahme in seine Arbeitsgruppe, die Möglichkeit zur Durchführung dieser Doktorarbeit in exzellenter wissenschaftlicher Atmosphäre und seine stets aktive und gesprächsbereite Begleitung.

Mein besonderer Dank gilt meinem Betreuer Dr. Tobias Straub, der mir von Grund auf die Geheimnisse der Molekularbiologie näher brachte und die gesamte Doktorarbeit mit viel Geduld und ständiger Diskussionsbereitschaft betreute. Ohne ihn wäre diese Doktorarbeit sicherlich nicht denkbar.

Allen Mitgliedern des Lehrstuhls Becker sei Dank für unzählige Hilfeleistungen, unkomplizierte Bereitstellung von Materialien und Geräten, Diskussionsfreude und vor allem für die Schaffung einer Atmosphäre, in der es Spaß gemacht hat, diese Arbeit anzufertigen.

Bei Dr. Christoph Kaether vom Lehrstuhl Prof. Haass bedanke ich mich für die freundliche Einführung und die stete Hilfe bei der Benutzung des konfokalen Mikroskops.

Meinen Schwestern Barbara und Steffi danke ich für das Korrekturlesen meiner Doktorarbeit und meinen Eltern für die fortwährende Unterstützung meiner Ausbildung.

Vielen Dank!