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1. INTRODUCTION 

 
The testis is strongly related to the sexual characteristics of the male individual and to its 

reproductive power. This correlation was observed more than two thousands years ago. 

Aristotle made one of the earliest descriptions of this relationship in men and in animals, three 

centuries before Christ. He described how castration of immature male birds prevented the 

development of sexual characteristics, such as coloring of the crest and attraction to females. 

He linked these changes in the bird to those observed in castrated boys who experienced the 

persistence of a high-pitched voice of childhood into adulthood and the lack of sexual hair 

development. The first convincing evidence of the role of the testis in the maintenance of 

male sexual characteristics was given in the middle of the nineteenth century by Berthold 

(1849) who showed that atrophy of the cock ُs comb observed after castration was prevented 

by implantation of the testis into the abdominal cavity. 

Now, it is well established that testis comprises unique functions in the male body (Schlatt et 

al., 1997): (i) it contains proliferating totipotent stem cells (ii) it is the only male organ where 

the meiosis occurs and (iii) it determines the phenotype of the individual by its endocrine 

activity. All these specific features are regulated by defined endocrine and local mechanisms 

to ensure the coordinated expression pattern of the required genes.  

In the present approach, I have studied the embryonic development and morphological 

organization of the bovine testis using advanced morphological and molecular biological 

techniques.    
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2. REVIEW OF LITERATURE 

 
2.1. Prenatal development of the testis 

Although sex is genetically determined at the process of fertilization, the sexual 

differentiation between male and female takes place when their gonads are morphologically 

identified. Previously, several investigations have emphasized that the Sry (Sex determining 

region of the Y-chromosome) is the main trigger in this process (Gubbay et al., 1990; Sinclair 

et al., 1990; Koopman et al, 1991; Eicher et al., 1995; Tilmann and Capel, 1999). However, 

more recent studies using various gene knock-out mice have additionally denoted that other 

players such as homeobox genes, growth factors, transcription factors and other molecules as 

sonic hedgehog could participate in the urogenital system development (Marker et al., 2003). 

These and other yet unknown genes may affect development of the urogenital tract beginning 

at early stages of organogenesis as well as at later fetal and postnatal periods.  

In the following sections, I will review the mechanism of gonadal development and the 

important factors affecting this process.  

 

2.1.1. Sexual determination and gonadal emergence  

The process of mammalian sex determination involves complex interacting networks of 

cellular and hormonal signals, which lead finally to the development of male or female 

phenotype. It is now well established that three main sequential steps are involved in this 

process (Habert et al., 2001). The first step begins with the establishment of chromosomal sex 

at the time of fertilization in which the genetic sex of the embryo is decided when an X-or a 

Y-bearing sperm fertilizes the oocyte. In the second step, sex determination occurs when the 

fate of the indifferent gonad is determined by the expression of the Y-linked genetic switch in 

the XY embryos (gonadal sex). The third step culminates in the differentiation of male or 

female internal and external genitalia (phenotypic sex) that depends mostly on the hormonal 

secretion of the developing testis. Importantly, each step in this process is dependent on the 

preceding one and under normal circumstances, chromosomal sex agrees with phenotypic sex 

(George and Wilson, 1994; Habert et al., 2001). The male phenotype is controlled by two 

testicular hormones, the anti-Müllerian hormone (AMH) [also known as Müllerian inhibiting 

substance (MIS)] secreted by fetal Sertoli cells which induces regression of the Müllerian 

ducts, and testosterone produced by Leydig cells which induces differentiation of the 

Wolffian ducts into male reproductive organs, although conversion of testosterone into 

dihydrotestosterone is required for masculinization of the external genitalia. In the absence of 
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testis and therefore in the absence of both AMH and testosterone, the Wolffian ducts regress, 

creating a permissive environment for the differentiation of the Müllerian ducts and thereby 

female reproductive organs (Jost et al., 1973). In order to a normal testis or ovary to be 

formed, several sequential developmental phases need to be completed (Tohonen et al., 2003). 

First, the indifferent gonad is established. Second, the migration of the primordial germ cells 

from extragonadal sites to the newly formed indifferent gonads (gonadal ridge). Third, the 

critical step of the sex determination takes place during a transient period. Finally, 

differentiation of the various testicular or ovarian cell lineages enables the development of 

normal testis or ovary structure and function.  

 

2.1.1.1. Indifferent gonad: common origin 

During the initial phase of sexual development, the gonads develop in a non-sex-specific 

manner, being morphologically identical in XX and XY embryos and are therefore named 

indifferent gonads (Habert et al., 2001). Early in the life of any mammal, the first sign of the 

gonads is the development of the urogenital ridge on either side of the dorsal mesentery of the 

hindgut. They are particularly prominent in the midtruncal region (Noden and Lahunta, 1985). 

This structure derives from the intermediate mesoderm and represents the common anlage of 

kidneys and gonads. On the ventromedial surface of the urogenital ridge, the coelomic 

epithelium begins to thicken and rapidly becomes several layers thick. Proliferation and 

mitotic divisions soon cause this region to bulge into the coelomic cavity as genital ridge. 

This thickened genital ridge extends longitudinally and thus parallel to the mesonephric ridge 

but medial to it (Rüsse, 1991; George and Wilson, 1994). Gonadal ridge can be histologically 

recognized at 9.5 days post conception (dpc) in the mouse (Kaufman, 1992), at 21-22 and 28 

dpc in pig and sheep embryos respectively (Rüsse, 1991). It can be also identified at 12 mm 

CRL in horse and 7 mm CRL in dog (Rüsse, 1991). However, in bovine embryos of days 27 

to 31, the gonadal ridge starts to appear (Wrobel and Süß, 1998). The gonadal ridge consists 

of coelomic surface epithelium and the underlying mesenchyme. These elements constitute 

the so-called somatic component of the gonads (Gier and Marion, 1970). Along its length, the 

bovine gonadal ridge is covered by a columnar, mostly two-layered coelomic epithelium with 

elongated or round nuclei (Schrag, 1983; Wrobel and Süß, 1998). Between the high coelomic 

epithelium and the underlying mesenchyme, a relatively thick basal lamina-like demarcation 

is established. When the bovine gonadal ridge develops at 27 days, and as species-specific 

character, it contains a certain number of the primordial germ cells (PGCs, the founders of the 

future germ cells lineage). PGCs exist in this site before the formation of gonadal ridge itself 
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whereas they are already observed intraembryonically in the area of the future gonad at day 

23. Within the gonadal ridge (days 27-31) and later in the still sexually indifferent gonadal 

fold (the period betweens days 32 and 39 covers the life span of the bovine gonadal fold or 

indifferent gonad), the PGCs are unevenly distributed (Wrobel and Süß, 1998). PGCs of the 

indifferent bovine gonad (32-39 days) are generally found in the outer periphery of the organ. 

A smaller number are located in the cranial peduncle, but the most are concentrated at the 

caudal end and the side facing away from the attachment of the mesogonad (Wrobel and Süß, 

1998). The original gonadal ridge increases rapidly in diameter but little in length, resulting in 

a globular gonad by 32 days in canine and 38 days in bovine embryos (Gier and Marion, 

1970). The origin of gonadal blastema cells from coelomic mesothelium, mesenchymal cells, 

elements of the mesonephros and coelomic mesothelium or from both mesonephros and 

mesenchyme have been proposed for different mammalian species (Zamboni and Upadhyay, 

1982; Wartenberg, 1985; Satoh, 1991; Tilmann and Capel, 1999; McLaren, 2000). On the 

other hand, the reinvestigation of the intermediate mesoderm in 30-to 40-day-old bovine 

embryos revealed that vestigial nephrostomial tubules, and not the coelomic mesothelium of 

lateral plate origin are the parent tissue and immediate precursors of the blastemas for the 

Müllerian infundibulum, adrenal cortex, gonadal rete and gonad proper (Wrobel and Süß, 

1999, 2000). The vestigial nephrostomial tubules seen in the bovine embryo are pronephric 

and not mesonephric in nature. Consequently, the indifferent mammalian gonad is defined as 

a modified homologue of the pronephros situated in the zone of pro-/mesonephric overlapping 

(Wrobel and Süß, 1999, 2000). In order to reinforce this new origin of gonadal primordia, 

Wrobel and his colleagues (2002) have used the genus Acipenser as a model system for 

vertebrate urogenital development because most higher vertebrates, including man belong to 

this category. This species is a suitable model to explain the origin of the gonads in 

vertebrates with a less-developed or regressed pronephros. This study suggested the 

opistho/mesonephric nephrostomial tubules as a gonadal origin. However, irrespective of a 

pronephric/mesonephric (Wrobel and Süß, 1999, 2000) or opistho/mesonephric (Wrobel et 

al., 2002) nature of the nephrostomial tubules that provide the cells for the gonadal 

primordium, in both cases they have concluded that coelomic mesothelial surface cells of the 

lateral plate origin apparently are not involved in vertebrate gonadogenesis. These results may 

be strengthened by another study from mouse in which the mesonephric tubules are not 

essential for gonadal development whereas the gonads and adrenals still form in Pax 2-

deficient mouse even though they lack mesonephric tubules and urogenital ducts (Capel, 

2000). A number of genes have been identified that are essential for the formation of the 



                                                                                                                       Review of literature
                                                                                                                   

                                                                     5                                                                                                       

indifferent gonad. Some of these are important in the differentiation of the intermediate 

mesoderm and the urogenital system as a whole. The most important genes in this process are 

the steroidogenic factor-1 (SF-1) and the Wilms tumor gene product (WT-1). Other genes that 

have been also implicated to have a function during the formation of the indifferent gonad are 

Emx2, Lim1, and M33. Absence or mutations of one of these genes result in several 

anomalies ranging from slight aberration to complete absence of the kidneys or gonads 

(Capel, 2000; Tohonen et al., 2003).  

 

2.1.1.2. Primordial germ cell migration: fact or myth 

The indifferent gonad consists of four major cell types: the supporting, steroidogenic, 

connective, and germ cell lineages (Tohonen et al., 2003). Although the first three types may 

originate either from mesonephros or from pronephros/mesonephros overlapping as reviewed 

above, PGCs may however develop extragonadally and migrate from their origin to combine 

with the somatic component of the gonad. PGCs have been identified in extragonadal sites in 

many mammalian species including rat, mouse, human and rabbit (Byskov and Hoyer, 1994). 

In mouse, the ancestors of the PGCs are apparently derived from the proximal epiblast cells 

adjacent to the extraembryonic ectoderm and not from yolk sac endoderm as was formerly 

believed. However, the proximal epiblast cells were in no way predetermined for a PGC fate, 

so even cells from the distal tip of the epiblast could give rise PGCs if transplanted at the 

appropriate time to the proximal location. In the same time, cells of the proximal epiblast 

failed to develop to the PGC when they transplanted in the distal epiblast. Therefore, the 

cellular environment (proximal epiblast) and not the cells themselves are responsible for the 

development of these ancestors to PGCs. The latter can be identified in mouse embryos at 7-

7.5 dpc (McLaren, 2003). Toward the end of gastrulation, about 24 h after the establishment 

of the germ lineage, the posterior visceral endoderm moves in to form the hindgut, carrying 

the germ cells from the cluster and distributing them along the length of the hindgut. The 

germ cells move from the ventral to the dorsal side of the gut, up the dorsal mesentery and 

into the newly forming genital ridge. PGCs proliferate while they migrate via the gut 

mesenteries and enter the gonads between 10.5 and 12 dpc in the mouse. PGCs migration, 

proliferation, and survival rely on the c-kit receptor and stem cell factor (SCF) signaling 

pathway. Therefore, mutations in either Steel (Sl) that encodes the c-kit ligand (SCF) or 

White Spotting (W) gene which encodes c-kit receptor tyrosine kinase (the receptor of SCF) 

interfere with germ cell proliferation and migration. Moreover, TGFβ is thought to be 

involved in PGCs migration, as it has been shown to inhibit PGCs proliferation and to exert a 
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chemotropic effect on germ cell cultures (McLaren, 2003; Tohonen et al., 2003). Although 

the mechanisms of PGCs migration are poorly understood, four models have been postulated 

(Zuckermann and Baker, 1977): active, by amoeboid movement, passive, by differential 

growth of the surrounding tissues, passive, via the blood stream, and chemotactic under the 

influence of inductors diffusing from the presumptive gonadal area. During their migration, 

PGCs must interact with a constantly changing environment. Therefore, they must be able to 

alter their adhesive properties as they encounter diverse cell populations and extracellular 

matrix (ECM) molecules. The major ECM molecules that may be involved in PGCs migration 

are fibronectin and laminin, which line their migratory pathways (Fujimoto et al., 1985; 

Garcia-Castro et al., 1997). In the bovine embryo, the situation may be completely different 

when compared with that of the mouse model described above. By using of alkaline 

phosphatase and glycohistochemistry, Wrobel and Süß (1998) have tried to answer the 

question of how bovine PGCs colonize the gonadal ridge. In this study, the first potential 

PGCs were identified in an 18-day-old trilaminar embryo in the caudal wall of the proximal 

yolk sac at a distance of less than 100 μm from the germ disc. When the trilaminar embryonic 

disc converted by morphogenic folding (from 18 through 23 days) into a cylindrical 

embryonic body, the PGCs were incorporated into the embryo at the area that derived from 

the proximal yolk sac (hind-and mid-gut). Consequently, in 23- to 25-day-old embryos 

putative PGCs (alkaline phosphatase and lectin positive) are situated predominantly in the 

axial body region at the level of the mesonephros. So, when the gonadal ridge develops in this 

region (about day 27), it contains a certain number of PGCs present from the very beginning. 

Wrobel and Süß (1998) have therefore deduced that the assumption of chemoattraction of 

PGCs by gonadal ridge, of active immigration from extraembryonic site, or of passive 

transportation via the blood stream are not necessary to explain the initial settlement of bovine 

PGCs in the gonadal ridge. The study of Wrobel and Süß (1998) has recently been reinforced 

by Freeman (2003) who described the active migration of germ cells in mice and man as a 

myth. He stated, moreover, that the displacement of PGCs could only be explained by the 

global growth movements of the embryo. Generally, germ cells are not needed for the testis 

development and differentiation (McLaren, 1988), but they are required for the initial 

organization of the ovary into characteristic follicles and for the maintenance of these follicles 

thereafter. In the case of the germ cell loss, the follicular structure of the ovary either never 

forms or rapidly degenerates (McLaren, 1995).  
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2.1.1.3. Sex determination  

In mammals, the genetic sex of the embryo is established at fertilization with the inheritance 

of an X or Y chromosome from the male. However, the sex-determining process is set in 

motion only during the period of organogenesis when the gonads develop (Swain and Lovell-

Badge, 1999). In the 1990s, it was discovered that sex is genetically determined in mammals 

by the presence or absence of a single gene on the Y chromosome, SRY (Gubbay et al., 1990; 

Sinclair et al., 1990). Expression of this gene is sufficient to initiate the testis pathway in XX 

gonads (Koopman et al, 1991; Eicher et al., 1995), thereby overriding any bias of the XX 

gonads for the ovarian pathway. The gene SRY (human) or its homologous Sry (mouse) acts 

as a developmental switch, initiating a pathway of gene activity that leads to the 

differentiation of testis rather than ovary from the indifferent gonad (genital ridge) in 

mammalian embryos. In mouse, several sex reversal from female to male occurred after a 

small genomic fragment carrying the mouse Sry gene was introduced as a transgene into XX 

embryo (Koopman et al., 1991). The Sry gene encodes a member of the high mobility group 

(HMG) family of transcription factors that has been shown to activate transcription by 

binding and bending DNA (Kamachi et al., 2000). The early events following Sry expression 

include rapid changes in the topographical organization of cells in the XY gonad and increase 

in the cell proliferation (Brennan et al., 1998; Schmahl et al., 2000). Moreover, a number of 

cellular pathways initiated by Sry are required for the development of the testis. These male-

specific cellular pathways are: 1) the organization of the somatic supporting cell lineage, the 

pre-Sertoli cells, to surround germ cells in testis cord structures; 2) a dramatic increase in the 

size of XY versus XX gonad; and 3) the formation of a male-specific vasculature (Capel, 

2000; Tilmann and Capel, 2002). Therefore, it is though that the action of Sry triggers the 

differentiation of the Sertoli cell lineage in the testis and that the Sertoli cells in turn direct the 

differentiation of the rest of the cell types, thereby, without the action of Sry the Sertoli cells 

would become follicle cells (Swain and Lovell-Badge, 1999). In the mouse, Sry is expressed 

in the genital ridge as a wave from anterior to posterior that lasts about a day and a half so that 

each cell sees it a few hours only. This transient nature of Sry expression in the gonad 

suggests that it acts as a switch toward Sertoli cell fate but is not involved in the maintenance 

of cell identity or cell function. Therefore, Sry must in some ways activate other genes that 

are involved in defining and maintaining Sertoli cell identity (Swain and Lovell-Badge, 

1999). A candidate for this type of downstream gene is Sox9. Its protein product is related to 

Sry as it contains a similar HMG box domain and is thought therefore to be involved in 

determining the fate of Sertoli cells. In conclusion, the main actors in mammalian sex 
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determination can be divided at least into three groups : (1) General transcription factors, 

which are involved at several stages from early genital ridge developmental through to 

differentiation of cell types in the gonads and this include Lim1, Sf1, Wt1 and GATA4.  

(2) Specific promoters of testis development such as Sry and Sox9. (3) Promoters of ovarian 

development such as Dax-1 and Wnt1 (reviewed by Swain and Lovell-Badge, 1999). In 

bovine embryos, the SRY gene was detected as early as the 4- to 8-cell stage and through to 

the blastocyst stage. The expression of SRY at these early stages and the previous observation 

that in vitro-produced male bovine embryos develop faster in culture than female embryos 

suggest that sex differences are evident prior to gonadal differentiation and that 

preimplantation bovine embryos may have sexually dimorphic gene expression at least with 

respect to SRY transcripts (Gutierrez-Adan et al., 1997).  

 

2.1.1.4. Gonads differentiation: the point of no return 

Although the genetic sex is determined at conception, sexual differences between fetuses can 

be first recognized at the time when the gonads become sex differentiated (Byskov and 

Hoyer, 1994). There are three different cells lineage in the gonad as well as the germ cells 

(Fig. 1). The supporting cell linage will give rise to Sertoli cells in the testis and follicle cells 

in the ovary. These cells surround the germ cells and provide an appropriate growth 

environment. The steroidogenic cell lineage produces the sexual hormones that will contribute 

to the development of the secondary sexual characteristics of the embryo. These cells will 

differentiate to the Leydig cells in the testis and to theca cells in the ovary. The connective 

cells lineage, comprising peritubular myoid and stroma cells, will participate in the formation 

of the organ as a whole (Capel, 2000). An increase in proliferation and differentiation of cells 

believed to be Sertoli cell precursors has been reported as the first signs of diverging male 

development in alligators where this change precedes cord formation by 1-4 days. The 

increase in the size of the male gonad is common to many species and led to the theory that an 

increase in the growth rate of XY embryo results in testis determination. Early testis 

development is characterized by the formation of testicular cords that contain Sertoli and 

germ cells, with the Leydig cells excluded to the interstitium. The connective cell lineage is a 

major contributor to cord formation as the peritubular myoid cells surround the Sertoli cells 

and together they lay down basal lamina. The testis is also characterized by rapid and 

prominent vascularization. Organization of the ovary takes place later than that of the testis 

and less structured, with the connective tissue lineage giving rise to stromal cells and with no 

myoid cell equivalent (Swain and Lovell-Badge, 1999; Capel, 2000).  
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Fig 1: Differentiation of indifferent gonad into the ovary and the testis (modified from Vaiman and Pailhoux, 
2000)  
 

 
 
2.2. Testicular growth during fetal and postnatal periods 
The testis has some features that characterize its mode of growth (Orth, 1993). First, it 

enlarges relatively rapidly during both the fetal and neonatal period even though puberty 

occurs considerably later in postnatal life. Second, each population of cells within the testis 

expands during a particular period of development and, at least in the case of Sertoli and 

spermatogenic cells; these periods are distinct from each other and inversely correlated. Third, 

the factors that regulate growth of testicular cells as far as they have been identified and 

studied, are apparently specific to each cell population and originate both intra- and extra-

testicularly.  
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2.2.1. Developmental changes in the fetal testis   

2.2.1.1. Differentiation of testicular cords and stroma 

The process of testicular differentiation takes place at 31 dpc/17 mm CRL (sheep), 27 dpc/24 

mm CRL (pig), 30 dpc/16-17 mm CRL (horse), 29 dpc/19-20 mm CRL in dog (Rüsse, 1991) 

and 39-40 dpc/20 mm CRL in bovine embryos (Schrag, 1983; Sinowatz et al., 1987; Rüsse, 

1991; Wrobel, 2000a). The first visible event leading to testicular differentiation begins with 

the development of tunica albuginea and formation of testicular or primitive sex cords 

(Schrag, 1983). Development and proliferation of testicular stroma is an important 

morphogenic factor in the embryonic period because it is a necessary prerequisite for correct 

seminiferous tubules formation. The proliferating stroma forms the passage-ways for the 

septal blood vessels that originate in the outer layer of the tunica albuginea and run in a 

centripetal direction towards the central mediastinum (Wrobel, 2000a). The early event in the 

differentiation of testicular stroma is the appearance of a few isolated mesenchymal cells at 

the extreme periphery of the gonad, below the coelomic epithelium and amongst the somatic 

and the germinal cells in this area. These cells increase rapidly in number in subsequent stages 

and thereafter differentiate into mature connective tissue cells that become organized into a 

discrete continuous stromal layer, the tunica albuginea (Zamboni and Upadhyay, 1982). In 

bovine (2 cm CRL), the newly formed tunica albuginea (TA) appears as a thin layer 

composed of spindle shaped fibroblasts, collagen fibers and blood vessels. With increasing in 

size and age, the TA of bovine fetal testis increases in thickness and number of layers to 

differentiate finally into two layers: outer fibrous (tunica fibrosa) and inner cellular with large 

blood vessels (tunica vasculosa). The connective tissue septa (septula testis) originate from 

the inner layer of TA divide the testicular parenchyma into several pyramidal compartments 

(Schrag, 1983). During the bovine testicular development, stromal proliferation dominates in 

two regions: (1) in the inner layer of the tunica albuginea and (2) in the central mediastinum 

testis. The proliferating stroma cells of the tunica albuginea subdivide the thick, plate-like 

testicular cords in the testicular periphery and cleave a way for the blood vessels that 

immigrate from the large albugineal vessels in a central direction (Wrobel, 2000a). Contrary 

to the situation described in bovine (stroma of the developing septula testis originates from 

the inner cellular layer of the TA), the stroma of the developing mouse testis is thought 

however to be derived from the mesonephric migrating stromal precursor cells (Martineau et 

al., 1997; Capel et al., 1999; Tilman and Capel, 1999). In general, the main feature that 

distinguishes a fetal testis from an ovary is the presence of testicular cords. These contain the 
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seminiferous epithelium that is separated from the surrounding peritubular tissue by a basal 

lamina. The trigger mechanism for gathering of somatic and germ cells to form testicular 

cords remains to be determined. As described in rat fetuses, the first recognizable event in an 

indifferent gonad destined to become a testis is the emergence of large cells that aggregate 

together and eventually enclose the germ cells within solid cords. These cells are identified as 

pre-Sertoli cells by their capacity to produce AMH. The forming seminiferous cord is rapidly 

surrounded by a distinct basal lamina. A similar sequence of events is reported to occur in 

human fetuses, except that segregation of plate-like structures containing somatic cells 

apparently precedes their development into cords (Orth, 1993). In bovine, the first cellular 

aggregation to form testicular cords appears in embryo with 20 mm CRL as circular zone 

under the simultaneously developed tunica albuginea. These newly differentiated cords 

consist of two types of cell populations, fetal Sertoli cells (pre-Sertoli cells) and primordial 

germ cells (Schrag, 1983). During the early stage of testicular development, two areas could 

thus be distinguished: a peripheral region consisting of newly developed seminiferous cords, 

connective tissue, and blood vessels; and a nearly central cord-free mediastinum region 

(Wrobel, 2000a). The peripheral area may be divided into two zones. A narrow outer zone 

contains plate-like cords with a thick diameter, and a large inner (central) zone is filled with a 

network of thinner cords. Only the thick outer cords transform into the permanent 

seminiferous tubules, whereas the thinner cords in the central zone are transitory structures 

that disappear between 45 and 110 dpc. The majority of the initial bovine seminiferous 

tubules lies in a plane perpendicular to the long axis of the testis and arrange in a rosette-like 

fashion around the central rete testis (Wrobel, 2000a). It is thought that the initiation of 

testicular organogenesis is either spontaneous or regulated by local factors produced within 

the genital ridge. Of these factors, transforming growth factor-β, insulin-like growth factors, 

fibroblast growth factor-9, hepatocyte growth factor, and neurotrophic factors could be 

possible candidates regulating testis morphogenesis (reviewed by Abd-Elmaksoud and 

Sinowatz, 2005/in press). The interaction between Sertoli cells and the surrounding 

extracellular matrix seems to be critical for seminiferous cord formation in the fetal testis as 

well (Orth, 1993).  

 

2.2.1.2. Basal lamina, peritubular cells and extracellular matrix 

The ultrastructural studies indicate that the formation of an intact basal lamina surrounding 

the cords is an early and essential event because the process of the enclosure of testicular 

cords must occur as fast as possible. In rats, it takes less than 24 hr (Byskov and Hoyer, 1994) 
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while in sheep the lamina propria shows clear signs of morphological specialization three 

weeks after the gonadal differentiation (Bustos-Obregon and Courot, 1974). The bovine 

tubular basal lamina makes its first appearance in the period between 39 and 58 dpc. The 

thickness of this structure increases steady due to addition of new dense lamellae and 

translucent interspaces to reach 1.2 µm at day 215 pc. At this age, 7 to 10 dark lamellae can 

be observed (Schrag, 1983). Presumptive Sertoli cells (pre-Sertoli) appear to cooperate with a 

subpopulation of mesenchymal cells, presumably the future peritubular cells, to produce the 

extracellular material surrounding both cell types in young fetuses (Sinowatz and 

Amselgruber, 1986; Orth, 1993). This is suggested by the observation that the basal lamina 

underlying the seminiferous epithelium in the postnatal testis is a shared product of Sertoli 

and peritubular myoid cells (Skinner et al., 1985). Moreover, co-cultures of rat Sertoli cells 

and peritubular myoid cells indicate that the formation of the basal lamina requires a 

cooperation between the two cell types (Byskov and Hoyer, 1994). In the fetal testis, the 

nature and localization of the extracellular matrix may be critical in promoting aggregation of 

Sertoli cells into cords. This idea is supported by the finding that cords fail to form in the 

presence of cAMP (Taketo et al., 1984), an effect that may be related to inhibition of matrix 

synthesis by the nucleotide. Indeed, when older fetal testis already containing cords are 

incubated with cAMP, the basal lamina eventually disintegrates and disappearance of the 

cords themselves occurs shortly thereafter (Orth, 1993). Furthermore, the 

immunohistochemical observations on the normal sequence of events in developing testes 

have also provided support for the idea that the extracellular matrix is critical for cord 

formation. For example, before the appearance of the cords some of the basal lamina 

constituents (fibronectin and laminin) are distributed uniformly between the somatic cells of 

the fetal rat testis. However, as cells aggregate to form cords by about 13.5 dpc, these two 

matrix factors become restricted to the newly formed basal lamina of the tubular lamina 

propria. The latter also contains collagen type IV and V and heparan sulfate proteoglycan. At 

least some of these components are essential for aggregation of Sertoli cells into seminiferous 

cords in vitro (Orth, 1993). In rat testis, it was suggested that laminin probably mediates 

connection between the Sertoli cells and the seminiferous tubule basal lamina and this 

attachment is important for the morphology of Sertoli cells and for the differentiation of cords 

composed of Sertoli cells in vitro (Tung and Fritz, 1993). In bovine testis, all testicular cords 

were surrounded by continuous heparan sulfate and laminin positive basal laminae shortly 

after the testicular differentiation (Wrobel, 2000a). Although, evidence from organ culture 

experiments suggested that peritubular myoid cells might arise from a population of cells that 



                                                                                                                       Review of literature
                                                                                                                   

                                                                     13                                                                                                     

migrate into the genital ridge from the mesonephros (Martineau et al., 1997), the peritubular 

cells in the prenatal period of bovine testis are described as fibroblasts (Schrag, 1983) or 

undifferentiated mesenchyme-like cells which have the potential to differentiate into 

contractile cells, Leydig cells and fibrocytes (Wrobel et al., 1988). While peritubular cells are 

important in maintaining the structural integrity of the seminiferous tubule, they also appear 

to produce paracrine factors that may be important in regulatory interactions in the tubule. 

Initial observation with co-culture of peritubular and Sertoli cells indicated that the presence 

of peritubular cells could alter Sertoli cell morphology and enhance Sertoli cell function, 

including the production of transferrin and androgen binding protein (Skinner et al., 1985). 

Moreover, the Leydig cells in culture are significantly affected by altering the composition of 

the extracellular substrate. So, the attachment, shape, proliferation of the cells and the 

expression of gene products are all markedly influenced by the extracellular matrix 

components (Dym, 1994). Thus, the production of extracellular matrix of a specific 

composition is likely to have important implications not only for seminiferous cord formation 

in vitro and perhaps in vivo as well but also for Sertoli, myoid, and Leydig cells interactions 

and functions.      

 

2.2.1.3. Fetal Sertoli cells: differentiation and proliferation 

The differentiation of Sertoli cells in vivo and their subsequent proliferation during fetal and 

neonatal life are complex events involving presently unknown signals for the initiation of 

differentiation from within the testis as well as humeral factors from extratesticular sites. In 

normal animal, this sequence of events resulting in the complement of mature Sertoli cells 

required to support spermatogenesis and fertility. Although there are, at present, several 

clearly identifiable factors modulating this progression, it appears that, once initiates, the 

process continues in an orderly fashion and is completed prior to puberty (Bardin et al., 1994). 

In mammals, the appearance of presumptive Sertoli cell is one of the first identifiable events 

in testicular differentiation. Early histological studies of the differentiating fetal rat testis 

indicated that these cells appear on day 13 pc and then aggregate and form testicular cords the 

following day (Magre and Jost, 1980). The signal responsible for eliciting the appearance of 

the presumptive Sertoli cells has not been identified but presumably is related to gene 

product, encoded on the Y chromosome, that signal the indifferent fetal gonad to develop into 

a testis (Bardin et al., 1994). The precise origin of the Sertoli cells is still uncertain. While 

several studies indicated that cells derived from the mesonephros or coelomic epithelium, or 

both can contribute to the Sertoli cells populations (Martineau et al., 1997; Karl and Capel, 
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1998; Tilmann and Capel, 1999), Wrobel and Süß (1999, 2000), suggested that the mobilized 

cells from the pronephros/mesonephros area may differentiate to most if not all of the somatic 

testicular cells. Following the initial appearance of distinct Sertoli cells and the early stages of 

organogenesis, there is a period of rapid proliferation. In many species including bovine, this 

critical proliferation phase begins in fetal life (Schrag, 1983; Orth, 1993; Bardin et al., 1994), 

continues during postnatal life, and ceases by the formation of functional blood-testis barrier 

prior to puberty (Sinowatz and Amselgruber, 1986; Orth, 1993; Bardin et al., 1994). 

Thereafter, all Sertoli cells apparently become terminally differentiated and mitotically 

quiescent, entering an extended G1 phase of the cell cycle (sometimes termed G0) (Orth, 

1993). The role of FSH in development of the fetal Sertoli cells has been highlighted by the 

demonstration of maximum FSH binding to fetal testicular cells at precisely the time of 

maximum proliferation of Sertoli cells. Furthermore, addition of FSH to cultures of Sertoli 

cells derived from postnatal testes resulted in increased mitotic activity while the removal of 

fetal pituitary or treatment with an antiserum to FSH produced a dramatic reduction in Sertoli 

cell mitosis. In addition to the demonstrated role of FSH, other factors (e.g. testosterone) may 

be of importance in influencing the expansion of the Sertoli cell population (de Kretser and 

Kerr, 1994). Since Sertoli cell population in the adult animal is determined during this period, 

any disruption of the proliferative process will have a profound effect by reducing the 

ultimate Sertoli cell population, which will, in turn influence the testicular size of the adult 

animal (Bardin et al., 1994). Moreover, administration of the antimitotic agent cytosine 

arabinoside to neonatal rats partly arrests Sertoli cell proliferation, and the reduced number of 

Sertoli cells is accompanied by a significant decline in the production of spermatids by the 

developing testis (de Kretser and Kerr, 1994). Before birth, pre-Sertoli cells are 

predominantly arranged adjacent to the boundary tissue of the seminiferous cords, although 

some are displaced more centrally by the close packing of cells within the cords. The pre-

Sertoli cells exhibit a conical or polygonal shape, with their cytoplasm often oriented radially 

within the seminiferous cord. Their nuclei are variable in shape and sometimes show deep 

indentations. A nucleolus is often present and is together with peripheral clumps of 

heterochromatin associated with the nuclear membrane. The cytoplasm of the fetal Sertoli 

cells is unremarkable, but tubular membranes of the endoplasmic reticulum are well 

represented, often bearing variable amounts of ribosomes. For this reason, these organelles 

are referred to as a transitional form between conventional smooth and rough endoplasmic 

reticulum (de Kretser and Kerr, 1994). In bovine, the pre-Sertoli cells develop a columnar 

shape toward the end of the fetal differentiation. A few short rough endoplasmic cisternae 
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develop into densely packed concentric or spiral accumulated piles, whose content increase 

continuously. This increase in rough endoplasmic reticulum is, however, more likely to be 

correlated with secretion of a special protein, i.e., the AMH (Schrag, 1983). Of the known 

fetal Sertoli cell functions, phagocytosis of the degenerative germ cells and secretion of AMH 

responsible for regression of the Müllerian ducts in the male fetuses (Bardin et al., 1994; de 

Kretser and Kerr, 1994). 
 

2.2.1.4. Differentiation of germ cell lineage (prespermatogenesis) 

The germ cell line is distinguished from all other cell lineages by virtue of its production of 

the reproductive (germ) cells. A germ cell is a cell whose descendants become gametes. The 

ontogeny of the germ cell line can be divided into two parts (McCarrey, 1993): (1) the 

developmental phase and (2) the differentiation phase. The developmental phase includes the 

period from the initial embryonic development, through the time when PGCs are first 

recognized in the early embryo, to the time they subsequently migrate and colonize the 

developing gonads in the fetus, and undergo sexual differentiation (this phase described above 

under PGCs migration). The differentiation phase in the male is the period of spermatogenesis 

that occurs within the testis and includes the differentiation of the prospermatogonia into 

spermatogonia, spermatocytes, spermatids, and finally spermatozoa. The early differentiation 

of germ cells prior to the onset of the spermatogenesis has been referred to as 

prespermatogenesis (Hilscher and Hilscher, 1976). Prespermatogenic differentiation includes 

an initial fetal phase of proliferation, a quiescent period during which germ cell mitosis 

ceases, and a second postnatally mitotic stage just before the onset of spermatogenesis.  

The germ cells that participate in these events are described by various terminologies as 

gonocytes, fetal spermatogonia, prespermatogonia or prepubertal spermatogonia (Hilscher 

and Hilscher, 1976; Byskov, 1986; Ertl and Wrobel, 1992). However, the terms gonocyte and 

fetal spermatogonium used in other species could not be corroborated by studies of bovine 

(Schrag, 1983), therefore, the term prespermatogonia is widely used by authors who have 

studied this period in the bovine (Schrag, 1983; Wrobel, 2000b). A distinguishing feature of 

germ cell differentiation in the male is that cells continue to undergo mitotic replication and 

do not enter meiosis during fetal stages when the female germ cells do. Thus, a primary 

influence of the fetal testicular environment on male germ cells is to inhibit their entry into 

meiosis (McCarrey, 1993). As mentioned above, prespermatogonia enter waves of mitotic 

divisions during the early testicular development and simultaneously they undergo 

morphological differentiation. In rat, cessation of mitosis occurs between day 18 and day 19 

in the fetus, and division does not resume until one week later, 4 days after birth, while in 
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rabbit, mitosis arrested shortly after birth and does not begin again until 7 weeks of age 

(Gondos, 1977). Based on the kinetic studies, those cells undergoing mitosis in the fetal rat 

(and also in golden hamster) are referred to as M-prospermatogonia while the cells that 

resume division on days 4 and 5 postnatally just prior to the onset of spermatogenesis are 

called T2-prospermatogonia and are believed to be the germ cells that eventually transform 

into type A spermatogonia. Between these two phases of proliferating cells, another 

generation of non-dividing cells (T1-prospermatogonia) are present (Hilscher and Hilscher, 

1976; Miething, 1998). The proliferation pattern of bovine germ cell was studied with 

monoclonal antibodies against Ki-67 and proliferating cell nuclear antigen (PCNA). As in rat 

and hamster, the bovine male germ cell population also shows periods of different 

proliferative activity in the time span between testicular cord formation in the embryo and the 

onset of spermatogenesis in the pubertal animal (Wrobel, 2000b). Germ cells with a high 

proliferation rate are observed from day 50 pc to day 80 pc. These cells are in transition from 

PGCs to prespermatogonia. After this period, the prespermatogonia proliferation decreases 

continuously to arrest at day 200 pc. Thereafter, these cells enter a phase of relative 

mitotically quiescence that lasts until the fourth postnatal week (Wrobel, 2000b). The PGCs 

are polygonal and equipped with slender cytoplasmic processes. Their size may vary slightly 

according to embryonic age and localization and the nucleus is mostly spherical. All PGCs 

show a positive alkaline phosphatase reaction and display a characteristic lectin pattern 

(Wrobel and Süß, 1998). At the end of the first multiplication period (about day 80 pc), the 

PGCs become alkaline phosphatase negative and change their lectin pattern (Süß, 1998) and 

hence were referred to as prespermatogonia (Wrobel, 2000b). The relatively large 

prespermatogonia, found mostly as single cells in the centre of the testicular tubules, contain 

spherical nuclei, each with up to four nucleoli that are not in contact with the nuclear 

membrane. Their cytoplasm has spherical mitochondria, sparse rER, small Golgi apparatus, 

free ribosomes, polyribosomes and various amounts of glycogen. The nuage, an aggregation 

of finely granular material is a characteristic component of male germ cells, is found in the 

nucleus and cytoplasm. Intercellular bridges between fetal germ cells are occasionally 

observed (Schrag, 1983; Wrobel, 2000b)  
 

2.2.1.5. Fetal Leydig cells: origin, differentiation, and function 

One of the most important events in testicular development is the differentiation of the 

steroid-secreting cells, the Leydig cells, in the interstitial compartment. In virtually all species 

examined, recognizable Leydig cells appear in the interstitium of the fetal testis shortly after 

development of the testicular cords. In rats and pigs, 1-2 days separate these events while in 
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humans and bovine the appearance of Leydig cells follow that of the cords by about 1 week 

(Sinowatz et al., 1987; Rüsse, 1991; Orth, 1993). The fetal Leydig cells of bovine are firstly 

recognized in the fetus of 3 cm CRL/46 dpc (Schrag, 1983; Sinowatz et al., 1987; Rüsse, 

1991). Although the origin of fetal Leydig cells is a matter of debate, several studies have 

suggested a subpopulation of mesenchymal-like cells in the testis interstitium to be the source 

of these cells, with evidence obtained from many mammalian species including the rat, 

mouse, pig, ferret and human (Habert et al., 2001; Mendis-Handagama and Ariyarante, 2001). 

This concept is supported by the observation of a decrease in the number of mesenchymal 

cells in gonads of fetal pigs that corresponds temporally with the appearance of Leydig cells 

and is inversely related to the increasing in numbers of these cells (Orth, 1993). In bovine, 

these intertubular mesenchymal cells have been suggested to be not only the precursors of the 

Leydig cells (Schrag, 1983; Sinowatz et al., 1987; Wrobel et al., 1988) but also of the 

peritubular cells and fibrocytes (Wrobel et al., 1988). Because few mitotic figures are only 

seen among morphologically recognizable Leydig cells in the early stages of development and 

become rare thereafter, it has been suggested that most, if not all, fetal Leydig cells originate 

by differentiation from mesenchyme-like precursors and, once differentiated, no longer divide 

under normal conditions (Byskov, 1986; Orth, 1993). While some of the mesenchymal cells 

in the testis interstitium differentiate into fetal Leydig cells and many other interstitial cells 

types, others retain their undifferentiated characteristics and serve as reservoir of precursors 

for the adult Leydig cells in the postnatal testis (Habert et al., 2001; Mendis-Handagama and 

Ariyarante, 2001). Despite the exact signals that trigger the initial differentiation of Leydig 

cells are unknown, the testicular cords formation, particular extracellular matrix component 

(collagen type IV and laminin), and extragonadal factors (pituitary gonadotropins and thyroid 

hormones) have been suggested as trigger mechanisms (Orth, 1993; Mendis-Handagama and 

Ariyarante, 2001). Moreover, Sertoli cell-secreted factors could be also involved (Habert et 

al., 2001). In mammals, ontogenesis of the Leydig cell function involves at least two 

generations of cells. The first generation develops during fetal life. These fetal Leydig cells 

are responsible for the virilization of the male urogenital system. They regress thereafter, 

although some of them may persist in the adult life of rat. The second Leydig cell population 

appears during puberty and produces testosterone required for the onset of spermatogenesis 

and maintenance of male reproductive functions (Habert et al., 2001). Although a biphasic 

pattern of the Leydig cell development is well established for most if not all of mammalian 

species, a triphasic pattern (fetal, neonatal and adult Leydig cell population) has been 

suggested for pig and human (van Vorstenbosch et al., 1984; Prince, 2001). During testicular 
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differentiation, Leydig cells gain the characteristics of typical steroid-producing cells. 

Cytodifferentiation of Leydig cells begins with an increase in the cytoplasmic volume, 

development of smooth endoplasmic reticulum, an increase in the number and the size of the 

mitochondria, enlargement of the nucleus, and accumulation of lipid droplets. Gap junctions 

as well as small aggregates of particles have been described on the plasma membrane of the 

differentiated fetal Leydig cells (Schrag, 1983; Byskov, 1986; Sinowatz et al., 1987; Habert et 

al., 2001). In addition, fetal bovine Leydig cells occur primarily in clusters (Schrag, 1983). 

The morphological differentiation of the fetal Leydig cells is closely correlated with 

steroidogenic activity, which has been evaluated by measuring steroids in fetal blood, and by 

determining steroids produced by the testis (Byskov, 1986). Fetal Leydig cells remain in a 

fully differentiated state for a given period, and then undergo regressive changes, which begin 

shortly before birth in mouse, rat, hamster, and rabbit (Gondos, 1977). In human testis, such 

changes are seen beginning after their peak at 14-18 week of gestation and are associated with 

a decline in testosterone synthesis (Prince, 2001). Fetal bovine Leydig cells reach their 

maximum number at approximately 11-12 cm CRL (about 88 dpc) but dedifferentiate again to 

small spindle form mesenchymal cells during the final phase of pregnancy. Degenerated 

Leydig cells are however rarely seen (Schrag, 1983; Sinowatz et al., 1987; Setijanto, 1992). 

Leydig cells of bovine fetus are mainly localized between the seminiferous tubules and are 

never seen within the mediastinum testis (Wrobel, 2000a). The main function of Leydig cells 

is secretion of androgens. Testosterone is by far the most important androgen. Testicular 

androgens are responsible for the development and maintenance of the male internal and 

external genitalia, appearance of secondary sexual characteristics, the development of the 

musculoskeletal system, feedback inhibition of the hypothalamo-pituitary axis, and 

stimulation of spermatogenesis (Hall, 1994).    
 

2.2.1.6. Testicular vasculature and intratesticular excurrent pathways 

The early specification of vascular development suggests that construction of specific 

vasculature plays an important role in the developmental pattering as well as the physiological 

function of the organ (Brennan et al., 2002). In testis, blood vessels may be critical for 

testicular cords formation (Tilmann and Capel, 1999). Therefore, recruitment of vascular cells 

from the adjacent mesonephros has been characterized as an early step in the testicular 

development (Martineau et al., 1997). As mentioned above, downstream events of the Sry 

expression include an increasing in the size of the XY gonad, organization of testicular cords 

and appearance of a prominent blood vessel visible just beneath the coelomic epithelium. In 

contrast, the XX gonad has no similar morphological or vascular features (Capel, 2000; 
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Tilmann and Capel, 2002). The early differences in vascular development in XY gonads may 

be important for the differentiation and specification of the venous or lymphatic system to 

facilitate testosterone export that prevents the development of ambiguous sexual phenotypes. 

Furthermore, a high level of blood flow through the early testis may be important for the 

metabolic activities where increased oxygen and metabolite delivery are critical for growth, 

signaling, and initiation of the steroid synthesis. The efficient collection of testosterone for 

export may be driven by a high level of blood flow (Brennan et al., 2002). At least three cell 

types migrate into the XY gonad from the mesonephros. These cells were identified as 

peritubular myoid cells, perivascular, and endothelial cells (Martineau et al., 1997). The 

developing testis becomes well vascularized simultaneously with the testicular cord formation 

whereas capillaries grow between the arches of the testicular cords. In particular, the blood 

vessels in the developing tunica albuginea become clearly visible soon after sex 

differentiation (Byskov, 1986). In fetal pig testis, it was proposed that the ingrowing 

capillaries could stimulate the differentiation of testicular cords; therefore, the testicular cords 

were firstly differentiated in the simultaneously vascularized periphery of the gonads (Byskov 

and Hoyer, 1994). Testicular macrocirculation consists of a series of distributing and 

collecting vessels that conduct blood to and from the testis. The distribution of blood to the 

testis is achieved by the systematic divisions of feed arteries that arise from spermatic artery. 

The blood is returned from testis by an extensive network of collecting venules that converge 

near the inguinal canal to form the spermatic vein. The venous drainage differs within and 

between the species (Desjardins, 1993). The internal spermatic artery arises from the aorta 

and run directly to the testis. The degree of vascular (arteries and veins) convolutions 

continues to increase as the testis descends and it reaches almost adult proportion by the time 

the testis reaches the inguinal canal. In lamb, the general form of the pampiniform plexus 

become well developed at the time of the descent of testes (Setchell, 1970). The bovine 

testicular excurrent duct system is represented by straight tubules and rete testis while is not 

provided with an extratesticular rete as in many other mammals (Hees et al., 1987). Recently, 

it was shown in bovine embryos of about 30 to 35 dpc that mobilized cells of vestigial 

pro/mesonephric nephrostomial tubules give rise to the initial blastema of the adrenal cortex, 

rete testis, and gonad proper (Wrobel and Süß 1999, 2000). The three blastemas follow each 

other in cranio-caudal succession and are situated in the area between the mesonephros and 

coelomic cavity. With the separation of the blastema (the rete and gonadal blastema on one 

side and the adrenocortical blastema on the other side), the rete blastema remains in contact 

with the regressing mesonephros (Wrobel and Süß, 1999). At the beginning of its 
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morphogenesis, the rete anlage is completely an extragonadal structure situated within the 

cranial peduncle of the gonadal fold. One day before testicular differentiation (about 38 dpc), 

a small caudal portion of rete blastema is observed in the confines of the gonad proper (testis). 

On the other hand, the cranial portion maintains a broad contact area with the 

pro/mesonephric giant glomerulus. Shortly after the testicular differentiation (about 41 dpc), 

the cells in the area of the rete blastema begin to arrange in strands (Wrobel, 2000a). With 

increasing of age, the intensely growing rete testis reaches the caudal half of the testis and 

expands centrifugally in a peripheral direction. The organization of the rete tissue in strands 

becomes clearly visible because the latter are separated by connective tissue and a continuous 

basal lamina. After 85 dpc, the rete expands further peripherally and in a caudal direction and 

develops the first short straight testicular tubules to form the first connection with the 

seminiferous tubules. This process takes place by the continuous invasion of the latter by the 

immigrating rete cells with the simultaneous disappearance of the pre-Sertoli and 

prespermatogonia in the invaded area of the seminiferous tubules. From approximately 100 

dpc on, a lumen can be identified in some strands of the rete testis while the straight testicular 

tubules remain solid until shortly before birth. The epithelium of the straight tubules is 

ultrastructurally identical to that of the rete testis since the former are extensions of the latter. 

In the second half of pregnancy, macrophages are found within the epithelium of rete and 

straight tubules (Wrobel, 2000a). The above-mentioned timeline of developmental changes in 

the bovine prenatal testis are summarized in table 1.  
 

Table 1: Timeline of prenatal development of bovine testis 

Age/dpc                                         Most clearly observed events 
18 dpc                  Appearance of PGCs in the caudal wall of proximal yolk sac 
23-25 dpc Localization of PGCs in the axial body region at the level of mesonephros 
27-30 dpc             Emergence of the gonadal ridge 
30-38 dpc Stage of the indifferent gonads 
39-40 dpc Testicular differentiation (sex cord, basal lamina and tunica albuginea formation as well as 

initial appearance of pre-Sertoli cells) 
40-50 dpc Appearance of the 1st generation of Leydig cells 

Proliferation of Sertoli cells  
Rete cells begin to arrange in strands  

50-80 dpc             Germ cells have a first maximum of proliferation rate and transform from PGCs to 
prespermatogonia. 

80-100 dpc           Leydig cells reach their first maximum 
Proliferation of germ cells decreases 
Rete testis develops the first short straight tubule and a lumen can be identified in some 
strands of rete testis. 

100-200                Prespermatogonial proliferation decreases steady 
Leydig cells regress or dedifferentiate to mesenchymal cells. 

200-until birth      Prespermatogonia cease their multiplication 
 
The data of this table are collected from Schrag, 1983; Sinowatz et al., 1987; Rüsse, 1991; Wrobel and Süß, 
1998; Wrobel, 2000a,b 
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2.2.2. Developmental changes in the postnatal testis   
At birth, the mammalian testis appears as an immature organ, which gains its full function 

only at puberty. Acquisition of testicular maturity is evidenced by a number of morphological 

changes at histological, cytological, and ultrastructural levels (Wrobel et al., 1988). The 

postnatal testicular development in the bovine was divided into four phases: infantile, 

proliferation, prepubertal, and pubertal phase (Abdel-Raouf, 1960; Sinowatz et al., 1983). 

During these phases, the testicular cells undergo gradual developmental changes to attain the 

pubertal form at about 40 week of age. 

 

 Infantile phase (from birth to 8th week) 

During this phase, seminiferous tubules are small and solid (Sinowatz et al., 1983; Sinowatz 

and Amselgruber, 1986; Wrobel et al; 1986; Wrobel, 2000b). At 4 weeks post natum, the 

basal lamina is approximately 2 μm thick and the peritubular cell sheath consists of 1-2 layers 

of undifferentiated mesenchyme-like (Wrobel et al., 1988) or fibroblast-like (Sinowatz and 

Amselgruber, 1986) cells. However, the tubular epithelium consists of pre-Sertoli cells and a 

few, usually more centrally located prespermatogonia (Sinowatz and Amselgruber, 1986; 

Wrobel, 2000b). The germ cells in this stage resemble those of the preceding prenatal period 

in shape and size but start slowly to resume their mitotic activity with the beginning of 5th 

week (Wrobel, 2000b). In 4-and 8-week–old bovine testis interstitium, mesenchyme–like 

cells are the dominating elements. However, morphologically differentiated Leydig cells are 

encountered throughout the entire period of postnatal development. In 4-week-old testes, 

degenerating fetal and newly formed postnatal Leydig cells are seen in juxtaposition to each 

other. The transformation of mesenchyme-like cells into Leydig cells is initiated by rounding 

of cellular and nuclear contours and increase in cell mass. Although postnatal bovine Leydig 

cells do not survive from fetal periods but differentiate from mesenchymal precursors during 

postnatal development, a very small portion may also be derived from mitosis of already 

differentiating Leydig cells (Wrobel et al., 1988). The vascularization of the developing testis 

is subject to local and age-related differences. In the 4th and 8th week, the percentage of 

vessels is generally very high due to the existence of large, thin-walled structures, which did 

not allow an unequivocal classification into blood or lymph vessels (Wrobel et al., 1988). The 

connection between testicular straight and seminiferous tubules is rather simple during this 

phase whereas the straight tubules have a narrow lumen and possesses stratified epithelium 

rich in intercellular canaliculi and extensive cellular junctions (Wrobel et al., 1986). 
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Proliferation phase (8th -20th week) 

In this period, numerous mitoses of the pre-Sertoli and prespermatogonia can be observed and 

many of the latter have been displaced to the basal aspect of the tubuli to contact the basal 

lamina (Sinowatz and Amselgruber, 1986; Wrobel, 2000b). At the end of the 

prespermatogenesis (at about 15th week), the tubular diameter increases to 80 µm and four to 

five cells are encountered per tubular cross-section. The second peak of germ cell 

proliferation begins in this phase (by week 18) and lasts until the mid of the next prepubertal 

phase (27 week). The germ cells in the second maximum phase of proliferation represent the 

expansion of the spermatogonia stem cell line, kinetically interpolated between 

prespermatogonia and the first differentiating (cycling) A-spermatogonia (Wrobel, 2000b). 

Above the spermatogonia (i.e. in the direction of the future lumen), opposing cell membrane 

of adjacent pre-Sertoli cells start the development of extended junctional complexes 

(Sinowatz and Amselgruber, 1986). The thickness of the multilayered basal lamina has 

increased to approximately 2.2 μm and mostly three layers of flattened peritubularly situated 

cells surround the basal lamina. These cells begin the first step of the transformation into 

contractile cells by appearance of small bundles of intracytoplasmic filaments connected to 

electron dense attachment plaques in the cellular process and in the subplasmalemmal area. 

With 16 weeks, the tubular basal lamina has further increased in thickness, measuring nearly 

3 μm and the peritubular cells have proceeded in their transformation to myofibroblast cells. 

They can be now clearly separated by light microscope from other derivates of the 

mesenchymal-like cell line. In the interstitium, a considerable increase and differentiation of 

Leydig cells occurs and from the 8th week onward, only postnatal Leydig cells (second 

generation of Leydig cells) are present (Sinowatz et al., 1987). Furthermore, from week 16 

on, capillaries, blood and lymph vessels could be identified by light microscope. Toward the 

end of this phase, the first signs of the terminal segments of seminiferous tubules can be 

observed and the stratified tubulus rectus epithelium adjacent to the seminiferous tubules 

reduces its layer by rearrangement of the individual cells (Wrobel et al., 1986). 

 

 Prepubertal phase (20th -32nd week) 

Early in this phase (20-25 weeks), the seminiferous tubules begin to acquire a lumen and 

develop a terminal segment (Sinowatz and Amselgruber, 1986; Wrobel et al., 1986). The 

germ cells in the second maximum phase of proliferation represent the expansion of the 

spermatogonia stem cell line, interspersed between prespermatogonia and the first 

differentiating (cycling) A-spermatogonia (Wrobel, 2000b). Early stages of meiosis are 
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observed at the beginning of this phase and thereafter, many primary spermatocytes in 

different stages of meiosis can be seen. Furthermore, differentiation of pre-Sertoli cells to 

Sertoli cells also occurs (Sinowatz et al., 1983; Sinowatz and Amselgruber, 1986). The 

prevalence of junction specialization between adjacent Sertoli cells is much greater and 

divides the tubular epithelium into basal compartment containing spermatogonia and an 

adluminal compartment characterized by the later stage of spermatogenesis. At this age (24 

weeks) therefore, a functional blood-testis barrier can be expected. The Sertoli cell maturation 

process includes distinct changes in the cell shape, nucleus, and cellular organelles as well as 

an increase in surface specialization and subsequent interaction with other Sertoli and germ 

cells (Sinowatz and Amselgruber, 1986). At the beginning of this stage, the thickness of the 

basal lamina is reduced to 2.5 μm with knob-like projections invading the bases of Sertoli 

cells and spermatogonia. Thereafter (at 25 weeks), the peritubular cells transform into 

contractile myofibroblasts and the general structure of the tubular lamina propria resembles 

the adult one (will be discussed latter). The degenerative phase of Leydig cells that started in 

the proliferation phase gradually decreases at 25 weeks and completely ceases at 30 weeks. 

Leydig cells that survive this degenerative process constitute the long-lasting adult population 

(Wrobel et al., 1988). From week 25 on, bovine Leydig cells acquire the adult ultrastructure, 

conformation, location, and topographic relationship to other intertubular constituents. 

Moreover, the undifferentiated mesenchyme-like cells become rare in the bovine testis from 

30 week and onward. Also differentiation of the border region between seminiferous and 

straight tubules falls in this phase of postnatal development and is accompanied by decisive 

changes in the seminiferous tubule proper, marking the onset of puberty. These changes 

represented by formation of a lumen within the testicular cord, appearance of spermatocytes 

and spermatids, morphological shift from pre-Sertoli to Sertoli cells and elaboration of the 

structural equivalent of the blood testis barrier. Furthermore, terminal segment with two 

different regions could be first seen and the tubulus rectus epithelium close to this region 

becomes simple cuboidal (Wrobel et al., 1986). 

 

 Pubertal phase (32nd-40th week) 

With 40 weeks, active spermatogenesis can be observed. The seminiferous tubules are hollow 

and the tubular epithelium demonstrates all stages of spermatogenesis up to that of elongated 

spermatids (Sinowatz et al., 1983; Sinowatz and Amselgruber, 1986; Wrobel, 2000b). The 

spermatogonia stem and precursor cell line resemble those of the adult bovine testis can be 

divided into basal spermatogonia stem cell line (BSC), aggregated spermatogonia precursor 
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cells (ASPC) and committed spermatogonia precursor cells (CSPC). Furthermore, within the 

basal tubular compartment, three types of cycling spermatogonia (A-, I-, B-Sg) and 

preleptotene primary spermatocytes can be identified in this phase by using of PGP 9.5 

immunohistochemistry (Wrobel et al., 1995a, b; Wrobel, 2000b). Most of Sertoli cells have 

completed their morphological differentiation and now attain the adult structure. 

Degeneration of many germ cells in all stages of the development is observed (Sinowatz et 

al., 1983; Sinowatz and Amselgruber, 1986). In addition, the adult situation of the terminal 

segment and straight tubules is nearly achieved (Wrobel et al., 1986). 

 

2.3. Morphological overview of the adult testis 
 
2.3.1. Anatomical structure  

The testes of bull are large, elongated oval with vertical long axis, posterior attached border 

and somewhat flattened medial surface. A testicle of an adult bull weights about 250- 300 

grams and measures on the average about 10 to 12 cm in length. The width is about 6 to 8 cm 

and the anterior posterior diameter about the same (Dyce et. al., 1987; Nickel et. al, 1999). 

The greater part of the surface of the testicle is covered by a serous membrane, tunica 

vaginalis propria, which is the visceral layer of the serous envelope of the cord and testicle; 

this is reflected from the attached border of the testis, leaving an uncovered area at which the 

vessels and nerves in the spermatic cord reach the testis. The tunica vaginalis enables the 

testis, which is sensitive to pressure, to glide freely in its envelopes. Beneath this serous 

covering is the tunica albuginea, a thick white fibrous capsule of dense irregular connective 

tissue. It consists predominantly of collagen fibers and a few elastic fibers. In stallion, boar, 

and ram occasional smooth muscle cells are present (Bloom and Fawcett, 1986; Dyce et. al., 

1987; Wrobel, 1998). 

 

2.3.2. Histological organization  

The testis has a thick fibrous capsule, the tunica albuginea. The later is continuous with 

connective tissue trabeculae, so-called septula testis, which converge toward the mediastinum 

testis. These septa are rather complete in dogs and boars, whereas in other domestic animals, 

they are inconspicuous connective tissue trabeculae surrounding large intratesticular vessels. 

The testicular septa extend radially from the mediastinum to the tunica albuginea, dividing the 

organ into pyramidal compartments, lobuli testis. Each lobule is composed of one to four 

highly convoluted seminiferous tubules (Bloom and Fawcett, 1986; Wrobel, 1998). Eighty 

percent of the adult testis are made up of seminiferous tubules; the remaining 20% are 



                                                                                                                       Review of literature
                                                                                                                   

                                                                     25                                                                                                     

composed of supportive connective tissue, through which the Leydig cells are scattered. The 

tubules are usually highly convoluted loops, but they may also branch or end blindly. At the 

apex of each lobule, its seminiferous tubules pass abruptly into the tubuli recti, a segment of 

the excurrent duct system. They in turn are confluent with the rete testis, a plexiform system 

of epithelium-lined spaces in the connective tissue of mediastinum (Bloom and Fawcett, 

1986). The intertubular spaces contain loose connective tissue, blood and lymph vessels, 

fibrocytes, free mononuclear cells, and interstitial endocrine (Leydig) cells (Wrobel, 1998). 

This general histological organization of the testis is illustrated in fig. 2 and is explained in 

details in the following sections. 

 

2.3.2.1. Tubuli seminiferi contorti 

The convoluted seminiferous tubules (tubuli seminiferi contorti) in most mammals are 

tortuous two-ended loops with a diameter between 150 and 300 μm and 30 to 70 cm long. 

They are lined by stratified germinal epithelium, surround by a lamina propria, and connected 

at both ends to straight testicular tubules by a specialized terminal segment. The length of all 

seminiferous tubules in the testis of adult bovine amounts to approximately 5000 m. 

Histologically, the seminiferous tubules consists of three components: lamina propria, 

sustentacular cells (Sertoli cells), and spermatogenic cells (Lesson and Lesson, 1970; Wrobel, 

1998). 

 

 
Fig 2: General overview of the histological organization of testis and epididymis 



                                                                                                                       Review of literature
                                                                                                                   

                                                                     26                                                                                                     

2.3.2.1.1. Lamina propria  

The lamina propria of the seminiferous tubules is strategically located between the systemic 

circulation and the cell membranes of the Sertoli cells and spermatogonia. It consists of 

clearly defined cellular and acellular zones. Immediately adjacent to the seminiferous 

epithelium is a thin zone of extracellular matrix referred to as the basement membrane that 

has been shown by electron microscope (EM) to consist of two layers, basal and reticular 

lamina. Outside the basal lamina is a clear zone containing type I collagen fibrils in varying 

orientation. Peripheral to this collagen zone is a layer of flattened cells, the peritubular myoid 

or myofibroblasts cells, followed by a layer of lymphatic endothelial and fibroblast cells. 

Collectively, the structures surrounding the seminiferous tubules are referred to as the lamina 

propria (Christl, 1990; Dym, 1994). Although the lamina propria of the seminiferous tubules 

in adult reptiles, birds, and mammals follows this general scheme of organization (cellular 

and acellular zones), there is, on the other hand, considerable variation in thickness, 

homogeneity or lamellisation of the basal lamina, varying distribution or arrangement of 

collagen fibers, and in number and pronouncement of the layers of myofibroblasts of this 

lamina in the species so far studied. Therefore, three types have been recognized (Burgos et 

al., 1970; Christl, 1990). In the first type, the lamina propria is 1-3 μm thick and contains a 

single layer of myoid cells. It consists of an internal and external non-cellular lamella 

enclosing a single lamella of myoid cells and covered superficially by a layer of connective 

tissue cells. The internal non-cellular lamella is in turn made up of three layers: inner and 

outer homogenous layers and a middle one containing collagen. This type is found in rat, 

mouse, and hamster (Burgos et al. 1970; Bustos-Obregon, 1976; Christl, 1990; Maekawa et 

al., 1996). In a second type, the components of the internal lamella are fused together and the 

myoid cells are in form of one, or possibly two layers with homogenous material and 

collagenous fibers in between and on the external surface. The lamina propria in this type is 

2-3.5 μm thick and present in the guinea pig (Burgos et al. 1970; Bustos-Obregon, 1976; 

Christl, 1990). A third type with several layers of myofibroblast cells separated by varying 

amounts of extracellular glycosaminoglycans, proteoglycans, and collagen fibers has been 

described in other animals and man. The lamina propria in this type is 2.5-4.5 μm thick 

(Burgos et al. 1970; Bustos-Obregon, 1976; Wrobel et al., 1979; Moniem et al., 1980; Christl, 

1990; Holstein et al., 1996; Maekawa et al., 1996). The inner lamella (basal lamina) of this 

type of lamina propria may be a classical one with knob-like structure as in man, monkey, 

horse, dog, and cat (Bustos-Obregon, 1976) or be split into two layers as in rabbit and boar 



                                                                                                                       Review of literature
                                                                                                                   

                                                                     27                                                                                                     

(Bustos-Obregon, 1976) or into three layers as in camel (Moniem et al., 1980) or even give a 

multilayered appearance as in adult goat, ram, and bull (Bustos-Obregon, 1976; Wrobel et al.,  

1979). The basal lamina of the bull seminiferous tubules is multilayered and generally 

possesses smooth contours but occasionally exhibits knob-like projections which invaginate 

into the basal portions of spermatogonia and Sertoli cells. The thickness of the basal lamina 

measures between 0.4 and 0.8 μm and amounts up to 1.2 μm at the knob-like projections. In 

the even or slightly undulated portions of the basal lamina, 6-9 approximately parallel 

electron-dense layers are recognized which separated by less electron-dense or transparent 

interspaces. In knob-like projection up to 15 electron-dense layers can be identified (Wrobel 

et al., 1979). According to ultrastructural features as well as to alkaline phosphatase 

histochemistry, Böck et al. (1972) distinguished between two types of peritubular cells, i.e., 

(i) myoid cells and (ii) myofibroblasts. Differentiated myoid cells possess a continuous basal 

lamina and tightly packed parallel-oriented cytoplasmic filaments. They also exhibit a 

positive reaction for alkaline phosphatase. Myofibroblasts are surrounded by a discontinuous 

basal lamina, possess bundles of crossing cytoplasmic filaments, and lack alkaline 

phosphatase. The elongated peritubular cells of the bovine seminiferous tubules are arranged 

in 3-5 concentric layers around the tubules and considered as myofibroblasts with a somewhat 

higher degree of differentiation than the postpuberal human peritubular cells. In boars, these 

cells acquire all features of typical smooth muscle cells (Wrobel et al., 1979; Wrobel, 1998). 

Elastic tissue is situated mainly subjacent to the tubular basal lamina of bull testis and to a 

lesser degree between the peritubular cells. A peritubular space lined by endothelium-like 

cells may also surround the seminiferous tubules in bull (Wrobel et al., 1979). The outermost 

layer of the tubular lamina propria consists of fibrocytes, collagen fibrils, and fibroblast-like 

cells that may participate in the renewing of the contractile cells. Lymphocytes and 

monocytes invade the lamina propria but never the intact tubular epithelium (Bustos-Obregon, 

1976; Moniem et al., 1980; Christl, 1990; Wrobel, 1998). Immunocytochemical studies on 

tissue section have demonstrated that the basement membrane immediately adjacent to the 

seminiferous epithelium is composed of laminin, type IV collagen, heparan sulfate 

proteoglycans, fibronectin, and nidogen/entactin (Dym, 1994). 

 

Biological functions of the lamina propria 

Generally, the myoid or myofibroblast cells have been shown to be contractile elements, 

involved in the transport of the spermatozoa and testicular fluid in the seminiferous tubule. 

Therefore, the lamina propria and its cells form the morphological basis for the peristaltic 
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movement of the seminiferous tubules firstly discovered by Roosen-Runge in 1951. Several 

substances (prostaglandins, oxytocin, TGF-β, NO/cGMP) have been suggested to affect the 

contraction of the peritubular myoid cell, since no nerves have been observed in or near this 

layer, but the exact mechanisms of contraction are still unknown (Holstein et al., 1996; 

Maekawa et al., 1996). Furthermore, the lamina propria constitutes a permeability barrier for 

substances penetrating the seminiferous tubules from the interstitium into the germinal 

epithelium (Dym and Fawcett, 1970). Recent studies have demonstrated that the peritubular 

myoid cells contribute to the contractile activity of testicular tubules and maintain 

mesenchymal-epithelial interactions with Sertoli cells both by cooperation in the secretion 

and deposition of extracellular matrix components (fibronectin, type I and IV collagens, 

proteoglycans) and by secretion of paracrine agonists or growth factors (PModS, TGF beta, 

IGF-I, activin-A). Some of these substances such as a peritubular factor that modulates Sertoli 

cell function (PModS) are known to affect the Sertoli cell function. Furthermore, it has been 

reported that myoid cells contain androgen receptors and are involved in retinol processing. 

All these studies indicate that the peritubular myoid cells not only provide structural integrity 

to the tubules but also take part in the regulation of spermatogenesis (Skinner et al., 1985; 

Dym, 1994; Maekawa et al., 1996; Verhoeven et al., 2000). Although the basal lamina was 

believed to serve as a selective barrier and scaffold to which cells adhere, it has become 

evident that the individual component of the lamina propria (laminin, type IV collagen, 

heparan sulfate proteoglycans, fibronectin, and nidogen/entactin) are regulators of biological 

activities such as cell growth, differentiation, and migration, and that they influence tissue 

development and repair (Dym, 1994; Erickson and Couchman, 2000). 

 

2.3.2.1.2. Sertoli cells (sustentacular or supportive cells) 

Sertoli cells are the only somatic (non-germinal) elements within the seminiferous tubules. 

They were first described by Sertoli in 1865 as columnar cells with cytoplasmic processes 

extending from the basal lamina to the lumen of the seminiferous tubule and enveloping the 

neighboring germ cells to provide them with physical support and “nurse” function 

(Maddocks and Setchell, 1988). There is a high correlation between the absolute number of 

Sertoli cells per paired testes and both testicular size and daily sperm production. 

Furthermore, the absolute number of Sertoli cells may be an important factor in establishing 

the maximal rate of sperm production by any given bull (Berndtson et al., 1987). 
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Morphological characteristics of Sertoli cells 

Detailed accounts of the fine structure of mature Sertoli cells are now available for rodents 

(Chung, 1974; Fawcett, 1975), goat (Jurado et al., 1994), pig (Osman and Ploen, 1978a), 

horse (Johnson and Nguyen, 1986), buffalo (Pawar and Wrobel, 1991), bovine (Ekstedt et al., 

1986; Sinowatz and Amselgruber, 1986, 1988; Wrobel and Schimmel, 1989), monkey (Dym, 

1973), and human (Schulze, 1984). Presumptive bovine Sertoli cells undergo morphological 

differentiation to mature cells during the first 28 weeks of proliferative development. The 

maturation process includes distinct changes in cell shape, nucleus, mitotic activity and 

cellular organelles, as well as an increase in and differentiation of Sertoli cell surface 

specialization (Sinowatz and Amselgruber, 1986). The three-dimensional configuration of the 

adult Sertoli cell is extraordinary complex, but it can be thought of as basically tall columnar, 

resting upon the basal lamina, and extending upward through the full thickness of the 

epithelium to its free surface (Bloom and Fawcett, 1986; Ekstedt et al., 1986; Sinowatz and 

Amselgruber, 1988). As in other species, the bovine Sertoli cell is divided into several 

portions: the basal foot region, trunk region, lateral cell processes, and apical cell surface. The 

basal foot region rests upon the basal lamina and the trunk region extends toward the tubular 

lumen. From the trunk region of Sertoli cells, an elaborate system of thin processes radiate 

laterally to surround or separate spermatocytes and round spermatids and occupy all of the 

interstices among them. The apical Sertoli cell surface is indented by shallow or deep recesses 

partly lined by ectoplasmic specializations and houses elongated spermatids and spermatids 

residual bodies (Wrobel and Schimmel, 1989). Sertoli cells must continually alter their shape 

to accommodate the structural transformation and mobilization of germ cells from the base to 

the free surface of the seminiferous epithelium (de Kretser and Kerr, 1994). Sertoli cells have 

generally large oval or pear-shaped nucleus located in the broad basal portion of the cells. 

This nucleus is often deeply infolded and contains a large nucleolus (de Kretser and Kerr, 

1994; Wrobel, 1998). On the electron micrographs, the outlines of the bovine nuclear cross-

sections are irregular with numerous deep indentations causing their lobulated appearance. 

The karyoplasm appears homogenous and contains little heterochromatin. The nuclear 

envelope contains numerous pores and a small electron dense layer (lamina fibrosa) occurs on 

the inner nuclear membrane (Ekstedt et al., 1986; Sinowatz and Amselgruber, 1988). The 

complex nucleolus is a particular characteristic structure in the Sertoli cell nuclei. In man 

(Schulze, 1984) and rodents (Fawcett, 1975), the usual configuration of nucleolus resembles a 

tripartite structure composed of two amorphic lateral bodies and central part formed by a 

compact nucleolonema. In bovine the nucleolus is, however, a more complex structure 
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consisting of membrane-limited tubules within the strands of the nucleolonema and numerous 

vesicles of various sizes. The membrane bound structures have small ribosomes-like particles 

associated with their outer surface. Satellite heterochromatin bodies, common in many other 

species, are not found (Zibrin, 1972; Ekstedt et al., 1986; Sinowatz and Amselgruber, 1988). 

In general, the cytoplasmic components of Sertoli cells show a polarized distribution. The 

basal and lower trunk regions of the cytoplasm contain an abundance of organelles and 

inclusions, whereas the apical extensions usually exhibit only few of such structures 

(Sinowatz and Amselgruber, 1988; de Kretser and Kerr, 1994). The basal portion and the 

central trunk region of the sustentacular cell contain mitochondria, an inconspicuous Golgi 

complex, abundant sER, little rER, free ribosomes, microtubules, actin and vimentin 

filaments, lysosomes, and lipid inclusions (Sinowatz and Amselgruber, 1988; Wrobel, 1998). 

Sertoli cell mitochondria exhibit a great diversity in shape according to the species. They may 

be round, oval, spherical, or even S shape. In species so far examined, the mitochondria have 

many transversely oriented cristae, but the tubular form is often encountered, particularly in 

its spherical variety (de Kretser and Kerr, 1994). Sertoli cell Golgi apparatus consists of 

several dictiosomes, which are frequently located near the nucleus, but some are also found in 

the apical cytoplasm (Sinowatz and Amselgruber, 1988). Sertoli cells contain limited amount 

of rough or granular endoplasmic reticulum, which occurs as several short parallel cisternae 

or alternatively takes the form of small individual tubules principally in the base or trunk of 

the Sertoli cell cytoplasm (Sinowatz and Amselgruber, 1988; de Kretser and Kerr, 1994). 

Contrary to rER, Sertoli cell contains a well-developed system of sER (Sinowatz and 

Amselgruber, 1988). However, there is no general morphological pattern that can be applied 

to a description of Sertoli cell endoplasmic reticulum, since it has been referred as vesicular, 

tubular, cisternal, fenestrated, or lamellar. Species differences may account for such variations 

in fine structures (de Kretser and Kerr, 1994). In bovine, the sER often appears as sharply 

circumscribed, crescent-shaped, or conical masses of membranes in the Sertoli cell cytoplasm 

around developing acrosome. Furthermore, whorls of endoplasmic reticulum are often 

encountered in the basal part of the cells, lateral to the nucleus (Ekstedt et al., 1986; Sinowatz 

and Amselgruber, 1988). Sertoli cell cytoplasm also contains free ribosomes, polyribosomes, 

lipid droplets, and glycogen particles. In addition, Sertoli cells contain variable amounts of 

dense bodies usually referred to as collections of lysosomes, multivesicular bodies, and 

heterophagic vacuoles (Ekstedt et al., 1986; Sinowatz and Amselgruber, 1988; de Kretser and 

Kerr, 1994). Sertoli cells are endowed with an elaborate cytoskeleton together with contractile 

elements occupying most parts of the cytoplasmic matrix. A network of intermediate 
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filaments occurs in the cytoplasm and may also surround the Sertoli cell nucleus in an area 

devoid of other cell organelles. Microtubules are abundant but show no preferential 

orientation (Ekstedt et al., 1986; Sinowatz and Amselgruber, 1988). Generally, Sertoli cell 

shape, surface area, and volume percentages of organelles (sER, nucleus, lysosomes, and lipid 

inclusions) change in accordance with spermatogenetic cycle (Wrobel and Schimmel, 1989; 

de Kretser and Kerr, 1994). The Sertoli cells have specialized cell contacts with other Sertoli 

cells, germ cells and basal lamina. Inter-Sertoli cell junctions are functionally very important. 

By means of these junctions, the Sertoli cells form a continuous layer, dividing the 

seminiferous epithelium into basal and adluminal compartments. This continuous layer 

comprises the ultimate and tightest part of the blood testis barrier. The inter-Sertoli cell 

junctions are extensive occluding junctions. In the cytoplasm subjacent to the occluding 

junctions, there are bundles of microfilaments and subsurface cisternae of endoplasmic 

reticulum. Gap junctions are also found between neighboring Sertoli cells (Ekstedt et al., 

1986). Different types of junctional specializations exist between Sertoli and germ cells, 

including desmosome-like junctions, Sertoli ectoplasmic specializations, and tubulobulbar 

complex (Ekstedt et al., 1986; Sinowatz and Amselgruber, 1988). Circumscribed contact 

areas in the form of desmosome-like junctions are found between Sertoli cells and 

spermatogonia, spermatocytes and round spermatids. They are characterized by 

complementary densities on the subsurface aspects of Sertoli and germ cells membranes, 

which consist of numerous densely packed filaments. As opposed to true desmosomes, no line 

of dense material in the extracellular space parallel to the cell membranes can be seen. Sertoli 

ectoplasmic specializations are asymmetric junctional specializations, which occur only on 

the Sertoli cell side. They consist (1) of filaments apposed to the Sertoli cell membrane over 

quite a distance, and (2) of a more deeply placed cisterna of sER, which occurs frequently but 

irregularly. Ectoplasmic specializations are first observed at the level of spermatocytes and 

occurred then between Sertoli cells and subsequent developmental stages. They are especially 

well developed in that part of Sertoli cells facing elongation-and maturation-phase spermatids 

and eventually disappear at the end of the maturation phase of spermatid development. 

Additionally, tubulobulbar complexes are formed between late spermatids and Sertoli cells. 

These consist of deep protrusions of spermatids which project in invaginations of adjacent 

Sertoli cells (Sinowatz and Amselgruber, 1988). 
  
Sertoli cell functions: 

Sertoli cells have nutritive, protective, and supportive functions for spermatogenic cells. In 

addition, they phagocytize degenerating spermatogenic cells and detached residual bodies of 
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spermatids as well as they release the spermatozoa into the lumen of the seminiferous tubules 

(spermiation). Sertoli cells mediate the action of FSH and testosterone on the germ cells, 

participate in the synchronization of spermatogenic events, produce an androgen-binding 

protein, and secrete constituents of the intratubular fluid, such as transferrin, androgen-

binding protein, and inhibin (Wrobel, 1998). Experimentations over the last decades have 

revealed that Sertoli cells make and secrete a number of proteins that form the molecular basis 

for Sertoli-germ cell interactions. Glycoproteins secreted by the Sertoli cells can be placed in 

several categories based on their biochemical properties (Griswold, 1998). The first category 

includes the transport or bioprotective proteins that are secreted in relative high abundance 

and include metal ion transport proteins such as transferrin and ceruloplasmin. The second 

category of secreted proteins includes proteases and protease inhibitors, which allegedly are 

important in tissue remodeling processes that occur during spermiation and movement of 

preleptotene spermatocytes into the adluminal compartment. The third category of Sertoli cell 

secretions includes the glycoproteins that form the basal lamina between the Sertoli cells and 

the peritubular cells. Finally, the Sertoli cells secrete a class of regulatory glycoproteins that 

can be made in very low abundance and still carry out their biochemical roles. These 

glycoproteins function as growth factors or paracrine factors and include molecules such as 

AMH, c kit ligand, FGF, IGF, TGF, EGF, and inhibin (Griswold, 1998). All of these 

glycoproteins are implicated in the regulation of spermatogenesis and some of them have 

recently been reviewed by Abd-Elmaksoud and Sinowatz (2005/in press).      

 

Blood-testis barrier 

A well-recognized property of the testis is the maintenance, within the seminiferous tubules, 

of a highly specialized microenvironment created by the Sertoli cells that partition young and 

more mature germ cells into two compartments within the seminiferous epithelium. Many 

substances are found to diffuse readily from testicular blood vessels into the interstitial 

lymphatics but do not appear in the fluid collected from rete testis. Thus, a blood-testis 

permeability barrier seemed to be anatomically located either surrounding or actually within 

the wall of the seminiferous tubules (de Kretser and Kerr, 1994). The strategic and unusual 

location of Sertoli cell tight junctions in relation to the germ cells have given rise to the 

concept of an anatomic and functional subdivision of the seminiferous epithelium into (a) a 

basal compartment containing spermatogonia, preleptotene, and leptotene primary 

spermatocytes and (b) an adluminal component beyond the level of tight junctions that 

sequesters the more differentiated germ cells (advanced spermatocytes and spermatids) into a 
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unique physiological environment (Maddocks and Setchell, 1988; Sinowatz and Amselgruber, 

1988; de Kretser and Kerr, 1994). The development of specialized junctions between Sertoli 

cells seems to be under hormonal control since the blood-testis barrier does not appear until 

the onset of spermatogenesis at puberty (Kormano, 1967). The unique cell-cell junctions 

between Sertoli cells are an effective intraepithelial component of the blood-testis barrier. 

However, the Sertoli cell interactions with other cell types in the peritubular contractile layer 

of the seminiferous tubules are now thought to provide an adventitial, albeit incomplete, 

component to the blood-testis barrier. This is particular so in rodents, but Fawcett (1975) 

suggests that in primates, including man, the extensive gaps in the multiple layers of tubular 

lamina propria mean that the blood-testis barrier depends exclusively on the Sertoli cell 

junctions. The division of the Sertoli cell by the junctional complexes is of major 

consequence for partitioning of all substances; those reaching the base of the seminiferous 

epithelium from the blood have more or less direct access to cells in the basal compartment. 

However, the presence of occluding junctions means that substances must pass through the 

Sertoli cell cytoplasm to reach germ cells in the adluminal compartment. Likewise, the fluid 

of the tubular lumen must be derived from material passed selectively through, or synthesized 

by the Sertoli cell (Setchell, 1970). While the physiological role of peritubular cells, collagen 

fibrils and other ECM components in the boundary wall in limiting the passage of cells and 

macromolecules and preventing the penetration of blood vessels is recognized (Dym and 

Fawcett, 1970), they may also play an important role in shielding the immunologically 

foreign haploid germ cells from immature surveillance. The blood-testis barrier is probably 

involved in the control of endocrine activity in the testis. As emphasized by Sharpe (1983), 

the various barriers in the testis (vascular endothelium, myoid cells, and tight junctions of the 

Sertoli cells) will not only selectively prevent certain substances from entering the testis, but 

may also act to prevent others from leaving the testis. These various barriers allow the 

creation of unique microenvironments within the tubules, and possibly in the interstitial space, 

and are probably essential for local interaction between the various cell types and 

compartment within the testis. The development of a tubular barrier formed by Sertoli cell 

junctions is retarded by the absence of pituitary hormones, but not entirely prevented (Vitale 

et al., 1973), and once established does not subject to hormonal modification. The only 

circumstance in which the barrier breaks down is following efferent duct ligation (Setchell, 

1986) but this is probably a result of the increased intratubular pressure and not a response to 

the hormonal changes, which also occur (Main and Waites, 1978). In addition to the major 

blood-testis barrier in the seminiferous tubules, Kormano (1967) has demonstrated that at 
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puberty, the penetration of certain dyes into the interstitial fluid is reduced, and some may no 

longer penetrate at all. This implies some barrier at the level of the vascular endothelium. 

 

2.3.2.1.3. Spermatogenic cells  

Various spermatogenic cells, representing different phases in the development and 

differentiation of spermatozoon, are located between and above Sertoli cells. In addition to 

the cell population involved in spermatogenesis (cycling population), the bovine seminiferous 

epithelium contains a separate stem cell and spermatogonia precursor cell line. This 

population can adapt to changing demands and thus guarantees uninterrupted spermatogenesis 

(Wrobel et al., 1995a, b).  

 

Spermatogonia precursor cell line (non-cycling population) 

Spermatogonia precursor cells in the bovine seminiferous tubules are classified as basal stem 

cells (BSC), aggregated spermatogonia precursor cells (ASPC), and committed 

spermatogonia precursor cells (CSPC). Stem cells and spermatogonia precursor cells are 

morphologically similar to spermatogonia but differ in size, shape, and immunoreactivity. 

These cells are also located in the basal tubular compartment and in adult seminiferous 

epithelium quantitatively represent a minority in comparison to cycling spermatogonia. The 

self-renewing BSC give rise to ASPC that in turn develop to CSPC. The latter transform into 

new type A spermatogonia (A1-Sg). The exact demarcation between CSPC and A1-Sg would 

be the moment when CSPC enter S-phase in preparation for the first A-Sg mitosis (Wrobel et 

al., 1995a, b).  

 

Spermatogenesis 

The sequence of events in the development of spermatozoa from spermatogonia is referred to 

as spermatogenesis and is subdivided into three phases: (a) spermatocytogenesis, the process 

during which spermatogonia develop into spermatocytes; (b) meiosis, the maturation division 

of spermatocytes that results in spermatids with reduced (haploid) number of chromosomes; 

and (c) spermiogenesis, the process of transformation of spermatids into spermatozoa. The 

duration of spermatogenesis is 74 days in men and approximately 50 days in bulls, rams, and 

stallions (Wrobel, 1998).  
 

Spermatocytogenesis 

During spermatocytogenesis, spermatogonia multiply mitotically, resulting in A-, I- 

(intermediate), and B-spermatogonia and finally in preleptotene primary spermatocytes. 
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Primary spermatocytes no longer divide mitotically but undergo two meiotic divisions, which 

result in a fourfold increase in the number of germ cells. Therefore, the number of 

spermatozoa that originate from one A-spermatogonium is decisively influenced by 

spermatogonial proliferation during spermatocytogenesis. In most mammals, a variable 

number of generations of A-spermatogonia are followed by one generation of I-(intermediate) 

and B-spermatogonia, respectively. In a given tubular segment, the few A-spermatogonia are 

irregularly distributed. Daughter cells of A- and I-mitoses drift apart to achieve an even 

distribution (Wrobel, 1998). A-spermatogonia (A-Sg) are the largest spermatogonia and share 

an extensive contact area with the tubular basal lamina. They possess a spherical nucleus with 

prominent nucleoli. The karyoplasm is cloudy with little heterochromatin. Golgi apparatus is 

inconspicuous and endoplasmic reticulum, most of which is agranular, is scarce. Free 

ribosomes occur throughout the cytoplasm whereas the mitochondria are rare in the apical 

part of the cell or below the nucleus (Ekstedt et al., 1986, Wrobel et al., 1995a). 

Spermatogonia intermediate type (I-Sg) resembles type A but are somewhat smaller and have 

smaller nuclei. In addition, their karyoplasm exhibits a coarsely granulated texture. The 

contact area with the basal lamina is not as wide as in type A (Ekstedt et al., 1986, Wrobel et 

al., 1995a). B-spermatogonia have spherical nuclei containing numerous chromatin particles 

and less prominent nucleoli. The cytoplasm resembles that of other spermatogonia but the 

contact area with the basal lamina is narrow (Ekstedt et al., 1986; de Kretser and Kerr, 1994; 

Wrobel, 1998). All B-spermatogonia of a given tubular segment form a cellular network, 

because they are interconnected by cytoplasmic processes. The mitotic division of B-

spermatogonia results in the formation of the preleptotene primary spermatocytes (Wrobel et 

al., 1995a). These cells and their descendents are interconnected by true cytoplasmic bridges 

until shortly before spermiation. Preleptotene primary spermatocytes gradually lose contact 

with the basal lamina and move into the adluminal tubular compartment across the 

intercellular junctions between the Sertoli cells. Preleptotene primary spermatocytes are 

actively engaged in DNA synthesis whereas all chromosomes consists of two sister 

chromatids (de Kretser and Kerr, 1994; Wrobel, 1998). 

 

Meiosis 

During meiosis, two successive nuclear divisions occur, resulting in the formation of four 

haploid spermatids from one primary spermatocyte. Primary spermatocytes are the largest 

spermatogenic cells in the tubular epithelium and are located in the intermediate position 

between spermatogonia and spermatids. The prophase of the first maturation division is 
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characteristically of long duration and cells in the phases of this process demonstrate nuclear 

features based on the appearance and morphology of their chromosomes (de Kretser and Kerr, 

1994; Wrobel, 1998). The prophase of the first maturation division is subdivided into the 

leptotene, zygotene, pachytene, diplotene, and diakinesis stages according to characteristic 

changes in nuclear chromatin (Ekstedt et al., 1986; Wrobel, 1998). During the leptotene stage, 

the nucleus appears light with an irregular envelope and chromosomes become arranged in 

thread-like strands. The Golgi apparatus is small and endoplasmic reticulum is scarce. More 

free ribosomes/polyribosomes are present than in spermatogonia. In zygotene spermatocyte, 

both the nucleus and the cytoplasm increase in size. The homologous chromosomes begin to 

pair and tetrads of four chromatids emerge. Visible evidence of pairing is the synaptonemal 

complexes seen with the electron microscope. The mitochondria become elongated and their 

cristae start to dilate. Late in this stage, groups of mitochondria approach each other and 

dense intermitochondrial substance appears. Completion of pairing initiates the pachytene 

phase, during which crossing over occurs between nonsister chromatids of paired 

chromosomes. In microscopic preparations, primary spermatocytes are best identified when 

they are in this phase of meiosis. The cytoplasm of cells in this stage contains numerous well 

developed organelles including Golgi apparatus, agranular endoplasmic reticulum, and 

mitochondria but the number of free ribosomes/polyribosomes appears lower than in the 

previous stages. During the diplotene phase, the paired chromosomes pull away from each 

other, but sister chromatids remain attached. Diplotene spermatocytes differ from pachytene 

spermatocytes in few respects only (Ekstedt et al., 1986; de Kretser and Kerr, 1994; Wrobel, 

1998). During the prophase of the first meiotic division, the cells grow considerably. For 

instance, between preleptotene and diplotene, ovine primary spermatocytes increase in 

volume 4.8 times and their nuclei increase in volume 3.3 times. During diakinesis, 

chromosomes shorten and broaden and the four separate chromatids in each chromosome are 

clearly evident. Diakinesis is rapidly followed by the dissolution of the nuclear membrane, 

appearance of the spindle, and attachment of the bivalents to equator of the spindle during 

metaphase. Anaphase subsequently results in the movement of the members of each bivalent 

to opposite poles of the spindle, resulting in the daughter cell termed secondary spermatocytes 

that contain the haploid numbers of chromosomes, each composed of two chromatids (de 

Kretser and Kerr, 1994; Wrobel, 1998). Secondary spermatocytes are short-lived, 

intermediate in size between diplotene primary spermatocytes and spherical spermatids, and 

occur exclusively in phase 4 of the seminiferous epithelial cycle. After a short period of 

interphase, during which no duplication of genetic material occurs, secondary spermatocytes 
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undergo the second maturation division, with a short prophase followed by metaphase, 

anaphase, and telophase, which are essentially similar to those of mitotic divisions. During 

this division, centromeres divide and the sister chromatids of secondary spermatocytes 

separate and are distributed to each of the spermatids resulting from that division (Wrobel, 

1998). 

 

Spermiogenesis  

Spermiogenesis is the process by which round spermatids formed from the second maturation 

division of meiosis undergo a complex series of cellular transformations to form mature 

elongated spermatids. No cell division is involved, but the process is in essence a 

metamorphosis in which a round cell is converted into a highly organized motile cell (de 

Kretser and Kerr, 1994; Wrobel, 1998). Ultrastructurally, the spermiogenesis has been 

divided into 15 distinctive steps represented by Arabic numerals (1-15). However, the process 

has also been grossly divided into four phases, namely, Golgi phase (step1 to step3), cap 

phase (step 4 to step 7), acrosomal phase (step 8 to step 12), and maturation phase (step 13 to 

15) (Sinowatz and Wrobel, 1981). In routine histologic sections, Golgi and cap phases are 

characterized by spherical nuclei, whereas the acrosomal and maturation phases reveal 

elongated nuclei (Wrobel, 1998). The most important morphologic changes during 

spermiogenesis are formation of the acrosome, condensation of nuclear chromatin, outgrowth 

of a motile tail, and loss of excess spermatid materials (cytoplasm, water, organelles) not 

necessary for the later spermatozoon (Sinowatz and Wrobel, 1981; Bloom and Fawcett, 1986; 

Ekstedt et al., 1986; de Kretser and Kerr, 1994; Wrobel, 1998).   

 

Spermatozoon 

Spermatozoa vary in length between approximately 60 µm (boars, stallions) to 75 µm 

(ruminants). By light microscope, the spermatozoon seems to consist essentially of two 

portions: the head and the tail (Wrobel, 1998). The shape of the nucleus determines the shape 

of the head of spermatozoon, which is species-dependent and subject to great variations. The 

anterior two thirds of the nucleus are covered by acrosomal cap, with an outer and inner 

acrosomal membrane that fuses at the caudal end. The acrosomal cap contains several 

hydrolytic and proteolytic enzymes (e.g., acrosin), which are set free during the acrosome 

reaction of the capacitated spermatozoa in the uterine tube. In addition, it is known to contain 

several enzymes of lysosomal nature. Among those identified to date are hyaluronidase, 

neuraminidase, acid phosphatase, β-N-acetylglucosamidase, and aryl sulfatase. Acrosomal 
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enzymes are needed for the penetration of the zone pellucida during fertilization (Bloom and 

Fawcett, 1986; de Kretser and Kerr, 1994; Wrobel, 1998). The sperm tail presents four 

segments along its length recognizable with the light microscope by slight differences in 

thickness and in the nature of their sheaths. From proximal to distal, these regions are the 

neck, the middle piece, the principle piece, and the end piece. There are significant 

differences in the internal structure of these segments. These cannot be clearly resolved in 

fresh preparations but require special cytological techniques, or electron microscopy, for their 

demonstration (Bloom and Fawcett, 1986; Ekstedt et al., 1986; de Kretser and Kerr, 1994; 

Wrobel, 1998). 

 

Seminiferous epithelium cycles (Spermatogenic cycles) 

The cycle of the seminiferous epithelium is defined as a sequence of changes occurring in a 

given area of the seminiferous epithelium between two successive appearances of the same 

cellular association (Leblond and Clermont, 1952). The duration of the spermatogenic cycle is 

the interval between appearance of the stem spermatogonium and the release of spermatozoa, 

which are produced from it. It thus represents the length of time necessary for the formation 

of the spermatogenic series (Rüsse and Sinowatz, 1991). The duration of the seminiferous 

epithelial cycle is 13.5, 10.5, and 8.5 day in bovine, sheep, and boar respectively (Rüsse and 

Sinowatz, 1991). The cellular associations, which may be recognized during a cycle of the 

seminiferous epithelium, permit distinguishing various spermatogenic stages. Generally, two 

principal methods of classification may be used. One is based on the development of the 

acrosomic system (Leblond and Clermont, 1952) and the other on meiotic divisions, shape of 

spermatid nucleus, and release of spermatozoa into the lumen of the seminiferous tubule 

(Ortavant, 1958). According to the second classification, 8 stages may be defined in the 

seminiferous epithelial cycle of ram, bull, and boar (Rüsse and Sinowatz, 1991; Wrobel, 

1998). In stage 1, spherical spermatids lie nearest to the lumen, followed basally by two 

generations of primary spermatocytes, i.e., late pachytenes and young 

preleptotenes/leptotenes. With the beginning of stage 2, the spermatids and their dark-stained 

nuclei are elongated. The two generation of primary spermatocytes are late pachytenes and 

young leptotenes/zygotenes. In stage 3, elongated spermatids are arranged in bundles and lie 

in deep apical recesses of the sustentacular cells. The pachytene spermatocytes of stage 2 have 

reached diplotene. A second generation of primary spermatocytes in zygotene is present in the 

basal region. By initiation of stage 4, the first and second maturation divisions take place. In 

addition to bundles of maturing spermatids and zygotene primary spermatocytes, either 
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diplotene or secondary spermatocytes, or spherical spermatids are seen. In stage 5, two 

generations of spermatids are present: older elongated spermatids and newly formed spherical 

spermatids. The zygotene spermatocytes of stage 4 enter the pachytene stage and are 

displaced in the direction of the tubular lumen. By stage 6, the bundles of the older spermatids 

have moved away from the vicinity of the sustentacular cell nuclei. In addition to spherical 

spermatids, pachytene spermatocytes and numerous spermatogonia are present. In stage 7, the 

maturation-phase spermatids achieve a position close to the tubular lumen and all other cells 

as in stage 6. At the end of the cycle (stage 8), spermatozoa leave the tubular epithelium 

(spermiation) after separation from their residual bodies. Remaining within the epithelium are 

spherical spermatids and two generations of primary spermatocytes (older pachytenes and 

young preleptotenes) (Wrobel, 1998). These stages are illustrated in fig. 3. 

 
 

 
Fig 3: Cellular composition of the eight phases of the bovine seminiferous epithelial cycle. A0 and A1: stem 

cells; A2 and A3: type A spermatogonia; In: intermediate spermatogonia; B1 and B2: type B spermatogonia; M: 

mitosis; Le, Z, P, and D:  primary spermatocytes in leptotene, zygotene, pachytene and diplotene stages. CII: 

secondary spermatocytes; M1 and M2: first and second maturation divisions; r, el, L: round, elongating, and 

elongated spermatids (from Rüsse and Sinowatz, 1991)     

 

Spermatogenic waves 

The succession of cellular associations takes place not only in a cross section, but also along 

the length of the seminiferous tubule (Perey et al., 1961). Therefore, a portion of tubule 

displaying one type of cellular association is followed by a portion of tubule displaying the 
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stage immediately preceding or following in the seminiferous epithelial cycle. There is a 

continuity of the segmental order (Perey et al., 1961). Each complete spatial series of cellular 

associations is called spermatogenic wave. If the stages 1 through 8 succeed each other along 

the length of the seminiferous tubule, the sequence is referred to as a regular spermatogenic 

wave, which is approximately 10 mm long in bulls. Variations, such as repetition of wave 

fragments (1-2-3-4-1-2-3-4) or inversions (1-2- 3-4-5-4-3-2), seem to occur more frequently, 

however, exactly what determines the spermatogenic cycles, segments, and waves is not 

known at this time (Wrobel, 1998). 

 
2.3.2.2. Testicular interstitial tissue (intertubular tissue) 

Interstitial tissue fills up the spaces between the seminiferous tubules and contains all blood 

and lymph vessels as well as nerves of the testicular parenchyma (Fawcett et al., 1973; 

Setchell et al., 1994). While Leydig cell is widely recognized as a major cell type of the 

interstitial compartment of the mature testis, a number of other cells have also been reported 

in this region. These cells include fibroblasts, light intercalated cells, macrophages, 

lymphocytes, plasma cells, occasional mast cells, and undifferentiated cells of mesenchymal 

origin (Fawcett et al., 1973; Wrobel et al., 1981; Bloom and Fawcett, 1986; Maddocks and 

Setchell, 1988; de Kretser and Kerr, 1994; Wrobel, 1998). Species-specific differences in the 

intertubular tissue organization are reported by Fawcett et al. (1973), who described three 

patterns of arrangements. In the first group (guinea pig, chinchilla, rat and mouse), Leydig 

cells comprise a small fraction of the testicular volume, and occur in clusters closely applied 

to blood vessels. The greater part of the interstitium is however occupied by extensive 

lymphatic sinusoids of irregular outline. The majority of large mammals (second group), 

including bull, ram, elephant, monkey and man, have a very different interstitial organization. 

In these species, Leydig cells do not have such an obvious association with blood vessels but 

present in clusters of varying size scattered in an edematous loose connective tissue, which is 

drained by conspicuous lymph vessels located centrally or eccentrically in each intertubular 

area. In the third group that includes the domestic boar, warthog, zebra, and naked mole rat, 

closely packed Leydig cells occupy large intertubular spaces and comprise 20-60% of the 

testicular volume. There is very little interstitial connective tissue in these species, and small 

lymphatic vessels are infrequently encountered. 
 

Leydig cells 

The mammalian Leydig cells are relatively large, polymorphous cells with spherical 

eccentrically located nuclei. They constitute approximately 1% of the entire testicular volume 
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in adult rams, approximately 5% in bulls, and 20 to 30% in boars. In seasonally breeding 

males (e.g., camel), interstitial cell volume and number may change during the year (Wrobel, 

1998). Interstitial endocrine cells occur in cords or clusters. Not every cell is therefore in 

close contact with a capillary. The large spherical nucleus contains a small amount of 

peripherally disposed heterochromatin and one or two prominent nucleoli. Adjacent to the 

nucleus is a large clear area that is found in electron micrographs to be occupied by a well-

developed Golgi apparatus. Although the Golgi complex is prominent and responds to 

gonadotropic stimulation by enlargement, the role of this organelle in the biosynthetic and 

secretory processes of this cell type is not known, whereas, there is no visual evidence of 

accumulation of a product in secretory granules in the Golgi region (Wrobel et al., 1981; 

Bloom and Fawcett, 1986; Maddocks and Setchell, 1988; de Kretser and Kerr, 1994; Wrobel, 

1998). The cytoplasm is acidophilic in routine preparations and may contain a number of 

empty vacuoles where lipid droplets have been extracted. In common with other steroid-

secreting endocrine cells, the most striking ultrastructural feature of Leydig cell is extensive 

smooth endoplasmic reticulum (Bloom and Fawcett, 1986; de Kretser and Kerr, 1994). 

Cisternal profiles of the granular reticulum are also present, but the bulk of the cytoplasm is 

filled with a branching and anastomosing system of smooth-surfaced tubules. These 

membranes contain the enzymes necessary for several of the steps in the biosynthesis of 

androgenic steroids (Bloom and Fawcett, 1986; de Kretser and Kerr, 1994; Wrobel, 1998). 

The mitochondria possess tubular cristae and are involved in the first step of steroid hormone 

production, e.g., transformation of cholesterol to pregnenolone. Lipid inclusions are found in 

all species but are particularly abundant in cats (Wrobel, 1998). Bovine Leydig cells are 

further characterized by an abundance of ribosome-associated endoplasmic reticulum, by 

mitochondria often containing crystalloid structures and displaying both tubular and 

lamelliform cristae, as well as by a relative paucity of lipid droplets and lysosomes. In 

addition, between adjacent Leydig cells intercellular canaliculi and gap junctions are 

frequently encountered (Wrobel et al., 1981; Wrobel, 1998).  

 

Functions of Leydig cells 

Leydig cells are the most important source of androgen. More than 90% of all androgens in 

the organism are produced by the testis. Among the main functions of testosterone (to be 

effective, in some tissues, testosterone must be converted into dihydrotestosterone by the 

enzyme 5α-reductase) are (a) the prenatal maintenance of the Wolffian duct and its 

differentiation into deferent duct and epididymis; (b) triggering of the growth and 
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maintenance of the function of the penis, male accessory glands, and secondary sex 

characteristics; (c) promotion of normal sexual behavior (libido); (d) control of 

spermatogenesis (together with follicle stimulating hormone (FSH)); (e) negative feedback 

action on the hypophysis and hypothalamus; and (f) general anabolic effects (Wrobel, 1998). 

 

Light intercalated cells (LIC) 

LIC comprise a regular constituent of the bovine intertubular compartment. They are a 

population of electron-lucid, irregularly shaped cells with slender, pleomorphic processes. 

Ultrastructurally, these cells have few mitochondria and lysosomes, poor developed 

endoplasmic reticulum and conspicuous microtubules. In addition, no special junctions are 

established between LIC and any other adjoining cell type. These cells are believed to be 

involved in testicular androgen storage and distribution (Wrobel et al., 1981). 

 

Interstitial testicular macrophages and other mononucleated cells 

Although the presence of macrophages, fibroblasts, lymphocytes, plasma cells and more 

rarely mast cells have been recognized for many years, very little is known of their functions 

in the testis (de Kretser and Kerr, 1994). In rat, specialized contacts are noted between Leydig 

cells and macrophages (Hutson, 1992). In addition, there is an approximate ratio of four to 

one between these cells in the normal rat testis (Bergh, 1985). The close association of these 

macrophages with Leydig cells suggests some functional association and the macrophages 

can be seen to engulf portions of Leydig cell cytoplasm (Miller et al., 1983). Furthermore, 

macrophages may play a role in Leydig cell steroidogenesis whereas their depletion from the 

testis leads to a reduction in testosterone secretion (Setchell et al., 1994). Most of the other 

mononucleated cells may also be functionally linked to Leydig cells, since steroidogenesis by 

hamster Leydig cells is enhanced in the presence of mast cells (Mayerhofer et al., 1989). 

 
2.3.2.3. Intratesticular excurrent duct system  

Bovine intratesticular excurrent duct system composed of terminal segment of the convoluted 

seminiferous tubules, tubuli recti, and rete testis. Spermatozoa are no longer produced within 

terminal segment and this portion is consequently considered as a part of the intratesticular 

excurrent duct system (Wrobel et al., 1982). The terminal segment of the seminiferous tubules 

is a short transitional distal zone that is lined by cells designated as modified Sertoli cells and 

connects between seminiferous tubules and tubuli recti. Ultrastructure of modified Sertoli 

cells of terminal segment is now available for several mammalian species including rat 

(Osman, 1978a), rabbit (Osman, 1979), ram, and goat (Osman and Ploen, 1979), boar 
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(Osman, 1978b), bovine (Osman and Ploen, 1979; Wrobel et al., 1982), monkey (Dym, 

1974), and man (Lindner, 1982). These studies have shown that the epithelial lining of 

terminal segments consists of modified supporting cells which posses many features in 

common with the typical Sertoli cell in the spermatogenic portion of the seminiferous tubules. 

In bovine, each terminal segment is surrounded by a vascular plexus and subdivided into a 

transitional region, middle portion, and terminal plug. Modified supporting cells of the middle 

portion and terminal plug no longer display the typical Sertoli-Sertoli cell junctions seen in 

the transitional region and seminiferous tubule proper (Wrobel et al., 1982). The functions 

ascribed to modified Sertoli cells of the terminal segment include fluid transport and secretory 

activity as well as phagocytosis and intracytoplasmic degradation of spermatozoa (Dym, 

1974; Osman, 1978b; Osman and Ploen, 1979; Wrobel et al., 1982). The terminal segment is 

joined to the rete by a tubulus rectus, which is really a narrow extension of the rete proper and 

is lined with similar cells (Setchell et al., 1994). The ultrastructure of the tubuli recti has been 

studied in the testis of rat, ram, rabbit, goat, bull, and man (Osman and Ploen, 1978b; Roosen-

Runge and Holstein, 1978; Hees et al., 1987). In human, up to six seminiferous tubules can 

join a single tubulus rectus (Roosen-Runge and Holstein, 1978). The tubuli recti are lined 

with a simple epithelium that varies in height, from squamous to tall columnar according to 

species and regions. The cells are characterized by extensive lateral and tortuous basal plasma 

membranes and a luminal border with microvilli (Osman and Ploen, 1978b). A distal segment 

of the tubuli recti is found in bovine only and is characterized by a high epithelium, which is 

thrown into folds giving the lumen a festooned appearance (Osman and Ploen, 1978b). It is 

suggested that the epithelial cells of the tubuli recti are involved in fluid exchange and 

phagocytosis of spermatozoa (Osman and Ploen, 1978b; Sinowatz et al., 1979). The rete testis 

is a complicated network of intercommunicating channels that lies in the mediastinum of the 

testis parallel to the axis of the epididymis (de Kretser and Kerr, 1994). According to the 

location, rete testis may be either superficial/marginal as in rat, mice, hamster and man (Dym, 

1976; Roosen-Runge and Holstein, 1978) or axial/central as found in the monkey, cat, dog, 

guinea pig, ram, rabbit, and bull (Dym, 1976; Hees et al., 1987). Further on, Roosen-Runge 

and Holstein (1978) have divided the rete testis into septal, mediastinal and extratesticular 

rete. The septal rete testis consists of the zone of the tubuli recti, which drain the seminiferous 

tubules. The region of the mediastinal rete is characterized by an irregular network of 

cylindrical strands, the chordae retis, which are considered as a common feature of bovine and 

human testis (Roosen-Runge and Holstein, 1978; Hees et al., 1989). An extratesticular rete is 

observed in the rat, mouse, hamster, monkey, ram, guinea pig, and man (Dym, 1976; Roosen-
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Runge and Holstein, 1978), but not in bovine (Dym, 1976; Hees et al., 1989). The 

ultrastructure of cells lining the rete testis is well documented and seems to be rather similar 

in man (Roosen-Runge and Holstein, 1978), higher mammals (Dym, 1976; Hees et al., 1989), 

marsupials (Rodger, 1982) and even in birds (Barker and Kendall, 1984). The rete testis of 

buffalo has a stratified epithelium (Goyal and Dhingra, 1973), but in most other species, the 

cells are a mixture of columnar, cuboidal, and squamous, with a few intraepithelial 

lymphocytes and macrophages (Dym, 1976; Hees et al., 1989). The bovine testis has a central 

mediastinum consisting of longitudinally oriented rete channels and spacious lymph vessels 

embedded in stroma of the mediastinum. The latter represents a contractile-elastic unit and is 

composed of myofibroblasts, collagen bundles, and accumulations of elastin connecting the 

myofibroblasts (Hees et al., 1989). As described for tubuli recti, rete testis epithelial is 

capable of phagocytosing spermatozoa (Dym, 1976; Roosen-Runge and Holstein; 1978; 

Sinowatz et al., 1979) 

 

2.3.2.4. Blood vessels, nerves, and lymphatics of the testis 

The testicular artery has a straight abdominal portion and becomes highly coiled after 

reaching the spermatic cord. As the artery reaches the testis, it courses parallel to the 

epididymis and is embedded in the tunica albuginea. The testicular artery divides at the caudal 

testicular pole to form the arterial contributions to vascular layer of the tunica albuginea 

(Wrobel, 1998). Within the septula testis, centripetal arteries course to the mediastinum testis, 

where they form heavily convoluted coils. From these convolutes, smaller centrifugal arteries 

return to supply the testicular parenchyma. Most of the testicular veins empty into superficial 

veins situated in the tunica albuginea. These converge at the base of the spermatic cord to 

form the pampiniform plexus, which completely surrounds the windings of the testicular 

artery. This remarkable vascular topography in the mammalian spermatic cord is believed to 

allow venous-arterial steroid hormone transfer and to cool the arterial blood entering the 

testis. Thus, testicular androgen levels are increased and testicular temperature is lowered; 

these are two important requirements for spermatogenesis (Wrobel, 1998). The testis is 

supplied by nerves, which reach the gonad via three different routes: with the blood vessels of 

the spermatic cord (funicular nervous contribution), by the mesorchium (mesorchial nervous 

contribution), and by the ligamentous bridge between epididymal tail and testis (caudal 

nervous contribution) (Wrobel and Abu-Ghali, 1997). Nerves of the bovine testis are 

concentrated in the stromal compartments of the gonads, i.e. tunica albuginea, mediastinum 

and perivascular connective tissue (the so-called septula testis). The testicular lobules 



                                                                                                                       Review of literature
                                                                                                                   

                                                                     45                                                                                                     

containing the seminiferous tubules, Leydig cells, and the parenchymal microcirculation are 

completely devoid of any innervation in adult bull (Wrobel and Abu-Ghali, 1997). The 

lymphatics show considerable variation in pattern from species to species. In the common 

laboratory rodents, they form very extensive peritubular sinusoids. The aggregations of 

Leydig cells in these species are centrally located and closely associated with the walls of the 

blood vessels. They are surrounded by sinusoidal lymphatics. The steroid-secreting cells are 

thus interposed between the blood vascular elements on the one side and the lymphatic 

sinusoids on the other, and release their hormone into both. In larger species such as ram, bull, 

and man, the lymphatics are not sinusoidal but form thin-walled vessels more or less centrally 

located in the intertubular areas. The Leydig cells are not intimately related to either the blood 

vessels or the lymphatics, but evidently, they release androgen into the abundant extracellular 

fluid of the interstitial tissue, whence it diffuses to the tubules for its local effect on 

spermatogenesis, and to the vessels for its effect on distant target organs (Bloom and Fawcett, 

1986). 

 

2.4. Lectin histochemistry 
Several approaches emphasize that the cell surface glycoconjugates have fundamental roles in 

a variety of cell functions, including development, growth regulation, and cellular locomotion 

(Hakomori, 1981; Gabius, 1987). Lectins have a specific binding affinity for the sugar 

residues of glycoconjugates; therefore, they are used as histochemical reagents to investigate 

the distribution of glycoconjugates in various tissues. 

 
2.4.1. Definition 

Originally, the term lectin (Latin legere: to choose) was coined by Boyed and Shapleigh 

(1954) to refer to a group of plant seed agglutinins, some of which are human blood group 

specific. With the discovery of carbohydrate-binding proteins in diverse biological sources 

(e.g., bacteria, sponges, sera of fish, snails, hemolymph of lobsters), the term lectin has been 

expanded to include sugar-binding proteins from any source (Ashwell and Morell, 1977). The 

most accepted definition of the lectin is given by Goldstein et al. (1980) as a carbohydrate-

binding protein or glycoprotein of non-immune origin, which agglutinates cells and/or 

precipitates glycoconjugates. The lectins have also been defined as “proteins of non 

immunogloblin nature capable of specific recognition and reversible binding to carbohydrate 

moieties of complex carbohydrate without altering the covalent structure of any of the 

recognized glycosyl ligand” (Kocourek and Horejsi, 1983). These proteins of plant, 



                                                                                                                       Review of literature
                                                                                                                   

                                                                     46                                                                                                     

vertebrate, and invertebrate origin have specific affinities for particular terminal sugar 

residues or specific sugar sequences (Goldstein and Hayes, 1978). For this unique property, 

lectins have been introduced as histochemical reagents to study the distribution of 

glycoconjugates in various normal and malignant cells and tissues (Faraggiana et al., 1982; 

Spicer et al., 1983; Arya and Vanha-Perttula, 1984, 1985, 1986; Ertl and Wrobel, 1992, 

Verini-Supplizi et al., 2000; Pinart et al., 2001, 2002). 

 

2.4.2. Physicochemical characters of the lectin 

The binding of lectins to sugar moieties is comparatively weak. It does not result in the 

formation of covalent bonds but is reversible, like the reaction of an enzyme with a substrate. 

Indeed the precipitation reaction between a lectin and suitable polysaccharides or glycoprotein 

is analogous in many aspects to an antigen-antibody reaction, in which the lectin plays the 

role of antibody and the polysaccharide or glycoprotein the role of the antigen (Sharon, 1977). 

The composition, molecular weight, structure and number of the subunits as well as the 

number of carbohydrate-binding sites per molecule have distinguished several types of lectin 

from each other. For examples, the molecular weights are between 19.000 (Phytolacca 

americana agglutinin, Pa5) and 340.000-500.000 (Limulus polyphemus agglutinin) and the 

number of the subunits varies between two and four. In special cases up to 18 subunits may 

also be found (Goldstein and Hayes, 1978). Characteristically, all lectin molecules bear at 

least two carbohydrate-binding sites, a property essential to their ability to agglutinate cells or 

glycoconjugates. This character is of special importance to differentiate between lectins and 

other types of sugar-binding proteins. The latter include sugar specific enzymes (glycosidases, 

glycotransferases, etc.), transport proteins, hormones (thyroid-stimulating hormones, follicle-

stimulating hormones, etc.), and toxins. In spite of similarities of these lectin-like molecules 

to the true lectins, most of them bear only one carbohydrate-binding site and have no ability 

to agglutinate cells or precipitate glycoconjugates (Goldstein et al., 1980). Most of lectins are 

metalloproteins, as they bind to Ca²+ and Mn²+. Removal of bound Ca²+ and Mn²+ from native 

lectin results in a loss of carbohydrate-binding activity, suggesting an association between the 

metal-binding and saccharide-binding sites. In general, lectins tolerate very little variation at 

C-3 and C-4 of the sugar they bind, but, many lectins tolerate some variation at C-2 of the 

sugar, which they bind (Goldstein and Hayes, 1978). 
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2.4.3. Carbohydrate-binding specificity of lectins 

It is of vital importance to establish the carbohydrate-binding specificity of a lectin in order 

that it may be a useful tool in biochemical and immunochemical studies. The carbohydrate-

binding specificity of lectins was originally determined by measuring the ability of free 

monosaccharides or their alkyl glycosides to inhibit lectin-induced agglutination of cells or 

glycoconjugates. In general, lectins recognize D-pyranose sugars and in most instances, they 

express rather stringent, configurational, and structural requirements in the interacting 

constituents (Gallagher, 1984). It is extremely interesting and significant that most plant and 

animal lectins have been classified into a rather limited number of carbohydrate-binding 

groups (Goldstein and Poretz, 1986). These include the mannose/glucose-binding lectins, the 

galactose-binding lectins, N-acetylgalactosamine-binding lectins, the N-acetylglucosamine-

binding lectins, the L-fucose-binding lectins, sialic acid-binding lectins, and lectins with 

complex carbohydrate-binding sites (table 2). This classification scheme proposed a system of 

nomenclature that first states the origin of the lectin and then, in parenthesis, cites the sugar-

binding specificity and, if relevant, denotes the anomeric specificity or preference. However, 

this scheme does not take into account the influence on lectin reactivity of either the position 

of the complementary sugar in carbohydrate sequence (reducing terminal or internal) or of the 

synergistic effects of certain neighboring sugars (Gallagher, 1984).  
 
Table 2: Lectin classified on the basis of their carbohydrate-binding specificity (Goldstein and Poretz, 1986). 

Sugar specificity  Latin name Acronym 
I. D-Mannose/D-Glucose-binding lectins Canavalia ensiformis 

Lens culinaris 
Pisum Sativum 

Con A 
LCA 
PSA  

II. D-Galactose-binding lectins Arachis hypogaea 
Griffonia simplicifolia I 
Ricinus communis 
Erythrina cristagalli 

PNA 
GSA-I 
RCA-I and RCA-II 
ECA 

III. N-acetyl-D-galactosamine (GalNAc)-binding 
lectins 
 

Phaseolus limensis 
Glycine max 
Helix pomatia 
Bauhinia purpurea 
Maclura pomifera 
Visea villosa 
Dolichos biflorus 

LBA 
SBA 
HPA 
BPA 
MPA 
VVA 
DBA 

IV. N-acetyl-D-glucosamine (GlcNAc)-binding 
lectins 
 

Triticum vulgare 
Ulex europaeus II 
Griffonia simplicifolia II 
Laburnum alpinum 
Solanum tuberosum 

WGA 
UEA-II 
GSA-II 
LAA 
STA 

V. L- Fucose-binding lectins 
 

Ulex europaeus I 
Lotus tetragonolobus 

UEA-I 
LTA 

VI. Sialic acid-binding lectins Limulus polyphemus 
Limax flavus 

LPA 
LFA 

VII. Lectin with complex carbohydrate- 
        binding sites 

Phaseolus vulgaris PHA-E and PHA-L 
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Lectins are also classified into two classes (Fig. 4) based upon their sensitivity to different 

carbohydrate inhibitors (Gallagher, 1984).  
 

1. Class-Ι lectins (simpler binding mode): 

In this case, lectin reactivity is directed principally towards a particular monosaccharide 

constituent in the ligand. These are the lectins, which are strongly inhibited by low 

concentrations of the appropriate free sugars or their methyl glycosides. Since all the class-Ι 

lectins will bind to appropriate external, non-reducing sugars in the complex saccharides, they 

may be described as exolectins. Two sub-classes may also be recognized: those, which have a 

stringent requirement for end-chain sugars, obligate exolectins, and those, which recognize 

both, end-chain and internal sugars, facultative exolectins. 
 

2. Class-Π lectins (complex binding mode): 

In the more complex binding mode, lectins react only with specific carbohydrate sequences 

and none of the individual sugars in the sequences plays a predominant role in the binding 

process. Potent inhibition of the agglutinating properties of these lectins usually requires 

oligosaccharide “haptens” of similar or identical structure to binding domains on the 

agglutinated materials. These lectins may thus be described as endolectins. They can be 

divided into the homotypic endolectins, which bind most strongly to homotypic sugar 

sequences, and heterotypic endolectins, which show the highest affinity for heterotypic 

sequences. This classification provides a simplified method, suitable for written and verbal 

communication, for describing the carbohydrate-binding properties of lectins (Gallagher, 

1984).  

 
                                                                       Lectin 
  
                                                                       Inhibited by 
 
Monosaccharides                                                                                        Oligosaccharides  
 
Class-Ι or (Exolectins)                                                                                Class-Π or (Endolectins) 
 
 
 Ιa. Obligate                        Ιb. Facultative    IIa. Homotypic                   IIb. Heterotypic 
 
 
a)- Galactosaminolectins                 a)- Mannolectins            STA  PHA-E and PHA-L  
       DBA and SBA                                  Con A and LCA 
b)-  Galactolectin                               b)- Galactolectins              
       PNA  RCA 
c)-  Fucolectins     c)- Galactosaminolectins 
       UEA-Ι           BPA and MPA                   
 
Fig 4: Classification of lectin based upon their sensitivity to different carbohydrate inhibitors (Gallagher, 1984). 
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2.4.4. Biological roles of the lectins:  

There is considerable support for the hypothesis that lectins function primarily as recognition 

molecules. This function may be expressed differently in various organisms and also in 

different organs or tissues of the same organism. These biological roles can be summarized in 

the following table (Lis and Sharon, 1986). 

 
Table 3: Roles of lectins in nature 

Plants 1-Attachment of nitrogen-fixing bacteria to legumes  
2-Protection against phytopathogens (fungal, bacterial, and viral pathogen) 

Animals      1-Endocytosis and intracellular translocation of glycoproteins  
2-Regulation of cellular migration and adhesion  
3-Recognition determinants in non-immune phagocytosis  
4-Binding of bacteria to epithelial cell  

Microorganisms 1-Attachment of bacteria and parasites (amoeba and plasmodium) to the host cells.  
2-Recognition determinants in non-immune phagocytosis 
3-Recognition determinants in cells adhesion of slime molds 

 
2.4.5. Applications of the lectins: 

The earliest applications of lectins, still in wide use, were for blood typing and for mitogenic 

stimulation of lymphocytes (Lis and Sharon, 1986). Now, the established uses of lectins are 

widely distributed in different branches of sciences. These are briefly reviewed in the 

following. 

 

2.4.5.1. Application of lectins in histology 

Lectins have been employed histologically in several areas (reviewed by Walker, 1988): 

a) Reagent for mucin histochemistry 

Lectins, in combination with oxidation-reduction sequences and enzyme digestion, have been 

used to refine the broad classification obtained by standard mucin histochemistry, and as such 

have been used to identify different subclasses of secretory and cell surface glycoconjugates. 

b) Mapping of binding sites in animal and human tissue 

At the level of tissue, lectins have been used as specific probes for various cell types as well 

as cells at various stages of differentiation or maturation. At the level of organ histology, 

lectins have been used to as probes for delineation of functional and anatomic segments or 

microenvironments. For example in a complex tissue such as kidney, lectin can be of value in 

the identification of the different structures, and can reveal heterogeneity in the distribution of 

glycoconjugates. 
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c) Characterization of glycoprotein alterations in diseased states 

This can only be undertaken if the corresponding normal tissues have been examined under 

the same condition. For example, lectin histochemistry can provide a reliable specific 

diagnostic pattern for some glycoprotein storage diseases. 

d) Identification of glycoconjugates alterations with malignancy  

Lectins have been employed to differentiate between normal and malignant cells. 

 
2.4.5.2. Application of lectin in cell biology: 

In cell biology, lectins have been most successfully used as probes for cellular structures rich 

in glycoconjugates such as cell surface membrane or organelles involved in synthesis, storage, 

or turnover of complex carbohydrate. Lectins are most useful for biochemical isolation of cell 

surface macromolecules such as thyroid cell glycoproteins, thyroid receptors, or insulin 

receptors (Damjanov, 1987). Lectins have also been employed to separate germ cells from 

somatic cells (Lis and Sharon, 1986). Other major lectins applications are summarized in the 

table 4. 
 
Table 4: Major applications of lectins (Liener et.al., 1986) 

1)- Isolation, purification, and structural studies of carbohydrate-containing polymers 
2)- Investigation of complex carbohydrate structures on surfaces of animal cells, bacteria, and viruses and of       

      subcellular particles 
3)- Investigation of the architecture of cell surfaces and its change upon malignant trans-formation 

4)- Blood typing, structural studies of the blood group substances; identification of new blood types; diagnosis  

      of secretors 

5)- Isolation of lymphocyte subpopulations and of a stem cell-enriched fraction of bone marrow suitable for  

      transplantation 

6)- Studies of the genetics, biosynthesis, and function of cell-surface glycoconjugates 
7)- Mitogenic stimulation of lymphocyte; studies of events occurring upon initiation of cell division; studies on  

      lymphokines; studies of chromosomal constitution of cells and detection of chromosomal abnormalities 

8)- Studies of specific carbohydrate binding sites on proteins 

 
 
2.4.6. Factors affecting lectin-binding affinity 

Lectins are specifically bound to sugars and sugars sequences in glycoconjugates. This 

binding is affected by many factors such as the neighboring sugars and even the sugars 

located in the core of the carbohydrate chain. Therefore, the lectins with the same terminal 

sugar specificities are not necessarily bound to the same glycoconjugates (Dulaney, 1979). 

Practical evidence has shown that the result obtained by lectin histochemistry are influenced 



                                                                                                                       Review of literature
                                                                                                                   

                                                                     51                                                                                                     

by the mode of fixation used for the tissue and that the differences with lectin staining after 

different fixation methods can be marked (Malmi and Söderstrom, 1988). An excellent result 

was obtained after fixation in Bouin ُs fluid or formaldehyde with acetic acid while poor result 

was obtained after the fixation in formaldehyde and paraffin embedding. The effects of 

fixation and tissue processing on lectin staining are probably mediated via two mechanisms. 

The fixative employed may alter the sugars responsible for the specific lectin binding or the 

glycoproteins in tissues may be dissolved and lost during the fixation or other tissue 

processing. In addition to the aforementioned factors, the lectin concentration, temperature, 

incubation period and pH value play an important role as factors greatly affect the result of 

lectins staining (Dulaney, 1979; Roth, 1983; Allison, 1987; Malmi and Söderstrom, 1988). 

 
 
2.4.7. Lectin binding sites of the testis 

Lectin histochemical analysis of the testes has allowed the staining patterns of spermatogenic 

cells to be visualized, thus allowing determination of the sequential glycosylation processes of 

acrosome development in rats (Arya and Vanha-perttula, 1984; Söderstrom et al., 1984; 

Malmi et al., 1990; Jones et al., 1993; Martinez-Menargues et al., 1999), mice (Lee and 

Damjanov, 1984; Arya and Vanha-perttula, 1986), hamsters (Ballesta et al., 1991), cat (Prem, 

1992), dog (Montkowski, 1992), and humans (Malmi et al., 1987; Wollina et al., 1989; 

Arenas et al., 1998). Limited information is available on the farm animals such as bulls (Arya 

and Vanha-perttula, 1985; Ertl and Wrobel, 1992), goats (Kurohmaru, 1991), horse (Verini-

supplizi et al., 2000) and boar (Cavola et al., 2000; Pinart et al., 2001, 2002). In this text, we 

consider some of these studies; however, full report about the distribution of lectin in different 

animal species is available in table 5. 

In humans, a positive reaction to ConA was found in Sertoli, germ, and Leydig cells. Reaction 

to WGA was moderately intense in spermatogonia, spermatocytes, peritubular cells, and 

Leydig cell whereas was stronger in Sertoli cells, spermatids, and the matrix of the lamina 

propria. A slight reaction to PNA lectin was observed in the Sertoli cells, spermatogonia, and 

Leydig cells. Labeling was more intense in spermatocytes, spermatids, and peritubular cells. 

SBA lectin showed an intense reaction in the spermatids and a slight reaction in the lamina 

propria while no reaction to LTA was observed. UEA-I lectin labeled the lamina propria 

intensely whereas the seminiferous epithelium and Leydig cells were only slightly labeled 

(Arenas et al., 1998). In rat, some lectins such as UEA-I, SBA, and DBA gave rather specific 

staining of the mature acrosome, while others as PNA and RCA-I showed affinity for the 

early stages of acrosome formation or had a wide affinity for germinal and non-germinal cells 
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as ConA and WGA (Arya and Vanha-Perttula, 1984). In mouse, HAA, HPA, GSA-I, and 

UEA-II reacted only with spermatozoa. PNA, GSA-II, SBA, VVA, BPA, RCA-I, and RCA-II 

binding sites were recognized in spermatocytes and spermatozoa. WGA, PEA, LCA, and 

MPA were detected in spermatogonia, spermatocytes, and spermatozoa in increasing order of 

intensity. ConA, Suc.ConA, LAA STA, LTA, LPA, PHA-E, PHA-L, UEA-I, and LBA 

reacted with all spermatogenic cells with equal intensity (Lee and Damjanov, 1984). In cat, 

Con A, reacted with the entire seminiferous epithelium while GSA-I, GSA-II, MPA, PNA, 

and SBA expressed exclusively in the sperm (Prem, 1992). In dog, some lectins bind to the 

germinal epithelium (PNA, SBA) only others bind to the germinal epithelium as well as to the 

interstitial tissue (GSA-I, Con A, WGA, BPA, MPA). On the other hand, UEA-I, DBA, and 

GSA-II do not show any binding affinity to the canine testicular cells (Montkowski, 1992). 

In boars, the apical cytoplasm of Sertoli cells exhibited abundant glucosyl (ConA), galactosyl 

(HPA, DBA, SBA, and PNA), and fucosyl (AAA) residues. Spermatogonia and 

spermatocytes contained abundant glucosyl (ConA) and fucosyl (AAA) residues. In 

spermatids, galactosyl (SBA, and PNA) and glucosyl (ConA) residues increased progressively 

throughout spermatogenesis, and fucosyl (AAA) residues decreased (Pinart et al., 2001, 

2002). In adult horse, the lectins showed a variable affinity for spermatids and Sertoli cell 

apical extensions. SBA, PNA, RCA-I, and WGA bound to the acrosomal structures of 

spermatids, whereas GSA-II labeled these structures only during Golgi and cap phases 

(Verini-Supplizi et al., 2000). The lectin-binding pattern of Sertoli cells was very similar to 

that of acrosome of spermatids during the maturation phase. In sexually immature horses, 

only the degenerated germinal cells and the Leydig cells showed reactivity towards lectins. 

The first cells reacted with SBA and DBA while the latter cells reacted with SBA, PNA, 

WGA, GSA-II, ConA, LCA, and DBA (Verini-Supplizi et al., 2000). In goat, DBA and GS-I 

were negative in the seminiferous epithelium, but SBA, GS-II, and PNA were positive in the 

acrosomal vesicle of the Golgi-phase spermatids and in the acrosome of the cap-, acrosome-, 

and maturation-phase spermatids. In addition, PNA was also positive in the plasma membrane 

and cytoplasm of the spermatogenic cells from the late pachytene spermatocytes to the 

maturation- phase spermatids. No reaction was observed with Sertoli or Leydig cells 

(Kurohmaru, 1991). 
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Table 5: Lectin-binding sites in the testis of different mammalian species 

Lectin  acronym    Species    Reactive cells References 
 

Human Sc, Spg, Spc, Spd, Lc, Lp Malmi et al., 1987; Wollina et al., 1989; 
Arenas et al., 1998 

Rat Sc, Spg, Spc, Spd, Lc, 
Lp, Mc 

Arya and Vanha-Perttula, 1984 

Mouse Sc, Spg, Spc, Spd, Lc Lee and Damjanov, 1984; Arya and Vanha-
Perttula, 1986 

Cat Sc, Spg, Spc, Spd, Lc, Lp Prem, 1992 
Dog Sc, Spg, Spc, Spd, Lc Montkowski, 1992 
Boars Sc, Spg, Spc, Spd Pinart et al., 2001, 2002 

 
 
 
Con A 

Horse Lc* Verini-Supplizi et al., 2000 
Human Spg, Spc, Spd, Lc, Lp Malmi et al., 1987 
Mouse Sc, Spg, Spc, Spz, Lc Lee and Damjanov, 1984 

 
LCA 

Horse Lc* Verini-Supplizi et al., 2000 

 
 
 
 
 
I. D-Mannose/D-Glucose-
binding lectins 

PSA /PEA Mouse Sc, Spg, Spc, Spz, Lc Lee and Damjanov, 1984 
Human Sc, Spg, Spc, Spd, Lc, 

Lp, Mc 
Arenas et al., 1998 

Rat Sc, Spd, Lc, Lp Arya and Vanha-Perttula, 1984 
Mouse Sc, Spc, Spd, Spz, Lc, Lp Lee and Damjanov, 1984; ; Arya and Vanha-

Perttula, 1986 
Cat Spd Prem, 1992 
Dog Spd, Spz Montkowski, 1992 
Boars Sc, Spd Pinart et al., 2001, 2002 
Horse Sc, Spd, Spz, Lc* Verini-Supplizi et al., 2000 

 
 
 
 
PNA 

Goat Spc, Spd Kurohmaru et al., 1991 
Human Spz Lee and Damjanov, 1985 
Mouse Spz Lee and Damjanov, 1984 

 
GSA-I 
 Goat -ve Kurohmaru et al., 1991 

Human Spc, Spd, Spz, Lc, Lp Lee and Damjanov, 1985; Malmi et al., 1987 
Rat Sc, Spg, Spc, Spd, Lc, 

Lp, Mc 
Arya and Vanha-Perttula, 1984 

Mouse Sc, Spc, Spd, Spz, Lc, Lp Lee and Damjanov, 1984; Arya and Vanha-
Perttula, 1986 

 
 
RCA-I 
 

Horse Sc, Spd, Spz Verini-Supplizi et al., 2000 
Human Spg, Spc, Spd, Spz, Lc, 

Lp 
Lee and Damjanov, 1985; Wollina et al., 
1989 

 
 
 
 
 
 
 
 
 
 
 
II. D-Galactose-binding 
lectins 

 
RCA-II 

Mouse Spc, Spz Lee and Damjanov, 1984 

Human -ve Arenas et al., 1998 
Rat Spd Arya and Vanha-Perttula, 1984 
Mouse Spd, Lc, Lp Arya and Vanha-Perttula, 1986 
Boar Sc Pinart et al., 2001, 2002 
Horse dgc Verini-Supplizi et al., 2000 

 
 
 
DBA 

Goat -ve Kurohmaru et al., 1991 
Human Spd, Spz, Lc, Lp Lee and Damjanov, 1985; Malmi et al., 1987; 

Arenas et al., 1998 
Rat  Spd Arya and Vanha-Perttula, 1984 
Mouse Spd, Spz, Lc, Lp Lee and Damjanov, 1984; Arya and Vanha-

Perttula, 1986 
Boar Sc, Spd Pinart et al., 2001, 2002 
Horse Sc, Spd, Spz Verini-Supplizi et al., 2000 

 
 
 
SBA 
 
 

Goat Spd Kurohmaru et al., 1991 
Human SC, Spg, Spc, Spd, Spz, 

Lc, Lp 
Lee and Damjanov, 1985; Malmi et al., 1987, 
Wollina et al., 1989; Arenas et al., 1998  

Mouse Spz Lee and Damjanov, 1984 

 
 
HPA 
 Boar Sc Pinart et al., 2001, 2002 

Human Spd, Spz Lee and Damjanov, 1985  
VVA 

Mouse Spc, Spz Lee and Damjanov, 1984 
Human Spd, Spz Lee and Damjanov, 1985  

BPA Mouse Spc, Spz Lee and Damjanov, 1984 
Human -ve Lee and Damjanov, 1985    

LBA Mouse Sc, Spg, Spc, spd, Spz Lee and Damjanov, 1984 
Human Sc, Spg, Spc, spd, Spz Lee and Damjanov, 1985 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
III. N-acetyl-D-galactosamine 
(GalNAc)-binding lectins 
 

 
MPA Mouse Sc, Spg, Spc, Spz, Lc Lee and Damjanov, 1984 
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Table 5: Continued  

Human Sc, Spg, Spc, Spd, Lc, 
Lp, Mc 

Lee and Damjanov, 1985; Malmi et al., 1987; 
Arenas et al., 1998 

Rat Spg, Spc, Spd, Sc, Lc, 
LP, Mc 

Arya and Vanha-Perttula, 1984 

Mouse Sc, Spg, Spc, Spz, Lc, Lp Lee and Damjanov, 1984; Arya and Vanha-
Perttula, 1986 

Cat  Sc, Spg, Spc, Spz, Lc, Lp Prem, 1992 
Dog  Spg, Spc, Spz, Lc, Lp Montkowski, 1992 
Boars Sc, Spg, Spc, Spd Pinart et al., 2001, 2002 

 
 
 
WGA 
 
 

Horse Sc, Spd, Lc* Verini-Supplizi et al., 2000 
Human Spz Lee and Damjanov, 1985  

UEA-II 
 

Mouse Spz Lee and Damjanov, 1984 

Human Spz Lee and Damjanov, 1985 
Mouse Spc, Spz Lee and Damjanov, 1984 
Cat Spd, Lc, Spz Prem, 1992 
Dog -ve Montkowski, 1992 
Horse Spd, Lc* Verini-Supplizi et al., 2000 

 
GSA-II 

Goat Spd Kurohmaru et al., 1991 
LAA Mouse Spg, Spc, Spd, Spz Lee and Damjanov, 1984 

Human Spg, Spc, Spd, Spz Lee and Damjanov, 1985 

 
 
 
 
 
 
 
 
 
 
IV. N-acetyl-D-glucosamine 
(GlcNAc)-  binding lectins 
 

 
STA Mouse Spg, Spc, Spd, Spz Lee and Damjanov, 1984 

Human Sc, Spg, Spc, Spd, Spz, 
Lc, Lp, Mc 

Malmi et al., 1987; Arenas et al., 1998 

Rat Spd Arya and Vanha-Perttula, 1984 
Mouse Spg, Spc ,Spd, Spz, Lc, 

Lp 
Lee and Damjanov, 1984; Arya and Vanha-
Perttula, 1986 

Cat -ve Prem, 1992 

 
 
UEA-I 
 

Dog  -ve Montkowski, 1992 
Human -ve Arenas et al., 1998 LTA 
Mouse Spg, Spc ,Spd, Spz Lee and Damjanov, 1984 
Human Sc, Spg, Spc, Spd, Lc Arenas et al., 1998 

 
 
 
 
V. L- Fucose-binding lectins 

AAA 
Boar Sc, Spg, Spc, Spd Pinart et al., 2001, 2002 
Human Spg, Spc, Spd, Spz, Lc, 

Lp 
Lee and Damjanov, 1985  

VI. Sialic acid-binding 
lectins 

 
LPA 
 Mouse Spg, Spc ,Spd, Spz Lee and Damjanov, 1984 

Human Spg, Spc, Spd, Spz Lee and Damjanov, 1985  
PHA-E  

Mouse Spg, Spc, Spd, Spz Lee and Damjanov, 1984 

Human Spg, Spc, Spd, Spz Lee and Damjanov, 1985 

 
 
VII. Lectin with complex 
carbohydrate- binding sites  

PHA-L 
Mouse Spg, Spc, Spd, Spz Lee and Damjanov, 1984 

 
Sc: Sertoli cell; Spg: Spermatogonia; Spc: Spermatocytes; Spd: Spermatids; Spz: Spermatozoa; Lc: Leydig cells; 

Lp: Lamina propria; Mc: Myoid cells; -ve: negative; Lc*: Leydig cells of the prepubertal horse; dgc: degenerated 

germ cells 

 
Lectin binding sites of bull testis 

In contrast to Arya and Vanha-Perttula (1985), who did not succeed to demonstrate lectin 

staining in male postnatal prepubertal bovine germ cells and discussed a cyclic affinity of the 

Sertoli cells for some of the lectins, Ertl and Wrobel (1992) stated that the lectin affinity in the 

developing testicular tubules of bull testis was restricted to the germ cell line, while the 

Sertoli cells and their precursors remained completely unstained. DBA served as a selective 

marker for prespermatogonia. After the gradual onset of spermatogenesis, the lectins revealed 

staining of Golgi complexes of most germ cell stages. Inner and outer membranes of the 

acrosomal complex of spermatids, especially during Golgi and cap phase of spermiogenesis, 
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were intensely stained with PNA, RCA-I, and SBA. In the intertubular tissue, BS-I, RCA-I, 

and UEA-I bound to vascular endothelia. Compartments of the intertubular extracellular 

matrix were stained with ConA, RCA-I, UEA-I, and WGA but no reaction was recorded with 

the Leydig cells. According to the first authors, the Sertoli cells displayed a staining pattern 

that varied with the stages of the spermatogenic cycle. A moderate staining of the Sertoli cell 

processes around the spermatogenic cells was found with PNA, RCA-I, ConA, and WGA. 

After the release of the mature spermatozoa, the apical cytoplasmic extensions of the Sertoli 

cells were strongly stained with the same lectins. At a later stage of the cycle, staining was 

located in the body of these cells and eventually in the basal portion of the Sertoli cells. The 

lectin-binding site of bull testis is summarized in table 6.                            
 
Table 6: Lectin binding sites of bull testis 

Lectin Acronym Arya and Vanha-Perttula (1985) Ertl and Wrobel (1992) 
 

I. D-Mannose/D-
Glucose-binding 
lectins 

 
   Con A 

Basement membrane of seminiferous tubules, 
proacrosomal granule, and Sertoli cells 

Intertubular extracellular matrix 

 
 PNA 

Basement membrane of seminiferous tubules, 
Sertoli cells, proacrosomal granule, 
acrosomal cap and early acrosome 

Golgi phase of spermiogenesis, 
cap phase of spermiogenesis, and 
maturation phase of spermiogenesis 

II. D-Galactose-
binding lectins 

 
 RCA-I 

Basement membrane of seminiferous tubules, 
proacrosomal granule, Sertoli cells, and 
acrosomal cap  

Golgi complex of prespermatogonia, Golgi 
phase of spermiogenesis, cap phase of 
spermiogenesis, and vascular endothelium 

 
 
 DBA 

Basement membrane of seminiferous tubules 
and early and late acrosome 

Golgi complex of prespermatogonia, Golgi 
complex of spermatogonium, maturation 
phase of spermiogenesis, cytoplasmic 
droplet, and acrosome phase of 
spermiogenesis  

III. N-acetyl-D-
galactosamine 
(GalNAc)-  
binding lectins 
 

 
 SBA 

Basement membrane of seminiferous tubules, 
spermatogenic cells, and early and late 
acrosome 

Golgi phase of spermiogenesis, cap phase 
of spermiogenesis, and maturation phase 
of spermiogenesis 

IV. N-acetyl-D-
glucosamine 
(GlcNAc)-  
binding lectins 
 

 
 
 WGA 

Basement membrane of seminiferous tubules, 
acrosomal cap, early acrosome,  proacrosomal 
granule, and Sertoli cells 

Golgi complex of prespermatogonia, Golgi 
complex of spermatogonium, Golgi phase 
of spermiogenesis, cap phase of 
spermiogenesis, and acrosome phase of 
spermiogenesis 

V. L- Fucose-
binding lectins 

 
 UEA-I 

Basement membrane of seminiferous tubules, 
proacrosomal granule, Sertoli cells, and 
acrosomal cap 

Intertubular extracellular matrix and 
vascular endothelium 
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3. MATERIALS AND METHODS 

3.1. Tissue collection  
The present study was performed on the testes of 32 bovine embryos and of 15 sexually 

mature bulls (Deutsches Fleckvieh). All samples were collected within 30 min after 

slaughtering from Munich local abattoir. The age of embryos (table 7) was calculated from 

the measured crown-rump length (CRL) and by means of length-age tables in the literature 

(Rüsse, 1991). For convenience, the gestation period was divided into 3 stages: early, mid, 

and late gestation. The first stage extend up to 14 cm CRL/80 day post coitus (dpc), the mid 

gestation represent the period between the end of the early stage and up to 57 cm CRL/187 

dpc while the late stage constitutes the remaining period of pregnancy (table 7). However, it is 

important to remind that embryos of the same age may differ considerably in length (CRL).  

 
Table 7: CRL and suspected related age of bovine embryos 

Stage of 

gestation 

             Early-stage                      Mid-stage  

 

 Late-stage 

CRL/cm 2.5   3.5 6 10 14 18 20 23 30 36 40 57 63 80 90 

Age/Days 43 50 60 75 80 100 108 110 130 141 159 187 210 245 285 

No of 
embryos 

4 2 2 3 2 2 2 3 2 2 1 2 2 2 1 

  

Collected samples were analyzed by several methods that include  

* Morphological examination of fetal (LM) and adult (LM and EM) testis. 

* Identification of carbohydrates distribution (lectin histochemistry). 

* Gene expression (Real time PCR and in situ hybridization) and protein localization 

(immunohistochemistry).  

 
3.2. Morphological analysis 

 
3.2.1. Tissue preparation 

The collected materials were routinely fixed for light, fluorescent, and electron microscope. 

 
3.2.1.1. Tissue fixation and processing for light microscope (LM) 

For light microscopic examination, 3 different fixatives were used. These include Bouin’s, 

methanol-glacial acetic acids (2:1), and 3.7 % formalin solutions. Embryos of small size (2.5-

6 cm/CRL) and small samples of the embryonic (10-90 cm/CRL) and adult testicular tissue 

(0.5-1 cm) were fixed in Bouin’s fluid and methanol-glacial acetic acid solutions for 12-24 h 
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according to the age. Thereafter, fixed samples were extensively washed in 70% ethanol (3 x 

24 hr) to get rid of the fixative before the subsequent step of tissue processing. Exceptionally, 

formalin-fixed material was washed for 2 hr under the running tape water before ethanol 

immersion. Small embryos were transversely cut directly behind the level of the forelimb. 

Using automatic tissue processor (Shandon Duplex Processor, Shandon, Frankfurt, Germany), 

the tissue samples were dehydrated in graded series of ethanol (80%, 95% and absolute), 

cleared in xylene and impregnated with Paraplast® (Monoject Scientific Inc., Kildare, Irland). 

Subsequently, samples were embedded in paraplast blocks using Histostat Tissue Embedding 

Centre (Reichert-Jung, Wien). Sections (5µm) were cut on Leitz rotatory microtome (type 

1521) and mounted on both 3-aminopropyltriethoxysilane-coated and uncoated glass slides. 

Paraffin sections were kept in incubator at 40°C until used for conventional staining, glyco 

(lectin)-and immuno-histochemical analysis.  

 
3.2.1.2. Conventional histological staining. 

As a general scheme for the ordinary stains, sections of paraffin-embedded testicular tissue 

were dewaxed (2 x 30 min), rehydrated in descending series of ethanol (100%, 95%, 70%) 

and distilled water. The subsequent stained sections were dehydrated again in ascending 

grades of ethanol (70%, 95%, 100%), cleared in xylene (2 x 10 min) and mounted with 

Eukitt® (Riedel de Haen AG, Seelze). 

In this study, several conventional stains were carried out to investigate the general 

histological structure of fetal and adult testis in bovine. All of the staining techniques 

employed were performed according to Romeis (1989). These could be briefly described as 

following: 

 
Haematoxylin and Eosin (H&E) 

A selection of slides was routinely stained with H&E to differentiate the gonadal sex of the 

small-sized bovine embryos (2.5-6 cm/CRL) and for general histological studies. Generally, 

the cellular nuclei stained with H&E appear blue while the remaining elements of the 

testicular tissue show rosy red color.  

 
Trichrome stain after Masson and Goldner 

This stain is mainly used to differentiate between the different constituent of the tissues. 

Indeed, cellular nuclei are constantly dark blue (stained by Weigert ُs  

Haematoxylin), collagen fibers exhibit green stain whereas the other cellular and tissue 

components (cytoplasm, muscle fibers,..) appear red. 
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Alcian blue 8 GX (pH 1.0 and pH 2.5) 

Alcian blue stains the acidic mucosubstances (acidic mucopolysaccharides) with light blue 

color while the nuclei and background appear red and light pink respectively. At different pH 

values, Alcian blue is able to distinguish between sulfated and non-sulfated acidic 

mucosubstances. It is frequently clear that the acidic sulfated mucosubstances are easily 

demonstrable at highly acid pH (1.0) while the acidic non-sulfated ones, containing carboxyl 

groups, are detectable at comparatively lower pH value (2.5).  

 
Periodic acid-Schiff reaction after McManus (PAS-Reaction) with and without Amylase 

digestion 

PAS is essentially used to identify the aldehyde groups, which are formed through the 

oxidation of glycol with periodic acid. Therefore, PAS detect the carbohydrates or 

carbohydrate-rich macromolecules such as glycoproteins and glycogen. Basal lamina, 

reticular and collagen fibrils are known to contain glycoprotein and react positively with PAS. 

The PAS positive structures stain mainly with rose to purple red color while the background 

appears light pink. Importantly, since Amylase has the ability to digest glycogen, Amylase 

digestion was done to discriminate between glycoproteins and glycogen. 

 
Elastic stain after Weigert (Resorcin-fuchsin)  

With Weigert ُs elastic stain, the reactive elastic fibers appear predominantly blue black. 

 
Toluidine blue stain  

This stain is employed for identification of mast cells metachromasia. The metachromatic 

granules have constantly blue-violet appearance.   

 

3.2.1.3. Light microscopic examination of the stained sections    

Stained sections were evaluated by Leitz Dialux 20 Microscope and photos were taken by a 

Cannon digital camera (Cannon Powershot A95).  

 

3.2.1.4. Morphometric studies  

Measurements were taken with an eyepiece micrometer scale, which was calibrated with a 

stage micrometer at x 40. The diameter of tunica albuginea was measured from the basal 

lamina of the surface epithelium to the end of the inner vascular layer. The measurements of 

the diameter of the seminiferous cords represent in every case the average measurements of 

20 seminiferous cords, 10 taken from the region near the tunica albuginea and 10 from the 
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rete testis region. The diameter of the seminiferous cords was measured from the basal lamina 

to the basal lamina and only tubules of a perfectly clear transversal section were measured. 

The Sertoli and germ cells found in these transversal sections were counted as well. Leydig 

cell count was performed using image tool program (UTHSCSA, v 3.00). First, 10 photos/ 

age/embryo were taken by Cannon digital camera (Cannon Powershot A95). Importantly, all 

photos were taken at the same zoom and with the same objective (x 40). Then, the surface 

area of the photo was measured in photoshop program (Adobe® Photoshop® 7.0) and adjusted 

to 0.03 mm² of the testicular area. Finally the Leydig cells per photo was counted using image 

tool program and the average number for the 10 photos/age/embryo was calculated. 

 

3.2.2. Tissue fixation and processing for electron microscope (EM) 
Ultrastructure of the adult bovine testis was studied using transmission electron microscope. 

To accomplish this aim, small samples (about 1 mm) from different areas of the testes of 3 

sexually mature bulls were directly collected within 30 min after slaughtering and fixed by 

immersion method. These samples were immediately fixed in formaldehyde-glutaraldehyde 

mixture (Karnovsky, 1965) at 4°C overnight. Subsequently, the specimens were washed (4 x 

15 min) in 0.1 M cacodylate buffer (pH 7.2). All samples were then contrasted in 1.5% 

potassium ferrocyanide and 1% osmium tetroxide at 4°C for 2 hr in the dark. Later, they were 

again washed (3 x 20 min) in 0.1 M cacodylate buffer (pH 7.2). After dehydration in a graded 

series of ethanol (50%, 70%, 90%, 100%) and propylene oxide (Merck, Darmstadt, Germany) 

the specimens were gradually embedded in Epon (Polysciences, Eppelheim, Germany). 

Briefly, samples were firstly dipped (2 x 15 min) in propylene oxide (Merck, Darmstadt, 

Germany) then in propylene-Epon mixture (2:1) for 1 hr, in propylene-Epon mixture (1:1) 

overnight and finally in pure Epon for 30 min. Thereafter, testicular specimens were 

embedded in gelatin capsules (Plannet, Wetzlar) containing Epon and polymerized at 60°C 

for 24 hr. For general morphology, semithin sections (1µm) were cut using an ultramicrotome 

Ultracut E (Reichert-Jung, Wien) and stained with methylene blue (Sigma-Aldrich Chemicals 

GmbH, Deisenhofen, Germany) to be examined by light microscope. Ultra thin sections (60 

nm) were cut from selected blocks, mounted on uncoated copper grids (SSI, Science Services, 

Munich, Germany) and routinely contrasted with uranyl-acetate and lead citrate (Reynolds, 

1963) prior to examination with a Zeiss EM 902 (Carl Zeiss, Oberkochen) electron 

microscope. Photos of selected structures were taken on Maco ort 25c-films (Maco Photo 

Products, Hamburg, Germany).  
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3.3. Glycohistochemistry (Lectin histochemistry) 
Distribution of sugar moieties (glycoconjugates) in the fetal and adult bovine testis was 

investigated using thirteen (Table 8) different fluorescein isothiocyanate (FITC) conjugated 

lectins (Sigma-Aldrich Chemicals GmbH, Deisenhofen, Germany). These lectins represent 

five groups (mannose-, galactose-, N-acetylgalactosamine (GalNAc)-, N-acetylglucosamine 

(GlcNAc)-, and fucose-binding lectins) of the known seven lectin binding groups described in 

my review (table 2). To shed light on the effect of fixation on glycoproteins, lectin-binding 

sites in adult bovine testicular tissue were studied in both Bouin ُs-fixed paraffin-embedded 

and acetone-fixed frozen sections. The latter were cut with cryostat microtome (Reichert-Jung 

2800 Figucut N), mounted on 3-aminopropyltriethoxysilane-coated slides, postfixed in cold 

acetone for 10 min, and stored at – 20°C until used. Staining of paraffin-embedded and frozen 

testicular tissue with lectins was done according to the following protocol:   

1. Sections (5µm) of paraffin-embedded testicular tissue were dewaxed (2 x 30 min) in 

xylene, rehydrated in descending grades of ethanol and washed under tape water for 10 min. 

2. Dewaxed (fetal and adult) and frozen (adult) sections were washed (3 x 5) in 0.05 M Tris-

buffer (pH 6.8). 

3. All sections were then incubated with FITC conjugated lectin (33 µg lectin-FITC/ml Tris-

buffer) in humidified chamber at 4°C overnight.  

4. Sections were again washed under tape water for 5 min and subsequently rinsed (3 x 5 min) 

in Tris buffer (pH 6.8). 

5. Importantly, the hydrated sections were directly taken from Tris-buffer to be mounted with 

a mixture of polyvinyl alcohol 25/140 and ethylenglycol in Tris-buffer, pH 6.8 (Serva, 

Heidelberg, Germany). Covered slides were stored at – 20°C until examined by fluorescent 

microscope.    

 
Controls 

 Controls were performed by (1) substitution of the lectins with buffer, and (2) preincubation 

of the lectins with the corresponding hapten sugar inhibitor (e.g., fucose for UEA-I and LTA; 

GlcNAc for WGA; GalNAc for HPA, SBA and DBA; galactose for PNA, GSA-I and ECA; 

mannose for Con A, PSA, LCA)  (Sigma-Aldrich Chemicals GmbH, Deisenhofen, Germany).  

Lectin-stained testicular tissues and their controls were evaluated using a Dialux 20 

fluorescent microscope (Leitz GmbH, Wetzlar). The photos were taken by using Kodak film 

elite 400.  
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Table 8: FITC-labeled lectins used for investigation of sugar moieties in the bovine testis  

Lectin group Lectin source 
(Latin name) 

Common 
name 

Acronym  Sugar specificity Binding inhibitor 

Canavalia 
ensiformis 
Agglutinin 

Jack bean Con  A α-D-Man > α-D-Glc Man 

Lens culinaris 
Agglutinin 

Lentil LCA α-D-Man Man 

I. D-Mannose (D-
Glucose)-binding 
lectins 

Pisum Sativum 
Agglutinin 

Garden pea PSA α-D-Man Man 

Arachis hypogaea 
Agglutinin 

Peanut PNA β-D-Gal-(1-3)-D-GalNAc Gal 

Griffonia 
simplicifolia I 
Agglutinin 

Griffonia  or 
Bandeiraea 

GSA-I Terminal α-Gal Gal 

II. D-Galactose-
binding lectins 

Erythrina 
cristagalli 
Agglutinin 

Coral tree ECA α-D-Gal-(1-4)-GlcNAc Gal 

Dolichos biflorus 
Agglutinin 

Horse gram DBA α-D-GalNAc(1-3) GalNAc GalNAc 

Glycine max 
Agglutinin  

Soybean SBA D-GalNAc GalNAc 

Helix pomatia 
Agglutinin  

Roman or 
edible snail  

HPA D-GalNAc GalNAc 

III. N-acetyl-D-
galactosamine 
(GalNAc)-
binding lectins 
 

Visea villosa 
Agglutinin 

Hairy vetch VVA D-GalNAc GalNAc 

IV. N-acetyl-D-
glucosamine 
(GlcNAc)-
binding lectins 

Triticum vulgare 
Agglutinin 

Wheat germ WGA GlcNAc(β1-4GlcNAc) 1-2, 
NeuNAc 

GlcNAc 

Ulex europaeus -I 
Agglutinin 

Gorse seed UEA-I α-L-Fuc α-L-Fuc V. L- Fucose-
binding lectins 
 Lotus 

tetragonolobus 
Agglutinin 

Asparagus 
pea 

LTA  α-L-Fuc α-L-Fuc 

 
Man, mannose; Glc, glucose; Gal, galactose; GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine; 

NeuNAc, N-acetylneuraminic acid (sialic acid); α-L-Fuc, α-L-Fucose. 

 

3.4. Gene expression and protein localization 
The expression of two genes (FGF-1 and FGF-2) was investigated in the adult bovine testis. 

 
3.4.1. RNA extraction  

Within 20 min after slaughtering, approximately 500 mg of each adult testis were submerged 

in 5 ml of RNAlater (Qiagen, Munich, Germany) for RNA isolation. Total RNA was 

extracted using Tri-reagent (Sigma-Aldrich Chemicals GmbH, Deisenhofen, Germany) 

according to the following scheme:  

1- Tissue samples were homogenized in Tri-reagent (1 ml per 50-100 mg of tissue) by using 

an Ultra-Turrax, T 25 homogenizer (Janke and Kunkel, iKA-Labortechnik, Stauffen, 

Germany). 
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2- After homogenization and dissociation, the samples were allowed to stand for 5 min at 

room temperature to ensure complete dissociation of nucleoprotein complexes.  

3- Then 200 µl of chloroform per ml of Tri-reagent was added. The samples were shaken 

vigorously for 15 sec and allowed to stand again for 5 min at room temperature.  

4- Samples were centrifuged at 14500 rpm for 20 min at 4°C. Centrifugation separates the 

mixture into 3 phases: a red organic phase (containing protein), an interphase (containing 

DNA), and colorless top aqueous phase (containing RNA).  

5- The top phase was transferred to a new tube and mixed with 500 µl of isopropyl alcohol 

per ml of Tri-reagent. The mixed samples were allowed to stand 5 min at room temperature 

before centrifugation at 14500 rpm for 10 min at 4°C. The RNA precipitate will form a pellet 

on the side and bottom of the tube. 

6- The precipitated RNA pellet was washed by centrifugation with ice-cold 75% ethanol (at 

least 1ml of ethanol per ml of Tri-reagent) at 7.500 rpm for 5 min at 4°C.  

7- After centrifugation, the RNA pellet was dried and resuspended in RNase-free water.  

 
3.4.2. RNA purification 

In order to purify and cleanup the isolated RNA from genomic DNA, the dissolved RNA 

pellet was treated with DNase I according to the RNA cleanup protocol (Qiagen, Munich, 

Germany). Briefly, this was achieved as following:  

1- The suspended RNA sample was adjusted to a volume of 100 µl with RNAse-free water.  

2- Subsequently, 350 µl of RLT buffer (Qiagen, Munich, Germany) was added and the 

solution was thoroughly mixed. 

3- Later, 250 µl of ethanol (100%) was added to the previously diluted RNA and thoroughly 

mixed by pipetting. 

4- The total volume (700 µl) was applied to an RNeasy mini column and placed in a 2 ml 

collection tube to be centrifuged for 15 sec at 10.000 rpm.  

5- The collection tube and flow-through was discarded whereas the RNeasy column was 

transferred into a new 2 ml collection tube.  

6- Thereafter, 350 µl RW1 buffer (Qiagen, Munich, Germany) was pipetted onto the RNeasy 

column membrane and centrifuged for 15 sec at 10.000 rpm. Consequently, the flow-through 

was discarded. 

7- To enable genomic DNA digestion, 80 µl of DNase I incubation mix was pipetted on the 

mini column silica-gel membrane and allowed to stand 15 min at room temperature. DNase I 
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mix was prepared by addition of 10 µl DNase I stock solution to 70 µl RDD buffer (Qiagen, 

Munich, Germany). 

8- Afterwards 350 µl RW1 buffer was again added on the mini column silica-gel membrane 

and left to stand 5 min at room temperature. Then the column was centrifuged for 15 sec at 

10.000 rpm and the flow-through was discarded. 

9- Purified RNA was washed by 500 µl RPE buffer (Qiagen, Munich, Germany) and 

centrifuged for 15 sec at 10.000 rpm. Again, another 500 µl RPE buffer was added to the 

column and centrifuged for 2 min at 10.000 rpm to dry the RNeasy silica-gel membrane. 

Finally, the RNeasy silica-gel membrane column was placed in a new 2 ml collection tube 

and centrifuged at full speed for 1 min to eliminate any chance of possible buffer RPE 

carryover.  

10- To elute, RNeasy column was transferred to a new 1.5 ml collection tubule and 50 µl 

RNase-free water was directly pipetted onto the the RNeasy silica-gel membrane. The tube 

was gently closed and centrifuged for 1 min at 10.000 rpm.       

RNA concentration and purity were determined by ultraviolet spectrophotometry. All RNA 

samples used for assay were of high quality and purity (260/280 nm absorption ratio > 1.8). 

 
3.4.3. Reverse transcription 

Reverse transcription was performed using 1.5 µg of total RNA with 2 µl 10 x buffer, 2 µl 

dNTPs (0.5 mM), 2 µl oligo-dt (10 pM), 2 µl random decamer (100 pM), 0.5 µl RNase 

inhibitor (Ambion 40U/µl) and 1µl Ominiscript RT enzyme (4U/20 µl) (Qiagen, Munich, 

Germany) in a final volume of 20 µl. RNA was reverse transcribed at 37 °C for 60 min, 

followed by a 5 min enzyme inactivation phase at 93 °C. The reaction mixture was then 

chilled to 4 °C and the resulting cDNA was stored at –20 °C until assayed by real-time PCR. 

To detect residual DNA-contamination (genomic DNA) in the subsequent PCR reaction, a 

negative RT control was done through replacing Ominiscript RT enzyme (Qiagen, Munich, 

Germany) by water. 

 

3.4.4 Primer design 

Specific primers for the FGF-1 and FGF-2 genes were designed using Primer 3 software 

program (http://www.genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi). The sequence of 

primers encoding for both genes in bovine are shown in table 9.  
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Table 9: Primer, sense, and antisense sequences of FGF-1 and FGF-2 

Target Sequence of nucleotides  Fragment           
size (bp) 

Forward         5′-GCC TTG  AAA CAG CCA  CAA CC-3′ 
Reverse          5′-TGT CCT TCG TCC CAT  CCA C-3′ 

189 FGF-1 

Sense             5′-GGA GAG CAG AAT GAA GGC AC-3′ 
Antisense       5′-GTG CCT TCA TTC  TGC TCT CC-3′ 

 

Forward         5′-CGA GAA GAG CGA CCC ACA C-3′ 
Reverse          5′-GCC CAG TTC GTT TCA GTG C-3′ 

236   FGF-2 

Sense              5′-GTG CTG TTG CCG AAT ACT CA-3′ 
Antisense       5′-TGA GTA TTC GGC AAC AGC AC-3′ 

 

 

Primer specificity was tested by running a regular PCR and the resulting PCR amplicons were 

evaluated by ethidium bromide agarose gel electrophoresis. The latter ensures the presence of 

a unique specific PCR product revealed by existence of a single band of predicted size for 

each pair of primers. 

In real time PCR, primer specificity was further assessed by analysis of melting curve. This 

step is of great importance because SYBR Green I is not specific for the PCR product but can 

also bind to double-strand unspecific amplification side products (Yin et al., 2001).  

 
3.4.5. PCR Standard 

Absolute quantification of mRNA transcription allows the precise determination of transcript 

copies per cell, total RNA concentration, or unit mass of tissue. It requires the construction of 

a standard curve for each individual amplicon to ensure accurate reverse transcription and 

PCR amplification profiles (Bustin, 2000). RNA and DNA standards can be employed for 

standard curve quantification. In this thesis, I have used DNA standards to quantify the 

mRNA of FGF-1 and FGF-2 using an iCycler and SYBR Green I (BioRad, Munich, 

Germany). PCR standards for each growth factor were constructed from PCR products (PCR 

fragments) of the same gene with known numbers of molecules. These fragments were highly 

purified by QiAquick Gel Extraction Kit (Qiagen, Munich, Germany) according to the 

following scheme:  

 

1. Five volumes of buffer PB (Qiagen, Munich, Germany) were added to one volume of the 

PCR samples and thoroughly mixed. 

2. The samples were applied to QiAquick column previously placed in 2 ml collection tube 

and centrifuged for 30-60s. 

3. To wash, flow-through was discarded and 0.75 ml buffer PE (Qiagen, Munich, Germany) 

was added to QiAquick column and centrifuged again for 30-60s. The QiAquick column was 
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then centrifuged for an additional 1 min at maximum speed and finally placed in a clean 1.5 

ml microcentrifuge tube. 

4. To elute DNA, 50 µl buffer EB (10 mM tris-Cl, pH 8.5) (Qiagen, Munich, Germany) was 

added to the centre of the QiAquick membrane and centrifuged for 1 min.     

 Purification ensures the elimination of primers, nucleotides, polymerases, and salts. 

Concentration of the purified PCR amplicon DNA was determined by spectrophotometer 

(SmartSpecTM 300, BioRad, Munich, Germany). Copy numbers/ µl of standard were 

calculated according to the following formula: 

 
Y molecules/µl =            (Xg/µl DNA) x [6.022 x 1023] 
                                      (Amplicon length in base pairs x 660) 

 
The PCR standards were made to dilution of 1011 (10 copies/ µl) and stored at -20 °C until 

used. By knowing copy numbers and concentration of the DNA fragment, the precise number 

of molecules added to subsequent real time runs can be calculated. In order to generate a 

standard curve, 5 different concentrations of a 10 fold dilution series standard have been 

measured. 

 

3.4.6. Real Time PCR 

Real time PCR was carried out using an iCycler (BioRad, Munich, Germany) and SYBR 

Green I as dsDNA binding stain. The reaction was performed in a 96-well optical plate 

included five, 10-fold dilutions in duplicate of the amplicon DNA standards (i.e. starting at 

104 to 108 for FGF-1 and 106 to 1010 for FGF-2). Our unknown targets (FGF-1 and FGF-2) 

were assayed in triplicate along with single negative controls for the RT and PCR steps (i.e., 

no template controls). Each well contained 15 µl of reaction components (master mix, diluted 

cDNA and primers). The reaction master mix (iQTM SYBR® Green Supermix, BioRad, 

Munich, Germany) contains iTaq DNA polymerase, dNTP mix (dATP, dCTP, dGTP, and 

dTTP), KCL, Tris-HCL, MgCL2, SYBR Green I, Fluorescein, and stabilizers. The real time 

PCR reaction was performed by addition of 7.5 µl 2 x SYBR Green supermix to 3.5 µl of 

cDNA (RT product diluted 1: 10) and 4 µl primer mix (forward+ reverse, 1.2 µM) in a total 

volume of 15 µl. The PCR thermal cycling program was accomplished by a 2 step 

temperature protocol, consisting of 95 °C denaturation for 3 min, followed by 40 cycles of 15 

sec at 95 °C and 60 sec at 60 °C (annealing and data collection step ). Melt curve analysis 

carried out immediately after the amplification protocol, was initiated by one cycle at 95°C 

for 1 min, followed by 150 cycles (10 sec each) starting from 95°C with a regular decrease of 
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0.2 °C (melting curve data collection was enabled at this step). In the so-called absolute real 

time PCR-technique, it is not necessary to include a house keeping gene for normalization, 

but careful quantification of the unknown targets requires a control gene to determine if 

pipetting errors are significant or not (Ginzinger, 2002). In this investigation, 18S was used as 

a control gene. Real time PCR products were further verified by routine ethidium bromide gel 

electrophoresis in 2% agarose gel. Commercial Sequencing of PCR products was additionally 

carried out to validate its specificity (GATC, Biotech, Konstanz, Germany). 

 

3.4.7. Real time PCR data analysis     

Optical data obtained by real time PCR was analyzed by using the default and variable 

parameters available in the software provided with iCycler (iCycler® Optical System Interface 

V 3.0 a, BioRad, Munich, Germany). A standard curve was generated by plotting the log of 

copy numbers versus threshold cycle (CT). The CT was defined as the cycle number when 

intensity of SYBR Green fluorescence exceeded 10x the standard deviation of baseline 

fluorescence. The slope of linear regression between copy numbers and threshold cycles was 

used to resolve PCR efficiency. From standard curve interpolation, the iCycler software 

automatically computed the correlation coefficient, PCR efficiency, and copy numbers of the 

2 genes under investigation. To confirm amplification specificity, the PCR product was 

identified by melt curve analysis. As melting temperature was attained, the double stranded 

DNA denaturated and released SYBR Green I, causing a sharp decrease in fluorescence. This 

decline in fluorescence was plotted as fluorescence (F) versus temperature (T) (Yono et al., 

2002). The negative first derivative of fluorescence with respect to temperature was thereafter 

plotted versus temperature change (-dF/dT vs. T) to generate a melting peak at a certain 

melting temperature for each amplified growth factor cDNA. 

 

3.4.8. In situ hybridization 

Formalin-fixed (3.7%), paraffin-embedded samples were used to localize the mRNA 

transcripts of FGF-1 and FGF-2 within the adult bovine testis. All solutions for in situ 

hybridization were prepared using DEPC-treated water and glassware sterilized at 200 °C. In 

addition, all steps prior to and during hybridization were conducted under RNase-free 

conditions. Sections were deparaffinised with xylene (3 x 10 min), immersed in absolute 

ethanol (2 x 5 min), and then allowed to air dry. Dried sections were dipped in 2 x saline 

sodium citrate (SSC) prewarmed in water bath (80 °C) for 10 min followed by cooling off for 

20 min at room temperature. Slides were then washed in distilled water (2 x 5 min), Tris 



                                                                                                                  Materials and Methods 
                                                                                                                 

                                                                     67                                                                                                     

buffer (2 x 5 min) and permeabilised for 20 min with 0, 05% proteinase E (VWR, Ismaning, 

Germany) in Tris buffer at room temperature. Sections were immersed again in Tris buffer (2 

x 5 min), rewashed in distilled water (2 x 5 min), and post-fixed for 10 min in 4% 

paraformaldehyde/PBS (pH 7.4). After washing in PBS (2 x 5 min) and distilled water, slides 

were dehydrated in an ascending graded series of ethanol and air dried. Hybridization was 

carried out by overlaying the dried sections with 40 µl of biotinylated oligo-probe (100 

pM/ml) diluted 1:20 in in-situ-hybridization solution (DAKO, Munich, Germany) and 

incubating them in a humidified chamber (using cover slips to prevent drying-out) at 38 °C 

overnight (sequences of probes are shown in table 9). RNase-free hybridization solution 

(DAKO, Munich, Germany) contains 60% formamide, 5 x SSC, hybridization accelerator, 

RNAse inhibitor, and blocking reagents. Afterwards slides were washed in 2 x SSC (2 x 15 

min) prewarmed to 38 °C, distilled water (2 x 5 min) and Tris Buffer (2 x 5 min). Detection of 

transcripts was performed with ABC kit reagents and DAB (DAKO, Munich, Germany) 

according to the manufacturer’s instructions. Bovine liver tissue sections were used as 

positive control while negative controls were carried out by: 1) omitting the biotinylated 

antisense oligo-probe, 2) using the biotinylated sense oligo-probe (sequences are shown in 

table 9) 

 

3.4.9. Immunohistochemistry 

In this study, 12 different proteins (table 10) were investigated. Antigen localization was 

achieved using either polyclonal or monoclonal antibodies combined with the avidin-biotin 

complex (ABC) technique (Hsu et al., 1981) according the following protocol:  

1- Sections (5µm) of paraffin-embedded testicular tissue were dewaxed, rehydrated, and 

rinsed in PBS pH 7.4 (3 x 5 min).  

2- For antigen retrieval, the slides were either heated (2 x10 min) in microwave (750 Watt) by 

using of citrate buffer pH 6 followed by cooling of for 20 min or treated with protease for 5 

min at room temperature. Importantly, not all the antibodies used need this step (showed in 

table 10). 

3- Endogenous peroxidase was blocked by soaking the sections in 7.5% v/v hydrogen 

peroxide/ distilled water for 10 min at room temperature followed by washing them under 

running tap water for additional 10 min.  

4- They were thereafter rinsed in PBS pH 7.4 (2 x 5 min).  

5- Non-specific protein binding was minimized by covering the slides with a serum-free 

protein blocking reagent (DAKO, Hamburg, Germany) for 10 min at room temperature.   
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6- Sections were then incubated with the primary antibodies either for ½ -1 hr at room 

temperature or overnight at 4°C. The sources, dilutions, and time of incubation of these 

antibodies are shown in table 10. 

7- The slides were subsequently rinsed in PBS pH 7.4 (2 x 5 min) followed by incubation 

with biotinylated IgG (types, source, and dilutions are shown in table 10) for 30 min at room 

temperature.  

8- Visualization of the bound antibodies was carried out with ABC kit reagents (DAKO, 

Hamburg, Germany) for 30 min followed by treatment with diaminobenzidine/ H2O2 

(chromogenic substrate) for 10 min at room temperature. All incubations were performed in a 

humidified chamber. Sections were left unstained or counterstained in Mayer’s haematoxylin, 

dehydrated, and mounted with Eukitt® (Riedel de Haen AG, Seelze).  
 
 
Positive and negative controls  

Negative controls were performed by omission of the primary antibodies while several bovine 

organs were used as positive controls according to the investigated antigen. For instance, 

nervous tissue (S100), corpus luteum (FGF-1 and FGF-2), ovary (Cx43), embryonic tissue 

(laminin), uterine tube (αSMA), and lymph nodes (CD4, CD8, and CD68) were used as 

positive controls.  

Positive testicular sections were evaluated by Leitz Dialux 20 Microscope and photos were 

photographed by Cannon digital camera (Cannon Powershot A95).  
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Table 10: Identity, sources, and working dilutions of antibodies used in this study 

                                  Primary antibodies      Secondary antibodies 
Against  Source Origin  Dilution Incubation 

time  
Antigen 
retrieval  

Type   Dilution source 

S100 Dako, 
Hamburg 

Rabbit 1:400 ½ hr at 
room 
temperature 

Not 
required 

Biotinylated 
pig anti-rabbit 
IgG 

1:300 Dako, 
Hamburg 

FGF-1 Prof.Dr 
Schams 

Rabbit 1:1000 Overnight 
at 4°C  
 

Heating in 
microwave 

Biotinylated 
pig anti-rabbit 
IgG 

1:300 Dako, 
Hamburg 

FGF-2 Prof.Dr 
Schams 

rabbit 1:1000 Overnight 
at 4°C  
 

Not 
required  

Biotinylated 
pig anti-rabbit 
IgG 

1:300 Dako, 
Hamburg 

Cx 43 BD 
Bioscience, 
Heidelberg 

Mouse 1:200 Overnight 
at 4°C  

Heating in 
microwave 

Biotinylated 
rabbit  anti-
mouse IgG 

1:300 Dako, 
Hamburg 

Laminin Serotec, 
Düsseldorf 

Rabbit  1:500 Overnight 
at 4°C 

5 min 
treatment 
with 
protease at 
room 
temperature 

Biotinylated 
pig anti-rabbit 
IgG 

1:300 Dako, 
Hamburg 

GalTase Institute of 
veterinary 
anatomy II, 
LMU-
Munich 

Chicken 1:500 Overnight 
at 4°C 

Not 
required 

Biotinylated 
rabbit  anti-
chicken IgG 

1:400 Rockland, 
USA 

VEGF Dako, 
Hamburg 

Rabbit 1:800 Overnight 
at 4°C 

Not 
required 

Biotinylated 
pig anti-rabbit 
IgG 

1:300 Dako, 
Hamburg 

ACE Institute of 
veterinary 
anatomy II, 
LMU-
Munich 

Chicken  1:500 Overnight 
at 4°C 

Not 
required 

Biotinylated 
rabbit  anti-
chicken IgG 

1:400 Rockland, 
USA 

αSMA Dako, 
Hamburg 

Mouse  1:200 1 hr at 
room 
temperature 

Not 
required 

Biotinylated 
rabbit  anti-
mouse IgG 

1:300 Dako, 
Hamburg 

CD4 
(CC30) 

Serotec, 
Düsseldorf 

Mouse  1:100 Overnight 
at 4°C 

Not 
required 

Biotinylated 
rabbit  anti-
mouse IgG 

1:300 Dako, 
Hamburg 

CD8  
(CC58) 

Serotec, 
Düsseldorf 

Mouse 1:50 Overnight 
at 4°C 

Not 
required 

Biotinylated 
rabbit  anti-
mouse IgG 

1:300 Dako, 
Hamburg 

CD68  
(EBM 11) 

Dako, 
Hamburg 

Mouse  1:50 Overnight 
at 4°C 

5 min 
treatment 
with 
protease at 
room 
temperature 

Biotinylated 
rabbit  anti-
mouse IgG 

1:300 Dako, 
Hamburg 

CD68  
(KP1) 

Dako, 
Hamburg 

Mouse 1:50 Overnight 
at 4°C 

5 min 
treatment 
with 
protease at 
room 
temperature 

Biotinylated 
rabbit  anti-
mouse IgG 

1:300 Dako, 
Hamburg 

 

FGF-1: acidic fibroblast growth factor; FGF-2: basic fibroblast growth factor; Cx43: connexin43;  

GalTase: galactosyltransferase; VEGF: vascular endothelial growth factor;  

ACE: angiotensin converting enzyme; αSMA: alpha smooth muscle actin. 
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4. RESULTS 

4.1. Microscopic structure of the bovine testis 
In this study, the testicular morphogenesis of fetal testis and the microscopical organization of 

adult testis were investigated by light microscope using different conventional stains 

including H&E, PAS, Masson-Goldner ُs trichrome, Weigert ُs elastic stain, Alcian blue, and 

toluidine blue. The ultrastructure of the different testicular compartments of adult testis was 

considered as well. 

 

4.1.1. Fetal testis: emergence and morphogenesis 

For convenience, the bovine gestation period was divided into 3 stages: early, mid, and late 

gestation. Developmental changes in the testicular morphogenesis were therefore analyzed in 

details during these phases.  

 

4.1.1.1. Early stage of gestation (2.5-14 cm CRL/43-80 dpc) 
All critical events that characterize testicular development are seen in this period. These are 

indicated by the appearance of the tunica albuginea, organization of the testicular cords, 

multiplication of germ cells, differentiation of Leydig cells, and establishment of connection 

between solid testicular cords and rete testis strands.    

With the beginning of this stage (2.5 cm CRL/43 dpc), the gonadal anlages protruded into the 

coelomic cavity as paired bean-shaped structures on either side of the dorsal mesentery of the 

hindgut medial to the mesonephros (Fig. 5).  

 
 

 

Fig 5: Overview of the bovine embryonic gonads 

position. The gonadal anlages (G) are located on 

either side of the dorsal mesentery (Dm) medial 

to the mesonephros (Ms). Dorsally the aorta (A) 

is identified while ventrally the liver (L) is 

recognized. Bovine embryo with 2.5 cm CRL, 

H.E.  

 

The incipient gonads are covered by a thin layer of simple cuboidal to columnar cells 

(coelomic epithelium). These cells are oriented in various directions and contain large round 
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to elongated nuclei occupying most of the cellular cytoplasm. The basal lamina of these cells 

is not evident with conventional stains (e.g., PAS) at this age. Directly beneath the coelomic 

epithelium, a relatively thick layer (50-60 µm) of mesenchymal cells is present. This layer 

outlines the first step of the testicular tunica albuginea (TA) formation. The development of 

TA at the gonadal extreme periphery is timely coincident with the aggregation of both 

somatic (pre-Sertoli) and germ (primordial germ) cells to form the testicular cords, the 

precursors of the seminiferous tubules. The first cords are 30 µm in diameter and are clearly 

recognizable at the gonadal periphery whereas the gonadal interior consists of a network of 

polygonal mesenchymal cells and thin walled-blood spaces, some of them filled with blood.   

One week later (3.5 cm CRL/50 dpc), the testicular shape, size, and architectures are 

progressively differentiated. The testes are ovoid in shape (Fig. 6) and start to prepare for 

separation from their site of origin. The increase in testicular size at this age is mainly due to 

proliferation of stroma, immigration of testicular blood vessels from the inner layer of TA, 

differentiation of Leydig cells and partial expansion of the rete testis strands into the gonadal 

inside.  

 
 

 

Fig 6: Embryonic testis of 3.5 cm CRL bovine 

embryo. Superficially, the testis is covered by 

tunica albuginea (TA) and thin layer of coelomic 

epithelium (arrowhead). The testicular 

parenchyma (Tp) comprises large area of the 

gonadal tissue while the rete testis (RT) is mainly 

restricted to the attached border with the 

mesonephros (Ms), H.E. 

 

The surface epithelium (coelomic epithelium) becomes resting upon clearly defined basal 

lamina. TA increases in thickness to about 100-110 µm and begins to differentiate into two 

layers: an outer fibrous layer (tunica fibrosa) with numerous spindle cells (fibroblast-like 

cells) containing elongated nuclei and locate parallel to the long axis of the gonad and inner 

cellular layer with several blood vessels (tunica vasculosa) (Fig. 7). 

In addition to TA, two other testicular areas are clearly recognized at this age: a peripheral 

region consisting of newly developed seminiferous cords, connective tissue, and blood vessels 

(Fig. 7), and a nearly cord-free central mediastinum region. Connective tissue trabeculae that 

originate from the inner cellular layer of the TA and penetrate deeply to join the developing 
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mediastinum testis are also identified. These trabeculae subdivide the testicular cords in the 

testicular periphery and cleave a way for the blood vessels that immigrate from large 

albugineal vessels in a central direction. 

 
 
Fig 7: The testicular surface epithelium 

(asterisks) is a simple cuboidal epithelium and 

rests upon distinct basal lamina. Both surface 

epithelium and tunica albuginea (TA) are shown 

to contain some sporadic primordial germ cells 

(arrowheads). The inner layer of TA contains 

blood vessels while initial testicular cords (Tc) are 

peripherally seen. Bovine fetus with 3.5 cm CRL, 

H.E.  

 

The forming testicular cords are rapidly surrounded by a marked basal lamina and a layer of 

peritubular cells. These cords have the same diameter as in the previous age (Fig. 8). 

Differentiated testicular cords are lined by two types of cell populations: a large number of 

dark polygonal cells with irregular nuclei, pre-Sertoli cells, and a small number of large, light, 

round cells with relatively round nuclei, the PGC (Fig. 8).  

 
 
 
 

Fig 8: Newly differentiated testicular cords are 

surrounded by distinct basal lamina (notched 

arrowheads) and one layer of peritubular cells 

(arrowhead) while are lined by pre-Sertoli 

(triangles) and primordial germ cells (asterisks). 

Bovine fetus with 3.5 cm CRL, H.E.  

 

The bovine pre-Sertoli cells are mainly arranged on the basal lamina of these cords, despite 

some are displaced more centrally by the close packing of cells within the cords particularly 

at the end of the early gestation period whereas the number of pre-Sertoli cells was relatively 

increased (table 11). The pre-Sertoli cells display a polygonal shape with their cytoplasm 

often oriented radially within the cords. Their nuclei are variable in shape and rarely show 
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deep indentations. A nucleolus is often present, and is together with peripheral clumps of 

heterochromatin associated with the nuclear membrane (Fig. 8). PGCs are polygonal with 

light cytoplasm and spherical nuclei (Fig. 8). They are located either at the periphery of cords 

or slightly central. PGCs rarely come in direct contact with the basal lamina of testicular 

cords. Both in the surface epithelium and in the TA, some sporadic PGCs are identified (Fig. 

7). 

The most important finding at this age is the identification of fetal Leydig cells within the 

interstitium. These cells are polygonal with large round nuclei that appear somewhat darker 

than that of pre-Sertoli and germ cells (Fig. 9). These nuclei contain at least 2 nucleoli. The 

cytoplasm of the fetal Leydig cells is mostly acidophilic and contains some lipid droplets 

especially at the end of this stage. Fetal Leydig cells are mainly situated between the testicular 

cords but never seen within the mediastinum.  

 
 

 

 

Fig 9: In addition to the testicular cords (Tc), the 

fetal Leydig cells (asterisks) are easily recognized 

in the testicular interstitium of bovine fetus with 

3.5 cm CRL, H.E.  

 

At this age (3.5 cm CRL/50 dpc), rete testis arranges in solid strands and occupies the 

attached border of the testis with the mesonephros (mesorchial side). This area appears 

generally darker than the remaining testicular parenchyma (Fig. 6) however, due to absence of 

a distinct basal lamina between these strands; it is difficult to separate them from the 

surrounding stromal cells at the level of the light microscope. 

Toward the end of this stage of gestation (10-14 cm CRL/75-80 dpc), the testis has 

significantly increased in size. The surface epithelium is composed of simple cuboidal cells, 

which are progressively flattened during their development. The large round nuclei of these 

cells with their prominent nucleoli fill a large part of the cytoplasm and sometimes bulge 

partially out into the coelomic cavity. The TA showed drastic differentiation at this age and 

has considerably increased in thickness (125-200 µm). The deeper zone of TA contains 

numerous well-developed blood vessels (Fig. 10).  
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Fig 10: The testicular albuginea is differentiated 

into two layers: an outer fibrous (of) and inner 

cellular (ic) including numerous blood vessels. 

The angular form appears to be the predominant 

shape for the peripherally situated testicular cords 

(Tc). Bovine fetus with 10 cm CRL, H.E.  

 

The peripheral area of the testicular parenchyma is divided into two zones. A narrow outer 

zone contains plate-like cords with thick diameter (50-57 µm) and a large inner zone is filled 

with a network of thinner cords (35-40 µm). In the outer region (Fig. 10), the cords are mostly 

convoluted and anastomose with each other (i.e., few cross section are seen whereas the 

angular form in the predominant) while in the central area they are mainly straight as 

indicated by the several cross sections seen in this area (Fig. 11).  

 
 

 

 

Fig 11: Within the gonadal interior, the testicular 

cords (Tc) are straight as indicated by numerous 

cross sections. The testicular interstitium (is) is 

expanded and contains well-constructed blood 

vessels (bv). Bovine fetus with 14 cm CRL, H.E.  

 

As a consequence of the relative expansion in the interstitium, the seminiferous cords are 

progressively separated from each other. The cords/interstitium ratio has clearly shifted in 

favor of the latter (Fig. 11). As mentioned above, the lining cells of the seminiferous cords 

appear comparatively lighter than the interstitium. However, different staining intensities are 

additionally found between pre-Sertoli cells (dark) and prespermatogonia (light) which result 

in molting appearance of the cell populations within the testicular cords. Definitely, the 

average number of the total cells within the testicular cord cross section has considerably 

increased and approached their maximum at 14 cm CRL (80 dpc). The rapid and sudden 
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increase of these cells is associated with the germ cell maximum (table 11) and is mainly 

attributed to mitosis of germ cells which is evident at this stage of testicular development 

(Fig. 12). 

 
Table 11: Some morphometric data of the embryonic bovine testis 

Diameter of 
testicular cord/µm 

Average No of cells/cord cross section Stage of 
development 

Age/
CRL
/cm 

Thickness   
     of  
TA/µm 

Central Peripheral  

Average No of 
Leydig 
cells/0.03 mm2 
of testicular 
tissue 

Sertoli cells Germ cells Total 

3.5 100-110 - 30 18.15 ± 5.53 2.71 ± 0.76 1.4 ±  0.50 3.67 ± 0.98 
10 125-150 35 50 30.50 ± 4.05 10.2 ± 2.91 3.10 ± 1.33 13. 30 ± 3.03 

Early stage 

14 170-200  40 57 39.20 ± 3.77 9.36 ± 1.93 7.05 ± 1.75 16.61 ± 3.26 
18 215-230 40 60 25.30 ± 2.06 11.64 ± 3.10 3.25 ± 0.87 14.50 ± 2.75 
23 260-300 40 60 22.50 ± 2.46 12.21 ± 2.49 3.52 ± 1.69 15.90 ± 1.67 
30 460-500 55 60 19.20 ± 2.44 12.52 ± 1.33 2.75 ± 0.72 15.27 ± .16 
36 625- 650 60 60 18.55 ± 3.94 12.78 ± 1.93 2.76 ±  0.66 15.54 ± 1.90 
40 650-700 55 57 15.60 ± 2.32 12.92 ± 1.53 2. 25 ± 0.46 15.17 ± 1.64 

Mid stage  

57 750-800 53 55 14.60 ± 3.06 12.96 ± 1.57 1.71 ± 0.72 14.67 ± 1.78 
63 820-850 55 55 14.10 ± 3.51 10.85 ± 1.82 1.21 ± 0.42 11. 67 ± 2.74 
80 900-950 50 50 7.00 ± 2.36 11.95 ± 1.55 1.27 ± 0.46  13.18 ± 1.70 

Late stage 

90 1-1.2 mm 50 50 3.38 ± 1.19 11.30 ± 1.26 1.16 ± 0.38 12. 45 ± 0.93 
 

Although the number of the prespermatogonia has significantly increased within the cords, 

the pre-Sertoli cells remain always predominant (Fig. 12, table 11).   

 
 
 

Fig 12: High magnification of the solid testicular 

cords of 14 cm CRL fetus. These are surrounded 

by well defined basal lamina (thin arrow) and 

peritubular cells (thick arrow) and lined by a 

basal row of pre-Sertoli cells (triangles) as well 

as prespermatogonia (notched arrowhead); some 

of them are in mitosis (asterisk). H.E. 

  

Pre-Sertoli cells form a complete row at the periphery of the cords. Generally, these cells are 

irregular in shape and numerous but considerably smaller than the germ cells (Fig. 12). The 

testicular cords are enclosed by a well-developed basal lamina delineating them from the 

surrounding interstitium (Fig. 12). The latter has significantly expanded in this phase due to 

differentiation of mesenchymal cells into Leydig and peritubular cells and is shown to be 

composed mainly of five components: several islets or clusters of polygonal Leydig cells, 1-2 
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layers of peritubular flattened cells surrounding the testicular cords, loose network of 

undifferentiated mesenchymal cells, connective tissue cells, and numerous blood vessels (Fig. 

11, 12). Nevertheless, Leydig cells constitute the largest cell population of these components 

and they reach their maximum at this specific age (Fig. 13, table 11).  

 

Leydig cell developmental curve

0

10

20

30

40

50

3,5 10 14 18 23 30 36 40 57 63 80 90

Age (CRL/cm)

Av
er

ag
e 

No
/0

.0
3 

m
m

²

 
 
 
 
Fig 13: Diagrammatic 

representation of the Leydig 

cell developmental curve. The 

maximum of Leydig cells 

average number within the 

bovine testicular interstitium 

takes place at 14 cm CRL. 

 

Indeed, the arrangement of Leydig cells shows no preferential position to blood capillaries. 

Although the intensely growing rete testis is somewhat centralized within the testicular 

parenchyma, some strands reach the caudal half of the testis. The organization of the rete 

tissue in strands is now clearly visible because they are separated by connective tissue rich in 

blood vessels and fibroblasts and surrounded by a continuous basal lamina (Fig. 14). Leydig 

cells are never seen within this area.  

 
 
Fig 14: The initial connection between the 

testicular cords (Tc) and rete testis (Rt) via ill-

developed straight tubules (st). Notice the 

continuous system of basal lamina (notched 

arrowheads) between the Tc and st. Some germ 

cells (arrows) are clearly seen within the solid st 

while some Rt strands are now canalized. Bovine 

embryo with 10 cm CRL, H.E. 

 

A continuous system of basal lamina joining the testicular cords with rete strands is well 

defined (Fig. 14). This system establishes the first connection between these two testicular 
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components via ill-developed uncanalized straight tubules (tubuli recti). Some Pre-Sertoli 

cells and prespermatogonia are easily identified within this connecting part at this age (Fig. 

14). 

 

4.1.1.2. Mid stage of gestation (18-57 cm CRL/100-187 dpc) 
During this stage of development, the testicular size has greatly increased and the testicular 

architecture becomes more differentiated. The surface epithelium constitutes a thin layer of 

flattened cells. TA is broader and attains 215 to 800 µm at 18 and 57 cm CRL respectively. It 

is moreover clearly separated in an outer tunica fibrosa with many collagen fibers and an 

inner tunica vasculosa with numerous blood vessels of large diameters (Fig. 15).   

 

Fig 15: Testicular overview of 20 cm CRL bovine fetus. 

TA, tunica albuginea; Tp, testicular parenchyma; Rt, rete 

testis, H.E. 

Fig 16: Solid testicular cord is surrounded by basal 

lamina (arrowhead), 2 layers of peritubular cells (arrows) 

and lined by pre-Sertoli (S) and prespermatogonia 

(asterisks). Fetus with 30 cm CRL. H.E 

 

The solid testicular cords are demarcated by a well-developed basal lamina and 1-2 layers of 

peritubular cells, however, their diameter remain unchanged (55-60 µm) (Fig. 16). No 

significant differences are seen between the diameter of peripheral and central cords after the 

age of 23 cm CRL/110 dpc. The lining cells are always molted due to different staining 

intensity between pre-Sertoli cells and prespermatogonia. Prespermatogonia are present either 

as individual cells surrounded by pre-Sertoli cells or as adjacent pairs. Their location in 

relation to the basal lamina is however variable. Despite most prespermatogonia are situated 

in the periphery of the testicular cords (Fig. 16), some are more or less located in the center of 

these cords. Very rarely, prespermatogonia are directly positioned on the basal lamina 

because the cytoplasmic processes of pre-Sertoli cells usually separate them. Unlike 
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prespermatogonia, many pre-Sertoli cells nuclei are located perpendicular to basal lamina 

(Fig. 16). As a consequence of Leydig cells dedifferentiation in this period, the interstitium 

changes significantly. This character of the interstitium is clearly identified at 18 cm CRL/100 

dpc when the average number of fetal Leydig cells has clearly reduced (table 11). In the 

subsequent stages, this feature becomes more prominent and islets of fetal Leydig cells are 

rarely seen. Most of these cells are recognized as solitary cells (Fig. 17, 18). Therefore, 

instead of large Leydig cell clusters, loose networks of undifferentiated mesenchymal cells are 

found (Fig. 17, 18).  

 

Fig 17: Testicular parenchyma of 36 cm CRL bovine 

fetus. The testicular cords (Tc) are widely separated 

due to Leydig cell dedifferentiation and to increase in 

the mesenchymal tissue within the interstitium (is), 

H.E.  

 Fig 18: Leydig cells are present as isolated cells 

(asterisks) between the testicular cords (Tc). There is 

also an increase in the number of undifferentiated 

mesenchymal cell (notched arrowhead). Fetus with 30 

cm CRL, H.E. 

 

Toward the end of this stage, the number of Leydig cells has significantly decreased (table 

11). The interstitium is additionally composed of rather undifferentiated mesenchymal cells 

and the testicular cords become widely separated. Simultaneously with reduction of Leydig 

cells, there is an increase in the fibroblasts that are located at the outer border of the 

peritubular cells. In addition to Leydig cells regression, connection between seminiferous 

cords and rete testis strands takes place at the beginning of this stage. The central rete testis 

strands expand toward the peripheries of the mediastinum testis to approach the thinner 

seminiferous cords (Fig. 19). Here, the two testicular structures come in contact to each other 

and their basal lamina at the attachment points begins to dissolve. Then rete testis cells invade 

the seminiferous cords resulting in a mixed population of germ, pre-Sertoli, and rete testis 

cells (Fig. 20, 21). Finally, germ and pre-Sertoli cells degenerate and the newly formed 

straight tubules are easily recognized (Fig. 22). Now all rete testis strands become canalized 
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while straight tubules still solid (Fig. 19, 20, 21, 22). Pre-Sertoli cells and prespermatogonia 

are only seen within the lining epithelium of these tubules at the smallest ages of this period 

(18-23 cm) and disappear later.  

 

Fig 19: Beginning of connection between rete testis (Rt) 

and testicular cord (Tc). Their basal lamina disintegrate 

(arrow) to enable the invasion of Tc with the Rt cells. 

Fetus with 18 cm CRL, Masson-Goldner ̓s trichrome  

Fig 20: Invaded testicular cords are lined by a mixed 

population of rete testis cells (arrows), pre-Sertoli cells, 

and prespermatogonia (asterisks). Fetus with 18 cm 

CRL, Masson-Goldner ̓s trichrome  

 

   

Fig 21: Higher magnification of an invaded testicular 

cord. Notice the mixed population of pre-Sertoli cells (s), 

prespermatogonia (asterisks), and rete testis epithelium 

(arrowheads). Fetus with 18 cm CRL, Masson-Goldner ̓s 

trichrome  

Fig 22: A well-defined connection between solid 

testicular cords (Tc) and canalized rete testis (Rt) via 

solid straight tubules (st). Fetus with 20 cm CRL, H.E. 

 

 

Although no Leydig cells are seen within the mediastinum, numerous Leydig cells are 

observed between the invaded cords, which support the finding that straight tubules are 

mainly developed from the distal thin series of seminiferous cords (Fig. 23). Nevertheless, 
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when the connection between rete testis and testicular cords is established, these cells 

disappear. 

 
 
 
 
Fig 23: Fetal Leydig cells (Lc) are identified in 

the testicular interstitium within the area 

between the invaded testicular cords or future 

straight tubules (st) and other testicular cords 

(Tc) in this region. Fetus with 18 cm CRL, 

Masson-Goldner ̓s trichrome  

 

 
 
Rete testis channels are lined by simple layer of cuboidal to columnar epithelium with round 

nuclei occupying most of the cytoplasm; however neither pre-Sertoli cells nor 

prespermatogonia are found (Fig. 24). At the end of this stage (57 cm CRL/187 dpc), some 

cells begins to aggregate in the basal portion of the rete testis epithelium to form the short 

intraepithelial crypts characterizing the adult bovine rete testis (Fig. 24).  

 
 
 
 

Fig 24: Rete testis channels of 57 cm CRL 

bovine fetus. Some cells are basally 

aggregated (arrows) to form the future 

intraepithelial crypts. The testicular 

mediastinum (ms) contains numerous spindle-

shaped cells. Masson-Goldner ̓s trichrome. 

 

 

The initial crypts are enclosed by the basal lamina of the rete testis while the latter is 

surrounded by some spindle-shaped cells that may constitute the precursors of the future 

myofibroblasts (Fig. 24). Testicular stroma (mediastinum testis) present between rete testis 

channels contains both numerous spindle shape cells that are later identified as typical 

fibroblasts and frequent blood vessels (Fig. 24).   
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4.1.1.3. Late stage of gestation (63-90 cm CRL/210-285 dpc) 
 Although the testicular size has markedly increased during this period, no specific changes 

except the progressive dedifferentiation of Leydig cells are observed. As in the previous 

stage, the surface epithelium consists of one layer of flattened cells. TA develops into a 

broader band with larger diameter (table 11) and its inner vascular layer contains more 

differentiated blood vessels (arteries and veins in typical structure). The seminiferous cords 

are widely separated from each other by the continuously dedifferentiated interstitium and 

delimited by well definitive basal lamina as well as two layers of peritubular cells (Fig. 25). 

The peripheral cords are generally seen in cross or angular form while in the central area the 

longitudinal form is the predominant. Their diameters still within the range of 50-55 µm 

(table 11). Pre-Sertoli cells develop typical columnar shape while prespermatogonial mitotic 

division has greatly declined resulting in a striking reduction in the average number of germ 

cells per tubular cross section (table 11). The location and arrangement of the both cells 

within the testicular cords are however similar to the previous stage (Fig. 25). The interstitium 

has greatly changed and the connective tissue has considerably increased. Although numerous 

Leydig cells have disappeared, few of them are sporadically recognized. Pycnotic nuclei are 

only seen in very few cases.  

 

Fig 25: Testicular parenchyma of 80 cm CRL bovine 

fetus. The cords are lined by a basal row of pre-Sertoli 

cells (s) and more or less central prespermatogonia 

(asterisks) and are separated by undifferentiated 

mesenchyme. Masson-Goldner ̓s trichrome  

Fig 26: Rete testis of 80 cm CRL bovine fetus. The 

lining epithelium protrudes into the lumen and the 

chordae retis are clearly seen (arrow). Masson-Goldner ̓s 

trichrome 

 

The connecting straight tubules become longer and develop a marked lumen. The rete testis 

channels are irregular and show several anastomosis. The lining epithelium of these channels 

sometimes exhibits partial protrusions into the lumen. The chordae retis, a common feature of 



                                                                                                                                           Results 
                                                                                              

                                                                     82                                                                                                     

the bovine rete testis, are additionally seen toward the end of gestation (Fig. 26). As in the 

mid stage, the mediastinum connective tissue separating the rete channels contains numerous 

blood capillaries and fibroblasts. 

 

4.1.2. Adult testis: morphological overview 

The histological organization of the adult bovine testis was investigated by using both light 

and electron microscope. 

4.1.2.1. Tunica albuginea and lobuli testis  
As in all species so far studied, the parenchyma of the adult bovine testis is surrounded by a 

thick white fibrous capsule of dense irregular connective tissue, tunica albuginea, which is 

covered by the visceral layer of the tunica vaginalis. Using special stains (Weigert ُs elastic 

stain and Masson-Goldner ̓s trichrome), it can be demonstrated that TA is formed 

predominantly of collagen fibers and few elastic fibers. Numerous fibrocytes are also 

recognized within these fibrous components. In contrast to the outer zone of the TA (tunica 

fibrosa) that is compact and shows much fibrous elements, the inner surface (tunica 

vasculosa) is loose, highly vascular connective tissue. The latter is especially prominent in the 

bovine where large blood vessels are running in a tortuous pattern over most of the testicular 

surface. The inner layer of TA is additionally continuous with inconspicuous connective 

tissue trabeculae. As a consequence, adult bovine testis is not divided into clear pyramidal 

compartments, lobuli testis that are observed in the other species. TA is found to enclose 

tangential testicular parenchyma consisting of seminiferous tubules (tubuli seminiferi 

contorti) and interstitial compartments, and central mediastinum testis containing the 

excurrent duct system.  
 

4.1.2.1.1. Tubuli seminiferi contorti 
Most of the testicular parenchyma is made up of the convoluted seminiferous tubules (Tubuli 

seminiferi contorti), where the spermatozoa are formed (Fig. 27). These tubules are basically 

two-ended convoluted loops, with both ends opening into the rete testis via specialized 

terminal segments. The seminiferous tubules of sexually mature bulls are enclosed by a 

distinct lamina propria and are lined by two cell populations, non-proliferating Sertoli cells 

and highly proliferating spermatogenic cells. These structures are discussed in details in the 

following sections. 
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Fig 27: Most of the adult testicular 

parenchyma consists of convoluted 

seminiferous tubules, H.E. 

 

4.1.2.1.1.1. Lamina propria 
Cross section of a bovine seminiferous tubule is about 300 µm in diameter and is separated 

from the surrounding interstitium by a distinct lamina propria. The latter consists of a PAS 

positive basal lamina measuring between 0.5 and 0.8 µm (Fig. 28). It has however no or only 

very weak affinity for Alcian blue both at 1 and 2.5 pH. Subjacent to basal lamina, fine elastic 

fibers (resorcin-fuchsin positive structures) are additionally seen at the outer border of this 

lamina and in between the surrounding myofibroblast cell layers. Abundant cell-coat like 

material reacting positively with Alcian blue fills the interstices between peritubular cells and 

the Alcian-blue negative basal lamina. 

 
 
 
 
 
 
 

Fig 28: Tubular basal lamina (arrowheads) 

shows purple red staining with PAS. 

 

Ultrastructure of the bovine lamina propria confirms the findings of the light microscope and 

provides more details. With EM, basal lamina of the convoluted seminiferous tubules appears 

as smooth surface multilayered structure that occasionally exhibits knob-like protrusions 
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invaginating into the basal portions of spermatogonia and Sertoli cells (Fig. 29a). At the site 

of these projections, the thickness of basal lamina is 1.1-1.3 µm diameters.  

 

 
 

 
Fig 29a: Tubular basal lamina 

(Bl) appears as smooth surface 

multilayered structure that 

occasionally exhibits knob-

like protrusions (asterisks) 

invaginating into the basal 

portions of Sertoli cells (Sc). 

mf are the myofibroblasts 

surrounding the Bl. X 3000  

 
Fig 29b: Tubular lamina 

propria is composed of basal 

lamina (Bl), collagen fibrils 

(Cf), and myofibroblasts (mf). 

The cell periphery of the mf is 

characterized by round or 

pear-shaped micropinocytotic 

vesicles (arrows). X 3000 

 

The basal lamina is surrounded by 3-5 layers of partially overlapping myofibroblasts covered 

on both sides by an inconstant basal lamina. The cytoplasmic matrix of myofibroblasts 

appears appreciably electron-dense and contains few mitochondria and some elongated 

profiles of rER. A peculiar and frequent feature of the cell membrane is round or pear-shaped 

micropinocytotic vesicles, which may contain a fine granular material (Fig. 29b). The nuclei 

of the myofibroblasts are elongated, fusiform, or rod-like and can reach a length of 15-20 µm. 

Collagen fibrils in various arrangements are additionally seen between the basal lamina of the 

seminiferous tubules and myofibroblasts as well as between the myofibroblasts themselves 

(Fig. 29b). However, I was unable to prove the existence of elastic fibres in the bovine lamina 

propria at the ultrastructural level. One to two layers of fibrocytes, collagen fibrils, and 

fibroblasts-like cells form the outermost border of the tubulus. Some blood vessels are also 

found in the lamina propria of some specimens. These vessels are situated in the zone 

between the layers of fibroblasts. 
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4.1.2.1.1.2. Sertoli cells 
Under the light microscope, Sertoli cells are easily identifiable elements of the seminiferous 

epithelium. Adult Sertoli cells are large irregularly formed cells. Their broad bases rest on the 

basal lamina while the remaining cytoplasmic processes extend upward to the tubular lumen. 

Apart from their characteristic cytoplasm, they are characterized by round or oval nuclei 

located in the basal portion near the basal lamina of the seminiferous tubules. With higher 

magnification, these euchromatin-rich nuclei appear often deeply infolded or invaginated and 

contain large central nucleoli (Fig. 30).  

 

 

 
 

 

Fig 30: Overview of the adult seminiferous 

epithelium of bovine testis; spermatogonia 

(Spg), Sertoli cells (Sc), spermatocytes (Spc), 

round spermatids (rSpd), elongated 

spermatids (eSpd), and tubular basal lamina 

(Bl), PAS. 

 

 

Fine structure of bovine Sertoli cells confirmed the irregular outline of the nucleus that 

showed numerous infoldings in its membrane (Fig. 31). Some organelles, such as 

mitochondria, free ribosomes, and cisternae of sER as well as intermediate filaments are 

observed in the indentation of the nucleus. The karyoplasm appears homogenous and contains 

little heterochromatin. The nuclear envelope has a small electron dense layer on the inner 

nuclear membrane. Nucleolus is a particular characteristic structure of the bovine Sertoli cell 

nucleus. It is composed of numerous vesicles of different sizes, tubules, and ribosomes-like 

structures (Fig. 31). Some vesicles contain very low electron dense material, whereas others 

apparently lack these contents. Frequently dark granular condensations are also seen at the 

outer surface of the vesicles. Generally, the position of the nucleolus is central, although some 

nucleolar vesicles are occasionally located close to the inner layer of the nuclear membrane. 

However, tubules are rarely found within this structure. Large invaginations of the nuclear 

envelope appear to be directed towards the nucleolus. 
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Fig 31: Electron micrograph of the nucleus 

(N) of adult Sertoli cell. The nuclear 

membrane is highly infolded. The 

karyoplasm appears homogenous with little 

heterochromatin. The nucleolus is 

composed of vesicles (asterisks), tubules 

(notched arrowhead), and ribosomes-like 

structures. The Sertoli cell cytoplasm 

contains numerous mitochondria (M) and 

approaches the tubular basal lamina (Bl).  

X 7000 

 

The distribution of cytoplasmic organelles within the Sertoli cells shows a polar orientation 

with an abundance of various organelles and inclusions in the basal portion of the cell. The 

mitochondria in the basal part are small and round or oval in shape. They have transversely 

oriented cristae embedded in a relatively dense matrix (Fig. 31). In the apical cytoplasm, 

elongated mitochondria run along the major cell axis in this portion of the cell. The Golgi 

apparatus consists of a number of inconspicuous lamellar profiles, which are frequently 

situated near the nucleus, but some are also found in the apical cytoplasm. The endoplasmic 

reticulum is well developed and most of it is agranular or shows only a few ribosomes. 

Whorls of sER are often encountered in the bulky lateral processes in the basal part of Sertoli 

cells (Fig. 32).  

 
 
 

 

Fig 32: Electron micrograph of adult 

Sertoli cell (Sc). The cytoplasm contains 

several whorls of smooth endoplasmic 

reticulum (sER), some lipid droplets 

(arrowhead), and numerous mitochondria 

(M); some of them are located in the 

nuclear enfolding (arrow). L is a leptotene 

spermatocyte. X 3000  
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In addition, large accumulations of regularly arranged cisternae of sER are seen in those cell 

regions surrounding developing spermatids. These sER aggregations are firstly observed in 

late cap and early acrosomal phases as well as in the maturation phase. Contrary to rER that is 

only found in small amounts in the basal cytoplasm, free ribosomes, and polyribosomes are 

distributed throughout the whole cytoplasm. Dense, membrane-bounded bodies are also 

common in the cytoplasm. They probably represent primary and secondary lysosomes.  

Small numbers of lipid droplets of varying size are particularly seen in the basal cytoplasm 

while glycogen particles are dispersed throughout the cell. Sertoli cell cytoskeleton is shown 

to be well developed. Microtubules are abundant and most of them are located in the main 

trunk. Microfilaments occur throughout the cytoplasm and most of them constitute part of the 

cell contacts. Sertoli cells are known to have specialized cell junctions with other Sertoli cells 

and with germ cells as well. By means of these junctions, the Sertoli cells form a continuous 

layer dividing the seminiferous epithelium into two compartments: a basal one containing 

spermatogonia and preleptotene spermatocytes, and an adluminal one containing more 

differentiated spermatocytes and spermatids. This continuous layer comprises the ultimate 

and tightest part of the blood-testis barrier (Fig. 33).    

 
 

 

 

 

 

Fig 33: Electron microscope 

overview of the Sertoli-Sertoli cell 

(Sc) junctions (arrows). X 3000  

 

The inter-Sertoli cell junctions are extensive occluding (tight) junctions (Fig. 33, 34). These 

are formed by fusion of the outer leaflets of opposing Sertoli cell membranes in the basal 

region of the seminiferous epithelium. Characteristically, bundles of microfilaments 

aggregated into amorphous electron-dense materials are frequently seen in the cytoplasmic 



                                                                                                                                           Results 
                                                                                              

                                                                     88                                                                                                     

areas subjacent to the occluding junctions. Various numbers of ER cisternae (at least one) are 

also observed in these areas; however, actual whorls of sER are only recognized at some 

distances from the cisternae (Fig. 34).   

 
 
 
 
 

Fig 34: Higher magnification of Sertoli-

Sertoli cell junctions (arrowheads). These 

are formed by fusion of the outer leaflets of 

opposing Sertoli cell membranes. Some 

cisternae of the sER are also observed in 

these areas (asterisks); however, actual 

whorls of sER are only seen at some 

distances from the cisternae. X 12000 

 
Unlike the inter-Sertoli junctions, different types of contacts occur between Sertoli and germ 

cells. These include desmosome-like junctions, Sertoli ectoplasmic specializations, and 

tubulobulbar complexes (Fig. 35). Desmosome-like junctions are mainly seen as 

circumscribed contact areas between Sertoli cells and spermatogonia, spermatocytes and 

round spermatids. However and conversely to desmosomes, no line of dense material parallel 

to the cell membrane can be detected in the extracellular space.  

 

 
Fig 35: Electron micrograph of Sertoli cell-

spermatids junctions. Sertoli ectoplasmic 

specializations (arrowheads) are developed 

in that part of Sertoli cells facing elongation 

and maturation-phase spermatids. 

Tubulobulbar complexes (arrows) are deep 

extension of the spermatid plasmalemma 

into corresponding invaginations in the 

Sertoli cells. X 3000  
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Sertoli ectoplasmic specializations are asymmetric junctional specializations, which exist only 

on the Sertoli cell side and consist of filaments and some cisternae of the sER. They are 

particularly well developed in that part of Sertoli cells facing elongation and maturation-phase 

spermatids and disintegrate at the time of spermiation (Fig. 35). Another peculiar cell contact 

is made with spermatids of the late maturation phase. These so called tubulobulbar complexes 

are deep extensions of the spermatid plasmalemma into corresponding invaginations in the 

Sertoli cells (Fig. 35). 

 

4.1.2.1.1.3. Spermatogenic cells 
In addition to Sertoli cells, tubuli seminiferi contorti are lined by germ cells in different 

phases of development. The exact identification of these cells under the light microscope is 

difficult with the conventional stains, but PAS staining, nuclei morphology and cell 

topography provide some help. A better distinction between the different generations of 

spermatogenic cells is however possible in semithin sections. Adult bovine germ cells are 

present in four morphologically different groups, i.e., spermatogonia, spermatocytes, 

spermatids, and spermatozoa (Fig. 30). Within the cell populations of the first three groups, 

different cell types are additionally recognized. Spermatogonia generally occupy the basal 

compartment while the spermatocytes and young spermatids are found in the mid and luminal 

portions of the tubule respectively (Fig. 30).  

 

Spermatogonial cell population 

Bovine spermatogonia multiply mitotically resulting in A-, I-(intermediate), and B-

spermatogonia. A-spermatogonia (∼20 µm) have the largest nuclei of spermatogonia (∼12 

µm) and share an extensive contact area with the basal lamina. They possess spherical or 

elongated nuclei with long axis parallel to the seminiferous tubule basal lamina (Fig. 36).  

The karyoplasm is homogenous with very little heterochromatin and contain one or more 

large prominent central or slightly eccentric reticulate nucleoli. The Golgi apparatus is 

inconspicuous and endoplasmic reticulum, most of which is agranular, is scarce. Many 

polymorphous mitochondria with lamellar cristae are randomly distributed in the cytoplasm. 

Spermatogonia intermediate types (Spg-I) resemble type A but are smaller (∼16 µm). 

Consequently, their nuclei and contact areas with the basal lamina are small. B-spermatogonia 

are the smallest spermatogonia (∼12 µm). They have spherical central nuclei with one or more 

nucleoli in a marginal position. Therefore, these nuclei appear with conventional 

haematoxylin and eosin stain darker than that of other spermatogonia. Although the contact 



                                                                                                                                           Results 
                                                                                              

                                                                     90                                                                                                     

area of this cell with the tubular basal lamina is smaller than in type A, the organelles content 

of both cell types is similar. 

 

 
 
 

Fig 36: Electron micrograph of type A 

spermatogonium shows large area of contact 

with the basal lamina (Bl), large nucleus (N) 

with a prominent nucleolus and inconspicuous 

cytoplasmic organelles. X 3000   

 

 
Spermatocytes: 

Primary spermatocytes, the progenies of B-spermatogonia, are primarily located in the 

intermediate portion of the seminiferous epithelium. They are easily recognized by light 

microscope because they are the largest spermatogenic cells in the tubular epithelium (Fig. 

30). However, despite the large round heterochromatin-rich nuclei of spermatocytes, it is 

difficult to differentiate between B-spermatogonia and the first generation of spermatocytes, 

preleptotene primary spermatocytes, with the conventional stains under light microscope. The 

latter, identified as spherical cells with nuclei containing thin threads of darkly stained 

chromatin, are observed towards the base but not in contact with the basal lamina. The 

subsequent stages of the prophase of first mitotic division (leptotene, zygotene, pachytene, 

diplotene, and diakinesis) are recognized by light microscope using either conventional stains 

or semithin sections. 

 

Leptotene spermatocytes are larger than preleptotene and have a somewhat pale staining 

cytoplasm surrounding nuclei with deeply stained threads of chromatin. In EM, the nuclear 

membrane is slightly undulated and the heterochromatin begins to be displaced to one side of 

the nucleus. The Golgi apparatus is small and endoplasmic reticulum is scarce. More free 

ribosomes and polyribosomes are present than in spermatogonia. Ovoid mitochondria are 

found single or in cluster (Fig. 37).  
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Fig 37:  Primary spermatocyte in leptotene stage (L). 

Ovoid mitochondria (M) are found singly or in 

clusters and chromosome condensation has just 

started. Bl is the basal lamina. X 3000 

 

In zygotene spermatocytes, both nucleus and cytoplasm have increased in size. With LM, the 

displacement of heterochromatin into one side of the nucleus sometimes gives it a half moon 

appearance. Ultrastructurally, areas of more condensed chromatin become apparent and 

synaptonemal complexes appear between the homologous chromosomes (Fig. 38). 

 

 

 
 
Fig 38: Primary spermatocyte in the zygotene stage. 

Chromosome condensation has proceeded and the 

individual chromosomes are more apparent. In this 

stage, synaptonemal complexes (arrows) appear 

between the homologous chromosomes. Groups of 

mitochondria (M) are connected by dense 

intermitochondrial substances (notched arrowhead). 

Some cisternae of rER are present between the 

mitochondria (arrowhead). X 4400 

 

The Golgi apparatus is still fairly small while the rER increases further and may penetrate 

with narrow cisternae between clustered mitochondria (Fig. 38). Characteristically, groups of 

mitochondria approach each other and dense intermitochondrial substance appears. 

During pachytene phase, primary spermatocytes are generally best identified in all 

microscopic preparations. These cells are large with equally large nuclei and prominent 

nucleoli. Some areas of condensed chromatin are also seen within the nuclei of these cells.  
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Fig 39: Late primary pachytene spermatocytes. 

The cell is large and the nucleus is prominent. 

The chromosomes are further condensed and the 

synaptonemal complexes (arrows) are easily 

recognized. Under the nuclear membrane, the 

sex vesicle (asterisk) appears as clear area.  In 

the cytoplasm, the mitochondria are gathered in 

groups (notched arrowhead), a lot of rER 

occupies marginal positions and sER started to 

expand.  

X 3000 

 

Since chromosomes have become more contracted, areas of condensed chromatin are seen in 

the karyoplasm. In these areas, synaptonemal complexes are often encountered. In addition, 

the sex vesicle appears as a light zone just beneath the nuclear envelope (Fig. 39). Small 

amounts of heterochromatin accumulate at some places of the inner nuclear membrane where 

the reticular nucleolus is also situated. Compared to the zygotene stage, the cytoplasm 

contains numerous organelles. The Golgi apparatus is well developed and considerable 

flattened cisternae of rER elongate and form stacks of several layers in the cellular periphery 

(Fig. 39). In the remainder of the cytoplasm, sER is observed as irregularly arranged tubules 

with a cloudy content. Mitochondria are characterized by dilated cristae and are gathered in 

rosette-like groups holding together by dense intermitochondrial substance (Fig. 39).     

Diplotene spermatocytes have deeply stained cords of chromatin some of which marginated 

on the nucleolar membrane. It differs from pachytene in few respects only. The cell and the 

nucleus are larger and synaptonemal complexes no longer persist. In the cytoplasm, some of 

the intermitochondrial substance separates from the mitochondria and appears free in the 

cytoplasm. In several diplotene spermatocytes multivesicular bodies occur. 

During the prophase of the first meiotic division, the spermatocytes increase considerably in 

size. With the end of this division, short-lived cells, the secondary spermatocytes, are 

produced. These cells are round cells with intermediate size between diplotene spermatocytes 

and round spermatids and occur solely in phase 4 of the seminiferous epithelial cycle. The 

nucleus of the secondary spermatocyte has a relatively uniform distribution of chromatin with 

a thin rim of marginal heterochromatin. Just beneath the nuclear envelope, patches of very 

dense heterochromatin are also observed. Characteristically, the nuclear membrane of 

secondary spermatocytes is not smooth, but exhibits a number of slight bulges. The abundant 
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ER is no longer organized in stacks but in reticular partially dilated profiles. Mitochondria 

still display dilated cristae and are randomly distributed. The former intermitochondrial 

substance coalesces to form an irregular dense body in the cytoplasm. The spherical Golgi 

complex resembles that of primary spermatocytes but exhibits smaller dimensions (Fig. 40). 

 
 
Fig 40: In secondary spermatocytes, the 

nucleus appear homogenous and area of 

marginal heterochromatin are present (arrows). 

Most mitochondria (notched arrowheads) have 

separated and lie isolated but retain their 

dilated cristae. The intermitochondrial 

substance coalesced to form irregular dense 

body within the cytoplasm (arrowhead). The 

Golgi complex (G) is also recognized and the 

rER is no longer organized in stacks but in 

reticular partially dilated profiles. X 4400 

 

Spermatids 

After the second meiotic division, secondary spermatocytes develop into round spermatids. 

These latter cells (round spermatids) are exclusively located in the adluminal portion of the 

seminiferous epithelium and undergo a complex series of cellular transformation 

(spermiogenesis) that finally leads to formation of mature elongated spermatids. Grossly, this 

process takes place via four well-defined phases termed Golgi, cap, acrosomal, and 

maturation phase. Under light microscope, the first and second phases are characterized by 

spherical nuclei whereas the third and fourth phases have elongated nuclei (Fig. 30).  

During the Golgi phase, the cytoplasm of the newly formed spermatids exhibits a barely 

stained irregular zone (Golgi vesicles) containing several PAS reactive particles of various 

sizes, the proacrosomic granules, which locate close to the nucleus (Fig. 41). Later on, these 

granules coalesce to form a single structure, the acrosomic granule. The spermatid nucleus is 

nearly spherical and occupies a central position.  

Fine structure of Golgi phase spermatid supports these findings. The nucleus has evenly 

distributed chromatin and a small but distinct nucleolus. Occasionally a heterochromatic body 

is seen beneath the nuclear envelope. The leaflets of the nuclear envelope are widely 

separated except in the area facing the forming acrosome. Characteristically, the spermatid 

cytoplasm contains a prominent Golgi apparatus comprising several dictyosomes. The length 
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of the cisternae within a dictyosome increases markedly from the forming to the mature side. 

Numerous vesicles of varying size are additionally seen as being migrated from Golgi 

apparatus toward the nucleus. On their way, they increase in size due to their coalescence and 

form one large vacuole (acrosomal vacuole) containing electron-lucent material. This vacuole 

is firstly attached to the nucleus and later gradually flattens and spreads over the nucleus 

where its content concentrates to form the comparatively electron-dense acrosomal granule. 

 

 
 

 

Fig 41: Golgi-phase spermatids. Their 

cytoplasm contains several PAS positive 

particles (proacrosomic granules) which are 

located close to their round nuclei 

(arrowheads).  

 

Simultaneously with the gradual development of the acrosome, the centrioles are located near 

the plasmalemma in the Golgi region. From the distal centriole, the axoneme starts to develop 

and a plate of electron dense material appears over the proximal centriole. The centrioles 

begin to move into the cytoplasm and the plasmalemma, on the cytoplasmic side of which the 

annulus appears, invaginates to form a cytoplasmic canal. In the vicinity of the centrioles the 

chromatoid body and a group of vesicles are located. The cytoplasm of Golgi phase spermatid 

also contains randomly scattered mitochondria with dilated cristae and numerous profiles of 

sER.      

In the subsequent stage, cap phase, (Fig. 42, 43) the acrosomic vacuole increases in size and 

flatten slightly at the surface of the nucleus. Then, it expands over the nuclear surface giving 

rise to a membranous structure, the head cap. The Golgi apparatus appears active and other 

organelles are similar to those in Golgi phase spermatids (Fig. 42) 

During the next steps, the head cap enlarges and covers a third and finally a half of the nuclear 

surface. The acrosomal granule seems to be more electron-dense compared to the lateral parts 

of the head-cap (Fig. 43).  
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Fig 42: Early cap phase spermatids showing the 

presence of head cap (hc). Some vesicles 

(arrows) are still budding from the Golgi 

complex (G). X 4400 

 
 

 
 
 

Fig 43: Electron micrograph of late cap phase 

spermatids. The nucleus begins to elongate, the 

head cap (hc) covers more than half of the 

nucleus and the acrosomal granule (ag) is 

enlarged. Some sER have begun to aggregate 

near the developing acrosome while the 

proximal (pc) and distal centrioles (dc) became 

adjacent to each other. X 7000 

 

At the end of the cap phase, an aggregation of sER usually in the form of a close meshed 

network of anastomosing tubules is observed in the cytoplasm of the neighboring Sertoli cells 

that immediately surrounds the developing acrosomes (Fig. 43).  

In the transition between cap and acrosome phase, the centrioles with their associated 

structures approach and make contact with the nucleus at the pole opposite to the acrosomal 

granule (Fig. 44).  

As the acrosome phase starts, the acrosomic granule and head cap of spermatids are oriented 

toward the basal lamina. This is accompanied by a displacement of nucleus and cytoplasm 

toward the cell membrane. Finally, the acrosomic granule and head cap bulge on the cell 

surface facing outside of the tubule. Meanwhile, the acrosomal granule increase slightly in 

volume and protrude at the tip of the nucleus (Fig. 44). Subsequently, both the nucleus and 
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the acrosome are elongated whereas the latter begins to insert deeply in the Sertoli cell 

cytoplasm. 

 
 

Fig 44: Very early acrosome phase spermatids. The 

nucleus has further elongated. Proximal (pc) and distal 

centriole (dc) are well embedded in the nuclear 

implantation fossa (i). On the other side of the nucleus, 

the acrosomal granule (ag) and head cap (hc) is always 

seen. Within the cytoplasm of spermatid, mitochondria 

(M) and multivesicular bodies (mv) are recognized. A 

whorl of sER is present in the cytoplasm of Sertoli 

cell. X 4400    

 

The process of nuclear elongation is considerably complex and associated with gradual 

chromatin condensation. During the initial elongation, the chromatin pattern remains 

unchanged but later it becomes evenly distributed in form of thin threads (Fig. 45). The 

acrosome also undergoes several obvious rearrangements. The acrosome granule becomes 

more projecting and the contents of the rest of acrosome are more electron dense. As the 

elongation and flattening proceed, the chromatin threads are coarser and towards the end of 

this phase, the condensation is almost complete. Condensation starts in the peripheral part of 

the nucleus that is covered by the acrosome but spreads very rapidly throughout the nucleus. 

Definitely, the nuclear envelope does not follow the contour of the condensed chromatin and 

a zone of low electron density appears between the chromatin and the nuclear envelope in the 

postacrosomal region at the nucleus. This redundant nuclear envelope projects caudally as 

pockets (Fig. 45).  

 
 
 

Fig 45: Electron micrograph of acrosome 

phase spermatid during the initial steps of 

elongation. The chromatin is evenly distributed 

in form of thin threads. The redundant nuclear 

envelope projects caudally as pockets (p). The 

microtubules manchette (mm) extends from the 

perinuclear ring (pnr) and comes distally into 

contact with numerous vesicles (v). X 7000  
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Remarkably, the manchette, a transient cellular structure composed of laterally associated 

microtubules (Fig. 45), appears immediately prior to the onset of chromatin condensation. 

This structure encloses the caudal part of the nucleus and has its anterior insertion in the dense 

material of the perinuclear ring from which it extends for some distance into the postnuclear 

cytoplasm. The perinuclear ring is an invagination of the plasmalemma just behind the 

acrosome (Fig. 45). The manchette appears to slide distally during the nuclear elongation. In 

the remaining cytoplasm, the organelles are randomly distributed. Numerous small vacuoles 

are found near the posterior end of the manchette (Fig. 45).  

During the transition between acrosome and maturation phase (Fig. 46), the perinuclear ring 

starts its migration towards the posterior pole of the nucleus and subsequently disappears 

together with the microtubules of the manchette.  

 

 

 

 

Fig 46: Transition between acrosome and 

maturation phase. Note the asymmetric tongue-

like protrusion of the acrosome (arrowhead). 

The perinuclear ring (pnr) migrates towards the 

posterior pole of the nucleus, the redundant 

nuclear envelope forms very small pockets (p), 

and the microtubules manchette (mm) begins 

to disappear. X  7000  

 

If not already completed, the final condensation of the chromatin takes place. As the 

perinuclear ring migrates, the postacrosomal sheath is formed and the underneath nuclear 

envelope becomes closely apposed to the chromatin. The bulbous swelling of the anterior part 

of the acrosome partly retracts, leaving an asymmetric tongue-like projection (Fig. 46). 

During the maturation phase, the spermatids complete their evolution into spermatozoa. The 

acrosome flattens at the apex of the head cap and the PAS reactivity of both acrosome and 

head cap decreases progressively. With EM, the asymmetric tongue-like projection is not 

evident and redundant nuclear envelope is less conspicuous while the nucleus gets the typical 

flattened paddle-shaped form characterizing the bovine spermatozoon (Fig. 47).   

   



                                                                                                                                           Results 
                                                                                              

                                                                     98                                                                                                     

 
 

 

Fig 47: Maturation phase 

spermatid. It is embedded in the 

apical Sertoli cell cytoplasm and 

surrounded by a layer of fine 

filaments and subsurface cisterna of 

sER (ectoplasmic specialization). 

The arrowheads point to 

tubulobulbar complexes. (X 7000) 

 

The connection between the acrosome and the spoon-shaped anterior process becomes more 

and more attenuated (Fig. 47). In the Sertoli cell cytoplasm adjacent to the acrosome, a layer 

with bundles of fine filaments followed by a single subsurface cisterna of sER is easily 

identifiable (this layer form what is called ectoplasmic specialization). Later in this phase, the 

developing tail of the bovine spermatozoon is additionally well organized and can be easily 

divided from proximal to distal into neck, middle piece, principle piece, and end piece. 

Generally, there are significant differences in the internal structure of these four segments. 

Toward the end of this phase, the spermatids have only little contact with the Sertoli cells and 

they are subsequently released into the lumen of the seminiferous tubule. 

 

4.1.2.1.1.4. Seminiferous epithelium cycle 
Stages of the seminiferous epithelium cycle are classified using changes in the germ cell 

nuclei as well as location and shape of spermatids. According to this method, eight stages are 

recognized in the seminiferous epithelium of bovine (Rüsse and Sinowatz, 1991; Wrobel, 

1998). However, of the eight stages identified in this study, stage 6 and 7 are considered as a 

slight morphological modification of stage 5. As a result, they are combined into one main 

stage, stage 5-7. Consequently, the bovine seminiferous cycle is condensed into 6 main 

stages. The cycle begins with accomplished spermiation (stage 1) and ends with the 

positioning of maturation phase spermatids at the Sertoli cell apex ready for release (stage 8). 

The accompanying spermatogonia and spermatocytes are identified by their morphology and 

position in the epithelium as mentioned above. The six stages are described in details as 

following: 
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Stage 1: This stage is characterized by the absence of maturation phase spermatids on the 

Sertoli cell apices. Consequently, only one generation of spermatids are observed in the early 

stage tubules (stages 1-4). The round cap phase spermatids locate nearest to the lumen 

followed basally by two generations of primary spermatocytes (spc), late pachytenes, and 

young preleptotenes (Fig. 48). 

 

Stage 2: During this phase, seminiferous epithelium shows flattening and elongation of both 

spermatids and their darkly stained nuclei. These spermatids have distinctly begun to enter the 

acrosomal phase. Pachytene spermatocytes are as large as in stage 1 with equally large nuclei 

whereas leptotene spermatocytes are transformed into zygotene spermatocytes (Fig. 49). 

 

Fig 48: Stage I is characterized by one generation of 

round spermatids (arrowhead), pachytene (p) and  

preleptotene(pl) spc, H.E. 

Fig 49: In stage II, the nuclei of round spermatid is 

elongated (arrowhead). Pachytene (p) and zygotene (Z) 

spc are also identified, H.E. 

 

Stage 3: This stage of the cycle is markedly characterized by further flattening and 

elongation of spermatids, which are arranged in bundles in close association with the apical 

portion of the Sertoli cells (Fig. 50). The spermatid nucleus assumes the shape of the sperm 

head and although nuclear condensation is complete, tail formation is advanced but 

incomplete. Pachytene spermatocytes are replaced by diplotene spermatocytes while a second 

generation of spermatocytes in zygotene stage is located in the basal region. 

 
Stage 4: In this stage, the first and second maturation divisions take place (Fig. 51). The 

nuclei of the late acrosomal and early maturation phase spermatids have, by this time, 

undergone advanced condensation. In addition to bundles of maturing spermatids and 
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zygotene spermatocytes, diplotene spermatocytes, secondary spermatocytes, or spherical 

spermatids are seen. 

 

Fig 50: In stage III, the elongating spermatids are 

arranged in bundles (arrows) and pachytene spc are 

replaced by diplotene (d) spc. In the basal compartment, 

zygotene spc are additionally seen, H.E. 

Fig 51: Stage IV is particularly characterized by the 

presence of second meiotic division (MII) and secondary 

spermatocytes (SpII). Zygotene spc (Z) are also 

identified , H.E. 

 

Stage 5-7: In this stage, the association of germ cells consists of spermatogonia, only one 

generation of spermatocytes (pachytene spermatocytes), and two generations of spermatids 

(round spermatids in Golgi phase and elongated spermatids in maturation phase) (Fig. 52). 

Pachytene spermatocytes have shifted basally due to presence of large cell populations of 

round and elongated spermatids. The round spermatids are accumulated along the Sertoli cells 

and arranged in vertical columns of 3-4 cells, which are in the depth of columns are often 

separated by interconnecting Sertoli cells.  

  

Stage 8:  The last stage of the cycle is characterized by apical migration and close 

attachment of late maturation phase spermatids accompanied by adluminal retention of 

residual bodies with large dark staining inclusions (Fig. 53). This spermiation is also 

associated with apical shifting of pachytene spermatocytes. The remaining cells within the 

tubular epithelium are spherical spermatids (in changing from Golgi to cap phase) and two 

generation of primary spermatocytes (older pachytenes and younger preleptotenes). 
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Fig 52: In Stage V-VII, two generations of spermatids 

are observed; elongated (arrow) and round (arrowhead), 

while only one generation of spc (pachytene, p) is 

basally located, H.E. 

Fig 53: In Stage VIII, the spermiation begins and the 

residual bodies (arrowheads) are recognized. 

Pachytene spc (p) are shifted again to the mid portion 

of the seminiferous epithelium, H.E.  

 
 

4.1.2.1.2. Intertubular compartment 
The interstitial or intertubular tissue of adult bovine testis is a highly organized testicular 

structure. It consists either of narrow strands lodged between two adjacent seminiferous 

tubules or large tri-and quadrangular interstices between three to four tubules (Fig. 54). The 

differences between these two interstitial forms are mainly due to their constituents as the 

former is composed only of blood capillaries, occasional Leydig cells, and some connective 

tissue fibers and cells while the latter contains large vessels (blood and lymph) and numerous 

Leydig cells as well. Bovine Leydig cells occur in cords or clusters of varying size that appear 

to be random in their distribution, some being perivascular, others unrelated to vessels and 

still other closely associated with the lamina propria of the tubules.  

 

 

 

 

Fig 54: Organization of the interstitium of adult 

bovine testis. The lymph vessel (Lv) is centrally 

located while the blood vessels (bv) are 

peripherally situated and some of them come in 

contact with the tubular lamina propria. Some 

Leydig cells (notched arrowhead) are present in the 

vicinity of Lv, Masson-Goldner ̓s trichrome. 
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Morphologically, Leydig cells are large round cells with spherical nuclei containing a small 

amount of peripherally disposed heterochromatin and one or two prominent nucleoli. Their 

cytoplasm is acidophilic in routine preparation and contains a number of empty vacuoles 

where lipid droplets were extracted during tissue processing. Ultrastructurally, the nucleus of 

bovine Leydig cells is round or oval in shape while the cytoplasmic matrix is of moderate 

density and contains some free ribosomes and polyribosomes. Small vesicles are additionally 

seen in the cell periphery. Although, sER and rER are predominant constituent of the Leydig 

cell cytoplasm, rER is present in relatively small quantities (Fig. 55). However, ribosome 

associated ER is additionally recognized. This either consists of sER profiles bearing single 

ribosomes or short strands of rER that are interposed in the course of the sER. In many cells, a 

highly organized configuration of the sER is found. Here the ER occupies extensive areas of 

the peripheral cellular regions in the form of concentrically arranged narrow cisternae. The 

mitochondria are randomly distributed and the individual mitochondrion is round to oval in 

shape (Fig. 55). The mitochondrial matrix is relatively dense and may contain conspicuous 

intramitochondrial granules. Moreover, a large number of mitochondria contains single or 

multiple crystalloid structures. Generally, the Golgi apparatus of bovine Leydig cell is not 

extensive and consists of flattened saccules and small vesicles. The amount of lipid droplets 

varies but is never high. The adjacent Leydig cells within cords and clusters are joined by gap 

junctions. 

 
 
 
 
 
 

Fig 55: Electron micrograph of adult bovine 

Leydig cell shows numerous mitochondria (M) 

and sER. X 7000 

 

As a rule, prominent lymphatic vessels are centrally located in the intertubular area (Fig. 54). 

Generally, one of these vessels is ever seen in each angular interspace but in some of the 

larger spaces, there may be two or three. The wall of the intertubular lymph vessels is only 

composed of uninterrupted endothelial lining whereas no typical basal lamina or associated 
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musculature is being seen. Bovine interstitium also contains blood vessels that are often 

peripheral and may be firmly attached to the lamina propria of the seminiferous tubules (Fig. 

54). In addition to Leydig cells as well as blood and lymph vessels, special stains (Masson-

Goldner ̓s trichrome and Weigert ̓s elastic) revealed the presence of some collagen and elastic 

fibrils within the interstitium. The latter are principally surrounding the seminiferous tubules 

while the former are abundant between the cords and clusters of Leydig cells. 

Immunohistochemically, several immune cells (macrophages and lymphocytes) are also 

identified within the intertubular stroma (described later). However, no cells of this 

compartment exhibit staining affinity for either Alcian or toluidine blue stain which may be 

indicatives for the absence of mast cells at least within the adult bovine interstitium. 

 

4.1.2.1.5. Mediastinum testis 
Mediastinum testis is a connective tissue zone occupying the central region of the bovine 

testis and is laterally and caudally surrounded by testicular parenchyma. In addition to the 

clearly defined contractile-elastic elements (myofibroblasts and elastin), bovine mediastinum 

contains rete testis channels, large blood vessels and spacious lymph vessels. However, no 

Leydig cells are seen in the mediastinal stroma. Occasionally straight tubules or at least their 

distal part are seen at the peripheries of the mediastinum which adjacent to the parenchyma.  

Blood vessels of the mediastinum originate from the large vessels of the tunica vasculosa of 

tunica albuginea where they turn into highly convoluted coils flanking the rete testis. Most of 

these blood vessels are associated with considerable number of toluidine blue positive cells. 

Numerous lymph vessels are located within the mediastinum, often in close contact to the rete 

channels. The wall of these vessels comprises a flattened endothelium and a discontinuous 

basal lamina whereas no musculature is seen. Within the mediastinal stroma, numerous 

immune cells especially macrophages are additionally found (described in the 

immunohistochemical section). 
 

4.1.2.1.6. Intratesticular excurrent duct system 
The excurrent duct system of the adult bovine testis consists of terminal segment of the 

convoluted seminiferous tubules, straight tubules, and rete testis. The terminal segment is a 

short transitional zone connects between seminiferous tubules and tubuli recti and is lined by 

cells designated as modified Sertoli cells (Fig. 56, 57). On the basis of regional variation in its 

light microscopic appearance, each terminal segment may be subdivided into a proximal 

(transitional) region, middle portion, and distal part (terminal plug) (Fig. 56).  
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Fig 56: Overview of the bovine terminal segment. The 

convoluted seminiferous tubule (SE) is known to connect 

with straight tubule (notched arrowheads) via modified 

terminal segment. The latter consists of transitional zone 

(tz), middle region (mr), and terminal plug (tp), H.E 

Fig 57: Middle region (mr) and terminal plug (tp) are 

lined mainly by modified Sertoli cells (arrowheads). The 

tp protruded for some distance into the proximal cup-

shape region of the straight tubule (st). The latter is lined 

by simple cuboidal epithelium (notched arrowheads), 

H.E   

 

Indeed, a gradual loss of the spermatogenic cells in a proximo-distal direction is observed 

through the three regions of these segments. In the transitional zone, spermatozoa and 

spermatids disappear first, followed by a reduction in the number of spermatocytes whereas 

the population of spermatogonia remains relatively constant. In this area, the tubular diameter 

decreases from about 250 µm to approximately 150 µm. The supporting cells of the 

transitional region are typical Sertoli cells which are distinguished by a round or oval nuclei 

situated basal to the level of primary spermatocytes. In the middle zone, early spermatogenic 

cells (spermatogonia and primary spermatocytes) are rarely seen (Fig. 57). Isolated 

germinative cells in all stages of spermatogenic development, however, are regularly observed 

within the lumen of this tubular region. Modified Sertoli cells in this area contain large clear 

vacuoles of varying shape and size separated by narrow strands of cytoplasm (Fig. 56, 57). 

The distal portion of the terminal segment forms what is called terminal plug that protrudes 

into the cup-shaped beginning of a tubulus rectus (Fig. 56, 57). All the modified Sertoli cells 

lining the distal zone incline distally and their apical cytoplasm together constitutes the 

terminal plug. Large vacuoles are also apparent in the supranuclear cytoplasm of some of the 

cells contributing to the plug. Nuclei are seen at two levels within the terminal plug; most of 

them are basal while others are located at a higher level of the cells including the club-shaped 

apices (Fig. 57). The central tubular lumen of the terminal plug narrows gradually whereas the 

club-shaped apices of opposite supporting cells coming in close proximity. As a consequence, 

at the tip of the terminal segment a central lumen cannot be identified light microscopically 
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with certainty (Fig. 57). Several small lumina are however seen by electron microscope. 

Bovine terminal segment is markedly surrounded by a vascular plexus in a sleeve-like 

manner. This plexus composed of arterioles, capillaries, venules, and small lymph vessels 

(Fig. 58). In the intravascular stroma and the area surrounding the plexus less collagen 

material and more cellular elements are observed than found in the rest of the testicular 

stroma. Fibroblasts and many free cells such as lymphocytes, monocytes, and plasma cells 

constitute this cellular aggregation.  

In my study, the term tubulus rectus (straight tubule) is restricted to that region which 

connects the terminal segment of the seminiferous tubules to rete testis channels. The tubulus 

rectus of adult bovine testis is composed of three morphologically different regions: proximal 

cup-shaped region (Fig. 57), middle narrow stalk (Fig. 58), and distal festooned portion (Fig. 

59). 

 

Fig 58: Middle narrow stalk (ms) of the bovine straight 

tubule showing smooth lumen surface and lined by 

single layer of cuboidal cells. The vascular plexus 

(notched arrowhead) is seen in adjacent to the terminal 

segment (ts), H.E. 

Fig 59: Distal festooned portion (dp) of the bovine 

straight tubule with its folded epithelium (asterisks) and 

uneven lumen, H.E. 

 

The proximal cup-shaped region is lined with a single layer of flat to low cuboidal cells (Fig. 

57). Tubuli recti, when seen in cross section at this part, contain a central cellular mass of the 

apical portions of the terminal plug separated by a narrow space from the lining epithelium of 

the straight tubule. Similarly, the narrow stalk is lined by a single layer of low to high 

cuboidal cells (Fig. 58). Characteristically, both proximal and middle regions of the straight 

tubules are shown to have a smooth lumen surface. Conversely, the remainder of these tubules 

(distal region) has a peculiar appearance. This area is distinguished by a folded epithelium, 
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giving the lumen a characteristic festooned form with a considerable reduction of the lumen 

(Fig. 59). This folded region is also lined by monolayered cuboidal epithelium and opens into 

a short lateral funnel-sized rete extension of varying width. Generally, the course of the tubuli 

recti is straight and approximately at a right angle to the long axis of the mediastinum, 

however, in some cases the course shows a sharp bending. In electron micrographs, the cells 

of the proximal region contain few organelles. Mitochondria are small in size and Golgi 

apparatus is inconspicuous. A few long cisternae of rER are also seen. The free border of the 

cells shows short microvilli while the elongated or round nuclei occupy a central position. In 

the middle narrow part, the mitochondria has tendency to form basal and/or adluminal 

aggregations and the Golgi apparatus is well developed. Numerous coated vesicles are 

observed in the vicinity of the Golgi apparatus and in the upper half of the cell. Many long 

cisternae of rER, free ribosomes, multivesicular bodies, lipid droplets, microtubules, and 

microfilaments are found as well. The luminal border shows microvilli, which are sometimes 

branched. In the festooned region, the cells are columnar and their nuclei are elongated and 

situated towards the lumen. A few cuboidal cells with round nuclei are observed near the 

basal lamina. Microfilaments and microtubules are quite abundant particularly in the basal 

part of the cell and around the nucleus. Many dark structures, resembling lysosomes, are 

common in this region. The epithelial lining of the tubuli recti is actively phagocytic. This is 

shown by the presence of various parts of spermatozoa and degenerated material in the 

cytoplasm.   

The last member of the bovine excurrent duct system, the rete testis, is a complicated 

centrally positioned meshwork of intercommunicating channels that lies within the 

mediastinum testis parallel to the long axis of epididymis (Fig. 60). However, the superficial 

rete lying at the surface of the testis immediately beneath the tunica albuginea is not evident 

in bovine. Rete channels have smooth surface and numerous anastomoses. Considerably, 

larger channels are often traversed by epithelium-covered cords of connective tissue, chordae 

retis, a characteristic feature of the bovine rete testis (Fig. 60). The rete channels are lined by 

a simple cuboidal or columnar epithelium. At certain sites, it appears stratified due to the 

existence of short intraepithelial crypts (Fig. 61). The latter often form acute angle with the 

basal lamina; their lumina are generally narrow and slit-like, so that they may escape from the 

light microscopical detection (Fig. 61). Rete channels are surrounded by mediastinal stroma 

containing myofibroblasts, blood and lymphatic vessels and connective tissue fibers and cells 

(Fig. 60). 

 



                                                                                                                                           Results 
                                                                                              

                                                                     107                                                                                                   

Fig 60: Overview of adult bovine rete testis. The rete 

channels (Rc) are lined by simple cuboidal epithelium 

(arrow). The lumen of the large channel is traversed by 

chordae retis (Cr). Within the mediastinum, numerous 

lymph (Lv) and blood vessels (notched arrowheads) are 

found, Masson-Goldner ̓s trichrome. 

Fig 61: Higher magnification of bovine rete testis 

epithelium. Although it is mainly simple (notched 

arrowhead), appears at certain sites stratified due to the 

presence of short intraepithelial crypts (arrow), H.E.  

 

Fine structure of the rete testis epithelium reveals extensive junctional complexes connect 

adjacent epithelial cells at the luminal border and seal the intracellular spaces against the 

crypts (Fig. 62). The lateral plasmalemma display interdigitations at the level of the nuclei or 

supranuclearly. The basal epithelial border is rather irregular with many projections into the 

folded basal lamina. Here many hemidesmosomes are developed.  

 
 
 
 
Fig 62: Electron micrograph of rete testis 

epithelium showing extensive junctional 

complexes at the luminal surface. Tight 

junctions (arrowheads) and lateral 

interdigitations (arrow) are usually seen at 

the level of nuclei (N) or supranuclearly. 

The cellular organelles are always 

inconspicuous while the cellular surface 

carries short microvilli (notched 

arrowhead). X 3000 

 
The nuclei occupy the middle of the cell and are often indented (Fig. 62). Short microvilli 

project from the apical surface and into the crypts. The cells bear a single very long cilium, 

showing the usual 9+2 pattern. The inventory of organelles is rather inconspicuous (Fig. 62). 
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Small mitochondria are distributed at random while ER is scarcely developed. Free ribosomes 

and polyribosomes are however, abundant. A small Golgi and some multivesicular bodies are 

also present. Like the tubuli recti, rete testis epithelium has the ability to phagocytose 

spermatozoa. Many free mononuclear cells, mostly macrophages, to lesser degree 

lymphocytes, are localized in the basal half of the bovine rete epithelium.  

 
4.2. Glycohistochemistry (table 12, 13) 

The cellular distribution of glycoconjugates within the fetal and adult bovine testis was 

investigated using thirteen (ConA, PSA, LCA, PNA, GSA-I, ECA, DBA, SBA, HPA, VVA, 

WGA, UEA-I, LTA) different fluorescein isothiocyanate (FITC) conjugated lectins (shown in 

tables 12- 13). These lectins represent five groups (mannose-, galactose-, N-

acetylgalactosamine (GalNAc)-, N-acetylglucosamine (GlcNAc)-, and fucose-binding lectins) 

of the known seven lectin binding groups described in my review (table 2). In fetal testis, five 

lectins showed positive reaction while the others were not detectable (tables 12). In adult 

animals, detection of sugar moieties by lectins was carried out on both Bouin ُs-fixed paraffin-

embedded and acetone-fixed frozen sections and showed slight difference between the two 

methods of fixation. However, an excellent histological morphology was generally obtained 

after fixation in Bouin ُs fluid. These results are described in details as following: 

 
4.2.1. Mannose-binding lectins 
Of this group, PSA, LCA, and Con A were investigated (table 12). In fetal testis, PSA specific 

to α-D-mannose showed moderate reaction in Leydig cells while weak staining in the basal 

lamina of solid testicular cords and blood vessels was observed (Fig. 63). Despite distinct 

staining was additionally seen in the mediastinum testis particularly in the mid stage of 

pregnancy (20-36 cm CRL/108-141 dpc), no PSA affinity was recorded in the rete testis 

epithelium. Contrary to PSA, LCA that also binds α-D-mannose was not evident in the 

embryonic testis at all. In adult, mannose-binding lectins showed a wider pattern of 

distribution. PSA exhibited weak staining in some spermatogonia, apical cytoplasm of some 

Sertoli cells and Leydig cells (Fig. 71). Moreover, both PSA and LCA moderately stained the 

acrosome of round and elongated spermatids (Fig. 71, 72). Apical Sertoli cell processes, 

spermatocytes, Leydig cells, and basal lamina of the seminiferous tubules were LCA positive 

as well (Fig. 72). Conversely, Con A specific for α-D-mannose and α-D-glucose was 

negative in the Leydig cells and basal lamina of the seminiferous tubules, while faintly 

localized to Sertoli cell processes and acrosome of round spermatids. In frozen sections, Con 
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A staining was observed in the spermatids acrosome, blood vessels, interstitial extracellular 

matrix, tubular basal lamina, mediastinum testis and rete testis epithelium (table 13). 

 
4.2.2. Galactose-binding lectins 
This group represented by PNA, GSA-I, and ECA was identified in both fetal and adult 

bovine testis. PNA, binding to α-D-galactose and β-D-galactose β (1→3)-D-N-

acetylgalactosamine, was observed in the coelomic epithelium of the fetal testis (2.5-3.5 cm 

CRL/43-50 dpc), in the Golgi region of germ cells (PGCs and the subsequent 

prespermatogonia) during early stage of pregnancy (2.5-14 cm CRL/43-80 dpc), and in the 

rete testis (Fig. 64). Some cells (mostly blood cells) were shown to have high PNA affinity 

shortly after the testicular differentiation (2.5-3.5 cm CRL/43-50 dpc). However, these cells 

were undetectable thereafter. Despite GSA-I, which binds to α-D-galactose and α-D-N- 

acetylgalactosamine, was found exclusively on blood vessels, Golgi region of PGCs showed 

transient positive reaction in the early stage of gestation (3.5- 10 cm CRL/50-75 dpc) (Fig. 65, 

66). In adult testis, PNA displayed strong reaction only in the cytoplasm and acrosome of 

round and elongated spermatids, whereas the other constituents of the testicular tissues 

remained completely unstained (Fig. 73). While insignificant differences were found in the 

spermatids PNA staining between paraffin-embedded and frozen sections, the basal lamina of 

the seminiferous tubules and of the interstitial blood vessels were weakly stained in the latter 

(Fig. 74). In paraffin embedded testicular tissue, the affinity for GSA-I was weak in spermatid 

acrosomes and marked in blood vessels. In frozen sections, the acrosomes and tubular basal 

lamina exhibited moderate reaction while the interstitial connective tissue was weakly stained. 

A positive ECA reaction, specific for galactose-β (1→4)−N-acetylglucosamine, was solely 

seen in the spermatids acrosome (Fig. 75). Like PNA, no variation was seen in the spermatids 

staining between the two methods of tissue processing and fixation while the interstitial tissue 

showed positive reaction in frozen sections (table 13). 

 
4.2.3. N-acetylgalactosamine (GalNAc)-binding lectins                          

Although both HPA and DBA are specific for α-D-N-acetylgalactosamine, they showed 

different pattern of distribution in fetal and adult testis (table 12, 13). HPA was not observed 

in fetal testis at all while DBA was seen in the Golgi region of prespermatogonia at the end of 

early gestation period and onward (14-63 cm CRL/80-210 dpc) (Fig. 68). In the interstitial 

compartment, marked DBA staining was localized solely to the cytoplasm of Leydig cells 
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from the beginning of their differentiation (3.5 cm CRL/50 dpc) (Fig. 67, 68, 69). In adult 

testis, weak DBA reaction was detected in spermatogonia, acrosome of spermatids and  

Leydig cells whereas HPA was indistinctly expressed in acrosomes. Other lectins of this 

category, SBA and VVA, were investigated in adult testis as well. In both paraffin and frozen 

sections, striking positive SBA reaction, specific for α- and β-D-N- acetylgalactosamine 

residues, was recognized in the spermatids acrosome (Fig. 76, 77). In frozen sections, some 

spermatogonia and spermatocytes were additionally stained while the other elements of the 

testicular tissue had no affinity (Fig. 77). The staining pattern of VVA that is specific for α-D-

N- acetylgalactosamine was very similar to that of SBA. In paraffin section, VVA staining 

was seen only in the spermatids acrosome (Fig. 78) whereas moderate VVA staining was 

detected in the Golgi complex of spermatogonia and spermatocytes as well as in basal lamina 

of frozen section (Fig. 79).  

 
4.2.4. N-acetylglucosamine (GlcNAc)-binding lectins 

In fetal testis, the WGA reaction, specific for galactose-β (1→4)−N-acetylglucosamine, α-D-

N- acetylglucosamine and neuraminic acid, was widely distributed. Moderate WGA staining 

was seen in the coelomic epithelium of the early testis (2.5-6 cm CRL/43-60 dpc), in the basal 

lamina of the newly organized seminiferous cords and in the Leydig cells particularly in the 

mid gestation period (20-36 cm CRL/108-141 dpc). Weak reaction was moreover observed in 

PGCs, prespermatogonia, and blood vessels while striking positive staining was found in the 

mediastinum but not in the rete testis epithelium (Fig. 70). In adult, spermatid acrosomes, 

basal lamina of the seminiferous tubules, interstitial blood vessels, and connective tissue 

exhibited weak reaction with WGA in the paraffin-embedded tissues. The only significant 

difference in the WGA staining between Bouin ُs- and acetone-fixed tissues was observed on 

the basal lamina and interstitial connective tissue (Fig. 80). 

 
4.2.5. Fucose-binding lectins 

The lectins of this group represented by UEA-I and LTA are shown to bind to α-L-fucose. 

Although they were undetectable in paraffin sections of fetal and adult testis, UEA-I but not 

LTA weakly stained the interstitial blood vessels and basal lamina of the acetone-fixed frozen 

sections.  

Controls  
None of the negative control sections that were performed by omission of the lectin showed 

positive reactions while the use of sugar inhibitors revealed some staining affinity especially 
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with WGA, GSA-I, and PNA. These data may indicate that some lectins could bind more than 

one sugar.  
 

 

Figs 63-80: FITC- lectin labeling of fetal and adult testis of bovine. Fig 63: PSA labeled the testicular interstitium (IT) 

of 57 cm CRL embryo, no reaction was seen in testicular cords (TC). Fig 64: PNA marked the prespermatogonia (10 

cm CRL) (arrowhead). Fig 65: GSA-I stained the Golgi apparatus of prespermatogonia (10 cm CRL) (arrowheads).  

Fig 66: GSA-I characterized testicular blood vessels (36 cm CRL). Fig 67: DBA bounded to fetal Leydig cells 

(arrowheads) (10 cm CRL). Fig 68: DBA labeled both Leydig cells (arrowhead) and prespermatogonia (arrow) (36 cm 

CRL). 
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Fig 69: DBA stained the Leydig cells of the testicular interstitium (IT) of 63 cm CRL bovine embryo, however, no 

reaction was observed in the testicular cords (TC). Fig 70: WGA labeled both interstitium (IT) and 

prespermatogonia (36 cm CRL). Fig 71: PSA showed marked reaction in spermatogonia (notched arrowhead), 

spermatids (arrowhead), and Leydig cells (LC) of adult testis. Fig 72: LCA exhibited distinct reaction in 

spermatocytes (notched arrowhead), spermatids (arrowhead), Sertoli cell processes (arrow), and Leydig cells (LC). 

Fig 73 and 74: Striking staining of spermatids acrosome with PNA (arrowheads) in paraffin and frozen section of 

adult bovine testis respectively. However, acrosomes had poorly preserved morphology in the frozen section (Fig 

74). 
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Fig 75: Marked staining of acrosomes with ECA (arrowhead). Fig 76 and 77: SBA exclusively marked the 

spermatids acrosome (arrowhead) in the paraffin sections (76) and additionally stained spermatogonia (notched 

arrowhead) and spermatocytes (arrow) in the frozen sections (77). Fig 78 and 79: VVA showed distinct reaction in 

the spermatids acrosome (arrowheads) in the paraffin sections (78) whereas spermatogonia (arrow), spermatocytes 

(notched arrowhead), spermatids acrosome (arrowhead), and basal lamina (Bl) were stained in the frozen section 

(79). Fig 80: Staining of spermatids (arrow), basal lamina (Bl), and blood vessels (arrowhead) with WGA in the 

frozen section but with poorly preserved morphology.  
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Table 12: Lectin binding sites in the fetal bovine testis (paraffin sections) 
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CE: coelomic epithelium, Ct: connective tissue, Bv: blood vessels, Bl: basal lamina, Gc: germinal cells,  
Sc: Sertoli cells, Lc: Leydig cells, MT: mediastinum testis, RTE: rete testis epithelium. 
Staining degree: - negative; + weak; ++ moderate; +++ strong. 
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Table 12: Lectin binding sites in the fetal bovine testis (paraffin sections) (continued) 
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Table 13: Lectin binding sites of adult bovine testis (paraffin and frozen sections)  
 

Paraffin sections Frozen sections 

 Seminiferous epithelium  Interstitial        
  tissue 

Seminiferous epithelium Interstitial   
  tissue 

 
     
     
       Lectins 
 

Spg Spc Spd Sc Bl Lc Bv Ct Spg Spc  Spd Sc Bl Lc Bv Ct 

Con A    ─ ─ +/ ─  +/─ ─ ─ ─ ─ ─ ─ + ─ ++ ─ ++ ++ 

PSA + ─ ++ + ─ + ─ ─ NI NI NI NI NI NI NI NI 

 
 
Mannose-binding lectins 
 

LCA ─   + ++ + + + ─ ─ NI NI NI NI NI NI NI NI 

PNA ─ ─ +++ ─ ─ ─ ─ ─ ─ ─ +++ ─ + ─ + ─ 

GSA-I ─ ─ + ─ ─ ─ +++ ─ ─ ─ ++ ─ + ─ +++ ++ 

 
 
Galactose-binding  lectins 

 ECA ─ ─ ++ ─ ─ ─ ─ + ─ ─ ++ ─ +/─ ─ ─ ++ 

DBA + ─ + ─ ─ + ─ ─ NI NI NI NI NI NI NI NI 

SBA ─ ─ +++ ─ ─ ─ ─ ─ ++ ++ +++ ─ ─ ─ ─ ─ 

HPA ─ ─ + ─ ─ ─ ─ ─ NI NI NI NI NI NI NI NI 

 
 
N-acetylgalactosamine 
(GalNAc)-binding lectins   

 

VVA ─ ─ +++ ─ ─ ─ ─ ─ ++ ++ +++ ─ + ─ ─ ─ 

N-acetylglucosamine  
(GlcNAc)-binding lectins 

WGA ─ ─ + ─ + ─ + + ─ ─ + ─ ++ ─ ─ +++

UEA-I ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ + ─ + ─  
Fucose-binding lectins 

 LTA ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ 

 
Spg: spermatogonia, Spc: spermatocytes, Spd: spermatids, Sc: Sertoli cells, Bl: basal lamina, Lc: Leydig cells, 
Bv: blood vessels, Ct: connective tissue. NI: not investigated  
Staining degree: - negative; + weak; ++ moderate; +++ strong 
 
 

4.3. Immunohistochemistry 

In the present investigation, 12 different proteins (FGF-1, FGF-2, S100, laminin, αSMA, 

Cx43, VEGF, CD4, CD8, CD68, GalTase, and ACE) were analyzed by 

immunohistochemistry in the fetal and adult bovine testis.  

 

4.3.1. Fibroblast growth factors (FGF-1 and FGF-2) 

 
4.3.1.1. Localization of FGF-1 and FGF-2 in the fetal testis (table 14) 

In embryonic bovine testis, FGF-1 and FGF-2 were shown to be expressed in a cellular- and 

time-specific way. At the first age of the early gestation period (2.5 cm CRL/43 dpc), marked 

FGF-1 immunostaining was seen as dark brown granules in the cytoplasm of pre-Sertoli cells. 

One week later (3.5 cm CRL/50 dpc), FGF-1 staining was additionally observed in the 
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interstitial compartment, particularly in fetal Leydig cells. While FGF-1 immunostaining was 

found in pre-Sertoli cells throughout the whole embryonic period, no reaction was seen in 

germ cells (Fig. 81). Toward the end of early pregnancy (from 10 cm CRL/ 75 dpc, onward) 

moderate to distinct immunostaining was also found in the epithelium of the newly 

differentiated straight tubules and rete testis (Fig. 82). Further on, the endothelium of the 

newly formed blood vessels (arteries) was shown to localize FGF-1 protein from the mid 

pregnancy (30 cm CRL/ about 130 dpc) and onwards. 

  

  
Fig 81: Localization of FGF-1 in the pre-Sertoli cell 

cytoplasm (arrowheads). No staining was found in 

prespermatogonia (arrow). Fetus with 36 cm CRL 

Fig 82: FGF-1 is also detected in the rete testis 

epithelium (arrows). Bovine fetus with 63 cm CRL  

 

Unlike FGF-1, FGF-2 protein was not detected during the early phase of testicular 

differentiation. The first FGF-2 immunostaining was observed at 6 cm CRL (60 dpc). It 

attained a maximum at 14 cm CRL (80 dpc), markedly declined at 30 cm CRL (130 dpc) and 

disappeared completely thereafter. During this limited period of expression, distinct FGF-2 

immunostaining was only found in the nucleus of fetal Leydig cells (Fig. 83). Although the 

presence of scattered Leydig cells in mid and late stages of gestation, demonstrated FGF-2 

positive Leydig cells were not seen after 30 cm CRL (130 dpc). No FGF-2 immunoreactivity 

was found in the seminiferous cords or in other cells of the interstitium.  

Despite the rete testis channels were shown to differentiate at the end of the early gestation 

(10-14 cm CRL), FGF-2 immunoreactivity in their epithelium was detected shortly after its 

disappearance from Leydig cells nuclei (at 36 cm CRL/141 dpc). With beginning of late 

pregnancy (63 cm CRL/ 210 dpc, on), striking nuclear staining was seen in the rete testis 

epithelium (Fig. 84) as well as in the endothelium of the blood vessels, principally of arteries. 

By the end of pregnancy (90 cm CRL/ 285 dpc), FGF-2 immunostaining was predominantly 
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localized to tubulus rectus and rete testis epithelium, to endothelium and tunica media of 

blood vessels especially that of the tunica albuginea, and to some peritubular cells 

surrounding the seminiferous cords. 

 

 
Fig 83: FGF-2 staining is exclusively found in the fetal 

Leydig cell nuclei (arrows) while no reaction is seen in 

the testicular cords (TC). Fetus with 14 cm CRL.  

Fig 84: Striking positive staining of the rete testis 

epithelium with FGF-2 (arrows). Fetus with 63 cm 

CRL. 

 
 
Table 14: Localization of FGF-1 and FGF-2 in the fetal bovine testis 

                           
                            FGF-1 
 

                           
                              FGF-2 

Stage of 
development 

Age 
CRL/cm 

Sc Gc Lc Bv Pc St Rt  Sc Gc Lc Bv Pc St Rt 
2.5 ++ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ 
3.5 +++ ─ + ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ 
6 +++ ─ + ─ ─ ─ ─ ─ ─ + ─ ─ ─ ─ 
10 +++ ─ + ─ ─ + + ─ ─ ++ ─ ─ ─ ─ 

 
 
Early 

14 +++ ─ ++ ─ ─ + + ─ ─ +++ ─ ─ ─ ─ 
18 +++ ─ + ─ ─ + + ─ ─ +++ ─ ─ ─ ─ 
20 +++ ─ + ─ ─ + + ─ ─ ++ ─ ─ ─ ─ 
23 +++ ─ + ─ ─ ++ ++ ─ ─ ++ ─ ─ ─ ─ 
30 +++ ─ + + ─ ++ ++ ─ ─ + ─ ─ ─ ─ 
36 +++ ─ + + ─ ++ ++ ─ ─ ─ ─ ─ ++ ++ 
40 +++ ─ + + ─ ++ ++ ─ ─ ─ ─ ─ ++ ++ 

 
 
 
Mid 

57 +++ ─ + + ─ ++ ++ ─ ─ ─ ─ ─ ++ ++ 
63 +++ ─ + + ─ ++ ++ ─ ─ ─ ++ ─ +++ +++
80 +++ ─ ─ + ─ ++ ++ ─ ─ ─ ++ ─ +++ +++

 
Late  

90 +++ ─ ─ + ─ ++ ++ ─ ─ ─ ++ + +++ +++
 
Sc, pre-Sertoli cells; Gc, germ cells; Lc, Leydig cells; Bv, blood vessels; St, straight tubules; Rt, rete testis 
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4.3.1.2. Expression, quantification, and localization of FGF-1 and FGF-2 in the adult testis 
 
In adult animals, the presence of FGF-1 and FGF-2 in the testis was investigated by real time 

RT-PCR, in situ hybridization, and immunohistochemistry.  

 
4.3.1.2.1. Real time PCR 

In real time RT-PCR, amplification plots of FGF-1 and FGF-2 cDNA (Fig. 85a, b) were 

assembled from fluorescence emission data collected during PCR amplification. 

Negative controls and 18S control gene did not reveal any significant genomic DNA 

contamination or pipetting errors, respectively. 

  
                       

         
 

 
 
 
Fig 85a: Amplification 
plots of FGF-1. The 
horizontal orange line is 
the baseline from which 
the CT was calculated. 
The gene under 
investigation (blue 
curves) falls within the 
range of standards (red 
curves). 

 

           
 

 
 
Fig 85b: Amplification 
plots of FGF-2. The 
horizontal orange line is 
the baseline from which 
the CT was calculated. 
The gene under 
investigation (blue 
curves) falls within the 
range of standards (red 
curves). 

 

Specificity of PCR product for both genes in testis, as confirmed by melt curve analysis, 

revealed the presence of a single peak for each amplicon. This peak was identified in the melt 

curve (Fig. 86a, b) at a melting temperature of 85.5°C for FGF-1 and 79.5°C for FGF-2. 
Furthermore, the routine agarose gel electrophoresis showed the existence of a single PCR 
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band of the expected molecular weight, i.e., 189 and 236 base pairs for FGF-1 and FGF-2 

respectively (Fig 87).  
 

     

 
 

Fig 86a: Melt curve of 
FGF-1 showing a single 
melting peak at a 
temperature of 85.5 °C. 

 

    

 

 

Fig 86b: Melt curve of 
FGF-2 showing a single 
melting peak at a 
temperature of 79.5 °C. 

 

 

 
 
 
Fig 87: Agarose gel electrophoresis 

indicates the specificity of the PCR 

product (M is the molecular ladder). 

FGF-1 and FGF-2 were detected at the 

expected base pairs, i.e., 189 bp for FGF-

1 and 236 bp for FGF-2.  

 

Our gene quantification result demonstrated that FGF-1 was transcribed about 10 times higher 

than FGF-2 by the presence of 4500-6500 (FGF-1 mRNA) and 300-600 (FGF-2 mRNA) 

molecules/10 ng total RNA. The standard curves (Fig. 88a, b) displayed a linear relationship, 

i.e., inverse correlation, between the starting copy numbers and the CT for each standard curve 

over the five log10 dilution. This strongly indicates that the detection limit for both genes was 
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the same. Moreover, the standard curves showed a correlation coefficient close to 1 for both 

genes, i.e., 0.997 and 1.000 for FGF-1 and FGF-2 respectively. The PCR efficiency values 

were also close to optimal PCR conditions as revealed by 99.6% for FGF-1 and 93.7% for 

FGF-2 (Fig. 88a, b).  
 

 

 
 
 
Fig 88a: 
Standard curve 
of FGF-1 
generated by the 
iCycler software 
from data in 
figure 85a. 

 

 

 
Fig 88b: 
Standard curve 
of FGF-2 
generated by the 
iCycler software 
from data in 
figure 85b. 

 

4.3.1.2.2. In situ hybridization  

By means of in situ hybridization, both FGF-1 and FGF-2 mRNA were found in Leydig and 

Sertoli cells (Fig. 89, 90) as well as in the modified Sertoli cells of terminal segment. FGF-1 

transcripts were additionally recognized in the straight tubules and rete testis epithelium.  
 

Fig 89: FGF-1 transcripts are detected in Sertoli 

(arrowheads) and Leydig cells (arrows). 

Fig 90: FGF-2 signals are found in Sertoli (arrows) and 

Leydig (arrowheads) cells. 
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4.3.1.2.3. Immunohistochemistry (table 15)  

Unlike the corresponding mRNA, FGF-1 and FGF-2 protein showed a wider pattern of 

expression. While moderate to marked FGF-1 immunostaining was detected in the cytoplasm 

of spermatogonia and spermatids as well as in the cytoplasm of Sertoli and Leydig cells (Fig. 

91, 92), no FGF-2 immunoreactivity was seen Sertoli cells and germ cells other than 

spermatogonia. Alternatively, moderate FGF-2 protein expression was detected in the 

cytoplasm of Leydig cells and some spermatogonia (Fig. 93, 94). FGF-2 immunostaining was 

also seen in cytoplasm and nuclei of myofibroblasts (Fig. 94). Several cells in the interstitial 

tissue other than Leydig cells and in the mediastinum testis (mostly stromal fibroblast and 

tissue macrophage) showed intense positive staining for FGF-1 and FGF-2. In blood vessels, 

the endothelium and vascular smooth muscle cells (tunica media of the medium and small 

sized blood vessels) were markedly stained for FGF-1 and FGF-2. Lymph vessels however 

were always negative for both. In modified Sertoli cells lining the terminal segment, FGF-1 

reaction showed a characteristic localization. It was not evenly distributed in the cytoplasm as 

seen in the epithelium of straight tubules and rete testis, but was localized in the form of basal 

dark brown granules located between the nucleus and basal lamina (Fig. 95). FGF-1 protein 

expression was seen in the cytoplasm of simple cuboidal epithelium of straight tubules and 

rete testis (Fig. 96). Some of cells of rete testis epithelium, probably immune cells, were 

negative. Contrary to the cytoplasmic reaction for FGF-1 in rete testis and straight tubules 

epithelium, FGF-2 immunostaining was mostly nuclear and more intense (Fig. 97).  

 
Table 15: Localization of FGF-1 and FGF-2 in the adult bovine testis  

Testicular cells Spg Spd Sc Lc Mf Bv Lv Smc MSc St Rt 

FGF-1 ++ ++ ++ ++ ─ +++ ─ + ++ +++ +++ 

FGF-2 ++ ─ ─ ++ ++ +++ ─ + ─ +++ +++ 

 
Spg, spermatogonia; Spd, Spermatids; Sc, Sertoli cells; Lc, Leydig cells; Mf, myofibroblasts; Bv, blood vessels; 

Lv, lymph vessels; Smc, stromal cells; MSc, modified Sertoli cells; St, straight tubules; Rt, rete testis 
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Fig 91: Localization of FGF-1 in Sertoli cell 

(arrowhead), spermatogonia (notched arrowhead), and 

spermatids (arrows). 

Fig 92: Immunolocalization of FGF-1 in the Leydig    

cells (arrows) and testicular blood vessels (bv). 

Lymphatic vessels (Lv) have no FGF-1 affinity. 

 

 
Fig 93: Immunostaining of some spermatogonia (Spg) 

(arrowheads) and myofibroblasts (arrows) with FGF-2. 

Sertoli cells (Sc) did not exhibit any immunostaining.  

Fig 94: Marked staining of Leydig cells (Lc), and blood 

vessels (arrowheads), with FGF-2. However, lymph 

vessels (Lv) have no affinity. 

 
 
 
 

 

Fig 95: Localization of FGF-1 in the basal portion of the 

modified Sertoli cells of terminal segment (asterisks).  
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Fig 96: Intensive cytoplasmic staining of the rete testis 

epithelium (arrows) with FGF-1. 

Fig 97: Strong reaction for FGF-2 in the nuclei of the 

rete testis epithelium (arrowheads), and some of stromal 

cell nuclei (arrows). 

 

4.3.2. S100 (table 16) 

Shortly after the testicular differentiation (2.5 cm CRL/43 dpc), a particular strong reaction of 

S100 protein was detected in the cytoplasm and nucleus of pre-Sertoli cells. Germ and Leydig 

cells, on the contrary, exhibited no immunostaining. S100 immunolocalization was cell- but 

not time-specific as it was seen during the whole period of prenatal testicular development 

(Fig. 98). In mid pregnancy (from 23 cm CRL/110 dpc, on), moderate S100 reaction was also 

found in the lining epithelium of the differentiated straight tubules, in the rete testis 

epithelium and in the endothelium of blood and lymph vessels (Fig. 99). Blood vessels of 

tunica albuginea were shown to express S100 earlier than those inside the testicular 

parenchyma (from 6 cm CRL/60 dpc, on). The intensity of S100 protein expression in blood 

vessels, tubulus rectus and rete testis was reported to increase with age.  

In adult testis, immunostaining for S100 was observed in the Sertoli cells of the bovine 

seminiferous tubules (Fig. 100). Immunoreactive S100 appeared to be widely distributed 

within the cytoplasm filling the thin cytoplasmic projections that are closely associated with 

various stages of germinal cells. However, the intensity of immunostaining was somewhat 

dependent upon the cyclic variation within the seminiferous epithelium. Comparatively strong 

reaction was seen in all stages associated with the elongation of spermatids. Adult Sertoli cell 

nuclei were S100 positive as well. A particular marked reaction was seen in the modified 

Sertoli cells of terminal segment and in epithelial cells of straight testicular tubules and rete 

testis (Fig. 101, 102). Additional immunoreactivity was also found in endothelial cells of 

capillaries, veins, and lymphatic vessels. In contrast, the endothelial cells of preterminal 

arterioles did not react with the antiserum. Spermatogonia, spermatocytes in the different 
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phases of meiosis, spermatids, and spermatozoa did not show immunostaining for S100 

proteins, nor did Leydig cells, myofibroblast cells, and intraepithelial macrophages of the rete 

testis.  

 

  
Fig 98: S100 was localized in pre-Sertoli cells (S) 

while the prespermatogonia showed no staining 

(asterisk). Fetus with 23 cm CRL 

Fig 99: Localization of S100 in the endothelium of 

testicular arteries (A) and capillaries (arrows). No 

staining was found in the interstitial cells. Fetus with 

36 cm CRL 

 

 

  
Fig 100: Localization of S100 in the adult Sertoli cells 

(arrows). 

Fig 101: Immunostaining of modified Sertoli cell of 

the terminal segment (arrow) with S100 
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Fig 102: In rete testis, S100 is localized in the 

epithelium (arrowhead), while the intraepithelial 

macrophages show no staining (notched arrowhead). 

 
     Table 16: Immunohistochemical Localization of S100 in the prenatal and adult bovine testis 

Stage of 
development  

            Early stage                       Mid stage         Late stage  

 Age (CRL/cm) 2.5 3.5 6 10 14 18 20 23 30 36 40 
 

57 
 

63 80 90 

Adult
testis 

Sc +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 
Gc − − − − − − − − − − − − − − − − 
Lc − − − − − − − − − − − − − − − − 
Pc − − − − − − − − − − − − − − − − 
Bv − − ± ± + + + ++ ++ ++ ++ ++ ++ +++ +++ +++ 
MSc ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? +++ 
St − − − − − + + ++ ++ +++ +++ +++ +++ +++ +++ +++ 
Rt − − − − − + + ++ ++ +++ +++ +++ +++ +++ +++ +++ 

 
Sc, Sertoli cells; Gc, germ cells; Lc, Leydig cells; Pc, peritubular cells; Bv, blood vessels; MSc, modified Sertoli 

cells (developed in the postnatal life); St, straight tubules; Rt, rete testis.  

 
 
4.3.3. Laminin 

With the incipient differentiation of bovine testes (2.5 cm CRL/43 dpc), laminin 

immunoreactivity was evident both in the basal lamina that delineates the differentiating 

sexual cords and below the thickened surface epithelium of tunica albuginea. Initially (2.5 cm 

CRL/43 dpc), a discontinuous layer of laminin was demonstrated in these structures. A few 

days later (3.5 cm CRL/50 dpc), the basal lamina completely enclosed the testicular cords and 

the laminin immunostaining became more intense particularly in the tunica albuginea and 

around the blood vessels. Subsequently (6 cm CRL/60 dpc), short laminin positive filament-

like structures were found around the cellular aggregates of rete testis. Toward the end of the 

early pregnancy (10 cm CRL/75 dpc), a connection between the laminin positive basal lamina 

of seminiferous cords and rete testis was detectable. Proceeding with age (18 cm CRL/100 

dpc and onwards), the deposited layer of laminin increased in thickness and appeared to be 
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separated in several layers especially around blood vessels and rete testis as well as in the 

inner layer of the tunica albuginea (Fig. 103).  
 

 

 
 
 
 
 
 
Fig 103: Localization of laminin in the basal lamina of 

testicular cords (arrows) and in the blood vessels 

(arrowhead). Fetus with 36 cm CRL.  

 

In the testis of adult animals, a marked positive reaction was localized to the basal lamina of 

the seminiferous tubules and of the myofibroblast cell layers. In most seminiferous tubules, 

laminin appeared as a diffuse staining in the basal lamina (Fig. 104), but in some tubules, 

particularly at the level of terminal segments, the laminin deposits formed invaginations into 

the seminiferous epithelium. This pattern of arrangement results in striated appearance of the 

modified Sertoli cells basal portion (Fig. 105).  
 

  
Fig 104: Basal lamina of the adult seminiferous 

tubules (arrowhead) and blood vessels (arrow) is 

distinctly stained with laminin  

Fig 105: Laminin demonstrated a diffuse staining in 

the basal lamina of seminiferous tubules (notched 

arrowhead), but at the level of terminal segments, the 

laminin deposits formed invaginations into the 

seminiferous epithelium (arrowhead). 
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The vasculature of the adult bovine testis also exhibited intense laminin immunostaining, 

especially in the muscular layer of the medium sized vessels and in the basal lamina of the 

endothelium. Localization of laminin was present in the basal lamina of the rete testis 

epithelium and myofibroblast cell layers located in the mediastinum of the adult testis as well. 

 

4.3.4. Alpha Smooth muscle actin (αSMA) 

α-smooth muscle actin (αSMA) was only detectable in the blood vessels of the embryonic 

bovine testis. No αSMA immunostaining was found either in the fetal tunica albuginea or 

other testicular structures including the peritubular cells (Fig. 106).  

 

 

 
 
 
 
 

 

Fig 106: Immunostaining of the vascular smooth 

muscle with αSMA (arrow) while the peritubular cells 

exhibited no affinity (arrowhead). Bovine fetus with 

36 cm CRL. 

 

αSMA was exclusively expressed in the tunica albuginea blood vessels at early stage of 

development (3.5 cm CRL/50 dpc) but not within the testicular parenchyma. Later on (10 cm 

CRL/75 dpc), the parenchymal blood vessels exhibited marked staining. The localization of 

αSMA in the blood vessels was originally seen in the arteries at 3.5 cm CRL/50 dpc, and one 

month later in the veins (14 cm/80 dpc). The intensity of αSMA immunoreaction as well as 

the number of blood vessels showing positive staining has increased with age. At the end of 

mid pregnancy (57 cm /187 dpc), αSMA was additionally localized to some cells surrounding 

the rete testis.  

In adult, striking αSMA expression was found in the myofibroblasts delineating the 

seminiferous tubules (Fig. 107). Distinct reaction was observed in the testicular blood vessels 

as well. Likewise, several layers of αSMA positive cells were seen beneath the rete testis 

epithelium (Fig. 108).  

 



                                                                                                                                           Results 
                                                                                              

                                                                     129                                                                                                   

  
Fig 107: Distinct staining of the myofibroblasts of the 

adult seminiferous tubules (arrowhead) and vascular 

smooth muscle (arrow) with αSMA   

Fig 108: Immunolocalization of αSMA in the 

myofibroblasts under the rete testis (Rt) epithelium 

(arrowheads) and within the mediastinum (arrow)  

 

4.3.5. Vascular endothelial growth factor (VEGV) 

My immunohistochemical data of adult bovine testis showed a limited expression of VEGF. 

No VEGF immunostaining was found in Sertoli cells and germ cells other than some specific 

stages of spermatids. Likewise, no cells of the interstitial compartment and rete testis 

epithelium displayed any VEGF positive reaction. Round and early elongating spermatids at 

the first three stages of the seminiferous epithelial cycles showed a distinct reaction at the site 

of the future acrosomes (Fig. 109, 110).  

 

  
Fig 109: Localization of VEGF in the cap and early 

acrosomal phase spermatids. The reaction was only 

found in the acrosomal granule (arrowhead). 

Fig 110: Distinct positive VEGF staining in the 

acrosomal phase spermatids (arrowhead). 
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Moderate immunostaining for VEGF was seen in modified Sertoli cells of the terminal 

segment especially at the terminal plug. In blood vessels, although no VEGF immunostaining 

was found in the endothelium, a punctate reaction was seen in the smooth muscle cells (tunica 

media) of the medium and small sized arteries. 

 
4.3.6. Connexin 43 (Cx43) 

Cx43 was seen at early stage of the testicular development (3.5 cm CRL/50 dpc). All the 

Cx43 immunostained cells are localized in the interstitial compartment and identified as 

Leydig cells according to their characteristic morphology. Immunostaining of Cx43 was 

generally punctate or circumscribed and appeared as brown dots on the cellular membrane 

between adjacent Leydig cells (Fig. 111). Expression of Cx43 was markedly parallel to the 

developmental pattern of the Leydig cells. Cx43 immunostained Leydig cells increased 

gradually with age until 14 cm CRL where they attained their maximal number. Thereafter 

(18 cm CRL, onward), it was usual to see some focal areas of the interstitium free from Cx43 

immunopositive Leydig cells. This feature increased gradually and became more prominent 

with the beginning of the late gestation period (63 cm CRL/210 dpc, on) where the Leydig 

cell number has considerably reduced (table 11). Although strong punctate immunostaining 

Cx43 was observed between the cells of the rete testis in the period between 3.5 cm and 23 

cm/CRL, no positive reaction was seen within the solid seminiferous cords throughout the 

whole embryonic period of this investigation (Fig. 111).  

In adult bovine testis, the immunohistochemistry revealed a focal to linear localization of 

Cx43 protein on the plasma membrane of the neighboring Leydig cells. Occasionally, fine 

immunostained dots were also seen within the cytoplasm of adult Leydig cells. Contrary to 

seminiferous cords in the fetal period, a strong immunoreaction was seen within the adult 

seminiferous tubules of bovine testis. Although Cx43 immunoreaction was observed within 

the seminiferous tubules nearly throughout the 8 stages, its intensity was mainly stage-

dependent. Cx43 immunostaining reduced greatly during stages II, III, and IV, thereafter, it 

increased again through stages V, VI, and VII to attain its maximum at stage VIII and stage I. 

Within the seminiferous tubules, the Cx43 protein localization was mainly detected in the 

basal compartment, apical to spermatogonia and basal to spermatocytes (Fig. 112). This site 

of localization coincided with the location of Sertoli cells junctional complexes that form the 

blood-testis barrier. In addition, occasional dark brown dots were also seen in the adluminal 

compartment toward the tubular lumen between Sertoli cells and spermatocytes as well as 

between the newly formed round spermatids (Fig. 112). 
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Fig 111: localization of Cx43 

(arrowheads) between fetal Leydig cells 

(Lc). No immunostaining was found 

within the testicular cords (Tc). Fetus with 

14 cm CRL. 

 Fig 112: Within the adult seminiferous 

tubules, Cx43 was seen in the basal 

compartment, apical to spermatogonia and 

basal to spermatocytes (arrows). It was also 

detected in the apical compartment between 

the round spermatids (arrowheads) 

 

 

 
4.3.7. CD68, CD4, and CD8  

The CD68 (EBM11) identifying resident macrophages, was not detectable in the fetal bovine 

testis. However, CD68 positive cells were clearly seen within the interstitial testicular 

compartment of the adult animals (Fig. 113). These cells were randomly distributed within the 

interstitium being sometimes near Leydig cells, myofibroblast cells, blood vessels or present 

directly under the basal lamina of seminiferous tubules but never within the lumen of 

seminiferous tubules. CD68 immunostaining was mainly granular and either localized to the 

cytoplasm or to the cellular process (revealed by thin filamentous reaction extended from the 

cell body). Despite the presence of CD68 positive staining within the mediastinum, no 

reaction was found in any of the cells lining rete testis. In the straight tubules, CD68 

expression was detected in the lining epithelium of a single straight tubule while the others 

exhibited negative reaction (Fig. 114). The other tested CD68 clone (KP1) was not reactive in 

the bovine testis at all. In a similar way CD4 and CD8 positive cells were, albeit few, 

recognized in the interstitial tissue of adult testis (Fig. 115, 116). CD4 positive cells were 

mostly small, round with spherical nuclei and present mainly as single cells. Most of the 

interstitium was free of these cells and it was very rare to see a few positive cells within the 
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same area. CD4 immunoreaction was observed in the cuboidal cells of the rete testis, but this 

may be unspecific. In contrast to CD4, very few CD8 positive cells were detected in the 

interstitium (2-5 cells per testicular section) 

  

  
Fig 113: CD68 positive cells are seen within the adult 

bovine interstitium (arrowheads). Some Leydig cells 

(arrow) are present in contact with these cells. 

Fig 114: CD68 positive cells are found in the basal 

portion of an individual straight tubule (arrowheads). 

 
 

  
Fig 115: CD4 positive cells (arrows) are seen near the 

adult Leydig cells (Lc) of bovine testis. 

Fig 116: Very few CD8 positive cells (arrow) are 

located near the blood vessels and adult Leydig cells. 

 

4.3.8. Galactosyltransferase (GalTase) (table 17) 

The immunolocalization of galactosyltransferase (GalTase) was exclusively seen in the 

cytoplasm of fetal Leydig cells in an area corresponding to Golgi apparatus (Fig. 117) and at 

the cell surface of rete testis epithelium of prenatal bovine testis. The intensity of reaction 
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within the fetal Leydig cells Golgi apparatus was found to increase through the early 

pregnancy period. Despite, the presence of isolated Leydig cells in the mid and late stages of 

pregnancy, the number of GalTase immunopositive fetal Leydig cells was markedly 

decreased in the mid pregnancy (from 23 cm CRL/110 dpc, on) and they disappeared 

completely in the late stage (63 cm CRL/210 dpc). Contrary to Leydig cells, immunostaining 

of the rete testis epithelium was detected at 14 CRL (80 dpc) and simultaneously increased 

with age. No GalTase protein localization was observed in fetal Sertoli and germ cells. 

Similarly, blood and lymph vessels did not exhibit any reaction. 
 

 

 
 
 
 
 
 

Fig 117: Localization of GalTase in the Golgi 

apparatus of fetal Leydig cells (arrows). Fetus with 10 

cm CRL.  

 
In the adult testis, distinct immunostaining was seen in the Golgi complex of Sertoli and 

Leydig cells (Fig. 118). GalTase was also detected in the Golgi apparatus of some 

spermatocytes and at the head surface of the elongating spermatids (Fig. 119) while no 

immunostaining was observed in the spermatogonia. Marked immunostaining of GalTase was 

additionally observed in straight tubule and rete testis epithelium (Fig. 120). As in fetal testis, 

blood and lymph vessels, as well as peritubular myofibroblast cells showed negative reaction.  
 

Table 17: Localization of GalTase in the prenatal and adult bovine testis 

Stage of 
development  

            Early stage                       Mid stage         Late stage  

 Age (CRL/cm) 2.5 3.5 6 10 14 18 20 23 30 36 40 
 

57 
 

63 80 90 

Adult
testis 

Sc −       − − − − − − − − − − − − − − ++ 
Gc − − − − − − − − − − − − − − − ++ 
Lc − + + ++ ++ ++ ++ ++ + + + − − − − ++ 
Pc − − − − − − − − − − − − − − − − 
Bv − − − − − − − − − − − − − − − − 
St − − − − − + + ++ ++ ++ ++ ++ ++ ++ ++ +++ 
Rt − − − − − + + ++ ++ ++ ++ ++ ++ ++ ++ +++ 

 
Sc, Sertoli cells; Gc, germ cells; Lc, Leydig cells; Pc, peritubular cells; Bv, blood vessels; St, straight tubules; 
Rt, rete testis. 
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Fig 118: Immunolocalization of GalTase in the Golgi 

apparatus (arrows) of adult Leydig cells.  

Fig 119: GalTase was additionally detected in the 

elongating spermatids (arrows). 

 
 

 

 
 
 
 
 
 

Fig 120: Localization of GalTase in the apical area of 

rete testis epithelium (arrowheads) and within the 

Golgi apparatus (arrows).  

 

 

4.3.9. Angiotensin-converting enzyme (ACE) (table 18) 

In fetal testis, ACE was found exclusively within the testicular cords. Prespermatogonia 

exhibited a transient expression of ACE in 6 and 10 cm CRL (60-75 dpc) but immunostaining 

was no longer detected in the subsequent stages of testicular development (Fig. 121). 

Moderate reaction was also seen in the endothelium of the newly formed blood vessels. The 

ACE positive reaction of endothelium was first detected by 18 cm CRL (100 dpc) and 

increased concurrently with age (Fig. 122). 
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Fig 121: ACE is only localized to the cytoplasm of 

prespermatogonia (arrowheads). Bovine fetus with 10 

cm CRL. 

Fig 122: Immunostaining of fetal testicular blood 

vessels endothelium with ACE (arrows). No reaction 

was seen in the germ cells at this age (57 cm CRL) 

(arrowheads). 

 

 

ACE was not evident in Sertoli, Leydig and germ cells as well as in straight tubules and rete 

testis epithelium of fetal and adult testis. Within the adult bovine testis, marked ACE protein 

expression was only observed in the endothelium of blood vessels.  

 
 

     Table 18: Immunohistochemical Localization of ACE in the prenatal and adult bovine testis 

Stage of 
development  

            Early stage                       Mid stage         Late stage  

 Age (CRL/cm) 2.5 3.5 6 10 14 18 20 23 30 36 40 
 

57 
 

63 80 90 

Adult
testis 

Sc − − − − − − − − − − − − − − − − 
Gc − − ++ ++ − − − − − − − − − − − − 
Lc − − − − − − − − − − − − − − − − 
Pc − − − − − − − − − − − − − − − − 
Bv − − − − − + + ++ ++ ++ ++ ++ ++ ++ +++ +++ 
St − − − − − − − − − − − − − − − − 
Rt − − − − − − − − − − − − − − − − 

 
 Sc, Sertoli cells; Gc, germ cells; Lc, Leydig cells; Pc, peritubular cells; Bv, blood vessels; St, straight tubules; 

Rt, rete testis. 
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5. DISCUSSION  

5.1. Morphological studies of fetal and adult bovine testis 

The testis is responsible for the production of functional sperm and for the secretion of 

hormones and factors that govern all aspects of male sexual development and reproductive 

function. Disturbance in prenatal development and differentiation of the testis can thus be 

responsible for an array of undermasculinisation syndromes, ranging from XY females to 

males with subnormal fertility (Tohonen et al., 2003). Proper development of testis is 

therefore critical to establish the male phenotype and to attain maximal reproductive capacity.  

  

5.1.1. Testicular differentiation and morphogenesis 

The differentiation and morphogenesis of bovine male gonad during prenatal development 

has been investigated in numerous previous (Santamarina and Reece, 1957; Schrag, 1983, 

Anton, 1987, Sinowatz et al., 1987, Setijanto, 1992) and recent (Wrobel and Süß, 1999, 2000; 

Wrobel 2000a, b) studies. Most of these investigations suggested the age of 39-40 dpc/ 2 cm 

CRL as the beginning of sexual differentiation in bovine. In the present study, the 

developmental changes of bovine fetal testis were divided into three stages: early, mid, and 

late stage according to crown-rump length (CRL) and the corresponding age. With the 

beginning of the first stage (2.5 cm CRL/43 dpc), the gonadal anlage can be identified as 

paired bean-shaped structures situating on either side of the dorsal mesentery medial to the 

mesonephros. Each initial gonad is peripherally delineated by a relatively thick layer of 

mesenchymal tissue characterizing the first appearance of tunica albuginea (TA), a distinct 

event in the pathway of testicular differentiation (Schrag, 1983). Firstly, TA is shown to be 

homogenous layer consists mainly of undifferentiated mesenchymal cells and is covered 

externally by a thin layer of coelomic epithelium. Later on, the TA increases considerably in 

thickness (attains about 1-1.2 mm shortly before birth) and separates in two well-defined 

layers: outer fibrous (tunica fibrosa) and inner cellular (tunica vasculosa). The latter is highly 

vascular layer and connects with inconspicuous connective tissue trabeculae, the septula 

testis. Collectively, the differentiated TA is markedly composed of abundant collagen fibrils, 

little elastic, and numerous fibroblasts. However, the fibrous and vascular contents are 

predominantly seen in the outer and inner layer respectively and are found to increase 

progressively with age. Such developmental changes are also documented in the bovine TA 

by previous investigators (Schrag, 1983, Anton, 1987, Setijanto, 1992). Interestingly, the 
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initial emergence of TA at the gonadal periphery is timely concomitant with the aggregation 

of somatic and primordial germ cells to form the testicular cords, the precursors of the 

seminiferous tubules. A similar sequence of events has been reported to take place in human 

testis, except that segregation of plate-like structures containing somatic cells apparently 

precedes their development into cords (Orth, 1993). Although the mechanisms that trigger the 

aggregation of somatic and germ cells are still uncertain, several local factors have recently 

been shown to be produced within the genital ridge at the time of testicular cord formation. 

Among these, numerous growth factors such as TGF-β, IGF, FGF-9, HGF, and neurotrophic 

factors are proposed to be possible candidates regulating testicular differentiation and 

morphogenesis (reviewed by Abd-Elmaksoud and Sinowatz, 2005/in press). Bovine testicular 

cords were firstly observed at the gonadal peripheries whereas the gonadal interior was shown 

to be cords-free area. However, toward the end of the early stage of development (10-14 cm 

CRL/75-80 dpc), the peripheral testicular parenchyma is further subdivided into two zones: a 

narrow outer zone containing-plate like cords with thick diameter (50-60 µm) and a large 

inner zone filled with a network of thinner cords (35-40 µm). In the outer region, the cords are 

mostly convoluted while in the inner area they are straight. These findings are supported by 

the results of Wrobel (2000a) who additionally reported that only the thick outer cords 

transform into permanent seminiferous tubules whereas the thinner ones are transitory 

structures that eventually disappear between 45 and 110 dpc. A similar model of arrangement 

has also been demonstrated in rat (Roosen-Runge, 1961) where seminiferous tubules initially 

form two rows of consecutive C-shaped arches, one internal to the other. This basic pattern 

does not change throughout the adult life, even if the C-shaped tubules no longer run a 

straight course, but are coiled in a number of convolutions. Although the seminiferous cords 

lie in a plane perpendicular to the long axis of the testis in bovine (Wrobel, 2000a) and rat 

(Roosen-Runge, 1961), the bovine individual cord is hairpin-shaped and all of them are 

grouped in a rosette-like fashion around the central testis. The forming bovine testicular cords 

are rapidly surrounded by a marked basal lamina and 1-2 layers of peritubular cells. 

Throughout the whole embryonic period, the testicular cords are always solid and lined by 

two types of cell population: large number of dark polygonal cells with irregular nuclei, pre-

Sertoli cells and small number of large light cells with relatively round nuclei, the PGCs. 

Bovine pre-Sertoli cells are generally in contact with the basal lamina, despite some are 

sometimes displaced more centrally by the close packing of cells within the cords especially 

at the end of the early gestation period when the number of pre-Sertoli cells has relatively 

increased. They have polygonal shape with their cytoplasm oriented radially within the cords. 



                                                                                                                                     Discussion 
                                                                                            

                                                                     138                                                                                                   

Their nuclei are variable in shape and rarely show indentation while the nucleoli are mostly 

associated with the nuclear envelop. Toward the end of gestation period, bovine pre-Sertoli 

cells were shown to develop columnar shape with basally situated nuclei. Mitotic figures of 

these cells are seen throughout the whole pregnancy period. Although Schrag (1983) 

identified two types (light and dark) of presumptive Sertoli cells within the fetal bovine testis, 

the present study recognized only one type of these cells. In most of mammals, the presence 

of pre-Sertoli cells is a critical event for the initial testicular cord formation. For instance, 

these cells are shown to appear on day 13 pc in the differentiating fetal rat testis and then 

aggregate to form testicular cords on the following day (Magre and Jost, 1980). The signals 

responsible for eliciting the appearance of pre-Sertoli cells have not been identified yet, but 

presumably are related to gene product, encoded on the Y chromosome (Bardin et al., 1994). 

Therefore, it is thought that the action of Sry (sex determining gene on Y chromosome) 

triggers the differentiation of the Sertoli cell lineage and that the Sertoli cells in turn direct the 

differentiation of the rest of the testicular somatic cells (Swain and Lovell-Badge, 1999). The 

origin of pre-Sertoli cells is still uncertain. Several investigations indicated that motile cells 

derived from mesonephros, coelomic epithelium, or pronephros/mesonephros overlapping 

area can contribute to the Sertoli cell population (Martineua et al., 1997; Karl and Capel, 

1998; Tilmann and Capel, 1999; Wrobel and Süß, 1999, 2000). In agreement with my 

findings, the mitotic proliferation of pre-Sertoli cells has been reported to begin in the fetal 

life in all species so far studied (Schrag, 1993; Orth, 1993; Bardin et al., 1994). This division 

continues during postnatal life and ceases by the formation of functional blood-testis barrier 

prior to puberty of the animal (Sinowatz and Amselgruber, 1986). Although, the expansion of 

fetal Sertoli cell population depends principally on FSH, testosterone may also have a role (de 

Kretser and Kerr, 1994). In bovine, FSH-binding capacity is detected in the fetal testis from 

60 dpc and onwards (Khalil and Hauser, 1979). Functionally, pre-Sertoli cells secrete AMH 

responsible for the regression of the Müllerian ducts in the male fetuses and phagocytose the 

degenerative germ cells (Bardin et al., 1994; de Kretser and Kerr, 1994). In addition, pre-

Sertoli cells in association with peritubular cells are responsible for the process of 

tubulogenesis at the time of testicular differentiation (Tung and Fritz, 1980). 

The early differentiation of germ cells prior to the onset of spermatogenesis has been referred 

to as prespermatogenesis (Hilscher and Hilscher, 1976). In bovine, this process begins with 

PGCs that localize the genital ridge as early as 27 dpc (Wrobel and Süß, 1998). The germ 

cells can be identified as polygonal cells with light cytoplasm and spherical nuclei. They are 

located either at the periphery of cords (not in direct contact with the basal lamina) or slightly 
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central. Interestingly, both in the coelomic epithelium and in the TA, some sporadic germ 

cells can also be identified particularly during the first half of the early gestation period (2.5-6 

cm CRL/43-60 dpc), but disappear thereafter. The functional significance and the fate of these 

cells are unknown. Generally, the germ cells are larger than pre-Sertoli cells and are easily 

recognizable elements of the seminiferous epithelium. Although, mitotic figures of germ cells 

are predominantly found in the early stage of pregnancy especially in the period between 3.5 

and 14 cm CRL (50-80 dpc), the number of presumptive Sertoli cells within an individual 

cord cross section is always greater than that of germ cells even at the maximum of germ cells 

mitosis at 14 cm CRL (table 11). After this stage, germ cell mitosis has significantly reduced. 

Different to my results, Schrag (1983) stated that the mitotic activity of bovine germ cells 

begins immediately after the seminiferous cord formation and continues until 23.5 cm CRL 

and then decreases. My results get support from the findings of Wrobel (2000b) who studied 

the proliferative pattern of bovine germ cells with monoclonal antibodies against Ki-67 and 

proliferating cell nuclear antigen (PCNA). As in rat and hamster (Hilscher and Hilscher, 1976, 

Miething, 1993, 1998), Wrobel (2000b) found that the bovine male germ cell population also 

shows periods of proliferative activity in the time span between testicular cord formation in 

the embryo and the onset of spermatogenesis in the pubertal animal. Germ cells with a high 

proliferation rate are observed from day 50 pc to day 80 pc whereas these cells are in 

transition from PGCs to prespermatogonia. After this period, the proliferation of 

prespermatogonia decreases continuously to arrest at day 200 pc where the germ cells enter a 

phase of relative mitotically quiescence lasting until the 4th postnatal week (Wrobel, 2000b). 

Schrag (1983) identified two different types (light and dark) of bovine germ cells and 

described these cells as two different cellular functional states. However, these findings are 

inconsistent with the results of the present study and with the data of Wrobel (2000b) and may 

be due to inappropriate fixation. In a recent approach, Gaskell et al. (2004) identified three 

types of germ cells in the human fetal testis using single, double and triple 

immunohistochemistry. They proposed these cells as gonocytes, intermediate germ cells, and 

prespermatogonia. In the first trimester, most germ cells have a gonocyte phenotype, 

however, from 18 week of gestation, prespermatogonia are the most abundant cell type.  

In virtually all species so far investigated, recognizable steroid-secreting cells, the Leydig 

cells, appear in the interstitium of fetal testis shortly after the testicular cord development 

(Sinowatz et al., 1987; Rüsse, 1991; Orth 1993). Although the origin of fetal Leydig cells is a 

matter of debate, several studies have suggested a subpopulation of mesenchymal-like cells in 

the testis interstitium to be the source of these cells, with evidence obtained from many 
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mammalian species including rat, mouse, ferret, pig, bovine, and human (Habert et al., 2001; 

Mendis-Handagama and Ariyarante, 2001). In mammals except pig (van Vorstenbosch et al., 

1984) and human (Prince, 2001), Leydig cells ontogenesis was shown to be biphasic, i.e., two 

generations are involved (Habert et al., 2001). The first Leydig cells generation develops 

during fetal life, and is responsible for the virilization of the male genital system but regresses 

thereafter, while the second generation appears during puberty and produce the testosterone 

required for the onset of spermatogenesis and maintenance of male reproductive functions 

(Habert et al., 2001). In pig (van Vorstenbosch et al., 1984) and human (Prince, 2001), a 

triphasic pattern (fetal, neonatal and adult Leydig cells) has been suggested. In bovine, Leydig 

cells development seems to follow the pattern of most mammalian species (biphasic) 

(Sinowatz et al., 1987). In the present approach, no Leydig cells were observed at the first 

developmental age (2.5 cm CRL/43 dpc). Clearly identifiable Leydig cells were however seen 

at the subsequent age (3.5 cm CRL/50 dpc). These findings confirm the results of Schrag 

(1983) and Sinowatz et al. (1987) who described the age of 46 dpc (3 cm CRL) to be the time 

at which the first bovine Leydig cells are seen. Fetal bovine Leydig cells are polygonal with 

large spherical nuclei that appear slightly darker than that of the pre-Sertoli and germ cells. 

Their nuclei contain at least two nucleoli while their cytoplasm appears mostly acidophilic in 

routine histological staining. These cells are grouped in clusters between the testicular cords 

but are never detected within the mediastinum. Leydig cells show no preferential position in 

relation to blood capillaries but are randomly distributed. Interestingly, they exhibit a 

characteristic developmental curve with a distinct peak at the end of early stage of gestation 

(14 cm CRL/80 dpc). The increase in Leydig cell number is mainly due to further 

differentiation of mesenchymal cells, whereas mitotic figures within the Leydig cell 

population are rarely observed. Taken into consideration that embryos of the same age may 

considerably differ in length, my data appear consistent with that of Schrag (1983) and 

Sinowatz et al. (1987) who detected this peak at 11-12 cm CRL. The level of testosterone 

concentration also reaches its peak with maximum development of Leydig cells at 11-12 cm 

CRL (Sinowatz et al., 1987). As mentioned above, the maximum of germ cells is also 

detected at this age (14 cm CRL). Taken together, these data raise the possibility that a 

paracrine relationship exists between fetal Leydig and germ cells, particularly at the early 

stage of pregnancy. This hypothesis is further supported by the finding that decrease in fetal 

Leydig cell number is also accompanied by a drop in the testicular testosterone concentration 

(Sinowatz et al., 1987) and this is parallel to a reduction of the average germ cell number in 

the cord cross section (table 11). Furthermore, the progressive decline in Leydig cells number 
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is always associated with a diminishing of the germ cells. In agreement with the previous 

studies (Schrag, 1983; Sinowatz et al., 1987), fetal bovine Leydig cells are shown to 

dedifferentiate, since degenerated Leydig cells with pycnotic nuclei or vacuolated cytoplasm 

are rarely observed. Studies in the rabbit also showed no evidence of degeneration, but rather 

a reversion to a less differentiated state (Gondos et al., 1976). On the contrary, the 

investigation of Prince (1984) in human suggested fetal Leydig cells degeneration. The actual 

cause and functional significance of Leydig cell regression is not known. By dedifferentiation 

of Leydig cells, the bovine testicular interstitium, especially shortly before birth, consists of 

undifferentiated mesenchymal cells, blood vessels, and connective tissue.   

An interesting event in testicular development is the organization of rete testis and 

establishment of connection between their channels and the solid seminiferous cords. Early in 

the first stage of pregnancy (2.5-6 cm CRL/43-60 dpc), rete testis is represented by solid 

cords which initially occupy a marginal and then an eccentric position at the attached border 

of the testis. Shortly thereafter (from 6 cm CRL/60 dpc, on), bovine rete testis cells migrate 

centrally and start to acquire its definitive position by extending into the centre of the 

longitudinal testicular axis as far caudally as into the caudal fourth of the gonad (Wrobel, 

2000a). Considerably, the organization of rete testis into solid strands becomes clearly visible 

toward the end of early gestation stage (10-14 cm CRL/75-80 dpc) because the strands are 

separated by connective tissue rich in blood vessels and are surrounded by thick basal lamina. 

With the beginning of the mid stage of pregnancy (18 cm CRL/100 dpc), these strands 

become canalized and connect to the seminiferous cords via solid tubuli recti. Although the 

establishment of connection commences at the end of the early stage (10-14 cm CRL/75-80 

dpc), it markedly progresses and develops into easily identifiable straight tubules at the mid 

stage of gestation. The rete testis strands expand peripherally and come in contact with the 

thin testicular cords. Their cells invade these solid cords resulting in a mixed population of 

germ, pre-Sertoli, and rete testis cells. Then the germ and pre-Sertoli cells degenerate and the 

newly constructed tubuli recti turn out to be lined by rete testis cells. This mechanism may 

indicate that the straight tubules have two developmental origins, i.e., their basal lamina 

develops from the seminiferous cords while their lining epithelium is derived from the rete 

testis. These events also clarify why thin cords disappear; they are replaced by tubuli recti. 

Although, the development of bovine rete testis has been previously investigated in details by 

Anton (1987) and Wrobel (2000a), the findings of my work demonstrate mechanisms for 

connection between the rete testis and the seminiferous cords.  
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5.1.2. Histological organization of adult testis  

The present light and ultrastructural description of the normal adult testis agrees closely with 

the previous investigations of the testicular morphology of the bovine (Wrobel et al., 1978, 

1979, 1981, 1982, 1995a, b; Ekstedt et al., 1986; Sinowatz and Amselgruber, 1988). 

As in all species so far studied, adult bovine testis is covered by a tough fibrous capsule which 

is often referred to as the tunica albuginea that is composed of two layers: an our layer with 

many fibrous elements (tunica fibrosa) and inner one containing numerous blood vessels 

(tunica vasculosa). The latter is particularly prominent in bovine whereas large blood vessels 

running in a tortuous course over most of the testicular surface. The bovine TA itself consists 

of fibroblasts, bundles of collagen fibers, and few elastic fibers. In some species (horse, boar, 

and ram) there are additionally appreciable numbers of smooth muscle cells (Bloom and 

Fawcett, 1986; Dyce et. al., 1987; Wrobel, 1998). Different to boar (Setchell et al., 1994), no 

Leydig cells are seen in the bovine TA. In addition to its influence on sperm transport in the 

species containing smooth muscle, testicular capsule probably plays an important role in 

maintaining the interstitial pressure inside the testis (Setchell et al., 1994). The inner layer of 

TA is continuous with inconspicuous connective tissue trabeculae that only surrounding the 

large intratesticular blood vessels. Adult bovine testis is therefore not subdivided into clear 

lobules as observed in the other species.  

Histologically, the testicular tissue is composed of convoluted seminiferous tubules, 

interstitial compartment, and excurrent duct system. Bovine seminiferous tubules (tubuli 

seminiferi contorti) are shown to occupy most of the testicular parenchyma. They are 

basically two-ended convoluted loops with both ends opening into the excurrent duct system 

via specialized terminal segments. The seminiferous tubules are surrounded by a distinct 

lamina propria and lined by non-dividing Sertoli cells and highly proliferating spermatogenic 

cells. Consistent with the results of Wrobel et al. (1979) and Christl (1990), the present 

approach shows that the lamina propria of the bovine seminiferous tubules has some specific 

features although its overall construction follows the general pattern of other ruminants such 

as goat and sheep (Bustos-Obregon and Courot 1974; Bustos-Obregon, 1976). Generally, the 

lamina propria consists of 4 four layers that are designated from internal to external as basal 

lamina, a zone containing collagen fibrils, a layer of myofibroblasts, and a covering layer of 

fibroblasts. Bovine basal lamina is a smooth surface multilayered structure that occasionally 

shows knob-like protrusions invaginating into the basal portions of spermatogonia and Sertoli 

cells. A stratified organization of tubular basal lamina has also been reported for goat and ram 

(Bustos-Obregon, 1976). In other species, this lamina is classical one with knob-like 
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structures as in cat, dog, monkey, horse, and man (Bustos-Obregon, 1976) or is split into two 

layers as in rabbit and boar (Bustos-Obregon, 1976) or into three layers as in camel (Moniem 

et al., 1980). Collagen fibrils in various arrangements are found in the area between the basal 

lamina and myofibroblasts as well as among the myofibroblasts themselves. Although 

Resorcin-Fuchsin positive structures are additionally seen at the outer border of basal lamina 

and in between the surrounding myofibroblasts, my data do not confirm the existence of 

elastic fibers at the ultrastructural level. This may be due to the fact that elastic fibers in the 

tubular membrana propria are not easily revealed by conventional electron microscopic 

techniques (Wrobel et al., 1979). The basal lamina is surrounded by 3-5 layers of 

myofibroblasts covered on both sides by an inconstant basal lamina. These contractile cell 

layers vary from one layer (rat and mouse) or two (guinea pig), to up to four or more in other 

species (Bustos-Obregon, 1976). According to ultrastructural features and alkaline 

phosphatase histochemistry, Böck et al. (1972) distinguished between two types of peritubular 

cells, i.e., myoid cells and myofibroblasts. Myoid cells are highly differentiated and possess a 

continuous basal lamina as well as tightly packed parallel-oriented cytoplasmic filaments.  

They also exhibit a positive reaction for alkaline phosphatase. Myofibroblasts are surrounded 

by a discontinuous basal lamina, possess bundles of crossing cytoplasmic filaments, and lack 

alkaline phosphatase. The peritubular cells of the bovine seminiferous tubules are considered 

as myofibroblasts with a somewhat higher degree of differentiation than the postpuberal 

human peritubular cells. Conversely, these cells acquire all features of typical smooth muscle 

cells in boars (Wrobel et al., 1979; Wrobel, 1998). The covering layer of fibroblasts is 

proposed to renew the contractile cell layers (Bustos-Obregon, 1976). To date, our knowledge 

of the functional duties of the lamina propria can be summarized as follows: (a) provision of 

mechanical support and contractile function for the seminiferous tubules, (b) passive 

paracrine influence on spermatogenesis via secretory products stimulated by testosterone, (c), 

partial and species-specific restriction of macromolecules entering the seminiferous tubules 

via the intertubular tissues, (d) a source of precursor cells capable of differentiating into 

Leydig cells (de Kretser and Kerr, 1994).  

Sertoli cells are known to be the only somatic cells within the seminiferous epithelium. 

Although, bovine Sertoli cells are tall cells with their broad bases resting on the basal lamina 

while the remaining cytoplasmic processes extend upward to the tubular lumen, their precise 

shape is difficult to ascertain because their form is always obscured by surrounding germ cells 

(Sinowatz and Amselgruber, 1988). The present study has demonstrated that the adult bovine 

Sertoli cells have some notable characteristics. Their nuclei are for instance characterized by 
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deep invaginations of the nuclear membrane. Some organelles, such as mitochondria, free 

ribosomes, and cisternae of sER as well as intermediate filaments are observed in the 

indentation of the nucleus. The karyoplasm appears homogenous and contains very little 

heterochromatin. The nucleolus is a particular characteristic structure of the bovine Sertoli 

cell nucleus. It is composed of numerous vesicles of different sizes, tubules, and ribosomes-

like structures. My findings not only agree with the previous studies in bovine (Zibrin, 1972; 

Ekstedt et al., 1986; Sinowatz and Amselgruber, 1988) but also with data of other ruminants 

like goat (Jurado et al., 1994) and water buffalo (Kurohmaru et al., 1992). It is generally 

accepted that this structure is distinctive only in ruminants (Fawcett, 1975 and Kurohmaru et 

al., 1992) whereas the usual configuration of nucleolus in rat (Fawcett, 1975) and man 

(Schulze, 1984) resembles a tripartite structure composed of two amorphic lateral bodies and 

central part formed by a compact nucleolonema. As has been pointed out (Fawcett, 1975), the 

nucleolus is similar to the nucleolar channel system that appears in the human endometrial 

cell during the secretory phase of menstrual cycle. A number of hypothesis on its possible 

function have been proposed, for example, transport of mRNA from the nucleus to the 

cytoplasm, metabolism of RNA-containing materials and influence on the activity of cellular 

enzyme systems (More et al., 1974). Although, the nucleolus is usually central, in some 

nuclei, the nucleolus locates close to the inner layer of the nuclear membrane suggesting that 

this structure communicates with the perinuclear space or with the cytoplasm of Sertoli cells 

(Osman and Ploen, 1979). Bovine Sertoli cell nucleoli lack satellite heterochromatin bodies, 

which are common in many species, e.g. rodents (Fawcett, 1975). Intermediate filaments are 

widely distributed throughout the cytoplasm and are particularly abundant around the Sertoli 

cell nucleus and in the areas of cell contacts. They represent an important part of the Sertoli 

cell cytoskeleton (Sinowatz and Amselgruber, 1988), which additionally consists of 

microtubules and proposed to be involved in maintaining cell shape, anchoring organelles 

within the cytoplasm, and positioning the nucleus (Jurado et al., 1994). This dynamic 

cytoskeleton also allows the Sertoli cell to undergo remarkable changes in shape during 

spermatogenesis and to determine the position of spermatogenic cells within the seminiferous 

tubules (Sinowatz and Amselgruber, 1988). The endoplasmic reticulum is well developed and 

most of it is agranular or contains only few ribosomes. Whorls of sER are often encountered 

in the bulky lateral processes of the basal part of Sertoli cells. In addition, large accumulations 

of regularly arranged cisternae of sER are seen in those cell regions surrounding developing 

spermatids. These whorls are not only obvious in goat (Jurado et al., 1994) and ram (Osman 

and Ploen, 1979) but are also quite noticeable in rodents (Fawcett, 1975). There may be two 
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possibilities to explain the function of these Whorls of sER. One is that the sER probably 

associated with the production of steroid hormones. Although, the existence of lipid droplets 

seems to support this hypothesis, biochemical studies have shown that Sertoli cells cannot 

synthesize steroids using acetate or cholesterol as precursors (Fawcett, 1975; de Kretser and 

Kerr, 1994; Jurado et al., 1994). The other is supported by the finding that spermatocytes and 

Sertoli cells can transform testosterone into its 5α-reduced metabolites. These data support 

the idea that the considerable sER, which accumulates in the basal part of Sertoli cells, may 

play a role in hormone production and transformation (Sinowatz and Amselgruber, 1988), 

thereby creating a local microenvironment high in androgen concentration, which could be 

important for certain aspects of sperm differentiation. Sertoli cell cytoplasm also contains 

mitochondria, an inconspicuous Golgi apparatus, little rER, free ribosomes, polyribosomes, 

lysosomes and lipid inclusions, however, Charcot-Böttcher crystalloids, a typical constituent 

of human Sertoli cells (Schulze, 1984), are not evident in bovine.     

Importantly, Sertoli cells are known to have specialized cell junctions with other Sertoli cells 

and with germ cells. By means of these junctions, the Sertoli cells form a continuous layer 

dividing the seminiferous epithelium into two compartments: a basal one containing 

spermatogonia and preleptotene spermatocytes, and an adluminal one containing more 

differentiated spermatocytes and spermatids. This continuous layer comprises the ultimate 

and tightest part of the blood-testis barrier. The Sertoli-Sertoli cell junctions which have been 

described in various mammalian species (Russell and Peterson, 1985), including bull (Ekstedt 

et al., 1986; Sinowatz and Amselgruber, 1988) and non-mammalian species, consist of 

numerous tight junctions with associated microfilaments and endoplasmic reticulum (Gilula et 

al., 1976; Osman and Ploen, 1978a). Contrary to inter-Sertoli junctions, different types of 

specializations occur between Sertoli and germ cells. These include desmosome-like 

junctions, Sertoli ectoplasmic specializations, and tubulobulbar complexes. Sertoli-germ cell 

specializations have been proposed to function in the adhesion, orientation, and positioning of 

the developing spermatids as well as in the release of mature sperm cells from the 

seminiferous epithelium (Sinowatz and Amselgruber, 1988). In addition to nutritive, 

protective and supportive functions, several other pivotal roles for Sertoli cells are now well 

established (these are reviewed under Sertoli cell functions in the first part of this work).  

Adult bovine germ cells are present in four morphologically different groups, i.e., 

spermatogonia, spermatocytes, spermatids, and spermatozoa. Generally spermatogonia are 

present within the basal compartment while the spermatocytes and young spermatids are 

found in the mid and luminal portions of the tubule respectively. Importantly, the bovine 
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spermatogonia are currently known to have two separate populations, i.e., stem and 

spermatogonia precursor cell line as well as cycling spermatogonia involved in 

spermatogenesis (Wrobel et al., 1995a, b). The former are classified as basal stem cells 

(BSC), aggregated spermatogonia precursor cells (ASPC), and committed spermatogonia 

precursor cells (CSPC). Stem cells and spermatogonia precursor cells are morphologically 

similar to spermatogonia but differ in size, shape, and immunoreactivity. The self-renewing 

BSC give rise to ASPC, which in turn develop to CSPC. These latter cells transform into new 

type A spermatogonia (A1-Sg). The exact demarcation between CSPC and A1-Sg is defined as 

the moment when CSPC enter S-phase in preparation for the first A-Sg mitosis (Wrobel et al., 

1995a, b). The cycling population of bovine spermatogonia multiply mitotically resulting in 

A-, I-(intermediate), and B-spermatogonia. In the present investigation, these cells are 

morphologically identified according to their nuclear shape, cytoplasmic organelles, and 

contact area with the basal lamina. The mitotic division culminates in the production of 

preleptotene primary spermatocytes, which no longer divide mitotically but undergo meiotic 

division resulting in a fourfold increase in the number of germ cells. Preleptotene 

spermatocytes are documented to pass through a long prophase of the first meiotic division 

consisting of leptotene, zygotene, pachytene, diplotene, and diakinesis stages. During these 

stages, spermatocytes increase considerably in size. As a result of this division, short-lived 

cells “secondary spermatocytes” are produced which go through a second meiotic division to 

develop finally into round spermatids. Round spermatids are exclusively located in the 

adluminal part of the seminiferous epithelium and undergo a complex series of cellular 

transformation (spermiogenesis). This process takes place via four well-defined phases, 

termed Golgi, cap, acrosomal, and maturation phase. Under light microscope, the first and 

second phases are characterized by spherical nuclei whereas the third and fourth phases have 

elongated nuclei. Ultrastructurally, the spermatids have been subdivided into 15 distinctive 

steps represented by Arabic numerals (1-15). Obviously, the most important morphologic 

changes during spermiogenesis are formation of the acrosome, condensation of the nuclear 

chromatin, outgrowth of a motile tail, and loss of excess spermatid cytoplasm not necessary 

for the later spermatozoon. These findings confirm the conclusions of the previous studies on 

bovine testis (Sinowatz and Wrobel, 1981; Ekstedt et al., 1986; Wrobel et al., 1995a, b; 

Wrobel, 1998).  

Currently there are two main views on the criteria for staging the seminiferous cycle. The first 

is based on the development of the acrosomic system of spermatids beginning with the 

appearance of young spermatids (Leblond and Clermont, 1952), while the second one 
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depends on the morphological changes of germ cell nuclei and begins after the release of 

spermatozoa into the tubular lumen (Ortavant, 1958). Thus, in conformity with the definition 

of the seminiferous cycle as a series of changes occurring in a cell line up to the re-emergence 

of the same phase at a given point in the tubule, both these methods trace these cyclic events 

in particular cell lines: the former in the spermatids and the latter in various germ cells. The 

first method has largely been applied in rodents where it often yields comparatively more 

stages (Leblond and Clermont, 1952) than the second one. However, the second method has 

found wide application in domestic animals. This study therefore used the second method 

where eight such stages are identified. This compares favorably with what has been reported 

in other domestic species such as the boar (Wrobel, 1998), ram (Wrobel et al., 1995c), donkey 

(Nipken and Wrobel 1997), goat (Onyango et al., 2000) and their close relatives like buffalo 

(Wrobel and Pawar, 1992) where a cycle of 8 stages is the standard. Of the eight stages 

identified in this study, stage 6 and 7 were of relatively short duration and therefore 

considered as slight morphological variations of stage 5. As a result, they are combined with 

stage 5 to form one main stage, stage 5-7. Consequently, bovine seminiferous cycle is 

condensed into 6 main divisions. This practice has previously gained wide application in 

bovine (Wrobel and Schimmel, 1989), goat (Onyango et al., 2000), ram (Wrobel et al., 

1995c), and buffalo (Wrobel and Pawar, 1992).  

In general, the interstitial compartment is defined as the tissue that fills up the interstices 

between the seminiferous tubules and contains in addition to the steroid secreting cells, blood 

and lymph vessels, as well as nerves of the testicular parenchyma (Fawcett et al., 1973; 

Setchell et al., 1994). In the present approach, the bovine interstitium appears to consist of 

either narrow strands being lodged between two adjacent seminiferous tubules or large tri-and 

quadrangular areas between three to four tubules. The variation between these forms of 

interstitium are mainly due to their constituents as the former is composed only of blood 

capillaries, occasional Leydig cells, and some connective tissue fibers and cells while the 

latter contains large vessels (blood and lymph) and numerous Leydig cells as well. Bovine 

Leydig cells occur in cords or clusters of varying size that appear to be random in their 

distribution, some being perivascular, others unrelated to vessels and still other closely 

associated with the lamina propria of the tubules. However, unlike cat (Wrobel and Hees, 

1987), and dog (Montkowski, 1992), no heterotopic Leydig cells were identified neither in the 

mediastinum nor in the tunica albuginea. Morphologically, bovine Leydig cells are 

characterized by the same cytological features as the Leydig cells of other mammalian 

species. Conversely, in some aspects a structural specificity of bovine Leydig cells prevails 
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and is documented by a relative abundance of a ribosome-associated ER, by a relative paucity 

of lysosomes and lipid droplets, and by intramitochondrial crystalloids. Previously these 

findings have also been reported in bovine by Wrobel et al. (1981), who described the 

ribosome-associated ER as a mixed type of the endoplasmic reticulum (mER). This peculiar 

feature is however unlike most of mammals whereas the ER of the Leydig cells is 

predominantly of the typical smooth type (Schulze, 1984; Setchell et al., 1994). It moreover 

appears to be unusual for an active testosterone-producing cell, since the enzymes related to 

decisive steps of androgen synthesis are localized within the sER (Murota et al., 1965). 

Therefore, Wrobel et al. (1981) have stated that the membranes of the mER may carry out the 

same functions of the pure sER in Leydig cells of the other species. They also denoted that the 

presence of granular tubular ER in steroid-secreting cells may reflect involvement in enzyme 

and membrane formation and may be related to the production of a carrier protein for steroids.  
In addition to Leydig cells, the bovine interstitium is shown to include fine collagen and 

elastic fibers and several immune cells (discussed under CD4, CD8, and CD 68 section) as 

well as blood and lymph vessels. Although, blood vessels are often peripheral and may be 

attached to lamina propria of the seminiferous tubules, lymphatic vessels are centrally located 

in the intertubular area. Generally, at least one of the lymphatic vessels is always seen in each 

angular interspace but in some of the larger spaces, there may be two or three. Such 

arrangement has already been reported for ram and bull (Fawcett et al., 1973; Wrobel et al., 

1981). Although, the lymph vessels are a common feature of the testicular intertubular spaces 

in mammals (Fawcett et al., 1973), a broad range of variation is found in the relative 

proportion of the principal components of the interstitial tissue. Three more or less distinct 

patterns of testicular interstitial organization have been distinguished (Fawcett et al., 1973). In 

the first category are those animals, which have a relatively small volume of Leydig cells (1-5 

% of the testicular volume) and a minimum of interstitial connective tissue. A considerable 

part of the intertubular area in these animals is occupied by extensive peritubular lymphatics. 

This category includes guinea pig, chinchilla, rat, and mouse. In the second group are those 

species in which clusters of Leydig cells are widely scattered in a very loose connective tissue 

stroma drained by conspicuous lymphatic vessels. These lymphatic vessels are bounded by 

continuous, unbroken endothelial cells and, together with Leydig cells, are supported by 

variable quantities of collagen and fibroblasts. To this category belong ram, bull, elephant, 

monkey, and man. The relative paucity of Leydig cells in this group together with their wide 

separation from blood vessels suggest that steroids secreted from Leydig cells must gain 

access to the seminiferous tubules and venous system via diffusion through the edematous 
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loose connective tissues. In the third group, closely packed Leydig cells are the dominant 

component of the interstitium (20-60% of the testicular volume). They fill nearly all of the 

intertubular area whereas the interstitial connective tissue is very little and the lymphatics are 

very few and of small calibre. This group includes domestic boar, warthog, zebra, and naked 

mole rat (Fawcett et al., 1973). No explanation has been advanced for these differences in the 

testicular interstitium, but it is interesting that in two species with abundant large Leydig cells 

(the pig and the horse), the testis secretes large amount of oestrogens (Setchell et al., 1994).  

The excurrent duct system of the adult bovine testis is composed of terminal segment of the 

convoluted seminiferous tubules, straight tubules, and rete testis. The terminal segment is a 

short transitional zone between seminiferous tubules and tubuli recti and is lined by cells 

designated as modified Sertoli cells. Although, the terminal segment is topographically 

located at the end of the convoluted seminiferous tubules, it is considered as a part of the 

intratesticular excurrent duct system because spermatozoa are no longer produced there 

(Wrobel et al., 1982). Based on regional variation in its light microscopic appearance, each 

terminal segment is subdivided into a transitional region, middle portion, and terminal plug. 

In fact, a gradual loss of the spermatogenic cells in a proximo-distal direction is observed 

through these three regions. In the transitional zone, spermatozoa and spermatids disappear 

first, followed by a reduction in the number of spermatocytes whereas the population of 

spermatogonia remains relatively constant. The supporting cells of the transitional region are 

typical Sertoli cells that are distinguished by round or oval nuclei usually situated basal to the 

level of primary spermatocytes. In the middle zone, early spermatogenic cells (spermatogonia 

and primary spermatocytes) are rarely observed. Isolated germinative cells in all stages of 

spermatogenic development, however, are regularly seen within the lumen of this tubular 

region. Modified Sertoli cells in this area contain large clear vacuoles of varying shape and 

size separated by narrow strands of cytoplasm. The terminal plug forms the distal portion of 

the terminal segment and protrudes into the cup-shaped beginning of the tubulus rectus. A 

central lumen is clearly visible in the transitional region and middle portion while further 

distally, the lumen narrows more and more, and near the tip of the terminal segment no 

permanent central lumen appears to be present. The bovine terminal segment is markedly 

surrounded by a vascular plexus in a sleeve-like manner. This plexus is composed of 

arterioles, capillaries, venules, and small lymph vessels. Fibroblasts and many free cells such 

as lymphocytes, monocytes, and plasma cells constitute this cellular aggregation. Similar 

findings have previously been described in ram and goat (Osman and Ploen, 1979; Ezeasor, 

1986) as well as in bull (Osman and Ploen, 1979; Wrobel et al., 1982). Although, the 
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functional significance of the terminal segment is not fully clarified, Wrobel et al. (1982) have 

stated that in bull the terminal plug may function as a valve-like device preventing a reflux of 

spermatozoa and tubulus rectus fluid under normal conditions. They added that modified 

Sertoli cells of the terminal segment could play a role in the spermatophagy within the 

excurrent duct system. Such claims have also been proposed in goat (Ezeasor, 1986), monkey 

(Dym 1974), and boar (Osman, 1978b). The terminal segment is joined to the rete testis by a 

tubulus rectus, which is a narrow extension of the rete testis proper. Tubulus rectus of adult 

bovine testis is composed of three morphologically different regions: a proximal cup-shaped 

region, a middle narrow stalk, and a distal festooned portion. The significant differences 

between these regions are mainly seen in the lumen surface, i.e., the first two segments are 

characterized by smooth lumen surface while the last one is distinguished by a folded 

epithelium, giving the lumen a characteristic festooned form with a considerable reduction of 

the lumen. These results confirm the previous investigation of Osman and Ploen (1978b) and 

Hees et al. (1987) who also reported the presence of three different segments of the bovine 

tubuli recti. The rete testis is a complicated network of intercommunicating channels that lies 

in the mediastinum of the testis parallel to the axis of the epididymis (de Kretser and Kerr, 

1994). In bovine, rete channels have smooth surface and numerous anastomoses. Although, 

these are lined by a simple cuboidal or columnar epithelium, they appear stratified at certain 

sites due to the existence of short intraepithelial crypts. Large channels are often traversed by 

epithelium-covered cords of connective tissue, chordae retis, a characteristic feature of the 

bovine rete testis. However, chordae retis have been described so far for the human (Roosen-

Runge and Holstein, 1978) and for the monkey (Burgos et al., 1979), and probably represent 

common and characteristic features of the rete testis in many other species (Hees et al., 1987). 

Rete channels are surrounded by mediastinal stroma containing myofibroblasts, blood and 

lymphatic vessels and connective tissue. Topographically, the rete testis may be either 

superficial (marginal) as in rat, mice, hamster, and man (Dym, 1976; Roosen-Runge and 

Holstein, 1978) or axial (central) as found in the monkey, cat, dog, guinea pig, ram, rabbit, 

and bull (Dym, 1976; Hees et al., 1987). Further on, Roosen-Runge and Holstein in man 

(1978) as well as Goyal and Williams in goat (1987) have divided the rete testis into septal, 

mediastinal and extratesticular rete. The septal rete testis consists of the zone of the tubuli 

recti that drain the seminiferous tubules. My findings in the fetal testis support the latter 

classification. Therefore, the term septal rete or straight part of the rete testis is more 

appropriate than the term straight tubule. This assumption gets further support from the 

ultrastructural results of the lining epithelium of straight tubules and mediastinal rete. No 
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considerable differences were found between them as both are lined by simple cuboidal 

epithelium with inconspicuous organelles and extensive lateral junctional complexes. Many 

free mononuclear cells, mostly macrophages, and to lesser degree lymphocytes, are localized 

in the basal half of the bovine straight tubules and rete testis epithelium. Additionally, the 

lining epithelium of both has the ability to phagocytose spermatozoa (Sinowatz et al., 1979). 

Immunohistochemically, tubulus rectus and rete testis show the same degree of reaction for 

many antigens (discussed latter). Consequently, these tubules can be viewed as a part of the 

rete testis and not as a separate structure. Because an extratesticular rete is not observed in 

bovine (Dym, 1976; Hees et al., 1989), the bovine rete testis can therefore be divided into 

septal and mediastinal rete testis. A peculiar feature of the bovine mediastinum is the presence 

of conspicuous lymph vessels. Generally, there is a close association between the cranial part 

of the rete testis and adjacent large, thin-walled lymphatics. It has been suggested that this 

arrangement may facilitate transfer of androgen into rete testis fluid (Hees et al., 1987)  

 

5.2. Glycohistochemistry 
Over the last two decades, an impressive variety of regulatory processes including cell growth 

and apoptosis, folding and routing of glycoproteins and cell adhesion/migration have been 

unraveled and found to be mediated or modulated by specific protein-carbohydrate 

interactions (Gabius, 2001). This protein-carbohydrate partnership also determines 

conformation, function, turnover, solubility, targeting, and sorting of many molecules 

(Töpfer-Peterson, 1999). In proteins, oligosaccharides that are linked by a N-

acetylglucosamine residue to asparagine are termed N-glycans. These oligosaccharides 

exhibit high content of terminal mannose and/or neuraminic acids residues (Spicer and 

Schulte, 1992; Wheatley and Hawtin, 1999). Other oligosaccharides attach to serine or 

threonine amino acids via a N-acetylgalactosamine residue. These O-linked glycans contain 

galactosyl, fucosyl, N-acetylneuraminc, and N-acetylglucosamine residues (Wheatley and 

Hawtin, 1999). Fucosyl residues are present in glycans that participate in cell-cell adhesion 

(Blackmore and Eisoldt, 1999; Töpfer-Peterson, 1999) and in the regulation of substrate 

diffusion between cells (Spicer and Schulte, 1992). Glucose and mannose residues are 

abundant in compounds with ion transport functions (Spicer and Schulte, 1992; Blackmore 

and Eisoldt, 1999); moreover, α-D-N- acetylglucosamine residues regulate membrane 

interactions and membrane permeability (Blackmore and Eisoldt, 1999; Töpfer-Peterson, 

1999). Galactose residues are important for cell-cell adhesions (Spicer and Schulte, 1992; 

Töpfer-Peterson, 1999) and are also considered markers of cell differentiation (Spicer and 
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Schulte, 1992). Galactose-β (1→3)−D−N-acetylgalactosamine complexes participate in the 

transport of fluids and ions (Spicer and Schulte, 1992).  

Lectins have a specific binding affinity for the sugar residues of glycoconjugates. Therefore 

they are used as histochemical reagents to investigate the distribution of glycoconjugates in 

various tissue including testis (Arya and Vanha-Perttula,1984, 1986; Lee and Damjanov, 

1984, 1985; Soderstrom et al., 1984;Wollina et al., 1989; Malmi et al., 1990; Ballesta et al., 

1991; Kurohmaru, 1991; Ertl and Wrobel, 1992; Montkowski, 1992; Prem, 1992; Jones et al., 

1993; Arenas et al., 1998; Martinez-Menargues et al., 1999; Cavola et al., 2000; Verini-

Supplizi et al., 2000; Pinart et al., 2001, 2002; Gheri et al., 2003). Lectin histochemistry can 

also be used to detect the minute changes in the composition of the cellular glycoconjugates 

and to follow these changes during normal cellular differentiation and during malignant 

transformation of cells (Malmi and Söderström, 1988). In my study, the sugar residues of 

glycoconjugates in the fetal and adult bovine testis were investigated using thirteen (ConA, 

PSA, LCA, PNA, GSA-I, ECA, DBA, SBA, HPA, VVA, WGA, UEA-I, LTA) different 

fluorescein isothiocyanate (FITC) conjugated lectins. These lectins represent five groups 

(mannose-, galactose-, N-acetylgalactosamine (GalNAc)-, N-acetylglucosamine (GlcNAc)-, 

and fucose-binding lectins) of the known seven lectin-binding groups. In fetal testis, five 

lectins (PSA, PNA, GSA-I, DBA, WGA) showed a positive reaction while the others were 

undetectable. PNA, GSA-I, DBA, and WGA were detected in the germ cells (PGCs and their 

subsequent prespermatogonia) whereas PSA, DBA and WGA labeled fetal Leydig cells. None 

of the lectins used were bound to pre-Sertoli cells. Further on, some lectins have affinity to 

tunica albuginea (PSA, PNA, GSA-I, WGA), basal lamina of testicular cords (PSA, WGA), 

interstitial blood vessels (PSA, GSA-I, WGA), mediastinum testis (PSA, PNA, WGA) and 

rete testis epithelium (PNA). These findings suggest the presence of binding sites containing 

galactose (PNA and GSA-I labeled), GalNAc (DBA labeled) and GlcNAc (WGA labeled) but 

not α-L-fucose in the bovine PGCs and prespermatogonia as well as the existence of mannose 

(PSA labeled), GalNAc, and GlcNAc residues in the fetal Leydig cells. Interestingly, 

galactose binding-lectins (PNA and GSA-I) are mainly localized to germ cells during the 

early stage of gestation (up to 14 cm CRL/ 100 dpc for PNA and 10 cm CRL/ 75 dpc for 

GSA-I) and disappear thereafter while GalNAc (DBA) is seen later (14 cm CRL/ 80 dpc) and 

sustains to late stage of gestation (63 cm CRL/210 dpc). However, GlcNAc (WGA), albeit 

weak, is found during the entire period of pregnancy. My results confirm the findings of 

Wrobel and Süß (1998) who detected GSA-I, DBA, and WGA affinity in bovine embryonic 

germ cells. Conversely and may be in species-specific manner, PSA, LCA and WGA showed 
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a positive reaction in the plasma membrane and cytoplasm of gonocytes, Sertoli cells and 

other somatic cells in mouse while PNA, GSA-I, and DBA showed no definite reaction 

throughout prespermatogenesis (Nagano et al., 1999). In human fetal testis, pre-Sertoli cells, 

PGCs and Leydig cells were characterized by presence of D-galactose-(β1→3)−D−N-

acetylgalactosamine in terminal and/or in subterminal positions, sialic acids, D-N-

acetylglucosamine, and α-D-mannose (Gheri et al., 2003). As pointed out above, galactose 

residues are important for cell-cell adhesions (Spicer and Schulte, 1992; Töpfer-Peterson, 

1999) and are considered markers of cell differentiation (Spicer and Schulte, 1992). 

Galactose-β (1→3)−D−N-acetylgalactosamine complexes also participate in the transport of 

fluids and ions (Spicer and Schulte, 1992). Consistent with these reports galactose residues 

may be expressed in the fetal bovine germ cells very early during their differentiation to 

facilitate their adhesion to the Sertoli cells and/or to basal lamina. Moreover, persistence of 

WGA binding to germ cells during the whole gestation period supports the finding that α-D-

N- acetylglucosamine residues may regulate membrane interactions and membrane 

permeability (Blackmore and Eisoldt, 1999; Töpfer-Peterson, 1999). Since glucose and 

mannose residues are abundant in cells with ion transport functions (Spicer and Schulte, 1992; 

Blackmore and Eisoldt, 1999), mannose present in fetal Leydig cells could be involved in 

inducing and maintaining the cellular activity of these cells (Gheri et al., 2003).   

In adult bovine testis, detection of sugar moieties by lectins was performed on both Bouin ُs-

fixed paraffin-embedded and acetone-fixed frozen sections and showed slight difference 

between the two methods of fixation. Nevertheless, the preservation of testicular morphology 

was better with Bouin than with acetone. Careful analysis of sugar binding-lectins in the adult 

animals revealed the presence of mannose (PSA, LCA) and GalNAc (DBA, SBA, VVA) 

residues in the bovine spermatogonia and spermatocytes. Importantly, binding sites to SBA 

and VVA in spermatogonia and spermatocytes were only evident in the frozen sections 

(discussed below). All lectins investigated except fucose-binding lectins (UEA-I and LTA) 

were bound to the acrosome of round and elongated spermatids. These findings clearly 

indicate that the acrosome of spermatids contain mannosyl, galactosyl, and glucosly residues. 

Apical Sertoli cells processes and Leydig cells were weakly stained with the mannose-binding 

lectins PSA and LCA as well. DBA was additionally seen in the Leydig cells. Although 

previous studies have reported the presence of these sugar residues in the bovine testis (Arya 

and Vanha-Perttula, 1985; Ertl and Wrobel 1992), a clear discrepancy was observed between 

these approaches in the cellular distribution of these glycoconjugates (table 6). In contrast to 

Arya and Vanha-Perttula (1985), who did not succeed to demonstrate lectin staining in male 
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postnatal prepuberal bovine germ cells and discussed a cyclic affinity of the Sertoli cells for 

some of the lectins, Ertl and Wrobel (1992) emphasized that lectin affinity in developing 

testicular tubules of bull testis was restricted to the germ cell line, while the Sertoli cells and 

their precursors remained completely unstained. Although, DBA served as a selective marker 

for prespermatogonia, this lectin stained Golgi complexes of most germ cell stages after the 

gradual onset of spermatogenesis (Ertl and Wrobel, 1992). Inner and outer membranes of the 

acrosomal complex of spermatids, especially during Golgi and cap phase of spermiogenesis, 

were intensely stained with PNA, RCA-I, and SBA. In the intertubular tissue BS-I, RCA-I, 

and UEA-I bound to vascular endothelia. Compartments of the intertubular extracellular 

matrix were stained with ConA, RCA-I, UEA-I, and WGA but no reaction was recorded with 

the Leydig cells (Ertl and Wrobel, 1992). Conversely, Arya and Vanha-Perttula (1985) 

reported that the Sertoli cells display a staining pattern, which varied with the stages of the 

spermatogenic cycle. A moderate staining of the Sertoli cell processes around the 

spermatogenic cells was found with PNA, RCA-I, ConA and WGA. After the release of the 

mature spermatozoa, the apical cytoplasmic extensions of the Sertoli cells were strongly 

stained with the same lectins. At a later stage of the cycle, staining was located in the body of 

these cells and eventually in the basal portion of the Sertoli cells (Arya and Vanha-Perttula, 

1985). My results are therefore fairly consistent with that of Ertl and Wrobel (1992) since the 

germ cells, particularly spermatids, were the most clearly lectin-binding cells in the adult 

bovine testis. These data are substantiated by the fact that the acrosomes of spermatids 

contain several enzymes, such as acid phosphatase, acrosin, and hyaluronidase, which are 

glycoproteins or closely associated with complex saccharide moieties that are essential for 

fertilization (Gould and Bernstein, 1975). Similar to my findings, acrosomes of adult boar 

spermatids exhibited no affinity for lectins that detect α-L-fucose residues (Cavola et al., 

2000; Pinart et al., 2001). Probably these residues are masked by the immediate addition of 

other sugars in the subsequent glycosylation steps of acrosin (Peterson et al., 1992). Lectin 

histochemistry was widely investigated in many mammalian species including rats (Arya and 

Vanha-Perttula, 1984; Söderstrom et al., 1984; Malmi et al., 1990; Jones et al., 1993; 

Martinez-Menargues et al., 1999), mice (Lee and Damjanov, 1984; Arya and Vanha-Perttula, 

1986), hamsters (Ballesta et al., 1991), cat (Prem, 1992), dog (Montkowski, 1992), goats 

(Kurohmaru, 1991), horse (Verini-Supplizi et al., 2000), boar (Cavola et al., 2000; Pinart et 

al., 2001,2002) and humans (Wollina et al., 1989; Arenas et al., 1998). My findings in the 

adult bovine testis are compatible with the results of these studies where the spermatogenic 

cells were also the most reactive cells in all species so far studied (table 5). Generally, 
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carbohydrate residues in germ cell plasma membranes are needed for Sertoli-germ cell 

interactions during spermatogenesis and, later on, for interactions with the male excurrent 

duct epithelia, and cell surfaces in the female genital tract (Ertl and Wrobel, 1992). Recently, 

this notion is further supported by the finding that target disruption of Man2a2, a gene 

encoding α-mannosidase IIx (MX), an enzyme that forms intermediate asparagine-linked 

carbohydrate (N-glycans), results in Man2a2 null males that are nearly infertile (Akama et al., 

2002). Man2a2 null spermatogenic cells fail to adhere to Sertoli cells and are prematurely 

released from the testis to epididymis. These data clearly show that successful 

spermatogenesis may mainly depend on specific type of carbohydrates. Further on, it has been 

suggested that glycoconjugates of spermatogonia and spermatocytes are implicated in 

substrate and ion transport, and in regulation of membrane permeability (Jones et al., 1992; 

Jegou et al., 1995). Low content of adhesion molecules in spermatocytes could be explained 

by the fact that they are migrating cells moving from the basal compartment to the apical 

compartment of the seminiferous epithelium (Jones et al., 1992; Griswold, 1995). Spermatid 

glycans participate in ion transport and in adhesion and interaction with the neighboring 

Sertoli cells (Jegou et al., 1995; Santi et al., 1998). Galactose residues are abundant in glycans 

that intervene in formation of anchoring structures and in transport of fluids and ions, but they 

are also considered markers of acrosomal differentiation (Jones et al., 1992). The residues of 

α-D-glucose and α-D-mannose of the Sertoli cell apical cytoplasm are additionally 

considered as markers of the compounds that participate in differentiation of the acrosomes in 

spermatids (Ballesta et al., 1991). The differences in cellular distribution of lectins between 

fetal and adult bovine testis are firmly supported by the conclusion that specific carbohydrate 

expression patterns may exhibit striking changes related to cell differentiation (Roth, 1996). 

In addition, recent advances in glycan research have shown that cell surface proteoglycans are 

implicated in cell development and differentiation (Iozzo, 1998; Lander and Selleck, 2000). 

Results obtained by lectin histochemistry are considerably influenced by the mode of fixation 

used and that the difference in lectin staining after different fixation methods can be marked 

(Malmi and Söderstrom, 1988). Generally, an excellent result of lectin stain of testicular 

tissue is obtained after fixation in the Bouin ُs fluid or formaldehyde with acetic acid while 

poor results are obtained after the fixation in non-buffered formaldehyde (Malmi and 

Söderstrom, 1988). The effects of fixation and tissue processing on lectin staining are 

probably mediated via two mechanisms: the fixative employed may alter the sugars 

responsible for the specific lectin binding or the glycoproteins in tissues may be dissolved and 

lost during the fixation or other tissue processing. In this approach, the most obvious 
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differences between Bouin ُs-and acetone-fixed testicular tissues were seen for SBA and 

VVA. These lectins solely stained spermatids acrosomes in the paraffin-embedded tissue 

while additionally labeled spermatogonia and spermatocytes in the frozen sections. These 

results show that the fixative and the embedding processes have a considerable effect on the 

staining pattern of lectins. Moreover, it was evident that the effect of fixative was also 

influenced by the type of lectin, i.e., some lectins are rather insensitive to the method of 

fixation (e.g., PNA, ECA and WGA) compared to others. These results are substantiated by 

the conclusion of Malmi and Söderström (1988) who stated that SBA staining pattern is 

dependent on the fixation method. Interestingly, they also added that if the cells contain large 

amounts of glycoconjugates, the staining pattern would not be considerably influenced by the 

method of fixation. This supports my results as SBA and VVA were identified in small 

compartment of the spermatogonia and spermatocytes cytoplasm (Golgi complexes). The 

basal lamina of the seminiferous tubules and blood vessels showed different affinity 

according to the fixative used. In Bouin ُs-fixed tissue, the basal lamina was only labeled with 

LCA and WGA while in acetone-fixed sections most lectins including the constantly negative 

fucose binding-lectins UEA-I was detectable. In the same way, testicular blood vessels were 

markedly stained with GSA-I in the paraffin sections however, similar results to that of the 

basal lamina were seen in the frozen sections. In addition to fixation, lectin binding to sugars 

of similar composition may be influenced by sugar configuration (α or β) and localization of 

the specific sequence (terminal vs. internal) (Walker, 1988). This can explain the diverse 

staining results of the same group of sugar binding-lectin and with the employment of 

different fixation methods. For instance, PSA and LCA of the mannose group as well as DBA 

and HPA of the GalNAc group showed different results in the fetal testis. Several examples 

are also available in the adult (table 13). Furthermore, the reactive behavior of the adjacent 

structures may impede or facilitate the recognition of lectin binding to certain structures. 

Therefore, it is always recommended to use a battery of lectins for the study of one sugar 

(Walker, 1988). In addition to the aforementioned factors, lectin concentration, temperature of 

incubation, time of incubation, and pH value play an important role and greatly affect the 

result of lectins staining (Dulaney, 1979; Roth, 1983; Allison, 1987; Malmi and Söderstrom, 

1988).  
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5.3. Immunohistochemistry  

In this thesis, 12 different proteins (FGF-1, FGF-2, S100, laminin, α-SMA, VEGF, Cx43, 

CD4, CD8, CD68, ACE, and GalTase) have been investigated in the bovine testis. Fibroblast 

growth factors (FGFs) are a family of heparin-binding proteins with key roles in a variety of 

developmental events and possible importance for maintaining normal tissue homeostasis 

(Ornitz and Itoh, 2001). In vertebrates, the FGF family comprises to date 23 (FGF-1 to FGF-

23) structurally related heparin-binding polypeptide mitogens. The members of FGF family 

range in molecular mass from 17 to 34 kDa and share 13-71% amino acid identity (Ornitz and 

Itoh, 2001). A common feature of all members of the FGF family is their high affinity to 

glycosaminoglycan heparin and structurally related cell surface as well as extracellular matrix 

heparan-sulfates (Givol and Yayon, 1992; Ornitz and Itoh, 2001). FGFs act at least through 

three distinct types of receptors (Szebenyi and Fallon, 1999) and are produced by many cell 

types and tissues, including testis (Ueno et al., 1987; Mayerhofer et al., 1991; Mullaney and 

Skinner, 1992; Han et al., 1993; Steger et al., 1998; Cancilla et al., 2000; Wagener et al., 

2000, 2003; Wahlgren, 2003). FGF-1 and FGF-2 are closely related polypeptide proteins with 

a predominant length of 140 and 146 AA respectively. However, both shorter and longer 

forms with a length of 134 &155 AA for FGF-1 and 131 &155 AA for FGF-2 have also been 

described (Gospodarowicz, 1992). Several forms of FGF-1, varying in size from 16 to 18 

kDa, were generated by proteolysis during purification (McKeehan and Crabb, 1987). 

Similarly, FGF-2 exists in five isoforms with molecular masses of 18, 22, 22.5, 24, and 34 

kDa (Arnaud et al., 1999). Although the 18 kDa FGF-2 is localized primarily in the 

cytoplasm, it has also been detected at the cell surface and in the extracellular matrix (Bikfalvi 

et al., 1997). The other forms with higher molecular weight are predominantly localized in the 

nucleus (Bikfalvi et al., 1997; Arnaud et al., 1999). It has been suggest that different 

molecular weight forms of FGF-2 have distinct functions (Bikfalvi et al., 1997). The 18 KDa 

form promotes cell migration and mitogenesis, whereas higher molecular weight FGF-2 

controls the cell growth (Bikfalvi et al., 1997). On protein level, FGF-1 is 55% homologous to 

FGF-2, and both bind to the same receptors. Although the prototypes FGF-1 and FGF-2 lack 

conventional secretory signal sequence and the mechanism of release from cells remains 

unclear, they are highly abundant in ECM and on the cell surface of a variety of embryonic 

and adult tissues (Givol and Yayon, 1992, Ornitz and Itoh, 2001). Functionally, FGFs are 

shown to regulate cell survival, apoptosis, proliferation, differentiation, matrix composition, 

chemotaxis, cell adhesion, migration, motility, and growth of cell processes (Gospodarowicz 

et al., 1987; Bikfalvi et al., 1997; Szebenyi and Fallon, 1999). In the testis, several putative 
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functions have additionally been proposed for FGFs. These include testicular angiogenesis, 

prepubertal Sertoli cell and germ cell proliferation, mediating Sertoli-germinal cell 

interaction, initiation of spermatogenesis, and Leydig cell steroidogenesis (Jaillard et al., 

1987; Fauser et al., 1988; Murono et al., 1992; Van Dissel-Emiliani et al., 1996; Laslett et al., 

1997; Wagener et al., 2003; Wahlgern, 2003). In the present study, FGF-1 and FGF-2 were 

expressed in a cellular- and stage-specific manner within the embryonic bovine testis. FGF-1 

immunostaining was localized to the cytoplasm of the pre-Sertoli cells in the seminiferous 

cords and to the cells in the interstitial compartment, especially to fetal Leydig cells. 

Interestingly, while the FGF-1 immunostaining was observed in the pre-Sertoli cells through 

the entire embryonic period, no reaction was found in the germ cells. Toward the end of early 

pregnancy (from 10 cm CRL/ 75 dpc, onward), FGF-1 immunostaining was also recognized 

in the epithelium of the newly differentiated straight tubules and rete testis. Further on, the 

endothelium of the newly formed blood vessels (arteries) was shown to localize FGF-1 

protein from the mid pregnancy (30 cm CRL/130 dpc) and onwards. Contrary to my findings 

in bovine fetal testis, FGF-1 immunostaining has previously been detected in the gonocytes of 

the fetal rat testis while no reaction was reported within the pre-Sertoli cells (Cancilla et al., 

2000). However, the fetal Leydig cells of the rat testis are also FGF-1 positive cells. While the 

role of FGF-1 in the pre-Sertoli and germ cells development is uncertain, its role in Leydig 

cells steroidogenesis appears rather established. In rat, immunostaining for FGF-1 in 

immature adult-like Leydig cells and peritubular cells co-localizes with FGFRs1-4 (Cancilla 

and Risbridger, 1998), suggesting that FGF-1 can act through all these receptors in the 

interstitium (Cancilla et al., 2000). An autocrine action is consistent with FGF-1 modulation 

of fetal Leydig cell steroidogenesis (Laslett et al., 1997). FGF-1 has been shown to stimulate 

testosterone production by fetal Leydig cells and 5α-androstane 3α, 17 β-diol production by 

immature Leydig cells in a cultured interstitial cell preparation in the absence of LH (Laslett 

et al., 1997).   

Unlike FGF-1, FGF-2 could not be demonstrated by immunohistochemistry during early 

testicular differentiation but was identified somewhat later. FGF-2 immunostaining was first 

observed at 6 cm CRL (60 dpc), reached a maximum at 14 cm CRL (80 dpc), markedly 

declined at 30 cm CRL (130 dpc), and disappeared completely thereafter. Importantly, during 

this limited period of expression, distinct FGF-2 immunostaining was only localized in the 

nucleus of fetal Leydig cells. Unexpectedly, although the presence of scattered Leydig cells in 

mid and late stages of gestation, no FGF-2 positive Leydig cells have been demonstrated  

after 30 cm CRL (130 dpc). No immunostaining was also found in seminiferous cords or in 
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other cells of the interstitium. In late pregnancy, FGF-2 immunostaining was predominantly 

localized to tubulus rectus and rete testis epithelium, to endothelium and tunica media of 

blood vessels especially that of the tunica albuginea and to some peritubular cells surrounding 

the seminiferous cords. In rat fetal testis, FGF-2 was detected in germ, Leydig, and 

peritubular cells (Gonzalez et al., 1990; Koike and Noumura, 1994). As mentioned above, 

Leydig cells have been morphologically recognized in the present study at 3.5 cm CRL and 

reached their maximum level of development at 14 cm CRL (80 dpc). Later they begin to 

dedifferentiate. In addition, the level of testosterone concentration within the testis is 

simultaneously increased with Leydig cells development to reach its peak with their 

maximum at 88 dpc. Thereafter and in parallel to the process of Leydig cells dedifferentiation, 

rapid decrease in the testosterone concentration takes place (Sinowatz et al., 1987). Taken 

together, the stage-specific immunolocalization of FGF-2 is nearly concurring with 

developmental changes of bovine fetal Leydig cells as well as with the changes in the 

testosterone concentration. These data indicate that FGF-2 could be involved in Leydig cells 

steroidogenesis during the fetal period. Such claim gets further support from the finding that 

no FGF-2 positive Leydig cells were seen after the reduction in testicular testosterone 

concentration despite the presence of scattered Leydig cells within the testicular tissue at the 

late stage of gestation (table 11). Consistent with my suggestion, several approaches have 

shown that FGF-2 is able to modulate Leydig cell steroidogenesis (Fauser et al., 1988; 

Murono et al., 1992; Laslett et al., 1997).  

In adult bovine testis, the presence of FGF-1 and FGF-2 in the testis was investigated by Real 

time RT-PCR, in situ hybridization, and immunohistochemistry. Absolute mRNA 

quantification was done using real time RT-PCR that is regarded as a very sensitive method 

for quantification of low level mRNA in biological specimens (Bustin, 2000; Ginzinger, 

2002). In this technique, amplicons are measured as they accumulate during the exponential 

phase of the reaction. This makes quantification much more accurate than methods that 

depend mainly on the end-point measurements. In the present study, 10 fold serial dilutions of 

the standard cDNA template of both factors resulted in slopes of -3.33 and -3.48 for FGF-1 

and FGF-2 respectively. These values are fairly close to the theoretical ideal values of -3.32 

(Ginziger, 2002). Moreover, the PCR efficiencies (defined as the factor by which the 

amplicon concentration is multiplied at each cycle) showed an acceptable percentage (99.6% 

for FGF-1 and 93.7% for FGF-2). The calculated copy numbers mainly depend on slope and 

PCR efficiency. An ideal slope should be -3.32 for 100% efficiency (Ginziger, 2002). 

Transcription of FGF-1 about 10 times higher than that of FGF-2 may not be an absolute 



                                                                                                                                     Discussion 
                                                                                            

                                                                     160                                                                                                   

value because the PCR efficiency was not the same. To ensure specificity of the PCR 

products, melt curve analysis was performed immediately after amplification. The melt curves 

of this study showed a single peak for each growth factor. In addition, the agarose gel 

electrophoresis revealed a single PCR band, which ensures the specificity of amplification. A 

drawback of real time quantification is that it cannot offer an accurate quantification for the 

actual copy number of molecules of unknown samples (Yin et al., 2001; Ginzinger, 2002). 

This mainly attributes to several reasons. Quantification does not take account of the original 

sample’s RNA purification efficiency or of cDNA synthesis during reverse transcription. 

Moreover, it does not consider the difference in amplification efficiency between sample 

cDNA and PCR products of the standard (Yin et al., 2001; Ginzinger, 2002). For these 

reasons, the term “absolute quantification” may not be fully appropriate as long as these 

problems are not solved.  

By means of in situ hybridization, both FGF-1 and FGF-2 signals were found in Leydig and 

Sertoli cells as well as in the modified Sertoli cells of terminal segment. FGF-1 transcripts 

were additionally recognized in the straight tubules and rete testis epithelium.  

Immunohistochemically, FGF-1 protein was localized in the cytoplasm of spermatogonia and 

spermatids as well as in the cytoplasm of Sertoli and Leydig cells while FGF-2 protein was 

only seen in the cytoplasm of some spermatogonia and in myofibroblasts. The discrepancies 

between in situ hybridization and immunohistochemical results may indicate a difference in 

the sites of synthesis and utilization of FGF-1 and FGF-2 within the bovine testis, which may 

point to a paracrine action of these growth factors.   

Previously similar data have also been reported in the other mammals. FGF-1 was detected in 

the rat spermatogonia (Wahlgren, 2003) and roe deer spermatids (Schön and Blottner, 2004). 

Localization of FGF-1 in Sertoli and Leydig cells was additionally found in adult rat (Cancilla 

et al., 2000) and roe deer (Wagener et al., 2003) testis. Furthermore, FGF-2 was seen in the 

cytoplasm of spermatogonia in adult rodent (Mayerhofer et al., 1991; Wahlgren, 2003), 

human (Steger et al., 1998) and roe deer testis (Wagener et al., 2003) as well as in the Sertoli, 

Leydig, and peritubular cells of rat (Mullany and Skinner, 1992; Han et al., 1993). A recent 

paper of Schön and Blottner suggested that FGF-1 may be involved in the Sertoli cell-

spermatid communication and could serve as a survival factor for somatic cell populations 

within the testis. In contrast to FGF-1, FGF-2 has been intensively studied. Earlier 

investigations have suggested that FGF-2 is an important factor for the regulation of Sertoli 

cell functions in pig (Jaillard et al., 1987) and for the initiation and regulation of 

spermatogenesis in rat (Mayerhofer et al., 1991; Mullaney and Skinner, 1992, Han et al., 
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1993, Van Dissel-Emiliani et al., 1996). Moreover, it was proposed that FGF-2 is involved in 

autocrine and paracrine regulation of the proliferation and differentiation of spermatogonia 

and spermatocytes in human testis (Steger et al., 1998). Consistent with this assumption, more 

recent data emphasized that FGF-1 and FGF-2 have stimulatory effects on spermatogonia 

type A and type B proliferation via a direct effect on premitotic DNA synthesis (Wahlgren, 

2003). This effect is stage specific (stage I only), which indicates mitogenic as well as 

survival actions of both factors on germ cells. As demonstrated in human and various animals 

model, localization of FGF-1 and FGF-2 in bovine spermatogonia suggests a role of these 

growth factors in spermatogonial proliferation. My results, moreover, propose that FGF-1 and 

FGF-2 may modulate the testicular hormonal profiles via autocrine actions on adult Leydig 

cells. This hypothesis is partially substantiated by findings of in vitro studies (Fauser et al., 

1988; Murono et al., 1992; Laslett et al., 1997), which have demonstrated a positive influence 

for FGF-2 on the Leydig cell steroidogenesis.  

In this study, blood vessels endothelium and vascular smooth muscle cells (tunica media of 

the medium and small sized blood vessels) were markedly stained with FGF-1 and FGF-2. 

Interestingly, previous investigators have proposed that FGF-2 could be involved in the 

regulation of blood pressure and improvement of blood flow (reviewed by Bikfalvi et al., 

1997). Further on, it has been shown that factors inducing vascularization improve the 

spermatogenic and steroidogenic functions of the varicocelized rat testis (Isoyama and 

Sofikitis, 1999). A more recent study has additionally emphasized that local release of FGF-2 

significantly improves testicular blood flow and morphology after ligation of testicular 

vessels in rat (Guler et al., 2004). FGF-2 may therefore play a role in the local control of 

blood flow within the bovine testis. Nevertheless, additional experiments are necessary to 

clarify the functional role of FGF-1 and FGF-2 in testicular blood flow. 

Although, FGF-2 has been detected in the rete testis fluid of rat and ram and has been 

proposed to be produced in the testis and act upon the initial segment of the epididymis to 

regulate gamma-glutamyl transpeptidase (Lan et al., 1998; Kirby et al., 2003), the functional 

significance of intense localization of FGF-1 and FGF-2 in the bovine rete testis and straight 

tubule epithelium requires further investigations to be elucidated.  

 

S-100 proteins, named for their solubility in a 100% saturated solution of ammonium sulphate 

at neutral pH, is a group of closely related, small, acidic, water-soluble, Ca²+-binding proteins 

(Donato, 1986; Zimmer et al., 1995). S-100 belongs to the family of Ca²+-binding protein, 

which includes calmodulin, calcyclin, troponin c, parvalbumin, light chain of myosin and 
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intestinal calcium-binding protein (Isobe et al., 1982). To date, some 20 different proteins 

have been assigned to S-100 family. They show different degree of homology, ranging from 

25% to 65% identity at the amino acid level. Altogether, they represent the largest subgroup 

in the EF-hand Ca²+-binding protein family (Schafer and Heizmann, 1996; Heizmann et. al., 

2002). Structurally, S-100 proteins are dimers of at least two types of subunits (α and β) with 

different amino acid composition. These subunits are selectively expressed by specific cell 

types in the form of either homodimers (αα and ββ) or heterodimers (αβ). In resting cells, S-

100 proteins are localized in specific cellular compartments from which some of them 

relocate upon cellular stimulation and even are secreted exerting extracellular, cytokine-like 

activities (Heizmann et. al., 2002). Therefore, S-100 proteins display the unusual property of 

acting both, within cells as Ca²+ sensor proteins implicated in Ca²+ signal transduction and, 

outside cells as ligands for specific cell surface receptors on an increasingly larger number of 

cell types. It is thought that this group of proteins carries out their intracellular functions by 

interacting with specific target proteins. The list of these target proteins now includes a 

number of types (up to 40 types) e.g. desmin, vimentin, tubulin, p53, etc. (Heizmann and Cox, 

1998; Donato, 2001). Additionally, it has been reported that some S-100 proteins (after 

secretion) can have paracrine effects on neighboring cells and that the extracellular 

concentrations play a crucial role in the physiological response. It has recently been found 

that, some S-100 proteins have also the capability to interact with the newly discovered 

RAGE surface receptors (Receptor for Advanced Glycation End Product) to exert their 

function but it is not known whether RAGE is a universal S-100 receptor or S-100 members 

also interact with other cell surface receptors (Donato, 2001; Heizmann et al., 2002; Hsieh et 

al., 2002). Initially S-100 protein was found in glial elements of the brain and in Schwann 

cells of the peripheral nervous system. It had therefore long been considered specific to the 

nervous tissue (Bock, 1978). However, subsequent immunohistochemical and biochemical 

studies have revealed the presence of S-100 protein in tissues other than the nervous system, 

particularly in the testis (Girod et al., 1986; Haimoto et al., 1987; Amselgruber et al., 1992, 

1994; Cruzana et al., 2000; Cruzana et al., 2003). In my thesis, S100 has been detected in the 

embryonic and adult bovine testis. In the prenatal testis, it was demonstrated in the cytoplasm 

and nucleus of pre-Sertoli cells. Germ and Leydig cells exhibited no immunostaining. During 

mid pregnancy (from 23 cm CRL/110 dpc, on), moderate S100 reaction was also found in the 

lining epithelium of the newly differentiated straight tubules, in rete testis epithelium and in 

the endothelium of blood and lymph vessels.  
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In adult bovine testis, specific immunoreactivity for S100 was observed in Sertoli cells, 

modified Sertoli cells of the terminal segments and in epithelial cells of the straight testicular 

tubules and rete testis. Additional S100 immunostaining was found in the endothelial cells of 

capillaries, veins, and lymphatic vessels. No S100 immunoexpression was observed in 

different stages of germ cells, Leydig and myofibroblast cells, and intraepithelial 

macrophages of the rete testis. Immunohistochemical localization of S-100 in the testis has 

previously been reported in the fetal testis of rat (Kagi et al., 1988) and bovine (Setijanto, 

1992) as well as in the adult testis of different mammalian species including rat (Michetti et 

al., 1985, Amselgruber et al., 1994), cat (Amselgruber et al., 1994; Cruzana et al., 2000), 

European bison (Czykier et al., 1999), ram, boar, horse, dog, and bull (Amselgruber et al., 

1992,1994), buffalo (Cruzana et al., 2003), monkey (Girod et al, 1986), and human (Michetti 

et al., 1985; Haimoto et al., 1987). My findings in bovine fetal testis are consistent with the 

results of Setijanto (1992) who has also observed S100 immunostaining in the pre-Sertoli 

cells, endothelium of blood and lymph vessels and rete testis epithelium. Conversely, Kagi 

and colleagues (1988) have detected S100 in the Leydig cells, fetal spermatogonia and 

endothelial cells of prenatal rat testis. S-100 protein was seen in the cytoplasm and nuclei of 

Sertoli cells in adult monkey (Girod et al, 1986), ram, bull, boar, cat, horse (Amselgruber et 

al., 1994; Cruzana et al., 2000), and buffalo (Cruzana et al., 2003) testes. With the exception 

of monkey in the abovementioned animals, a particular intense staining was seen in the 

modified Sertoli cells of the terminal tubular segment (Girod et al., 1986; Amselgruber et al., 

1992, 1994; Cruzana et al., 2000, 2003). Leydig cells were found to be strongly positive for 

S-100 protein in rat, cat, and human testis and to a lower degree in pig and horse testis 

(Michetti et al., 1985; Girod et al, 1986; Amselgruber et al., 1994; Cruzana et al., 2000). 

Endothelial cells of capillaries, veins, and lymphatic vessels were regularly S-100 protein 

immunoreactive in rat, boar, ruminants, and human (Michetti et al., 1985; Amselgruber et al., 

1992, 1994; Cruzana et al., 2003). A distinct immunostaining of peritubular cells was only 

found in the testis of dog, cat, and rat (Amselgruber et al., 1994; Cruzana et al., 2000). S-100 

protein immunoreactivity was additionally detected in the epithelial cells of the straight 

tubules and in the epithelial cells of rete testis in bull, ram, boar and buffalo (Amselgruber et 

al., 1992, 1994; Cruzana et al., 2003). In the European bison, immunoreactivity for S-100 

protein was observed in the endothelial cells of arteries, veins, capillaries, and lymphatic and 

a weak reaction was also found in the smooth muscle of arteries and veins. No reaction was 

detected in Sertoli cells and/or Leydig cells (Czykier et al., 1999). Therefore, the S100 protein 

immunoreactivity in the adult testis of my research supported the findings of Amselgruber et 
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al. (1992) on bovine and showed a parallel result with that of sheep (Amselgruber et al. 1994) 

and buffalo (Cruzana et al., 2003). A great body of evidence suggests that S-100 could be 

viewed as a multifunctional subfamily of Ca2+-binding proteins of the EF-hand type. A large 

number of diverse functions is attributed to S-100 proteins, ranging from calcium-buffering 

through intracellular (e.g., modulation of enzyme activities, energy metabolism, motility, and 

secretion) and nuclear (e.g., transcription and apoptosis) functions to extracellular activities 

(e.g., secretion, neurite extension, and chemotaxis) (Donato, 1999, 2001; Schafer and 

Heizmann, 1996; Heizmann and Cox, 1998; Heizmann et. al., 2002). Despite all of these 

proposed functions, the exact biological role of this protein in the testis is not yet known. 

However, S-100 protein in the different cell types of the testis supports the hypothesis that 

this protein is a multifunctional protein (Donato, 1986; Haimoto et al., 1987; Amselgruber et 

al., 1992). The expression of S100 in fetal bovine testis points to a pivotal role of this protein 

in Sertoli cell morphology. S100 proteins have also been implicated in the regulation of cell 

cycle due to the stimulation of Ndr, a nuclear serine/threonine protein kinase important in the 

regulation of cell division and cell morphology, in a Ca²+-dependent manner (Donato, 2001). 

Additionally, one of the best-characterized functions of S100 proteins is the regulation of cell 

morphology, the dynamics of certain cytoskeleton constituents, and the reciprocal 

relationships of cytoskeleton element via direct and/or indirect interactions with microtubules, 

intermediate filaments, microfilaments, myosin, and /or tropomyosin (Donato, 2001). 

Although the exact testicular function of S100 is yet unclear, it is striking to note that the bulk 

of the cell types staining positive for S100 exhibit special morphological features (Michetti et 

al., 1985) such as Sertoli cells (Amselgruber et al., 1992). S100 protein in the Sertoli cells is 

assumed to be involved in the microtubule assembly-disassembly system (Amselgruber et al., 

1992). Further on, the protein may play a role in the secretory and absorptive functions in the 

intratesticular excurrent duct system and may be involved in establishing the blood-testis 

barrier (Amselgruber et al., 1994; Cruzana et al., 2003).  

 

The role of basal lamina (BL) in the embryonic development and in the functions of adult 

tissues has been inferred from a number of observations. For instance, BL components 

promote cell adhesions and modulate the in vitro phenotype of the cells. BL also serves as 

depositories of growth factor (e.g., FGF), and may thereby modulate access to, and activity of, 

such growth factors. In addition, several groups have shown that disruption of the cell 

adhesion to extracellular matrix in vitro can induce programmed cell death (reviewed by 

Engvall, 1995). A growing body of evidence supports the notion that extracellular matrix 
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(ECM) molecules and mesenchymal cells influence Sertoli and spermatogenic cells (Dym, 

1994). The interest in the seminiferous tubule ECM components stems partially from 

observations that male infertility is associated with abnormal thickening in the lamina propria 

of the seminiferous tubules (Salomon and Hedinger, 1982; Davidoff et al., 1990).  

As pointed out in my review, the lamina propria is composed of both peritubular myoid cells 

and ECM material including a basal lamina. Previous approaches have shown that this lamina 

contains laminin, type IV collagen, heparan sulfate proteoglycans, fibronectin, and 

nidogen/entactin (Dym, 1994; Erickson and Couchman, 2000). Laminins, prominent 

glycoproteins in basal lamina, are large complexes composed of a heavy α chain, and the light 

β and γ chains. To date, there is evidence of 12 different laminin isoforms in vivo (six α-, 

three β- and three γ-laminin). Several biologically important activities of laminin have been 

suggested, including cell adhesion, growth, morphology, differentiation, and migration 

(Kleinman et al., 1985).  

In the bovine fetal testis, positive immunostaining for laminin was initially detected in the 

basal lamina that delineates the differentiating sexual cords and below the thickened surface 

epithelium of tunica albuginea at 2.5 cm CRL (43 dpc). In the subsequent stages of testicular 

development, laminin positive basal lamina completely enclosed the testicular cords and 

became evident around the blood vessels and beneath the rete testis epithelium. Importantly, 

toward the end of the early pregnancy (10 cm CRL/75 dpc), a connection between the laminin 

positive basal lamina of seminiferous cords and rete testis was detectable. In the testis of adult 

animals, marked laminin positive reaction was also localized in basal lamina of the 

seminiferous tubules and myofibroblast cell layers. In most seminiferous tubules, laminin 

showed a diffuse staining of the basal lamina, but in some tubules, particularly at the level of 

terminal segments, the laminin deposits formed invaginations into the seminiferous 

epithelium. This pattern of arrangement results in striated appearance of the modified Sertoli 

cells basal portion. Laminin was also detected in the adult basal lamina of the vascular 

endothelium, of smooth muscle cells of blood vessels, of the rete testis epithelium and of the 

myofibroblasts. These findings are consistent with numerous approaches that have studied the 

localization of laminin in fetal and adult testis of several mammalian species including mouse 

(Enders et al., 1995; Frojdman et al., 1995; Pelliniemi and Frojdman, 2001), rat (Hadley and 

Dym, 1987; Gelly et al., 1989; El Quali et al., 1991; Yazama et al., 1997; Pelliniemi and 

Frojdman, 2001), dog (Benazzi et al., 1995) and human (Pollanen et al., 1985; Davidoff et al., 

1990; Santamaria et al., 1990; Virtanen et al., 1997; Gulkesen et al., 2002). Nevertheless, 

laminins are not exclusively localized to basal lamina. El Quali et al. (1991) identified the 
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laminin as being expressed in Sertoli cells, gonocytes, and peritubular cells during rat 

testicular development. These data may be partially substantiated by the fact that laminin is 

released from cultured rat Sertoli cells (Skinner et al., 1985) and is synthesized and secreted 

by both Sertoli and peritubular cells in human (Pollanen et al., 1985). Although Wrobel 

(2000a) demonstrated that the first connection between the seminiferous tubules and rete 

testis via short straight testicular tubules occurred after 85 dpc, my result detected an earlier 

connection through the basal lamina (10 cm CRL/75 dpc). The early expression of laminin in 

the bovine fetal testis may suggest a functional role in the process of testicular cord 

morphogenesis. This assumption has been substantiated by several observations. First, 

laminin secreted by gonocytes has been proposed to play an important role in adhesion of 

gonocytes to the basal lamina and adjacent Sertoli cells (El Quali et al., 1991). Second, 

laminin probably mediates connection between the Sertoli cells and the basal lamina, since 

antibodies to laminin inhibit Sertoli cell attachment to reconstituted basal lamina (Tung and 

Fritz, 1993). This attachment is important for the morphology of Sertoli cells and for the in 

vitro differentiation of cords composed of Sertoli cells (Hadley et al., 1990). Finally, some 

isoforms of laminin (laminin α 5) has recently been designated as an early molecular marker 

for sexual differentiation, which may be regulated by the testis-determining factors (Frojdman 

et al., 1999). In mature testis, Tung and Fritz (1993) concluded that laminin regulates the 

Sertoli-Sertoli tight junctions and the blood testis barrier via a transmembrane link between 

the extracellular laminin and the Sertoli cell cytoskeleton. Morphologically, invaginations of 

the tubular basal lamina towards the seminiferous epithelium have been described earlier in 

the literature (Bustos-Obregon, 1976; Wrobel et al., 1979) and recently by this study. This 

morphology seems to be the reason of laminin deposit invaginations within the seminiferous 

tubules particularly at the terminal segment. Similar to my observation, laminin deposits has 

been shown to form small invaginations into the seminiferous epithelium in adult human 

testis (Pollanen et al., 1985; Santamaria et al., 1990; Gulkesen et al., 2002).  

 

Actin is one of the most conserved eukaryotic proteins present in the cytoskeleton of all cells 

(Schlatt et al., 1993). Actin occurs as cardiac muscle actin, skeletal muscle actin, smooth 

muscle actin, and structural F-actin (Steger and Wrobel, 1994; Steger et al., 1994). Since α-

smooth muscle actin (αSMA) is known as a specific marker of the final smooth muscle cell 

differentiation (Skalli et al., 1986), it was expected to be solely expressed in the differentiated 

smooth muscle cells of bovine testis. No αSMA immunoreaction was seen in tunica albuginea 

or in peritubular cells during the whole period of bovine testis development. These findings 
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are completely related to the observation of Wrobel et al. (1988) who stated that the 

differentiation of peritubular cells commences in the proliferative phase (8th -20th week) of 

the postnatal bovine testis and is completed in the subsequent prepubertal phase (20th -32nd 

week) when the transformation of peritubular cells to myofibroblast cells that can be clearly 

separated by light microscope from other derivates of the mesenchymal-like cell line takes 

place. My results are additionally consistent with that in the rat (Palombi et al., 1992), 

monkey (Schlatt et al., 1993), and human (Holstein et al., 1996; Jezek et al., 1996) where 

αSMA is expressed in adult but is never observed in fetal peritubular cells. αSMA was 

exclusively expressed in the blood vessels at early stage of development (3.5 cm CRL/50 

dpc). The expression of αSMA in the blood vessels was originally seen in the arteries at 3.5 

cm CRL/50 dpc, while one month later in the veins (14 cm/80 dpc). The intensity of αSMA 

immunoreaction as well as the number of blood vessels showing positive staining has 

increased with age. The early differentiation of vascular smooth muscle cells in the embryonic 

male gonad suggests a critical role of differentiated blood vessels in the embryonic 

development. This idea is supported by the proposal that elaboration of the arterial system 

increases blood flow through the testis to promote the efficient export of testosterone from the 

early testis, a processes that is crucially important for the virilization of the embryo 

(secondary sex determination) (Brennan and Capel, 2004). In adult bovine testis, marked 

αSMA expression was found in the myofibroblasts demarcating the seminiferous tubules.  

Distinct reaction was observed in the testicular blood vessels as well. Several layers of αSMA 

positive cells were also seen beneath the rete testis epithelium. Similarly, previous studies 

have detected αSMA in the adult testis of rat (Palombi et al., 1992), monkey (Schlatt et al., 

1993), ram (Steger and Wrobel, 1994; Steger et al., 1994), bull (Steger et al., 1994) and 

human (Holstein et al., 1996). Indeed, the myoid or myofibroblast cells have been shown to 

be contractile elements, responsible for the peristaltic activity of the tubules transporting 

spermatozoa and testicular fluid towards the rete testis and epididymis (Roosen-Runge, 1951; 

Bock et al., 1972). This fact may justify the absence of αSMA expression in the 

undifferentiated peritubular cells of fetal testis, as no spermatozoa are available, i.e., there is 

no need for the contractility. More recently, αSMA has been shown to signal the beginning of 

blood-testis barrier formation rather than its completion (Holt et al., 2004). Away from its 

contractile ability, peritubular myoid cells are known to stimulate total protein production by 

Sertoli cells and to increase the Sertoli cell production of ABP and transferrin. They produce a 

protein named P-mod-S that has been shown to be an important regulator of Sertoli cell 
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function in vitro (Anthony et al., 1991). They are also considered to modulate the effects of 

androgens on the seminiferous tubule and therefore upon spermatogenesis. 

 

Vascular endothelial growth factor (VEGF), a basic heparin-binding homodimeric 

glycoprotein of 45 KDa, is an endothelial cell-specific mitogen and an angiogenic inducer in a 

variety of in vivo models. There are at least four different human VEGF isoforms, which 

result from differential splicing of the mRNA. These isoforms are proteins containing 121, 

165, 189, and 206 amino acid residues (Ferrara, 2004). In my work, no VEGF 

immunostaining was seen in Sertoli cells and spermatogenic cells other than specific stages of 

spermatids. Similarly, no cells of the interstitial compartment and rete testis epithelium 

showed any VEGF positive reaction. Interestingly, round and early elongating spermatids at 

the first three stages of the seminiferous epithelial cycle exhibited a marked reaction at the site 

of the forming acrosomes. Additionally, moderate immunostaining for VEGF was found in 

the modified Sertoli cells of the terminal segment especially in the terminal plug. In blood 

vessels, despite no VEGF immunoreactivity was observed in the endothelium, a punctate 

reaction was seen in smooth muscle cells (tunica media) of medium and small sized arteries. 

VEGF and their receptors were recently detected in the testis of rat (Anand et al., 2003; 

Rudolfsson et al., 2004; Zhang et al., 2004), mouse, (Young and Nelson, 2000; Anand et al., 

2003; Nalbandian et al., 2003) and human (Ergun et al., 1997). Sertoli and Leydig cells 

expressed VEGF both at mRNA and protein level in these species. In an interesting approach, 

Zhang et al. (2004) have recently shown that the expression pattern of VEGF in the 

spermatids is different in the 14 stages of rat seminiferous cycle and a strong immunopositive 

reaction is mainly found in the forming acrosomes of round and elongated spermatids and in 

spermiogenic residual bodies. These data have led to the assumption that VEGF may play an 

important role in the processes of spermatogenesis and spermiogenesis, particularly in the 

acrosomal developing process (Zhang et al., 2004). That VEGF can be involved in regulating 

transport of important blood borne factors has been supported by a recent report showing that 

VEGF plays a major role in the cellular transport of blood glucose (Sone et al., 2000). 

Therefore, it is conceivable that VEGF plays a pertinent role in the maintenance of testicular 

functions by its ability to facilitate transport of blood borne hormones and nutritional 

elements (Anand et al., 2003). However, a recent approach has reported that VEGF does not 

appear to regulate testicular blood flow and it is not involved in inducing the hCG-induced 

inflammation-like response in the testicular microvasculature. Moreover, the permeability-

increasing effect of VEGF is low in the testis under basal conditions but appeared to be up-
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regulated by hCG treatment (Rudolfsson et al., 2004). The notion that VEGF may play a 

crucial role in the testis physiology is supported by the findings that overexpression of this 

factor either leads to complete infertility (Korpelainen et al., 1998) or at least reduces the male 

fertility due to impaired spermiogenesis (Huminiecki et al., 2001). Nevertheless, in an 

apparent conflict to these findings, Obermair and co-workers (1999) reported that VEGF is 

not associated with male factor infertility and does not improve fertilization.  

 

Gap junctions are now known to be dynamic, multifunctional membrane channels that are 

implicated in a wide variety of biological processes. In mammals, gap junctions are composed 

of two hemi-channels, termed connexons, each provided by one of the two neighboring cells. 

Two connexons interact and dock end-to-end in the extracellular space to form a tightly 

sealed double-membrane intercellular channel. Structural analyses have shown that each 

connexon is composed of six polytopic trans-membrane protein subunits, termed connexins 

(Cx). The central pore of the gap junction channels allows the exchange of nutrients, 

metabolites, ions and small biological molecules such as second messengers (cAMP, IP3, 

Ca+2) up to 1 KDa (for reviews see Saez et al., 2003; Segretain and Falk, 2004).  

To date, the connexin gene family comprises 20 and 21 members in the mouse and human 

genome respectively (Sohl and Willecke, 2004). However, their current nomenclature is based 

on the molecular weights (Willecke et al., 2002). The importance of gap junctions is 

underscored by the fact that Cx genes contain internal ribosome entry site (IRES) elements, 

which are typically found in genes of transcription factors, growth factors, and other genes 

that need to be specifically regulated independently of cell cycle (reviewed by Harris, 2001). 

Apart from their role in channel formation, Cx could exert other functions including signal 

transduction and linkage to cytoskeleton through Cx-partner protein interactions (Duffy et al., 

2002). Recent data showed that Cx43 is tightly associated with ZO-1 in Sertoli cells (Defamie 

et al., 2001). Thus, it is likely that alterations of one of these proteins could perturb either 

their classical functions (cell adhesions, formation of tight or gap junctions) or their newly 

postulated functions (signal transduction) leading to disturbed germ cell development and 

infertility (Fiorini et al., 2004). As discussed before, my study confirms previous 

investigations that reported the presence of gap junctions between adjacent Sertoli cells in the 

adult bovine seminiferous tubules (Ekstedt et al., 1986) as well as between neighboring 

Leydig cells in both fetal (Schrag, 1983; Sinowatz et al., 1987) and adult (Wrobel et al., 1981) 

bovine testis. In order to characterize these gap junctions, I have investigated the 

immunolocalization of Cx43 in fetal and adult bovine testis. My finding showed that Cx43 is 
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localized to the gap junctions between Leydig cells of embryonic and adult testis and to 

Sertoli-Sertoli cell junctions of the seminiferous epithelium apical to spermatogonia and basal 

to spermatocytes. In the fetal period, the localization of Cx43 was markedly parallel to the 

developmental pattern of the Leydig cells discussed above in the morphological section (table 

11). The number of Cx43 immunopositive Leydig cells increased gradually with age until 14 

cm CRL where it attains its maximum. Thereafter (18 cm CRL, onward), it was usual to see 

some focal areas of the interstitium free of Cx43 immunopositive Leydig cells. This feature 

increased gradually and became more prominent with the beginning of the late gestation 

period (63 cm CRL/210 dpc, on) where the Leydig cell number has considerably reduced 

(table 11). The variation in the Cx43 immunolocalization nearly follows ontogenesis and 

developmental changes of bovine fetal Leydig cells as well as changes in testosterone 

concentration reported by Sinowatz et al. (1987). This observation is further supported by the 

data that gap junctions between steroidogenic cells are subjected to changes consistent with 

alterations of the functional status (Wrobel et al., 1981). Cx43 immunoreactivity between 

fetal Leydig cells has also been detected in mouse (Perez-Armendariz et al., 2001) and guinea 

pig (Pelletier, 1995). The fact that Cx43 is expressed between Leydig cells before it is seen in 

the seminiferous tubules may be a reflection that optimal hormone levels would be required 

among a greater number of Leydig cells to ensure normal development of the testis and 

adequate timing of the onset of spermatogenesis (Pelletier, 1995). Furthermore, expression of 

Cx43 between adjacent interstitial Leydig cells from the earliest stage of testicular 

differentiation may suggest a role for this protein in the control of developmental processes 

required to regulate testosterone production, secretion or both (Bravo-Moreno et al., 2001; 

Perez-Armendariz et al., 2001). One possible mechanism by which gap junctions may 

enhance testosterone release is by transfer of cAMP (Murray and Fletcher, 1984) which 

amplifies the transcription of cAMP-dependent steroidogenic enzymes (Payne and 

Youngblood, 1995) as well as synchronizes testosterone release by adjacent Leydig cells. 

Interestingly, knock-in mice in which the Cx40-or Cx32-coding region was substituted for 

Cx43 survive to adulthood but show disturbed spermatogenesis (Plum et al., 2000). Whether 

alterations in testosterone levels at this developmental stage contribute to the failure of 

differentiation of germinal cells in these mice remains to be determined. In the adult bovine 

testis, Cx43 is localized between Leydig cells as found in man (Steger et al., 1999), rodent 

(Risely et al., 1992; Perez-Armendariz et al., 1994; Varanda and de Carvalho, 1994; You et 

al., 2000; Bravo-Moreno et al., 2001), guinea pig, and mink (Pelletier, 1995). Because not all 

adult bovine Leydig cells are situated in close contact to capillaries or venules (Wrobel et al., 
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1981), my results propose that gap junctions may play a role in conveying nutrients, 

metabolites, ions, and small biological molecules such as second messengers (cAMP, IP3, 

Ca+2) to Leydig cells away from the blood vessels.  

Within the seminiferous tubules, Cx43 immunopositive reaction is found within the basal 

compartment apical to spermatogonia and basal to spermatocytes in a stage-dependent 

manner. It has greatly reduced during stages II, III, and IV. Thereafter, it increased again 

through stages V, VI, and VII to attain its maximum at stage VIII and stage I. Similar findings 

have been reported in rodents (Risely et al., 1992; Batias et al., 1999; Decoury et al., 2004) 

and human (Sterger et al., 1999). The localization of Cx43 in the area of Sertoli-Sertoli cell 

contact reinforces the presence of Sertoli cell gap junctions as demonstrated by ultrastructural 

analysis (Ekstedt et al., 1986). Such location correlates with Sertoli-Sertoli cell junctions 

responsible for the blood testis-barrier formation (Wrobel and Schimmel, 1989). Stage 

dependent changes of Cx43 expression concurs with cyclic variations of Sertoli-Sertoli cell 

junctions. The blood testis-barrier in the bovine seminiferous epithelium is especially tight in 

stages I and VIII, as compared with stages II through VII where basal Sertoli-Sertoli contacts 

are less developed (Wrobel and Schimmel, 1989). The decrease of Cx43 at stage II, III, and 

VI may be linked to germ cell passage (preleptotene spermatocytes) from the basal location to 

the adluminal position, which temporarily modifies the blood testis barrier (Russell, 1978). In 

rodents, subsequent formation of gap junctions at stage XI regulates germ cell multiplication 

and meiosis of spermatocytes (Decoury et al., 2004). Recently, it has been shown that 

intercellular communication via gap junction represents a bidirectional way between adjacent 

Sertoli cells and unidirectional means from Sertoli cells to spermatogonia and spermatocytes. 

This functional coupling is, however, associated only with the presence of Cx43 isoform of 

Cx (Decoury et al., 2004). In addition to localization of Cx43 in the basal compartment, 

occasional dark brown dots were seen in the adluminal compartment toward the tubular 

lumen (between Sertoli cells/ spermatocytes and spermatids). The presence of these Cx43 

positive gap junctions in the adluminal compartment make the seminiferous epithelium to 

look like a syncytium, but such ideas need further studies to be confirmed. In adult, the 

hypothesis that Cx43 mediated gap junction intercellular communication is absolutely 

required for spermatogenesis is supported by the conclusion that Cx43 gene targeted deletion 

results in male infertility (Plum et al., 2000) and altered Cx43 expression is correlated with 

impaired human fertility (Defamie et al., 2003), and testicular dysfunction (Brehm et al., 

2002).  
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The fact that majority of males do not develop immunity to their own germ cells has led to the 

conclusion that testis is one of the “immunologically privileged” tissues of the body (Hedger, 

2002). In addition to Leydig cells, the testicular interstitium contains connective tissue cells, 

vascular and lymphatic endothelial cells, and immune cells (Hedger, 1997). Prominent among 

these latter are the resident macrophages, which show species-specific variation in their 

relative numbers. They are particularly numerous in rat and mouse testis (Hutson, 1994; 

Wang et al., 1994; Itoh et al., 1995). Studies in these species have established that the resident 

testicular macrophages play an important role in Leydig cell development, and 

steroidogenesis in the adult (Bergh et al., 1993; Gaytan et al., 1994). In my study, the 

lysosomal marker CD68 (EBM11) that identifies bovine resident macrophages (Ackermann et 

al., 1994) was not detectable in the fetal testis. However, CD68 positive cells were clearly 

seen within the interstitial testicular compartment of the adult animals. These cells are 

randomly distributed within the interstitium being sometimes located near to Leydig cells, 

myofibroblasts, blood vessels, or present directly under the tubular lamina propria. 

Nevertheless, they were never seen within the lumen of seminiferous tubules. CD68 

immunostaining was mainly granular and localized to the cytoplasm. In straight tubules, 

CD68 expression was detected in the lining epithelium of a single straight tubule while the 

others exhibited negative reaction. Despite the presence of CD68 positive staining within the 

mediastinum, no reaction was found in any of the cells lining rete testis. Unlike CD68 

(EBM11), CD68 (KP1) immunostaining was not demonstrable in the bovine testis. The 

present report is in accordance with several previous approaches that have detected the 

resident macrophages in the testis of rodent (Hutson, 1994; Wang et al., 1994; Itoh et al., 

1995), sheep (Pollanen and Maddocks, 1988), and human (Pollanen and Niemi, 1987; El-

Demiry and James, 1988; Frungieri et al., 2002). CD68 antigen is not only expressed by 

macrophages but also by monocytes, dendritic cells, neutrophiles, basophiles, and large 

lymphocytes (Pulford et al., 1990; Bukovsky et al., 2001). Therefore, it is difficult to quantify 

the testicular macrophages with this marker alone. Although earlier electron microscopic 

studies revealed the presence of macrophages as regular constituents of the bovine rete 

epithelium (Wrobel et al., 1978), no CD68 positive cells were seen in this work within the 

lining epithelium of rete. These results are concomitant with the findings that not all 

macrophage population of rat testis expresses resident macrophage markers (Wang et al., 

1994; Gerdprasert et al., 2002). The functional significance of CD68 localization in a single 

straight tubule is not clear. A close functional association between the Leydig cell and 

macrophages is indicated by several lines of evidence (reviewed by Hedger, 2002). These 
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include the existence of specialized interdigitations between the two cell types implying the 

potential for a direct exchange of information and materials, and parallel changes in 

morphology and cell volume that occur in several experimental models. Moreover, 

macrophage depletion prior to testicular maturation in the immature rat and in the ethane 

dimethane sulphonate (EDS)-treated adult rat severely inhibits Leydig cell development or 

recovery in these models. These data indicate that, not only testicular macrophage 

development is influenced by the Leydig cells, but also that Leydig cell development is 

profoundly influenced by the presence of macrophage (Hedger, 2002). This surprising 

concept has been given a further support by the poor Leydig cell functions of macrophage-

deficient MCSF-deficient mice (Cohen et al., 1996). Recently, testicular interstitial 

macrophages have been shown to produce and secrete 25-hydroxycholesterol that causes 

direct stimulation of Leydig cell steroidogenic functions (Nes et al., 2000; Lukyanenko et al., 

2001). Testicular macrophages are also potential sources for several growth and 

differentiation factors (reviewed by Hales, 2002). Of these, three well-known macrophage 

cytokines−TNFα, IL1α, and IL1β− have been reported to be secreted from rat testicular 

macrophages (Kern et al., 1995; Hayes et al., 1996, Soder et al., 2000). Although the role of 

these cytokines in the bovine testis is still uncertain, several reports indicate a modulatory 

effect of IL1 and TNFα on steroidogenesis (see Hales, 2002; Hedger and Meinhardt, 2003). 

The available reports are contradictory, showing both inhibitory and stimulatory effects of 

IL1 and TNFα on androgen synthesis depending on the experimental conditions. Khan et al. 

(1992) described an important role for IL1 in proliferation of Leydig cells. TNFα enhances 

expression of growth factors in Sertoli cells and production of metabolites important for germ 

cells. IL1 regulates nitric oxide production, gamma-glutamyl transpeptidase, and lactate 

generation in Sertoli cells (reviewed by Hedger and Meinhardt, 2003). In addition to the 

modulatory action exerted by macrophages and their secretory products on steroidogenesis 

and Sertoli cell activity, testicular macrophages secrete pro-inflammatory as well as anti-

inflammatory cytokines and exert an important trophic and/or scavenger role in tissue 

morphogenesis and function (reviewed by Hedger and Meinhardt, 2003). Macrophages also 

produce reactive oxygen species (ROS) such as hydrogen peroxide, which inhibits Leydig cell 

functions. ROS appears to act by perturbing Leydig cell mitochondria resulting in the 

inhibition of steroidogenic acute regulatory (StAR) protein expression (Hales, 2002).  

Like macrophages, T lymphocytes or T cells are important cells in the immune response. 

They are also distributed throughout the interstitial tissue of the normal adult testis (Pollanen 

and Niemi, 1987; Pollanen and Maddocks, 1988; Wang et al., 1994; Hedger et al., 1998; 
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Hedger and Meinhardt, 2000). T cells that express the surface molecule CD4 are mostly 

regulatory or helper cells and can be activated by professional MHC class II-bearing antigen-

presenting cells. However, T cells that exhibit the CD8 surface marker are generally cytotoxic 

and are activated when they come in contact with antigen presented on the surface of cells 

expressing MHC class I molecules (Hedger, 1997). Since nearly all somatic cells exhibit 

MHC class I molecules on their surface, the CD8+ T cells play an important role in protection 

against viral infections and transformed (tumourigenic) cells (Hedger, 1997). CD4 and CD8 

were previously detected in fixed and paraffin embedded bovine tissue using a range of 

antigen recovery and signals amplification techniques (Gutierrez et al., 1999). In my report, 

CD4 and CD8 are, albeit few, recognized in the interstitial tissue of adult bovine testis. CD4 

positive cells were mostly small, round with spherical nuclei and present mainly as single 

cells. Most of the interstitium was free of these cells and it was very rare to see pair of cells 

within the same area. Unexpectedly, CD4 immunoreaction was observed in the cuboidal cells 

of the rete testis but this may be unspecific. In contrast to CD4, very few CD8 positive cells 

were detected in the interstitium (2-5 cells per testicular section). Localization of these cells in 

the bovine testis is concomitant with the previous approaches that detected helper (CD4) and 

cytotoxic (CD8) T cells in the rat (Wang et al., 1994; Hedger et al., 1998; Hedger and 

Meinhardt, 2000), mouse (Mukasa et al., 1995) and human (Pollanen and Niemi, 1987) testis. 

Conversely, El-Demiry et al. (1987) failed to observe any intratesticular T cells under normal 

conditions in human. Parallel to my results, Mukasa et al. (1995) reported that the mouse 

testis contains much lower numbers of T cells. However, Hedger and coworkers (1998) have 

found that the T cells in the rat testis are predominately CD8 immunopositive cells. This 

discrepancy may be due to species differences but it is equally likely that differences in T cell 

numbers are related to past exposure to infections or other immune events (Picker and 

Butcher, 1992). In general, T cells appear to have relatively free access to the rat testis 

(Pollanen and Maddocks, 1988; Wang et al., 1994). Importantly, away from the species 

variations, the inconsistency of my data with the results described in rat could be due to 

differences in tissue fixation and immunohistochemical technique employed. CD4 and CD8 

epitopes were shown to be the most difficult to immunostain and demonstration of these 

epitopes was not achieved in formalin fixed tissue (Rathkolb et al., 1997; Gutierrez et al., 

1999). Additionally, the microwave pre-treatment appears to be essential for the antigen 

retrieval especially for the CD4 epitope (Gutierrez et al., 1999). Any way, in normal non-

inflamed testis, it seems that T cells numbers are determined by normal T cell re-circulation 

mechanisms, by past immune activation events, and by local regulatory mechanisms 
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involving the Leydig cells and resident macrophages that induce the preferential accumulation 

of CD8 positive T cells (Hedger and Meinhardt, 2000). As pointed out above, the CD4 T cells 

are activated by professional antigen-presenting cells, such as macrophages, and direct the 

subsequent pattern and intensity of the immune response, but do not usually function as 

immune effector cells (Kaye, 1995). On the other hand, CD8 plays a key role in protection 

against tumor development and viral infections as well as in graft rejection response (Hedger 

et al., 1998). Clearly, these two subsets will have very different influence on the development 

of immune response within the testis. Collectively, the presence of testicular macrophages, T-

helper and T-cytotoxic cells suggest that the testis may possess enhanced innate 

immunoprotection. This could be a compensatory mechanism to limit tumor development or 

potential infections by microorganisms entering via the genital tract (Hedger, 1997).   

 

Galactosyltransferase (GalTase) is one member of a functional family of intracellular, 

membrane-bounded enzymes that participate in the biosynthesis of carbohydrate moieties of 

glycoproteins and glycolipids. This enzyme catalyzes the transfer of galactose from 

UDPgalactose to the acceptor sugar N-acetylglucosamine. In mammals, 19 distinct GalTase 

enzymes have been characterized to date (Hennet, 2002). In those species analyzed so far, the 

gene for GalTase encodes two proteins, both of which have a type II membrane conformation, 

analogous to all other glycosytransferase cloned so far. The two GalTase proteins (short and 

long isoform) have identical catalytic and transmembrane domains but differ in their 

cytoplasmic domains (Shur et al., 1998). A number of observations show that the short 

GalTase isoform is normally confined to the Golgi complex where it serves a purely 

biosynthetic function. In contrast, the long GalTase isoform can function both 

biosynthetically in the Golgi complex and due to its additional cytoplasmic domain, can also 

function as a signal-transducing receptor on the cell surface (Shur et al., 1998). In this 

preliminary study, the immunostaining of galactosyltransferase (GalTase) was found 

exclusively in the Golgi apparatus of Leydig cells and at the cell surface of rete testis 

epithelium of fetal bovine testis. Although, scattered Leydig cells were present in mid and late 

stages of pregnancy, the GalTase immunopositive fetal Leydig cells have markedly reduced 

in mid pregnancy (from 23 cm CRL/110 dpc, on) and disappeared completely in late stage (63 

cm CRL/210 dpc, on). Unlike Leydig cells, surface immunostaining for GalTase in the rete 

testis epithelium was detected at 14 CRL (80 dpc) and increased with age. No GalTase protein 

localization was however observed in fetal Sertoli and germ cells. Similarly, blood and lymph 

vessels did not exhibit any reaction. While Northern blot analysis revealed a developmental 
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expression of GalTase mRNA in the newborn mouse testis (Zhu et al., 2003), no data are 

available on the cellular localization of this enzyme in embryonic and postnatal testis. The 

expression of the short GalTase isoform in the Golgi apparatus of fetal Leydig cells is 

correlated with the localization of some lectins (PSA, WGA, and DBA) in these cells during 

prenatal period (table 12). Further on, the abundance of short GalTase isoform in Leydig 

raises the possibility that it may function in the glycoprotein biosynthesis of the extracellular 

matrix. This suggestion is substantiated by previous studies (Denduchis et al., 1996), which 

proposed that Leydig cells in culture are able to synthesize ECM proteins (laminin and type 

IV collagen) and express ECM receptors (integrins), as well as cell-to-cell adhesion 

molecules such as N-CAM and N-cadherin. In addition, cell lines with an abundant Golgi 

complex actively involved in the elaboration of an extracellular matrix show proportionally 

more short transcript than long transcript (Lopez et al., 1991; Kudo and Narimatsu, 1995). 

Unlike Leydig cells, surface immunostaining of the rete testis epithelium is detected at 14 

CRL (80 dpc) and increased with age. There is some evidence that surface GalTase 

participates in cell interactions during embryogenesis (Shur et al., 1998). The GalTase 

functions on the embryonic cells as a receptor for glycoside ligands in the basal lamina. Cells 

initially adhere to basal lamina components in a GalTase-independent manner, which is 

presumably mediated by the integrins. Signals induced by the basal lamina, perhaps via 

integrins, result in increased GalTase expression on the cell surface, which becomes 

associated with the cytoskeleton and localizes to the newly formed leading edge of the cell 

(Shur et al., 1998). The binding site for GalTase in the basal lamina has been identified as N-

linked oligosaccharides within the E8 domain of laminin. This is the same domain that is 

responsible in large part for cell migration and neurite outgrowth properties of laminin (Shur 

et al., 1998). In summary, these findings suggest that surface GalTase may participate in the 

rete testis morphogenesis and canalization during mid and late stages of testicular 

development.   

In the adult bovine testis, distinct immunostaining was seen in the Golgi complex of Sertoli 

and Leydig cells. GalTase was also detected in the Golgi apparatus of some spermatocytes 

and at the head surface of the elongating spermatids while no immunostaining was observed 

in the spermatogonia. Marked surface and cytoplasmic expression of the GalTase was also 

detected in the straight tubules and rete testis epithelium. As in the fetal testis, blood and 

lymph vessels and peritubular myofibroblast cells have no GalTase reactivity. Although 

mammalian testes are found to be rich in various glycoconjugates with distinct differentiation-

related changes in their distribution (Malmi et al., 1990; Ertl and Wrobel; 1992), limited data 
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are generally available about the immunohistochemical localization of GalTase in the adult 

mammalian testis (Pratt et al., 1993). Northern blot, S1 nuclease analysis, and in situ 

hybridization revealed the expression of GalTases mRNA in adult mouse testis (Shaper et al., 

1990; Pratt and Shur, 1993; Zhu et al., 2003). These studies detected the GalTase mRNA and 

its corresponding protein at the surface of Sertoli and spermatogenic cells. In addition, 

immunoelectron microscopy confirmed the localization of GalTases to spermatogonia, late 

stage spermatids, Sertoli cell surface membrane, and interstitial Leydig cells of adult rat testis 

(Suganuma et al., 1991). Generally, GalTase has been widely accepted as a marker enzyme 

for the Golgi complex (Navaratnam et al., 1988). In this situation, the fact that GalTase was 

localized only to adult but not fetal bovine Sertoli cells may suggest some associations 

between this enzyme and bovine spermatogenesis. Moreover, the localization of GalTase 

within the Sertoli cells Golgi apparatus may indicate the involvement of this organelle in the 

secretory activities of Sertoli cells. This supposition is however contradictory to the view of 

some authors (Bloom and Fawcett, 1986; de Kretser and Kerr, 1994) who stated that Golgi 

apparatus of Sertoli cells have no morphological indication of involvement in secretory 

pathways. The latter observation may be true in rodents whereas GalTase is evident only at 

the Sertoli cells surface but not within the Golgi apparatus (Shaper et al., 1990; Suganuma et 

al., 1991; Pratt and Shur, 1993; Raychoudhury and Millette, 1993). These investigations 

proposed that the cell surface GalTase might be involved in the Sertoli cell function during 

spermatogenesis. The modification of oligosaccharide moieties of glycoprotein on the sperm 

surface is one of the biochemical changes believed to be important in the production of 

functionally mature spermatozoa (Tulsiani et al., 1993). In spermatogenic cells, GalTase 

mRNA accumulated during the maturation of primary spermatocytes, reached peak level prior 

to meiosis, and decreased at meiosis (Pratt and Shur, 1993). Germ cell surface GalTase is 

found to facilitate their adhesion to Sertoli cells (Pratt and Shur, 1993). As spermatogenic cell 

develop, GalTase is redistributed to the anterior aspect of the sperm head, possibly by 

association with the action of the cytoskeleton (Scully et al., 1987). In the cauda epididymis, 

the glycoconjugates secreted by the epididymis mask the sperm GalTase-binding sites. During 

capacitation, these competitive glycoconjugates are shed from the sperm surface, making 

GalTase available to bind its oligosaccharide ligand (O-liked oligosaccharides on the ZP3 

glycoprotein) in the zona pellucida (Miller et al., 1992). The presence of GalTase on the 

plasma membrane of bovine sperm (Fayrer-Hosken et al., 1991) confirms my findings of the 

localization of GalTase in the spermatocyte Golgi apparatus and at the head surface of the 

elongating spermatids since sperms no longer synthesize glycoprotein and no longer have 
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need for a Golgi complex (Shur and Neely, 1988). As demonstrated in rodent, localization of 

GalTase at the surface of the bovine elongating spermatids may facilitate their adhesion to 

Sertoli cells.  

Immunoelectron microscopy verified the precise localization of the enzyme in the trans-Golgi 

stacks of adult rat Leydig cells (Suganuma et al., 1991). As pointed out in the 

glycohistochemical part of this thesis, some sugar residues (mannose and N-

acetylgalactosamine, table 13) are detected in the adult Leydig cells of bovine testis. These 

data may clarify the intensive localization of GalTase in the Golgi complex of Leydig cells.  

Although GalTase has previously been detected in the rete testis fluid (RTF) of ram and boar 

(Tang, 1998), the physiological function of its existence is not well understood. Several 

studies have reported that the RTF provides a favorable environment for GalTase activity due 

to the low pyrophosphatase and phosphatase activity (Hamilton, 1980; Tang, 1998). The 

localization of GalTase in modified Sertoli cells of the terminal segment, in straight tubules 

and in rete testis epithelium may suggest that specific glycosylation of sperm surface 

glycoproteins may occur at multiple sites in the male reproductive tract. Oligosaccharides on 

cell surface glycoproteins have also been proposed to act as essential functional groups 

required for appropriate biological activities in the reproductive system (Dell et al., 1999; 

Hennet and Ellies, 1999).  

 

Angiotensin-converting enzyme (ACE, CD143) is a zinc-containing 

dipeptidylcarboxypeptidase that has important functions in the renin-angiotensin system for 

the regulation of blood pressure as well as fluid and electrolyte regulation. Although this 

enzyme is associated most commonly with the regulation of blood pressure, there is 

considerable evidence for the potential role of ACE in the reproductive function (Speth et al., 

1999). In mammals, the enzyme occurs in two isoforms encoded by a single gene. The larger 

isoform, somatic form (sACE), is found in blood and several other tissues including the 

vascular endothelial cells, renal epithelial cells and testicular Leydig cells (Sibony et al., 

1993; Esther et al., 1997), while the testis-specific form (tACE) is expressed only in post-

meiotic spermatogenic cells and sperm (Langford et al., 1993; Sibony et al., 1994; Sabeur et 

al., 2001; Ball et al., 2003; Pauls et al., 2003). In my investigation, the fetal bovine germ cells 

(prespermatogonia) showed a transient expression of ACE in 6 and 10 cm CRL (60-75 dpc) 

whereas no immunostaining was detected in the subsequent stages of testicular development. 

Additionally, moderate reaction was seen in the endothelium of the blood vessels. The ACE 

positive reaction of endothelium was firstly detected by 18 cm CRL (100 dpc) and increased 
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simultaneously with age. Similarly, in adult bovine testis, marked ACE protein expression 

was only observed in the endothelium of blood vessels. However, ACE was not evident in 

Sertoli, Leydig and germ cells as well as in straight tubules and rete testis epithelium of fetal 

and adult testis.  

Immunohistochemically, the cellular distribution of ACE has previously been studied in the 

testis of rat (Sibony et al., 1994), mice (Langford et al., 1993; Sibony et al., 1994), dog, 

(Sabeur et al., 2001), and human (Pauls et al., 2003). In the present study, I found that ACE is 

localized to the cytoplasm of fetal germ cells between 60 and 75 dpc, a period wherein germ 

cells have a high proliferation rate and are in transition from PGCs to prespermatogonia 

(Wrobel, 2000b). Recently, Pauls et al. (2003) have detected the sACE in the human 

gonocytes especially between 18th and 22nd gestation week, a period in which 

prespermatogonia of the late M-and T1-types predominates (Wartenberg, 1981; Hilscher, 

1991). The assignment of sACE to this particular stage of prespermatogonial differentiation 

and its complete down-regulation in the subsequent stages of testicular development led to the 

supposition that sACE may play a role in the human germ cell development and ontogenesis 

of human testis (Pauls et al., 2003). Somatic ACE was also localized to the fetal and adult 

Leydig cells as well as vascular endothelium of different mammalian testis (Pandey et al., 

1984; Pauls et al., 1999; Pauls et al., 2003). Although the endothelial sACE may participate in 

regulating the vasculature tone (Franke et al., 2003), its physiological role in the Leydig cells 

needs to be addressed. In the adult testis, tACE is expressed in a stage-specific manner in 

rodent (Langford et al., 1993; Sibony et al., 1994), dog (Sabeur et al., 2001), and human 

(Pauls et al., 2003). In man, ACE was initially found in post-meiotic step 3 spermatids and 

increased markedly during differentiation and strictly localizing to the adluminal membrane 

site of elongating spermatids (Pauls et al., 2003). In mouse and rat testis, the highest level of 

expression tACE was associated with elongated spermatids (acrosome phase) at step 10-11 

(Sibony et al., 1994). Close correlation between the germ cell specific formation of tACE and 

maturation of germ cell exists, but the significance of this correlation remains obscure, 

although studies with ACE-deficient mice demonstrated reduced male fertility in homozygous 

mutants (Krege et al., 1995). In the male reproduction, some investigators have suggested that 

ACE may play a role in capacitation, hyperactivation, or acrosomal exocytosis of 

spermatozoa. In human sperm, ACE is released during capacitation in vitro (Kohn et al., 

1995) and inhibition of ACE via the specific inhibitor, captopril, reduced both acrosomal 

exocytosis and hamster ova penetration rates by human spermatozoa (Foresta et al., 1991). 

However, other investigations did not identify any effect of inhibition of ACE on the ability 
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of sperm to bind the zona pellucida (Kohn et al., 1998; Metayer et al., 2001). In mice in which 

both the sACE and tACE have been eliminated by homologous recombination, homozygous 

mutant males demonstrated normal histological features of the seminiferous tubules 

epithelium and normal seminal parameters; however, these males have a reduced fertility 

associated with a reduction in the ability to fertilize oocytes and a reduced number of 

spermatozoa present in the oviduct of mated females (Krege et al., 1995; Esther et al., 1996; 

Hagaman et al., 1998). Although these studies have not identified the specific role of ACE, 

they do indicate a potentially critical role of tACE in normal reproductive function.  

On the other hand, Liao and Roy (2002) did not recently find any association between known 

polymorphisms in the tACE gene and male infertility in an Asian population. Concerning 

these contradictory data, the potential role of ACE in male reproduction is still uncertain. 

In conclusion, the stage- and cellular-specific expression of some sugar moieties and of some 

cellular proteins within fetal and adult bovine testis may indicate different cellular 

requirements during testicular development as well as during spermatogenesis.   
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6. SUMMARY  

 

Morphological, Glycohistochemical, and Immunohistochemical Studies on the 

Embryonic and Adult Bovine Testis 

 

In the present study, the testes of 32 bovine embryos with different crown-rump length (2.5-

90 cm CRL) and of 15 sexually mature bulls (Deutsches Fleckvieh) were investigated using 

light- and electron microscope as well as glycohistochemical and immunohistochemical 

methods. The gestation period was divided into 3 stages; early, mid, and late gestation. 

Developmental changes in the testicular morphogenesis were therefore analyzed in details 

during these phases.  

Generally, embryonic development of bovine testis involves the same mechanism described 

in other mammals. At the first stage of this study (2.5 cm CRL/43 dpc), the anlage of the 

testes protruded to the coelomic cavity as paired bean-shaped structures on either side of the 

dorsal mesentery medial to the mesonephros. It consists of primitive testicular cords, 

interstitium, and rete testis blastema. Proceeding with fetal age, these basic testicular 

structures are further differentiated. The tunica albuginea is separated into two layers: an outer 

fibrous layer (tunica fibrosa) with some mesenchymal cells, numerous fibroblast, and much 

fibrous content and an inner cellular layer with several blood vessels (tunica vasculosa). The 

testicular cords are surrounded by a marked basal lamina and peritubular cells and lined by 

two types of cells: a large number of dark polygonal cells with irregular nuclei, pre-Sertoli 

cells and small number of large light round cells with relatively round nuclei, the 

prespermatogonia. The average number of the germ cells per cross section of cord increases, 

particularly form 3.5 to 14 cm CRL, resulting in a germ cell maximum at the end of this stage 

(14 cm CRL). Although most of the germ cells are located toward the periphery of the cord, 

some are also found in the center. Pre-Sertoli cells form a complete layer at the periphery of 

the cords. Generally, these cells are irregular in shape and numerous but considerably smaller 

than the germ cells. Unlike prespermatogonia, mitotic figures are seen in pre-Sertoli cells 

during the whole embryonic life. As a consequence of the expansion in the interstitium, the 

seminiferous cords are progressively separated from each other. The testicular interstitium is 

rapidly differentiated and is composed of several islets or clusters of polygonal Leydig cells, 

peritubular flattened cells surrounding the testicular cords, connective tissue cells, and 

numerous blood vessels. In the present study, fetal Leydig cells were first recognized at 3.5 

cm CRL. Thereafter, the average number of these cells is rapidly increased to attain their 
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maximum with the end of the first gestation period (14 cm CRL). This generation of Leydig 

cells however dedifferentiates progressively with developmental age. A continuous system of 

basal lamina joins the testicular cords with rete strands from 10 cm CRL and onwards. This 

system establishes the first connection between these two testicular components via ill-

developed uncanalized straight tubules (tubuli recti). Rete testis channels are lined by simple 

layer of cuboidal epithelium with round nuclei occupying most of the cytoplasm and enclosed 

by well-defined basal lamina.  

 

The adult bovine testis is enclosed by a connective tissue capsule, tunica albuginea, composed 

predominantly of collagen fibers and few elastic fibers. Most of the testicular parenchyma is 

made up of the convoluted seminiferous tubules (tubuli seminiferi contorti), two-ended 

convoluted loops, with both ends opening into the rete testis via specialized terminal 

segments. The seminiferous tubules of sexually mature bulls are enclosed by a distinct lamina 

propria and are lined by two cell populations, non-proliferating Sertoli cells and highly 

proliferating spermatogenic cells. The bovine lamina propria consists of basal lamina, 

collagen and elastic fibers, and 3-5 layers of partially overlapping myofibroblasts. 

Additionally, fibrocytes, collagen fibrils, and fibroblasts-like cells form the outermost border 

of the tubulus. Sertoli cells are easily identifiable elements of the seminiferous epithelium. 

Adult Sertoli cells are large irregularly shaped cells with their broad bases resting on the basal 

lamina while the remaining cytoplasmic processes extend upward to the tubular lumen. They 

are characterized by round or oval euchromatin-rich nuclei situating in the basal portion near 

the basal lamina of the seminiferous tubules. Adult bovine germ cells are present in four 

morphologically different groups, i.e., spermatogonia, spermatocytes, spermatids, and 

spermatozoa. The seminiferous cycle stages are identified using changes in the germ cell 

nuclei as well as location and shape of spermatids. According to this method, eight stages are 

defined in the seminiferous epithelium of bovine. The interstitial or intertubular tissue of adult 

bovine testis consists of Leydig cells, macrophages, scattered lymphocytes and plasma cells, 

and contains numerous blood and lymph vessels. Not all Leydig cells have contact to blood or 

lymph capillaries.  

The excurrent duct system of the adult bovine testis consists of terminal segment of the 

convoluted seminiferous tubules, straight tubules, and rete testis. The terminal segment can be 

further subdivided into a proximal (transitional) region, middle portion, and distal part 

(terminal plug). The proximal region is lined by typical Sertoli cells while the last two parts 

are lined by modified Sertoli cells. The tubulus rectus of adult bovine testis is composed of 
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three morphologically different regions: a proximal cup-shaped region, a middle narrow stalk, 

and a distal festooned portion. The rete testis is a complicated centrally positioned meshwork 

of intercommunicating channels that lies within the mediastinum testis parallel to the long 

axis of epididymis. The simple cuboidal epithelium of straight tubules and rete testis is shown 

to contain some lymphocytes and macrophages.  

 

The cellular distribution of glycoconjugates within the fetal and adult bovine testis was 

investigated using thirteen (ConA, PSA, LCA, PNA, GSA-I, ECA, DBA, SBA, HPA, VVA, 

WGA, UEA-I, LTA) different fluorescein isothiocyanate (FITC) conjugated lectins. In fetal 

testes, detection of sugar moieties by lectins was carried out on Bouin ُs-fixed paraffin-

embedded sections while in adult it was performed on both Bouin ُs-fixed paraffin-embedded 

and acetone-fixed frozen sections. Only five lectins (PSA, PNA, GSA-I, DBA, WGA) 

showed a positive reaction in the embryonic testes. PNA, GSA-I, DBA, and WGA were 

detected in the germ cells whereas PSA, DBA and WGA labeled the fetal Leydig cells. None 

of the lectins used was observed in the pre-Sertoli cells. Further on, some lectins were seen in 

tunica albuginea (PSA, PNA, GSA-I, WGA), basal lamina of testicular cords (PSA, WGA), 

interstitial blood vessels (PSA, GSA-I, WGA), mediastinum testis (PSA, PNA, WGA) and 

rete testis epithelium (PNA). In adult animals, spermatogonia and spermatocytes were 

positively stained with PSA, LCA, DBA, SBA, and VVA. All the lectins investigated except 

that of the fucose-binding lectin (UEA-I and LTA) were definitely detected in the acrosome 

of round and elongated spermatids. These results indicate a role for carbohydrates in 

spermiogenesis. Apical Sertoli cells processes and Leydig cells were weakly stained with 

PSA and LCA as well. DBA binding sites were also seen in the Leydig cells.  

 

Immunohistochemical studies were performed using the Avidin-Biotin-Peroxidase Complex 

(ABC) method for localization of fibroblast growth factor-1 (FGF-1), fibroblast growth 

factor-2 (FGF-2), S-100, laminin, alpha-smooth muscle actin (α-SMA), vascular endothelial 

growth factor (VEGF), connexin 43 (Cx43), CD4, CD8, CD68, angiotensin-converting 

enzyme (ACE), and galactosyltransferase (GalTase) in the bovine testis. The expression of 

FGF-1 and FGF-2 was further investigated in the adult bovine testis using in situ 

hybridization and PCR. Immunohistochemically, FGF-1 was seen in the Sertoli cells, Leydig 

cells, endothelium of the blood vessels, and epithelium of straight tubules and rete testis of 

fetal and adult testis. It was additionally detected in spermatogonia and spermatids of sexual 

mature animals. FGF-2 exhibited a striking positive reaction in fetal (from 6 to 30 cm CRL) 
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and adult Leydig cells. Moreover, it showed marked reaction in the endothelium of blood 

vessels and in the epithelium of tubulus rectus and rete testis. FGF-2 was also localized in 

some spermatogonia, and myofibroblasts. By means of in situ hybridization, FGF-1 and FGF-

2 mRNA were found in Leydig and Sertoli cells as well as in the modified Sertoli cells of the 

terminal segment. FGF-1 transcripts were additionally recognized in the straight tubules and 

rete testis epithelium. Distinct S100 immunostaining was observed in the Sertoli cells, 

endothelium of blood vessels and in the rete testis epithelium of fetal and adult testis. Laminin 

was localized to the basal lamina of seminiferous tubules, blood vessels, myofibroblasts, and 

rete testis. Although α-SMA was detected in smooth muscle cells of the blood vessels, no 

immunoreactivity was seen in the peritubular cells during the whole gestation period. The 

myofibroblasts surrounding the seminiferous tubules and rete testis showed intense positive 

reaction for α-SMA in the adult testis. VEGF was detected in the acrosomes of the elongating 

spermatids. Connexin 43 was localized to gap junctions between Leydig cells in the fetal and 

adult life as well as to the seminiferous epithelium apical to spermatogonia and basal to 

spermatocytes, a position correlating with Sertoli-Sertoli cell junctions. The detection of cells 

positive for CD4, CD8, CD68 within the adult testis interstitium clearly indicate the presence 

of lymphocytes and macrophages within this testicular compartment. GalTase showed 

striking positive reaction in the Golgi complex of Sertoli cells, Leydig cells, and some 

spermatocytes as well as at the cell membrane of  elongating spermatids and in the simple 

cuboidal epithelium of rete testis. ACE positive reaction was found in the prespermatogonia 

(only at 6-10 cm CRL) and in fetal and adult testicular blood vessels. The functional 

significance of these immunocytochemically-demonstrated proteins is discussed.  
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7. ZUSAMMENFASSUNG 

Morphologische, glykohistochemische und immunohistochemische Studien am fetalen 

und geschlechtsreifen Hoden des Rindes (Bos taurus) 

 

In der vorliegenden Arbeit wurden die Hoden 32 fetaler Rinder underschiedlicher Scheitel-

Steiß-Längen (SSL 2.5-90 cm) und von 15 geschlechtsreifen, klinisch gesunden Rindern 

(Deutsches Fleckvieh) mit licht-und elektronmikroskopischen sowie glykohistochemischen 

und immunohistochemischen Methoden untersucht.  In Abhängigkeit von der SSL wurde die 

Trächtigkeit in drei (Früh-, Mittel-, und Spätgestationsperiode) Phasen unterteilt. 

Bei den jüngsten der untersuchten Embryonen (2.5 cm SSL/43 Tage P.c.) erscheint die 

Hodenanlage als eine in die Zölomhöhle vorspringende, beidseits medial der Urniere 

gelegene, bohnenförmige Struktur. Sie besteht aus soliden Hodensträngen zwischen einem 

noch wenig differenziertem Interstitium. Die Tunica albuginea erfährt kurze Zeit später eine 

deutliche Differenzierung und ihre Schichtdicke nimmt zu. Mit 3.5 cm SSL können in den 

Hodensträngen zwei unterschiedliche Zelltypen unterschieden werden: große, rundliche 

Präspermatogonien und etwas kleinere, polymorphe Zellen, die Vorläufer der Sertoli-Zellen. 

Die Samenkanälchen verlaufen vom Rete testis, mit dem sie ab der Entstehung der 

Hodenstränge verbunden sind, gestreckt zur Peripherie der Gonade. Dort werden sie breiter 

und knäulen sich auf. Die Zahl der großen Keimzellen nimmt zwischen 3.5 cm SSLund 14 cm 

SSL deutlich zu. Das Maximum der pränatalen Keimzellbildung wird mit einer SSL von 14 

cm erreicht. Die meisten Keimzellen sind nun in der Tubulusperipherie lokalisiert. Prä-

Sertoli-Zellen sind insgesamt unregelmäßig geformt, sehr zahlreich und wesentlich kleiner als 

die Keimzellen. Während des gesamten Fetallebens teilen sie sich mitotisch und stellen den 

Hauptteil der Tubuluszellen dar. 

Mit zunehmendem fetalen Alter dehnt sich auch das Interstitium stark aus. Dies ist vor allem 

auf eine Zunahme der Leydig-Zellen zurückzuführen. In der vorliegenden Arbeit sind die 

fetalen Leydig-Zellen des Rindes erstmals ab 3.5 cm SSL erkennbar. Sie treten hauptsächlich 

in Form von Zellclustern auf. Ein erstes Maximum der Differenzierung der Leydig-Zellen 

wird bei Feten mit einer SSL von 14 cm (ca. 80 Tag p.c.) erreicht. Diese erste Generation von 

Leydig-Zellen wird jedoch zum Geburtstermin hin immer mehr zurückgebildet. Ab einer SSL 

von 10 cm treten die Keimstränge über gerade verlaufende Anschlußstücke mit dem Rete 

testis in Verbindung.  
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Der Aufbau des Hodens von geschlechtsreifen Rindern gleicht in vielen Aspekten dem der 

anderen Haussäugetiere. Er wird von einer Tunica albuginea umschlossen, die außen von 

einer Serosa umgeben wird. Die Tunica albuginea stellt eine bindegewebige Organkapsel dar, 

die überwiegend aus straffen kollagenen Fasern und wenigen elastischen Fasern besteht. Die 

Tubuli seminiferi contorti stellen sich als gewundene Kanälchen dar. Sie setzen sich aus der 

Membrana propria, den Sertolizellen und der Keimzellpopulation zusammen. Die Membrana 

propria ist die äußere Umhüllung des Keimepithels. Sie besteht aus einer Basallamina, sowie 

aus einer Schicht kollagener und elastischer Fasern, an die sich peritubuläre Zellen 

(Myofibroblasten) anlagern. Das Keimepithel wird von Sertoli- und Keimzellen gebildet. Die 

Sertoli-Zellen weisen eine typische, mit anderen Spezies vergleichbare Form auf. 

Morphologische Kritieren für eine Unterscheidung von Subtypen, wie sie in anderen 

Untersuchungen beschrieben werden, konnte ich nicht beobachten. Der Keimepithelzyklus 

des Rinds wurde, wie auch bei anderen Spezies üblich, anhand der Kernmorphologie der 

Keimzellen sowie anhand ihrer Lage im Keimepithel eingeteilt. Dabei können acht 

verschiedene Phasen differenziert werden.  

Das intertubuläre Stroma des Rinderhodens besteht vor allem aus Leydig-Zellen und 

Makrophagen sowie vereinzelten Lymphozyten und Plasmazellen. Weiter enthält das 

Interstitium zahlreiche Blut- und Lymphgefäße. Leydig-Zellen liegen in Strängen oder 

kleinen Aggregaten zwischen den Tubuli seminiferi. Nicht jede Leydig-Zelle grenzt dabei an 

eine Blut-oder Lymphkapillare. Am Ausführungangsystem des geschlechtsreifen Bullen 

lassen sich drei Bestandteile (Terminalsegment, Tubulus rectus, und Rete testis) 

unterscheiden. Dabei kann das Terminalsegment ebenfalls in drei Abschnitte, nämlich in die 

Übergangsregion, in den Mittelabschnitt und in den terminalen Pfropf, eingeteilt werden. 

Während in der Übergangsregion normale Sertoli-Zellen der Basalmembran senkrecht 

aufsitzen, werden der Mittelabschnitt und der terminale Pfropf von modifizierten Sertoli-

Zellen gebildet. Jedes Terminalsegment wird von einem Gefäßplexus manschettenartig 

umgeben. An den Tubulus seminiferus schließt sich der Tubulus rectus an. Der Tubulus 

rectus beginnt mit einer kelchartigen Erweiterung, die den terminalen Pfropf umfasst. Er 

verjüngt sich dann zum engen, glattwandigen Kelchstiel. Retewärts vom Kelchstiel ist er 

durch die Ausbildung von intraepithelialen Invaginationen gekennzeichnet und mündet 

schließlich in das Rete testis.  

Das Rete testis befindet sich eingebettet im Mediastinum in der Hodenachse und mündet in 

den Nebenhodenkopf. Extratestikuläre Rete-Anteile wurden nicht beobachtet. Das 

einschichtige Epithel von Tubulus rectus und Rete testis enthält teilweise zahlreiche freie 
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Zellen (Lymphozyten und Makrophagen). Im subepithelialen Stroma des Rete testis liegen 

flache kontraktile Zellen (Myofibroblasten) sowie reichlich elastische Fasern. 

  

Mit 13 verschiedenen Fluoreszeinisothiocyanat (FITC)-markierten Lektinen (ConA, PSA, 

LCA, PNA, GSA-I, ECA, DBA, SBA, HPA, VVA, WGA, UEA-I, LTA) wurde die 

Topographie von Kohlenhydratstrukturen im Hoden untersucht. Diese FITC- markierten 

Lektine wurden an Bouin-Lösung fixierten Proben von fetalen Rindernhoden und an Aceton 

fixierten Gefrierschnitten sowie an Bouin-Lösung fixierten Proben aus adulten Hoden 

eingesetzt. Für fünf FITC- markierte Lektine (PSA, PNA, GSA-I, DBA, WGA) konnten nur 

im fetalen Hoden Bindungstellen nachgewiesen werden. Keimzellen reagierten mit PNA, 

GSA, DBA, und WGA, wohingegen Leydig-Zellen Bindungsstellen für PSA, DBA, und 

WGA aufwiesen.   

Bei geschlechtsreifen Bullen war eine Reaktion der Spermatogonien und der Spermatozyten 

mit PSA, LCA, DBA, SBA und VVA erkennbar. Akrosomen von sich differenzierenden 

Spermatiden färbten sich mit Ausnahme von UEA-I und LTA mit allen Lektinen deutlich an. 

Zudem wurden PSA- und LCA-Bindungsstellen in Sertolizellen und Leydigzellen und DBA-

Bindung in Leydig-Zellen nachgewiesen.  

 

Immunohistochemische Untersuchungen mit der "Avidin-Biotin-Complex" Methode wurden 

zur Lokalisation von FGF-1, FGF-2, S-100, Laminin, α-SMA, VEGF, Connexin 43, CD4, 

CD8, CD68, ACE, und von GalTase im Hoden eingesetzt. Außerdem wurde die Expression 

der mRNA von FGF-1 und FGF-2 mittels in situ Hybridisierung und PCR im adulten Hoden 

untersucht. Beim immunohistochemischen Nachweis von FGF-1 im fetalen Hoden des Rindes 

ergab sich eine positive Immunoreaktivität in den Prä-Sertoli-Zellen, in den Leydig-Zellen 

sowie im Endothel der Blutgefäße und im Epithel der Tubuli recti und im Rete testis. 

Zusätzlich konnte immunhistochemisch eine deutliche Reaktion mit FGF-1-Antikörpern in 

Spermatogonien und Spermatiden geschlechtsreifer Tiere nachgewiesen werden. FGF-2 

Antikörper hingegen reagierte mit fetalen Leydig-Zellen (von 6 bis 30 cm SSL), mit dem 

Endothel der Blutgefäße (ab 63 cm SSL) sowie in den Tubuli recti und im Epithel des Rete 

testis (ab 36 cm SSL). Im adulten Hoden kam FGF-2 in Spermatogonien, in Leydig-Zellen 

und in Myofibroblasten vor. Mit in situ Hybridisierung waren FGF-1 und FGF-2 mRNA in 

den Sertoli- und Leydig-Zellen sowie in den modifizierten Sertoli-Zellen der terminalen 

Pfropfes nachweisbar. Eine intensive S100 Immunfärbung wurde in Sertoli-Zellen, im 

Endothel der Blutgefäße und im Reteepithel fetaler und geschlechtsreifer Hoden beobachtet. 

Laminin zeigte eine positive Reaktion mit der Basallamina der Tubuli seminiferi contorti und 
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mit der Basallamina der Blutgefäße und der peritubulären Muskelzellen (Myofibroblasten). 

Eine deutliche Immunreaktivität auf α-SMA war in den glatten Muskelzellen der fetalen 

Blutgefäße nachweisbar, während in den peritubulären Zellen bei allen untersuchten Stadien 

keine Reaktion für α-SMA festgestellt werden konnte. Im Gegensatz dazu zeigten die 

Muskelzellen (Myofibroblasten) der Tubuli seminiferi contorti und des Rete testis im adulten 

Hoden eine intensive Immunreaktion mit α-SMA-Antikörpern. VEGF Immunreaktivität 

wurde nur in den elongierende Spermatiden beobachtet. Gap junctions zwischen Leydig-

Zellen waren durch eine deutliche Immunfärbung mit Connexin 43-Antikörper darstellbar. 

Auch das Epithel der Tubuli seminiferi contorti in Höhe der Sertoli-Sertoli Zellverbindung 

stellte sich in dieser Untersuchung positiv dar. Im Interstitium traten Zellen auf, die mit CD4, 

CD8, und CD68 eine positive Immunreaktion zeigten. Die GalTase reagierte jeweils in der 

Golgi-Zone der Sertoli-Zellen, der Leydig-Zellen, einiger Spermatozyten und des Rete testis 

sowie an der Oberfläche der elongierenden Spermatiden und des Rete testis. ACE wurde 

außer im Gefäßendothel noch in den Präspermatogonien (nur bei 6-10 cm SSL) 

nachgewiesen.  
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9. ABBREVIATIONS 
 
AA Amino acid 

ABC Avidin Biotin complex 

ABP  Androgen binding protein 

ACE  Angiotensin converting enzyme. 

AMH Anti-Müllerian hormone 

ASPC Aggregated spermatogonia precursor cells  

BM  Basement membrane. 

BSC Basal spermatogonia stem cell line 

cAMP  cyclic Adenosine monophosphate. 

Con A  Concanavalin Agglutinin. 

CRL Crown Rump Length. 

CSPC Committed spermatogonia precursor cells  

Cx43 Connexin 43 

º C  Degree centigrade. 

Da  Dalton. 

DAX1  Dosage-sensitive sex reversal 

DBA  Dolichos biflorus Agglutinin. 

dpc  Day post conception 

dsDNA Double strand deoxyribonucleic acid 

ECA  Erythrina cristagalli Agglutinin. 

ECM  Extracellular matrix. 

EDS Ethane dimethane sulphonate 

EGF Epidermal growth factor 

EM Electron microscope 

ER  Endoplasmic reticulum. 

FGF-1  Acidic Fibroblast Growth Factor (aFGF). 

FGF-2  Basic Fibroblast Growth Factor (bFGF). 

FGFRs  Fibroblast Growth Factor Receptors. 

FGFs  Fibroblast Growth Factors. 

FITC  Fluoroisothiocyanate. 

FSH Follicular stimulating hormone 

GalNAc  N-acetyl-galactosamine. 



                                                                                                                                Abbreviations 
                                                                              

                                                                     223                                                                                                    

GalTase  Galactosyltransferase. 

GlcNAc  N-acetyl-glucosamine. 

GSA I  Griffonia simplicifolia Agglutinin I. 

H&E  Haematoxylin and Eosin. 

hCG human chorionic gonadotropin 

HGF Hepatocyte growth factor  

HPA  Helix pomatia Agglutinin 

IGF-I Insulin growth factor-I 

IL1 Interleukin-1 

IP3 Inositol triphosphate 

IRES Internal ribosome entry site 

LCA  Lens culinaris Agglutinin. 

LIC Light intercalated cell 

LM Light microscope 

LTA. Lotus tetragonolobus Agglutinin 

MCSF Macrophage colony stimulating factor 

mER Mixed endoplasmic reticulum  

MHC Major histocompatability complex. 

mRNA Messenger ribonucleic acid 

MIS Müllerian inhibiting substance 

Ndr Nuclear Dbf2-related (family of protein serine/threonine kinases) 

NO Nitric oxide 

p53 Tumor suppressor gene p53 

PAS  Periodic acid Schiff. 

PCNA Proliferating cell nuclear antigen 

PGC  Primordial germ cell. 

PModS Peritubular factor that modulates Sertoli cell function 

PNA  Peanut Agglutinin. 

PSA  Pisum sativum Agglutinin. 

RAGE Receptor for Advanced Glycation End Product 

rER  Rough Endoplasmic Reticulum. 

ROS Reactive oxygen species 

RT-PCR Reverse-transcriptase polymerase chain reaction 

RTF  Rete testis fluid 
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sACE  Somatic Angiotensin Converting Enzyme. 

SBA  Soybean (Glycine maximus) Agglutinin. 

SCF Stem cell factor 

sER  Smooth Endoplasmic Reticulum. 

SF-1 Steroidogenic factor-1  

SMA  Smooth Muscle Actin. 

SOX9 SRY box-related gene 9 

SRY Sex determining region of the Y-chromosome 

SSC Saline sodium citrate 

SSL  Scheitel-Steiß Länge (German synonym of CRL). 

StAR Steroidogenic acute regulatory protein 

TA Tunica albuginea 

tACE  Testicular Angiotensin Converting Enzyme. 

Tag p. c.  Tag post coitum (German synonym of dpc). 

TGF-β Transforming growth factor β 

TNFα Tumor necrosis factor-alpha 

UEA I. Ulex Europaeus Agglutinin 

µm  Micrometer. 

VEGF  Vascular Endothelial Growth Factor. 

VVA  Vicia villosa Agglutinin. 

WGA  Wheat germ Agglutinin. 

WT-1 Wilms tumor gene product  

ZO-1 Zonula occludens-1 

ZP Zona pellucida 
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10. APPENDIX 

 
Chemicals 
 
Bouin’s solution: 
 
Saturated solution of picric acid   750 ml 
Formaldehyde 250 ml 
Glacial acetic acid 50 ml 
 

 
  

Cacodylate Buffer: 
 
a) Solution A 
Na(CH3)2AsO2  x 3H2O  
(Polyscienc  Inc.,Warrington/USA) 
 

8.56 g 

Distilled water  
 

200 ml  

b) Solution B 
HCl 0,2 M  
(Merck, Darmstadt) 
 

 

For Cacodylate buffer 0, 2 M, pH 7.2: 
 

 

Solution A 50 ml 
Solution B 4.2 ml 
Distilled water 
 
 

100 ml 

For Cacodylate buffer 0,1 M, pH 7.2: 

 

 

0.2 M solution  50 ml 
Distilled water 50 ml 

   
 
     

Contrasting solution for electron microscopy 

OsO4,  4%  

(Polysciences Inc., Warrington/USA)  

2 ml 

Distilled water  6 ml 

Potassiumferrocyanide  

(Sigma, Deisenhofen  

0.12 g 
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DAB preparation 
Solution A: 50 ml TBS buffer + 0.15 ml 30% H2O2 

Solution B: 60 ml PBS + 3 DAB tablets 

0.4 ml of solution A are mixed with solution B. Filtration of the mixture 

 

 

Karnovsky solution (Karnovsky, 1965) 
Paraformaldehyde 10 g 

Distilled water  100 ml 

NaOH, 1M 6 drops 

 

 

PBS Buffer (phosphate buffered saline) 
Sodium chloride 42.5 g   

Disodiumhydrogenphosphate-dihydrate 6.35 g   

Sodiumdihydrogenphosphate-monohydrate  1.95 g   

Add 5 liters distilled water and adjust pH at 7.4 to 7.6 
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