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Abstract 

The oculomotor system is one of the best studied motor systems. Afferents from a variety of 

premotor areas converge on the motoneurons in the three oculomotor nuclei to produce the 

different types of eye movements. All oculomotor motoneurons participate in all types of eye 

movements, and it was generally accepted, that these motoneurons form a relative 

homogenous group which provides the final common pathway for extraocular muscle (EOM)-

motor innervation. The EOM in mammals, the effector organs of the oculomotor system, are 

fundamentally different from skeletal muscle. They have two functionally different layers, 

global and orbital layer, and are composed of two major muscle fibre classes, singly-

innervated (SIF) and multiply innervated fibres (MIF). Previous studies in monkey revealed 

that SIF and MIF motoneurons are anatomically separated and have different premotor inputs, 

which support the idea of a dual motor innervation of EOM rather than a final common 

pathway from motoneuron to EOM. Up to date, neither motoneuron type has been further 

characterized nor has any study proven their presence in other species to support the 

hypothesis of the dual motor innervation as a common concept in mammals. The functional 

implication of this system remains speculative, though a role of MIFs together with their 

motoneurons in a sensory feedback system controlling the EOMs is quite possible and heavily 

debated. However, the lack of a common proprioceptor in eye muscles does not support this 

theory. 

In monkeys SIF and MIF motoneurons of extraocular muscles were identified by tracer 

injections into the belly or the distal myotendinous junction of the medial or lateral rectus 

muscle and further characterized by combined tracer detection and immunohistochemical 

methods. The experiments revealed that the MIF motoneurons in the periphery of the motor 

nuclei lack non-phosphorylated neurofilaments, parvalbumin and perineuronal nets, whereas 

SIF motoneurons intensively express all three markers. In addition to the histochemical 
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differences, the MIF motoneurons are on average significantly smaller in size than the SIF 

motoneurons. 

Analogous to the study in monkey, the SIF and MIF motoneurons of the medial and lateral 

rectus muscle of rats were identified with tracer injections and further characterized by 

immunolabelling. For the first time it was shown that both motoneurons types are present in 

rat as well. The MIF motoneurons lie mainly separated from the SIF motoneurons, and are 

different in size and histochemical properties. As in monkey, the smaller MIF motoneurons 

lack non-phosphorylated neurofilaments and perineuronal nets, both of which are definite 

markers for the larger SIF motoneurons. 

A possible proprioceptive control of eye movements requires the presence of proprioceptive 

structures. The palisade endings represent the best candidate for an EOM-proprioceptor. They 

were analysed using antibody stains against the synaptosomal associated protein of 25kDA, 

SNAP-25. With this robust method palisade ending-like structures were identified for the first 

time in the extraocular muscles of the rat. Furthermore the rat palisade endings show 

characteristics of sensory structures thereby supporting their role in proprioception.  

In conclusion, the EOM of both monkey and rat are innervated by two sets of motoneurons 

which differ in localization, morphology and molecular components. These findings further 

support the presence of a dual motor control of EOM that may apply widely to mammals, 

since it was verified in monkey and rat. Palisade endings are a ubiquitous feature of mammal 

EOM and most likely provide sensory information used for the proprioceptive control of eye 

movements. 
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Zusammenfassung 

Das okulomotorische System ist eines der am besten untersuchten motorischen Systeme. 

Eingänge aus unterschiedlichen prämotorischen Zentren konvergieren auf die Motoneurone 

der drei okulomotorischen Kerne, welche die verschiedenen Arten von Augenbewegungen 

generieren. Da alle okulomotorischen Motoneurone an allen Augenbewegungen beteiligt sind, 

war man bisher der Ansicht, dass es sich hierbei um eine einheitliche Gruppe handelt, welche 

gemeinsam den letzten Abschnitt der motorischen Innervation der Augenmuskulatur darstellt. 

Die Augenmuskeln der Säugetiere unterscheiden sich grundsätzlich von der 

Skelettmuskulatur. Sie bestehen aus zwei funktionell unterschiedlichen Schichten, der 

globalen und der orbitalen Schicht, und setzen sich aus zwei Hauptklassen von Muskelfasern 

zusammen, den einfach innervierten Fasern (SIF) und den multipel innervierten Fasern (MIF). 

In früheren Studien an Affen fand man heraus, dass SIF- und MIF-Motoneurone anatomisch 

voneinander getrennt liegen und unterschiedliche prämotorische Eingänge erhalten, was eher 

die Idee einer dualen motorischen Innervation der Augenmuskulatur unterstützt, als die einer 

uniformen Endstrecke. Bisher wurden weder die beiden Motoneuron-Typen weitergehend 

charakterisiert, noch wurden Studien unternommen, die deren Vorhandensein in anderen 

Spezies nachweisen, um so die Hypothese der dualen motorischen Innervation als 

gemeinsames Konzept aller Säugetiere zu bestärken. Die sich aus diesem System ergebenden 

funktionellen Folgerungen bleiben spekulativer Art. Wenn auch heftig debattiert, erscheint es 

durchaus möglich, dass die MIFs zusammen mit ihren Motoneuronen in einem sensorischen 

Feedback-System zur Kontrolle der Augenmuskulatur involviert sind. Da jedoch den 

Augenmuskeln ein gemeinsamer Propriozeptor fehlt, erscheint diese Theorie 

unwahrscheinlich. 

In Affen wurden die SIF- und MIF-Motoneurone der Musculi recti medialis und lateralis 

mittels Tracer-Injektionen in den Muskelbauch oder den distalen Muskel-Sehnen-Übergang 

identifiziert und durch Kombination der Tracer-Darstellung mit immunhistochemischen 



 5

Methoden weiter charakterisiert. Dabei zeigte sich, dass den MIF-Motoneuronen in der 

Peripherie der Augenmuskelkerne unphosphorylierte Neurofilamente, Parvalbumin und 

perineuronale Netze fehlen. Im Gegensatz dazu exprimieren die SIF-Motoneurone diese drei 

Marker mit hoher Intensität. Zusätzlich zu den histochemischen Unterschieden sind die MIF-

Motoneurone im Mittel signifikant kleiner als die SIF-Motoneurone. 

Bei der Ratte wurden analog zu den Studien am Affen die SIF- und MIF-Motoneurone der 

Musculi recti medialis und lateralis mit Tracer-Injektionen identifiziert und mit 

Immunfärbungen charakterisiert. Dabei wurde zum ersten Mal gezeigt, dass auch die Ratte 

beide Motoneuron-Typen besitzt. Die MIF-Motoneurone liegen größtenteils anatomisch von 

den SIF-Motoneuronen getrennt, haben unterschiedliche Größe und histochemische 

Eigenschaften. Wie im Affen fehlen den kleineren MIF-Motoneurone unphosphorylierte 

Neurofilamente und perineuronale Netze, beides definitive Marker für die größeren SIF-

Motoneurone. 

Eine mögliche propriozeptive Kontrolle der Augenbewegung setzt das Vorhandensein 

propriozeptiver Strukturen voraus. Den besten Kandidaten für einen Augenmuskel-

Propriozeptor stellen die Palisadenendigungen dar. Sie wurden mit Antikörperfärbungen 

gegen das synaptosomal-assoziierte Protein von 25kDa, SNAP-25, analysiert. Mithilfe dieser 

Methode konnten im Augenmuskel der Ratte zum ersten Mal Strukturen ähnlich den 

Palisadenendigungen identifiziert werden. Die Palisadenendigungen der Ratte weisen darüber 

hinaus Charakteristika sensorischer Strukturen auf und unterstützen damit ihre propriozeptive 

Funktion. 

Zusammenfassend lässt sich sagen, dass die Augenmuskeln sowohl des Affen als auch der 

Ratte von zwei Typen von Motoneuronen innerviert werden, die sich in ihrer Lage, ihrer 

Morphologie und ihren molekularen Bestandteilen voneinander unterscheiden. Das 

Vorhandensein einer für viele Säugetiere zutreffenden dualen motorischen Kontrolle der 

Augenmuskulatur wird durch die Ergebnisse beim Affen und bei der Ratte zusätzlich 
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unterstützt. Die Palisadenendigungen sind ein allgemeiner Bestandteil der Augenmuskulatur 

von Säugetieren und liefern höchstwahrscheinlich die sensorische Information, die zur 

propriozeptiven Kontrolle der Augenbewegungen benutzt wird. 
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Abbreviations 

ChAT:  choline acetyltransferase 

cMRF  central mesencephalic reticular formation 

EOM:  extraocular muscles 

INT:  abducens internuclear neuron 

IO:  inferior oblique muscle 

IR:  inferior rectus muscle 

LP:  levator palpebrae muscle 

LR:  lateral rectus muscle 

MIF:  multiply-innervated muscle fibre 

MLF:  medial longitudinal fascicle 

MR:  medial rectus muscle 

nIII:  oculomotor nucleus 

nIV:  trochlear nucleus 

nVI:  abducens nucleus 

NIII:  oculomotor nerve 

NMJ:  neuromuscular junction 

NP-NF: non-phosphorylated neurofilament 

OKR:  optokinetic reflex 

SC:  superior colliculus 

SIF:  singly-innervated muscle fibre 

SNAP-25: synaptosomal associated protein of 25kDa 

SO:  superior oblique muscle 

SpV:  spinal trigemial nucleus 

SR:  superior rectus muscle 

VOR:  vestibulo-ocular reflex 
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Introduction 

Extraocular muscles (EOM) 

The extraocular muscles (EOM) are the effector organs for voluntary and reflexive 

movements of the eyes. Among all vertebrates classes, the presence of six EOMs, four recti 

(superior, inferior, medial, and lateral) and two obliques (superior and inferior) is rather 

constant, despite some variation in arrangement and innervation (Isomura, 1981). An 

additional EOM, the levator palpebrae superioris, which elevates the upper eyelid, is present 

only in mammals. Many vertebrates possess accessory EOMs, such as the retractor bulbi 

muscle (Isomura, 1981). This muscle is correlated with the presence of a nictitating 

membrane and both structures act synergisticly in reflex retraction of the globe in response to 

corneal stimulation. Since the levator palpebrae superioris and the rectractor bulbi muscle do 

not contribute to eye movement, they will be not be considered further in this work. All these 

EOMs are relatively consistent across mammalian species in their general location and 

innervation pattern. However, individual muscle actions show interspecies variations, 

particularly in frontal-eyed (e.g., monkey, cat) versus lateral-eyed (e.g., rabbit, rat, mouse) 

animals. These variations are coincident with species differences in the forward extension of 

the maxillary process (Fink, 1953) and the relative angles of the visual axis and the 

semicircular canals (Simpson and Graf, 1981; Ezure and Graf, 1984).  
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Figure 1: Schematic drawing of a right human eyeball viewed from dorsal. The surrounding 
tissue is removed to better visualize the extraocular muscles. The six extraocular muscles are 
shown from their origin of the annulus of Zinn to their insertion onto the globe. The levator 
palpebrae is cut at its origin. (Adapted, from Benninghoff, Anatomie Vol. 2, 15th edition 
1993, Urban and Schwarzenberg). 

 

Participation of each EOM in eye movement 

The individual contribution of each of the four recti and two oblique eye muscles to eye 

movements depends on the point of rotation of the globe, the bony anatomy of the orbit, and 

the origin and insertion of each eye muscle. If one considers the eye rotating about a central 

point, the EOMs cause movement about three axes, x, y, and z. The four recti and the superior 

oblique muscle have their origin from the annulus of Zinn, a tendinous ring which surrounds 

the optic foramen and a portion of the superior orbital fissure, enveloping the optic nerve 

(Sevel, 1986). In contrast, the inferior oblique (IO) muscle arises from the maxillary bone in 

the medial wall of the orbit. The superior oblique (SO) muscle differs from all other EOMs by 

passing through the trochlea, a tendinous ring attached to the medial orbit, before reaching the 

globe. The trochlea is therefore regarded as the functional origin of the SO. Since the 

horizontal and vertical recti have symmetric origins and insertions on both sides of the globe, 
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they function relatively simple and act as antagonists: the medial rectus (MR) as the principal 

adductor, the lateral rectus (LR) as the principal abductor, the inferior rectus (IR) as the 

principal elevator, the superior rectus (SR) as the principal depressor. Since the vertical recti 

insert on the globe at angle of 23° laterally to the visual axis, they have more or less 

secondary roles in adduction for both muscles and intorsion for the SR and extorsion for the 

IR, depending on the direction of the visual axis. The principal action of superior oblique 

(SO) and inferior oblique (IO) muscle is intorsion and extorsion, respectively. Similar to the 

vertical recti, both oblique muscles have secondary functions: the SO additionally depresses 

and abducts the globe, the IO depresses and adducts. The primary actions of these six EOMs 

are similar in lateral-eyed mammals, though their secondary actions in eye movements differ 

from those of frontal-eyed mammals due to divergent insertion on the globe. 

 

Muscle pulleys  

Connective tissue sheaths, the so-called ´pulleys`, also influence muscle actions by coupling 

the extraocular muscles to the globe and orbit (Miller, 1989), thereby acting as peripheral 

mechanical support of the oculomotor system so that each EOM can exhibit its primary action 

in eye movement even in extreme positions of the globe. Pulleys consist of a ring of collagen 

located at above the globe equator of Tenon fascia (Demer et al., 1995). They are coupled to 

the orbital wall, adjacent EOMs, and equatorial Tenon fascia by slinglike bands containing 

densely woven collagen, elastin, and richly innervated smooth muscle (Demer et al., 1997). 

Their anatomy has been consistently demonstrated across diverse species like rat, rabbit, dog, 

horse, monkey, and human (Khanna and Porter, 2001; Oh et al., 2001). Functional MRI 

studies suggest that pulleys inflect rectus and inferior oblique EOM paths in a qualitatively 

similar manner as the inflection of the superior oblique tendon path by the trochlea. Recent 

studies verified that EOMs show a layered structure, an inner global layer that extents the full 

muscle length from the annulus of Zinn to the tendinous insertion on the sclera of the globe, 



 11

and an outer orbital layer, that ends before the muscle becomes tendinous, a consequence of 

its insertion into the muscle pulley (Demer et al., 2000; Miller et al., 2003). Thereby, the 

function of the orbital layer is, instead of rotating the globe along with the global layer, to 

position the pulley, as proposed by the “active pulley hypothesis” (Oh et al., 2001; Demer, 

2002). Even though the detailed implications of pulleys for the control of eye movements is 

still controversially debated (Dimitrova et al, 2003), pulleys are in every aspect fundamental 

to understanding eye movements. New models of eye movements, like SEE-KID (www.see-

kid.at) implement, at least for some aspects, the role of pulleys. 

 

Functional types of eye movements 

Stated simply, the need for eye movements is to permit the clear vision of objects, therefore 

creating the physiological basis for holding an image fairly steady on the retina. In primates 

one can distinguish between six distinct types of eye movements, the vestibulo-ocular reflex 

(VOR), the optokinetic reflex (OKR), saccades, smooth pursuit, vergence, and lastly gaze-

holding. Since our eyes are attached to our heads, the disturbances that are most likely to 

affect vision are head perturbations, especially those that occur during locomotion (Miles, 

1998; Grossman et al., 1988). Thus, to prevent blur during head/body movements, two 

reflexive oculomotor control systems evolved to stabilize images on the retina, the VOR and 

OKR. The VOR depends on the ability of the labyrinthine mechanoreceptors to sense head 

accelerations, whereas the OKR depends on the ability of the brain to determine the speed of 

image drift on the retina. Both types of eye movements are the phylogenetically old and can 

be found in all vertebrates, they function together to stabilize gaze. With the evolution of a 

specialized retinal area for precise vision (fovea, area centralis), it became now important to 

focus the desired targets, even without moving the head. This is done by a saccade, a rapid 

eye movement of the eyes that changes the line of sight and translates the image from an 

eccentric retinal position to the fovea. Since vision is blurred during saccades, they have very 
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short duration (e.g. in human for 20-150ms) and reach speeds up to 800°/s. Saccades include 

both voluntary and involuntary changes of fixation, the quick phases of vestibular and 

optokinetic nystagmus (that reset the eyes during prolonged rotation thus preventing extreme 

orbital positions of the eyes), and the rapid eye movements occurred during rapid eye 

movement (REM) sleep. Although compensatory eye movements (VOR and OKR) dominate 

in afoveate animals, they do show the same repertoire of saccadic eye movements, but 

voluntary saccades have to be always linked to voluntary head movements to override 

vestibular and optokinetic drives. In contrast, smooth pursuit movements and visual fixation 

are limited to foveate animals (Fuller, 1985). The smooth pursuit systems allows one to track 

small moving targets with the fovea in a fixed visual environment (or to hold the image of a 

near target on the fovea during self motion), by rotating the eyes at the same angular velocity 

as that of the target (Miles, 1998). Because other visually mediated eye movements have to be 

suppressed during smooth pursuit movements (e.g. VOR), the implication is that smooth 

pursuit depends on the ability to filter out visual motion inputs save for those at the focus of 

attention. This or a similar mechanism could even help to hold a stationary object steady on 

the fovea when the observer is stationary, thus enabling visual fixation. With the development 

of frontal vision and binocularity, disconjugate (in contrast the other eye movement types, that 

are conjugate) or vergence eye movements became also necessary, so that images of an object 

of interest could be placed on both foveas simultaneously. Loss of focus of images on the 

retina stimulates vergence movements that associated with accommodation of the lens and 

pupillary constriction.  

 

Fine anatomy of EOMs 

The functional demands placed upon the extraocular eye muscles as shown above explains 

their complex organization. Already 1938, Kato showed that in mammals the six EOMs are 

characterized by a distinctive compartmentalized organization (Kato, 1938). Each has an outer 
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orbital layer adjacent to the orbital bone and an inner global layer close to the optic nerve and 

the eye. Sheep possess a distinct third muscle layer (Harker, 1972a). It lies mainly distally in a 

C-shape around the outside of the orbital layer, the peripheral patch layer. A similar layer, 

called the marginal layer was described in human (Wasicky et al., 2000). Its presence in other 

species remains unclear. The orbital layer is comprised of smaller diameter fibres and 

typically has a C-shaped appearance encompassing the global layer except for a small gap left 

in rectus muscles or completely encircles the global layer in oblique muscles (Oh et al., 2001). 

Whereas the global layer extents the full muscle length from the annulus of Zinn to the 

tendinous insertion on the sclera of the globe, the orbital layer ends before the muscle 

becomes tendinous, a consequence of its insertion into the muscle pulley, as shown by recent 

studies (Demer et al., 2000; Miller et al., 2003).  

Skeletal muscles are characterized by the presence of four basic muscle fibre types that differ 

on the basis of biochemical (Moore and Schachat, 1985), histochemical (Brooke and Kaiser, 

1970), immunocytochemical (Pierobon-Bormioli et al., 1980, 1981), ultrastructural 

(Schiaffino et al., 1970) and physiological (Burke, 1981) properties: 1. slow twitch, fatigue 

resistant; 2. fast twitch, fatigue resistant; 3. fast twitch, fatigable; 4. fast twitch, intermediate. 

These four fibre types are found in various proportions in virtually every mammalian skeletal 

muscle.  

Early studies recognized that the myofibres in mammalian EOM were atypical. 1955, Siebeck 

and Kruger identified two basic EOM fibre types which were characterized as 

Fibrillenstruktur and Feldernstruktur on the basis of their histochemical appearance. The 

Fibrillenstruktur fibres are similar to the typical twitch fibres in skeletal muscle and are now 

designated as singly-innervated fibres, SIF. After stimulation, twitch fibres respond with a 

contraction in an all-or-none fashion. In contrast, Feldernstruktur fibres are unique to 

extraocular muscle and few other craniofacial muscles, e.g. tensor tympani and laryngeal 

muscles (Fernand and Hess, 1969). These fibres are multiply-innervated, now designated as 
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MIF, showing multiple nerve contacts along their length and are a regular component of the 

skeletal muscles of Amphibians, Reptiles and Fish (Morgan and Proske, 1984). Under the 

light microscope, these fibres show a characteristic broad Z-line. Beginning with the basic 

differences in innervation pattern of SIFs and MIFs in EOM, several studies have been carried 

to out in various mammalian species to characterize the EOM fibre types in detail (mouse: 

Carry et al., 1982; rat: Pachter and Colbjornsen, 1983; rabbit: Reichmann and Srihari, 1983; 

sheep: Harker, 1972b; cat: Hanson et al., 1980; primates: Ringel 1978b; human: Ringel et al., 

1978a). Even though these studies failed to develop a unitary classification, it is now 

generally accepted, that the EOMs contain six distinct fibre types with a broad spectrum of 

differences from other skeletal muscle fibre types.  

 

Characterization of the six EOM fibre types 

The most accepted scheme for EOM fibres type classification uses the obvious features of 

location (global or orbital), innervation pattern (SIF or MIF), and fatigue properties, or color 

(for a detailed review see: Porter et al., 1995; Spencer and Porter, 1988). Thus, the orbital 

layer contains two fibre types, one SIF and one MIF, and the global layer contains four fibre 

types, three SIF and one MIF, a pattern which is highly conserved within the mammalian 

species. The orbital singly-innervated fibre, the predominant fibre type (80%) of the orbital 

layer, has an extremely high content of mitochondria, high levels of oxidative enzymes, and a 

dense network of associated capillaries (much higher than in the global layer), implementing 

this fibre type to be among the most fatigue resistant mammalian skeletal muscle fibre types. 

Normal eye muscle tension never drops below 8-12 grams (Collins, 1975); this fibre type 

most likely is a major contributor to this force. The orbital layer MIFs are the remainder of 

fibres (20%) in the orbital layer. Physiologic studies indicate that these fibres change their 

properties along their length in a way that at the distal and proximal ends of the orbital layer 

they have the characteristics and innervation of a non-twitch muscle fibre, but in the central 
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region they have the characteristics and innervation of a twitch muscle fibre (Pachter, 1984; 

Jacoby et al., 1989). All of the SIFs in the global layer exhibit traits of fast-twitch fibres. The 

global red SIFs, which make up 30% of all global layer muscle fibres, show histochemical 

and ultrastructural features similar of that of the orbital SIF, suggesting that it is fast-twitch 

and highly fatigue resistant. The global intermediate and pale SIFs, each makes up of about 

30% of the global layer fibres, differ mainly in their mitochondria content, with scattered 

clusters of mitochondria in the intermediate type, and few, small mitochondria in the pale 

type. Thus, the intermediate SIF has a profile of a fast-twitch fibre, with intermediate fatigue 

resistance, whereas the profile of the pale SIF is fast-twitch with low fatigue resistance. 

Global MIFs constitute the remaining 10% of fibres in the global layer. These fibres do not 

propagate action potentials like twitch-fibres, but undergo slow, local contractions at each 

synaptic site (Nelson et al., 1986; Chiarandini and Jacoby, 1987; Jacoby et al., 1989, 1990).  

Because of these functional differences among the six EOM fibre types, attempts were made 

to associate EOM fibre type with specific eye movement types (Jampel, 1967). Instead, it was 

shown that all motoneurons and all EOM fibre types participate in all eye movement classes. 

In addition, these studies demonstrated that orbital layer fibres are recruited before global 

layer fibres (Scott and Collins, 1973).  

 

Molecular properties of EOM 

Recent studies on extraocular muscle fibres have focussed on myosin heavy chain expression 

and gave additional evidence for the outstanding properties of EOM. Myosin heavy chain is a 

key determinant of contractile properties of a muscle fibre. Multiple myosin genes encode 

proteins differing in contraction speed and energetic demands such that an individual skeletal 

muscle fibre typically expresses the one myosin isoform that is best suited for its workload. 

EOM expresses virtually all known striated muscle isoforms of myosin heavy chain, and 

shows additionally frequent heterogeneity in myosin expression within a single muscle fibre 
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(Wieczorek et al., 1985; McLoon et al., 1999; Wasicky et al., 2000; Rubinstein and Hoh, 

2001; Briggs and Schachat, 2002). And even genetic approaches have further characterized 

EOM as fundamentally distinct from skeletal muscle (Porter et al., 2001; Cheng and Porter, 

2002; Fischer et al., 2002), though the notion that EOM may be a distinct muscle tissue class 

has been rejected (Khanna et al., 2003). 

Gene expression profiles of orbital versus global layer have been performed using DNA 

microarray analysis (Khanna et al., 2004). 181 transcripts with preferential expression in 

orbital or global layer have been identified. Among these, several slow/cardiac muscle 

markers were preferentially expressed in the orbital layer, suggesting that the orbital layer 

may be functionally slower then the global layer. 

 

Motor innervation of eye muscles 

In skeletal muscle, the signal from a motor nerve is transmitted onto the muscle fibre at the 

neuromuscular junction (NMJ). A presynaptic motoneuron axon enters the muscle, branches 

to innervate multiple muscle fibres, loses the myelin sheath adjacent to each fibre 

immediately, and finally forms a mitochondria and synaptic vesicle-filled bouton that closely 

contacts individual myofibres at one site only. The presynaptic boutons lie in deep synaptic 

gutters formed by invagination of the myofibre sarcolemma, thereby minimizing 

neurotransmitter distance and isolating the cell-cell interactions from the extracellular milieu. 

In addition, sarcolemmar postjunctional folds increase the surface area for synaptic interaction 

(for a review see Sanes and Lichtmann, 1999). 

This idealized synaptic profile has considerable variations at the NMJs and demonstrates in 

extraocular eye muscle its extreme variability. Using actylcholinesterase histochemistry and 

immunohistochemistry together with light and electron microscopy, two principal endplate 

types in EOM fibres have been identified (Mayr et al., 1975; Ringel et al, 1978; Oda, 1986; 
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Ogata, 1988). So-called ´en-plaque` endings, which are similar to the NMJs in skeletal 

muscle, are the characteristic type of ending in EOM SIFs. In longitudinal sections, they end 

as elongated or round cluster in the middle third of a single fibre. In human EOM, ´en-plaque` 

endings have a mean diameter of about 27µm, with only one ending per SIF. In contrast, the 

multiply-innervated fibres (MIFs) have so-called ´en-grappe` endings, which are irregularly 

distributed over the whole length of a single MIF. This type of ending is notably smaller in 

diameter, about 9.5µm in human EOM, and the boutons lie superficially on the fibre surface 

(Namba et al, 1968a; Ogata, 1988). In many cases, an unmyelinated nerve fibre runs along a 

MIF splitting up in several ´en-grappe` endings. Despite the morphologic differences of the 

´en-grappe` endings compared to skeletal muscle endplates, they possess the molecular 

framework for the principal NMJ signal transduction (Khanna et al., 2003).  

 

Sensory innervation of EOM 

Muscle spindles, Golgi tendon organs, and palisade endings 

Three putative proprioceptors are found in eye muscles: muscle spindles, Golgi-tendon organs 

and palisade endings (called myotendinous cylinders when the collagen sheath is included) 

(Cilimbaris, 1910a; Maier, DeSantis et al., 1974; Büttner-Ennever et al., 2003). Whereas 

muscle spindles and Golgi tendon organs are the typical proprioceptors in skeletal muscles 

that generate sensory information used for motor control, the palisade endings are unique to 

EOMs. The term ‘palisade endings’ was first used by Dogiel (1906) who described a recurrent 

nerve entering the myotendinous junction from the tendon, which then split up into a 

“....whole bunch of small nerve branches of varying thicknesses, reaching the end of a muscle 

fibre and surrounding it from all sides like a palisade”. 

Searching for muscle spindles and Golgi tendon organs in EOM will be unrewarding in most 

cases. Accordingly, many species do not have muscle spindles, and in those that do (including 
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humans), the spindles have been described on morphological grounds to being incapable of 

any proprioceptive function, particularly those found in humans (Ruskell, 1999; Bruenech and 

Ruskell, 2001). Moreover, Golgi tendon organs are very rare and only found in artiodactyls 

(Abuel-Atta et al., 1997; Blumer et al., 2000; 2001; 2003). If present, both proprioceptors 

appear to be confined to a specific layer of the eye muscles (Büttner-Ennever et al., 2003): 

muscle spindles are predominantly in the orbital layer, Golgi tendon organs in sheep are found 

in the outermost peripheral patch layer, which surrounds the orbital layer distally (Blumer et 

al., 2000). This scheme can be extended to palisade endings, which are located exclusively at 

the myotendinous junction of the global layer (Dogiel, 1906; Cilimbaris, 1910b; Ruskell, 

1999). Palisade endings form a cuff of fine vesicle-laden nerve terminals that insert only on 

the tip of the MIFs of the global layer, and, in the majority of cases, also on the adjacent 

collagen fibres of the tendon (Alvarado-Mallart and Pincon Raymond, 1979; Lukas et al., 

2000). The palisade terminals arise from nerve fibres that enter the tendon from the central 

nerve entry zone, and then turn back 180°, to contact the tip of the muscle fibres (see figure 

2). 

 

Palisade endings and their role in proprioception 

Several authors have suggested that palisade endings could be the source of sensory afferent 

signals (Ruskell, 1999; Weir et al., 2000; Donaldson, 2000; Büttner-Ennever et al., 2002); but 

there are still conflicting reports on the functional nature of palisade endings, whether they are 

sensory or motor structures, or both. The ultrastructural morphology of palisade endings in 

cat, rhesus monkey and sheep has been shown to be typical of a sensory structure (Ruskell, 

1978; Alvarado-Mallart and Pincon Raymond, 1979; Blumer et al., 1998). However, in rabbit 

(Blumer et al., 2001), and for some part in human (Lukas et al., 2000) and cat (Konakci et al., 

2005), the palisade terminals exhibit motor-terminal-like morphology.  
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The problem is compounded by the conflicting evidence for the location of the cell soma of 

the palisade ending. If the palisade endings are sensory their ganglion cell body should be in 

the trigeminal ganglion or in the mesencephalic trigeminal nucleus; whereas if the endings are 

of a motor origin then they would have cell bodies associated with the oculomotor nucleus. 

Tozer and Sherrington (1970) as well as Sas and Schab (1952) provided evidence for their 

location in the oculomotor nerve or nucleus, a result more compatible with a motor role for 

the palisade endings (Gentle and Ruskell, 1997; Ruskell, 1999): whereas the results of other 

studies point to the trigeminal ganglion as the location of palisade ending soma, and imply a 

sensory function (Billig et al., 1997). Thus, up to now the function of palisade endings 

remains unclear. 

Palisade endings have been found in almost all investigated species, with the exception of the 

rat (Daunicht, 1983; Daunicht et al., 1985). So far, it cannot be assumed that all mammals 

have palisade endings in the global layer of their eye muscles. 

 

 

Figure 2: Schematic drawing illustrating the relationship of a palisade ending and the 
myotendinous junction of the global layer MIF. A myelinated nerve runs parallel a MIF, then 
loops back in the tendon and divides to form terminal branches which terminate on the 
collagen fibrils and on the muscle fibre. (Adapted from Alvarado-Mallart and Pincon 
Raymond, 1979) 
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Motoneurons of eye muscles 

The increased interest in the motor control of eye muscles in the late 1960’s was stimulated 

mainly by the vestibular studies of Bernard Cohen, and the recording-modelling approach of 

David A. Robinson and his colleagues. This resulted in the development of a thorough 

understanding of many aspects of the oculomotor system (Cohen, 1974; Büttner and Büttner-

Ennever, 1988; Leigh and Zee, 1991; Leigh and Zee, 1999). Several relatively independent 

premotor circuits carrying vestibular, saccadic, smooth pursuit or vergence signals, have been 

discovered, modelled and shown to converge on the motoneurons in the oculomotor, trochlear 

or abducens nuclei. The motoneurons generate motor responses, some with more tonic, others 

with a more phasic properties, but all of the motoneurons respond with every type of eye 

movement (Keller and Robinson, 1972; Fuchs et al., 1985; Dean, 1996). This concept of a 

final common pathway has become widely accepted but remains incomplete (Ling et al., 

1999; Miller, Bockisch et al., 2001). 

 

Anatomy of motoneurons 

The motoneurons innervating the eye muscles lie in three separate nuclei: the oculomotor 

(nIII) and trochlear nucleus (nIV) in the mesencephalon, and further caudal, the abducens 

nucleus (nVI) in the pons (figure 3).  
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Figure 3: Illustration of a monkey brainstem and midbrain, sagittal view, showing the 
anatomic localization of the oculomotor (nIII), trochlear (nIV), and abducens nucleus (nVI). 
SC: superior colliculus, IC: inferior colliculus, MLF: medial longitudinal fascicle, io: inferior 
olive, nXII: hypoglossal nucleus. 
 

 

The oculomotor nucleus (nIII) is located as compact paired nucleus in the tegmental area of 

the midbrain, ventral to the aqueduct and dorsal to the fibres of the medial longitudinal 

fascicle (MLF) and innervates via the oculomotor nerve (NIII) ipsilaterally the medial (MR) 

and inferior rectus (IR), and the inferior oblique (IO) muscle, and contralateral the superior 

rectus muscle (SR). As early as 1878, Henson and Völckers showed by stimulation 

experiments, that motoneurons within the oculomotor nucleus innervating the same eye 

muscle are bundled. The localization of these subgroups has been the issue of many studies 

and was described in monkey (Warwick, 1953; Büttner-Ennever and Akert, 1981; Porter et 

al., 1983), cat (Naito et al., 1974; Gacek, 1974; Akagi, 1978), rabbit (Akagi, 1978; Murphy et 

al., 1986), rat (Glicksman, 1980; Labandeira-Garcia et al., 1983), and guinea pig (Gomez-

Segade and Labandeira-Garcia, 1983). The motoneuron subgroups within nIII show a 

topographic organization. From rostral to caudal, the motoneuron populations in all species 
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follow an IR, MR, IO, and SR sequence (Evinger, 1988). One apparent difference in the 

organization between primates and non-primate mammals is the existence of three 

anatomically distinct subpopulations of MR motoneurons in primate (Büttner-Ennever and 

Akert, 1981). The greatest part of MR motoneurons form the A-group at the ventral portion of 

nIII, the B-group is located more dorsolaterally, and finally smaller diameter motoneurons 

form the C-group dorsomedially of nIII.  

The oculomotor nucleus also contains internuclear neurons (INT) that project to the 

contralateral abducens nucleus (Highstein, 1977; Langer et al., 1986). In primates, on the 

dorsal pole at caudal planes of nIII, the motoneurons innervating the levator palpebrae (LP) 

form the central caudal nucleus, an unpaired nucleus embedded between the paired nIII. In 

lateral-eyed mammals like rat and rabbit, the LP-motoneurons lie laterally and occupy the 

ventrolateral part of the contralateral nIII at very caudal levels of this nucleus (Evinger et al., 

1987). The distribution of the motoneurons subgroups in the monkey and rat nIII is 

summarized in figure 4. 
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Figure 4: Coronal sections illustrating the location of motoneurons in the oculomotor nucleus 
of the monkey and rat. The rat sections are enlarged. (Adapted from Evinger, 1988) 
 

 

Typically, the trochlear nucleus (nIV) occupies a region immediately caudal and slightly 

lateral to nIII. In mammals, it contains mainly (96-98%) motoneurons innervating the 

contralateral superior oblique (SO) muscle via the trochlear nerve (NIV). The remaining 

motoneurons project to the ipsilateral SO (Miyazaki, 1985; Evinger et al., 1987). 

 

In mammals, the abducens nucleus (nVI) appears as rounded cluster of cells at the medullary-

pontine junction at the bottom of the fourth ventricle, just below the facial genu. The majority 

of abducens motoneurons innervate the ipsilateral lateral rectus muscle (LR) via the abducens 

nerve, whereas only few innervate the accessory eye muscles, retractor bulbus (Spencer et al., 

1980) or accessory LR, if present (Spencer and Porter, 1981). A second population within the 
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abducens nucleus is formed by the internuclear neurons (INT) that project rostrally via the 

MLF to the MR motoneurons in the contralateral oculomotor nucleus (Büttner-Ennever and 

Akert, 1981; McCrea et al., 1986). The exact location of INT in mammals is species-specific. 

In primates both neuron groups are not separated clearly, but tend to cluster in a band that 

extends from the dorsolateral to the ventromedial part of nVI at caudal planes and occupy the 

region lateral to the rootlets of NVI further rostrally (Büttner-Ennever, Horn et al., 1989). In 

contrast, in rat it was reported that they form a distinct cap at the lateral and ventral edges of 

nVI (Glicksman, 1980; Labandeira-Garcia et al., 1983). Both motoneurons and internuclear 

neurons form the anatomical basis for conjugated horizontal eye movements in mammals. In 

macaque monkey, a distinct group of neurons was identified in the rostral cap of nVI, 

extending even medial to the MLF, that projects to the floccular region of the cerebellum 

(Langer et al., 1985). Functionally these neurons are regarded as part of the paramedian tract 

neurons (PMT-cells) that receive afferent input from all premotor centres of the oculomotor 

system and project themselves to the floccular region of the cerebellum (Büttner-Ennever, 

1992). Their function is still unclear. They may carry an eye-position signal to the cerebellum, 

which is in line with lesions in the PMT-system that resulted in deficits in gaze holding and 

smooth pursuit (Büttner et al., 1995). 

 

A revision of the organization of the oculomotor nuclei 

In all studies that examined the organization of the oculomotor nuclei in different species, it 

has not been possible to correlate the presence of two distinct fibre types, SIF and MIF, with 

different types of innervation in EOM, to different motoneuron populations. This issue was 

first dealt with by Büttner-Ennever 2001 (Büttner-Ennever et al., 2001) in a study in macaque 

monkey, where different location of the tracer injection sites resulted in the retrograde 

labelling of different motoneuron populations within a given oculomotor nucleus. 

Specifically, a tracer injection placed into the central endplate zone of an eye muscle labelled 
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large (SIF) motoneurons within nIII, nIV and nVI, and smaller motoneurons lying mainly 

around the periphery of these nuclei. In contrast, a tracer injection into the distal 

myotendinous junction of an EOM, where only ´en-grappe` endings of multiply-innervated 

muscle fibres (MIF) are found, labelled selectively the motoneurons (MIF motoneurons) that 

are distributed around the periphery of the classical oculomotor nuclei. In nIII, the MIF 

motoneurons of both IR and MR are grouped together mainly on the dorsomedial border and 

form the C-group (Büttner-Ennever et al., 2001). In contrast, the MIF motoneurons of the SR 

and IO are predominately located bilaterally around the midline, forming the S-group 

(Wasicky et al., 2004). In the trochlear nucleus, the MIF motoneurons lie almost exclusively 

like a cap at the dorsal border of the nucleus, whereas the MIF motoneurons of the abducens 

nucleus surround its medial half. Taken together, SIF and MIF motoneurons form two 

anatomical separated populations and are likely to have different functions.  

 

The dual motor control of EOM and its possible role in proprioception 

The recent tracer experiments in monkey EOM show that two sets of motoneurons, SIF and 

MIF motoneurons control the extraocular muscles (Büttner-Ennever et al., 2001). Subsequent 

studies of premotor inputs on both types of motoneurons revealed that MIF motoneurons 

(innervating the global layer MIFs) are associated with premotor areas for vergence, gaze 

holding, and visual fixation but in contrast to SIF motoneurons, not with premotor areas 

generating saccades or VOR (Büttner-Ennever et al., 2002; Wasicky et al., 2004). Thus, this 

dual motor control is in conflict with the theory of a single final common pathway from 

motoneuron to eye muscle. In the EOM of many mammals, the multiply-innervated non-

twitch muscle fibres of the global layer and palisade endings form a unique unit. Considering 

the evidence that palisade endings most likely subserve a sensory function, has led to the 

propose of the following hypothesis: only the SIFs play a significant role in eye movement, 
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whereas the global layer MIFs adjust the tension on the eye muscle, possibly operating 

through the palisade endings. The palisade endings may provide an afferent signal to the CNS 

which is used to adjust eye-alignment (Büttner-Ennever et al., 2002). 
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Aims of this PhD-project 

1. SIF and MIF motoneurons of the oculomotor nuclei provide the dual motor innervation of 

the extraocular eye muscles in macaque monkey. Since the muscle fibre types innervated by 

SIF and MIF motoneurons show extreme different morphological and functional properties, 

and, in addition, both motoneuron populations receive a different premotor innervation, it is 

likely to assume that these differences are reflected in the properties of SIF and MIF 

motoneurons themselves.  

Thus, in the primate model, both motoneuron populations will be characterized on a 

morphological, molecular, and functional level using combined tract tracing and 

immunohistochemical methods. The resulting characteristics should help to identify the 

complete population of MIF and SIF motoneurons in the oculomotor nuclei of the monkey 

and may provide the basis for the identification of similar populations in other species 

including human.  

The results are described and discussed in paper 1, pp 29-66 

 

2. The dual motor innervation of EOM may be regarded as a result of the visual demands 

placed upon the oculomotor system in highly developed frontal-eyed mammals like primates. 

According to this point of view, lateral-eyed mammals like the rat may differ in the 

organization of the motor control of their eye muscles. On the other hand, rat EOMs exhibit 

the same EOM fibre types as primates (Pachter, 1983; Pachter and Colbjornsen, 1983; Ringel 

et al., 1978; Spencer and Porter, 1988), and their eye movements include both fast and slow 

types (Delgado-Garcia, 2000).  

To clarify if the dual motor control of EOM is a ubiquitous feature at least in mammals the 

organization of the motoneurons subserving the horizontal eye muscles in rat will be studied 

with similar methods used for the primate model.  

The results are described and discussed in paper 2, pp 67-102 
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3. The hypothesis that EOM generate a proprioceptive signal focuses on the presence of 

palisade endings associated with the multiply-innervated non-twitch fibres of the global layer. 

Up to now, the function of palisade endings remains unclear. Conflicting results describe their 

properties as sensory (Ruskell, 1978; Alvarado-Mallart and Pincon Raymond, 1979) or motor 

(Blumer et al., 2001; Lukas et al., 2000). Further, palisade endings are not known to be a 

ubiquitous feature of all mammals, since in rat no such structure was described. In part these 

contradictions are based on the lack of a specific marker for palisade endings.  

Thus, a staining technique should be developed which visualizes axon, branches and, most 

crucial of all, terminal boutons of the palisade endings. In addition, this marker should be 

simply combined with other immunohistochemical techniques to establish the functional 

properties of these putative receptors. Furthermore, this staining method should be suitable to 

look for similar structures in rat EOM. 

The results are described and discussed in paper 3, pp 103-112 
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Results 

Paper 1: Motoneurons of multiply-innervated muscle fibres in extraocular muscles have 

different histochemical properties than motoneurons of singly-innervated muscle fibres 
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Summary 

The extraocular muscle fibres of vertebrates can be classified into two categories: singly-

innervated fibres (SIFs) and multiply-innervated fibres (MIFs). In monkeys the motoneurons 

of SIFs lie within the oculomotor, trochlear, and abducens nucleus, whereas the motoneurons 

of MIFs appear in separate subgroups in the periphery of the classical nuclei borders. In the 

present study we investigated the histochemical properties of SIF and MIF motoneurons using 

combined tract-tracing and immunofluorescence techniques. 

In monkeys SIF and MIF motoneurons of extraocular muscles were identified by tracer 

injections into the belly or the distal myotendinous junction of the medial or lateral rectus 

muscle. Alternatively the motoneurons were identified by choline acetyltransferase 

immunostaining. These techniques were combined with the detection of four histochemical 

markers: perineuronal nets, non-phosphorylated neurofilaments, parvalbumin and cytochrome 

oxidase. 

The experiments revealed that the MIF motoneurons in the periphery of the motonuclei do not 

contain non-phosphorylated neurofilaments or parvalbumin and lack perineuronal nets. In 

contrast, SIF motoneurons express all markers at high intensity. Cytochrome oxidase 

immunostaining was found in both motoneuron populations. An additional population of 

motoneurons with ‘MIF properties’ was identified within the boundaries of the abducens 

nucleus, which could represent the motoneurons innervating MIFs in the orbital layer of 

lateral rectus muscle. Our data provide evidence that SIF and MIF motoneurons, which can be 

correlated with twitch motoneurons and presumed non-twitch motoneurons, differ in their 

histochemical properties. The absence of perineuronal nets, non-phosphorylated 

neurofilaments and parvalbumin may help to identify the homologous MIF motoneurons in 

other species, including humans. 
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Abbreviations 

CCN:  central caudal nucleus 

ChAT:  choline acetyltransferase 

Cox  cytochrome oxidase 

CSPG:  chondroitin sulfate proteoglycan 

CTb:  cholera toxin subunit B 

EW:  Edinger-Westphal nucleus 

IO:  inferior oblique muscle 

LR:  lateral rectus muscle 

MIF:  multiply-innervated muscle fibre 

MR:  medial rectus muscle 

nIII:  oculomotor nucleus 

nIV:  trochlear nucleus 

nVI:  abducens nucleus 

NVII:  facial nerve 

NP-NF: non-phosphorylated neurofilament 

PV:  parvalbumin 

SIF:  singly-innervated muscle fibre 

SO:  superior oblique muscle 

SR:  superior rectus muscle 

WFA:  Wisteria floribunda agglutinin 

WGA-HRP wheat germ agglutinin and horseradish peroxidase complex 
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Introduction 

The extraocular eye muscles are unique striated muscles, which differ in many respects from 

skeletal muscles. They consist of an outer orbital layer that is adjacent to the orbital bone, and 

an inner global layer adjacent to the eye globe. Only the global layer extends over the full 

muscle length from the annulus of Zinn to a well-defined tendon at the limbus of the globe 

(for review: see Porter et al., 1995). The orbital layer ends before the tendon (Oh et al., 2001) 

and is thought to insert on the collagenous pulleys, the Tenon’s capsule (Demer et al., 2000; 

Oh et al., 2001; Demer, 2002). Based on morphological properties, three main categories of 

fibres can be identified in extraocular muscles: singly-innervated muscle fibres (SIFs) and two 

types of multiply-innervated muscle fibres (MIFs), one in the global and one in the orbital 

layer (for review: Mayr et al., 1975; Bondi and Chiarandini, 1983; Morgan and Proske, 1984; 

Spencer and Porter, 1988; Porter et al., 1995).  

The SIFs correspond to the typical ‘all-or-nothing’ twitch muscle fibres of the skeletal 

muscles in mammals. In the eye muscles they are innervated by relatively thick axons, which 

terminate as large “en-plaque” endings within the middle third of the muscle. Upon electrical 

stimulation of the nerve they respond with propagated action potentials leading to a twitch, 

and are often called ‘twitch muscle fibres’ (Lennerstrand, 1974; Chiarandini and Stefani, 

1979; Nelson et al., 1986; Jacoby et al., 1989; Lynch et al., 1994).  

In mammals MIFs are rare, but are more common in skeletal muscles of amphibians and birds 

(Morgan and Proske, 1984). The MIFs of the global layer show a homogeneous morphology 

along their whole length, and they are innervated by multiple “en-grappe” endings throughout 

their extent (Pachter, 1984). After electrical stimulation MIFs respond with slow, graded 

potentials at each nerve ending, which are not propagated in an ‘all-or-nothing’ fashion, and 

resulting in the development of a tonic tension (Lennerstrand 1974; Chirandini and Stefani, 

1979). Therefore these global MIFs correlate with the ‘non-twitch muscle fibres’.  
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In contrast, the MIFs of the orbital layer are more complex and show histochemical and 

morphological variation along their length (Pachter, 1984). Aside from the multiple 

innervation by “en-grappe” endings at their proximal and distal poles, they have a central 

endplate region typical for twitch muscle fibres (Davidowitz et al., 1982; Pachter, 1984; 

Jacoby et al., 1989). Accordingly, the orbital MIFs fibres have mixed physiological properties 

with a slow tonic and fast-twitch component (Lynch et al., 1994). Taken together it appears 

that only the global MIFs have pure non-twitch properties. These studies were carried out in 

rat, but the same basic morphology is present in all mammals, including primates (Spencer 

and Porter, 1988; Porter et al., 1995).  

 

Motoneurons of multiply-innervated muscle fibres (MIFs)  

Recently, we have identified the location of motoneurons that innervate the MIFs in the 

extraocular eye muscles of the macaque monkey (Büttner-Ennever et al., 2001). Injections of 

retrograde tracers into the distal tip of eye muscles resulted in uptake at the endplates of 

mainly global MIFs, since the orbital MIFs do not insert into the distal tendon. Therefore in 

these experiments predominantly the motoneurons of the global MIFs were retrogradely 

labelled; these motoneurons are assumed to be mainly global non-twitch motoneurons. The 

location of the MIF motoneurons of the orbital layer is unknown. The motoneurons of SIFs - 

the twitch motoneurons - were found to lie within the classical oculomotor nuclei, whereas the 

motoneurons of the MIFs - the presumed non-twitch motoneurons - were found in the 

periphery of the oculomotor nuclei (Büttner-Ennever et al., 2001). The largest and most 

compact population of MIF motoneurons are those of the medial and inferior rectus muscles 

that form the C-group at the dorsomedial border of the oculomotor nucleus (Büttner-Ennever 

and Akert, 1981; Spencer and Porter, 1981; Büttner-Ennever et al., 2001). The C-group has 

been identified in several species (Clarke et al., 1987; Sun and May, 1993; Shall et al., 2003). 

It is clearly separated from the SIF motoneurons of the oculomotor nucleus (nIII) and lies 
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close to the Edinger-Westphal nucleus (EW), which contains the preganglionic neurons for 

pupil constriction and accommodation (Akert et al., 1980; Burde and Williams, 1989; 

Ishikawa et al., 1990). 

The MIF motoneurons of the superior rectus and inferior oblique eye muscles are located 

around the midline between the oculomotor nuclei forming the S-group (Büttner-Ennever et 

al., 2001; Wasicky et al. 2004). The MIF motoneurons of the superior oblique muscle lie in a 

compact cluster in the dorsal cap of the trochlear nucleus. The MIF motoneurons of the lateral 

rectus muscle are arranged more loosely around the periphery of the abducens nucleus, 

whereas the SIF motoneurons are scattered within the nucleus (Büttner-Ennever et al., 2001).  

In addition to motoneurons the motor nuclei contain several other functional cell groups: the 

non-cholinergic internuclear neurons (Baker and Highstein, 1975; Steiger and Büttner-

Ennever, 1978; Büttner-Ennever and Akert, 1981, Maciewicz and Phipps, 1983; Spencer and 

Baker, 1986; Carpenter et al., 1992; Clendaniel and Mays, 1994), the paramedian tract-

neurons at the rostral pole of the abducens nucleus projecting to the floccular region (Büttner-

Ennever and Horn, 1996), as well as other physiological groups associated with vergence, 

which have not been identified anatomically, yet (Gamlin et al., 1989).  

In the present paper we compared in the monkey the histochemical properties of the MIF 

motoneurons with those of the SIF motoneurons to find distinctive criteria, which allow us to 

identify them in other species, including human.  

The histochemical markers that were tested included antibodies detecting the presence of 

cytochrome oxidase (Cox), the calcium-binding protein parvalbumin (PV) and perineuronal 

nets, that are cell coatings composed of large aggregating chondroitin sulfate proteoglycans 

(CSPG) (Celio and Blümcke, 1994). All these have proved useful markers for the 

identification of functional cell groups in the oculomotor system (Büttner-Ennever et al., 

1988; Horn et al., 1994; Horn et al., 1995; Horn and Büttner-Ennever, 1998; Horn et al., 

2003). Furthermore, we used SMI32, an antibody against non-phosphorylated neurofilament 
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protein (NP-NF) (Sternberger and Sternberger, 1983; Sternberger, 1986), which is present in 

all cranial nerve nuclei and virtually all cholinergic brainstem neurons (Tsang et al., 2000). 

We found that the motoneurons of extraocular muscles can be divided into two groups based 

on their staining properties, one group corresponds to SIF motoneurons and the other to MIF 

motoneurons. We propose that these populations correlate with twitch motoneurons and non-

twitch motoneurons.  

 

Materials and methods  

All experimental procedures conformed with the state and university regulations on 

Laboratory Animal Care, including the Principles of Laboratory Animal Care (NIH 

Publication 85-23, Revised 1985), and were approved by their Animal Care Officers and 

Institutional Animal Care and Use Committees. 

SIF and MIF motoneurons of medial rectus (MR), lateral rectus (LR) and superior oblique 

(SO) muscle in the monkey were either identified by a retrograde tracer injection (wheat germ 

agglutinin horseradish peroxidase, WGA-HRP or non-toxic cholera toxin subunit B, CTb) 

into respective eye muscles or by immunocytochemical staining using antibodies against 

choline acetyltransferase (ChAT) (Oda, 1999; Büttner-Ennever et al., 2001). The visualization 

of the tracer or cholinergic marker was combined with the detection of four different markers: 

1. perineuronal nets, either by binding of the lectin Wisteria floribunda agglutinin (WFA) or 

antibodies against chondroitin sulfate proteoglycans (CSPG), 2. non-phosphorylated 

neurofilaments (NP-NF) with a specific antibody (SMI32) (Sternberger and Sternberger, 

1983), 3. the calcium-binding protein parvalbumin (PV), or 4. cytochrome oxidase (Cox).  
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Retrograde tracing of motoneurons after eye muscle injections 

In order to identify the motoneurons of the MR and LR four macaque monkeys received 

tracer injections. In one animal the tracer was placed in the belly of the MR (B61) to label 

both MIF and SIF motoneurons, in another animal into the belly of the LR (ZK-04). Two 

other animals were injected in the distal tip of either the MR (Y79) or LR (Y59), which labels 

predominantly global MIF motoneurons (Büttner-Ennever et al., 2001), since only the fibres 

of the global layer insert on the tendon and the fibres of the orbital layer end before the 

myotendinous junction (Demer et al., 2000; Oh et al., 2001). The tracers and the injection 

volumes are given in table 1. For the injection the macaque monkeys were anesthetized with 

sodium pentobarbital (30mg/kg). Under sterile conditions, the extraocular muscles were 

exposed and injected as described earlier (Büttner-Ennever et al., 2001).  

After a survival time of three days, the animals were killed with an overdose of Nembutal 

(80mg/kg body weight) and transcardially perfused with 0.9% saline (35°C) followed by 2 

liters of 4% paraformaldehyde in 0.1M phosphate buffer (PB; pH 7.4) and 1 liter 10% sucrose 

in 0.1M phosphate buffer (pH 7.4). The brain and the eye muscles were removed from the 

skull and equilibrated in 20% and 30% sucrose in 0.1M PB for 6 days. The eye muscles were 

shock frozen in isopentan (-60°C) and kept at –20°C until cutting. The brainstem was cut at 

40µm on a freezing microtome in the transverse stereotaxic plane. In order to give an estimate 

of the injection size, all eye muscles of the injected side were cut at 20µm and thaw-mounted 

onto slides (Superfrost Plus). Every tenth eye muscle section was reacted for the detection of 

WGA-HRP or CTb.  

 

Combined tracer and immunocytochemical labelling 

Free-floating brainstem sections of the WGA-HRP-injection case (B61) were reacted with 

0.05% diaminobenzidine tetrahydrochloride (DAB) as chromogen, which yields a brown 

reaction product in retrogradely labelled motoneurons. This series underwent a second 
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protocol for the detection of perineuronal nets by lectin-binding with Wisteria floribunda 

agglutinin (WFA). Briefly, after suppressing endogenous peroxidase activity with 3% 

H2O2/10% Methanol in 0,1M PBS pH 7,4 the sections were incubated with WFA (Sigma: 

L1766) 1:1000 for 2 hours at room temperature, followed by Extravidin-Peroxidase (1:1000) 

for 1 hour. The lectin was visualized with a DAB-reaction enhanced with ammonium nickel 

sulfate resulting in a black reaction product. 

 

Double-fluorescence labelling 

CTb and marker 

Free floating sections of all CTb-injection cases (ZK-04, Y79, Y59) were first processed for 

the immunofluorescent detection of the tracer. After blocking with 5% normal donkey serum 

in 0,1M PBS pH 7,4 containing 0,3% Triton X-100 for 1 hour, sections were incubated with 

goat anti-CTb (1:5000, List) overnight. Rinsed sections were then reacted with Cy2-anti-goat 

(1:200; Dianova) for 2 hours. After rinsing, the sections were incubated with one of the 

following antibodies overnight: anti-chondroitin sulfate proteoglycans (mouse anti-CSPG; 

1:100; Chemicon) as a label for perineuronal nets, SMI32 (mouse SMI32, 1:900; Sternberger 

Monoclonals) for non-phosphorylated neurofilaments (NP-NF), anti-parvalbumin (mouse 

anti-PV, 1:1000; Swant), and anti-cytochrome oxidase (mouse anti-Cox, 1:100; Molecular 

Probes). The sections were subsequently reacted with Cy3-anti-mouse (1:200; Dianova) for 

two hours. 

 

ChAT and marker 

In brainstem sections from the retrograde tracing cases and three additional cases (B62, 

C97050, C96014), that had not received a tracer injection prior to the perfusion with 4% 

paraformaldehyde, all motoneurons in the oculomotor, trochlear and abducens nucleus were 

labelled by ChAT-immunocytochemistry (rabbit anti-ChAT, 1:500, Chemicon) and combined 
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with the subsequent immunofluorescent detection of perineuronal nets (with anti-CSPG), NP-

NF (SMI32), PV or Cox. 

 

Triple-fluorescence-labelling 

In order to make a judgement about the complete motoneuron population in the abducens 

nucleus, which must be distinguished from the intermingled non-cholinergic internuclear 

neurons, sections of the large LR muscle injection case (ZK-04) were stained with ChAT-

antiserum in addition to the tracer detection. Sections were then treated with one of the other 

antibodies to show perineuronal nets, NP-NF, PV or Cox. 

All triple-staining experiments on free floating sections were started by blocking with 5% 

normal donkey serum in 0,1M PBS pH 7,4 containing 0,3% Triton X-100 for 1 hour. 

Subsequently, the sections were processed with a mixture of goat anti-CTB (1:5000; List), 

rabbit anti-ChAT (1:500; Chemicon), and with mouse antibodies against either NP-NF 

(SMI32; 1:1000; Sternberger Monoclonals), PV (anti-PV; 1:1000, Swant), or mouse anti-Cox 

(1:100; Molecular Probes) overnight. For visualization of the applied antibodies, the sections 

were then reacted for 2 hours with a mixture of fluorochrome-tagged secondary donkey 

antibodies, namely Cy2-anti-rabbit (1:200; Dianova), Cy3-anti-mouse (1:200; Dianova), and 

AMCA (7-amino-4-methylcoumarin-3-acetyl)-anti-goat (1:100; Dianova). Table 2 gives an 

overview of the primary antibodies used in the experiments. 

 

Analysis of stained sections 

All slides were examined with a Leica microscope DMRB (Bensheim, Germany) equipped 

with appropriate filters for red fluorescent Cy3 (N2.1), green fluorescent Cy2 or Alexa 488 

(I3), and blue fluorescent AMCA (A).  

Images of brightfield and fluorescence photographs were digitized by using the 3-CCD 

videocamera (Hamamatsu; C5810) mounted on a Leica DMRB microscope. The images were 
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captured on a computer with Adobe Photoshop 5 software. Sharpness, contrast, and brightness 

were adjusted to reflect the appearance of the labelling seen through the microscope. Overlays 

of double and triple fluorescent stains are produced by adding the signal of each different 

stain using the videocamera hardware control or by superimposing different fluorescence 

stains using Adobe Photoshop. The pictures were arranged and labelled with drawing 

software (CorelDraw 8 and 11). The labelled neurons of a series of transverse sections 

through the oculomotor, trochlear and abducens nucleus was plotted on the pictures taken 

with the 3-CCD videocamera and displayed on the computer screen using drawing software 

(CorelDraw 11). Each labelled neuron was analyzed for double-labelling by switching the 

filters of the fluorescence microscope. 

 

Cell counts and cell size measurements 

In order to estimate the proportion of MIF motoneurons within the complete motoneuron 

population, cell counts were performed on oculomotor, trochlear and abducens nucleus 

sections, double-immunostained for ChAT and SMI32. On every sixth section all ChAT-

immunoreactive neurons with a clearly visible nucleus were counted giving the number of SIF 

and MIF motoneurons within the respective motor nuclei. The proportion of MIF 

motoneurons was calculated from cell counts of those ChAT-positive neurons, which do not 

express SMI32-immunoreactivity. In an attempt to relate the MIF motoneurons of the C-

group in nIII to SIF motoneurons of the IR and MR, and those of the S-group to SIF 

motoneurons of the SR and IO, we counted these populations separately. Motoneuron 

subgroups within nIII of each individual eye muscle can be quite accurately outlined, because 

they form relatively separate cell clusters. Based on our previous study (Büttner-Ennever and 

Akert, 1981; Büttner-Ennever et al., 2001), we felt confident in outlining the combined SR 

and IO subgroup, and the combined MR (A and B group) and IR-subgroups (see Figure 2A 

dotted line). 
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Cell size measurements of SIF motoneurons (ChAT and NP-NF-staining) and presumed MIF 

motoneurons (ChAT without NP-NF- staining) were estimated from images captured with a 

3-CCD videocamera (Hamamatsu; C5810) using an image analysis system (Optimas 6.1, 

Optimas Corp.). Cell sizes are given as mean diameters [(maximum cell diameter + minimum 

cell diameter)/2]. A two-tailed t test was used to compare cell sizes of MIF and SIF 

motoneurons of the three motor nuclei. 

 

Results 

Perineuronal nets and non-phosphorylated neurofilaments (NP-NF) 

Oculomotor nucleus 

The tracer injection into the distal tip of the medial rectus muscle (MR) resulted in the 

retrograde labelling of MR MIF motoneurons almost exclusively in the C-group, dorsomedial 

to the oculomotor nucleus (nIII) that contains the (Büttner-Ennever et al., 2001). Our large 

injection into the belly of the MR labelled both MIF and SIF motoneurons, in the C-group and 

the A- and B-group within the nIII. 

The combined identification of the tracer (WGA-HRP) and perineuronal nets by WFA-lectin 

binding revealed that all motoneurons within the A- and B-group (brown DAB) were 

ensheathed by strongly labelled perineuronal nets (black DAB-Ni) (Fig. 1A, C), whereas all 

retrogradely labelled motoneurons of the C-group dorsomedial to the oculomotor nucleus lack 

perineuronal nets (Fig. 1A-B). At rostral sections, the neurons of the C-group were bordered 

medially by scattered neurons with prominent perineuronal nets, which form a ventral 

continuation of the Edinger-Westphal nucleus (EW) (Fig. 1A-B arrowheads). Some of these 

neurons with perineuronal nets adjacent to the C-group are cholinergic. Dorsal to the rostral 

part of nIII only a few neurons with perineuronal nets are intermingled with ChAT-positive, 

presumed preganglionic neurons in the EW, which lack perineuronal nets (Fig. 1A-B; 5A-C). 
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A systematic investigation of the properties of EW neurons versus MIF motoneurons of the 

C-group will be subject of a separate publication. 

As with perineuronal net labelling, combined tract-tracing from the MR and immunostaining 

for NP-NFs revealed that all retrogradely labelled motoneurons within the classical 

oculomotor nucleus, including the A- and B-group of MR-motoneurons were strongly 

labelled with the SMI32-antibody (Fig. 4C-D; 6A-C). In contrast, retrogradely labelled MIF 

motoneurons in the C-group lack NP-NFs (Fig. 4A-B; 6A-C). 

 

Trochlear nucleus  

No tracer injections into the superior oblique muscle have been performed in this study. All 

data on SIF and MIF motoneurons in the trochlear nucleus are taken from double-

immunolabelling experiments described below. 

 

Abducens nucleus 

After a small tracer injection into the myotendinous junction of the LR muscle (Fig. 3), 

retrogradely labelled motoneurons were predominantly located in an outer shell around the 

medial and ventromedial aspect of the abducens nucleus (nVI), as seen earlier (Büttner-

Ennever et al., 2001). In addition, few retrogradely labelled neurons were found scattered 

within the nVI confirming occasional observations in earlier experiments (Fig. 4b in Büttner-

Ennever et al., 2001).  

Combined detection of perineuronal nets with CSPG-antibodies in this distal injection case 

revealed that all retrogradely labelled neurons including those scattered cells within nVI lack 

perineuronal nets. The combination of perineuronal net labelling in a tracer case with a large 

belly injection into the LR muscle showed that the vast majority of retrogradely labelled 

motoneurons within the nucleus are surrounded by prominent perineuronal nets. In addition a 

‘new’ group of retrogradely labelled neurons that were not ensheathed by perineuronal nets 
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was detected within the nucleus. This set of motoneurons was previously unrecognized, and in 

tracer experiments assumed to belong to the SIF motoneuron population. 

The combined detection of the tracer and non-phosphorylated neurofilaments (NP-NFs) 

resembled the findings with perineuronal nets: the retrogradely labelled MIF motoneurons in 

the periphery of nVI do not contain NP-NFs, whereas the tracer-labelled SIF motoneurons 

within nVI exhibit a distinct NP-NF-expression shown by the strong SMI32-immunolabelling 

(Fig. 4O-P). As seen with perineuronal nets, a population of retrogradely labelled 

motoneurons within the nucleus was detected that did not express NP-NF-labelling. 

 

Parvalbumin (PV) 

All motor nuclei of the extraocular muscles are highlighted by their high PV content. PV is 

concentrated within the cell bodies, and shows a strong neuropil labelling as well. Double-

labelling of the tracer cases involving large muscle injections into the MR and LR, 

respectively, revealed that the PV-immunoreactivity was found at high intensity in the 

motoneurons of oculomotor and abducens nuclei (Fig. 4G-H). These observations were 

confirmed by additional triple-staining for ChAT in the abducens nucleus in order to label the 

complete population of SIF motoneurons. The analysis of the tracer cases with small 

injections into the myotendinous junction of the MR and LR revealed that the vast majority of 

retrogradely labelled MIF motoneurons in the C-group and in the abducens nucleus lack PV 

(Fig. 4E-F). However, a small number of MIF motoneurons in the C-group did exhibit a weak 

PV-immunoreactivity. 

 

Cytochrome oxidase (Cox) 

The least distinction between SIF and MIF motoneurons was seen with Cox-immunolabelling. 

All neurons within the oculomotor (nIII) and abducens nucleus (nVI) exhibit a strong Cox-

immunoreactivity (Fig. 4M-N), as well as the EW. In contrast to immunostaining for 
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perineuronal nets or NP-NFs, the combined tracer-labelling experiments with distal injections 

into the LR and MR revealed that virtually all MIF motoneurons in the C-group and in nVI 

exhibit a more or less weak Cox-immunoreactivity, too (Fig. 4K-L). Internuclear neurons 

were presumed to be the ChAT and tracer-negative cells ensheathed by perineuronal nets. The 

analysis of triple-immunofluorescent staining for perineuronal nets and ChAT or tracer, 

revealed that Cox is present in internuclear neurons of nIII and nVI as well.  

  

Complete populations of MIF motoneurons 

Unlike tracer injections, which usually label only parts of the motoneuron populations, ChAT-

immunolabelling visualized the complete motoneuron population, including both, SIF and 

MIF motoneurons in the oculomotor, trochlear and abducens nucleus. With the combined 

staining for ChAT and perineuronal nets or NP-NFs the complete population of MIF 

motoneurons in each nucleus was identified. 

 

Oculomotor nucleus (nIII) 

Using ChAT-immunolabelling additional cell groups associated with the oculomotor nucleus 

were labelled, such as the central caudal nucleus (CCN) containing motoneurons of the 

levator palpebrae muscle on caudal sections, and more rostrally the medium-sized neurons of 

the EW proper, presumably representing parasympathic preganglionic neurons of the pupil 

(Fig. 2A; 5A-C, E) (Burde and Williams, 1989; Sun and May, 1993). The combined labelling 

with either CSPG or SMI32 antiserum revealed clearly that all ChAT-positive MIF 

motoneurons in the C-group (IR and MR) lack perineuronal net and NP-NF labelling (Fig. 

2A; 5A-C; 6A-C). The same was found for another population of ChAT-positive neurons 

more ventrally at the midline between the oculomotor nuclei, which presumably represents 

the MIF motoneurons of the inferior oblique (IO) and superior rectus (SR) muscle in the S-

group (Fig. 2A; 5A-C; 6A-C) (Wasicky et al., 2004). In addition few scattered ChAT-positive 
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neurons within the oculomotor nucleus lacked perineuronal nets and NP-NF. In contrast, the 

vast majority of ChAT-positive neurons within the oculomotor nucleus, representing SIF 

motoneurons of the medial rectus (MR), inferior rectus (IR), superior rectus (SR) and inferior 

oblique (IO) muscles, were ensheathed by distinct perineuronal nets and were strongly 

labelled by SMI32 (Fig. 2A; 5A-C; 6A-C).  

Whereas a small number of ChAT-negative neurons with strong perineuronal net labelling 

was found scattered within the oculomotor nucleus (Fig. 5A-C, asterisks), NP-NF-expression 

was always confined to cholinergic neurons (Fig. 6A-C). Therefore the combined detection of 

ChAT and NP-NFs with the SMI32-antibody was found to be well suited to identify the 

complete populations of SIF and MIF motoneurons in the oculomotor nucleus. The cell 

counts of the double-labelled sections revealed that the MIF motoneurons (SMI32-negative) 

of MR and IR within the C-group make up 20% of the total motoneuron population of the MR 

and IR (1454 cells were counted on every sixth section). Similarily, MIF motoneurons of the 

IO and SR within the S-group make up 21% of the total motoneuron population of the IO and 

SR (811 cells were counted on every sixth section). The morphometric analysis revealed that 

the mean cell diameters of MIF motoneurons in the C-group, ranging from 19.3µm – 38.2µm 

(mean = 27.1µm; SD = 3.9; N=57), were significantly smaller (p< 0.001) than those of MR 

and IR SIF motoneurons, which ranged from 24.8µm – 45.5µm (mean = 35.1µm; SD = 4.0; N 

= 108). Similarly, the mean cell diameters of MIF motoneurons in the S-group, ranging from 

20.3-40.3µm (mean = 29.0µm; SD = 3.8; N=58), were significantly smaller (p< 0.001) than 

those of SR and IO SIF motoneurons, which ranged from 25.9µm – 46.6µm (mean = 34.9µm; 

SD = 3.6; N = 120). 

 

Trochlear nucleus (nIV) 

In the trochlear nucleus (nIV) no retrograde tracer labelling, but only ChAT-immunolabelling 

was used for the identification of motoneurons. All neurons within nIV are ChAT-
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immunoreactive and delineate the nucleus clearly within the mesencephalic tegmentum. On 

caudal and central planes, combined immunolabelling for the presence of perineuronal nets or 

NP-NFs, with CSPG- or SMI32-antibodies, respectively, revealed that all motoneurons in nIV 

are double-labelled with CSPG and SMI32 except a small cell cluster in the dorsal cap, which 

lacks perineuronal nets and NP-NF expression (Fig. 2B; 5D; 6D). This dorsal group 

corresponds exactly to the population of retrogradely labelled neurons seen after a tracer 

injection into the myotendinous junction of the superior oblique muscle, and is therefore 

assumed to be MIF motoneurons (Büttner-Ennever et al., 2001). On further rostral planes, the 

MIF motoneurons were more scattered (Fig. 5E; 6E). The cell counts within nIV revealed that 

NP-NF-lacking MIF motoneurons make up 19% of all motoneurons (426 cells were counted 

on every sixth section). The mean cell diameters of MIF motoneurons in the dorsal cap ranged 

from 26.9µm – 41.4µm (mean = 31.4µm; SD = 3.; N = 47) and were significant smaller (p< 

0.001) compared to those of superior oblique SIF motoneurons, which ranged from 27.8µm – 

50.6µm (mean = 37.6µm; SD = 4.0; N = 122). 

 

Abducens nucleus (nVI) 

With ChAT-immunolabelling the complete population of motoneurons (SIF motoneurons and 

MIF motoneurons) was visualized and could be distinguished from internuclear neurons, 

which are as large as motoneurons and lie intermingled with motoneurons, but are not 

cholinergic (Spencer and Baker, 1986; Carpenter et al., 1992). As shown by tracer-labelling, a 

small population of ChAT-immunoreactive neurons that were not ensheathed by perineuronal 

nets and being devoid of NP-NF-labelling was located in the periphery of the abducens 

nucleus identifying them as MIF motoneurons (Fig. 2C; 5F-G; 6F-G). In contrast to the MIF 

motoneurons in the C- and S-group of the oculomotor nucleus and the dorsal cap of the 

trochlear nucleus, those of the LR are not clustered within a compact cell group, but are rather 

scattered around the periphery of the abducens nucleus. As in the muscle belly tracer-case, a 
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considerable portion of ChAT-positive neurons, which lack perineuronal nets and NP-NFs, 

are located within the nucleus as well (Fig. 4Q-R; 5F-H; 6F-H). These neurons with “MIF 

properties” within the abducens nucleus do not differ morphologically from those in the 

periphery, both consisting of predominantly small, fusiform neurons, rarely medium-sized 

neurons as described earlier for the peripheral group (Büttner-Ennever et al., 2001). The mean 

cell diameters of LR MIF motoneurons around the periphery of nVI ranged from 27.1µm – 

45.4µm (mean 34.6µm; SD = 4.7; N = 52). The mean diameter of the central ‘MIF-like’ 

motoneurons within nVI, which lack perineuronal nets and NP-NFs, ranged from 27.6µm – 

50.5µm (mean = 37.8µm; SD = 4.9; N = 42). The LR SIF motoneurons were slightly larger 

(32.2µm – 50.8µm; mean = 40.7µm; SD = 4.0; N = 124). Both MIF motoneuron populations 

were significantly smaller than SIF motoneurons (p< 0.001). Moreover, central ‘MIF-like’ 

motoneurons seem to be larger than peripheral MIF motoneurons (p = 0.002).  

 The complete population of MIF motoneurons in the abducens nucleus lacking NP-NF make 

up 21% of all cholinergic motoneurons (606 cells were counted on every sixth section).  

Whereas NP-NF expression was confined to ChAT-positive neurons, a major ChAT-negative 

neuron population with prominent perineuronal nets is present within the abducens nucleus - 

presumably representing internuclear and paramedian tract neurons (Fig. 4R, small arrows) 

(Baker and Highstein, 1975; Steiger and Büttner-Ennever, 1978; Büttner-Ennever and Akert, 

1981; Büttner-Ennever and Horn, 1996). A systematic description of the histochemical 

properties and distribution of the other functional cell groups within the abducens nucleus will 

be reported separately. 
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Discussion 

The results demonstrate that identified motoneurons of extraocular MIFs differ from those of 

SIFs in their histochemical properties - a reflection of their differing physiology and function. 

The complete populations of these two different motoneuron types were identified by 

combined immunostaining for choline acetyltransferase (ChAT) and perineuronal nets or non-

phosphorylated neurofilaments (NP-NFs). All motoneurons were cholinergic, but SIF 

motoneurons possessed perineuronal nets and contained NP-NFs, whereas motoneurons of the 

MIFs lacked both. In the following discussion we will first consider the basis of the 

histochemical differences of SIF and MIF motoneurons, and then we will discuss which 

functional motoneuron populations can be identified with these methods.  

 

Histochemical properties of extraocular motoneurons 

I. Cytochrome oxidase (Cox), parvalbumin (PV) and perineuronal net labelling (CSPG) 

It was not a surprising finding that SIF motoneurons are strongly Cox- and PV-

immunoreactive, and that they are ensheathed by prominent perineuronal nets. Numerous 

studies in different neuronal systems have shown that the distribution of PV matches well that 

of Cox activity, both being concentrated in neurons with high metabolic energy consumption 

(e.g. Baimbridge et al., 1992; Blümcke and Celio, 1992). Furthermore, PV-immunoreactive 

neurons are often associated with perineuronal nets (Härtig et al., 1994; Horn et al., 2003), 

whereby the function of the perineuronal nets is still unclear (e.g. Hockfield et al., 1990; 

Okamoto et al., 1994; Brückner et al., 1999). One hypothesis suggests that perineuronal nets 

are preferably associated with highly active neurons (Brückner et al., 1993), such as those 

found in the rat medial septum and in functional neurons of the primate saccadic system 

(Morris and Henderson, 2000; Horn et al., 2003). In contrast, slow modulatory neurons lack 

perineuronal nets (Brückner et al., 1994; Hobohm et al., 1998). 
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Our work demonstrates that presumed MIF motoneurons are not ensheathed by perineuronal 

nets. This may reflect their different firing characteristics compared to SIF motoneurons. 

There is general agreement that twitch units innervate the SIFs, and the non-twitch units 

innervate global MIFs (Lennerstrand, 1975; Nelson et al., 1986). MIF (non-twitch) 

motoneurons have not been recorded in primates, but their firing characteristics may be 

deduced from studies in frog and cat, where non-twitch units were described (Dieringer and 

Precht, 1986; Goldberg et al., 1981; Nelson et al., 1986; Shall and Goldberg, 1992). In frog 

non-twitch units were shown to fire tonically at around 50 Hz (Dieringer and Precht, 1986). 

Therefore the relative lack of PV and complete absence of perineuronal nets around MIF 

motoneurons fits well with their presumed slow firing pattern. Our findings correspond to the 

observations of May and Fratkin (2002), who did not detect PV-immunoreactivity in the C-

group of the primate. 

The ”burst-tonic” pattern of activity recorded from motoneurons in behaving animals 

probably arises from SIF motoneurons, although in none of these studies has a distinction 

been made between SIF and MIF motoneurons (Robinson, 1970; Keller and Robinson, 1972; 

Delgado-Garcia et al., 1986a). Recording of lateral rectus motoneurons in monkey 

demonstrated that most abducens motoneurons had maximal burst firing rates of 300-400 Hz, 

some of which could reach rates as high as 800 Hz (Fuchs and Luschei, 1971; Fuchs et al., 

1988), which requires a remarkable high level of metabolic activity and could explain our 

histochemical findings, the presence of Cox, PV and perineuronal nets in SIF motoneurons.  

The immunocytochemical detection of cytochrome oxidase (Cox) in our study has not proved 

a suitable marker for the distinction between both motoneuron groups, since all motoneurons 

including MIF motoneurons were more or less labelled. These findings differ from the 

observations made by May and Fratkin (2002), who showed that Cox activity is absent from 

the neurons of the C-group, whereas the motoneurons within the oculomotor nucleus are 

labelled. These discrepancies are likely due differences in the detection methods for Cox. We 
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used the immunocytochemical detection of Cox, whereas May and Fratkin (2002) visualized 

the enzymatic activity of Cox. It is likely that the enzyme activity, rather than the presence of 

the enzyme, correlates better with the firing characteristics of the motoneurons, and would 

explain the different picture seen for MIF motoneurons. 

Finally, in spite of the various histochemical differences seen between SIF and MIF 

motoneurons, no staining differences could be found between the two seemingly independent 

A- and B-subgroups of MR in the present study. Many animals have a dorsal B- and a ventral 

A-group of MR motoneurons, but in the monkey the A-group is particularly evident, and its 

neurons tend to be smaller than those of the B-group (Büttner-Ennever and Akert, 1981; 

McClung et al., 2001). Up to now, no difference in afferent projections or efferent targets has 

been found between the A- and B-groups.  

  

II. Non-phosphorylated neurofilaments (NP-NFs) 

The NP-NF labelling with the SMI32-antibody was surprisingly specific for the SIF 

motoneuron population, and was not detected in any other cell type in the ocular motor nuclei. 

NP-NF labelling was reported as a reliable marker for motoneurons, but that it is not restricted 

to this cell type (Tsang et al., 2000). The lack of NP-NF labelling in MIF motoneurons in our 

study demonstrates, that NP-NF cannot be used as a marker for all motoneurons.  

The presumed internuclear neurons, identified as being ChAT-negative but with perineuronal 

nets (see Fig. 5), also lacked NP-NFs. Since internuclear and motoneurons have a similar cell 

size profile and similar firing patterns (McCrea et al., 1986; Delgado-Garcia et al., 1986a; 

Delgado-Garcia et al., 1986b; Fuchs et al., 1988), the presence of NP-NFs cannot be 

correlated with unit activity or cell size as suggested by Campell and Morrison (1989).  

Taken together, the present results indicate that within the motoneuronal populations of the 

extraocular muscles, the presence of NP-NFs shown by SMI32-immunoreactivity serves as a 

selective marker for SIF motoneurons and does not include MIF motoneurons.  
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Are there two populations of MIF motoneurons?  

With combined ChAT and perineuronal nets, or NP-NF-labelling, the MIF motoneurons of all 

eye muscles could be identified simultaneously, whereas in tracing experiments, which are 

always confined to one muscle, far fewer MIF motoneurons are seen.  

It was a consistent observation in the present and previous study (Büttner-Ennever et al., 

2001) that a distal tracer injection into the myotendinous junction of extraocular muscles, 

which targets primarily the global layer in primates (Demer et al., 2000; Oh et al., 2001), 

labelled mainly the MIF motoneurons around the periphery of the classical motor nuclei, in 

the C-, S-groups, dorsal cap of nIV and the medial aspect of nVI. However a few scattered 

neurons could often be found within the boundaries of the motor nuclei as well. Our 

experiments demonstrate that these central motoneurons share the histochemical properties of 

MIF motoneurons in the periphery, suggesting that both groups share physiological 

characteristics. Since the tracer uptake area did not involve the central endplate zones of 

global or orbital muscle fibres (see Fig. 3), these central motoneurons with histochemical 

‘MIF properties’ are more likely to be MIF motoneurons, rather than atypical SIF 

motoneurons as suggested by their location.  

Large tracer injections involving the global and orbital layer, or our combined histochemical 

methods, revealed a surprisingly large population of central motoneurons with ‘MIF 

properties’, most obvious in nVI (Fig. 5F-H; 6F-H). These central cells with ‘MIF properties’ 

could be ‘displaced’ global MIF motoneurons, but it seems more probable that they are the 

MIF motoneurons innervating the orbital layer, whose location is up to now unknown. If the 

central ‘MIF-like’ motoneurons are considered as an individual cell group, than they appear to 

be slightly larger than peripheral MIF motoneurons. 

Tracing experiments with selective injections into the orbital layer combined with 

histochemical stains are necessary to conclusively resolve this question. 
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Quantitative aspects of MIF motoneurons 

Although the MIF motoneurons of all motor nuclei were found to be smaller than SIF 

motoneurons (see also Büttner-Ennever et al., 2001; McClung et al., 2001), the different 

histochemical properties for both populations is far more striking than their morphological 

differences. Our estimates on the complete populations of MIF motoneurons indicated that the 

proportion of approximately 20% MIF motoneurons within the total motoneuron population is 

constant for abducens, trochlear and oculomotor nuclei. Cell counts for each individual eye 

muscle within the oculomotor nucleus could not be performed with our methods, but the 

estimates of 20% hold true for the muscle pairs with synergistic actions: IR and MR in 

vergence, IO and SR in upgaze. Apart from this restriction, we found a noteworthy 

consistency in the proportion of SIF to MIF motoneurons for individual eye muscles. In some 

ways these figures resemble the data of 20% MIFs to 80% SIFs for whole muscle fibre counts 

(for review: Porter et al., 1995). However the relationship between these percentages is 

unclear because of the complexities of motor unit structure (Shall and Goldberg, 1992) and 

polyneuronal innervation of MIFs (Jacoby et al., 1989). 

 

Conclusion 

The present work provides more evidence that the MIF motoneurons of extraocular muscles, 

innervating presumed non-twitch muscle fibres, are a specialized cell group and have different 

histochemical properties than SIF motoneurons. The best marker for MIF motoneurons within 

the complete motoneuron population is the lack of perineuronal nets and non-phosphorylated 

neurofilaments. On the other hand, the labelling of NP-NFs with SMI32 is a selective marker 

for SIF motoneurons. Perineuronal nets are present around SIF motoneurons and internuclear 

neurons within the oculomotor and abducens nucleus, and alone are not suited for the specific 

identification of SIF motoneurons. These histochemical properties of SIF motoneurons and 

MIF motoneurons appear to be a general feature in mammals as seen in preliminary 
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observations in rat and human (Eberhorn et al., 2003). A possible segregation of orbital and 

global MIF motoneuron populations must be investigated by further studies. 
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Fig. 1. A-C: Transverse section through nIII with the combined labelling of the retrograde 
tracer (WGA-HRP, brown) and perineuronal nets (WFA, black) after a large tracer injection 
into the belly of MR. A: Low-power photomicrograph of nIII showing the retrogradely 
labelled neurons (brown) within the A-, B- and C-group. B: Detailed view of the upper 
rectangle in A demonstrating that tracer-labelled motoneurons in the C-group (brown, arrows) 
lack perineuronal nets. Note that the C-group is medially bordered by neurons that are 
continuous with the Edinger-Westphal nucleus (EW) and are ensheathed by prominent 
perineuronal nets (arrowhead) and laterally by the twitch motoneurons of nIII displaying 
strong perineuronal labelling (asterisk). C: Detailed view of the lower rectangle in A showing 
the tracer-labelled twitch motoneurons of the A-group, which are all ensheathed by black 
perineuronal net (arrows). Scale bar in 1A is 500µm, in 1B and 1C 50µm. 
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Fig. 2. Photomicrographs of transverse sections at the level of the oculomotor (A), trochlear 
(B) and abducens nucleus (C) that were double-labelled for ChAT (red) and perineuronal nets 
(green). A: All motoneurons and the preganglionic neurons in the Edinger-Westphal are 
ChAT-positive (red). Only the SIF motoneurons within the nucleus are ensheathed by 
perineuronal nets (green), whereas MIF motoneurons in the C-group lack perineuronal nets. 
Note that an additional group of ChAT-positive neurons on the midline is not ensheathed by 
perineuronal nets at the location of the S-group. B: Left trochlear nucleus. MIF motoneurons 
that lack perineuronal nets are located in a dorsal cap of the trochlear nucleus (arrows) in this 
plane of section. C: Left abducens nucleus. The MIF motoneurons lacking perineuronal nets 
are not located in a compact group, but lie scattered around the periphery of the nucleus 
(arrows). Scale bar is 500µm. 
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Fig. 3. Photomicrograph of the CTb-injected LR. The tracer-uptake area after the CTb- 
injection into the myotendinous junction is confined to the distal part of the muscle, whereas 
the central `en-plaque´ endplate zone shows no tracer labelling. Scale bar is 100µm. 
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Fig. 4. A-N: High magnifications of transverse sections through the oculomotor nucleus (nIII) 
demonstrating the retrogradely labelled MIF motoneurons (green) after a small CTb-injection 
into the distal MR combined with immunofluorescence for one of the following antibodies 
(red): SMI32-staining for NP-NF (B), PV (F), and Cox (L). Each pair of neighbouring 
photographs shows the same section illustrated to demonstrate for different antigens. Note 
that the tracer-positive MIF motoneurons (green) lack SMI32- and PV-immunoreactivity (A-
B, E-F), whereas the tracer-positive SIF motoneurons (green) within the oculomotor nucleus 
are SMI32- and PV-positive (C-D, G-H). In contrast both, MIF motoneurons (K) and SIF 
motoneurons (M) are Cox-positive (L, N). 4 O-R: High magnifications of transverse sections 
through the abducens nucleus (nVI). The CTb-positive MIF motoneurons (O; green; 
arrowhead) from a distal tracer injection into the LR lacks non-phosphorylated neurofilaments 
(P; SMI32; red; arrowhead). It is located in the periphery of the classical nVI. After a large 
CTb-injection into the muscle belly of LR both, MIF motoneurons (Q-R; arrowheads) and SIF 
motoneurons (Q-R; arrows) in the central part of nVI are CTb-positive (Q). The small arrows 
indicate internuclear neurons, which lack both, the tracer and ChAT-immunoreactivity (Q-R), 
but are surrounded by prominent red perineuronal nets (R). Scale bar is 30µm. 
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Fig. 5. Plots of transverse sections of nIII (A-C), nIV (D-E) and nVI (F-H), the outlines are 
drawn after subsequently treating the sections with Nissl stain. The sections were double-
labelled for ChAT and perineuronal nets (CSPG). SIF motoneurons (open circle) are both, 
ChAT- and CSPG-positive, whereas MIF motoneurons (filled circle) lack CSPG. In nIII (F-
H), the SIF motoneurons form the classical nucleus, whereas the MIF motoneurons are 
grouped together into the C-group at the mediodorsal border and more ventrally the S-group. 
The ChAT-positive and CSPG-negative EW-neurons lie dorsally to the C-group (G-H). In 
nIV the CSPG-negative MIF motoneurons are clustered at the dorsal border (D). At the rostral 
pole of nIV (E), the MIF motoneurons show a broader distribution. In nVI (F-H), the MIF 
motoneurons are not clustered together, but lie scattered around the borders of the nucleus and 
a considerable portion within the nucleus as well. Neurons (indicated by asterisks) that lack 
ChAT-immunoreactivity, but show strong CSPG-labelling are presumably internuclear 
neurons. Scale bar is 500µm. 
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Fig. 6. Plots of transverse sections of nIII (A-C), nIV (D-E) and nVI (F-H), the outlines are 
drawn after subsequently treating the sections with Nissl stain. The sections were double-
labelled for ChAT and NP-NFs with SMI32 antibody. SIF motoneurons (open circle) are both 
ChAT- and SMI32-positive, whereas MIF motoneurons (filled circle) lack SMI32-
immunoreactivity. The SIF motoneurons in all three nuclei are ChAT- and SMI32-positive. 
Note, that most of the EW-neurons (A-C) are SMI32-positive, which helps to delineate the 
MIF motoneurons of the C-group from the EW. MIF motoneurons in the dorsal cap of nIV 
(D, E) and the C- and S-group in nIII lack SMI32 (A-C). As with double-labelling for ChAT 
and perineuronal nets (CSPG), the MIF motoneurons in nVI lie scattered around the borders, 
and centrally within the nucleus (F-H). Scale bar is 500µm. 
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Table 1: 

Case Injection site Tracer Volume Survival time Tracer detection 

B61 belly of MR 2.5% WGA-HRP 25 µl 3 days DAB 

Y79 distal MR 1% CTB 8 µl 3 days immunofluorescence 

ZK-04 belly of LR 1% CTB 30 µl 3 days immunofluorescence 

Y59 distal LR 1% CTB 15 µl 3 days immunofluorescence 

 

 

Table 2: 

Antibody Host Antigen Manufactor Dilution 

ChAT rabbit Choline acetyltransferase Chemicon, Temecula CA 1:500 

Cox mouse Cytochrome oxidase Molecular Probes Inc, 

Eugene OR 

1:100 

CSPG mouse Chondroitin sulfate 

proteoglycan 

Chemicon, Temecula CA 1:100 

CTb goat Cholera toxin subunit B List Biological Lab. Inc., 

Campbell CA 

1:5000 

PV mouse Parvalbumin Swant, Bellizona CH 1:1000 

SMI32 mouse Non-phosphorylated 

neurofilament 

Sternberger Monoclonals 

Inc., Lutherville MD 

1:900 
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Paper 2: Identification of MIF and SIF motoneurons innervating the extraocular muscles  

in the rat. 
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Summary 

In mammals, the extraocular muscle fibres can be categorized in singly-innervated (SIF) and 

multiply-innervated (MIF) muscle fibres. In the monkey oculomotor (nIII), trochlear (nIV) 

and abducens nucleus (nVI) the motoneurons of MIFs lie separated from those innervating 

SIFs and show different histochemical properties. In the present study we investigated the 

location of SIF and MIF motoneurons in the rat using combined tract-tracing and 

immunohistochemical techniques. 

SIF and MIF motoneurons of the medial (MR) and lateral rectus (LR) muscle were identified 

by retrograde tracer injections into the muscle belly or the distal myotendinous junction. The 

belly injections labelled the MR subgroup of the nIII and the greatest part of nVI, including 

some cells outside the medial border of nVI. In contrast, the distal injections labelled only a 

subset of the MR motoneurons and exclusively cells outside the medial border of nVI. The 

tracer detection was combined with immunolabelling using antibodies for perineuronal nets 

(CSPG) and non-phosphorylated neurofilaments (NP-NF). In monkeys both antibodies 

allowed to distinguish between SIF and MIF motoneurons. The experiments revealed that 

neurons labelled from a distal injection lack both markers and thus assumed to represent MIF 

motoneurons, whereas those labelled from a belly injection are CSPG- and NP-NF-

immunopositive, assumed to represent SIF motoneurons. The overall identification of MIF 

and SIF motoneurons within nIII, nIV, and nVI revealed that the smaller MIF motoneurons 

tend to lie separated from the bigger SIF motoneurons.  

Our data provide evidence that rat extraocular muscles are innervated by two sets of 

motoneurons that differ in their molecular, morphologic, and anatomic properties.  



 70

Abbreviations 

4V:  forth ventricle 

ChAT:  choline acetyltransferase 

CSPG:  chondroitin sulfate proteoglycan 

CTb:  cholera toxin subunit B 

g7:  genu of facial nerve 

INT:  abducens internuclear neuron 

IO:  inferior oblique muscle 

IR:  inferior rectus muscle 

LR:  lateral rectus muscle 

MIF:  multiply-innervated muscle fibre 

MLF:  medial longitudinal fascicle 

MR:  medial rectus muscle 

nIII:  oculomotor nucleus 

nIV:  trochlear nucleus 

nVI:  abducens nucleus 

NP-NF: non-phosphorylated neurofilament 

SIF:  singly-innervated muscle fibre 

SO:  superior oblique muscle 

SR:  superior rectus muscle 

WGA-HRP: wheat germ agglutinin and horseradish peroxidase complex 

TMR:  tetramethyl rhodamine 
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Introduction 

The eye of vertebrates is rotated by six principal extraocular muscles (EOM). These unique 

striated muscles differ in many aspects from the classical skeletal muscle. Accordingly, they 

do not show uniform morphology but consist of an outer orbital layer adjacent to the orbital 

bone, and an inner global layer adjacent to the eye globe. The global layer extends over the 

full muscle length from its origin at the annulus of Zinn to a well-defined tendon at the limbus 

of the globe (for review see: Porter et al., 1995). In contrast, the orbital layer ends before the 

tendon (Oh et al., 2001) and is thought to insert on the collagenous pulleys, the Tenon’s 

capsule (Demer et al., 2000; Oh et al., 2001; Demer, 2002). The extraocular muscles consist 

of three main categories of fibre types: singly-innervated muscle fibres (SIFs) and two types 

of multiply-innervated muscle fibres (MIFs), one in the global and one in the orbital layer (for 

review: (Mayr et al., 1975; Bondi and Chiarandini, 1983; Morgan and Proske, 1984; Spencer 

and Porter, 1988; Porter et al., 1995). Whereas the SIFs are similar to the twitch muscle fibres 

in the skeletal muscles of mammals - with one single ´en-plaque` ending in the middle third of 

the muscle and an ‘all-or-nothing’ twitch upon electrical stimulation – the MIFs are rare in 

mammals (Morgan and Proske, 1984). The global layer MIFs are innervated by multiple ´en-

grappe` endings throughout their extent (Pachter, 1984) and respond after stimulation with 

slow, graded potentials at each nerve ending, which are not propagated in an ‘all-or-nothing’ 

fashion, and resulting in the development of a tonic tension (Lennerstrand, 1974; Chiarandini 

and Stefani, 1979). Therefore these global MIFs correlate with the ‘non-twitch muscle fibres’. 

In contrast, the orbital layer MIFs show mixed properties, ‘non-twitch’-like at the proximal 

and distal ends and twitch-like at the middle third of the fibre (Pachter, 1984; Jacoby et al., 

1989; Lynch, Frueh et al., 1994).  

 

The basic anatomical organization of the oculomotor nuclei controlling the six principal 

extraocular eye muscles shows a very constant pattern across various vertebrate classes (for a 
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review, see: Evinger, 1988). Motoneurons of the oculomotor nucleus (nIII) innervate the 

medial (MR), inferior (IR), superior (SR) rectus muscles, and the inferior oblique (IO) 

muscle, motoneurons of the trochlear nucleus (nIV), namely the superior oblique (SO) 

muscle, and motoneurons of the abducens nucleus (nVI) and the lateral rectus (LR) muscle. In 

addition to the motoneurons of LR, the abducens nucleus contains the internuclear neurons 

(INT) that project to the contralateral oculomotor nucleus and are used for conjugated 

horizontal eye movements (Evinger, 1988). 

Electrophysiological studies showed that all extraocular motoneurons participate in all types 

of eye movements (vergence, saccades, smooth pursuit, vestibulo-ocular and optokinetic 

nystagmus) (Robinson, 1970; Mays and Porter, 1984) and that motor unit discharges are 

tightly linked to eye-position (Keller and Robinson, 1972; Keller, 1973). This led to the 

current assumption that oculomotor commands convert at the level of motoneurons and 

innervate the muscle fibres through a final common pathway.  

A reconsideration of this view is forced by recent studies in monkey EOM. Büttner-Ennever 

et al. (2001) showed by tracer injections into the belly or the distal myotendinous junction 

(thereby tracing only the ´en-grappe` endplates of global MIFs) of the EOM that two 

anatomically separated sets of motoneurons control the EOM: motoneurons of SIFs were 

found within the classical oculomotor nuclei, whereas the motoneurons of (global) MIFs were 

located in the periphery of these nuclei. Subsequent studies of premotor inputs on both types 

of motoneurons revealed that global MIF motoneurons are associated with premotor areas for 

vergence, smooth pursuit and gaze holding, but in contrast to SIF motoneurons, not with 

premotor areas generating saccades or VOR (Büttner-Ennever et al., 2002; Wasicky et al., 

2004). Furthermore, both types of motoneurons differ in their morphology and histochemical 

properties (Eberhorn et al., 2005). Accordingly, the smaller MIF motoneurons do not contain 

non-phosphorylated neurofilaments or parvalbumin and lack perineuronal nets whereas the 

larger SIF motoneurons express all markers at high intensity. Taken together, all these 
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differences between both motoneuron populations contradict the theory of a single final 

common pathway from motoneuron to eye muscle but point out for a dual motor control 

(Büttner-Ennever et al., 2002). 

 

The dual motor innervation of monkey EOM may be regarded as a result of the visual 

demands placed upon the oculomotor system in highly developed frontal-eyed mammals like 

primates. According to this point of view, lateral-eyed mammals like the rat may differ in the 

organization of the motor control of their eye muscles. On the other hand, rat EOMs exhibit 

the same EOM fibre types like primates (Pachter, 1983; Pachter and Colbjornsen, 1983; 

Ringel et al.,1978b; Spencer and Porter, 1988), and their eye movements include both fast and 

slow types (Delgado-Garcia, 2000). Previous studies on the localization of EOM motoneurons 

in the rat (Glicksman, 1980; Labandeira-Garcia et al., 1983) achieved only the identification 

of the overall distribution of motoneurons innervating individual EOMs, but did not 

distinguish between SIF and MIF motoneurons. 

In the present study we identified the motoneurons innervating the MIFs of the horizontal 

recti, MR and LR, in rat using a similar tract-tracer injection approach as in a previous study 

on monkeys (Büttner-Ennever et al., 2001). We further combined the tracing with 

immunolabelling for markers which were to differentiate between SIF and MIF motoneurons 

in monkey, non-phosphorylated neurofilaments (NP-NF; SMI32) and perineuronal nets 

(CSPG) (Eberhorn et al., 2005).  

 
Materials and methods 

All experimental procedures conformed with the state and university regulations on 

Laboratory Animal Care, including the Principles of Laboratory Animal Care (NIH 

Publication 85-23, Revised 1985), and were approved by their Animal Care Officers and 

Institutional Animal Care and Use Committees. Eight approximately one year old male 
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pigmented rats (Charles River) with a weight range of 280 to 350 grams were used in this 

study. SIF and MIF motoneurons of medial rectus (MR) and lateral rectus (LR) muscle were 

either identified by a retrograde tracer injection (wheat germ agglutinin horseradish 

peroxidase, WGA-HRP, or non-toxic cholera toxin subunit B, CTb) into respective eye 

muscles or by immunocytochemical staining using antibodies against choline 

acetyltransferase (ChAT) (Oda, 1999; Büttner-Ennever et al., 2001). The visualization of the 

tracer or cholinergic marker was combined with the detection of two different markers: 1. 

perineuronal nets with antibodies against chondroitin sulfate proteoglycans (CSPG), and 2. 

non-phosphorylated neurofilaments (NP-NF) with a specific antibody (SMI32) (Sternberger 

and Sternberger, 1983). In addition, the abducens internuclear neurons were identified with 

tracer injections into the oculomotor nucleus and characterized using the antibodies described 

above. 

 

Retrograde tracing of motoneurons after eye muscle injections 

In order to identify the motoneurons of the MR and LR three pigmented rats underwent tracer 

injections. In one animal (AII-99) the LR and MR were injected into the belly to label both 

MIF and SIF motoneurons (LR: WGA-HRP; MR: CTb, List, Campbell, CA).Three other 

animals were injected into the distal tip of either the MR (R12-03) or LR (AIV-99), which 

labels predominantly global MIF motoneurons (Büttner-Ennever et al., 2001). For the 

injection the rats were anesthetized with Equitesin (2.5ml/kg). The extraocular muscles were 

exposed by retracting the eyelid and incising the conjunctiva. In order to minimize tracer 

spread a small piece of plastic film was slipped between the eyeball and the muscle to be 

injected. The tracer was injected using a sharp glass pipette mounted on a Hamilton micro 

syringe. After a survival time of three days, the animals were killed with an overdose of 

Nembutal (80mg/kg body weight) and transcardially perfused with 0.9% saline (35°C) 

followed by 0.5 litres of 4% paraformaldehyde in 0.1M phosphate buffer (PB; pH 7.4) and 0.5 



 75

litre 10% sucrose in 0.1M phosphate buffer (pH 7.4). The brain and the eye muscles were 

removed from the skull and equilibrated in 20% and 30% sucrose in 0.1M PB for 3 days. The 

eye muscles were shock frozen in isopentan (-60°C) and kept at –20°C until cutting. The 

brainstem was cut at 40µm on a freezing microtome in the transverse stereotaxic plane. In 

order to give an estimate of the injection size, all eye muscles of the injected side were cut at 

20µm and thaw-mounted onto slides (Superfrost Plus). Every tenth eye muscle section was 

reacted for the detection of WGA-HRP or CTb.  

 

Anterograde tracing of abducens internuclear neurons after injections into the oculomotor 

nucleus 

In two animals (R13-03, R1-04), tetramethyl-rhodamine dextran (TMR-Dextran, Molecular 

Probes, Eugene, OR) was injected into the oculomotor nucleus. With animals under general 

anaesthesia and placed in a stereotactic frame, a small whole was trephined in the skull 

according to the coordinates of an atlas (Paxinos: The rat brain in stereotactic coordinates, 3rd 

edition 1997). The tracer was injected using a fine glass pipette mounted on a Hamilton 

syringe that was attached to the stereotactic frame. After a five day survival, the animals were 

perfused and histological processing was carried out as described above. 

The tracer cases and the injection volumes are given in table 1. 

 

Visualization of the tracer 

Free-floating brainstem sections of the WGA-HRP-injection case (AII-99) were reacted with 

0.005% tetramethylbenzidine (TMB) as chromogen, which yields a black reaction product in 

retrogradely labelled motoneurons. Briefly, after rinsing in ice-cold 0.1M PBS, the sections 

were incubated in an acetic acid buffered solution (pH 3.3) containing ethanolic TMB and 

sodium-ferroprusside and an additional mixture of ß-D-glucose, ammonium chloride, and 
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glucoseoxidase, then stabilized with ammonium heptamolybdate and counterstained with 

neutral-red (Mesulam, 1978).  

 

In three CTb-injection cases (AII-99, AIV-99, R12-03), and the two TMR-Dextran cases, the 

tracer was visualized with antibodies against CTb or TMR using the DAB method. All 

sections were pretreated with 3% H2O2/10% Methanol in 0.1M PB pH 7.4 for 15min to 

suppress endogenous peroxidase activity and then thoroughly washed. For the detection of 

CTb immunoreactivity, the sections were blocked with 5% rabbit serum in 0.1M PB pH 7.4 

containing 0.3% Triton X-100 for 1h and subsequently processed with goat anti-CTb 

antibodies (1:5000, List) overnight at room temperature. The TMR-sections were blocked 

with 5% goat serum in 0.1M PB pH 7.4 containing 0.3% Triton X-100 for 1h and processed 

with rabbit anti-TMR antibodies (1:5000, Molecular Probes) overnight at room temperature. 

After several buffer washes the sections were treated either with biotinylated rabbit-anti goat 

antibody (1:200; Alexis) in the CTb-cases, or biotinylated goat-anti rabbit antibody (1:200; 

Alexis) in the TMR-cases, for 1h at room temperature, then washed and incubated in 

extravidin-horseradish peroxidase (1:1000; Sigma) again for 1h. Diaminobenzidin served as 

chromogen for the detection of CTb- and TMR-immunoreactivity. The sections were then 

counterstained with cresyl violet.  

Alternatively, TMR-Dextran can be directly examined using a fluorescent microscope 

equipped with filters for red fluorescent Cy3 (N2.1). 

 

Double-fluorescence labelling 

CTb and marker 

Free floating sections of all CTb-injection cases were first processed for the 

immunofluorescent detection of the tracer. After blocking with 5% normal donkey serum in 

0,1M PBS pH 7,4 containing 0,3% Triton X-100 for 1 hour, sections were incubated with goat 
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anti-CTb (1:5000, List) overnight. Rinsed sections were then reacted with AMCA-anti-goat 

(1:200; Dianova) for 2 hours. After rinsing, the sections were incubated with anti-chondroitin 

sulfate proteoglycans (mouse anti-CSPG; 1:100; Chemicon) as a label for perineuronal nets, 

or SMI32 (mouse SMI32, 1:900; Sternberger Monoclonals) for non-phosphorylated 

neurofilaments (NP-NF) overnight. The sections were subsequently reacted with Cy2-anti-

mouse (1:200; Dianova) for two hours at room temperature in the dark. 

 

TMR-Dextran and marker 

Sections with TMR-Dextran labelled cells were blocked with 5% normal donkey serum in 

0,1M PBS pH 7,4 containing 0,3% Triton X-100 for 1 hour and subsequently processed with 

a mixture of rabbit anti-ChAT (1:500) and mouse anti CSPG (1:100) overnight. For 

visualization of the applied antibodies, the sections were then reacted for 2 hours with a 

mixture of fluorochrome-tagged secondary donkey AMCA-anti-rabbit (1:200; Dianova) and 

Cy2-anti-mouse (1:200; Dianova) at room temperature in the dark. 

 

ChAT and marker 

In brainstem sections from two additional cases (R6-03 and R3-04), that had not received a 

tracer injection prior to the perfusion with 4% paraformaldehyde, all motoneurons in the 

oculomotor, trochlear and abducens nucleus were labelled by ChAT-immunocytochemistry 

(rabbit anti-ChAT, 1:500, Chemicon) and combined with the subsequent immunofluorescent 

detection of perineuronal nets (with anti-CSPG) and NP-NF (SMI32). 

Table 2 summarizes the antibodies used. 
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Analysis of stained sections 

All slides were examined with a Leica microscope DMRB (Bensheim, Germany) equipped 

with appropriate filters for red fluorescent Cy3 (N2.1), green fluorescent Cy2 or Alexa 488 

(I3), and blue fluorescent AMCA (A).  

Images of brightfield and fluorescence photographs were digitized by using the 3-CCD 

videocamera (Hamamatsu; C5810) mounted on a Leica DMRB microscope. The images were 

captured on a computer with Adobe Photoshop 5 software. Sharpness, contrast, and brightness 

were adjusted to reflect the appearance of the labelling seen through the microscope. Overlays 

of double and triple fluorescent stains are produced by adding the signal of each different 

stain using the videocamera hardware control or by superimposing different fluorescence 

stains using Adobe Photoshop. The pictures were arranged and labelled with drawing 

software (CorelDraw 8 and 11). The labelled neurons of a series of transverse sections 

through the oculomotor, trochlear and abducens nucleus was plotted on the pictures taken 

with the 3-CCD videocamera and displayed on the computer screen using drawing software 

(CorelDraw 11). Each labelled neuron was analyzed for double-labelling by switching the 

filters of the fluorescence microscope. 

 

Cell counts and cell size measurements 

In order to estimate the proportion of MIF motoneurons within the complete motoneuron 

population, cell counts were performed on oculomotor, trochlear and abducens nucleus 

sections (R6-03, R3-04), double-immunostained for ChAT and CSPG or NF-NP, respectively. 

All ChAT-immunoreactive neurons with a clearly visible nucleus were counted giving the 

number of SIF and MIF motoneurons within the respective motor nuclei. The proportion of 

MIF motoneurons was calculated from cell counts of those ChAT-positive neurons, which do 

not express CSPG- or NP-NF-immunoreactivity. Motoneuron subgroups within nIII of each 

individual eye muscle are difficult to outline and were therefore not counted separately.  
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Cell size measurements of SIF motoneurons (ChAT and CSPG-staining or NP-NF-staining) 

and presumed MIF motoneurons (ChAT without CSPG- or NP-NF-staining) were estimated 

from images captured with a 3-CCD videocamera (Hamamatsu; C5810) using an image 

analysis system (Optimas 6.1, Optimas Corp.). Cell sizes are given as mean diameters 

[(maximum cell diameter + minimum cell diameter)/2]. A two-tailed t test was used to 

compare cell sizes of MIF and SIF motoneurons of the three motor nuclei. 

 

Results 

Tracer injection cases 

Oculomotor nucleus 

The tracer injection into the belly of the medial rectus muscle (MR) resulted in the retrograde 

labelling of MR motoneurons, which are located predominantly in the medial and rostral part 

of the ipsilateral oculomotor nucleus (Fig.1A and adjacent plot). At mediorostral levels, the 

tracer positive MR motoneurons form a band of cells at the medial border extending from 

ventral to dorsal. Inside this band, some labelled motoneurons appear fusiform. In addition, 

tracer positive MR motoneurons are scattered within the nucleus. Hence, a few marked 

neurons were found in the contralateral oculomotor nucleus. They might resemble SR and LP 

motoneurons which were labelled due to some tracer spread after the injection into the MR. 

The tracer injection into the distal tip of the MR labelled motoneurons exclusively in the 

ipsilateral oculomotor nucleus. Their distribution within the nucleus is similar to those 

obtained after a big injection into MR, though less motoneurons are labelled. A certain 

amount of tracer positive motoneurons is located at the medial border, for the greatest part in 

the ventral half of the nucleus. Additional labelled motoneurons can be found scattered within 

the nucleus, most of them tend to be located dorsally (Fig. 1B and adjacent plot).  
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In accordance to the results which our group obtained from experiments performed on 

monkey oculomotor neurons (Eberhorn et al., 2005) we combined the detection of the tracer 

after injections into the MR belly or myotendinous junction with antibodies for perineuronal 

nets (CSPG) or non-phosphorylated neurofilaments (NP-NF) in order to identify SIF and MIF 

motoneurons by their immunohistochemical differences. After a big tracer injection the 

majority of labelled motoneurons in the oculomotor nucleus is surrounded by strong 

perineuronal nets (Fig. 1E, F) and is NF-NP immunoreactive (Fig. 1J, K). Few labelled 

motoneurons differ in their histochemical properties and lack both, perineuronal net and NF-

NP immunolabelling. In contrast, virtually all MR motoneurons labelled after a tracer 

injection into the distal myotendinous junction lack perineuronal net (Fig. 1G, H) and NF-NP 

immunoreactivity (Fig. 1L, M). 

 

Trochlear nucleus  

No tracer injections into the superior oblique muscle have been performed in this study. All 

data on SIF and MIF motoneurons in the trochlear nucleus are taken from double-

immunolabelling experiments described below. 

 

Abducens nucleus 

A big tracer injection into the muscle belly of the LR muscle filled the whole ipsilateral 

abducens nucleus (Fig. 1C and adjacent plot). Some marked cells could even be found lateral 

to the facial genu. In addition, few cells were labelled outside the medial border of abducens 

nucleus just as far medial as the MLF (Fig. 1C, arrows). 

After a small tracer injection into the myotendinous junction of the LR muscle, only few 

retrogradely labelled motoneurons were found (Fig. 1D and adjacent plot). They were located 

clearly separated from the classical abducens motoneurons outside the medial border of 
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abducens nucleus, with some being intermingled in the MLF. No labelled motoneurons were 

found within the borders of the nucleus.  

 

In monkey, a major ChAT-negative neuron population with prominent perineuronal nets is 

present within the abducens nucleus and presumably represents internuclear neurons 

(Eberhorn et al., 2005). To verify these results tracer injections of TMR-Dextran were placed 

into the oculomotor nucleus in order to retrogradely label internuclear neurons (Glicksman, 

1980). The tracer uptake area was confined to the medial to rostral planes of both nIII and 

extended ventrally into the MLF just between the red nuclei (Fig. 2A). TMR labelled neurons 

were observed in the ventrolateral part of both abducens nuclei at caudal to medial planes 

(Fig. 2B, arrows), identifying them as internuclear neurons (Glicksman, 1980). Additional 

double-labelling with ChAT and CSPG revealed that the INTs in rat are not cholinergic, but 

unlike in monkey show only weak CSPG-immunoreactivity compared to the SIF 

motoneurons (Fig. 2C, D). 

 

Complete populations of MIF motoneurons 

Unlike tracer injections, which usually label only parts of the motoneuron populations, ChAT-

immunolabelling visualized the complete motoneuron population, including both, SIF and 

MIF motoneurons in the oculomotor, trochlear and abducens nucleus. With the combined 

staining for ChAT and perineuronal nets or NP-NFs the complete population of MIF 

motoneurons in each nucleus was identified. 

 

Oculomotor nucleus (nIII) 

Using ChAT-immunolabelling in the oculomotor nucleus, the motoneuron subgroups of MR, 

IR, SR and IO muscle were labelled, and in addition those of the LP muscle (LP has only SIF 

motoneurons, which are located at caudal planes at the ventrolateral border of nIII). A 
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separation of the subgroups within the nucleus is not possible using the double-labelling, but 

was shown by tracing experiments in other studies (Glicksman, 1980; Gomez-Segade and 

Labandeira, 1980).  

The cholinergic neurons being ensheathed by perineuronal nets, representing the SIF 

motoneurons of MR, IR, IO, SR and LP, clearly fill up the whole oculomotor nucleus from 

the caudal to the rostral planes. Within the nucleus, a certain amount of cholinergic neurons 

can be found which lack perineuronal nets and lie intermingled with the SIF motoneurons. 

These neurons, which presumably resemble the MIF motoneurons of MR, IR, IO and SR, are 

not evenly distributed throughout the nucleus, but tend to cluster at some regions. The most 

obvious cluster is located at the medial aspect of nIII where the MIF motoneurons form a 

band which extents from ventral to the dorsal half of nIII, and is present at medial to rostral 

planes. The remaining MIF motoneurons either lie close to the ventral, lateral and dorsal 

borders or concentrate at the center of III (Fig. 3A, 4A). 

The same overall distribution of SIF and MIF motoneurons was found using double-labelling 

with ChAT and NF-NP. The NF-NP positive SIF motoneurons clearly outline the oculomotor 

nucleus, whereas the population of cholinergic neurons, which lack NF-NP immunoreactivity, 

tend to group at certain spots of nIII. Similar to the results from the double-labelling with 

ChAT and perineuronal nets, the NF-NP lacking neurons, presumably the MIF motoneurons 

of MR, IR, IO and SR, cluster at the medial border forming a band, and are additionally 

located close to the ventral, lateral and dorsal border or at the center of nIII (Fig. 4D).  

 

The cell counts of the double-labelled sections revealed that the MIF motoneurons within the 

oculomotor nucleus make up 21% of the total motoneuron population (2410 cells were 

counted on all sections). The morphometric analysis revealed that the mean cell diameters of 

MIF motoneurons, ranging from 11.2µm – 18.4µm (mean = 14.5µm; SD = 1.7; N=100), were 
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significantly smaller (p< 0.0001) than those of the SIF motoneurons, which ranged from 

14.5µm – 24.1µm (mean = 19.4µm; SD = 2.3; N = 100) (Fig. 3B). 

 

Trochlear nucleus (nIV) 

In the trochlear nucleus (nIV) no retrograde tracer labelling, but only ChAT-immunolabelling 

was used for the identification of motoneurons. All neurons within nIV are ChAT-

immunoreactive and delineate the nucleus clearly within the mesencephalic tegmentum. 

Combined immunolabelling for the presence of perineuronal nets or NP-NFs, with CSPG- or 

SMI32-antibodies, respectively, revealed that all motoneurons in nIV are double-labelled with 

CSPG and SMI32 except few neurons at the dorsal, medial and ventral border of the nucleus, 

which lack perineuronal nets (Fig. 3C, 4B) and NP-NF expression (Fig. 4E) . These neurons 

share the same properties than the MIF motoneurons of oculomotor nucleus and are therefore 

designated as MIF motoneurons of trochlear nucleus. The cell counts within nIV revealed that 

CSPG- and NP-NF- lacking MIF motoneurons make up 15% of all motoneurons (392 cells 

were counted on every section). The mean cell diameters of MIF motoneurons ranged from 

10.0µm – 16.1µm (mean = 12.9µm; SD = 1.4; N = 50) and were significant smaller (p< 

0,0001) compared to those of superior oblique SIF motoneurons, which ranged from 11.8µm 

–23.0µm (mean = 17.9µm; SD = 2.4; N = 100) (Fig. 3D). 

 

Abducens nucleus (nVI) 

With ChAT-immunolabelling the complete population of motoneurons (SIF motoneurons and 

MIF motoneurons) was visualized and could be distinguished from internuclear neurons, 

which are not cholinergic (Spencer and Baker, 1986; Carpenter et al., 1992).  

As shown by tracer-labelling, the largest population of ChAT-immunoreactive neurons that 

are not ensheathed by perineuronal nets and lack NP-NF-labelling was located in a separate 

group, clearly outside the medial border of the classical abducens nucleus identifying them as 
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presumed MIF motoneurons. This medial population of MIF motoneurons extends from the 

caudal to the very rostral level and forms a sort of cap which shelters the medial aspect of 

abducens nucleus. In addition a small subset of neurons sharing the same properties (>20) lie 

at the dorsal border or inside the abducens nucleus and were not labelled by distal tracer 

injections. The mean cell diameters of LR MIF motoneurons of nVI ranged from 9.9 µm – 

20.3µm (mean 13.2µm; SD = 2.0; N = 100) and are significantly smaller (p<0.0001) than 

those of the LR SIF motoneurons, which range from 12.2µm – 21.9µm (mean = 17.3µm; SD 

= 2.3; N = 100).  

On every section of the abducens nucleus the cholinergic motoneurons (SIF and MIF 

motoneurons) were counted which resulted in a total of 628 motoneurons. The complete 

population of MIF motoneurons in the abducens nucleus lacking perineuronal nets and NP-

NF was 139 and make up 22% of all cholinergic motoneurons.  

The cell counts are summarized in Table 3, the cell size measurements in Table 4. 
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Discussion 

Our results demonstrate that in rat the extraocular muscles are innervated by two sets of 

motoneurons, SIF and MIF motoneurons, which differ in size and histochemical properties, 

and tend to lie separate from each other. We identified the two motoneuron populations by 

tracer injections into the belly (SIF and MIF) or the distal myotendinous junction (MIF) of the 

horizontal recti, medial and lateral rectus muscle. A combination of the tracer experiments 

with immunolabelling for perineuronal nets (CSPG) and non-phosphorylated neurofilaments 

(NP-NF) revealed that only the SIF motoneurons stain positive for both markers. In addition, 

we combined CSPG and NP-NP staining with choline-acetyltransferase (ChAT) 

immunostaining to visualize the complete population of SIF and MIF motoneurons in all three 

oculomotor nuclei. Since all motoneurons are cholinergic (ChAT-positive), MIF motoneurons 

could easily be depicted by their lack of CSPG and NP-NF.  

In the following discussion, we compare our results with the observations made in previous 

studies in rat and monkey oculomotor system and further discuss the functional implications 

for all mammals. 

 

Localization of SIF and MIF motoneurons in rat 

Up to now, the detailed localization of MIF and SIF motoneurons has only been studied in 

monkey (Büttner-Ennever et al., 2001; Eberhorn et al., 2005). In this animal, the largest and 

most compact population of MIF motoneurons are those of the medial and inferior rectus 

muscles that form the C-group at the dorsomedial border of the oculomotor nucleus (Spencer 

and Porter, 1981; Büttner-Ennever and Akert, 1981; Büttner-Ennever et al., 2001). The C-

group has been identified in several species (Clarke et al., 1987; Sun and May, 1993; Shall et 

al., 2003). It is clearly separated from the SIF motoneurons of the oculomotor nucleus (nIII) 

and lies close to the Edinger-Westphal nucleus (EW), which contains the preganglionic 

neurons for pupil constriction and accommodation (Akert et al., 1980; Burde and Williams, 
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1989; Ishikawa et al., 1990). The MIF motoneurons of the superior rectus and inferior oblique 

eye muscles are located around the midline between the oculomotor nuclei forming the S-

group (Büttner-Ennever et al., 2001; Wasicky et al., 2004).  

Compared to the monkey the MIF and SIF motoneurons in rat are not clearly separated in the 

oculomotor nucleus. Regarding the MR subgroup in the oculomotor nucleus, one major 

difference between monkey and rat is the existence of three anatomically distinct 

subpopulations of MR motoneurons in primates (Büttner-Ennever and Akert, 1981). The SIF 

motoneurons form the A-group and the B-group, whereas the MIF motoneurons form the C-

group. Though a similar division of MR motoneurons in rat was not found in this study or by 

other authors (Glicksman, 1980; Labandeira-Garcia et al., 1983), the MIF motoneurons tend 

to cluster at or close to the medial border of nIII (Fig. 3A, 4A, D). This is in line with 

previous studies on the localization of motoneurons innervating the EOM in rat (Glicksman, 

1980; Labandeira-Garcia et al., 1983). Although both studies were focussed on the 

identification of the complete motoneuron population of each EOM and did not incorporate a 

possible difference between motoneurons innervating ´en-grappe` and ´en-plaque` endplates 

in the EOM, one can find several indices for the presence and localization of MIF 

motoneurons. In one tracer injection case of the MR, Glicksman (1980) found only few 

motoneurons that were labelled. Those were located predominantly at the medial border of 

nIII, a finding very similar to the results obtained from a tracer injection into the 

myotendinous junction in our study. The combined detection of the tracer with 

immunolabelling for CSPG or NP-NF revealed that majority of these neurons lack both 

markers, identifying them as MIF motoneurons Furthermore, Landeira Garcia et al. (1983) 

measured the size of tracer-positive motoneurons and found that in the MR subgroup the 

smallest neurons appear along the medial border of nIII, where they are intermingled with 

similar small motoneurons labelled from tracer injections into the IR. The visualization of the 

overall population of MIF motoneurons in nIII, showed their localization exactly at the medial 
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border. Thus, the medial cluster of MIF motoneurons may be considered as homologue to the 

C-group found in monkey. Accordingly, the additional MIF motoneurons inside and at the 

dorsal border of nIII may be homologue to the S-group. Hence, a more detailed study 

involving the SR, IO, and IR muscle has to clarify this issue. In monkey the MIF 

motoneurons of the superior oblique muscle lie in a compact cluster in the dorsal cap of the 

trochlear nucleus. Our results in the rat reveal an analogues pattern, though the MIF 

motoneurons form rather an envelope than a cap. The MIF motoneurons of the lateral rectus 

muscle in monkey are arranged more loosely around the periphery of the abducens nucleus, 

whereas the SIF motoneurons are scattered within the nucleus (Büttner-Ennever et al., 2001). 

In addition, a certain amount of motoneurons with MIF properties can be found within the 

abducens nucleus, possibly representing the MIF motoneurons of the orbital layer of LR 

(Eberhorn et al., 2005). In the rat, the MIF motoneurons of abducens nucleus are 

predominantly located outside its medial border, intermingled within the fibres of MLF. 

Again, this finding is supported by Labandeira Garcia et al., (1983) who found the smallest 

motoneurons of nVI localized exactly at the same position as the MIF motoneurons. A 

comparable group of central MIF motoneurons was not found in the rat nVI.  

The rat is most likely not the only lateral-eyed animal showing two types of motoneurons that 

innervate the EOM. In both rabbit (Akagi, 1978) and guinea pig (Gomez-Segade and 

Labandeira-Garcia, 1983) some smaller sized neurons were found (and referred to as gamma-

motoneurons) intermingled with the classical motoneurons in the oculomotor, trochlear, and 

abducens nucleus. These gamma-motoneurons are similar to those described in rat 

(Labandeira-Garcia et al., 1983), where they occupy the position of our identified MIF 

motoneurons. Thus, it is very tempting to speculate that these gamma-motoneurons represent 

MIF motoneurons in the rabbit and the guinea pig. 
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Our demonstration, that identified abducens internuclear neurons (INT) are not cholinergic 

confirms the findings in monkey (Carpenter et al., 1992; Spencer and Baker, 1986) and 

prevented us from a possible misinterpretation of these neurons as MIF or SIF motoneurons.  

A second group of motoneurons which are often found close to or within the abducens 

nucleus are those innervating the retractor bulbi muscle. The occurrence of this muscle, which 

pulls the eye back into the orbit, is coupled to the presence of a nictitating membrane. In rats, 

the retractor bulbi motoneurons form the accessory abducens nucleus (nVIa). This nucleus is 

present at levels just caudal to the nVI, medial to the lower part of the facial root fibres (refs: 

Oda, 1981; Szekely et al., 1982). Thus the relatively great distance of nVIa to nVI makes it 

very unlikely that retractor bulbi motoneurons may have been mistaken for LR motoneurons. 

 

As in monkey (Eberhorn et al., 2005), we found that in rat MIF motoneurons are smaller than 

SIF motoneurons. Looking at the overall number of MIF motoneurons, we found that their 

proportion is about 21% within the total motoneuron population in the oculomotor and 

abducens nucleus, and about 15% in the trochlear nucleus, thus a little more invariant than in 

monkey (about 20% for all three nuclei) (Eberhorn et al., 2005). These percentages of MIF 

and SIF motoneurons may be a common feature, since the `gamma-motoneurons´ found in the 

guinea pig (and which we rather call MIF motoneurons), made up about 20% of the total 

motoneuron number within the oculomotor and abducens nuclei, and about 10% within the 

trochlear nucleus. It is difficult to deduct a relationship between these percentages, since 

motor unit structure is rather complex (Shall and Goldberg, 1992) and in addition MIFs are 

thought to receive a polyneuronal innervation (Jacoby et al., 1989). However, the number of 

MIF and SIF motoneurons could somehow resemble the data of 20% MIFs to 80% SIFs for 

whole muscle fibre counts (Porter et al., 1995). 
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Functional implications 

Compared to the monkey, the rat shows a strikingly analogous organization of MIF and SIF 

motoneurons in its oculomotor nuclei based on anatomical, molecular, and quantitative 

respects. But what is the function of MIF motoneurons, if a lateral-eyed animal like the rat 

with a limited repertoire of eye movements shows a similar system like the highly visual 

oriented monkey? In monkeys, the premotor innervation of the MIF motoneurons imply a role 

in tension feedback, which could involve gaze holding, eye alignment and vergence (Büttner-

Ennever et al., 2002; Wasicky et al., 2004).  

Rats are functionally afoveate animals, whose eye movements differ in many respects from 

those of foveate animals like primates (Fuller, 1985; Collewijn, 1981; Delgado-Garcia, 2000). 

Compensatory eye movements, vestibulo-ocular reflex (VOR) and optokinetic reflex (OKN), 

are more important than voluntary eye movements like saccades, vergence, or gaze holding. 

Smooth pursuit movements are not present at all (Delgado-Garcia, 2000). Although rats have 

a smaller binocular field and their gaze holding ability is much poorer than in monkey 

(Chelazzi et al., 1989), the MIF motoneurons in this species may function similar to those in 

monkey, being involved in gaze holding and vergence. The less obvious separation of MIF 

and SIF motoneurons observed in rat (especially in the oculomotor nucleus) may be due to its 

limits in eye movements. Since there are no studies yet on the premotor inputs of the MIF 

motoneurons in rats, their function remains speculative.  

In the EOM of mammals, the MIFs of the global layer and palisade endings form a unique 

unit (Alvarado-Mallart and Pincon Raymond, 1979; Blumer et al., 1998, 2001; Lukas et al., 

2000; Eberhorn et al., 2005). This unit may function as inverted muscle spindle, as once 

suggested by Robinson (1991). A view which is supported by the finding that global MIFs 

have the same heavy-chain myosin as the nuclear bag1 intrafusal fibres of muscle spindles 

(Pedrosa-Domellof et al., 1991). Accordingly the global MIF motoneurons then may resemble 

gamma motoneurons, a notion which was pointed out by several authors for the small 
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motoneurons found in the oculomotor nuclei of the rabbit, and guinea pig, and rat (Akagi, 

1978; Gomez-Segade and Labandeira-Garcia, 1983; Labandeira-Garcia et al., 1983).  

 

Conclusion 

In this study on the rat oculomotor system, we showed for the first time that the dual motor 

control of extraocular muscles is not an adoption to the visual needs of highly developed 

animals like primates, but is also present in lateral-eyed, afoveate animals like the rat. The 

less elaborate separation of MIF and SIF motoneurons in the rat compared to the monkey, 

together with the more rudimentary palisade endings in its EOM possibly reflects the simpler 

demands placed upon the dual motor control system in the rat. 
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Figure 1: Comparison of tracer injections into the muscle belly (left column) or the distal 
myotendinous junction (right column) of medial (A, B) and lateral (C, D) rectus muscle in rat. 
The belly injection labels both SIF and MIF motoneurons, the distal injection only MIF 
motoneurons. A-D show transverse sections of oculomotor (A, B) and abducens (C, D) 
nucleus labelled for the tracer detection of CTb (A, B, D) or WGA-HRP (C). The adjacent 
plots to A-D represent 4 planes from caudal (top) to rostral (bottom) with tracer positive 
motoneurons.  
In the oculomotor nucleus, a distal tracer injection (B) labels less neurons than obtained from 
a belly injection (A). Their overall localizations within the nucleus is more or less identical, 
with the greatest part grouped at the medial border and the dorsal third of nIII (A, B, and 
adjacent plots). In the abducens nucleus, a belly injection of LR fills up the whole nucleus. In 
addition a few labelled neurons are located outside the medial border (C, arrows). The latter 
are selectively labelled with a tracer injection into the distal myotendinous junction of the 
lateral rectus (D, arrows), whereas the motoneurons within the nucleus remain unstained (D). 
E-M show high magnifications of transverse sections through the oculomotor nucleus (nIII) 
demonstrating the different staining properties of retrogradely labelled MIF motoneurons 
(blue) after a small CTb-injection into the distal MR and retrogradely labelled SIF 
motoneurons after a CTb-injection into the belly of MR. The tracer detection is combined 
with immunofluorescence for NP-NF (SMI32-antibody) or perineuronal nets (CSPG-
antibody) (green). Each pair of neighbouring photographs shows the same section illustrated 
to demonstrate for different antigens. Note that the tracer-positive MIF motoneurons (blue) 
lack SMI32- and CSPG-immunoreactivity (G-H, L-M; arrows), whereas the tracer-positive 
SIF motoneurons (blue) are SMI32- and CSPG-positive (E-F, J-K, arrows). Scale bar in A-D 
is 200µm, in E-M 40µm. 
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Figure 2: Tracer injection (TMR-dextran) into the oculomotor nucleus of the rat. (A) shows a 
transversal section of nIII at a mediorostral level labelled for tracer detection and 
counterstained with cresyl violet. The injection site is located at the midline between the nIIIs. 
The tracer uptake area involves the left and right nIII, fibres of the MLF and extends ventrally 
just in between the red nucleus (nR). In the transverse section of right abducens nucleus (B), 
tracer positive interneurons (arrowheads) are located ventral and lateral to the motoneurons of 
the abducens nucleus, identified by cresyl violet stain. Their distribution is similar to previous 
studies in rat by Glicksman (1980) and Labandeira-Garcia et al. (1983). C-D show high 
magnifications of transverse sections through nVI. C and D represent the same section stained 
for different antibodies. TMR positive interneuron (C, red fluorescence, arrow) is ChAT-
negative (D, blue, arrow), and shows only weak perineuronal net labelling (with CSPG 
antibody, green, arrow) (C). In contrast, the ChAT positive motoneuron (D, arrow) is strongly 
CSPG-positive (C, arrow). Scale bar in A-B is 200µm, in C-D 40µm. 
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Figure 3: Transverse sections of the oculomotor (A), trochlear (B) and abducens nucleus (C) 
double labelled with ChAT (red fluorescence) and CSPG (green fluorescence). Whereas the 
majority of neurons in the three nuclei is positive for ChAT and CSPG representing SIF 
motoneurons, a certain amount of neurons show only ChAT immunolabelling (MIF 
motoneurons). In nIII, the MIF motoneurons are located for the greatest part at or close to the 
medial border (A, arrows), the remaining scattered within the nucleus. In nIV the MIF 
motoneurons are found at various positions close to the borders (B, arrows). In contrast to 
nIV, the MIF of nVI are located clearly separated outside the medial border (E, arrows), with 
additional few located at the dorsal border. Note: Since CSPG-labelling in nVI is not as strong 
as in nIII or nIV, the perineuronal nets are not clearly visible around some SIFs at the low 
magnifications shown here. Scale bar is 200µm. 
The adjacent histograms to A-C demonstrate for each nucleus the size differences between 
MIF (only ChAT positive) and SIF (ChAT and CSPG- positive) motoneurons. In all of the 
three oculomotor nuclei, the MIF motoneurons are significantly smaller than SIF 
motoneurons (p<0.001). The detailed data is shown in Table 4. 
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Figure 4: Plots of transverse sections of nIII (A, D), nIV (B, E) and nVI (C, F), the outlines 
are drawn after subsequently treating the sections with Nissl stain. The sections were double-
labelled for ChAT and CSPG (A-C) or ChAT and NP-NFs with SMI32 antibody (D-F). SIF 
motoneurons (open circle) are both ChAT- and CSPG- or ChAT- and SMI32-positive, 
whereas MIF motoneurons (filled circle) lack CSPG- and SMI32-immunoreactivity. In nIII 
(A, D), the MIF motoneurons cluster at or close to the medial border. Additional MIF 
motoneurons are scattered within the nucleus are lie at the ventral and dorsal border. In nIV 
(B, E), the MIF motoneurons are found at the borders of the nucleus, whereas they lie clearly 
separated outside the medial borders in nVI (C, F). Additional MIF motoneurons are located 
at the dorsal tip of nVI. Scale bar is 200µm. 
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Table 1: Tracer cases 

Case Injection site Tracer Volume Survival time Tracer detection 

AII-99 belly of MR 1% CTb 6µl 3 days DAB 

AII-99 belly of LR 2.5% WGA-HRP 5 µl 3 days TMB 

R12-03 distal MR 1% CTB 1 µl 3 days DAB 

AIV-99 distal LR 1% CTB  1 µl 3 days DAB 

R13-03 oculomotor 

nucleus 

TMR-Dextran 0.8µl 5 days DAB 

R1-04 oculomotor 

nucleus 

TMR-Dextran 0.8µl 5 days DAB 

 

Table 2: Used antibodies 

Antibody Host Antigen Manufactor Dilution 

ChAT rabbit Choline acetyltransferase Chemicon, Temecula CA 1:500 

CSPG mouse Chondroitin sulfate 

proteoglycan 

Chemicon, Temecula CA 1:100 

CTb goat Cholera toxin subunit B List Biological Lab. Inc., 

Campbell CA 

1:5000 

1:20000 

SMI32 mouse Non-phosphorylated 

neurofilament 

Sternberger Monoclonals 

Inc., Lutherville MD 

1:900 

TMR rabbit Tetramethyl-rhodamine- Molecular Probes, Eugene 

OR 

1:1000 

1:5000 
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Table 3: cell counts of SIF and MIF motoneurons 

 motoneurons 

(ChAT) 

SIF 

(ChAT+CSPG or +NF-NP) 

MIF 

(ChAT) 

Nucleus number number percentage Number percentage 

III 2410 1899 78.8% 511 21.2% 

IV 392 333 84.9% 59 15.1% 

VI 628 489 77.9% 139 22.1% 

 

Table 4: average mean diameter and two tailed t-test 

 Mean diameter [µm]  

nucleus SIF MIF t-test 

III (100 SIF, 100 MIF) 19.41 +/- 2.31 14.53 +/- 1.65 P<0.0001 

IV (100 SIF, 50 MIF) 17.91 +/- 2.45 12.91 +/- 1.42 P<0.0001 

VI (100 SIF, 100 MIF) 17.33 +/- 2.27 13.24 +/- 2.01 P<0.0001 
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Paper 3: Palisade endings in extraocular eye muscles revealed by SNAP-25 immunoreactivity  



J. Anat. (2005) 206, pp307–315

© Anatomical Society of Great Britain and Ireland 2005

Blackwell Publishing, Ltd.

Palisade endings in extraocular eye muscles revealed by 
SNAP-25 immunoreactivity
Andreas C. Eberhorn,1 Anja K. E. Horn,1 Nicola Eberhorn,2 Petra Fischer,1 Klaus-Peter Boergen3 and 
Jean A. Büttner-Ennever1

1Institute of Anatomy, and 3Eye Clinic, Ludwig-Maximilian University of Munich, Germany 
2Max-Planck-Institute of Neurobiology, Martinsried, Germany 

Abstract

Palisade endings form a cuff of nerve terminals around the tip of muscle fibres. They are found only in extraocular

muscles, but no definite evidence for their role in eye movements has been established. Palisade endings have

been reported in all species so far investigated except the rat. In this study we demonstrate that antibodies against

SNAP-25, the synaptosomal associated protein of 25 kDa, reliably visualize the complete motor, sensory and auto-

nomic innervation of the extraocular muscles in human, monkey and rat. The SNAP-25 antibody can be combined

with other immunofluorescence procedures, and is used here to study properties of palisade endings. With SNAP-25

immunolabelling putative palisade endings are identified in the rat for the first time. They are not well branched,

but fulfil several criteria of palisade endings, being associated with non-twitch fibres as shown by double labelling

with ‘myosin heavy chain slow-twitch’ antibodies. The putative palisade endings of the rat lack α-bungarotoxin

binding, which implies that these synapses are sensory. If palisade endings are sensory then they could function

as an eye muscle proprioceptor. They seem to be a general feature of all vertebrate eye muscles, unlike the other

two extraocular proprioceptors, muscle spindles and Golgi tendon organs, the presence of which varies widely

between species.

Key words human; monkey; myotendinous cylinders; oculomotor proprioception; rat.

Introduction

Dogiel was one of the first scientists to describe palisade

endings. He found them in the extraocular muscles

of human, monkey, horse, oxen, dogs and cats, and

referred to three previous reports of similar structures

in rabbit, camel and cow (Dogiel, 1906). They were

subsequently found in the eye muscles of many other

species but, thus far, have not been reported in the rat

(Dogiel, 1906; Ruskell, 1999). Palisade endings consist

of a cuff, or ‘palisade’, of fine nerve terminals at the

myotendinous junction. They arise from myelinated

nerve fibres that enter the muscle at the central nerve

entry zone, run to the distal or proximal tip of the

muscle and into the tendon, then turning back 180° to

terminate around the tip of a muscle fibre. An alternative

name for this type of terminal, plus its collagen capsule,

is an ‘innervated myotendinous cylinder’ (Ruskell, 1978).

Palisade endings are thought to be confined to eye

muscles, and they have not been found in any other

vertebrate muscle up to now (Ruskell, 1999). Extraocular

muscles have a particularly complex structure (reviewed

by Spencer & Porter, 1988). They can be divided into an

inner global and an outer orbital layer (Kato, 1938).

The global layer is continuous from the annulus of Zinn

to the tendinous insertion on the sclera of the globe,

whereas the orbital layer terminates posterior to the

scleral insertion on the fibroelastic capsule of Tenon

(Porter et al. 1996; Demer, 2002; Miller et al. 2003). In

contrast to skeletal muscles, which contain two main

muscle fibre types, six fibre types can be distinguished

in extraocular muscles. Spencer & Porter (1988) have

reviewed their properties. Four of these fibre types are

categorized as twitch muscle fibres (i.e. responding

with an all-or-nothing response to stimulation), with

a single ‘en plaque’ region of innervation similar to
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motor endplates found in skeletal muscles. The remain-

ing two types are multiply innervated, one type lying in

the orbital layer, the other in the global layer. The mul-

tiply innervated muscle fibres respond to stimulation

with a slow tonic contraction, and are referred to here

as non-twitch muscle fibres. The multiply innervated

fibres of the orbital layer have mixed twitch and non-

twitch properties (Pachter, 1984), whereas those of the

global layer are ‘pure’ non-twitch fibres. Palisade end-

ings innervate exclusively one specific type of extra-

ocular muscle fibre, the multiply innervated non-twitch

muscle fibres of the global layer.

The function of palisade endings has always been

a highly controversial subject; and it is still unclear

whether they have a sensory function, a motor func-

tion or perhaps a mixed function (Lukas et al. 2000). As

early as 1910, Tozer and Sherrington showed that pal-

isade endings in the monkey eye muscle did not degen-

erate when the sensory trigeminal nerve was sectioned

(Tozer & Sherrington, 1910), but they did degenerate

when the oculomotor nerves were cut. This result was

confirmed by Sas & Schwab (1952), with similar methods.

These findings imply that either the palisade endings

do not have a sensory function and are therefore likely

to have a motor function, or that the sensory afferents

of palisade endings take a highly unusual route into

the brain, for example via the oculomotor nerves.

The question of extraocular proprioception is also

contentious, independent of the function of palisade

endings. Both muscle spindles and Golgi tendon organs,

the classical muscle proprioceptors, were only found in

the extraocular muscles of cloven-hoofed species such

as sheep (Harker, 1972), camel (Abuel-Atta et al. 1997),

pig (Blumer et al. 2001a) and cow (Maier et al. 1974;

Blumer et al. 2003). In contrast, some species, including

humans, possessed only muscle spindles, but no Golgi

tendon organs; by contrast, the eye muscles of numer-

ous other species contained neither muscle spindles

nor Golgi tendon organs (Cooper & Daniel, 1949; Lukas

et al. 1994). No correlation could be established between

the occurrence of proprioceptors and any other factor.

The results of physiological studies do not clarify the

position. First, eye muscles do not show a stretch-reflex

as skeletal muscles do, and the need for a sensory input

from the eye muscles was often doubted, or considered

not necessary, because the visual system exerts a con-

stant feedback control over eye movements (Keller &

Robinson, 1972). However, neural responses to stretch-

ing eye muscles have been reported in the superior

colliculus, the cerebellum and brainstem (Donaldson

& Long, 1980; Ruskell, 1999; Donaldson, 2000). In addi-

tion, a variety of oculomotor deficits were found when

sensory afferents from extraocular muscles were

destroyed, manipulated or inactivated (Fiorentini &

Maffei, 1977; Maffei & Fiorentini, 1976; Pettorossi et al.

1995). The problems of eye muscle proprioception

were pushed aside in the 1970s and became unfashion-

able for several years, until the early 1980s when inves-

tigations of scientists such as Gordon Ruskell generated

new interest in the complicated issue (reviewed by

Ruskell, 1999).

We consider that palisade endings may provide a

proprioceptive signal from eye muscles in the absence

of muscle spindles and Golgi tendon organs (Büttner-

Ennever et al. 2003). To support this hypothesis, the

sensory nature of the palisade endings must be estab-

lished. Any such study of palisade endings must depend

on a staining technique that visualizes the axon, the

branches of the palisade endings and, most crucial of

all, the terminal boutons of the putative receptors.

Classical silver stains (Richmond et al. 1984) may fulfil

some of these criteria, but they cannot be combined

with modern immunohistochemical techniques to

determine the functional properties of the palisade

terminals. For example, positive stains for synapto-

physin at a presynaptic terminal indicate the presence

of synaptic vesicles and thereby a functional synapse

(Wiedenmann & Franke, 1985).

In this paper we describe a staining technique that

uses antibodies against SNAP-25 to visualize motor

axons and endplates, as well as sensory axons and their

endings. It is suitable for the complete staining of

palisade ending axons, their branches and terminals.

The procedure can be simply combined with other

immunohistochemical techniques to establish the func-

tional properties of these endings. The synaptosomal

associated protein SNAP-25 is a t-SNARE (i.e. a target

receptor associated with the presynaptic plasma

membrane), involved in synaptic vesicle exocytosis

(McMahon & Sudhof, 1995). Several studies showed

that SNAP-25 is not only concentrated at synapses and

in transport vesicles but also in the axonal membrane

(Garcia et al. 1995; Tao-Cheng et al. 2000). Using SNAP-

25 antibodies, our study shows for the first time that

even rats have putative palisade endings associated

with their global layer ‘non-twitch’ muscle fibres,

implying that palisade endings may be present univer-

sally in mammalian eye muscles.
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Methods

All experimental procedures conformed to the state

and university regulations on Laboratory Animal Care,

including the Principles of Laboratory Animal Care (NIH

Publication 85-23, Revised 1985), and were approved

by their Animal Care Officers and Institutional Animal

Care and Use Committees.

Paraformaldehyde-fixed eye muscles were obtained

from macaque monkey and three rats. The animals

were killed with an overdose of nembutal (80 mg kg−1

body weight) and transcardially perfused with 0.9%

saline (35 °C) followed by 4% paraformaldehyde in

0.1 M phosphate buffer (PB; pH 7.4) and 10% sucrose in

0.1 M PB (pH 7.4). Then, the eyes were removed from

the orbits and the eye muscles were carefully dissected

and equilibrated in 20 and 30% sucrose in 0.1 M PB for

3 days. Additional unfixed eye muscles were obtained

from sheep. Human muscle specimens were removed

during optical surgery, post-fixed in 4% PB-buffered

paraformaldehyde, and equilibrated in 10, 20 and 30%

sucrose. Fixed monkey and unfixed sheep eye muscles

were shock frozen in isopentane (−60 °C) and kept

at −20 °C until cutting. Rat and human eye muscles

were directly frozen in the cryostat microtome

(MICROM HM 560). All eye muscles were cut longitudi-

nally at 20 µm and thaw-mounted onto glass slides

(Superfrost Plus).

Prior to immunohistochemistry, sheep eye muscles

were fixed for 5 min in 4% paraformaldehyde in 0.1 M

PB. SNAP-25 immunoreactivity was revealed with the

monoclonal mouse antibody SMI81 (Sternberger

Monoclonals Inc.).

Single peroxidase staining of SNAP-25

All sections were pretreated with 3% H2O2/10% meth-

anol in 0.1 M PB, pH 7.4, for 15 min to suppress endog-

enous peroxidase activity and then thoroughly washed.

For the detection of SNAP-25 immunoreactivity, sec-

tions were blocked with 5% horse serum in 0.1 M PB,

pH 7.4, containing 0.3% Triton X-100 for 1 h and sub-

sequently processed with mouse anti-SNAP-25 antibodies

(1 : 5000) overnight at room temperature. After several

buffer washes the sections were treated with bioti-

nylated horse antimouse antibody (1 : 200; Alexis) for

1 h at room temperature, washed and incubated in

extravidin–horseradish peroxidase (1 : 1000; Sigma) for

1 h. Diaminobenzidine served as chromogen for the

detection of SNAP-25 immunoreactivity. Some sections

were counterstained with hemalaun (0.1%).

Double and triple fluorescence labelling

In order to verify that SNAP-25 is present in both nerve

fibres and terminals, double immunofluorescence

staining was performed on monkey and rat eye muscles

using SNAP-25 antibodies combined with either anti-

synaptophysin or anti-neurofilament-M (NF-M).

First the eye muscle sections were blocked with 5%

normal donkey serum in 0.1 M PB, pH 7.4, containing

0.3% Triton X-100 for 1 h. Then, the sections were proc-

essed with a mixture of mouse anti-SNAP-25 (1 : 1000)

and either rabbit anti-synaptophysin (1 : 100; Synaptic

Systems) or rabbit anti-NF-M (1 : 1000; Chemicon)

overnight. For visualization of the applied antibodies,

the sections were then reacted with a mixture of fluor-

ochrome-tagged secondary antibodies from donkey,

namely Alexa 488-anti-rabbit (1 : 200; Molecular Probes)

and Cy3-anti-mouse (1 : 200; Dianova) for 2 h.

For the identification of putative palisade endings in

rat extraocular muscles, longitudinal sections of 17 eye

muscles were processed for the detection of SNAP-25

combined with α-bungarotoxin binding, and staining

for synaptophysin or myosin heavy chain slow twitch.

After blocking with 5% normal donkey serum in 0.1 M

PB, pH 7.4, containing 0.3% Triton X-100 for 1 h, the

sections were first treated with mouse anti-SNAP-25

(1 : 1000) overnight, followed by a 2-h incubation of

Alexa 488-tagged donkey anti-mouse (1 : 200; Molecular

Probes) secondary antibody. After extensive rinsing in

0.1 M PB, pH 7.4, the sections were then processed with

mouse anti-myosin heavy chain slow-twitch (1 : 100;

Novocastra) or rabbit anti-synaptophysin (1 : 100) over-

night, followed by a 2-h incubation of Cy5-tagged don-

key anti-mouse or donkey anti-rabbit (1 : 150; Dianova)

secondary antibody. After washing in 0.1 M PB, the sec-

tions were then treated with Cy3-tagged α-bungarotoxin

(1 : 200, Molecular Probes) for 30 min at room temper-

ature and rinsed in 0.1 M PB.

All fluorochrome-stained sections were coverslipped

with GEL/MOUNT permanent aqueous mounting medium

(Biomeda) and stored in the dark at 4 °C.

Analysis

Images of bright-field photographs were digitalized

by using the 3-CCD videocamera (Hamamatsu; C5810)
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mounted on a Leica DMRB microscope. The images

were captured on a computer with Adobe Photoshop

5 software. Sharpness, contrast and brightness were

adjusted to reflect the appearance of the labelling seen

through the microscope.

Confocal microscopy and image processing

Fluorescence-stained eye muscle sections were imaged

with a Leica TCS NT and a Leica TCS SP2 laser-scanning

confocal fluorescence microscope (Leica, Heidelberg,

Germany). Images were taken with a 40× oil objective,

NA 1.4, at a resolution of approximately 200 nm per

pixel. Dual or triple channel imaging of Cy2/Alexa 488,

Cy3 and Cy5 fluorescence were sequentially recorded

at 488 nm excitation/525–550 nm emission, 543 nm

excitation/555–620 nm emission, and 633 nm excitation/

650–750 nm emission, respectively. Z-series were col-

lected from 0.5–1 µm optical sections taken through

the specimen. Image stacks were processed using

Metamorph 6.1 (Universal Imaging Inc., USA). Brightness

and contrast were enhanced as required, and maximum

intensity projections were generated for visualization.

All pictures were arranged and labelled with drawing

software (CorelDraw 8 and 11; Corel).

Results

SNAP-25 immunolabelling is used to stain neural struc-

tures in the extraocular muscles of monkey, human,

sheep and rat. It is shown here to stain motor nerves

and endplates, sensory fibres and terminals, autonomic

innervation of blood vessels, and palisade endings at

the myotendinous junction.

Motor innervation

The motor nerves are completely visualized with the

SNAP-25 antibody stain, from their entry into the

extraocular muscle up to the fine ramifications where

they yield the nerve terminals of ‘en plaque’ endings

on the twitch muscle fibres (Fig. 1A,D). This was veri-

fied with double labelling of the ‘en plaque’ endings

with synaptophysin antibodies (Fig. 1E). In all of these

endings SNAP-25 and synaptophysin immunoreactivity

were always co-localized (Fig. 1D–F). In contrast to

Fig. 1 Laser scanning photomicrographs 
of longitudinal sections of extraocular 
eye muscles. (A–C) Double 
immunofluorescence labelling of a rat 
inferior rectus muscle with antibodies 
for SNAP-25 (red) and NF-M (green). A 
motor nerve is entering the eye muscle 
and branches into several ‘en plaque’ 
endings. SNAP-25 antibodies visualize 
both the nerve fibres and the ‘en plaque’ 
endings (A) whereas NF-M 
immunoreactivity is present only in the 
majority of the nerve fibres (B). This is 
clearly shown in the overlay of both 
markers in C. (D–I) Double 
immunofluorescence labelling of a 
monkey inferior rectus muscle with 
antibodies for SNAP-25 (red) and 
synaptophysin (green). Detailed view of 
an ‘en plaque’ ending on a twitch muscle 
fibre (D–F) and ‘en grappe’ endings 
(arrows) on a multiply innervated muscle 
fibre (G–I). In both types of endings, 
SNAP-25 and synaptophysin 
immunoreactivity clearly outline the 
morphology of these endings and are co-
localized in all terminals, as indicated in 
the overlays (F,I). Note that the motor 
nerve giving rise to the ‘en grappe’ 
endings lacks synaptophysin and is only 
visualized with SNAP-25 antibodies (H,I). 
Scale bar, 50 µm.
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SNAP-25 (red fluorescence), which clearly visualizes

both nerves and terminals, NF-M (green fluorescence)

is only present in the nerve branches (Fig. 1B,C).

The motor nerve and the small ‘en grappe’ motor

endplates along the length of multiply innervated

muscle fibres were strongly labelled with SNAP-25 anti-

bodies (Fig. 1G,I). All ‘en grappe’ endplates were dou-

ble labelled for synaptophysin and SNAP-25 (Fig. 1H,I).

Sensory innervation

In order to test the ability of SNAP-25 to label sensory

nerves and their terminals, sheep eye muscles, which

contain muscle spindles, were stained with SNAP-25

antibody. Muscle spindles were easily identified in van

Giesson stains by the collagen fibre capsule. The sensory

annulospiral endings on the equatorial region of the

intrafusal fibre of muscle spindles were fully labelled

with SNAP-25 antibodies (Fig. 2A).

Autonomic innervation

Blood vessels within the extraocular muscle are inner-

vated by a network of fine varicose nerves which are

clearly SNAP-25 positive (Fig. 2B).

Palisade endings

Only palisade endings in which the supplying axon

could be seen to enter the muscle fibre from the distal

tendon were analysed in this study. Because staining

for SNAP-25 labels both nerve fibres and terminals of

motor and sensory axons, it could be used for the com-

plete visualization of palisade endings at the myotend-

inous junction. In Fig. 2(C), the palisade ending in a

human eye muscle is visualized to its full extent with

SNAP-25 antibodies. The reconstruction of the double

labelled monkey palisade ending shows the red fluo-

rescence of SNAP-25 positive afferent axon and cuff of

terminals around the tip of a muscle fibre (Fig. 3A). In

Fig. 2 Photomicrographs of neural structures in longitudinal 
sections of sheep and human extraocular eye muscles labelled 
with SNAP-25 antibodies and counterstained with hemalaun. 
(A) Identified muscle spindle in a sheep inferior rectus muscle. 
With SNAP-25 immunolabelling, a nerve fibre which enters 
the collagenous capsule is visualized. On the intrafusal muscle 
fibres an annulospiral ending which winds around the fibres 
is clearly SNAP-25 positive (arrow). (B) Blood vessels in the 
tendon of a human extraocular muscle. Using SNAP-25 

antibodies, a fine network of varicose nerve fibres 
surrounding the lumen (L) of the vessels could be identified. 
(C) A palisade ending at the myotendinous junction of a 
human extraocular eye muscle. SNAP-25 antibodies 
completely label the palisade ending (PE), the axon which 
enters from the tendon (td) as well as the bunch of branches 
and small terminals which terminate on a muscle fibre. Scale 
bar, 50 µm.
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contrast, NF-M immunoreactivity (green fluorescence)

is present only in the axonal branches and not in the

terminals (Fig. 3B,C).

The study of 17 rat extraocular muscles stained with

SNAP-25 antibodies showed a more widespread net-

work of neural structures at the distal tip of the muscle

and the adjacent tendon compared with in monkey

or human. Some of these could be identified as ‘en

grappe’ endplates on muscle fibres, whereas others

were associated with blood vessels and connective tis-

sue. In addition, axons could be traced from the distal

tendon, and were found to terminate in close proximity

to the muscle fibre tips, where the global layer inserts

into the sclera (Blumer et al. 2001b; Miller et al. 2003).

These axons were of a larger calibre than the fine nerves

innervating blood vessels. In spite of the difficulty in

obtaining intact myotendinous junctions in rat eye

muscles, 27 such structures were found and they varied

in their morphology from a fine network to a compact

clump of terminals (Fig. 3D,E). A review of the spectrum

of terminals is beyond the scope of this paper. Here,

one such terminal is selected as an example, and used to

illustrate some of the histochemical properties of struc-

tures at the myotendinous junction of the rat eye muscles.

Nineteen of the presumed palisade endings were

tested for α-bungarotoxin binding, and all but one were

completely negative, implying the absence of motor

endplates. In contrast, a control labelling of ‘en grappe’

endplates on a multiply innervated muscle fibre in the

same section shows clear α-bungarotoxin binding

(Fig. 3F). Additional staining with antibodies for synap-

tophysin on ten of the bungarotoxin-negative terminals

verified the presence of synapses. In the few terminals

in which α-bungarotoxin binding is present, it was

assumed to be due to the presence of ‘en grappe’ end-

plates from a distally projecting motor nerve adjacent

to the presumed palisade ending.

Palisade endings are always associated with multiply

innervated muscle fibres of the global layer (Alvarado-

Mallart & Pincon Raymond, 1979). In order to support

our assumption that the terminals at the myotendi-

nous junction of the rat eye muscles share the same

Fig. 3 Laser scanning photomicrographs of longitudinal sections of extraocular eye muscles. (A–C) Double immunofluorescence 
labelling of a palisade ending at the myotendinous junction of a monkey inferior rectus muscle with antibodies for SNAP-25 (red) 
and NF-M (green). The afferent axon and the bunch of axonal branches are both visible in the SNAP-25 (A) stain and the NF-M 
(B) stain. In contrast, the cuff of terminals lacks NF-M immunoreactivity and can only be identified with SNAP-25 antibodies (B), 
which is clearly demonstrated in the overlay of both markers in C. (D–F) Double (D) or triple (E,F) immunofluorescence labelling 
of a rat inferior rectus muscle with antibodies for SNAP-25 (green), myosin heavy chain slow-twitch (MHCslow-twitch; blue) and 
additional applied α-bungarotoxin (red). Panels D–F show overlays of the applied markers. (D) At the myotendinous junction 
(tendon left, muscle right), a putative palisade ending is identified with SNAP-25 antibodies. A nerve fibre enters from the distal 
tendon (arrow) and forms a clump of terminals on a muscle fibre. At higher magnification, a similar clump of terminals of the 
putative palisade ending in a different section can be clearly identified as several individual terminals, which form neuromuscular 
contacts on an MHC slow-twitch positive multiply innervated muscle fibre (E). In the same section, two α-bungarotoxin and SNAP-
25 positive ‘en grappe’ endings (arrows) on an MHC slow-twitch-positive multiply innervated muscle fibre are clearly visible (F). 
Note that in contrast to these ‘en grappe’ endings, the terminals of the putative palisade endings in D and E do not show red 
any α-bungarotoxin binding. Scale bars: 50 µm (A–C), 200 µm (D), 20 µm (E,F).
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properties of palisade endings we combined the SNAP-

25 staining with immunolabelling for the myosin heavy

chain slow-twitch isoform, which is only expressed in

the multiply innervated muscle fibres according to sev-

eral authors (Kranjc et al. 2001; Rubinstein & Hoh,

2001; Kjellgren et al. 2003; D. Porter, personal commu-

nication). We found that the putative palisade endings

in rat were always attached to a myosin heavy chain

slow-twitch-positive, multiply innervated muscle fibre

(Fig. 3E,F).

The putative palisade endings terminate in close

proximity (about 200 µm) to the distal tip of the muscle

fibre, but do not show the typical palisade-like branch-

ing seen in monkeys (Fig. 3). No neurotendinous termi-

nals were found in the rat experiments. Accordingly, in

this light microscopic study, all terminals appear to

contact the muscle fibres.

Discussion

The staining properties of antibodies against the

synaptosomal associated protein SNAP-25 enabled us

to stain both motor and sensory nerve axons and ter-

minals in extraocular muscles. In particular, palisade

endings and their terminals could be reliably visualized

in human and monkey, and for the first time putative

palisade endings are described in rat. In many previous

studies silver staining methods were used to identify

palisade endings (Dogiel, 1906; Alvarado-Mallart &

Pincon Raymond, 1979; Richmond et al. 1984). The vis-

ualization of palisade endings using SNAP-25 antibodies

is at least as good as with the silver staining techniques,

and it avoids their major disadvantages. (1) Silver stains

cannot be combined with immunohistochemical stains,

(2) the technique is complex and not easy to reproduce

(3) as stated by some authors (Richmond et al. 1984),

some structures may remain unstained. Looking for

alternative stainings to SNAP-25 immunolabelling,

there are at least two other antibodies which visualize

both nerve fibres and terminals and can also be com-

bined with other immunohistochemical techniques:

neurocalcin and protein gene product 9.5 (PGP 9.5).

Neurocalcin is a member of the EF-hand family of

calcium-binding proteins and stains myelinated axons

and motor nerve endings in extraocular muscles (Junttila

et al. 1995). However, this antibody is not commercially

available. PGP 9.5 is a cytoplasmatic neuronal protein

identified as a ubiquitin carboxyl-terminal hydrolase

(Wilkinson et al. 1989) and has also been used to stain

palisade endings. But up to now, the PGP 9.5 stainings

of palisade endings have not yielded the high-resolution

morphology seen here with SNAP-25 immunolabelling

(Lukas et al. 2000).

The morphology of rat palisade endings varies and

appeared to be less elaborate in comparison with the

highly branched terminals in monkey and human, but

they always showed typical properties of palisade end-

ings, in that they (1) are innervated by a nerve arising

from the tendon (Fig. 3D), and (2) terminate on a mul-

tiply innervated muscle fibre at the myotendinous

junction of the global layer (Fig. 3E) (Dogiel, 1906;

Richmond et al. 1984; Ruskell, 1999). The structures in

Fig. 3(D,E) represent only one type of ending with a

rather compact clump of terminals. In spite of the fact

that the appearance of this structure is so unlike a

palisade, we assume it to be homologous to a palisade

ending, because of its other attributes.

In addition, the rat putative palisade endings were

shown to contain synaptophysin immunoreactivity,

proving the presence of synapses at their terminals.

The presence of rudimentary palisade endings in rats

may not be surprising, because rats are not highly visual

animals and would not be expected to have well-

developed receptors in their oculomotor system.

The function of palisade endings is still controversial,

and current studies have attributed both motor and

sensory properties to them. We combined the staining

for SNAP-25 in palisade endings with the classical proof

for the presence of motor endplates, the binding of

α-bungarotoxin (Anderson & Cohen, 1974), and found

no evidence for motor endplates at the terminals of

rat palisade endings. According to Alvarado-Mallart &

Pincon Raymond (1979) and Lukas et al. (2000), a defin-

ing feature of palisade endings is that they form mainly

neurotendinous contacts, whereas neuromuscular con-

tacts were rare. An exception to this was found in the

rabbit, where Blumer et al. (2001b) showed that pali-

sade endings form exclusively myoneural contacts. In

our analysis of the putative palisade endings of the rat

we only found neuromuscular contacts, implying a sim-

ilarity to the rabbit. Exclusive neuromuscular contacts

combined with α-bungarotoxin positive terminals led

Blumer et al. (2001b) to assume that rabbit palisade

endings are motor and may act as effectors. However,

the rat putative palisade endings never bind α-bunga-

rotoxin, implicating a sensory function. It is hard to

believe that these contradictions are due to species

differences; and a possible explanation has been put
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forward by Lukas et al. (2000). They suggest that

palisade endings are proprio-effectors with mixed

sensory and motor properties.

The presence of palisade-like endings in rat opens up

the possibility that they are a universal feature of all

eye muscles, whereas the occurrence of muscle spindles

and Golgi tendon organs is not. Several authors have

suggested that palisade endings could be the source

of sensory afferent signals (Ruskell, 1999; Donaldson,

2000; Steinbach, 2000; Weir et al. 2000; Büttner-Ennever

et al. 2002). The ultrastructural morphology of palisade

endings in cat, rhesus monkey and sheep has been

shown to be typical of a sensory structure (Ruskell,

1978; Alvarado-Mallart & Pincon Raymond, 1979; Blumer

et al. 1998). However, Blumer et al. (2001b), Lukas et al.

(2000), and Konakci et al. (2005) show that in rabbit,

and to a minor extent in human and in cat, palisade

terminals exhibit motor-terminal-like properties. The

problem is compounded by the conflicting evidence

for the location of the cell soma of the palisade ending.

If the palisade endings are sensory, their cell body

should lie in the trigeminal ganglion or in the mesen-

cephalic trigeminal nucleus; by contrast, if the endings

are of a motor origin then they would have cell bodies

associated with the motor nuclei of the extraocular

muscles. Tozer & Sherrington (1910) as well as Sas & Scháb

(1952) provided evidence for their location in the

oculomotor nerve or nucleus, a result more compati-

ble with a motor role for the palisade endings (Gentle

& Ruskell, 1997; Ruskell, 1999), whereas the results of

other studies point to the trigeminal ganglion as the

location of palisade ending soma (Billig et al. 1997),

and imply a sensory function.

The work of Gordon Ruskell has revived the interest

in palisade endings, but their function still remains

unclear. We have shown that the synaptosomal associ-

ated protein SNAP-25 is a useful marker for studying

their properties. Finally, our demonstration that palisade-

like endings occur in the extraocular muscles of the

rat implies that palisade endings may be a general

feature of mammalian eye muscles, unlike extraocular

proprioceptors such as muscle spindles and Golgi tendon

organs.
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Discussion 

In monkeys SIF and MIF motoneurons of extraocular muscles were identified by tracer 

injections into the belly or the distal myotendinous junction of the medial or lateral rectus 

muscle. For the characterization of both motoneuron types, the tracer visualization was 

combined with the detection of four histochemical markers: perineuronal nets, non-

phosphorylated neurofilaments, parvalbumin and cytochrome oxidase. The experiments 

revealed that the MIF motoneurons in the periphery of the motonuclei do not contain non-

phosphorylated neurofilaments or parvalbumin and lack perineuronal nets. In contrast, SIF 

motoneurons intensively express all markers. Cytochrome oxidase immunostaining was found 

in both motoneuron populations. Another population of motoneurons with ‘MIF properties’ 

was identified within the boundaries of the abducens nucleus, but not labelled by distal 

muscle injections. They could represent the motoneurons innervating MIFs in the orbital layer 

of lateral rectus muscle. In addition to the histochemical differences, the MIF motoneurons 

are on average significantly smaller in size than the SIF motoneurons. 

Analogous to the study in monkey, the SIF and MIF motoneurons of rats were identified with 

tracer injections into the belly or the distal myotendinous junction of the medial and lateral 

rectus muscle and further characterized using immunohistochemical methods. For the first 

time both motoneuron populations were identified in the rat. As in the monkey, the MIF 

motoneurons lie for the greater part separated from the SIF motoneurons and are different in 

size and molecular components: the smaller MIF motoneurons lack non-phosphorylated 

neurofilaments and perineuronal nets, both definite markers of the larger SIF motoneurons. 

A possible proprioceptive control of eye movements requires the presence of proprioceptive 

structures. The palisade endings, representing the best candidate for an EOM-proprioceptor, 

were analysed using antibodies against the synaptosomal associated protein of 25kDA, 

SNAP-25. With this method palisade ending-like structures were identified for the first time 
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in the extraocular muscles of the rat. Furthermore the rat palisade endings show 

characteristics of a sensory structure and thereby supporting their role in proprioception.  

 

Hence the results of this work further strengthen the presence of a dual motor innervation to 

control the extraocular eye muscles, at least in all mammals. As described in the studies on 

monkey the premotor innervation of MIF and SIF motoneurons shows clear differences 

(Büttner-Ennever et al., 2002; Wasicky et al., 2004). Accordingly, the MIF motoneurons are 

associated with premotor areas for vergence and gaze holding, but in contrast to SIF 

motoneurons, not with premotor areas generating saccades or VOR. The functional difference 

between these motoneurons is supported by their molecular equipment. SIF motoneurons 

contain parvalbumin and perineuronal nets, both markers of highly active neurons (Blümcke 

and Celio, 1992; Brückner et al., 1993; Horn et al., 2003). This is supported by recording 

studies from lateral rectus motoneurons in monkey which demonstrated that most abducens 

motoneurons had maximal burst firing rates of 300-400 Hz, some of which could reach rates 

as high as 800 Hz (Fuchs and Luschei, 1971; Fuchs et al., 1988) therefore requiring a 

remarkable high level of metabolic activity. In contrast the MIF motoneurons lack 

parvalbumin and perineuronal nets. Electrophysiological data of MIF motoneurons is sparse, 

though their characteristics may be deduced from studies in frog and cat, where non-twitch 

units (innervating the global MIF) were described and shown to fire tonically (Dieringer and 

Precht, 1986), lack tetanic fusion frequency, and are extreme fatigue resistant (Morgan and 

Proske, 1984; Shall and Goldberg, 1992). 

In summary, the overall characteristics of the MIF motoneurons underline the assumption that 

their contribution to the rotation of the globe is of minor importance. 

 

One hypothesis is that the global MIF in the EOM are a giant fusiform fibre and, together 

with the palisade endings, form an enormous inverted muscle spindle (Robinson, personal 
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communications). This structure may now act as a proprioceptive apparatus which sends 

sensory information used for fine alignment of the eye to the brain. Looking at the literature, 

there are lots of contradictious reports on the issue of extraocular proprioception. First: no 

stretch reflex could be recorded if the eye was pulled (Keller and Robinson, 1971); second: 

cutting the ophthalmic nerves in monkey to sensory denervate the EOM hardly affected 

saccades (Guthrie et al., 1983), smooth pursuit, vestibular responses, conjugacy, adaptation 

and ocular alignment (Lewis et al., 2001); third: the presence of eye muscle proprioceptors 

varies between species, and, while in rats proprioceptors appear not to be present at all 

(Ruskell, 1999; Donaldson, 2000), proprioception was regarded to be absent in the extraocular 

eye muscles.  

On the other hand, there is much more evidence supporting EOM proprioception. For 

example, spatial localisation in humans can be altered by either pulling eye muscles (Lewis 

and Zee, 1993) or by strabismus surgery (Steinbach and Smith, 1981). Stretching eye muscles 

in animals evokes responses in the superior colliculus (Donaldson and Long, 1980), the 

cerebellum and the visual cortex (Donaldson, 2000). Anatomical tracing studies have 

demonstrated projections through the trigeminal ganglion, and the spinal trigeminal nucleus 

(Porter, 1986; Ogasawara et al., 1987; Buisseret-Delmas and Buisseret, 1990; Buisseret, 

1995). Physiological evidence has been presented for the existence of proprioceptive signals 

in many areas of the central nervous system, including the superior colliculus, the lateral 

geniculate body, the vestibular nuclei, prepositus hypoglossi nucleus, the cerebellum as well 

as areas of the cerebral cortex (Ruskell, 1999; Donaldson, 2000). Cutting the ophthalmic 

nerve (deafferentation) causes fixation instability in cat (Maffei and Fiorentini, 1976), 

reduction in stereoacuity in cat (Fiorentini and Maffei, 1977) and deviation of eye position in 

lambs (Pettorossi et al., 1995). Ultimately and significantly, the eye muscles in all mammal 

species examined so far including the rat (Eberhorn et al., 2005) indeed contain 

proprioceptive end-organs: if not muscle spindles or Golgi tendon organs, then palisade 
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endings. Of these three receptors, only the palisade endings seem to be present in all mammal 

species (Büttner-Ennever et al., 2003; Eberhorn et al., 2005) and, together with their 

opportune position at the distal tip of the global layer MIF, are the best candidate to monitor 

EOM activity. 

 

With the assumption that eye movements in fact underlie proprioceptive control (and that 

palisade endings subserve a sensory function), a hypothetical sensory feedback pathway could 

be described, which designates the global MIF motoneurons to act like gamma motoneurons 

and adjust the tension on the palisade endings to modulate the afferent proprioceptive signal 

used for fine alignment of the eye (see figure 5). This proprioceptive signal is possibly 

provided to the spinal trigeminal nucleus (SpV), though this pathway has not yet been 

satisfactorily demonstrated. From SpV, a sensory signal is sent to the superior colliculus (SC), 

which may come from EOM proprioceptors (Porter, 1986). The inputs on the global MIF 

motoneurons originate from premotor areas associated with vergence, gaze holding, and in 

addition from the central mesencephalic reticular formation (cMRF). The cMRF, which has 

already been suggested as a structure carrying sensory information to the oculomotor system 

(Moschovakis et al., 1996), is powerful interconnected with the SC (Chen and May, 2000). 

The SC, or at least its rostral part, was proposed to carry a positional error network, which 

rather provides a position signal than a motor signal (Krauzlis et al., 2000; Basso et al., 2000). 

Assuming that the global MIF motoneuron premotor inputs interact in the SC would make the 

SC an interface which may be influenced by descending afferents from higher brain centres 

and may further modulate the alignment signal (positional error) at this level.  

 



 116

 

Figure 5: Sensory feedback hypothesis. The palisade endings monitor globe movements and 
could provide a putative proprioceptive signal to the, perhaps to the spinal trigeminal nucleus 
(SpV). The SpV sends a sensory signal to the superior colliculus which itself is tightly 
interconnected with the cMRF (central mesencephalic reticular formation). This structure 
could now provide a sensory signal to the MIF motoneurons innervating the global MIF. If 
the superior colliculus acts as an interface between sensory and motor signals, it could relay 
SpV signals concerning extraocular muscle tension back to the global MIF motoneurons via 
the cMRF. 
 

 

Summarized, the results of this PhD project strongly support the hypothesis of a dual motor 

innervation of eye muscles and present some good evidence that this concept is a common 

feature at least of all mammals. The debate about the presence or absence of proprioceptive 

control of eye movement gains some ground on the pro-side, since the previously reported 

lack of an ubiquitous proprioceptor is now compounded by finding that palisade endings are 

present in all mammalian eye muscles so far investigated. On the other hand, there are still 

many open questions. Beginning with palisade endings, their proprioceptive function will still 

remain on debate since the cell bodies innervating these structures are not yet identified. In 
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addition, in some species the palisade endings show morphologic and molecular 

characteristics of motor terminals, which contradicts their role in proprioception. Some 

preliminary data in our lab additionally support the sensory character of palisade endings in 

rat, since no such structure was labelled after anterograde tracing from the oculomotor 

nucleus. Since the rat shows a similar organization of MIF and SIF motoneurons in its 

oculomotor nuclei compared to the monkey, a study of the differences in premotor inputs on 

both motoneuron types in rats could help to understand their basic functional significance.  
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Final considerations 

The identification of an extraocular motoneuron as SIF or MIF motoneuron solely on the 

basis of immunohistochemical differences gives now the opportunity to analyse their 

localization in other animals, including humans. The detailed localization of both motoneuron 

types within the oculomotor nuclei together with their easy identification may now help to 

correlate better the electrophysiological data with the type of motoneuron recorded from and 

therefore gather more information on the firing characteristics of MIF motoneurons. After 

single cell recordings, the motoneuron can be dye labelled and subsequently immunostained 

for ChAT and NF-NPs and thus be identified as MIF or SIF motoneuron. With the knowledge 

of the overall distribution of both motoneuron types, extracellular recordings can now be 

placed at positions where only SIF or MIF motoneurons are prevailing.  

The search for palisade endings in rat with SNAP-25 antibodies revealed that this protein is an 

excellent marker for the visualization of nerve tissue. It enabled us to show the complete 

innervation of the EOM, motor, sensory, and autonomic, with only one single antibody. The 

staining results were outstanding in a variety of animal species (man, monkey, rat, sheep) and 

tissue (eye muscle, limb muscle, muscles of the middle ear), and in a wide range of used 

fixatives, even in fresh unfixed tissue. Thus SNAP-25 immunolabelling may be a powerful 

tool to analyse possible functional changes in the innervation of EOM caused by oculomotor 

diseases or surgery (including experimental surgeries) in the oculomotor system.  
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