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Zusammenfassung

Die vorliegende Dissertationsschrift befasst sich mit den algebraischen Eigenschaften
eines stochastischen Modells molekularer Evolution. Das betrachtete Modell ist
Grundlage diverser phylogenetische Rekonstruktionsmethoden, die sich in erster
Linie mit der Bestimmung von Verwandtschaftsverhältnissen zu einer gegebenen
Menge von Angehörigen heute lebender Arten mittels den für diese Angehörigen er-
mittelten DNS-Sequenzen beschäftigen. Meist werden diese Verwandtschaftsverhält-
nisse durch sogenannte Abstammungsbäume dargestellt, obwohl in neuerer Zeit auch
Netzwerke an Bedeutung gewonnen haben.

Aus stochastischer Sicht wird die Fragestellung wie folgt interpretiert: Gesucht ist
ein Graph G = (V , E) mit Knotenmenge V und Kantenmenge E und ein mit ihm
assozierter stochastischer Prozess X : V → S, der jedem Knoten α ∈ V einen
Zustand xα aus der genetischen Zustandsmenge S zuordnet, dessen Verteilung am
besten zu den beobachteten DNS-Sequenzen an den Endknoten oder Blättern von
G passt.

In der Regel werden folgende Anforderungen an die Modell-Parameter G und X
gestellt: Die graphische Struktur wird als gewurzelter Baum G% = (V,E; %) mit
Wurzel % angesehen. Der Prozess X genügt der Markov-Eigenschaft, d.h. er ist
in einem Knoten α bedingt auf seinen direkten Vorfahren pa(α) unabhängig von
seinen Nichtnachkommen. Diese Bedingung ist gemäß Lauritzen [1996] äquivalent
zur folgenden charakterisierenden Gleichung:

(F) P
( ⋂

α∈V

{Xα = xα}
)

= P(X% = x%)
∏

(γ,β)∈E

P(Xβ = xβ |Xγ = xγ).

Mit (F) läßt sich die obenstehende Aufgabenstellung wie folgt formulieren: Finde
eine gewurzelte Baumstruktur T% mit Blattmenge L = {β1, . . . , βn} und einen as-
sozierten Markov-Prozess X, so daß die durch

(†) P(XL = x) =
∑

y ∈ Sn+m

y|L = x

P(X% = y%)
∏

(α1,α2)∈E

P(Xα2 = yα2 |Xα1 = yα1)

gegebene Verteilung die in den Blättern erhobenen Daten am besten beschreibt. Die
Kompliziertheit des betrachteten Problems hängt von der Anzahl der Blätter und
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der Größe des Alphabets ab. Zum Beispiel hat das polynomielle System (†) für
10 Blätter und 20 Zustände genau 2010 Gleichungen. Aus rechentechnischen und
Interpretationsgründen ist es daher von Vorteil, diese Zahlen passend zu veringern.

Die Zahl möglicher Zustände wird mittels der Annahme unabhängiger, identisch
verteilter Sequenzpositionen reduziert. In diesem Fall stellt jede Position eine Stich-
probe des gesuchten Prozesses auf den Blättern dar. Die Annahme wird nur ungern
gemacht, da sie die Anwendbarkeit der entwickelten Methoden stark einschränkt.

Die Zahl möglicher Bäume zu einer gegebenen Menge wird durch die sogenan-
nte supertree-Theorie reduziert. In dieser Theorie wird die Blattmenge L in sich
überlappende Teilmengen aufgeteilt. Für die jeweilige Teilmenge wird die reduzierte
Baumstruktur zu (†) generiert und anschließend wird aus den gewonnenen, re-
duzierten Baumstrukturen ein sogenannter Konsensbaum zusammengestellt.

In Chang [1996] wurde gezeigt, daß unter der Annahme, daß ein Markov-Prozess
existiert, dieser durch die Dreierbäume, also Bäume mit genau drei Blättern rekon-
struiert werden kann. Dies ist besonders vorteilhaft, weil es genau einen Baum mit
drei Blättern gibt.

Diese Arbeit greift diesen Ansatz auf mit dem Ziel, Bedingungen an Blattverteilun-
gen zu bestimmen, unter denen ein Markov-Prozess auf einem Dreierbaum existiert.
Diese Bedingungen sind Polynome, deren gemeinsame Nullstellen eine algebraische
Lösung für (†) besitzen. Der Ansatz wird auf drei Modell-Spezifikationen angewen-
det: das allgemeine Zwei-Zustands-Modell, das Neyman Nk Modell und das Kimura
2ST Modell. Für alle drei Modelle werden Polynome ermittelt, die obiger Beschrei-
bung genügen. Außerdem wird für alle Modelle die algebraische Lösung von (†) ex-
plizit ausgerechnet und Bedingungen angegeben, unter denen die berechnete Lösung
einen Markov-Prozess charakterisiert. Dabei sind die bestimmten Lösungen nur
eindeutig bis auf Permutationen aufgrund der dem Gleichungssystem immanenten
Symmetrien.

Zusätzlich werden für das Zwei-Zustands-Modell notwendige Bedingungen für die
Existenz eines Markov-Prozesses auf einem Baum mit vier Blättern ermittelt. Diese
Bedingungen werden aus den Lösungen für die Dreiersubbäume ermittelt. Die
gefundenen Eigenschaften lassen vermuten, daß aus Markov-Prozessen auf Dreier-
subbäumen keine hinreichenden Bedingungen für die Existenz eines passenden Mar-
kov-Prozesses auf dem Superbaum gewonnen werden können. Für das Neyman Nk

und das Kimura 2ST Modell werden die Ergebnisse auf die zeitstetige Spezialisierung
der Markov-Prozesse, das sogenannte Ratenmodell, übertragen.

Um letztendlich den Bogen zur Baumrekonstruktion zu schließen, wird ein Al-
gorithmus präsentiert, der aus den Dreier-Blattverteilungen für eine gemeinsame
Verteilung für n Sequenzen einen Baum mit n Blättern und einen Markov Prozess
darauf generiert. Dieser Algorithmus erlaubt es, die Rekonstruktion aus Subbäumen
genauer zu betrachten, auch wenn er nicht zeiteffizient ist.
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Introduction

The theory of molecular evolution investigates how genes and genomes evolve. The
subcategory of molecular phylogenetics develops methods for inferring evolutionary
relationships among organisms, genes and proteins. Generally, this inference is done
by deriving a tree from available sequence data. Usually, these data are n aligned
DNA sequences of length N , where each sequence represents a species. Several
methods were introduced which presented tree structures based on these data. The
Maximum Likelihood approach first suggested by Felsenstein [1981] uses a class of
Markov models of molecular evolution to derive a tree and a characterization of a
stochastic process on the tree. This model class is the center point of this thesis.

A Markov model of the development of a particular species assumes that the future
evolution of the species is independent of its history given the sequence data of its
immediate predecessor. For example, given the properties of the forebears of the
brontosaurs the development of the brontosaurs is considered independent of all
other species that lived before and during the lifetime of brontosaurs. This property
is also known as the ordered directed Markov property. If the evolutionary processes
were governed by reproduction only, this assumption is quite reasonable.

A Markov process on a rooted tree is characterized by a joint distribution in the
vertices over an appropriate state space which obeys the factorization property. The
factorization property states that a joint distribution decomposes into a product of
edge-related functions, i.e. for each edge a function is declared that depends on the
states in the incident vertices only.

For a parametrization of these Markov processes on rooted trees the element of
choice is a ”transition kernel”. Since transition kernels implicitly contain a direc-
tion their application to undirected trees appears somewhat pointless. However,
an important observation is the relative irrelevance of the overall direction of the
tree, i.e. a consistent change of the direction of the edges does not influence the
characterization of the Markov process. Another consequence of this observation is
the non-identifiability of a root from the data. Most of these statements are direct
conclusions from results of Lauritzen [1996].

Usually, the chosen property on undirected trees is the local Markov property (e.g.
Chang [1996]) where a vertex is conditionally independent of the remaining vertices
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given its immediate neighbor vertices. On rooted trees the ordered directed Markov
property is preferred (e.g. Semple and Steel [2003]), since it appears weaker but
more intuitive than the local Markov property.

An often, if reluctantly, made simplification of the model is the assumption that
molecular evolution is only governed by homogeneous point mutations, i.e. changes
across sites are regarded independent and identically distributed. Accordingly, the
state space of the Markov process can be reduced from sequences to genetical alpha-
bets, lowering the number of possible states considerably. Also, the simplification
permits to consider aligned sequences of length N as a sample of size N . From the
biological point of view such an assumption neglects certain established properties
of molecular evolution. For instance, the wobble effect (e.g. Yap and Speed [2005])
proposes, that amino acid encoding in DNA yields different mutation rates for each
of the three encoding sites. This contradicts the homogeneity of point mutations.
Hence, the results of this work should only be considered in connection with DNA
sequences from non-coding regions. Moreover, since the simplification does not allow
recombination, it should only be applied to DNA sequences which are not subject to
recombination, insertion or deletion. The best known examples are mitochondrial
DNA and the DNA of the human Y chromosome.

The main objective of phylogenetic analysis is the identification of a tree and of
the mutation process on the tree from the knowledge of the process at its leaves,
i.e. the knowledge of the sequence data from present day species. In terms of
the factorization property this is similar to solving the polynomial equation system
which is derived from equating the observed leaf distribution to the theoretical leaf
distribution expressed in terms of the transition kernels. This thesis examines the
potential of this objective on three model specifications: the general two state model,
the Neyman Nk model and the Kimura 2ST model.

The sample set obtained through the simplification gives the observed joint leaf
distribution. For the inference of the tree the joint distributions suffice (e.g. Baake
[1998]). However an inference of the Markov process demands more information
than pairs of leaves can provide. For this inference joint distributions of triples of
leaves are needed, as was proved by Chang [1996]. But joint distributions of triples
of leaves only allow to reconstruct a Markov process if the full joint distribution
on the leaves was subject to a Markov process. Yet in order to observe a Markov
process on a tree with n > 3 leaves its restriction to all triple trees must necessarily
be a Markov process. Thus it is useful to analyze the models at triple trees and then
consider an extension to supertrees. Here, an extension from triple trees to quartet
trees is attempted for the general two state model.

One indicator whether a joint leaf distribution comes from a Markov process are
phylogenetic invariants. These are polynomials in the leaf distribution whose joint
roots provide a solution for the polynomial equation system. These polynomials are
the subject of various papers (see e.g. Hagedorn and Landweber [2000] or Allman
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and Rhodes [2003]), and are seen as important tools to understand Markov pro-
cesses on trees. If the polynomial equation system has for a given leaf distribution
a solution, then this is an algebraic solution, i.e. each variable has values in C. In
addition, if this algebraic solution is composed of transition kernels, it is stochas-
tically admissible, thus characterizing a Markov process on a tree for the regarded
joint leaf distribution.

For the general two state model on a triple tree only one phylogenetic invariant was
observed, and every leaf distribution is a root of this invariant because it demands
that the elements of input vector sum to one. Therefore, almost all joint distribu-
tions of three leaves over a two state alphabet provide an algebraic solution for the
equation system. Except for the case of uncorrelated leaves and one unknown case,
the number of possible solutions is finite, in particular it is exactly two. Generally,
this work uses results from algebraic geometry to show that vectors with an infinite
set of solutions are a zero set in the set of all solutions. Lazarfeld [1966] and Pearl
and Tarsi [1986] also considered the same model in different contexts.

For the Neyman Nk model on a triple tree two phylogenetic invariants were observed,
one of which again demands an element sum of one. For every input two solutions
were observed. These solutions are functions of the pairwise leaf distributions which
is consistent with the general perception that symmetric processes can be derived
from pairwise leaf distributions (e.g. Baake [1998]). For every pairwise leaf distribu-
tion numerous triple leaf distributions exist. The two observed solutions are subject
to two distinct triple leaf distributions, and only if the input leaf distribution is a
root of the obtained invariants, it is one of them.

For the Kimura 2ST model on a triple tree 18 phylogenetic invariants were com-
puted using the software package Singular (Greuel et al. [2001]), again including
the summation polynomial. Analyzing the associated equation system returned four
solutions, which again are functions of the pairwise leaf distributions. These solu-
tions return two triple leaf distributions, and only if the observed leaf distribution
is a root of the phylogenetic invariants, it is one of them.

Obviously, an algebraic solution does not characterize a Markov process. Hence,
additional conditions are needed. Solutions of the two state model characterized
a Markov process if the sign of the conditional correlation of two leaves given the
third does not reverse the sign of the unconditional correlation of the two leaves,
which is not zero since the leaves are not independent. For the Neyman Nk and the
Kimura 2ST model the conditions of stochastic admissibility are concerned with the
similarity of pairwise aligned sequences. The condition is regularly verified in real
data.

The results for triple trees under the two state models were extended to quartet trees.
This approach yielded some phylogenetic invariants, but also led to the conjecture,
that the existence of a Markov process on a quartet tree cannot be guaranteed by
just analyzing the compatibility of the parameters on the associated triple trees.



4

This conjecture is also strengthened by the phylogenetic invariants obtained for
the Neyman Nk and the Kimura 2ST model on triple trees, and the Neyman N2

model on quartet trees. The parameters for these models are derived from pairwise
distributions but the phylogenetic invariants depend on the triple and quartet leaf
distributions, respectively.

One popular model specification is the rate model, where evolution is assumed to
be governed by a constance rate of change. Usually, the rate model is called time-
continuous, whereas the models solely defined by transition kernels at the edges are
called time-discrete. Both model classes are connected by declaring transition ker-
nels for a particular edge under the time-continuous model as the matrix exponential
of the rate matrix times the edge length. This connection is used to transfer the
results related to the Neyman Nk and the Kimura 2ST model to the rate model.
Unfortunately, the models did not provide sufficient equations to infer a set of rates
as well as a set of edge lengths, but only a mixture of both. The positivity conditions
directly linked to the rate model rejected all but one of the obtained solutions from
the discrete model class. In other words, time-continuity destroyed the multiplicity
of solutions of the model.

A couple of statistic tools to approximate a stochastically inadmissible solution
by an admissible one are presented at the end of the thesis. The observations
from the three considered models showed that even though algebraic solutions can
almost always be obtained from a set of input sequences, finding an acceptable
and stochastically admissible approximation is difficult. One estimator tackles the
problem by manipulating the solutions, whereas the other estimator manipulates the
observed leaf distribution. Simulations indicated that leaf distributions which assign
at least one state with probability zero, provide an inadmissible solutions. Since
input data almost ever yield leaf distributions with this property it is reasonable
to try to erase this obstacle. Further simulations showed that positivity of the leaf
distribution is still not sufficient to guarantee an admissible solution.

To measure the quality of such approximations, some kinds of confidence regions
are presented. Most types are based on the information from Brown et al. [2001].

Finally, to relate the results from the triple tree discussions to the task of molecular
phylogenetics, an algorithm is presented. This algorithm computes for an input set
of aligned sequences for n leaves a tree and a characterization of a Markov process
on the tree from all associated triples. It is not time-efficient, but permits to further
investigate the reconstruction of trees from its triple trees.

Chapter 1 introduces the notion of trees in the graphical sense, names its elements,
and provides some useful properties. The basic terminology is based on Lauritzen
[1996], Lauritzen [2001] and Semple and Steel [2003]. Further, the notion of Markov
processes on trees is introduced, and some of their useful properties are provided.
The chapter includes a short overview of the considered models. It closes with
the derivation of the polynomial equation system (LF), and presents some general
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properties.

Chapter 2 provides some notions from algebraic geometry. These notions include the
so-called elimination ideal. A basis of this ideal contains all phylogenetic invariants
needed to describe the space of leaf distributions with an algebraic solution of (LF).
Most results are based on Shafarevich [1974] and Cox et al. [1997]. Also, using the
Morse-Sard Theorem it is proved that vectors with an infinite number of solutions
for (LF) form a zero set in the set of all vectors with a solution for (LF).

Chapter 3 examines the implications of the factorization property for a triple leaf
distribution under the general two state model. The scenario was already discussed
in Lazarfeld [1966] and Pearl and Tarsi [1986]. This thesis extends their results,
most notably by considering the extension of the results to quartet trees.

Chapter 4 analyzes the implications of the factorization property for a triple leaf
distribution under the two simplest symmetric models, the Neyman Nk and the
Kimura 2ST model. The chapter presents phylogenetic invariants, explicit forms
for the algebraic solutions, and conditions under which a solution characterizes a
Markov process. In addition, the results are extended to the rate approach.

Chapter 5 introduces some statistical tools for estimating and evaluating an ob-
tained Markov process characterization. These tools include two estimators, several
simultaneous confidence regions and an algorithm to analyze the reconstruction of
supertrees from their associated triple trees.

All chapters end with a separate section that contains the proofs to all results
presented in the chapter. This was done for readability and consistency reasons.
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Chapter 1

Basic Definitions and Properties

A goal of molecular phylogenetics is the visualization of relationships in a given
set of species or individuals within a species. Usually, this is done by a graph,
preferably a tree, where the leaves depict the considered species, and the inner
structure illustrates the relationship between them. The introduction of the basic
terminology and properties of graphs and trees is the subject of Section 1.1.

With the introduction of Maximum Likelihood methods for phylogenetic reconstruc-
tion in Felsenstein [1981], the theory of Markov processes on graphs got a boost.
In addition, recent research tries to synthesize ancient proteins using insights ob-
tained from characterizations of similar processes (e.g. Brooks et al. [2004]). The
properties of Markov processes on trees are the subject of Section 1.2.

Section 1.3 relates the model to the task of phylogenetic reconstruction, and intro-
duces some additional assumptions on the Markov model, which are commonly used
though not very popular. Also, the model classes examined in Chapters 3 and 4 are
presented. In particular, the general two state model, the Neyman Nk model and the
Kimura 2ST model are regarded. These models were chosen because they are the
simplest available but still complex enough to provide insights into the properties
of the general Markov model.

The actual task of this work is the derivation of conditions on leaf distributions
under which a Markov process exists on the underlying tree structure. Section
1.4 presents the mathematical formulation of the task, and some immediate conse-
quences. One important observation is the irrelevance of the position of a root for
the characterizing Markov distribution.

Section 1.5 contains all proofs for results presented in this chapter. For the reader’s
convenience this structure is retained throughout the work.

7
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1.1 Graphs and Trees

This section will present the terms and properties of graphs and trees needed for this
thesis. The notation is based on Lauritzen [1996, sect. 2.1] and its revised version
Lauritzen [2001].

1.1.1 General Definitions

Here graphs and the parts relevant to introduce trees are defined. Later chapters
will solely work on trees, and hence no additional terminology is needed.

Definition 1.1.1. A graph G is a tuple (V , E) consisting of a finite vertex set V and
a set E of edges connecting pairs of vertices in V.

If an edge e ∈ E connects two vertices α, β ∈ V , then α and β are called adjacent, and
e is called incident to α and β, respectively. Edges can occur in two possible types,
directed and undirected. If an edge e between α and β is undirected, α and β are
called neighbors and the edge is denoted by e := ((α, β)). The neighbors of a vertex
α ∈ V are denoted by ne(α). If e is directed from α to β, then α is called parent of
β, β is called child of α, and the edge is denoted by e := (α, β). The children and
parents for a vertex α ∈ V are denoted by ch(α) and pa(α), respectively.

Vertices are usually classified according to their degree. A vertex α ∈ V has a degree
of deg(α) = n ≥ 0 if the number of edges incident to α is exactly n. Using this
definition three classes are presented: A vertex ι ∈ V is called isolated if no edge is
incident to ι, i.e. deg(ι) = 0. A vertex β ∈ V is called terminal vertex, end point
or leaf if exactly one edge is incident to β, i.e. deg(β) = 1. All other vertices are
called inner vertices, i.e. at least two edges are incident to an inner vertex. The
sets of all isolated and inner vertices, and leaves to a given graph G are denoted by
I(G), N (G) and L(G), respectively. Usually, the graph is fixed and therefore, the
sets are abbreviated by I, N and L instead.

In terms of molecular phylogeny, a vertex denotes a species and edges describe re-
lations between them. In particular, leaves represent recent species, inner vertices
represent ancestral species, and isolated vertices indicate alien species and are usu-
ally not incorporated.

A basic feature of the notion of a graph is that it is a visual object. It is conveniently
represented by a picture, where a dot is used for a vertex. Further, a line joining
α and β represents the undirected edge ((α, β)), whereas an arrow from α pointing
towards β is used for the directed edge (α, β) ∈ E . As an example consider Figure
1.1.

The direction of edges transfers to graphs in the following way: If all edges of a
graph G are undirected, the graph is called undirected. Similarly, if all edges are
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directed, the graph is called directed. By replacing all directed edges (α, β) ∈ E in a
directed graph G by their undirected counterparts ((α, β)) one obtains its undirected
version Gu.

Next, a certain group of vertices is regarded. A path is an ordered set of distinct
vertices (α1, . . . , αn) where αi and αi+1, i = 1, . . . , n− 1 are adjacent. Therefore, a
path is also defined through a set of edges (e1, . . . , en−1), where ei is the incident edge
to αi and αi+1, i = 1, . . . , n − 1. If for a path all edges e1, . . . , en−1 are undirected,
the path is undirected. If all edges are directed and point in the same direction,
the path is called directed. The length of a path is given by the number of edges it
runs through. For instance, the path (α1, . . . , αn) has length n− 1. As an example,
consider the paths in Figure 1.1. Here, (α1, . . . , α4) and (β1, . . . , β4) are undirected
paths, whereas (γ1, γ2, γ3) is a directed path. When changing the direction of edge
(γ2, γ3) the direction of the path is lost.

ι

γ1 2γ
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α 2
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G

Figure 1.1: A graph and its components. The vertex ι is an isolated
point, the vertex α2 has neighbors α1 and α2 and a child in β1. β1

has two parents in α2 and γ2.

For some properties defined later, separating vertex sets are of interest. For vertex
sets A,B ⊂ V with A ∩ B = ∅, the set S ⊂ V is said to separate A from B if
all paths between vertices α ∈ A and β ∈ B lead through S, i.e. for every path
(α1, . . . , αn) exist indices k < l such that αi ∈ A for i < k, αj ∈ B for j > l and
αk, . . . , αl ∈ S. For instance, the vertex δ in Figure 1.1 separates the set {γ1, γ2, γ3}
from the remaining vertices of the graph.

The aim is to define trees in the generally accepted version. To do this, a few
additional definitions are needed. Two vertices β1 and β2 are called connected if
a path (α1, . . . , αn) exists with α1 = β1 and αn = β2. If every pair of vertices
is connected, the graph is called connected. A path (α1, . . . , αn) is called cycle if
α1 = αn and n > 2. Figure 1.1 is connected if the vertex ι is deleted. The path
(β1, β2, β3, β4, β1) describes a cycle.

With these notions the definition of trees can be provided:

Definition 1.1.2. A tree T := (V , E) is a connected, cycle-free graph.
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1.1.2 Properties of Trees

With this short introduction to graphs the underlying structure of the main objects
of this thesis are defined: trees. This subsection will present some of the most
important properties for the thesis.

Lemma 1.1.1. Let T = (V , E) denote a tree. Then, the following statements are
equivalent:

1. Between any two vertices β1 and β2 in V exists a unique path in T .

2. If E 6= ∅, then ](L) ≥ 2.

3. If ](V) = n then ](E) = n− 1.

4. Assume that for all α ∈ N the degree is at least three. Then, ](L) ≥ ](N ).

These are well-known properties. The unique path between vertices β1 and β2 is
denoted by p(β1, β2). As proposed earlier, the length of the path is equal to the
number of edges it runs through. Accordingly, the length of a path on a tree will be
denoted by ](p(α, β)).

Inner vertices of degree two will be called non-furcating vertices, because the edges
incident to such a vertex can be joined uniquely without destroying the connectivity
of the tree, i.e. such a vertex can be deleted without destroying the structure of
the tree. Similarly, inner vertices of degree three will be called furcating vertices,
because their deletion will destroy the connectivity of the graph. So far, trees are
treated as undirected. For this work one class of directed trees is of interest: the
rooted trees. For their introduction regard the relation ≺%, % ∈ V defined by:

α ≺% β :⇔ α ∈ p(%, β), α, β ∈ V .

This relation gives a partial ordering of V :

Lemma 1.1.2. For every % ∈ V the relation ≺% is a partial ordering on V with
minimal element %.

The partial ordering ≺% induces a direction on an undirected tree T by choosing
only those edges (α, β) ∈ E with α ≺% β. The resulting directed tree is called rooted
tree, and is denoted by T% = (V , E ; %). In T% all edges are directed away from %.
Note, that for every vertex α ∈ V such a partial ordering can be defined.

Corollary 1.1.3. For every undirected tree T exists the family of rooted trees
(Tα)α∈V . 2
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Note that every rooted tree T% is defined on the same vertex set V as is T , and
the adjacency between pairs of vertices is transferred from T to T%. A very useful
property concerns the number of possible parents a vertex can have in a rooted tree.

Corollary 1.1.4. Let T% denote a rooted tree. Then every vertex α ∈ V \ {%} has
exactly one parent pa(α). The root has no parents, i.e. it is orphaned.

On a rooted tree T% and a vertex α ∈ V the following vertex sets are defined:

de(α) := {β ∈ V \ {α} : α ∈ p(%, β)},
nd(α) := V \ (de(α) ∪ {α}),
an(α) := {β ∈ V \ {α} : β ∈ p(%, α)},
hi(α) := {β ∈ V \ {α} : ](p(%, β)) ≤ ](p(%, α)).

The set de(α) contains all vertices which are separated by α from the root %, and the
elements of de(α) are called descendants of α. Accordingly, nd(α) contains the non-
descendants of α. The set an(α) contains all vertices which lie on the path between
the root % and α. The elements of an(α) will be called ancestors of α. Finally, hi(α)
contains all vertices whose path has at most the same length as the path between
% and α. The set hi(α) will be called the history of α. In evolutionary terms, the
history of a fixed species, represented by α, contains all species that had influence
on the development of α, either through ancestry or environment. Obviously, one
has an(α) ⊂ hi(α) ⊂ nd(α).

Tρ
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α

γ

ρ

β

δ 1 δ 2

Figure 1.2: Vertex sets for a given vertex α on a rooted tree Tρ.
The vertices colored red describe the descendants, the blue colored
vertices are the ancestors, the magenta colored the remaining ver-
tices of the history of α and the green colored vertices the remaining
non-descendants of of α. γ is the unique parent of α.

The tree Tρ presented in Figure 1.2 also visualizes a weakness of the definition of
the ancestral set. If non-furcating vertices like β are deleted from the structure, the
leaves δ1 and δ2 belong to the history hi(α). Since the history should contain all
species that lived before and with the species represented by α, this is an unwanted
effect. However, at the moment nothing can be done about it.
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Sometimes, literature distinguishes rooted trees with a root of degree two and of
higher degree. E.g., Huelsenbeck and Bollback [2001] called a rooted tree T% with
deg(%) = 2 rooted, and with deg(%) ≥ 3 unrooted. However, this work won’t apply
this distinction and calls any tree directed by a partial ordering ≺% a rooted tree.
The reasons for this decision will become clear in Section 1.2.

Another vertex of interest is the so-called most recent common ancestor mrca(α, β)
of two vertices α, β ∈ V . The most recent common ancestor is defined by the
following condition:

p(%,mrca(α, β)) = p(%, α) ∩ p(%, β),

i.e. mrca(α, β) is the vertex at which the paths from the root to α and β split.

Usually, a special class of trees is preferred, the binary or bifurcating trees.

Definition 1.1.3. A binary tree is a tree T = (V , E) where for all α ∈ V

deg(α) =

{
3, α ∈ N ,
1, α ∈ L.

This structure is preferred since it is seen as improbable that more than two new
species are connected with a furcating vertex. The special structure of binary trees
allows a computation of their number of edges and vertices from the number of
leaves.

Lemma 1.1.5.(Prop. 14.1 in Waterman [1995]) An undirected binary tree with n
leaves has exactly n− 2 inner vertices and n− 3 inner edges. There are

(2n− 5)!! =
n−2∏
k=1

(2k − 1) =
(2n− 5)!

2n−3(n− 3)!

distinct undirected binary trees with n leaves. 2

Corollary 1.1.3 states that for an undirected tree a unique family of rooted trees
(T%)%∈V exists with the same vertex set and the same adjacency for pairs of vertices.
Hence, the number of vertices and inner edges remains the same for rooted binary
trees but the possible number of rooted binary trees with n leaves is the number of
undirected binary trees with n leaves times the number of vertices, which in that
case is 2(n− 1).

For any given number of leaves no other tree can have more furcating vertices than
a binary tree. The other extreme are trees with only one inner vertex. Such trees
are called star trees. Clearly, for any number of leaves these are unique. Therefore
for fixed leaf number n, the number of possible trees is increasing in the number of
inner vertices. Denote by Tk the set of all trees with k = 1, . . . , n− 2 inner vertices.
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The number of all possible trees with n leaves is bounded from above by:

n−3∑
k=0

](Tk) ≤
n−3∑
k=1

(2n− 5)!

2n−3(n− 3)!
= (n− 2)

(2n− 5)!

2n−3(n− 3)!
=: K(n).

Hence, the total number of trees with n leaves lies between ](Tn−2) and K(n). Table
1.1 provides some numerical examples for the presented boundaries:

n binary K(n)

3 1 1
4 3 6
5 15 45
6 105 420
8 10,395 62,370

10 2,027,025 16,216,200
15 7,905,853,580,625 102,776,096,548,125

Table 1.1: Number of trees depending on the number of leaves.

These numbers suggest why it is preferred to restrict reconstruction methods to
binary trees. But even then, the number of possible binary trees is much to high
to employ optimization methods that run over all possible trees. This problem is
addressed in the next subsection.

1.1.3 Supertrees and their Restrictions

Recent methods of phylogenetic reconstruction provide genealogic trees for large
numbers of leaves. As Table 1.1 suggests, a selection from the overall set of possible
trees is a rather hopeless approach. However, for a small number of leaves the
amount of associated trees is reasonably small. Therefore, reconstructing large trees
from a set of smaller trees is a better approach. To describe this approach, several
structures must be introduced.

Definition 1.1.4. Let T = (V , E) denote a tree, and A ⊂ V is an arbitrary vertex
set. The subgraph of T generated by A is the graph GA := (A, EA) given by the edge
set

EA := {(α, β) ∈ E : α, β ∈ A} ∪ {((α, β)) ∈ E : α, β ∈ A}.

This definition has an immediate consequence.

Lemma 1.1.6. Let T = (V , E) denote a tree, and GA be a subgraph to a vertex set
A. If GA is connected, it is a tree. In that case GA is called subtree of T .
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For a rooted tree T% and the previously introduced vertex sets the following subtrees
are defined:

• Tde(α) := G{α}∪de(α) denotes the descendant tree rooted at α,

• Tnd(α) := G{α}∪nd(α) denotes the non-descendant tree to α,

• Thi(α) := G{α}∪hi(α) denotes the historical tree of α.

Figure 1.3 shows an example for the introduced subtrees for the tree Tρ first presented
in Figure 1.2.
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Figure 1.3: Kinds of subtrees. The red substructure together with
γ describes the descendant tree of γ, the blue structure describes
the historical tree of γ, and the blue structure together with the
magenta colored structures presents the non-descendant tree to γ.
The subgraph generated by the magenta colored structures is not
connected, and hence it is no subtree.

The task of phylogenetic reconstruction is the derivation of the tree from its leaves.
For this purpose another substructure of trees will be introduced, the so-called
restrictions. For restrictions a certain vertex is of interest.

Lemma 1.1.7. Let T = (V , E) denote an undirected tree and α, β, γ distinct vertices
in V. Then, a unique vertex %αβγ ∈ V exists with p(α, β)∩p(α, γ)∩p(β, γ) = {%αβγ}.
The vertex %αβγ is called the trifurcating vertex of α, β, γ ∈ V.

With trifurcating vertices the definition of restrictions is quite straightforward. For
this definition roots are of no concern. Therefore, without loss of generality restric-
tions will be introduced on undirected trees.

Definition 1.1.5. Let T = (V , E) denote an undirected tree. A restriction to a vertex
set A ⊂ V is a tree TA composed of the vertex set VA := A ∪ {%αβγ : α, β, γ ∈ A}
and the edge set:

EA :=
{
((α, β)) : α, β ∈ V and pT (α, β) ∩ VA = {α, β}

}
,

where pT (α, β) denotes the path between α and β on T . Appropriately, T is called
supertree of TA.
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If for n leaves a sufficient set of restrictions is available, then the supertree can be
reconstructed. On the general properties and problems of a supertree reconstruction
see e.g. Bininda-Emonds et al. [2002] or Semple and Steel [2003, chap. 6]. For this
work two classes of restrictions are of particular interest.

Definition 1.1.6. Let T = (V , E) denote an undirected tree with n ≥ 4 leaves.

1. A triple tree is a restriction TL of T to a set of three distinct leaves
L := {α, β, γ} ⊂ L.

2. A quartet tree is a restriction TL of T to a set of four distinct leaves
L := {α, β, γ, δ} ⊂ L.

Quartet trees are a popular class for reconstruction since a quartet tree is the small-
est tree that contains structural properties other than connectedness. They are used
in the software-package Tree-Puzzle(cf. Schmidt et al. [2002]), and their func-
tionality is discussed in various works (see e.g. Strimmer and von Haeseler [1996] or
Waterman [1995, chap. 14]). For any selection of four leaves α, β, γ, δ ∈ V three dif-
ferent quartet trees are possible, namely (αβ)|(γδ), (αγ)|(βδ) and (αδ)|(βγ). This
notation is also called split notation, the dash in the middle symbolizes the inner
edge for the associated quartet tree. See Figure 1.4 for a good example.

Triple trees are structurally unique but only carry the information that the con-
sidered leaves are connected. Without additional properties associated with them
no reconstruction can be attempted. In this thesis, the additional property is the
parametrization of a Markov process on the vertices of the triple tree. Markov
processes on trees will be introduced in Section 1.2, an algorithm for the tree con-
struction will be presented in Section 5.4.
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Figure 1.4: The figure shows the rooted tree Tρ and some restric-
tions, in particular, the quartet tree for leaves {δ1, . . . , δ4} with
inner vertices β1, β2, and the triple tree for leaves {γ1, γ2, γ3} with
inner vertex α. The quartet tree has no root due to multiple choices,
whereas the root for a triple tree will always be chosen as the in-
ner vertex, here α. All black vertices cannot be observed in the
restrictions.
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The main focus of this work is on triple trees. Occasionally, quartet trees will be
used to bring obtained results into a better view in terms of the reconstruction of
trees. Generally, for the reconstruction of supertrees from triple trees the number of
triple trees associated with a furcating vertex is of interest. If one deletes an inner
vertex α ∈ N together with the edges incident to it from a tree T = (V , E), the tree
decomposes into deg(α) disjoint subtrees. Denote the set of this subtrees by Gα.
Using Gα the number of possible triple trees with α as trifurcating vertex is easily
computed.

Lemma 1.1.8. Let T = (V , E) denote an undirected tree and α ∈ N (T ) a furcating
vertex. Then the number of triple trees with α as trifurcating vertex is given by:

(1.1.1) nt3(α) :=
∑

T1,T2,T3∈Gα

](L(T1))](L(T2))](L(T3)).

For a reconstruction method evaluating all triple trees, each inner vertex α ∈ N
is found in nt3(α) different triple trees. For example, the vertex ρ in Figure 1.4
is the trifurcating vertex for 12 different triple trees whereas α, β1 and β2 are the
trifurcating vertices for five triple trees each.

Overall a reconstruction of a tree with n leaves can be achieved by regarding
(

n
3

)
distinct triple trees with a weight function compared to 3

(
n
4

)
different quartet trees

or (2n− 5)!! binary trees.

n triples quartets binary

4 4 3 3
5 10 15 15
6 20 45 105
7 35 105 945
8 45 210 10.395
9 84 378 135.135

10 120 630 2.027.025
20 1.140 14.535 2, 2 · 1020

Table 1.2: The number of possible binary trees for n leaves and the
number of their restrictions with three and four leaves, respectively.

As Table 1.2 shows, for a large number of leaves the number of triple trees is much
smaller than the number of quartet trees or binary trees. Hence together with a
reasonable weight function the computational time could be reduced considerably.
Markov processes on trees offer various possible weight functions.
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1.2 Markov Models on Trees

This section introduces the notion of conditional independence, and applies this
notion to define processes on trees with certain properties. These properties are first
introduced on undirected trees, and then with slight variations on rooted trees. The
notions are based on Lauritzen [1996, chap. 3] and its revised form Lauritzen [2001].
Most results are immediate consequences of results from these works. Throughout
this thesis it is sufficient to restrict the considerations to discrete random variables.

1.2.1 Conditional Independence

Let X, Y, Z denote discrete random variables with joint probability distribution µ
over a discrete space X := XX ×XY ×XZ . The following abbreviations are useful:

µXY (x, y) := µ(X = x, Y = y), µX|Y (x, y) := µ(X = x|Y = y),

µX(x) := µ(X = x),

where the equations describe the pairwise joint probability, the conditional proba-
bility for X = x given Y = y and the marginal distribution in X, respectively. Ac-
cordingly, the notion for the joint distribution in all random variables is µXY Z = µ.
The law of total probability (see also (1.5.2)) indicates that all those abbreviations
can be described by µ, thus justifying the use of the letter µ in the abbreviations.

Definition 1.2.1. Let X, Y, Z denote discrete random variables with joint prob-
ability distribution µ. X is called conditionally independent of Y given Z under µ
and write X ⊥⊥ Y |Z [µ] if for µ-almost all x ∈ XX , y ∈ XY , z ∈ XZ the following
equality holds

(1.2.1) µXY |Z(x, y, z) = µX|Z(x, z) · µY |Z(y, z).

If Z is trivial X is said to be independent of Y , and write X ⊥⊥ Y .

Lemma 1.2.1. Let X, Y, Z and W denote discrete random variables with joint
distribution µ and let h denote an arbitrary measurable function on the sample space
of X. Then, the ternary relation · ⊥⊥ · | · has the following properties:

if X ⊥⊥ Y |Z, then Y ⊥⊥X |Z;(C1)

if X ⊥⊥ Y |Z and U = h(X), then U ⊥⊥ Y |Z;(C2)

if X ⊥⊥ Y |Z and U = h(X), then X ⊥⊥ Y | (Z,U);(C3)

if X ⊥⊥ Y |Z and X ⊥⊥W | (Y, Z), then X ⊥⊥ (W,Y ) |Z.(C4)
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Note, that the converse to (C4) follows from (C2) and (C3). Another property of
the conditional independence relation is often used:

(C5) If X ⊥⊥ Y |Z and X ⊥⊥ Z |Y, then X ⊥⊥ (Y, Z).

However, this property does not hold universally, but only under additional condi-
tions - essentially, that there are no non-trivial logical relationships between Y and
Z. A trivial counterexample appears when X = Y = Z with µX(1) = µX(0) = 1/2.
One condition for the validity of (C5) is the strict positivity of the joint distribution
µ.

Lemma 1.2.2.(Proposition 3.1 in Lauritzen [1996]) Let X, Y, Z denote discrete ran-
dom variables with a joint distribution µ. If µ is strictly positive, then (C5) is valid.
2

Quite a few works on modeling molecular evolution assume strict positivity (cf.
Chang [1996], Baake [1998]). This work refrains from making this assumption since
the input data usually available do not support it.

As already indicated, the relationship of families of random variables over a set
of vertices is of great interest. Let G = (V , E) denote an arbitrary graph and
X := (Xα)α∈V arrays of random variables Xα in finite discrete measurable spaces
Xα. For A ⊆ V denote by XA := ×α∈AXα the cross product of the measurable
space of the random field XA := (Xα)α∈A. Typical elements of XA are denoted by
xA := (xα)α∈A.

For vertex sets A,B,C ⊆ V the following abbreviation for the conditional indepen-
dence relation is introduced

A⊥⊥B |C :⇔ XA ⊥⊥XB |XC .

With this abbreviation the properties (C1)-(C4) translate for vertex setsA,B,C ⊆ V
to

if A⊥⊥B |C, then B ⊥⊥ A |C;(S1)

if A⊥⊥B |C and D ⊆ A, then D ⊥⊥B |C;(S2)

if A⊥⊥B |C and D ⊆ A, then A⊥⊥B | (D ∪ C);(S3)

if A⊥⊥B |C and A⊥⊥D | (B ∪ C), then A⊥⊥ (D ∪B) |C.(S4)

Moreover, for disjoint subsets A,B,C and D of V , (C5) transfers to

(S5) if A⊥⊥B | (C ∪D) and A⊥⊥ C | (B ∪D), then A⊥⊥ (B ∪ C) |D.

Similar to (C5), property (S5) only holds for additional conditions, for example if
the joint distribution µ is strictly positive.
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For the abbreviations for conditional and marginal probabilities the convention will
be extended such that the vertex sets are used as indices instead of the random
variables, e.g. µA|B := µXA|XB for A,B ⊆ V . The joint probability over X will still
be denoted by µ := µV .

1.2.2 Markov Models on Undirected Trees

This subsection will introduce some properties for a process X on a vertex set V of
an undirected tree T with values in a state space X . It is well-known that such a
process is characterized by a joint distribution µ over X V . Of special interest in this
work are joint distribution which factorize.

Definition 1.2.2. A joint distribution µ over X V is said to factorize according to an
undirected tree T if for all edges ((α, β)) ∈ E non-negative functions ψαβ : Xα×Xβ →
R exist such that the probabilities for states xV ∈ X V can be written as:

(1.2.2) µ(xV) =
∏

((α,β))∈E

ψαβ(xα, xβ).

If µ factorizes it is said to have property (F).

The functions ψαβ, ((α, β)) ∈ E are not unique. For example, one could fix a leaf
% ∈ L with the partial ordering ≺% and set

(1.2.3) ψαβ(xα, xβ) =

{
P(Xβ = xβ |Xα = xα), α ≺% β,
P(Xch(%) = xch(%), X% = x%), α = %

.

This assignment for ψαβ is unique because the degree of a leaf is one, and therefore
% ∈ L has only one child. This is the preferred assignment for ψαβ (e.g. Chang
[1996] or Huelsenbeck and Bollback [2001]). The assignment of the partial ordering
also gives an idea about the factorization on directed trees. But this is the subject
of Subsection 1.2.3.

For an introduction of Markov properties the factorization property lacks a proper
interpretation. To accommodate for this, consider the following properties: A prob-
ability measure µ over X V is said to obey

(P) the pairwise Markov property, relative to T , if for any pair α, β ∈ V of non-
adjacent vertices:

α⊥⊥ β | V \ {α, β};

(L) the local Markov property, relative to T , if for any vertex α ∈ V :

α⊥⊥ V \ ({α} ∪ ne(α)) | ne(α);
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(G) the global Markov property, relative to T , if for any triple (A,B, S) of disjoint
subsets of V the set S separates A from B in T :

A⊥⊥B |S.

The pairwise Markov property states, that the information available from β that is
relevant for a prediction for α is already contained in the information from the re-
maining vertices. Analogously, the local Markov property states that the neighbors
of α also contain the information from the non-adjacent vertices of α that is relevant
for a prediction for α. In Chang [1996] this is the property assigned to the process.
The global Markov property is the strongest property because the separation prop-
erty states that any neighbor β of α already contains all available information from
the subtrees separated from α by β. Figure 1.5 illustrates these properties on a tree.

Figure 1.5: The three colorations of T demonstrate the properties
(P), (L) and (G), respectively. The blue vertices are the condition
for the independence of α from the other red vertices in (P) and
(L), and S separates A from B1 and B2 in (G).

The relationship between the presented Markov properties is the object of the next
considerations. Equivalence would be preferable, because the factorization property
is the main object of the next chapters. The following properties can be observed:

Proposition 1.2.3. Let T = (V , E) denote an undirected tree and µ a probability
distribution on X V .

1. The following implication rule holds: (F) ⇒ (G) ⇒ (L) ⇒(P);

2. The following equivalence holds: (F) ⇔ (G);

3. If µ is such that (S5) holds for disjoint sets A,B,C,D ⊆ V, then

(F) ⇔ (G) ⇔ (L) ⇔ (P).
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Hence, if a joint distribution µ over X V satisfies (S5) over a tree, equivalence is
attained. Generally, on undirected graphs equivalence is only observed if µ is a
strictly positive joint distribution. This statement was proved by several authors,
but is usually attributed to Hammersley and Clifford [1971]. Strict positivity is
also a consequence of the conditions on the functions (ψαβ)((α,β))∈E in Chang [1996],
guaranteeing the equivalence of local Markov property and factorization property.

In Matús [1992] classes of graphs are presented on which equivalences of properties
is obtained with structural arguments. The results of this work have the following
consequence for trees:

Lemma 1.2.4. Let T = (V , E) denote an undirected tree. Then, the factorization
property and the local Markov property are equivalent if and only if E contains at
most one inner edge.

In other words, on star trees and trees with one inner edge the joint distribution
µ need not satisfy additional conditions to provide the equivalence of (F) and (L).
Since, triple trees are star trees, and quartet trees are the only class of binary trees
with one inner edge, they are subject to this equivalence. However, Lemma 1.2.4
also indicates that this equivalence does not translate to supertrees with more than
one inner edge. The next statement is important for reconstruction methods:

Proposition 1.2.5. Let T = (V , E) denote an unrooted tree and µ a joint distribu-
tion over X V . Further, A denotes a subset of V, TA is the associated restriction of
T , and µA = µ|A the constraint of µ to TA. If µ admits a factorization on T then
µA also admits a factorization on TA. Generally, the converse does not hold.

Therefore, if a factorizing distribution µ exists on the supertree T , the constraints
of µ to the restrictions of T factorize.

1.2.3 Markov Models on Rooted Trees

Usually, rooted trees are the preferred structure for phylogenetic reconstruction,
since they suggest an evolutionary time system. This section will provide similar
Markov properties to the properties presented for undirected trees and consider some
implications. As before, the first property is a factorization property on rooted trees.

Definition 1.2.3. A probability distribution µ allows a recursive factorization over
a discrete state space X V on a rooted tree T% = (V , E ; %), if a root distribution q% and
a family of transition matrices (Pαβ)(α,β)∈E exists such that µ can be written as:

(1.2.4) µ(xV) = q%(x%)
∏

(α,β)∈E

Pαβ(xβ, xα), xV = (xα)α∈V ∈ X V .
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Hence a factorizing distribution µ is characterized through a marginal distribution
q% and family of transition matrices (Pαβ)(α,β)∈E . The recursive factorization will be
denoted by (DF). Again, though the factorization property of a joint distribution µ
is appropriate, it has no good interpretation in terms of conditional probabilities.
Therefore, further Markov properties are introduced. A probability measure µ over
X V on the rooted tree T% is said to obey

(DG) the directed global Markov property, relative to T%, if for any triple (A,B, S)
of disjoint subsets of V the set S separates A from B in T%;

(DL) the local directed Markov property, relative to T%, if any vertex is conditionally
independent from its non-descendants given its parent vertex pa(α):

α⊥⊥ nd(α) \ {pa(α)} | pa(α);

(DO) the ordered directed Markov property, relative to T%, if any vertex is condition-
ally independent from its history given its parent vertex pa(α):

α⊥⊥ hi(α) \ {pa(α)} | pa(α).

These properties have appropriate interpretations in terms of phylogenetic recon-
struction. For instance, the ordered Markov property states that all the information
available from the history of a certain species is contained in the information of the
predecessor of the species. Also, (DO) is regularly used as the basis of model con-
siderations in terms of phylogenetic reconstruction (e.g. Huelsenbeck and Bollback
[2001] or Steel et al. [1998]). Figure 1.6 visualizes the presented properties.

Figure 1.6: Markov properties on rooted trees. (DG) describes the
global directed Markov property where A is conditionally indepen-
dent of B given S. (DL) describes the local directed Markov prop-
erty, and (DO) describes the ordered directed Markov property. In
both properties α is given its parent conditionally independent of
its non-descendants and its history, respectively.

The interesting fact about these properties is the fact that they are equivalent:

Theorem 1.2.6. Let T% = (V , E ; %) denote a rooted tree. For a probability distribu-
tion µ over a discrete probability space X V the following equivalence is observed:
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(DF) ⇔ (DG) ⇔ (DL) ⇔ (DO).

Due to this equivalence one just speaks of the directed Markov property. The rela-
tionship of Markov properties on undirected trees to the directed Markov property
on rooted trees is explained in the following statement:

Proposition 1.2.7. Let T = (V , E) denote an undirected tree and µ a joint distri-
bution over X V . µ obeys the global Markov property relative to T , if and only if it
obeys the directed Markov property on the rooted tree Tα for all α ∈ V.

With Proposition 1.2.3.2 one can equivalently state, that a factorizing joint dis-
tribution µ on a undirected tree T also factorizes on all rooted trees Tα, α ∈ V .
Therefore, a particular choice of root does not alter the joint distribution µ. This
root irrelevance is due to the commutativity of joint probabilities and their influence
on the definition of conditional probabilities, see (1.5.1).

Note, that Proposition 1.2.5 is also valid on rooted trees.

Corollary 1.2.8. Let T% = (V , E ; %) denote a rooted tree, A ⊆ V, and µ is a
factorizing distribution over X V . Then, the constraint µA of µ to A factorizes on
the restriction TA.

In particular, this result provides the opportunity to regard restrictions like triple
or quartet trees in order to derive the characterization of a possible Markov process
on the supertree. However, one should always keep in mind that the existence of
a factorizing distribution on the restrictions is only necessary but not sufficient for
the existence of a factorizing distribution on the supertree. Sufficiency conditions
are regarded in Section 1.4.

1.3 Biological Background

Usually, a stochastic approach to molecular evolution is made by treating it as a
Markov process X on a rooted tree T% = (V , E ; %) over a genetically motivated state
space X . The structural elements of T% are interpreted in the following way. The leaf
set L depicts a set of extant species and the inner vertices depict their respective
ancestors up to % which describes their most recent common ancestor (mrca(L)).
In that notion a tree over all extant species should have the ancestor of all species
(if such a species exists) as a root. The best known example of such a tree is the
Haeckel-tree.

Ideally, the state space X is the set of sequences or words of length m over a genetical
alphabet. The most popular alphabets are:



24 1.3 Biological Background

Figure 1.7: The Haeckel Tree

S2 := {R, Y }, S4 := {A,C,G, T},
S20 := {w,m, y, q, f, i, g, v, h, e, l, p, s, c, a, r, n, d, t, k},

depending whether one looks at purines vs. pyrimidines (S2), at nucleotides (S4) or
at amino acids (S20).

An often, but reluctantly (e.g. Huelsenbeck and Bollback [2001]) made simplification
concerns the evolution of sequences: It is assumed that all positions of a sequence
evolved independently and identically distributed. In other words, the process of
molecular evolution is assumed to be driven solely by point mutations, and that no
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recombination, insertions or deletions occurred. It is a very restricting condition,
and methods developed under such a model should only be applied to sequences
from either mitochondrial DNA or of the Y-chromosome. Actually, most insights
concerning the relationship of species or races are based on comparison of such
sequences (e.g. Sykes [2001]). Under this assumption the state set can the restricted
to one the alphabets. Then a set of n aligned sequences of N sites provides a sample
of N independent observations of the process X, and hence statistical methods can
be applied to estimate the process in the n vertices which represent the n sequences.

X is characterized through a joint distribution µ := (µx)x∈XV which assigns to every
joint state x ∈ X V = X ×· · ·×X a probability of occurrence. A joint distribution µ
over X V which characterizes a Markov processX will be called a Markov distribution.
Since X is a Markov process its characterizing distribution µ is subject to equation
(1.2.4) and hence is described by choosing transition matrices (P e)e∈E and a root
distribution µ% from a parametric subfamily.

This thesis will consider three model specifications given by the special structure
of their transition matrices, namely the general two state model, the Neyman Nk

model and the Kimura 2ST model.

Example 1.3.1. The general two state model considers the state space S2 or equiv-
alently {0, 1} and transition matrices of type:

pα :=

(
1− pα

01 pα
01

pα
10 1− pα

10

)
, µ% :=

(
q%
0

1− q%
0

)
for α ∈ V \ {%}. It is the simplest non-symmetric model, i.e. the transition from
class one to class two has a different probability of occurrence than staying in one
class. Apparently, one can apply this model to DNA-data by distinguishing two
classes of states. Two of the three possible selections actually have an interpreta-
tion. The selection {A,G} vs. {C, T} is the purine vs. pyrimidine approach. The
selection {A, T} vs. {C,G} would give an idea about the possible development of
the often discussed {G,C}-content (e.g. Meunier and Duret [2004]). According to
the presented article the evolution of the {G,C}-content is driven by recombina-
tion. Since the homogeneity assumption does not permit recombination and under
the stability assumption for the {G,C}-content (cf. Meunier and Duret [2004]), the
change of the content should be small if at all observable. The third classification
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{A,C} vs. {G, T} seems to be of no interest.

Example 1.3.2. The simplest way to incorporate a larger state space X is to
assign a probability pe for the overall probability of change along an edge e and then
distributing it equally to all states. For instance, if X = Sk := {0, 1, . . . , k − 1},
the change from state x ∈ S to state y 6= x has probability pe/(k − 1). In addition,
if the marginal distribution in the root % is assumed to be stationary, i.e. µ% =
(1/k, . . . , 1/k), the resulting model is called the Neyman Nk model (eg. Semple and
Steel [2003]). The transition matrix for an edge e ∈ E according to this model is
described by:

P e :=


1− pe

pe

k−1
. . . pe

k−1
pe

k−1
1− pe . . . pe

k−1
...

...
. . .

...
pe

k−1
pe

k−1
. . . 1− pe


Due to the symmetric structure of the transition matrices for all edges the stationar-
ity of the marginal distributions translates to all vertices, i.e. µα = µ% for all α ∈ V .
Hence, the model is characterized through one parameter per edge. The special case
N4 is better known as the Jukes-Cantor-model.

Example 1.3.3. Although the Neyman approach is easy and can be applied to
any number of states, more complex models are preferred to accommodate certain
observations in real data. One such observation is addressed by the Kimura 2ST
model. Examining the classification of nucleotides into purines and pyrimidines
showed that a change within a class is more probable than a change between classes.
A change within a class is called transition, and a change between classes is
called transversion. The Kimura 2ST model is defined over the state space
S4 or equivalently {0, 1, 2, 3}, and regards the states as stationarily distributed at
the vertices, in this case µα = (1/4, 1/4, 1/4, 1/4), α ∈ V . As already proposed, the
states are divided into two classes, namely purines ({0, 1} = {A,G}) and pyrimidines
({2, 3} = {C, T}). The associated transition matrix for an edge e ∈ E is given by:

(1.3.1) P e :=


1− pe − 2qe pe qe qe

pe 1− pe − 2qe qe qe
qe qe 1− pe − 2qe pe

qe qe pe 1− pe − 2qe

 ,

Here, pe denotes the probability of a transition and 2qe is the probability of a
transversion along edge e ∈ E .

Example 1.3.4. There are two other rather popular specifications, namely the rate
model and the rate model with molecular clock. The example will introduce those
models only as far as they are considered in the thesis. For a more complete look
at these model specifications see eg. Waterman [1995, chap. 15].
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Behind the development of the rate model was the assumption of a continuous time
model, where a rate matrix Q describes the rates of change across states, i.e.

Q =


−

∑k
i=2 q1i q12 . . . q1k

q21 −
∑k

i6=2 q2i . . . q2k

...
...

. . .
...

qk1 qk2 . . . −
∑k−1

i=1 qki

 .

The transition matrix after time t ≥ 0 is given by

P (t) = exp(t ·Q) =
∞∑

m=0

tm

m!
Qm.

Thus, transition matrices for a particular edge e are given by exp(teQ) where te
denotes the time associated with the length of edge e ∈ E . Moreover, for t = 0 this
approach yields P (0) = 1k, the identity matrix in Rk×k, i.e. if no time elapsed the
probability of change is zero. Thus, artificial edges of zero length are endowed with
the identity matrix as their transition matrix.

Figure 1.8: A rooted binary tree with molecular clock. The lengths of the
edges (α2, β1) and (α2, β2) equals λ and the length of (α1, α2) is the length κ
of (α1, β3) minus the λ.

Generally, rooted trees are preferred for their resemblance to a time line and there-
fore, the suggestion of a process running through time. However, as Proposition
1.4.1 will show, the Markov model without any further restriction does not prefer
a particular root, i.e. any choice of inner vertex as root returns the same joint
distribution to the Markov process.

One restriction providing a root is the rate model with molecular clock. It forces
a root to a tree by demanding that paths between the root and leaves have equal
lengths. This approach is called molecular clock since it is based on the assumption
that for extant species the same evolutionary time elapsed since their mrca roamed
the earth. As an example consider Figure 1.8. Here, the edges (α2, β1) and (α2, β2)
have the same lengths and the length of edge (α1, β3) is equal to the length of the
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path p(α1, β1). Methods using this approach provided good approximations of the
real evolutionary time. Probably the best known result was the placing of the mrca
of chimp and human three million years back which was at that time a much shorter
period as was assumed by anthropologists (eg. Gribbin and Cherfas [2001]).

This concludes the introduction of models of molecular evolution considered in this
work. Obviously, there are a lot more models each of which serves the visualization
of certain aspects observed in data. However, their introduction is not subject of
this thesis. For a satisfying overview Ewens and Grant [2001] is suggested.

1.4 The Task of Phylogenetic Reconstruction

Although the number of theories is astonishing, knowledge of evolutionary history
is sparse and generally data are available only for species of recent times. Some
fossil records provide approximations to evolutionary time, and thus for a molecular
clock, and some insights into relationship and inheritance as well. In terms of the
model this means that the inner structure of the tree is unknown.

Figure 1.9: The leaves {α1, . . . , α4} are known, but the connection to the three
inner vertices β1, β2 and ρ is unknown. The figure presents three possible
rooted structures. The black dashed structure is rooted at ρ and splits α1, α2

from α3, α4. The blue solid structure presents a root change from ρ to β1 and
a reconnection of α2 from β1 to ρ. In this structure α1 is called an outgroup.
Finally, the red pointed structure puts the root back into ρ but splits α1, α3

from α2, α4 with outgroup α2. Outgroups are usually used to place a root.
Note, that the edge lengths in the picture are meaningless, they only visualize
connectivity.

The knowledge of present species can be viewed as the knowledge of the Markov
process on the leaves L of the sought tree T% = (V , E ; %). Throughout the chapter
the cardinality of L is n ≥ 3. Thus in terms of the model, today’s knowledge is
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given as a leaf distribution m, which relates to the Markov distribution µ by

(1.4.1) m(x) =
∑

y∈X ](N )

µ(x, y), x ∈ X n

The task of phylogenetic reconstruction is to find a Markov distribution µ which fits
today’s knowledge i.e. a given leaf distribution m.

Definition 1.4.1. Let T% denote a rooted tree and m a leaf distribution on L. A
Markov distribution µ on V satisfying (1.4.1) is called Markov extension of m over
T%.

Since µ is a Markov distribution on a rooted tree, one applies (1.2.4) to (1.4.1) to get
the following relationship between a leaf distribution and the transition matrices:

(LF) m(x) =
∑

xN∈XN
µ%(x%)

∏
(α,β)∈E

Pαβ
xβ ,xα

, x ∈ X L.

This equation is the basis of almost all following considerations. In terms of phylo-
genetic reconstruction the left hand side is known for all x ∈ X L and the parameters
of the associated right hand sides need to be retrieved.

Recall from Proposition 1.2.7, that for µ to be a Markov distribution the particular
choice of % is of no effect. For reconstruction methods the following properties must
be regarded:

Proposition 1.4.1. Let T% = (V , E ; %) denote a rooted tree and m an joint distri-
bution on the leaves of T% with associated characterization (Pαβ)(α,β)∈E and µ% for
the associated Markov distribution µ. Then, the following properties are observable:

1. µ is also a Markov distribution on every rooted tree Tα, α ∈ V.

2. µ can be adapted to any tree obtained from T% by adding or deleting a vertex
of degree two without violating the Markov property.

Statement 2 implies, that vertices of degree two are not reconstructible from a leaf
distribution. Statement 1 shows, that for computations the root can be placed at
the best suited vertex without changing the Markov distribution. However, for the
placement of a root, the structure of T must be known. Equation (1.1.5) provides
a lower bound of possible structures with the number of binary trees to a given
number of leaves. As Table 1.2 shows, for 20 leaves this number is with 2, 2 · 1020

already much too high to check all possible structures.

Thus alternative methods of reconstruction are sought. Table 1.2 suggests one,
namely using sets of subtrees to reconstruct the supertree (e.g. Semple and Steel
[2003, chap. 6]). A popular approach is using quartet trees (e.g. Strimmer and von
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Haeseler [1996]), where only three possible ways of inner structures to four leaves
are distinguishable. Hence, computing a sufficient set of quartet trees provides a
way to reconstruct a supertree. A sufficient set of subtrees contains restriction trees
for all leaves, and some overlap to connect them. Often, the quartet set contains
incompatible quartets. For instance, the quartet splits α1α2|α3α4 and α1α3|α2α5

provide an incompatibility in the splitting of α1, α2 and α3. Depending on the
reconstruction method, such cases lead to information loss (supertree methods, eg.
Bininda-Emonds et al. [2002]) or more structural complexity (phylogenetic networks
eg. Bryant and Moulton [2002]).

Chang [1996] states, that if a factorizing joint distribution µ exists on the true (but
unknown) tree T , then the constraints of µ to the triple trees of T will return T and a
characterization of µ. This is not completely true, because due to Proposition 1.4.1.2
such a reconstruction will not return non-furcating vertices of T . However, this loss
of information is acceptable because non-furcating vertices provide no additional
information about the relationship of the leaves. Moreover, as Table 1.2 shows, the
number of possible triple trees is another reduction of objects to consider.

1.5 Proofs

This section cumulates the proofs for all results of this chapter.

1.5.1 Proofs for Section 1.1

Section 1.1 contained the background from graph theory for trees.

Proof of Lemma 1.1.1. The presented statements follow from Theorem 1.2.1 and
Proposition 1.2.5 in Semple and Steel [2003]. 2

Proof of Lemma 1.1.2. In order to be a partial ordering, ≺% needs to be reflexive,
transitive and asymmetrical on V . Let α, β, γ ∈ V . Reflexivity follows since α ∈
p(%, α).

For transitivity let α ≺% β and β ≺% γ, i.e. α ∈ p(%, β) and β ∈ p(%, γ). Since T is
a tree, p(%, β) ⊆ p(%, γ) and thus, α ∈ p(%, γ), i.e. α ≺% γ.

For asymmetry assume α ≺% β and β ≺% α. The path on trees is unique, thus the
assumption is only fulfilled if α = β.

% is the minimal element because % ≺% α for all α ∈ V holds. Hence, all statements
of the lemma are accounted for. 2

Proof of Corollary 1.1.4. Assume, that α ∈ V \ {%} has two distinct parents β1

and β2. But then T% would allow two different paths p1(%, α) running through β1,
and p2(%, α) running through β2 contrary to the path uniqueness proved in Lemma
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1.1.1. Assume, % has a parent vertex γ. Then T% contains an edge (γ, %). But this
implies γ ≺% % contrary to the fact that % is the minimum of ≺% on V . Therefore, %
is parent-less and thus, the corollary is proved. 2

Proof of Lemma 1.1.6. Assume GA is connected. Due to the definition, T does
not contain a cycle. But since GA only inherits edges from T it also is cycle-free.
Thus, GA is cycle-free and connected, which is the definition of a tree. This completes
the proof. 2

Proof of Lemma 1.1.7. The intersection of paths must be non-empty since the
vertices are connected. If, w.l.o.g., β ∈ p(α, γ), the intersection of the three paths
returns β as the only element.

Now assume that at least two distinct vertices %1, %2 are in the intersection of the
paths. W.l.o.g., rewrite two paths as unions

p(α, β) = p(α, %1) ∪ p(%1, %2) ∪ p(%2, β),

p(α, γ) = p(α, %1) ∪ p(%1, %2) ∪ p(%2, γ).

This yields for the third path:

p(β, γ) = p(β, %2) ∪ p(%2, %1) ∪ p(%1, γ)

= p(β, %2) ∪ p(%2, %1) ∪ p(%1, %2) ∪ p(%2, γ).

Apparently, the path between %1 and %2 occurs twice on the right hand side. Thus,
p(β, γ) = p(β, %2)∪ p(%2, γ) and the intersection of the three paths contains only %2

contrary to the assumption and thus, the lemma is proved. 2

Proof of Lemma 1.1.8. Selecting a triple begins with selecting three leaves. Since
α is meant to be their trifurcating vertex, the leaves need to be separated by α. Thus,
each has to come from a different subtree from Gα. Select three distinct subtrees
from Gα. The number of possible triples generated from those three subtrees is the
product of the number of their leaves. By summing over all possible selections of
three distinct subtrees one finally gets (1.1.1) and the lemma is proved. 2

1.5.2 Basic Notions from Probability Theory

The following statements are well-known in the field of probability theory. The order
of results is copied from Semple and Steel [2003, p.4]. Let X denote a sample space.
Provided P(B) > 0 the conditional probability of an event A given B is given by:

(1.5.1) P(A|B) =
P(A,B)

P(B)
.

For the proofs of Section 1.2 the following elementary results are useful.
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(i) (Law of total probability) If B1, . . . , Bk partition X and A is an event in X ,
then:

(1.5.2) P(A) =
k∑

i=1

P(A|Bi)P(Bi).

(ii) (Bayes’ rule) If A and B are events in X and P(A),P(B) > 0, then

(1.5.3) P(B|A) =
P(A|B)P(B)

P(A)
.

The value of P(A) on the right hand side of (1.5.3) is often evaluated by the
law of total probability.

(iii) (The product rule) If A1, . . . , Ak are events in X , then

(1.5.4) P(A1, . . . , Ak) = P(A1)P(A2|A1)P(A3|A1, A2) . . .P(Ak|Ak−1, . . . , A1).

1.5.3 Proofs for Section 1.2

Section 1.2 presented Markov properties on trees.

Proof of Lemma 1.2.1. See for instance Lemma 5.2 in Dawid [1980]. 2

Proof of Proposition 1.2.3. For statement 1 see Proposition 3.8 in Lauritzen
[1996].

With statement 1 only the direction (G)⇒(F) must be shown to prove statement
2. This is done by ordering the vertices placing the leaves last, preceded by their
immediate neighbors and so on, then applying the product rule (1.5.4) and finally
use the global Markov property on the ensuing equation. The resulting factorization
is of the form presented in (1.2.3) and therefore µ factorizes on T .

Finally, statement 3 follows from Theorem 2.7 in Lauritzen [1996] together with
statement 2. This completes the proof. 2

Proof of Lemma 1.2.4. According to Proposition 1 in Matús [1992], equivalence
of global and local Markov property is given if and only if the considered graph G
has no subgraphs with exactly four vertices and exactly two parallel edges. Any sub-
graph with four vertices of trees with at most two inner vertices is either connected
or contains at least one isolated point. Further assume that a tree has the inner
vertices α1, α2, α3 and edges ((α1, α2)) and ((α2, α3)), and the leaf β1 is adjacent to α1

whereas the leaf β3 is adjacent to α3. Then the subgraph with vertices α1, α3, β1, β3

has exactly two parallel edges ((α1, β1)) and ((α3, β3)). This completes the proof. 2



1.5 Proofs 33

Proof of Proposition 1.2.5. The statement is an extension of Proposition 3.22
in Lauritzen [1996]. Let TA = (A, EA) denote a restriction of T = (V , E), and µA

is the constraint of µ to TA. W.l.o.g., % ∈ A. Then similar to (1.4.1) one has with
Proposition 1.2.7 and (1.2.4) for x ∈ XA:

µA(x) =
∑

y∈XV\A

µ(x, y) = q%
x%

∏
(α,β)∈EA

Pαβ
xβ ,xα

∑
y∈XV\A

∏
(γ,δ)∈E\EA

P γδ
xδ ,xγ

= q%
x%

∏
(α,β)∈EA

Pαβ
xβ ,xα

,

since vertices of degree two vanish from the equation with

(1.5.5)
∑
x∈X

Pαch(α)
zx Pαpa(α)

xy = µch(α)|pa(α)(y, z), y, z ∈ X ,

and
∑

x∈X P
αβ
xy = 1 for all y ∈ X . This completes the proof. 2

Proof of Theorem 1.2.6. The equivalence chain (DF)⇔(DG)⇔(DL) is the state-
ment of Theorem 3.27 in Lauritzen [1996]. (DL)⇒(DO) follows with (S2) and
hi(α) ⊆ nd(α) for all α ∈ V . (DO)⇒(DF) is proved similarly to Lemma 1.2.4
using (1.5.4) and applying (DO) on the result. This completes the proof. 2

Proof of Proposition 1.2.7. This follows immediately from Proposition 3.28 in
Lauritzen [1996] and Proposition 1.2.3.2. 2

1.5.4 Proofs for Section 1.4

This subsection will verify the statements made concerning the reconstruction task.

Proof of Proposition 1.4.1. Statement 2 follows from (1.5.5), and statement 1
follows from Proposition 1.2.5. 2
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Chapter 2

Algebraic Geometry

The previous section described some stochastic features of the model. This section
will provide algebraic tools to answer the following questions concerning the recovery
of a Markov process through equation (LF):

1. When does a leaf distribution m has a solution, i.e. when does it have a
Markov-like extension (see Def. 2.1.3)?

2. When is the number of solutions finite then?

3. How many solutions do exist for a given leaf distribution m?

The answers presented in the following section will be of a general kind. In particular,
for question 3 only a lower and an upper bound are presented. Moreover, note
that only conditions for Markov-like extensions can be established with algebraic
geometry. The structure of the section follows the stated questions. The notation
and results provided here are mostly taken from Cox et al. [1997]. Conditions for
Markov extensions on triple trees for the general two state, Neyman Nk and Kimura
2ST model are presented in later chapters.

2.1 Rewriting the Questions

This section will provide the general language of polynomials and varieties. At the
end of it, the above questions will be restated in the notion of varieties.

Definition 2.1.1.(Def.s 1.1.1-3 in Cox et al. [1997]) A monomial in t1, . . . , tr is a
product of the form

ta1
1 · ta2

2 · · · tar
r ,

where all of the exponents a1, . . . , ar are nonnegative integers. The total degree |a|
of this monomial is the sum α1 + · · ·+ αr.

35
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A polynomial f in t1, . . . , tr with coefficients in C is a finite linear combination (with
coefficients in C) of monomials. A polynomial f is written in the form

f =
∑

a

cat
a, ca ∈ C,

where the sum is over a finite number of r − tuples a = (a1, . . . , ar). The set of all
polynomials in t1, . . . , tr with coefficients in C is denoted C[t1, . . . , tr].

The total degree of a polynomial f in C[t1, . . . , tr], denoted deg(f), is the maximum
|a| such that the coefficient ca is nonzero.

Usually, some characteristics of polynomials are given by their zero points or roots.
Therefore, a system of polynomials can be described by its joint roots. The set of
joint roots is called a variety:

Definition 2.1.2.(Def. 1.2.1 in Cox et al. [1997]) Let f1, . . . , fs be polynomials in
C[t1, . . . , tr]. The set V(f1, . . . , fs) defined through

V(f1, . . . , fs) := {(a1, . . . , ar) ∈ Cr : fi(a1, . . . , ar) = 0 for all 1 ≤ i ≤ s}

is called the affine variety defined by f1, . . . , fs.

Thus an affine variety V(f1, . . . , fs) ⊂ Cr is the set of all solutions of the system of
equations f1(t1, . . . , tr) = · · · = fs(t1, . . . , tr) = 0.

The first task is to apply the above notation to the system (LF). For a proper
application assign the integers s and r with their representant from the Markov
model. h denotes the number of polynomials. System (LF) has as many equations as

the joint leaf distribution m has elements, i.e. ](S)](L). Set k := ](S) and n = ](L).
Denote the parameters on the right hand side of (LF) by (p1, . . . , pr) where the
ordering should be chosen appropriately. Usually, r = (k− 1) + k(k− 1)](E), where
](E) is the number of edges in the tree T , and s = kn is the number of polynomials.
Thus, a suitable ordering could be given by assigning the first k(k−1) parameters to
the first edge, the second k(k− 1) parameters to the second and so on and the final
k− 1 parameters would stand for the root parameters. Clearly, for this example an
ordering of the edges needs to be included. Finally, to transfer the problem of finding
a solution to the system (LF) to finding the roots of an associated system assign a
suitable ordering to the elements of the leaf distribution m, i.e. m := (mi)

s
i=1. For

instance if S := {0, 1, . . . , k − 1} the ordering could look like

i = x1k
n−1 + x2k

n−1 + · · ·+ xn−1k + xn + 1, xj ∈ S, j = 1, . . . , n.

With these conventions rewrite (LF) by mi = fi(p1, . . . , pr), i = 1, . . . , s and define

(2.1.1) gi(m1, . . . ,ms, p1, . . . , pr) := mi − fi(p1, . . . , pr), i = 1, . . . , s.



2.2 Existence of a Solution 37

Denote by W := V(g1, . . . , gs) the variety of system (2.1.1). Then finding a solution
of (LF) w.r.t. to a given joint leaf distribution m is equivalent to computing the
intersection:

Sm := W ∩ {z ∈ Cs+r : zi = mi, i = 1, . . . , s}.
With these notions the questions asked at the beginning of the section are translated
into:

1. When is Sm nonempty?

2. If Sm is nonempty, is it finite?

3. If Sm is finite, what is its cardinality?

For the language of the next sections the following definition is necessary.

Definition 2.1.3. Let m denote a leaf distribution on a tree T . A solution of (LF)
w.r.t. m is called Markov-like extension. If a solution is stochastically admissible,
i.e. if the solution describes a set of transition matrices and a root distribution, it
is called Markov extension.

2.2 Existence of a Solution

This section will answer the first question. For the identification of leaf distributions
that have a Markov-like extension this is the most important question. The answer
provided here is commonly accepted and also discussed on numerous occasions (eg.
Allman and Rhodes [2003] or Pachter and Sturmfels [2004]). To start the section,
ideals are introduced. These are polynomials that have a certain set of zero points
in common. In a way, this notion already provides an idea into which direction the
answer is headed.

Definition 2.2.1.(Def.s 1.4.1+2 in Cox et al. [1997]) A subset I ⊂ C[t1, . . . , tr] is
an ideal if it satisfies

1. 0 ∈ I.

2. If f, g ∈ I, then f + g ∈ I.

3. If f ∈ I and q ∈ C[t1, . . . , tr], then qf ∈ I.

For polynomials f1, . . . , fs in C[t1, . . . , tr] set

(2.2.2) 〈f1, . . . , fs〉 :=

{ s∑
i=1

qifi : q1, . . . , qs ∈ C[t1, . . . , tr]

}
.
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Consider x ∈ Cr such that f(x) = g(x) = 0. Then also (f + g)(x) = f(x)+ g(x) = 0
and (qf)(x) = q(x)f(x) = 0. Therefore, x is a zero point of all polynomials in the
ideal I. Accordingly a variety V defines a unique ideal I(V) by

I = {f : Cr → C, f(x) = 0 for all x ∈ V}.

Coming back to (2.2.2) one observes, that If := 〈f1, . . . , fs〉 defines an ideal (cf.
Lemma 1.4.3 in Cox et al. [1997]). Such an ideal has an elegant interpretation in
terms of polynomial equations. Given f1, . . . , fs ∈ C[t1, . . . , tr] one gets the system
of equations f1 = 0, . . . , fs = 0. From these equations, one can derive others using
basic algebraic operations. For example, if one multiplies the first equation by
q1 ∈ C[t1, . . . , tr], the second by q2 ∈ C[t1, . . . , tr] etc. and then adds the resulting
equations one obtains:

q1f1 + q2f2 + · · ·+ qsfs = 0,

which is a consequence of the original system. Note that the left hand side of
this equation is exactly an element of the ideal 〈f1, . . . fs〉. Thus, one can think of
〈f1, . . . fs〉 as consisting of all ”polynomial consequences” of the equations f1 = f2 =
· · · = fs = 0. (f1, . . . , fs) is called the basis of If .

Coming back to the task at hand, the ideal 〈g1, . . . , gs〉 with gi defined through (2.1.1)
contains all polynomials whose roots are in V(g1, . . . , gs). To answer question 1 one
has to derive from this ideal another ideal Î ⊂ C[t1, . . . , ts]. Such an ideal Î contains
all implications of a Markov process for its leaf distribution. Due to this observation
the elements of Î are called phylogenetic invariants (cf. Allman and Rhodes [2003]).
The next task is to propose a way to compute Î.

For this way, consider an equation system in x1, . . . , xs which has an infinite number
of solutions. To compute a characterization of the solution space solve the polynomial
parametrization:

x1 = f1(t1, . . . , tr),

...
...

xs = fs(t1, . . . , tr),

(2.2.3)

where f1, . . . , fs are polynomials in C[t1, . . . , tr].

Under this circumstance, (LF) can be seen as a parametrization of the subset of Cs,
that also contains all leaf distributions with Markov- and Markov-like extension. But
it should be noted that the subset will be larger than the set of leaf distributions as
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the following example shows:

Example 2.2.1. In Section 3.1 the two state three leaves case is discussed in detail.
There, the system (LF) has the form:

m000 = (1− pα
0 )(1− pβ

0 )(1− pγ
0)q

% + (1− q%)pα
1p

β
1p

γ
1 ,

m001 = (1− pα
0 )(1− pβ

0 )pγ
0q

% + (1− q%)pα
1p

β
1 (1− pγ

1),

m010 = (1− pα
0 )pβ

0 (1− pγ
0)q

% + (1− q%)pα
1 (1− pβ

1 )pγ
1 ,

m011 = (1− pα
0 )pβ

0p
γ
0q

% + (1− q%)pα
1 (1− pβ

1 )(1− pγ
1),

m100 = pα
0 (1− pβ

0 )(1− pγ
0)q

% + (1− q%)(1− pα
1 )pβ

1p
γ
1 ,

m101 = pα
0 (1− pβ

0 )pγ
0q

% + (1− q%)(1− pα
1 )pβ

1 (1− pγ
1),

m110 = pα
0p

β
0 (1− pγ

0)q
% + (1− q%)(1− pα

1 )(1− pβ
1 )pγ

1 ,

m111 = pα
0p

β
0p

γ
0q

% + (1− q%)(1− pα
1 )(1− pβ

1 )(1− pγ
1).

This is a parametrization for the equation

(2.2.4) m000 +m001 +m010 +m011 +m100 +m101 +m110 +m111 = 1,

Obviously, the set of vectors in C8 satisfying (2.2.4) is not restricted to the cube
[0, 1]8. To restrict the vector space of solutions to the associated leaf distributions,
one has to add the inequality, mxyz ≥ 0 for all x, y, z ∈ {0, 1}.
The above example gave a glimpse of the way question 1 will be answered. Equation
(2.2.4) provides the basis to the associated ideal Î in the two state three leaves case.
However, for model specifications with more than just two states or more than three
leaves one polynomial won’t be enough. The following notion help identifying Î:

Definition 2.2.2.(Def. 3.1.1 in Cox et al. [1997]) Given I = 〈f1, . . . fs〉 ⊂
C[t1, . . . , tr], the sth elimination ideal Is is the ideal of C[ts+1, . . . , tr] defined by

Is := I ∩ C[ts+1, . . . , tr].

In this notation the sought ideal Î is given by:

Î := Is = 〈g1, . . . , gs〉 ∩ C[m1, . . . ,ms].

The following statement will provide a method to generate the basis g1, . . . , gs to
this ideal:

Proposition 2.2.1.(Thm. 3.3.1 in Cox et al. [1997]) Let G : Cr → Cs be
a function determined by the polynomial parametrization (2.2.3). Further, let
I = 〈x1 − f1, . . . , xs − fs〉 ⊂ C[t1, . . . , tr, x1, . . . , xs] and let Is = I ∩ C[x1, . . . , xs] be
the sth elimination ideal. Then V(Is) is the smallest affine variety in Cs containing
G(Cr). 2
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This method is more or less the reversal of the polynomial parametrization and is
called polynomial implicitization. With the introduction of such a method question
1 has the following answer:

Theorem 2.2.2. If the polynomial system (LF) has a solution w.r.t. a vector m,
then m is an element of the variety V(Î).

Hence, m ∈ V(Î) is necessary to have an non-empty set Sm. Explicitly computing

a basis for Î is no easy task. Apart from the two state model where Example 2.2.1
implicitly shows the generation of the basis (2.2.4) one will find it exceedingly hard
to do it by hand. Hence, computational support is needed. The author used two
software packages, Mathematica (Wolfram [2003]) and Singular (Greuel et al.
[2001]) for this purpose. The results will be discussed in Section 2.5.

2.3 Finitely Many Solutions

The next question asked for conditions on a leaf distribution m under which Sm has
finitely many elements. Recall r = (k − 1)(k](E) + 1) and s = kn.

Theorem 2.3.1. Let F := (f1, . . . , fs) : Cr → Cs denote the polynomial equation
system (LF). Then, a p0 ∈ Cr exists with rk(DF (p0)) = r.
Moreover, let {i1, . . . , ir} ⊂ {1, . . . , s} denote a set of indices, such that (Dfij(p0))

r
j=1

is a family of linearly independent vectors. The set

M0 =
{
n : ∃m ∈ Cs with mij = nj, j = 1, . . . , r and ]({p : F (p) = m}) = ∞

}
is a Lebesgue zero set in F (Cr).

The complement of M0 implies that the set {m ∈ Cs : ∃n ∈ M c
0 : with mij =

nj, j = 1, . . . , r} contains all vectors m ∈ Cs with ]({p ∈ Cr : f(p) = m}) < ∞,
and since M0 is a Lebesgue zero set, almost all vectors m ∈ Cs have a finite number
of solutions.

With rk(DF (p0)) = r another statement is connected, namely:

Lemma 2.3.2. The number of phylogenetic invariants is bounded from below by
s− r.

This is obvious, since f(Cr) ( Cs yields that the image space of f must be described
by at least s− r additional equations, the phylogenetic invariants. Table 2.1 offers
a selected number of leaves and states.

Table 2.1 shows that even for the small system of four leaves and four states the
minimal number of phylogenetic invariants is almost 200. Section 2.5 will provide
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n k s r s− r

3 2 8 7 1
3 3 27 20 7
3 4 64 39 25
4 2 16 11 5
4 3 81 32 49
4 4 256 63 193

Table 2.1: The number of equations and variables for binary trees
with three or four leaves in two, three or four states. The last
column presents the lower bound for the number of phylogenetic
invariants needed to identify a leaf distribution with Markov-like
extension.

some more concern when it comes to the number of invariants.

2.4 The Number of Solutions

Finally, question 3 is considered, which asks for the cardinality of Sm. Generally,
this question cannot be answered exactly. However, there are some ways to obtain
lower and upper bounds for the number of solutions. First, consider the following
example:

Example 2.4.1. Consider the Markov model with four states and four leaves.
Further, assume that the underlying tree T = (V , E) has the following structure:

V = {α1, α2, α3, α4, %1, %2},
E = {(%1, α1), (%1, α2), (%1, %2), (%2, α3), (%2, α4)}.

The states in the leaves are distributed according to the quartet leaf distribution m.
Equation (LF) has the following form:

m(x1, x2, x3, x4) =
4∑

x5=1

µ%1(x5)P
α1
x5x1

Pα2
x5x2

4∑
x6=1

P %2
x5x6

Pα3
x6x3

Pα4
x6x4

.

If π denotes a permutation mapping of the set {1, 2, 3, 4} the following equation
holds too:

(2.4.5) m(x1, x2, x3, x4) =
4∑

x5=1

µ%1(π(x5))P
α1

π(x5)x1
Pα2

π(x5)x2

4∑
x6=1

P %2

π(x5)x6
Pα3

x6x3
Pα4

x6x4
.
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The same manipulation works with a permutation of the states in %2. These per-
mutations result in column and row permutations of the transition matrices thus
providing alternative solutions. Hence, one solution generates (k!)2 = 576 other
solutions within this model, which are for generic m different from each other.

Generally, one can prove the following result:

Lemma 2.4.1. Let µ be a Markov process on a rooted tree T% := (V , E ; %) with
leaf set L and set N of inner vertices. Further, let (Pα)α∈V\{%} and µ% denote a
parametrization of µ and let ΠS denote the set of permutations of the states in S.
Then, modifying the parameters for an inner vertex α ∈ N , α 6= %, by

(2.4.6) P̂α
xy = Pα

xπ(y), P̂ β
xy = P β

π(x)y, β ∈ ch(α), x, y ∈ S, π ∈ ΠS

yields a parametrization for a Markov process with the same leaf distribution as µ.

For α = % one can modify the parameters by

(2.4.7) µ̂%
y = µ%

π(y), P̂ β
xy = P β

π(x)y, β ∈ ch(α), x, y ∈ S, π ∈ ΠS

to obtain a Markov process with the same leaf distribution as µ.

Thus there are (k!)](N ) such alternative parameterizations for the leaf distributions
µ.

Hence, a unique solution exists in general only up to permutation of inner states.
The number (k!)](N ) is also a lower bound to the possible number of solutions, i.e.
a lower bound to the cardinality of Sm, at least if there is one solution where all
probabilities in µ% and all rows of the transition matrices P e, e ∈ E , are different.
In Chang [1996] uniqueness was established by restricting the transition matrices
to a reconstruction argument, i.e. by denying the choice of permutation matrices.
This is a useful assumption for a couple of reasons. Firstly, the number of possible
permutations becomes large the more states one assumes and secondly, phylogenetic
inference usually assumes small step change, i.e. the considered transition matrices
are diagonally dominant. To keep this observation, reconstructible classes are intro-
duced. If a matrix A is in such an reconstructible class, depending on the particular
definition certain permutations of A cannot be in this class. Next, a look at the
three models considered in this thesis and the reason why the result was restricted
to general Markov processes.

Example 2.4.2. According to Lemma 2.4.1 the general two state model on three
leaves has at least two solutions. Section 3.1 will verify this observation.

The proposed permutations in (2.4.6) are translatable into row or column permuta-
tions for the transition matrices. For a symmetric transition matrix Pα this kind of
permutation ends in a non-symmetric matrix P̂α, i.e. the alternative solution leaves
the model, although in terms of (LF) the same leaf distribution is recovered. Hence,
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the permutation approach leaves a symmetric models, if the state space S consists
of more than two states. However, for the Kimura 2ST model one can observe a
”freak” permutation. Looking at (1.3.1) one observes that swapping row one with
row two and row three with row four yields a matrix that is also has the form of
(1.3.1). Hence, the lower bound for solutions for the Kimura 2ST model is two. For
a closer look at the subject of unique solutions for the particular models see Lemma
3.1.2, Proposition 4.1.6 and Proposition 4.2.4. Latter propositions will provide an
additional kind of symmetry. However, these symmetries provide a solution that is
subject to another leaf distribution m̂.

Upper bounds are provided by Bezout’s Theorem (Theorem 8.7.10 in Cox et al.
[1997]). It bounds the number of possible solutions by the product of the total
degrees of the associated equations of the system. The total degree of any polynomial
in (LF) is ](E) + 1, since at least one monomial in such a polynomial contains one
probability for each edge plus a probability for the root. Together with the number
of equations this yields the upper bound (](E) + 1)s. This observation yields the
following result:

Corollary 2.4.2. Let g1, . . . , gs denote the polynomials from (2.1.1). Then,
deg(gi) = ](E)+1 for all i = 1, . . . , s, and if a vector m generates a finite number of
solutions for (LF), the number of different unique solutions up to permutation for
reconstructible classes of transition matrices is bounded from above by:

(2.4.8)
(](E) + 1)s

(k!)](N )
.

Theorem 2.3.1 states that with the exception of a zero set of vectors all vectors
provide a finite number of solutions for (LF). (](E) + 1)s contains all symmetric so-
lutions, and hence by dividing this number by the number of symmetrical solutions,
one gets an upper bound to the number of unique solutions. Unfortunately, when
looking at the case n = 3, k = 2 one has ](E) = 3 and ](N ) = 1, and thus this
number is 32768. Clearly, this number is much to high and the only insight one can
derive from this proposition is that the number of solutions is finite.

Bernstein’s Theorem (Theorem 1 in Huber and Sturmfels [1997]) provides a compli-
cated way of computing a (possibly better) upper bound to the number of solutions.
However, this approach will not be discussed here.

2.5 Discussion

The previous section provided some very interesting theoretical results. However,
their applicability should be considered. In particular, if one tries to obtain a basis
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to the proposed ideal Î of phylogenetic invariants to the factorization property (LF).
This section reports the hazards the author faced when tackling the problem.

Various algebraic softwares have incorporated an elimination algorithm that provides
for the polynomial implicitization. Most are based on the computation of a so-called
Gröbner basis, which basically is the preferred ideal basis in the field due to the
following facts. Any polynomial f ∈ C[t1, . . . , tr] is divisible into

f = q1f1 + · · ·+ qsfs + u,

if f1, . . . , fs is a basis to an ideal I, q1, . . . , qs ∈ C[t1, . . . , tr] and a remainder
u ∈ C[t1, . . . , tr] which is not divisible by f1, . . . , fs. Usually this remainder is
not unique depending on the order of the basis polynomials. But for Gröbner bases
the remainder is unique (Prop. 2.6.1 in Cox et al. [1997]). Moreover, every ideal
I 6= ∅ has a Gröbner basis (Coro. 2.5.6 in Cox et al. [1997]) and for a given ideal I
with Gröbner basis G the set Gs := G∩C[ts+1, . . . , tr] is a Gröbner basis of the sth
elimination ideal Is (Thm. 3.1.2 in Cox et al. [1997]).

One software package that provides the elimination ideal through Gröbner basis
computation is the already mentioned Mathematica . However, as Cox et al.
[1997, page 114] propose, this is not always a useful approach:

. . . In some cases (such as the implicitization problem to be studied in
§3), we only want to eliminate certain variables, and we do not care
about the others. In such a situation, it is a bit of overkill to compute
a Groebner basis with lex order. This is especially true since lex order
can lead to some very unpleasant Groebner bases. . .

To underline this statement consider the Kimura 2ST model. According to Theorem
2.3.1 at least four polynomials are needed for the generation of Î in that case. Math-
ematica computed several hours and produced 24 polynomials that filled more than
200 A4 pages of output. Clearly, the usefulness of such a result is disputable.

Singular on the other hand is a software package solely made for the purpose of
algebraic geometry. Its function for deriving a basis of an elimination ideal is much
faster and provides more suitable results. For the Kimura 2ST model Singular
produced within minutes 18 polynomials with about 24 A4 pages of output. Hence,
this result is much better in quantitative and interpretational terms, although the
overall benefit is still in doubt. Who likes to leaf through 24 pages of polynomials?

Also, w.r.t. Table 2.1 one has to realize that the derivation of a proper polynomial
basis for the ideal of phylogenetic invariants will become more difficult and their in-
terpretation even more questionable. Hence, an identification of phylogenetic invari-
ants with a meaningful interpretation (as suggested by Allman and Rhodes [2003])
could be much more beneficial than the knowledge of the whole basis without an
interpretation. In Section 3.3 some phylogenetic invariants for the extension of a
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Markov process from the triple trees to quartet trees under the two state model are
presented.

2.6 Proofs

Finally, the proofs to the presented results are provided. The chapter revolved
around three questions. The first question asked for conditions for the existence of
an algebraic solution of (LF), and was answered by Theorem 2.2.2. For the proof of
this result consider the following helpful statements:

Proposition 2.6.1.(Prop. 1.4.8 in Cox et al. [1997]) Let V and W be affine varieties
in Cn. Then:

1. V ⊂ W if and only if I(V ) ⊃ I(W ).

2. V = W if and only if I(V ) = I(W ).

2
In other words, decreasing the cardinality of a variety provides more polynomials
with the same roots. The next result is very helpful when trying to identify a certain
variety. If an established basis is unsuitable for deriving certain properties a base
change is possible.

Lemma 2.6.2.(Prop. 1.4.4 in Cox et al. [1997]) If f1, . . . , fs and g1, . . . , gs are
bases of the same ideal in C[t1, . . . , tr], so that 〈f1, . . . fm〉 = 〈g1, . . . , gs〉, then
V(f1, . . . , fs) = V(g1, . . . , gs). 2

With these results the proof for the answer to question 1 is straight forward:

Proof of Theorem 2.2.2. The statement follows immediately from the previously
made statements and from Proposition 2.2.1. 2

So far for the first question. For the next question asked for conditions for a finite
number of solutions. Varieties are called irreducible if they cannot be decomposed
into subvarieties. For instance, points, lines and planes are irreducible varieties (see
e.g. §.5 in Cox et al. [1997]). For the dimension of a variety refer to Chapter 9 in
Cox et al. [1997]. A mapping f : X → Y of irreducible varieties is called regular, if
for x ∈ X polynomials f1, . . . , fs, s = dim(Y ) exist with f(x) = (f1(x), . . . , fs(x)).
For the proof of the answer present in Theorem 2.3.1 consider the following results:

Proposition 2.6.3.(Theorem I.6.7 in Shafarevich [1974]) If f : X → Y is a regular
mapping of irreducible varieties, f(X) = Y, dim(X) = r, dim(Y ) = s, then s ≤ n
and
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1. dim f−1(y) ≥ n− s for every point y ∈ Y ;

2. in Y exists a non-empty open set U such that dim f−1(y) = r − s for y ∈ U .

2
The next result provides a way to compute the exact dimension of an irreducible
variety.

Proposition 2.6.4.(Theorem II.1.3 in Shafarevich [1974]) The dimension of the
tangent space at a single point x ∈ Qn is equal to the dimension of the (irreducible)
variety. 2

In principle the selection of the rational point includes that the dimension is minimal.
Other points with higher dimension could exist but these form a sparse set. With
this information consider Theorem 2.3.1.

Proof of Theorem 2.3.1. The first statement follows when evaluating the func-
tional matrix DF at a rational point x ∈ Cr. With Proposition 2.6.3.2 and Propo-
sition 2.6.4 such a point exists.

F is a polynomial mapping and therefore an infinitely differentiable. Then according
to the Morse-Sard Theorem (see e.g. Thm. 1.3 in Hirsch [1976]) the set M0 is a
Lebesgue zero set in F (C8). This completes the proof. 2

Proof of Lemma 2.3.2. This is a straight forward statement. With Proposition
2.6.3.1 the dimension of the vector space of all vectors m with a solution for (LF)
is at most r. Since m ∈ Cs one needs at least s− r conditions to reduce the space.
Here, these conditions are the phylogenetic invariants. 2

So far for question 2. It remains to consider the statements made in connection with
question 3.

Proof of Lemma 2.4.1. The first statement declares that a permutation of state
probabilities in any inner vertex, including the root, does not alter the Markov
process. Equation (2.4.5) already is the proof of this statement because such a
permutation results only in a permutation of summands which leaves the left hand
side invariant.

The second statement on the number of possible permutations is easily computed.
Apparently there are k! possible permutations per inner vertex and ](N ) different
inner vertices. Since a state permutation in one vertex is independent of the state in
another vertex, the overall number of permutations equals the product, i.e. (k!)](N )

and thus the lemma is proved. 2
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Proof of Corollary 2.4.2. According to Bezout’s Lemma the number of possible
solutions of a polynomial equation system is bounded from above by the product of
the total degree of the equations. Recall (LF):

mx =
∑

y,y|L=x

q%
y%

∏
(α,β)∈E

Pαβ
xβxα

.

Clearly, for every x one finds at least one monomial of degree ](E) + 1, i.e. every
polynomial in (LF) has total degree of ](E) + 1. The number of polynomials equals
s = kn, and therefore the number of solutions of (LF) is bounded from above by
(](E) + 1)s. When looking at reconstructible classes one has to deny all solution
that can be obtained by permutation. Therefore, with Lemma 2.4.1 the number of
solutions in an reconstructible class is bounded from above by (](E) + 1)s/(k!)](N ).
This completes the proof. 2
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Chapter 3

Stochastic Models of Molecular
Evolution in Two States

This chapter examines the extendability of a leaf distribution to a Markov distribu-
tion on a triple tree under the general two state model. The molecular significance
of the model is sparse but existent. As already mentioned in Example 1.3.1, the
examination of the evolution of sequences in two states can be equally interesting
as the analysis of the evolution of nucleotide sequences.

The model also has its applications in other fields. Most notably, Lazarfeld [1966]
used it to produce and interpret decision or correlation trees for psychological tests,
and Pearl and Tarsi [1986] applied it to certain features in the field of artificial
intelligence. Those papers proved that in the generic case the model equations have
a unique algebraic solution using the parametrization approach (cf. Cox et al. [1997,
§ 1.3]) but didn’t present a closed form of this solution.

Chapter 2 introduced phylogenetic invariants as an tool to test if a leaf distribution
m has an algebraic solution for (LF), i.e. if m has a Markov-like extension to the
underlying tree. As Example 2.2.1 indicates, the two state model on triple tree only
has the invariant (2.2.4), which demands that the elements of the vector m sum to
one.

This chapter will use brute force to compute a complete solution of the system.
From these computations conditions for existence and uniqueness are derived. In
addition, the degenerate cases are considered, and more importantly, conditions for
the existence of a stochastically admissible solution are established.

Following this analysis the results are extended to quartet trees. To achieve that, one
quartet tree is fixed and the specifications of its inferred triple trees are compared.
This attempt returns some phylogenetic invariants.

For a closer insight into the results their implications on the symmetrical model are
discussed. Note, that symmetrical in that case means that the transition matrix for

49
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every edge w.r.t. this model is symmetrical.

3.1 The General Two State Case on Triple Trees

This section presents a complete analysis of the two state three leaves specification
of the Markov model of molecular evolution. For this purpose let T = (V , E) de-
note a triple tree with V := {α, β, γ, %} and E := {(%, α), (%, β), (%, γ)}. A joint
distribution on the leaf set L := {α, β, γ} is denoted by m := (mxyz)x,y,z∈{0,1}. As
said the task is to identify a Markov extension µ := (µV(u, x, y, z))u,x,y,z∈{0,1} to a
given leaf distribution m := µL with mxyz = µ|L(x, y, z) for x, y, z ∈ {0, 1}. The
section will present conditions under which such an extension exists and give an ex-
plicit characterization of it. This is done by first solving the induced system (3.1.1)
algebraically and then computing conditions under which the generated terms are
probabilities. To allow for an algebraic solution, m has to fulfil certain conditions.
These conditions are presented and the case of their violation is discussed.

3.1.1 Basic Model Properties

According to equation (1.2.4) a Markov distribution on the triple tree T is charac-
terized by a root distribution (q%

w)w∈{0,1} := (µ%(w))w∈{0,1} and a family of transition
kernels (pδ)δ∈L with pδ

uw = µ(Xδ = u|X% = w) for u,w ∈ {0, 1}. Equation (LF)
provides the starting point of this chapter, namely the equation system

(3.1.1) mxyz = µ0xyz + µ1xyz = q%
0p

α
0xp

β
0yp

γ
0z + q%

1p
α
1xp

β
1yp

γ
1z, x, y, z ∈ {0, 1}.

Equation (3.1.1) yields eight equations in seven variables. With Proposition 2.6.3
at least one phylogenetic invariant is needed. This invariant is given through

Lemma 3.1.1. Let m denote a leaf distribution. If system (3.1.1) has an algebraic
solution w.r.t. m, then

(3.1.2)
∑

x,y,z∈{0,1}

mxyz = 1

is satisfied.

Apparently, (3.1.2) is a defining property for any distribution in eight states. Hence,
this invariant does not restrict the set leaf distributions with an algebraic extension.
This provides the possibility to compute a solution by considering only seven of
the eight equations. The following definition will give a more precise description of
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solutions.

Definition 3.1.1. An algebraic solution of (3.1.1) is composed of a vector q% ∈ C2

and a set of matrices pδ ∈ C2×2, δ ∈ L with the constraints

(3.1.3) q%
0 + q%

1 = 1 and pδ
w0 + pδ

w1 = 1 for δ ∈ L, w ∈ {0, 1}.

A stochastically admissible solution is an algebraic solution with q% ∈ [0, 1]2 and
pδ ∈ [0, 1]2×2, δ ∈ L.

Clearly, the existence of a Markov extension is equivalent to the existence of a
stochastically admissible solution to (3.1.1). Due to (3.1.3) a solution is determined
by the root probability q%

0 and one column of the transition matrices for each leaf,
namely pδ

00, p
δ
10, δ ∈ L.

Equation (3.1.1) contains certain symmetries which have influence on the uniqueness
of solutions.

Lemma 3.1.2. Let m denote a leaf distribution and let q%
0 , p

δ
00, p

δ
10, δ ∈ L identify

an algebraic solution of (3.1.1) w.r.t. m.

1. Let π : L → L denote a permutation mapping on the leaves. Then, the
parameters q%

0 , p̂
π(δ)
00 , p̂

π(δ)
10 , δ ∈ L with p̂

π(δ)
w0 = pδ

w0, w ∈ {0, 1} identify an
algebraic solution of (3.1.1) w.r.t. π(m), i.e. the permutation of the vector
elements of m consistent with π.

2. The parameters q̂%
0 , p̂

δ
00, p̂

δ
10, δ ∈ L with q̂%

0 = q%
1 , p̂

δ
w0 = pδ

(1−w)0, w ∈ {0, 1}, δ ∈
L identify a solution of (3.1.1) w.r.t. m.

The first statement shows that a permutation of the leaf labels results in a permu-
tation of the state probabilities in m but retains the structure of the process. This
observation is valid for all star trees. The second statement claims that a permuta-
tion of the root state probabilities implies a permutation of the rows of the transition
matrices but preserves the structure of the leaf distribution m. Hence, a solution of
(3.1.1) w.r.t. m always identifies a number of alternative solutions. Therefore, if a
solution exists, it can be unique up to symmetry only. This should be kept in mind
when encountering the phrase unique in this chapter.

3.1.2 The Algebraic Solution

This section presents the algebraic solution to system (3.1.1), the conditions for its
existence and its closed form. The observations of this section establish that almost
always a unique solution up to symmetry exists and that the obtained conditions
are quite intuitive.
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To describe the solution some further abbreviations are needed. First, applying
(3.1.3) yields pairwise leaf probabilities and root leaf probabilities (x, y ∈ {0, 1}):

mxyΣ := mxy0 +mxy1 = q%
0 p

α
0xp

β
0y + q%

1 p
α
1xp

β
1y,(3.1.4)

mxΣΣ := mx00 +mx01 +mx10 +mx11 = q%
0 p

α
0x + q%

1 p
α
1x.(3.1.5)

The probabilities mxΣz, mΣyz, mΣyΣ and mΣΣz are computed accordingly. Further
abbreviations are needed (again x, y, z ∈ {0, 1})

rα
xyz := mxyΣmΣΣz +mxΣzmΣyΣ −mΣyzmxΣΣ −mxyz,

rβ
xyz := mxyΣmΣΣz +mΣyzmxΣΣ −mxΣzmΣyΣ −mxyz,

rγ
xyz := mxΣzmΣyΣ +mΣyzmxΣΣ −mxyΣmΣΣz −mxyz.

(3.1.6)

and

sβγ
xyz := mxyzmxΣΣ −mxyΣmxΣz, tβγ

yz := mΣyz −mΣyΣmΣΣz,

sαγ
xyz := mxyzmΣyΣ −mxyΣmΣyz, tαγ

xz := mxΣz −mxΣΣmΣΣz,

sαβ
xyz := mxyzmΣΣz −mxΣzmΣyz, tαβ

xy := mxyΣ −mxΣΣmΣyΣ.

(3.1.7)

tαβ
11 is equivalent to the covariance between Xα and Xβ, whereas sαβ

11z is the condi-
tional covariance between Xα and Xβ given Xγ has value z ∈ {0, 1} up to a scalar.
The other terms have a similar relevance. The product tαβ

xy t
αγ
xz t

βγ
yz is of particular

interest.

Lemma 3.1.3. Let m denote a joint leaf distribution on T . Suppose for some
x, y, z ∈ {0, 1} that tαβ

xy t
αγ
xz t

βγ
yz = 0. Then also

(3.1.8) tαβ
(1−x)yt

αγ
(1−x)zt

βγ
yz = 0, tαβ

x(1−y)t
αγ
xz t

βγ
(1−y)z = 0, tαβ

xy t
αγ
x(1−z)t

βγ
y(1−z) = 0.

According to Lemma 3.1.3, if one product vanishes all products of type (3.1.8)
vanish. This property simplifies some proofs. To state the conditions for uniqueness
define χxyz := rα

xyz − 4sβγ
xyzt

βγ
yz .

Theorem 3.1.4. Let m = (mxyz)x,y,z∈{0,1} denote a joint leaf distribution on the
triple tree T . Assume further

(3.1.9) tαβ
00 t

αγ
00 t

βγ
00 6= 0 and χ000 6= 0.

Then the system (3.1.1) has a unique algebraic solution up to symmetry. The fol-
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lowing expressions describe this solution:

q%
0 =

1

2
+
rα
000 + 2m0ΣΣt

βγ
00

2
√
χ000

,(3.1.10)

pα
00 = −

rα
000 −

√
χ000

2tβγ
00

, pβ
00 = −

rβ
000 −

√
χ000

2tαγ
00

, pγ
00 = −

rγ
000 −

√
χ000

2tαβ
00

,(3.1.11)

pα
10 = −

rα
000 +

√
χ000

2tβγ
00

, pβ
10 = −

rβ
000 +

√
χ000

2tαγ
00

, pγ
10 = −

rγ
000 +

√
χ000

2tαβ
00

.(3.1.12)

Recalling for δ1, δ2 ∈ L, that tδ1δ2 denotes the covariance between Xδ1 and Xδ2 , con-
dition (3.1.9) demands that there is stochastic dependence between the leaves. This
is quite intuitive because independence would suggest that there is no connection
between the leaves, i.e. there is no tree to the given species.

3.1.3 Characterization of Markov Extensions under the Two
State Model

After establishing an algebraic solution it is useful to check whether the solution
is consistent with the model. A stochastic model of molecular evolution is clearly
described in terms of probabilities instead of general complex numbers. The solu-
tion presented in Theorem 3.1.4 is not necessarily stochastically admissible, as the
following example shows.

Example 3.1.1. Consider the following artificial leaf distribution for the two state
model:

m = (164, 189, 41, 151, 165, 25, 141, 124)/1000

This vector satisfies condition (3.1.9) since

tαβ
00 t

αγ
00 t

βγ
00 = −0.000216104.

However, further computations show that

χ000 = −0.000843645,

such that the radical terms become complex, for instance:

q%
0 ≈ 0.5− 0.078453098i.

This example demonstrates that the conditions given in Theorem 3.1.4 are not
sufficient to get a stochastically admissible solution. Finding conditions, under which
a leaf distribution is stochastically admissible is the purpose of this section.
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The following sets are the starting point for the conditions.

Sαβ
xy :={tαβ

xy , s
αβ
xy0, s

αβ
xy1}, Sαγ

xz := {tαγ
xz , s

αγ
x0z, s

αγ
x1z}, Sβγ

yz :={tβγ
yz , s

βγ
0yz, s

βγ
1yz}.

The sets will be called covariance sets, since they contain values which up to a scalar
denote the unconditional covariance between the indexed leaves and the conditional
covariances between those leaves given the remaining leaf has a certain state. Such a
set has a sign if all contained terms have the same sign or the conditional covariances
are zero. The unconditional probabilities cannot be zero owing to condition (3.1.9).
The stochastic admissibility of a solution depends on the signs of the sets.

Theorem 3.1.5. Let x, y, z ∈ {0, 1} and let Sαβ
xy , S

αγ
xz and Sβγ

yz have a sign. The
number of sets with a negative sign is even if and only if the unique solution up to
symmetry of (3.1.1) given by Theorem 3.1.4 is stochastically admissible.

Even though pairs of leaves are not allowed to be independent it is feasible for them
to be conditionally independent w.r.t. the third leaf. Another implication is that
at least two leaves must be positively correlated and if pairs (Xα, Xβ) and (Xα, Xγ)
are positively correlated then (Xβ, Xγ) must be positively correlated as well.

Example 3.1.2. Recall the leaf distribution presented in Example 3.1.1. Comput-
ing the covariance sets for this distribution yields:

Sαβ
00 = {0.057065, 0.016359, 0.019661}, Sαγ

00 = {−0.073495,−0.027085,−0.016207},

Sβγ
00 = {0.051527, 0.017015, 0.016935}.

Clearly, all sets have a sign, but an odd number of sets has negative sign. Therefore,
inadmissibility is shown.

The example shows that a strictly positive leaf distribution is not necessarily Markov-
extendable. Chapter 5 presents a heuristic approach to manipulate data for stochas-
tic admissibility.

3.1.4 Degenerate Cases

To complete the analysis of solutions for (3.1.1) a look at the degenerate cases must
be included. Three possible cases may occur:

tαβ
00 t

αγ
00 t

βγ
00 6= 0, χ000 = 0, tαβ

00 t
αγ
00 t

βγ
00 = 0, χ000 6= 0, tαβ

00 t
αγ
00 t

βγ
00 = 0, χ000 = 0.

The first case needs further consideration. However, the second and third case can
be reduced to tαβ

xy t
αγ
xz t

βγ
yz = 0. This condition is equivalent to

tαβ
xy = 0 or tαγ

xz = 0 or tβγ
yz = 0.
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In probabilistic words, one looks at the cases where for two leaves δ1, δ2 the random
variables Xδ1 and Xδ2 are uncorrelated. For random variables with only two possible
states this implies stochastic independence. A first observation is the following

Lemma 3.1.6. Let x, y, z ∈ {0, 1} and tδ1δ2
xy = 0. Then, at least another covariance

is zero.

Probabilistically, if Xδ1 and Xδ2 are independent of each other, then Xδ3 is also
independent of at least one of them. The implication of these cases is recorded in
the next theorem.

Theorem 3.1.7. Let tαβ
xy = 0. Then Lemma 3.1.6 holds and the following line-ups

are possible up to symmetry:

(i) tαγ
xz = 0 and tβγ

yz 6= 0. Then, for u, y, z ∈ {0, 1} this gives pβ
0y 6= pβ

1y, p
γ
0z 6= pγ

1z,
pα

0x = pα
1x = mxΣΣ, 0 < q%

0 < 1, and

q%
0 =

mΣΣz − pγ
1z

pγ
0z − pγ

1z

, pβ
uz =

mΣyz −mΣyΣp
γ
(1−u)z

mΣΣz − pγ
(1−u)z

,

with free parameters pγ
0z and pγ

1z. Lemma 3.1.2 provides analogue results for
the remaining two cases where one covariance is not zero.

(ii) tαγ
xz = tβγ

yz = 0. Then,

(a) pα
0x = pα

1x = mxΣΣ, p
β
0y = pβ

1y = mΣyΣ, p
γ
0z 6= pγ

1z and

q%
0 =

mΣΣz − pγ
1z

pγ
0z − pγ

1z

with free parameters pγ
0z and pγ

1z. The cases

pα
0x = pα

1x = mxΣΣ, pβ
0y 6= pβ

1y, pγ
0z = pγ

1z = mΣΣz

pα
0x 6= pα

1x, pβ
0y = pβ

1y = mΣyΣ, pγ
0z = pγ

1z = mΣΣz

return resembling notions.

(b) pα
0x = pα

1x = mxΣΣ, p
β
0y = pβ

1y = mΣyΣ, p
γ
0z = pγ

1z = mΣΣz with free
parameter q%

0.

(c) q%
0 = 0 and pα

1x = mxΣΣ, p
β
1y = mΣyΣ, p

γ
1z = mΣΣz and the remaining

three parameters, pα
0x, p

β
0y, p

γ
0z, are arbitrary. Similarly, the case q%

0 = 1

yields pα
0x = mxΣΣ, p

β
0y = mΣyΣ, p

γ
0z = mΣΣz and arbitrary parameters

pα
1x, p

β
1y, p

γ
1z.
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A structural interpretation of Theorem 3.1.7 is given in Figure 3.1. Note, that in
the two state case independence is equivalent to non-correlativeness. Generally,
independence suggests non-connectivity resulting in the rejection of a tree model.
Independence in terms of phylogeny means that the common ancestor of two repre-
sentees is so far back in the evolutionary time scale that the relatedness of sequences
is barely observable. However, this kind of independence should also be observable
when trying to align such sequences.
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Figure 3.1: Degenerate cases. T1 shows a tree where the leaf γ is
independent from the other two leaves. T2 shows a structure, where
all leaves are pairwise independent. Here, a dashed line indicates
that the leaf vertex of this edge is independent from the rest of
the structure and in principle even isolated, but still ”connected”
through a transition matrix as given in Theorem 3.1.7.

Another implication of Theorem 3.1.7 is the insight that for all vectors with eight
entries that sum to one a solution to (3.1.1) exists even though uniqueness cannot be
guaranteed. In other words, vectors satisfying (3.1.9) have a finite set of interrelated
solutions and vectors subject to Lemma 3.1.6 return fields of solutions.

For the remaining degenerate case

(3.1.13) tαβ
00 t

αγ
00 t

βγ
00 6= 0, χ000 = 0,

the following statement can be presented.

Lemma 3.1.8. If a leaf distribution m obeys (3.1.13), then the equation system has
no solution. The set of all leaf distributions obeying (3.1.13) is a Lebesgue zero set
in the set of all possible leaf distributions on triple trees.

The statement of the lemma indicates that the variety V2 of all leaf distributions
for which (3.1.1) has a solution, is not affine. This follows from Proposition 2.2.1
which states that the elimination ideal with basis (3.1.2) provides the smallest affine
variety containing the variety V2. However, it is not known whether or not a leaf
distribution obeying (3.1.13) exists.
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3.2 Special Case: The Symmetrical Two State

Model

The previous section observed the implications of (LF) for a leaf distribution under
the general two state model on a triple tree. This section translates these results
for the symmetrical two state model on a triple tree. This model is also known as
the Neyman N2 model (cf. Semple and Steel [2003, chap. 8.5] and Example 1.3.2).
Regard the tree introduced at the beginning of Section 3.1, i.e. T = (V , E) with

V = {α, β, γ, %} and E = {(%, α), (%, β), (%, γ)}

and leaf set L := {α, β, γ}.
The N2 model is characterized by

q%
0 = 1/2 = q%

1 , and pδ
01 = pδ = pδ

10, δ ∈ L,

i.e. the root distribution is stationary and the transition matrix is symmetrical,
which immediately implies that the single leaf distributions are stationary as well.
These observations reduce (3.1.1) to the following system

2m000 = (1− pα)(1− pβ)(1− pγ) + pαpβpγ = 2m111,

2m001 = (1− pα)(1− pβ)pγ + pαpβ(1− pγ) = 2m110,

2m010 = (1− pα)pβ(1− pγ) + pα(1− pβ)pγ = 2m101,

2m011 = (1− pα)pβpγ + pα(1− pβ)(1− pγ) = 2m100.

(3.2.1)

Hence, condition (3.1.2) simplifies to

(3.2.2) 2(m000 +m001 +m010 +m100) = 1.

This is the phylogenetic invariant for the N2 model on a triple tree. With this
equation a solution of (3.2.1) can be obtained by selecting three of the four equations.

An expression commonly used in the field of phylogenetic reconstruction is the so
called Hamming distance between two sequences. Usually, it signifies the number of
element-wise differences of the sequences. In probabilistic terms it can be defined
as the probability that Xβ 6= Xα e.g.,

(3.2.3) dαβ = m01Σ +m10Σ = m010 +m011 +m100 +m101 = 2m010 + 2m100.

The distances dαγ and dβγ are defined similarly.

The goal of the remainder of this section is to apply the results from Section 3.1.2
to this specification and to give some interpretations. Inserting the assumptions of
the N2 model into Theorem 3.1.4 yields:

Corollary 3.2.1. If all Hamming distances are different from 1/2, the solution for
(3.1.1) under the N2 model is unique up to symmetry. It is given as
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pα =
1

2
− ∆

2(1− 2dβγ)
, pβ =

1

2
− ∆

2(1− 2dαγ)
, pγ =

1

2
− ∆

2(1− 2dαβ)
,

where

∆ =
√

(1− 2dαβ)(1− 2dαγ)(1− 2dβγ).

The term ∆ is the equivalent to χxyz, (x, y, z ∈ {0, 1}) from the general model.
Apparently, the non-zero condition (3.1.9) is satisfied if no Hamming distance is one
half.

Next, the conditions for a stochastic solution will be considered. The sign sets Sαβ
01

etc. translate to

Sαβ = {1− 2dαβ,m001m000 −m010m100},
Sαγ = {1− 2dαγ,m010m000 −m001m100},
Sβγ = {1− 2dβγ,m100m000 −m001m010}

independent of the choice of a reduced state. Again, the sign of such a set exists
when all elements have the same sign, which in turn is the sign of the set.

Corollary 3.2.2. A solution for the (N2) model is stochastically admissible if the
sets Sαβ, Sαγ and Sβγ have a sign and the number of negative signs is even.

Phylogenetic data usually indicate Hamming distances smaller than 1/2 under the
N2 model (eg. Lake [1997]). The remaining cases only occur, if the sequences of two
considered species would differ in more than 50% of the sites. Such an alignment is
almost impossible to obtain (e.g. Waterman [1995]).

This section closes with a look at the case where the Hamming distances are exactly
1/2. Obviously, these results are special cases of Theorem 3.1.7. Solutions will be
presented as vectors (pα, pβ, pγ) ∈ R3

Corollary 3.2.3. Let dαβ = 1/2. Then at least another Hamming distance is 1/2
and the following line-ups are possible:

(i) dαγ = 1/2 and dβγ = 1/2. Then, the leaf distribution m is the uniform distri-
bution on {0, 1}3 and the set of solutions is presented by

{(t, 1/2, 1/2) : t ∈ R} ∪ {(1/2, t, 1/2) : t ∈ R} ∪ {(1/2, 1/2, t) : t ∈ R}.

(ii) dαγ = 1/2 and dβγ 6= 1/2. Then the set of solutions is presented by

{(1/2, t, f(t, dβγ)) : t ∈ R} ∪ {(1/2, f(t, dβγ), t) : t ∈ R},
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where

f(t, y) =
y − t

1− 2t
, t ∈ R, y > 0.

The cases dαβ = dβγ = 1/2 6= dαγ and dαβ 6= 1/2 = dαγ = dβγ yield similar
results.

Similar to Theorem 3.1.7 the implications for the possible structure are visualized
by Figure 3.1, i.e. for case (i) one vertex could be treated as isolated or identical to
the inner vertex and for (ii) two isolated vertices can be assumed. The case (3.1.13)
does not occur for the symmetrical model since here χ000 = tαβ

00 t
αγ
00 t

βγ
00 .

3.3 Extending the Results to Quartet Trees

So far, the main observation of this chapter is that an algebraic solution of (LF)
w.r.t. a leaf distribution under the general two state model on a triple tree can
almost always be found. However, as Section 1.4 stated, the goal of phylogenetic
reconstruction is to obtain a tree with a possibly large number of leaves. This section
examines the possibilities of extending the results from triple trees to quartet trees
by examining some straightforward conditions for an extension. With Lemma 2.3.2
and Table 2.1 at least five phylogenetic invariants must be obtained from such an
examination in order to guarantee an algebraic solution of (LF) for a quartet leaf
distribution.

Regard the quartet tree T = (V , E) with:

V = {α1, α2, α3, α4, %1, %2},
E = {(%1, α1), (%1, α2), (%1, %2), (%2, α3), (%2, α4)}

(3.3.1)

and leaf set L = {α1, α2, α3, α4}. The associated triple trees are denoted by T i =
(V i, E i), i = 1, 2, 3, 4, with

V1 = {α1, α2, α3, %1}, E1 = {(%1, α1), (%1, α2), (%1, α3)},
V2 = {α1, α2, α4, %1}, E2 = {(%1, α1), (%1, α2), (%1, α4)},
V3 = {α1, α3, α4, %2}, E3 = {(%2, α1), (%2, α3), (%2, α4)},
V4 = {α2, α3, α4, %2}, E4 = {(%2, α2), (%2, α3), (%2, α4)}.

(3.3.2)

The relationship of T and {T i}4
i=1 is visualized in Figure 3.2.

An initial quartet distribution m on L provides triple leaf distributions mi to each
triple trees T i by the following computation (set a, b, c, d ∈ {0, 1}):

m1
abc = mabc0 +mabc1, m2

abd = mab0d +mab1d,

m3
acd = ma0cd +ma1cd, m4

bcd = m0bcd +m1bcd.
(3.3.3)
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Figure 3.2: The picture shows the four triples to the quartet tree
αβ|γδ. The colored inner vertices describe the associated furcating
vertex.

For those distributions Theorem 3.1.4 returns transition parameters, which in turn
are indexed by the triple identifier, for instance pα,1

ra for the transition probability
from %1 to α in triple T 1. Covariances tαβ do not need an index since they are
defined using pairwise and marginal leaf probabilities.

If m is subject to a Markov distribution µ, its restrictions mi to the triple trees
T i, i = 1, 2, 3, 4 are sufficient for a reconstruction of µ. This observation is verified
in Chang [1996] under some conditions posed on the transition probabilities of the
process. In that case, the transition parameters for edges (%i, αj) ∈ E must be
equal on all triple trees containing %i and αj. This equality condition will be called
compatibility

This section looks for conditions on m for the existence of µ. A first step is applying
Theorem 3.1.4 to µi, i = 1, 2, 3, 4, and analyzing the obtained parameters on T :

Theorem 3.3.1. Let T denote the quartet tree given in (3.3.1) with its associated
triple trees T i, i = 1, 2, 3, 4 and let m denote a leaf distribution on L. A Markov-like
extension of m w.r.t. the system (LF) poses the following necessary conditions on
m (a, b, c, d ∈ {0, 1}):

0 =rα1,1
abc t

α2α4
ad − rα1,2

abd t
α2α3
ac , 0 = rα2,1

abc t
α1α4
bd − rα2,2

abd t
α1α3
bc ,

0 =rα3,3
acd t

α2α4
bc − rα3,4

bcd t
α1α4
ac , 0 = rα4,3

acd t
α1α3
bd − rα4,4

bcd t
α2α3
bc ,

0 =tα1α4
ad tα2α3

bc − tα1α3
ac tα2α4

bd .

(3.3.4)

Further, assume (3.1.9) to hold.

Then the transition parameters for the edge (%1, %2) are determined through

p%1%2

00 =
1

2
− rα3,1

abc t
α1α4
ad − rα3,3

acd t
α1α2
ab

2tα1α2
ab

√
χ3

acd

+
tα1α4
ad

√
χ1

abc

2tα1α2
ab

√
χ3

acd

,(3.3.5)

p%1%2

10 =
1

2
− rα3,1

abc t
α1α4
ad − rα3,3

acd t
α1α2
ab

2tα1α2
ab

√
χ3

acd

−
tα1α4
ad

√
χ1

abc

2tα1α2
ab

√
χ3

acd

(3.3.6)
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provided that both tα1α2
ab and χ3

acd do not vanish.

When looking for compatibility conditions one finds that the conditions (3.3.4) are
already observed when checking compatibility for terminal edges. Therefore, com-
patibility for the inner edge follows immediately from compatibility of the terminal
edges.

(3.3.4) provides five phylogenetic invariants, therefore the necessary condition of
Lemma 2.3.2 is satisfied. However, as an indication that these invariants are not
sufficient consider the symmetrical N2 model. Since the N2 model is a special case,
the above conditions must hold here, too.

In order to be subject to the N2 model on a quartet tree, a quartet leaf distribution
must satisfy:

(3.3.7) mabcd = m(1−a)(1−b)(1−c)(1−d), a, b, c, d ∈ {0, 1}.
With this notion and the insights from Section 3.2 the statements of Theorem 3.3.1
turns into:

Corollary 3.3.2. Let T denote the quartet tree given by (3.3.1) and m be a quartet
leaf distribution on T satisfying (3.3.7). If (LF) has an algebraic solution w.r.t. m
under the N2 model, then the associated Hamming distances satisfy:

(3.3.8) dα1α3dα2α4 = dα1α4dα2α3 .

The parameter for the inner edge is then given by:

p%2 =
1

2

(
1−

√
(1− 2dα1α3)(1− 2dα2α4)

(1− 2dα1α2)(1− 2dα3α4)

)
.

Obviously, the five invariants from (3.3.4) became just one invariant. This is due to
the simple fact, that for the N2 model the following equivalence is observable:

rα1,1
abc = −tα2α3

bc =
1

4
(1− 2dα2α3).

This equality is derived as (3.4.42) in the proof section. However, when looking at
the lower bound for the number of necessary phylogenetic invariants proposed by
Lemma 2.3.2 it becomes apparent that at least three invariants are needed for the N2

model. This suggests that the polynomials given in (3.3.4) are not sufficient for the
existence of an algebraic solution of (LF) w.r.t. to a given quartet leaf distribution.
The following example shows that an extension from triple trees to quartet trees
needs more than just compatible parameters.

Example 3.3.1. Consider the following vector m satisfying (3.3.7):

m = (320, 50, 20, 30, 10, 15, 10, 45)/1000.
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This vector yields Hamming distances:

dα1α2 = 4/25, dα1α3 = 21/100, dα1α4 = 7/25,

dα2α3 = 3/20, dα2α4 = 1/5, dα3α4 = 19/100

These Hamming distances satisfy (3.3.8). If this polynomial would be sufficient for
compatibility, then p1

α1
and p2

α1
should be equal. Instead, one gets:

p1
α1

= 0.124691, p2
α1

= 0.146918,

and obviously these values are far from equal.

A set of sufficient phylogenetic invariants for the N2 model can be computed with
Singular as well as Mathematica . Both softwares return four polynomials, one
of which is the usual summation condition. The following statement presents the
invariants generated by Mathematica :

Lemma 3.3.3. Let T denote the quartet tree given by (3.3.1). m is a quartet leaf
distribution on T satisfying (3.3.7). Then, (LF) has an algebraic solution w.r.t. m
under the N2 model only if m is a root of the following polynomials:

f1(x1, . . . , x8) = 1− 2(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8),

f2(x1, . . . , x8) = 2(x2x5 + x3x8 − x4x7 − x1x6),

f3(x1, . . . , x8) = 2(x1x7 + x4x6 − x2x8 − x3x5),

f4(x1, . . . , x8) = 2x4(x
2
6 − x2

7)− 2x3(x
2
5 − x2

8) + 2(x1 + x2)(x5x7 − x6x8)

− 2(x3 − x4)(x5x6 − x7x8).

The order of the entries of m are chosen in the already introduced fashion: m :=
(m0000,m0001, . . . ,m0111). The polynomial f1 is the summation condition for a quar-
tet leaf distribution under the N2 model. For an interpretation of f2 and f3 note,
that m0000,m0011,m0101 and m0110 denote the probabilities where both states are
attained by an even number of leaves whereas m0001,m0010,m0100 and m0111 denote
the probabilities where both states are attained by an odd number of leaves. This
suggests the conclusion that a distribution which is root of f2 and f3 has a evenly
matched distribution between the stated cases.

Looking at the overall performance of the attempts of this section so far one can say,
that searching for compatibility by looking at the inferred triple transition param-
eters is not sufficient to deduce the existence of an algebraic solution of (LF) on a
quartet tree. One attempt for an explanation relates the invariants of Lemma 3.3.3
to the invariant in (3.3.8). The latter invariant only relates the pairwise leaf proba-
bilities whereas the former set relates the quartet leaf probabilities in an irreducible
fashion. Consequently, one can conjecture that looking at the triple constraints of a
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quartet leaf distribution m is not sufficient to find all needed conditions for the exis-
tence of an algebraic solution of (LF) w.r.t. m under any model. Further attempts
on finding conditions won’t be tested here.

However, presenting conditions for stochastic admissibility of a computed solution
is still a valid task. One finds that Theorem 3.1.5 still holds, and the remaining
conditions are obtained from the results of Theorem 3.3.1:

Theorem 3.3.4. An extension of a quartet leaf distribution m on T is stochastically
admissible, if condition (3.3.4) is satisfied, and the transition parameters for the
associated triple trees satisfy Theorem 3.1.5, and:

pα1,3
00 , pα1,3

10 ∈ [min{pα1,1
00 , pα1,1

10 },max{pα1,1
00 , pα1,1

10 }],
pα2,4

00 , pα2,4
10 ∈ [min{pα2,1

00 , pα2,1
10 },max{pα2,1

00 , pα2,1
10 }],

pα3,1
00 , pα3,1

10 ∈ [min{pα3,3
00 , pα3,3

10 },max{pα3,3
00 , pα3,3

10 }],
pα4,2

00 , pα4,2
10 ∈ [min{pα4,3

00 , pα4,3
10 },max{pα4,3

00 , pα4,3
10 }].

(3.3.9)

The following example presents an intuitive interpretation of (3.3.9).

Example 3.3.2. Consider the first equation. The term pα1,3 denotes the transition
matrix for edge (%2, α1) and the term pα1,1 denotes the transition matrix for edge
(%1, α1). Assume pα1,1

00 > pα1,1
10 . Then, condition (3.3.9) states that the probability

of preserving state zero along edge (%2, α1) must be smaller than the probability of
preserving state zero along edge (%1, α1) and further, the probability for a change
from state one to state zero along edge (%2, α1) must be larger than the same state
change along edge (%1, α1).
Since pα1,i

0a = 1 − pα1,i
0(1−a), i = 1, 2, 3 this observation translates to all possible tran-

sitions. Apparently, this observation corresponds to the assumption that the prob-
ability of change along longer edges is larger than on shorter edges or in other
words, the longer the considered time interval the more likely mutation occurred. If
pα1,1

00 < pα1,1
10 is observed, the implications need to be reversed, i.e. the probability

of change is higher on shorter edges than on longer edges, which appears to be a
rather dissatisfying occurrence.

The sign condition from Theorem 3.1.5 has its own implication on extension con-
siderations. Recall that the sign of the covariance terms tδ1δ2

ab are the signs of the
covariance sets, provided the covariance sets have a sign. Moreover, since the covari-
ance terms are not subject to a particular triple structure, they can be considered
independent of any particular structure. Keeping these observations in mind one
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can give the following statement:

Lemma 3.3.5. Let T denote a tree with n > 3 leaves, L its leaf set and m̂ a joint
distribution on L. If m̂ has a Markov extension, L can be divided into two disjoint
not necessary nonempty sets L1 and L2 with L1 ∪L2 = L and the covariance terms
satisfy:

tδ1δ2
ab > 0, a, b ∈ {0, 1}, δ1, δ2 ∈ Li, i ∈ {1, 2},
tδ1δ3
ac < 0, a, c ∈ {0, 1}, δ1 ∈ Li, δ2 ∈ L3−i, i ∈ {1, 2}.

(3.3.10)

This property gives a good first test for the admissibility of a given leaf distribution.
If only two sets satisfying (3.3.10) are observed, a first obstacle is taken. In that case,
it is quite appropriate to place a root for the derived tree on the edge that connects
both sets. This convention agrees with the concept of outgroups. Usually, one adds
to the set of considered species another species , which from general understanding
is not as close a relative as the other species are to each other. Unfortunately, for
the approach suggested here, such an outgroup species must have a sequence which
is different in at least 50% of all sites, and such alignments are not observed (e.g.
Waterman [1995]).

3.4 Proofs

The section starts with some helpful properties of the terms defined in (3.1.6) and
(3.1.7).

Lemma 3.4.1. Let x, y, z ∈ {0, 1}. The following equalities hold:

χxyz = (rα
xyz)

2 − 4sβγ
xyzt

βγ
yz = (rβ

xyz)
2 − 4sαγ

xyzt
αγ
xz = (rγ

xyz)
2 − 4sαβ

xyzt
αβ
xy ,(3.4.1)

−tαβ
xy t

αγ
xz = m2

xΣΣ t
βγ
yz +mxΣΣ r

α
xyz + sβγ

xyz,(3.4.2)

rα
xyz = −rα

x(1−y)z = −rα
xy(1−z) = −(rα

(1−x)yz + tβγ
yz ),(3.4.3)

sαβ
xyz = −sαβ

(1−x)yz = −sαβ
x(1−y)z = rγ

xy(1−z) + sαβ
xy(1−z) + tαβ

xy ,(3.4.4)

tαβ
xy = −tαβ

(1−x)y = −tαβ
x(1−y) = tαβ

(1−x)(1−y),(3.4.5)

χxyz = χ(1−x)yz = χx(1−y)z = χxy(1−z),(3.4.6)

χxyz = (rα
xyz + 2mxΣΣt

βγ
yz )2 + 4tαβ

xy t
αγ
xz t

βγ
yz .(3.4.7)

Proof. These are simple computations. Showing one equality in each line is suffi-
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cient because the remaining equalities are computed similarly. Starting with (3.4.1)

(rα
xyz)

2 − 4sβγ
xyzt

βγ
yz

= ((mxyΣmΣΣz +mxΣzmΣyΣ)− (mΣyzmxΣΣ +mxyz)
2

− 4(mxyzmxΣΣ −mxyΣmxΣz)(mΣyz −mΣyΣmΣΣz)

= m2
ΣΣzm

2
xyΣ + m2

ΣyΣm2
xΣz + m2

xΣΣm2
Σyz + m2

xyz + 2mxΣΣmΣyzmxyz

+ 2mΣyΣmΣΣzmxyΣmxΣz − 2mxΣΣmΣyΣmxΣzmΣyz − 2mxΣΣmΣΣzmxyΣmΣyz

− 2mΣyΣmxΣzmxyz − 2mΣΣzmxyΣmxyz − 4mxΣΣmΣyzmxyz + 4mxyΣmxΣzmΣyz

− 4mΣyΣmΣΣzmxyΣmxΣz + 4mxΣΣmΣyΣmΣΣzmxyz

= m2
ΣΣzm

2
xyΣ + m2

ΣyΣm2
xΣz + m2

xΣΣm2
Σyz + m2

xyz − 2mxΣΣmΣyΣmxΣzmΣyz

− 2mΣyΣmxΣzmxyz − 2mxΣΣmΣΣzmxyΣmΣyz − 2mΣyΣmΣΣzmxΣzmΣyz

− 2mΣΣzmxyΣmxyz − 2mxΣΣmΣyzmxyz + 4mxyΣmxΣzmΣyz + 4mxΣΣmΣyΣmΣΣzmxyz

= ((mxyΣmΣΣz + mΣyzmxΣΣ)− (mxΣzmΣyΣ + mxyz))2

− 4(mΣyΣmxyz −mxyΣmΣyz)(mxΣz −mxΣΣmΣyΣ) = (rβ
xyz)

2 − 4sαγ
xyzt

αγ
xz .

Equation (3.4.2) is verified by the following computations:

m2
xΣΣt

βγ
yz +mxΣΣr

α
xyz + sβγ

xyz

= m2
xΣΣ(mΣyz −mΣyΣmΣΣz) + (mxΣΣmxyz −mxyΣmxΣz)

+mxΣΣ(mxyΣmΣΣz +mxΣzmΣyΣ −mΣyzmxΣΣ −mxyz)

= −m2
xΣΣmΣyΣmΣΣz −mxyΣmxΣz +mxΣΣmΣyΣmxΣz +mxΣΣmΣΣzmxyΣ

= −(mxyΣ −mxΣΣmΣyΣ)(mxΣz −mxΣΣmΣΣz) = −tαβ
xy t

αγ
xz .

Equation (3.4.7) immediately follows when (3.4.2) is inserted in the initial definition
χxyz = (rα

xyz)
2 − 4sβγ

xyzt
βγ
yz .

The remaining properties are proved applying (3.1.4) and (3.1.5). Start with replac-
ing state x by state 1− x in (3.4.3):

rα
xyz = mxyΣmΣΣz +mxΣzmΣyΣ −mΣyzmxΣΣ −mxyz

= (mΣyΣ −m(1−x)yΣ)mΣΣz + (mΣΣz −m(1−x)Σz)mΣyΣ

−mΣyz(1−m(1−x)ΣΣ)− (mΣyz −m(1−x)yz)

= m(1−x)yz +mΣyzm(1−x)ΣΣ −m(1−x)yΣmΣΣz −m(1−x)ΣzmΣyΣ

+ 2mΣyΣmΣΣz − 2mΣyz = −(rα
(1−x)yz + 2tβγ

yz ).

Now for the state change from y to 1− y

rα
xyz = mxyΣmΣΣz +mxΣzmΣyΣ −mΣyzmxΣΣ −mxyz

= (mxΣΣ −mx(1−y)Σ)mΣΣz +mxΣz(1−mΣ(1−y)Σ)

− (mΣΣz −mΣ(1−y)z)mxΣΣ − (mxΣz −mx(1−y)z)

= mx(1−y)z +mΣ(1−y)mxΣΣ −mxΣzmΣ(1−y)Σ −mx(1−y)ΣmΣΣz = −rα
x(1−y)z
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Follow with (3.4.4), replace first z with 1− z:

sαβ
xyz = mΣΣzmxyz −mxΣzmΣyz

= (mxyΣ −mxy(1−z))(1−mΣΣ(1−z))− (mxΣΣ −mxΣ(1−z))(mΣyΣ −mΣy(1−z))

= mxΣΣmΣy(1−z) +mΣyΣmxΣ(1−z) −mΣΣ(1−z)mxyΣ −mxy(1−z)

+mxyΣ −mxΣΣmΣyΣ +mΣΣ(1−z)mxy(1−z) −mxΣ(1−z)mΣy(1−z)

= rγ
xy(1−z) + sαβ

xy(1−z) + tαβ
xy .

Now replace y with 1− y:

sαβ
xyz = mΣΣzmxyz −mxΣzmΣyz = mΣΣz(mxΣz −mx(1−y)z)−mxΣz(mΣΣz −mΣ(1−y)z)

= mxΣzmΣ(1−y)z −mΣΣzmx(1−y)z = −sαβ
x(1−y)z

Next for (3.4.5), replace x with 1− x:

tαβ
xy = mxyΣ −mxΣΣmΣyΣ = (mΣyΣ −m(1−x)yΣ)− (1−m(1−x)ΣΣ)mΣyΣ = −tαβ

(1−x)y

Apply (3.4.3), (3.4.4) and (3.4.5) to get (3.4.6). First, replace x with 1− x:

χxyz = (rα
xyz)

2 − 4sβγ
xyzt

βγ
yz = (rα

(1−x)yz + 2tβγ
yz )2 − 4(rα

(1−x)yz + sβγ
(1−x)yz + tβγ

yz )tβγ
yz

= (rα
(1−x)yz)

2 − 4sβγ
(1−x)yzt

βγ
yz = χ(1−x)yz.

Replace y with 1− y:

χxyz = (rα
xyz)

2 − 4sβγ
xyzt

βγ
yz = (−rα

x(1−y)z)
2 − 4(−sβγ

x(1−y)z)(−t
βγ
(1−y)z) = χx(1−y)z.

The symmetry arguments from Lemma 3.1.2 transfers the results to the remaining
combinations. Thus, all properties are verified. 2

Remark 3.4.1. Equation (3.4.5) provides a standard property of a correlation
mapping. Application of Lemma 3.4.1 to the formula from Theorem 3.1.4 giving of
pα

00 yields:

pα
00 =

√
χ000

2tβγ
00

− rα
000

2tβγ
00

= −
√
χ001

2tβγ
01

− rα
001

2tβγ
01

= p̂α
10,

i.e. the statement of Lemma 3.1.2.2 is observed in the given solution . Thus, it is
sufficient to prove the statements for one state, say 000. This property gives the
opportunity to use shorter abbreviations for the following proofs, namely χ := χ000

and

rα := rα
000, sα := sβγ

000, tα := tβγ
00 ,

rβ := rβ
000, sβ := sαγ

000, tβ := tαγ
00 ,

rγ := rγ
000, sγ := sαβ

000, tγ := tαβ
00 .
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3.4.1 Proofs for Section 3.1

Here, the general two state model on triple trees was examined.

Proof of Lemma 3.1.1. The summation of the right hand sides of (3.1.1) for all
states gives one. Hence, the sum of all left hand sides needs to be one. This concludes
the proof. 2

Proof of Lemma 3.1.2. The proof is quite straightforward.

1. Apply the permutation π to equation (3.1.1) to get for x, y, z ∈ {0, 1}:

mxyz = q%
0p

α
0xp

β
0yp

γ
0z + q%

1p
α
1xp

β
1yp

γ1z = q%
0 p̂

π(α)
0x p̂

π(β)
0y p̂

π(γ)
0z + q%

1 p̂
π(α)
1x p̂

π(β)
1y p̂

π(γ)
1z .

2. Follows from commutativity of addition, since for x, y, z ∈ {0, 1} one computes

q̂%
0 p̂

α
0xp̂

β
0yp̂

γ
0z + q̂%

1 p̂
α
1xp̂

β
1yp̂

γ
1z = q%

1p
α
1xp

β
1yp

γ
1z + q%

0p
α
0xp

β
0yp

γ
0z = mxyz.

This completes the proof. 2

Proof of Lemma 3.1.3. If tαβ
xy t

αγ
xz t

βγ
yz = 0, then at least one factor must be zero,

w.l.o.g, tαβ
xy = 0. Now, due to Lemma 3.4.1

tαβ
(1−x)y = −tαβ

xy = 0

and thus, also tαβ
(1−x)yt

αγ
(1−x)zt

βγ
yz = 0. Lemma 3.4.1 also guarantees the validity of the

remaining equalities. 2

Proof of Theorem 3.1.4. The proposed terms and conditions are derived by solv-
ing the following, equivalent system derived through (3.1.4) and (3.1.5) by adding
suitable equations:

m000 = q%
0p

α
00p

β
00p

γ
00 + q%

1p
α
10p

β
10p

γ
10,(3.4.8)

m00Σ = q%
0p

α
00p

β
00 + q%

1p
α
10p

β
10,(3.4.9)

m0Σ0 = q%
0p

α
00p

γ
00 + q%

1p
α
10p

γ
10,(3.4.10)

mΣ00 = q%
0p

β
00p

γ
00 + q%

1p
β
10p

β
10,(3.4.11)

m0ΣΣ = q%
0p

α
00 + q%

1p
α
10,(3.4.12)

mΣ0Σ = q%
0p

β
00 + q%

1p
β
10,(3.4.13)

mΣΣ0 = q%
0p

γ
00 + q%

1p
γ
10.(3.4.14)

The goal of the following computations is to retrieve an equation which only depends
on one variable, say pα

00. Due to Lemma 3.1.2.2 computing for the other variables
yields equivalent expressions. Equations (3.4.12)-(3.4.14) yield

(3.4.15) q%
1p

α
10 = m0ΣΣ − q%

0p
α
00, q%

1p
β
10 = mΣ0Σ − q%

0p
β
00, q%

1p
γ
10 = mΣΣ0 − q%

0p
γ
10,
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Insert (3.4.15) into (3.4.9) and apply q%
0 + q%

1 = 1 to get

m00Σq
%
1 = q%

0q
%
1p

α
00p

β
00 + (m0ΣΣ − q%

0p
α
00)(mΣ0Σ − q%

0p
β
00)

= q%
0p

β
00(q

%
1p

α
00 −m0ΣΣ + q%

0p
α
00) +mΣ0Σ(m0ΣΣ − q%

0p
α
00).

Conduct similar computations for pγ
00, and summarize the terms in dependence of

pα
00 and q%

0 :

q%
0p

β
00(p

α
00 −m0ΣΣ) = tγ + q%

0(mΣ0Σp
α
00 −m00Σ),(3.4.16)

q%
0p

γ
00(p

α
00 −m0ΣΣ) = tβ + q%

0(mΣΣ0p
α
00 −m0Σ0).(3.4.17)

Insert (3.4.15) into (3.4.16) to get:

q%
1p

β
10(p

α
00 −m0ΣΣ) = mΣ0Σ(pα

00 −m0ΣΣ)− tγ − q%
0(mΣ0Σp

α
00 −m00Σ)(3.4.18)

= q%
1(mΣ0Σp

α
00 −m00Σ).

It would be convenient to erase q%
1 from this equality. To do this without any kind

of violation the case q%
1 = 0 needs further consideration. Under the assumption

q%
1 = 0 equations (3.4.9), (3.4.12) and (3.4.13) produce m00Σ = pα

00p
β
00, m0ΣΣ = pα

00

and mΣ0Σ = pβ
00 respectively. Thus, even when omitting q%

1 from the notation of
(3.4.18) the equality is preserved. The notion for pγ

10 dependent on pα
00 is derived in

analogous manner:

(3.4.19) pγ
10(p

α
00 −m0ΣΣ) = (mΣΣ0p

α
00 −m0Σ0).

Applying (3.4.16)-(3.4.19) to (3.4.11) yields

mΣ00q
%
0(p

α
00 −m0ΣΣ)2 = (q%

0)
2(pα

00 −m0ΣΣ)2pβ
00p

γ
00 + q%

0q
%
1(p

α
00 −m0ΣΣ)2pβ

10p
γ
10

= (tγ + q%
0(mΣ0Σp

α
00 −m00Σ))(tβ + q%

0(mΣΣ0p
α
00 −m0Σ0))

+ q%
0q

%
1(mΣ0Σp

α
00 −m00Σ)(mΣΣ0p

α
00 −m0Σ0)

= tβtγ + q%
0(mΣ0Σp

α
00 −m00Σ)(mΣΣ0p

α
00 −m0Σ0) + q%

0tβ(mΣ0Σp
α
00 −m00Σ)

+ q%
0tγ(mΣΣ0p

α
00 −m0Σ0)

= tβtγ + q%
0(m00Σm0Σ0 −m00Σtβ −m0Σ0tγ)

+ q%
0p

α
00(p

α
00mΣ0ΣmΣΣ0 +mΣ0Σtβ +mΣΣ0tγ −m00ΣmΣΣ0 −m0Σ0mΣ0Σ)

= tβtγ + q%
0(m0ΣΣmΣΣ0m00Σ +m0ΣΣmΣ0Σm0Σ0 −m00Σm0Σ0)

+ q%
0p

α
00(p

α
00mΣ0ΣmΣΣ0 − 2m0ΣΣmΣ0ΣmΣΣ0)

Restructuring the terms gives the following relationship:

0 = tβtγ + q%
0(m0ΣΣmΣΣ0m00Σ +m0ΣΣmΣ0Σm0Σ0 −m00Σm0Σ0 −m2

0ΣΣmΣ00)

+ q%
0p

α
00(p

α
00(mΣ0ΣmΣΣ0 −mΣ00) + 2(m0ΣΣmΣ00 −m0ΣΣmΣ0ΣmΣΣ0))

= q%
1tβtγ − q%

0m
2
0ΣΣtα − q%

0(p
α
00)

2tα + 2q%
0p

α
00m0ΣΣtα

= q%
1tβtγ − q%

0tα(pα
00 −m0ΣΣ)2.



3.4 Proofs 69

Using q%
0 + q%

1 = 1 provides a description of q%
0 dependent of pα

00, namely

(3.4.20) q%
0(tα(pα

00 −m0ΣΣ)2 + tβtγ) = tβtγ.

Applying (3.4.15) to (3.4.8) results in:

m000 = q%
0p

α
00p

β
00p

γ
00 + (m0ΣΣ − q%

0p
α
00)p

β
10p

γ
10

= pα
00(q

%
0p

β
00p

γ
00 + q%

1p
β
10p

γ
10 − pβ

10p
γ
10) +m0ΣΣk

β
10k

γ
10,

m000 −mΣ00p
α
00 = (m0ΣΣ − pα

00)p
β
10p

γ
10.(3.4.21)

Inserting (3.4.18) and (3.4.19) into equation (3.4.21) yields

(m000 −mΣ00p
α
00)(m0ΣΣ − pα

00) = (mΣ0Σ −m00Σp
α
00)(mΣΣ0 −m0Σ0p

α
00).

Minor reordering steps surrender the following quadratic equation

0 = (pα
00)

2(mΣ00 −mΣ0ΣmΣΣ0) + (m0ΣΣm000 −m00Σm0Σ0)

+ pα
00(mΣΣ0m00Σ +mΣ0Σm0Σ0 −m0ΣΣmΣ00 −m000)

0 = tα(pα
00)

2 + rαp
α
00 + sα.(3.4.22)

To generate a solution of (3.4.22) in pα
00 the condition tα 6= 0 must be satisfied.

With Lemma 3.1.2.1 this observation transfers to all tδ, δ ∈ L, thus the necessity of
the first condition of (3.1.9) is verified. For the explicit description of pα

00 apply the
well-known equation for solving quadratic equations to get:

(3.4.23) (pα
00)

± = −
rα ±

√
r2
α − 4sαtα

2tα
.

To compute the formula for q%
0 insert (3.4.23) into (3.4.20). The computation will

use the terms for (pα
00)

−:

q%
0

(
tα

(
−
rα −

√
χ

2tα
−m0ΣΣ

)2
+ tβtγ

)
= tβtγ,

q%
0

(
((rα + 2m0ΣΣtα)−√

χ)2 + 4tαtβtγ
)

= 4tαtβtγ.

(3.4.7) implies 4tαtβtγ = χ− (rα + 2m0ΣΣtα)2. Hence, one gets

2
√
χ(
√
χ− (rα + 2m0ΣΣtα))q%

0

= (
√
χ− (rα + 2m0ΣΣtα))2 + 2(rα + 2m0ΣΣtα)(

√
χ− (rα + 2m0ΣΣtα)).

A division by the factor for q%
0 is admissible under the conditions (3.1.9), thus de-

manding condition χ 6= 0 and

q%
0 =

1

2
+
rα + 2m0ΣΣtα

2
√
χ

,



70 3.4 Proofs

i.e. the desired form from (3.1.10). The application of (pα
00)

+ will yield 1/2− q%
0 .

From this insights compute pα
10 by inserting (pα

00)
− and (q%

0) into (3.4.15):

(q%
0)
−pα

10 = m0ΣΣ − (q%
0)

+(pα
00)

+,

pα
10 =

2
√
χ

√
χ− (rα + 2m0ΣΣtα)

[
m0ΣΣ +

(rα −
√
χ)(

√
χ+ (rα + 2m0ΣΣtα))

4tα
√
χ

]
pα

10 =
4m0ΣΣtα

√
χ+ (rα −

√
χ)(

√
χ+ (rα + 2m0ΣΣtα))

2tα(χ− (rα + 2m0ΣΣtα))

=

√
χ(2m0ΣΣtα −

√
χ) + rα(rα + 2m0ΣΣ)− rα

√
χ+ rα

√
χ

2tα(
√
χ− (rα + 2m0ΣΣtα))

=
(−rα −

√
χ)(

√
χ− (rα + 2m0ΣΣtα))

2tα(
√
χ− (rα + 2m0ΣΣtα))

= −
rα +

√
χ

2tα
= (pα

00)
−,

To finish the proof insert formulas (3.1.10)-(3.1.12) into equation (3.4.8) while heed-
ing condition (3.1.9):

m000 = pα
00p

β
00p

γ
00q

%
0 + pα

10p
β
10p

γ
10(1− q%

0),

= −
rα −

√
χ

2tα
·
rβ −

√
χ

2tβ
·
rγ −

√
χ

2tγ
·
√
χ+ rα + 2m0ΣΣtα

2
√
χ

−
rα +

√
χ

2tα
·
rβ +

√
χ

2tβ
·
rγ +

√
χ

2tγ
·
√
χ− rα − 2m0ΣΣtα

2
√
χ

.

Multiply by −16tαtβtγ
√
χ:

−16m000tαtβtγ
√
χ = (

√
χ+ (rα + 2m0ΣΣtα))(rα −

√
χ)(rβ −

√
χ)(rγ −

√
χ)

+ (
√
χ− (rα + 2m0ΣΣtα))(rα +

√
χ)(rβ +

√
χ)(rγ +

√
χ)

= 2
√
χ
(
rαrβrγ + χ(rα + rβ + rγ)− (rα + 2m0ΣΣtα)(χ+ rα(rβ + rγ) + rβrγ)

)
= 2

√
χ
(
(χ− r2

α)(rβ + rγ)− 2m0ΣΣtα(χ+ rα(rβ + rγ) + rβrγ)
)

= −4tα
√
χ
(
2sα(rβ + rγ) +m0ΣΣ(χ+ rα(rβ + rγ) + rβrγ)

)
Divide by −4tα

√
χ and use χ = rβ − 4sβtβ (according to (3.4.1))

4m000tβtγ = 2sα(rβ + rγ) +m0ΣΣ(χ+ rα(rβ + rγ) + rβrγ)

= (2sα +m0ΣΣ(rα + rβ))(rβ + rγ)− 4m0ΣΣsβtβ.

Note, that rα +rβ = 2(m00ΣmΣΣ0−m000) and rβ +rγ = 2(mΣ00m0ΣΣ−m000). Thus,
divide by 4 to get

m000tβtγ = (m000m0ΣΣ −m00Σm0Σ0 +m0ΣΣ(m00ΣmΣΣ0 −m000))(mΣ00m0ΣΣ −m000)

−m0ΣΣ(m000mΣ0Σ −m00ΣmΣ00)(m0Σ0 −m0ΣΣmΣΣ0)

= −tβ
(
m00Σ(mΣ00m0ΣΣ −m000) +m0ΣΣ(m000mΣ0Σ −m00ΣmΣ00) = m000tβtγ,

thus leading to a true statement. Therefore, given the assumptions the given ex-
pressions yield a solution. This completes the proof of the theorem. 2
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Proof of Theorem 3.1.5. This theorem gave conditions under which (3.1.1) has a
stochastically admissible solution w.r.t. a given leaf distribution m. The derivation
of these conditions is accomplished by bounding the terms established in Theorem
3.1.4 between zero and one. For readability the notation from Remark 3.4.1 is
inherited. The condition χ > 0 is necessary for real valued parameters. This implies:

(3.4.24) 4tαtβtγ > −(rα + 2m0ΣΣtα)2.

Consider 0 ≤ q%
0 ≤ 1. Inserting formula (3.1.10) yields (

√
χ may denote the positive

root of χ)

−1

2
≤ ±rα + 2m0ΣΣtα

2
√
χ

≤ 1

2
,

−√χ ≤ ±(rα + 2m0ΣΣtα) ≤ √
χ.

This is equivalent to

(rα + 2m0ΣΣtα)2 ≤ χ.

Thus χ ≥ 0 and with (3.4.7) also tαtβtγ ≥ 0. With (3.1.9) strict positivity is
demanded. Also, tαtβtγ > 0 indicates the sign condition given for the covariance
sets, since positivity is attained if either all covariance terms are positive or one is
positive and the others are negative.

The remaining conditions are obtained by looking at the transition parameters. Due
to Lemma 3.1.2, it is sufficient to consider the implications to one parameter set,
pα

w0, w ∈ {0, 1} say. Since pα
00 and pα

10 must be admissible, start the considerations
with

0 ≤ −
rα ±

√
χ

2tα
≤ 1

Assume tα > 0. Then 0 ≤ −rα ±
√
χ ≤ 2tα, and thus:

rα ≤ ±√χ ≤ rα + 2tα.

Therefore, tα > 0 implies rα ≤ 0. Consider each bound separately and start with
the lower bound

rα ≤ ±√χ or r2
α ≥ r2

α − 4sαtα

and thus, sα ≥ 0. Look at the upper bound: With ±√χ ≤ rα + 2tα, one finds

−4sαtα ≤ 4rαtα + 4t2α, and 0 ≤ rα + sα + tα.
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Insert the notation from (3.1.6) and (3.1.7) to get:

0 ≤ mΣΣ0m00Σ +mΣ0Σm0Σ0 −m0ΣΣmΣ00 −m000 +m0ΣΣm000 −m00Σm0Σ0

+mΣ00 −mΣ0ΣmΣΣ0

= (mΣ00 −m000)(1−m0ΣΣ)− (mΣ0Σ −m00Σ)(mΣΣ0 −m0Σ0)

= m1ΣΣm100 −m10Σm1Σ0.

This is the third and final term of Sβγ
00 and admissibility was obtained for tα >

0, sα ≥ 0 and m1ΣΣm100 −m10Σm1Σ0 ≥ 0, i.e. for a positive sign of Sβγ
00 . Analogue

computations for tα < 0 provide similar results for a negative sign of Sβγ
00 . With the

statements of Lemma 3.1.2 the Theorem is proven. 2

Proof of Lemma 3.1.6. Due to (3.4.5) setting tαβ
00 = 0 implies tαβ

xy = 0 for all
x, y ∈ {0, 1}. This completes the proof of the lemma. 2

Proof of Theorem 3.1.7. This Theorem treats the implications for possible pro-
cesses that yield a leaf distribution m subject to Lemma 3.1.6. Observe, that

tαβ
00 = m00Σ −m0ΣΣmΣ0Σ = pα

00p
β
00q

%
0 + pα

10p
β
10q

%
1 − (pα

00q
%
0 + pα

10q
%
1)(p

β
00q

%
0 + pβ

10q
%
1)

= q%
0q

%
1(p

α
00p

β
00 + pα

10p
β
10 − pα

00p
β
10 − pα

10p
β
00).

Doing this computations similarly for tαγ
00 and tβγ

00 gives:

tαβ
00 = q%

0q
%
1(p

α
00 − pα

10)(p
β
00 − pβ

10),(3.4.25)

tαγ
00 = q%

0q
%
1(p

α
00 − pα

10)(p
γ
00 − pγ

10),(3.4.26)

tβγ
00 = q%

0q
%
1(p

β
00 − pβ

10)(p
γ
00 − pγ

10).(3.4.27)

Thus, tαβ
00 = 0 yields q%

0 = 0, q%
0 = 1, pα

00 = pα
10 or pβ

00 = pβ
10.

First consider q%
0 = 0. Then q%

1 = 1, all covariances are zero due to (3.4.25), (3.4.26)
and (3.4.27). If all covariances are zero one obtains:

(3.4.28) sα = m000m0ΣΣ −m00Σm0Σ0 = m0ΣΣ(m000 −m0ΣΣmΣ0ΣmΣΣ0).

Moreover, with (3.1.1), (3.1.4) and (3.1.5) one gets for x, y, z ∈ {0, 1}

mxyz = pα
1xp

β
1yp

γ
1z, mxyΣ = pα

1xp
β
1y, mxΣΣ = pα

1x,(3.4.29)

sα = pα
10(p

α
10p

β
10p

γ
10 − pα

10p
β
10p

γ
10) = 0.(3.4.30)

(3.4.29) yields through analogous computations pα
1x = mxΣΣ, p

β
1y = mΣyΣ, p

γ
1z =

mΣΣz and parameters pδ
0u, u ∈ {0, 1}, δ ∈ L are free. Since m0ΣΣ = m000 +m001 +

m010 + m011 the property m0ΣΣ = 0 implies m000 = 0. Thus, applying equality
(3.4.30) to (3.4.28) yields

m000 = m0ΣΣmΣ0ΣmΣΣ0 = pα
10p

β
10p

γ
10,
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i.e. the proposed parameters are a solution under the given assumptions and case
(ii.c) is verified.

Next consider

(3.4.31) pα
00 = pα

10, pβ
00 = pβ

10, pγ
00 6= pγ

10.

Then, again all covariances are zero due to (3.4.25) and (3.4.26). Further, (3.4.28)
and (3.4.29) are retained while

(3.4.32) sα = pα
00(p

α
00p

β
00(q

%
0p

γ
00 + q%

1p
γ
10)− pα

00p
β
00(q

%
0p

γ
00 + q%

1p
γ
10)) = 0.

With (3.4.29) the following assignments pα
ux = mxΣΣ, p

β
uy = mΣyΣ are fixed while for

free pγ
00 6= pγ

10 one gets from (3.4.14)

q%
0 =

mΣΣz − pγ
10

pγ
00 − pγ

10

.

(3.4.29) and (3.4.32) finally show, that the proposed terms are a solution to (3.1.1)
under (3.4.31). The remaining cases

pα
00 = pα

10, pβ
00 6= pβ

10, pγ
00 = pγ

10,

pα
00 6= pα

10, pβ
00 = pβ

10, pγ
00 = pγ

10.

are handled similarly. The case

pα
00 = pα

10, pβ
00 = pβ

10, pγ
00 = pγ

10

gives pα
0x = mxΣΣ, p

β
0y = mΣyΣ, p

γ
0z = mΣΣz and the free parameter q%

0 through
analogous computations. Thus, cases (ii.a) and (ii.b) are treated.

Finally, consider

tαβ
xy = tαγ

xz = 0, tβγ
yz 6= 0, x, y, z ∈ {0, 1}.

Then, with (3.4.25)-(3.4.27) and (3.4.12) one gets for x, y, z ∈ {0, 1}:

(3.4.33) pα
0x = pα

1x = mxΣΣ, pβ
0y 6= pβ

1y, pγ
0z 6= pγ

1z, 0 < q%
0 < 1.

Inserting these properties into (3.1.1) returns

mxyz = mxΣΣ(q%
0p

β
0yp

γ
0z + q%

1p
β
1yp

γ
1z) = mxΣΣmΣyz, x, y, z ∈ {0, 1}.

Thus, it remains to establish the solution to the system

mΣ00 = q%
0p

β
00p

γ
00 + (1− q%

0)p
β
10p

γ
10,(3.4.34)

mΣ0Σ = q%
0p

β
00 + (1− q%

0)p
β
10,(3.4.35)

mΣΣ0 = q%
0p

γ
00 + (1− q%

0)p
γ
10.(3.4.36)
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(3.4.35) and (3.4.36) yield:

(3.4.37) q%
0 =

mΣ0Σ − pβ
10

pβ
00 − pβ

10

=
mΣΣ0 − pγ

10

pγ
00 − pγ

10

.

From the latter equality one establishes:

(3.4.38) pβ
00 =

pβ
10(mΣΣ0 − pγ

00) +mΣ0Σ(pγ
00 − pγ

10)

mΣΣ0 − pγ
10

.

Note that the case pγ
10 = mΣΣ0 was fully considered in the previous cases, thus the

numerator stays valid. Now, insert (3.4.37) into (3.4.34) to get:

mΣ00(p
γ
00 − pγ

10) + pβ
10p

γ
10(mΣΣ0 − pγ

00) = pβ
00p

γ
00(mΣΣ0 − pγ

10).

Applying (3.4.38) yields:

mΣ00(p
γ
00 − pγ

10) + pβ
10p

γ
10(mΣΣ0 − pγ

00) = pγ
00(p

β
10(mΣΣ0 − pγ

00) +mΣ0Σ(pγ
00 − pγ

10)),

mΣ00(p
γ
00 − pγ

10)− pβ
10(mΣΣ0 − pγ

00)(p
γ
00 − pγ

10) = pγ
00mΣ0Σ(pγ

00 − pγ
10),

and thus,

(3.4.39) pβ
10 =

mΣ00 −mΣ0Σp
γ
00

mΣΣ0 − pγ
00

.

Reinserting into (3.4.38) finally returns

(3.4.40) pβ
00 =

mΣ00 −mΣ0Σp
γ
10

mΣΣ0 − pγ
10

.

Derive from (3.4.37) the equality q%
1 = −(mΣΣ0−pγ

00)/(p
γ
00−p

γ
10). Insert the computed

terms into (3.4.34) to get

mΣ00 =
mΣΣ0 − pγ

10

pγ
00 − pγ

10

pγ
00

mΣ00 −mΣ0Σp
γ
10

mΣΣ0 − pγ
10

− mΣΣ0 − pγ
00

pγ
00 − pγ

10

pγ
10

mΣ00 −mΣ0Σp
γ
00

mΣΣ0 − pγ
00

= mΣ00
pγ

00 − pγ
10

pγ
00 − pγ

10

,

i.e. the proposed parameters are indeed a solution under (3.4.33). The remaining
cases for x, y, z ∈ {0, 1}

pα
0x 6= pα

1x, pβ
0y = pβ

1y = mΣyΣ, pγ
0z 6= pγ

1z, 0 < q%
0 < 1,

pα
0x 6= pα

1x, pβ
0y 6= pβ

1y, pγ
0z = pγ

1z = mΣΣz, 0 < q%
0 < 1

return similar results. This completes the proof. 2
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Proof of Lemma 3.1.8. The equation (3.4.23) was derived without any restriction
to χ. When inserting (3.4.23) into (3.4.20) one obtains:

(3.4.41) q%
0

(
((rα + 2m0ΣΣtα)−√

χ)2 + 4tαtβtγ
)

= 4tαtβtγ.

With χ = 0 and (3.4.7) one gets for (3.4.41):

q%
0

(
(rα + 2m0ΣΣtα)2 + 4tαtβtγ︸ ︷︷ ︸

=0

)
= 4tαtβtγ,

i.e. tαtβtγ = 0, and hence no leaf distribution with a solution for (3.1.1) obeys
(3.1.13).

The function χ : C8 → C is a polynomial mapping and hence is infinitely differen-
tiable. Thus with the Morse-Sard Theorem (see e.g. Thm. 1.3 in Hirsch [1976]) the
set {m ∈ C8 : χ(m) = 0} is a Lebesgue zero set. This completes the proof. 2

3.4.2 Proofs for Section 3.2

Here, the special case of the symmetrical two state model on triple trees was related
to the observations from the general model.

Proof of Corollary 3.2.1. First, insert the model restrictions into (3.1.4)-(3.1.7).
Develop for state 001 and start with the pairwise probabilities

m00Σ = m000 +m001 =
1

2
−m010 −m100 =

1

2
(1− dαβ),

m0Σ1 = m001 +m011 = m001 +m100 =
dαγ

2

and similarly, mΣ01 = dβγ/2. Now for the other expression

rα
001 = m00ΣmΣΣ1 +m0Σ1mΣ0Σ −mΣ01m0ΣΣ −m001

=
1

4
(1− dαβ + dαγ − dβγ − 4m001)

=
1

4
(1− 2m010 − 2m100 + 2m100 + 2m001 − 2m001 − 2m010 − 4m001)

=
1

4
(1− 4m010 − 4m001) =

1

4
(1− 2dβγ),

tβγ
01 = mΣ01 −mΣΣ1mΣ0Σ = m001 +m010 −

1

4
= −1

4
(1− 2dβγ) = −rα

001,
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and further

sβγ
001 = m001m0ΣΣ −m00Σm0Σ1 =

m001

2
− (

1

2
−m010 −m100)(m001 +m100)

=
m001

2
− m001

2
− m100

2
+ (m001 +m100)(m010 +m100) =

1

4
(dαβdαγ − 2m100),

χ001 = (rα
001)

2 − 4sβγ
001t

βγ
01 = rα

001(r
α
001 + 4sβγ

001) =
1

4
rα
001(1− 2dβγ + 4dαβdαγ − 8m100)

=
1

4
rα
001(1− 4m001 − 4m010 − 8m100 + 4dαβdαγ) =

1

4
rα
001(1− 2dαβ)(1− 2dαγ)

=
1

16
(1− 2dαβ)(1− 2dαγ)(1− 2dβγ) =

∆2

16
.

The equality

(3.4.42) 4tβγ
01 = −(1− 2dβγ)

shows that tβγ
01 6= 0 is equivalent to dβγ 6= 1/2 under the symmetrical model. In

addition, dδ1δ2 6= 0, δ1 6= δ2 ∈ L implies χ001 6= 0, thus providing the conditions
to transfer the results of Theorem 3.1.4 to the N2 model. Use above conditions to
establish the proposed solution. First, verify that q%

0 is indeed 1/2 by

q%
0 =

1

2
+
rα
001 + 2m0ΣΣt

βγ
01

2
√
χ001

=
1

2
+
rα
001(1− 2m0ΣΣ)

2
√
χ001

=
1

2
,

since m0ΣΣ = 1/2. Now for pα = pα
10

pα = − rα
001

2tβγ
01

+

√
χ001

2tβγ
01

=
1

2
− ∆

2(1− 2dβγ)
.

The computations for pβ and pγ are similar. With (3.1.10)-(3.1.12) and the relation-
ship of systems (3.2.1) and (3.1.1) shows, that the presented terms form a solution.
This completes the proof. 2

Proof of Corollary 3.2.2. First, observe with (3.4.42) and (3.4.5) that for δ1 6=
δ2 ∈ L the property tδ1δ2 > 0 implies dδ1δ2 < 1/2 and equivalently, tδ1δ2 < 0 implies
dδ1δ2 > 1/2. Thus, under the symmetrical model tαβtαγtβγ > 0 has the following
implications:

dαβ < 1/2, dαγ < 1/2, dβγ < 1/2,(3.4.43)

dδ1δ2 < 1/2, dδ1δ3 > 1/2, dδ2δ3 > 1/2, δ1 6= δ2 6= δ3(3.4.44)

Next, similarly to the derivation of the conditions in Theorem 3.1.5 one bounds the
obtained parameters between zero and one. Again, citing Lemma 3.1.2 it is sufficient
to look at the implications for pα to derive all conditions. Note, that due to (3.2.1)
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the following relationship between the joint leaf probabilities holds under the N2

model:

m000 +m001 +m010 +m100 =
1

2
.

Now for the computations:

0 ≤ pα ≤ 1,

0 ≤ 1

2

(
1±

√
(1− 2dαβ)(1− 2dαγ)

1− 2dβγ

)
≤ 1,

−1 ≤ ±

√
(1− 2dαβ)(1− 2dαγ)

1− 2dβγ

≤ 1,

0 ≤ (1− 2dαβ)(1− 2dαγ)

1− 2dβγ

≤ 1.

The lower bound is maintained if (3.4.43) or (3.4.44) is satisfied. For the upper
bound one has to distinguish the cases dβγ > 1/2 and dβγ < 1/2. Consider the first
case and apply the definitions of the Hamming distances

(1− 2dαβ)(1− 2dαγ) ≤ 1− 2dβγ,

dαβ + dαγ − dβγ − 2dαβdαγ ≥ 0,

m100 − 2(m001m010 +m001m100 +m010m100 +m2
100) ≥ 0,

m000m100 −m001m010 ≥ 0.

Similarly, for dβγ < 1/2 one gets

m000m100 −m001m010 ≤ 0.

Transferring these results to the covariance conditions presented (3.4.43) and (3.4.44)
yields the following cases:

m000m001 ≥ m010m100, m000m010 ≥ m001m100, m000m100 ≥ m001m010,

m000m001 ≤ m010m100, m000m010 ≤ m001m100, m000m100 ≥ m001m010,

m000m001 ≤ m010m100, m000m010 ≥ m001m100, m000m100 ≤ m001m010,

m000m001 ≥ m010m100, m000m010 ≤ m001m100, m000m100 ≤ m001m010,

dependent on the signs of the Hamming distances. In all cases one probability is
always on the larger side of the inequalities whereas the other three probabilities
are twice on the smaller side. Thus, two probabilities are allowed to be zero and
positivity is not necessary for admissibility of a solution. This completes the proof.

2
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Proof of Corollary 3.2.3. The implications concerning the Hamming distances
immediately follow from Theorem 3.1.7 with (3.4.42). For the case study consider
(3.2.1) first in the following updated form:

2m001 = pγ + pαpβ − pαpγ − pβpγ,

2m010 = pβ + pαpγ − pαpβ − pβpγ,

2m100 = pα + pβpγ − pαpβ − pαpγ.

(3.4.45)

To start the verification of the cases start with the assumption dαβ = dαγ = 1/2 and
dβγ 6= 1/2. These assumptions return m001 = m010 and thus, dβγ = 4m001. Applying
(3.2.3) to (3.4.45) yields the system:

0 = (1− 2pα)(1− 2pβ), 0 = (1− 2pα)(1− 2pγ), 1− 8m001 = (1− 2pβ)(1− 2pγ).

Consider the possible cases: If pα = 1/2 and pβ 6= 1/2, pγ 6= 1/2 the latter parame-
ters have the following relationship which is derived from the equality 1− 8m001 =
(1− 2pβ)(1− 2pγ):

pβ =
4m001 − pγ

1− 2pγ

=
dβγ − pγ

1− 2pγ

.

Defining for t ∈ C \ {1/2} and y > 0 the function

f(t, y) :=
y − t

1− 2t

the subspace of solution vectors (pα, pβ, pγ) for (3.4.45) under the given assumptions
dαβ = dαγ = 1/2 and dβγ 6= 1/2 is given by{

(1/2, t, f(dβγ, t)) : t ∈ C \ {1/2}
}
∪

{
(1/2, f(dβγ, t), t) : t ∈ C \ {1/2}

}
.

For the similar cases dαβ = dβγ = 1/2, dαγ 6= 1/2 and dαγ = dβγ = 1/2, dαβ 6= 1/2
one gets analogue results

If, in addition to pα, also pβ = 1/2, then the equation 1−8m001 = (1−2pβ)(1−2pγ)
yields dβγ = 1/2 and thus, mxyz = 1/8 for all x, y, z ∈ {0, 1}, i.e. a uniform leaf
distribution is observed. pγ remains a free parameter.

Conversely assume, m is a uniform leaf distribution. Then, all inferred Hamming
distances are 1/2 and with the system

0 = (1− 2pα)(1− 2pβ), 0 = (1− 2pα)(1− 2pγ), 0 = (1− 2pβ)(1− 2pγ),

inferred from (3.4.45) the associated space of solutions is given by

{(t, 1/2, 1/2) : t ∈ C} ∪ {(1/2, t, 1/2) : t ∈ C} ∪ {(1/2, 1/2, t) : t ∈ C}.

This wraps up the proof of the corollary. 2
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3.4.3 Proofs for Section 3.3

Here, the extension of the results to quartet trees was analyzed.

Proof of Theorem 3.3.1. Consider the quartet tree T = (V,E) with (3.3.1) and
inherit the notation from (3.3.2) and (3.3.3), i.e. consider the triple trees T i =
(V i, Ei), and associated triple leaf distributions mi, i = 1, 2, 3, 4. The inferred pa-
rameters established via Theorem 3.1.4 will be indexed in that fashion.

To get compatible parameters one of the following two scenarios must be satisfied

pδ,i
00 = pδ,j

00 , qρ,i
0 = qρ,j

0 ,(3.4.46)

pδ,i
00 = pδ,j

10 , qρ,i
0 = qρ,j

1(3.4.47)

for δ ∈ {α1, α2}, ρ = %1, i = 1, j = 2 and δ ∈ {α3, α4}, ρ = %2, i = 3, j = 4. For
δ ∈ L, i = 1, 2, 3, 4 the following holds:

(3.4.48) 2pδ,i
00 = (pδ,i

00 + pδ,i
10) + (pδ,i

00 − pδ,i
10), 2pδ,i

10 = (pδ,i
00 + pδ,i

10)− (pδ,i
00 − pδ,i

10),

i.e. looking at cases (3.4.46) or (3.4.47) is similar to looking at the differences
pδ,i

00 − pδ,i
10 and sums pδ,i

00 + pδ,i
10, δ ∈ L, i = 1, 2, 3, 4. When looking at the structure of

(3.1.11) and (3.1.12) one observes for, α1 say:

pα1,1
00 + pα1,1

10 = −
r1
α1

tβγ

, pα1,1
00 − pα1,1

10 =

√
χ1

tβγ

.

Consider the differences and sums in the light of compatibility. Then, (3.4.46) can
be written as:

(pα1,1
00 + pα1,1

10 ) + (pα1,1
00 − pα1,1

10 ) = (pα1,2
00 + pα1,2

10 ) + (pα1,2
00 − pα1,2

10 ),

(pα1,1
00 + pα1,1

10 )− (pα1,1
00 − pα1,1

10 ) = (pα1,2
00 + pα1,2

10 )− (pα1,2
00 − pα1,2

10 ),

and (3.4.47) as:

(pα1,1
00 + pα1,1

10 ) + (pα1,1
00 − pα1,1

10 ) = (pα1,2
00 + pα1,2

10 )− (pα1,2
00 − pα1,2

10 ),

(pα1,1
00 + pα1,1

10 )− (pα1,1
00 − pα1,1

10 ) = (pα1,2
00 + pα1,2

10 ) + (pα1,2
00 − pα1,2

10 ).

Hence, finding conditions for (3.4.46) and (3.4.47) is equivalent to finding conditions
for

(3.4.49) pδ,i
00 + pδ,i

10 = pδ,j
00 + pδ,j

10 , |pδ,i
00 − pδ,i

10| = |pδ,j
00 − pδ,j

10 |

for δ ∈ {α1, α2}, i = 1, j = 2 and δ ∈ {α3, α4}, i = 3, j = 4 and equivalently

r1
α1

tα2α3

=
r2
α1

tα2α4

,
r1
α2

tα1α3

=
r2
α2

tα1α4

,

∣∣∣∣√χ1

tα2α3

∣∣∣∣ =

∣∣∣∣√χ2

tα2α4

∣∣∣∣, ∣∣∣∣√χ1

tα1α3

∣∣∣∣ =

∣∣∣∣√χ2

tα1α4

∣∣∣∣,(3.4.50)

r3
α3

tα1α4

=
r4
α3

tα2α4

,
r3
α4

tα1α3

=
r4
α4

tα2α3

,

∣∣∣∣√χ3

tα1α4

∣∣∣∣ =

∣∣∣∣√χ4

tα2α4

∣∣∣∣, ∣∣∣∣√χ3

tα1α3

∣∣∣∣ =

∣∣∣∣√χ4

tα2α3

∣∣∣∣.(3.4.51)
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Recall from (3.1.9) that tαiαj
6= 0, i 6= j and

√
χi 6= 0 are necessary for the existence

of a unique solution. Hence, division or multiplication with these terms does not
pose problems to the equalities above.

Look at the following relations:∣∣∣∣√χ1

tα2α3

∣∣∣∣ =

∣∣∣∣√χ2

tα2α4

∣∣∣∣, ∣∣∣∣√χ1

tα1α3

∣∣∣∣ =

∣∣∣∣√χ2

tα1α4

∣∣∣∣,(3.4.52) ∣∣∣∣√χ3

tα1α4

∣∣∣∣ =

∣∣∣∣√χ4

tα2α4

∣∣∣∣, ∣∣∣∣√χ3

tα1α3

∣∣∣∣ =

∣∣∣∣√χ4

tα2α3

∣∣∣∣.(3.4.53)

The absolute value implies two possibilities, both sides are positive or a sign change
occurred. In particular, for (3.4.52) only the following cases can be observed:

√
χ1

tα2α3

=

√
χ2

tα2α4

,

√
χ1

tα1α3

=

√
χ2

tα1α4

,

√
χ1

tα2α3

= −
√
χ2

tα2α4

,

√
χ1

tα1α3

= −
√
χ2

tα1α4

.

Restructuring yields the following equivalences:

√
χ1√
χ2

=
tα2α3

tα2α4

=
tα1α3

tα1α4

, −
√
χ1√
χ2

=
tα2α3

tα2α4

=
tα1α3

tα1α4

,

√
χ3√
χ4

=
tα1α3

tα2α3

=
tα1α4

tα2α4

, −
√
χ3√
χ4

=
tα1α3

tα2α3

=
tα1α4

tα2α4

and therefore,

(3.4.54) tα2α3tα1α4 = tα2α4tα1α3 .

Next, consider the following equality and apply the conditions from (3.4.50) and
(3.4.54):

χ1

t2α2α3

=
1

t2α2α3

(r1
α1

+ 2m0ΣΣΣtα2α3)
2 + 4tα1α2

tα1α3

tα2α3

=

(
r1
α1

tα2α3

+ 2m0ΣΣΣ

)2

+ 4tα1α2

tα1α3

tα2α3

=

(
r2
α1

tα2α4

+ 2m0ΣΣΣ
tα2α4

tα2α4

)2

+ 4tα1α2

tα1α4

tα2α4

=
χ2

t2α2α4

.

Hence, the conditions (3.4.54) and

(3.4.55)
r1
α1

tα2α3

=
r2
α1

tα2α4

,
r1
α2

tα1α3

=
r2
α2

tα1α4

,
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already contain the quadratic notion of (3.4.52). Analogously, equations

(3.4.56)
r3
α3

tα1α4

=
r4
α3

tα2α4

,
r3
α4

tα1α3

=
r4
α4

tα2α3

contain the quadratic notion of (3.4.53), and hence (3.4.52) and (3.4.53) are redun-
dant.

For a satisfying answer also the root distribution must be considered. First, assume
q%1,1
0 = q%1,2

0 . Then tα2α3

√
χ2 = tα2α4

√
χ1 and one computes:

q%1,1
0 − q%1,2

0 =
1

2
−
r1
α1

+ 2m0ΣΣΣtα2α3

2
√
χ1

− 1

2
+
r2
α1

+ 2m0ΣΣΣtα2α4

2
√
χ2

=
r2
α1

2
√
χ2

−
r1
α1

2
√
χ1

+m0ΣΣΣ

(
tα2α4√
χ2

− tα2α3√
χ1︸ ︷︷ ︸

=0

)

=
r2
α1

tα2α4

tα2α4

2
√
χ2

−
r1
α1

2
√
χ1

=
r1
α1

tα2α3

tα2α3

2
√
χ1

−
r1
α1

2
√
χ1

= 0.

Now assume q%1,1
0 = q%1,2

1 . Then tα2α3

√
χ2 = −tα2α4

√
χ1 and one computes:

q%1,1
0 − q%1,2

1 =
1

2
−
r1
α1

+ 2m0ΣΣΣtα2α3

2
√
χ1

− 1

2
−
r2
α1

+ 2m0ΣΣΣtα2α4

2
√
χ2

= −
(

r1
α1

2
√
χ1

+
r2
α1

2
√
χ2

)
−m0ΣΣΣ

(
tα2α3√
χ1

+
tα2α4√
χ2︸ ︷︷ ︸

=0

)

= −
(
r1
α1

tα2α3

tα2α3

2
√
χ1

+
r2
α1

2
√
χ2

)
= −

(
−

r2
α1

tα2α4

tα2α4

2
√
χ2

+
r2
α1

2
√
χ2

)
= 0.

Since analogue computations for q%2,3 and q%2,4 yield analogue results, conditions
(3.4.54) and (3.4.55) also imply the equality of the root distributions.

Finally, the transition parameters for edge (%1, %2) need to be derived. Other equiv-
alences will arise during these calculations. The following equivalences must be
observed:

pα3,1
00 = p%1%2

00 pα3,3
00 + (1− p%1%2

00 )pα3,3
10 ,

pα3,1
10 = p%1%2

10 pα3,3
00 + (1− p%1%2

10 )pα3,3
10 .

Equivalently, the parameters must satisfy:

pα4,2
00 = p%1%2

00 pα4,3
00 + (1− p%1%2

00 )pα4,3
10 ,

pα4,2
10 = p%1%2

10 pα4,3
00 + (1− p%1%2

10 )pα4,3
10 .
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Hence, the following equivalences must be satisfied:

p%1%2

00 =
pα3,1

00 − pα3,3
10

pα3,3
00 − pα3,3

10

=
pα4,2

00 − pα4,3
10

pα4,3
00 − pα4,3

10

,

p%1%2

10 =
pα3,1

10 − pα3,3
10

pα3,3
00 − pα3,3

10

=
pα4,2

10 − pα4,3
10

pα4,3
00 − pα4,3

10

.

To verify the equality, insert the representations from (3.1.11) and (3.1.12) and
regard the difference of the terms depending on α3 and α4, respectively:

r3
α3

+
√

χ3

2tα1α4
− r1

α3
−√χ1

2tα1α2√
χ3

tα1α4

−
r3
α4

+
√

χ3

2tα1α3
− r2

α4
−√χ2

2tα1α2√
χ3

tα1α3

=
r3
α3
− r3

α4

2
√
χ3

+
tα1α3(r

2
α4
−√

χ2)− tα1α4(r
1
α3
−√

χ1)

2tα1α2

√
χ3

=
tα1α2(r

3
α3
− r3

α4
)− (tα1α4r

1
α3
− tα1α3r

2
α4

)

2
√
χ3

!
= 0.

Using the notions from (3.1.11) and (3.1.12) yields the following equality:

tα1α2(r
3
α3
− r3

α4
)− tα1α4r

1
α3

+ tα1α3r
2
α4

= tα1α3r
2
α2
− tα1α4r

1
α2
.

But the right hand side of this equation is zero with (3.4.55), and thus this condition
already guarantees the compatibility of the parameter for the inner edge. This
completes the proof. 2

Proof of Corollary 3.3.2. The proof contains two steps. Step one is the consider-
ation of the invariants from (3.3.4) under the N2 model and step two is the derivation
of the parameter for the inner edge.

For step one, recall from (3.4.42) the following equalities:

r1
α1

= −tα2α3 , r2
α1

= −tα2α4 ,

and analogue equalities for α2, α3 and α4. These equalities yield:

r1
α1
tα2α4 − r2

α1
tα2α3 = 0,

i.e. the first four invariants are zero due to the model properties. The fifth invariant
yields:

tα1α3tα2α4 − tα1α4tα2α3(3.4.57)

= (1− 2dα1α3)(1− 2dα2α4)− (1− 2dα1α4)(1− 2dα2α3)

= 4(dα1α3dα2α4 − dα1α4dα2α3)

− 2(dα1α3 + dα2α4 − dα1α4 − dα2α3).
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With (3.3.7) the Hamming distances have the following form:

dα1α3 = 2(m0010 +m0011 +m0110 +m0111),

dα1α4 = 2(m0001 +m0011 +m0101 +m0111),

dα2α3 = 2(m0010 +m0011 +m0100 +m0101),

dα2α4 = 2(m0001 +m0011 +m0100 +m0110).

With this observation, equation (3.4.57) reduces to:

tα1α3tα2α4 − tα1α4tα2α3 = 4(dα1α3dα2α4 − dα1α4dα2α3),

and thus, (3.3.8) is derived.

For the inner edge recall the matrix product P %1α3 = P %1%2P %2α3 . This equation
results in:

p%1α3 = p%1%2(1− p%2α3) + p%2α3(1− p%1%2),

and therefore:

p%1%2 =
p%1α3 − p%2α3

1− 2p%2α3

=

∆3

2(1−2dα1α4 )
− ∆1

2(1−2dα1α2 )

∆3

1−2dα1α4

=
1

2

(
1− ∆1(1− 2dα1α4)

∆3(1− 2dα1α2)

)
=

1

2

(
1−

√
(1− 2dα1α4)(1− 2dα2α3)

(1− 2dα1α2)(1− 2dα3α4)

)
.

With (3.3.8) the matrix product P %1α4 = P %1%2P %2%4 provides the same result. There-
fore, no new invariant is obtained from this computations, and the proof is com-
pleted. 2

Proof of Lemma 3.3.3. From the construction of the applied function of Math-
ematica follows, that the presented polynomials are indeed a basis for the needed
elimination ideal. Equivalence of the statements follows from Theorem 2.2.2. 2

Proof of Theorem 3.3.4. Having the conditions of Theorem 3.1.5 it remains to
compute:

0 ≤ p%1%2
xy ≤ 1.

Inserting the acquired notion of Theorem 3.3.1 yields for p%1%2

00

0 ≤ 1

2
− r

(i)
γ tαδ − r

(iii)
γ tαβ

2tαβ

√
χ(iii)

+
tαδ

√
χ(i)

2tαβ

√
χ(iii)

≤ 1

−1

2
≤ −tαδ(r

(i)
γ −

√
χ(i))

2tαβ

√
χ(iii)

+
r
(iii)
γ

2
√
χ(iii)

≤ 1

2

−r
(iii)
γ +

√
χ(iii)

2tαδ

≤ −r
(i)
γ −

√
χ(i)

2tαβ

≤ −r
(iii)
γ −

√
χ(iii)

2tαδ

.
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The calculated terms are the notions for the transition probabilities from Theorem
3.1.4. Analogous computations for p%1%2

10 yield the same bounds, i.e. condition (3.3.9)
is verified.

The proof of Theorem 3.3.1 shows, that this condition translates to all leaves, i.e.
also

min{pα,(i)
00 , p

α,(i)
10 } ≤ p

α,(iii)
00 , p

α,(iii)
10 ≤ max{pα,(i)

00 , p
α,(i)
10 },

min{pβ,(i)
00 , p

β,(i)
10 } ≤ p

β,(iv)
00 , p

β,(iv)
10 ≤ max{pβ,(i)

00 , p
β,(i)
10 },

min{pδ,(iii)
00 , p

δ,(iii)
10 } ≤ p

δ,(ii)
00 , p

δ,(ii)
10 ≤ max{pδ,(iii)

00 , p
δ,(iii)
10 }

must be fulfilled. 2

Proof of Lemma 3.3.5. According to Proposition 1.2.5 the restrictions of a Mar-
kov process on a tree T to the triple trees derived from T are again Markov processes.
Hence, these restrictions need to satisfy Theorem 3.1.5 as well. Now, consider a tree
T with n > 3 leaves. Whenever one assembles a triple tree the process must satisfy
the sign conditions. In particular, denote by δ1, δ2 and δ3 the selected leaves. Then
either all leaves are positively correlated or two are positively correlated to each
other and negatively correlated to the third. Now consider a fourth leaf δ4 and the
four triples generated by the four leaves. The following scenarios are compatible
with Theorem 3.1.5:

1. tδ1δ2 , tδ1δ3 , tδ2δ3 > 0 and either

tδiδ4 > 0 or tδiδ4 < 0 for i ∈ {1, 2, 3}.

2. tδ1δ2 > 0 and tδiδ3 < 0, i = 1, 2 and either

tδiδ4 > 0 and tδ3δ4 < 0, i = 1, 2 or

tδiδ4 < 0 and tδ3δ4 > 0, i = 1, 2.

Any selection of three leaves under these conditions will satisfy the sign condition
for the covariance terms. Moreover, there is no other scenario that is admissible.
Looking closely at the cases reveals that they always agree with the statements of
Lemma 3.3.5, one always observes two sets - one of them possibly empty - which
satisfy (3.3.10). This completes the proof. 2



Chapter 4

Stochastic Models of Molecular
Evolution in k States

The previous chapter analyzed the general two state model on a triple tree. How-
ever, looking at models with a larger number of possible states provides a better
relationship to molecular evolution. To give a glimpse at the difficulties of this task
, two simple symmetrical models are examined on triple trees, the Neyman Nk and
the Kimura 2ST model. The obtained solutions depend on the pairwise leaf dis-
tributions only, but still need three leaves to be formed. Moreover, the number of
needed phylogenetic invariants rises considerably.

Each section starts with the presentation of the basic model properties, followed by
the derivation of conditions on leaf distributions for a Markov extension, the compu-
tation of characterizations for extensions and conditions for their model relevance.
The sections close out with the transfer of the results to the time-continuous model
specifications of rates and molecular clock. The proofs to all presented results are
given at the end of the chapter.

If not defined otherwise, the basic structure on which the models are discussed, is
the triple tree T := (V , E) with

(4.0.1) V := {α, β, γ, %}, E := {(%, α), (%, β), (%, γ)}

with leaf set L := {α, β, γ}.

4.1 The Neyman Nk Model

The Neyman Nk model is introduced in Example 1.3.2. Here, each edge of T is
assigned one parameter, and the root distribution is stationary.

The following section starts with the presentation phylogenetic invariants for the
existence of an algebraic solution of (LF) w.r.t. a triple leaf distribution under the
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86 4.1 The Neyman Nk Model

model. Next, an explicit description of all possible Markov-like extensions to a given
leaf distribution, and conditions for stochastic admissibility are computed. Finally,
a transfer of the results to the rate model and its specification, the molecular clock,
is undertaken. Throughout this section, let k ≥ 2 and the state set is given as
S := {0, 1, . . . , k − 1}.

4.1.1 Basic Model Properties

Let µ := (µuxyz)u,x,y,z∈S denote a Markov distribution on T = (V , E) with (4.0.1)
w.r.t. the Neyman Nk model, i.e. µ is subject to (LF) and has the following
properties:

µu := P(X% = u) = 1/k for all u ∈ S,(4.1.1)

pδ := µx|u = P(Xδ = x|X% = u) for all x, u ∈ S and δ ∈ L.(4.1.2)

Property (4.1.1) describes the stationarity of any marginal distribution, i.e. each
state has the same probability to occur at a site of the sequence for a vertex. The
transition is considered in (4.1.2), where the kind of transition is not distinguished,
and only its occurrence is observed.

The properties show that a Markov distribution on T subject to the Neyman model
is fully determined by a triple (pα, pβ, pγ). Observe that the transition probability
pδ cannot exceed 1/(k − 1) in order to be an element of a transition matrix. The
model properties are now used to define a Neyman extension.

Definition 4.1.1. Let m := (mxyz)x,y,z∈S denote a leaf distribution on T . A Markov
distribution µ := (µuxyz)u,x,y,z∈S on T subject to the Neyman model with

mxyz =
∑
u∈S

µuxyz for x, y, z ∈ S,

is called Neyman extension to m on T .

Applying properties (4.1.1) and (4.1.2) to the system (LF) shows that a triple leaf
distribution with a Neyman extension has to obey certain relations. These relations
are presented in the following lemma:

Lemma 4.1.1. Let k ≥ 3, and let m denote a leaf distribution on L. If m has a
Neyman extension µ on T , it satisfies the following conditions for x 6= y 6= z ∈ S:

(4.1.3) mxxx = m000, mxxy = m001, mxyx = m010, myxx = m100, mxyz = m012.

Thus, a triple leaf distribution subject to a Neyman extension is characterized by five
values. The summation condition for probabilities yields the following relationship:
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(4.1.4) km000 + k(k − 1)(m001 +m010 +m100 + (k − 2)m012) = 1.

These observations lead to the following insight:

Lemma 4.1.2. Let m denote a leaf distribution with Markov extension µ. Then,
finding a characterization of µ under the Neyman model by solving (LF) is equivalent
to solving

km000 = (1− (k − 1)pα)(1− (k − 1)pβ)(1− (k − 1)pγ) + (k − 1)pαpβpγ,

k m001 = (1− (k − 1)pα)(1− (k − 1)pβ)pγ + pαpβ(1− pγ),

k m010 = (1− (k − 1)pα)pβ(1− (k − 1)pγ) + pα(1− pβ)pγ,

k m100 = pα(1− (k − 1)pβ)(1− (k − 1)pγ) + (1− pα)pβpγ,

k m012 = pαpβ + pαpγ + pβpγ − 2kpαpβpγ.

(4.1.5)

System (4.1.5) consists of five equations in three variables. For k = 2 one will find
that

2(m000 +m001 +m010 +m100) = 1,

i.e. m012 is zero under the N2 model. This should be kept in mind for the following
considerations.

According to Chapter 2, a polynomial basis in m000,m001,m010,m100 and m012 is
needed to obtain a characterization of triple leaf distributions with a solution to
(4.1.5). Proposition 2.6.4 states that the dimension of the algebraic variety of such
distributions is equal to the dimension of the tangent space in a simple point. Using
this approach yields a lower bound for the number of polynomials in the basis:

Lemma 4.1.3. The dimension of the variety of triple leaf distributions with a
Neyman-like extension is two.

Thus at least two polynomials are needed to describe this variety. The software
Singular (see Greuel et al. [2001]) provides the package elim which generates an
elimination ideal for a given set of polynomials. Applying this package to (4.1.5)
yields the following result, where x1 = m000, x2 = m001, x3 = m010, x4 = m100, x5 =
m012:

Nk
1 (x1, . . . , x5) = kx1 + k(k − 1)(x2 + x3 + x4 + (k − 2)x5)− 1,

Nk
2 (x2, . . . , x5) = k3(x2

2x3 + x2
2x4 + x2x

2
3 + x2x

2
4 + x2

3x4 + x3x
2
4) + 2k3x2x3x4

+ (k − 2)k3x5(x
2
2 + x2

3 + x2
4) + (k − 2)3k3x3

5 − k(3− 6k + 2k2)x2
5

+ x5 + k(3(k − 2)k2x5 − 1)(x2x3 + x2x4 + x3x4)

+ 2kx5((k − 2)2k2x5 − k + 1)(x2 + x3 + x4).
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It is possible to find alternative sets of polynomials, but they will not change the
algebraic variety for (x1, x2, x3, x4, x5). Obviously, (4.1.4) and Nk

1 are equivalent, i.e.
a leaf distribution m that obeys (4.1.3) satisfies Nk

1 (m) = 0. For the existence of a
solution of (LF) w.r.t. m, also Nk

2 (m) = 0 must necessarily hold.

Proposition 4.1.4. Let m denote a leaf distribution satisfying (4.1.3). If m has a
Neyman-like extension, it satisfies

Nk
1 (m000,m001,m010,m100,m012) = 0,(4.1.6)

Nk
2 (m001,m010,m100,m012) = 0.(4.1.7)

The polynomials Nk
1 and Nk

2 are phylogenetic invariants for the Neyman Nk model.
As indicated by various texts (eg. Allman and Rhodes [2003]) uniqueness of the
invariants is not given although the algebraic variety spanned by the polynomials
will stay the same. Since all triple leaf distributions in this section need to satisfy
(4.1.3), they are also in the algebraic variety of Nk

1 . Hence, only (4.1.7) will be cited
in later considerations.

4.1.2 An Algebraic Extension

The first step to find a solution for (4.1.5) w.r.t. a triple leaf distribution m is
to reduce the system to a number of equations equal to the number of variables.
Here, the pairwise leaf distributions come into consideration. In Baake [1998] is
stated that for symmetrical models of molecular evolution, pairwise leaf distribu-
tions are sufficient for a reconstruction of the initial tree. The needed pairwise leaf
distributions are derived from m through the following summations:

m01Σ = m010 +m100 + (k − 2)m012,

m0Σ1 = m001 +m100 + (k − 2)m012,

mΣ01 = m001 +m010 + (k − 2)m012.

(4.1.8)

Extending these computations using the equalities from (4.1.5) yields the following
system:

km01Σ = (1− (k − 1)pα)pβ + pα(1− (k − 1)pβ) + (k − 2)pαpβ,

k m0Σ1 = (1− (k − 1)pα)pγ + pα(1− (k − 1)pγ) + (k − 2)pαpγ,

k mΣ01 = (1− (k − 1)pβ)pγ + pβ(1− (k − 1)pγ) + (k − 2)pβpγ,

(4.1.9)

For writing purpose denote the set of pairwise leaf distributions to a given triple leaf
distribution m by mP , i.e.:

(4.1.10) mP := {(mxyΣ)x,y∈S , (mxΣz)x,z∈S , (mΣyz)y,z∈S}.
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Concerning the relationship of solutions for (4.1.5) and (4.1.9) resp. the following
statements are valid.

Lemma 4.1.5. Let m denote a triple leaf distribution and mP its associated set
of pairwise leaf distributions. Any solution of system (4.1.5) w.r.t. m is a solution
of (4.1.9) w.r.t mP . Conversely, any solution of (4.1.9) w.r.t. mP is a solution of
(4.1.5) w.r.t. m, if m obeys (4.1.6) and (4.1.7).

Due to this observation the establishment of a solution to (4.1.9) provides a solution
for (4.1.5) under the conditions of (4.1.6) and (4.1.7). The next result gives an idea
about the number of possible solutions to (4.1.9).

Proposition 4.1.6. Let m denote a triple leaf distribution and mP its associated
set of pairwise leaf distributions. If the vector (pα, pβ, pγ) is a solution of (4.1.9)
w.r.t. mP , then (p̂α, p̂β, p̂γ) with p̂δ = 2/k − pδ, δ ∈ L is also a solution of (4.1.9).

This result shows that two different solutions of (4.1.9) w.r.t. a set of pairwise leaf
distributions mP can be identified by one vector (pα, pβ, pγ). Hence, an algebraic
solution (pα, pβ, pγ) to (4.1.9) can only be unique up to duplicity. When applying
the insights to the initial system (4.1.5), one finds that the observed symmetry is
only subject to (4.1.9). For the triple system (4.1.5) an initial distribution m will
be recovered at most once. The verification of this observation will be found later
in this section.

The generation of an explicit solution to (4.1.9) unearthed a well-known quantity:

Definition 4.1.2. The Hamming distance between α and β is defined by

(4.1.11) dαβ :=
∑
x6=y

mxyΣ = k(k − 1)m01Σ.

The Hamming distances dαγ and dβγ are defined analogously.

In this section, the Hamming distance mainly occurs in the following term:

(4.1.12) d̃δ1δ2 = 1− k

k − 1
dδ1δ2 , δ1, δ2 ∈ L.

A closer examination of (4.1.12) for α, β yields in combination with (4.1.11) that
d̃αβ = 1− k2m01Σ. In addition, if the summation property

1 =
∑

x,y∈S

mxyΣ = km00Σ + k(k − 1)m01Σ

is considered, (4.1.12) can be written as:

d̃αβ = 1− k(k − 1)m01Σ − km01Σ = k(m00Σ −m01Σ).
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This observation suggests a treatment of d̃δ1δ2 as the similarity-dissimilarity-differ-
ence of leaves δ1 and δ2. The above proportions and definitions are used for the
following result:

Theorem 4.1.7. Let m denote a leaf distribution on L which satisfies (4.1.3) and
let mP denote the associated set of pairwise leaf distributions. Then, system (4.1.9)
has a unique solution up to duplicity w.r.t mP , if for each pair δ1, δ2 of leaves the
associated Hamming distance satisfies

(4.1.13) dδ1δ2 6=
k − 1

k
.

The extension is determined by

(4.1.14) pα =
1

k

(
1± ∆

d̃βγ

)
, pβ =

1

k

(
1± ∆

d̃αγ

)
, pγ =

1

k

(
1± ∆

d̃αβ

)
,

where

(4.1.15) ∆ :=

√
d̃αβd̃αγ d̃βγ.

If m satisfies (4.1.7), exactly one of these solutions is a solution of system (4.1.5)
w.r.t. m.

Hence a characterization for a Neyman-like extension is established. Real data
usually provide Hamming distances smaller than 1 − 1/k. The solutions have a
similar structure compared to Theorem 3.1.4 and looking at Corollary 3.2.1 indicates
that the result also holds in the N2-case. However, in the two-state-case only one
invariant, namely (4.1.6) is needed, and m has two symmetrical extensions. Next,
using the terminology from the theorem, the transfer to triple leaf distributions is
quantified:

Corollary 4.1.8. Denote by m̂ and m̃ the triple leaf distributions on T obtained
by inserting the symmetrical solutions from (4.1.14) into (4.1.5). Their difference
is given by:

m̃000 − m̂000 =
2

k2
(k − 1)(k − 2)∆, m̃012 − m̂012 =

4

k2
∆,

m̃001 − m̂001 = m̃010 − m̂010 = m̃100 − m̂100 = − 2

k2
(k − 2)∆,

where ∆ is given by (4.1.15).

Since (4.1.13) implies ∆ 6= 0, each set of pairwise distributions that yields a solution
according to Theorem 4.1.7 returns two different triple leaf distributions each with
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a Neyman extension. Thus, if the initial triple distribution m admits (4.1.7), one
has to check which solution returns m. The following example provides an insight
into all the statements from this section.

Example 4.1.1. Consider the following vector, satisfying (4.1.4):

m = (100, 15, 15, 10, 5)/1000.

Due to its generation, the vector satisfies N4
1 (m) = 0. Unfortunately, for the second

invariant one computes N4
2 (m) = 17/125000 6= 0, i.e. m has no Neyman-like exten-

sion. Still the associated pairwise distributions provide two solution vectors p1 and
p2 with

p1 =

(
1

15
,

1

10
,

1

10

)
, p2 =

(
13

30
,
2

5
,
2

5

)
.

The probability vectors generated by inserting p1 and p2 respectively into (4.1.5)
have the form

m1 = (197, 31, 31, 21, 9)/2000,

m2 = (49, 32, 32, 27,−12)/1000.

Both vectors satisfy (4.1.6) and (4.1.7). p1 is stochastically admissible, whereas m2

is not a probability distribution.

4.1.3 A Neyman Extension

After finding conditions for a Neyman-like extension, the conditions for a true Ney-
man extension need to be established. This is done by bounding the parameters
provided in Theorem 4.1.7 between zero and 1/(k − 1).

Theorem 4.1.9. Let m denote a triple leaf distribution on T satisfying (4.1.3) and
mP its associated set of pairwise leaf distributions. If for δ1 6= δ2 6= δ3 ∈ L the
similarity-dissimilarity-differences satisfy

(4.1.16) 0 <
d̃δ1δ2 d̃δ1δ3

d̃δ2δ3

≤ 1,

then system (4.1.9) has a stochastically admissible solution w.r.t. the associated
pairwise leaf distributions. Further, if

(4.1.17) 0 <
d̃δ1δ2 d̃δ1δ3

d̃δ2δ3

≤ 1

(k − 1)2
,
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both solutions of system (4.1.9) are stochastically admissible w.r.t. the associated
pairwise leaf distributions. If m admits (4.1.7), one of those solutions characterizes
a Neyman extension to m.

Condition (4.1.16) provides the positivity condition for the product d̃αβd̃αγ d̃βγ which
is necessary for non-complex transition parameters. Further, (4.1.16) can be consid-
ered as a three-point-condition, since it relates the associated similarity-dissimilarity-
differences. It states that the leaves have to be close enough together. Moreover,
two distances can be negative. Recalling that d̃αβ = k(m00Σ − m01Σ), negativity
means that the sequences have more dissimilarities than similarities. Thus, either
all leaves have sufficiently similar sequences or one leaf is significantly different from
the other two. Comparing that insight to Theorem 3.1.5 one can observe that the
statements are similar. This leads to the conjecture that an even number of pairwise
negative relations is a necessary condition for all models.

Example 4.1.2. Recall the distribution from Example 4.1.1. The three similarity-
dissimilarity-differences have the following values:

d̃αβ = d̃αγ =
11

25
, d̃βγ =

9

25
.

With this values the condition (4.1.16) can be observed by

d̃αβ d̃αγ

d̃βγ

=
112

152
,

d̃αβd̃βγ

d̃αγ

=
d̃αγ d̃βγ

d̃αβ

= d̃βγ =
9

25
.

Thus, at least one solution characterizes a Neyman process. However, (4.1.17) is
not satisfied, since all quotients exceed 1/9. As already seen, p1 is the stochastically
admissible solution and p2 is not admissible.

4.1.4 Rates and Molecular Clock

This section will look into the implications of the computed properties to the very
popular rate model and its even more popular special case of molecular clock. The
models introduce edge lengths and have one rate matrix containing the infinitesimal
rates of change across an edge.

Rates

The relationship between transition probabilities and rates is given through

Pδ = eQtδ , δ ∈ L,

where Q denotes the rate matrix of the associated model and tδ the edge length
of edge (%, δ), δ ∈ L on tree T . The biggest advantage of the model is that the
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transition matrix to a path is the product of the transition matrices of the edges
along the path, whereas the rate matrix is computed as the sum of the rates. The
following rate matrix is subject to the Neyman Nk model:

Q =


−(k − 1)q q . . . q

q −(k − 1)q . . . q
...

...
. . .

...
q q . . . −(k − 1)q


 k rows,

i.e. the Neyman model with rates on T consists of three edge lengths and a rate
parameter q. Thus, the information obtained by solving the system for probabilities
is not sufficient to obtain edge lengths as well as a rate. However, it is possible to
provide a closed form for the product rate qδ = q tδ, δ ∈ L, as the following result
shows.

Proposition 4.1.10. Let m denote a triple leaf distribution on T satisfying (4.1.3)
and mP its associated set of pairwise leaf distributions. If the pairwise leaf distribu-
tions satisfy (4.1.17), exactly one set of transition probabilities transfers to the rate
set

qα = − 1

2k

(
ln |d̃αβ|+ ln |d̃αγ| − ln |d̃βγ|

)
,

qβ = − 1

2k

(
ln |d̃αβ|+ ln |d̃βγ| − ln |d̃αγ|

)
,

qγ = − 1

2k

(
ln |d̃βγ|+ ln |d̃αγ| − ln |d̃αβ|

)
.

(4.1.18)

If only (4.1.16) is satisfied, the existence of admissible rates is not guaranteed.

The parameters qδ, δ ∈ L will be called rates only if they are subject to a set of
transition probabilities. The relationship between rates and probabilities under the
Neyman model is given by

qδ = −1

k
ln(1− kpδ) = −1

k
ln

(
± ∆

d̃δ1δ2

)
, δ 6= δ1 6= δ2 ∈ L.

Thus, only one set of transition parameters will provide the logarithm to a positive
number. Therefore, if only (4.1.16) is satisfied, one has to ask whether the computed
rates are subject to the transition probabilities. Hence, only (4.1.17) guarantees
rates.

Molecular Clock

As introduced in Example 1.3.4, the molecular clock is a model which assumes
that different species had the same time to evolve from their common ancestor.
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This property provides the possibility of finding a root while further restricting the
model. Let T̂ := (V̂ , Ê) denote the rooted binary tree with

(4.1.19) V̂ := {δ1, δ2, δ3, %1, %2}, Ê := {(%2, δ1), (%2, δ2), (%1, %2), (%1, δ3)},

where (δ1, δ2, δ3) denotes a permutation of the leaves in L. In the case of molecular
clock, the edge lengths of (%2, δ1) and (%2, δ2) must be equal and the edge length of
(%1, δ3) must be equal to the sum of edge lengths of (%1, %2) and (%2, δ1) (see Figure
1.8). Incorporating these conditions, one gets the following result:

Proposition 4.1.11. Let m denote a triple leaf distribution on T satisfying (4.1.3)
and let mP denote its associated set of pairwise leaf distributions. If the pairwise
leaf distributions satisfy (4.1.17), and if:

(4.1.20) d̃δ1δ3 = d̃δ2δ3 ≤ d̃δ1δ2 , δ1 6= δ2 6= δ3 ∈ L,

the model parameters have an extension with molecular clock on tree T̂ := (V̂ , Ê)
with (4.1.19). This extension is provided by the following rates:

qc
δ1

= qc
δ2

= − 1

2k
ln |d̃δ1δ2|, qc

δ3
= − 1

2k
ln |d̃δ1δ3|, qc

%2
= − 1

2k

(
ln |d̃δ1δ3 | − ln |d̃δ1δ2|

)
.

The necessity for condition (4.1.20) becomes apparent when considering that the
rates need to be non-negative in order to relate to transition probabilities. Thus,
when looking at qc

%2
one automatically finds that condition (4.1.20) needs to be

satisfied. Figure 4.1 illustrates a working molecular clock, whereas Figure 4.2 shows
a non-working case.

Figure 4.1: Molecular clock: Extension possible. The edge (ρ, γ)
is longer than edges (ρ, α) and (ρ, β). Thus, a vertex τ can be
introduced that obeys the addition rule for molecular clock.

Molecular clock has certain implications to a leaf distribution, for which (4.1.5) has
a solution. Condition (4.1.20) implies with (4.1.14), that pδ1 = pδ2 < pδ3 must hold
for δ1 6= δ2 6= δ3. Applying this insight to (4.1.5) yields that one of the following
three cases holds:

1. If pα = pβ < pγ then m010 = m100.
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2. If pα = pγ < pβ then m001 = m100.

3. If pβ = pγ < pα then m001 = m010.

If all three transition parameters were equal, m001 = m010 = m100 would follow.
Moreover, with d̃δ1δ2 = d̃δ1δ3 the inner vertices %1 and %2 merges.

Figure 4.2: Molecular clock: Extension not possible. The edge
(ρ, γ) is shorter than edges (ρ, α) and (ρ, β). The edge (τ, γ) must
have negative length in order to satisfy the addition rule for molec-
ular clock.

These observations conclude that a Neyman model with molecular clock is even
more restrictive to the input and should be treated with even more care than the
already quite restrictive rate model.

Example 4.1.3. Generating a leaf distribution that is subject to molecular clock is
rather easy. Take two values and take them as the similarity-dissimilarity difference.
To accommodate Theorem 4.1.9 and (4.1.20) choose k = 4 and

d̃αβ = d̃αγ = 1/9, d̃βγ = 1/5.

The resulting rates are given by

qc
β = qc

γ = 0.20118, qc
α = 0.274653, qc

%2
= 0.0734733.

Applying Theorem 4.1.7yields the following two sets of transition parameters:

p1
β = p1

γ =
1

4

(
1− 1√

5

)
, p1

α =
1

4

(
1−

√
5

9

)
,

p2
β = p2

γ =
1

4

(
1 +

1√
5

)
, p2

α =
1

4

(
1 +

√
5

9

)
.

Clearly, the second set is inadmissible. The full implication of this observation
becomes visible when looking at the associated five-valued vector generated by in-
serting the transition parameters into (4.1.5):

m1 = (0.0400751, 0.0144194, 0.0144194, 0.019975, 0.0105806),

m2 = (0.0307582, 0.017525, 0.017525, 0.0230806, 0.00747495).
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The structure of m1 and m2 happily agrees with the above statements concerning
leaf distributions.

4.2 The Kimura 2ST Model

The Neyman model is the simplest model for molecular evolution. It treated any
possible kind of change uniformly. The next step is to distinguish kinds of change.
The simplest such distinction is the defining property of the Kimura 2ST model.
This model is introduced in Example 1.3.3.

The following section will look at the properties of this model. The section is
composed as the preceding sections. First basic properties are introduced. Then,
conditions on leaf distributions for algebraic and stochastically admissible extension
are established, and a closed form for the extension presented. Finally, the transfers
of the results to the rate model and molecular clock is considered. Recall that
T := (V , E) denotes the triple tree with (4.0.1) and leaf set L := {α, β, γ}. Let
S := {0, 1, 2, 3} and denote the class of purines by {0, 1} and the class of pyrimidines
by {2, 3}. A change within a class is called a transition, while a change from
purine to pyrimidine or back is called a transversion. To avoid confusion with
the phrase transition in terms of the general transition of the process along an edge,
above notation will be applied whenever the kind of state change is mentioned.

4.2.1 Basic Model Properties

Let µ := (µuxyz)u,x,y,z∈S denote a Markov distribution on T w.r.t. Kimura 2ST
model, i.e. µ is subject to (LF), and has the following properties for δ ∈ L (e.g.
Ewens and Grant [2001, sect. 13.2]):

µu := P(X% = u) = 1/4 for all u ∈ S,(4.2.1)

pδ := µx|u = P(Xδ = x|X% = u) for u 6= x ∈ {0, 1} or u 6= x ∈ {2, 3},(4.2.2)

qδ := µy|u = P(Xδ = y|X% = u) for u ∈ {0, 1}, y ∈ {2, 3} or vice versa.(4.2.3)

Equally to (4.1.1), stationarity of states in the root is proposed by (4.2.1). Properties
(4.2.2) and (4.2.3) introduce the transition and transversion parameter for the
model respectively.

The properties show that such a Markov distribution is fully determined by the
family (pδ, qδ)δ∈L. Note that the sum pδ +2qδ cannot exceed 1/3 if µ is a probability
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distribution. The model properties are used to define a Kimura extension.

Definition 4.2.1. Let m := (mxyz)x,y,z∈S denote a leaf distribution on L. A Markov
distribution µ on T subject to the Kimura 2ST model with

mxyz =
∑
u∈S

µuxyz, x, y, z ∈ S,

is called a Kimura extension to m on T .

Similarly to the Neyman model, those properties have implications to the factor-
ization property (LF). Since the model does not exactly distinguish the kind state
change, the probability of some joint states is equal. In particular, there are ten
groups of states and within each group, all states have the same probability. This
property is presented in the next lemma.

Lemma 4.2.1. Let m denote a leaf distribution on L. If m has a Kimura extension
µ on T , it satisfies the following conditions

m000 = m111 = m222 = m333, m001 = m110 = m223 = m332,

m010 = m101 = m232 = m323, m011 = m100 = m233 = m322,

m002 = m003 = m112 = m113 = m220 = m221 = m330 = m331,

m020 = m030 = m121 = m131 = m202 = m212 = m303 = m313,

m022 = m033 = m122 = m133 = m200 = m211 = m300 = m311,

m012 = m013 = m102 = m103 = m230 = m231 = m320 = m321,

m021 = m031 = m120 = m130 = m203 = m213 = m302 = m312,

m023 = m032 = m123 = m132 = m201 = m210 = m301 = m310.

(4.2.4)

Thus, a triple leaf distribution m subject to a Kimura extension is characterized
by ten probability values. The summation property for distributions provides the
following relationship for those values

(4.2.5) 4(m000+m001+m010+m100)+8(m002+m020+m200+m012+m102+m201) = 1.

Applying the model properties (4.2.1)-(4.2.3) to the basic factorization equation
(LF) yields the following system that describes the relationship of the transition
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parameters to the ten probability values:

4m000 = (1− pα − 2qα)(1− pβ − 2qβ)(1− pγ − 2qγ) + pαpβpγ + 2qαqβqγ,

4m001 = (1− pα − 2qα)(1− pβ − 2qβ)pγ + pαpβ(1− pγ − 2qγ) + 2qαqβqγ,

4m010 = (1− pα − 2qα)pβ(1− pγ − 2qγ) + pα(1− pβ − 2qβ)pγ + 2qαqβqγ,

4m100 = (1− pα − 2qα)pβpγ + pα(1− pβ − 2qβ)(1− pγ − 2qγ) + 2qαqβqγ,

4m002 = (1− pα − 2qα)(1− pβ − 2qβ)qγ + pαpβqγ + qαqβ(1− 2qγ),

4m012 = (1− pα − 2qα)pβqγ + pα(1− pβ − 2qβ)qγ + qαqβ(1− 2qγ),

4m020 = (1− pα − 2qα)qβ(1− pγ − 2qγ) + pαqβpγ + qα(1− 2qβ)qγ,

4m021 = (1− pα − 2qα)qβpγ + pαqβ(1− pγ − 2qγ) + qα(1− 2qβ)qγ,

4m200 = qα(1− pβ − 2qβ)(1− pγ − 2qγ) + qαpβpγ + (1− 2qα)qβqγ,

4m201 = qα(1− pβ − 2qβ)pγ + qαpβ(1− pγ − 2qγ) + (1− 2qα)qβqγ.

(4.2.6)

This system consists of ten equations in six variables. Again, one has to distinguish
between algebraic solutions and stochastically admissible solution of the system. An
algebraic solution of (4.2.6) w.r.t. m will characterize a Kimura-type extension to
m on T , whereas a stochastically admissible solution will characterize a Kimura
extension to m on T , i.e. the latter will characterize a Markov process on T that
obeys the Kimura 2ST model.

According to Proposition 2.6.4, the dimension of the tangent space provides a lower
bound for the number of polynomials needed to span the space of leaf distributions
which have a solution.

Lemma 4.2.2. The dimension of the smallest variety containing all triple leaf
distributions {mxyz}x,y,z∈S with Kimura-type extensions is four.

Thus at least four polynomials are needed to characterize the variety of triple leaf
distributions with Kimura-type extensions. Computations with the software Sin-
gular returned a system of 18 polynomials in the ten variables provided by the left
hand sides of (4.2.6). Writing them out would take about 24 pages. As a (very)
small insight, equation (4.2.5) is included in the set of polynomials. For readabil-
ity reasons those polynomials will only be presented on the accompanying CD. In
accordance with Proposition 4.1.4 the following statement is given:

Proposition 4.2.3. There is a set of 18 polynomials Ki such that if a leaf distri-
bution m has a Kimura-type extension, it obeys (4.2.4) and

(4.2.7) Ki(m) = 0, i = 1, . . . , 8.

Clearly, all polynomials Ki denote phylogenetic invariants. Chapter 2 showed that a
given set of polynomials might not be the best basis for the sought algebraic variety.
It is possible, that a smaller system could be obtained via better algorithms. But
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it can always get worse. For instance, the algorithm employed in Mathematica
returned for the system (4.2.6) a system of 26 polynomials that filled more than 200
pages together.

4.2.2 An Algebraic Extension

After presenting conditions under which an algebraic extension exists, it is time to
present the derivation of a characterization of such an extension. Again, the pairwise
distributions are the key to the closed forms of a solution to (4.2.6). The pairwise
probabilities m01Σ and m02Σ are computed via

m01Σ = m010 +m100 + 2m012, m02Σ = m020 +m021 +m200 +m201.

The pairwise probabilities m0Σ1, m0Σ2, mΣ01 and mΣ02 are computed similarly. As
in the Neyman section the set of pairwise distributions to a given triple distribution
m is denoted by mP . System (4.2.6) yields the following relations between pairwise
distributions and transition parameters

4m01Σ = (1− pα − 2qα)pβ + pα(1− pβ − 2qβ) + 2qαqβ,

4m0Σ1 = (1− pα − 2qα)pγ + pα(1− pγ − 2qγ) + 2qαqγ,

4mΣ01 = (1− pβ − 2qβ)pγ + pβ(1− pγ − 2qγ) + 2qβqγ,

4m02Σ = qα + qβ − 4qαqβ,

4m0Σ2 = qα + qγ − 4qαqγ,

4mΣ02 = qβ + qγ − 4qβqγ.

(4.2.8)

Apparently, the latter three equations only depend on the transversion parame-
ters and are of the same type as system (4.1.9). Thus, recalling Theorem 4.1.7, the
system (4.2.8) has at least two solutions. The following proposition will provide a
first characterization of the solutions.

Proposition 4.2.4. If (pδ, qδ)δ∈L is a solution of (4.2.8) w.r.t. to a set of pairwise
distributions, then the following families are also a solution to (4.2.8) w.r.t. the
same set of pairwise distributions.

(p̂δ, qδ)δ∈L, where p̂δ = 1− 2qδ − pδ,(4.2.9)

(p̃δ, q̃δ)δ∈L, where 2q̃δ = 1− 2qδ and 2p̃δ = 1− 2pδ.(4.2.10)

The proposition shows that four different solutions of (4.2.8) w.r.t. a set mP of
pairwise leaf distributions can be identified by one family (pδ, qδ)δ∈L. Hence, an al-
gebraic solution to (4.2.8) can at most be unique up to symmetry. For an illustrative
analysis of the alternative solutions, a look at the associated transition matrices is
helpful.
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Property (4.2.9) relates to the following matrix operation

(4.2.11)


♣ ♠ ♦ ♦
♠ ♣ ♦ ♦
♦ ♦ ♣ ♠
♦ ♦ ♠ ♣

 −→


♠ ♣ ♦ ♦
♣ ♠ ♦ ♦
♦ ♦ ♠ ♣
♦ ♦ ♣ ♠

 ,

or literally, the probability of staying within a certain state class remains the same
only the kinds of state change within swap probabilities. When inserting (4.2.9) into
the initial system (4.2.6) one finds that it retains the triple leaf distribution. For
property (4.2.10) the following change can be observed:

(4.2.12)


♣ ♠ ♦ ♦
♠ ♣ ♦ ♦
♦ ♦ ♣ ♠
♦ ♦ ♠ ♣

 −→


2♦−♥ ♥ ♣+♠

2
♣+♠

2

♥ 2♦−♥ ♣+♠
2

♣+♠
2

♣+♠
2

♣+♠
2

2♦−♥ ♥
♣+♠

2
♣+♠

2
♥ 2♦−♥

 ,

or more precisely, the probability mass of staying within a class and changing the
class are swapped and accordingly redistributed. Contrary to (4.2.9), this property
does not keep (4.2.6) invariant to the change and leads to the conjecture that the
solutions found for a set of pairwise distributions will provide two different triple
distributions when inserted into (4.2.6). This conjecture is verified later on.

After having proposed the general style of a solution it is time to introduce its
explicit form. Its computation unearthed certain notions whose relevance for the
Kimura 2ST model resembles the relevance of the similarity-dissimilarity differences
for the Neyman model.

Definition 4.2.2. Denote by

ds
αβ := 1− 8m01Σ − 8m02Σ, dv

αβ := 1− 16m02Σ,

the transition- and resp. the transversion difference between α and β. The
differences dv

αγ, d
s
αγ, d

v
βγ, d

s
βγ are defined accordingly.

Under the Kimura 2ST model, the joint probabilities for a pair of leaves are related
in the following way:

4m00Σ + 4m01Σ + 8m02Σ = 1

With this knowledge, the transition- and the transversion difference can re-
spectively be written as:

dv
αβ = 4(m00Σ +m01Σ)− 8m02Σ,(4.2.13)

ds
αβ = 4(m00Σ −m01Σ),(4.2.14)

yielding the following interpretations of the differences:
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The transition difference is the difference of the probability of both leaves having
states in the same class and the probability of both having states in different classes,
whereas the transversion difference is the difference of the probability of both
leaves having the same state and the probability of both having different states in
the same class.

With these notions, the explicit form of the characterization of a Kimura-type ex-
tension for a given set of pairwise leaf distributions is introduced:

Theorem 4.2.5. Let m be a leaf distribution on L satisfying (4.2.4) and mP its
associated set of pairwise distributions. If the differences dv

δ1δ2
and ds

δ1δ2
satisfy for

δ1 6= δ2 ∈ L

(4.2.15) dv
δ1δ2

6= 0, ds
δ1δ2

6= 0,

then system (4.2.8) has a unique solution up to symmetry w.r.t. mP .

The solution is characterized by

qα =
1

4

(
1± ∆v

dv
βγ

)
, pα =

1

2

(
1− 2qα ±

∆s

ds
βγ

)
,

qβ =
1

4

(
1± ∆v

dv
αγ

)
, pβ =

1

2

(
1− 2qβ ±

∆s

ds
αγ

)
,

qγ =
1

4

(
1± ∆v

dv
αβ

)
, pγ =

1

2

(
1− 2qγ ±

∆s

ds
αβ

)
,

(4.2.16)

with

∆v :=
√
dv

αβd
v
αγd

v
βγ, ∆s :=

√
ds

αβd
s
αγd

s
βγ.

In addition, if m satisfies (4.2.7), it has a Kimura-type extension characterized by
the values given above.

Together with the observations from Proposition 4.2.4, it becomes apparent that
a set of pairwise leaf distributions yields two different triple leaf distribution each
of which is subject to a pair of solution vectors, namely the vectors (pδ, qδ)δ∈L and
(1 − 2qδ − pδ, qδ). Those two triple leaf distributions only include m if it satisfies
(4.2.7). The next result will show that the inferred triple leaf distributions are indeed
distinct. For this purpose attach an index to a parameter family according to their
sign in (4.2.16). For instance, the family (p++

δ , q+
δ )δ∈L denotes the parameters with

q+
δ1

=
1

4

(
1+

∆v

dv
δ2δ3

)
, p++

δ1
=

1

2

(
1− 2q+

δ1
+

∆s

ds
δ2δ3

)
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for δ1 6= δ2 6= δ3. Similarly, (p+−
δ , q+

δ )δ∈L, (p−+
δ , q−δ )δ∈L and (p−−δ , q−δ )δ∈L are intro-

duced.

Corollary 4.2.6. Let (p++
δ , q+

δ )δ∈L, (p+−
δ , q+

δ )δ∈L, (p−+
δ , q−δ )δ∈L and (p−−δ , q−δ )δ∈L de-

note the solutions to system (4.2.8) w.r.t. a set of pairwise leaf distributions satisfy-
ing condition (4.2.15). Further, let m1,m2,m3 and m4 denote the associated triple
leaf distributions obtained by inserting the solutions into system (4.2.6). Then,
m1 = m2 and m3 = m4 and the difference of the two distributions is given by

m3
000 −m1

000 =
∆v

16

(
ds

αβ

dv
αβ

+
ds

αγ

dv
αγ

+
ds

βγ

dv
βγ

)
, m3

001 −m1
001 =

∆v

16

(
ds

αβ

dv
αβ

−
ds

αγ

dv
αγ

−
ds

βγ

dv
βγ

)
,

m3
010 −m1

010 =
∆v

16

(
ds

αγ

dv
αγ

−
ds

αβ

dv
αβ

−
ds

βγ

dv
βγ

)
, m3

100 −m1
100 =

∆v

16

(
ds

βγ

dv
βγ

−
ds

αγ

dv
αγ

−
ds

αβ

dv
αβ

)
,

m3
002 −m1

002 = m1
012 −m3

012 =
∆v

16

ds
αβ

dv
αβ

, m3
020 −m1

020 = m1
021 −m3

021 =
∆v

16

ds
αγ

dv
αγ

,

m3
200 −m1

200 = m1
201 −m3

201 =
∆v

16

ds
βγ

dv
βγ

.

The triple distributions m1 and m3 are distinct since (4.2.15) demands that the
differences are not zero. Hence, all solutions have to be considered in order to
distinguish the solution for a given triple distribution m that satisfies (4.2.7). Ad-
ditionally it has to be noted that a triple leaf distribution m that does not satisfy
(4.2.7) still provides two distinct triple distributions with Kimura-type extensions.

Example 4.2.1. Consider the following vector:

m = (17, 7, 2, 7, 7, 0, 2, 0, 2, 0)/200.

This vector satisfies (4.2.5) but is no root of the established phylogenetic invariants.
However, as already mentioned, its associated pairwise leaf distributions will provide
sets of transition parameters. These are presented here:

p++
α = p++

β = p++
γ =

1
2

(
1−

√
17−

√
28

5

)
, p+−

α = p+−
β = p+−

γ =
1
2

(
1−

√
17 +

√
28

5

)
,

for q+
α = q+

β = q+
γ = 1

4

(
1 +

√
17/5

)
, and

p−+
α = p−+

β = p−+
γ =

1
2

(
1 +

√
17 +

√
28

5

)
, p−−α = p−−β = p−−γ =

1
2

(
1 +

√
17−

√
28

5

)

for q−α = q−β = q−γ = 1
4

(
1 −

√
17/5

)
. Reinserting these parameters into (4.2.6)
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yields the following vectors:

200m− = (19.0793, 6.30691, 1.30691, 6.30691, 6.30691,

0.693087, 1.30691, 0.693087, 1.30691, 0.693087),

200m+ = (10.4207, 9.19309, 4.19309, 9.19309, 9.19309,

− 2.19309, 4.19309,−2.19309, 4.19309,−2.19309).

Both vectors are roots of the phylogenetic invariants mentioned previously, but
apparently m+ is no distribution vector.

4.2.3 A Kimura Extension

Next, as in the preceding sections, conditions for the stochastic admissibility of the
solutions are sought. Similarly to the previous cases, such conditions are obtained
by bounding the terms derived through algebraic computations between zero and
the upper bound admissible for the model. The next theorem proposes necessary
conditions:

Theorem 4.2.7. Let m denote a triple leaf distribution on L and mP its associated
set of pairwise leaf distributions. A necessary condition for stochastic admissibility
is

(4.2.17) 0 < dv
δ1δ2

dv
δ1δ3

≤ dv
δ2δ3

, 0 < ds
δ1δ2

ds
δ1δ3

≤ ds
δ2δ3

, δ1 6= δ2 6= δ3 ∈ L.

If for δ1 6= δ2 6= δ3 ∈ L

(4.2.18) −1

2
≤

(
∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

)
≤ 3

2
and − 1

2
≤

(
∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

)
≤ 3

2

holds, the parameter families (q−δ , p
−−
δ )δ∈L and (q−δ , p

−+
δ )δ∈L are stochastically ad-

missible. If

(4.2.19) −3

2
≤

(
∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

)
≤ 1

2
and − 3

2
≤

(
∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

)
≤ 1

2

holds, the parameter families (q+
δ , p

+−
δ )δ∈L and (q+

δ , p
++
δ )δ∈L are stochastically ad-

missible. All four families are stochastically admissible if

(4.2.20) 0 ≤
∣∣∣∣ ∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

∣∣∣∣ ≤ 1

2
and 0 ≤

∣∣∣∣ ∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

∣∣∣∣ ≤ 1

2
,

Proposition 4.2.4 shows that if family (q+
δ , p

++
δ )δ∈L is stochastically admissible, also

(q+
δ , p

+−
δ )δ∈L necessarily must be stochastically admissible. This observation is ver-
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ified by (4.2.18) and (4.2.19). (4.2.20) is a simple conclusion from (4.2.18) and
(4.2.19).

Example 4.2.2. Recall Example 4.2.1. Relating the distribution m to (4.2.17)
yields

dv
αβd

v
αγ

dβγv

=
dv

αβd
v
βγ

dαγv

=
dv

αγd
v
βγ

dαβv

=
17

25
,

ds
αβd

s
αγ

dβγs

=
ds

αβd
s
βγ

dαγs

=
ds

αγd
s
βγ

dαβs

=
7

25
.

Hence, the necessary condition is satisfied. Consider the following differences:

∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

=
31

50
>

1

2
,

∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

=
3

50
.

According to this result only (4.2.18) holds, i.e. the parameter families to q−δ are
stochastically admissible. This agrees with the observations in Example 4.2.1, where
m+ is no leaf distribution and the associated parameter families are not admissible.

4.2.4 Rates and Molecular Clock

As previously done for to the Neyman model, this section will present a transfer of
the results to the popular rate model. The particularities of this specific model were
given in Example 1.3.4.

Rates

Similarly to the observations in Section 4.1.4, the parameters provided in Theorem
4.2.5 are not sufficient to explicitly return edge lengths for the model but need to
be incorporated into the rates. Thus, each edge has its own rate matrix. For the
Kimura 2ST model such a rate matrix has the following form:

Qδ =


−rpδ

− 2rqδ
rpδ

rqδ
rqδ

rpδ
−rpδ

− 2rqδ
rqδ

rqδ

rqδ
rqδ

−rpδ
− 2rqδ

rpδ

rqδ
rqδ

rpδ
−rpδ

− 2rqδ

 , δ ∈ L

The relationship of rates to probabilities is given by Pδ = eQδ , δ ∈ L. Using this,
the rates are computed:

Proposition 4.2.8. Let m be a triple leaf distribution on L and mP its associated
set of pairwise leaf distributions. If mP satisfies (4.2.17) and (4.2.18), the transition
probabilities correspond to the following rates for δ1 6= δ2 6= δ3 ∈ L
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rqδ1
= −1

8
(ln |dv

δ1δ2
|+ ln |dv

δ1δ3
| − ln |dv

δ2δ3
|),(4.2.21)

rpδ1
= −1

4

(
ln
|ds

δ1δ2
|

|dv
δ1δ2

|
+ ln

|ds
δ1δ3

|
|dv

δ1δ3
|
− ln

|ds
δ2δ3

|
|dv

δ2δ3
|

)
.(4.2.22)

Observe that contrary to the transition probabilities, the rates provide only one
family of admissible parameters. This is due to the following fact

Lemma 4.2.9. Only the triple leaf distribution m generated by the parameter set
(pδ, qδ)δ∈L with

(4.2.23) qδ1 =
1

4

(
1−

√
dv

δ1δ2
dv

δ1δ3

dv
δ2δ3

)
, pδ1 =

1

2

(
1− 2qδ1 −

√
ds

δ1δ2
ds

δ1δ3

ds
δ2δ3

)
,

for every permutation (δ1, δ2, δ3) of the leaves in L, has an extension to the rate
model.

Thus, the rate model loses three alternative solutions and one associated leaf distri-
bution cannot be extended to the rate specification of the Kimura 2ST model. In
effect, an input leaf distribution m has to satisfy an enormous amount of conditions
to be subject to the rate model.

Molecular Clock

Now the rate model is transferred to the molecular clock framework. The molecular
clock extends a given leaf distribution to the tree T̂ := (V̂ , Ê) with (4.1.19). Molec-
ular clock demands that the two shorter terminal edges in T̂ have the same lengths
and that the rate for the long terminal edge is equal to the sum of the length of
the short terminal edges and the length of the inner edge. The illustration of this
property is given in Figure 4.1. Using the length properties, the rates are obtained.

Proposition 4.2.10. Let m be a triple leaf distribution on L and mP its associated
set of pairwise leaf distributions. If for δ1 6= δ2 6= δ3 ∈ L the pairwise distributions
satisfy (4.2.17), (4.2.18) or (4.2.19) and

(4.2.24) ln |ds
δ1δ3

| = ln |ds
δ2δ3

| < ln |ds
δ1δ2

|, ln |dv
δ1δ3

| = ln |dv
δ2δ3

| < ln |dv
δ1δ2

|,

then the model parameters have an extension with molecular clock on tree T̂ with
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(4.1.19). This extension is characterized by the following rates:

rqδ1
= rqδ2

= −1

8
ln |dv

δ1δ2
|, rpδ1

= rpδ2
= −1

8
ln
|ds

δ1δ2
|2

|dv
δ1δ2

|
,

rqδ3
= −1

8
ln |dv

δ1δ3
|, rq%2

= −1

8
(ln |dv

δ1δ3
| − ln |dv

δ1δ2
|),

rpδ3
= −1

8
ln
|ds

δ1δ3
|2

|dv
δ1δ3

|
, rp%2

= −1

8

(
ln
|ds

δ1δ3
|2

|dv
δ1δ3

|
− ln

|dδ1δ2|2

|dv
δ1δ2

|

)
.

Similarly to (4.1.20) condition (4.2.24) is needed to prevent tree structures, as illus-
trated by Figure 4.2. The next example presents a Kimura leaf distribution m that
is subject to the Kimura 2ST model with molecular clock.

Example 4.2.3. Generate a set of differences according to (4.2.24):

ds
αβ = ds

αγ = 3/10, ds
βγ = 2/5,

dv
αβ = dv

αγ = 1/2, dv
βγ = 7/10.

The associated rates are given by:

rqβ
= rqγ = 0.0445844, rqα = 0.0866434, rq%2

= 0.042059,

rpβ
= rpγ = 0.184488, rpα = 0.21435, rp%2

= 0.0298615,

and the associated transition parameters from (4.2.16) have the following values:

qβ = qγ = 0.040835, qα = 0.100596,

pβ = pγ = 0.142937, pα = 0.162233.

Inserting these parameters into (4.2.6) yields the triple distribution:

m = (0.0965951, 0.0222173, 0.00621881, 0.0222173, 0.0277203,

0.00315619, 0.00621881, 0.00315619, 0.0159673, 0.00590768),

which provides a nice insight into the structure of a leaf distributions subject to the
Kimura 2ST model with molecular clock.

4.3 Proofs

This section cumulates all proofs of the results of this chapter. Before starting with
proofs consider the following equation system:

y12 = a2x1 + a1x2 − cx1x2,

y13 = a3x1 + a1x3 − cx1x3,

y23 = a3x2 + a2x3 − cx2x3.

(4.3.1)



4.3 Proofs 107

Deriving the solution of this system helps to derive solutions for the systems regarded
in this chapter.

Lemma 4.3.1. Assume that the parameters a1, a2, a3, y12, y13, y23 ∈ C satisfy

c 6= 0 and aiaj 6= cyij, i 6= j.

Then, the system (4.3.1) has two solutions. The solutions have the following explicit
form:

(4.3.2) x+
i =

1

c

(
ai +

√
(aiaj − cyij)(aiak − cyik)

ajak − cyjk

)
and x−i = 2ai/c− x+

i for (i, j, k) ∈ π(1, 2, 3).

Here, π denotes the permutation mapping. The signs in (x1, x2, x3) must be the
same, i.e. only the vectors (x+

1 , x
+
2 , x

+
3 ) and (x−1 , x

−
2 , x

−
3 ) are admissible solutions.

This becomes apparent when inserting the notions from (4.3.2) into (4.3.1), as it
will be done in the proof below.

Proof. Change over the first two equations of (4.3.1) after x1 to get

x2(a1 − cx1) = y12 − a2x1, x3(a1 − cx1) = y13 − a3x1.

Inserting these terms into the third equation yields the equation

y23(a1 − cx1)
2 = a3(y12 − a2x1)(a1 − cx1) + a2(y13 − a3x1)(a1 − cx1)

− c(y12 − a2x1)(y13 − a3x1)

= a3(a1y12 − x1(cy12 + a1a2) + a2cx
2
1)

+ a2(a1y13 − x1(cy13 + a1a3) + a3cx
2
1)

− c(y12y13 − x1(a2y12 + a3y13) + a2a3x
2
1).

Changing over and summarizing the terms returns in the following quadratic equa-
tion:

0 = (cx2
1 − 2a1x1)(cy23 − a2a3) + a2

1y23 − a1a3y12 − a1a2y13 + cy12y13.

Therefore, one arrives at the form:

x±1 =
a1

c
±

√
a2

1

c2
− a2

1y23 − a1a3y12 − a1a2y13 + cy12y13

c2y23 − ca2a3

.



108 4.3 Proofs

Considering the root term more closely provides the following computations:

a2
1(cy23 − a2a3)− ca2

1y23 + ca1a3y12 + ca1a2y13 − c2y12y13

c2(cy23 − a2a3)

=
−a2

1a2a3 + ca1a3y12 + ca1a2y13 − c2y12y13

c2(cy23 − a2a3)

=
(a1a2 − cy12)(a1a3 − cy13)

c2(a2a3 − cy23)
,

thus yielding the root term proposed in (4.3.2). Since the computations for x2 and
x3 are analogously, the form (4.3.2) is observed.

For the completion of the proof insert the proposed terms into system (4.3.1). Again,
for symmetry reasons inserting into one equation is sufficient for validity on the whole
system. Therefore,

y12 = a2x1 + a1x2 − cx1x2

and

cy12 = a2

(
a1 ±

√
(a1a2 − cy12)(a1a3 − cy13)

a2a3 − cy23

)
+ a1

(
a2 ±

√
(a1a2 − cy12)(a2a3 − cy23)

a1a3 − cy13

)

−
(

a1 ±

√
(a1a2 − cy12)(a1a3 − cy13)

a2a3 − cy23

)(
a2 ±

√
(a1a2 − cy12)(a2a3 − cy23)

a1a3 − cy13

)
= a1a2 ± (a1a2 − cy12).

The equality is only observed if both terms have the same sign. Hence, the demand
for same signs for the parameters x1, x2 and x3 is verified. This completes the
proof. 2

4.3.1 Proofs for Section 4.1

Here, the Neyman Nk model on triple trees was analyzed.

Proof of Lemma 4.1.1. With (4.1.1) the notion of (LF) for mxyz, x, y, z ∈ S
changes to:

(4.3.3) mxyz =
∑
u∈S

µuxyz =
∑
u∈S

q%
up

%α
uxp

%β
uyp

%γ
uz =

1

k

∑
u∈S

p%α
uxp

%β
uyp

%γ
uz.

Property (4.1.2) gives the following specification for the transition parameters

p%δ
ux =

{
pδ, u 6= x,
1− (k − 1)pδ, u = x

, u, x ∈ S,
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i.e. the transition parameters are independent of the states. Inserting this observa-
tion into (4.3.3) thus yields

kmxxx = (1− (k − 1)pα)(1− (k − 1)pβ)(1− (k − 1)pγ) + (k − 1)pαpβpγ,

kmxxy = (1− (k − 1)pα)(1− (k − 1)pβ)pγ + pαpβ(1− pγ),

kmxyx = (1− (k − 1)pα)pβ(1− (k − 1)pγ) + pα(1− pβ)pγ,

kmxyy = (1− pα)pβpγ + pα(1− (k − 1)pβ)(1− (k − 1)pγ),

kmxyz = pαpβ + pαpγ + pβpγ − 2kpαpβpγ,

for all x 6= y 6= z ∈ S. Therefore, for all x 6= y 6= z ∈ S set

mxxx = m000, mxxy = m001, mxyx = m010, mxyy = m100, mxyz = m012.

Thus, (4.1.3) is derived an the lemma thus proven. 2

Proof of Lemma 4.1.2. The previous proof already derived (4.2.6) and the nam-
ing of the left hand sides is given by (4.1.3). 2

Proof of Lemma 4.1.3. The dimension is obtained by deriving the functional ma-
trix to (4.1.5) and computing its rank at a rational point. Each column of the matrix
contains the following entries:

f1,i1 = (k − 1)pi2pi3 − (k − 1)(1− (k − 1)pi2)(1− (k − 1)pi3),

f2,i1 = pi2(1− pi3)− (k − 1)pi3(1− (k − 1)pi2),

f3,i1 = pi3(1− pi2)− (k − 1)pi2(1− (k − 1)pi3),

f4,i1 = (1− (k − 1)pi2)(1− (k − 1)pi3)− pi2pi3 ,

f5,i1 = pi2 + pi3 − 2kpi2pi3 ,

with i1 6= i2 6= i3 ∈ L. Since the functional matrix is a 5 × 3 matrix, it cannot
have a rank larger than tree. Select three rows from the matrix and compute the
determinant to this 3× 3 submatrix. W.l.o.g. consider, rows two, three and five:

det(f2, f3, f5) = −(1− kpα)(1− kpβ)(1− kpγ)(pβ + pγ).

Apparently, the roots in k of this polynomial are 1/pα, 1/pβ and 1/pγ. Hence for
(pα, pβ, pγ) = (2/7, 2/7, 2/7) the determinant has no integer valued root and the
rank of the functional matrix in this point is three for any k ∈ Z, i.e. the tangent
space has dimension two. With Proposition 2.6.4 this is also the dimension of the
variety and the proposition is thus proven. 2

Proof of Proposition 4.1.4. Though Singular returns the polynomials for fixed
k only, these polynomials are used to derive the polynomials presented in (4.1.6)
and (4.1.7). Computations for a sufficient set of k return the proposed polynomials
for arbitrary k. The remaining statements follow from Proposition 2.2.1 and this
completes the proof. 2
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Proof of Lemma 4.1.5. Let f1, . . . , f5 and g1, g2, g3 denote the polynomials gen-
erated by (4.1.5) and (4.1.9) respectively by subtracting the right hand sides from
their respective left hand sides. (4.1.8) implies 〈g1, g2, g3〉 ⊂ 〈f1, . . . , f5〉 and with
Proposition 2.6.1.1 V(g1, g2, g3) ⊃ V(f1, . . . , f5). This proves the first statement.

The second statement follows from the insight that 〈g1, g2, g3, N
k
1 , N

k
2 〉 = 〈f1, . . . , f5〉

and from Lemma 2.6.2. 2

Proof of Proposition 4.1.6. The system (4.1.9) is equivalent to the following sys-
tem:

km01Σ = pα + pβ − kpαpβ,(4.3.4)

km0Σ1 = pα + pγ − kpαpγ,(4.3.5)

kmΣ01 = pβ + pγ − kpβpγ.(4.3.6)

To show that (p̂α, p̂β, p̂γ) is a solution to the same left hand sides as (pα, pβ, pγ), it
is sufficient to insert it into the right hand side of (4.3.4):

p̂α + p̂β − kp̂αp̂β = (
2

k
− pα) + (

2

k
− pβ)− k(

2

k
− pα)(

2

k
− pβ)

=
4

k
− (pα + pβ)− (

4

k
− 2(pα + pβ) + kpαpβ)

= pα + pβ − kpαpβ = km01Σ.

This completes the proof. 2

Proof of Theorem 4.1.7. System (4.1.9) resembles system (4.3.1) with

a1 = a2 = a3 = 1, c = k, y12 = km01Σ, y13 = km0Σ1, y23 = kmΣ01.

Thus, according to Lemma 4.3.1 the derived parameters have the form presented in
(4.1.14) and the established solution is unique up to duplicity. 2

Proof of Corollary 4.1.8. The proof starts with inserting the insights from the
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proof of Proposition 4.1.6 into (4.1.5):

m̃000 − m̂000 =

(
k − 2

k
− (k − 1)pα

)(
k − 2

k
− (k − 1)pβ

)(
k − 2

k
− (k − 1)pγ

)
+ (1− (k − 1)pα)(1− (k − 1)pβ)(1− (k − 1)pγ) + (k − 1)pαpβpγ

− (k − 1)(
2

k
− pα)(

2

k
− pβ)(

2

k
− pγ)

=
(k − 2)3

k3
− (k − 2)2(k − 1)

k2
(pα + pβ + pγ) +

(k − 2)(k − 1)2

k
(pαpβ + pαpγ + pβpγ)

− (k − 1)3pαpβpγ + 1− (k − 1)(pα + pβ + pγ) + (k − 1)2(pαpβ + pαpγ + pβpγ)

− (k − 1)3pαpβpγ + (k − 1)pαpβpγ −
8(k − 1)

k3
+

4(k − 1)

k2
(pα + pβ + pγ)

− 2(k − 1)

k
(pαpβ + pαpγ + pβpγ) + (k − 1)pαpβpγ

= 2(k − 1)(k − 2)

(
1

k2
− 1

k
(pα + pβ + pγ) + (pαpβ + pαpγ + pβpγ)− kpαpβpγ

)
.

Next, the notions from (4.1.14) are inserted into the brackets. Note that the factor
1/k2 comes with every summand.

1− 3 +
∆

d̃βγ

+
∆

d̃αγ

+
∆

d̃βγ

+
(
1− ∆

d̃βγ

)(
1− ∆

d̃αγ

)
+

(
1− ∆

d̃βγ

)(
1− ∆

d̃αβ

)
+

(
1− ∆

d̃αγ

)(
1− ∆

d̃αβ

)
−

(
1− ∆

d̃βγ

)(
1− ∆

d̃αγ

)(
1− ∆

d̃αβ

)
= ∆.

(4.3.7)

Thus the proposed result

m̃000 − m̂000 =
2

k2
(k − 1)(k − 2)∆

is returned. Now for the next equality:

m̃012 − m̂012 = pαpβ + pαpγ + pβpγ − 2kpαpβpγ −
(2

k
− pα

)(2

k
− pβ

)
−

(2

k
− pα

)(2

k
− pγ

)
−

(2

k
− pβ

)(2

k
− pγ

)
+ 2k

(2

k
− pα

)(2

k
− pβ

)(2

k
− pγ

)
= 4

(
1

k2
− 1

k
(pα + pβ + pγ) + (pαpβ + pαpγ + pβpγ)− kpαpβpγ

)
The term in the bracket was already computed in (4.3.7) and hence,

m̃012 − m̂012 =
4

k2
∆
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i.e. the proposed result. For the remaining equalities:

m̃001 − m̂001 = pγ + pαpβ − (k − 1)pγ(pα + pβ) + k(k − 2)pαpβpγ −
2

k
+ pγ

−
(2

k
− pα

)(2

k
− pβ

)
+ (k − 1)

(2

k
− pγ

)(4

k
− (pα + pβ)

)
− k(k − 2)

(2

k
− pα

)(2

k
− pβ

)(2

k
− pγ

)
= −2(k − 2)

(
1

k2
− 1

k
(pα + pβ + pγ) + (pαpβ + pαpγ + pβpγ)− kpαpβpγ

)
.

Again, the bracket was computed in (4.3.7) and from this the proposed equality

m̃001 − m̂001 = − 2

k2
(k − 2)∆

is established. The computations for the remaining differences are similar to the
final computation and thus the proof is finished. 2

Proof of Theorem 4.1.9. The parameter pδ, δ ∈ L yields a transition probability
if 0 ≤ pδ ≤ 1− 1/k. Inserting (4.1.14) returns

0 ≤ 1

k

(
1± ∆

d̃βγ

)
≤ 1

k − 1

0 ≤ 1± ∆

d̃βγ

≤ k

k − 1

−1 ≤ ± ∆

d̃βγ

≤ 1

k − 1
.

Applying (4.1.15) gives

−1 ≤ −

√
d̃αβ d̃αγ

d̃βγ

≤ 0, and 0 ≤

√
d̃αβ d̃αγ

d̃βγ

≤ 1

k − 1
.

The first inequality assures that p−α is a probability; the second applies to p+
α . Finally,

squaring the inequalities yields (4.1.16) and (4.1.17). Positivity follows from (4.1.13).
This concludes the proof. 2

Proof of Proposition 4.1.10. From Pδ = exp(Qδ), δ ∈ L derive

pδ =
1

k

(
1− e−kqδ

)
, qδ = −1

k
ln(1− kpδ).

Let δ1, δ2 ∈ L denote the remaining two leaves. Then inserting (4.1.14) yields

qδ = −1

k
ln

(
1−

(
1± ∆

d̃δ1δ2

))
= −1

k
ln

(
± ∆

d̃δ1δ2

)
.
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Only the positive part is usable. W.l.o.g., let d̃δ1δ2 > 0. Thus, one computes

qδ = −1

k
ln

√
d̃δδ1 d̃δδ2

d̃δ1δ2

= − 1

2k
ln
d̃δδ1 d̃δδ2

d̃δ1δ2

= − 1

2k

(
ln |d̃δδ1|+ ln |d̃δδ2| − ln |d̃δ1δ2|

)
,

i.e. the proposed notions. 2

Proof of Proposition 4.1.11. The rates for (%2, δ1) and (%2, δ2) must be the same.
Thus, from (4.1.14)

∆

d̃δ1δ3

=
∆

d̃δ2δ3

,

and therefore, dδ1δ3 = dδ2δ3 , and further, from (4.1.18)

qc
δ1

= − 1

2k

(
ln |d̃δ1δ2|+ ln |d̃δ1δ3 | − ln |d̃δ2δ3|

)
= − 1

2k
ln |d̃δ1δ2 |.

The rate for edge (%2, δ3) from T may be denoted by qδ3 . Then according to (4.1.18)
it has the form

qδ3 = − 1

2k

(
ln |d̃δ1δ3|+ ln |d̃δ2δ3| − ln |d̃δ1δ2|

)
= −1

k
ln |d̃δ1δ3|+

1

2k
ln |d̃δ1δ2|.

To compute qc
δ3

for edge (%1, δ3) and qc
%2

for edge (%1, %2) the molecular clock offers
the following equations:

qδ3 = qc
δ3

+ qc
%2
, qδ1 = qc

δ1
= qc

δ3
− qc

%2
.

Thus, compute qc
δ3

from

2qc
δ3

= qδ1 + qδ3 = − 1

2k
ln |d̃δ1δ2| −

1

k
ln |d̃δ1δ3|+

1

2k
ln |d̃δ1δ2| = −1

k
ln |d̃δ1δ3|

and qc
%2

from

2qc
%2

= qδ3−qδ1 = −1

k
ln |d̃δ1δ3 |+

1

2k
ln |d̃δ1δ2|+

1

2k
ln |d̃δ1δ2| = −1

k

(
ln |d̃δ1δ3|−ln |d̃δ1δ2|

)
.

These are the proposed terms and the proof is completed. 2

4.3.2 Proofs for Section 4.2

Here, the Kimura 2ST model on triple trees was examined.

Proof of Lemma 4.2.1. Insert the model properties into (LF) to obtain:

4mxxx = (1− pα − 2qα)(1− pβ − 2qβ)(1− pγ − 2qγ) + pαpβpγ + 2qαqβqγ, x ∈ S.

But the right hand side is independent of the choice of state x ∈ S, thusmxxx = m000.
The argument applies to all statements given in (4.2.4) and finally, (LF) yields (4.2.6)
under the Kimura 2ST model. 2
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Proof of Lemma 4.2.2. To determine the dimension of the variety compute the
functional matrix to system (4.2.6) in (pδ, qδ)δ∈L and look at the rank of this matrix.
The rows for pα and qα have the following form:

pβpγ − (1− pβ − 2qβ)(1− pγ − 2qγ) 2qβqγ − 2(1− pβ − 2qβ)(1− pγ − 2qγ)
pβ(1− 2qβ)− pγ(1− 2qβ) 2(qβqγ − pγ(1− pβ − 2qβ))
pγ(1− 2qβ)− pβ(1− 2qγ) 2(qβqγ − pβ(1− pγ − 2qγ))

(1− pβ − 2qβ)(1− pγ − 2qγ)− pβpγ 2(qβqγ − pβpγ)
−qγ(1− 2pβ − 2qβ) qβ(1 + 2qγ)− 2qγ(1− pβ)
qγ(1− 2pβ − 2qβ) qβ(1− 2qγ)− 2pβqγ

−qβ(1− 2pγ − 2qγ) qγ(1 + 2qβ)− 2qβ(1− pγ)
qβ(1− 2pγ − 2qγ) qγ(1− 2qβ)− 2qβpγ

0 pβpγ − 2qβqγ + (1− pβ − 2qβ)(1− pγ − 2qγ)
0 pβ + pγ − 2pβpγ − 2pβqγ − 2qβpγ − 2qβqγ


,

with similar rows for the other variables. For the vector

(pα, qα, pβ, qβ, pγ, qγ) = (1/20, 3/100, 2/50, 1/50, 1/10, 1/500)

the rank of the functional matrix

∇F =



−0.82032 −1.64856 −0.79244 −1.59476 −0.8168 −1.6364
−0.05616 −0.18392 −0.0442 −0.17788 0.8168 −0.0028
−0.00176 0.01624 −0.00168 0.02632 0 0.8196
0.05616 −0.0716 0.79244 −0.00988 0.0104 −0.07
0.82032 −0.00792 0.0442 −0.08948 −0.0104 −0.0908
0.00176 0.01976 0.00168 0.02968 0 0.0804
−0.01788 −0.03392 0 0.79742 −0.0178 −0.0058
0.01592 −0.00208 0 0.13368 0.0168 0.0268

0 0.82824 −0.02388 −0.05188 −0.0264 −0.0364
0 0.12776 0.02388 −0.00412 0.0264 0.0164


,

is six. Thus the dimension of the tangent space is four and with Proposition 2.2.1
this is also the dimension of the variety. This completes the proof. 2

Proof of Proposition 4.2.3. The polynomials (Ki)
18
i=1 are computed with Singu-

lar . They are sufficient for the description of the sought variety. The remaining
statements follow from Proposition 2.2.1. 2

Proof of Proposition 4.2.4. The statement is, that not only (pδ, qδ)δ∈L but also
(p̂δ, qδ)δ∈L and (p̃δ, q̃δ)δ∈L with

p̂δ = 1− 2qδ − pδ, 2q̃δ = 1− 2qδ and 2p̃δ = 1− 2pδ
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are solutions of (4.2.8). Similar to the previously considered models the proof of the
statement is sufficiently completed if only the following equations obey the proposi-
tions:

4m01Σ = pα(1− 2qβ) + pβ(1− 2qα) + 2qαqβ − 2pαpβ,(4.3.8)

4m02Σ = qα + qβ − 4qαqβ.(4.3.9)

Start with (4.3.9) and insert q̃α and q̃β:

2q̃α + 2q̃β − 8q̃αq̃β = 1− 2qα + 1− 2qβ − 2(1− 2qα)(1− 2qβ)

= 2− 2(qα + qβ)− 2 + 4(qα + qβ)− 8qαqβ = 2qα + 2qβ − 8qαqβ,

i.e. equivalence is attained. Now for equation (4.3.8) and vector (p̂δ, qδ)δ∈L:

p̂α(1− 2qβ) + p̂β(1− 2qα) + 2qαqβ − 2pαpβ

= (1− 2qα − pα)(1− 2qβ) + (1− 2qβ − pβ)(1− 2qα) + 2qαqβ

− 2(1− 2qα − pα)(1− 2qβ − pβ)

= 2(1− 2qα)(1− 2qβ)− pα(1− 2qβ)− pβ(1− 2qα) + 2qαqβ

− 2(1− 2qα)(1− 2qβ) + 2pα(1− 2qβ) + 2pbeta(1− 2qα)− 2pαpβ

= pα(1− 2qβ) + pβ(1− 2qα) + 2qαqβ − 2pαpβ,

and thus this configuration is verified. Finally apply (p̃δ, q̃δ)δ∈L to (4.3.8):

2p̃α(1− 2q̃β) + 2p̃β(1− 2q̃α) + 4q̃αq̃β − 4p̃αp̃β

= 2(1− 2pα)qβ + 2(1− 2pβ)qα + (1− 2qα)(1− 2qβ)− (1− 2pα)(1− 2pβ)

= 2qβ − 4pαqβ + 2qα − 4pβqα + 1− 2qα − 2qβ + 4qαqβ − 1 + 2pα + 2pβ − 4pαpβ

= 2pα(1− 2qβ) + 2pβ(1− 2qα) + 4qαqβ − 4pαpβ.

Hence, also this configuration solves (4.2.8) and the proof is thus completed. 2

Proof of Theorem 4.2.5. The notions for qδ, δ ∈ L immediately follow from The-
orem 4.1.7, since their defining equations are similar to (4.1.9). The defining equa-
tions for parameters pδ, δ ∈ L also resemble system (4.3.1) with

a1 = 1− 2qα, a2 = 1− 2qβ, a3 = 1− 2qγ, c = 2,

y12 = 4m01Σ − 2qαqβ, y13 = 4m0Σ1 − 2qαqγ, y23 = 4mΣ01 − 2qβqγ.

Hence, Lemma 4.3.1 provides the general structure of the proposed parameters. To
complete the proof, insert above conventions into the (4.3.2). The terms aiaj −
cyij, i 6= j are of particular interest. Take a closer look for i = 1, j = 2:

(1− 2qα)(1− 2qβ)− 8m01Σ + 2qα2qβ

=
1

4

(
1 +

∆v

dv
βγ

)(
1 +

∆v

dv
αγ

)
− 8m01Σ +

1

4

(
1− ∆v

dv
βγ

)(
1− ∆v

dv
αγ

)
=

1

2
+
dv

αβ

2
− 8m01Σ = 1− 8m01Σ − 8m02Σ = ds

αβ.



116 4.3 Proofs

Analogue computations yield a1a3 − cy13 = ds
αγ and a2a3 − cy23 = ds

βγ. Hence, also
these terms are observed and the proposed notions for pδ, δ ∈ L verified. Therefore,
with (4.3.1) the theorem is proven. 2

Proof of Corollary 4.2.6. For ease of reading set q1
δ := q+

δ , q
2
δ := q−δ , p

1
δ :=

p++
δ , p2

δ := p+−
δ , p3

δ := p−+
δ , p4

δ := p−−δ , δ ∈ L. First, the equalities m1 = m2

and m3 = m4 are verified. Start with the first equality by inserting the terms from
Theorem 4.2.5 into (4.2.6):

(4.3.10) 1− p1
α − 2q1

α = 1− 1

2
+ q1

α −
∆s

2ds
βγ

− 2q1
α =

1

2
(1− 2q1

α −
∆s

ds
βγ

) = p2
α.

This property will be used to verify that solutions (p1
δ , q

1
δ ) and (p2

δ , q
1
δ ) yield the same

triple leaf distribution.

(1− p1
α − 2q1

α)(1− p1
β − 2q1

β)(1− p1
γ − 2q1

γ) + p1
αp

1
βp

1
γ + 2q1

αq
1
βq

1
γ

= p2
αp

2
βp

2
γ + p1

αp
1
βp

1
γ + 2q1

αq
1
βq

1
γ

= (1− p2
α − 2q1

α)(1− p2
β − 2q1

β)(1− p2
γ − 2q1

γ) + p2
αp

2
βp

2
γ + 2q1

αq
1
βq

1
γ.

Next, consider the equalities m1
001 = m2

001, m
1
002 = m2

002 and m1
012 = m2

012:

(1− p1
α − 2q1

α)(1− p1
β − 2q1

β)p1
γ + p1

αp
1
β(1− p1

γ − 2q1
γ) + 2q1

αq
1
βq

1
γ

= p2
αp

2
βp

1
γ + p1

αp
1
βp

2
γ + 2q1

αq
1
βq

1
γ,

(1− p1
α − 2q1

α)(1− p1
β − 2q1

β)q1
γ + p1

αp
1
βq

1
γ + q1

αq
1
β(1− 2q1

γ)

= p2
αp

2
βq

1
γ + p2

αp
2
βq

1
γ + q1

αq
1
β(1− 2q1

γ),

(1− p1
α − 2q1

α)p1
βq

1
γ + p1

α(1− p1
β − 2q1

β)q1
γ + q1

αq
1
β(1− 2q1

γ)

= p2
αp

1
βq

1
γ + p1

αp
2
βq

1
γ + q1

αq
1
β(1− 2q1

γ).

Similar to the above computations these results already provide equality. The re-
maining equalities are computed similarly and thus the equality m1 = m2 is ob-
served. Through similar computations m3 = m4 is obtained.

Next, the difference m1 −m3 will be computed. Using above notions examine the
differences. For symmetry reasons, it is sufficient to consider the following differ-
ences:

4(m1
000 −m3

000) = p2
αp2

βp2
γ + p1

αp1
βp1

γ + 2q1
αq1

βq1
γ − p4

αp4
βp4

γ − p3
αp3

βp3
γ − 2q2

αq2
βq2

γ ,

4(m1
001 −m3

001) = p2
αp2

βp1
γ + p1

αp1
βp2

γ + 2q1
αq1

βq1
γ − p4

αp4
βp3

γ − p3
αp3

βp4
γ − 2q2

αq2
βq2

γ ,

4(m1
002 −m3

002) = p2
αp2

βq1
γ + p1

αp1
βq1

γ + q1
αq1

β(1− 2q1
γ)− p4

αp4
βq2

γ − p3
αp3

βq2
γ − q2

αq2
β(1− 2q2

γ),

4(m1
012 −m3

012) = p2
αp1

βq1
γ + p1

αp2
βq1

γ + q1
αq1

β(1− 2q1
γ)− p4

αp3
βq2

γ − p3
αp4

βq2
γ − q2

αq2
β(1− 2q2

γ).
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Consider the triple products separately:

8p1
αp

1
βp

1
γ = (1− 2q1

α +
∆s

ds
βγ

)(1− 2q1
β +

∆s

ds
αγ

)(1− 2q1
γ +

∆s

ds
αβ

)

= 1− 2(q1
α + q1

β + q1
γ) + 4(q1

αq
1
β + q1

αq
1
γ + q1

βq
1
γ)− 8q1

αq
1
βq

1
γ

+
∆s

ds
αβ

+
∆s

ds
αγ

+
∆s

dβγ

+ 4q1
αq

1
β

∆s

ds
αβ

+ 4q1
αq

1
γ

∆s

ds
αγ

+ 4q1
βq

1
γ

∆s

ds
βγ

+ ∆s

− 2q1
α(

∆s

ds
αβ

+
∆s

ds
αγ

)− 2q1
β(

∆s

ds
αβ

+
∆s

ds
βγ

)− 2q1
γ(

∆s

ds
αγ

+
∆s

ds
βγ

)

+ (1− 2q1
α)ds

βγ + (1− 2q1
β)ds

αγ + (1− 2q1
γ)d

s
αβ,

8p2
αp

2
βp

2
γ = (1− 2q1

α −
∆s

ds
βγ

)(1− 2q1
β −

∆s

ds
αγ

)(1− 2q1
γ −

∆s

ds
αβ

)

= 1− 2(q1
α + q1

β + q1
γ) + 4(q1

αq
1
β + q1

αq
1
γ + q1

βq
1
γ)− 8q1

αq
1
βq

1
γ

− ∆s

ds
αβ

− ∆s

ds
αγ

− ∆s

dβγ

− 4q1
αq

1
β

∆s

ds
αβ

− 4q1
αq

1
γ

∆s

ds
αγ

− 4q1
βq

1
γ

∆s

ds
βγ

−∆s

+ 2q1
α(

∆s

ds
αβ

+
∆s

ds
αγ

) + 2q1
β(

∆s

ds
αβ

+
∆s

ds
βγ

) + 2q1
γ(

∆s

ds
αγ

+
∆s

ds
βγ

)

+ (1− 2q1
α)ds

βγ + (1− 2q1
β)ds

αγ + (1− 2q1
γ)d

s
αβ.

Thus, summing both left hand sides yields:

4(p1
αp

1
βp

1
γ+p

2
αp

2
βp

2
γ) = 1− 2(q1

α + q1
β + q1

γ) + 4(q1
αq

1
β + q1

αq
1
γ + q1

βq
1
γ)

− 8q1
αq

1
βq

1
γ + (1− 2q1

α)ds
βγ + (1− 2q1

β)ds
αγ + (1− 2q1

γ)d
s
αβ.

Inserting those notions and their analogous versions for the other terms into the
initial difference one gets

8(m1
000 −m3

000) = q2
α − q1

α + q2
β − q1

β + q2
γ − q1

γ

+ 2(q1
αq

1
β − q2

αq
2
β + q1

αq
1
γ − q2

αq
2
γ + q1

βq
1
γ − q2

βq
2
γ)

+ ds
αβ(q2

γ − q1
γ) + ds

αγ(q
2
β − q1

β) + ds
βγ(q

2
α − q1

α)

(4.3.11)

Now a closer observation of the differences is appropriate:

4(q2
α − q1

α) = 1− ∆v

dv
βγ

− 1− ∆v

dv
βγ

= −2
∆v

dv
βγ

(4.3.12)

16(q1
αq

1
β − q2

αq
2
β) = (1 +

∆v

dv
βγ

)(1 +
∆v

dv
αγ

)− (1− ∆v

dv
βγ

)(1− ∆v

dv
αγ

) = 2(
∆v

dv
αγ

+
∆v

dv
βγ

).

Reconstructing this yields:

m1
000 −m3

000 = −
(
ds

αβ

dv
αβ

+
ds

αγ

dv
αγ

+
ds

βγ

dv
αγ

)
∆v

16
.
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For the next differences consider the triple products:

8p1
αp

1
βp

2
γ = (1− 2q1

α +
∆s

ds
βγ

)(1− 2q1
β +

∆s

ds
αγ

)(1− 2q1
γ −

∆s

ds
αβ

)

= 1− 2(q1
α + q1

β + q1
γ) + 4(q1

αq
1
β + q1

αq
1
γ + q1

βq
1
γ)− 8q1

αq
1
βq

1
γ

− ∆s

ds
αβ

+
∆s

ds
αγ

+
∆s

dβγ

− 4q1
αq

1
β

∆s

ds
αβ

+ 4q1
αq

1
γ

∆s

ds
αγ

+ 4q1
βq

1
γ

∆s

ds
βγ

−∆s

+ 2q1
α(

∆s

ds
αβ

− ∆s

ds
αγ

) + 2q1
β(

∆s

ds
αβ

− ∆s

ds
βγ

)− 2q1
γ(

∆s

ds
αγ

+
∆s

ds
βγ

)

− (1− 2q1
α)ds

βγ − (1− 2q1
β)ds

αγ + (1− 2q1
γ)d

s
αβ,

8p2
αp

2
βp

1
γ = (1− 2q1

α −
∆s

ds
βγ

)(1− 2q1
β −

∆s

ds
αγ

)(1− 2q1
γ +

∆s

ds
αβ

)

= 1− 2(q1
α + q1

β + q1
γ) + 4(q1

αq
1
β + q1

αq
1
γ + q1

βq
1
γ)− 8q1

αq
1
βq

1
γ

+
∆s

ds
αβ

− ∆s

ds
αγ

− ∆s

dβγ

+ 4q1
αq

1
β

∆s

ds
αβ

− 4q1
αq

1
γ

∆s

ds
αγ

− 4q1
βq

1
γ

∆s

ds
βγ

+ ∆s

− 2q1
α(

∆s

ds
αβ

− ∆s

ds
αγ

)− 2q1
β(

∆s

ds
αβ

− ∆s

ds
βγ

) + 2q1
γ(

∆s

ds
αγ

+
∆s

ds
βγ

)

− (1− 2q1
α)ds

βγ − (1− 2q1
β)ds

αγ + (1− 2q1
γ)d

s
αβ.

Summing both left hand sides yields:

4(p1
αp

1
βp

2
γ+p

2
αp

2
βp

1
γ) = 1− 2(q1

α + q1
β + q1

γ) + 4(q1
αq

1
β + q1

αq
1
γ + q1

βq
1
γ)

− 8q1
αq

1
βq

1
γ − (1− 2q1

α)ds
βγ − (1− 2q1

β)ds
αγ + (1− 2q1

γ)d
s
αβ.

Now consider the difference m1
001−m3

001. Derive the description for the other terms
accordingly to get:

8(m1
001 −m3

001) = q2
α − q1

α + q2
β − q1

β + q2
γ − q1

γ

+ 2(q1
αq

1
β − q2

αq
2
β + q1

αq
1
γ − q2

αq
2
γ + q1

βq
1
γ − q2

βq
2
γ)

+ ds
αβ(q2

γ − q1
γ)− ds

αγ(q
2
β − q1

β)− ds
βγ(q

2
α − q1

α).

As in (4.3.11) the first two lines cancel each other and the remaining terms yield:

m1
001 −m3

001 = −
(
ds

αβ

dv
αβ

−
ds

αγ

dv
αγ

−
ds

βγ

dv
βγ

)
∆v

16

and similarly

m1
010 −m2

010 = −
(
ds

αγ

dv
αγ

−
ds

αβ

dv
αβ

−
ds

βγ

dv
βγ

)
∆v

16
,

m1
100 −m2

100 = −
(
ds

βγ

dv
βγ

−
ds

αβ

dv
αβ

−
ds

αγ

dv
αγ

)
∆v

16
.



4.3 Proofs 119

For the remaining two cases the pairwise products are of interest:

4p1
αp

1
β = (1− 2q1

α +
∆s

ds
βγ

)(1− 2q1
β +

∆s

ds
αγ

)

= 1− 2(q1
α + q1

β) + 4q1
αq

1
β +

∆s

ds
βγ

(1− 2q1
β) +

∆s

ds
αγ

(1− 2q1
α) + ds

αβ,

4p2
αp

2
β = (1− 2q1

α −
∆s

ds
βγ

)(1− 2q1
β −

∆s

ds
αγ

)

= 1− 2(q1
α + q1

β) + 4q1
αq

1
β −

∆s

ds
βγ

(1− 2q1
β)− ∆s

ds
αγ

(1− 2q1
α) + ds

αβ,

4p1
αp

2
β = (1− 2q1

α +
∆s

ds
βγ

)(1− 2q1
β −

∆s

ds
αγ

)

= 1− 2(q1
α + q1

β) + 4q1
αq

1
β +

∆s

ds
βγ

(1− 2q1
β)− ∆s

ds
αγ

(1− 2q1
α)− ds

αβ,

4p2
αp

1
β = (1− 2q1

α −
∆s

ds
βγ

)(1− 2q1
β +

∆s

ds
αγ

)

= 1− 2(q1
α + q1

β) + 4q1
αq

1
β −

∆s

ds
βγ

(1− 2q1
β) +

∆s

ds
αγ

(1− 2q1
α)− ds

αβ.

Inserting these computations into the difference m1
002 −m3

002 returns:

8(m1
002 −m3

002) = 2(q1
αq

1
β − q2

αq
2
β − q1

αq
1
γ + q2

αq
2
γ − q1

βq
1
γ + q2

βq
2
γ)(4.3.13)

+ q1
γ − q2

γ + ds
αβ(q1

γ − q2
γ).

Applying the notions from (4.3.12) to (4.3.13) yields:

m1
002 −m3

002 =
∆v

16

ds
αβ

dv
αβ

and accordingly

m1
020 −m3

020 =
∆v

16

ds
αγ

dv
αγ

, m1
200 −m3

200 =
∆v

16

ds
βγ

dv
βγ

.

Finally, for the difference m1
012 −m3

012 compute

8(m1
012 −m3

012) = 2(q1
αq

1
β − q2

αq
2
β − q1

αq
1
γ + q2

αq
2
γ − q1

βq
1
γ + q2

βq
2
γ)

+ q1
γ − q2

γ + dαβs(q2
γ − q1

γ).

Consistently with (4.3.13) this yields for the final differences:

m1
012 −m3

012 = −∆v

16

ds
αβ

dv
αβ

, m1
021 −m3

021 = −∆v

16

ds
αγ

dv
αγ

, m1
201 −m3

201 = −∆v

16

ds
βγ

dv
βγ

.

This completes the proof. 2
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Proof of Theorem 4.2.7. Set δ1 6= δ2 6= δ3 ∈ L. The conditions 0 < dv
δ1δ2

dv
δ1δ3

dv
δ2δ3

and 0 < ds
δ1δ2

ds
δ1δ3

ds
δ2δ3

follow immediately from the necessity to avoid complex solu-
tions.

To get a stochastic solution the following conditions must be satisfied:

0 ≤ 2qδ1 ≤ 1, 0 ≤ pδ1 ≤ 1, 0 ≤ pδ1 + 2qδ1 ≤ 1.

The first two conditions are necessary to guarantee that the transition parameters
are actually probabilities and the third condition is necessary to guarantee that
P %δi = (p%δi

ux )u,x∈S is a transition matrix. First, consider the inequality for qδ:

0 ≤ 1

2
± ∆v

2dv
δ2δ3

≤ 1, −1

2
≤ ± ∆v

2dv
δ2δ3

≤ 1

2
,

and thus 0 ≤ dv
δ1δ2

dv
δ1δ3

≤ dv
δ2δ3

.

For the remaining conditions consider each parameter family separately. Start with
(q+

δ , p
++
δ )δ∈L:

0 ≤ 1− 2q+
δ1

+
∆s

ds
δ2δ3

≤ 2, 0 ≤ 1 + 2q+
δ1

+
∆s

ds
δ2δ3

≤ 2,

0 ≤ 1

2
− ∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

≤ 2, 0 ≤ 3

2
+

∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

≤ 2,

−3

2
≤ ∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

≤ 1

2
, − 3

2
≤ ∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

≤ 1

2
.

Consider (q+
δ , p

+−
δ )δ∈L:

0 ≤ 1− 2q+
δ1
− ∆s

ds
δ2δ3

≤ 2, 0 ≤ 1 + 2q+
δ1
− ∆s

ds
δ2δ3

≤ 2,

0 ≤ 1

2
− ∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

≤ 2, 0 ≤ 3

2
+

∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

≤ 2,

−3

2
≤ ∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

≤ 1

2
, − 3

2
≤ ∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

≤ 1

2
.

Continue with (q−δ , p
−−
δ )δ∈L:

0 ≤ 1− 2q−δ1 −
∆s

ds
δ2δ3

≤ 2, 0 ≤ 1 + 2q−δ1 −
∆s

ds
δ2δ3

≤ 2,

0 ≤ 1

2
+

∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

≤ 2, 0 ≤ 3

2
− ∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

≤ 2,

−1

2
≤ ∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

≤ 3

2
, − 1

2
≤ ∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

≤ 3

2
.



4.3 Proofs 121

Finish the task with (q−δ , p
−+
δ )δ∈L:

0 ≤ 1− 2q−δ1 +
∆s

ds
δ2δ3

≤ 2, 0 ≤ 1 + 2q−δ1 +
∆s

ds
δ2δ3

≤ 2,

0 ≤ 1

2
+

∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

≤ 2, 0 ≤ 3

2
− ∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

≤ 2,

−1

2
≤ ∆v

2dv
δ2δ3

+
∆s

ds
δ2δ3

≤ 3

2
, − 1

2
≤ ∆v

2dv
δ2δ3

− ∆s

ds
δ2δ3

≤ 3

2
.

Therefore, in accordance with Proposition 4.2.4 either both families to q+
% resp.

q−% are stochastically admissible or not and thus there are either zero, two or four
stochastically admissible solutions. This completes the proof.

2

Proof of Proposition 4.2.8. The relationship between rates and probabilities is
given through Pδ = eQtδ , δ ∈ L. In our case Qδ := Qtδ. This relationship yields the
following equations:

qδ =
1

4
(1− e−4rqδ ), pδ =

1

4
(1 + e−4rqδ − 2e2(rqδ

+rpδ
)), δ ∈ L.

Restructuring the equations yields:

(4.3.14) rqδ
= −1

4
ln(1− 4qδ), rpδ

= −rqδ
− 1

2
ln(1− 2qδ − 2pδ).

An examination of the probabilities shows that for δ1 6= δ2 6= δ3 ∈ L the following
can be observed:

(4.3.15) 1− 4qδ1 = ± ∆v

dv
δ2δ3

, 1− 2qδ1 − 2pδ1 = 1− 2qδ1 − 1 + 2qδ1 ±
∆s

ds
δ2δ3

= ± ∆s

ds
δ2δ3

.

Looking at (4.3.14) indicates that only the constellation (qδ, pδ)δ∈L with

qδ1 =
1

4

(
1−

√
dv

δ1δ2
dv

δ1δ3

dv
δ2δ3

)
, pδ1 =

1

2

(
1− 2qδ1 −

√
ds

δ1δ2
ds

δ1δ3

ds
δ2δ3

)
can provide a rate, because all other constellations return the logarithm of a negative
number. Inserting the insights from (4.3.15) into (4.3.14) returns

rqδ1
= −1

4
ln

∣∣∣∣ ∆v

dv
δ2δ3

∣∣∣∣ = −1

8
(ln |dv

δ1δ2
|+ ln |dv

δ1δ3
| − ln |dv

δ2δ3
|),

rpδ1
= −rqδ1

− 1

2
ln

∣∣∣∣ ∆s

ds
δ2δ3

∣∣∣∣ = −1

8

(
ln
|ds

δ1δ2
|2

|dv
δ1δ2

|
+ ln

|ds
δ1δ3

|2

|dv
δ1δ3

|
− ln

|ds
δ2δ3

|2

|dv
δ2δ3

|

)
.

Thus the proposed rates are established and the proof is completed. 2
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Proof of Lemma 4.2.9. The lemma proposed that from the probability param-
eter families obtained in Theorem 4.2.5 only one family allows a transfer to the
rate model. This follows immediately from the previous proof when looking at the
generation of the rates, since the logarithm is defined only for the parameter family
given in (4.2.23). This completes the proof. 2

Proof of Proposition 4.2.10. As already stated, the molecular clock model is
based on the tree T̂ := (V̂ , Ê) with

V̂ := {δ1, δ2, δ3, %1, %2}, Ê := {(%1, %2), (%1, δ3), (%2, δ1), (%2, δ2)},

where (δ1, δ2, δ3) is a permutation of L and %2 = % ∈ V, the root of the initially
considered tree T . Molecular clock demands that the rates for edges (%2, δ1) and
(%2, δ2) are equal. Hence,

0 = rqδ1
− rqδ2

= −1

8

(
ln

∣∣∣∣ ∆v

dv
δ2δ3

∣∣∣∣− ln

∣∣∣∣ ∆v

dv
δ1δ3

∣∣∣∣) =
1

4
(ln |dv

δ1δ3
| − ln |dv

δ2δ3
|),

i.e. ln |dv
δ1δ3

| = ln |dv
δ3δ3

|. Thus under the molecular clock the transversion rate for
δ1, δ2 is given by:

(4.3.16) rqδ1
= rqδ2

= −1

8
ln |dv

δ1δ2
|.

Consider the transition rates. Together with (4.3.16) they yield:

0 = rpδ1
− rpδ2

= −rqδ1
− 1

2
ln

∣∣∣∣ ∆s

ds
δ2δ3

∣∣∣∣ + rqδ2
+

1

2
ln

∣∣∣∣ ∆s

ds
δ1δ3

∣∣∣∣ =
1

2
(ln |ds

δ1δ3
| − ln |ds

δ2δ3
|),

i.e. ln |ds
δ1δ3

| = ln |ds
δ2δ3

| and thus, the transition rate for δ1, δ2 is given by

(4.3.17) rpδ1
= rpδ2

= −1

8
ln
|ds

δ1δ2
|2

|dv
δ1δ2

|
.

These insights provide the rates for edge (%2, δ3) as

(4.3.18) rqδ3
= −1

4
ln |dv

δ1δ3
|+ 1

8
ln |dv

δ1δ2
|, rpδ3

= −1

4
ln
|ds

δ1δ3
|2

|dv
δ1δ3

|
+

1

8
ln
|ds

δ1δ2
|2

|dv
δ1δ2

|
.

For the remaining two rates the advantage of the rate model becomes apparent.
Whereas the transition matrices are related through multiplication, the rate matrices
are related through addition due to the property of the exponential function. Denote
the needed rates by rc

qδ3
, rc

pδ3
, rc

q%2
and rc

p%2
. Then, they are obtained by using the

following relationships:

rc
qδ3

+ rc
q%2

= rqδ3
, rc

pδ3
+ rc

p%2
= rpδ3

,

rc
qδ3
− rc

q%2
= rqδ1

, rc
pδ3
− rc

p%2
= rpδ1
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and thus,

2rc
qδ3

= rqδ3
+ rqδ1

, 2rc
pδ3

= rpδ3
+ rpδ1

,

2rc
q%2

= rqδ3
− rqδ1

, 2rc
p%2

= rpδ3
− rpδ1

.

Applying (4.3.16),(4.3.17) and (4.3.18) to this notions yields:

rc
qδ3

= −1

8
ln |dv

δ1δ3
|, rc

q%2
= −1

8
(ln |dv

δ1δ3
| − ln |dv

δ1δ2
|),

rc
pδ3

= −1

8
ln
|ds

δ1δ3
|2

|dv
δ1δ3

|
, rc

p%2
= −1

8

(
ln
|ds

δ1δ3
|2

|dv
δ1δ3

|
− ln

|ds
δ1δ2

|2

|dv
δ1δ2

|

)
.

This completes the proof. 2
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Chapter 5

Some Statistical Tools

Chapters 3 and 4 examined the algebraic properties of the equation system (LF)
w.r.t. three specifications. In particular, the examinations of Chapter 4 showed that
finding a Markov extension to a given leaf distribution is difficult.

The purpose of this chapter is to develop methods for the generation of satisfying
approximations of a given leaf distribution by a Markov process. To achieve this
goal, some estimators are presented, and various confidence regions are discussed.
In addition, an algorithm for finding a phylogenetic tree is presented. It makes use
of the parameters established for simple trees as developed in Chapters 3 and 4.

The chapter starts with the introduction of the Likelihood Scoring Functions, which
is used as a decision criterion for Maximum Likelihood methods. Its global maximum
is presented, and problems in the generation of a maximum under the constraints
of an underlying Markov process are discussed. The structure of the function is
well-known (e.g. Yang [1994]) and suggests to treat estimated leaf distributions as
a random vector for the parameters of a multinomial distribution.

Section 5.2 presents a couple of estimators. In Subsection 5.2.1 a consistent estima-
tor for real-valued vectors, whose elements sum to one, is introduced. In terms of
phylogenetic reconstruction its purpose is to manipulate inadmissible transition pa-
rameters obtained from solving system (LF). The particular form of the estimator
for the models discussed in this work are presented in Subsection 5.2.2. Subsec-
tion 5.2.3 provides a Bayesian estimator. Its purpose is the manipulation of input
distributions to provide admissible approximations. The main factor for applying
this estimator are joint states of probability zero in the joint leaf distribution. As
the constructions in Section 5.3 will indicate, most confidence regions provide only
marginal coverage if one of the entries of the vector, on which the region is generated,
is zero. In particular, such confidence regions contain only those vectors which have
entries of value zero for each state that has probability zero in the initially consid-
ered distribution. In the light of the observation that joint states of probability zero
will result in inadmissible solutions of (LF) such a probability mass redistribution

125
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has its own right.

Section 5.3 introduces several kinds of confidence regions and presents statements
concerning their applicability. Most statements are taken from Brown et al. [2001].
In Subsection 5.3.1 the Central Limit Theorem is used to consider square Gaussian
distributed random variables, which are chi square distributed. In Subsection 5.3.2
the Clopper-Pearson confidence interval is presented. In this approach all entries
of vector m are treated as independent random variables for a parameter p of a
Binomial distribution BN,p. The confidence region is generated by computing for
each vector entrymi the boundaries maxk BN,mi

(0, k) < η and mink BN,mi
(k,N), i =

1, . . . , K. Subsection 5.3.3 introduces confidence regions which also treat the vector
entries as independent random variables for a parameter p of a Binomial distribution
BN,p. These types are often compared w.r.t. their average coverage probability (e.g.
Brown et al. [2001], Jhun and Jeong [2000], May and Johnson [1997] or Agresti
and Coull [1998]). The results of these comparisons are part of the discussion in
Subsection 5.3.4.

In Section 5.4 an algorithm is introduced that uses the transition parameters ob-
tained from the triple tree restrictions of the input data. The structure of the
algorithm is similar to methods presented in Pearl and Tarsi [1986] or Chang [1996].
Moreover, the method will incorporate the estimator presented in Subsection 5.2.1.
The section closes with the application of the algorithm to the well-known Great
Ape {0, 1}−data set.

As before, the end of the chapter is reserved for the proofs.

5.1 The Likelihood Scoring Function

The chapter starts with a motivational consideration of some aspects of Maximum
Likelihood methods for phylogenetic reconstruction. Usually Maximum Likelihood
methods look for the model configuration which best estimates the observed fre-
quency vector n = Nm (cf. Felsenstein [1981] or Guindon and Gascuel [2003]). The
best ML estimator is defined as the maximum of the function:

(5.1.1) LS(n, p) =
∑
x∈Sn

nx ln(px),
∑
x∈Sn

px = 1.

This function is usually called the loglikelihood scoring function. The maximum of
this function is well-known:

Lemma 5.1.1. Let n = Nm denote a frequency vector. LS(n, p) is maximal in
p = m.

Generally, p = p(X, T ) denotes the leaf distribution subject to the model configura-
tion of a Markov process X on a tree T . Therefore, Maximum Likelihood methods
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aim for
argmaxX,T LS(n, p(X, T )).

If m is subject to a Markov process, any Maximum Likelihood method should return
m as the best approximation of itself.

The following example provides a visualization of the proposals for the results of
Corollary 4.1.8 by using (5.1.1) as a tool of comparison of possible estimations of an
initial relative frequency vector m:

Example 5.1.1. Recall from Example 4.1.1 that on a triple tree the initial relative
frequency vector

(5.1.2) m = (100, 15, 15, 10, 5)/1000.

does not have a Neyman extension, but by Theorem 4.1.7 its pairwise distributions
yield the following parameters of a possible leaf distribution

m1 = (197, 31, 31, 21, 9)/2000,(5.1.3)

m2 = (49, 32, 32, 27,−12)/1000.(5.1.4)

To compare these distribution vectors, their loglikelihood score is computed. For
the Neyman Nk model the score function is specified by:

LSa(b) = ka1 ln(b1) + k(k − 1)(a2 ln(b2) + a3 ln(b3) + a4 ln(b4) + (k − 2)a5 ln(b5)),

where a and b satisfy (4.1.4). Example 4.1.1 was considered for k = 4 states. The
loglikelihood scores for the three distributions are

LSm(m) = −3621.35, LSm(m1) = −3622.38, LSm(m2) = −3409.67 + 376.991i.

Therefore, in terms of the Likelihood score, the Markov process with triple leaf
distribution m1 provides a very good approximation of m. Since m2 contains a
negative value, the value LSm(m2) cannot be compared with the other families.
This problem is treated in Section 5.2.

Concerning the number of maxima of LS for a given vector n = Nm observe the
following fact:

Lemma 5.1.2. Let m denote a relative frequency vector over Sn on a leaf set L of
an unknown tree T . If p(X, T ) is a maximal leaf distribution with Markov extension
for (5.1.1), then also p(X̃, T ) with

(5.1.5) px(X, T ) = px(X̃, T ) for x ∈ {y ∈ Sn : my 6= 0}.

is a maximal leaf distribution with Markov extension.
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This observation is due to the fact that for the set M = {y ∈ Sn : my = 0} the
equation

(5.1.6)
∑
y∈M

ny ln(py(X, T )) = 0

holds for all parameter sets (X, T ). That such cases easily occur becomes clear,
when five species and four states are considered. In that case, 45 = 1024 possible
joint states exist. Hence, to have a strictly positive relative frequency vector, one
needs a set of aligned sequences of length of at least 1024. However, multiple aligned
sequences of such lengths are usually not available (cf. Waterman [1995]).

The structure of (5.1.1) also suggests to regard n as a random vector for the pa-
rameters of a multinomial distribution. This property will be used in the next two
sections.

5.2 Consistency and Bayesian Estimation

This section proposes two kinds of estimators. The first estimator tackles the prob-
lem of inadmissible transition parameters by providing a consistent quadratic ap-
proximation mapping. The second estimator tackles the problem of possible joint
states that do not occur in the observed data. Joint states of zero frequency pose
problems for inference methods, and also when considering certain kinds of confi-
dence regions.

5.2.1 Estimation with Least Squares

Chapters 3 and 4 showed that under the considered models almost any input vector
m generates an algebraic solution of (LF). However, only few input vectors generate
a stochastically admissible solution. As a consequence, most frequencies derived
from the data won’t be subject to an Markov process. Therefore, one has to adjust
the parameters obtained from the frequencies to fulfill the admissibility conditions.

Given an (inadmissible) set of parameters (p1, . . . , pk), the estimator is constructed
as the solution of a least squares problem. In particular, one wants to solve:

(5.2.1) min
q=(q1,...,qk)

F (q), F (q) :=
k∑

i=1

|qi − pi|2

under the constraints

(5.2.2) qi ≥ 0 for all i and
k∑

i=1

qi = 1.
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Since
|qi − pi|2 = (qi − Re(pi)

2 + (Im(pi))
2

it suffices to solve the problem for real p1, . . . , pk.

Proposition 5.2.1. Let (pi)
k
i=1 denote a family of real numbers with p1+· · ·+pk = 1

and consider the minimization problem (5.2.1) under the constraints (5.2.2). The
problem has a unique minimum q = q(p). The mapping p 7→ q(p) is continuous.

The numerical computation of the minimum is subject of the next results:

Proposition 5.2.2. Let (pi)
k
i=1 denote a family of real numbers with p1+· · ·+pk = 1.

Then there is an index set I ⊂ {1, . . . , k} such that q with qi = pi + c for i ∈ I and
qi = 0 for i ∈ Ic, where

(5.2.3) c :=
1

](I)

∑
i∈Ic

pi

is the minimum of (5.2.1).

Hence the estimator q can be retrieved by determining I. For this purpose the
following properties can be observed:

Corollary 5.2.3. Let (pi)
k
i=1 denote a family of real numbers with p1 + · · ·+ pk = 1

and let I be the index set generated by (5.2.3). Then one observes:

(5.2.4) pi > −c for all i ∈ I and pj ≤ −c for all i ∈ Ic,

and the following order relation is found:

1. If pi ≥ pj and j ∈ I, then also i ∈ I.

2. If pi ≤ pj and j ∈ Ic, then also i ∈ Ic.

3. If pi ≤ 0, then i ∈ Ic.

Corollary 5.2.3 permits an ordering of the family (pi)
k
i=1 with pi < pi+1 and l is the

index for which pl−1 ∈ Ic and pl ∈ I. Moreover, 3 shows that all negative values
are projected into zero. These observations permit the following introduction of an
algorithm for the generation of the estimator family:

Algorithm 5.1. Let (p̂i)
k
i=1 denote a real-valued parameter family with p̂1 + · · ·+

p̂k = 1.

1. Sort the family (p̂i)
k
i=1 such that pi < pi+1 for i = 1, . . . , k− 1. Then an index
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1 ≤ l ≤ k exists with pl−1 ≤ 0 and pl > 0. Set Ic := {1, . . . , l − 1} and
j := l − 1.

2. Compute c as given in (5.2.3), set qj = 0 for all j ∈ Ic and set j := j + 1.

3. If p̂j ≤ −c set Ic := Ic ∪ {j} and go to step 3, else set qi := p̂i + c for all i ≥ j
and STOP.

The algorithm has the nice property that it returns the minimum proposed in Propo-
sition 5.2.2 as a side effect.

Proposition 5.2.4. The family (qi)
k
i=1 obtained from (pi)

k
i=1 through Algorithm 5.1

is the minimum of (5.2.1) under the side conditions (5.2.2).

Coming back to the initial problem of estimating the true process of evolution from a
given relative frequency vector m̂ at the leaves regard a set of inadmissible transition
parameters (p̂α)α∈L and q̂%. An application of Algorithm 5.1 yields a consistent
estimator:

Theorem 5.2.5. Let m̂ denote an estimated leaf distribution to a tree T , (p̂α)α∈V\{%}
and q̂% the parameters retrieved by solving system (LF) w.r.t. m̂. Then, the pro-
jections (pα)α∈V\{%} and q% to (p̂α)α∈V\{%} and q̂%, respectively, obtained by applying
Proposition 5.2.1, are consistent estimators for the true process.

Note, that the proposed consistency result only states that the boundary points of
the estimator sequence are a solution of the true equations. Moreover, this solution
is either the true parameter or one of the permutations (see Lemma 2.4.1 for an
explanation concerning uniqueness up to permutation). Generally, consistency is a
difficult property when considering phylogenetic reconstruction (cf. Chang [1996]).

5.2.2 Some Examples

Chapters 3 and 4 discussed three different models. This subsection addresses the
least squares estimator from Subsection 5.2.1 for each model. The two state model
and the Neyman Nk model do not really provide a challenge when establishing the
quadratic estimator but the Kimura 2ST model is more demanding. Sometimes gen-
erated transition parameters are complex. Since the estimators are only constructed
for real parameters, only the real part of a complex number is considered.

The General Two-State-Case

As shown in Theorem 3.1.4, the two symmetric solutions for a given triple leaf
distribution are related through row permutation in the transition matrices. This
implies that inadmissibility of one solutions results in inadmissibility of the other.
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Thus, either no optimization is needed, or both solutions need to be optimized
simultaneously again yielding the same leaf distribution. For arbitrary trees the
following conclusion from Proposition 5.2.1 can be drawn:

Corollary 5.2.6. Let (p̂α)α∈V\{%} and q̂% denote the transition parameters derived
from a joint leaf distribution on a rooted tree T% under the two state model. If p̂δ

xy < 0
for some δ ∈ V \ {%} and x, y ∈ {0, 1} then p̂δ

x(1−y) > 1 and the estimator is pδ
xy = 0

and pδ
x(1−y) = 1. An analogue observation holds for the estimator q% for q̂%.

The estimator projects inadmissible values into the boundaries of admissibility. To
illustrate the stated properties consider the following example:

Example 5.2.1. The software package Tree-Puzzle(cf. Schmidt et al. [2002])
presents a tool to derive phylogenies from sequence data using Maximum Likelihood
methods on quartet trees. It also presented the author of this text with his first set
of aligned sequence data, namely the Great Ape {0, 1}-data set of five species and
of length 895. For the purpose of illustration consider the triple Human-Chimp-
Orangutan. The frequency vector of the sequence has the following form:

mHCO = (506, 18, 0, 2, 1, 2, 14, 352)/895.

The inferred transition parameters using Theorem 3.1.4 have the following form:

PH =

(
0.998182 0.00181834

0.00565767 0.994342

)
, PC =

(
1.00016 −0.000157454

0.00555766 0.994442

)
,

PO =

(
0.965669 0.0343305
0.0382517 0.961748

)
, q% =

(
0.586436
0.413564

)
.

The second solution is attained through row permutation for every matrix and an
element switch for the root vector. Clearly, PC is not stochastically admissible.
According to Corollary 5.2.6 the estimation with the identity matrix is consistent.
The remaining matrices are stochastically admissible. The resulting estimated leaf
distribution has the following form:

m̂HCO = (505.92, 17.9972, 0.0796589, 2.00283, 0.999855, 1.99999, 14.0001, 352)/895.

The mentioned row permutation for the estimated matrix yields a parameter set for
the same distribution vector. Simple comparison shows that mHCO and m̂HCO differ
only slightly. Qualitative analysis of such results is subject of Section 5.3.

The Neyman Nk Model

From the point of transition parameters this model is similar to the two state model.
In particular, the estimator from Proposition 5.2.1 has the following property under
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the model:

Corollary 5.2.7. Let (p̂α)α∈V\{%} denote the transition parameters derived from a
joint leaf distribution on a rooted tree T% under the Neyman Nk model.

1. If p̂δ < 0 for a δ ∈ V \ {%}, then the estimator is pδ = 0.

2. If p̂δ > 1/(k − 1) for a δ ∈ V \ {%}, then the estimator is pδ = 1/(k − 1).

Again, inadmissible transition parameters are projected into the boundaries of ad-
missibility. However, as shown in Corollary 4.1.8 and Example 4.1.1 the two es-
tablished parameter families yield different distribution vectors, m̂ and m̃, where
neither is necessarily equal to the initial vector m.

Example 5.2.2. Recall the relative frequency vector m2 from Example 5.1.1. The
inadmissibility of m2 provides an opportunity to apply Corollary 5.2.7. Example
4.1.1 showed that the second parameter set p2 had three inadmissible values. There-
fore by Corollary 5.2.7 all are transferred to 1/3. Such a parameter set yields the
triple leaf distribution

(5.2.5) m̂2 = (3, 2, 2, 2, 1)/108

with a loglikelihood score of lsm(m̂2) = −3909.98, i.e. smaller than the score for
m1.

The Kimura 2ST Model

The previous two models were simple projections into the boundaries of admissibility.
In contrast to this, parameters under the Kimura 2ST model provide the opportunity
to observe the least squares estimator in a nontrivial fashion.

Corollary 5.2.8. Let (p̂α, q̂α)α∈V\{%} denote the transition parameters derived from
a joint leaf distribution on a rooted tree T% under the Kimura 2ST model. Further,
denote by r̂δ = 1− p̂δ − 2q̂δ for δ ∈ V \ {%} the diagonal parameter of the associated
transition matrix. If for δ ∈ V \{%} the transition parameters are inadmissible, then
one of the following scenarios is possible:

1. If r̂δ < 0 then rδ = 0 and the remaining estimated parameters have either the
form pδ = p̂δ + r̂δ/3, qδ = q̂δ + r̂δ/3 or pδ = 1, qδ = 0 or pδ = 0, qδ = 1/2.

2. If p̂δ < 0 then pδ = 0 and the remaining estimated parameters have either the
form rδ = r̂δ + p̂δ/3, qδ = q̂δ + p̂δ/3 or rδ = 1, qδ = 0 or rδ = 0, qδ = 1/2.
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3. If q̂δ < 0 then qδ = 0 and the remaining estimated parameters have either the
form rδ = r̂δ + q̂δ, pδ = p̂δ + q̂δ or rδ = 1, pδ = 0 or rδ = 0, pδ = 1.

Hence if one parameter is less than zero, its value is distributed on the remaining
two parameters or if one parameter value falls under the condition of step 3 in the
algorithm the remaining parameter has the whole probability mass. With Theorem
4.2.5 and Corollary 4.2.6 one observes that for a given triple leaf distribution a
possible application of the estimation algorithm would affect two parameter families
simultaneously. Again, a qualitative consideration of the derived leaf distributions
is provided in Section 5.3.

5.2.3 A Bayesian Estimator

The following estimator manipulates the observed frequency distributions. The
advantage of the presented estimator is, that it is the best Bayesian estimator for
any possible leaf distribution w.r.t. the maximal quadratic distance. Consider the
state space {1, 2, . . . , K} and a frequency vector n = (ni)

K
i=1 with N = n1 + · · ·+nK .

The goal of this section is the selection of a vector p = (pi)
K
i=1 from the space of

multinomial probability vectors of which the relative frequency vector m = n/N is
a good approximation.

The goal is to derive a good approximation for the normalized vector m = n/N from
the space of multinomial probability vectors p = (pi)

K
i=1.

Lemma 5.2.9. Let p̃ denote a multinomial vector and n = Np̃. Define the vector
p̂ by

(5.2.6) p̂i = p̂i(n) =

√
N

K
+ ni√

N +N
.

Then one observes
Ep‖p̂− p‖2 = c = const

for all vectors p = (pi)
K
i=1.

Therefore, the estimator p̂ has constant risk. In the terminology of Ferguson [1967],
it is an equalizer rule. Moreover, p̂ is a Bayesian estimator with the following inter-
esting property:

Lemma 5.2.10. The estimator p̂ defined by (5.2.6) is a Bayesian estimator with

Ep‖p̂− p‖2 = inf
p̃

sup
p
Ep‖p̃− p‖2.
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The vector p̂ is the Bayesian estimator with the smallest maximal distance to all
multinomial vectors. For decreasing N the value given to a state of zero frequency
increases. For example, if one wants to approximate three aligned sequences of
length 500 under the two state model with p̂, a zero frequency state will be assigned
with probability 0.0054 which is quite a huge jump in probability.

Section 5.3 will introduce several simultaneous confidence regions as tools of evaluat-
ing estimated leaf distributions for their approximations of a given relative frequency
vector (p1, . . . , pK). One such confidence regions is given by:

(5.2.7)

{
π1, . . . , πK :

K∑
i=1

πi = 1, n
K∑

i=1

(pi − πi)
2

pi

≤ χ2
K−1(1− η)

}
,

where χ2
K−1(1 − η) is the upper (1 − η) quantile of the chi-squared distribution

with K − 1 degrees of freedom. This region was suggested in Jhun and Jeong
[2000]. Clearly, if pi = 0 for a i ∈ {1, . . . , K}, then this confidence region cannot be
computed. Hence, a manipulation of the initial distribution can be advantageous for
later considerations. Moreover, it was observed that zero frequency states generally
do not allow admissible solutions. For an illustration consider the following example:

Example 5.2.3. Let T denote a triple tree and let S = {0, 1}. The observed joint
frequency distribution at the leaves L := {1, 2, 3} is given by:

m = {550, 10, 0, 15, 0, 2, 5, 418}/1000.

With (5.2.6) the following estimated distribution is generated:

m̂ = (536.972, 13.5251, 3.83168, 18.3719, 3.83168, 5.77037, 8.67841, 409.019)/1000.

Computing the transition parameters for both vectors yields

p1
m =

(
1.00004 −0.00004

0.0346493 0.965351

)
, p2

m =

(
1.00033 −0.00033

0.00476293 0.995237

)
,

p3
m =

(
0.982269 0.0177312
0.0118203 0.98818

)
, q%

m =

(
0.55972
0.44028

)
,

for m, where p1
m and p2

m are obviously no transition matrices. For m̂ one computes:

p1bm =

(
0.993135 0.00686456
0.0427956 0.957204

)
, p2bm =

(
0.993626 0.00637429
0.0136935 0.986307

)
,

p3bm =

(
0.975881 0.0241191
0.020721 0.979279

)
, q%bm =

(
0.557596
0.442404

)
,

i.e. a stochastically admissible solution. Finally, a look at the confidence region
(5.2.7) shows that:

13.737 ≈ 1000
8∑

i=1

(m̂i −mi)
2

m̂i

≤ χ2
7(0.05) ≈ 14.1.



5.3 Simultaneous Confidence Regions 135

Therefore, the initial leaf distribution m is in the 0.95-quantile of the Bayesian
estimate m̂.

5.3 Simultaneous Confidence Regions

After providing ways to manipulate generated inadmissible transition parameters,
the manipulated parameters will be evaluated. Probably the most popular evalua-
tion approach is the declaration of simultaneous confidence regions. Several papers
(e.g. Goodman [1964] or Jhun and Jeong [2000]) deal with the comparison of dif-
ferent choices of confidence regions for the parameters of multinomial distributions.
This section will introduce some of the suggested intervals and apply them to esti-
mated distributions for the models discussed in Chapters 3 and 4.

As usual, T = (V , E) denotes a tree, n = ](L) the number of leaves and k = ](S)
the number of states. The estimated leaf distribution taken from the input data is
denoted by m̂.

5.3.1 A Chi Square Approach

Simultaneous confidence regions permit the comparison of a selected process with
the input data by checking if the derived leaf distribution is in a (1− η)-confidence
region of the leaf frequency distribution, and the acceptance or rejection of the
selected process accordingly.

The first approach uses the Central Limit Theorem to generate an η-confidence
region.

Consider a family (Y i)N
i=1 of i.i.d. random variables with values in {e1, . . . , ekn}, the

unit vectors of Rkn
, distributed according to the estimated leaf distribution m, i.e.

P(Y i = el) = ml, l ∈ {1, . . . , kn}. This family has the mean vector E(Y i) = m and
the covariance matrix

Cov(Y i) = C with Cst = ms(δst −mt), s, t ∈ {1, . . . , kn}.(5.3.1)

According to the Central Limit Theorem (e.g. Witting and Müller-Funk [1995,
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Satz 5.105]) the following distribution assumption is reasonable:

Lemma 5.3.1. Let (Y i)∞i=1 denote a family of i.i.d. random variables with mean
vector m and covariance matrix C as given in (5.3.1). Then, the empirical mean

ȲN =
1

N

N∑
j=1

Y j.

of (Y i)N
i=1 is asymptotical Gaussian with mean vector 0 and covariance matrix C,

i.e.

(5.3.2) D(
√
N(ȲN −m))

N→∞
=⇒ N (0, C),

where the symbol D(X) denotes the distribution of the random variable X. 2

The vector Ȳ is subject to the general model. Certain model specifications will
focus on linear transformations. For such occurrences the following observation can
be made:

Corollary 5.3.2. Let (Y i)N
i=1 denote a family of i.i.d. random variables with mean

vector m ∈ [0, 1]K and covariance matrix C ∈ RK×K. Further, let A : RK →
RM , M > 0 denote a linear mapping. Then Z̄N = AȲN is asymptotically Gaussian
distributed with mean vector 0 and covariance matrix ACAT, i.e.

D(
√
N(Z̄N − Am))

N→∞
=⇒ N (0, ACAT).

The matrix A for the Neyman Nk model and the Kimura 2ST model on a triple
tree are characterized by (4.1.3) and (4.2.4), respectively. The explicit form of the
covariance matrices is introduced later. The asymptotic behavior of the distribution
vectors permits the following statement for confidence regions:

Theorem 5.3.3. Let (Y i)N
i=1 denote a family of i.i.d. random variables with mean

vector m ∈ [0, 1]K and covariance matrix C ∈ RK×K of rank l. The asymptotic
η-confidence region for m is given by:

CIχ2(m, η) :=
{
p ∈ [0, 1]K : N‖p−m‖2

C < χ2
l (1− η)

}
,

where χ2
l (1 − η) denotes the (1 − η)-quantile of the chi square distribution with l

degrees of freedom.

To verify whether a leaf distribution obtained through a phylogenetic method is in
such a confidence region one needs to compute the Pseudo-Inverse of the covariance
matrix C−1. For problems of high dimensions this might pose difficulties. The confi-
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dence region presented in (5.2.7) provides an alternative chi square approach where
the covariance matrix is replaced by the diagonal matrix C = diag(m1, . . . ,mkn). In
this alternative approach the degree of freedom is fixed at kn− 1 contrary to (5.5.4)
where the degree of freedom depends on the rank of Ĉ. On the other hand, if a leaf
distribution m assigns probability zero to certain states, (5.2.7) cannot be applied.

Example 5.3.1. Here the Neyman distributions will be considered. As promised,
the covariance matrix for the Neyman distribution on a triple tree is the first thing
to be introduced. For lack of space, the matrix is divided into off-diagonal- and
diagonal-elements

(
(a1, a2, a3, a4, a5) := (m000,m001,m010,m100,m012)

)
:

ANey
11 =

a1(1− ka1)

k
, ANey

ii =
ai(1− k(k − 1)ai)

k(k − 1)
, i = 2, 3, 4,

ANey
55 =

a5(1− k(k − 1)(k − 2)a5)

k(k − 1)(k − 2)
, ANey

ij = −aiaj, i 6= j.

(5.3.3)

With this insight apply Example 4.1.1 to consider the presented confidence region.
Here the number of states is k = 4. The initial leaf distribution m is given by
(5.1.2), and the leaf distributions m1 and m2 inferred using Theorem 4.2.5 are given
by (5.1.3) and (5.1.4), respectively. The covariance matrix C for m can easily be
computed with (5.3.3). With this one computes (recall N = 1000):

N‖m1 −m‖2
Cm =

199

100
, ‖m2 −m‖2

Cm =
57511

25
, ‖m̂2 −m‖2

Cm =
293500

729
.

For η = 0.05 the upper (1 − η)-quantile for a chi square distribution with four
degrees of freedom is 9.48773. Consequently, m1 lies well inside the confidence
region whereas m2 and m̂2 miss it by quite a large margin.

5.3.2 Clopper-Pearson Confidence Regions

This subsection presents a class of confidence regions where each entry of the vector
m = (mi)

K
i=1 is independently considered as the probability parameter p of a Bino-

mial distribution BN,p. This approach was first introduced in Clopper and Pearson
[1934]. Consider the following region:

CI(p, η) = {ν ∈ R : kη
l (p) ≤ ν ≤ kη

u(p)}.

Let fi and gi, i = 1, . . . , N be functions with q ∈ [0, 1] and

fi(q) := BN,q({0, . . . , i}) =
i∑

j=0

(
N

j

)
qj(1− q)N−j,

gi(q) := BN,q({i+ 1, . . . , N}) =
N∑

j=i

(
N

j

)
qj(1− q)N−j.
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Clearly, fi(0) = 1 and fi(1) = δNi for all i ∈ {0, . . . , N}. Thus, f is decreasing in q
and increasing in i. Further, gi(0) = δ0i and gi(1) = 1 for all i, i.e. g is increasing in
q and decreasing in i. For a given confidence level η compute the following integers:

kη
l (p) := argmaxi

{
i ∈ {0, . . . , N} : fi(p) < η/2

}
,

kη
u(p) := argmaxi

{
i ∈ {0, . . . , N} : gi(p) < η/2

}
.

Using these boundary terms the confidence interval CI(p, η) is rewritten as:

(5.3.4) CI(p, η) := {ν : kη
l (p) ≤ Nν ≤ kη

u(p)}.
In honor of the initial contributors the interval CI(p, η) is also known as the Clopper-
Pearson interval. Accordingly, the Binomial or Clopper-Pearson confidence region
CICP(m, η) for a vector m ∈ RK

+ and a confidence level η is given by:

(5.3.5) CICP(m, η) = CI(m1, η/K)× · · · × CI(mK , η/K).

Brown et al. [2001] propose that the presented bounds kη
l and kη

u are nothing more
than the η/2 quantile of a beta distribution β(x,N − x + 1), and the 1 − η/2
quantile of a beta distribution β(x + 1, N − x), respectively. The considerations of
this subsection are concluded by the following example:

Example 5.3.2. The saga of the vectors m,m1,m2 and m̂2 given by (5.1.2) to
(5.2.5) continues. First, the values kη

l (p) and kη
u(p) need to be computed for some

p ∈ [0, 1]. Since each vector entry mi, (i = 1, . . . , K) is considered independently, no
weights need to be considered. Due to the negative value in m2 this vector cannot
be found in any Clopper-Pearson region, and is thus immediately rejected.

For η = 0.05 one computes the following boundaries for CICP(m, η):

bCP
l (m, η) = (76, 6, 6, 3, 0),

bCP
u (m, η) = (126, 27, 27, 20, 13).

As stated above, the exact boundaries are given by considering the η/(2K) quantile
for a beta distribution β(Nmi, N(1−mi)+1) and the 1−η/(2K) quantile for a beta
distribution β(Nmi + 1, N(1−mi)) for the lower and upper boundary, respectively.
Using this approach, the exact Clopper-Pearson confidence region for Nm for the
confidence level η = 0.05 is given by boundary vectors

bCPβ
l (m, η) = (77.0217, 6.91801, 6.91801, 3.72678, 1.07951), and

bCPβ
u (m, η) = (126.88, 27.9788, 27.9788, 21.2761, 14.0851).

The vectors Nm1 and Nm̂2 have the following form:

Nm1 = (98.5, 15.5, 15.5, 10.5, 4.5),

Nm̂2 = (27.7778, 18.5185, 18.5185, 18.5185, 9.25926).

Thus, relating m1 and m̂2 to these confidence regions again shows that for m, m2

is a better estimate than m̂2. Hence m1 is accepted for all considered confidence
regions whereas m̂2 is rejected.
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5.3.3 Simultaneous Confidence Regions for Binomial Pro-
portions

This subsection presents another type of confidence region where again each entry
of the vector m = (mi)

K
i=1 is independently considered as the probability parameter

p of a Binomial distribution BN,p. In particular, the following type of confidence
interval is considered for parameter p and a confidence level η > 0:

(5.3.6) CI(p, η) :=

{
ν ∈ p±Q

(η
2

)√p(1− p)

N

}
,

where Q(η/2) is the 1 − η/2-quantile to a chosen symmetric distribution, and√
p(1− p)/N is the estimated standard deviation (see (5.3.1)). Such interval types

are the center of numerous discussions, most notably in Brown et al. [2001]. If the
standard gaussian distribution is chosen as the quantile distribution, the interval is
called the Wald confidence interval for p (cf. Agresti and Coull [1998]). Another
choice is the Student t distribution in K − 1 degrees of freedom. The simultaneous
confidence region for a vector m is constructed similarly to (5.3.5). Such types are
called Bonferroni simultaneous confidence regions to confidence level 1−η (cf. Jhun
and Jeong [2000]). For a comparison consider the following example:

Example 5.3.3. Recall m,m1 and m̂2 given by (5.1.2) to (5.2.5). The confidence
region CI(m, η) given by (5.3.5) and (5.3.6) is considered for a couple of popular
choices of quantile distribution.
Considering Wald confidence intervals to the confidence level η = 0.05, i.e. using
the quantile of the standard gaussian distribution, yields the following boundaries
for the confidence region CIWald(m, η):

bWald
l (m, η) = (75.5635, 5.09896, 5.09896, 1.89534,−0.745312),

bWald
u (m, η) = (124.436, 24.901, 24.901, 18.1047, 10.7453).

If Q(η/10) denotes the (1− η/10)-quantile for the Student t distribution with four
degrees of freedom the following boundaries for the confidence region CIT(m, η) are
observed:

bTl (m, η) = (56.3217,−2.69734,−2.69734,−4.48645,−5.2693),

bTu (m, η) = (143.678, 32.6973, 32.6973, 24.4864, 15.2693).

Hence, m1 is in the 0.95-confidence regions whereas m̂2 misses the regions by quite
a margin.

A comparison the boundaries of the presented intervals with the boundaries from
Example 5.3.2 reveals that these confidence intervals CI(p) are not centered around



140 5.3 Simultaneous Confidence Regions

p but contain a marginal shift. This shift was already observed in Wilson [1927]. In
Brown et al. [2001] the Wilson confidence interval is presented as:

CIW(p, κ) =

{
ν ∈ Np+ κ2/2

N + κ2
± κ

√
N

N + κ2

√
p(1− p) + κ2/(4N)

}
where κ is the (1 − η)-quantile of the standard normal distribution. κ can also
be interpreted as the number of successes and failures added to the data set. The
approach was recalled in Agresti and Coull [1998]. Brown et al. [2001] present the
Agresti-Coull confidence interval as:

CIAC(p, κ) =

{
ν ∈ p̃± κ

√
p̃(1− p̃)

N + κ2

}
,

where p̃ = (Np + κ2/2)/(N + κ2). Both intervals are centered around p̃, and are
recommended by Brown et al. [2001]. Other works, like Jhun and Jeong [2000], use
a constant continuity correction to move the interval into a more appropriate center.
The following example tests the performance of CIW and CIAC on the already often
used vector m:

Example 5.3.4. Recall m,m1 and m̂2 given by (5.1.2) to (5.2.5). Also, set η = 0.05
and κ = 1.96. With these settings the modified vector m̂ has the form:

m̂ = (101.531, 16.856, 16.856, 11.8752, 6.89431)/1000.

The associated Wilson confidence region CIW(m,κ) has the boundaries:

bWl (m,κ) = (82.9092, 9.1109, 9.1109, 5.4407, 2.1375),

bWu (m,κ) = (120.152, 24.6012, 24.6012, 18.3097, 11.6511).

Similarly, the Agresti-Coull confidence region CAC(m,κ) has the boundaries:

bAC
l (m,κ) = (82.8107, 8.87716, 8.87716, 5.16117, 1.76571),

bAC
u (m,κ) = (120.251, 24.8349, 24.8349, 18.5892, 12.0229).

As in Example 5.3.3 the vector m1 is in both confidence regions whereas m̂2 misses
them by quite a margin in the first variable.

5.3.4 Discussion

This section presented various criteria of quality management. Subsections 5.3.1,
5.3.2 and 5.3.3 introduced several types of confidence regions.

The chi square confidence region provided in Subsection 5.3.1 provides good testing
criteria, but computing the needed pseudo-inverse of the covariance matrix poses
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big problems for long vectors m. In addition, every entry of m that is zero lessens
the rank of the covariance matrix and therefore the degrees of freedom for the chi
square distribution. Thus, less states will make the confidence region smaller. The
alternatively suggested interval (5.2.7) is not applicable as soon asm has zero entries.

In Subsection 5.3.2 the Clopper-Pearson interval for Binomial proportions is intro-
duced. This approach proposes confidence intervals for parameters p to a Binomial
distribution BN,p. The leaf distributions m are related to this intervals by treat-
ing every entry of m = (m1, . . . ,mK) as a parameter for a Binomial distribution
BN,mi

, i = 1, . . . , K. In Brown et al. [2001] the following statements are made
concerning such intervals:

page 113: . . .Some authors refer to this as the ”exact” procedure because
of its derivation from the binomial distribution. . .

. . .The Clopper-Pearson interval is wastefully conservative and is not a
good choice for practical use, unless strict adherence to the prescription
C(m) ≥ 1− η is demanded. . .

In other words, Clopper-Pearson intervals are often too large to be helpful. Brown
et al. [2001] suggest other intervals as a better estimation for Binomial proportions.
In particular, the Wilson interval (Wilson [1927]) and the Agresti-Coull interval
(Agresti and Coull [1998]) are both recommended for their change of the considered
parameter m by adding or subtracting additional events.

These confidence regions are presented in Subsection 5.3.3. The subsection starts
with a general definition of such intervals, called the Bonferroni confidence region.
In addition to Wilson and Agresti-Coull some confidence regions without shift cor-
rection are introduced. It has to be noted that the presented Bonferroni confidence
region with a Student t distribution is particularly unsatisfying when the number
of possible states rises. In that case, the probability values become smaller, and the
Student t distribution becomes unreliable. Moreover, every entry of m that is zero
lessens the degree of freedom and thus, increases the considered confidence region.
Example 5.3.3 indicates that even for the Neyman distribution the presented region
is much larger than any other region.

All confidence regions of Bonferroni type share one disadvantage. If a probability
mi, i ∈ {1, . . . , K} is zero or one, the associated confidence interval has length zero
since mi(1−mi) = 0 and therefore, any estimation m̂ with m̂i > 0 will not lie in such
a Bonferroni confidence region for m with mi = 0. Unfortunately, the case mi = 0
occurs with certainty if the number of sequence sites of the input data is smaller
than the number of possible states. For five nucleotide sequences this happens when
the sequence is shorter than 1024 sites, a very common case when deriving aligned
sequences.

A comparison of these regions in terms of average coverage probability is presented
in various papers (e.g. May and Johnson [1997], Jhun and Jeong [2000] or Brown
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et al. [2001]). Their purpose w.r.t. molecular evolution is to decide whether a
proposed approximation can be accepted or rejected.

Example. All proposed regions were tested on the transition vectors m, m1 and
m̂2 as defined in (5.1.2) to (5.2.5). When comparing the Wald boundaries for m
from Example 5.3.3 with the ”exact” boundaries from Example 5.3.2 one finds that
bWald
l as well as bWald

u are smaller than their respective parts for the Clopper-Pearson
intervals.
All confidence regions agreed on accepting m1 and rejection m̂2 as a good approxi-
mation of m. In terms of coverage the following ranking can be made:

bTl (m) < bWald
l (m) < bCP

l (m) < bCPβ
l (m) < bAC

l (m) < bWl (m),

bWu (m) < bAC
u (m) < bWald

u (m) < bCP
u (m) < bCPβ

u (m) < bTu (m).

Hence, the Student t distribution provides the largest region, whereas the Wilson
confidence region provides the best approximation.

Remark 5.3.5. When regarding simultaneous confidence regions for estimated leaf
distributions p using Maximum Likelihood methods, it appears a good idea to use
the so-called Kullback-Leibler distance to compare them to a given relative frequency
vector m:

dkl(p,m) = ls(m,m)− ls(p,m) =
K∑

i=1

mi(ln(mi)− ln(pi)).

Obviously, dkl(m,m) = 0 and by Lemma 5.1.1 dkl(p,m) > 0 for all p 6= m. However,
the Kullback-Leibler distance is no real distance (see e.g. Cover and Thomas [1991,
Section 2.3]), and for the use in a confidence region one has to find an acceptable
distribution for this random variable.

5.4 Derivation of a Tree Structure from Triples

This section introduces an algorithm for deriving a tree structure for a given set of
input data together with the characterization of a Markov process on the tree. The
structure of the algorithm is similar to most reconstruction algorithms presented in
the literature, eg. neighbor joining (cf. Saitou and Nei [1987]).
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5.4.1 The Algorithm

Algorithm 5.2. Let n denote the number of considered leaves, and let m denote
the joint leaf distribution of these leaves over an finite alphabet S of cardinality
k > 2. For a triple tree Ti denote by mi the restriction of m to the three leaves of
the triple tree.

1. Compute the transition parameters and, if wanted, apply Algorithm 5.1 to
receive admissible parameters.

2. For every leaf δ ∈ L sort the triple trees containing it in descending order to
maxx∈S p

δ
xx.

3. Cluster a pair of leaves βi, βj for which the first n − 2 triples contain both

leaves. The new cluster point will be denoted by β̂ij. If no pair is found,
cluster the remaining leaves to a star tree and STOP.

4. Set L := L \ {βi, βj} and L := L∪ {β̂ij}. Update the triple transition param-
eters accordingly. Set n := n− 1. If n > 3 go to 2 else STOP.

Now an analysis of the steps of Algorithm 5.2 is presented.

In this thesis, step one is applicable only for the three models presented in Chapters
3 and 4.

Step two provides the opportunity to take different order functions. However, for
the models considered the diagonal elements are as good an ordering criterium as
any other choice.

Steps three and four need a more thorough discussion since here the actual work is
done.

5.4.2 Selection of a Pair of Leaves

Step three is only presented in an ideal case and would always apply, if input data
were subject to the assumed model. However, computations for certain data sets
showed that the identification of a cluster pair of leaves with this method is not
always possible.

Hence, a modification of the step is due. Firstly, it is possible, that no pair of leaves
can be found for which another leaf is part of all n − 2 considered triple trees. To
accommodate this, the selection looks for the pair of leaves that shares the maximal
number of triple trees in the first n − 2. Secondly, it is possible that no maximal
pair of leaves can be found. Hence, the number of considered triple trees is extended
until a pair is found. This cumulates in the following modified step:

3’. Set j = −2.
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(i) Select for each leaf β the leaf β̂ that occurred in most of the first n + j
triple trees to β.

(ii) If above step yields a pair (β1, β2) with β1 = β̂2 and β2 = β̂1, cluster them
and go to 4 else if j = max{n(n− 5)/2,−1} cluster the remaining leaves
and STOP else set j = j + 1 and go to (i).

For a fixed leaf β one sorts (n − 1)(n − 2)/2 different triple trees. If j is such that
n+j = (n−1)(n−2)/2 one definitely won’t find a maximum, since all possible triple
trees are considered, and thus each leaf occurs equally often in the set of triple trees.
Except for the case n = 4 the term n(n−5)/2 will be larger than −1. In Subsection
5.4.4 the number j will be added to the output to give a measure of quality. The
smaller j is in each step the better the result.

5.4.3 Re-Estimation of Transition Parameters

The fourth step of Algorithm 5.2 updates old transition parameters and generates
new ones for the new vertex. This section discusses mechanisms for the derivation
of the values. The starting point is the description of the common scenario:

Let L := {β1, . . . , βn} denote an arbitrary leaf set and m a joint leaf distribution
on L over a sample set S of cardinality k. Step three selected the index pair i, j for
clustering and introduced a new leaf βij. Denote by

Tij := {Tijl : L(Tijl) = {βi, βj, βl}, l 6= i, j}

the set of all triple trees that contain both leaves βi and βj. All these triple trees
contain the edges (βij, βi) and (βij, βj), and thus the transition matrices P βijβi and
P βijβj will be derived from the information content of the n− 2 forms provided by
Tij (see Figure 5.1).

Figure 5.1: Derivation of transition parameters for clustered leaves.
The transition matrices for β1 and β2 are subject to n− 2 different
triple trees connecting them with the rest of the leaves through β12.

The method used in the example below uses the following function to derive the final
parameters. Denote by TM(k) the set of all transition matrices of dimension k× k,
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and P βijβi,l denotes the transition matrix for edge (βij, βi) in triple tree Tijl ∈ Tij.
The argument of

min
Q∈TM(k)

Fij(Q, z) :=
∑
l 6=i,j

k∑
x=1

(qzx − pβijβi,l
zx )2, z ∈ S

is chosen as the transition matrix for βi. Other approaches could contain restrictions
of the selection to fewer triple trees with the culmination of selecting exactly one
triple tree and its parameters. The established transition matrices are needed to
derive the transition matrices subject to the new vertex βij.

Consider the triple tree set for βij

T̂ij := {Tijl1l2 : L(Tijl1l2) = {βij, βl1 , βl2 , l1 6= l2 6= i, j}.

The parameters of each triple tree Tijl1l2 ∈ T̂ij are subject to the parameters of the
two triple trees Til1l2 and Tjl1l2 (see Figure 5.2).

Figure 5.2: Derivation of transition parameters for updated triple
tree set. The transition matrices for the new vertex β12 and the
remaining leaves β3, . . . , βn need to be updated from the two triples,
where two leaves βr, βs, r 6= s ≥ 3 are connected to either β1 or β2.
The two triples are merged to one, where β12 takes the place of the
two removed leaves.

For the method used in the example below, the following selection was chosen. The
transition matrices for βij derived from triple trees Til1l2 and Tjl1l2 with inner vertex
%ij are obtained from the equation

P %ijβi = P %ijβij ,iP βijβi ,(5.4.1)

P %ijβj = P %ijβij ,jP βijβj .(5.4.2)

The new transition matrix for a leaf βl, l 6= i, j to a triple tree Tijll̂ ∈ T̂ij, l̂ 6= i, j, l
is the argument of

(5.4.3) min
Q∈TM(k)

k∑
x=1

(qzx − pβl,i
zx )2 +

k∑
x=1

(qzx − pβl,j
zx )2,
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where the P βl,i and P βl,j denote the transition matrix to the triple tree Till̂ Tjll̂,
respectively. Finally, the new matrix for βij is derived in similar fashion using the
transition matrices introduced in (5.4.1) and (5.4.2). Again, different approaches
might derive the new matrices from one triple only instead of considering both.
This concludes the discussion of step four of Algorithm 5.2.

5.4.4 A Short Example

This section presents an example with five species represented by two state data.

The great ape data set used in Example 5.2.1 contains two state data for five ape
species, gibbon(1), human(2), chimp(3), gorilla(4) and orangutan(5). The gibbon
was selected as the outgroup. The expected structure of the tree is given in Figure
5.3.

Figure 5.3: The great-apes-tree. The picture shows a root between
Orangutan and Gibbon as is the generally acknowledged conven-
tion. The algorithm will only return the unrooted structure.

The whole computation for this model was rather fast. But compared to the recently
developed algorithms it is quite slow, even though it provides the characterization
for a process that returns a leaf distribution that is close to the initial distribution.
A qualitative analysis will be provided later.

All sequences have a length of 895, and are fully aligned. The five species yield ten
different triple trees. From the input data the following ten triple frequency vectors
are observed:

m123 = (494, 1, 2, 12, 30, 1, 1, 354), m124 = (493, 2, 0, 14, 27, 4, 2, 353),

m125 = (486, 9, 3, 11, 20, 11, 12, 343), m134 = (493, 3, 0, 13, 27, 4, 2, 353),

m135 = (487, 9, 2, 11, 20, 11, 12, 343), m145 = (485, 8, 4, 12, 20, 9, 12, 345),

m234 = (520, 4, 0, 2, 0, 3, 2, 364), m235 = (506, 18, 0, 2, 1, 2, 14, 352),

m245 = (505, 15, 1, 5, 0, 2, 15, 352), m345 = (505, 15, 2, 5, 0, 2, 14, 352).
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The results from Theorem 3.1.4 are applied to all triple trees generating the param-
eter matrix:

P123 = (0.942752, 0.967223, 0.996028, 0.997348, 0.998044, 0.997519, 0.588959),

P124 = (0.948117, 0.961852, 1.00016, 0.989075, 0.996271, 0.994354, 0.583061),

P125 = (0.961175, 0.969054, 0.994637, 0.969885, 0.982493, 0.966485, 0.578104),

P134 = (0.948117, 0.96448, 1.00015, 0.989229, 0.994235, 0.994355, 0.584261),

P135 = (0.961254, 0.969005, 0.996688, 0.969883, 0.982529, 0.966375, 0.578033),

P145 = (0.960963, 0.966541, 0.992653, 0.975438, 0.984373, 0.966781, 0.577093, ),

P234 = (1.00003, 0.994535, 1.00002, 0.991825, 0.992398, 0.994536, 0.585425),

P235 = (0.998182, 0.994342, 1.00016, 0.994442, 0.965669, 0.961748, 0.586436),

P245 = (1.00017, 0.986059, 0.998442, 0.994343, 0.971207, 0.959128, 0.581781),

P345 = (1.00016, 0.986142, 0.996442, 0.994344, 0.971206, 0.961748, 0.582955).

The values of each vector have the following meaning. The first two entries are the
diagonal elements of the transition matrix for the first ape of the associated triple,
entries three and four are the analogue elements for species two and entries five, and
six identify the transition matrix for the third species. The seventh entry defines
the root distribution. For the ordering of the triple trees w.r.t. to each leaf the sum
of the diagonal elements is employed.

The algorithm returned the following array:

(5.4.4)

2 0.99808 0.995409 r1 0.58694 1
3 0.999408 0.994596 r1 0.58694 1
4 0.996348 0.994349 r2 0.583015 1
r1 1. 0.992594 r2 0.583015 1
1 0.961089 0.967785 r3 0.577581 0
5 0.983442 0.966606 r3 0.577581 0
r2 0.995864 0.98147 r3 0.577581 0.

The values of each row should be interpreted in the following way. The first entry is
the vertex, the next two entries are the diagonal elements for the transition matrix
for the connecting edge to the new vertex, denoted by entry four with marginal
distribution given by entry five. Entry six denotes the number of tries to obtain the
pair of vertices to the vertex given in entry four. In the first four rows this value is
equal to one, i.e. the pair was selected in the first step. In the last three rows this
value is equal to zero because a triple tree is already unique.

The array (5.4.4) shows that human(2) and chimp(3) are closest joined by inner
vertex r1. Next, the gorilla(4) has a common ancestor with r1 in r2. Finally,
orangutan(5) and gibbon(1) are joined with r2 at r3. This structure is equivalent
to the structure presented in Figure 5.3 with the exception that the overall root
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is placed in r3 instead on the edge between gibbon and r3. The obtained tree is
visualized in Figure 5.4.

Figure 5.4: The tree obtained by Algorithm 5.2 from the Great-Ape
sequences. The root is in r3 instead of the edge between r3 and the
gibbon, cf. Figure 5.3.

To finish the example the presented tools of comparison are employed to observe
the performance of the associated Markov process w.r.t. to the initial frequency
distribution m̂. The Markov process is represented by its leaf distribution m.

The loglikelihood score for m̂ is -952.919, and the loglikelihood score for m is -
962.499. Accordingly, the Kullback-Leibler distance of the observed frequency dis-
tribution is 9.58041.

Moreover, the computed leaf distribution m lies well within the Agresti-Coull 95%-
region and the Clopper-Pearson 95%-region. Overall, the result obtained by Algo-
rithm 5.2 is acceptable, though one may assume that the computational error for a
larger number of sequences will eventually return unacceptable Markov-processes.

5.5 Proofs

As usual, the chapter closes with the proofs of the results presented throughout the
section.

5.5.1 Proofs of Section 5.1

Section 5.1 regarded the loglikelihood scoring function.

Proof of Lemma 5.1.1. The aim is to compute the maximum of:

f(x1, . . . , xK−1) =
K−1∑
i=1

yi lnxi +
(
1−

K−1∑
i=1

yi

)
ln

(
1−

K−1∑
i=1

xi

)



5.5 Proofs 149

in xi, i = 1, . . . , K − 1. The first derivative in xi yields:

∂

∂xi

f(x1, . . . , xK−1) =
yi

xi

−
1−

∑K−1
j=1 yj

1−
∑K−1

j=1 xj

.

The root of this partial derivative in xi is given by:

xi = yi

1−
∑K−1

j 6=i xj

1−
∑K−1

j 6=i yj

.

Since this equality must be given for all i = 1, . . . , K − 1 it follows that x = y is
an extreme point of f(x1, . . . , xK−1). Looking at the second partial derivative yields
the inequality

∂2

∂x2
i

f(y1, . . . , yK−1) = − 1

yi

− 1

1−
∑K−1

j=1 yj

< 0

if yi ≥ 0, i = 1, . . . , K−1 and 1−
∑K−1

i=1 yi ≥ 0, i.e. if y describes a joint distribution.
Hence, m̂ is the maximum of the loglikelihood scoring function ls. This completes
the proof. 2

Proof of Lemma 5.1.2. The statement follows immediately with (5.1.6), since the
state set in which m(P, T ) and m(P, T̂ ) differ has a factor of one in the Likelihood
score (5.1.1). 2

5.5.2 Proofs for Section 5.2

This section presented an estimator. It needs to be shown, that the associated index
set is unique and that the estimator is consistent.

Proof of Proposition 5.2.1. The existence of a minimum is observed if the mini-
mized function is continuous over a compact space. Clearly, the function in (5.2.1) is
continuous and the constraints describe the compact set {x ∈ Rk

+ : x1+· · ·+xk = 1}.
Therefore, the minimization problem has a solution. Uniqueness is attained if the
considered function is strictly convex. This is true for quadratic functions and hence,
the uniqueness is also observed. That p 7→ q(p) is a continuous mapping follows from
Propositions 3.4 and 5.5 Deutsch [2001]. This completes the proof. 2

Proof of Proposition 5.2.2. Let F (q) :=
∑m

i=1(qi − pi)
2 with

∑m
i=1 qi = 1 and

qi ≥ 0 for all i ∈ {1, . . . ,m}. According to Kuhn-Tucker the minimum of F satisfies
the following conditions:(

∂

∂qi
− ∂

∂qj

)
F (q) = 0, qi, qj > 0,(

∂

∂qi
− ∂

∂qj

)
F (q) ≥ 0, qi = 0, qj > 0.
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Conducting the necessary derivations yields the inequalities

(5.5.1) qi − pi = qj − pj for qi, qj > 0, and qj ≤ pj − pi for qi = 0, qj > 0.

F (q) is minimal if the amount of shuffled mass is distributed equally on the i ∈
{1, . . . ,m} with qi > 0, thus qi = pi + c for i ∈ I := {i ∈ {1, . . . ,m} : qi > 0}. Now,
the mass distribution is arranged by setting

c :=
1

](I)

∑
i∈Ic

pi,

since for all i ∈ Ic the parameters are brought to zero and thus, their mass pi needs
to be redistributed among the i ∈ I. Since q is obtained by checking the minima
conditions it is a minimum of (5.2.1). With Proposition 5.2.1 it is unique. This
completes the proof. 2

Proof of Corollary 5.2.3. (5.2.3) and (5.5.1) yield pi ≤ −c for i ∈ Ic and pi > −c
for i ∈ I, i.e. (5.2.4). Consider the order relations: If j ∈ I then pj > −c. Since
pi ≥ pj also pi > −c, and thus i ∈ I. This verifies relation 1. On the other hand,
if j ∈ Ic then pj ≤ −c and with pi ≤ pj also i ∈ Ic. Thus, relation 2 is observed.
Assume, for pi ≤ 0 for some i ∈ I. Then pi > −c must hold. The order relation
states, that all indices j ∈ Ic must satisfy pj < pi. Then, c < 0 according to (5.2.3)
and therefore 0 > pi > −c > 0, i.e. a contradiction. Hence relation 3 holds. This
completes the proof. 2

Proof of Proposition 5.2.4. The construction of q := (qi)
k
i=1 is done using Corol-

lary 5.2.3. Hence, the index set obtained by Algorithm 5.1 is the index set required
in (5.2.3). Therefore, with Proposition 5.2.2 the retrieved vector q is the unique
minimum of (5.2.1) under the constraints (5.2.2), and the proof is complete. 2

Proof of Theorem 5.2.5. Consistency follows from Proposition 5.2.1 since p 7→
q(p) is continuous. 2

Proof of Corollary 5.2.6. The minimization problem (5.2.1) reduces for transi-
tion parameters (p̂δ

xy)x,y∈{0,1}, δ ∈ V \ {%} to:

min
pδ

x0,pδ
x1

(pδ
x0 − p̂δ

x0)
2 + (pδ

x1 − p̂δ
x1)

2, x ∈ {0, 1}

which is due to the constraints equivalent to:

min
pδ

xy∈[0,1]
(pδ

xy − p̂δ
xy)

2, x, y ∈ {0, 1}.

Clearly, if p̂δ
xy > 1 then the best approximation is pδ

xy = 1 and if p̂δ
xy < 0 then pδ

xy = 0
returns the smallest squared difference. If p̂δ

xy ∈ [0, 1] the pδ
xy = p̂δ

xy. This completes
the proof. 2
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Proof of Corollary 5.2.7. For the Neyman Nk model admissible parameters are
in the interval [0, 1/(k − 1)]. Hence, if the returned parameters p̂δ, δ ∈ V \ {%} are
in this interval, they are admissible. However, in case of violation the parameters
are subjected to

min
pδ

(pδ − p̂δ)
2, δ ∈ V \ {%}

which, as above, results in a projection into the bounds and the statement is thus
proven. 2

Proof of Corollary 5.2.8. The presented scenarios are derived from Proposition
5.2.2 by looking at the possible cases of c in (5.2.3). Verifying one scenario is
sufficient to verify all scenarios. The Kimura 2ST model has two parameters, p̂δ

and q̂δ with a third parameter r̂δ to satisfy r̂δ + p̂δ + 2q̂δ = 1. Assume r̂δ < 0.
Then, according to Corollary 5.2.3.3 its estimate is rδ = 0 and the probability
mass of 1 needs to be distributed among the remaining parameters. If 3p̂δ > −r̂δ

and 3q̂δ > −r̂δ the indices for both parameters are contained in the index set I.
In this case, applying Proposition 5.2.2 yields the estimates pδ = p̂δ + r̂δ/3 and
qδ = q̂δ + r̂δ/3. The sum rδ + pδ + 2qδ again is one. Now assume 3p̂δ < −r̂δ. Then
its index is transferred to Ic, i.e. its estimate is pδ = 0 and c = (p̂δ + r̂δ)/2. For the
remaining parameter q̂δ one computes the estimate

qδ = q̂δ + (p̂δ + r̂δ)/2 = (r̂δ + p̂δ + 2q̂δ)/2 = 1/2.

The remaining cases are treated similarly, and the corollary is thus proven. 2

Proof of Lemma 5.2.9. Let X denote a random variable for multinomial param-

eters with EX = Np and Cov(X) = N
(
pi(δij − pj)

)K

i,j=1
. Further, let p̃ = αX + β

with α, β > 0. Setting α = 1/(
√
N+N) and β =

√
N/(K(

√
N+N)) yields the vec-

tor p̂ defined in (5.2.6). The aim is to find α and β such that E‖p̃− p‖2 = c =const.
for all p.

E‖p̃− p‖2 =
K∑

i=1

E(αXi + (β − pi))
2

=
K∑

i=1

[
α2EX2

i + 2α(β − pi)EXi + (β − pi)
2
]

=
K∑

i=1

[
α2Npi(1− (1−N)pi) + 2α(β − pi)Npi + (β − pi)

2
]

=
K∑

i=1

p2
i

(
1− 2αN − α2N(1−N)

)
+ α2N + 2αβN +Kβ2 − 2β.
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This term is independent of pi, i = 1, . . . , K if 1 − 2αN + α2N(N − 1) = 0. This
demand yields:

α± =
1

N − 1
±

√
1

(N − 1)2
− 1

N(N − 1)
=

1

N − 1
± 1√

N(N − 1)

=

√
N ± 1√

N(
√
N − 1)(

√
N + 1)

=
1√

N(
√
N ± 1)

.(5.5.2)

The choice of β does not have an effect on E‖p̂ − p‖2 = c. Since p̂ uses α+ the
Lemma is verified. 2

Proof of Lemma 5.2.10. Assume that p is Dirichlet distributed with parameters
α1, . . . , αK and α0 = α1 + · · ·+ αK . Then, one has:

Ep‖p̃− p‖2 =
Γ(α0)∏K
i=1 Γ(αi)

∫ 1

0

d p1 p
α1−1
1 . . .

∫ 1−
PK−2

i=1 pi

0

d pK−1 p
αK−1−1
K−1 pαK−1

K ‖p̃− p‖2

=
Γ(α0)∏K
i=1 Γ(αi)

K∑
i=1

∫
PK

j=1 pj=1

d p pα1−1
1 . . . pαK−1

K (p̃i − pi)
2.

This integral is minimal if p̃i = Ep(pi) since:

E(X − E(X))2 = min
y
E(X − y)2.

Hence, compute the mean:

Ep(pi) =
Γ(α0)∏K

j=1 Γ(αj)

∫
PK

j=1 pj=1

d p
K∏

j 6=i

p
αj−1
j pαi

i

=
Γ(α0)∏K

j=1 Γ(αj)

Γ(αi + 1)
∏K

j 6=i Γ(αj)

Γ(α0 + 1)
=
αi

α0

.

Set αi = α+ ni with ni = Npi. Then, α0 = Kα+N and

Ep(pi) =
α+ ni

Kα+N
.

Thus, equality with p̂i from (5.2.6) is given by α =
√
N/K. In that case, Ferguson

[1967, Thm. 2.11.3] states, that p̂ is a Bayesian estimator. This completes the
proof. 2
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5.5.3 Proofs of Section 5.3

Section 5.3 presented several types of confidence regions. The following proofs are
associated with the presented results:

For the proofs regarding Subsection 5.3.1 further results are needed:

Lemma 5.5.1.(Hilfssatz 1.90b in Witting [1985]) Let X denote an N-dimensional
random variable with probability distribution N (µ, C). Then, the following state-
ments hold:

1. The covariance matrix is positive semi-definite and symmetrical and has the
following representation:

C = C
1
2C

1
2 with rank(C) = rank(C

1
2 ).

2. If rank(C) = l < N then a N × l-matrix A exists with rank(A) = l and
C = AAT .

3. There is a orthonormal system U = (u1, . . . , uN) and a positive semi-definite
and symmetrical matrix Ĉ ∈ Rl×l with

UTCU =

(
Ĉ 0
0 0

)
.

Consequently, matrix A from 2 can be depicted by

A = U

(
Ĉ 1

2

0

)
.

4. A pseudo-inverse matrix C−1 to C exists such that

C−1C = Diag(1, . . . , 1︸ ︷︷ ︸
k−times

, 0, . . . , 0)

The pseudo-inverse is given by

UTC−1U =

(
Ĉ−1 0
0 0

)
.

5. There is a N (0,1l)-distributed random variable W with X = AW + µ. Using
the descriptions from (4) yields W = A−1(X − µ).

Proof of Lemma 5.5.1. The results are common knowledge. For a full proof refer
to Witting [1985]. 2



154 5.5 Proofs

With these tools the statements of Subsection 5.3.1 can be proven.

Proof of Lemma 5.3.1. Follows immediately from Lemma 5.5.1. 2

Proof of Corollary 5.3.2. Also an immediate consequence from Lemma 5.5.1 if
accompanied by some basic matrix computation rules. 2

Proof of Theorem 5.3.3. The goal is to identify a value ε > 0 for the following
conditions:

(5.5.3) P(‖Ȳ −m‖2
C < ε) > 1− η, where ‖x‖2

A = 〈x,A−1x〉,

where A−1 is the pseudo inverse of A and η denotes the chosen confidence level.
With the properties from Lemma 5.5.1 the following computations can be applied
to (5.3.2):

P(‖Ȳ −m‖2
C < ε) = P(‖

√
N(Ȳ −m)‖2

C < Nε).

Consider the norm using (5.5.3) yields:

‖
√
N(Ȳ −m)‖2

C =
√
N(Ȳ −m)TC−1[

√
N(Ȳ −m)]

=
√
N(Ȳ −m)(A−1)TA−1[

√
N(Ȳ −m] =

√
N [A−1(Ȳ −m)]T

√
N [A−1(Ȳ −m)]

=: W TW = ‖W‖2.

Thus, coming back to (5.5.3) one has

P(‖Ȳ −m‖2
C < ε) = P(‖W‖2

1l
< Nε).

Since W is N (0,1l)-distributed, its squared norm is χ2
l -distributed (cf. Def. 1.43a

in Witting [1985]) and thus:

P(‖Ȳ −m‖2
C < ε) = χ2

l ((0, Nε)) > 1− η,

i.e,

(5.5.4) ε =
1

N
Qχ2

l (1− η),

where Qχ2
l (1 − η) denotes the η-quantile of the χ2

l -distribution with l degrees of
freedom. The structure of the joint leaf distribution m implies l = kn − 1 if m is
strictly positive. This completes the proof. 2
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