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Robert Frost:
On Looking Up By Chance At The Constellations

You'll wait a long, long time for anything much

To happen in heaven beyond the floats of cloud

And the Northern Lights that run like tingling nerves.
The sun and moon get crossed, but they never touch,
Nor strike out fire from each other nor crash out loud.
The planets seem to interfere in their curves

But nothing ever happens, no harm is done.

We may as well go patiently on with our life,

And look elsewhere than to stars and moon and sun
For the shocks and changes we need to keep us sane.
It is true the longest drought will end in rain,

The longest peace in China will end in strife.

Still it wouldn’t reward the watcher to stay awake

In hopes of seeing the calm of heaven break

On his patrticular time and personal sight.

That calm seems certainly safe to last to-night.
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1. Abstract

Methods for detecting and characterising clusters of galaxies

The main theme of this PhD-thesis is the observation of clusters of galaxies at submillimetric wavelengths. The
Sunyaev-Zel'dovich (SZ)féect due to interaction of cosmic microwave background (CMB) photons with electrons

of the hot intra-cluster medium causes a distinct modulation in the spectrum of the CMB and is a very promising tool
for detecting clusters out to very large distances. Especially the European PLANCK-mission, a satellite dedicated
to the mapping of CMB anisotropies, will be the first experiment to routinely detect clusters of galaxies by their
SZ-signature. This thesis presents an extensive simulation of PLANCK'’s SZ-capabilities, that combines all-sky
maps of the SZ4@ect with a realisation of the fluctuating CMB and submillimetric emission components of the
Milky Way and of the Solar system, and takes instrumental issues such as the satellite’s point-spread function, the
frequency response, scan paths and detector noise of the receivers into account.

For isolating the weak SZ-signal in the presence of overwhelming spurious components with complicated corre-
lation properties across PLANCK’s channels, multifrequency filters based on matched and scale-adaptive filtering
have been extended to spherical topologies and applied to simulated data. These filters were stimiently e
amplify and extract the SZ-signal by combining spatial band-filtering and linear combination of observations at
different frequencies, where the filter shapes and the linear combinatiiicienes follow from the cross- and
autocorrelation properties of the sky maps, the anticipated profile of SZ clusters and the known SZ spectral de-
pendence. The characterisation of the resulting SZ-sample yielded a total numberl®f @etections above a
statistical significance of@land the distribution of detected clusters in mass, redshift, and position on the sky.

In a related project, a method of constructing morphological distance estimators for resolved SZ cluster images
is proposed. This method measures a cluster's SZ-morphology by wavelet decomposition. It was shown that the
spectrum of wavelet moments can be modeled by elementary functions and has characteristic properties that are non-
degenerate and indicative of cluster distance. Distance accuracies following from a maximum likelihood approach
yielded values as good as 5% for the relative deviation, and deteriorate only slightly when noise components such
as instrumental noise or CMB fluctuations were added. Other complications like cool cores of clusters and finite
instrumental resolution were shown not téegt the wavelet distance estimation method significantly.

Another line of research is the Rees-Sciama (Ri®ce which is due to gravitational interaction of CMB photons
with non-stationary potential wells. Thigfect was shown to be a second order gravitational lendiiegtearising
in the post-Newtonian expansion of general relativity and measures the divergence of gravitomagnetic potentials
integrated along the line-of-sight. The spatial autocorrelation function of the Rees-S¢iantavas derived in per-
turbation theory and projected to yield the angular autocorrelation function while taking care offéhimglitime
evolution of the various terms emerging in the perturbation expansion. Th&&3wgas shown to be detectable by
PLANCK as a correction to the primordial CMB power spectrum at low multipoles. Within the same perturbative
formalism, the gravitomagnetic corrections to the autocorrelation function of weak gravitational lensing observ-
ables such as cosmic shear could be determined. It was shown that those corrections are most important on the
largest scales beyond 1 Gpc, which aridilt to access observationally. For contemporary weak lensing surveys,
gravitomagnetic corrections were confirmed not play a significant role.

A byproduct of the simulation of CMB fluctuations on the basis of Gaussian random fields was a new way of gen-
erating coded mask patterns for X-ray arday imaging. Coded mask cameras observe a source by recording the
shadow cast by a mask onto a position-sensitive detector. The distribution of sources can be reconstructed from this
shadowgram by correlation techniques. By using Gaussian random fields, coded mask patterns can be specifically
tailored for a predefined point-spread function which yields significant advantages with respect to sensitivity in the
observation of extended sources while providing a moderate performance compared to traditional mask generation
schemes in the observation of point sources. Coded mask patterns encoding Gaussian point-spread functions have
been subjected to extensive ray-tracing studies where their performance has been evaluated.



Abstract

Methoden zum Aufspiren und Charakterisieren von Galaxienhaufen

Das zentrale Thema dieser Dissertation ist die Beobachtung von Galaxienhaufen bei Millimeter-Wellenlangen. Der
Sunyaev-Zel'dovich (SZ) fekt, der durch die Wechselwirkung der Photonen des kosmischen Mikrowellenhinter-
grundes (CMB) mit Elektronen des heilRen intra-Cluster Mediums im Zentrum von Galaxienhaufen hervorgerufen
wird, verursacht eine Modulation des CMB-Spektrums und ist eine sehr vielversprechende Technik, Galaxien-
haufen bis zu sehr groRen Abstanden zu entdecken. Vor allem der européische PLANCK-Satellit, der die Kartogra-
phie der CMB-Anisotropien zur Aufgabe hat, wird das erste Observatorium sein, das routineméaRig Galaxienhaufen
durch ihre SZ-Signatur aufspurt. In dieser Dissertation wird eine detaillierte Simulation der SZ-Beobachtungen mit
PLANCK beschrieben, die Himmelskarten des S#fekts mit Fluktuationen des Mikrowellenhintergrundes und
Vordergrundemissionen der Milchstral3e und des Sonnensystems verbindet. Instrumentelle Komplikationen wie
die Ortsauflosung der Optik, die Frequenzfenster der Radioempfanger, das Scan-Muster und das Detektorrauschen
wurden berucksichtigt.

Um das schwache SZ-Signal zu isolieren, das durch die um ein Vielfaches starkeren Vordergriinde tiberdeckt
ist, wurden Multifrequenz-Filter basierend auf dematched filterund demscale-adaptive filteAlgorithmus auf
spharische Topologien erweitert und auf die simulierten Daten angewendet. Es wurde gezeigt, dass diese Filter das
SZ-Signal éizient verstarken und extrahieren kénnen, was durch die Kombination von raumlichen Filtern und Lin-
earkombination verschiedener Karten geschieht. Die Filterformen unfiieaten der Linearkombination folgen
aus den Kreuz- und Autokorrelationseigenschaften der Himmelskarten, dem erwarteten SZ-Profil der Galaxien-
haufen und dem bekannten spektralen Verlauf des k. Der resultierende SZ-Katalog, dex 40° Eintrage
mit Signifikanzen groRer alss3umfasst, wurde in Bezug auf die Verteilung der detektierten Galaxienhaufen in
Masse, Rotverschiebung und Position untersucht.

In einem verwandten Projekt stelle ich eine Methode vor, mittels derer der Abstand eines SZ-Galaxienhaufens
durch seine Morphologie abgeschétzt werden kann. In dieser Methode wird die Morphologie eines Galaxienhaufens
durch Wavelets analysiert. Es konnte gezeigt werden, dass das Spektrum der Wavelet-Momente durch elementare
Funktionen beschrieben werden kann und charakteristische Eigenschaften hat, die nicht-entartet sind und Indika-
toren fur den Abstand des Galaxienhaufens sind. Die Genauigkeit der Abstandsmessung, die wahrscheinlichkeits-
theoretisch bestimmt wurde, ergibt Werte von 5% fiir die relative Abweichung, wobei sich diese Zahl nur marginal
verschlechtert, wenn Rauschkomponenten wie instrumentelles Rauschen oder CMB-Fluktuationen beriicksichtigt
werden. Es konnte gezeigt werden, dass andere Komplikationen, wie abgekihlte Kerne von Galaxienhaufen oder
die endliche Ortsauflésung der Detektoren, diese Methode nicht stark beeinflussen.

Ein anderes Forschungsgebiet ist der Rees-Sciama (Rt Eder durch gravitative Wechselwirkung der CMB-
Photonen mit zeitlich veranderlichen Gravitationsfeldern verursacht wird. Di¢&skt konnte auf einen Gravita-
tionslinsenéekt zweiter Ordnung zuriickgefuhrt werden, der in der post-Newtonschen Entwicklung der Formeln
der allgemeinen Relativitatstheorie erscheint. In dieser Darstellung misst deff@$-dte Divergenz der gravit-
omagnetischen Potenziale entlang der Sichtlinie. In dieser Beschreibung wurde die Autokorrelationsfunktion des
RS-Htekts in Storungsrechnung hergeleitet und projiziert, um die Winkel-Autokorrelationsfunktion zu erhalten,
wahrend die verschiedenen Zeitentwicklungen der Terme in der Stoérungsreihe bertcksichtigt wurden. Der RS-
Effekt sollte von PLANCK als Korrektur zur Autokorrelationsfunktion des primordialen CMB auf grossen Winkel-
skalen detektierbar sein. Innerhalb des gleichen Formalismus habe ich gravitomagnetische Korrekturen zu der
Autokorrelationsfunktion beliebiger Gravitationslinsengréf3en bestimmt, die auf den grof3ten Skalen jenseits von
1 Gpc wichtig werden sollten, allerdings Experimenten nur schwer zuganglich sind. Auf Skalen, die durch laufende
Durchmusterungen untersucht werden, spielen gravitomagnetische Korrekturen nur eine untergeordnete Rolle.

Ein Nebenprodukt der Simulationen von CMB-Fluktuationen basierend auf Gaul3schen Zufallsfeldern ist eine
neue Methode, Masken fur kodierte Aperturen in abbildendenden Rontgeny-KHadtheras zu erzeugen. Bei
kodierten Aperturen wird eine Quelle durch den Schattenwurf einer Zufallsmaske auf einen ortsauflosenden De-
tektor beobachtet. Die Verteilung der Quellen kann durch Korrelationstechniken aus dem Schattenmuster rekon-
struiert werden. Unter Verwendung von Gaul3schen Zufallsfeldern kénnen kodierte Aperturen fir jede gewtiinschte
point-spread Funktion erzeugt werden, was einen bedeutenden Vorteil in Bezug auf Sensitivitat in der Beobachtung
von ausgedehnten Quellen darstellt, wahrend ihre Leistungsféahigkeit in der Beobachtung von Punktquellen hinter
etablierten Techniken zur Erzeugung von Aperturen zurtickbleibt. Diese Ergebnisse folgen aus aufwandigen nu-
merischen Simulationen, in denen die Gauf3schen Zufallsfelder auf ihre Leistungsféahigkeit im Vergleich zu anderen
Aperturmustern untersucht wurde.



2. Introduction and motivation

The last couple of decades has witnessed the evolution of cosmology from a philosophical to a sound scientific
discipline. The first observational fact was E. Hubble’s discovery of the recession velocity of galaxies, which he
found to be proportional to their distance. This suggested that space itself is expanding and not static. World models
in the framework of general relativity based on solutions of Friedmann’s equations were found by A. Einstein and
W. de Sitter which explain the universal expansion. R. Alpher, H. Bethe and G. Gamov investigated the thermal
history of an expanding Universe and realised that the early Universe was hot and dense enough to allow thermonu-
clear synthesis of light elements. Their theory was supported by measurements of the cosmic abundance of light
elements, in particular of deuterium. A further prediction of their work was the cosmic background radiation, which
was succesively detected by A. A. Penzias and R. W. Wilson.

Today, the parameters describing the homogeneous dynamics of the Universe are known on the percent level
and cosmology turned to answering the question of structure formation. Fluctuations in the sky temperature of
the cosmic microwave background suggested that the structures such as galaxies and clusters of galaxies form by
gravitational amplification from these tiny primordial seed fluctuations which was suggested by I. Novikov and
Y. B. Zel'dovich. J. Peebles proposed that most of the matter was not electromagnetically interacting (dark matter)
and that the structure formed by gravitational aggregation of this newly introduced fluid, which mended a number
of problems baryonic models of structure growth were unable to overcome. It was then proposed by J. P. Ostriker,
M. Rees and S. D. M. White that luminous objects like galaxies form inside dark matter structures by condensation
and cooling of baryons. In this thesis, Chapsgrrovides a summary of the key results of cosmology, structure
formation and cluster physics.

Theories of cosmic structure formation can be tested in a number of ways. In modern cosmology the statistical
properties of the dark matter field or any tracer of it like the spatial distribution of baryons or galaxies as tracer
particles are described in terms of iigoint correlation function. The correlation functions are observationally
accessible by various experiments. Classically, the large-scale distribution of galaxies was the first to be investigated
and continues to be a very interesting technique. In particular, it yields information about the clustering of dark
matter on small scales and the transition from linear to nonlinear structure formation, where perturbation theory
ceases to be applicable. Another observational channel is the X-ray band: Clusters of galaxies are powerful emitters
of X-ray radiation and X-ray surveys are able to determine the fluctuations of the density field by investiating its peak
statistics on the cluster separation scale. Furthermore, X-rays probe the distribution of baryons inside dark matter
halos and investigate processes like radiative cooling, feedback and metal enrichment which strongly influences the
baryonic morphology of a cluster.

All these observations are aiming at the determination of cosmological parameters related to structure formation
to a level of accuracy comparable to the parameters governing the homogeneous dynamics of the Universe. Ob-
servations of the dynamics of the large-scale structure are complemented by numerical computer simulations of
structure growth. In these models, the equations of structure formation (the equation of continuity, Euler’s equation
and Laplace’s equation) are solved for a discretised density field. Despite the fact that these simulations are very
challenging from the algorithmic and computational point of view, they yield valuable insight into dark matter dy-
namics in the nonlinear stages of structure evolution, halo formation and baryonic physics in the centres of galaxies
and clusters of galaxies. The core theme of this thesis is the derivation of observational properties of the large-scale
structure from numerical simulations. Of special interest to this thesis is the simulation of clusters of galaxies in a
new observational window: The thermal Sunyaev-Zel'dovifaa predicts that clusters of galaxies leave a trace in
the spectrum of the cosmic microwave background radiation by Compton interaction of the electrons of the hot-intra
cluster medium with photons of the microwave background. Recent advances in submillimetric receiver technology
made the detection of this smatftect possible.

The major part of this thesis is dedicated to a detailed simulation of Sunyaev-Zel'dovich (SZ) observations for
the PLANCK-surveyor satellite. A short description of the instrument and an overview of PLANCK’s mission



Introduction and motivation

objectives is given in Chaptet. PLANCK will be the first observatory to routinely detect clusters of galaxies

by their SZ-signature. The SZ¥ect is a particularly promising tool for investigating clusters of galaxies because
clusters can be detected out to very large distances, possibly out to redshifts of unity as analytic estimates suggest.
Chapter$ through8 describe a very detailed simulation of PLANCK'’s SZ-capabilities which includes many aspects

of cluster formation and distribution, baryonic physics and asymmetric SZ-morphologies, Galactic and ecliptic
foregrounds and many instrumental imperfections such as receiver noise, frequency response and resolution of the
optical system. The weak SZ-signal is amplified and extracted by matched and scale-adaptive filtering, which has
been extended to spherical topologies and multi-frequency observations.

In Chapterl0, | propose a method of constructing morphological distance estimators for resolved SZ cluster im-
ages. This method measures a cluster’s SZ-morphology by wavelet decomposition. It is shown that the spectrum of
wavelet moments can be modeled by elementary functions and has characteristic properties that are non-degenerate
and indicative of cluster distance. Distance accuracies following from a maximum likelihood approach yielded
values as good as 5% for the relative deviation, and deteriorate only slightly when noise components such as instru-
mental noise or CMB fluctuations were added. Other complications like cool cores of clusters and finite instrumental
resolution were shown not tdfact the wavelet distance estimation method significantly. This method will be of
particular use in future dedicated high-yield SZ-surveys in order to select targets for optical or X-ray follow-up
observations.

Chapter9 is more technical in nature. A central quantity in CMB data analysis tasks is the pairwise pixel co-
variance matrix, which contains information about non-isotropic and non-Gaussian noise components and is a key
guantity in map reconstruction, component separation and foreground subtraction. For usual pixel numberings in
the HEALPIx tesselation of the sphere, which is commonly used in CMB data analysis, the covariance matrix has
a very complicated shape. | propose to number the pixels along a fractal, self-similar Peano-Hilbert curve that can
be constructed for all HEALPIx resolutions. Using this numbering, the covariance matrix assumes a band-diagonal
shape which makes the computation of the determinant and matrix inversion possible.

A byproduct of the simulation of CMB fluctuations on the basis of Gaussian random fields was a new way of
generating coded mask pattern for X-ray gadhy imaging, which is described in Chaptet. Coded mask cam-
eras observe a source by recording the shadow cast by a mask onto a position-sensitive detector. The distribution
of sources can be reconstructed from this shadowgram by correlation techniques. By using Gaussian random fields,
coded mask patterns can be specifically tailored for a predefined point-spread function which yields significant ad-
vantages with respect to sensitivity in the observation of extended sources while providing a moderate performance
compared to traditional mask generation schemes in the observation of point sources. Coded mask patterns encod-
ing Gaussian point-spread functions have been subjected to extensive ray-tracing studies where their performance
has been evaluated.

Another experimental tool for investigating the correlation properties of the cosmic density field is gravitational
lensing. Gravitational interaction of photons with the large-scale structure induces tiny distortions in the images of
background galaxies which can nowadays be measured reliably. There exist mathematical tools that link the angular
correlation properties of the distorted galaxy images to the spatial correlation properties of the dark matter density
field, in particular the amplitude of the correlation function. In Chapfrdescribe a ray-tracing code for comput-
ing lensed photon geodesics on density fields following from cosmological simulations of structure formation. This
code covers many aspects of gravitational lensing and is able to derive lensing data from cosmological simulation
at a high level of authenticity.

So far, gravitational lensing has only been considered for stationary matter distributions, but the post-Newtonian
expansion of the geodesic equation to second order shows that matter streams influence photon geodesics by the
gravitomagnetic potentials they generate. The growth of structure and the formation of objects requires large coher-
ent matter streams so that it seemed natural to extend the theory of gravitational light deflection to non-stationary
situations. In Chaptet3, | investigate gravitomagnetic corrections to weak gravitational lensing by streams in the
large-scale structure in perturbation theory. Detailed analysis of the geodesic equation showed that the Rees-Sciama
effect, which describes the frequency shift of photons introduced by time-varying gravitational potentials can be
consistently treated in the gravitomagnetic framework. Applying perturbation theory yielded the Rees-Sciama auto-
correlation function, which should be detectable as a correction to the autocorrelation function of CMB temperature
fluctuations on large angular scales. The core results of this thesis are summarised in Chaggether with a
compilation of key techniques in Appendic&ghroughF.



3. Cosmology and cosmic structure formation

Abstract

This chapter provides an introduction to the theory of cosmic structure formation, and the key concepts of modern cosmology
as relevant for this work. After summarising Friedmann-Lemaitre cosmological models ir8S3ettie theory of cosmological
structure formation and the description of the statistical properties of the large-scale structure by means of correlation functions is
presented in SecB.2 Various aspects of the physics of clusters of galaxies, e.g. their formation and their propertites émdi
observational channels are discussed in $e8t.

3.1. Friedmann-Lemaitre cosmological models

3.1.1. Cosmological principles and the Robertson-Walker metric
3.1.1.1. Relativistic world models

In general relativistic world models, events are described by their world coordinates, a 4-tuple containing the time
coordinate and three spatial coordinates. The infinitesimal distagloetdleen two events fiiering in coordinates
by dx* can be computed with the metric tenspy, ds? = g,,dx‘dx’. In general relativity, the metrig,, is a

dynamical field, which is determined by Einstein’s field equatiomn( ),
R 8rG .
Ruv — §gﬂv =G, = FTW +Agyy, with T, = (p + C—pZ)Uva ~ PGpuvs (3.2)

where the energy momentum tensor composed of the demsityl pressur@ of the cosmological fluids moving
with 4-velocitiesy, acts as a source term. The Einstein-tei@gris formed from the Ricci tensd®,, and the Ricci
scalarR, which are contractions of the Riemann tenRgy,,, i.e. of the second derivatives of the meyjg. Hence,
formula3.1lis a generalised Poisson equation. In ey, A denotes the cosmological constant.

3.1.1.2. Cosmological principle

In order to make an ansatz for the metric tenggrand to find a spherically symmetric solution of Einstein’s field
equation3.1 that describes the expansion dynamics of the Universe, the cosmological principle was introduced.
This principle requires isotropy and homogeneity:

e When averaged over ficiently large scales, there exists a mean motion of matter and radiation in the Uni-
verse. From a frame of reference comoving with this mean motion, all averaged observables appear to be
isotropic.

e All (imaginary) observers who follow this mean motion experience the same history of the Universe and
measure the same values for all averaged observables.
3.1.1.3. Robertson-Walker line element

The spatial coordinates of an observer at rest in the comoving frame, from which the mean motion of radiation and
matter appears isotropic, are constant,=10 and hence & = ggodt?. It follows from the postulate of isotropy that
clocks can be synchronised in a way that space-time components of the metricgignaoish. The line element
satisfying the cosmological postulates can be written:

ds® = c?dt? + gijdx'dx), (3.2)
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whereg;; are the spatial components of the metric tensor. In order to conserve homogeneity the spatial part of the
metric is only allowed to scale with a functi@(t) depending on cosmic tinte giving:

ds? = 2dt? — a2(t)dr?, (3.3)

where d is the line element on spatial hypersurfaces. Introducing spherical coordmatew, 6, ¢) gives the
Robertson-Walker line element for homogeneous and isotropic spaces:

ds? = c?dt? — a%(t) [dw? + f2(w) (d6? + sir? 0dg?)] . (3.4)
Homogeneity requires, that the functidi(w) is either trigonometric for positive values of the curvatirdinear
for vanishingK or hyperbolic for negativé:
\/LK sin(\/Kw) ,K > 0, spherical
fuw) =< w , K =0, flat, (3.5)

ﬁ sinh(mw), K < 0, hyperbolic

3.1.1.4. Redshift

Due to the expansion of the Universe, photons are redshifted during their propagation from their source to the
observer. In general, the redstafbf an object is the fractional Doppler shift of its light resulting from radial motion

with velocity v:
Ao 1+v/c
=—-1 1 = .
z ™ —1+z ’fl—u/c’ (3.6)

wheredls is the wavelength of the emitted anglof the observed radiation. In cosmology, the Doppler shift is due to
emitter’s recession with the Hubble flow and thus related to the ratio of scale facdbthe times of emission and
absorption: +z= ?;. For an observer & = 0 and sources = z, the formula becomes= 1/(1+2) < z=1/a-1.

3.1.2. Cosmometry
3.1.2.1. Friedmann’s equations and the adiabatic equation

Solving Einstein’s field equatio8.1 with the Robertson-Walker metr:4 as an ansatz faj,, for a homogeneous

perfect fluid leads to Friedmann’s equatiofsi¢ ) ):
a 8nG 2 A a 4nG 3py A
=\ —p-K=+= == =+ = 7
a gr-Kgtg ad 3 3(p+02)+3’ 3.7)

which describe the time evolution of the scale faai) depending on the properties of the cosmological fluids.
The two Friedmann equations can be combined to form the adiabatic equation,

20 @ o] + pl) 220 = 0. 38)

which describes the time evolution of the energy content of a volume that is expanding with the Hubble flow. The
change in internal energy(d3c2p) in a volume is equal to thedV-work, i.e. the pressure times the change in
proper volume. For that reason, the adiabatic equation corresponds to the first law of thermodynamics applied to
the cosmological expansion.The Hubble functidt) is defined as the logarithmic derivative af):
_d _a 200 _ 42
H(t) = aln(a) =3 H4(t) = Hg

i + fu + o +Q
a(r) &) axy |

(3.9)

The value oHg is one of the least accurately known cosmological parameters, but measurements of CMB anisotropies
( ) and from Cepheid variable stars in distant galaxies (the Hubble key prcjeet,
) seem to converge to a valueldf = 100hkms™* Mpc~t with h =~ 0.7. The combination

3HZ

G = Perit (3.10)
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is the critical density of the Universe. If in a cosmological model all densities add p:fspatial hypersurfaces
are flat and the curvaturé vanishes. The energy density of all cosmological fluids (radiatipfc3 matterp,
curvatureK and the cosmological constah} can be expressed in units @f;; to yield:

87Gp o Kc? A
Qr=——, Qu=—, Qx=—, Q\=—, etc 3.11
R CzHg M Perit : H(Z) A 3Hg ( )

For filling in the suspiciously looking gap in the Hubble functidrfor thea '(t) term, a new fieldq refered to as
quintessence with the densig has been invented/(

) and generalised by using a specmc ch0|ce of the self- mteractlon pot&ftfha) to m|m|ck
arbitrary dependences on the scale faetofoday’s most accurate measurements of the density parameters have
been carried out by the WMAP satellite{ ). Reference values are matter densify = 0.27+0.04,
baryonic density2g = 0.044 + 0.004, curvature€)x = 0.02 + 0.02 and cosmological constafiy = 0.73 + 0.04.

The radiation densitpg does not play a role in cosmic dynamics after decoupling due to its fast decrease with

3.1.2.2. Distances in cosmology

In curved and non-stationary space-time, distances are no longer uniquefanehtlidistance measurement pre-
scriptions lead to dierent distance measures. In general relativity, distance measures relate the positions of two
events on two separate geodesic lines, which intersect a common light cone centered on an Glasérven(

). The proper timalp(zs, z,) is defined to be the light travel time of a signal emltted by
a source at redshmg to an observer &, < zs: ddp = —cdt. Inserting the Hubble function yieldsld = —cda/(aH)
and finally:

1

d _c a(2o) N 5 -1
o(Zo, Z5) = Fio e da [atQu + Q« +8%Qa| 7. (3.12)
a(zs

The comoving distance, which is a very important distance measure in gravitational lensing and simulations of
structure formation, is defined to be the distance on the spatial hyper-surface abttmeeen the world lines of
source and observer comoving with the Hubble flow. Light travels along the geodgsid),chencecdt = —addc.
Replacing tlas before by inserting the Hubble functibingives dic = —cdt/a = —cda/(a?H):

c [(¥%) 1
de(zo,28) = — f da [aQu +a%Qk +a*Q,| *. (3.13)
Ho Ja@z)

The comoving distance with the observerat 0 is refered to aa(2) = dc(z,, z5). Yet another distance measure is
the angular diameter distandg(zs, 7,), which relates the physical sizd_ of an object at redshifts to its angular
size Aa as seen from an observer at redshiftAa da = AL. The angular size of a yardstick placedzashould
decrease proportional @&(zs) fk (w(zs)), where fx (w(zs)) is the radial coordinate distance between observer and
object, anda(zs) is the scale factor at the time of light emission, which gives:

da (20, 25) = a(zs) fi [dc(z0, 26)] - (3.14)

Due to the factor(zs), the angular diameter distance is not additive. The luminosity distd(eg z,) relates the
luminosity of a source &; to the flux received by an observerzt

a(z) a(z)?
a(zs) azs)

The luminosity distance is proportional to the angular diameter distance, which relates the physical area of a source
atzg to its apparent solid angle, as seen from the obsengr dthe energy flux is further diminished, because the
photons are redshifted tay/zs and the diference in arrival times of two photons is stretchedapjzs, giving the
final formula. The various distance measures as a function of redgtrdtcompared in Fig.1

From these distance measures, adydc anddL are monotonic ira andz. Furthermore, onlylc(2) anddp(2)
are additive, which follows from the relatloﬁ dad(a) = f dad(a) + f da d(a). Yet another distance measure
that finds application in gravitational Iensmg studies is the parallax d|sti;dz)a( )

).

O (Z0,25) = ( )dA( 20.20) = 29 [de(z0,29)] (3.15)
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Figure 3.1.: Distance measures in cosmology: The comoving distda(® = w(2) (solid line), the proper distanak(2)
(dashed line), the angular diameter distadcg) (dash-dotted line) and the luminosity distarmiz€z) (dotted line).

3.1.3. Cosmic microwave background
3.1.3.1. Cosmic microwave background radiation

The cosmic microwave background (CMB) originated in the early hot phase of the Universe, when photons were
created in thermal equilibrium with electromagnetically interacting particiés<¢ ). With the Hubble
expansion, the Universe cooled adiabatically. The adiabatic index of relativistic partigles /3 (

), which yields for the adiabatic expansi®nx V1~ « a. During the expansion, photons remained
in thermal equilibrium until the temperature wadfiiently low for the electrons to combine with protons and
a-particles to form hydrogen and helium. The photons decoupled from the matter constituents due to the rapidly
decreasing abundance of charged patrticles. In this way, the Universe became transparent for radiation at a redshift of
z =~ 10%. The photons retained their Planckian spectrum they had acquired while they were in thermal equilibrium
with the electron-positron plasma, and the temperature decreased in proportion with the scale factor. The relic
radiation was detected by ( ) and is nowadays proved to have a black body spectrum with
Tems = 2725 K ( ) to very high accuracy.

The CMB shows tiny temperature anisotropiad (T =~ 10-°) imprinted by density perturbations present at the
time of decoupling through various mechanisrris (L995 ). The physics governing the behaviour
of a volume element of electron-proton plasma coupled to a radiation field is an interplay between gravity and
radiation pressure. Photons released in overdense regions are redshifted because they have to climb out potential
wells and hence they are cooler than the average CMB temperature.ffEuis first examined by
( ), probes the potential fluctuations (and hence the density fluctuations) on the surface of last scattering. On
scales smaller than the sound horizon, radiation pressure is able to provide a restoring force against the pull of
gravity. The plasma-photon fluid is thus carrying out oscillations, which are excited when the size of the perturbation
is equal to the horizon. At fixed physical scale, these oscillations are coherent, giving rise to distinct peaks in the
CMB power spectrum. On the smallest scales, density perturbations can be destroyed if the radiation pressure
exceeds the self-gravity.
Apart from these primordial CMB fluctuations, the growth of cosmic structure imprints a wealth of secondary

anisotropies, either by interaction of CMB photons with electrons (Sunyaev-Zel'doffietts Ostriker-Vishniac
effect) or by gravitational interaction (integrated Sachs-Wolfeat, Rees-Sciamaffect, gravitational lensing).
The study of theseffects and their detectability with next-generation CMB observatories such as PLANCK is the
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Figure 3.2.: The angular power spectru@®.(¢) of the fluctuations in the cosmic microwave backgrou(#), for the
ACDM model, withQy = 0.3, Qg = 0.04 andQ, = 0.7.

primary subject of this thesis.

3.1.3.2. Statistical description of the CMB: Gaussian random fields

Due to their Gaussianity, the CMB temperature fluctuatiofy can be decomposed into spherical harmonics

Ym(0, ), which form a harmonic system of functions, because they are solutions to Laplace’s equation in spherical
coordinates:

Tm= | dRT(O)Y;r(6) < 7(0) = > Z TmYem(6) With Yom = 2‘7 1 'm')

I
=0 me—¢ Imj)!

Pun(cosd)e™. (3.16)

From ther,-codficients, the angular power spectr@p(¢) can be obtained by averaging over all21 values of
m at given multipole ordef, i.e. at fixed anguar scal® ~ r/¢:

+

C) = 577 n;( TemTon. (3.17)

Provided that the CMB fluctuations are indeed a Gaussian random field, all statistical information is contained in
C.(¢). Current CMB data is subjected to a plethora of techniques aiming at the amplification and detection of non-

Gaussian features. Most of the analyses find the CMB to be consistent with Gausséianityi§ ), but
interesting non-Gaussian features should be present, the most notable being gravitational lensing of thiet CMB (
).

The angular power spectru@y(¢) as a function of inverse angular scéle: /A8 of the CMB fluctuations(6)
is depicted in Fig3.2 for a ACDM model. By using cosmological Boltzmann codés|(
) ), the power spectrui@. (¢) can be computed for a given set of cosmological parameters
By inversion, measurements Gf(¢) are powerful probes of the cosmology, especially the geometry of the universe
in terms of the curvatur@ . FurthermoreC.(¢) provides important information about the statistics of fluctuations
in the matter field at early times, when the fluctuations are still lindas 1.
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3.1.3.3. Cosmic neutrino background

In analogy to the CMB, there is a background of relic neutrinos from the era of nucleosynthesis in the early universe
at redshifts oz ~ 10%, that decoupled at temperatureskgll ~ 1 MeV, because at this stage, the time scale of
leptonic interactions became larger than the expansion time scale of the Universe. The neutrinos from this cosmic
neutrino background are expected to have Fermi-Dirac spectrum with an equilibrium temperaiige ©f1.95K.

3.2. Structure formation

3.2.1. Growth of density perturbations in cold dark matter models
3.2.1.1. Properties of dark matter

The current models of structure formation require the majority of matter not to couple to photons and to interact
only by gravity. The most stringent observation which requires the matter to be dark, i.e. not interacting electro-
magnetically is the formation of structure since the emergence of the CMB, apart from rotation curves of spiral
galaxies, gravitational microlensing or discrepancies of mass estimates of clusters of galaxies by application of the
virial theorem compared to sum of masses of the cluster's member galaxies and the intra-cluster medium.

Dark matter is believed to be a yet undiscovered gravitationally interacting elementary particle, that neither carries
electromagnetic, nor strong charges, but possibly interacts by the weak nuclear force. There is a large industry of
experiments aiming at a direct detection of dark matter particles (CDBISMA 2, GENIUS’, EDELWEISS), but
it is doubtful whether their sensitivity is fiiciently high. Dark matter interacts solely by gravity and is thought to
have a vanishing cross section for collisions with other dark matter particles, which impacts on the central structure
of gravitationally bound objects. Self-interacting dark matter influences the core structure of dark matter haloes
( ) or could be detected by its annihilation signatd ). At the time of their de-
coupling from weak interactions, the dark matter particles were non-relativistic, i.e. cold, which has important
implications on structure formation. The standard model of cosmological structure formation assumes the existence
of initial seed fluctuations in the dark-matter distribution, which grew by gravitational attraction. A possible mech-
anism for producing these seed fluctuation are quantum fluctuations in the early universe, which were stretched to
cosmological size by inflation.

3.2.1.2. Linear growth
Perturbations in the dark matter density fip(d, t) are described by the density contréét, a):
p(x, ) — (p(a)

@)

with the average cosmic densiy(a)) = Qupcira . By using (relativistic) perturbation theory, it can be shown that
in the linear regimés| < 1 perturbations grow dierently witha, depending which fluid dominates the cosmological
dynamics, as long as the Einstein-de Sitter limit is fulfilled, Qg(a) ~ 1:

5(x,a) = (3.18)

5 - .
5(a) a° ,a< agq radiation do_mmated era, (3.19)
a ,a> agq matter dominated era.

At late times, when either the matter dendidy;, has decreased Siciently or the cosmologicaf2, has started
dominating the Hubble expansion, the linear growth depends orat@meeording to:

5@ _ 9@ _ D, (a). (3.20)

5(1) ~ “g(D)

httpy/cdms.berkeley.edu
httpy/www.Ings.infn.ifingghtextgdamawelcome.html
Shttpy/www.mpi-hd.mpg.dgonacggenius.html
4http;/edelweiss.in2p3.findexedwe.html
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growth function D, (a)
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Figure 3.3.: The growth functionD, (a) for the ACDM model (solid line), the SCDM model (dash-dotted line) and a
low-density model with2y, = 0.3 and vanishing cosmological const&nt = 0.0 (dashed line).

A phenomenological fit tg’(a) for theQy-dominated phase of structure growth is provided by ( ):

1 1 -
g'(a) = §QM(a) QY@ - Qa@) + (1 + QM(a)) (1 + 7—QA(a)) (3.21)
The growth functiorD, (a) as a function of scale factarof the ACDM model, the SCDM model and a low density
model without cosmological constaftis depicted in Fig3.3.

3.2.1.3. 2-point statistics, initial conditions and the shape of Ps(k)

The density fluctuations(x) are assumed to be Gaussian, and can be completely characterised by their power
spectrumP;(k), which is defined by:

(6(K)5* (k) = (21)%5p(k - K')P5(K), (3.22)

with the Fourier transfornd(k) = fd3x 6(x) exp(ikx). In linear perturbation theory, the density field grows
homogeneously, hence individual Fourier components evolve independently:

6(x,a) = D, (a)6(x) — d(k,a) = D, (a)d(k), (3.23)

as long as the wavelength of the perturbation is small compared to the comoving horizaly size/. [aH(a)], i.e.
the distance which a photon can cover since the big bang.

It is commonly assumed that the power spectiytk) is scale invariant on large scald%;(k) o« k™ with ng ~ 1
( ) ). On small scales, the growth of structure is suppressed by the
fast radiation dr|ven expansion at early times. A perturbatiof, which has the wavelength = 2z/k can start
growing at the cosmic epod, if A is smaller than the horizon size at that epoths dy(asar). But at early
times, the expansion time scajgpne is smaller than the collapse time sctlg:

1 1
tHubble ¢ ——= < ——= « tpu,
ubble Con Con

due topr > pm and the growth of the perturbation stalls. This suppressiofiéstave fromag until the epoch of
matter-radiation equalityleq, defined bypr(aeq) = pm(aeg), Which takes place at a redshift ot 24500. In total,

(3.24)
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fluctuations withd < dy(aeq) are suppressed byig(an/aea)z. Now, the timeagyyt is a function of the wavelength
of the fluctuation, byl = dy(astar). In the Einstein-de Sitter regimeéy(a) is approximated by/ (aH(a)) =~
which gives a suppression proportionalifoon scales smaller than the horizon size at the epoch of matter-radiation
equalityaeq, the numerical value of which is@5/ (€2 h) Hubble radii.

With the suppression of growtk 12 = (27/K)?> « k™2, one obtains for the asymptotic behaviourRyk) o
ks ~ k=3 on small scales. Fitting functions, that link these two asymptotic regimes in a smooth way are obtained
by applying Boltzmann solvers to the equations of cosmic structure formation. A particularly accurate fit is provided

by (1980:

P(k) o k™-T?k) withthe transfer function (3.25)
_1
T(q) % |1 +389+ (16.10)* + (5.460)° + (6.710)*] * (3.26)
The wave vectok is commonly divided by the shape paramdtentroduced by ( ) for CDM
models and extended to models with# 1 by ( ):
-1
- M With T = QMhexp(—QB 1+ ;/z_Z_hD (3.27)
M

The normalisation of the power spectri®(k) is given by the parameters, with is defined as the variance of the
density fluctuations on scales oR = 8 Mpc:

_1 2
=5 fo dk KCWA(KR)P(K). (3.28)
Here,W(r) is a window function of top-hat shape, the Fourier-transform of which is given by:
W(X) = %[sin(x) —xcosK)] = )§(J1(x). (3.29)

The dark matter power spectruRy(k) of the overdensity field(x) in the adiabaticACDM model is shown in
Fig. 3.4for og = 0.9 andng = 1, which are used in all simulations in this thesis. The values measured by WMAP
areog = 0.84+ 0.04 andns = 0.93+ 0.03 ( ).

3.2.1.4. Velocities in the large-scale structure

The equation of continuity + divj requires the existence of large-scale matter flpwgv due to the formation of
objects p > 0). Assuming linear perturbations in densjty= po + dp, and velocityy = v, the continuity equation
readss = —div(sv). For a harmonic perturbation with wave veckpithe velocity perturbationwv is parallel tok:

su(k) = ~ia; 6(k) (3.30)

The time evolution of the density fielélis homogeneous in the linear regime, hea@ld = D.(a)é(k), yielding
with the definition of the Hubble functioa = aH(a) and the normalisation of the growth function:

su(k) = —iaH(@)f(Q) ;5 6(k) (3.31)

The functionf describes the dependence of the equation of continuity on cosmic time and mainly depends on the
mass densitfy ( ) )

dins dinD(a)
dlna ~ dina

f(Q) = =~ Qu(a)°® (3.32)
The investigation of peculiar velocities in the local universe is a very interesting topic. Reconstructions of the
cosmic velocity field as carried out e.g. with the POTENT algorithm proposeiichiy

) and ( ) are used to test whether cosmic flows are irrotational and can be denved
from a velocity potential, and yield important dynamical estimate@gpfandos.
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3.2.2 Numerical simulations of cosmic structure formation
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Figure 3.4.: The linear power spectruiPs(k) of the overdensity(x) in an adiabatic cold dark matter (CDM) model.

3.2.2. Numerical simulations of cosmic structure formation

In the course of the structure formation, objects with high values in the overdensity fsddformed, e.g. galaxies
(6 ~ 10P), clusters of galaxiess(~ 100) and superclusters & 10). Clearly, perturbation theory is not applicable
for describing the dynamics of these objects. Furthermore, the structure formation proceeds heterogeneously, i.e.
the relations(x,a) = D.(a)d(x) is violated, which leads to a coupling of mod&g) in Fourier space. This can
easily be understood because the growth function acquires a dependency on the spatial coordinates apart from the
time variable:D,(x, a). The Fourier transform db, (x, a)5(X), being a product of two functions, is a convolution,
which links modes in Fourier space withfidirent wave vectork. Thirdly, non-linear processes give rise to non-
Gaussian features. This is simply due to the fact that the density fluctuation field is bounded to smadl wahies
but an upper bound does not exist. Hence, the distributighrefcessarily develops a non-vanishing skewness in
the course of structure formation, and the statistical description of the propertidsaséd on 2-point correlation
functions and power spectg(K) fails.

In order to investigate cosmic structure formation in the non-linear regime, numerical simulations are carried out.
These codes, the most notable of which is GADGE[( ) ), numerically
solve the equations of cosmic structure formation,

p+diviev) =0, v+ (WV)v= —}Vp - Vo, AD =4nGp, (3.33)
o

by introducing particles in order to discretise the density fielthd the velocity fieldy. Extensions to GADGET
include baryonic dynamics, magnetic fields and cosmic rays. Simulations carried out with GADGET are a key tool
of this thesis.

3.3. Physics of clusters of galaxies

3.3.1. Formation of clusters of galaxies
3.3.1.1. Spherical collapse

A key concept in the CDM model of cosmic structure formation by the hierarchical build-up of structure from
small scales to large scales is the formation of dark matter haloes. These are long-lived quasi-equilibrium systems
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of dark matter particles which were formed by gravitational collapséif ). As a model, one
consideres a spherically symmetric density perturbation which evolves under the influence of gravity embedded
in an expanding background. In a matter dominated universe, the radiube perturbation evolves with tinte
according to a cycloidal solution of= —~GM)/r? ( } ):

r
t

A(1 - cost) (3.34)
B(0 - sind) (3.35)

with A3 = GMPB? and the phase angle The spherical perturbation will break away from the Hubble expansion and
reach a maximal radius ét= r, t = 7B. Following the time evolution further, the sphere will collapse to a point at
0 = 2n. Extrapolating linear theory to this time yields= 6. = 1.69. In reality, dissipation sets in and converts the
kinetic energy of the collapse, or, equivalently, the gravitational binding energy released by the collapse to random
motion of the particles. At this stage, the overdensity of the sphere at virialisation has reached a §&al\#006f

The exact profile of a virialised density perturbation after gravitational collapse is governed by the dissipative
processes which cause dark matter systems to relax, e.g. two-body relaxation, dynamical friction and violent re-
laxation. From numericat-body simulations it is found that the profiles of dark matter haloes are described by a
universal law { ):

r 1) . r
PO _ b yith x=L (3.36)
pcri[ X(l + X) rs
with rs = ryi./C. 1y is defined that the mean density inside a sphere of that radius is 200 times the critical density.
cis called concentration parameter:
200 c3

Luminous objects like galaxies are thought to form by cooling and condensation inside CDM hélo&s

).

3.3.1.2. Press-Schechter theory

According to the derivation of ( ), the number densitp(M, 2)dM of haloes of mas#1 per
unit comoving volume as a function of redstifis given by:
po dv v2 . Oc
M M = ——|dM th = — .
n(M, 2d \/7M Y exp( 5 )d with v D Do (M)’ (3.38)

and the critical overdensity. = 1.69, which only weakly depends on cosmology. Press-Schechter theory has
been put onto a solid mathematical foundationZuy ( ): A massive object will form by gravitational
collapse, if the average overdensity in a volume containing that mass exceeds some threshéldindiegendent
of substructure. The location, properties and number densities of these bound objects can be estimated by smoothing
the initial linear density field with a filter of characteristic lend®. Peaks in the filtered density field can be
assigned a masd ~ 3mpoRe.

In order to link the number of objects of malskto the peak statistics of a Gaussian random field smoothed on
the scaleRs, ( ) proceed by considering the random trajectory @it a fixed point in space when
varyingRs with the initial conditionRR; = co ands = 0. The filtered field starts to develop fluctuations of increasing
amplitude as the smoothing radiRs is decreased. If the filtered fieltffirst exceeds the threshold valsieset by
spherical collapse theory, an object of md&@R;) will form. This analysis is most easily performed using a sharp
truncation ink-space as a filter. DecreasiRg corresponds to broadening tkespace filter which adds nekvspace
shells, all of which are independent for a Gaussian random field. The trajeé¢Ryis then a random walk. The
probability that a random walk starting &t= 0 exceeds the threshofd is then given by erf C/(\/ﬁa(M))],
whereo(M) is the variance of the top-hat filtered fieildFrom this result, eqn3(38 follows by differentiation.

As summarised it ( ), the number density of haloes of mddsdepends of course on the shape
of the power spectrum and its normalisatioy The increase db, (2) with cosmic time causes the threshold value
¢ to decrease such that massive objects form at late times. Hence, low-mass objects form early in the cosmic mass
hierarchy from strong fluctuations in contrast to massive objects, that form at late times from weak fluctuations.
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Figure 3.5.: The Press-Schechter mass functigM, z2)dM for redshiftsz = 0 (solid),z = 1 (dashed line)z = 2 (dash-
dotted line) and: = 3 (dotted line), for theACDM cosmology.

The formalism has been extended By ( ) to non-spherical ellipsoidal collapse to yield a
slightly modified mass function(M, z2dM. The Press-Schechter functionfiV,, Z)dM at four diferent redshiftz is
given in Fig.3.5. The increase of the mass scdle at which the power law breaks with decreasing redshitin
easily be seen, indicating the growth of massive objects by merging of smaller objects with time. A typical value
for the number density of clustens is ~ 100 clusters at = 0 in a comoving volume of (100 Mgh)3, with masses
M > 5x 103My/h.

3.3.2. Observational properties of clusters

Galaxies form associations ranging from pairs of galaxies to small groups with tens of member galaxies to large
clusters containing as many as a few thousand members. Clusters of galaxies are the largest and most massive
gravitationally bound systems in the Universe. The most massive clusters reach masses of*2ipig, hich
makes them massive enough to cause distorsions in the images of background galaxies due to gravitational lensing.
Mass estimates with the virial theorem applied to the motion of galaxies inside the cluster yields large discrepancies
with the mass obtained by adding up the masses of the individual galaxies and the mass of the intra-cluster medium.
This leads to the conclusion that clusters largely consist of dark matter, in fact, they are large enough to be repre-
sentative samples of the universal mass composition. In the cores of clusters of galaxies, hot intergalactic gas has
been detected, both by its X-ray emission and by is interaction with the CMB radiation. Clusters of galaxies are
laboratories for studying the non-linear phases of structure evolution, the interplay between dark matter dynamics
and gas physics, and the evolution of galaxies in the cluster environment and the interaction of active galaxies with
the intra-cluster medium.

In this section, the observational properties of clusters of galaxies as relevant to this work are summarised. Clus-
ters of galaxies appear vasthfidirent in difering observational channels. Fi§6 might give a first impression:
The figure compares the column density of baryons (in units/ofrd) with the thermal Sunyaev-Zel'dovich
map (the dimensionless thermal Comptonisagprand the X-ray map (in units of etgn¥ in the energy range
0.1 keV...10 keV) of a simulated massive clusté (= 2.25x 10'®M,/h) at redshiftz = 0. The baryon distri-
bution and the thermal Comptonisation are very similar in size, but the baryon distribution shows a great amount
of substructure, whereas the Comptonisation map appears to be smooth. This is due to the fact that the Compton-
isation measures pressure, which is a smooth quantity because the substructure is in pressure equilibrium with the
ambient gas. The X-ray emission is concentrated to the central region of the cluster, because the X-ray emissivity
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is proportional to the density squared.

3.3.2.1. Gravitational lensing

Due to their large masses, clusters of galaxies distort the shapes of background galaxies by gravitational lensing.
They are the only cosmological objects massive enough to give rise to lernBaagsehat can be seen by eye.
Background galaxies appear to be stretched into impressive giant luminous arcs and arclets, which can be used
for reconstructing the mass distributiofir( ). These reconstructions are in agreement with
expectations from-body simulationsi{ ) ). The theory of gravitational lensing and numerical
methods for ray-tracing studies on cosmologicddody simulations of the large-scale structure and individual
clusters of galaxies will be developed in detail in Chagter

3.3.2.2. Optical properties of clusters of galaxies

Historically clusters were found as overdensities in the galaxy number density by visual inspection of optical sky
survey plates. In this way, ( ) have compiled the classic Abell catalogue comprising 4073 entries.
They required that clusters had more than 30 member galaxies within the magnitudesangs; + 2 (mg being
the apparent magnitude of the third brightest cluster member) and with a nominal redshift. The total number
of galaxies belonging to a cluster iffiftult to assess, but clusters with as many as a few thousand member galaxies
have been found. A very interesting point is the density-morphology relation, which states that inside clusters of
galaxies the ratio of the numbers of elliptical to spiral galaxies is inverted relative to thelfields( ) ).
This means that the galaxies interact heavily with the cluster.

The distributiond(L) of the luminositied of the cluster member galaxies are described by the Schechter function

( ),

O(X)dx = O*X* exp(x)dx with x= %
with a characteristic luminosity*, or, equivalently, a characteristic absolute magnititie Parameter values are
a = 5/4,d* = 0.012h%/Mpc® andMg = -20.6. Dividing the integrated luminosity function by the integrated mass
function yields the mass-to-light ratio of clusters of galaxies. A typical valudfftr is 250My/L,. At low masses
and luminaosities, the Press-Schechter mass function and the Schechter luminosity function are not related by a fixed
mass-to-light ratidM/L. This is interpreted in a way that in low-mass haloes a mechanism is active that keeps those
systems from forming stars. Although a number of possible mechanisms has been proposed, it is still unclear what
exactly causes these low-mass systems to be devoid of stars.

(3.39)

3.3.2.3. X-ray emission by clusters of galaxies

Clusters of galaxies are strong emitters of X-ray radiation, which is produced as thermal bremsstrahlung by a hot
(T ~ 10’ K...1C® K) and dilute f = 10? m=3...10° m~3) plasma situated in the core of the cluster. X-ray
luminosities reach values of up tox = 10*® erg/s. Apart from thermal bremsstrahlung, X-ray observatories have
detected atomic lines of highly ionised metals such &Fen a relaxed cluster, the hot plasma is in dynamic
equilibrium with the dark matter, i.e. the rafoof the specific kinetic energoyiel/z stored in the random motion of

the dark matter particles (or equivalently, the galaxies which act as tracer particles), which is characterised by the
velocity dispersiorr (up69 and the thermal energy of the gag3/(2umy),

vel

_ HMHOyep

is of order unity. Hencege = 10° m/s corresponds to a temperatureTot 10° K. In eqn. .40, u ~ 0.6 is

the mean atomic weight of the gas amd denotes the mass of a hydrogen atom. If the hot plasma is in pressure
equilibrium, a determination of the mabf< r) inside the radius is possible ):

(3.41)

GM(<r) ksT (dInp dInT
=— +
r umy \dinr ~ dinr
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Figure 3.6.: A GADGET simulated cluster of galaxies of mags= 2.25x 10'°M,/h at redshiftz = 0. The top panel
shows the projected baryonic matter distributﬁpgdz in units of g/cn?, the centre panel the thermal Comptonisation
y = fneTedz, and the bottom panel the distribution of thermal X-r&ys= fng V/Tedz in units of ergcn? (The photon
energies were restricted to the rangé ReV...10 keV). The (mass weighted) X-ray temperature of this cluster is
Tx = 9.17 eV. Data has been kindly provided by K. Dolag.
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The temperatur@ can be determined by spectroscopy, and the mass density pi@lilby analysing the X-ray
surface brightness magx(r),

Sx(r) = f dr’ K(r ), (3.42)

with the emissivity(r) o« n2 VT. By assuming primordial element composition and a value for the ratio of baryonic
and dark matter density, the surface brightness map, being an Abel integral, can be inverted to find the(density

( ). With the King-profile as an approximate description for the dark matter profile, by assuming
constant temperatuf® and a relation between gas dengifyand dark matter densify, one obtains thg-profile
( ), which is a reasonable fit to X-ray observations (e.g. Abell 14E3;
): )
B 2\7
LA [%) — pyn) =p (1+ (rL) ] . (3.43)
Py P ¢

Egn. 8.43 is a very useful model and will be frequenly used in this thesis in analytic estimates concerning the
Sunyaev-Zel'dovich #ect. For relaxed clusters, simple relations between ivgdemperaturd and X-ray lumi-

nosity Lx hold ( ) ). The mass-temperature relation has been confirmed by many
X-ray observations and numerical simulatiofnsa( ). In spherical collapse, the velocity dispersion

is a function of mass. Assuming isothermality yields:

GM3umy (HXDAc)" 213
keT = 2% ( G ) — T oc M3, (3.44)
with the (cosmology-dependent) overdensity= 1872 of a spherical top-hat perturbation that has just virialised
( ). The bolometric X-ray luminosity.x can be obtained by integration:
Ly = 6.8x 104( 8T zx/A_HZ(z) &zerg/s — Ly« T? (3.45)
o 10kev) Y°° Qu =0 '

In reality, clusters are rarely in a relaxed state but exhibit a wealth of X-ray features such as cool cores, cold fronts
and X-ray cavities$ ). Scaling relations linking the X-ray observables as derived above are equally well
applicable and very useful in estimations of Sunyaev-Zel'dovich properties of clusters of galaxies.

3.3.2.4. Thermal and kinetic Sunyaev-Zel'dovich effect

Another observational channel which is sensitive to the distribution of baryons inside clusters of galaxies is the
Sunyaev-Zel'dovich #ect. CMB photons passing through a cluster will experience Compton collisions with elec-
trons of the hot ionised intra-cluster medium, causing distortions in the spectrum of the emergent radiation. This
Comptonisation of CMB photons on electrons of the ICM is referred to as the thermal Sunyaev-Zel'dovich (SZ) ef-
fect ( ) ). In the easiest interpretation, Compton scattering couples the hot reservoir
of thermal energy stored inside the ICM to the cold CMB. According to the laws of thermodynamics, there will be
a transfer of thermal energy from the hot to the cold reservoir. Because the ICM is very dilute and the Compton
interaction only weak, the relaxation time for the two reservoirs to reach the same equilibrium temperature is long,
much longer than the Hubble time. In fact, the CMB is not thermalised, but one observes only a tiny variation in
the CMB spectrum in the direction of the cluster (being of the ordef)l®ecause the direction dependence of
the Compton interaction removes low-energetic photons from the line-of-sight, and scatters photons with higher
energies into the line-of-sight, giving rise to the peculiar spectral signature of th&&Z-e

In order to analyse these distortions quantitatively, the transport equation governifigtieeCompton scatter-
ing on the photon spectrum needs to be derived. The change in the photon phase space occupatiafawuasber
a function of photon energiw = hv can be derived with the Kompaneets equation, which is a quantum mechanical
extension to the Fokker-Planck equaticief ):

_ o1heht ii 4 kBTe@
_( mec)w 290 { [n(n+1)+ h aw]}. (3.46)
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3.3.2 Observational properties of clusters

The optical depth of the ICM in clusters is very low so that photons can be considered to scatter once at most. In
this case, the Kompaneets equation yields a linear change in the phase space occupation(aymber

10 40n
An=y= 2 (#E
n VZav(V v

. _ o7 kB
) with y = s f dz n.Te. (3.47)
The quantityy is the thermal Comptonisation, which measures the product of electron degiaitgl temperature
Te, i.e. the ICM pressure along the line-of-sight. Inserting a Planckian spectral distribution for theSCHNIB:
Sox3/(exp(x) — 1) with the flux densityS, = 22.9 Jy/arcmir? yields the flux chang8y /S = An/n:

Sy(X) = ySo (3.48)

x4 exp(X) exp) + 1
(exp(x) — 1)2 [ exp() —1

Consequently, photons are redistributed in energy from the Rayleigh-Jeans part of the Planckian curve to the Wien
regime. The SZ4ect vanishes at a frequency »f= 3.83 — v = 217 GHz, which is an important tool in
SZ-observations. A very elegant approach to the spectral redistribution has been found independently (and almost
simultaneously) by ( ) and ( ), who describe the spectral redistribution
in terms of a convolution kernel. In this formalism, the SFet can be extended to relativistic electrons.

Apart from the unordered thermal motion of the ICM electrons, CMB photons may interact with the bulk motion
of baryonic matter streams inside a cluster or of the motion of the cluster as a whole relative to the CMB. The
isotropic CMB appears to have a dipolar structure from a frame of reference comoving with a baryonic flow, and
the direction dependence of the Compton scattering causes a transfer of kinetic energy of the cluster to the CMB
spectral distribution. This is known as the kinetic Sunyaev-Zel'dovitdce The flux chang8+, is given by:

x* exp(X)

> et - 17

with w = ‘%T f dz . (3.49)

In this formula,v, is the radial component of the cluster’s velocity in the CMB frame. The frequency dependence
of the thermal and kinetic SZfiects in comparison to the Planckian CMB spectrum is given inFig.Important
SZ-quantities are the Comptonisations integrated over the cluster face,

J/:fde and ’W:fde, (3.50)

which determine the signal strength in an SZ-observation. ThefleZte are valuable tools to search for clusters
in CMB data. Because no photons are lost in the scattering process, and the Comptonlsaitiah¥’ decrease
only slowly with redshiftz, they are likely to yield detections out to large distances. Applied to individual objects,
the thermal SZ#ect measures pressurdfdiences inside the ICM and may be a powerful diagnostic of plasma
dynamics.

3.3.2.5. integrated Sachs-Wolfe/Rees-Sciama effect

The growth of structure imprints additional anisotropies on the cosmic microwave background (CMB) by the time
variation of the gravitational potentials along the propagation path of a CMB photon. When transversing time-
varying potentials, the energy gains and losses a CMB photon experiences in entering and leaving potential wells
do not cancel exactly. In this way, one expects a net blueshift of CMB photons in forming voids and a net redshift in
matter-accreting clusters of galaxies. Thikeet is called the integrated Sachs-Wolfe (iIS\Wget in the regime of

linear structure formation= ) and Rees-Sciama (RSffect ( ) if the density
perturbations grow nonlinearly. The perturbatiais of the CMB sky temperaturécyg can be written as:
AT 2 f 00
T= =—— | dw—, 3.51
Tems €3 an (3:51)

whered®/dn is the derivative of the gravitational potentials with respect to conformalfime
The iISWRS dfect is of particular interest, since it measures the dynamics of structure formation independent
of the type and state of matter. The iFRE dfect has been studied theoretically in individual objetisi(
) and could be used for the investigation of cluster mergers( ). More
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Figure 3.7.: The frequency dependence of the Sunyaev-Zeldovich flux chAgg§g) as a function of dimensionless
frequencyx = hv/(ksTems), for a cluster with electron temperatuFg = 10 keV, thermal Comptonisatiagn= 104, and
velocity vpec = 500 knys. The plot shows the frequency dependence of the thermalt8a-¢solid line), the kinetic
SZ-effect (dashed line) and the CMB black body spectrum (dash-dotted line) scaled by Sfor comparison.

importantly, it is sensitive to mapping the large-scale structure as it highlights the sites of active structure formation
( ] el ] 1 )

In conclusion, the various observational channels are powerful diagnostics of the cluster’s dynamics, in the bary-
onic as well as in the dark matter sector. Clusters of galaxies are by far more complicated objects than mere grav-
itationally interacting swarms of galaxies: Future experiments will open up the SZ-window which complements
X-ray observations in important respects and directly investigates the pressure distribution and deviations from hy-
drostatic equilibrium of the ICM. Gravitational lensing and the Ri®at shed light on dark matter distribution and
dark matter dynamics, whereas the kinetic $i&e is sensitive to baryonic streams inside clusters.
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4. PLANCK-surveyor

4.1. Introduction to the PLANCK-surveyor

The PLANCK-surveyor?23 ( ) is a European space mission dedicated to the mapping of the CMB
anisotropies. Itis scheduled for launch in 2007 and will be the fourth CMB observatory in a line of successful space
missions: RELIKT ¢ 1), COBE ( ) and WMAP (

). A core component of my theS|s is the simulation of Sunyaev -Zel'dovich observations to be carried out
with PLANCK (Chapters, 6, 7 and8), apart from the prediction of the observability of the integrated Sachs-Wolfe
effect (Chapted 3).

4.2. PLANCK mission objectives

PLANCK will carry out a polarisation sensitive survey of the entire microwave sky in 9 frequency bands ranging
from 30 GHz up to 857 GHz with unprecedented angular resolution of ufdtdts scientific objectives are:

e CMB studies: PLANCK will map the CMB sky up to multipole moments exceedihg 2000, well beyond
the third acoustic peak into the Silk damping regime. Its cartography of the microwave sky and the estima-
tion of the CMB power spectrum enable the determination of cosmological parameters (matter dgnsity
cosmological constar2,, baryon densityQg, the spectral index of the dark matter power spectngmat
large scales and Hubble’s constéhf) with an accuracy better than 1% 4
). It will yield insights into the initial conditions of structure formatio/( ), shed light
on the origin of primordial fluctuations along with a determination of inflation scenafiosc{
), where the Gaussianity of the primordial fluctuations is an important issue, and will test for

topological defectsi{ ) ). Futher areas of interest in primary CMB fluctuations
include constraints on properties of dark matter and dark enérgy« ) and the production of
chemical elements after reionisatice( ).

e CMB polarisation: The detection of polarised CMB radiation along with the determination of power spec-
tra of the polarised components will yield important constraints on cosmic reionisation scenarios. Another
important reason for measuring the power spectra of polarised components is their power to break degenera-
cies of parameter constellations that result from the measurement of the temperature autocorrelation function
alone ).

o thermal Sunyaev-Zel'dovich dfect: PLANCK is expected to detect aboutdlusters of galaxies from their
thermal SZ-signature. This cluster catalogue will reach out to very large redshifts and surpasses the classic
Abell catalogues and all X-ray catalogues by the number of entries. This catalogue will yield insights into
the cosmic evolution of clusters of galaxies which is closely linked to the paramegeand Q) and the
dark-energy densit@2q and the equation of state parameterit is doubtful whether PLANCK's sensitivity
will by sufficient to determine velocities of clusters by the kientic Sunyaev-Zel'dovigtt

).

httpy/planck.mpa-garching.mpg.de
2httpy/sci.esa.inplanck
Shttpy/astro.estec.esa.iRlanck
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PLANCK-surveyor

Figure 4.1.: The PLANCK-surveyor satellite

e gravitational lensing: The sensitivity and angular resolution of PLANCK will enable to detect deviations
from the primordial CMB power spectrum due to gravitational lensing of the CMB by the large-scale struc-
ture. Another lensingfeect is the integrated Sachs-Wolfe or Rees-Sciaffece which should be strong
enough to be detectable as a correction to the CMB power spectrum on large angular scales. Gravitational
lensing has been the subject of many investigations, for instan&e iz ( l ),

(1989, {200]).

e extragalactic point sources:PLANCK will yield an extensive catalogue of extragalactic point sources and
will be able to give a crude determination of their spectral properties. Possible types of point sources include

infrared ( ) and radio galaxies, AGNs, QSOs and blazars and inverted spec-
tra radio sources. PLANCK will complement precursing infrared observatories in studying the cosmic far
infrared background~ b).

e Galactic studies: PLANCK’s channels above 353 Ghz will be, due to their supreme angular resolution,
especially suited to study Galactic foregrounds. PLANCK will determine the properties and temperatures of

Galactic dust, and will examine the cloud and cirrus morpholdgyu( ). In the field of Galactic
synchrotron emission, it will determine spectral indices at high frequencies, will constrain the Galactic cosmic
ray distribution and map the Galactic magnetic field|( ) ).

e Solar system studiesPLANCK is expected to detect about 100-150 asteroids and comets(
), and will help to determine their thermal properties at low frequencies. Another sub-millimetric emis-
sion component of the Solar system to be investigated is the zodiacalfight( ).

4.3. Instrument description

The PLANCK-surveyor satellite is depicted in FiL1 Its optical system consists of two aluminium coated carbon
fiber mirrors arranged in anflvaxis tilted Gregorian configuration that guides the radiation to a detector array.
The primary mirror is an f-axis mounted paraboloid with a diameter of 1.3 m and a focal length of 72 cm. The
secondary mirror is a hyperboloid with 80 cm diameter and a focal length of 50 cm. The total wavefront error will
be smaller than 40m.

There will be two types of receivers onboard: The low-frequency instrument (LFI), which operates at frequencies
of 30 GHz, 44 GHz and 70 GHz, and the high-frequency instrument (HFI), for observations at frequencies between
100 GHz and 857 GHz. The LFI uses high electron mobility transistors as receivers, cooled to a temperature of
20 K. The HFlis an array of bolometers, which are cooled to a temperature of 0.1 K. Some of the HFI-channels are
equipped with polarisation filters. The sensitivity of PLANCK willfBae to record fluctuations of 2K on angular
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4.3 Instrument description

scales below 1@. PLANCK will carry out its survey from the second Lagrangian p&i2in the Earth-Sun system
at a distance of approximately5lx 10° km from Earth.
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5. Construction of all-sky thermal and kinetic
Sunyaev-Zel'dovich maps

Abstract

All-sky thermal and kinetic Sunyaev-Zel'dovich (SZ) maps are presented for assessing how well the PLANCK mission can find
and characterise clusters of galaxies, especially in the presence of primary anisotropies of the cosmic microwave background
(CMB) and various galactic and ecliptic foregrounds. The maps have been constructed from numerical simulations of structure
formation in a standarddCDM cosmology and contain all clusters out to redshiftzcf 1.46 with masses exceeding>xb
10"Mg/h. By construction, the maps properly account for the evolution of cosmic structure, the halo-halo correlation function,
the evolving mass function, halo substructure and adiabatic gas physics. The velocities in the kinetic map correspond to the
actual density environment at the cluster positions. | characterise the SZ-cluster sample by measuring the distribution of angular
sizes, the integrated thermal and kinetic Comptonisations, the source counts in the three relevant PLANCK-channels, and give
the angular power-spectra of the SZ-sky. While my results are broadly consistent with simple estimates based on scaling relations
and spherically symmetric cluster models, some significdfarginces are seen which mafegt the number of cluster detectable

by PLANCK.

5.1. Introduction

The Sunyaev-Zel'dovich (SZ)fkects ¢ ) ) ) have
evolved from physical peculiarities to valuable and sound observat|onal tools in cosmology. The therrfiatEZ-e
arises because photons of the cosmic microwave background (CMB) experience Compton-collisions with electrons
of the hot plasma inside clusters of galaxies and are spectrally redistributed. The amplitude of the modulation of the
Planckian CMB spectrum is a measure of the cluster electron column density and temperature. Alternatively, CMB
photons may gain energy by elastic Compton collisions with electrons of the intra-cluster medium (ICM) due to the
peculiar motion of the cluster relative to the CMB. This so-called kinetic &eeis proportional to the peculiar
velocity weighted electron column density and directly measures the cluster’s velocity component parallel to the
line-of-sight relative to the comoving CMB frame.

The advancement in sensitivity and angular resolution of sub-millimeter and microwave receivers have allowed
high quality interferometric imaging of more than fifty clusters of galaxies by ground based telesCapes (

) out to redshifts of~ 0.8, despite incomplete coverage of the Fourier plane. Apart from its
primary scientific objective, namely the cartography of the CMB with angular resolutions closette Gpcoming
PLANCK mission ( ) will be an unique tool for observing clusters of galaxies
by their SZ-signature. PLANCK is expected to yield a cluster catalogue that is surpassing the classic optical Abell
catalogues or any existing X-ray catalogue in numbers as well as in depth and sky coverage.

The capability of PLANCK to detect SZ-clusters has been the subject of many recent works, pursuing analytical
( ; ) as well as semianalytical
( , )and numerical approache_ { ). Their
consensus is an expected total number of a few timéscli@ters and the detectability of (Haiently massive)
clusters out to redshifts af< 1. The authors dier mainly in the expected distribution of the detectable clusters in
redshiftz. Where adressed, the authors remain sceptic about the detectability of the kineffe@Z-e

As a result of various approximations made, there are clearly limitations in these studies: Concerning the SZ
profiles of isolated clusters, simplifying assumptions like spherical symmetry, complete ionisation and isothermality
have usually been made. Analytical treatments mostly relg-profiles for modeling the spatial variation of the
Comptony parameter. Temperature models mostly make use of scaling laws derived from spherical collapse theory

25



Construction of all-sky thermal and kinetic Sunyaev-Zel'dovich maps

or are taken from X-ray observations. Naturally, the halo-halo correlation function is not taken account of, neither
do the velocities correspond to the actual density environment, they are commonly drawn from a (Gaussian) velocity
distribution.

The primary application of the all-sky SZ-maps would lie in the assessment of the extent to which cluster sub-
structure and deviations from spherical symmetry, the halo-halo clustering and deviations from the scaling-laws
alter the predictions made based on analytic methods.

Additionally, the investigations mentioned above lack the inclusion of galactic foregrounds (for a comprehensive
review of foregrounds concerning PLANCK, s&e ), the thermal emission from planets and
minor celestial bodies of the solar system, beam patterns and spatially non-uniform instrumental noise. In order
to quantify the extent to which the galactic and ecliptic foregrounds impede the SZ-observations by PLANCK, i.e.
down to which galactic latitudes clusters will be detectable, a detailed simulation is necessary. Furthermore, the
noise patterns will be highly non-uniform due to PLANCK’s scanning strategy. For investigating this issue, all-sky
maps of the thermal and kinetic S#ects are essential.

In my map construction, | use two numerical simulations of cosmic structure formation: The Hubble-volume
simulation, that provided a well-sampled cluster catalogue covering a large volume and secondly, a set of template
clusters resulting from a gas-dynamical simulation on much smaller scales, allowing us to extract template clusters.
For all clusters of the Hubble-volume simulation, a suitable template was chosen and after having performed a
scaling operation to improve the match it is projected onto the celestial sphere at the position requested by the
Hubble-volume catalogue. By construction, the resulting all-sky SZ-maps show halo-halo correlation even on large
angular scales, incorporate the evolution of the mass function and have the correct size distribution. In the kinetic
SZ-map, it is ensured that the cluster peculiar velocities correspond to the ambient cosmological density field.
Furthermore, the template clusters do exhibit realistic levels of substructure and departures from isothermality,
and their ensemble properties also account for scatter around the idealised scaling laws.Therefore, most of the
imperfections of traditional approaches will be remedied by my map construction process. However, there are
impediments that could not be disposed of: They include gas physics beyond adiabaticity, e.g. radiative cooling and
supernova feedback, that significantly alter the baryon distribution and temperature profiles of the ICM and hence
the SZ-amplitude, incomplete ionisation, inclusion of filamentary structures and uncollapsed objetseorgdis.
Another process influencing the thermal history of the ICM is reionisation, which also had to be excluded. Yet
another complication are non-thermal particle populations in clusters of galaxies that give rise to the relativistic
SZ-dfect ( ) ) ) ).

This chapter is structured as follows: After the definition of the basic SZ quantities in552dhe simulations
are outlined in Sect.3. The construction of the maps is described in detail in Sedtand the properties of the
resulting maps are compiled in SeBt5. Finally, the conclusions are presented in SBd.

5.2. Sunyaev-Zeldovich definitions

Compton interactions of CMB photons with electrons of the ionised ICM give rise to the thermal and kinetic
Sunyaev-Zel'dovich#ects and induce surface brightness fluctuations in the CMB sky, either because of the thermal
motion of the ICM electrons (thermal SZ) or because of the bulk motion of the cluster itself (kinetic SZ).

The relative chang@T/T in thermodynamic CMB temperature at positi@nas a function of dimensionless
frequencyx = hv/(kgTcmg) due to the thermal SZfkect is given by eqn 5. 1):

AT—T(e) = 4(0) (xij%) with (5.1)
O'TkB
o = o f dl ne(6. )T(6. 1), (5.2)

where the amplitudg of the thermal SZ-€ect is commonly known as the thermal Comptonisation parameter. It is
proportional to the line-of-sight integral of the temperature weighted thermal electron density (c.b.8gnng, c,

ks andot denote electron mass, speed of light, Boltzmann’s constant and the Thompson cross section, respectively.
The kinetic SZ-&ect arises due to the motion of the cluster relative to the CMB rest frame parallel to the line of
sight. The respective temperature change is given by:

AT—T(e) = —w(8) with w(6) = % f di ne(8, )i (6, 1). (5.3)
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5.3 Simulations

data set zrange Q/sr  Nhao shape
MS 00<z<058 4r 564818 sphere
NO 058<z<146 n/2 182551 northern octant shell
PO 058<z<146 x/2 185209 southern octant shell

Table 5.1.: Basic characteristics of the light-cone outputs used for compiling a cluster catalogue. The columns denote
the label of the data set, the range in redshithe solid angl& covered, the number of objedt ,, retrieved, and the
geometrical shape.

Here, v, is the radial component of the cluster velocity, i.e. the velocity component parallel to the line-of-sight.
The convention is such that the CMB temperature is increased, if the cluster is moving towards the observer, i.e. if
vy < 0. In analogy tqy, the quantityw is refered to as the kinetic Comptonisation parameter.

5.3. Simulations

Due to the SZ-clusters being detectable out to very large redshifts, due to their clustering properties on very large
angular scales, and due to the requirement of reducing cosmic variance when simulating all-sky observations as will
be performed by PLANCK, there is the need for very large simulation boxes, encompassing look-back distances
to redshifts of order ~ 1 which corresponds to comoving scales exceeding 2 Gpc. Unfortunately, a simulation
incorporating dark matter and gas dynamics that covers cosmological scales of that size down to cluster scales and
possibly resolving cluster substructure is presently beyond computational feasibility.

For that reason, a hybrid approach is pursued by combining results from two simulations: The Hubble-volume
simulation ( , ), and a smaller scale simulation including (adiabatic) gas physics
( ). The analysis undertaken b ( ) gives expected mass and redshift ranges for
detectable thermal SZ-clusters, which are covered completely by the all-sky SZ-map presented here.

The assumed cosmological model is the stande®DM cosmology, which has recently been supported by
observations of the WMAP satellit& ). Parameter values have been chosefas= 0.3, Q) =
0.7, Ho = 100hkm st Mpc~ with h = 0.7, Qg = 0.04,ns = 1 andog = 0.9.

5.3.1. Hubble-volume simulation

The Hubble-volume simulation is one of the largest simulations of cosmic structure formation carried out to date.
The simulation domain is a box of comoving side length 3 Bgéor the standardACDM cosmology) and com-
prises 10 dark matter particles. The simulations used were carried out by the Virgo Supercomputing Consortium
using computers based at the Computing Centre of the Max-Planck-Society in Garching and at the Edinburgh par-
allel Computing Centre. The data are publicly available for dowrfioad

The light-cone output of the Hubble-volume simulatiGiv(; ) was used for compiling a cluster cat-
alogue. This ensures, that the abundance of clusters at any given redsiifisponds to the level of advancement
in structure formation up to this cosmic epoch. The minimal mass was set id5Mg/h, which roughly corre-
sponds to the transition mass between a rich group of galaxies and a cluster. In order to cover redshifts out to the
anticipated limit for PLANCK, light-cone outputs offtiering geometry were combined: First, a sphere covering the
full solid angle of 4 was used for redshift radii &= 0 toz = 0.58. For redshifts exceedirm= 0.58, the northern
and southern octant data sets were added. The octant data sets span a solid atigendfwere replicated by
rotation in order to cover the full sphere. Tabld summarises the properties of théfdrent output geometries. In
this way, a cluster catalogue with cluster mdgsposition on the sk, redshiftzand peculiar velocity, projected
onto the line-of-sight was compiled, comprising a total number of 2035858 clusters. For the sky-map construction,
the position® were interpreted as ecliptic coordinates, the default coordinate system for PLANCK.

Here, it should be mentioned that the combination edént outputs gives rise to boundary discontinuities, at the
surface of the central sphere as well as on the faces of the octant shells. These discontinuities do not only show up in

Ihttp://www.mpa-garching.mpg.de/galform/virgo/hubble
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the spatial halo distribution, but also in the velocities of clusters close to simulation box boundaries. Furthermore,
the cluster catalogues exhibit small completeness deficiencies close to the edges of the simulation domain.

5.3.2. Small scale SPH cluster simulations

A hydrodynamical simulation of cosmological structure formatig( ) constitutes the basis of the
SZ-template map construction. The simulation was performed witGADEET codé ( ) using
the ‘entropy-conserving’ formulation of SPI ({ ). The simulation, first analysed in

( ), followed 216 dark matter particles as well as Z1gas particles in a cubical box of comoving side
length 100 Mp¢h with periodic boundary conditions. Purely adiabatic gas physics and shock heating were included,
but radiative cooling and star formation were ignored, which however does not result in signifitargndies in
SZ morphology, as shown by ( ), but would impact on the scaling relations as demonstrated by

( ). | analyse 30 output redshifts ranging frans= 0 out toz = 1.458. The comoving spacing

along the line-of-sight of two subsequent outputs is 100 Mpdalos were identified using a friends-of-friends
algorithm with linking lengttb = 0.164, which yields all member particles of cluster-sized groups. Then | employed
a spherical overdensity code to estimate the virial mass and radius of each cluster. | computed Mg, rimessde
a sphere of radius;;, interior to which the average density was 200 times the critical depgity: 3H(2)%/(87G).
A lower mass threshold dfl,; > 5x 10"*Mg/h was imposed in order to match the lower mass limit adopted for
the Hubble-volume cluster catalogue.

5.4. Sunyaev-Zel'dovich map construction

The construction of the all-sky SZ-map proceeds in three steps: First, a set of template cluster maps was derived
based on cluster data from a gas-dynamical simulation (S€cf). Then, for each of the clusters in the cluster cat-
alogue obtained from the Hubble-volume simulation, a suitable hydrodynamical cluster template has been selected,
scaled in mass and temperature in order to better fit the cluster from the Hubble-volume catalogug432ect.

and, for the kinetic sky map, boosted to the radial peculiar velocity required by the Hubble-volume simulation. The
last step is the projection onto a spherical celestial map (Sec8. In the subsequent paragraph (Séct.4, the
completeness of the resulting SZ-maps is investigated analytically.

5.4.1. SZ-template map preparation

Square maps of the Comptgrparameter of the selected clusters were generated by SPH projection of all friends-
of-friends identified member gas particles onto a Cartesian grid withm28h points. The (comoving) side length
sof the map was adapted to the cluster size, such that the comoving resgltisf128 of the grid is specific to a
given map.

If the particlep at positionr, = (xp, Yps zp) has a smoothing lengthy,, an SPH electron number density, and
an SPH electron temperatufg, the Comptony parameter for the pixel at positionis given by:

X+g/2 y+g/2 hp

o1k r
9= It gzl f dzp«(h_)inp (5.4)
X-g/2  y-g/2 -hp P

with r = \/(xp — X2+ (yp - y)? + 2 (5.5)

Here, | assume complete ionisation and primordial element composition of the ICM for the determination of
electron number density and temperature. In this way, | produce projections along each of the three coordinate axes.

The functionX is the spherically symmetric cubic spline kernel suggesteld by ( ), which
was also used in the SPH simulation:
1-6U>+6u,0<u<1/2
K(u) = = 2(1-uP®  ,1/2<u<1 withu=r/hp. (5.6)
0 ,u>1

2pttp://www.mpa-garching.mpg.de/galform/gadget/index.shtml
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5.4.1 SZ-template map preparation
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Figure 5.1.: The population of the template clusters in the mass-redshift plane. The line separates the sparsely sampled
region from the region in which a fiicient number of template clusters is available.

The fact that the kern&X has a compact supparte [0... 1] greatly reduces the computation#iogt. Details of
the SPH projection are summarised in Appendlix

The kinetic maps were treated in complete analogy: Maps of the Thomson opticakrdegté derived by means
of egn. 6.7):

3 xtg/2  y+g/2  hp

h
T(x)zaTg—g fdxp fdypfdzpqc(hl) np| . (5.7)
Polx-gr2  y-gi2 -hp P

In eqgn. 6.7), the influence of velocity diierences inside the clusters was omitted. At the stage of projecting the
template clusters onto the spherical map,#heap obtained is boosted with the peculiar line-of-sight velogity
in units of the speed of light required by the entry in the Hubble-volume catalogue in order to yield a Compton-
amplitude.

Neglecting velocity dierences inside the clusters does not seriougcathe measurement of cluster peculiar
velocities with the kinetic SZf€ect shown by ( ), the scatter in the velocity estimates increases
only little (50 — 100 knys) when considering a rather narrow beatd (= 1.0 FWHM), while the kinetic SZ-
amplitude remains an unbiased estimator of the peculiar velocity. For my application purpose, the situation is even
less troublesome because of PLANCK'’s wide bearm<(0 (FWHM)).

In this way, a sample of 1518 individual template clusters was obtained, and maps for projections along all three
coordinate axes were derived, yielding a total of 4554 template maps for each of the i@ &&-¢-ig.5.1 shows
the distribution of clusters in the mass-redshift plane. Especially at high masses, the smooth growth of clusters by
accretion can be clearly seen. Sudden jumps to larger masses are caused by the merging of low-mass clusters.

A limitation to my SZ-map construction is immediately apparent: The 4554 cluster template maps derived from
the hydro-simulation are not strictly independent, but merely show the same clusteffer@ndiredshift. Thus,
the morphological variety remains limited, but even though there is of course some variation in morphology due to
accretion and merging events. This, however, may not be a severe restriction, keeping the wide PLANCK-beams
in mind, that are unlikely to resolve cluster substructure for a large fraction of detectable clusters. In this case, the
simulation will pick up mismatches in Comptonisation relative to the value expected from the spherical collapse
model in conjunction with the Press-Schechter distribution of halo masses.
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Figure 5.2.: Distribution of the ratiosy (circles, solid line) andvy (crosses, dashed line) that describes the impact of
the mismatch between friends-of-friends masses and virial masses on the Comptoni$aiuhy/’.

5.4.2. Cluster selection and scaling relations

In order to select a template map for projection, the closest template cluster in thB{pg(ane for a given cluster
from the Hubble-volume simulation was chosen. For the sparsely sampled regionfziptane to the right of
the line in Fig.5.1, a cluster from a pool containing the most massive clusters to the right of this line in the redshift
bin under consideration was drawn.

The template clusters are scaled in mass, temperature and spatial extent in order to yield a better match to the
cluster from the Hubble-volume simulation according to form#a&&5.10 The scaling is parameterised by the
masses of the cluster of the Hubble-volume simulamjjj“bb'e) and the template clustaqemP'ate)

vir

M(Hubble)
Om (\t/gmplate) (5'8)
Mvir
r
r (M\(/Ii-:ubble)> 2 +r3
Or (template) (5'9)
vir
t1 (M\(/;'Ubble))tz + 13
ar (5.10)

ty (M\(Itifmplatebb " t3.
The parameterg andt;, i € {1,2, 3}, describing the scaling in sizg and in temperaturgr were derived from
template data: Fits to the virial radius as a function of mass and of the mean temperature inside the virial sphere
as a function of mass were applied to the data of simulation outputs binned in five data sets. This approach leaves
the map construction independent of idealised assumptions, like the prediction of cluster temperatures from the
spherical collapse model, or from electron temperature measurements deduced from X-ray observations and keeps
the weak trend of cluster temperature with redshés contained in the simulations.
Although the scaling has been constructed in order to yield the best possible match between the template cluster
and the target cluster from the Hubble-volume simulation, there are artifacts in irregular systems due to inconsis-

tencies in cluster masséd """ determined with a friends-of-friends algorithm for identifying cluster member

particles and the virial mass estimatd§:""**following from applying the spherical overdensity code. After the

scaling, these mismatches may be expressed as:
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5.4.3 Projection onto the celestial sphere

ay = gugrmimPae)ytuoie) ang (5.11)
ayw = qMMf(ctﬁmpIate)/M\(lli-:ubble). (5-12)

Fig.5.2shows the distribution of ratias, anda, for the entire Hubble-volume catalogue. Clearly, one recognises
large tails towards high values, because clusters have on average to be scaled to higher masses. This is due to the fact
that the hydro-simulation outlined in Sebt3.2does not sample the high-mass end of the Press-Schechter function
satisfatorily, simply because of its small volume. Nevertheless, the mean of the distributions is close to one, which
implies that the mismatches average out for the bulk of clusters.

5.4.3. Projection onto the celestial sphere

For storing all-sky maps the HEALPixesselation of the sphere proposeds ( ) has been chosen.

In order to support structures as small as clustersNhg parameter has been set to 2048, resulting in a total
number of 12NZ,. = 50331648 pixels. The side length of one pixel is then approximatély, which is well
below the anticipated PLANCK beam size d05n the highest frequency channels.

The scaled cluster maps are projected onto the spherical map by means of stereographic projection at the south
ecliptic pole of the celestial sphere. By dividing the (comoving) position vectqy) (of a given pixel on the
template map by the comoving angular diameter distgiieat redshiftz, one obtains the coordinates§) on the
tangential plane. Then, the stereographic projection formulae yield the (Cartesian) position &egtordf this
point projected onto the unit sphere:

da 43 a? + 32
4+a?2+B2 4+ a2 +p2 4+ a2 +p2)

r=(¢nd+1)= ( (5.13)

In order to assign a Comptonisation amplitude to a given HEALPix pixel in the projection process, a solid angle
weighted average is performed. For close-by clusters, the mesh size of the templates converted to angular units
is larger than the HEALPIx pixel scale. For those clusters, the map is refined iteratively by subdivision of a pixel
into 4 smaller pixels subtending a quarter of the original solid angle until the pixel size is well below the HEALPix
pixel scale. Before projection, the template maps are smoothed with a Gaussian kern® witB.0, which is
comparable to the HEALPIx pixel scale. In this way, it is avoided that structures are destroyed by the combination
of multiple template map pixels into a single HEALPIx pixel. This convolution does fiettthe later usage for
simulations concering PLANCK: A second successive convolution with the narrowest beam resultffactree
smoothing of 538, which corresponds to a decrease in angular resolution of roughly 7.5%.

Additionally, a rotation of the template map around texis about a random angle is performed in order to
avoid spurious alignments of clusters. The projected pixels are then transported by Euler-rotations of the vector
(&, 7, 0) to the position requested by the Hubble catalogue.

5.4.4. Completeness of the all-sky SZ-maps

The angular resolution of PLANCK will not allow to spatially resolve low-mass and high-redshift clusters. There
will be a Comptony backgroundyng)s due to the higher number density of low-mass clusters compared to high-
mass clusters which overcompensates their lower individual SZ-signature. Since ideally any isotropic background
could be removed, | only have to take into account the average background quctuatnglﬂgeyeWhich is described

by power spectrum statistics.

This section studies the influence of the background of unresolved SZ-clusters in my all-sky map of SZ-clusters
on power spectrum statistics. My simulation neglects the SZ-signal of clusters both with masses smaller than
5x 10"Mg/h and redshiftz > 1.5. In principle, these missing clusters could be accounted for by drawing them
from a particular realisation of Boissonian random fielgsuch that they obey the correct relative phase correlations,

i.e. that they exhibit the observed local clustering properties.

However, there are large uncertainties about the baryon fradgion Qg/Quy of low-mass halo${lhae < 5 x

10'3Mg@/h) especially at higher redshifts. Analyses of X-ray observations of 45 local clugter(18, only 4

3http ://www.eso.org/science/healpix/
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of them lie atz > 0.1) carried out by ( ) and ( ) suggest a weak trend of

the cluster baryon fractioffis with cluster mas# and a deviation from the universal value, which may be due to
feedback processes like galactic winds that mdiecéively deplete the ICM of baryons in low-mass compared to
high-mass clusters. The behaviourfgfat high redshifts is very uncertain, among other reasons because the relative
importance of the dierent feedback processes at high redshift is yet unknown. This uncertainty is also reflected in
different cooling rates and mechanisms, governing the ionisation fraction of the electrons and the resulting SZ flux
of a particular cluster. In the following, | study the contribution to the SZ flux of clusters both with masses smaller
than 5x 103 Mg/h and redshiftz > 1.5. Although the impact of this cluster population to tg,)-statistics
amounts to a significant fraction, this population has a negligible contribution to the more relgyastatistics

which will be shown in the following. The unresolved cluster population is assumed to follow scaling relations
derived from the spherical collapse model. Temperatuaad halo mas# are assumed to be related by

2/3 13 1/3
kT _ (M 1+g(2) (A0 (5.14)
6.03keV \10Mg/h Q2 178
(e.g. ) ). The temperaturksT = 6.03 keV for a cluster wititVl = 10°Mg/h has
been adopted from ( ). The density parameter at redstfis denoted by)(2), andA. is
the mean overdensity of a virialised sphere,

Ac = 9% {1+ [Q(2) - 1] + Q2] (5.15)
with (@,8) = (0.7076 0.4403) for a flat cosmology<( ). Assuming that the total numbeé¥, of thermal
electrons within the cluster virial radius is proportional to the virial mass yields

1+ f M
Ne= —H 2 (5.16)
2 Mo
where fy is the hydrogen fraction of the baryonic magg & 0.76) andm, is the proton mass. From X-ray data
of an ensemble of 45 clusters) ( ) derived fg = 0.075h~%/2. Traditionally, the number density of
dark matter haloes is described by the Press-Schechter formaiisms( ). The comoving Press-
Schechter mass function can be written as
— (n+3)/6 (n+3)/3
o n\( M 1 M
Nps(M, Z =—(1+—)( ) exp|- (— , 5.17
P2 = vz U 3\, Pl 2020 \ W .17

where M, andp are the nonlinear mass today and the mean background density at the present ep&ti{zand
is the linear growth factor of density perturbations, normalised to unity tddagd) = 1. n » -1 denotes the
effective exponent of the dark matter power spectrum at the cluster Sc¢edén ( ) recently proposed
a significantly improved analytic derivation of the mass function while ( ) measured the mass
function of dark matter haloes in numerical simulations and found a fitting formula very close to Sheth & Tormen'’s,
however, being of slightly lower amplitude at high masses. Thus, the fitting formula found by Jenkins et al. was
used in my study.

The total Comptony parameter per unit solid angle is given by

(5.18)

Yo =d2 f &6 y(0) =

whered, is the angular-diameter distance to the cluster. The mean background level of SZ fluctuations is given by

(og)e(z Mo) f dz]‘f'j—v|(1+z)3  dM (M. 2Ya(M.

fdedva(M 5 ENM.2) (5.19)

dMdv ’

where &/ is the cosmic volume per unit redshift and unit solid angle(M, 2) is the mass function of collapsed
halos 6.17), andYq(M, 2) is the integrated Comptaop-parameter per unit solid angle frorb.18 expressed in
terms of halo mas#! and redshiftz. Background fluctuations are due to Poisson fluctuations in the number of
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5.5 Results
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Figure 5.3.: Comparison of the mean background leyglys(z 5 x 108*Mg/h) (solid) and the variance@§g>g(15 X
10"*Mg/h) (dashed) andy; )(z 10°Mg/h) (dash-dotted). The flerential curves show qualitatively the smaller impact
of low-mass and high-redshift clusters on the variance compared to the mean background of SZ fluctuations.

clusters per unit mass and volume if cluster correlations are neglected. The variance of the background fluctuations

reads )
®N(M, 2)
Wigoe M) = [ am [ ov 1aom o SEEE (5.20)

Fig. 5.3shows a qualitative comparison of the influence of the background of unresolved SZ-clusters on the mean
background levedyng)o(z, Mo) and the variancejgg>9(z Mp). For studying this influence quantitatively, the ratio of
mean background levels and variances is defined via:

(Yng)o(Zsim» Msim)
mean = T« o 5.21
' <ybg>6(zma><a Mpmin) ( )
( 2 Y6(Zsim, Msim
{Yhg)osim: Msim) (5.22)

rvar

<Ut2)g>9(zmax’ Mmin) ’

where the numerator accounts for the resolved clusters in my simulatiorzwitlzs, = 1.5 andM > Mg, =

5 x 10'*Mg/h while the denominator accounts for all collapsed halos contributing to the SZ-flux in my analytic
estimate £ < Zmax = 20 andM > My, = 1 x 10'3Mg/h). Performing these integrals yields ratios'@fan= 40.6%
andryyr = 93.3% and thus confirms the qualitative picture of Fsg3. Therefore, | conclude that one can safely
neglect the ffect of the background of unresolved SZ clusters on power spectrum statistics of my SZ all-sky map,
especially when considering the mentioned uncertaintieig end the ionisation fraction of electrons in low-mass

halos.

5.5. Results

This section provides various characterisations of the SZ-cluster sample and properties of the resulting map. First,
a visual impression of the SZ-maps is given in S&ch.1 Distribution of the angular sizes and of the integrated
thermal and kinetic Comptonisations are presented in SécRand in Sect5.5.3 respectively. The distribution of

pixel amplitudes and a discussion of the sky-averaged thermal Comptonisation is given b %Sdcthe angular
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Figure 5.4.: All-sky map of the thermal Comptonisation parameter Mollweide projection. The shading is proportional
to arsinh(160 x y).

power-spectra in comparison to those obtained in high-resolution simulations perforriiéday: ( ) is
shown in Sect5.5.5 Finally, source counts in three relevant PLANCK-channels are given in S8d.

In order to quantify the deviations resulting in using template SZ-maps instead of relying solely on analytical
profiles and idealised scaling relations, the distributions following from the respective approach are constrasted in
Sect.5.5.2(angular sizes), Sech.5.3(integrated Comptonisations) and Sécb.6(source count at three selected
PLANCK-frequencies).

5.5.1. Sky views

In order to give a visual impression of the sky maps, all-sky views in Mollweide projection of the Compton-
parameter (Fig5.4) as well as of the Comptom-parameter (Fig5.5) are presented. Apart from those images,
detailed maps of small regions of the SZ-sky are presented irbFfor the thermal and in Figh.7 for the kinetic
SZ-dfects, respectively. These detailed maps display interesting features: Clearly, cluster substructure is visible in
the maps, e.g. at position,(8) ~ (13460, 45.25).

Secondly, massive clusters that generate a strong thermal signal, are rare, such that in drawing a peculiar velocity
from a Gaussian distribution large values are less likely to be obtained. Consequently, these clusters commonly
show only a weak kinetic signal, a nice example can be found at the positiGh £ (13525,4475). Closeby,
the inverse example can be found atd) ~ (13840, 4450), where a low-mass cluster shows only a weak thermal
signal, but has diicient optical depth and a high enough peculiar velocity to give rise to a strong kinetic signal.
Finally, at @, 8) =~ (13890, 45:75), there is an example of a merging cluster, with a dipolar variation of the subcluster
velocities.

The occurence of high kinetic SZ-amplitudes is a subtle point: Cluster velocities follow a Gaussian distribution
with mean consistent with zero, because the large scale structure is at rest in the comoving CMB-frame and with
a standard deviation ef, = 3128 + 0.2 km/s. This value has been measured for clusters in the Hubble-volume
catalogue and is noticably smaller comparedto= 400 knys proposed by ( ). As Fig.5.8
illustrates, the velocity-distribution doest depend on the cluster mass, because on the scales of typical cluster
separation, linear structure formation is responsible for accelerating the clusters to their peculiar velocity. Massive
clusters are rare and thus a high peculiar velocity is seldomly drawn from the underlying Gaussian distribution.
Despite the seemingly large separation, it would be incorrect to draw the velocities independently from a Gaussian
distribution. Instead, the kinetic SZ-map ensures the consistency that the density and velocity fields have grown
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5.5.1 Sky views

~7.000000 I - 7.000000

Figure 5.5.: All-sky map of the kinetic Comptonisation parameiein Mollweide projection. The shading is proportional
to arsinh(10 x w).

ecliptic latitude B [deg]

134 134.5 13

5 135.5
ecliptic longitude A [deg]

Figure 5.6.: Detail of the thermal Comptonisation map: A R 2° wide cut-out centered on the ecliptic coordinates
(1,B8) = (135,45°) is shown. The smoothing imposed was a Gaussian kernelAdite 20 (FWHM). The shading
indicates the value of the thermal Comptonisatioand is proportional to arsinh(& y). This map resulted from a
projection on a Cartesian grid with mesh siz&4”, i.e. no HEALPIx pixelisation can be seen.
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Figure 5.7.: Detail of the kinetic Comptonisation map: A & 2° wide cut-out centered on the same position as 5ig.
i.e. at the ecliptic coordinates,(8) = (135, 45°) is shown. The smoothing imposed was a Gaussian kernelAgith 2.0
(FWHM). The kinetic Comptonisatiom is indicated by the shading which is proportional to arsinA1®).

from the initial Gaussian random field by linear structure formation and have the correct relative phases.

Similar to the clustering on large angular scales that the thermal SZ-map shows due to the formation of super-
clusters, the kinetic SZ-map is expected to exhibit clustering on the same angular scales. This is because in the
formation of superclusters, the velocity vectors of infalling clusters point at the dynamical centre and are thus
correlated despite the large separation.

5.5.2. Distribution of angular sizes

The distribution of cluster sizes is an important characteristic of the sky maps. For the derivation of core sizes,
two different paths have been pursued in order to contrast the ideal case, in which cluster sizes follow from the
well-known virial relations to the simulated and realistic case, in which the sizes are measured on the template maps

themselves. First, the cluster sizes are measured on the data by fitting a King-prafiizid
) to the thermal and kinetic template maps:
il
Yo [1 + (@) ] (5.23)
I’C

21-1
w(r) = wo'[l+(%)
re

yielding the core radiié”) for the thermal ancdé“’) for the kinetic map, respectively. Thfits have been centered
on the pixel with the highest amplitude, and as free parameters only the central amplijuedetw, were used
apart from the core radii. The resulting radii have been averaged over all three projections of the cluster. Together
with the comoving distance of the cluster as given by the Hubble-volume catalogue and the scaling factor required
to match the size (compare Seg#.2, the core radii have been converted into angular diameters.

Secondly, an angular extent has been derived from the virial radius. Template data suggests the relation

y(r)

(5.24)

rc =~ 0.12rvir (5.25)
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Figure 5.8.: Mean value and variance of the (Gaussian) distribution of peculiar velogjtes a function of cluster mass

M. The parameters of the distribution do not depend on mass, i.e. the mean is consistent with zero and the standard
deviation has values 320 knys irrespective of mass. Standard deviations for the five bins corresponding to the largest
cluster masses have been omitted due to poor statistics. The underlying data points represent 1% randomly selected entries
of the Hubble-volume catalogue.

rather than the value of ~ 0.07r,;, advocated by ( ) and ( ). In analogy, the
angular diameter was then determined with the cluster distance given by the Hubble-volume catalogue.

In Fig. 5.9, the size distributions for the thermal as well as for the kinetic clusters are given. Clearly, most clusters
have angular diameters small compared to PLANCK’s beam, and would appear as point sources. Here, it should
be emphasised, that the HEALPix tesselation with the chdgggparameter does not resolve structures smaller
than 271. In the process of smoothing the clusters imposed prior to projection (comparg.8&tclusters with
diameters smaller thart@ have been replaced by 2-dimensional Gaussians avith 2/0. Their normalisation
corresponds to the integrated Comptonisatidhand ‘W measured on the template maps. The smoothing is an
absolute necessity because otherwise the HEALPix map would-nh&éttimes as many pixels for supporting the
most distant and hence smallest clusters in the Hubble sample and-hdi¢imes the storage space. A futher
point to notice is the remarkably good agreement between diameters derived from the various prescriptions.

5.5.3. Distribution of the integrated thermal and kinetic Comptonisation

The signal strength of a cluster in an SZ observation is not given by the line-of-sight Comptonisation, but rather
the Comptonisation integrated over the solid angle subtended by the cluster. These quantities are refered to as the
integrated thermal Comptonisatidghand kinetic Comptonisatiom’ and are defined as:

Y= f dQy(d) and W = f dQ w(8). (5.26)

For a simple model of the integrated Comptonisations as functions of clusterNhadistancez and peculiar
velocity v it is assumed that the SZ-flux originates from inside a sphere of ragjushat the baryon fraction
is equal to its universal valug = Qg/Qu, that the ICM is completely ionised and has a uniform temperature
predicted by the spherical collapse model laid down in egri4. In this model, the actual distribution of electrons
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Figure 5.9.: The number of clustens(9)dd per square degree for given angular diameétisrshown without taking beam
convolution into account, for thermal clusters (circles, dashed line) and kinetic clusters (crosses, dash-dotted line) as
following from g-model fits to template data. For comparison, the distribution of angular diameters obtained via the virial
theorem (solid line) is also plotted.

inside the virial sphere is of no importance. Then, the integrated Comptonisations are approximated by:

5 ) 1 1
Hvir _ fB Myir | dA Qo\3( Ac )3
s~ e () (§) @) () (5.27)
Whir _ fg ( Myir | (da 2 Ur
arcmirf O.ZQF( M. )(E) (Z) (5.28)

respectively. The reference values have been chosent, be 10"°Mg/h, d, = 100 Mpg/h andw, = 1000 knys.
da is the angular diameter distance to the cluster= Q(z) denotes the mass density at redshifindA; = A(2)
the overdensity of a virialised sphere, an approximate description is given by%efjp. (For typical values for
mass, distance and velocity, the thermal and kinetic 8cts difer by approximately one order of magnitude. The
baryon fraction is set to the universal valfge= Qg/Q\ = 0.133 for the remainder of this chapter.

Distributions of the integrated thermal and kinetic Comptonisations are shown in5igsand5.11, respec-
tively. The distributions have been derived from actual scaled template data in comparison to the values obtained
from (5.27) and 6.28).

Fig. 5.10shows the number of clusters per @egth integrated thermal Comptonisatidh It can be seen that
the approach relying on the virial theorem underestimates the number of cluster by a factor 2-3 for large integrated
Comptonisations. Alternatively, one could state that the distributions are separated at high Comptonisations by
slightly less than 0.5 dex. The reason for the significantly larger integrated Comptonisations determined from
template data is due to the fact that the template clusters were matched to the catalogue entries given by the Hubble-
volume simulation by their virial masses. In irregular clusters, there is a significant fraction of the gas located
outside the virial sphere and thus the integrated Comptonisation is systematically underestimated when applying a
spherical overdensity code to simulation data, as previously examined i.Eifn scaling the template clusters up
to the masses required by the Hubble-volume catalogue, ffésatfice is amplified because in the sparsely sampled
region of theM-zdiagram (compare Fig&.1 and5.2) clusters have on average to be scaled to higher masses,
which explains the fiset in the distributions. A secondfect is the evolution of ICM temperature. Compared
to the temperature model eqm.14) based on spherical collapse theory, the plasma temperatures are smaller by
approximately 25%, i.e. the mean SPH-temperature of the particles inside the virial sphere is smaller than expected
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Figure 5.10.: The number of clustens(Y)dY per square degree for given integrated thermal Comptonisatiderived
from template data (dashed line) in comparison to the analogous quantitiy based on virial estimates (solid line).
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Figure 5.11.: The number of clusteny('W)dW per square degree for given integrated kinetic Comptonisagibtlerived

from template data (dashed line) in comparison to the analogous quantitiy based on virial estimates (solid line). Here,
the scaling of the vertical axis is linear, in contrast to Fid.1, such that the underlying Gaussian distribution of peculiar
velocities becomes apparent.
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Figure 5.12.: Distribution of pixel amplitudes of the thermal Comptonisation paramgt@ircles, solid) and of the
absolute value of the kinetic Comptonisatjeh(squares, dashed). Zero values have been deliberately excluded. The figure
illustrates the occurence of clusters comparable to the HEALPIx pixel scale: The thin set of lines shows an additional peak
at small Comptonisations, that vanish after convolution with a beatwd of 5.0 (FWHM), i.e. comparable to PLANCK,

as shown by the thick lines.

from spherical collapse theory and reflects the departure from isothermality: The template clusters do show a
temperature profile that declines towards the outskirts of the clusters, which decreases the integrated Comptonisation
relative to the values derived by means of the virial theorem.
Furthermore, the dependence of electron temperature on cluster mass is noticably weakerNtahgbaling:
The cluster number weighted average for the exponéntthe scalingT « M relating temperature to mass was
found to be(e) = 0.624, and at the redshifts around unity, where most of the clusters reside, values as small as
0.605 were derived. Using this scaling, the Compjagmarameter and hence the integrated thermal Comptonisation
Y shows a significantly shallower distribution compared to the distribution relying on simple scaling arguments.
The same argument applies to the kinetic Comptonisationas depicted in Fig5.11: Here a shifting of the
values to smaller kinetic Comptonisations is observed when comparing estimates following from the virial theorem
to actual simulation data. The shift of the peak of the distribution amounts to about one third dex, as explained
above for the thermal Comptonisations. Keeping mf’e—scaling of the thermal SzZfkect in mind, the shift in
the ‘W-distribution is then consistent with the shift of tB&distribution. A very illustrative demonstration how
asphericity &ects the SZ-observables of a cluster is giver’by ( ).

5.5.4. Distribution of Comptonisation per pixel

Fig. 5.12shows the distribution of the pixel amplitudes of the thermal SZ-map as well as of their absolute values
in the kinetic SZ-map. Clearly, the kinetic and thermal Si&es are separated by approximately one order of
magnitude.

The distribution of pixel amplitudes is very broad, encompassing the largest line-of-sight Comptonisations of
y ~ 1.5x10* andfw| ~ 1.6 x 10° down to very low signals below log) ~ —20. The distribution is bimodal,
which is a pixelisation artefact and which is caused by the replacement of faint and small clusters with a very
narrow Gaussian, the extent of which is slightly above the pixel scale, once the cluster is smaller2tfam
diameter. These clusters are more concentrated than the King-profiles of resolved clusters. There is a caveat when
applying an expansion into spherical harmoni§gd) to the SZ-maps: The smallest clusters are only a few pixels
in diameter. Working with the HEALPIx tesselation, reliable expansiorffaients can only be obtained up to
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multipole moments of ordef ~ 2 x Ngjge, i.€. Up tof ~ 4096 in my case, which corresponds to angular scales

of 2/64. The pixel scale is!X1 for this choice of thdsjqe-parameter. Consequently, the small clusters will not be
contained in an expansion into spherical harmonics, as shown by the set of thick linesii Eiglere, the map has

been decomposed @m-codficients (compare eqn531), multiplied with thea,p-codificients of a Gaussian beam

of A = 5.0 (FWHM) and synthesised again. Then, the resulting smoothed map does not contain small clusters,
because the decomposition into spherical harmonics has not been able to resolve structures that extend over only a
few pixels.

The mean value of the thermal Comptonisatjomas been determined to kg = 3.01x 10~ and the pixel-to-
pixel variance isr, = /(2 — (y)2 = 1.85x 10°. In analogy, the valuéw) = 6.28x 10~° has been derived for the
kinetic map, with variancer,, = /(w?) — (w)2 = 3.78x 1077, i.e. the mean kinetic Comptonisation is consistent
with zero, due to the peculiar velocities following a Gaussian distribution with zero mean. The mean value of the
moduli of the pixel amplitudes of the kinetic map(jg|) = 7.65x 1078.

The value for the mean Comptonisati¢y) measured on the map should account for roughly 40% of the mean
thermal Comptonisation as derived in Séct.4 due to the lower mass threshold inherent to the simulation. Keep-
ing in mind the absence of anyfflise component of the thermal Comptonisation, the value derived here is com-
patible with the value ok 107° given by ( ) and ( ), but falls short of the
value derived by ( ) by a factor of less than twav ( ) performed a cross-correlation
of WMAP-data with clusters from the APM survey and found the mean Comptonisation to be significantly larger
and to be in accordance with ( ), but in contradiction with expectations from CDM models.

5.5.5. Angular power spectra of the thermal and kinetic SZ-effects

In this section, the angular power spectra are given for the all-sky maps. They follow from a decomposition of the
spherical data set into spherical harmong%0):

Ym = Lde(O)Yy(O)*, (5.29)

wem = | dQuw(@)YMO)", and (5.30)
A

W = [ dQ @) YPeY, (5.31)

4

respectively. The spherical harmonical transfasfp) has been determined from the absolute values of the kinetic

map amplitudes. The reason for doing so is the vanishing expectation value of the peculiar velocities in the comoving
frame such that for a given cluster in the thermal SZ-map, both signs of the kinetife®Z axe equally likely to

occur and the cross-power averages out to zero. The angular power spectra and the cross power spectrum are defined
via:

+{

ny(f) = 2511;(me;m’ (5.32)
1 +{

Conl) = 3pq 20 Vi (5.33)
1 +

%W):%H;ﬁww (5.34)

with the asterisk denoting complex conjugation. The resulting power spectra are given5rilBig.comparison to

the power-spectra derived by ( ) in simulations covering smaller angular scales. The curves match
well, and the remaining discrepancies may be explained by the fact that in the maps presented here, power is missing
on small scales due to the low-mass ¢ijtawhereas the simulation by White is missing power on large scales due

to the smallness of their simulation box. The bending-over of the spectra derived from my SZ-maps is also due
to the fact that the expansion in spherical harmonics cannot be computed for angular scales approaching the pixel
scale and thus does not include very small clusters of sizes comparable to the pixel size, as already discussed in
Sect5.5.4
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Figure 5.13.: Angular power spectra of the thermal and kinetic Siee: C,,(¢) (circles, solid line),C,,,(¢) (crosses,
solid line) and the cross power spectr@, (¢) (diamonds, solid line) are shown in comparison to the power spectra of
the thermal SZ-gect (circles, dashed line) and the kinetic SPeet (crosses, dashed line) obtained/hy ( )

at smaller scales, i.e. at higher multipole oréler

If clusters were randomly positioned point-sources on the sky, the number of clusters per solid angle element
would be a Poisson-process and the resulting power spectrum should be fl&(fAex N (N ist the number
of sources), as shown Ly ( ). Contrarily, the brightness distribution of clusters assigns additional
weight to the large angular scales and giving rise to a significant deviation in the slope of the powerG@gctra
¢77 as a function of: The measured slope isRy = 1.53 + 0.07 for the thermal and 2 vy = 1.45+ 0.07 for
the kinetic SZ-fect, which reflects the deviation from pure Poissonianity. In the fitting, the valuédtore been
restricted to 1< ¢ < 100 and the errors derived correspond to the 95% confidence intervals.

Furthermore, Fig5.13 shows the cross-correlation between the thermal SZ-map and the absolute value of the
kinetic SZ-map. As expected, the amplitude of the cross-power spectrum is at an intermediate level compared to
autocorrelations of the thermal and kinetic SZ-maps.

5.5.6. Source counts at PLANCK frequencies

As the last point in this analysis, | address the SZ source counts, i.e. the nNrb&Z-clusters giving rise to flux
changes exceeding a certain flux threstglgh. The SZ flux modulation as a function of frequency is given by:

S(X)

So f dQ [y g(x) - Brh(¥)] (5.35)
So[Yg(X) - Wh(x)] = Sy(X) - Sw(x), (5.36)

whereSy = 22,9 Jy/arcmirf is the flux density of the CMB andf and‘W denote the integrated thermal and kinetic
Comptonisations. The functiog$x) andh(x) are the flux modulations caused by the thermal and kineticfi&tts
for non-relativistic electron velocities:

x* exp(x) exp) + 1
0 = o 17 o1 -39
h(x) X' exp() (5.38)

(exp() — 17
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5.5.6 Source counts at PLANCK frequencies

1 2 3 4 5 6 7 8 9
vo 30GHz 44GHz 70GHz 100GHz 143GHz 217GHz 353GHz 545GHz 857 GHz
Av 30GHz 4.4GHz 7.0GHz 16.7GHz 23.8GHz 36.2GHz 58.8GHz 90.7GHz 142.8 GHz
(Sy) -122Jy -248Jy -536Jy -821Jy -88.8Jy  -0.7Jy 146.0Jy  76.8Jy 5.4 Jy
(Syw)  62Jy 13.1Jy 30.6Jy 550Jy 86.9Jy 110.0Jy  69.1Jy  15.0Jy 0.5 Jy
ATy  -440nK -417nK  -356nK  -267nK  -141nK  -0.5nK 38nK  8.4nK 0.2nK

ATqy 226nK  220nK  204nK 179nK 138nK 76 nK 18 nK 1.6nK 0.02nK

Table 5.2.: Characteristics of PLANCK's LFI- and HFI-receivers: centre frequendsequency windowAv (as defined in
eqn. 6.40), fluxes(Sy) and(S+,) (see eqn.§.36) generated by the respective Comptonisatiop/of ‘W = 1 arcmirf
and the corresponding changes in antenna temperalfuyy@ndAT.y,. Due to PLANCK’s symmetric frequency response
window, the thermal SZ{Eect does not vanish entirely at= 217 GHz.

Here, x again denotes the dimensionless frequercy hv/(ksTcme). The averaged fluxS),, at the fiducial
frequencyyg is obtained by weighted summation with the frequency response window furiRtjor) and can
readily be converted to antenna temperaigdy means of eqn5(39:

fdv SW)R,(») B 2V—S

S),, = =
R [dvR,() c2

ks Th. (5.39)

The main characteristics of PLANCK'’s receivers and the conversion factors from 1 areftirermal or kinetic
Comptonisation to fluxes in Jansky and changes in antenna temperature measitréigiven by Tables.2. For
the derivation of the values a top-hat shaped frequency response fuRgfienhas been assumed:

| Lvelvo—Av,vo+ AV
R (v) = { 0.v ¢ [vo— Av.vo + Av] (5.40)
Figures5.14 5.15and5.16show the source counts stated in number of clusters peede function of averaged
flux (S),, for PLANCK’S v = 143 GHz-,vy = 217 GHz- and/ = 353 GHz-channels, respectively.
The source count(S) are well approximated by power laws of the form:

N((S) > Smin) = No S". (5.41)

Values for the normalisationsy and the slopes have been obtained by fits to the source counts for the three
relevant PLANCK-frequencies and are stated in Tdb& In the fits, the four rightmost bins have been excluded
because of poor statistics. The parameters of the power law has been derived for the fluxes following from the
idealised case based on the virial theorem and compared to fluxes determined from template cluster data.

The slopes derived from fits to the cluster number counts are slightly steeper for the virial estimates compared to
template datao ~ —5/3 versusy ~ —1.4), which again reflects the weaker dependence on cluster mass observed
in template data. Comparing data sets fdfedent frequencies, the slopesre of course almost identical, because
only amplitudes are changed by the choice offéedént frequency band. The number of clustégstays roughly
constant in the case of the kinetic SEeet, but reflects the distinct frequency modulation in the case of the thermal
SZ-dfect. Here, it should be emphasised, that the thermalf&ctedoes not vanish entirely at= 217 GHz due
to PLANCK'’s symmetric frequency response window. Th&edence in numbers between the estimates based on
virial quantities to those measured on template data amounts to roughly half an order of magnitude in the kinetic
SZ-dfect, but rises almost an order of magnitude at small fluxes for the thermat&Z-erhere is however good
agreement in the number counts of thermal SZ clusters at high fluxes.

The diference in slope of the thermal versus kinetic SZ-cluster number counts is causedysealing of
the thermal SZ-@ect relative to the proportionality th of the kinetic éfect. Due to the dierence in slope, the
effects are separated by two orders of magnitude for the largest fluxes, whilefieniie increases to eight orders
of magnitude for the smallest fluxes, which hints at tH&dilties to be faced in detecting kinetic clusters compared
to even faint thermal detections. The slopes derived here are in good agreement with the those obtained by

(2000
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Figure 5.14.: Source countdN((S) > Smin) for thermal (circles) and kinetic clusters (crosses) for PLANCigs=
143 GHz channel and for fluxed measured on the scaled template clusters (dashed line) in comparison to virial fluxes
(solid line).
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Figure 5.15.: Source countdN({(S) > Smin) for thermal (circles) and kinetic clusters (crosses) for PLANCig's=
217 GHz channel, the dashed and solid lines contrast the fluxes measured on the template data and those following from

virial scaling relations, respectively. For the given frequency response furRfjor), the thermal SZ+ect does not
vanish entirely aty = 217 GHz.
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Figure 5.16.: Source countdN({S) > Smin) for thermal (circles) and kinetic clusters (crosses) for PLANCi's=

353 GHz channel, again for fluxes derived from template data (dashed line) in comparison to fluxes following from virial

scaling relations (solid line).

channel vo = 143 GHz vo = 217 GHz vo = 353 GHz
thermal SZ-ffect, virial estimate lofNo = -1.78 £ 0.02 logNp = -5.31+0.02 logNp = -1.42+ 0.22
a=-167+0.03 a=-167+0.07 a=-166+0.02
kinetic SZ-dfect, virial estimate  lofNp = -4.49+ 0.01 logNy = —4.42+ 0.01 logNy = -4.57+0.01
a=-0.76+0.06 a=-076+0.05 a=-076+0.06
thermal SZ-fect, simulation logNg = —2.36+0.02 logNg = -5.31+0.02 logNg = —2.06+ 0.02
a=-140+0.03 a=-140+0.06 a=-140+0.03

kinetic SZ-dfect, simulation

lodo = —3.95+ 0.01
a=-0.72+0.04

logNo = —3.88+ 0.01
a=-0.72+005

logNg = —-4.02+ 0.01
a=-072+0.05

Table 5.3.: Values obtained from fits of a power law of the tyl[déS) = N S to the cumulative source counts as a function
of flux exceeding the threshofél for both SZ-éfects. In the table, values obtained from virial estimates are contrasted to

values following from measurements on template data. The errors quoted denote the 95% confidence intervals.
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Construction of all-sky thermal and kinetic Sunyaev-Zel'dovich maps

5.6. Summary

All-sky maps for the thermal and kinetic Sunyaev-Zel'dovidfeets are presented and their characteristics are
described in detail. The maps because of their angular resolution and the data storage format chosen (HEALPIx)
especially suited for simulations for PLANCK.

¢ The all-sky maps of the thermal and kinetic S#eets presented here incorporate the correct 2-point correla-
tion function, the evolving mass function and the correct size distribution of clusters, to within the accuracy
of the underlying Hubble-volume simulation and the small-scale adiabatic gas simulations.

e The maps presented here exhibit significant cluster substructure (compare.Sdctin spite of this, fits to
the Comptonisation maps yield angular core radii, the distribution of which are close to the expectation based
on the virial theorem (Sec’.5.2.

e The diference in the distribution of the integrated Comptonisat¥m@sdW (Sect.5.5.3 and source counts
N((S) > Smin) (Sect.5.5.6 between values derived from scaling relations compared to those following from
template data have been found to be substantial, which hints at possible misestimations of the number of
clusters detectable for PLANCK.

e An analytic investigation in Sech.4.4quantified the contribution of the cluster sample to the sky averaged
mean thermal Comptonisati@p) and its variancer,. It was found that the clusters within the boundaries in
mass M > 5x 10'3*Mg/h) and redshift £ < 1.48) make up= 40% of the mean Comptonisation, but account
for ~ 98% of the variance. The value for the mean Comptonisation corresponds well to that obtained by other
authors (Secb.5.9.

e The power spectra (Sed.5.5 are compatible in amplitude and slope to the ones found\ty
( ). On large angular scales, i.e. at small multipQldeviations from the Poissonianity in the slope of the
power spectrum have been found.

e The velocities of the kinetic SZ-map correspond to the actual cosmological density environment, i.e. cor-
related infall velocities are observed due to the formation of superclusters, which highlights a significant
improvement in comparison to methods that draw a cluster peculiar velocity from a (Gaussian) distribution
and enables searches for the kinetic $#2@ by considering spatial correlations with the thermal 82et.

The cross correlation of the thermal with the kinetic SZ-map yields a spectrum similar in shape at intermediate
amplitudes (see Sed&.5.5.

Despite the high level of authenticity that the all-sky SZ-maps exhibit, there are quite a few issues not being taken
account of: The baryon distribution and temperature inside the ICM is governed by processes beyond adiabatic gas
physics, for example in the form of supernova feedback and radiative cooling. Especially the latter process gives
rise to cool cores which may enhance the thermal SZ-signal. The ionisation inside the clusters was assumed to be
complete. Furthermore, the maps contain only collapsed objects and hence filamentary structtiteseayati are
not included. Concerning the thermal history of the ICM, reionisation had to be neglected. The kinetic map has
been constructed without taking account of velocity fluctuations inside the cluster. This does not pose a problem for
PLANCK, but needs to be remedied in high-resolution SZ-surveys to be undertaken wittattzana Cosmology
Telescopand theSouth Pole Telescoperet another imperfection is the lack of non-thermal particle populations
that cause the relativistic S4Fect ( ), whose detectability with PLANCK is still a matter of
debate.

The results of this chapter were worked out in collaboration with M. Bartelmann (ITA, Heidelberg) and C. Pfrom-
mer (MPA, Garching). V. Springel (MPA, Garching) and L. Herquist (CfA, Harvard) provided the adiabatic hydro-
dynamical simulations. A paper entitl&ktecting Sunyaev-Zel'dovich clusters with PLANCK: I. Construction of
all-sky thermal and kinetic SZ-mamghich summarises the results of this chapter has been submitted to the journal
Monthly Notices of the Royal Astronomical Societnd is available onlinegstro-ph0407089.
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6. Microwave emission components of the Milky
Way and the Solar system

Abstract

In order to assess PLANCK'’s SZ-capabilities in the presence of spurious signals, a simulation is presented that combines maps
of the thermal and kinetic SZfiects with a realisation of the cosmic microwave background (CMB), in addition to Galactic fore-
grounds (synchrotron emission, free-free emission, thermal emission from dust, CO-line radiation) as well as the sub-millimetric
emission from celestial bodies of our Solar system. Additionally, observational issues such as the finite angular resolution and
spatially non-uniform instrumental noise of PLANCK’s sky maps are taken into account, yielding a set of all-sky flux maps, the
auto-correlation and cross-correlation properties of which are examined in detail.

6.1. Introduction

The Sunyaev-Zel'dovich (SZ)fkect ( ) is the

most important extragalactic source of secondary amsotroples in the CMB sky. The thernfid G Zsexplained

by the fact that CMB photons are put in thermal contact with electrons of the hot intra-cluster medium (ICM) by
Compton-interactions which causes a transfer of energy from the ICM to the CMB. Because of the smallness of the
Thompson cross-section and of the diluteness of the ICM this transfer of thermal energy is small. In the direction
of a cluster, low-energetic photons with frequencies below 217 GHz are removed from the line-of-sight. At
frequencies above = 217 GHz CMB photons are scattered into the line-of-sight, causing a distinct modulation of
the CMB surface brightness as a function of observing frequency, which enables the detection of clusters of galaxies
in microwave data.

In contrast, in the kineticféect it is the peculiar motion of a cluster along the line of sight relative to the CMB
frame that induces CMB surface brightness fluctuations. The peculiar motion of the cluster causes the CMB to be
anisotropic in the cluster frame. Due to this symmetry breaking of the scattering geometry, photons scattered into
the line-of-sight are shifted in frequency, namely to higher frequencies, if the cluster is moving towards the observer.

The PLANCK-mission will be especially suited to detect SZ-clusters due to its sensitivity, its spectroscopic ca-
pabilities, sky coverage and spatial resolution. It is expected to yield a cluster catalogue contal@hgntries.
Extensive literature exists on the topic, but so far the influence of foregrounds and details of PLANCK'’s instrumen-
tation and data aquisition have not been thoroughly addressed. In this work we aim at modelling the astrophysical
and instrumental issues connected to the observation of SZ-clusters as exhaustively as possible: A simulation is
presented that combines realistic maps of both $&ets with a realisation of the CMB, with fourfterent Galactic
foreground components (thermal dust, free-free emission, synchrotron emission and emission from rotational tran-
sitions of CO molecules), with maps containing the sub-millimetric emission from planets and asteroids of the Solar
system and with instrumental noise. PLANCK’s frequency response and beam shapes are modelled conforming to
the present knowledge of PLANCK's receivers and its optical system. In order to extract the SZ-cluster signal,
filtering schemes based on matched and scale-adaptive filtering are extended to spherical data sets.

The chapter is structured as follows: After a brief recapitulation of the fBxtein Sect6.2, the PLANCK-
satellite and instrumental issues connected to the observation of CMB anisotropies are decribedil. Seue.
foreground emission components are introduced in $ettThe steps in the simulation of flux maps for the various
PLANCK-channels are described and their correlation properties are examined i6.Se&tsummary in Sect.6
concludes the chapter.

Throughout the chapter, the cosmological model assumed is the stax@Bxid cosmology, which has recently
been supported by observations of the WMAP sateliite( ). Parameter values have been chosen as
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Microwave emission components of the Milky Way and the Solar system

Qum =0.3,Q4 = 0.7, Hp = 100hkm st Mpc™ with h = 0.7, Qg = 0.04,ns = 1 andog = 0.9.

6.2. Sunyaev-Zel'dovich definitions

The Sunyaev-Zel'dovichfeects are the most important extragalactic sources of secondary anisotropies in the CMB.
Inverse Compton scattering of CMB photons with electrons of the ionised ICM gives rise to ffeeds @nd induce
surface brightness fluctuations of the CMB sky, either because of the thermal motion of the ICM electrons (thermal
SZ-dfect) or because of the bulk motion of the cluster itself relative to the comoving CMB-frame along the line-of-
sight (kinetic SZ-&ect).

The relative chang@T/T in thermodynamic CMB temperature at positi@nas a function of dimensionless
frequencyx = hv/(kgTcmg) due to the thermal SZfkect is given by:

e+1

o = o (x

O’TkB

- 4) with (6.1)

y(O) = f di ne(6, 1)Te(6, 1), (6.2)

where the amplitudg of the thermal SZ-€ect is commonly known as the thermal Comptonisation parameter, that
itself is defined as the line-of-sight integral of the temperature weighted thermal electron demsity.kg and

o1 denote electron mass, speed of light, Boltzmann’s constant and the Thompson cross section, respectively. The
kinetic SZ-dfect arises due to the motion of the cluster parallel to the line of sight relative to the CMB-frame:

AT—T(e) = —w(8) with w(@) = % f di ne(8, e (6, 1). (6.3)

Here, v, is the radial component of the cluster’s velocity. The convention is suchuthat 0, if the cluster is

moving towards the observer. In this case, the CMB temperature is increased. In analogy, the gqusinétgred

to as the kinetic Comptonisation. The SZ-observables are the line-of-sight Comptonisations integrated over the
solid angle subtended by the cluster. The quantMesndW are refered to as the integrated thermal and kinetic
Comptonisations, respectively:

Y

f dQ y(0) = dz(2) ;'TLES f dV neTe (6.4)
f dQ w(8) = d;2(2) ‘%T f dV ne; (6.5)

Here,da(2) denotes the angular diameter distance of a cluster situated at readshift

w

6.3. Submillimetric observations with PLANCK

The PLANCK-missiof? will perform a polarisation sensitive survey of the complete microwave sky in nine ob-
serving frequencies from the Lagrange pdiatin the Sun-Earth system. It will observe at angular resolutions of
up to 50 in the best channels and will achieve micro-Kelvin sensitivity relying on bolometric receivers (high fre-
quency instrument HFI, describedlin ) and on high electron mobility transistors (low frequency
instrument LFI, see ). The main characteristics are summarised in
Table 6.LPLANCK’s beam characterlstlcs are given SécB.1and the scanning strategy and the simulation of
spatially non-uniform detector noise is outlined in S&cB.2

6.3.1. Beam shapes

The beam shapes of PLANCK are well described by azimuthally symmetric Gausgians # exp(—z%zz)
0 [

with o = Examples of PLANCK’s beams are given in F@lThe residuals from the ideal Gaussian

AO
VBIn@)"

Ihttp://planck.mpa-garching.mpg.de/
2http ://astro.estec.esa.nl/Planck/
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6.3.2 Scanning strategy and noise-equivalent maps

1 2 3 4 5 6 7 8 9

Vo 30GHz 44GHz 70GHz 100GHz 143GHz 217GHz 353GHz 545GHz 857 GHz
Av 30GHz 44GHz 70GHz 16.7GHz 238GHz 36.2GHz 588GHz 90.7GHz 142.8GHz
A8 334 268 131 92 71 50 50 50 50

oN 1.01lmK 0.49mK 0.29mK 567mK 4.89mK 6.05mK 6.80mK  3.08mK 4.49mK

(Syy -12.2Jy -248Jy -53.6Jy -82.1Jy -88.8 Jy -0.7Jy  146.0Jy 76.8 Jy 5.4y
(Say) 6.2 Jy 13.1Jy 30.6Jy 55.0 Jy 86.9Jy 110.0Jy 69.1Jy 15.0 Jy 0.5Jy
ATy  -440nK -417nK -356nK  -267nK  -141nK -0.5nK 38 nK 8.4nK 0.2nK

ATqy 226nK  220nK  204nK 179nK 138nK 76 nK 18 nK 1.6nK 0.02nK

Table 6.1.: Characteristics of PLANCK’s LFI-receivers (column 1-3) and HFI-bolometers (column 4-9): centre frequency
vo, frequency windowAy as defined in eqns6(27) and 6.28), angular resolutiond stated in FWHM, &ective noise level

o, fluxes(Sy) and(S.,) generated by the respective Comptonisatiod/of ‘W = 1 arcmirf and the corresponding
changes in antenna temperatw®, andAT4y,. Due to PLANCK'’s symmetric frequency response window, the thermal
SZ-dfect does not vanish entirely at= 217 GHz.

v =100 GHz v =143 GHz v =217 GHz

Figure 6.1.: Beam shapes of various PLANCK channels in logarithmic colour coding. The beam patterns show interesting
features such as asymmetries anfirdction rings. The images followed from a ray-tracing simulation of PLANCK’s
optical system including ffiraction on the mirrors and detector entry windows.

shape (ellipticity, higher order distortions fldaction rings, far-side lobes, pick-up of stray-light) are expected not
to exceed the percent level and are neglected for the purpose of this work 6Thtilees the angular resolutioky
in terms of FWHM of each PLANCK-channel for reference.

6.3.2. Scanning strategy and noise-equivalent maps

CMB observations by PLANCK will proceed in great circles fixed on the ecliptic poles. A single scan will start
at the North ecliptic pole, will follow a meridian to the South ecliptic pole and back to the North ecliptic pole by
following the antipodal meridian. Such a scan will last one minute and will be repeated sixty times. After that,
the rotation axis will be shifted in a precessional motion f& @pproximately half a beam diameter) and the scan
repeated. In this way, the entire sky is mapped once in 180 days.

Fourier transform of the noise time series of PLANCK's receivers yields a noise power spdfiiraf the

shape
1+( f ) ] (6.6)
fknee

i.e. the noise consists of two components: a power law component in freqfiedegribed by the spectral index
that assuming values® « < 2 and a white noise component, smoothly joined at the frequéney
The f~*-part of the noise spectrum originates from zero point drifts of the detector gain on large time scales.

P(f) =0}
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Figure 6.2.: A sky map with the stripe pattern caused by the long-wavelefgtinoise withe = 1. The relative skewness
of single scan paths is caused by the non-ideal detector pointing of PLANCK.

This power law component exhibits low-frequency variations that lead to the typical stripe pattern in simulated

PLANCK-maps due to the scanning stratedis( ). Algorithms for destriping the maps are a current
research topic (for example, tig¢ rage-algorithm proposed by ( ), MAPCUMBA by
( ) the max-likelihood algorithm by ( ), and theMadam-algorithm proposed b

( )), but it can be expected that the destriping can be done Vecjeatly such that the remaining noise largely
consists of uncorrelated pixel noise. An example of such a sky map is given i6.Eig.

In order to incorporate uncorrelated pixel noise into the simulation, a set of maps has been construced, where at
each pixel a number from a Gaussian distribution with wigthhas been drawn. For PLANCK’s HFI-receivers,
the rms-fluctuationsy in antenna temperature can be calculated from the noise equivalent power NEP and the
sampling frequencysamping= 200 Hz via:

_ 2 NEP Vsampling

= HFI 6.7
oN kel (HFI) (6.7)
Alternatively, for PLANCK's LFI-receivers, the rms-fluctuations in antenna temperature are given by:
Tnoise+ T
oy = V2ot VB () ) (6.8)

Y AV/Vsampling

Values forTpise and NEP can be obtained from PLANCK'’s simulation pipeline manual. The resultiegtiee
noise level for all PLANCK channels for a single observation of a pixel is given in Taldle Formulae and
respective parameters are taken from the PLANCK simulation manual, available via PLANCK'’s website.

The rms-fluctuationsry in antenna temperature have to be scaled\je; (assuming Poissonian statistics),
wherenge; denotes the number of redundant receivers per channel, because they provide independent surveys of the
microwave sky.

From simulated scanning paths it is possible to derive an exposure map usBignitiasion- andmul timod-
utilities. An example of such an exposure map in the vicinity of the North ecliptic pole is given i BigJsing
the number of observatiomgys per pixel, it is possible to scale down the noise amplitudes/by,s and to obtain
a realistic noise map for each channel. Here, | apply the simplification that all detectors of a given channel are
arranged collinearly. In this case, the exposure maps will have sharp transitions from well-observed regions around
the ecliptic poles to the region around the ecliptic equator. In real observations these transitions will be smoothed
out due slight displacements of the optical axes among each other which causésdieexposure pattern to be
a superposition of rotated and distorted single-receiver exposure patterns.
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6.3.2 Scanning strategy and noise-equivalent maps

Figure 6.3.: Exposure map (side length 70°) of a singlev = 353 GHz-receiver at the North ecliptic pole in logarithmic
shading: The displacement of the receiver with respect to the optical axis causes the observational rings not to overlap
exactly at the pole, but gives rise to the lozenge-shaped pattern in the sky-coverage map. On average, the pixels inside the
lozenge are observed roughly 100 times, compared26 times outside. Pixels on the edges of the lozenge are observed

a few thousand times. The best observed pixels are situated on the tips of the lozenge, where values asHighaas 2

attained. The numbers correspond to the planned mission lifetime of 1 year. The faint diagonal tangential line on the left
side is caused by 2008'’s being a leap year: The mapping of the entire sky would be completed in 365 days, but there is an
additional day available.
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Figure 6.4.: Sky map of the antenna temperature increase caused by dust emissior ie the0 GHz-channel: The
shading is proportional to arsinf{(v = 100 GHz)uK). Ecliptic coordinates have been chosen. This map has been
derived from the dust-template map providedduylegel et al(1999.

6.4. Foreground emission components

The observation of the CMB and of SZ-clusters is seriously impeded by various Galactic foregrounds and by the
thermal emission of celestial bodies of our Solar system. In order to describe these emission components, template
maps from microwave surveys are useduchet & Gisper(1999 give a comprehensive review for the foreground
components relevant for the PLANCK mission. As foreground components, | include thermal emission from dust in
the Galactic plane (Sed.4.1), Galactic synchrotron (Sed.4.2 and free-free emission (Se6t4.3, line emission

from rotational transitions of carbon monoxide molecules in giant molecular clouds 6S&d}, sub-millimetric

emission from planets (Se&.4.5 and from minor bodies of the Solar system (S6¢t.§. Foreground components
omitted at this stage are discussed in Sget.7.

In this work, no attempt is made at modelling the interactions between various foreground components because
of poorly known parameters such as the spatial arrangement along the line-of-sight of the emitting and absorbing
components. Exemplarily, the reader is refered-to<beiner(2003, where the absorption of Galactic free-free
emission by dust is discussed.

6.4.1. Galactic dust emission

At frequencies above 100 GHz, the thermal emission from dust in the disk of the Milky Way is the most prominent
feature in the microwave sky. Considerabffod has been undertaken to model the thermal emission from Galactic
dust Gchlegel et al1997 1998 Finkbeiner et al1999 2000. The thermal dust emission is restricted to low
Galactic latitudes and the thin disk is easily discernible.

The input template map (see Fi§.4) is derived from an observation at a wavelengthiot 100 um, i.e.
vo = 3 THz. Its amplitude®q,s; are given in MJysr, which are extrapolated to the actual frequency channels
of PLANCK using a two-component model suggested by C. Baccigalupi (personal communication). Despite the
fact that the dust is expected to spread over a large range of temperatures, the model reproduces the thermal emission
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6.4.2 Galactic synchrotron emission

Figure 6.5.: Sky map of the antenna temperature increase caused by synchrotron emission #1168 GHz-channel
in ecliptic coordinates: The shading is proportional to arsinf = 100 GHzYuK). The survey undertaken by
( ) was used to construct this template.

remarkably well. This model yields for the fl8gus(v):

fig (2)" BosTo) + f2 (£) B T2)
f10B(vo, T1) + f2B(vo, T2)

The choice of parameters used if: = 0.0363,f, = 1 - f, @1 = 1.67,a2, = 270, = 130. The two dust
temperatures arg; = 9.4 K andT, = 16.2 K. The functionB(v, T) denotes the Planckian emission-law:

Sdust(V) = Adust (6-9)

2h V3

BT = 2 spfikeT) -1

(6.10)

An improvement over this dust model would be the IRIS-fepnstructed by
( ), who used IRAS data for constructing sky maps showing the infrared dust emission of the Galactic disk,
infrared cirrus at high Galactic latitudes, infrared point sources and zodiacal light. Like the current dust model, the
map follows from an observation at 100 GHz, but has much better angular resolution.

6.4.2. Galactic synchrotron emission

Relativistic electrons of the interstellar medium produce synchrotron radiation by spiralling around magnetic field
lines, which impedes CMB observations most strongly at frequencies below 100 GHz. The synchrotron emission
reaches out to high Galactic latitude and is an important ingredient for modelling foreground emission in microwave

observations. An all-sky survey at an observing frequency of 408 MHz has been compiied by ( ,
) and adopted for usage with PLANCK Iy ( ) (see Fig6.5. The average angular resolution
of this survey is 885 (FWHM).
Recent observations with WMAR{ ) indicate that the spectral slope of the synchrotron emission

changes dramatically from= —0.75 at frequencies below 22 GHz4o= —1.25 above 22 GHz. Theoretically, this
may be explained by a momentum-dependeflitiion codficient for cosmic ray electrons. In order to take account

Shttpy/www.cita.utoronto.cemamdIRIS/IrisTechnical.html
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of this spectral steepening, the amplitudggchroare multiplied with a prefactor in order to obtain the synchrotron
fluxes atv = 22 GHz. This value is then extrapolated to PLANCK'’s observing frequencies with a spectral index of
v = —1.25: The amplitude®\synchro Of the input map are given in units of M3y, and for the fluxSsynchdv) one

thus obtains:
22 GHz y  \125
Ssynetrd¥) = /708 MHzAsy”Ch'°<408 MHz) ' (6.11)

Here, the fact that the synchrotron spectral index shows significant variations across the Milky Way due to varying
magnetic field strength is ignored. Instead, a spatially constant spectral behaviour is assumed.

6.4.3. Galactic free-free emission

The Galactic ionised plasma produces free-free emission, which is an important source of contamination in CMB
observations, as recently confirmedby ( ) in WMAP observations. Aiming at modelling the free-
free emission at microwave frequencies, | rely orthrtemplate provided by ( ). Modelling of the
free-free emission component on the basis dfigrtemplate is feasible because both emission processes depend on
the emission measu@nédl, wheren, is the number density of electrons. This template is a composite oflthree
surveys and is because of its high resolution (on aver&&W/HM) particularly well suited for CMB foreground
modelling. The morphology of the free-free map is very complex and the emission reaches out to intermediate
Galactic latitude.

For relatingH,-fluxes Ay, given in units of Rayleighs to the free-free signal’s antenna temperateice

measured in Kelvin) ( ) gives the formula:
Tiree-free(uK) o 90 KTt ( v
— =14 1 : 12
A (R O\ 15k O an (1o 6H (6.12)

Tp denotes the plasma temperature and is set fokl this work. An approximation for the Gaunt factgk
valid for microwave frequencies in the rangg< v < kgT/h (v, is the plasma frequency) is given By

(2003:
V3
—|In

T

(6.13)

((ZKBTp)3/2) 5 }
g = —

@y yme | 2 F|’

wheree andm, denote electron charge and mass (in Gaussian unitsyanrd 0.57721 is Euler's constant. The
contribution of fractionally ionised helium to the free-free emissivity as well as the absorption by interstellar dust
has been ignored because of its being only a small contribution in the first case and because of poorly known
parameters in the latter case. The antenna temperature can be converted to the free $ige fluf) by means

of:

2
%
Stree-free(V) = 2@ K Tiree-free(K). (6.14)

Concerning the free-free emission, there might be the possibility of an additional free-free component uncorre-
lated with theH,,-emission. This hot gas, however, should emit X-ray line radiation, which has not been observed.

6.4.4. CO-lines from giant molecular clouds

In a spiral galaxy such as the Milky Way, a large fraction of the interstellar medium is composed of molecular
hydrogen, that resides in giant molecular clouds (GMC), objects with masses-dftB® and sizes of 56200 pc.
Apart from molecular hydrogen, the GMCs contain carbon monoxide (CO) molecules in significant abundance.
The rotational transitions of the CO molecule at 115 GHz and higher harmonics thereof constitute a source of
contamination for all PLANCK HFI-channels. An extensive search for atomic and molecular transition lines was
undertaken by ( ) with the FIRAS instrument onboard COBE.
The CO-contamination is modelled by employing a mosaic of CO-surveys assembledniny (

). It shows the velocity-integrated intensity of the transition from the first excited statel() to the ground
state ( = 0) close to the Galactic plané  5°), and additionally comprises a few CO clouds at higher Galactic
latitude, as well as the Large Magellanic Cloud and the Andromeda galaxy M 31. Due to the composition of the
map, the angular resolution is not uniform, but the best resolutien @b is reached for a large area around the
Galactic plane.
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6.4.4 CO-lines from giant molecular clouds

Figure 6.6.: Sky map of the antenna temperature increase caused by free-free emission ia the0 GHz-channel:
The shading is proportional to arsifi(v = 100 GHz)uK). Ecliptic coordinates have been chosen. This map has been
derived from theH, -template map provided by ( ).

Figure 6.7.: Sky map of the increment in antenna temperature due to CO-line emission inth#00 GHz-channel
in ecliptic coordinates: The shading is proportional to arsinf = 100 GHz)YuK). The maps shows the rotational
transition of the CO molecule from the first excited state into the ground state, at 115 GHz as derived b

( ) for a temperature of o = 20 K.
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From this map, it is possible to derive the line intensities of the higher harmonics, assuming thermal equilibrium:
The frequency for a transition from a state of rotational quantum numbé&s a state with quantum numbér 1
follows from elementary quantum mechanics: The rotational energy of a CO-molecule with moment oféinertia
and angular momentuthis E,o; = J?/20 = 2 J(J + 1)/26. In the last step the quantum numkawas introduced.
For the transition energy between two subsequent rotation levels, one obtains:

Vioss1 = 2Qc(d + 1) = 115 GHz ( + 1), (6.15)

whereQ = h/8r%cH is a measure of the inverse moment of inertia of the moleculeatehotes the speed of light.
Thus, the spectrum consists of equidistant lines. The relative intensities of those lines is given by the ratio of their
occupation numberg;:

Qhc
ke Tc

i.e. the relative line intensitie®., 3,1 Of two consecutive lines is given by:

x1=(J+1) exp( J(J 1)) (6.16)

2J+3 20hc
Qi1 = At ex (— Q

= J+1 6.17

23+ 1 koToo O F )) .17

3 is detemined by a statistical weightX2 1) reflecting the degeneracy of angular momentum and a Boltzmann
factor. For the determination of line intensities thermal equilibrium is assumed, common estimates for the temper-
ature inside GMCs aréco = 10— 30 K. For the purpose of this work, | choo$go = 20 K. From the brightness
temperatur@ 5 one obtains the CO-fluSco_iine(v) by means of the following equation:

2
Sco-iine(v) = 2% ks Ta(K) P(v — vio341),s (6.18)

where the line shapg(v—v;.341) is assumed to be small in comparison to PLANCK'’s frequency response windows
such that its actual shape (for instance, a Voigt-profile) is irrelevant. Sadly, the inclusion of other molecular and
atomic lines, e.g. ©(424.75 GHz), C (492.23 and 809.44 GHz),(H(556.89, 1113.3, and 1716.6 GHz); N

(1461.1 and 2459.4 GHz),"(q(1900.5GHz), O (2060.1 GHz), Si (2311.7 GHz), and CH (2589.6 GHz), was not
feasible, although a measurement from the FIRAS experiment onboard COBE Bxists:( ). These

sky maps have comparatively low resolution and there are numerous gaps in the data. Furthermore, there are large
variations in the abundance of the molecular species relative to carbon monoxide from pixel to pixel, so that the
modelling based on the CO-map would not be reliable.

6.4.5. Planetary submillimetric emission

Planets produce infra-red and sub-millimetric radiation by absorbing sunlight and by re-emitting this thermal load
imposed by the Sun. The investigation of the thermal properties of Mars, Jupiter and Saturn has been the target
of several space missions , to name but a few). For the description of the
submillimetric thermal emission propertles of planets, an extension to the Wright & Odenwald moaigli( )

) was used. The orbital motion of the planets iffisiently fast such that their movements
including their epicyclic motion relative to the Lagrangian paipt PLANCK'’s observing position, has to be taken
into account. All planets are imaged twice in approximate half-year intervals due to PLANCK’s scanning strategy,
while showing tiny displacements from the ecliptic plane because of the Lissajous-orbit of PLANCK &roamad
their orbital inclinations.

The heat balance equation for a planet or asteroid reads as:

E + F + W = Penmission= I:)absorptionE | +R, (6.19)

whereE denotes the heat loss by thermal emission (i.e. the signal for PLANEK)e heat flux outward from the
interior of the planetyV is the heat lost by conduction to the planet’s atmospHeethe Solar radiation absorbed
andRis the heating of the planet caused by the back-scattering of radiation emanating from the surface of the planet
by the atmosphere. The definition of these quantities is given by e®2¢) through 6.24):
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E = echp,aneb (6.20)

F = kaTg';‘“et, (6.21)

I = WCOSG*)COS(@), (6.22)
r T

R = ucos(9)cos(2ﬂt) ¥ Imax, @nd (6.23)

W = «F. (6.24)

Here, e is the surface emissivity of the planet,is the Stefan-Boltzmann constaiffanetis the planet’s temper-
ature,k the codficient of heat conductior the planet’'s bolometric albed@ the Solar constant (i.e. the energy
flux density of Solar irradiation at the Earth’s mean distanct#)e distance of the planet to the Sun in astronomical
units, T the planet’s rotation period angt the geographical latitude of the radiation absorbing surface element.
The temperature distribution in the interior of the planet at radial poski@ncontrolled by the heat conduction
equation:

c BTpIanet -k aszIanet
ot oxe

(6.25)

with the specific heat per unit volunee

In the model, the heat lo$®of the planet’s surface due to conduction to the planet's atmosphere is taken to be a
constant fraction of the heat flux outward from the interior of the planet, the constant of proportionality bejing
for which | assumed = 0.1. Similarly, the heat gain by back-scattering radiation by the atmosphees assumed
to be a constant fractiop of the local noon Solar fluxmax, Wherey was taken to be = 0.01. The system of
differential eqns.q.20 - (6.24) dependent on timeand on Solar distanaeconstitutes a heat conduction problem
with periodic excitation (by the planet’s rotation). Thus, the heat balance of the planets is modelled by periodic
solutions of the Laplacian heat conductiorfeliential equations. It was solved iteratively by applying Laplace
transforms with periodic boundary conditions. The integration over the planet’'s surface then yields the radiation
flux. In the calculation, | addressed rocky and gaseous plan@seditly with respect to their thermal properties.
Furthermore, the giant gaseous planets are known to have internal sources of heat generation, which also has been
taken account of.

The brightest point source in the microwave sky due to the planetary thermal emission is Jupiter, causing an
increase in antenna temperatureTqfipicer = 936 MK in thev = 100 GHz-channel, followed by Saturn with
Tsawrn = 15.0 mK. All outer planets apart from Pluto will be visible for PLANCK. Estimates show that even
Galilean satellites Ganymede, Callisto, lo and Europa and Saturn’s moon Titan are above the detection threshold
of PLANCK, but they are outshone by the stray-light from Jupiter and Saturn, respectively and for that reason not
included in my analysis.

Due to the planet’s being point sources, their fast movement and their diverse surface temperatures it is not
feasible to produce a template and extrapolate the fluxes with a common emission law to PLANCK-frequencies.
Instead, flux maps have been produced directly for each of the nine PLANCK-channels separately taking account
of the planetary motion, the solution of the heat balance equation laid down above and the finite beam-width. The
analogous holds for asteroids, that are covered by the next chapter.

6.4.6. Submillimetric emission from asteroids

Asteroids and minor bodies of the Solar system are easily observed by infrared satellites such as ISO and possibly
by sub-millimetric observatorie$/( ). An estimation by ( )
shows that a large number of astermelsA@O) should yield signals detectable by PLANCK. The orbital motion of
all asteroids is fast enough to cause double detectiongtatetit positions in the sky separated by half a year due
to PLANCK'’s scanning strategy. In contrast to planets, asteroids are not well restricted to the ecliptic plane and
appear up to ecliptic latitudes gf< 30°.

The thermal emission properties of asteroids are well understood (for a comprehensive and detailed review, see

b, s ) such that asteroids have been used for calibrating detectors (e.g. the ISO mission,
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Figure 6.8.: Sky map of increment in antenna temperatligeproduced by planets and asteroids in the 30 GHz

channel at 33! resolution (FWHM). The colour coding is proportional to arsiid{¢ = 100 GHz)nK). The asteroids

reach ecliptic latitudes gB| < 30°. The pronounced signals are produced by planets, which (due to PLANCK’s scanning
strategy) appear twice. The observable planets comprise (from left to right) Saturn, Mars, Uranus, Neptune and Jupiter.
The epicyclic motion of Mars is sficiently fast to counteract the parallactic displacement such that it appears only once.

c.f. ] ) and for determining beam shapes. The thermal model used for describing
the submillimetric emission by asteroids is the same extension of the Wright & Odenwald model as for rocky
planets. However, additional features that had to be incorporated was the beamed emission due to surface roughness.
Furthermore, in the system offtérential eqns.q.20 - (6.24) termsW andR were neglected due to the absence of
atmospheres in asteroids.

Information about the diameter and albedo was derived using the HG-magnitude system in case of asteroids for
which those quantities are unknown, otherwise literature values were taken/\(foon ) and IAU’s Minor
Planet Centre?). For the description of the rotation period, an empirical relation that expresses the rotation period
as a function of mass was used in the cases where the rotation period is unknown. The brightest sources include
Ceres Tceres= 19.7 uK), Pallas Tpaias = 7.2 uK), Vesta (Tvesta = 6.7 uK) and Davida Tpaviga = 2.1 uK). The
temperatures stated are antenna temperatures measured i i GHz-channel at the brightness maximum.

The simulation shows that the number of detectable asteroids is overestimatedrby ( ), who
did not take the expected observation geometry and detector response into account. Typical surface temperatures of
asteroids are of the order of 150 K, and therefore, PLANCK is observing their thermal emission in the Rayleigh-
Jeans regime. For that reason, the number of detectable asteroids increases with observing frequency. For the
sample of 5x 10* asteroids of théMinor Planet Centrés catalogue, | find a couple of asteroidsvat 30 GHz,
a few tens of asteroids at= 100 GHz and up to 100 asteroids in the highest frequency band=a857 GHz.
Approximately 1200 asteroids will have fluxes above half of PLANCK'’s single-band detection limit estimated for
ideal observation conditions and thus they constitute an abundant population of point sources that possibly hampers
the detection of SZ-clusters.

The prediction of comets is very uncertain for the years 2007 through 2009: Many comets are not detected yet,
non-active comets are too faint with few exceptions and the coma thermal emission features of active comets is very
complex. For these reasons, they have been excluded from the analysis.

4http ://cfa-www.harvard.edu/cfa/ps/mpc.html
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6.4.7. Future work concerning PLANCK'’s foregrounds

Foreground components not considered so far include microwave point sources, such as infra-red galaxies and
microwave emitting AGNs. The emission of infra-red galaxies is associated with absorption of star light by dust
and re-emission at longer wavelengths. Galaxies with ongoing star formation can have large frac®®9s)(

of their total emission at infra-red wavelengths, compared to about one third in the case of local galaxies. The
integrated emission from unresolved infra-red galaxies accounts for the cosmic infra-red backgroun& (GiB) (

) ), the fluctuations of which are impeding SZ-observations at frequencies above

v =~ 100 GHz ( .

( ) and ( ) have estimated the number counts of unresolved infra-red galaxies
at PLANCK-frequencies, which was used Ay ( ) in order to estimate the level of fluctuation in the
PLANCK-beam. In the easiest case, the sources are uncorrelated and the fluctuations obey Poissonian statistics, but
the inclusion of correlations is expected to boost the fluctuations by a factof.Gf( ). According
to (2009, the resulting fluctuations vary between a few? 0§/sr and 18 Jy/sr, depending on
observing channel. A proper modelling would involve a biasing scheme for populating halos, the knowledge of the
star formation history and template spectra in order to determine the K-corrections.

AGNs are another extragalactic source of submillimetric emission. Here, sychrotron emission is the radiation
generating mechanism. The spectra show a variety of functional behaviours, with spectral indieesrally
ranging from -1 to -0.5, but sources with inverted speatra 0 are commonplace. This variety makes ifidult
to extrapolate fluxes to observing frequencies of CMB experiments. Two studies|{

) have estimated the fluctuations generated by radio emitting AGNs at SZ- frequenmes and found them
to amount to 18— 10* Jy/sr. However, AGNs are known to reside in high-density environments and the proper
modelling would involve a (poorly known) biasing scheme in order to assign AGN to the dark matter halos. Apart
from that, one would have to assume spectral properties from a wide range of spectral indices and AGN activity
duty cycles. Therefore, the study of extragalactic sources has been omitted from this analysis.

Yet another source of microwave emission in the Solar system is the zodiacal ligin )

). Modelling of this emission component is venyfoiiult due to the Lissajous-orbit of PLANCK around the
Lagrangian point.,. The disk of interplanetary dust is viewed under varying angles depending on the orbital period
and the integration over the spatially non-uniform emission features is very complicatett: ( )
have investigated the thermal emission by interplanetary dust from measurements by ISO and have found dust
temperatures of ogiacal = 250— 300 K and fluxes on the level of 10° Jy/sr, i.e. the equilibrium temperature is
separated by two orders of magnitude from the CMB temperature, which means that the intensities are suppressed
by a factor of~ 10* due to the Rayleigh-Jeans regime of the zodiacal emission in which PLANCK is observing and
by a factor of 18 due to PLANCK’s narrow beams. From this it is concluded that the emission from zodiacal light
is unlikely to exceed values of a fewuJy in observations by PLANCK which compares to the fluxes generated by
faint asteroids. Thus, the zodiacal light constitutes only a weak foreground emission component at submillimetric
wavelengths and can safely be neglected.

6.5. Simulating SZ-observations by PLANCK

The simulation for assessing PLANCK'’s SZ-capabilities proceeds in four steps. Firstly, all-sky maps of the thermal
and kinetic SZ-#&ects are prepared, the details of map-construction are given inSgd. Secondly, a realisa-
tion of the CMB was prepared for the assumed cosmological model &8c. The amplitudes were co-added
with the Galactic and ecliptic foregrounds introduced in the previous section, subsequently degraded in resolution
with PLANCK'’s beams (Sect6.5.3. Finally, uncorrelated pixel noise as well as the emission maps comprising
planets and asteroids were added. In the last section, cross-correlation properties of the various astrophysical and
instrumental noise components are discussed (8€ct).

At this stage it should be emphasised that | work exclusively with spherical harmonics expansimecdsa,m
of the flux maps. The expansion of a functia(®) into spherical harmonicg](@) and the corresponding inversion
is given by:

co  +{
am = f dQ a(6) YM(6)* anda(8) = Z Z am YT(6). (6.26)

=0 m=—¢
Here, d) denotes the dierential solid angle element. For reasons of computational feasibility, | assume isotropic
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spectral properties of each emission component, i.e. the template map is only providing the amplitude of the
respective emission component, but the spectral dependences are assumed to remain the same throughout the sky.
While this is an excellent approximation for the CMB and the $2ats (in the non-relativistic limit), it is a
serious limitation for Galactic foregrounds, where e.g. the synchrotron spectral index or the dust temperatures show
significant spatial variations.

Adopting this approximation, the steps in constructing spherical harmonics expansfbci@os(S),, of the
flux mapsS(@, v) for all PLANCK channels consist of deriving the expansionfiognts of the template, convert-
ing the template amplitudes to flux units, extrapolate the fluxes with a known or assumed spectral emission law to
PLANCK'’s observing frequencies, to finally convolve the emission law with PLANCK's frequency response win-
dow for computing the spherical harmonics expansioriuments of the average measured f{®%m),, at nominal
frequencyvg by using eqn.§.27).

de Sé’m(v) Rvo (V) VS
(Sem)vo [ Ru0) 202 KeT¢m. (6.27)

Here,S/m(v) describes the spectral dependence of the emission component considef®g(:gritie frequency
response of PLANCK'’s receivers centered on the fiducial frequegcyAssuming spatial homogeneity of the
spectral behaviour of each emission component it is possible to decor8ggs® into S;m(v) = q(v) agm, i.e. a
frequency dependent functiofy) and the spherical harmonics expansionfioentsa,n, of the template describing
the morphology. This is possible due to the fact that the decompositionG=g6).i€ linear. Additionally, eqn.g.27)
gives the conversion from the averaged fi®%), in a PLANCK-channel to antenna temperatiiyg.

PLANCK's frequency response functié),(v) is well approximated by a top-hat function:

1,ve[vo—Av,vg+ AV]

Rxﬁz{:av¢hn—Aum+Aﬂ (6.28)

The centre frequencieg and frequency windoway for PLANCK's receivers are summarised in Tabel In

this way it is possible to derive a channel-dependent prefactor relating the flux expandiiciests(S;ny),, to

the template expansion déieientsA,,. The superposition of the various emission components in spherical har-
monics and the determination of response-folded fluxes is most conveniently done usiigriheer-utility of
PLANCK'’s simulation package.

6.5.1. SZ-map preparation

For constructing an all-sky Sunyaev-Zel'dovich map, a hybrid approach has been pursued. Due to the SZ-clusters
being detectable out to very large redshifts, due to their clustering properties on very large angular scales, and
due to the requirement of reducing cosmic variance when simulating all-sky observations as will be performed by
PLANCK, there is the need for very large simulation boxes, encompassing redstifts afwhich corresponds
to comoving scales exceeding 2 Gpc. Unfortunately, a simulation incorporating dark matter and gas dynamics that
covers cosmological scales of that size down to cluster scales and possibly resolving cluster substructure is beyond
computational feasibility. For that reason, two simulations have been combined: The Hubble-volume simulation
( , ), and a smaller scale simulation including (adiabatic) gas physics by
( ) performed withGADGET ( , ). Details of the map
construction and its properties are given in SBct.

The fluxes generated by the thermal SFeetSy(x) and of the kinetic SZ4#ectSy(X) are given by eqns6(29
and 6.30), respectively. The dimensionless frequency is definex ashyv/(ksTcug) and the flux density of the
CMB is given bySg = (kyTems)373/c2/h2/5400= 22.9 Jy/arcmirt:

_ x* exp(x) exp) + 1
S = S0 e 1| (629
Sw(x) = X' exp() (6.30)

(exp) — 1)

Table6.1 summarises the fluxeSy andS+y and the corresponding changes in antenna temperatuaad Ty
for the respective Comptonisation &f= ‘W = 1 arcmirf for all PLANCK-channels.
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Figure 6.9.: Frequency dependence of the thermal (thick lines) and of the kinetic SZ-flux (thin lines), forsideal
like frequency responses (solid lines), for a top-hat window function with a relative width of 10% corresponding
to PLANCK'’s LFl-instrument and for a top-hat window function with a relative width of 16.7%, as planned for
PLANCK’'s HFl-instrument. The fluxes stated correspond to the integrated Comptonisatiéén=of’ = 1 arcmirf.

The vertical lines indicate the centre frequencies of PLANCK's receivers.

Fig. 6.9shows how the frequency dependence of the SZ-signal is altered by PLANCK's relatively broad frequency
response functions. The relative deviations of curves in which the frequency window has been taken into account to
the unaltered curve amounts t0.515%, depending on observation frequency.

6.5.2. CMB-map generation

The angular power spectru@y is computed for a flanCDM-cosmology using th€MBfast code by

( ). In addition to the cosmological parameters being already given in 8dct. use adiabatic
initial conditions, set the CMB monopole fixmg = 2.725 K ( ) and the primordial He-mass
fraction toXye = 0.24. The reionisation optical depthwas set tar = 0.17 and the reionisation redshift was taken
to be Zejon = 20 ( ). The angular power spectrum of the CMB is normalised to COBE data.
With the spectrum ofC,-codficients, a set ofym-codficients was synthesised by using thynalm code based
on synfast by ( ). The factors for converting tha,-codficients of the CMB map showing the
thermodynamic temperature and to the corresponding fluxes for each channel were then derived by convolution of
the Planckian emission law eq6.81),

x3

0 exp®) — 1 (6.31)

Scme(v) =S

with PLANCK'’s frequency response function eqn.2?) and 6.29. Again, Sg = 229 Jy/arcmirf is the en-

ergy flux density of the CMB. The realisation of the CMB used in this work is given in@:itf | did not use a
constrained realisation of the CMB, where the low multipoles are the spegificodficients determined by e.g.
WMAP. At the scales where SZ-detections are expected, the fluctuations of the CMB are yet unknown and extrapo-
lated with the knowledge of the cosmological model. The filtering scheme to be used for extracing and amplifying
the SZ-signal will suppress loWfluctuations and a specific choice&f,-codticients at low should not have any
influence on the cluster detection.
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Figure 6.10.: All-sky map of the CMB realisation used in this work. The amplitudes are antenna temperatures measured
in they = 100 GHz channel in units @fK.

6.5.3. Preparation of simulation data sets

The expansion cdgcients of the flux maps are multiplied with the respective bedmpyscodficients in order to
describe the finite angular resolution. After that, expansiotficients of the pixel noise maps and those of the
planetary maps have been added. In total, three atlases consisting of nii8flix-sets belonging to each of
PLANCK'’s channels with fiducial frequenoy have been compiled:

e The reference data set is a combination of the CMB, the SZ-maps and the instrumental noise maps. They
should provide the cleanest detection of clusters and the measurement of their properties. Apart from the
inevitable instrumental noise, this data set only contains cosmological components. In the remainder of the
chapter, this data set will be refered toGas.

e The second data set adds Galactic foregrounds to the CMB, the SZ-maps and the instrumental noise map.
Here, | try to assess the extend to which Galactic foregrounds impede the SZ-observations. Thus, this data set
will be denotedsAL.

¢ In the third data set the emission from bodies inside the Solar system was included to the CMB, the SZ-
maps, the Galactic foregrounds and the instrumental noise. Because of the planets and asteroids being loosely
constrained to the ecliptic plane, this data set will be catieid

An example of a synthesised map showing the combined emission of the SZ-clusters and all Galactic and ecliptic
components including neither CMB fluctuations nor instrumental noise at a location close to the Galactic plane is
given by Fig.6.11 The observing frequency has been chosen te bel43 GHz, correspondingly, the map has
been smoothed with a (Gaussian) beam®t 7.1 (FWHM).

6.5.4. PLANCK-channel correlation properties

In this section the auto- as well as the cross-correlation properties of the various foregroufigsent?LANCK-
channels are studied. The cross power specta, defined formally byéeg).gre determined by using:

1 +( .
Cer, = 71 ;{(Sfm%q (Sem)y,- (6.32)
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Figure 6.11.: A 50° x 50° wide composite centered on the ecliptic coordinateg) = (-85°,0°), i.e. close to the
Galactic centre for PLANCK's = 143 GHz-channel. The shading is proportional to ardigtf = 143 GHz)uK). The

map is smoothed with the corresponding beam of diam&ier 7.1 (FWHM). SZ-clusters are observed in absorption

in this channel and are discernible by eye even at close proxiimityd0®) to the Galactic plane. For clarity, the CMB
fluctuations as well as the instrumental noise have been excluded. The two point sources on the ecliptic equator are twin
detections of Jupiter.

63



Microwave emission components of the Milky Way and the Solar system

10

™

i ————————— e rass
- - .

[S)
©
T
I

e e e ————
L= =

o
®

e

a\
L

|l|
t
|
)
\
\
\
Y
|

Il

<,
&
T
I

&

power spectrum (£ + 1)Cy, /21 [MJy’]

10” . !
10 10° . 10° 10*
multipole order £

Figure 6.12.: Power spectra in various PLANCK-channels= 30 GHz (solid),y = 143 GHz (dashed); = 353 GHz

(dash-dotted) and = 857 GHz (dotted) focOS data set (thin line), th@AL data set (medium line) and tiE€L data set
(thick line).

From this definition, the auto-correlation spectra are obtained by settingv,, i.e. C;,, = C¢,,. The band-pass
averaged fluxesSy), are defined in eqn6(27). In Fig. 6.12 the power spectra are shown for the- 30 GHz-,
v = 143 GHz-,v = 353 GHz- and ther = 847 GHz-channels. The spectra have been derived including various
Galactic and ecliptic noise components in order to study their relative influences. For visualisation purposes, the
spectra are smoothed with a moving average filter with a filter window comprising 11 bins.

Distinct acoustic peaks of the CMB are clearly visible in the cléas data sets, but are overwhelmed by the
Galactic noise components. At small scales, i.e. high multipole arddifferences between thH&L and ECL
data sets become apparent, the latter showing a higher amplitude. The (single) acoustic peak measurable in the
v = 33 GHz channel is shifted to larger angular scales due to the coarse angular resolution of that particular channel.
Thev = 857 GHz-curve of th€0S data set behaves like a power law due to the fact that the CMB is observed in
the Wien-regime and is consequently strongly suppressed, such that the angular power spectrum is dominated by
uncorrelated pixel noise.

Fig. 6.13shows exemplarily a couple of cross power spectra. The cross-correlation spectra derived@sr the
data set nicely shows the CMB power spectrum if two neighboring channels close to the CMB maximum are chosen,
but the correlation is lost in two widely separated channels. This is especially the case if one considers the two lowest
LFl-channels at angular scales which the receivers are not able to resolve. In this regime the pixel noise is still very
small and the cross-correlation spectrum drops to very small values.

In order to illustrate the complexity of spectral and morphological behaviour of the power spectra, they are given
as contour plots depending on both the observing frequeacygl the multipole ordef. Fig. 6.14and6.15contrast
the auto-correlation properties of thefdrent data sets. TH&S data set, shown in Fig.14, containing nothing
but the CMB and instrumental noise apart from the SZ-contribution, shows clearly the acoustic oscillations with
the first peak at ~ 200 and the consecutive higher harmonics. They are most pronoucedin=H®O0 GHz-
andv = 143 GHz-channels. At higher multipole moments, the power spectra are dominated by instrumental noise
which leads to a rapid (power law) incline.

Adding Galactic foregrounds yields the spectra depicted in&ith Inclusion of Galactic foregrounds signif-
icantly complicates the picture and maskBtbe primary anisotropies. The spectra are dominated by large-scale

emission structures of the Milky Way, most notably the emission from thermal dust that causes the spectra to in-
crease with increasing frequeney
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Figure 6.13.: Cross-correlations: The SpectBa,, =143 GHzv,=545 o (SOlid line) andCy,,-143 GHzv,=217 cHz (dashed line)
are contrasted for th€0S data set (thin lines) versus thH&AL data set (thick line). Furthermore, the spectrum
Cr,v,=545 GHzv,=857 cHz (dash-dotted line) as well &5;,,-30 GHzy,-44 cH (dotted line) is shown as derived from tEEL
data set.
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Figure 6.14.: Auto-correlations: The power specti@},-codficients are shown as a function of observing frequency
and multipole ordef in the usual representatiait¢ + 1)C,,/2r. The amplitudes are given K? and the contours are
linearly spaced. Note the logarithmic scaling of the frequency axis. In the data set displayed, the CMB, bfidtiSZ-e
and instrumental noise are included. The first three acoustic oscillation peaks are clearly visible.
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Figure 6.15.: Auto-correlations: The power spect,-codiicients are shown as a function of observing frequerayd
multipole ordert in the usual representati@¢ + 1)C,,/2r. The amplitudes are given in lgg(?) with logarithmically
equidistant contours. In the data set displayed, the CMB, bothfi®Zte, all Galactic foregrounds and instrumental noise
are included.

6.6.

Summary and conclusion

A simulation for assessing PLANCK's SZ-capabilities in the presence of spurious signals is presented that com-
bines maps of the thermal and kinetic SZeets with a realisation of the cosmic microwave background (CMB),

in addition to Galactic foregrounds (synchrotron emission, free-free emission, thermal emission from dust, CO-line
radiation) as well as the sub-millimetric emission from celestial bodies of our Solar system. Additionally, obser-
vational issues such as the finite angular resolution and spatially non-uniform instrumental noise of PLANCK are
taken into account.
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Templates for modelling the free-free emission and the carbon monoxide-line emission have been added to
the PLANCK-simulation pipeline. The free-free template relies orHagrsurvey of the Milky Way. The
spectral properties of both foregrounds are modelled with reasonable parameter choitgss il K for

the free-free plasma temperature dr@ = 20 K for the mean temperature of giant molecular clouds.

An extensive package for modelling the sub-millimetric emission from planet and asteroids has been imple-
mented for PLANCK, that solves the heat balance equation of each celestial body. It takes the movement of
the planets and asteroids into account, which causes, due to PLANCK's scanning strategy, double detections
separated by approximate half-year intervals. The total number of asteroids implementsDi3.

The foregrounds have been combined under proper inclusion of PLANCK's frequency response windows in
order to yield a set of flux maps. The auto- and cross-correlation properties of those maps are investigated
in detail. Furthermore, their decomposition into spherical harma8gs), serve as the basis for the filter
construction. It should be emphasised that the spectral properties of a foreground component were assumed
to be isotropic.



7. Matched and scale-adaptive multifiltering

Abstract

In this chapter, filtering schemes based on scale-adaptive and matched filtering are extended to spherical data sets, that enable the
amplification of the weak SZ-signal in the presence of all contaminations stated above. The theory of scale-adaptive and matched
filtering in the framework of spherical maps is developed, the resulting filter kernel shapes are discussed and their functionality

is verified.

7.1. Introduction: multi-frequency optimised filtering

One challenge in the analysis of two-dimensional all-sky surveys is the extraction of sources of interest which are
superposed on a background of noise of varying morphology and spectral behaviour. In the presence of small-scale
noise the conventional method to extract sources is low-pass filtering (e.g. with a Gaussian kernel) while wavelet
analysis is most suitably applied if large scale noise fluctuations dominate. These methods, however, falil if the
characteristic scale of the background fluctuations is comparable with the scale of the signal structures. Other
methods have been proposed in order to separfigzeiit components in multifrequency CMB observations: They

include Wiener filtering T ) ) ), maximum-
entropy methodsH ] ), Mexican-hat wavelet analysi¥/if , ),
fast independent component analysi&a( ), matched filter analysisr¢

), adaptive filtering techniques¢ , ), and non-parametric Bayesian approaches
( )-

However, a comparison between these methoddiisut because they all assumdfdrent priors about the spa-
tial properties and frequency dependence. Using prior knowledge about the frequency dependence and statistical
properties of several images affdrent channels, the maximum-entropy method and Wiener filtering are able to
separate the components of interest. Contrarily, wavelet analysis is well suited in order to detect compact sources.
A combination of these éfierent techniques improves the quality of component separatiei
Although component separation methods which assume a prior knowledge about the data are quite powerful they
yield biased or even wrong results in the case of incorrect or idealised assumptions about the data. Any error
in the separation of one component propagates to the separation of the other components owing to hormalisation
constraints. In particular, this is the case in non-centrally symmetric source profiles, oversimplified spectral extrap-
olations of Galactic emission surveys into other wavebands, variations of the assumed frequency dependence, or
non-Gaussian noise properties the statistics of which can not fully be characterised by power spectra. Thus, the ap-
plication of a specific component separation method is a tréfdleetween robustness anfiextiveness with regard
to the particular problem.

Filtering techniques relying on Mexican-hat wavelets and on matched and scale-adaptive filters are single compo-
nent separation methods. They all project either spatial structure or frequency properties (within a given functional
family) of the component of interest in the presence of other components acting as background in this context. While
Mexican-hat wavelet analysis assumes Gaussian profiles superimposed on large scale variations of the background
noise, the matched and scale-adaptive filter generalises to arbitrary source profiles and noise properties which are
assumed to be locally homogeneous and isotrapic{ ).

This section generalises the matched and scale -adaptive fllter techniques to global spherical topologies which
find application in all-sky surveys such as the case of PLANCK'’s microgabenillimetric survey. In addition,
optimised filters for the detection of compact sources in single frequency all-sky observations are derived in the
appendix in a more detailed fashion. The proposed method aims at simultaneously localising SZ-clusters and
measuring both their amplitudes and angular extent. It can also be applied for localising microwave point sources
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and estimating their spectral properties.

I choose the spherical filtering approach rather than tiling the sky with a set of two-dimensional flat maps for
the following reasons: On the sphere, one does not have to worry about double detections due to overlaps in
the tesselation. Secondly, my approach provides a physical interpretation of my filter shapes in harmonic space
even for the smallest multipole moments in contrast to the case of a flat map where the smallest wavenumbers are
determined by the map size. Finally, my approach circumvents projection failures of the noise properties such as
stretching &ects in the case of conformal mapping which would introduce artifical non-Gaussianity in my maps
and distort profile shapes close to the map boundaries.

| pursue the concept of thaulti-frequency approactather than theombination metho(t.f. ).

In other words, | filter each channel separately while taking into account ffexatit cross-correlations between

the diferent channels and the frequency dependence of the signal when constructing the optimised filters. This
method seems to be superior to ttwnbination methodhich tries to find a optimised combination of théfdrent
channels with regard to the signal-to-noise ratio of the sources and successively applies filters to the combined map.

The concept is introduced and central definitions are laid down in 3dcl. The concept of constructing filter
kernels is outlined in Sect.1.2 Subsequently, the matched and scale-adaptive filters are derived for expansions of
spherical data sets into spherical harmonics in Sett3and Sect7.1.4 Then, the numbers of merit are defined
in Sect.7.1.5 Caveats in the numerical derivation are listed in Sé&.1 A discussion of filter kernel shapes
in Sect.7.2.2for actual simulation data. The application of the filter kernels to my simulated sky maps and the
extraction of the SZ-cluster signal is described in Se&.3

7.1.1. Assumptions and definitions

When constructing the particular filters, | assume centrally symmetric profiles of the sources to be detected. This
approximation is justified for most of the clusters of PLANCK’s sample whose angular extent will be comparable
in size to PLANCK'’s beams, i.e. the instrumental beam renders them azimuthally symmetric irrespective of their
intrinsic shape. Azimuthal symmetry is no general requirement for the filters which can be generalised to detect e.g.
elliptic clusters using expansions into vector rather than scalar spherical harmonics.

| furthermore assume the background to be statistically homogeneous and isotropic, i.e. a complete characteri-
sation can be given in terms of the power spectrum. This assumption obviously fails for non-Gaussian emission
features of the Galaxy or of the exposure-weighted instrumental noise on large angular scales. However, the spher-
ical harmonics expansion of any expected compact source profile, which | aim to separate, peaks at high values of
the multipole moment due to the smallness of the clusters where the non-Gaussian influence is negligible. Thus, |
only have to require homogeneity and isotropy of the background on small scales.

In order to construct filters, | consider a set of all-sky maps of the detected scalas, {@)dor the diferent
frequency channels

s(0) = f,y,(10 — Bol) + n(0), v=1,....N, (7.1)

wheref = (9, ¢) denotes a two-dimensional vector on the sph@gés the source location, and is the number

of frequencies (respectively, the number of maps). The first term on the right-hand side represents the amplitude of
the signal caused by the thermal and kinetic 2, y(|60 — 6¢|) andw(]@ — 6y|), respectively, while the second

term corresponds to the generalised noise which is composed of CMB radiation, all Galactic and ecliptic emission
components, and additional instrumental noise. The frequency dependence of thecB&alescribed by, in

terms of average flux,

f, = (Sy), andf, = (Sw), (7.2)

where(S), denotes the flux weighted by the frequency response at the fiducial frequéntyeqn. 6.27)) andSy
andS,y denote the SZ-fluxes given by eqné.Z29 and 6.30.

| expect a multitude of clusters to be present in my all-sky maps. In order to sketch the construction of the
optimised filter, | assume an individual cluster situated at the North @ghle=(0) with a characteristic angular
SZ-signaly, (6 = |0]) = Ar,(0), where | separate the true amplitudleand the spatial profile normalised to unity,
7,(8). The underlying cluster profilp(d) is assumed to follow a generalised King-profile with an exponeamibich
is a parameter in my analysis. At each observation frequency this profile is convolved with the (Gaussian) beam of
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the respective PLANCK-channel (c.f. Se@t3.1) yielding:

oo

(0 = f dQ'p(e")b, (10 - 0') = > 7, YP(COSH), (7.3)
=0
o\ 4
TT
pe) = 1+(0—c” , and 7, = mbco,vpzo- (7.4)

For the second step in eqm..4) | used the convolution theorem on the sphere to be derived in App@aixThe
background,(0) is assumed to be a compensated homogeneous and isotropic random field with a cross power
spectrunC,,,,, defined by

<nfmvlnz’m,vz> = Ct’,vlvzéf{”émm’ where <nv(0)> = O, (7.5)

Nem, denotes the spherical harmonics expansiorffaeent of n,(6), 6, denotes the Kronecker symbol, atil
corresponds to an ensemble average. Assuming ergodicity of the field under consideration allows taking spatial
averages over giiciently large area® = O(4r) instead of performing the ensemble average.

7.1.2. Concepts in filter construction

The idea of an optimised matched filter for multifrequency observations was recently proposed by

( ) for the case of a flat geometry. For each observing frequency, | aim at constructing a centrally symmetric
optimised filter functiony, () operating on a sphere. Its functional behaviour induces a family of filtdts R,)

which differ only by a scaling paramet&,. For a particular choice of this parameter, | define the filtered field
u,(R,, B) to be the convolution of the filter function with the observed all-sky map at frequency

[ +C
LR = [dSOU0-FRI= Y D] Uy, YI(B) with (7.6)
=0 m=-¢
4
Umy =y 575 Smedeos(R). (7.7)

For the second step, the convolution theorem to be derived in App8wias used. The combined filtered field
is defined by

URL, ., Rui B) = ) W (R, B). (7.8)

Taking into account the vanishing expectation value of the n@ig®)) = 0, the expectation value of the filtered
field at the North polg8 = O is given by

(R, 0)) = AT, Y 710 10,4 (R)). (7.9)
¢=0

The assumption that the cross power spectrum of the signal is negligible compared to the noise power spectrum is
justified because the thermal and kinetic amplitudes are small compared toAypitg: 1. Thus, the variance of
the combined filtered field7(8) is determined by

oGRe, R = ([U(Ru,...,Ru; B) = (R, Ru; %)
= D\ Comntnn(Ry) drov(R,). (7.10)
v1,v2 =0

The optimised filter functiong, (6) are chosen to detect the clusters at the North pole of the sphere (to which
they have been translated). They are described by a singly peaked profile which is characterised byF&ﬁ’éamale
given by eqgn. 7.3). While the optimisednatched filteiis defined to obey the first two of the following conditions,
the optimisedscale-adaptive filteis required to obey all three conditions:
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1. The combined filtered fieId(R(lo), e Rﬁ’); 0) is an unbiased estimator of the source amplitAde

WwrR?,... . RY;0) = A (7.11)

2. The variance ofi(Ry, . . ., Ry; 8) has a minimum at the scalag), el Rf\?) ensuring that the combined filtered
field is an dficient estimator.

3. ;(h? expectation value of the filtered field at the source position has an extremum with respect to the the scale
0) - .
,”, implying

0
@(UV(R‘,, O)> =0. (712)

7.1.3. Matched filter

For convenience, | introduce the column vectgts= [y,], Fr = [f,70,], and the inverse-f:[fl of the matrix
Cr = [Cryp,)- Interms of spherical harmonic expansion fimégents, constraint (i) reads

Z Z T, = Z Fepe =1 (7.13)
v (=0 =0

Performing functional variation (with respect to the filter functigp) of o-2(Ry, ..., Ry) while incorporating the
(isoperimetric) boundary conditio7 (13 through a Lagrangian multiplier yields the spherical matched filier

p,=aC'F,. where ot= Y FIC,'F,. (7.14)
=0

In any realistic application, the cross power spect@yy),, can be computed from observed data provided the cross
power spectrum of the signal is negligible. The quantitigl o, and thug). can be computed in a straightforward
manner for a specific frequency dependefcand for a model source profitg(6).

7.1.4. Scale-adaptive filter on the sphere

The scale-adaptive filtap, satisfying all three conditions is given by

¥, = . (@F, + G,), with G, = [, ], and (7.15)
din T¢0,y
He, = fro0, (2 + dnz |~ f, [2t00, + € (Te0y — Te-100)] - (7.16)

As motivated in AppendidB, the logarithmic derivative of 4 with respect to the multipole ordéris a shorthand
notation of the dferential quotient which is only valid fof > 1. The quantitiesr andg, are given by the
components

~-1 ~-1
a=(A oo,  Br=(A Do (7.17)
whereA is the (1+ N) x (1 + N) matrix with elements

o AL X A1
o= ) FIC P Ao =, (FIC) (7.18)
=0 =0 Y
o A1 . A1
Ao = Zﬂl,v (C[ Fe) ’ Ay = Zﬂz,v#f,w (C[ ) E (7.19)
=0 Y £=0 i

In these equations, no summation over the indices is implied.
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7.1.5 Detection level and gain

7.1.5. Detection level and gain

As described by ( ), the concept of constructing an optimised filter function for source detection aims
at maximising the signal-to-noise ratiy,,

WRw..RO) _,  EZoFr

O—u(Rj_,...,RN) 'Zzozﬁ;é[w{,

Computing the dispersion of the unfiltered field on the sphere yields the signal-to-noidegafia signal on the
fluctuating background:

Dy = (7.20)

- A
02=> > Cruy = Ds=—. (7.21)
v1,v2 =0 Os
These considerations allow introducing tein for comparing the signal-to-noise ratios of a peak before and after

convolution with a filter function: b
u Os
=S —=——. 7.22
7= De” ouRe....Ry) (7.22)
If the noise suppression is successful, the gawill assume values larger than one. If the filters are constructed
efficiently, they are able to reduce the dispersion(Ry, . .., Ry) < o) while simultaneously retaining the expec-
tation value of the field{.9). Due to the additional third constraint, the scale-adaptive filter is expected to achieve

smaller gains compared to the matched filter.

7.2. Optimised SZ-filters for PLANCK

7.2.1. Numerical derivation of filter kernels

For the derivation of suitable filter kernels the source profiles are assumed to be generalised King-profiles as de-
scribed by eqn.q.4) convolved with the respective PLANCK-beam superimposed on fluctuating background given
by template(S,m),-codficients. The inversion of the matri@, (c.f. eqns. .32 and 6.32) can be performed

using either Gauss-Jordan elimination or LU decomposition, which both were found to yield reliable results. In
the derivation of the scale-adaptive filters, however, it is numerically advantageous to artificially exclude the lower
multipoles¢ < 1 from the calculation. Due to the sub-millimetric emission of the Milky Way, the lower multipoles

are very large. Consequently, the correspondingcodiicients,f < 1, have been set to zero, which is not a serious
intervention since the filters are designed to amplify structures at angular scales well below a degree. For consis-
tency, the multipoles below the quadrupole have been artificially removed in the derivation of the matched filters as
well.

In contrast to the PLANCK-simulation pipeline all numerical calculations presented here are carried out in terms
of fluxes measured in Jy and not in antenna temperatures for the following reason: Cross-poweCspecgigen
in terms of antenna temperatures are proportionakte,)~2 which results in a suppression of the highest frequency
channels by a factor of aimost216ompared to the lowest frequency channels.

Furthermore, by working with fluxes instead of antenna temperatures, the filters for extracting the SZ-signal show
frequency dependences which can be understood intuitively. The frequency dependence is describedb®3eqns. (
and 6.30. The normalisationy has been chosen to be 1 archimhich corresponds to typical signal levels
detectable with PLANCK. Because of the smallness of the source profiles to be detected, the calculations were
carried out to multipole orders @f,.x = 4096, which ensures that the beams as well as the source profiles are well
described. In the plots in Se@t.2.2 the filters depicted are smoothed with a moving average window comprising
eleven bins for better visualisation. Details of the numerics of the filter construction are given in Appefdices
andB.

7.2.2. Discussion of filter kernels
7.2.2.1. Matched filter

The spherical harmonics expansion fméentsy ., following from the matched filter algorithm are depicted in
Fig.7.1for four frequencies most relevant to SZ-observations, nameby f0t00 GHz,v = 143 GHz,y = 217 GHz
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Figure 7.1.: Spherical harmonics céiicientsy o, as derived with the matched filter algorithm, foe 100 GHz (solid

line), v = 143 GHz (dashed liney, = 217 GHz (dash-dotted line) and= 353 GHz (dotted line) for a dataset containing
the CMB, both SZ-ffect and instrumental noise.
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Figure 7.2.: Spherical harmonics céicientsy o, as derived with the matched filter algorithm, foe= 100 GHz (solid
line), v = 143 GHz (dashed liney, = 217 GHz (dash-dotted line) and= 353 GHz (dotted line) for a dataset containing
all Galactic foregrounds in addition to the CMB, both SZeet and instrumental noise.
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Figure 7.3.: Contour plot of the spherical harmonics expansiorfibcientsy,, derived with the matched filter algorithm
as a function of both the multipole moment ordeand PLANCK'’s observing frequenoy The filter kernels have been
derived for a optimised detection of a generalised King-profile withi) = (150, 1.0) superimposed on the fluctuating
CMB and instrumental noise. The contours are linearly spaced in arsfhgl9.
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Figure 7.4.: Contour plot of the spherical harmonics expansiorfiicientsy,, derived with the matched filter algorithm
as a function of both the multipole moment ordeand PLANCK's observing frequenoy The filter kernels have been
derived for a optimised detection of a generalised King-profile witht) = (15.0, 1.0) superimposed on the fluctuating
CMB, Galactic foregrounds and instrumental noise. The contours are linearly spaced in afsiaf)(L0
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andv = 353 GHz. As background noise components the di@srdata set (left column) and the exhaustiw. data
set (right column) are contrasted. The filter kernels have been derived for optimised detection of sources described
by a generalised King-profile with angular core radi= 3.0 andd, = 5.0 and asymptotic slopé= 1.0.

The principle how the matched filter extracts the SZ-signal from the maps is explained BylFithe SZ-profiles
the filter has been optimised are small structures at angular scales corresponding to multipole mofnerii@®of
In channels below = 217 GHz, the clusters are observed in absorption and the fluxes are decreased. For that
reason, the filters have negative amplitudes at small angular scales for these specific frequencies. At larger scales,
the fluctuations are suppressed by linear combination of the various channels, while the filtering functions show very
similar shapes. Optimising the filters for detection of core radii’6fiBstead of 30 result in a shift of the negative
peak at/ ~ 10° to smaller multipole orders. Instrumental noise which is important at even higher multipoles is
suppressed by the filter's exponential decline at Higtboves 2 2000. The unwanted CMB fluctuations and all
Galactic contributions at scales larger than the cluster scale are suppressed by weightings with varying sign so that
the foregrounds are subtracted at the stage of forming linear combinations(8fthg codficients.

Furthermore, the contours of the matched filter kernels are given irvHigs functions of both inverse angular
scalef and observing frequenayfor differing noise contributions. The figures compare filters derived féeritig
background noise compositions. The filters shown serve for the optimised detection of generalised King-profiles
with core radiug. = 15/0 and asymptotic slopé = 1.0. These (rather large) values have been chosen for visual-
isation purposes. For clarity, the contour denoting zero values has been omitted due to noisy data. In these figures
it is apparent how the filters combine the frequency information in order to achieve a suppression of the unwanted
foregrounds: At multipole moments of a few hundred, the filters exhibit changes in sign, such that the measurements
at low frequencies are subtracted from the measurements at high frequencies in the linear combination of the filtered
maps.

Fig. 7.5illustrates the filter kernelg, () in real space for the same selection of frequencies and background
noise components as given above. The filter kerpg{8) have been synthesised from thg ,-codficients using
thealm2grid-utility of the PLANCK-simulation package. Here, the parameters of the King-profile to be detected
are @, 1) = (5.0,1.0). The filter kernels are similar in shape to Mexican-hat wavelets, but show more than one
oscillation. Their action on the sky maps is to apply high-pass filtering, such that all long-wavelength modes are
eliminated. At the cluster scale, they implement a linear combination of the sky maps that aims at amplifying the Sz-
signal: The kernels derived for both the- 100 GHz- and’ = 143 GHz-channel exhibit a central depression which
is used to convert the SZ-signal to positive amplitudes. The other two channels resemble simple Gaussian kernels
which smooth the maps to a commditeetive angular resolution. At frequenciesvof 217 GHz and’ = 353 GHz
the most important emission feature is Galactic Dust, which is suppressed by the filter's small amplitudes. In this
way, the weak SZ-signal is dissected.

In Fig. 7.6, filter kernels derived with both algorithms for point sources (i.e. with beam profiles of the respective
PLANCK-channels) are compared, that have been optimised for the detection of varying spectral behaviour of
the signal, in this case the thermal Seet, the kinetic SZ4#ect and a Planckian thermal emitter with a surface
temperaturelgyace Of 150 K, such as an asteroid or planet. The filter kernels depicted correspond to observing
frequencies of = 143 GHz andv = 217 GHz. The filters clearly reflect the spectral behaviour of the emission
laws of the sources one aims at detecting: While the filter kernels designed for detecting thermal SZ-clusters reflect
the peculiar change in sign in the SEext's frequency dependence, the other two curves show the behaviour to be
expected for a Planckian emitter and the kinetic $2a, respectively. Again, the better angular resolution of the
v = 217 GHz-channel is apparent by the shifting of the curves to higher multipole f&rder

7.2.2.2. Scale-adaptive filter

The spherical harmonics expansion €m&entsy . following from the scale-adaptive filter algorithm for the fre-
quenciesr = 100 GHz,v = 143 GHz,v = 217 GHz andr = 353 GHz are given in the upper panel of Frg7.

The left and right columns compare the filter kernels fdfeding noise components. Their functional shape has

a number of important features in common with the matched filters: They suppress the uncorrelated pixel noise,
which is dominant at higli by their exponential decline &t~ 2000. Furthermore, the filters amplify the SZ-signal,

which is negative at frequencies below= 217 GHz, by assuming large negative values and hence converting the
SZ-signal to yield positive amplitudes. Additionally, the filters show a distinct secondary péak 2000 which

causes the kernels to be more compact after transformation to real space and enables the size measurement. A more
general observation is that the scale-adaptive filter kernel shapes are more complex and noisier in comparison to the
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Figure 7.5.: Matched filter kernelg, (6) in real space at SZ-frequencies, i.e. for 100 GHz (solid line)y = 143 GHz

(dashed line)y = 217 GHz (dotted line) and = 353 GHz (dash-dotted line), for a data set including the CMB, Galactic
foregrounds and instrumental noise (thin lines) and for a data set containing all Galactic components in addition to the
CMB and instrumental noise (thick lines). The filter kernel is optimised for the detection of a generalised King-profile
with core radiug. = 5.0 and asymptotic slopé= 1.0.
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Figure 7.6.: Comparison of filter kerne} o, -codficients derived for dfering spectral dependences of the signal: thermal
SZ-dfect (solid line), kinetic SZ4ect (dashed line) and a Planckian emitter with surface temperatigafe= 150 K
(dash-dotted line). All sources are assumed to be point-like, i.e. they appear to have the shape of the PLANCK-beam. The
curves are given for observing frequencies ef 143 GHz (thin line) and = 217 GHz (thick line) and have been derived

with the matched filter algorithm. The noise is a composite of CMB fluctuations, Galactic and ecliptic foregrounds and
instrumental noise.
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Figure 7.7.: Spherical harmonics cfiecientsy o, as derived with the scale-adaptive filter algorithm,for 100 GHz
(solid line),v = 143 GHz (dashed liney, = 217 GHz (dash-dotted line) and= 353 GHz (dotted line). The filter kernel
is optimised for the detection of generalised King-profiles with core gadi 3.0 (thin lines) and), = 5.0 (thick lines)
and asymptotic slopg = 1.0. Noise components include CMB fluctuations and instrumental noise.

0.3

02r b

o

o

scale-adaptive filter ¥,

-0.4 ‘ . :
10° 10’ .10 10° 10
multipole order £

Figure 7.8.: Spherical harmonics cfiicientsy o, as derived with the scale-adaptive filter algorithm,for 100 GHz
(solid line),v = 143 GHz (dashed liney,= 217 GHz (dash-dotted line) and= 353 GHz (dotted line). The filter kernel is
optimised for the detection of generalised King-profiles with core ¥gdi 3.0 (thin lines) and), = 5.0 (thick lines) and
asymptotic slopa = 1.0. Noise components include CMB fluctuations, Galactic foregrounds, and instrumental noise.
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Figure 7.9.: Contour plots of the spherical harmonics expansiorfiomentsy o, derived with the scale-adaptive filter
algorithm as a function of both the multipole moment oréland PLANCK's observing frequengyare shown. The filter
kernels have been derived for a optimised detection of a generalised King-profil@with£ (150, 1.0). The contours

are linearly spaced in arsinh@gy,). In this plot, CMB fluctuations and instrumental noise were considered in the filter
construction.
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Figure 7.10.: Contour plots of the spherical harmonics expansiorfamentsy o, derived with the scale-adaptive filter
algorithm as a function of both the multipole moment oréland PLANCK'’s observing frequencyare shown. The filter
kernels have been derived for a optimised detection of a generalised King-profil@with£ (150, 1.0). The contours

are linearly spaced in arsinh@y,,). In this plot, Galactic foregrounds entered the filter construction, apart from CMB
fluctuations and instrumental noise.
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Figure 7.11.: Scale-adaptive filter kernelg,(9) in real space, for = 100 GHz (solid line),y = 143 GHz (dashed

line), v = 217 GHz (dotted line) and = 353 GHz (dash-dotted line), for a data set incorporating the CMB, Galactic
foregrounds and instrumental noise. The filter kernel is optimised for the detection of a generalised King-profile with
parametersé, 1) = (5.0, 1.0).

matched filter, especially at high

The scale-adaptive filter makes even stronger use of the spectral information than the matched filter. Especially
the contour plots in FigZ.7 show that the scale-adaptive filter exhibits alternating signs when varying the observing
frequencyv while keeping the angular scafefixed. In this way, the noise contributions are isolated in angular
scale and subsequently suppressed by linear combination of the maps. Furthermore, one notices a change in sign
at multipole order’ ~ 200 which is common to the frequencies= 100...353 GHz, at which the CMB signal is
strongest. Aiming at reducing the variance of the filtered maps, the scale-adaptive filter is suppresSngthe
codficients by assuming small values. Figllgives the filter kernelg, (6) in real space for selected frequencies
and background noise components. The scale-adaptive filters work similarly as the matched filters like Mexican-hat
wavelets and subject the sky maps to high pass filtering.

In Fig. 7.12 filter kernels derived with both algorithms for point sources (i.e. with beam profiles of the respective
PLANCK-channels) are compared, that have been optimised for the detection of varying spectral behaviour of
the signal, in this case the thermal Sifeet, the kinetic SZ#ect and a Planckian thermal emitter with a surface
temperatureTgyrace Of 150 K, such as an asteroid or planet. The filter kernels depicted correspond to observing
frequencies of = 143 GHz and’ = 217 GHz. As in the case of the matched filter, the frequency dependence of
the signal is reflected by the sign of the filter kernel at the anticipated angular scale of the profile to be detected.

7.2.3. Filter renormalisation and synthesis of likelihood maps

Once the filter kernels are derived, the filtered field®,, 3) can be synthesised from thg,,,-codficients (defined
in eqn. (7.7)) and the resulting maps can be added in order to yield the co-added, filteradReld. ., Ry, 3) (see
eqgn. [.9)), which can be normalised by the level of fluctuatian(given by eqn.7.10) to yield the likelihood map
D(0). It is favourable to divide the filter kernels by the variamgeand to apply a renormalisation:

Yoy .
V2] Cete

In this case, the filter kernels are invariant under changes in profile normalisation. With these kernels, the filtered
flux maps can be synthesised from the se{S#,),-codficients and the resulting maps can be co-added to yield

Yoy — Yo, = (7.23)
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Figure 7.12.: Comparison of filter kernet o, -codficients derived for dfering spectral dependences of the signal: thermal
SzZ-dfect (solid line), kinetic SZ4ect (dashed line) and a Planckian emitter with surface temperatigaf.= 150 K
(dash-dotted line). All sources are assumed to be point-like, i.e. they appear to have the shape as the PLANCK-beam. The
curves are given for observing frequencies of 143 GHz (thin line) andr = 217 GHz (thick line) and have been derived

with the scale-adaptive filter algorithm. The noise is a composite of CMB fluctuations, Galactic and ecliptic foregrounds
and instrumental noise.

the final normalised likelihood map(3). It is computationally advantageous, however, to interchange the last two
steps,

1
0u8) = 2= L3 um) (729)
ke An Yoy
= (Semhv ’ Y7(B) (7.25)
Zé;g b+t Z el Cepe {
0 +{
= > 1/ lpmv] Y(B), (7.26)
£=0 m=—¢

=D¢m

and to derive theD,-codficients first, such that the synthesis has to be performed only once. Due to the re-
striction to axially symmetric kernels, the convolution can be carried out usinglhemap-utility rather than
totalconvolve.

Fig. 7.13gives a visual impression of the capability of the above described filtering schemes: The figure shows a
30 x 30° wide field at the ecliptic North pole at a frequencyof 353 GHz (at the SZ-maximum) as observed by
PLANCK, i.e. the image is smoothed to an angular resolutiond 5.0 (FWHM) and contains the fluctuating
CMB, all Galactic and ecliptic foregrounds as well as pixel noise. Matched and scale-adaptive filter kernels were
derived for isolating point sources, i.e. for sources that appear to have profiles equal to PLANCK'’s beams of the
corresponding channel. For clarity, only amplitudes exceeding a threshold value of 1.0 are shown.

For comparison, FigZ.13shows the same detail of the input thermal SZ-map as well. It is immediately apparent
that the observation of SZ-clusters without foreground- and noise suppression is not possible and that one has to
rely on filtering schemes. As a comparison with Figl3shows, the filters are clearly able to isolate the SZ-clusters
and to strongly suppress all spurious noise contributions. The matched filter, however, shows a slightly better
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Figure 7.13.: Upper left panel:A 30° x 30° wide field centered on the ecliptic North pole as synthesised from a data

set containing the CMB, all Galactic and ecliptic foregrounds and instrumental noise for an observing frequesacy of

353 GHz is shown. The amplitudes are proportional to ar3igw(= 353 GHz)uK) and the field is smoothed with the
corresponding PLANCK-beam &9 = 5.0 (FWHM). Upper right panel: The same field is shown after reconstruction

from theD,,-codTicients. Here, filters derived with the matched filter algorithm optimised for detecting point sources were
employed. The amplitudes are given in detection significances and the shading scales lineamntyight panel:Again,

the same field is shown after synthesis from Ehg-codficients but in this case, filters derived with the scale-adaptive

filter algorithm optimised for detecting point sources were used. The amplitudes are stated as detection significances and
the shading is linear. In thewer left panel the corresponding field taken from the original thermal SZ-map is given for
comparison. The amplitudes arearsinh(10y).
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7.3 Summary and conclusion
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Figure 7.14.: Flow chart summarising all steps involved in the simulation of PLANCK-observations and the derivation of
(Smy,-codficients (left panel) and in the filter construction and signal extraction (right panel).

performance and yields more significant peaks due to better background suppression. There are weak residuals
present in both maps due to incomplete foreground reduction. These residuals however, have small amplitudes
compared to the SZ-detections. The highest peaks exhibit detection significances amountidg o the case of
the matched filter and. 2o in the case of the scale-adaptive filter.

It should be emphasised that the filters work exceptionally well despite the fact that the Milky Way clearly is
a non-Gaussian feature, whereas Gaussianity of the fluctuating background was an important assumption in the
derivation of the filter kernels. Furthermore, the filters sucessfully separate and amplify the weak SZ-signal in the
presence of sevenftiérent noise contributions (CMB, four Galactic foregrounds, thermal emission from bodies of
the Solar system and instrumental noise) that exhifii¢édint spectral behaviours by relying on just nine broad-band
measurements. Fig.14summarises all steps involved in the simulation of PLANCK-observations, filter derivation
and signal extraction.

7.3. Summary and conclusion

e In order to separate the SZ-Signal and to suppress the foreground components, the theory of matched and
scale-adaptive filtering has been extended to spherical data sets. The formulae in the context of spheri-
cal coordinates an¥;"-decomposition are analogous to those derived for Cartesian coordinate systems and
Fourier-transforms.

e The global properties of filter kernel shapes are examined as functions of observing channel, composition of
noise, parameters of the profile to be detected and spectral dependence of the signal. Transformation of the
filter kernels to real space yields functions that resemble the Mexican-hat wavelets, but show more than one
oscillation. The shape of the filter kernels can be understood intuitively: They subject the maps to high-pass
filtering while retaining structures similar in angular extent to the predefined profile size. The signal is then
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Matched and scale-adaptive multifiltering

amplified by linear combination of the maps, which again is apparent in the sign of the filter kernels.

e The functionality of the filtering scheme is verified by applying them to simulated observations. It is found
that the Galactic foregrounds can be suppressed Viagtively so that the SZ-cluster signals can be retrieved.
Comparing the two filters, the scale-adaptive filter performs not as good as the matched filter, which is in
accordance to the findings o6f ( ). It should be emphasised that for the derivation of the
filter kernels nothing but a model profile and all cross-power spectra (in PLANCK's case a total number of
45 independertt,,,,,-sets) are used.

The results of this and the preceeding chapter were worked out in collaboration with M. Bartelmann (ITA, Heidel-
berg), C. Pfrommer and R. M. Hell (both MPA, Garching). A paper entibetecting Sunyaev-Zel'dovich clusters
with PLANCK: Il. Foreground components and optimised filtering schewlgish summarises the results of this
and the previous chapter has been submitted to the jolvtaaithly Notices of the Royal Astronomical Societyd
is available online &stro-ph0407090.
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8. Properties of PLANCK'’s SZ-cluster sample

Abstract

In this chapter, the properties of the filter algorithms and of the recovered cluster sample are analysed in detail. After the
description of the simulation setup and the peak extraction (8€t.the noise properties are analysed and the distribution of

the significances of correctly identified clusters is given (S28). Then, the number of detected cluster as a function of model
profile parameters is investigated (Se&8). The population of SZ-clusters in mass and redshift and the influence of various
noise contributions, the distribution of integrated Comptonisations and the position accuracg.@ect the main results of

this chapter. The chapter concludes with the spatial distribution of the detected cluster8.&ectd with the distribution of
peculiar velocities (Sec8.6). Finally, the key results are summarised and compared to other studies3(3ect.

8.1. Simulation setup and peak extraction

Filter kernels following from the matched and scale-adaptive multifrequency filtering algorithm are subjected to
a thorough analysis. They are tested on twidetdent data sets, one containing just CMB fluctuations and (non-
isotropic) instrumental noise, and a second data set, which comprises all Galactic foregrounds in addition. From
the comparison of the two data sets one will be able to quantify by how much the number of detections drop due to
Galactic foregrounds and how uniform the cluster distribution will be provided the removal of Galactic foregrounds
can be doneféciently.

8.1.1. Filter construction and synthesis of likelihood maps

Filter kernels optimised for detecting King-profilg&) o [1 + (e/ec)z]_ﬂ were derived for a range of core raélji
and asymptotic slopek Specifically, seven values 6,

6.=0/0, 10, 20, 40, 80, 160, 320, (8.1)

and five values ofl,
A=06, 08 10 12 14 (8.2)

were considered, keeping the large range in core radii in mind. Usiteyeht values for is motivated by asym-
metric clusters and in order to allow for the influence of the convolution with the instrumental beam. The sky maps
were convolved with the filter kernels, co-added, normalised to unit variance, as described in the previous chapter
and synthesised to yield likelihood maps. In the synthesis, all multipolficieats up tof = 4096 have been
considered and the angular resolution of the resulting midgs & 1024, pixel side lengtk 3’4) is high enough
to resolve single likelihood peaks.

An important numerical issue of spherical harmonic transforms is the fact that the variance (measured in real
space) of a map synthesised from thg-codficients is systematically smaller with increasifithan the variance
C(¢) required by thea;m-codticients on the scalad ~ x/¢. This is compensated by an empirical function, the
so-calledpixel window which lifts the amplitudes,, towards increasing values éfprior to the reconstruction.
This dfectively results in higher signal-to-noise ratios of the detected clusters.

8.1.2. Morphology of SZ-clusters in filtered sky-maps

Figs. 8.3 and 8.4 give an impression how the morphology of a peak in the likelihood map changes if filter ker-
nels optimised for the detection of profiles with varying diameter and asymptotic behaviour are used. | picked an
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Properties of PLANCK’s SZ-cluster sample

association of two clusters at a redshifto& 0.1, which generates a signal strong enough to yield a significant
detection irrespective of the choiceffandA. The matched filter yields larger values for the detection significance,
which is defined to be the signal-to-noise ratio of the central object, in comparison to the scale-adaptive filter for
that particular pair of clusters. Secondly, if filters optimised for large objects, i.e. darged smalll are used,

the two peaks merge in the case of the matched filter, but stay separated in case of the scale-adaptive filter. Hence
the scale-adaptive filter is more appropriate in the investigation of closeby objects. Additionally, the matched filter
seems to be more sensitive to the choicé.aindA. Within the range of these two parameters considered here, the
significance of the cluster detection under consideration varies by a factor of four in the case of the matched filter,
but changes only by 25% in the case of the scale-adaptive filter.

8.1.3. Peak extraction and cluster identification

Itis an important point to notice that cluster positions derived from PLANCK are not very accurate. In this analysis,
the SZ-clusters are extended themselves and possibly asymmetric, they are convolved with PLANCK'’s instrumental
beams in the observation and reconstructed from filtered data, where an additional convolution with a kernel is
carried out. Furthermore, the pixelisation is relatively coarse (typically a few arcmin). All tifiestseadd up to a
position uncertainty of a few tens of arc minutes, depending on the filter kernel.

All peaks above & were extracted from the synthesised likelihood maps and cross checked with a cluster cata-
logue. A peak was taken to be a detection of a cluster if its position did not deviate more thdrogdthe nominal
cluster position. Peaks that did not have a counterpart with integrated Comptoni¥dtiager than a predefined
threshold value were registered as false detections, likewise peaks were not considered that did not exceed the
threshold value of @ in more than two contiguous pixels. In this way, a catalogue is obtained which is essentially
free of false detections and, where the fraction of unidentified peaks amountsi&eSor a realistic threshold of

min = 3% 107 arcmirf ( 4 ). The cluster catalogues following from observations
with specific @, 1)-pairs of parameters were merged to yield summary catalogues for both filter algorithms and
both noise compositions. If more than one cluster is found in the aperture, the cluster with the largest value for the
integrated Comptonisation is assumed to generate the signal. In the merging process, | determine which choice of
(6., 2) yielded the most significant detection for a given object.

8.2. Noise properties and peak statistics

8.2.1. Noise in the filtered and co-added maps

In this section, the statistical properties of the noise in the filtered maps is examined. The filter construction algo-
rithm gives the variance of the filtered and co-added fields as a function of filter shgpgé) and cross-channel
power spectr&,,, (¢) by virtue ofer? =3, % i Ui (O)Cy, (O, (€). Due to deviations from Gaussianity of many
noise components considered (especially Galactic foregrounds), it is important to verify if the variance is still a
sensible number. Fig.1 gives the distribution of pixel amplitudes for a combination of noise components and
filtering schemes.

Although the distribution of pixel amplitudes seems to follow a Gaussian distribution with zero mean and unit
variance in all cases, there are notable deviations from this first impression. As summarised B1ITdhbéemean
of the distributions is compatible with zero in all cases, but the standard deviation is less than unity. Furthermore,
the kurtosis of all distributions is nonzero, hence they are more outlier-prone as the normal distribution (barykurtic),
which leads to a misestimation of statistical significances of peaks based on the assumption of unit variance of the
filtered map, which the filtered map should have due to the renormalisation. féis is strongest in the case of
the matched filter. For the derivation of these humbers, only pixels with amplitudes smallgd|tkado- have
been considered, such that the statistical quantities are dominated by the noise to be examined and not by the actual
signal. The distributions are slightly skewed towards positive values, which is caused by weak signalsshelow 4
The near-Gaussianity suggests that the residual noise in the filtered map is mostly caused by uncorrelated pixel
noise and filters seem to be well capable of suppressing unwanted foregrounds.

Is it important to notice that the comparatively low threshold @fi@posed for extracting the peaks alone would
yield a considerable number of false detections. Supposing that the variance of the filtered maps is mainly caused
by uncorrelated pixel noise which is smoothed to an angular scale2®f by the instrumental beam and by the
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8.2.2 Detection significances
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Figure 8.1.: Distribution of pixel amplitudesl of the filtered and co-added maps, normalised to the variaredicted

in the filter kernel derivation, for a data set including CMB fluctuations and instrumental noise, filtered with the matched
filter (upper left, solid line), for a data set including Galactic foregrounds in addition (upper right, dashed line), for a data
set containing the CMB and instrumental noise, filtered with the scale-adaptive filter (lower left, dash-dotted line) and
finally a data set with CMB, instrumental noise and Galactic foregrounds, filtered with the scale-adaptive filter (lower
right, dotted line). The filters have been optimised for the detection of beam-shaped profiles.

filters causes the filtered maps to be composedr(f80/7)? - 32 ~ 4 x 10° unconnected patches. Of these patches,
a fraction of erfc(3 V2) ~ 10 naturally fluctuates above the threshold of 3n this way a total number of 400
patches have significances above. 3The requirement that the counterpart of the peak in the cluster catalogue
generates a Comptonisation above a (conservative) vallg.@f i.e. that a cluster candidate is confirmed by
spectroscopy, removes these false peaks from the data sample.

8.2.2. Detection significances

The distribution of detection sigificances is given in F8g2. One obtains about #@letections at the significance
threshold which drops to a few highly significant detections exceeding 2@ small o, the scale-adaptive filter
yields more detections than the matched filter, which catches up at roughtly 5

The total number of detections for each filter algorithm, for each data set and for two values of the minimally
required Comptonisatiod i, for spectroscopic confirmation are compiled in Tabl2 Due to its better yield of
detections marginally above the threshold the scale-adaptive filter outperforms the matched filter by almost 30%.
The reason for the increased number of low-significance detections is the systematically higher value of the variance
of the residual noise field in the case of the scale-adaptive filter. The number of detections decrea288diy
Galactic foregrounds are included, relative to the data set containing only CMB fluctuations and instrumental noise.
In a realistic observation, one can expect a total number &8 10° clusters of galaxies, compared+08 x 10°
clusters if only the CMB and instrumental noise were present. When comparing the total number of detections to
analytic estimates (e.¢ 4 ), it is found that the number of clusters detected here
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data set filter algorithm mean varianceo skewness kurtosisk — 3
matched Cos —0.0038+ 0.0005 09272+ 0.0003 00334 05297
matched GAL —0.0009+ 0.0005 08902+ 0.0003 00154 04232
scale-adaptive COS —0.0012+ 0.0005 Q9090+ 0.0004 00142 02923
scale-adaptive GAL —0.0005+ 0.0005 09023+ 0.0004 00076 03125

Table 8.1.: Statistical properties of the filtered and co-added maps, derived from the first four moments of the amplitude
distributions in Fig8.2, for all data sets and filter algorithms. The filters have been optimised for the detection of beam-
shaped profiles. The errors given for the mgamd standard deviatianof the distribution of pixel amplitudes correspond

to 95% confidence intervals.

number of clusters n(o)do

. . 10,
detection significance o

Figure 8.2.: Distributionn(c-)do- of the detection significances for the matched filter (solid line, circles) in comparison

to the scale-adaptive filter (dashed line, squares). The distributions are given for the clean data set including only the CMB,
both SZ-dfects and instrumental noise (thick lines, closed symbols) and in comparison, the data set where all Galactic
foreground components are included in addition (thin lines, open symbols).
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8.3 Cluster detectability as a function of filter parameters

filter data set Ymin = 103 arcmirf  Ymin = 3 x 104 arcmir?
matched filter Cos 2402 5376
matched filter GAL 1801 4199
scale-adaptive filter COS 3234 8020
scale-adaptive filter GAL 2428 6270

Table 8.2.: Total number of detections in both data sets and with both filters, for a minimally required Comptonisation of
Ymin = 1072 arcmirf andYmin = 3 x 1074 arcmir?.

is smaller, by a factor of less than two.

One should keep in mind that the noise due to PLANCK'’s scanning paths is highly structured on the cluster scale
and below, such that the assumption of isotropy of the noise is not valid. This has two important consequences:
Firstly, assuming a simple flux threshold in analytic estimates is not valid because the noise is not uniform on the
cluster scale and secondly the assumption of isotropy which is essential to the filter construction is violated which
affects the sensitivity of the filters.

8.3. Cluster detectability as a function of filter parameters

The way the significance of a detection of a cluster changes when the cofgaiwkthe asymptotic slopeare var-

ied is illustrated in Fig8.3for the matched filter and in Fi@.4 for the scale-adaptive filter. In general, the matched

filter yields significances that are almost twice as large for the specific example considered and consequently finds
more clusters above a certain detection threshold. Furthermore, the matched filter shows a stronger dependence of
the significance on the filter paramet#gsand 2: The significance for the detection of the same object varies by

a factor of four in case of the matched filter but only by 25% in the case of the scale-adaptive filter. This means
that the derivation of cluster properties based on the filter parameter that yielded the most significant detection is
likely to work for the matched filter, but not for the scale-adaptive filter. It should be emphasised, however, that the
scale-adaptive filter keeps the likelihood distributions of the two objects from merging, in contrast to the matched
filter, as can be seen in the lower left part of Fi§Rand8.4. For that reason, the scale-adaptive filter may be better
suited for the investigation of associations and pairs of SZ-clusters.

Fig. 8.5 shows the number density of detectable clusters as a function of the King-profile’s cor Hizt
entered the filter construction. Whereas the matched filter yields most detections at small valyekeoscale-
adaptive filter is better suited to detect extended objects. Most of the detections are registered at ayre §zes
Additionally, the scale-adaptive filter's capability of detecting extended objeffeysfrom the inclusion of Galactic
foregrounds, which cause the total number of detections to drop by 20%. In contrast, the matched filter is able to
deliver a comparable performance for all valuesof Galactic foregrounds are included.

The number density of clusters as a function of the King-profile’s asymptotic dlopich the filters are op-
timised for is given in Fig8.6. The number of detections following from scale-adaptive filtering is relatively
insensitive to particular choices @f whereas the matched filter yields a higher number of detections in the case of
compact objects, irrespective of the noise components included in the analysB8.7Higstrates how the number
of detections changes as a function of b@ftand 2. It should be emphasised that none of the graphs depicted in
Figs.8.5 8.6and8.7is corrected for double detections of objects at more thgn)-pair.

8.4. Cluster properties of the recovered SZ-sample

8.4.1. Cluster population in the mass-redshift plane

Scatter plots describing the population of detectable clusters in the mass-redshift-plane are showhdrioFig

the matched filter and in Fi@.9 for the scale-adaptive filter. The clusters populate theNhed-plane in a fairly

well defined region. There are only few detections beyond redshifis-6f0.8, but the shape of the detection
criterion suggests the existence of a region of low-mass low-redshift clusters which should be detectable but which
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Figure 8.3.: An association of two clusters at~ 0.1, extracted from a map containing all Galactic compontents, CMB
fluctuations and instrumental noise with the matched multifilter. The table gives the likelihood maps and the statistical
significances of the detection of the cluster at the image centre in unitsfof 2 = 0.6,0.8,1.0,1.2, 1.4 (columns) and

. = 1/0,2/0,4'0,8.0,16.0,320 (rows). The side length of the panels is 4

(0]

8



8.4.1 Cluster population in the mass-redshift plane

Figure 8.4.: The same association of two clusterzat 0.1, extracted from a map containing all Galactic compontents,
CMB fluctuations and instrumental noise with the scale-adaptive multifilter. The table gives the likelihood maps and
the statistical significances of the detection of the cluster at the image centre in umitéoofd = 0.6,0.8,1.0,1.2,1.4
(columns) and, = 1.0, 2.0, 4'0, 8.0, 16,0, 320 (rows). The side length of the panels is 4
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Figure 8.5.: Number density(6.) of clusters as a function of the filter parameter core &izfor a data set including CMB
fluctuations and instrumental noise, filtered with the matched filter (circles, solid line), for a data set including Galactic
foregrounds in addition (crosses, dashed line), for a data set containing the CMB and instrumental noise, filtered with
the scale-adaptive filter (plus signs, dash-dotted line) and finally a data set with CMB, instrumental noise and Galactic
foregrounds, filtered with the scale-adaptive filter (diamonds, dotted line). The thick and thin lines denote detections and
peaks above 18 arcmirf and 3x 1074 arcmirf, respectively.
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Figure 8.6.: Number densityn(2) of clusters as a function of the filter parameter asymptotic slhper a data set
including CMB fluctuations and instrumental noise, filtered with the matched filter (circles, solid line), for a data set
including Galactic foregrounds in addition (crosses, dashed line), for a data set containing the CMB and instrumental
noise, filtered with the scale-adaptive filter (plus signs, dash-dotted line) and finally a data set with CMB, instrumental
noise and Galactic foregrounds, filtered with the scale-adaptive filter (diamonds, dotted line). The thick and thin lines
denote detections and peaks above® Hicmirf and 3x 104 arcmirf, respectively.
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8.4.1 Cluster population in the mass-redshift plane

detections n
detections n

detections n
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Figure 8.7.: Number of detectiong(é., 1) as a function of both filter parameters core sigeand asymptotic slopa,

for the matched filter (top row) in comparison to the scale-adaptive filter (bottom row). The figure compares the number
density following from a clean data set containing the CMB, the $&ets and instrumental noise (left column) with a
data set containing all Galactic components in addition (right columgg), 1) is given for the minimal signal strength

Ymin = 3% 107* arcmir? (upper plane) compared My, = 10-3 arcmir? (lower plane).
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Figure 8.8.: Population of clusters in the lolyl)-z-plane detected with the matched multifilter for the data set containing
the CMB, instrumental noise and all Galactic foregrounds. The minimal signal strength was required/tp, be
1073 arcmirtf.

are not included in the map construction. It isidult to predict the SZ properties of low-mass clusters because
many complications in the sector of baryonic physics come into play such as preheating, deviation from scaling
laws and incomplete ionisation, which makes ifidult to predict the number of clusters missing in my analysis.
Together with K. Dolag | am preparing an auxiliary SZ-map from a gas-dynamical constrained simulation of the
local universe that would fill in the gap and provide clusters with mabses 5 x 10*M,/h below redshifts of
z< 0.1

Fig. 8.10gives the marginalised distribution in redshifof the cluster sample. The shape of the redshift distri-
bution is determined by the competition of twfieets: With increasing redshiftthe observed volume increases,
but contrariwise, the number of massive clusters decreases as described by the Press-Schechter function and the
SZ-signal becomes smaller proportionatigy(z). Most of the clusters are observed at redshifts f0.2 and the
detection limit is reached at redshiftsof 0.8. This applies to both filter algorithms and data sets alike.

Fig. 8.11 gives the marginalised distribution of the cluster’s logarithmic nmass log(M/(Mg/h)). At high
masses, both filtering schemes detect cluster reliably, but with decreasing mass, the filter algorithms start to show
differences in theirficiency. The mass functions peak at a value.66210*M,/h, and decrease towards smaller
values for the mass due to the decrease in number density of objects and smaller SZ-signallstrEmgi8.12
gives the distribution of the cluster's Comptahparameter. The distribution is close to a power law as expected
from virial estimates (c.f. Chaptés), but at low Comptonisations, all distributions evolve shallower, which is due
to the fact that clusters fail to generate a peak in the likelihood map exceeding the threshold value.

8.4.2. Position accuracy of PLANCK'’s SZ-clusters

A histogram of the deviations between actual and reconstructed cluster position is given &yl &ighe position
accuracy is given in terms of the squared angular distane®? . because a uniform distribution would yield a flat
histogram. The distribution is sharply peaked towaxds 0 arcmirf. A fraction of 50% of all clusters are detected
within 10’ from the nominal source position, but there is a tail in the distribution towards larger angular separations.
For most of the clusters, this position accuracy is good enough for direct follow-up studies at X-ray wavelengths,
but not good enough for optical observations.
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Figure 8.9.: Population of clusters in the loll)-z-plane detected with the scale-adaptive multifilter. Here, the detections
are given for a data set containing the CMB, instrumental noise and all Galactic foregrounds. All peaks exceed a minimial
Comptonisation o/ min = 10°3 arcmirf.

1000 T

900 -

700~

600 -

number of clusters n(z)dz
S
o
T

-0.1 0 0.1 0.2 0. .5 0.6 0.7 0.8 0.9

3 0.4 0
redshift z

Figure 8.10.: Distributionn(z)dz of the detected clusters in redshiffor the matched filter (solid line, circles) in compar-

ison to the scale-adaptive filter (dashed line, squares). The figure compares detections in a clean data set containing the
CMB, both Sz-dfects and instrumental noise (thick lines, closed symbols) to a data set with all Galactic components in
addition (thin lines, open symbols). Agalfi,i, was set to 3 10# arcmirf.
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Figure 8.11.: Distributionn(m)dm of the detected clusters in logarithmic mass: log(M/(Mg/h)), for the matched filter

(solid line, circles) in comparison to the scale-adaptive filter (dashed line, squares). Here, the distributions are given for
a data set including only the CMB, both S#exts and instrumental noise (thick lines, closed symbols) in comparison

to a data set containing moreover all Galactic foreground emission components (thin lines, open symbols). The minimal
Comptonisation for spectroscopic confirmation ¥ag, = 3 x 104 arcmirf.
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Figure 8.12.: Distributionn(g)dq of the logarithmic integrated Comptonisatiap= log(¥), for the matched filter (solid

line, circles) in comparison to the scale-adaptive filter (dashed line, squares). Here, the distributions are given for a data
set including only the CMB, both SZffects and instrumental noise (thick lines, closed symbols) in comparison to a data
set containing moreover all Galactic foreground emission components (thin lines, open symbols).
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Figure 8.13.: Distribution of the squared angular distante- 62, between actual and reconstructed source position on

a great circle, for the matched filter (solid line, circles) in comparison to the scale-adaptive filter (dashed line, squares).
The figure compares detections above (thin lines) with detections aboverSfor clusters detected with the parameter

6. = 8.0. The clusters were required to generate a Comptonisatignexceeding 3 104 arcmir?.

8.5. Spatial homogeneity of PLANCK'’s SZ-cluster sample

Fig. 8.14shows the number density of clusters as a function of ecliptic latjugeoss. The figure states that the
PLANCK cluster sample extracted with the specific filters is highly non-uniform for low significance thresholds,
where most of the clusters are detected on a belt around the celestial sphere, but gets increasingly more uniform
with higher threshold values for the significance. This is due to the incomplete removal éfrimvdes in the
filtered maps, which bears interesting analogies topiak-background split

) in biasing schemes for linking galaxy number densities to dark matter densities: Essentlally, the likelihood
maps are composed of a large number of small-scale fluctuations superimposed on a background exhibiting a large-
scale modulation. In regions of increased amplitudes due to the long-wavelength mode one observes an enhanced
abundance of peaks above a certain threshold and hence an enhanced abundance of detected objects.

As Fig. 8.15indicates, the filtered and co-added maps do have large amplitudes for the octupole or the hex-
adecupole which are certainly not in agreement with the near-Poissonian sIGg€ of ¢? typical for a random
distribution of small sources. The incomplete removal of lbmodes shows that the assumptions about isotropy
is violated on large scales a{¢) ceases to be a fair description of the variance contained iasheodticients.

Clearly, this is a serious limitation to the spherical harmonic approach. In general, tifdllostuations are more
pronounced for extended objects, i.e. laggeand smalli, and they are stronger in the case of the matched filter
compared to the scale-adaptive filter.

Similarly, detection significances near the detection threshold are inaccurate due to the long-wavelength modes.
A way to remedy this would be to introduce local estimates of the mean and variance, for example by considering
the average and the standard deviation of the amplitudes in an aperture with a few degrees in radius. One must keep
in mind that in the filtered map, the signal is strong and likelyffea these two values.

Fig. 8.16for example shows all-sky maps of the filtered and co-added data, where the filter kernels are optimised
for the detection of extremely extended signals. The particular (pathological) choice of the King-profile parameters
wasf. = 320 anda = 0.6. The likelihood map reconstructed with the matched filter shows strong long-wavelength
variations of mainly octupolar structure, where the amplitude of this artefact amounts to roughfligd extraction
of peaks from this map would yield a spatially highly non-uniform data sample. Compared to that, the scale-adaptive
filter is doing much better: The likelihood map does not show large-scale variations as strong as in the case of the
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Figure 8.14.: Numbern(y)dy of clusters as a function of ecliptic latituge= cosg, for the matched filter (solid line) in
comparison to the scale-adaptive filter (dashed line). The figure compares the number of detected clusters as a function
of ecliptic latitude for detection significances4.20- (circles, thin lines)> 4.80 (squares, medium lines) and 6.00-
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Figure 8.15.: Power spectr&(¢) of the filtered and co-added maps, where the filter kernels are derived for the parameters
(6., 2) = (4.0,1.0), for the matched filter and the COS data set (red line), for the matched filter and the GAL data set (green
line), for the scale-adaptive filter and the COS data set (blue line) and for the scale-adaptive filter and the GAL data set
(yellow line).
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8.6 Distribution of peculiar velocities

Figure 8.16.: Low-¢ fluctuations in an all-sky map filtered with the matched filter (left panel) and for the scale-adaptive
filter (right panel). The filter kernels have been derived for detecting King-profiles with (pathological) veduss=
(320,0.6).

matched filter and the peaks are situated on much flatter background. In order to avoid num@ca#leas it is
advisable to discard multipoles bel@dwt 10 altogether.

8.6. Distribution of peculiar velocities

In this section, | give the distribution of peculiar velocities in PLANCK'’s SZ-cluster sample, which is an important
guide for kinetic SZ-follow ups. As Fig.17indicates, the distribution of peculiar velocities are well approximated
by a Gaussian with zero mean and standard deviatign~ 300 knys. For a dedicated search for the kinetic
SZ-dfect in PLANCK'’s SZ-cluster sample, velocities are drawn from this distribution, hence cluster bulk motions
up to 300 ks can be expected in 68% of all cases and velocities in excess of 10@0kihy for 11 to 16 objects,
depending on the filtering scheme.

8.7. Summary and conclusion

The properties of the likelihood maps and of the cluster catalogues following from applying matched and scale-
adaptive filtering to the simulated flux maps are characterised in detail. According to my simulation, PLANCK can
detect a number of 6000 clusters of galaxies in a realistic observation with Galactic foregrounds (compared to
over 8000 clusters if only the CMB and instrumental noise were present), which does not confirm the high numbers
claimed by analytic estimates.

e The noise properties of the filtered and co-added maps was examined in detail. It was found that the noise is
very close to Gaussian after filtering, despite the fact that the initial flux maps had considerable anisotropic
non-Gaussian features and despite the fact that the noise is highly structured and anisotropic on the cluster
scale. Quantitatively, the variance of the filtered maps is smaller compared to the prediction based on the
cross- and autocorrelation functions of the maps convolved with the filter. This discrepancy, which amounts to
~ 10% is due to numerics, but has tHeeet that significances of peaks are slightly underestimated.The cluster
detectability as a function of filter parameters showed that the matched filter performs better on compact
objects, where its delivered significance depends strongly on the choicelbg scale-adaptive filter works
well on extended objects and is relatively insensitiva.to

e The physical properties of the detected SZ-cluster sample made in terms dfinastshiftz and integrated
Comptonisatior/: The cluster population in the mass-redshift plane is fairly well defined, and the marginali-
sation over the mass resulted most of the clusters being detected at redshift®.a8f where the distribution
starts decreasing to valuesof 0.8, where no clusters are detected. The distribution of detected SZ-clusters
in massM confirmed that the high-mass end of the Press-Schechter function is well sampled, that most of the
clusters detected have masse8.5 x 10'“M,/h and that clusters of lower mass are increasingfiyatilt to
detect.
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Figure 8.17.: Numbem(vpedupec Of clusters, for the matched filter (solid line, circles) in comparison to the scale-adaptive
filter (dashed line, squares). Again, the detections in a data set containing the CMB, bdfte@&Zand instrumental noise

(thick lines, closed symbols) are compared to a data set containing all Galactic foregrounds in addition (thin lines, open
symbols).

The position accuracy is better thar' 19 half of the cases, which is ficient for X-ray follow-up studies,
but the distribution exhibits a tail towards high discrepancies between the cluster position and the position of
the peak in the likelihood map.

The investigation of the spatial distribution, especially in ecliptic latitude showed that the distribution of
clusters gets increasingly uniform with increasing detection threshold. This is due to the fact that the filtered
and co-added maps exhibit long-wavelength variations due tdficisumt filtering at low multipoles.

The simulation as presented in the last chapters has a number of shortcomings thieotdlyeaSZ-sensitivity:
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It was assumed for reasons of computational feasibiliy that all Galactic foregrounds had isotropic spectral
properties. While this is an excellent approximation for the CMB, Galactic components can be expected
to exhibit spatially varying spectral properties. For example, the spectral index of the Galactic synchrotron
emission is likely to change with the propeties of the population of relativisitic electrons and the magnetic
field and the spectrum of thermal dust changes with the dust temperature. The filter construction as it is
would be applicable to those cases as well despite the fact that at fixed angulat/gcales cross power
spectrunC,,,, (£) between frequencies andy; ceases to be a good description of the variance contained in
thea,,,(¢m)-codiicients.

| did not include ICM physics beyond adiabaticity. Cooling processes in the centres of clusters give rise to
cool cores, which can be shown to boost the line-of-sight Comptonisatipna factor of~ 2 — 3. The

volume fraction occupied by such a cool core is very small compared to the entire cluster and hence the total
integrated Comptonisatia does not change significantly. For a low-resolution observatory like PLANCK,

the primary observable ¥, and for that reason, SZ-observations carried out with PLANCK should not be
affected by cool cores. A further complication is the existence of non-thermal particle populations in the ICM,
but their contribution to the SZ-flux modulation is very small.

There is a serious issue concerning completeness. The population of detectionsliz suggests that low-
mass clusters at redshifts< 0.1 should be detectable by PLANCK. This particular region ofMhe-plane

is not covered by the SZ-map construction, but PLANCK would certainly add detections in this particular
region of theM-z-plane.



8.7 Summary and conclusion

e Extragalactic point sources were excluded from the analysis due to poorly known spectra and clustering
properties. In the simplest case of homogeneously distributed sources, there is a Poisson fluctuation in the
number of point sources inside the beam area, which causes an additional noise component with power
spectrumC(¢) « ¢? similar to uncorrelated pixel noise. If these sources have similar spectral properties,
they could be fiiciently suppressed by the linear combination of observationgtatelnt frequencies.

¢ | did to attempt to simulateffects arising in the map making process and complications due t¢ fhedise.
So far it has not been investigated how well small structures can be reconstructed from time-ordered data
streams. The map-making algorithms are chiefly optimised to yield good reconstructions of the CMB fluctu-
ations by recursively minimising the noise, but to my knowledge the reconstruction of compact objects like
SZ-clusters or minor planets has not been simulated for these algorithms. At the cluster scale, the dominating
noise component is uncorrelated pixel noise, so that the contaminationf byolse does not play a role on
these scales.

e Gaps in the data are a serious issue for the filtering schemes: Blank patches in the observed sky cause the
power spectrd,,,,(£) at different multipole ordef to be coupled due to convolution with the sky window
function. This is due to the fact that thén (0, ¢)-basis ceases to be an orthonormal system if the integra-
tion can not be carried out over the entire surface of the celestial sphere. Because the linear combination
codficients are determined separately for each multipole mo#teatn the inverse of the covariance matrix
C,,.,(0), correlations between the covariance matricesfigriing¢ are likely to yield an insfiicient reduction
of foregrounds.

e Galactic templates, especially the carbon monoxide map and the free-free map, are restricted to relatively
low values in¢ and do not extend to high multipoles covered by PLANCK. For that reason, foreground
subtraction at high values dfis likely to be more complicated in real data. Furthermore, one should keep
in mind that the frequencies above 100 GHz are a yet uncharted territory and although the existence of an
unknown Galactic emission component seems unlikely, the extrapolation of fluxes by two to three orders of
magnitude in frequency may fail.

Comparing my simulation to other works isflitult because competing papers concentrate mostly on single
aspects of SZ-observations with PLANCK, partly emploffatient cosmological models or use outdated infor-
mation about PLANCK sensitivities and mission characteristics. The earliest works addressing SZ-observations
with PLANCK use cluster number densities from a Press-Schechter-type mass function, determine the integrated
Comptonisationy from the cluster mask! with a fixed baryon fractio2g/Qy and temperatures following from
spherical collapse theory. Analytic estimates of PLANCK’s SZ-capabilities have been the subject of many pa-
pers, e.g. ( ) and ( ), who impose (dterent) flux thresholds and, in the case of

( ), require the Comptonisation to exceed the fluctuations of the Comptonisation background by a
certain value. These analyses estimate the number of detectable clusters to range bétereedd 00* and draw
important conclusions for X-ray and lensing follow-up studies.

The very interesting papers written ki ( ) and ( ), who developed the con-
cept of matched and scale-adaptive multifiltering based on an extremal principle for flat topologies and Fourier-
decomposition as the harmonic system, concentrate mainly on filter construction. They employ analytic SZ-profiles
and use simplified models for the instrumental noise. Their work constitutes the basis of my analysis, which incor-
porates quite a number of improvements ranging from baryonic physics, foreground components and instrumental
imperfections. ) advocate a number of 10* clusters to be detectable by PLANCK. Compared
to this number, my analysis falls short by a factor of two.

A serious competitor is the paper b ( ). The filter scheme employed in the paper by Geis-
blsch et al. is the powerful harmonic-space maximum entropy method introduc&ad /by ( ). Its
computational demand is much higher than matched and scale-adaptive filtering: In fact, the computations presented
in this work can be run on a notebook-class computer. The-SZ signal they put into the simulation is determined from
idealised scaling relations and uses spherically symmetric analytic profiles. Furthermore, this method is optimised
for component separation rather than the detection of individual objects. In addition, instrumentation issues such as
non-isotropic detector noise are not properly incorporated into the simulation and their modelling of Galactic fore-

grounds is not in concordance with WMAP observations (see ). They find a total number of up to

X

1.5 x 10* clusters depending on the power spectrum normalisatipand theM-T-relation, and their distribution
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in redshiftz is quite similiar in shape compared to mine - neither of us finds high-redshift clusters beyoid

A grand result is their extraction of the SZ power spectrum, which my analysis due to its focus on the detection of
individual peaks is not able to deliver. It should be kept in mind, however, that the component separation method,
despite its prowess, assumes prior approximate knowledge of the emission component’s power spectra, which are
only partially available at HFI frequencies above 100 GHz.

In conclusion, the simulation presented in the last four chapters demonstrates the abilities of PLANCK with
respect to detecting Sunyaev-Zel'dovich clusters of galaxies even in the presence of anisotropic non-Gaussian noise
components with complicated spectral dependences. Despite the fact that the high number of detections claimed
by analytical estimates need to be adjusted, it was shown that the numerical tools for analysing the cross- and
autocorrelation properties of all PLANCK channels and for filtering the data work reliably up to the high multipoles
of £ = 4096 considered here. The PLANCK catalogue of SZ-clusters of galaxies will surpass X-ray catalogues (e.g.
the REFLEX catalogue compiled 15 . on the basis of ROSAT data) in numbers as it reaches
deeper in redshift and is able to detect low-mass systems. It will contribute to the determination of cosmological
parameters related to structure formation and shed light on baryonic physics inside clusters of galaxies.
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9. A Peano-Hilbert partition for HEALPix
tesselated spheres

Abstract

A Peano-Hilbert partition for HEALPix tesselated spheres is proposed that makes quantities such as the pairwise pixel covariance
matrix algorithmically accessible. For pixel numbering schemes based on Peano-Hilbert partitions geometrically nearby pixels
are likewise related in the pixel numbering. When focusing on relatively short-range correlations on scales of a few beam
diameters up to scales where thd dnoise becomes dominant, the covariance matrix can be brought to band diagonal shape by
using pixel numbering schemes based on Peano-Hilbert partitions.

9.1. Motivation

The central quantity in many all-sky CMB data analysis tasks such as map-making (related to PLANCK, see see
), foreground subtraction and estimation of power spectra

( ) is the covarlance matrix, which is defined as the expectation value of the product of the amplitudes

& anda; in pixelsi and j: A = (ga;). This matrix contains information about the signal, unwanted Galactic

foregrounds and, most importantly, about non-isotropic, correlated and non-Gaussian noise components such as

1/f-noise. Sadly, despite its usefulnesg,has many unwanted properties thay defy its algorithmical access:

e The matrixA;j can be very large. In the case of the PLANCK-surveyor with its superior angular resolution,
all-sky maps comprise as many ax 30’ pixels, thus, the covariance matrix (being symmetfig,= Aj;)
has approximately.25x 10'° entries, which require a storage space of about 9000 terabytes, or 9 petabytes.

¢ In many applications one is interested in the correlation properties descril#eddsyrelatively small angular
scales, ranging from few beam diameters to scales where/thadise becomes dominant. By discarding
correlations linking pixels on larger angular scal&s,becomes infested with zeros, but retains despite of its
sparseness a complicated shape and is by no means easy to handle.

In this chapter, | propose a partition of a spherical surface based on a space filling Peano-Hilbert curve specifically
tailored for the HEALPIx tesselation that reduces thédlilties outlined above. The paper is structured as follows:
In Sect9.2, properties of the HEALPIx tesselation are summarised. In S&&:1.introduce Peano-Hilbert partitions
and investigate their properties in Se&#. The key results are summarised in S8c5.

9.2. HEALPIXx tesselation

HEALPIx! is a pixelisation of the sphere introduced by ( ). HEALPIx has three important proper-
ties, which are illustrated in Fi@.1 and which form the acronyrierarchicalequal area isotatitudepixelisation
of the sphere.

o All pixels are of the same size, hence integrations can be carried outfiieigrly.

e In HEALPIX, the sphere is tesselated with twelve base pixels, that are iteratively subdivided into four smaller
pixels. Due to this hierarchical ordering, maps can be easily up- and downsampled in resolution.

httpy/www.eso.orgsciencghealpix

101


http://www.eso.org/science/healpix

A Peano-Hilbert partition for HEALPix tesselated spheres

Figure 9.1.: The twelve basis pixels (left panel) and the first order (48 pixels) and second order (192 pixels) refinements
(centre and right panel, respectively) of the dodecaedric tesselation of the sphere used in HEALPix. The illustration above
was taken from the HEALPix manual.

e The pixels are arranged in rings of constant latitude. This enables spherical harmonic transforms,

t
— f 4QT(O)Y;n(6) & 7(0) = > D TimYum(6), with 9.1)
{ m=—(
Yin®) = 2\ s iy P08 exp(ims) 0.2)

to be computed easily: At fixed latitude the Y,n-decomposition reduces to a Fourier transform, for which
very fast numerical algorithms are available.

The pixels may be numbered according to two distinct schemes, the first of which numbers pixels in rings at
constant latitude, such that the-thtegration in the spherical harmonics transform can be carried out easily. The
second numbering scheme takes account of the nested, hierarchical ordering, and allows for cross-referencing pixels
on maps with diferent resolution. HEALPix was successfully employed in the analysis of CMB maps, most notably

of COBE and WMAP, and has been chosen as the default pixelisation to be used for PLANCK data analysis as well.

9.3. Peano-Hilbert curves for HEALPix

Despite the usefulness of the HEALPIx tesselation for spherical harmonical transform, the covariancéynatrix

has a complicated shape in both HEALPix numberings. In order to make matrix manipulatidpgossible, a

new pixel numbering scheme based on fractal, self-similar Peano-Hilbert partitions is proposed. A similar approach
has been taken byennis(2003, who constructed a Peano-Hilbert curve running through all faces of a cube for
the purpose of load balancing a parallelised global atmospheric modelling code. For HEALPix, however, one needs
to construct a Peano-Hilbert curve for the dodecaedric base symmetry of HEALPix, where almost all pixels have
eight neighbours, but certain pixels (eight in total) at the position where polar base pixels meet equatorial base
pixels have just seven neighbours. The curve should be continuous and should link neighboring pixels such that the
off-diagonals of the covariance matrix have non-zero entries.

A possible Peano-Hilbert curve for HEALPIx is shown in F&2, where the zeroth order curve always links
pixels on the North pole with pixels on the South pole via a pixel on the equator. The curve can be iteratively refined
into four subpixels with th&indenmayetrules graphically depicted in Fi§.2 This particular Lindenmayer-system
uses three distinct base pixels, which are fligative left turn, a right turn and a straigt passage through a pixel. The
resulting Peano-Hilbert numbering is shown in Fg3. Clearly, the fractal nature of the Peano-Hilbert partition
can be seen.
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s

Figure 9.2.: Peano-Hilbert zeroth order curve (red), second order curve (blue) and third order curve (yellow) for the
dodecaedric tesselation used in HEALPIx (left panel), and the Lindenmayer rules for recursive refinement of the three
basis pixels (right panel).

Figure 9.3.: A large HEALPix map Nsiqe = 128) with the Peano-Hilbert partition. The shading reflects the pixel number.
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Figure 9.4.: Shape of covariance matrices for correlati@{8,) proportional tod;1 whered,, denotes the separation
between two pixels measured along a great circle, for the Peano-Hilbert partition (left panel), the nested numbering scheme
(centre panel) and the ring numbering scheme (right panel). These images followed from sky maggwitt8 —

Npix = 768.

9.4. Properties of the Peano-Hilbert ordering

The most important question is the performance of the Peano-Hilbert partition in comparison to the two existing
HEALPix numbering schemes with respect to locality. In Fgj, the covariance matrix is plotted for each of

the respective pixel numbering schemes for correlations that decrease with the inverse of the angular separation
Oarc between two pixels, measured along a great circle. An example for such a correlation is the troubleflsome 1
noise. The Peano-Hilbert partition shows a good performance in comparision to the nested scheme: high correlation
amplitudes are predominantly found in the vicinity of the diagonal, with few islands at large distances away from the
diagonal. The nested scheme, being intrinsically fractal as well, exhibits broad stripes of large correlation amplitudes
parallel to the diagonal. Finally, the ring scheme shows a large number of fine stripes parallel to the diagonal, at
even larger distances. From this it can be concluded that the Peano-Hilbert partition is the pixel numbering of choice
when manipulating the pairwise pixel covariance matrix.

Fig. 9.5 analyses the qualitative findings of Fi§.4 in a more quantitative manner. In order to compare the
locality of the Peano-Hilbert partition with the (fractal) nested numbering scheme, a numerical experiment has
been performed, wherd = 10* pairs of points on the sphere with fixed angular separatigywere randomly
generated: Two vectoeg ande, situated on the unit sphere with = (0,0, 1) pointing to the North pole ang =
(SinBare, 0, cosbyrc) With angular separatiofy,. from e; on theg = 0 meridian were rotated in three successive Euler
rotations around the-axis, thex-axis and again around tlzeaxis for randomly drawn angles S,y € [0...2x]. In
this way, randomly positioned paiesof points on the unit sphere with fixed angular separation can be produced:

cosy siny O 1 0 0 cosae sina 0
g =| —siny cosy O 0 coss sinB —sine cosa O |gwithie{1,2}. (9.3)
0 0 1)L 0 -sing cosB 0 0 1

For resulting pairs of points, the logarithmic separatom pixel number in the nested numbering scheme and
along the Peano-Hilbert curve was computed and the distribution of separnptigad was examined. As Fi@.5
suggests, the distribution of peaks at slightly smaller values af although the dference between the two curves
is not large. Similarly, Fig9.6shows the distributiop(A, 6,,c)dA as a function of bothA andé,,.. Especially at large
angular separatiorts,, the distribution ofA shows a peculiar increase at layén case of the nested numbering,
which is reduced in the Peano-Hilbert numbering. This hints at the fact that on large scales the Peano-Hilbert curve
has better properties with respect to locality than the nested numbering scheme.
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9.5. Summary

A new pixel numbering scheme for the HEALPIx tesselation of the sphere is proposed, which is based on a frac-
tal Peano-Hilbert curve. It could be shown that the pairwise pixel covariance matrix acquires an approximate
band-diagonal shape in this numbering, if long-range correlations are discarded. In this respect, the Peano-Hilbert
numbering is superior to the two existing numbering schemes, becfigsent algorithms for manipulating band-
diagonal matrices exist such that computing the determinant or deriving the inverse of the covariance matrix be-
comes feasible, even for the large number of pixels of contemporary CMB observatories.
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10. Redshift estimation of clusters by wavelet
decomposition of their SZ-morphology

Abstract

A method for estimating redshifts of galaxy clusters based solely on resolved Sunyaev-Zel'dovich (SZ) images is proposed.
Given a high resolution SZ-cluster image (with FWHM-ofl’), the method indirectly measures its structure related parameters
(amplitude, size, etc.) by fitting a model function to the higher order wavelet momenents of the cluster’s SZ-morphology.
The applicability and accuracy of the wavelet method is assessed by applying it to maps of a set of clusters extracted from
hydrodynamical simulations of cosmic structure formation. The parameters, derived by a fit to the spectrum of wavelet moments
as a function of scale, are found to show a dependence on redshit is of the typex(2) = X, expz/x;) + %3, where the
monotony of this functional behaviour and the non-degeneracy of those parameters allow inversion and estimation of the redshift
z The average attainable accuracy in thestimation relative to * zis ~ 4 — 5% out toz ~ 1.2, which is comparable to
photometric redshifts. For single-frequency SZ-interferometers, where the ambient fluctuating CMB is the main noise source,
the accuracy of the method drops slightl1oz/(1 + 2)) ~ 6 — 7%. Other complications addressed include instrumental noise,
cold cores and systematic trends in baryon fraction with cluster mass.

10.1. Introduction

Inverse Compton scattering of cosmic microwave background (CMB) photbtiseomal electrons within the hot
intra-cluster medium (ICM) of galaxy clusters produce fluctuations in the surface brightness of the CMiBcan e
known as the thermal Sunyaev-Zel'dovich (SZjeet (e.g. ).
Imaging clusters of galaxies through their SZ-signature has, until recently, been a very challenglng undertaking.
To date, the development of detectors and new techniques have allowed high quality interferometric imaging of
more than fifty clusters of galaxie§’§ ), despite incomplete coverage of the Fourier plane. In
the foreseeable future, the availability of detectors in the microwave regime with angular resolutions surpassing 1
and sensitivities belowK (e.g., theSouth Pole Telescopdescribed in detail i ), will probe
the hot plasma in galaxy clusters out to large redshifts providing SZ-based wide field galaxy cluster catalogues and
yielding a multitude of information about cluster formationand the cosmological mgde!r{ ).

In particular, the abundance of clusters as a function of redshift has been shown to be a very sensitive probe of
the cosmological model( ). The near independence of the line-of-sight SZ-amplitude
on cluster redshift makes the S#ext the main tool for detecting galaxy clusters at high redshifiss@& < 2 (the
upper limit depends on cosmology quite sensitively). This range of redshifts is especially important for probing the
nature of the dark energy of the universe, since during this era it is expected to evolve rapidly until it eventually
dominates over the other cosmological fluids. In order to obtain precise constraints on cosmological models it is
essential to have accurate measurements of the redshift distribution of galaxy clustersi{see

Normally, one determines the distance to the cluster by photometric or spectroscopic observat|ons of the clus-
ter member galaxies. Unfortunately, this is a very challenging and time consuming task, in particular, when one
considers the very large number of mostly high redshift clusters expected to be observed with sensitive future Sz-
instruments — The PLANCK satellite alone is expected to detect abSudldsgters [ ). In order to
replace photometric follow-ups | aim at inferring the distance to a cluster from SZ-data alone for a future generation
of experiments with increased angular resolution of abbut 1

Theoretically, the cold dark matter (CDM) hierarchical clustering paradigm predicts a universal profile for dark
matter halos that depends only on two parameters: core radius and déiwsityi( ). In addition,
the same theory provides a very simple recipe for the mass accretion history of a certain halo as a function of its
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formation and observation redshift\( ). Using these
relations together with simple assumptlons like hydrostatlc equilibrium and |sothermallty, one can expect that in the
framework of the spherical collapse model the observable SZ-flux and apparent size should provide measures of the
cluster’s mass and distance.

Indeed, using scaling relations; ( ) have demonstrated the viability of determining reliater-
phological redshifteand examined dierent SZ-observables with respect to their distance sensitivity. Among those
observables, they showed that the cluster apparent size and central amplitude are promising distance indicators,
once their degeneracy is broken.

The main goal of this work is to derive redshifts of clusters based solely on their resolved SZ-images by modeling
the evolution of their structural parameters with redshift from the data set itself. This phenomenological approach
does not depend on a priori assumptions about scaling relations that are valid only for spherically symmetric and
relaxed systems.

Specifically, the structural morphology of the cluster’'s pressure profile in an SZ-observation is characterised by
wavelet analysi$.l am able to show that there is a simple relation between the distribution of moments over various
scales in wavelet space and the cluster properties which can be described with simple phenomenological functions.
Furthermore, the parameters of these functions are shown to follow a well defined and simple redshift dependence.
Wavelet analysis has been chosen because it maintains the scale and positional information of cluster morphology,
hence, it makes isolation and suppression of various unwanted contributions to theobserved signal possible while
it reliably upholds the underlying behaviour. We note however, that Fourier space analysis could in principle yield
very similar results.

Hydrodynamically simulated clusters are used to demonstrate the method and to set limits on the redshift uncer-
tainty expected in this approach. The simulated clusters used in the analysis are close to virialisation, e.g. merging
systems are excluded. Under this restriction, both the relation between the observed quantity and the cluster physi-
cal parameters as well as the structural parameters are well defined. In addition, simulated clusters ignore radiative
and feedback processes, tlEeet of which is discussed later in the paper.

In the observational application, the evolution of the structural parameters following from wavelet decomposi-
tion could be calibrated from a (relatively small) training set of high quality SZ-clusters with known (photomet-
ric/spectroscopic) redshifts.

Our method relies crucially on the availability of resolved SZ-cluster images. Therefore, throughout the paper |
assume an instrumental resolution fthere massive clusters should be resolved even at the largest redshifts con-
sidered here. Indeed, future instruments such as the South Pole Tefegcope ) or the Atacama
Cosmology Telescopare designed to yield observations of up td galaxy clusters with masses 10**Mg (1 uK
sensitivity) andx 1’ resolution.

This article is organised as follows: After basic definitions concerning theffi@gtén Sect10.2and wavelets in
Sect.10.3 the simulations are outlined in Set@.4 The capability of wavelets with respect to distance estimation is
examined in Sectl0.5 Possible systematics are addressed in $8db. A summary of the techniques in Set0.7
and of the results in Sect0.8&oncludes the article.

10.2. Sunyaev-Zel'dovich definitions

The SZ-dfect has been described in detail by many authors (for a comprehensive reviexw;ksee );

here | briefly review its main aspects. The S#eet arises because CMB photons experience Compton scattering
off electrons of the diuse intra-cluster plasma. The CMB spectrum is modulated as photons areredistributed from
the low-frequency part of the spectrum below 217 GHz to higher frequencies. The change in thermodynamic CMB
temperature due to the thermal S#eet is

)=o) (x5 4] = -2e) forx1 10)

1There are also various ways of characterising the cluster’s density profile in an SZ-observation that are more or less susceptible to noise, for
instance the fitting of g-profile( ) to the electron density.

2httpy/astro.uchicago.edspy

Shttpy/www.hep.upenn.edsangelicgacyact.html

108


http://astro.uchicago.edu/spt/
http://www.hep.upenn.edu/{~}angelica/act/act.html

10.3 Wavelets

wherex = hv/kgTcus is the dimensionless frequency. In the Rayleigh-Jeans Il (1), the change in temper-
ature is asymptotically equal te2y(¢). The SZ-amplitude at locatiog, which is known as the Comptonisation
parametey(¢), is defined as the line-of-sight integral of the temperature-weighted thermal electron density:

T kB
MeC?

(é) = T2 [ ding@.DTu(o.D. (10.2)
wheremg, ¢ andkg denote electron mass, speed of light and Boltzmann’s constant, respediyélyl) andne(¢, )
are electron temperature and electron number density at pogitord distancé.

10.3. Wavelets

10.3.1. Wavelet definitions

During the last decade, wavelet analysis has become a popular tool in various data analysis and image processing
applications. The main appeal of wavelet functional bases stems from their simultaneous localisation of a signal
in both the wavenumber and position domain, where they make orthogonal and complete projections on modes
belonging to both spaces possible. In particular, the discrete wavelet families, by virtue of their constituting a
complete basis, provide a unique and fast decomposition of the images into wavelet exparfBitiamse Statistics

in terms of theg™ moments of the distribution of wavelet dfieients as a function of scale compresses the signal
contained in an image into a small number of parameters and yields information surpassing that derived in traditional
Fourier analysis. A particularly nice example of wavelets applied in an astrophysical context is given in the paper

by ( ), who proposed wavelet-based method to construct SZ-images from multifrequency CMB
data.
Following ¢ ) and ( ), the wavelet transform of a 2-dimensional image is

defined as a convolution of the functig(x) to be analysed with the wavelgt ()x — w):

o) = f Pxy(x) - v (X - ) - (10.3)

High values fory(u, o) are obtained in case of a match between the featurgéxpfand the wavele (x) at
positionu and scaler. From the wavelet expansion deientsy(u, o) on scales at locationp one obtains the
wavelet momentXq (o) by integration over all displacemeryis

Xo(o) = [ e e o). (10.4)

The exponent) € N defines the order of the wavelet momeé(o). Values forg equal or larger than 2 allow noise
suppression. The logarithm X{(o, g) of the wavelet moment as a function of logarithmic scale lconstitutes

the wavelet spectrum. The,(o)-statistic is the main tool used in this study for characterising the morphology of
SZ-clusters.

10.3.2. Application of wavelets to a cluster profile
10.3.2.1. Analytic wavelet transform of a cluster  y-profile

In order to illustrate my idea of determining cluster sizes via wavelet decomposition, the wavelet transform of a
King profile, which is known to describe the SZ-morphology of clusters to first order, is performed. As an analysing
wavelet, the Mexican-hat wavelet was chosen for simplicity.

It is favourable to compute the convolution in the definitiony@ft, o) in the Fourier domain. By virtue of

egn. (L0.5,
o) = f Px y(X) o (x - p1) = (2n)? f 6Pk Y(K) ¥, (~K) exp(Kpa), (10.5)

the convolution reduces to a mere multiplication of the Fourier transfaffksand ¥, (k) of the imagey(x) and
the wavelety(x), respectively. Restricting the order of the wavelet momewt+o2 and inserting the convolution
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theorem 10.5 into the definition £0.4) yields:

2
- 2n)° f PRIYP ¥, ()P (10.6)

Xe(o) = @0)* [ | [ v, (-

where the replacemep¥,.(— k)|2 |‘Iﬂ,(k)|2 holds for real wavelets.
The Mexican-hat wavelet is defined as the negative Laplacian of a Gaussian:

1 X2
2

whereof the Fourier transforifiyy (k) is derived by twofold partial integration:

YMH(X) = YMH(X) = —

2
® = [ (gn—;m(x)exp(—ikx) (10.8)
2
- (271);206 f rdr(zaz—rz)exp(—#)%(kr) (10.9)
k2 k252
= (27r)2 exp( T) (10.10)

where the azimuthal symmetry and the definition of the zeroth order Bessel function of the firstkipgkr =

fozr d¢ exp(ikr cos¢) was used in the first step. Thus, the Fourier transform of the wa¥é}€k), is given by the
Hankel transform of the Laplacian of a Gaussian.

For the determination of(k), | assume that the projected thermal electron density can be described by a spher-
ically symmetric King profile, i.e. #-model ( ) with 8 = 1, core radius. and
central value of the Comptonisation paramegier

-1

2
y(x) = y(r) =yo |1+ (rLC) ] . (10.12)

Then, the Fourier transform is easily computed:

2

2
Y(K) = f ((Zjﬂ—))(zy(x)exp(—ikx)— yole f dr 5 Jo(kr) = 2;

Ko(Kre), (10.12)

where in eqn. 10.12 the definition of the zeroth order modified Bessel function of the secondHilkt.) was
inserted.

Substituting eqns10.10 and (10.12) into egn. (0.6 and exploiting the azimuthal symmetryof the functigis)
andy(x) yields an analytic integral fox,(o):

Xo(o) = 2nylrd f dk K exp(—o-zkz) K3 (kre). (10.13)
0

After evaluation of the integral in eqnl@.13, the wavelet transform of th@profile reads as follows:

/2-’/3 o8- G
X() = 5 -621( |000) (10.14)

wherea = r¢/o has been substituted. The functigris Meijer's G-function, the exact definition of which is given

by ( ). It is an interesting consistency to note that apart from the normalisation, the
functional shape of eqn10.14 only depends om, i.e. on the core radius expressed in units of the wavelet scale
ag.
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10.3.2 Application of wavelets to a cluster profile

10.3.2.2. Analogous result for the analytic wavelet transform in 1-d

The analogous computation of the wavelet transform@foaofile with the Mexican-hat wavelet in one dimension
yields for X,(o):

Xo(o) = mydr? f dk K expo?k? — 2rk). (10.15)
0

This integral cen be evaluated by completing the square in the exponent to yield:

Xo(a) = =2 ° “20° |V erfex(@)P(o) - Q)] with (10.16)
Pl@) = 40/ +122° + 3 and (10.17)
Q@) = 4a®+10 (10.18)

where agaimr = r /o has been substituted. erfe(is the scaled complementary error function:
erfex(e) = exp (1— —f dt exp t2 ) (10.19)

The functional shape and the asymptotic behaviour of these formulae correspond well to the 2-d case discussed
above.

10.3.2.3. Asymptotics of the analytical wavelet transform

The asymptotic behavior 0f,(o) at the limit of o <« r; can be explored by substituting the expressions given in
egns. 0.1 and (10.7) into egn. (0.5, and exchanging, bypartial integration, the function on which the Laplacian
operates. In the limit of interest the Gaussian can be replaced by a®idliatribution. Substituting all of this into
eqgn. (L0.4) yields that limy_,g X2(o") is proportional tojg and independent ef, i.e. the normalisation of the wavelet
spectrum measures the square of the central Comptonisation parggeter

32t u5

Xo(or) = 12

for o< re. (10.20)

In the opposite limit, i.er. <« o, one can use the fact that the King-profile is highly peaked at the center and that it
is convolved with a Mexican-hat wavelet guaranteeing the convergence of the integral ih@@8). &t co. In the
limit of r. — O this integral is dominated by the valuekat 0. Therefore, one can approximate the King-profile
with a Dirac+ distribution and show that asymptotically the Jjmg Xx(c") is proportional tar:

204

Xo(0r) o Joe

for o> I (10.21)

The sensitivity of the wavelet spectruda(o) on cluster size. is illustrated by Fig10.5 The wavelet spectrum
is constant fowr < rc, has arr.-dependent break and drop§ asymptoticallyx o=® for o > r.. Naturally, the
scaleo at which the transition from one asymptotic regime to the other occurs, is determined by the va|ueof
the cluster size.

Motivated by this example, the wavelet momeXgo) obtained from real data (Sedf0.5.3 will be fitted with
a power law with an exponential cdtpwhere the cutfi indicates the cluster size and the amplitude is proportional
to some power of the central Comptonisation paramgter

10.3.2.4. Finite instrumental resolution

The influence of finite instrumental resolution can easily be incorporated by an additionalBék)iin eqn. (L0.6):

Xo(0r) = (2n)° f dPKIY(RIP [¥o (K BRI, (10.22)
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Figure 10.1.: Sensitivity of the wavelet spectrum on the cluster size: The second order wavelet mda{efsre shown
as a function obr for various core sizeg, = 0.5 (solid),r. = 1 (dashed)r. = 2 (dotted) and. = 4 (dash-dotted). The
curves have been normalised to their asymptotic values fer 0.

where B(K) is the Fourier transform of the (azimuthally symmetric) beam prdiffld, which is for simplicity
assumed to be of Gaussian shape with FWHM/8In(2) - o:

Bkk) = f (g;))(z b(x) exp(ikx) with (10.23)
bx) = 1 ex (—X—z) (10.24)
B 27r0'§ P 20'% ' '

This efectively replaces in eqn. (0.19 by the harmonic mean/c2 + o-g, which limits the range of accessible
wavelet scales to- > op,.

10.3.3. Analogy to power spectra in Fourier analysis
By interpreting the wavelet spectrum in eqh0(6) as the variance of the fluctuations on the seglene may draw
an analogy to Fourier decomposition:

varly()] = () = (20)* [ ek PI9 I (2 (10.25)
whereP(K) = (27)4(|Y(K)[?) is the Fourier power spectrum. The wavetéx) now adopts the role of a filter function
on scaler. This filter function reads in real space in the case of the Mexican hat wavelet:

2 2

202 - X x?
lﬂMH(X) = W . eXp(—Trz) . (1026)

Therefore, my method is equivalent to considering power spectral analysis of filtered fields and higher order Fourier
space moments.
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10.4 Simulations

10.4. Simulations

The accuracy in the determination of redshiftas assessed by examining the performance on numerical simula-
tions: First, simulations of cosmological structure formation including gas physics have been carried out in order to
model the evolution of clusters (Set0.4.]). Subsequently, maps of the Comptgpparameter have been produced
by using an interpolation kernel with an adaptive smoothing length for projecting the Comptmameter along
the line-of-sight (Sectl0.4.9. By applying selection criteria favouring virialised systems a cluster sample was
compiled (Sect10.4.3. Finally, aiming at realistic single frequency SZ-observations, we simulated the ambient
CMB fluctuations that act as the primary source of noise (3€x#.9 and combined the resulting realisations of
the CMB with the cluster maps (SedD.4.5.

The assumed cosmological model is the standaC®DM cosmology, which has recently been supported by the
WMAP satellite { ). Parameter values have been chosefgs= 0.3,
Qa = 0.7, Ho = 100hkms™* Mpc?t with h = 0.7,Qs = 0.04,ns = 1 andog = 0.9.

10.4.1. SPH cluster simulations

A simulation of cosmological structure formation kindly provided by V. Springel and L. Hernguistr(

) constitutes the basis of my analysis. In a cubical box of comoving side length
100 Mp¢/h W|th periodic boundary conditions a smoothed particle hydrodynamic (SPH) simulation comprising
216 dark matter particles as well as Zl@as particles was run and snapshots were saved at 23 redshifts ranging
from z = 0.102 out toz = 1.114. The comoving spacing along the line-of-sight of two subsequent boxes is
100 Mpcg/h. Purely adiabatic gas physics and shock heating were included, but radiative cooling and star formation
were ignored, which however does not result in significafiedénces in SZ-morphology, as shown\by
( ) but impacts on the scaling relations as demonstratethhiy ( ).

Overdensities are identified using a friends-of-friends algorithm with the linking ldmgti®.164, which yields
all member particles of a cluster in conjunction with a spherical overdensity code, from which virial quantities are
estimated. | computed the malsk;; inside a sphere of radius;, interior to which the average density was 200
times the critical density¢i; = 3H§/(87rG). The angle subtended by twice the virial radius is denotel;asl
imposed a lower mass thresholdM§;, > 5 - 1013M,/h.

The simulation used here seems to be appropriate for assessing the redshift estimation accuracy for a number
of reasons: It provides a large number of suitable systems, so that the influence of morphological variety can be
studied, and the clusters are very well resolved with respect to their baryonic profiles. Furthermore, the cluster's
evolution has been modelled taking account of their cosmological environment.

A justified objection might be that the simulation is biased toward low-mass systems, because high-mass systems
form less frequently and especially in small simulation boxes, the high-mass end of the Press-Schechter function
is sampled insfiiciently. This shortcoming could be remedied by using simulations of single objects, but in this
case it would have beenflicult to accumulate gficient statistics, or by using even larger simulation boxes while
upholding the mass resolution, which rapidly becomes computationally unfeasible.

10.4.2. SZ-map preparation

Square maps of the Comptgrparameter of the selected clusters were generated by SPH projection of all member
gas particles onto a cubical grid with Z2@esh points. The (comoving) side lengtlof the map was adapted to
the cluster size, such that the comoving resolutjoa s/128 of the grid is specific to a given map. Examples of
Sunyaev-Zel'dovich maps are given in Fig).2

If the particlep at positionr, = (xp,yp, zp) has a smoothing length,, an SPH electron number density estimate
Ny, and an SPH electron temperatiig the Comptory parameter at the pixel at positiaris given by:

x+g/2  y+g/2  hp

y(x)—‘r::;g ZZ f dx, f dyp folzp ( ) neTp (10.27)

X-g/2 y-g/2 _hp

with r = \/(xp — X% + (yp - 1)? + 2. (10.28)
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Figure 10.2.: Picture book of Sunyaev-Zel'dovich clusters: The left column shows clusters at high redshif&0d, in
comparison to clusters at low redshiftszof 0.174 in the right column. The columns contradtelient morphologies in an
exemplary fashion: relaxed systems (upper row), elongated clusters (centre row) and clusters in the phase of minor merging
or mass accretion (bottom row). The grey scale denotes the amplity¢id'of log [l +10°- y(x)] and the contours have

a logarithmically equidistant spacing ofitdex, i.e. the lowest contour denotes a common valug-62.5 - 10°6. All of

the clusters depicted above meet the selection criteria discussed ii(Géc3.
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10.4.3 Cluster selection

Here, | assumed complete ionisation and primordial element composition of the ICM for the determination of
electron number density and temperature. In this way | produced projections along each of the three coordinate
axes. The functiow is the spherically symmetric cubic spline kernel suggesteid by ( ),
which was also used in the SPH simulation. Details of the SPH projection can be found in Appendix

() = =

2(1-u® ,1/2<u<1l withu=r/h,. (10.29)
T

1-6u2+6u,0<u<1/2
0 ,u>1

10.4.3. Cluster selection

Clearly, the wavelet redshift estimation relies on the clusters not being in the state of violent merging, such that the
cluster observables, namely the apparent size and integrated SZ-flux are linked via scaling relations. Secondly, the
wavelet analysis derives a single parameter describing the extension of the cluster from the break in the spectrum
Xq(o) of wavelet parameters and hence elongated clusters should be excluded from the analysis, because in those
systems, the extension can not be measured unambiguously. Consequently, apart from the minimaimass of

5. 103M,/h, that translates into a minimally required line-of-sight Comptonisation amplijsge clusters have

been selected in order to show neither double cores nor pronounced substructure. From the resulting sample, 10
clusters were selected randomly from each redshift bin. In this sample, the ellipticity and the residual deviation
from ag-profile was measured, in order to provide a solid quantification:

e The SZ-morphology is required not to be too elongated. By fitting a 2-dimengtemaidely;(x) to the SZ-
profile yqaiX), values for the semi-axes andr, are derived. 90% of the clusters within the selected sample

have axis ratios| = r,/ry smaller than 0.8 and ellipticities= ,/rz — rj/rX below 0.6.

¢ Residual deviations from the canonigaprofile ought to be small. Thems-deviationv of the cluster from

the best-fittings-profile,
2
o= ([Pl (1030)

was smaller than 25% for 90% of my cluster data sample.

The 10 selected clusters from each of the 23 redshift bins, yielding with the three orthogonal projections of each
cluster a total number of 690 maps with which the accuracy of the wavelet method inestimating redshifts was
assessed. The distributions of the ellipticiteeand the integrated residualsare shownin Figl10.3 The same
distributions were derived for the smoothed cluster maps, werdhbet®dfinite instrumental resolution have been
incorporated. As Figl0.3suggests, the beam does not have amajor impact on the morphological properties of most
of the cluster sample, which is due to its narrowness of of(F\YHM).

10.4.4. CMB map generation

CMB anisotropies are assumed to be a particular realisation@dissian random field Aiming at simulating
a realisation of the CMB on a square, flat map, | take temperature fluctu@fiwhselative to the average CMB
temperature ofT) = 2.726K to be the independent random field,

_T(@)-(M
0(¢) = W (10.31)

The flat, two-dimensional power spectri?p(¢) is defined via:
(©(HO"(£)) = (21) %6 (L - €')Py(1L1), (10.32)

where®(¢) denotes the Fourier transform éfp). The simulation of the CMB temperature fluctuations on a flat
square map now consists of the following two steps:
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Figure 10.3.: Selection criteria: distribution of residual deviatiansom the best-fitting3-profile for unsmoothed (solid,
circles) and smoothed (dashed, diamonds) maps. The second set of lines shows the distribution of the eliiptities
(dash-dotted, squares) and without smoothing (dotted, crosses).

e The angular power spectru@y is computed for the flanCDM-Universe using théMBfast code by
( ). In addition to the cosmological parameters being already described in8ett.use
adiabatic initial conditions and set the primordial He-mass fractiogto= 0.24 and the Thomson optical
depth tor = 0.17 ( ). The angular power spectrum of the CMB is normalised to COBE
data. Since the Szffect distorts the CMB only on small angular scales, the flat sky approximéatieri is
fulfilled and it is appropriate to replace the spherical harmonics with plane wiavgg000l) has shown that
the 2-dimensional flat power spectri®y(¢) is approximately equal to its angular analogGg:= Py(¢).

e Then, Gaussian random variables are generated on a complex two-dimensional grid in Fourier space with
variancea?(f) = Py(¢) according to the absolute value of their wave vectorsénverse Fourier transform
brings the elementary waves to interference and yields a realisation of the temperature anistftsdpies

10.4.5. Simulated single-frequency SZ-observations

For SZ-clusters observed with a single-frequency interferometer (e.g., the CBI experitaent; )L,

it isimportant to examine the applicability of th&(c)-statistic. For the purpose of this chapter, itfsies to
consider observations at small frequenctesThus, the Comptop-maps are combined with realisations of the
CMBfluctuations by using eqn10.1) in the Rayleigh-Jeans limit,

T(9) = [1-2y(#)][1 + 6()] (T)- (10.33)

Fig. 10.4shows the Comptop-map of a nearby cluster of2- 10*M,/h at redshiftz = 0.102 combined with
a patch of the CMB constructed by the algorithm described above. In this map, the average CMB tem{¥erature
was subtracted. In order to mimic observations, the resulting combined maps are smoothed with a Gaussian beam
with FWHM of v8In(2)- o, = 1'.

In the case of multi-frequency SZ-observations the SZ-signature can be easily distinguished from the CMB signal.
Therefore, for these cases the CMB background is ignored and not included in the simulated cluster SZ-images.
Nevertheless, finite instrumental resolution was taken care of and the SZ-maps were convolved with a Gaussian

Lhttpy/www.astro.caltech.eghitjp/CBI/
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10.5 Analysis
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Figure 10.4.: Simulated temperature map of the CMB combined with a foreground SZ-cluster &102 with virial
quantitiesM;; = 2.2 - 10*My/h, ryir = 147 Mpc/h andksT,;; = 1.52 keV. At the cluster centre, the SZ-temperature
decrement amounts tel.8 mK and the CMB temperature fluctuation with the highest amplitude is equa23miK. A
total of 30 linearly spaced isothermals are drawn. In this case, the comoving scaléhlddipesponds to 1% .

kernel of v8In(2)- o, = 1 (FWHM). This approach is optimistic considering instrumental noise and point sources,
that distort the SZ-frequency dependence and provide additional flux at the SZ-decrement frequencies. While the
second fect primarily diminishes the SZ-detectability, it too generates noise similar to instrumental noise due to the
Poisson fluctuation of the number of sources within an aperture. A detailed discussion can be foundLib. 'z 8ct.

The beam width was assumed to be 1 arcmin (FWHM), which is a reasonable choice considering the design
values of currently planned dedicated SZ-telesopes. These experiments are able to marginally resolve clusters out
to redshifts oz = 0.7: At these distances, the beam size (in terms of standard deviation) becomes comparable to the
core sizes of the least massive clusters considered here. At the largest redghifts.bfexamined in this chapter,
the beam is approximately twice as large as the cluster core.

10.5. Analysis

In this section, the analysis is explained step by step: After introducing the wavelet families1(&&ci, the
wavelet spectrum and the parameters deduced from it are describedl(B8@&and Sect10.5.3. The correlations
of the wavelet spectral parameters with physical quantities are discussedl(E6@). The measurement princi-
ple and the breaking of degeneracy is illustrated in SE&6.5 Successively, the intercorrelation of the wavelet
parameters and the shape of the parameter space is explored by principal component analyssg$ecthen,
gauge functions for modelling the redshift dependence of the parameters are proposdd(S&ctSeveral issues
for observers are discussed in Sd¢1.5.8 for instance the influence of instrumental noise (S&@15.8.), the in-
fluence of primary CMB fluctuations on the wavelet spectrum and their suppressionl(&8d.2, and the impact
of sub-millimetric point sources on the wavelet estimation technique ($@d.8.3. Finally, the redshift of the
clusters are estimated by maximum likelihood techniques ($6c3.9.

10.5.1. Wavelet basis functions

In the analysis a wide range of wavelets witffelient functional shapes was employed, althouglsyineetwavelet

basis introduced by ¢ ) yielded particularly good results. Due to their symmetry and
peakinesssymletsare seemingly especially suited for analysing SZ-morphologies, because they do not impose
a strong smoothing on the image in determining the wavelet momgftg. Other wavelet families that found
application in my analysis were Daubechies’ wavelets, coiflets and biorthogonal wavelets0.Bigcompares the
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Figure 10.5.: The wavelet basis functiong(x) chosen for the analysis: symiggm2(solid), Daubechies’ wavelatb4
(dashed), coifletoifl (dotted) and the biorthogonal wavelgorl.3 (dash-dotted).

functional shape of the fierent wavelet families.

The analysis proceeds by measuring the wavelet moments on smoothed comoving maps of the gaapton-
rameter following the definition in Sect0.3 The scaler of the resulting wavelet spectrum is then converted to
angular units. Because my SZ-maps are computed on a grid 6i&8h points with adaptively chosen side length
for each cluster, the dynamical range of the wavelet spectra always comprises approximately two decades. However,
this is no fundamental limitation of this approach because the maps are featureless below the smoothing’scale of 1
(FWHM).

10.5.2. Measurement of wavelet quantities

In order to derive the actual flux decrement or, equivalently, the decrement in antenna temperature from the line-
of-sight Comptory amplitude, its value at each pixel needs to be multiplied with the solid angle it subtends. For
the conversion, a standardCDM-cosmology was assumed, the parameters of which have already been given in
Sect.10.4 Thus, the pixel amplitudes were modified according to:

y(x) — y(¢) = y(x) - 4arctad (10.34)

el

wherew(2) is the comoving distance in the model cosmology grdenotes the comoving size of a single pixel.

It should be emphasised that the waveletfioentsy(u, o) are evaluated on a comoving grid, which has been
adapted to the cluster size before converting the wavelet sc@angular units. This, however, should not pose a
problem for real observations, provided the sampling scale is of the same order of magnitude as the angular scale of
the finest pixels.

In order to obtain dimensionless quantities, the unit of the wayeglét) has been set to inverse steradians, such
that the wavelet expansion diieientsy(u, o) and the wavelet momeni§, (o) are dimensionless, irrespective of
g. For numerical convenience, the pixel amplitudes in the combined SZ-maps have been multiplied4vith 10

The summation in the definition of the wavelet momplo) in egn. (0.4 discards the information about the
position e at which the wavelet expansion dheient y(u, o) is evaluated. Consequently, the position of a cluster
inside the observing frame does not influence the wavelet decomposition.
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Figure 10.6.: The spectrum of wavelet moments, together with the fitting forml0a33 for increasing wavelet moment
orderqg: q = 2 (squares)q = 3 (circles, solid),q = 4 (stars, dashed}j = 5 (diamonds, dotted) angl = 6 (crosses,
dash-dotted) for a single cluster. The wavelet momg(s) followed from wavelet expansion with tlsym2wavelet.

10.5.3. Wavelet spectrum of SZ-cluster maps

Due to the lack of any analytical generalisation of edf.{4 for q # 2, deviations of the Comptompmap from a
King profile and wavelets other than the simple Mexican hat, | decided to explore phenomenological functions for
describing the wavelet spectrum. The simplicity of the shape of the wavelet spectrum shownlifi.Eimplies
that the model function,
InXy(o) = a+sin(o/oo) — o/c, (10.35)

is able to extract all apparently contained information, i.e. the spectrum is described by means of three quantities:
the amplitudes, the slopesand a break at. The parametesr has been included in eqril@.35 in order to obtain
a formula that is dimensionally correct, although it does not yield any new information and this specific degree of
freedom is already described by the variadle

The usage of eqn10.33 implicitly discards information about asphericity anteetively determines an average
of the cluster's extension along its major axes. The problem would be significantly complicated by including
asymmetry and considering vectorial naturerdfee } ).

Because the cufbparameterc is of great importance to my analysis, it needs to be derived reliably. Thus,
the order of wavelet momentswas restricted t@ > 3, because largeg-values facilitate the determination of
c. From Fig.10.6it is obvious that an increase psuppresses the value ¥f(o) at small scalesr such that
the curve develops a maximum in the vicinity of Additionally, by the choice of large values fqr the wavelet
expansion ca@cientsy(u, o) dominated by CMB noise are suppressed relative to those obtained in the central part
of the cluster and consequently higher order wavelet mon&ytits) provide a cleaner measurement. The range of
sensibleg-values is restricted by the fact that for increasinine momenty(c) is successively dominated by the
largest wavelet expansion déeienty(u, o) and does no longer contain information of the structure to be analysed.
In order to stabilise the fitting procedure | interpolate in between the wavelet mogots This is justified
because | expect a smooth variation of the wavelet spectrum according ta &8c2.1

10.5.4. Correlations with physical quantities

The parameters derived from the fit to the spectrum of waveldliceats have a physical interpretation. As shown
in Sect.10.3.2.1 the wavelet spectrum breaks at the cluster scale. Therefore, one expects a correlation between the
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Figure 10.7.: Wavelet measured cluster sigeersus angular extensiae, for increasing wavelet moment ordgrqg = 3
(circles) andq = 6 (crosses) without including CMB fluctuations. Tbealues have been determinedwith ten2
wavelet.

angular size of the clusté;; and thecutoff ¢, as found in Fig10.7. Increasing weighting exponengsshift the
regression line to smaller values afwhich can be understood by the fact that larger valueg @iippress small
wavelet expansion cdécients arising at the outskirts of the cluster, which in turn leads to a break in the wavelet
spectrum at smaller scales.

Similarly, theamplitude a determined by the fit is proportional to the integrated Compt@inx,
kTVi; oT 1+ fH fBMVir, (1036)
mec2 da(22 2 my
as illustrated by Fig10.8 Here, f, denotes the baryon fractiofi; the hydrogen fraction, which determines the
elemental composition and has been set to the primordial value of 0.7@naiscthe proton massda(2) is the
angular diameter distance.

The normalisatiora of the wavelet moment&;(c) shows a steeper dependence on the integrated Comptonisation
parametety for larger choices of}, which is explained by the following argument: The amplitude) reflects
the normalisation of the wavelet mome{g(c). The integral in eqn.10.4) is dominated by the largest wavelet
expansion coicienty(u, o), taken to they™ power. On the other hand, the wavelet expansioffientsy (y, o)
are proportional to integrated Comptonisati¥h resulting in observed relation b(q(o-)] oc ac q-Iny). In
summary, Fig.10.9 shows the wavelet spectra for three comparable clusters situatefiesémnli redshift taking
instrumental smoothing into account. The figure illustrates, how the amplitude and the break of the spectrum
decrease with increasing redshifts.

The influence of instrumental smoothing on the wavelet parameters can be summarised as follows: In the case of
supressed noise, the amplitualebeing a measurement &f should be still reliably measureable in contrast to e.g.
isophotal flux or related quantities, despite the fact that it is systematically smaller due to the instrumental beam.
The angular size, however, expressed by theftatancreases with increasing smoothing, but can still serve as a
measure for cluster size even in cases where the size of the instrumental beam becomes comparable to the cluster
core. In addition, this behaviour is supported by Hif§.1Q where a weak deviation from proportionality towards
larger values ot is easily visible. Nevertheless, the valuecd$ not significantly deteriorated by the instrumental
smoothing.

Finally, theslopesis purely a measure of instrumental smoothing: Placing the same clust@ieatli redshifts
would result in a blurred image of the more distant one. Keeping in mind that there is a close analogy between

Y= [ foue) -
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Figure 10.8.: Wavelet amplitudea as a function of integrated Comptonisation paramgtdor different weighting ex-
ponentsq: q = 3 (circles) andy = 6 (crosses), again without taking CMB fluctuations into account. As the analysing
wavelet, thesym2wavelet was chosen.
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Figure 10.9.: Wavelet spectray(o) of three clusters at redshifis= 0.365 (circles, thick lines)z = 0.580 (squares,
medium lines) and = 0.826 (diamonds, thin lines), where instrumental smoothing has been ignored (open symbols, solid
lines) and properly taken account of (closed symbols, dashed lines). The spectra have been derivedymitBvtiagelet

as the analysing wavelet.
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wavelet- and Fourier-transforms (as explained in SE@13.3, the wavelet momenXy(o) as a function obr can

be interpreted as the variance of the wavelet-filtered field. The instrumental beam introduces an additional filtering
to the Comptony map (compare Sect0.3.2.4 and would cause the Fourier spectrum to drop at smaller values of

the wave vectok, because the instrumental beam constitufBectvely a low-pass filter that is erasing structures
smaller than its extension. Comparing clusters fiedént redshifts, it is clear that the drop in power happens at
smaller scales in the case of the more distant cluster. Then the slaeéined as dliXy(c)/dIno for o < re,

is larger in the case of a unresolved cluster compared to a resolved cluster. This measure of the influence of finite
instrumental smoothing varies only by a factor of two in slope over the redshift and mass range considered here, but
nevertheless serves as an indicator of cluster distance. It should be emphasised sthataingeter does not try to

extract information from scales that are inaccessible due to instrumental smoothing. Wavelet analysis of maps that
are poor in features over a certain range of scales generically results in power lag&fpfor these scales.

10.5.5. Measurement principle

Now, it is necessary to illustrate how a measurement of the total Comptonigataond of the angular sizé

sufices to derive a distance estimate. For that purpose, clusters are placed at unit distance and the distance de-
pendences of the wavelet amplitudeand the the cutd c are removed by the following formulae, sinads a
logarithmic measure of flux inside an solid angle elem¥#mindc is a logarithmic measure of of angular extension

Ovir -

a2 +2-In(da(2) (10.37)
c(2) + In (da(2) . (10.38)

Ao
Co

By applying simple scaling arguments, one expects the &gfiq, to be equal to 5: From the wavelet amplitude
a one obtaingg « In(y . dA(z)Z) oc In(Myir - Tyir). Furthermore, from the spherical collapse model follows, that

Tuir o M7 ( ), which yields, together wittMy; o r2, the relationag o In (rar). Substituting
Co « In (ryir) gives the final resuly/co = 5.

Fig. 10.10nicely illustrates how the degeneracy is broken and how a simple measurement of flux and angular
extension sfiices in order to derive a distance estimate: A crude fit to the distance corrected wavelet arapkiside
a function of distance corrected wavelet diifzarameter yields a slope of approximately 5.8, which corresponds
well to the slope o~ 5 expected from the theoretical consideration outlined above. If, hypothetically, the ratio
ap/Co was equal to 2, the measurements of flux and angular size would be completely degenerate and would not
yield any distance information. This case corresponds to disks of equal surface brightness, where measurements of
flux and angular size are completely degenerate and do not yield any distance information at all. It should be noted,
that by adopting the usual scaling relations, one introduces a systematic error in slope that can am@@d%to
error.

10.5.6. Principal component analysis

In order to rate the extent to which the parameters derived in the fit to the spectrum of wavelet moments are inde-
pendent, a principal component analysis (PCA, seel&:g! ) was performed. The PCA is determining

a transformation to a new orthogonal coordinate system in parameter space spanedhy s, such that the
variance along the first axis is maximised.

The first eigenvector of the matrix that describes the change of basis by the PCAgeads(0.65,0.70,0.32)
which has been derived for the spectral parameterg for3 and with thesym2wavelet as the analysing wavelet.

The values similar in magnitude suggest that the variation in the data set is contained in all three pasmeters
ands.

As can be readfbfrom table10.], the parameter space is tightly constrained and all three parameters are interre-
lated, such that the data points form a narrow ray in parameter space. This result holds irrespective of the choice of
g, although the scatter increases with higher choices.fdrme values in tabl&0.1have been determined without
considering CMB fluctuations. Given the physical interpretation of the wavelet ampéitadd the cutfi c, it is
obvious that the tight correlation can be traced back to the self-similarity of clusters and the cluster scaling relations
linking Tyir, Myir andry; that follow from the spherical collapse model. The scaling relations for SZ-quantities
derived by ( ) support this view. This shows together with Sddt.5.4and Sect10.5.5that both
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10.5.6 Principal component analysis
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Figure 10.10.: Distance corrected wavelet amplituae= a(z) + 2 - In (da(2) as a function of distance corrected wavelet
cutof parametery = ¢(2) + In(da(2)). The values have been determined in fits to the wavelet spects(u), that has
been derived with theym2wavelet as the analysing wavelet.

q=3 g=4 q=5 q=6
18t principal component  95.6% 94.2% 92.8% 91.5%
2 principal component  2.7%  4.2% 55% 6.7%

Table 10.1.: Result of the PCA. The variance explained by the first and second principal component as a function of
wavelet orden. Here, no CMB fluctuations were included.
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Figure 10.11.:Dependence of the wavelet citparametec on redshifzwithout considering CMB fluctuations for= 3
(circles, solid) and) = 6 (crosses, dash-dotted). The analysing wavelet wasytin@wavelet.

parameter variable i=1 i=2 i=3

amplitude a 10.5837 0.6475 -1.9570
cutaof [arcmin] C 0.5124 0.5165 0.3809
slope S 1.3423 0.4144 1.3803

Table 10.2.: Fitting values for the gauge functions defined in edr.89 for the cluster sample at hand and #yem?2
wavelet basis. The order of the wavelet mom¥y(t-) has been set tg = 3. The values have been derived without taking
CMB fluctuations into account.

the cutdf cand the amplituda are functions oM,;.. By only considering systems close to virialisation | thus expect
a fundamental narrow ray in parameter space which can be described by a single principal component.

10.5.7. Redshift dependence of the wavelet parameters

The parametera andc are expected to decrease with increasing redghifte reason for which is quite apparent:
The angular diamete%,;; and the integrated Comptonisatidhdecreases because of the increasing angular diam-
eter distancela(2) that enters),; linearly andY quadratically. Furthermore, clusters accrete matter during their
formation history and thus are on average more massive at later times, i.e. at smaller re({shifie.g.)

) ). From the physical point of view, the dependencaahdc on
redsh|ft2|s far from trivial, and therefore, their functional behaviour is described by an empirical approach. Among
others, the exponential function provides a good fit to the data, as illustrated byl Giggsand10.12

X2 = xq exp(—x—zz) + X3, Wherex € {a,c, s}. (10.39)

The optimised parametexsi € {1, 2, 3}, for x € {a, ¢, s} in the gauge functions eqrl@.39 are given in tabld 0.2
for the case = 3. It should be emphasised thatthe parameters stated are only valid for image analysissyithizhe
wavelet, where the maps have been smoothed with a Gaussian kernel (RIWHM) and the considered cluster
sample, which is defined by the selection criteria laid down in S€ctt.3and the minimal mass of 5L0**M/h.
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Figure 10.12.: Dependence of the wavelet amplitude paramaten redshiftz without including CMB fluctuations for
g = 3 (circles, solid) and| = 6 (crosses, dash-dotted). The quantities have been determined wsymBevavelet.

10.5.8. Noise contributions and their suppression
10.5.8.1. Influence of instrumental noise

The extent to which the wavelet spectra afieeted by instrumental noise is a very important issue: Even though

experiments like the ACT aim at achieving noise levels as lowas 2 - 5 uK per 3 arcmiid-pixel (depending

on the channel, ), instrumental noise nevertheless impacts on the shape of the wavelet spectra.

Fig. 10.13shows the distorted wavelet spectrum for twiietient wavelet families on SZ-maps where uncorrelated

pixel noise at a level equivalent to (a pessimistic valuergf= 10 uK per square arcminute has been added.
Instrumental noise can be characterised by an approximate power-law component in the spectrum of wavelet

codficients Xy(c). The influence of the noise on the wavelet spectrum is small and can be suppressed by either

choosing large or by employing a smoothly varying wavelet, for instance, a member dfythdetfamily instead

of a peaked wavelet, such as ttwiflet Furthermore, the instrumental noise does not cause a significant deviation

of the model parametegs ¢ and s once the detection of the cluster idi$tiently reliable, i.e. exceeds a value of

100 which is the case even for the least massive clusters in my sample out to redshifts08. At even higher

redshifts, wavelet analysis will be seriously impeded by instrumental noise.

10.5.8.2. Influence of CMB fluctuations

Clusters at high redshitare characterised by their small angular scale on which the underlying CMB is represented
by a smooth gradient due to Silk dampirigj|( ). In this case the wavelet analysis produces the same results
irrespective of the CMB noise owing to the distinct morphological feature of the cluster on top of the smooth
CMB gradient. Once clusters at lower redshifts reach angular sizes comparable to characteristic scales of CMB
fluctuations, the wavelet analysis has to be made more sophisticated. This complication in the wavelet analysis arises
because wavelets are primarily suited for determining morphological features rather than solely singling out high
amplitude characteristics. Because the angular scale of the clusters ranges betveeehlQvhich corresponds

to multipole orders of ~ 10°...10% it suffices to consider the Silk damping tail of the angular power spectrum

of the CMB. In the wavelet spectrudi,(c) this translates into an additional approximate power-law component
XGMB (o), as can be seen from Fid).14

In XgMB(O') =~ acmB + ScmB Ino. (1040)
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Figure 10.13.: Changes to the wavelet spectrum of a single cluster (situatedd@.49) caused by instrumental noise:
unperturbed wavelet spectrum of the SZ-cluster (circles, solid), of pure instrumental noise (squares, dash-dotted) and of
the combined map (diamonds, dashed). Data points were derived from simulated data and the joining line in the case of the
unperturbed wavelet spectrum theresult of the fitting functions described byl€dsH ( The order of the wavelet moment

is q = 6. As analysing wavelets, tlsym3wavelet (thick lines, closed symbols) and ttwfl-wavelet are compared (thin
lines, open symbols).

This is due to the discrete sampling of the wavelet moments as well as the inherent statistics of the wavelet spectra
of orderg which can be interpreted as suitably weighteploint correlation functions in Fourier analysis (compare
Sect.10.3.3.

Fig. 10.15shows the probability distribution functign(scvs)dscms Of the slopescys following from linear fits
to the wavelet moment¥,(c) for the range ofy’s considered here. Again, tisgm2wavelet was chosen as the
analysing wavelet. The slopesyg are not well confined, keeping the vast range of angular scales in mind, which
in turn will make it difficult to subtract the CMB-contribution to the wavelet spectrum of the combined map.

In order to disentangle the contributions from the CMB noise from those of the cluster, one may pfieseatdi
approaches: Among others, CMB fluctuations underneath the cluster can be reconstructed with spline polynomials
and successively subtracted. Here, | have masked the cluster and"fittedes polynomials to the remaining data
points. Because thgmaps and the realisations of the CMB are to leading order combined linearly and because
the CMB is a smoothly varying field, it is possible to reconstruct the CMB fluctuations from the environment of
the cluster and interpolate to the cluster centre. The reconstructed CMB field can be subtracted from the inital
image and by applying wavelet decomposition to the cleaned field one obtains a wavelet spectrum, from which the
parameters, ¢ ands can be reliably derived.

An important question common to the suppression of the CMB and instrumental noise is the choice of a cluster
mask region, either for reconstructing the ambient CMB fluctuations with polynomials or for reducing the contribu-
tion of pixel noise (which is proportional to the map area) to the wavelet spectrum. As soon as the cluster is detected
at suficient significance levels, it should be possible to choose the cluster mask region according to a preliminary
determination of the cluster size. Choosing too large a mask region results in higher amplitiXges) it large
angular scales, but the parameters of the model functi@amndc are relatively insensitive t&y(c’) at largeo.
Furthermore, it would introduce a systematic trend in measuremeatarafc, which could be taken account of by
altering the functions that model the redshift dependence of those parameters.
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Figure 10.14.: Changes to the wavelet spectrum of a single cluster caused by the fluctuating CMB: unperturbed wavelet
spectrum of the SZ-cluster (circles, solid), of the pure CMB (squares, dash-dotted) and of the combined map (diamonds,
dashed). Data points were derived from simulated data and the joining line in the case of the unperturbed wavelet spectrum
the result of the fitting functions described by eqt0.85. The order of the wavelet momentds= 6 (thick) andg = 4

(thin). Again, the analysing wavelet is tegm2wavelet.
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Figure 10.15.: Distributions of the power-law slopegys of CMB wavelet spectra as a function of wavelet moment order:
g = 3 (circles, solid),g = 4 (stars, dashed}} = 5 (diamonds, dottedly = 6 (crosses, dash-dotted). For the analysing
wavelet, the symlesym2was chosen.
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10.5.8.3. Influence of point sources

Yet another impediment to SZ-observations are point sources such as infra-red galaxies and microwave emitting
AGNSs. They influence SZ-observations in two ways: Firstly, the integrated flux of microwave sources inside the in-
strument’s beam distorts the SZ-flux modulation and diminishes the signal at SZ-decrement frequencies. Secondly,
the Poisson fluctuation in the number of sources inside the beam leads to an additional noise component. While
the first @fect concerns the detectability of SZ-clusters, the secfiedtdanfluences the wavelet analysis in a way
similar to instrumental noise.

The integrated emission from unresolved infra-red galaxies make up the cosmic infra-red background (CIB)
( ) ), the fluctuations of which are become important at frequencies above
v ~ 100 GHz ( ). ( ) and ( ) have estimated the number
counts of unresolved infra-red galaxies at SZ-frequencies. In the easiest case, the sources are uncorrelated and the
fluctuations obey Poissonian statistics, but the inclusion of correlations is expected to boost the fluctuations by a
factor of~ 1.7 ( ). According to ( ), the resulting fluctuations vary between a few
107 Jy/sr and 16 Jy/sr. A proper modelling would involve a biasing scheme for populating halos, the knowledge
of the star formation history and template spectra in order to determine the K-corrections.

In AGNs, the situation is notably more complex: The spectra show a variety of functional behaviours, with spectral
indicesa generally ranging from -1 to -0.5, but sources with inverted spectsad are commonplace. This variety
makes it dfficult to extrapolate fluxes to observing frequencies of CMB experiments. Two studiés|§

) have estimated the fluctuations generated by radio emitting AGNs at SZ-frequencies
and found them to amount to 46 10* Jy/sr. However, AGNs are known to reside in high-density environments
and the proper modelling would involve a biasing scheme in order to assign AGN to the dark matter halos. Apart
from that, one would have to assume spectral properties from a wide range of spectral indices and AGN activity
duty cycles.

Given the poor experimental constraints no attempt is made at modelling the influence of point sources on wavelet
spectra. The additional noise component due to fluctuating number of point sources can be expected to influence
wavelet spectra in a way simliar to instrumental noise and therefore, all proposed methods of suppression are
applicable to this case as well.

10.5.9. Redshift estimation

In order to assess the accuracy of the redshift measurement, a maximum likelihood estimation is performed. The
likelihood function is defined as:

Z 06— ()| (1041)

2072

L(2) 2n)2ogoe 0’s LN
and was evaluated for each bin separately, i.e. the indeMmerates clusters within the redshift bin under consider-
ation. N = 30 denotes the number of clusters within a single redshift bin. From the position of the maxindl{g in
the most probable redshift estimatesas derived and the accuracy of the estimate followed from the corresponded
to the 1e confidence intervals, i.e. the accuracy is determined by the range in redehiflosing 68% of the
estimates. The function was found to be symmetric about the maximum value and hence the mean width is stated
as the estimation accuracy. Fit0.16shows the estimated redshift versus the real redshift for the cluster sample
derived by using all of the three parametars ands. In comparision, the error bars have become larger by a factor
of ~ 1.5 when including the fluctuating CMB, as illustrated by Fi§.17 The measurement is unbiased and the
error relative to I+ zrises slightly with increasing redshift

The results for dierent analysing wavelets as a function of wavelet moment grdex summarised in tablé$.3
and10.4 Clearly, the method starts to fail at redshifts exceeding, when the angular diameter distard;gz)
develops a plateau and does not cause clusters to appear smaller. The average attainable accuracy is stated relative
to 1+ zin order to facilitate comparison to photometric redshifts. The accuracy slightly degrades with increasing
g, which is due to suppression of small wavelet expansioffficients especially at small scales and the resulting
inaccuracy of the fitting formula eqnl@.35 used to extract the spectral parametgrs and s from the wavelet
spectrum.

Inclusion of the CMB in order to test the applicability of determining morphological redshifts in the case of
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Figure 10.16.: Redshift determination and error estimation from all three paramatersand s that followed from
wavelet analysis with theym2wavelet. The upper panel shows the estimated redghifind its errorAz and the lower
panel shows the relative accuraty/(1 + z), both as a function of redshift.,. Here, CMB fluctuations were not taken
into account. The value of the wavelet moments was set tp-h8.

wavelet family wavelet q=3 q=4 q=5 g=6

symlet sym2 41% 4.4% 4.7% 4.8%
symlet sym3 43% 48% 51% 5.2%
Daubechies’ db4 52% 53% 54% 5.4%
Daubechies’ db5 55% 50% 49% 4.8%
coiflet coifl 42% 4.4% 48% 5.0%
biorthogonal biorl.3 55% 5.4% 54% 5.4%

Table 10.3.: Averaged accuracy of the redshift-determination relative t@based on three parameters derived from the
wavelet spectrum of ordeywithout the noise contribution from the fluctuating CMB.
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Figure 10.17.: Redshift determination and error estimation from all three paramatersind s resulting from wavelet
decomposition of the combined maps (i.e. with CMB) usingdjim2wavelet. In the upper panel, the estimated redshift
Zstand its erroAz is shown a function of real redshift.,. In comparison, the relative accurasy/(1 + 2) as a function

of Zea is shown in the lower panel. Again, the order of the wavelet moments was takemte Be
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10.6 Systematics

wavelet family wavelet q=3 g=4 =5 Q=6

symlet sym2 6.2% 6.3% 6.2% 6.3%
symlet sym3 6.7% 65% 6.4% 7.2%
Daubechies’ db4 6.9% 6.8% 6.9% 6.9%
Daubechies’ db5 76% 7.4% 7.3% 7.2%
coiflet coifl 6.1% 59% 6.0% 6.8%
biorthogonal  biorl.3 75% 7.4% 7.2% 7.3%

Table 10.4.: Averaged accuracy of the redshift-determination relative t@based on three parameters derived from the
wavelet spectrum of ordeywith the noise contribution CMB caused by fluctuations in the CMB.

single-frequency interferometers results in a deterioration of the redshift estimation accuracy of a factor close to
1.5, which is caused by imperfections of the CMB removal ByoBder spline polynomials.

It should be kept in mind that the given accuracy estimates depend on the proprties of the selected cluster sample.
Especially the insfiicient sampling of the high-mass end of the Press-Schechter function can be expected to play a
significant role and leads to an systematic underestimation of the redshift accuracy.

10.6. Systematics

SZ-clusters would be self-similar and would perfectly follow scaling relations provided several requirements are
fulfilled: (i) virial equilibrium (T o« M?/3), (i) structural identity, expressed in equal form factoiig) & universal

baryon fraction and{) the absence of heating and cooling processes. Each of these assumptions may be challenged
and leads to deviations from the self-similar scaling relations. While the first two points are included in the numerical
simulation and are limited by the selection criteria, they increase the scatter in the relations between virial quantities,
or equally, the wavelet parametexsc ands. Systematic trends caused by tilted scaling relations (see Be6t))

and the formation of cool cores (formerly refered to as cooling flows) (3€c€.9 as well as the necessity of
preselecting clusters (SedD.6.3 need to be addressed separately.

10.6.1. Influence of tilted scaling relations

Analyses of X-ray observations carried out/y ( ) and ( ) suggest a weak trend
of the clusters baryon fraction with cluster madsand a deviation from the universal valfig = Qp/Qn,, which is
due to feedback processes like galactic winds that mideetévely deplete the ICM of baryons in low temperature
clusters compared to high temperature clusters.

The dependence especially of the wavelet paranaetehich is a logarithmic measure of the SZ-flikwould be
increased in more massive clusters and would thus increase the scattgrarcluster sample at a given redshift.

The quoted analyses of X-ray data find the baryon fraction to show a relative variation amountihg%oat fixed
temperature, i.e. at fixed depth of the potential well for a sample of local clusters. Apart from the the systematic
component, that can in principle be removed, once high quality X-ray data will improve the understanding of this
phenomenon and allows proper modelling, the stochastic contribution can only be constrained to be at most of equal
relative influence ta\Y /Y as the scatter in morphology.

The baryon fraction is estimated from X-ray observations that sample the gas at the cluster core, whereas SZ-
effect will be sensitive to the gas at much larger scales. Therefore, since the observed trend is probably due the
complicated hydrodynamic andfeedback processes at the cluster center, the trend is expected to be much weaker on
the scales probed by the S#ext.

10.6.2. Cool cores of clusters

In order to estimate the accuracy of the method outlined above, so far | only used adiabatic hydrodynamical simula-
tions which lack of cooling processes. Thus | need to address the influence of cool cores of clusters on our proposed
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method. After an analytical investigation following Setf.3.2.11 compare clusters with and without cool cores
and show how the morphological changes in cool core clusters impacts on the wavelet spectra.

10.6.2.1. Analytical wavelet transform of cool core clusters

Instead of a single King profile | assume that the SZ-emission of a cool core cluster can be described by a double
King profile for reasons of analytical feasibility:

-1

1+ LZ ) 10.42
(ri” ( )

2

y() = y(r) = > my

i=1

where the second term describes the additional enhancement owing to the cool core. Deprojecting this two-
dimensionalprofile by means &f ( ) yields:

meC? 2 Yi B(%%)

Pe(R) = Ne(R) kg Te(R) = — ) = 32 (10.43)
IT G (1+ R/
whereR denotes the three-dimensional radius &id, b) denotes thg-function ( ).
Thus | obtain for the ratio of the central values of the Comptonisation paranmeters
y2 _ Pafz 1
= ===~ 10.44
yi.= P 2 ( )

where | inserted typical values for cool core clustgegp; ~ 3 andr,/r; ~ 1/6. The second order wavelet moment
of cool core clusters can be obtained in analogy to the non-cool core case:

XSF(o) = 2n f dk K expk?o?) [yar 2Ko(kra) + yzrgKo(krz)f. (10.45)

This second order wavelet moment shows an increasing amplitude and a decreadingacatoeter compared
to the one without a cool core.

10.6.2.2. Numerical analysis

In order to scrutinise these findings | apply the method to adiabatically simulated clusters to which | add an enhanced
emission to mimic the SZ-emission of the cool core. In Hi@.18the resulting spectra of wavelet moments are
shown together with the fitting formula eqr.Q(39 for increasing wavelet moment order

It can clearly be seen in Fid.0.18that the enhanced emission due to the cool core yields a slightly higher
amplitude of the wavelet spectrum on small scales. Extracting information from the wavelet spectrumby means of
egn. (L0.35 reveals slightly higher values for the amplitualand smaller values forthe cuf@ on the percent level.
However, this influence is minimised when considering finite instrumental resolution particularly for high redshift
clusters. In any case, if a prominent cool core iffisiently well resolved it could be masked and replaced by an
interpolation in between the mask boundaries.

10.6.3. Wavelet analysis of unselected clusters

It is an important issue to quantify the deterioration of the wavelet method when applied to clusters of arbitrary
morphologies. In merging systems, for instance, one observes a doubly peaked wavelet spectrum, where the peak
at largeo reflects the angular size of the merger system itself, whereas the second peak atsmaltesponds

to the merging objects. In these systems, the model function £qr3§ does not yield a good fit to the spectrum

of wavelet cofficients Xy(c") and hence fails to extract sensible values for the paramatersinds. Similarly,
pronounced substructure causes deviations from the wavelet spectrum and yield additional power on scales smaller
than the cluster scale. In these cases, the model function (c.f. 085 does not necessarily provide a fit to the
wavelet spectrunXy(c) and it cannot be expected that the wavelet quantiti@sdc reflect cluster properties such

asy.
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Figure 10.18.: The influence of cool cores to the spectrum of wavelet moments, together with the fitting fofra89 (

for increasing wavelet moment ordgr q = 2 (squares)q = 3 (circles, solid), and} = 4 (diamonds, dashed) for a

single cluster without instrumental smoothing. Open symbols are values derived from the simulated non-cool core cluster,
whereas filled symbols denote the corresponding cool core cluster.
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Figure 10.19.: Distance corrected wavelet amplituag= a(2) + 2 - In(da(2)) as a function of distance corrected wavelet
cutaT co = ¢(2) +In(da(2)) for the selected clusters (circles) and all clusters (crosses) extracted from the simulation outputs.
The wavelet moment¥,;(c) were considered fay = 4 and as the analysing wavelet, gyen3wavelet was employed.
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In Fig. 10.19 the distance corrected wavelet amplitege= a(2) + 2 - In(da(2)) is given as a function of distance
corrected wavelet cufbcy = ¢(2) + In(da(2), for all clusters resulting from the simulation (in total 3957 maps) and,
in comparison, for the selected subsample. The wavelet parameters were derived from a fit to the sfygefrum
of orderq = 4 with thesym3wavelet as the analysing wavelet. While in Fi§.10the data points follow a narrow
track alonga o ¢°, this is not observed in Fid.0.19 Especially for clusters at small wavelet cfigx, the scatter in
wavelet amplitudais doubled and data points fall below the region convered by the selected subsample. This might
be hinting toward clusters exhibiting substructure, because in these cases the sizes are systematically underestimated
by the fit to wavelet spectrundy(c). Furthermore, a strong scatter in cfiitois introduced. Given these significant
deteriorations that only partially can be compensated by changes in the redshift modelOe2f. the redshift
estimation accuracy is significantlyfacted.

10.7. Redshift estimation in a nutshell

This section shall provide a short summary of how to apply my method to an SZ-survey for estimating redshifts
provided a temperature map of a patch on the sky with resolved images of clusters.

e Once a cluster candidate has been localised at a particular position of the map this cluster and its ambient
field has to be cut out. If the number of grid points amounts belotsé#npling points, the mesh should be
refined by interpolation in order to reach dynamical range of approximately two decades. This is important
in order to provide a dfticiently broad range of scales to be probed by the wavelet decomposition.

e The wavelet spectrum of the map is obtained by wavelet transforming the map preferentially usiymligte
basis functions (compare Set€.3.]). The morphological information contained within the wavelet spectrum
can be extracted by means of the model function of efi.3§. In the case of single-frequency observa-
tions the ambient CMB field cannot be separated from the SZ-signal of a cluster. The method described in
Sect.10.5.8.2might be applied in order to reconstruct the wavelet spectrum of the pure SZ-cluster signal.

e The redshift dependence of the wavelet parameters (amphtudedT c, and slopes) follows the functional
form of egn. (0.39. However, the single model parameters depend on the definitions of the particular
wavelets and the details of the survey, includinfjedent sources of noise and the cluster detection criteria.
The most promising way of determining the parameters of the gauge functions laid down ih32g8.\Would
be to derive them from a training set of clusters with known (photometric) redshifts. The final redshift estimate
of the cluster is most conveniently determined by means of maximum likelihood analysis, as described by

egn. (0.47).

10.8. Summary

In this chapter, a method of estimating the redshift of a cluster based on the wavelet decomposition of its resolved
SZ-morphology is presented. From a fit to the spectrum of wavelet moments three spectral parameters are derived,
that in turn are non-degenerate and indicative of cluster distance. These parameters are utilized, through a maximum
likelihood technique, for estimating the cluster’s redshift. In the maximum likelihood technique, empirical gauge
functions describing the wavelet parameterdependence are used.

First, the method was tested on a simple analytical case: The spectrum of Mexican-hat wavelet moments can be
derived analytically for a King-profile, which is known to describe the Comptamplitude of clusters well. The
spectrum of wavelet cdigcients as a function of wavelet scaleexhibits a break at the cluster scaleand may
thus serve as a measure of the cluster’s size. Additionally, the asymptotic behaviour of the wavelet spectrum in the
limit of o > r. ando < r. can be understood. The derivation of wavelet moments of arder2 is analogous
to considering the Fourier power spectrum of the Comptomap, filtered with Fourier transformed wavelet. The
shape of the spectrum of wavelet moments of oler 2 from the analytic calculation is consistent with one
obtained by applying wavelet decomposition to simulated SZ-cluster maps.

The method was then applied to set of numerically simulated SZ-clusters Wi#WHM) resolution — compa-
rable to the resolution of future SZ-experiments. The sample comprises 690 cluster maps distributed in 23 redshift
bins, which is a comparably large cluster sample. The clusters are chosen such that they are not in a merging state
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and their SZ-image is not too elongated, two criteria that favour clusters close to virialisation. Additionally, in
order tosimulate single-frequency observations, the cluster maps were combined with realisations of the CMB that
constitute the main source of noise.

The method was tested for a range of wavelet functions (gym]et, coiflet, Daubechies, biorthogohallhe
average attainable accuracy in estimating redshifts is found to be almost independent of the specific functional form
used, although theymletbasis yielded the best results. However, the method could benefit from improvements
concerning the choice of the wavelet basis. For instance, one could try to construct an optimised wavelet specifically
for B-profiles, that yields maximised wavelet ¢beientsy(u, o).

As expected, there is only a weak change in accuracy with respect to thegatigre chosen wavelet moment
Xq(o). This, however, is most likely to change when applying the wavelet analysis to noisy images, because for
increasing choices af, uncorrelated noise is suppressed relative to the cluster’s signal and concentrating on higher
values forq should provide a more robust measurement of the set of structural parametarsls. The increment
of g itself is limited by numerics — this is the case when the wavelet mogat) is dominated by the largest
wavelet expansion cdiécient y(u, o), and does not reflect anymore the dependence on the waveletsdaléhis
limit, the wavelet spectrum would exhibit a generic power law behavi(er) o« @ for largeq. The structural
parameters, c andswere found to depend on redshitby a simple exponential (eqriL@.39). The free parameters
in this equation can be determined from a (relatively small) sample of SZ-cluster images with known redshift.

The accuracy of determining cluster distances has been assessed by maximum likelihood estimation. The method
yields accuracies 0f-45% relative to %z which is competitive with photometric redshifts, but reaches out to larger
distances. At redshifts exceeding 1, the accuracy is expected to degrade because the angular diameter distance
da(2) starts to level ff and thus sets the limit of applicability. For single frequency data, the CMB fluctuations
can be removed with a simple polynomial reconstruction approach; the accuracy in the redshift estimation is then
decreased to 6 7%.

In this work | have considered two major systematffeets that might degrade the accuracy of the method.
The first is the varying baryon fraction with cluster mass, which has been studied only for local cluster samples.
While the systematic trend could in principle be corrected for, the stochastic contribution will always add to the
uncertainty of the distance determination. Another systematic is the influence of cool cores at the cluster’s centre.
In this casewe have been able to show that the uncertainty it adds to the redshift estimate is very small, mainly
because the volumeoccupied by the cool core region is limited to the cluster’s core.

Although the result in the distance estimation is stated in terms of redshift, it should be emphasised that a specific
cosmology is assumed, which is needed for converting the observables, namely the wavelet parameters, to a distance
estimate. The distances following from the analysis have been expressed as redshifts because of their elementary
interpretation, but the implicit assumption of an underlying cosmology should be kept in mind when comparing to
e.g. photometric redshifts. For that reason, the precision of the method presented is limited by the accuracy to which
the cosmological parameters are known. Apart from being a distance indicator, the redshift also plays the role of an
evolutionary parameter.

Comparing this work to the pioneering paperby ( ), my expectations concerning the accuracy of
morphological redshifts are even more optimistic: Without fitfiiagrofiles to the observational data, it is possible
to describe the cluster’'s SZ-morphology by solely relying on wavelet decomposition. Also, | describe the spectrum
of wavelet moments with a small set of structural parameters, that have a lucid physical interpretation, provide
a non-degenerate distance measurement and enable redshift determination owing to their monotonic decline with
redshift. The mostimportantfiierence is that, the redshift dependence of the structural parameters is calibrated with
the data set itself without relying garior and simplifying assumptions. In spite of the small number of observables
considered here,the accuracy in the redshift estimation of this method is doubled, in comparisorewitk
( ), even for a single frequency experiment.

The results of this chapter were derived in collaboration with S. Zaroubi (Kapteyn Institute, Groningen) and
C. Pfrommer (Max-Planck-Institute for Astrophysics, Garching). A resulting paper enRietbhift estimation
of clusters by wavelet decomposition of their Sunyaev-Zel'dovich morphdiagybeen submitted to the journal
Monthly Notices of the Royal Astronomical Societpnd is available onlinef{reprint astro-pj/0310613.
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11. Coded mask imaging of extended sources
with Gaussian random fields

Abstract

A novel method for generating coded mask patterns based on Gaussian random fields (GRF) is proposed. In contrast to tradi-
tional algorithms based on cyclicftBrence sets, it is possible to construct mask patterns that encode a predefined point spread
function (PSF). The viability of this approach and the reproducibility of the PSFs is examined, together with studies on the
mean transparency, pixel-to-pixel variance and PSF deterioration due to partial shadowing. Sensitivity considerations suggest
the construction of thresholded realisations of Gaussian random fields (TGRF) which were subjected to the same analyses. Spe-
cial emphasis is given to ray-tracing simulations of the pattern’s performance under finite photon statistics in the observation of
point sources as well as of extended sources in comparison to random masks and the pattern employed in the wide field imager
onboard BeppoSAX. A key result is that in contrast to traditional mask generation schemes, coded masks based on GRFs are
able to identify extended sources at accessible photon statistics. Apart from simulating on-axis observations with varying lev-
els of signal and background photon counts, partial shadowing of the mask pattern in the désisfabservations and the
corresponding field-of-view is assessed.

11.1. Introduction

In X-ray astronomy, focusing of radiation is so far feasible only for photon energies up to about 10 keV through
grazing incidence reflection. Applied in Wolter-type mirrors, this method can provide a very good angular resolu-
tion, i.e. down to 05 in the case of Chandrand 4’ — 12" for XMM-Newton?. The collecting area is maximised
through the use of nested mirrors. The field-of-view (FOV) is limited by the grazing incidence condition set by the
diffractive index of the mirror material t&¢ 1°. At energies higher than 10 keV, focusing is technologically very
hard to archieve. A workaround are coded mask imagers, where a position sensitive detector records the shadow
of a mask pattern cast by the sources under investigation. The arrangement of sources can be reconstructed by
cross-correlating the recorded shadowgram with the mask pattern.

Coded masks have by now found a widespread use in high energy astrophysics and there is a large number of suc-
cessful missions such as BeppoSAXurrently flying intruments like INTEGRAtand HETE-2, and ambitious
future projects, for instance the recently launched SWIFT-safellite

In this chapter, | propose coded mask patterns based on Gaussian random fields, because they enable the con-
struction of a coded mask device for predefined imaging characteristics, i.e. for a given PSF. The shape of the PSF
can be tuned to match the anticipated source profile. A beautiful example of a naturally occurring Gaussian random
field is the pattern of fluctuations in the cosmic microwave background (CMB). Analyses of WMAP data carried out
among others by ( ) and ( ) find the CMB consistent with Gaussian primordial
fluctuations and have set upper limits on non-Gaussianity.

After a recapitulation of coded mask imaging and existing mask pattern generation schemeslt.g6RFs
are introduced in Sect.1.3 The feasibility of GRFs in coded mask imagers is examined in $&ctwith special

httpy/cxc.harvard.edu

2httpy/xmm.vilspa.esa.¢s
Shttpy/bepposax.gsfc.nasa.gbepposagindex.html
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Shttpy/swift.gsfc.nasa.ggv
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Coded mask imaging of extended sources with Gaussian random fields

Figure 11.1.: Principle of coded mask imaging: The shadow cast by the coded mask is recorded by a position sensitive
detector. The coded mask depicted is that of the IBIS instrument onboard INTEGRAL.

emphasis on the performance of GRFs in realistic scenarios, i.e. under finite photon statistics and in the observation
of extended sources (Setfl.5. A summary of the key results in Sedtl.6concludes the chapter.

11.2. Coded mask imaging

Coded mask cameras observe a source by recording the shadow cast by the mask onto the detector. The mask
pattern is described by the position dependent transpadpgyA shifted shadowgram(x — dtan)) is observed

if the radiation incides under an anglavith respect to the optical axis. The distance between the coded mask and

the detector is denoted lay The correlation functioa(x), defined as

a(x) = w(x — dtang) ® y(x) = (W(x — dtand + V() (11.1)

peaks at = dtang, from which the angle of incidenae= arctangy/d) can be inferred. The PS¥X), defined as
the correlation function at normal incidenae< 0°), i.e. the auto-correlation function, reads

c(X) = ¥(x) ® Y (X) = (Y(x+ (D). (11.2)

The influence of imperfections of the detector can be modelled by convolutigfxpivith suitable kernels describ-
ing the positional detector response (see, &daj. ). Techniques for analysing coded mask data
have been summarised By ( ) and ( ). A nice illustration of the imaging principle
of coded mask cameras is given by Fig.1

Random mask patterns as used in the HETE-2 sateliité { ) consist of white noise. They are
not ideal imagers, because their auto-correlation possess sidelobes and are not perfectly flat. AutikedP&Fs,
mask patterns based on cyclidfdrence sets have been introducedCay (& ). As
pointed out by ( ), these uniformly redundant arrays (URA) provide even sampling at all
spatial scales. URA patterns are less susceptible to noise compared to truly random arrays and their auto-correlation
function is as-spike with perfectly flat sidelobes in case of complete imaging. In this chapter, | propose a method
for constructing coded mask pattern encoding arbitrary PSFs. While the traditional masks are optimised for the
observation of point sources, the PSFs of masks based on GRFs can be adjusted to the source profile of extended
sources and make the observation of extended sources such as extended structures in the Milky Way possible.

11.3. Gaussian random fields

11.3.1. Definitions

The statistical properties of a GRF are homogeneous and isotropic and the phasksseftdrourier modes are
mutually uncorrelated and random. A consequence of the central limit theorem is then that the amplitudes follow
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11.3.2 Algorithm

a Gaussian distribution. Due to all correlations above the two-point level being either vanishing in the case of
odd moments or being expressible in terms of two-point functions for even moments, the statistics of amplitude
fluctuations in a GRF is completely described by its power specR(kn(see eqn.11.4).

Because the imaging characteristics of coded mask imagers are described by the PSF, which is defined to be the
auto-correlation function of their mask pattern, i.e. by their power spectrum in case of isotropic PSFs, GRFs provide
a tool for generating mask patterns with predefined imaging characteristics.The theory of structure formation in
cosmology and the description of the cosmic microwave background makes extensive use of GREs{cd

). Their application is commonplace in generating initial conditions for simulations of cosmic
structure formation and in constructing mock CMB fields for simulating sub-millimetric observations.

11.3.2. Algorithm
Starting from the PSE(x), the Fourier transforr@(k) is derived:

2
C(K) = F [cX)] = f % o(x) exp(ik). (11.3)

The power spectrurR(k) is defined as the Fourier-transfoi@gk) of the auto-correlation functioo(x). In more
than one dimension, an average of the Fourier trans@y of the statistically isotropic random fietgx) over all
directions of the wave vectdrat fixed lengthk = |k| needs to be performed:

P(K) = (IC(K)Di=k- (11.4)

All elementary waves exgk) with wave vectors in thé-space shel[|k|, |k + Ak|] contribute to the variance
crﬁ = P(k) required by the power spectrum on sckle |k|. In discretising, the amplitudeB(k) are set such that
their quadratic SUNE iefq jk+ak] [W(K)? matchesn—ﬁ with the only exceptiot'(k = 0), which is set to zero in order
to ensure a vanishing expectation value of the realisgt{gh The normal modes ex) are modified by a phase
factor exp(Ziq), whereq € [0, 1) is a uniformly distributed random number. By inverse Fourier transform, the
normal modesF(k) are brought to interference which finally results in the realisation, the real part of which is
denoted byy(x):

Y(x) = ( 1[‘P(k)] ( f d?k (k) exp(lkx+27r|q)) (11.5)

Alternatively, one may require the additional symmeFi-k) = ¥*(k) in Fourier space (the complex conjugation
is denoted by the asterisk), which forces the realisation to be purely real. The flow chatt®@nsiimmarises all
steps:

e Dki=k -exp(2riq)

Clk) —— P(k) (k)
TT lf_l (11.6)
c(x) ¥(x).

Due to the periodic boundary conditions imposed by the Fourier transform, the resulting realisations of the Gaus-
sian random field have cyclic boundaries, which is a desirable feature for coded mask patterns. For reasons of
numerical accuracy; it is strongly recommended to use shetisrace with varying thicknessk « |k|™2, such that
approximately the same number of discretised modes contributes to the variance required by the power spectrum
P(K).

11.3.3. Choice of the PSF

Although the algorithm outlined in Sect1.3.2is capable of generating random fielg&) encoding any isotropic
PSFc(x), PSFs should be shaped like Lorenzian functior(x) or Gaussian functionsg(x). The parametesy
describes the spatial extent:
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2

cL(x) ﬁ (11.7)
2
c(x) = exp(—z%i) . (11.8)

The normalisation has been chosen such that the maximum correlation stremgth @is set to one. In the
realisationy(x), the variableoy, that parameterises the PSF can be interpreted as a correlation |&igthe
( ) have pursued a related idea and have suggested coded masks with two spatial scales. In contrast,
the realisations considered here have an entire spectrum of length scales.

11.3.4. Scaling applied to the Gaussian random fields

If one aims at employing GRFs in coded mask imagers, the field has to be scaled such that it assumes values ranging
from y(x) = 0 (opaqueness) to full transparengy(X) = 1). This scaling ensures that the full dynamical range
between is used and the modulation of the shadowgram as strong as possible. Hence, the sensitivity is maximised.
One could think of two dtferent linear transformations, the most intuitive being:

¥(X) — min{y(x)}
max{y(x)} — min{y(x)}’
With the symmetry condition max/(x)} = —min {(x)} being fulfilled, the mean transparen@y* (x)) is equal to
1/2: The meanry (x)) = 0 vanishes by construction, because each normal modegds(s a vanishing expectation
value. In general, the realisatighx) will not fulfill the above mentioned symmetry condition.
Instead, the scaling

Y(xX) — y*(x) = (11.9)

, )
U(X) — ¢¥'(X) 2 | maxw GOl + 1] (11.10)

ensuresy’) = 1/2 and will be used in the remainder of the chapter. It should be noted that none of the above
scalings strictly conserves Gaussianity, because each particular realisation is scaled by its maximal amplitude and
consequently, high amplitudes do not appear any more in an ensemble of realisations.

Now that the mean transparengy') is fixed, the absolute flux from a source can be inferred from the number
of measured photons. The scaling edrl.§) may be taken advantage of in designing a mask that blocks a larger
or smaller fraction of photons than the generic fraction (& 1n anticipation of Sect11.4.3 in the case of a
realisation of a GRF encoding a Gaussian R§E) with o = 8 pixels, the probability densitp ((¢*)) d(y*)
of the mean transparenty= (y*) is described by a Gaussian distribution with megn= 0.504 + 0.082 and
standard deviation; = 0.028+ 0.006 at 95% confidence. When constructing realisations of Gaussian fields for
coded mask instruments, one obtains patterns with transparépcies [y — o, ut + o] with a probability of
erf(1/ V2) ~ 0.6827.

11.3.5. Gaussian random fields for circular apertures

For coded-mask experiments with a circular aperture it is possible to construct GRFs with azimuthal symme-
try, in the same way as hexagonal uniformaly redundant arrays (HURA) are an adaptation of the URA patterns
to circular aperturesH( ). Instead of constructing a GRF with plane waves as the solutions
of Laplace’s equatiomy(x) = (8§ + 05) ¥(X) = 0 in Cartesian coordinatex (= (x,y)) with boundary condi-
tionsy(x = -L) = 0 = y(x = L) (2L denotes the pattern’s side length) one would resort to solxing) =
(62 + 1/rar + 1/r262) y(r) = 0in polar coordinates (= (r, ¢)) with the boundary conditiog(r = R) = 0 ¥, where
the radius of the aperture is denotedrag is easily found as the solution to Bessel'feliential equation and reads
as:

Yem(r, ¢) = Im[r - Zm(£)] - exp(me), (11.11)
where the numbersandm are only allowed to assume integer valugg(¢) is the " zero of the Bessel function
Jm- In Fig. 11.2 three solutions are depicted fdt () = (2, 2), (¢, m) = (2,3) and ¢, m) = (3,4). In reality, it might
be cumbersome to construct a GRF on the basis of the normal modes given hi/lefjf).due to Bessel function’s
complicated orthonormality relations.
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11.4 Results

Figure 11.2.: Normal modes/n(r, ¢) used for constructing GRFs for circular apertures, fom) = (2, 2) (left panel),
(¢, m) = (2, 3) (centre panel) and’(m) = (3, 4) (right panel).

11.4. Results

In order to provide a visual impression, two GRFs encoding the above stated PSF with their auto-correlation func-
tions are presented (Sedtl.4.]). Subsequently, the reproducibility of the chosen PSF (34c4..9, the pixel-to-

pixel variance (Sectl1.4.3, the Gaussianity of the distribution of pixel amplitudes (Sé&ét4.4 and the shape

of the PSF under partial shadowing (Sect.4.5 are examined. Finally, thresholded GRFs are introduced and the
deterioration of the PSF of such thresholded realisations (5&el.§ is addressed.

11.4.1. Visual impression

Following the above prescription, 100 realisations of GRFs encoding Gaussian and Lorenzian P$eseoft di
widths o« were generated on a 2-dimensional square grid wittf 286sh cells. Figsl1.3and11.4show a real-
isation of the GRF and its auto-correlation function for a Gaussian and a Lorenzian PSF, respectively. In order to
facilitate comparison, the widths of the PSFs have been chosen to be theosam8:pixels. The random fields are
scaled to mean values of2l(by means of eqnl1(.10) and the central correlation strength in the auto-correlation
functions is equal to 1. The contours have a linear spacing of 0.1. The auto-correlation functions have the symmetry
property thaty(X) ® w(x) = y(—x) ® y(—x). In the derivation of auto-correlation and cross-correlation functions, the
balanced correlation scheme was used. The correlation functions were derived for ideal detectors, i.e. finite position
resolution or similar imperfections were neglected.

In comparing the realisations in Figkl.3and11.4 one notices the larger abundance of small scale structures
in the realisation encoding the Lorenzian R$EX) in comparision to the realisation derived for the Gaussain PSF
cs(X). This can be explained by the fact that the power spectu(k) declinesx exp(k) and thus much slower
than the power spectruig(k) « exp(k?). Both realisations have been derived with the same random seed, i.e.
the relative phases are identical and one immediately recognises similar strucigés)iandy ().

11.4.2. Reproducibility of the PSF

An important issue is the reproducibility of a chosen R8§ in realisations generated withfféring random seeds.
This can be assessed by determining the auto-correlations of the scaled/GRHFer all realisations within the
data sample. In Figl1.5the Gaussian target P$E(x) and the auto-correlation functiop, (x) ® y(x) following
from two realisationg/(x) are shown. The error bars denote the sample variance derived from 100 realisations of
¥e(X) following from different random seeds. The width of the PSF was chosery as 8 V2 pixels for better
visibility. Fig. 11.6shows the analogous for the Lorenzian target BEK) with o, = 8 V2 pixels.

As Figs.11.5and11.6illustrate, the functional shape of the target RBE can be reproduced with high reliability
and the ratio of the peak-height to the correlation noise4®. However, there are minor imaging artefacts, namely
very weak sidelobes: This is readily explained by the fact that the Fourier transform of a well localised PSF in real
space is extended anffected by the cutd at the Nyquist frequenclinyquiss Which induces a sift{yquistX) / X-like
modulation. Consequently, the sidelobes are suppressed in PSFs withrjaifjee Lorenzian PSF is a bad choice
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Figure 11.3.: A realisation of a GRRys(x) (upper panel) for the Gaussian P&Hx) and the auto-correlation function
Ue(X) ® Yy(x) (lower panel).
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Figure 11.4.: A realisation of a GRFRy (x) (upper panel) for the Lorenzian P8HX) and the auto-correlation function
YL(X) ® YL(X) (lower panel).
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11.4.2 Reproducibility of the PSF
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Figure 11.5.: Cross section along theaxis through the central part of the auto-correlation funciig(x) ® y(x) for
two different realisationg(x) (dashed) and the Gaussian target cup/) (solid).
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Figure 11.6.: Cross section along theaxis through the central part of the auto-correlation funatipfx) ® | (x) for two
different realisationg; (x) (dashed) and the Lorenzian target cueyvéx) (solid).
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Coded mask imaging of extended sources with Gaussian random fields

PSF width mean transparency variance standard deviation
Ox " W2 - W? VW2 = (Y')?
22 1/2 0.013+ 0.002 0116+ 0.009
4 1/2 0.014+ 0.002 Q121+ 0.010
42 1/2 0.016+0.003 Q0128+ 0.012
8 1/2 0.018+ 0.003 0135+ 0.013

Table 11.1.: The mean transparenciég’), the variancey’?) — (¢’)? and the standard deviatiogi(y'2) — (') together
with their respective uncertaintiesst1for a set of GRFs encoding Gaussian PSFs wiffedng widtho.

in comparison to the Gaussian PSF, because its Fourier tranS{gny exp(-k) decays slower and is consequently

more dfected by the cutd atknyquist. Interpretingoy as the correlation length of the GRF, it is clear that in the limit

of very narrow PSFg, assumes very small values, i.e. the amplitugé9 for neighbouring pixels start loosing

their correlation. This, however, does not correspond to white noise masks because the amplitude distribution is still
Gaussian (c.f. Secl1.4.9 and not bimodal, as in the case of white noise masks. Due to the high confidence with
which a chosen PSF is reproduced, the number of realisations to be examined is very small. On the contrary, relying
on truly random patterns, the number of necessary realisations with the accompanying tests may be very high: For
HETE-2, where such a random pattern is used,ré@lisations had to be generated that were subjected to certain
boundary conditions (see ).

11.4.3. Pixel-to-pixel variance

In sensitivity considerations carried out by ( ) for purely random masks, i.e. masks consisting

of either transparent/((x) = 1) or opaque’(x) = 0) pixels, optimised mean transparengy) and standard
deviation+/(y’2) — (y’)? are derived to be equal tg2L In that way, the variance and therefore the modulation of the
signal is maximised. For the GRFs considered here, the variance and hence the modulation of the shadowgram is
noticably smaller. In Tablé1.1, the mean transparenci@g ), the variancéy’?) — (4’)? and the standard deviation

(W'2)y — (Y2 together with their respective uncertainties for a set of GRFs encoding Gaussian PSFfevitigdi
width oy are summarised.

One would expect that with increasing PSF widththe variance decreases, which would be explained by the fact
that the variance is given by a weighted integration over the power speB{f)nior increased position resolution,

i.e. a narrow PSIE(x), a wide power spectrud(k) is needed, which in turn would lead to a high variance.

This simple argument however, does not straightforwardly apply to the scaled realisations at hand: As laid down in
eqgn. (L1.10, the fieldy(x) is modified by a factor depending on the maximal vayu(&)| of the particular realisation.
The occurence of a high amplitude is following a Gaussian distribution with varianﬁelzk P(k). This means,
that in the case of narrow PSE&), i.e. for wide power spectrB(k), the fieldy(x) is more likely to assume large
amplitudes (compare ). The latter &ect is of great importance and causes the
surprising result that the measured varianceg (r) are larger for extended PSFs.

Comparing coded masks based on GRFs with purely random fields, the modulation of the shadowgram decreases
by a factor~ 3...4. Therefore, the sensitivity is expected to be weaker. While the above consideration is only valid
for the observation of point sources, sensitivity is most likely to be gained in the observation of extended sources.
For those sources, it is possible to adjust the PSF to the expected source intensity profile. In this case, modulations
below the scale of the object to be observed are discarded - this corresponds to applying Wiener filtering to the
recorded shadowgram prior to source reconstruction.

11.4.4. Distribution of the pixel amplitudes

As Fig. 11.7illustrates, the pixel amplitudes(x) follow a Gaussian distribution, irrespective of the encoded PSF,

.2
b “‘”)de, (11.12)

p)dy = exp

\/2_7T0'¢,

2
ZU'w
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11.4.5 Partial shadowing
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Figure 11.7.: Probability densityp (¢’) dy’ of the pixel amplitudeg’ (x) (circles) and the best-fitting Gaussian for a
particular realisation of a GRF. The error bars are Poissonian errors.

as a consequence of the central limit theorem [(see ( )). The mean and variance of that particular
realisation have been determined toipe= 0.5000+ 0.001 andoy, = 0.1277+ 0.0007 at 95% confidence. For
illustrative purposes, a Gaussian PSF with= 2 V2 pixels has been chosen.

Again, it should be emphasised that the scaling etjh.1(Q, while being reasonable from the physical point of
view, is not conserving Gaussianity. This is for the application at hand not a serious limitation, because the variance
of the distributionp (¢’) dy’ is small compared to 1.

11.4.5. Partial shadowing

It is interesting to see how partial shadowin@eats shape and amplitude of the auto-correlation function. If a
source is observed at largé-axis angles, the shadowgram cast by the coded mask onto the detector is incomplete
and reconstruction artefacts emerge in the correlation function. In order to examine the extent to which the PSF
sufers from partial shadowing, the amplitudis(x) in a margin amounting to a fraction of 25%, 50% and 75% of

the total area have been set to zero and the cross-correlation fupgng nghad""(x) has been determined with

the full coded mask.

As Fig. 11.8 shows for a Gaussian PSF witty = 8 pixels, the PSF drops in central amplitude according the
unshadowed area, but otherwise its shape remains unaltered. A second observation is that the amplitude of the
sidelobes is urnféected by the partial shadowing.

The reconstructed PSF;(x) ® wghadW(x) for the case of radiation from a source situated at large angles away
from the optical axis, where only/32 of the mask has been imaged onto the detector is depicted ihlF&y Even
though a tiny part of the mask amounting~{8% has been imaged, the correlation peak is clearly recognisable and
its peak value is a facter 4 above the correlation noise.

11.4.6. Thresholded realisations

Due to possible technical complications in attempting to build a coded mask pattern based on a GRF with quasi-
contiuous opaqueness, thresholded realisations are considered. A second argument in favour of thresholded real-
isations would be their achromatic properties, because the mask has to be constructed from gefiédd a

specific photon distribution in order to assure the maximal modulation of the shadowgram cast onto the detector.
Yet another argument in favour of thresholded realisations of GRFs is their better sensitivity, because they imprint a
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Figure 11.8.: Cross-correlation functiop; (x) @y (x) and the respectively expected P&K) with a shadowed margin
corresponding to 25% (dashed, squares), 50% (dotted, diamonds) and 75% (dash-dotted, crosses) of the total area and, for
comparison, the PSF for full imaging (solid, circles).
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Figure 11.9.: Reconstructed auto-correlation functiog(x) @& (x) for a shadowgram of which only 3% have been
imaged onto the detector.
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11.5 Ray-tracing simulations including finite photon statistics
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Figure 11.10.: A thresholded realisatioqn(G‘)(x) of a GRFy(x) (upper panel) for the Gaussian P& x) and the auto-

correlation functionyQ (x) ® y9(x) (lower panel).

stronger modulation of the shadowgram compared to smoothly varying GRFs.

In thresholded realisations, mask elements are taken to be transparent, if the(xahfehe realisation is greater
than zero, conversely, for valuggx) < O the mask element is set to be opaque. An example for a thresholded
realisation of a GRF and its PSF is given in Fig.1Q

An important issue is the degradation of the Rﬁ@-’(x) ® zp(Gt)(x) imposed by the thresholding. As Figl.11
illustrates, the resulting auto-correlation function is pointy and its kurtosis is larger than zero (leptokurtic). This
results from the fact that small scale power is added by the thresholding: In order to construct a step transition,
more small-scale Fourier modes are needed, which leads to an additive power law contsitkitian the power
spectrumP(K), such that the power spectrum acquires Lorenzian wings. The point spread fusfftiors v (x),
being the inverse Fourier transformiggk), can then be approximated by two decaying branches of an exponential,
which readily explains the pointiness. The target Gaussian®@8§ with o, = 8 V2 pixels is shown for com-
parison. Again, the error of the auto-correlation function is estimated by determining the sample variance in 100
realisations.

The size distribution of the patches as a function of threshold value can be described by means of the Press-
Schechter theory well known in cosmology: { ), ( ) and ( )
provide the mathematical foundation.

11.5. Ray-tracing simulations including finite photon statistics

Extensive ray-tracing simulations were performed describing the imaging of point sources with a finite number

of photons (Sectl1.5.]), and the attainable sensitivity in such an observation was assessed1(S&@. The

analogous was carried out for the observation of extended sources{$5&c8. Finally, the size of the field-of-

view in the case of GRFs compared to traditional masks is examined (3e81). In the following, coded mask

patterns based on Gaussian random fields are compared to purely random mask patterns and the mask pattern used
in the WFI-instrument onboar8eppoSAX
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Figure 11.11.: Deterioration of the auto-correlation functigrf) (x) ® y9(x) from two thresholded realisationg? (x)
(dashed) in comparison to the initial Gaussian B&) (solid).

11.5.1. Simulation setup

In the following, the performance of the coded mask is examined as a function of photon statistics. The statistical
significancer of a simulated observation is defined to be

o = Noouree (11.13)

\[Nbg,

whereNsource @Nd Npg denote the source and background count rates, respectively. Here it should be emphasised,
that o, Nsource@nd Npg always refer to the number of actually detected photons which make$eaedice when
considering the coded mask employed in BeppoSAX’s WFI instrument, in which the average transparency is not
equal to 2.

Observations were simulated by randomly choosiNg,g&.chomogeneously distributed photon impact positions
x across the mask face. In order to emulate the random process of photons penetrating the mask, a homogeneously
distributed random numberfrom the intervalr € [0. .. 1] was drawn for each photon, and compared to the value
¥(x) of the GRF at the same position In the case > (x) the photon was assumed to be able to penetrate the
mask, whereas in the case< y(x) the photon was taken to be absorbed by the mask. For BeppoSAX’s mask
pattern, which has an average transparency 8f 4 total number of Nsourcephotons was simulated.

For the background, which was assumed to be homogenbigyphoton impact positions were determined and
the count rates in the corresponding pixels were increased accordingly. Background count rates were fixed to a
value ofNpg = 10% photons, which are typical for an instrument like WFI in a 100 second exposure.

The resulting fieldyS™ containing the number of photons that struck a certain pixel was then correlated with
the original mask patteryr, again using balanced correlation. In the next step, the highest peak was localised
in the correlated data fields™ ® y and its significanc& was determined by comparing the peak heht, =

max{y$Mey} to the level of fluctuations? = (((//(5"“) ® z//)2> in the field. If the peak had a significanEe= amax/oy
exceeding 3 and was located at a position which deviated less than half a PSF width from the nominal position, the
simulated detection was taken to be successful. A particular realisation of a Gaussian random field was exposed
to 100 simulated photon distributions from which the detection probalgliiye. the occurence of a 30 -peak

located at the correct position) and the false detection probabi(itg. the occurence of a 30-peak at a wrong
position) was derived. The sample variance in comparing 100 realisations of Gaussian random fields was used to
derive errors orp andg. For the purpose of this work, the detectfii@ency and position response were assumed
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11.5.2 Point source sensitivity of a set of Gaussian random fields
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Figure 11.12.: Point source sensitivity in on-axis observations of a set of GRFs: The detection probpeijtysolid

lines, closed symbols) and the false detection probaliity) (dashed lines, open symbols) are plotted as functions of
statistical significancer for PSF widthso, = 2 (squares)gx = 2V2 (circles), oy = 4 (triangles) andr, = 4V2
(diamonds), in comparison to purely random masks (dotted line, stars) and BeppoSAX-WFI pattern (dash-dotted line,
crosses). In contrast to the ensemble of GRFs it is not possible to state an ensemble varg@geafuiq(o) in the case

of BeppoSAX'’s pattern. The data points have been slightly displaced for better visibility.

to be ideal.

11.5.2. Point source sensitivity of a set of Gaussian random fields

Fig. 11.12shows the detection probabilityand the false detection probabiligyas a function of photon statistics,
expressed in terms of statistical significancéor GRFs, a purely random mask and BeppoSAX’s URA pattern.
The source was assumed to lie on the optical axis, i.e. the mask pattern is imaged completely onto the detector.
Common to all mask patterns is the fact thmatises with statistical significance, and thgatrops accordingly.
But while reliable observations can be done using the BeppoSAX-pattern or random patterns even at low photon
statistics of 2- 3o, the patterns based on GRFs require high photon fluxes. For them, observations are feasible
starting from=~ 90. The reason why GRFs are less sensitive to the traditional mask pattern is the fact that they
imprint a weaker modulation of the shadowgram. Furthermore, one immediately notices the trend that the patterns
are more sensitive for wider PSF widths due to the increase in variance of the mask pattern with increasing PSF
width. Thus, position resolution is traded for sensitivity.

Fig. 11.13shows the analogous results for dfraxis observation in which only half of the mask pattern has been
imaged onto the detector. The result corresponds to the findings for the case of normal incidepes), &udqg(o)
are shifted to higher values of, which is due to the fact, that only half of the photons actually reach the detector
and that the reconstruction has to cope with the decreased signal. Again, one attains higher sensitivities for wider
PSFs in the case of patterns based on GRFs.

Common to all figures is the fact, that the cury#s-) andq(o’) are not adding up to one, which is caused by
the combined criterion where apart from the correct peak position a minimal peak height above the correlation
background is required, which is often not fulfilled in the cases of low photon statistics.

11.5.3. Sensitivity in observations of extended sources

In addition, suitable simulations were carried out in order to assess the performance of GRFs in the observation of

extended sources, such as supernova remnants, structures in the Milky Way and clusters of galaxies. Typical sizes
of those sources range between arcminutes and a degree. For simplicity, the source was assumed to be described by
a Gaussian profile with extensiofy.fie = 2 pixels. The shadowgram recorded in observations of extended sources
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Figure 11.13.: Point source sensitivity infBaxis observations (50% obscuration) of a set of GRFs: The detection prob-
ability p(o) (solid lines, closed symbols) and the false detection probalgyity (dashed lines, open symbols) are given
for PSF widthso = 2 (squares)yx = 2V2 (circles),o = 4 (triangles) andr, = 42 (diamonds), in comparison to
purely random masks (dotted line, stars) and BeppoSAX'’s WFI pattern (dash-dotted line, crosses).

are superpositions of slightly displaced point source shadowgrams, where the relative intensities follow from the
source profile. Consequently, the imaging of extended sources is simulated by convolving the mask pattern with
the source profile prior to the ray-tracing. Despite that, the image reconstruction has been carried out with the
unconvolved mask pattern.

Fig. 11.14qives the dependence of the detection probabgignd the correspondingon the photon counting
statistico. In the observation of extended sources, the patterns based on GRFs are superior to the traditional
approaches: While reliable detections can be achieved startingdramo (for oy = 4V2) up too 2 20 (for
ox = 2), the performance of the traditional masks is notably worse. At the examined levels of photons statistics,
the detection probability stays close to zero and shows but a shallow increaseamiitithe case of BeppoSAX'’s
URA pattern.

The good performance of the GRFs, and their decreasing performance with correlation length, i.e. P8k width
is of course to be traced back to the fact, that mask patterns with large structures affiedésd by the convolution
with the source profile than mask patterns exhibiting small structures; in the extreme case of random masks or
BeppoSAX’s pattern, the structures are washed out and consequently, the modulation of the shadowgram is very
weak. This can be circumvent, however, by tuning the angular size of a mask pixel to match the angular size of the
source to be observed.

11.5.4. Field-of-view in the observation of point sources

Now, the size of the field-of-view, i.e. the minimal fraction of the mask pattern required to be imaged onto the
detector in order to yield a significant detection peak is investigated. For that purpose, the point source detection
probability p and the false detection probabilityare considered to be functions of the obscura@nwhich
is defined as the fraction of the mask area imaged onto the detector. The number of background photons was kept
fixed to beNyg = 10*, while the number of source photoNsoucewas diminished by this factor @ prior to the ray-
tracing. Their number was fixed to yield a significancerof 20 forQ = 1, i.e. for the case of complete imaging.
The background photons were assumed to be homogeneously distributed. The simulation and the derivation of the
values forp(Q) andq(Q) were carried out in complete analogy to Sddt.5.2

The results are depicted in Figl.15 While the traditional patterns show a good performance and have a high
detection probabilityp(Q) for values ofQ 2 0.1 (BeppoSAX’s pattern) an@ 2 0.2 (random mask), the GRFs fall
behind significantly in performance. Imaging is only possible in the cases where a fraction of @t e ... 0.6
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11.6 Summary and outlook
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Figure 11.14.: Sensitivity in on-axis observations of extended sources of a set of GRFs: The detection prop&bjlity
(solid lines, closed symbols) are given along the false detection probaiiift)y(dashed lines, open symbols) for PSF
widths of o = 2 (squares)gy = 2 V2 (circles),o = 4 (triangles) andr, = 4V2 (diamonds), in comparison to purely
random masks (dotted line, stars) and BeppoSAX's WFI pattern (dash-dotted line, crosses).

of the mask has been imaged onto the detector, resulting in a decrease of the field-of-view of about a factbr of 3
which renders the usage of GRFs very unlikely in survey missions. Again, the GRF patterns encoding wide PSFs
are more sensitive and yield larger fields-of-view than GRFs with narrow PSFs.

11.6. Summary and outlook

In this article, a new algorithm for generating coded masks is presented that allows the construction of a mask with
defined imaging properties, i.e. point spread functions.

¢ The viability of constructing a coded mask for a predefined PSF as a realisation of a GRF has been shown. For
realisations generated withftéring random seeds, the shape of the PSF is reproducible with high accuracy.
Due to the reproducibility of the PSF, the parameter space is greatly reduced and the necessity of running
extensive Monte-Carlo simulations is alleviated.

e The generation of 2-dimensional URA patterns requires the number of pixels in each direction to be incom-
mensurable, i.e. they are not allowed to have a common divisor. While twin prime numbers exist, mask
patterns generated that way are almost, but not quite sqvayer( ). Coded
masks based on GRFs may have any side length and any ratio of S|de lengths. Additionally, sizes chosen
equal to 2, n € N enable the usage of fast Fourier transforms. Realisations of GRFs have cyclic boundary
conditions which is a desirable feature for coded mask imagers.

e The average transparency of coded mask patterns based on scaled GRFs is eQualrésfective of the
PSF they encode. The pixel amplitudes of a realisation are Gaussianly distributed as a consequence of the
central limit theorem. The pixel-to-pixel variance, however, is smaller in the case of GRFs compared to purely
random fields, which results in a weaker modulation of the shadowgram and hence the sensitivity is expected
to be smaller. The variance shows the trend of decreasing with increasing PSF width, which is caused by the
scaling with the maximal values of the realisation.

e Coded masks based on GRFs are chromatic in contrast to purely random fields: The mask pattern has to be
designed for a specific spectral distribution of photons due to semi-transparent mask elements. Any mismatch
in the photon spectrum of a source under observation would result in a less pronounced modulation of the
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Figure 11.15.: Decrease of the field-of-view: The source detection probablftp) (solid lines, closed symbols) and

the false detection probability Q) (dashed lines, open symbols) as functions of the obscur@tiare shown for a set of
Gaussian random fields for varying PSF width; = 2 (squares)yy = 2V2 (circles),o = 4 (triangles) andr, = 4V2
(diamonds). In comparison, a purely random mask (dotted line, stars) and BeppoSAX's WFI pattern (dash-dotted line,
crosses) are considered.

shadowgram, which in turnfiiects the sensitivity of the coded mask imager. A possible workaround is
the usage of thresholded Gaussian random fields, that show pointy auto-correlation functions in contrast
to smooth target PSFs. Another advantage is their enhanced sensitivity due to the stronger modulation of
the shadowgram. The properties of thresholded realisations, however, show a large sample variance which
requires selections with suitable criteria after construction.

e Ray-tracing simulations including finite photons statistics and background noise show, that the sensitivity of
GREFs falls behind that of purely random masks and URA patterns like the one employed in BeppoSAX by a
factor of 2...3 in the observation gboint sourcesdepending on PSF width. For GRFs, the sensitivity was
found to depend exponentially on PSF width, one is trading sensitivity for position resolution.

e The sensitivity of patterns based on GRFs is significantly better in the observatirtentied sourcdsecause
their comparably large structures are lefected by the convolution with the source profile than traditional
masks that possess pronounced structures on small scales.

o Finally, the size of the field-of-view of GRFs in comparison to traditional masks is examined. It is found that
reliable imaging can only performed with GRFs, if a large fraction of the mask is imaged onto the detector.
In contrast, purely random masks and especially BeppoSAX’s URA pattern enable imaging atitags o
angles. Comparing the resulting fields-of-view for the preset number of photons shows, that the field-of-view
of patterns based on GRFs are smaller by a factor. of 8 (depending on PSF width).

Although the shortcomings of Gaussian random fields with respect to point source sensitivity, chromaticity and
localisation accuracy make their usage in observing point sources doubtful, they may find application in obser-
vations of extended sources, while simultaneously providing a moderate performance in the observation of point
sources. Coded mask patterns on the basis of GRFs may be aesthetically pleasing because they utilise an abstract
cosmological concept for a technological application.

A paper entitledCoded mask imaging of extended sources with Gaussian randomiklds summarises the
contents of this chapter has been submitted to the jouvtaaithly Notices of the Royal Astronomical Socieipd
is available online |jreprint astro-py040728§.
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12. Gravitational Lensing

12.1. Introduction

Gravitational light deflectionK , ) ) has evolved since its first observational confirmation
during a solar eclipse in 1919 ) which was a grand confirmation of Einstein’s theory of relativity,

to a sound tool in astronomy and cosmology. Of special interest to this thesis is the gravitational light deflection on
the cosmological large scale structure which can be observed by tiny distortions of images of distant galaxies. In this
chapter, the theory of gravitational light deflection is developed (228c®), with special emphasis on gravitational

light deflection of the large scale structure. In S&&.3 a code is described, that can perform ray-tracing studies

of gravitational light deflection on numerical simulations of cosmic structure formation.

12.2. Gravitational light deflection

12.2.1. Light deflection from Fermat'’s principle

The equation for the propagation of light through arbitrary space times is given by the geodesic ediatien (
). The Minkowski metric of special relativity is assumed to be weakly perturbed by the gravitational
potential®. In this case, the line elemens teads:

(ds)?> = (1 + éd))czdtz -(1- C—22<D)dx2 (12.1)
For a geodesic, the line elemerg\hnishes:
ds=0— (1+ C—22(I))d2t =(1- écp)dxz. (12.2)
From this, an fective index of refractiome; can be derived:
20

|dx| , c .
=c=—W|thnefle—?>1, (12.3)

E Neft

i.e. light travels slower in potential wells. This immediately gives the time delay of a light ray transversing a
gravitational field, commonly referred to as the Shapiro delay:

Clax| _|dx| 2
dt_'c’ = Negfy c — At = ng|dx|<1> (12.4)

The photon trajectory can be parameterised(sy in terms of an fiine parametes, chosen such thédx/ds = 1,
with the initial pointx; and the final poinks. The local tangent to the photon trajectory is defineclzy dx/ds.
Fermat’s principle now states that the path actually taken by the photon minimises the rLfr‘rﬂm&xlz

6IXf ds ‘/3_); Ne (X(S)) = 0 (12.5)

Carrying out the variation for the specific choicesfields:

\Y%
Vn—e(eVn)—g—zn:O—> de _ ;n =V, Inn~-V, (22) (12.6)

ds c?
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Here, the perpendicular gradient is definedhy= V-e(eV). The deflection angle is easily obtained asfiierence
between the initial and final tangents:

g—z = —C—22VL<D — a=6—-§ = C—szdsvlcb (12.7)
In cosmological applications, the deflection anglds™very small (below 10, such that the integration can be
carried out along a straight line in the neighbourhood of the deflecting mass instead of the lensing geodesic, which
corresponds to the Born approximation in atomic and nuclear physics. Hence, the change of direction of a light
ray is taken to happen instantaneously and the distribution of masses giving rise to a gravitational deflection can
be considered to be collapsed onto a surface mass de«(&jty The lensing potential(8), which replaces the
gravitational potentiadb in this limit, can be obtained by solving the two-dimensional Laplace equatidfl) =
2«(0), where the natural logarithm is now the Green-function for the Laplacian, and the deflection angle is given by
a(0) = Vy(6):

with K(e)z( ¢ Ds )_1 f dzp(¢, 2). (12.8)

_1 2 ’/ -0
w(g)_;fd 9K(0)|n|0 0 47G DgDgs

12.2.2. Cosmological weak lensing
12.2.2.1. Imaging by a cosmological lens: the lens equation

The lens equation can be reafdl foom Fig.12.1:
Ds R
n= D_£ — Dasx(§), (12.9)
d

where theD’s denote the angular diameter distances. Introducing angular varigh#eB 3 and¢ = Dy6 yields
the lens equation

B=6- %‘“a(a) =0-a, (12.10)
S

i.e. a source at true positighcan be seen by an observer at posiflorThe reduced deflection angteis given by
the gradien¥ i of the lensing potential. The distortion of galaxy images is given by the Jacobian of the optical

mapping:

R, 0%y (6) 1-k=y1 -7

3299 (5. _ - 12.11
90 ( 106,06 -2 l-k+m ( )

with the convergence and the two components of shearandy,, which manifest themselves in the distortion of

galaxy images.

12.2.2.2. Weak lensing observables

The shape of (elliptical) galaxies can be described by the complex ellipticity,

QXX - ny + 2iQXy

€= , (12.12)
QXX + QW +2 \,QXXQW - Q)zq/
which is built from the second momer(@; of the brightness distributiol(#), centered o,
260 1(0)(6: — 6:)(6; — 6
_ [¢o10)6 - 6)6; - 6) 12.13)

! [®01(6)

with (i, j) € {X,y}. Gravitational lensing distorts the apparent shape of background galaxies. The transformation
between the (complex) source ellipticityand the image ellipticity is given by:
€+yg 1+

€= forlgf<1 and e= 1+(€)g for |g| > 1. (12.14)
1 + g*e/ (E/)* _ g*
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12.2.3 Applications of weak lensing in cosmology

observer lens source
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Figure 12.1.: Geometry of a gravitational lensing system. The distance to the lens is denoigg the distance to the
source byDg and the distance from the lens to the sourc®hy

with the reduced sheat being of the ordey ~ 1072 in typical weak lensing applications:

¥(6)
1-«(0)

9(0) = (12.15)

12.2.3. Applications of weak lensing in cosmology
12.2.3.1. Inversion of shear maps

A primary application of weak lensing data is the reconstruction of cluster mass maps. The distortion of images of
background galaxies can be used to determine the tidal gravitational field of a cluster. The original algorithm by
( ) has been improved and extended by a number of authors, most notablyhby
( ) and ( ) ) ). The shear fielg/(0) can be obtained by convolution of the
surface mass densikf@) with the kernelD:

_1 2 ’ ’ . _03_9%_2i6102_ 1
¥6) = - f &6’ DO — ') k(6') with D(6) = o = ~Gp (12.16)

This equation can be inverted in Fourier space, which yields a convolution relation linking the shear field to the
surface mass density up to an overall additive constgntComplications that arise include boundary artifacts,
violation of the weak lensing assumption and random distribution of lensed galaxies which causes additional shot
noise to error estimators.

12.2.3.2. Cosmic shear

The weak distortion of the images of background galaxies due to lensing on the large-scale structure is commonly
referred to as cosmic shear. It has been discovered almost simultaneously by several groups=( )

). From the angular 2-point correlation functi@p(¢)
of a weak Iensmg guantity, e.g. the weak lensing convergent®e normalisationrg of the dark matter power
spectrumPs(k) can be determined with Limber’s equatid#e( ):

Cu(0) =

OHAOZ, (™ . We(w) ( ‘ f(w ~w) (12.17)

ach Jo T @w) k)’ fic(w)
In this equationG(w) denotes the distance distribution of the background sources to be imagedthe horizon

size out to which the integratiorucalong the line-of-sight is extended, afidlw) takes care of the geometry of the
universe.

) with W(w) = f dw' G(w)
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12.3. Ray-tracing simulations on the large-scale structure

12.3.1. Aray-tracing code for cosmological  n-body simulations: leica.c

For ray-tracing studies on cosmological density fields, one needs to solve the transport equation numerically in an

efficient way:
2

du?
wherex is the position of the light rayy the comoving distance to the observérthe spatial curvature ardl the
gravitational potential. This is reached by discretising the density field into so-called lens planes along the radial
comoving variabley ( ). In this approximation, the smooth lensing geodesic

is replaced by a series of straight lines and the Born approximation is used for determining the deflection on each

lens plane. The matter contes(k) in each slice of thicknessw at distancew; is projected onto the lens planes
perpendicular ta to yield the surface mass dens&i& (X, wy):

2
— X+ Kx = —ng(I)(X), (12.18)

Aw

SPx, wy) = f " 5(X). — AYi(X) = 8”06"“”( X) (12.19)

Aw

2

From the projected overdensity fief{i“’](x), the lensing potentia}i(x) is most conveniently obtained by solving
Laplace’s equation in Fourier space.

The (angular) positiof; of the light ray on the planiecan be determined from the an@le; and the perpendicular
gradient of the lensing potential on the plarel:

fi (wi — wi—1)
a(wi-1) fic ()

The gradient has to be evaluated at the spatial position of the ray onthg(plane, i.e. aki_1 = fx (wi_1)6i_1. In
this equation fx (w) is the angular diameter distance, which is defined as:

0 =0;_1 - V. ¢i_1 with the initial anglefg (12.20)

# sin(VKw) , Qg > 0, spherical
fe@w) =4 w Q= 0, flat (12.21)
ﬁ sinh(v[K[w), Qk < 0, hyperbolic

K denotes the curvature of spatial hypersurfaggs= Qu + Qa — 1 andK = (Ho/c)?Qk. The shear of light rays
is evaluated by computing the evolution of Jacobian maltiix each lens plane

fic (wi-1) fic (wi — wi-1)
a(wi-1) fic (wy)

Ji=Jdi_1 -

Uy - Ji_1 with circular initial beamsJ = ( (1) 2 ) (12.22)

The quantity analogous to the lensing potential gradient(x) is the tidal matrixU, which contains the second
derivatives of the gravitational potential:

Py Qi
2
Ui = { 2w ] (12.23)
dyox o2

The final Jacobi-matrid can be easily decomposed via

. [ 1-k=-y1 —y2tw
J—Jn—( p—w -ty )’ (12.24)

to yield the convergence the two components of the shear, to formy = /yf + y% and the rotation of the light

bundlew. From the inverse determinant &f the magnification: = (det))~* can be determined. As explained in
Sect.12.2.2.2 the distortion of galaxy images, which is described by their elliptieignd phase anglg, can be
derived from the reduced shear
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12.3.2 Features

12.3.2. Features

e The code can compute weak lensing geodesics in arbitrary cosmologies, which are described in terms of the
fluid densitiefy, Qk, Qg andQ, with their respective equation of state.

e Sinceleica.c works in comoving coordinates, it is especially suited for weak lensing studies modelled on
cosmologicah-body simulations, that are commonly carried out in the Lagrangian frame of reference.

e leica.c determines not only the shear field but determines the actual change of galaxy ellipticities im-
printed on the natural distribution of phase angles (which are uniformly distributed) and ellipticities

p(e)de =

2
exp(—e—) de, (12.25)

2
€ 20-6

which follow a Gaussian distribution wittr, ~ 0.2. From this data, it can determine tangential ellipticities
relative to the centre of an aperture and derive apterture mass measures(995
) with the most common radial weighting functions.

e The code takes account of the distributip(z)dz of faint blue galaxies in redshift ( ) that are
commonly selected in weak lensing surveys; and determines target redshifts for each ray from a suitably
transformed -distribution,

1 (3\*
p(z)dz_[ﬁl"(ﬁ)] Z exp(2)dz (12.26)

with 8 = 3 and mean redshifz) = I'(4/B)/T(3/B) = 3/2.

e |t can carry out line-of-sight integrations of scalar quantities along the weak lensing geodesics, while simulta-
neously taking care of the change in solid angle due to the focusing and defocflisatgeoverdensities and
underdense regions, respectively. The change in solid angle is equal to the lensing magnifi¢atiaiet),
wherel is the Jacobian of the weak lensing mapping.

e leica.c can deal with gravitomagnetic corrections to weak lensing. Furthermore, it can determine line-
of-sight integrations of the divergence div = dA,/dx + dA,/dy of the gravitomagnetic field\ for the
Rees-Sciamaftect and of rotA = dA,/dx — dA,/dy for the gravitational Faraday rotation (see Chap®r

e The code features several improvements with respect to interpolation and numerical derivatives compared to
the code by ( ), using bilinear interpolations and derivatives computed using the mean
of the left and right dferential quotients. It outperforms the code by ( ) in speed
reaching up to 1®rays per minute on a 1.1 GHz G4 processor. For extensive lensing studies, an GpenMP
parallelised version is being written.

Examples of convergence fiel@§d) and shear fields(8) derived with theleica.c code for a cosmological
n-body simulation are given in Fid.2.2 The output density field was projected omMo= 30 lens planes, ranging
in redshift fromz = 0.016 out toz = 1.421 with comoving spacing afw = 100 Mpc. The lensing potential was
determined on a Cartesian grid with 162desh points. Target redshifts have been drawn independently for each ray
from the generic distribution. A detailed view of the two shear compongii@® andy(0) is shown in Fig12.3
In this case, a single lens planezat 0.016 was imaged by rays with identical target redshiftz ef 0.1. The
+- andx-shaped shear pattern induced by the clusters can clearly be seen. The functionality of the code has been
verified by tests on analytical cluster profiles, where the outputs are close (relative deviationd) to theoretical
expectations.

12.4. Summary and conclusion

A primary field of application will be ray-tracing studies of the Rees-Sciaffece(see Chaptel3d) and the inves-
tigation of weak lensing properties of filamenEar the visualisation, Francesco Pace (ITA, Heidelberg) provided
mass sheets from a cosmologioabody simulation carried out with GADGET.

Lhttp;/www.openmp.org
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Figure 12.2.: Weak lensing convergene€¢d) (left panel) and reduced sheg®) (right panel) in linear shading. The end
points of rays are drawn from the generic redshift distribution of faint blue galaxies.
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Figure 12.3.: Weak lensing shear fields(0) = y. (@) (left panel) andy,(8) = y«(0) (right panel) in linear shading, for a
single lens plane &= 0.016 (corresponding te = 50 Mpc) and with all target redshifts fixed zo= 0.1.
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13. Gravitomagnetic lensing and the integrated
Sachs-Wolfe/Rees-Sciama effect

Abstract

Dark matter currents in the large-scale structure give rise to gravitomagnetic terms in the metric, fietictha light propa-

gation. Corrections to the weak lensing power spectrum due to these gravitomagnetic potentials are evaluated by perturbation
theory. A connection between gravitomagnetic lensing and the integrated Sachs-Wolfe (i8W)sedrawn, which can be
described by a line-of-sight integration over the divergence of the gravitomagnetic vector potential. This allows the power spec-
trum of the iISW-éect to be derived within the framework of the same formalism as derived for gravitomagnetic lensing and
reduces the iISWfEect to a second order lensing phenomenon. The three-dimensional power spectra are projected by means
of a generalised Limber-equation to yield the angular power spectra. While gravitomagnetic corrections to the weak lensing
spectrum are negligible at observationally accessible scales, the angular power spectrum of thedSsNeald be detectable

as a correction to the CMB spectrum up to multipoleg ef 100 with the PLANCK-satellite.

13.1. Introduction

Cosmological weak lensing¢ ) has evolved to be a valuable tool in cosmology. Weak
lensing surveys have contributed significantly to the determination of the dark matter power spectrum and to the
estimation of its amplitudes ( ] ) by the measurement of cosmic
shear and have enabled the reconstruction of the dark matter distribution in rich clusters of galaxigsifeg:
, ) )-

So far, only static matter distributions have been considered but from the solution to Maxwell’s equations in the
framework of general relativity it follows that gravitomagnetic potentials generated by moving masses should alter
the predictions for light deflectiori( ). While gravitomagnetic corrections to lensing are small,
being of orders/c, wherev is the velocity of the deflecting mass, they may contribute to the weak cosmological
lensing: The cluster peculiar velocities following from a cosmologitdiody simulation like the Hubble-volume
simulation ( ) are well described by a Gaussian distribution with zero mean
and a standard deviation of, ~ 300 kmy's, which is a fraction of 1& of the speed of light. Thus, relativistiffects
influence the lensing signal appreciably 1% of all clusters. In filament<( ) where matter is
funneled towards the clusters, velocities are even higher: Infall velocities up to a feun]6 have been measured.

The integrated Sachs-Wolfe (iSWfect, or Rees-Sciama (RSJect ( )
arises if CMB photons encounter time-varying gravitational potentials on their passage from the last-scattering
surface to the observer. When transversing time-varying potentials, the energy gains and losses a CMB photon
experiences in entering and leaving potential wells do not cancel exactly. In this way, one expects a net blueshift of
CMB photons in forming voids and a net redshift in matter-accreting clusters of galaxies.

The iISWRS dfect has been studied theoretically in individual objebtsi( ) and can be
used for the investigation of cluster mergersi( ). More importantly, itis sensitive to mapping
the large-scale structure as it highlights the sites of active structure forméitione( )

L ). Furthermore, the iISWffect may turn out to be a
powerful probe for dark energy’s mfluence on structure formationi ), when combined with
other tracers of structure. A numerical approach has been undertaken oy ( 1b), who followed
photons through a cosmologiaabody simulation and carried out the line-of-sight integration numerically.

The aim of this paper is to determine the corrections to the power spectra of weak lensing quantities caused by
gravitomagnetic terms and to derive the iSW power spectrum, both by applying perturbation theory. In comparison
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to preceeding treatments ( ) and ( ), the novel approach taken to determine the iSW
power spectrum is by relating it to the gravitomagnetic terms in considered in lensing. Gravitomagnetic corrections
to lensing have indeed been observed-hy ( ) in imaging radio waves from a quasar on

Jupiter, which is an outstanding archivement in VLBI astrometry. Gravitomagnetic corrections to lensing in the

large-scale structure would only be detectable by theioint statistics or by topological measures like Minkowski

functionals, that would be especially sensitive to thea’s intrinsic non-Gaussianity. Concerning the iSfiéet,

there are a quite a few reports on its detection in WMAP data in cross correlation with various populations of tracer

objects ( | 3 | | ),

but so far it has not been possible to derive values for single multipoles based on CMB data alone.
The paper is structured as follows: After a compilation of key formulae and the derivation of Limber’s equation

for vector fields in Sectl3.2 the power spectrum of weak gravitational lensing is considered and the correction

terms due to gravitomagnetic potentials are worked out by perturbation theory inlS&ctThen, the iISW-fiect

is related to gravitomagnetic lensing and its power spectrum is subsequently derived in a perturbative approach in

Sect.13.4 The results are summarised in S4&.5

13.2. Key formulae

The assumed cosmological model is the standa2®M cosmology, which has recently been supported by obser-
vations of the WMAP satellife( ). Parameter values have been chosefqas= 0.3, Q, = 0.7,
Ho = 100hkm st Mpc™t with h = 0.7, Qg = 0.04,ns = 1 andog = 0.9.

13.2.1. Structure formation

The cosmic density fielg given in terms of the dimensionless density perturbadicn (o — (0))/{0), where{o)
is the average density of matter. The 2-point correlation properties of the overdensity dieldlescribed by the
power spectruniP(k):

(6(K)5°(K')) = (27)%p(k — K')P(K), where (13.1)
3
5(K) = f (gﬂ—))(sé(x)exp(—ikx) (13.2)

is the Fourier transform of the overdensity fiéld The normalisation of the power spectri¥k) is given by the
parametetrg, i.e. the variance af on scales oR = 8 Mpc/h:

oh = % fo ) dk KCW2(KR)P(K). (13.3)

Here,W is a window function of top-hat shape, the Fourier-transform of which is given by:

W(x) = %[sin(x) — xcosf)] = ?(Jl(x). (13.4)
The shape of the power spectri®k) o k™ - T2(k) is well approximated by the transfer functiohig) suggested
by ( ). They read in case of adiabatic initial conditions:
T(q) = W [1 +3.89q + (16.10)% + (5.460)° + (6.71q)4]‘Z (13.5)
The wave vectok is commonly divided by the shape paramdténtroduced by ( ) for CDM
models and extended to models widy, # 1 by ( ):
-1
- M with T = QMhexp(—QB : [1 + g—z_hD (13.6)
M

Lhttpy/map.gsfc.nasa.gpv
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13.2.2 Dark matter currents

In linear structure formation, each Fourier-mode grows independently and at the same rate. The time dependence
of the overdensity field can be described by the growth functibga):

d'(a)

é(a) = 6oD(a) with D(a) = ad’(l)' (13.7)
The shape ofl’(a) is well approximated by the formula suggestedzy ( ):
-1

d'(a) = §QM(a) Q“7(a) - Qa(a) + (1 + Q“”z(a))(l + Q;(()a)) (13.8)

13.2.2. Dark matter currents

The continuity equatiop = —div(pwv) requires the existence of large-scale coherent matter stijeamp® super-
imposed on the Hubble flow due to the formation of structure. In Fourier space, the relation between density and
velocity reads in the Eulerian frame:

v(k) = —iaH(a)f(Q)%(S(k) = -iaf(g)k—kza(k). (13.9)

The 1/k-dependence causes cosmological velocities to come predominantly from perturbations on larger scales
in comparison to those that dominate the density fidida) = dIn(a)/dt is Hubble’s function. The functior
describes the dependence of the equation of continuity on cosmic time and is a function of the mas€)gdensity

( , ):

ding dInD(a)

f(Q
(@) = dina_ dIna

~ Qu(a)®® (13.10)
In analogy to egn.13.7), time evolution of of dark matter current velocities in the comoving frame is described by
G(a),

g'(a)

g'(1)
The theory of peculiar velocity fields is reviewed in detailinkel( ) and ( ).

In general, thef@ects considered here are sensitive to denS|ty weighted velocities. The Fourier transform of vector
fieldsq(x) = 6(x)v(x) can be derived with the convolution theorem:

G(a) =

with ¢/ (8) = H@) F(Q). (13.11)

a0 = [ S et = 3 [ S @k - + v pap). (1312

where the integrand has been symmetrised in &19.

13.2.3. Limber’s equation for vector fields

For the derivation of the angular power spectrum of the gravitomagnetic corrections to weak cosmological lensing
or that of the iISW-#ect, a variant of Limber’s equation is necessary that is able to deal with projections of vector
fields q(x) instead of scalar fields. The derivation presented here is generalised/fsomac ( ). Consider a

vector fieldg(x) and its Fourier transform(k):

q(x) = f d®k q(k) exp(kx) (13.13)

Any effectx in question is assumed to measure a projectiog(f on the line-of-sight, where is a unit tangent
vector on the photon geodesi/(w) is a general weighing function dependent on the comoving distarndeich
describes its redshift dependence and is later to be replaced by e.g. the |¢hsiegoy function:

Wmax Wmax

dwW(w) [e-q] = dw W(w) [e-qk)] | d*k exp(kx) (13.14)
0
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The decomposition of the projected fial@) into spherical harmonicg,m(0) is:

x(0) = i Z KemYem(0) & Kem = f dQ k(8)Y;,(6) with (13.15)
=0 m=—(
V(@) = o 2552 (LMDt g - osh) exp(ima) (13.16)

(€ + [mi)!
In the random phase approximation, one obtains for the varidage) of «(0) in two directionse; ande,:

(kl® = fo "t W) f4 A1 Yim(62) f " s W(wy) [ 0,6 f Ak explkeyns) expiikenws)[e1(k)] [&a (K])-

(13.17)
According to the cosmological principle, there is no preferred orientation, which allows to refalag® with its
average value over ath for a givenc:

_ 1 - 2
Cl) = 55 n;{ﬂkml ). (13.18)

The vector fieldy(k) can be separated into components parallel and perpendicular to the line-ag:sight

q=0q,+9, withg,=e-(q-€)andqg, =q-q,=ex(qxe). (13.19)

For the projectiong- g, = 0 andex g, = 0 are valid. Eqn.13.17) is further simplified by choosing the coordinate
system in a way that thecoordinate is parallel to the wave vectey,|| k. Introducing spherical coordinates ¢)
and puttingx = cos# on obtains:

k k .
G =X andqlE = V1-x2explig)q. (13.20)
Furthermore, with expkew) = exp(kxw), the expression for the correlator is separated into:

AR (k) = Xaxe(y (k) (K)) + /1 - et [1 - x2e?(q. (K)q (K))- (13.21)

With these simplifications, the integrals over the azimuthal angleand ¢, can be carried out. Inserting the

orthonormality reIationfOZ” d¢ exp[i(n — m)¢| = 2n6mn reduces the summation overto a single term, which is
m = 0 for the components parallel to the line-of-sight amt= 1 for the components perpendicular to the line-of-
sight. The final expression for the power specti@gY) is now split into the two orthogonal projections:

C.(6) = Cli(e) + C(0). (13.22)

13.2.3.1. Components parallel to the line-of-sight Cﬂ(f)

For the power spectrui@!(¢) of the components af, parallel to the line-of-sight, one obtains:

Wmax Wmax +1 +1
Cl(6) = 4n f dkié f dwiW(w1) | dwW(wz) | dxqexplkxiwi) | dxzexp-ikxawz) [X1Pro(X1)XePeo(X2)] (o (k, wi) g (K, w2)).
0 0 -1

+1

(13.23)
The dx;- and dk-integrations can be performed by taking advantage of the connection between Bessel functions
and Legendre polynomials\ ) ):
1
J(2) = dx P(x) exp(zx), (13.24)
which can be can be generalised to give:
+1 1 g
-1dX X'P/(X) explizx) = i—nd—szg(z). (13.25)
Inserting formula 13.29 for n = 1 yields the final result:
Wmax Wmax d d .
C/I(‘(f) = 27dekf dw1W(w1) deW(wz) —Jg(kwl) —Jg(sz) <q”(k, wl)qﬁ(k’ w2)>. (1326)
0 0 dw1 dw2
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13.3 Gravitomagnetic lensing

13.2.3.2. Components perpendicular to the line-of-sight CL(0)

After reducing the summation {o = 1, the power spectrui@; (¢) of the components af, perpendicular to the
line-of-sight reads:

Wimax Wmax +1 +1
Cj‘(f) = 4—71' fdk k2 f dw1W(w1) deW(wz) dX1 eXp@kX]_w]_) dX2 exp(—ikxng)
20(C+1) 0 0 -1 41

| V1~ %8Pu() /1 - 38Paa(xe) | <0 (k. wn)d (. we)) (13.27)

The integration over the polar anglgsandx; is slightly more complicated than the previous case. Inserting the
definition of the associated Legendre polynomRis for m = 1 gives another factor of/1 — x2:

Pim(X) = (~1)"(1 - x2)% — &~ g & P"(X) - Pu(X)=-Vi- xzw. (13.28)

The derivative of the Legendre polynomial can be replaced via
d
(1 =) Pr(X) = C[Pra(¥) = xPe(X)] (13.29)

and the integration be carried out by inserting relatib®.29. Then, the two Bessel functions can be combined by
using the Bessel function’s derivative relation:

Ji(Z 1 d
G730 =210 - 22 -2~ Saa). (13.30)
which yields the formula:
dx VI =3P a(X) explizy) = £(¢ + 1) 22 J"(Z) (13.31)
This relation allows the final result to be written as:
C(0) = 2ne(e+ 1) [ ok [ W) [ diawo )[J‘"k’”l) J"("”’Z)] @) k).  (13.32)
w1 w2

13.3. Gravitomagnetic lensing

13.3.1. Definitions

Light propagation through a slowly moving perfect fluid can be described byffantige refractive indexXes

( ):
2 4
Nef = 1- ?(D + EA - € (1333)

where® is the scalar potential arslare the gravitomagnetic vector potentiasienotes a unit tangent vector along
the photon geodesic. In this approximation, the metric takes account of the matter dearsityhe matter current
densitieg = pv (i.e. terms of ordev/c), but neglects the stress€s = pvijvj + pdi;. The smallness of these terms
(being of orden/?/c?) makes them unobservable, but they would be sensitive to the velocity teosari.e. to
shear flows, velocity dispersions and turbulence.

In the near zone of a system of slowly moving bodies the retardation can be neglected; in this case the expressions
for ® andA are given as solutions to Laplace’s equation:

o(r')

AD(r) = 4nGp(r) & @(r) = -G f d*rr =L T

(13.34)
AA() = 41Gj(r) © A(r) = -G f o L ’(r =2 (13.35)

The dark matter flux is defined as the momentum dengity pv.
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Gravitomagnetic lensing and the integrated Sachs-Wolfe/Rees-Sciama effect

An expression for g/dw, i.e. the change in propagation direction, follows from the variational prindijilds Nt =
0. sdenotes anféine parameter. The deflection angle being defined as& = €pitia1 — &inal CAN be obtained by
integration:

2 4
a= gfdsVLtb—gfdsexrotA. (13.36)

The derivative perpendicular to the line-of-sight is definedWj&® = V@ — e(e- V®). The first contribution tax in
eqgn. (L3.36 corresponds to the attractignowards the deflecting mass \ga= —V®. The microscopic picture of
photon interaction with a gravitomagnetic field is illustrated in Appeniix

The second term, however, is due to the gravitomagnetic fields generated by the matter current fjefkities
contribution is related to the dragging of inertial frames which gives rise to the precession of orbiting spinning
tops in the particular case of rotation of the field-generating body (Lense-Thirring precession, to be measured by
Gravity Probe B). This formalism has been applied to various astrophysical systems, nameélyizy( ) to
gravitational light deflection of a rotating galaxy and Byrenc( ), who considered light deflection on rotating
stars. Furthermore, corrections to the deflection angle in galactic microlensing due to moving lenses have been
evaluated by ( ).

13.3.2. Gravitomagnetic lensing by the large-scale structure

Adopting the Born-approximation, which states that the gravitational light deflection is weak such that the integral
in egn. (L3.39 can be evaluated along a straight line instead of the photon geodesic itself, it can be seen that
gravitational lensing is insensitive to derivatives of the potentials along the line-of-sight. Working out the deflection
anglesa and the tidal matrixyi; = Oci/0X; while neglecting derivatives along the line-of-sight yields formulae
analogous to the case of static lensing, but with the gravitational poténteglaced byd — %A“. Thus, the sources
of gravitational light deflection are the matter distributiband the component of the matter fljjxparallel to the
line-of-sight. The gravitational light deflection is stronger, if an object is moving towards the observer, because the
photon stays in the interaction potential for a longer period of time, and vice versa.

With the source term + %j”, one obtains for the lensing convergeragp to the comoving distanae

3H(§QO v k() fic(Wmax — w') 2.
k(0,w) = 23 L dw e @mana(®) (5 + E]”)' (13.37)

where fx (w) = w, if spatial hypersurfaces are flat, which is the casef¥gr+ Q, = 1. The redshift distribution of
lensed population of background sources such as faint blue galaxies is described by the disp{atinbeing
recast in comoving distanc&(w)dw = p(2)dz. Then, the average influen@w) of the lever arms of the optical
path for a given configuration of source and lens is given by:

Wmax fk(w —w)

Zw)= | dw Z(') (13.38)
w fK(w,)
In this work, | assume the generic distribution in redshfftr faint blue galaxies (c.f: ),
1 1_/3
2)dz = poZ exp(Z) with = = —F(—). 13.39
P(2)dz = poz” exp(-2) 0 "B \3 ( )

with mean redshiftz) = T'(4/8)/T'(3/8) ~ 1.5 and most likely redshiftmay = (2/8)Y# ~ 1.21 for 8 = 3/2. For the
average convergeneethe final result reads:

_ Wmax 3HgQO Wmax __ fK (lU) 2 .
k(8) = | dw Z(w)x(0, w) = 27 s dw Z(w) a(w) (6 + EJ”)'
ForZ_(w), the phenomenological fitting formula
— 1
Z(w) ~ Zoexp[——) , (13.40)
1 [log(w/wo)]”

2httpy/www.gravityprobeb.com
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13.3.3 Perturbative treatement

average distance weighting Z(w)

Ll " " L

o e ‘ _
10 10° 10° 10*

comoving distance w [Mpc/h]|

Figure 13.1.: The redshift weighting functioﬂ_(w) (c.f. eqgn. 3.39, rendered as a dashed line), and the fitting for-
mula (13.40 (solid line) in comparison. The maximum relative deviation between the properly evaluated function and the
fitting formula is < 3%.

with Zy = 1.441,b = 3.186 andwy = 2314 Mpdh is used, which yields excellent agreement with the properly
evaluated function, as shown by Fi3.1 The fitting formula alleviates the need of numerically carrying out the
integration in eqn.X3.38 when projecting the dark matter power spectrum.

13.3.3. Perturbative treatement

When considering gravitomagnetic corrections to gravitational lensing, the sourcé tdretatic lensing has to
be replaced by = (1 + %vu)é. It should be emphasised, that the fluctuations in a weak lensing shear field are
predominantly caused by modeskrspace, that are propagating perpendicularly to the line-of-slghi(

). Evaluating the correlatgi, (K, w1)q; (K, w2)) yields apart from the dominating 2-point term,

(0 (k, w1)a. (K, w2))zpt = D(w1) D(w2)(5(K)6™ (K)), (13.41)

contributions of 3- and 4-point terms. The 2-point term stated in €gh4{) is of order unity and is the basis of
the conventional theory of static gravitational lensing. In the perturbative treatment, the coupkirnrgaafes in
nonlinear structure growth is neglected, integrations are implicitly taken to be restricted to quasi-linear scales.

13.3.3.1. 3-point term

The 3-point term(q, (k, w1)a7} (K, w2))spe cOnsists of four contributions and is of ordefc compared to the 2-point
term (c.f. egn. 13.40):

1 a3
(s (k)0 (2o = #{ (13.42)
<6(_k’ wl)UJ_ (p’ w2)6(k - p’ w2)> + <6(_k’ wl)UJ_ (k - p’ U)2)6(p, w2)>+
(60K, w2)urs (=P, )P — K, w2)) + (50K, w2, (P — k. we)S(=p, wr)) }

Here, the relations*(k) = 6(—k) andv*(k) = v(—k) were inserted, which hold for real fields. By using this fact,
the condition};; k; = O is fulfilled which allows the 3-point correlators in eqi.3(42 to be reduced to products of
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2-point correlators by virtue of the formulae derived in ApperiixT his yields four terms of the type, §){66)/c
and two contributiongv, 6)2/c? of second order.

The correlation function can then be projected onto a plane perpendicular to wavekvddtercomponent of the
velocity in the celestial plane is given hy, = k x (v x k)/k? and hences, = vsind = v V1 - x2, with X = cos#,
whered is the angle of separation betwegmndk. In doing this, the contributions of the tyge, §)2/c¢? vanish
because they contain a multiplicative tefafk)uv(k)), which is a vector field collinear th. The remaining terms
can be combined to give:

(2@, (K ) (2o = 2 D(w1)D(wz) [g' (1) + o (w)]
2
jhdgfwle{mew K)M(p.p - wh||_m4

(Ipl)

P | Mk S+ i p-

kP P(p - kl)] } (13.43)
In the integrand of eqn1@.43, the replacemenp — k> = k? — 2kpx+ p? can be inserted. Additionally, the time
evolution of the velocity-density cross correlation function,

(wik, w1)o" (K, w2)) = g’ (w1) D(w2)(w o (K)o" (K)), (13.44)

was inserted. The functioM (p, p’) is defined as:

10 pp 4(pp\
M(pp)—7 pg( +F)+?(W)' (13.45)

It should be emphasised, that this 3-point correlator does not take account of the evolution of non-Gaussian
features in the correlation functigia(ki)d(k2)d(ks)) and their influence on lensing determined Jzy
( ), ( ) and ( 1b), which strongly &ects weak lensing quantities on small
angular scales. A detailed derivation of this 3-point correlation function is given in Appdadix.

13.3.3.2. 4-point term

The last contribution to the weak lensing power spectrum evoked by gravitomagnetic corrections is the 4-point term
(A (k, w1)a? (K, wo))ape, Which is of orders/?/c? and thus strongly suppressed. The derivation of the term is easy
prey: It can be done in complete analogy to that of the Ostriker-Vishfiiacte
), where any optical depth depending on redshift needs to be replaced by the appropriate welghtmg function

(c.f. Sect.13.4.9 and conversions from dark matter densities into baryonic densites are to be discarded.

The derivation evolves cross-terms between the velocity and density fields, perhaps the most elegant way of
reducing it to a sum of 2-point correlations is given [y ( ), using a result fromi
( ib):

(27r)3<qi(k)Q}‘(k)>4pt = Pq(ki) = (13.46)

d®p
(2n)3 (27T)3

| | | 'I
where the irreducible 4-point correlatidl, s, (k) has been neglected _
Following ( ), the projection to be carried out |Sn(}§<ql(k)ql(k)>4pt 2% &€ ’q(lkl), whereg

ande; are unit vectors along the lines-of-sight. The expressmtﬁ’ﬁg@kp is given by eqn.13.3.3.2. In neglecting
the irreducible 4-point term one obtains:

d3
(2n)?

(1 x°)p

(20) %A (K)d (K)apt = -

{(1 X%)Pss(1k = PPy (Ipl) - Pov(lk — pI)PaU(IIOI)} (13.47)
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13.3.4 Corrections to the power spectrum
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Figure 13.2.: Three-dimensional power spectrym (K)qg; (k)) including dark matter currents perpendicular to the line-of-
sight, split up into the 2-point contribution (solid line), the 3-point contribution (dashed line) and the 4-point contribution
(dash-dotted line). Additionally, the 4-point term of the currents parallel to the line-of<gjgkya}; (k)) is drawn (dotted

line). The power spectra are given for the present epocha k€1 andz = 0.

Inserting the time-evolution of the density-velocity and velocity-velocity cross correlation terms,

wikw)vi(kw2)) = ¢ (wi)g' (w2){vo (k) (K)), (13.48)
ik, w)o*(k, w2)) g’ (w1)D(w2)(v. (K)5" (K)), (13.49)

yields the final result;

+1 _y2 _
(@)@ 1) 2 = G D)D)y () ) [ [ axPliephPtp) 5 X2 (13.50)

13.3.4. Corrections to the power spectrum

The three-dimensional power spect{ra (K)q; (k)) of the matter currents parallel to the line-of-sight is shown in

Fig. 13.2for the various-point contributions. Compared to the dominating 2-point term, the 3-point term is smaller

by more than two orders of magnitude on small scales, but it becomes important on large spatial scales beyond 1 Gpc
where it levels out. On these large scales, however, limitations due to cosmic variance diciénsgsampling

due to galactic foregrounds cast doubt on its detectability. The leveling on large spatial scales of the 3-point term
is due to the fact, that for smatlall powers inp in egn. ((3.43 add up to zero, which results in a flat curve for

(0. (K)g; (K))zpt. In comparison to the 3-point term, the 4-point term is smaller by another three orders of magnitude,
but in shape it very much resembles the 2-point term and its influence on the weak lensing power spectrum is safely
negligible.

13.3.5. Projected lensing power spectra

The final expression faig, (k)q; (k)) can be projected by means of eqii3 (32 to yield the angular power spectrum
of any lensing quantity, for example the convergenc€he distance weighting function to be employed can be read

off from eqn. (3.40:

_ 3H3Q0 fie(w) (U flw —w)
W|_(w) = 2—(:2 a(w) fu: dw Z(w )W (1351)

167



Gravitomagnetic lensing and the integrated Sachs-Wolfe/Rees-Sciama effect

By substitutingy = kw, the distance weighting/_ (w) can be combined with the time evolution of the correlators to
yield the functions

e(Kpr = Uglaxw (k) ), )} (13.52)
or(Kapt = y("iaxvv (k) '(”)D( )G(y) JEIZW (k) '(y)D() (13.53)
e(Kapt = Uglaxw (k) J'(y ) b6y )} (13.54)

which carry out the projection of the 3-dimensional power spectfgntk)q’ (k)) to the angular power spectrum
C.(¢) by convolution:

Cu(l) = 2rl(L + 1) f dk (q. (K)qi (k) < @e(K), (13.55)

where the associativity of the time-evolution enables the 3-fold integration in E832 to be reduced to a 2-fold
integration. Numerical issues connected to the integratiah-efeighted functions are discussed in Appendix.

The functionsp,(K)2pt: @e(K)3pr andep(K)ape are shown in Figl3.3 Clearly, the fluctuations on a certain angular
scale described by the angular power spect@ffi) are dominated by spatial fluctuations with a certain wave vector
k, which leads the peak of the functigp(k) to shift with increasing. The projection kernelg,(k) for the diferent
n-point correlation functions show the common feature of rising fast at siallit their decays at large vary
appreciably, because the increasing influence of the time evolution of the vel&fitipmakes the functions to drop
faster with increasing values &f In this way, the observed asymptotic behavioup i) o k=2 for the 2-point
projector, but thep,(ks) ande,(kapr) €xhibit faster decays that are not described by a mere power law. Evaluating
the functions 13.52, (13.53 and (L3.59 requires accuate numerical integration ovgiy)-weighted integrands,
which rapidly oscillate at large values gf Details of this numerical integration are explained in Apperalix

The angular power spectrum of the weak lensing converg€p@@ and its corrections due to gravitomagnetic
terms is depicted in Figl3.4 Even at the largest angular scales considered here, the fupgfiQmpeaks at values
of k at which the corrections of the 3-point term are negligible. The detection of corrections to the weak lensing
power spectrum due to gravitomagnetic terms requires the measurement of weak lensing shear on very large angular
scales, which is beyond feasibility with current technology. On large angular scales, cosmic variance additionally
limits the observability of gravitomagnetic lensing.

13.4. Integrated Sachs-Wolfe effect

13.4.1. Definitions

The growth of structure imprints additional anisotropies on the cosmic microwave background (CMB) by the time
variation of the gravitational potentials along the propagation path of a CMB photon. fléts is called the inte-
grated Sachs-Wolfe (iISWtect in the regime of linear structure formaticae(

) and Rees-Sciamdfect ( ) if the density perturbations grow
nonlinearly. The perturbationsT of the sky temperatuﬁé can be written as:
AT oD
== -2 |, 13.56
=T c3 f v on ( )

whered®/0dn is the derivative of the gravitational potentials with respect to conformal gim@imilar to gravito-
magnetic lensing discussed in Seid.3.1(c.f. egns. {3.33 and (L3.39), the dfect is of the order Ac3.

13.4.2. Connection to the gravitomagnetic potentials

Using the definition ofb(r) and the equation of continuity,+ divj, wherej = pv is the matter current density, one
obtains for the time derivative @b:

3<1>(r,f7)=—Gfd3r’ £r) :Gfdg’r’V ), (13.57)
on Ir—r’|

Ir—r|
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13.4.2 Connection to the gravitomagnetic potentials

o
)
T

—ssmmmm===

°
~
T

-

contribution (k)
o

-
-

o

w
T
-

o
[S)
T
-
e -
-

e

10 10 10
comoving wave vector k [Mpc/hl

Figure 13.3.: Contributiony,(K) of the 2-point terms (thick lines), 3-point terms (medium lines) and 4-point terms (thin
lines) to the angular power spectr@p(¢) of the weak lensing convergeneas a function of wave vectds; for £ = 100
(solid line),¢ = 300 (dashed line), = 1000 (dash-dotted line) arfd= 3000 (dotted line). The curves are normalised to
unity.
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Figure 13.4.: Angular power spectrur@,(¢) of the weak lensing convergene@nd its correction due to gravitomagnetic
potentials. The contributions from the 2-point term (solid line), the 3-point term (dashed line) and the 4-point term (dash-
dotted line) are given separately.
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Integration by parts with respect térd yields:

Gfd3r’V"J(r’) ——Gfd3r’j(r’)-V'

Ir—r|

o (13.58)

With the identity

1 1
=-V 13.
Ir—r| Ir—r/| (13.59)

’

the derivative with respect to the primed coordinate can be replaced by a derivative with respect to the unprimed
one. In the last steps, theoperator can be drawn in front of the integral and the definitioA ¢.f. egn. (3.39)
be inserted to yield:

Gfd3r’j(r') -V =-V. (—Gfd3r’M) = —divA. (13.60)
Ir—r/| Ir—r/|
Thus, the final result reads:
ﬁqa(r,t) - divA—> 7= 2 f dw divA. (13.61)
on cd

Eqgn. (L3.6]) has a lucid interpretation: The formation of objects such as clusters of galaxies requires the matter
fluxesj to converge and to accumulate matter* 0). Consequently, potential wells deepen and give rise to
the iSW-éfect in regions where div does not vanish. The iSWHect measures the rate of change of a potential
with respect to conformal time, or equivalently, the divergence of the vector poténtiehich is proportional to

the accretion rate in the Lagrangian frame. The microscopic picture of gravitomagnetic interaction of a photon is
developed in Appendix:.

13.4.3. Putting the Sachs-Wolfe effect in a cosmological context

In order to relate the statistical properties of the iISW temperature fluctuat{@hso those of the matter streams
j(r), the auxiliary vector fieldy(6) is introduced, which is defined as the negative gradient of the iSW temperature
fluctuationt(0):

x(8) = -V(0), (13.62)

i.e. x(0) points along the steepest descent in temperature from hot to cold patches in an iSW field. Inserting
egn. (L3.6]) into the defining equation fog (@) and converting the derivation with respect to the angular vari@ble

into a derivation with respect to the comoving variabley usingVy, = fx(w)V, enables interchanging integration

and diferentiation:

x(6) = é f dw T (w) V (divA) = é f dw Tk (w) AA. (13.63)

Additionally, the replacemeri (divA) = AA is inserted, which is valid if rot rét = 0. This is fulfilled in vorticity-
free velocity fields, rgt= 0. In linear theory, initial vorticity perturbations are damped and afterfiacgntly long
time, the linear velocity field should be completely irrotational. Even in the regime of quasi- or nonlinear structure
formation, Kelvin’s circulation theorem forces the flow to remain irrotational and described by a velocity potential
until dissipative processes on smallest scales give rise to vortical flows.

Inserting Laplace’s equation in the comoving framé\, = 4rGa?(p)(5v) with the source term = §v, allows
to replace Newton’s consta@ and the ambient mass dens{p) by usingpcit = 3H§/(87rG), (O = Qopcrir and

(o) = (po/a*: )
2 4nG(py, 3HZQ fe(w) ]
x(0) = 5 f dw fy (w) "a<p>1 =— ° f dw ;((w";) ]E (13.64)

The structural similarity of eqn1@3.64 with the weak lensing convergence edi3 .40 is striking.

Now, the 2-point correlation of the iISW temperature gradient figld) is related to the matter flux densitfy).
For the derivation of the correlation functi@y(¢) of the temperature field() itself, one rewrites eqnl1@.62 in
Fourier space, yielding:

x(0) = f d?¢ x () explt - 0) — x(£) = itr(£) (13.65)
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13.4.4 Perturbative treatment

Ps(k) < densitys(r) flux j(r) - > Pj(K)
®(1)=-G [ r’ 1 AN=-G [ &r K
potentiald(r) potentialA(r)
a=-V, o T=div, A

Co(f) < deflectiona(§) <——=> iSW — effectr(0) > C.({)

K= % divar x=-V1

C.(£) < convergence(0) gradienty(0) > C,({)

Figure 13.5.: Flow chart with correspondent quantities in gravitational lensing (left column) and the integrated Sachs-
Wolfe effect (right column). The quantity analogous to the iSW temperature fluctug®)in weak gravitational lensing
is the deflection angle(0).

The expansion into Fourier modes rather than spherical harmonics is permissible, heisaegpected to show
fluctuations on small angular scales, so thean be considered on a plane locally tangential to the celestial sphere.
Squaring immediately gives:

C,(0) = £°C,(£) = (£ + 1)C.(¢), (13.66)

where the last step is a valid approximation for small angular scales. The complementarity of gravitational lensing
and the iSW-fect and the lensing counterparts of iISW quantities are illustrated in the flow chatt3fg.

The validity of the assumption of vorticity-free flows used in the derivation above could in principle be tested by
measuring the gravitational Faraday rotation, i.e. the rotation of the plane of polarisation of a photon transversing a
gravitational field. This signature unique to vortical matter streams, although it is likely to be a very Setilba
e.g. galactic scales. The theory of gravitational Faraday rotation is developed in papersrby. ( ),

( ) and ( ).

13.4.4. Perturbative treatment

In the following, | adopt the approximation that the rate of change of a potential is constant during the photon
passage and that the accretion geometry does not change significantly. In this approximation, the corpaent d

of divA is cancelled by the integration in eqri3(61) and makes the iISWfkect to measure the components of
divA perpendicular to the line-of-sight, i.er o div,A = dAs/dx + dA,/dy. Consequently, the matter fluxes

g, (x) =j, (x)/c = 6(xX)v.(x)/c perpendicular to the line-of-sight primarily give rise to the iS#éet. Accordingly,

the fluctuations in the CMB due to the Rees-Sciafiact, being sensitive to the components of the matter flux
perpendicular to the line-of-sight, are dominated by the componektsnaides parallel to the line of sight.

Power spectra of the forr{q”(k)ql’“(k» have been considered by many authors in the derivation of the Ostriker-
Vishniac dfect (e.qg. s ). In order to obtain the projection onto the line-
of-sight, (2r)3<q”(k)q|’;(k)>4pt = 2ij l—ti—'ﬁ—'PqukD, has to be carried out, which can be interpreted as the quadratic
form k™ Pk with a unit vectok and the matrixp = qu (compare eqri3.3.3.3. The matrixP introducing the scalar
productIA<T Pk is positive definite, due to the reality of the density and velocity fields.

(k — px)x
Tkop evUk=PDPa(IpD (13.67)

The scalar produgik is again equal tkx wherex is the cosine of the angle of separation. Inserting the velocity-
density and velocity-velocity cross correlation functions with their proper time evolution,

(uy(k, w1)o" (k, w2)) g’ (w1) D(w2)(vy (K)5" (k)), (13.68)
ik wa)vj(k,wa)) = g'(wa)g’ (w2)(vy (K)vj (K)), (13.69)

3
@ @MW =5 [ s X Pk~ PIP.u(p) +
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yields the final result:

X
@k i = D)D) ) ) 2 [ [ Pl pop(pp SIS 202

(13.70)

13.4.5. Power spectrum of dark matter currents

The three-dimensional power spectr(nmm(k)qﬁ(k)) of the matter currents perpendicular to the line-of-sight is given
in Fig. 13.2 Its amplitude is by a factor of 4 smaller than the power spectiaur(k)q’ (k)), because the iISWHect
measures the streanis in contrast to gravitomagnetic lensing, where the source terms rea@yAc)s. Despite
the fact that dierent projections are considered, the shape and asymptotic form#{k)fqﬁ(k)) and{q. (K)q (k)»

are very similar.

13.4.6. integrated Sachs-Wolfe angular power spectrum

Fig. 13.7shows the angular power spec@g(¢) of the iSW-dtect(0) andC,(¢) of the iISW temperature gradient

x(0) which have been obtained by applying the projection formuaZg to the spectrunz{q”(k)qﬁ(k» with the

weighing function

3HEQo fy (w)
2 aw)’

which can be readfbfrom eqn. (3.64. The redshift-weightings and the time-evolution of the density and velocity

fields can be combined, which yields the functidg.(72 after substitutingy = kw,

Wisw(w) = (13.71)

W[(k)llpt =

G (2) 24 ogcl )] (13.72)

which mediates between the 3-dimensional power spec¢th)q”(k)) and the angular power spectr@q(¢) by
convolution:

C(0) =2n f dk (qy(k)ay; (K)) > ye(K). (13.73)

Again, the 3-fold integration in eqnl8.26 is reduced to a 2-fold integration. The shape of the funafigi) is
depicted in Fig13.6for various values of. In contrast to the functiog,(k) used in the projection of the lensing
power spectra, the functiafy (k) is symmetric about its peak, which is caused by the replacemeh{)fy with

the derivative d,(y)/dy. The fast variability is again due to the strong influence of the velocity time evolution
G(y).Details concerning numerics of the integration in etf.72which involves a rapidly oscillating function are
discussed in Appendii.

The angular power spectruBy(¢) of the iSW temperature fluctuation§d) along with the primary CMB fluctu-
ations and the limiting PLANCK-sensitivity is depicted in Fi3.7. The angular power spectrum has an amplitude
of ~ 3 x 10711 K2 at small¢ and shows but little variation with the multipole order The amplitude agrees well
with the result from ( ), but the decline of the power spectrum on large angular scales could not be
confirmed, which is due to the fact that for large angles, the Bessel funclipisre a poor approximation to the
Legendre polynomial®,(x). The position of the peak in the projection kerge(k) suggests that on the largest
scales considered here, the angular spec@uff) is dominated by fluctuations at the maximumR{k) on scales
atk~! ~ 10 Mpc. With increasing multipole ordér the peak iny,(k) shifts only slowly towards higher values kf
which explains the small variation @, (¢) = ¢(¢ + 1)C.(¢).

The channel averaged PLANCK-sensitivy is describedioyot ) ):

Croisd() =

|62ece + 1), (13.74)

whereNpj, ~ 5.03x 10’ is the number of pixels ar{ljJ the FWHM extension of the PLANCK-beam. For the average
amplitude of the noiser; per solid angle subtended by a single pixel | use the quadratic harmonic mean over all

six HFI-channels:
6

1
Z = — oo = 13424K. (13.75)
19

%l\)||—‘
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Figure 13.6.: Contributiony (k) of the 4-point term to the angular power spectr@pi¢) of the iISW temperature fluctu-
ationst as a function of wave vectds, for £ = 100 (solid line),£ = 300 (dashed line);, = 1000 (dash-dotted line) and
¢ = 3000 (dotted line). The curves have been normalised to a peak value of unity.

The sensitiviy considerations suggest that the iSi#&et is well above the noise level of the combined PLANCK
HFI-channels, so that the power spectrunCef/) should be observable for angular scales200 as a contribution
to the primary CMB fluctuation€cmgs(€), which in Fig. 13.7 have been computed using tb¥Bfast code by

(1999).

13.5. Summary

The scope of this paper is to derive the corrections to the power spectrum of weak gravitational lensing due to
gravitomagnetic terms in the metric by perturbation theory. Within the same formalism, the power spectrum of the
iISW-effect can be determined as well.

e The iSW-dfect and gravitomagnetic lensing measure the evolution of velocities and densities in the large-
scale structure and are sensitive to the cosmological parantgieesdog. Applied to single objects like
clusters, where the above described formalism equally applies, the fi®@-&ould allow to measure the
cosmological evolution of merger rates and dark matter accretion strengtins!¢

, ).

e Gravitomagnetic lensing would test general relativity on the largest scales (Mpc - Gpc) to second order, and
could help decide in favour of or against other metric theories of gravity. It should be emphasised that in the
current theoretical description of structure formation or in current numerical simulations the motion of bodies
is described by classical mechanics, i.e. instantaneous propagation of potentials and no relativistic increase
of inertial mass with velocity, but the interaction of light with matter should be treated in the framework of
the post-Newtonian limits of general relativity.

e Gravitomagnetic terms influence the weak lensing power spectrum most notably on large spatial and angular
scales, which are flicult to access experimentally. Furthermore, cosmic variance and galactic foregrounds
prevent accurate measurements on the scales in question, G@c/h and above. The small gravitomagnetic
corrections could be amplified by cross correlation with the kinetic Sunyaev-Zel'doffiett ¢

), once future CMB telescopes will provide accurate measurements of line-of-sight velocities
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Figure 13.7.: Angular power spectrurar(£) = TZ,,5C-(€) of the iSW temperature fluctuationgd) (dashed line). The
CMB power spectrunCcyg(€) for the ACDM cosmology (solid line) and the limiting PLANCK-sensitivi€gis{¢) for
angular resolutionad = 5.0 (dash-dotted line) andld = 91 (dotted line) are depicted for comparison.

or with the velocity information from optical galaxy surveys. For current weak lensing surveys, gravitomag-
netic corrections to cosmic shear do not play a significant role.

e The iSW-dfect is described by a line-of-sight integration over the divergence of the gravitomagnetic poten-
tials. By this argument, the iISWHect is reduced to a second order lensifige. Every iSW quantity has
a correspondence in weak gravitational lensing and the derivation of the power sp€g{fmproceeds in
complete analogy to that of any weak lensing quantity, for instance that of the conve@éficerhe most
important diference of the derivation presented here to the ones carried obit !/l ( ) or
( ) is that my derivation explicily pays tribute to the lensing nature of the i$hte

e Gravitomagnetic lensing and the iSWext are complementary in measuring the matter flows parallel and
perpendicular to the line-of-sight. The picture emerging is that (subject to the approximations made) in
gravitational light deflection (including the gravitomagnetic tedg), the photon’sk-vector is rotated but
its normalisation is conserved. Contrarily, the componenta tfansverse to the line-of-sight change the
normalisation of thd-vector, i.e. the photon’s energy, but leave the directiok iofariant.

¢ Both dfects, gravitomagnetic lensing and the iS¥i&et, are achromatic which makes them only accessible
by their n-point statistics. Furthermore, the iSWfect needs to be separated from other achromatic CMB
structures such as the kinetic Sunyaev-Zel'dovifiea and the Ostriker-Vishniadtect. The derivation
predicts iISW temperature fluctuations &t = tTcuwg ~ 5.4 uK on large angular scales, which is within
reach of future CMB experiments like the European PLANCK-mission.

e The gradienty(@) of the iISW temperature fluctuation fietdd) should directly map regions of large matter
flows, e.g. filaments and clusters with high peculiar velocities, but it can be expected to be very susceptible to
noise due to the elierentiation required in obtaining(®#) from 7(0), which is reflected by the fact that ratio
of the angular power spect (¢)/C-(¢) is proportional taf(¢ + 1).

The verification of the theoretical approach by a ray-tracing simulation of photons through a cosmalegical
body simulation will be the subject of future research. The non-Gaussian features thé&@tWaead gravitational
lensing exhibit and the mode-coupling in nonlinear structure growth are unaccessible to perturbation theory and are
important on small scales. The novel approach to the igétepresented here should allow a much improved
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precision in the numerical treatment, because inaccuracies in interpolating the scalar potential’s time derivative
0®/0n for each integration time step and in integrating a rapidly oscillating function inherent the direct approach
(e.0. 1b) are alleviated.

The results of this chapter were derived in collaboration with M. Bartelmann (ITA, Heidelberg). A resulting paper
entitled Gravitational lensing in the second post-Newtonian approximation: Gravitomagnetic potentials and the
integrated Sachs-Wolfefectwill be submitted to the journdontly Notices of the Royal Astronomical Society
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14. Summary and outlook

The main subject of this thesis is the simulation of observations of cluster of galaxies for the European PLANCK-
satellite. PLANCK will be able to detect clusters of galaxies by their thermal Sunyaev-Zel'dovich signature in sub-
millimetric data and will open a new observational window for investigating structure growth and baryonic physics
inside clusters of galaxies. In Chapterl present all-sky maps of the thermal and kinetic Sunyaev-Zel'dovich
effects which was constructed from numerical data by combining template clusters extracted from a high-resolution
hydrodynamical simulation and a cluster catalogue following from a large-volume dark matter simulation. By con-
struction, the map correctly shows the clustering properties on large spatial scales, deviation from canonical scaling
relations and asymmetric and non-analytic temperature and density profiles of the individual clusters of galaxies. In
the kinetic Sunyaev-Zel'dovich map, the peculiar velocities correspond to the local density field. The comparison
to estimates of the Sunyaev-Zel'dovich signal strengths following from virial arguments showed that the number of
clusters detectable with PLANCK is likely to be overestimated.

These maps were combined with various Galactic and ecliptic foregrounds. Specifically, | considered synchrotron
radiation, free-free emission, infrared emission by thermal dust, line transition produced in rotational transitions of
carbon monoxide molecules and the thermal radiation of planets and asteroids of the Solar system. | combined the
Sunyaev-Zel'dovich maps with these foreground maps and with a realisation of the fluctuating CMB while taking
care of the dierent spectral properties of the respective emission components and convolved the individual spectra
with PLANCK's frequency response functions. The maps were successively convolved with PLANCK's respective
point-spread functions, yielding antenna temperature maps for all nine PLANCK channels. In order to simulate the
finite sensitivity of PLANCK'’s receivers, | generated noise maps that incorporate the spatial highly-non uniform
exposure pattern due to PLANCK'’s scanning strategy, which were successively added. In GHap¢scribe
the simulation in detail and investigate the complicated cross- and autocorrelation properties which have special
relevance to filtering and component separation.

In Chapter7, | describe an approach how the weak Sunyaev-Zel'dovich signal can be amplified and extracted by
matched and scale-adaptive filtering. These filter schemes are particularly appealing because they are based on a
variational principle. The algorithms require filter kernels to minimise the variance of a data set with the condition
that the amplitude of the filtered field is an unbiased estimator of the underlying signal and that the amplitude
of the filtered field is maximal if the spatial scale of the filter corresponds to the spatial extension of the signal.
These filtering schemes were extended to multifrequency observations and to spherical topologies. In collaboration
with C. Pfrommer | could derive formulae that yield filter kernels for a given signal profile, for a specific spectral
behaviour of the signal, and for the angular cross- and autocorrelation function of the spurious components. | derived
filter kernels numerically for the simulated PLANCK antenna temperature maps and verified their functionality.

The characterisation of the PLANCK Sunyaev-Zel'dovich cluster sample is the subject of CBagtewas
shown that the SZ-cluster sample derived in this work, which contairsl@® entries above @ does not live
up to the high expectations claimed by analytic estimates. But the SZ-sample was shown to be clean and not to
contain spurious detections on a significant level. The redshift range probed by PLANCK is restricted to redshifts
smaller tharz < 0.8, which is due to the highly structured noise on small scales. The sample was analysed in
detail and the distributions of mass, redshift and detection significance are given. The spatial distribution was
demonstrated to be spatially non-uniform on a significant level, irrespective of the filtering scheme, which is due
to the improper removal of long-wavelength modes. The linearity of the filters was proved and position accuracies
were demonstrated to be too coarse for direct follow-up studies in the X-ray band or in optical wavelengths.

The SZ-cluster catalogue of PLANCK will exceed classic X-ray catalogues with respect to number of detec-
tions and will complement our view of the baryonic processes inside clusters of galaxies. Furthermore, aspects
of structure formation ranging from dark energy parameters, especially the dark energy fensts/equation
of state parametang, the shape of the power spectrum on Mpc scales and its normalisagianill be a high-
light application of PLANCK's SZ sample. The simulation presented here surpasses in detail every simulation of
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SZ observations with PLANCK carried out so far and covers all important aspects of cluster physics, foreground
contamination, observation and instrumental imperfections, filtering and peak extraction.

In a supplementary project aiming at PLANCK data analysis algorithms | worked out a new pixel numbering
scheme for the HEALPIx tesselation commonly used in analyses of CMB data. A core quantity in many CMB
data analysis tasks is the pairwise pixel covariance matrix. Common pixel numbering schemes fadeuhy di
that the covariance matrix does not have a simple shape anfiiésillito access algorithmically and numerically.

Basic matrix manipulations like inversion and computation of the determinant are ¥igeyltliio carry out, keeping

the vast number of pixels of current and future CMB experiments in mind. In Ch@ptgropose to use a pixel
numbering based on a fractal, self-similar Peano-Hilbert curve that runs through all pixels on the sphere. If pixels
were numbered successively along this curve, the pairwise pixel covariance matrix would assume a band-diagonal
shape if correlations on large angular separations are neglected. For band diagonal matrices, féstesmd e
algorithms for computing e.g. determinants and inverses exist. | tested the locality of the spherical Peano-Hilbert
curve and investigated the shape of the covariance matrix for typical shapes of the correlation function and found its
properties with respect to locality to be superior to the two existing pixel numbering schemes. It is planned to add
the Peano-numbering to the HEALPIx software package.

Aiming at future high-resolution CMB observations | analysed the morphology of simulated SZ-maps of clusters
of galaxies with wavelets. It was found that the spectrum of waveldficints can be described with elementary
functions that have certain characteristics which are non-degenerate indicators of redshift. These morphological
redshifts will be particularly useful for future SZ surveys that are expected to detect thousands of clusters in order
to select targets for e.g. X-ray follow up observations. A detailed analysis in ChHEpttamined the redshift
estimation based on wavelet decomposition and found the relative accuracy in the distance estimation to be accurate
to a few percent out to redshifts of unity. Adding noise contributions such as instrumental noise at reasonable levels
and CMB fluctuations in order to simulate monochromatic observations proved the method to be very robust. Other
complications like finite instrumental resolution, cool cores of clusters and systematic deviations from the universal
baryon fraction that significantly alter the SZ-morphology of a cluster or impact on the SZ-scaling relations were
shown to be controllable. Morphological redshift estimators will be of particular use for dedicated high-yield SZ
observatories in order to select targets for optical or X-ray follow-up observations.

The statistical description of the CMB based on Gaussian random fields leaded to an unexpected application of
this cosmological key concept to X-ray apeay imaging in high energy astronomy. Imaging of highly energetic
radiation by refractive or reflective optics is far from easy. Imaging at these high photon energies is commonly
achieved by coded mask imaging, where the shadow cast of a mask consisting of randomly placed open elements
is registered by a position sensitive detector. By using correlation techniques, it is possible to reconstruct the
distribution of sources inside the field-of-view from the shadowgram, which is a superposition of the intensity
distributions imaged by each individual pinhole. In Chagtgrl propose to use Gaussian random fields as coded
mask patterns, because they can be constructed to encode a specific functional shape of the point-spread function. |
investigated the properties of Gaussian random fields in coded mask imagers in extensive photon ray-tracing studies
and found the Gaussian random fields to perform well in the observation of extended sources which are unaccessible
to traditional coded mask instruments and to yield a moderate performance in the observation of point sources.

Apart from the interaction of photons with the electrons of the intra-cluster medium | studied their gravitational
interaction with clusters of galaxies and with the cosmic large-scale structure in Chapteras able to explain the
integrated Sachs-WolflRees-Sciamafiect, which predicts a frequency shift of photons transversing time-variable
gravitational wells to be a second-order gravitational lensifigceemerging in the post-Newtonian expansion of
general relativity. In this approximation, the Rees-Sciafffiace measures the divergence of the gravitomagnetic
vector potential integrated along the line-of-sight. By using this access, | could show interesting analogies between
gravitational lensing quantities and Rees-Sciama quantities and point out many analogies in the respective formulae.
| derived the angular autocorrelation function of the Rees-Sciama temperature fluctuations in the quasilinear regime
in perturbation theory by using the gravitomagnetic formalism. The angular power spectrum was found to be
detectable by PLANCK as a correction to the primordial CMB power spectrum at low multipoles. The Rees-
Sciama €&ect on these scales will be an important diagnostic for dark matter clustering as it probes the transition
from the linear into the nonlinear regime of structure formation.

By using the same tools, | addressed gravitomagnetic corrections to weak gravitational lensing of the large scale
structure arising due to large-scale matter streams. The corrections evolved three- and four-point correlators of
the density and velocity fields with their respective time evolution, which were reduced to products of two-point
functions by perturbation theory in the limit of quasilinear growth. As in the case of the Rees-Séiachd derived
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a projection formula analogous to Limber’s equation that is able to deal with vectorial fields in order to compute the
angular power spectra from the three dimensional correlation functions. The corrections to weak lensing quantities
were shown to be important on large spatial and angular scales, whichfizeelidio access observationally. For
current weak lensing surveys, gravitomagnetic corrections play only a minor role.

In Chapterl2 | describe a code that | implemented for studying weak lensing on simulated cosmological density
fields. This code computes the deflection and shear a light ray experiences when transversing a cosmological volume
and has a number of improvements over competing ray-tracing codes with respect to functionality, performance and
accuracy. It will certainly be interesting to investigate the Rees-Scidfeat@nd gravitomagnetic corrections to
weak gravitational lensing on-body simulations of cosmic structure formation and to access the fully nonlinear
growth of structure where interesting non-Gaussian features in the density field evolve and Fourier modes of the
density field are coupled, which is inaccessible to perturbation theory. The code is extended to derive the Rees-
Sciama signal as a line-of-sight integration of the divergence of the gravitomagnetic vector potential, which is likely
to have computational advantages over the traditional, direct approach. Furthermore, the code can compute the
gravitational Faraday rotation, i.e. the rotation of the plane of polarisation due to vortical matter streams which
evolve in the late phase of structure formation due to dissipative processes.

Now that physical cosmology has reached the stage at which the parameters governing the Hubble expansion and
the geometry of the homogeneous universe are determined on the percent level, the CDM paradigm of gravitational
structure growth needs to be tested. The interaction of photons with the emerging large-scale structure by various
mechanisms is able to shed light on the shape of the dark matter power sp&kjunts normalisatioro-g and
the parameters describing dark energy, which starts to influence structure growth only in recent cosmic history.
Among the most promising observational channels are the thermal Sunyaev-Zel'ddeatteed the Rees-Sciama
effect, which were shown to be detectable by PLANCK and which will be particularly useful to break remaining
degeneracies between cosmological parameters, to yield important constraints on the parameters and mechanism of
structure growth and halo formation.
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A. Numerical evaluation of SPH-projections

SPH gmooth particle hydrodynamigcsriginally developed by s

for solving hydrodynamical problems in stellar models) approximates continuous densny fields by discrete
distnbutlons of point particles. In contrast to algorithms that solve the hydrodynamical equations on grids, SPH
has the benefit of adapting its resolution to the local density, i.e. dense regions are well sampled by a large number
of particles and vice versa. In the SPH formalism, continuous fi&{#§ (e.g the hydrodynamical quantities) are
represented by their value§ at discrete particle positions = (X, yi, z) with local spatial resolutiom;. This
smoothing lengtlh; is adaptive and is chosen to be the distance oN#ielosest particle, whens ~ 30.

Figure A.1.: Derivation of line-of-sight quantities from an SPH-simulation.

In order to construct Cartesian mag(g) of line-of-sight integrated quantities from (cosmological) SPH simula-
tions, one needs to employ an interpolation scheme. The line-of-sight integration of any ga&ntiy the pixel
at positionx = (X, y, 2) is determined as the average of integration of all lines-of-sight passing through the pixel,
which is equal to the volume integral of the kernel-weighted quaritsghove a given pixel divided by the pixel
area (compare Figh.1):

X+g/2  y+g/2 h
r
on [an foar(g)
|

X-g/2 y-g/2 -h;

ax) = Z h?

withr = \/(>q - X2+ (yi —y)P + 2, (A1)

where the summation is extended over all particles of the simulatjatenotes the mesh size of the underlying
Cartesian grid. The functioK is the spherically symmetric cubic spline kernel suggested dy:
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( ), which is commonly used in SPH simulations:

8 1-6u+6u,0<u<1/2
Ku) =—-{ 21-u?® ,1/2<u<l withu=r/h. (A.2)
T 1o Ju>1

The fact that the kernéX is defined on a compact supparé [0. .. 1] greatly reduces the computation&iogt. The
dz-integration of this cubic spline kernel can be carried out analytically, while taking care of the piecewise definition
of K. This yields for the outer region/2 < p < 1, whergo? = x? + y2:

2

ip 21,02\/1—,02 3\/1—p2 3 3
[24 2] = 4 2 2 A
f(; dZ?(( P +Z) = > o In({/1-p?+ 1)+ 2(1-p9)2 (A.3)

302 In(\/1-p2+ 1)+ gpz In(o?) + gp4 In(p?),

and for the inner region, @ p < 1/2:

V1-p? — 4,2 2 [1_a,2
f dZ‘K(w/p2+22) = 184p ¥ j % -30%In(2) + 3p*In({/1-4p2+1) -  (A.4)
‘[ _p2

INTN

2 2 1 - 02 1-p2
gp4|n(p2)+ 1”‘{1 p —3‘/2 p -gp“m( 1-p2+1)+

2(1- p?)? - 302In(+/1 - p2 + 1) — 302 In(2) + 3p2In(4/1 — 4p? + 1).

The k- and dj-integrations need to be carried out numerically: For this task, Gauss-quadrature with a moderate
number of sampling points (typically five sampling points in one dimension) has proven to yield results that recover
the normalisation of the kernel with an accuracy-af0~°. The performance is around®particles per minute on
a 1.1 GHz G4 processor.

Another choice for the SPH-kernel that is continuous in the unit interval is the function:

K(U) = Ko exp(— ) with Kp ~ 2.267116739 (A.5)

1
1-—u?

but for this function one would need to carry out tteintegration numerically as well, which would be too time
consuming. By chance coincidence, this function yields an excellent fit to the weak lensing radial weighting function
(see Sectl3.3.9.
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Figure A.2.: The cubic spline SPH-kernel (eqm.p), solid line) and the alternative kernel (egA.g), dashed line).
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B. Derivation of spherical matched and
scale-adaptive filter kernels

This appendix presents the derivation of optimised filters for single frequency all-sky observations and serves as a
detailed supplement to Chapt@rwhere optimised filters for multi-frequency observations were derived.

B.1. Assumptions and definitions
In order to construct filters, | consider an all-sky map of the detected scalas(ld

S(0) = y(10 — 6ol) + n(6), (B.1)

wheref = (9, ¢) denotes a two-dimensional vector on the sphere@nd the source location. The first term of
the right-hand side represents the amplitude of the sources to be detected, while the second term corresponds to
the generalised noise present in the map which is composed of any detected features other than the desired signal
including for instance instrumental noise. The statistical properties of the noise are assumed to be characterised by
its power spectrunﬁn[mnj,m> = Cys0mm- In oOrder to sketch the construction of the optimised filter, | assume an
individual cluster situated at the North poléy(= 0) with a characteristic angular SZ-signgb = |8|) = Ar(6),
separating the amplitud&from the profiler(6).

I adapt the following convention for the expansion of the fi&(d) into spherical harmonicg;"(6) and its expan-
sion codficientsaym,

oo+
a0) = > > a,Y(6) anday, = f dQa(8)Y"(6)", (B.2)
=0 m=—(
where the asterisk denotes the complex conjugate @nd d(cos?) dy denotes the dlierential solid angle element.
The backgrouna,(8) is assumed to be a homogeneous and isotropic random field with vanishing mean, which is
characterised by the power spectr@ndefined by

(Vg ) = CeOtrOmm.  With  (n(6)) = 0. (B.3)

n;m denote the spherical harmonics expansiorffotents ofn(0), &, is the Kronecker symbol, ang corresponds
to an ensemble average. Assuming ergodicity of the field under consideration allows taking spatial averages over
suficiently large area® = O(4r) instead of performing the ensemble average.

B.2. Convolution theorem on the sphere

Filtering a scalar field on the sphere with an arbitrary, asymmetric kernel requires the specification of the convolution
path as well as the orientation of the filter kernel at each position on the sphere in order to apply any convolution
algorithm ( ). Because of the simplifying restriction to axially symmetric filter kernels, | give

the theorem for the convolution of two functions, one of which is assumed to be axially symmetric. The filtered
field u(@) is obtained by convolution of the axially symmetric filter functigf®) with the scalar field on the sphere

S0),
u() = f d s(6)(0 - ). (B.4)
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Expansion of these two scalar fields into spherical harmonics yields

00

+{ +¢ o
s6) = Z Z Sym Y7'(6), andy(6) = Z Z U YI(O) = Z 2(;1_;1% P,(cos9). (B.5)
¢=0

=0 m=—¢ =0 m=—¢

00

The last step assumes axial symmetry. In this case, only modesnwitl® are contributing. For proceeding, the
addition theorem for Legendre polynomi&g(x) ( ) is used in substituting = |0 — 3

45

P¢(cosy) = 711

+(
> Y)Y (B). (8.6)
m=—{

Combining these equations and applying the completeness relation yields the convolution relation for an axially
symmetric filter kernel,

00

+0
WA =3 D VP, With Um= |5 Smio. (B.7)

yr 20+1

B.3. Concepts of optimised filtering on the sphere

The idea of optimised matched filters was proposed @y ¢ ), and generalised to
scale-adaptive filters bg ( ) for a flat topology. The construction of a axially symmetric optimised
filter functiony(0) for the amplification and detection of signal profilefeling only in size but not in shape implies
a family of filtersy/(6/R) introducing a scaling paramet@r Decomposing the family of filter functiong6/R) into
spherical harmonics yields

s(8) = RY A\ P cosd), ®9)
=0
o® = 5 [ #0Zu(E)Picos) ®9)

while allowing for central symmetry of the filter function. For a particular choic® tiie filtered fieldu(R, 3) is
obtained by convolution (c.f. Appendi.2):

[e]

+
URA =Y, D Un¥T(B), and tm= | smio(R). (8.10)

=0 m=—¢

Taking into account the vanishing expectation value of the n@ig®)) = 0, the expectation value of the filtered
field at the North polg3 = O is given by

UR0) = A 7o dro(R). (8.11)
=0

Assuming that the power spectrum of the signal is negligible compared to the noise power spectrum, which is
certainly the case in noise-dominated CMB measurements, the variance of the filtered field is given by

¥R = ([uR B) - W(R BNI%) = > C,uZ(R). (B.12)
¢=0

While the optimisednatched filtein the case of single frequency observations is defined to obey the first two of
the following conditions, the optimisestale-adaptive filteis required to obey all three conditions:

1. The filtered fieldu(R, 0) is an unbiased estimator of the source amplitAck the true source position, i.e.
(UR Q) =A
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B.3.1 Matched filter

2. The variance ofi(R, 3) has a minimum at the scaleensuring that the filtered field is affieient estimator.
3. The expectation value of the filtered field at the source position has an extremum with respect to tRe scale
implying
0
SR(UR0)=0. (B.13)

B.3.1. Matched filter

In order to derive the matched filter, constraint (1) can be rewritten yielding

00

ZT[O l//[o =1 (Bl4)

¢=0

Performing functional variation (with respect to the filter functignof o-2(R) while incorporating the constraint
(B.14) through a Lagrangian multiplier yields the spherical matched filter:

0o 2

T -1 T
=a—, Wwhere = —. B.15
Wfo @ C[ @ £ Cg ( )

In any realistic application, the power spectr@xncan be estimated from the observed data provided the power
spectrum of the signal is negligible. The quantitiesr,o, and thus the filter kernef,o can be straightforwardly
computed for any model source profti).

B.3.2. Scale-adaptive filter

The next step consists of reformulating constraint (3) in order to find a convenient representation for the application
of functional variation. The expansion deient of the family of filter functions/(6/R) of egn. 8.8) can be
rewritten yielding

bR =55 [ Pou(5)ve0 = [ FouEViRe), (8.16)

whereg = 6/R. In general, this substitution isot valid, because@ = sinddddg. In the case of localised source
profiles, the angle is small for non-vanishing values @f justifying the approximation sift ~ §. The same
argument also applies for the boundaries of integration. With the aid of Bdii)( condition 8.13) reads

Wo(R) _
=0 (B.17)

6 (]
SRURO) = D 7o

(=0

Using eqn. B.16), the derivative now acts on the Legendre polynorRial

RV 2€4+ =S f &?8/(B)P,(cosRB) B SiNRB = 0. (B.18)
=0 T

Using the derivative relation of the Legendre polynomials’k ),
, +1
Pi(x) = 152 [XPe(X) = Prsa(X)], (B.19)
one obtains

SinRB

In this case, the anglé is small for non-vanishing values @f justifying the approximations siR3 ~ Rg8 and
cosR8 ~ 1. Substituting back, % = d?6/R?, introducingx = cosf = cosRB, and inserting the inversion of
egn. B.16), namely

2 254; L+ Do f 0B /() e~ x [COSRB P,(COSRB) — Pr.2(COSRE)] = 0. (820
(=0

WB) = ) eo(RYC(RA). (B.21)
=0
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Derivation of spherical matched and scale-adaptive filter kernels

one arrives at

Y VI T Droveo® x g [ PP -Pra] 0. (B.22)

t,t=0
Applying the orthogonality relation for the Legendre polynomials,

2

Tan 1556’7 (B.23)

+1
Il dX P(X)Py(X) =

and using the small angle approximation in the second term of Bqg2)(with the same argument as given above,
yields the final result

Z Yeo(R[two + {(t0 — 7r-10)] = 0. (B.24)
=0

Replacing the dferential quotient with the corresponding derivative is a valid approximatiod for 1. Thus,
egn. B.24) can be recast in shorthand notation yielding

2+

INZGE (B.25)
=0

d|nT[0 _
din¢ ] =0

This result could have been obtained independently by attaching the tangential plane to the North pole and applying
Fourier decomposition of the filter functiahand the source profile. For that reason, it is not surprising that the
functional form of this condition on the sphere agrees with that obtainegkly ( ) for a flat topology
in two dimensions. The becomes invalid for large angular scales, because then the multipoles are of comparable or
larger size than any reasonable tangential plane, thus B@#)ié an important generalisation of eqB.25) valid
for Fourier decompositions.

Performing functional variation (with respect to the filter functignof o2(R) while interlacing the constraints
(B.14) and B.25) through a pair of Lagrangian multipliers yields the spherical scale-adaptive filter,

T¢0 d|l’ngo
= 2 12b+c-(2 B.2
Yo A b+c-(2a+b)= =, (B.26)
A = ac-b? (B.27)
) T2
a = 0, (B.28)
= Ce
b = 3 el (B.29)
£iCp de’ '
c = ic—l drro |’ (B.30)
&7 \ding) '

As before in the case of the matched filter, the power spec@uan be derived from observed data provided
the power spectrum of the signal is negligible. Assuming a model source pr@hije¢he quantities g, a, b, ¢, and
finally ¥, can be computed in a straightforward way. The derivative@tvith respect to the multipole ordéris
a shorthand notation of theftérential quotient in eqnB(24).
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C. Integration of Legendre- P, weighted functions

For the derivation of filter kernels (see Chaptgrthe Legendre-transform of@profile p(9) is needed:

T N-1 Zi+1
Pro = 2r f sinddd p(6) | 2P, (cost) = 2y f sinad p(e) | 25+

P,(cosh), (C.1)

I
o

o

|
°
3

profiles p™~(6) and Legendre-P,(cos 6)

15 ! L 115 \2 ! |
polar angle 6

Figure C.1.: The symmetric functiorp*(6) (thick solid line) and its antisymmetric counterpgrt(6) (thin solid line),
along with the even Legendre polynomij-;»(cosd) (dashed line) and the odd polynomidj)-;;(cosd) (dash-dotted
line).

As in the case of Bessel functions (Appendl, the integrand is rapidly oscillating such that is it favourable
to split up the integration. Herg, denotes thé" zero of the Legendre polynomi&,(cosd) with the integration
boundarieszy = cost, = 1 andzy = cosfs = —1. The integration can be accelerated by using the symmetry
properties of the Legendre polynomids(9): P,(0) = P,(-0) for event andP,(6) = —P,(-0) for odd ¢. This
suggests to form a symmetric and an antisymmetric combination,

p'(6) = 5 [p(0) + plr—6)], and p(6) = 3 [p(6) - px—6)], respectively ©2)
Carrying out the integration while inserting the symmetry relations, one obtains for the non-zero contributions:
Pl = 21 0”/ % singda p*(6) 2+1p,(cost), € even €3
Pem = . .
" b = 20 [ sinede pr(6) \[Z2PA(cosh), ¢ odd

which are depicted in FigC.1 In this way, the integrand is always even and hence the integration range can
be reduced t¢0...7/2] instead off0...x]. Consequently, the integrand needs to be evaluated on half as many

189



Integration of Legendre-P, weighted functions

sampling points, or, the numerical accuracy can be increased by distributing the initial number of sampling points
in an interval of half the initial size.
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D. Integration of Bessel- J, weighted functions

D.1. Approximation formulae

In Chapterl3, numerical integrations ovel,-weighted functions need to be carried out. Complications arise be-
cause of the large values é6tonsidered, which causes the integrands to oscillate rapidly, and because of the large
range in the integration variable. The latter property of the integral requires many evaluations of theJBessel-
functions and their derivatives, which can be sped up by using the following two approximations:

, 2[_1”)(5 X1, D1
() = |2 cos(x_ (20 + 1)), x> 1 (D.1)
11
d T X X<,
d5 D.2
dx ((X) { - ’%x[%( Cos(x—%(2{’+1))+sin(x—’£(2€+ 1))],X>> 1 (.2

These approximations, which are depicted in Eidl, yield excellent fits to to the Bessel function.

In the range where the the Bessel functidp) and their derivatives 8(x)/dx need to be properly evaluated, an
exerpt taken from théMBfast code written by: ( ) was used. Their description expresses
Bessel functions as series of cot- and sec-functions (as derived in the excellent boeiksby ), and uses the
recurrence relation of Bessel functions only up to otler5. The derivative can be determined via

d d t
o [X3:(0)| = X' 3,,() — 3009 = 3a(0) = S J(9. (D.3)
Standard descriptions based on spline interpolations fail to deliver the required numerical accuracy at high order
especially when considering the derivativé (k) /dx.

D.2. Numerical integration

When integrating rapidly oscillating functiog$x)J,(X), it is advisable to split up the numerical integration:

N-1 Zi+1

[ axa0u= Y. [ axea. 0.4)
X;

i=0 Y&

wherez denotes thé" zero of the Bessel functiod,(x) and, naturallyzy = x andzy = X;. The zeros of the
Besseld,(x) function have to be evaluated numerically for sma(for instance, by bisection), and coincide with
the zeros of the approximating cos-function for large
In the case of the derivativelg(x)/dx, integration by parts is not feasible because the funetfghto be integrated
is only given numerically and determining the derivative tfjiatencing is likely to pick up noise. The determination
of the zeros of d,(x)/dx can only be carried out numerically, even for large argumeyiiat one can take advantage
of the fact that a zero of3J(x)/dx is always located between two successive zerak(a), which serve as starting
values for the bisection. Further numerical accuracy can be gained if two successive cycl@ermeceid before
adding up all contributions. For the numerical integration in between the zeros, Gaussian quadrature or Romberg
integration have proven to be reliable.
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Integration of Bessel-J, weighted functions

Bessel tunction J(x)

Il Il
10 20 D 40 50
x coordinate

o
o

o

Bessel derivative dJ (x)/dx

|

o

&)
T

L L
0 10 20 . 30 40 50
x coordinate

Figure D.1.: The Bessel functiod,(x) (upper panel) and its derivativelgx)/dx (lower panel) for = 5 (solid line) and
the approximations used for smal(dashed line) and large(dash-dotted line).
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E. Decomposition of mixed 3-point correlators of
density and velocity fields

The determination of corrections to the 2-point correlation function of gravitational lensing including gravitomag-
netic terms (as carried out in ChaptEs) requires the computation of 3-point and 4-point correlators. In this
appendix, it is shown how the 3-point correlation function can be reduced to products of 2-point correlators by
means of perturbation theory. In order to evaluate the 3-point correlation furétianu(k2)é(ks)) in perturbation
theory, the density- and velocity fields are decomposed into linear #tns™ and small perturbations?, v(2):

5(k) = 69(K) +s@K) and v(k) = v (k) + vP(K). (E.1)

As shown by~ry ( ), the second order density perturbation can be written as:

3 3 3
520 = [ s [ @)oo +p - ME.sEdE) = [ G LMEk-PeEe k-, (E2

with the functionM(p, p’) being defined as:

M(p,p’) =

&m(L P’)J(%)Z_ E3)

7 pp\p p) 7\pp
Clearly, the functionM is symmetric,M(p, p’) = M(p’, p) and has the properties thit(—p, —-p’) = M(p, p’) and
M(-p,p’) = M(p, —p’). For the first order perturbation of the velocity field, one obtains:
vP(k) = —iH(a)f(Q)%(S(Z)(k). (E.4)
The 3-point correlation functiots(k,)v(kz)d(ks)) can now be expanded to yield to second order:
(8(k)u(k2)3(ka)y = (6 (ke ) (k2)6P (ka)y + (6 (Ke)vP(k2)6M (ka)) + (62 (kn)v P (k2)6™ (k3)) (E.5)

with the first order terngs™(kq)v®(ky)6M (k1)) vanishing due ta®(k) o« s (k) for truly Gaussian random fields.
If the perturbation is contained in the density fiéldnserting eqn.E.2) into the correlator yields:

3 3 1/
GOk D(k2)6D (k) = f ' f TP 20%0(p + f — ke M(p. P)5(k) SO vke)).  (E.6)

@3 J (@)
Similarly, if the perturbation is the velocity-field, one obtains:
d*p [ By , , ,
(6P (k) (k2)6 W (ka)) = @7 ) B (21)%50(p + P’ — k2)M(p, P')(0(ke) v(P))(w(p') 6(ka)).  (E.7)

Collecting these results for the mixed 3-point correlator of density and velocity fields in question yields for the first
order expansion af5(k1)u(kz2)d(ks)) in perturbation theory:

(Pk)vP(k)P(k3)) = MKy, k2)Pss(IKl)Ps (IKol), (E.8)
(6P (k)v@(k2)sP(ka)) = M(Ke, ks)Ps (IKel)Psy(IKsl), (E.9)
(6PK)vP(k)sP(ks)) = M(ka, ka)Pss(kal)Psy (IKsl), (E.10)

if the conditionz‘f:1 ki = Ois fulfilled. Hence, in first order perturbation theory, the 3-point correlation function
can be decomposed into products of the density-density and density-velocity correlation functions, which are of the
orderv/c (eqns.E.8andE.10), and into the square of the density-velocity cross correlation, which is of ofder
(eqn.E.9).

193



Decomposition of mixed 3-point correlators of density and velocity fields

194



F. Propagation of photons through
gravitomagnetic fields

This appendix provides a detailed derivation of the action of gravitomagnetic potentials on photons and serves as a
supplement to Chaptdr3. The microscopic picture of photon propagation in the presence of general gravitational
fields has been the subject of many treatises, é/gsr(
), but this appendix summarises the main results in a condensed from that has been |mpIemented in
Chapterl3.
The metricg,p is assumed to be weakly perturbedygy on a Minkowski backgroung,y:

(d9)? = gapddX® = (77ap + Yap) X = (1 + 20)c?dt? — 8c A - dx dt — (1 — 2d)dx - dx. (F.1)

The scalar potentiab and the gravitomagnetic vector potentfabre given in the slow motion, near-zone approxi-
mation as solutions to Poisson’s equation with matter depsatyd matter current densify= pv:

AD(X 1) = 1Gp(x,t) — DBt) = -G f . I, t)o|3x’, (F.2)
AWK Y = 41Gj (1) — AR = — |JX(X— ’)?ld3x’. (F.3)

The photon trajectory is described K§(s). At each point the tangent is given b§ = dx?/ds = (u°, u). The path
shall be parametrised by the Euclidean arc lengfh=ddx - dx, in this case the photon trajectory can be written as
X3(£) = (t(£), x(£)) with tangenw® = dt/d¢ ande = dx/d¢, which is normalised bg? = 1. Using these coordinates,
the condition that the photon’s wave-vector needs to be situated on the forward light cone (the null condition) reads:

U, = 0 — (1 + 20)c(W0)? + 8ce-Au’ — (1-2d) = 0. (F.4)
Hence, if the photon transverses a potential it experiences a frequency shift, whose approximate value is given by
the time-component af:
cl=1-2(®-2e-A/c). (F.5)
In this equation, the gravitomagnetic correction to lensing can be adtuch replaces the gravitational scalar
potential® by ® — %A”. For the spatial part, the equation of geodesic transport,

d%u + TP — pa® = 0 (F.6)

has to be solved: denotes a free parameter, reflecting the freedom in choice of the parametrisation. For the spatial
components!', the geodesic equation reads:

%Ui + Tpo(u?)? + 2w’ + T ulu - pa® = 0 (F.7)
For weak perturbationga, the Christdfel-symbold{. can be linearised:
o= 37 [N + Mo ~ o] ()
With the above defined potentialsandA and the ansatZ<(1) for the metric one derives the expressions:
Iy, = 4cA + 2, (F.9)
Ty = 2¢|Aj-A;]-6;®, and (F.10)
W = OkDi—ok®j - 5Dy (F.11)
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Propagation of photons through gravitomagnetic fields

where; = 9/dx and = §/6t. By ignoring A and settingd = Aij = divA, which follows from the continuity
equationo’+ cdivj = 0, one obtains:

%u‘ =c2D; (%2 + 2 [2c(Aq-, i = Ajj) =6 qu,i] ul. (F.12)

With the replacement’ [A; - Aj;| = - [erot A];, the final expression for the tangent is derived:

%e =2VO — 4erotA — (2e VO + ) e. (F.13)

In gravitational lensing, the norm of the wave-veatds conservede? = const, hencé%e2 =e- %e = 0. After
multiplying eqn €.13 with e, the left side can be set to zero and the resulting equation solved Re-inserting:
in egn. .13 gives:

a%e = -2[V®D — ¢(eV®D) — 2u x rotA] = —2[V_ ® — 2u X rotA] . (F.14)

In the last step, the perpendicular gradignt= V — e(eV) has been inserted. This equation is an expression for the
change of direction of a photon transversing a gravitomagnetic field. For the change in wavg]etsgtblation to
the dfine parametet derived by ( ) can be used:

d
gna=u (F.15)

which immediately yields the formula for the integrated Sachs-\WRHes-Sciamafkect:

Al 1 ) obs obs )
24 _ Aobs ~ “source _ _zf a 2o = zf d¢ divA. (F.16)
S S

/l /lsource ource ource
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