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Zusammenfassung 

 

Prionenerkrankungen: Genetische Gesichtspunkte 

 

Sowohl beim Menschen als auch bei Tieren kann eine Gruppe übertragbarer 

neurodegenerativer Erkrankungen beobachtet werden, die nicht durch klassische 

Erreger hervorgerufen werden. Zu diesen Krankheiten zählen die Creutzfeldt-Jakob-

Krankheit (CJD) des Menschen, die Bovine Spongiforme Encephalopathie (BSE) 

beim Rind, Scrapie bei Schaf und Ziege und die Chronic Wasting Disease (CWD) bei 

Wildwiederkäuern. 

Die sogenannten Prionenerkrankungen sind vor allem durch die Akkumulation eines 

Proteinase-resistenten Proteins (“Prion”), einer Isoform des körpereigenen 

Prionproteins, vor allem im zentralen Nervensystem, gekennzeichnet. Es gibt eine 

Reihe von Hinweisen darauf, welche Aufgaben das Prionprotein erfüllen könnte, 

seine exakte Funktion ist aber noch nicht geklärt worden. Die Pathogenese der 

Prionenerkrankungen ist eng verbunden mit dem Vorhandensein des Prionproteins in 

einer Reihe von Zelltypen, ein Sachverhalt welcher mit Hilfe transgener Mausmodelle 

nachgewiesen wurde. 

Das grundlegende Ereignis der Prionenpropagation ist die Umwandlung der 

normalen α-Helix-reichen Isoform des zellulären Prionproteins in eine andere, die 

vorwiegend aus β-Faltblättern besteht und sich vom zellulären Prionprotein in einer 

Reihe von biochemischen Eigenschaften unterscheidet. Die darauf folgende 

Akkumulation und Aggregation dieser Proteinase-resistenten Form führt zur 

Neurodegeneration. Es wurden mehrere Modelle entwickelt, um die Aggregation der 

Prionen zu erklären.  

Es ist zudem bekannt, dass genetische Faktoren eine wesentliche Rolle im 

Konversionsprozess spielen, indem sie die strukturelle Stabilität des Prionproteins 

oder auch seine Expressionslevel beeinflussen. Darüber hinaus könnten sich 

Interaktionen des Prionproteins mit anderen Proteinmolekülen auf Pathogenese und 

die Phänotypen bei Prionenerkrankungen auswirken. Dies gilt auch für die 

Übertragbarkeit der Erkrankungen zwischen Individuen oder von einer Spezies zur 

anderen. 

Die Existenz mehrerer Konformationen und Glykosylierungsmuster des Prionproteins 

führt zur Ausbildung verschiedener Prionen-Stämme (Strains). Der Phänotyp einer 



Prionenerkrankung scheint demnach von der Struktur des körpereigenen 

Prionproteins einerseits und des infektiösen Prions andererseits abzuhängen. 

Genetische Faktoren sind hierbei von besonderer Bedeutung, da sie unter anderem 

die Konformation des Prionproteins beeinflussen können. 

Die vorliegende Arbeit umreißt die grundlegenden Merkmale der 

Prionenerkrankungen, einschließlich der strukturellen Eigenschaften des 

Prionproteins und des Prions. Darüber hinaus werden unterschiedliche Modelle der 

Prionenaggregation unter besonderer Berücksichtung der genetischen Implikationen 

diskutiert. Die verbreitetsten Prionenerkrankungen bei Mensch und Tier werden 

beschrieben und von einem genetischen Blickpunkt aus betrachtet. Zudem werden 

mutmaßliche Kandidatengene, die mit Prionenerkrankungen in Zusammenhang 

stehen könnten, vorgestellt. 



Summary 

 

Prion Diseases: A Genetic Perspective 

 

In both humans and animals, a group of transmissible neurodegenerative conditions 

has been observed which are not caused by classical infectious agents. These 

disorders include Creutzfeldt-Jakob-Disease (CJD) in humans, bovine spongiform 

encephalopathy (BSE) in cattle, scrapie in sheep and goats and chronic wasting 

disease (CWD) in cervids. 

The so-called prion diseases are primarily characterised by the accumulation of a 

proteinase-resistant protein (designated “prion”) that is an isoform of the endogenous 

prion protein, mainly expressed in the central nervous system. There are several 

indications which tasks the cellular prion protein might fulfil but its exact function has 

not yet been clarified. The pathogenesis of prion diseases is closely linked to the 

presence of the prion protein in a number of cell types, an association which has 

been explored by using transgenic mouse models. 

The basic event in prion propagation seems to be the transformation of the normal α-

helix rich isoform into another that is mainly composed of β-sheets and differs from 

cellular prion protein in a number of biochemical properties. The ensuing 

accumulation and aggregation of this latter proteinase-resistant form leads to 

neurodegeneration. Several models have been proposed in order to explain 

aggregation.  

Genetic factors are known to play a considerable role in the conversion process by 

influencing the structural stability of the prion protein or otherwise its expression 

levels. Furthermore, interactions of the prion protein with other endogenous protein 

molecules may have an impact on pathogenesis and phenotype in prion diseases. 

This also applies to the species barrier, i.e. to transmissibility of the diseases 

between individuals or from one species to an other.  

The existence of several prion protein conformations and glycosylation patterns 

apparently leads to the development of multiple prion strains. Thus disease 

phenotype seems to be determined by the structure of both the endogenous prion 

protein and the infectious prion. Genetic factors are strongly associated with these 

aspects of prion disease as they have an effect on host prion protein conformation. 



This work outlines the fundamental features of prion diseases including the structural 

properties of the prion protein and the prion. Different models of prion aggregation 

are furthermore introduced with a special reference to genetic implications. In 

addition, the most common prion diseases of humans and animals are characterised 

and viewed in a genetic perspective. Putative candidate genes that may be 

associated with prion diseases are discussed together with mechanisms by which 

they might exert their influence. 
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Introduction 
 

Prion diseases 

 
Prion diseases are a class of neurological disorders also termed transmissible 

spongiform encephalopathies (TSEs) (see Table 1). Neuropathological findings in 

these diseases are generally associated with the formation of rods or “plaques” of a 

proteinase-resistant protein, vacuolisation and neuronal loss in tissues of the central 

nervous system (Prusiner et al., 1983). Originally they had also been designated 

slow virus diseases or transmissible dementias because the nature of the agent 

causing these disorders was yet unknown. 

A common characteristic of TSEs is their transmissibility from one being to the other 

within the same species. Transmission is independent of whether the illness 

originally occurred spontaneously or as a result of inherited predisposition. A range of 

factors, both host-specific and pathogen-specific, influence transmission dynamics. 

Prion properties, host genetic disposition and epidemiological factors such as 

infection dose, age at infection or route of infection are implicated in the resultant 

disease phenotype.    

A number of questions concerning TSEs still remains to be answered. The nature of 

the infectious agent and the mechanism by which infectivity spreads is not yet 

entirely clear. Another unresolved question is in which way in PrPSc forms aggregates 

in the brain. Different models have been proposed but none could be completely 

affirmed by experimental procedures. It is furthermore unclear by which route the 

infectious agent enters the body. Apart from the oral route and transmission by 

surgical procedures (grafting, inoculation) several other possibilities have been 

discussed such as transmission via conjunctiva, wounds, skin, body fluids (blood, 

lymphocytes, milk) or other vectors, e.g. insects. For some TSEs like CWD or scrapie 

the route of transmission can only be presumed as detailed observations are lacking. 

Regarding scrapie it has been repeatedly doubted that it is an acquired prion disease 

at all. As the connection between genotype of the animals and susceptibility to 

disease is especially close in sheep it has been proposed that scrapie might be an 

inherited disease for which the predisposition is determined by the host PrPC 

genotype. Dispositions for TSEs are known in humans and various in species, but it 



 

 2 

is not yet clear if susceptibility to prion diseases might be controlled by the genotype 

in all species affected by these disorders. 

 

 

Table 1: Prion diseases in different species 

 

 

 

Species  

  

Prion Disease 

Sporadic sCJD 

Inherited fCJD, GSS, FFI, BPI 

 

Human 

Acquired iCJD, kuru, vCJD 

Sheep  Scrapie 

Cattle  BSE 

Mink  TME 

Felidae  FSE 

Cervids  CWD 

 

 

 

Historical Background of Human Prion Diseases 

 

In humans the so-called Creutzfeldt-Jakob disease (CJD) is the most prominent 

spongiform encephalopathy. As early as 1920 a neurological illness that was 

accompanied by mental and sensory impairment and disturbance of the motor 

function was first described by Hans Gerhard Creutzfeldt who referred to the disease 

as “pseudosclerosis”. Only months later, Alfons Maria Jakob examined three patients 

with a resembling phenotype. He diagnosed the patients with a disorder he described 

as “spastical pseudosclerosis”. These latter patients were the first actual cases of 

human CJD. Although the case reported by Creutzfeldt does not meet the phenotypic 

criteria typical for CJD and probably refers to a different kind of disorder, the term 

CJD still remains in use.  

By the criteria presently applied to neurological diseases such as clinical symptoms, 

neuropathological presentation and both biochemical properties of the agent and 
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genetic host factors, CJD can be classified into different forms. The disorder 

therefore can be caused by inherited genetic predisposition (familial form) or 

transmission of an infectious agent (iatrogenic form). CJD can also occur as a rare 

spontaneous event (sporadic CJD). 

Furthermore, there are other human prion diseases such as Gerstmann-Sträussler-

Scheinker syndrome (GSS) or Fatal Familial Insomnia (FFI) that are discernable with 

the help of various clinical and histopathological symptoms. These disorders are 

associated with specific mutations in the prion protein amino acid sequence. 

Another neurodegenerative disease was recognized at the beginning of the 20th 

century when the epidemical course of a neurological syndrome was observed in the 

highlands of Papua New Guinea. Contrary to classical CJD, the illness termed kuru 

appeared to be orally transmitted through cannibalistic consumption of infected brain 

tissue among an isolated native tribe. Kuru was shown to transmit to chimpanzees 

(Gajdusek et al., 1966), from which was concluded that the disease was caused by a 

slow virus with an exceptionally long incubation period.  

The discovery of vCJD, the new variant of Creutzfeld-Jakob Disease in humans, in 

the 1990ies, revived the subject of spongiform encephalopathies. In contrast to 

classical CJD cases, vCJD patients were much younger and clinical symptoms 

differed from those hitherto observed in other CJD variants. It seems to be likely that 

vCJD has been caused by transmission of an infectious agent between two species, 

in this case from cattle to humans. Notably, in the 1980s a fatal prion disease of 

cattle termed Bovine Spongiform Encephalopathy (BSE) strongly occurred first in the 

United Kingdom and later on in a range of countries world-wide. BSE itself causes, 

amongst others symptoms, typical spongiform lesions in the brains of infected 

animals and leads to progressive ataxia. As vCJD brain neuropathology shows 

characteristics similar to lesions in brains of BSE animals it has been proposed that 

human illness is caused by infection with the same agent. There are also biochemical 

properties of the vCJD agent that differ from those observed in other CJD forms and 

are similar to the characteristics of the BSE infectious agent. As primary route of 

transmission from cattle to humans consumption of beef contaminated with infectious 

material is the most likely possibility.  

From the early 60ies on there had been indications that spongiform 

encephalopathies are not caused by a slow virus but by an agent, possibly a protein, 

that was devoid of nucleic acid as the agent was not inactivated by nucleases or UV-



 

 4 

radiation. In the 1980ies the term “prion” (for proteinaceous infectious particle) was 

introduced in order to describe a protein that was isolated from the aggregates or 

plaques typically seen in spongiform encephalopathies. At first it was not clear 

whether this protein was encoded for by a viral nucleic acid or whether it might itself 

be the infectious agent. Only when it was demonstrated that the amino acid 

sequence of the protein was encoded by a chromosomal host gene it became 

obvious that its infectious properties were causative to the spongiform 

encephalopathies. It was also shown that the apparent differences between the 

ubiquitous cellular prion protein and the infectious form are due to posttranslational 

processing and structural conformation.    

 

Historical Background of Animal Prion Diseases 

 

In animals several spongiform encephalopathies other than BSE have been 

recognised to date. Natural scrapie in sheep and goats has been observed in 

European countries from as early on as the middle of the 18th century. Despite of the 

fact that it is present in a range of countries, even today it is unclear in which way 

exactly the disease is transmitted between animals and flocks.  

As the emergence of the BSE epidemic coincided with an outbreak of scrapie on the 

British Isles it has been suggested that scrapie-contaminated meat and bone meal 

(MBM) was distributed to cattle. Nevertheless the origin of BSE could also lie in the 

occurrence of a sporadic BSE case and subsequent recycling of infectious material 

via MBM. There are characteristics observed in some types of BSE and scrapie 

agent that are very similar to each other although neither of both possibilities could 

hitherto be excluded. 

Epidemics of spongiform encephalopathy are known to occur in mink kept on fur 

producing farms which led to the introduction of the term Transmissible Mink 

Encephalopathy (TME) (Marsh and Bessen, 1993). The disease first described in the 

1940ies seems to be orally transmitted through consumption of contaminated feed. 

Interestingly, there are two different forms observed in affected animals which can be 

distinguished by the clinical presentation. Furthermore, in cervids such as elk or 

white-tailed deer, Chronic Wasting Disease (CWD) has been described in parts of 

the United States of America, both in captive animals as well as in free-ranging deer. 

It was first detected in 1967 and recognised as a TSE nine years later. CWD seems 
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to have developed independently from other TSEs though the origin of the disease 

remains unclear.    

Another disorder called Feline Spongiform Encephalopathy (FSE) has been detected 

in wild and domestic cats (Leggett et al., 1990). It causes typical neurological 

disturbances and spongiform changes in the brain. Research on FSE has been 

scarce as the threat of transmission to human beings through the oral route is low, at 

least in the western hemisphere. TSEs can also be found in zoo animals such as 

tiger, puma, bison, kudu, oryx etc. (Kirkwood and Cunningham, 1994). It is possible 

that the so-called zoological spongiform encephalopathy (ZSE) includes CWD, FSE 

or BSE according to the species of the affected animal. Prion diseases in zoo 

animals seem to be caused by the distribution of feedstuff contaminated with the 

infectious agent.  

 

The Prion Protein 
 

One characteristic of prion diseases is the presence of proteinase K-resistant protein 

aggregates in the brain of affected individuals. These amyloid structures observed in 

prion diseases were found to be composed of protein molecules with a weight of 27-

30 kDa. The proteins were therefore initially termed PrP27-30.  

Oligonucleotides corresponding to the N-terminus of PrP27-30 were prepared by 

Oesch et al. (1985). With the help of these probes it was possible to select a 

corresponding cDNA clone from a scrapie-infected hamster brain library. Southern 

blotting with PrPC cDNA demonstrated that the protein was encoded by a single 

chromosomal gene. DNA both from scrapie-affected and normal brain exhibited 

common restriction patterns.  

Additional evidence that PrPC and the PK-resistant PrP27-30 are encoded by the same 

gene was found when amyloid plaques in brain tissue sections of humans and 

animals were stained with PrP antibodies (Kitamoto et al., 1987). The highly intense 

PrP staining of the amyloid PrP27-30 plaques indicated that a common single gene 

encoded both proteins. Differences in protein properties such as proteinase K 

resistance must have been caused by posttranslational processes relevant for 

structural conformation as amino acid sequences of the PrPC isoform and PrP27-30 

were identical (Borchelt et al., 1990). These results did argue against the theory of 

PrP27-30 as a viral protein, a hypothesis that had been suggested beforehand. After 
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the discovery of PrPC and its gene, experiments were carried out to define its 

characteristics (see Table 2).  

 

 

Table 2: Properties of PrPC and PrPSc (Hunter et al., 1997, modified) 

 

 

  

Normal  

 

Abnormal 

Name  

PK 

Detergent 

Length 

Structure 

Glycosylated 

Molecular weight (-PK) 

Molecular weight (+PK) 

Antigenicity 

Location 

Expression 

 

 

 

Expression in disease 

Turnover 

PrPC 

Sensitive 

Soluble 

~250 amino acids 

α-helix and loops 

Two sites 

33-35 kDa 

Degraded 

Bind to same antibodies 

Cell surface, GPI-anchored 

Various tissues 

 

 

 

Protein levels constant 

Rapid 

PrPSc 

Partially resistant 

Insoluble 

~250 amino acids 

β-sheet 

Two sites 

33-35 kDa 

27-30kDa 

Bind to same antibodies 

Fibrils, deposits 

Various tissues, pronounced 

in brain, central nervous 

system (CNS), lymph nodes, 

spleen, tonsils 

Protein levels increase 

Slow 

 

 

  

The precursor of the 33-35 kDa PrPC is encoded by a single copy gene and 

comprises two signal peptides, one at the C-terminal end, the other one at the amino-

terminus. Both of these signal peptides are cleaved off during protein processing and 

a glycosylphosphatidyl inositol (GPI) anchor, which fastens the glycoprotein to the 

cell plasma membrane, is attached to the carboxy-terminus of the protein (Rieger et 

al., 1999). N-glycosylation might occur at positions 181 and 197 of the amino acid 
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chain at the C-terminus. Occupation of these sites can vary, so that diverse 

oligosaccharide side chains can be attached to the prion protein (Rudd et al., 2001).  

Interactions between protein molecules or within the protein at residues 1-90 can 

thus be prevented by the glycans attached at position 181 and 197. They shield parts 

of the protein, which leads to sterical prevention of interaction. Side chains at 

positions 177, 181 and 185 remain open as potential sites of interaction with other 

molecules as long as no glycan is attached to them. Interestingly, a copper-binding 

octapeptide repeat sequence is located between codons 50 and 91 (Hornshaw et al., 

1995). It is therefore possible that glycosylation status of the prion protein influences 

its ability to bind metal ions, one possible function of PrPC in the organism. 

Within eurkaryontic cells, synthesis of the prion protein is accomplished at the rough 

endoplasmatic reticulum that contains several forms of the protein. The carboxy 

terminal transmembrane protein is termed CtmPrP, the amino terminal protein NtmPrP 

and the secretory protein is called SecPrP. This last form is identical to classical PrPC 

(Rieger et al., 1999). The transmembrane forms of PrPC usually constitute but 10% of 

total PrPC that is produced. They span the lipid membrane once by help of a central 

hydrophobic region (amino acid positions 111-134). Either the C-terminus (CtmPrP 

molecules) or the N-terminus (NtmPrP molecules) is thus located on the 

extracytoplasmic side of the membrane (Stewart and Harris, 2003). Via Golgi 

granules and secretory vesicles PrPC is transported to the cell surface where it is 

attached by its GPI anchor. Endocytosis of PrPC is possible either through caveolae-

like domains or clathrin-coated pits with the putative involvement of the laminin 

receptor (LR). It has been suggested that PrPC can be transported back to the cell 

surface by uncoupling vesicles. As GPI-anchored proteins can be spontaneously 

transported to plasma membranes PrPC could also be transferred to other cells in this 

fashion (Ilangumaran et al., 1996).  

 

Structural Properties of the Prion Protein 

 

The mature form of PrPC consists of two distinct domains, one of them a globular 

core domain of approximately 100 amino acids. Its N-terminal domain, also 

designated “tail”, which contains about 100 residues, is disordered and flexible. This 

structure is common to mammalian prion proteins (Riek et al., 1996, 1998, Calzolai et 

al., 2000, Lopez Garcia et al., 2000). The structure of mouse, Syrian hamster, human 
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and cattle PrPC differs only by strictly local conformational variations, namely atom 

position, variable surface charge distribution and dynamic properties (Calzolai et al., 

2000). The C-terminal globular domain of PrPC comprises two α-helices linked by a 

disulfide bridge (DeArmond et al., 2002). Another α-helix can be found in the N-

terminal “tail” along with two short antiparallel sheets (see Figure 1).  

 

 

 

 

 

 

Figure 1: Structure of the human prion protein 

 

(a) Three-dimensional structure of the intact human prion protein, hPrP(23-230). The helices are 

depicted in orange, β-strand cyan, the segments with nonregular secondary structure within the C-

terminal domain yellow, and the flexible “tail” (23-121) is represented by yellow dots.  

(b) Stereoview of an all-heavy atom presentation of the globular domain, with residues 125-228, in 

hPrP(23-230) in the same orientation as in (a). The backbone is shown as a grey spline function 

through the Cα positions, hydrophobic chains are yellow, and polar and charged side chains are 

orange (Zahn et al., 2000).  
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The variable domain furthermore contains an octapeptide region, a segment of 

several repeats of an eight–amino acid sequence which shows affinity to copper 

(Hornshaw et al., 1995, Collinge, 2001). The stability and conformation of the protein 

might in part depend on its glycosylation properties and interactions between amino 

acids comprised in local structures. The presence of salt bridges and sulfide bonding 

is associated with stabilisation.    

 

Prion Protein Distribution 

 

At first, PrPC was considered to be exclusively expressed as a neuronal protein in 

various regions of the brain. More recent experimental results are nevertheless 

indicating that PrPC can be evidenced in a much wider range of tissues in a hamster 

model (Bendheim et al., 1992). Despite of this, the amount of PrPC that can be 

detected in non-CNS tissues is generally much lower than in neuronal tissues.  

In immunomorphical studies it was possible to locate PrPC in the synaptic domain of 

nerves in the hamster brain where it seems to colocalise with presynaptic 

synaptophysin (Fournier et al., 1995). Another experimental approach in a rodent 

model showed that PrPC could be detected at the presynaptic as well as the 

postsynaptic level (Haeberlé et al., 2000) depending on the type of neuronal cells in 

which it was found. Purkinje cells (PCs) contain a considerably higher amount of 

PrPC than is found in cerebellar inhibitory interneurons. PCs also display PrPC at their 

postsynaptic dendrites in contrary to other classes of neurons in the cerebellum. This 

neuron-specific expression of PrPC may represent differential involvement of PrPC in 

synaptic function. In humans PrPC is also expressed specifically in the postsynaptic 

domain of neuromuscular junctions of the skeletal muscle (Askanas et al., 1993, 

Gohel et al., 1999).  

As for non-neuronal tissues PrPC could be found in the lungs of hamsters (Bendheim 

et al., 1992) in secretory granules. Kidney has also been tested positive for the 

presence of PrPC (Fournier et al., 1998). PrPC has furthermore been observed in 

epithelial cells of the stomach in humans and hamsters and in hamster intestine 

(Fournier et al., 1998). This pattern of distribution might be of importance for prion 

disease infection via the oral route. Moreover, secretory granules of epithelial cells 

are known to contain PrPC (Fournier et al., 1998; 2000). The stellate cells of the liver 

represent another tissue in which PrPC is expressed (Ikeda et al., 1998). In activated 
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hepatic stellate cells both PrPC RNA and the protein itself can be detected on the 

plasma membrane. 

The distribution of normal PrPC within cells and within tissues naturally implicates 

putative functions of the protein.  

 

Putative Functions of the Prion Protein 

 

Distinct knowledge of PrPC function has yet to be obtained. The distribution of PrPC in 

the body may point at such possible tasks. As PrPC is attached to the cell surface it 

was supposed to act as a receptor or as part of a transmembrane signalling pathway. 

Interaction with extracellular ligands would be enabled by PrPC domains oriented to 

the extracellular space. The hypothesis of PrPC as a receptor protein is furthermore 

based on the finding that endocytosis of PrPC can be mediated by clathrin coated 

pits, a mechanism that is known to be characteristic of transmembrane receptors 

such as transferrin or low-density lipoprotein receptors (Shyng et al., 1994). 

Stuermer et al. (2004) showed that in T cells PrPC, by cocapping with reggie rafts, 

triggered signal transduction across the cell membrane. This might imply a role for 

PrPC in immune system signalling. Another signalling pathway involves the tyrosine 

kinase Fyn. PrPC-dependent activation of Fyn has been observed in a murine 

neuronal differentiation model (Mouillet-Richard et al., 2000) suggesting an 

association of PrPC with cell maturation. 

Brown et al. (1999) were able to show that the murine PrPC possessed activity similar 

to that of superoxide dismutase (SOD). The SOD-like activity of the protein was 

impaired by deletion of its copper-binding octarepeat sequence. This result 

suggested that PrPC could influence oxidative stress resistance at cellular level. In 

another approach Brown et al. (2001) purified mouse PrPC from brain and cultured 

cells and analysed its capability to bind copper. The more copper the protein was 

able to bind the higher was its protective effect against oxidative stress that had been 

experimentally imposed by PrP106-126, a neurotoxic peptide which inhibits SOD-like 

activity. This is in accordance with the findings of Wong et al. (2001). In their 

experimental study they measured SOD-like activity of PrPC purified from brains of 

scrapie-affected mice in comparison to control animals. In PrPC of scrapie-infected 

brain homogenates, SOD activity was significantly reduced to about 10% of control 

values. Also total SOD activity in brain homogenates was significantly impaired in 
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scrapie-infected brains. It was furthermore evident that the changes in antioxidant 

activity were accompanied by impairment of the brain metal metabolism. Cu, Zn, Mg 

and Ca were observed to be significantly reduced in the scrapie-infected animals.  

Neuroprotective functions of PrPC in case of stress have been examined by Kim et al. 

(2004). Expression of PrPC was achieved by transfection of immortalised cells 

derived from PrPC knockout neuronal cell lines. Stress was caused by induction of 

apoptosis or serum deprivation. The presence of PrPC was found to protect cells from 

death or at least delayed it. Mitochondrial dysfunction was observed in the cells after 

serum deprivation. Once again PrPC was able to prevent damage of mitochondria, 

possibly via cytochrome c release into the cytosol. These findings point to a 

neuroprotective function for PrPC as it rescued the stress-induced cell death and 

mitochondrial damage. This function might be impaired in prion disease and 

consequently be involved in pathogenic mechanisms in addition to negative 

influences of prion aggregate formation. 

The new method of ultra-immunomorphology which was employed to detect PrPC in 

a range of different tissues afforded results that pointed to an alternative function of 

the prion protein in the body. The presynaptic location of PrPC in nerve terminals in 

hamsters suggested a role in synapse activity (Fournier and Grigoriev, 2001). 

Neurotransmitter vesicles might be coupled with PrPC or the protein might be 

involved in intracellular vesicle trafficking. Indeed, PrPC was found to colocalise with 

synaptophysin and synapsin (Spielhaupter and Schaetzl, 2001). Both of these 

proteins are known to be associated to small synaptic vesicles.  

Modulation of PrPC binding to such synaptic components seems to be achieved by 

oxidative stress (Morot-Gaudry-Talarmain et al., 2003). Copper (II) thereby acted as 

a mild oxidative agent and altered prion protein binding by synaptosomal ligands. 

These changes were positively correlated with changes in immunoreactivity of 

calcineurin B, a molecule involved in calcium regulation, in synaptic components. 

Impairment of PrPC function therefore might not only have negative effects on copper 

regulation but also perturb the calcium regulation system of cells leading to 

pathological modifications. 

In order to further investigate the function of PrPC in copper homeostasis Sakudo et 

al. (2003) analysed copper levels in murine neuronal cells deficient for the prion 

protein gene (Prnp) transfected with Prnp and/or the doppel gene (Prnd). The 

expression of both genes itself did not influence copper levels. Oxidative stress was 
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induced by serum deprivation. The cellular copper concentration significantly 

dropped in all transfected cell lines with exception of those that were solely 

transfected with Prnp. PrPC appeared to prevent the decrease of copper 

concentration. Therefore it is possible that PrPC stabilizes cellular copper 

homeostasis under oxidative stress. Nevertheless it is not clear whether this is the 

only function PrPC fulfils in an organism. Additionally, the effect of PrPC was inhibited 

by overexpression of the doppel protein (Dpl) in cells. This indicates that PrPC and 

Dpl can interact, a further corroboration of what has been suggested by PrPC 

knockout experiments in mice. 

In an approach to identify binding partners of PrPC, a yeast two-hybrid screen with 

murine prion protein and a murine neuronal cDNA library were employed 

(Spielhaupter and Schaetzl, 2001). Several proteins that interacted with PrPC were 

detected and those with high homology to already known proteins were selected. The 

three outstanding interaction partners were the murine growth factor receptor-bound 

protein 2 (Grb2), murine synapsin Ib and another protein of 162 amino acids in 

length. The latter protein had not been described beforehand so that it was termed 

prion interactor 1 (Pint1). To test whether the interaction was limited to yeast cells the 

proteins were expressed in mammalian cells. Co-immunoprecipitation assays were 

used to confirm the interaction of Grb2, synapsin Ib and Pint1 with the full-length 

PrP(23-231). Both synapsin and Grb2 were furthermore found to interact with two 

regions in the N- and C-terminal domains of PrPC, in contrast to Pint1 which interacts 

with a region in the C-terminal domain. Further co-immunoprecipitation experiments 

revealed that Grb2 also specifically interacts with authentic PrPC. Expression of Pint1 

was determined in several organs including brain, heart, thyroid, muscle cells and 

liver, an expression pattern in part in congruence with PrPC mRNA distribution. 

Synapsin and PrPC apparently co-localise at nerve endings indicating a role of both 

proteins in the lifecycle of synaptic vesicles. Grb2 is implicated in intracellular 

signalling cascades, a function that has already been suggested for PrPC. Thus 

interaction with Grb2 and synapsin 1 points to an involvement of PrPC in these two 

important physiological functions. Both proteins appear to act as interaction partners 

and are therefore putative candidates for the existence of genetic variation in PrPC 

action and sensitivity to prion diseases. The fact that PrPC can be found at 

presynaptic as well as postsynaptic positions poses the question whether PrPC fulfils 
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multiple functions which might differ according to PrPC location within the body or 

which might be tissue-specific. 

Another interaction partner of PrPC seems to be tissue-type plasminogen activator   

(t-PA). Recombinant human PrPC specifically stimulated plasminogen activation by 

binding kringle domains of t-PA (Epple et al., 2004). The stimulating effect was 

restricted to t-PA that bound PrPC by lysine-binding sites. These findings suggest that 

in the CNS, PrPC might act as a co-factor in the regulation of plasminogen activation.  

Recent studies have suggested that there might also exist prion-like mechanisms, i.e. 

the ability to convert the structural conformation of other molecules, in further 

proteins with regard to synaptic function. Si et al. (2003) revealed that a neuronal 

protein, a member of the cytoplasmatic polyadenylation element binding protein 

(CPEB) family, exhibited an unusual amino acid composition at its N-terminus. It 

could be demonstrated experimentally that it showed prion-like properties in yeast, 

especially the ability to convert other CPEBs to a conformational state similar to its 

own. It was furthermore suggested that CPEB has the ability to form aggregates. The 

converted form of the protein was also able to stimulate mRNA translation in 

synapses. According to Si et al. the prion-like mechanism could activate mRNA in a 

local fashion and be responsible for the maintenance of long term synaptic change 

implicated in memory storage.  

Taken together, the functions of prion proteins and prion-like switches might be more 

far-reaching than hitherto thought. 

 

The “ Protein-only”  Hypothesis 
 

The first indication that proteins are at least involved in the development of 

neurological disorders like CJD and scrapie arose when experiments with scrapie 

agent showed that infectivity was dependent on the presence of a protein (Prusiner, 

1982). Since experiments hinted at the absence of nucleic acid in the infectious 

agent the possibility emerged that the protein itself might be causative for infection. 

Prusiner (1982) introduced the term prion (for proteinacious infectious particle) and 

the protein-only hypothesis that postulates the sole responsibility of the prion for 

pathogenesis. For a long time the structural properties of the infectious particle had 

not been clarified. The agent could have been a nucleic acid encoding the proteins 

embedded in the proteins in a virus-like manner, a polynucleotide in association with 
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proteins or solely a protein without nucleic acid being involved. There was also a 

number of mechanisms postulated by which the infectious particles could be 

replicated, among others mechanisms utilized by viruses or modification of the 

cellular protein isoform on a posttranslational level (Prusiner, 1991).  

Although the widely-accepted protein-only hypothesis has been able to explain why 

the infectious particles are resistant to nucleic acid-damaging procedures, such as 

treatment with nucleases and UV radiation, there are questions that remain to be 

answered. Firstly, different disease phenotypes can be observed relating to the 

existence of multiple strains of prions. How can such phenotypic diversity occur if not 

through the involvement of nucleic acid? Secondly, the existence of a “species 

barrier” that impairs prion disease transmission between species cannot be traced 

back to variation of a genome as in other types of pathogens.  

In order to deal with these difficulties, the so-called “unified theory” was introduced by 

Weissmann (1991). He postulated that a small nucleic acid might encode strain-

specific information leading to variable disease phenotypes though the major 

infectious factor would still be the protein. In case the “unified theory” was to be 

appropriate, standardised strain characteristics would be disturbed if the nucleic acid 

was destroyed. This has not yet been experimentally demonstrated for the prion 

agent, so that today, most scientists accept the „protein-only“ theory. 

Recently, a study of recombinant mouse PrP provided further evidence in favour of 

the “protein-only” hypothesis (Legname et al., 2004). Synthetic murine PrP was 

polymerized into amyloid fibrils that produced neurologic dysfunction in transgenic 

mice intracerebrally inoculated with the fibrillar aggregates. These latter animals 

expressed normal murine PrPC on a PrP knockout background. Proteinase-resistant 

PrP was detected in the brain extracts of the transgenic mice. Furthermore, 

inoculation of wildtype and transgenic mice overexpressing PrP with such brain 

extracts led to the transmission of disease. These findings indicate that prions can 

form solely from recombinant PrP and that no exogenous agent other than PrPC 

appears to be necessary for prion propagation   

 



 

 15

Prion Strains 
 

A range of prion strains has been distinguished from each other by means of their 

diverse proteinase K cleavage sites and glycoform ratios (Collinge et al., 1996), as 

wells as distinct incubation times and neuropathological patterns in inbred mouse 

lines (Bruce et al., 1991). Through PK digestion the prion agent is cut into fragments 

whose length is probably dependent on protein conformation. The pattern of relative 

glycosylation of the protein also becomes visible by removal of the N-linked glycans 

in proteinase K treatment and ensuing gel electrophoresis. The higher the increase in 

banding intensity compared to the original banding, the higher the gycosylation at 

specific sites (Rudd et al., 2001). The relative glycosylation site occupancy of host 

PrPSc mirrors that of the donor PrPSc when infectious agent is transmitted from one 

animal to another. It is distinct from that of host PrPC. Similarities in glycan amount 

and location might allow prion proteins to travel to neurons or brain regions 

(DeArmond et al., 1997). If this is true, PrPSc might be transported in a glycosylation-

dependent fashion to specific locations in the brain. Consequently, PrPSc would 

target PrPC that possesses a rather similar glycosylation pattern because both 

conformational forms would collocate. 

Strain-specific “lesion profiles” are deduced according to vacuolisation patterns, i.e. 

distribution and extent of spongiform changes in the CNS (Fraser and Dickinson, 

1968). With the help of such lesion profiles it was possible to identify several scrapie 

strains in mice. After inoculation of the animals with BSE agent from different cattle 

sources a much more uniform pattern was observed, indicating that strain diversity in 

BSE prions is low (Bruce et al., 2002). The lesion pattern was nevertheless 

considerably distinct from that in scrapie-infected mice. In conclusion, infectious 

agent obtained from different groups of BSE-affected cattle, which was employed in 

the study, seemed to have originated from the same source. 

Moreover, amount and rate of the conversional change appears to vary between 

specific prion strains (Mulcahy and Bessen, 2004). In mink two different strains of 

TME, designated hyper (HY) and drowsy (DY), according to the clinical symptoms, 

have been observed. Strain typing of both TME variants was performed in Syrian 

Hamster. HY animals exhibited hyperexcitability and ataxia while DY animals showed 

progressive lethargy (Bessen and Marsh, 1992). Incubation periods were 

considerably longer in the DY strain than in the HY strain (65±1 compared to 168±2 
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days). Furthermore, PrPSc isolates from the brains exhibited distinguishable 

properties such as different gel migration pattern after PK digestion and different type 

of ß-sheet secondary structure (Bessen and Marsh, 1992, 1994, Caughey et al., 

1998). PK digestion also led to a faster degradation of DY PrPSc and inactivation of 

its infectivity than of HY PrPSc. Experimental cell-free PrP conversion showed that the 

HY strain caused a faster and higher level of PrPSc formation than the DY strain. 

Strain-specific factors therefore might be able to influence conversion characteristics, 

also depending on host factors e.g. PrPC primary structure or presence and function 

of chaperone molecules.  

In humans, two different types of the sporadic form of CJD have been identified by 

Parchi et al. (1996) through immunoblot analysis. After PK-digestion the remaining 

core fragments of PrPSc from sCJD brains exhibited two distinguishable migration 

patterns on gel electrophoresis. This was due to primary cleavage sites at residues 

82 (type 1 pattern), 97 (type 2 pattern) and a number of secondary PK cleavage 

sites. In forms of the CJD acquired by peripheral infection it was also possible to see 

a type 3 pattern with shifted banding in western blotting (Collinge et al., 1996). The 

distribution of PrPSc fragments in vCJD was considerably different to type 1 and type 

2 patterns and could be distinguished from both by specific band intensities. The 

vCJD agent possessed a highly consistent glycosylation pattern, which was not 

comparable to either CJD strain type 2 or 3. This indication that sCJD and vCJD are 

caused by different strains of prion agents was further corroborated by transmission 

experiments of CJD and BSE in mice. While mice inoculated with CJD exhibited the 

classical CJD pattern, the glycosylation pattern induced by BSE prions closely 

resembled that observed in the new variant of CJD. These findings constitute 

considerable evidence that the prion disease BSE could have been transmitted to 

human beings. Transmission between species is limited by a phenomenon termed 

“species barrier”. 
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The Species Barrier 
 

When prion diseases are transmitted between different mammalian species an effect 

can be observed which is commonly termed “species barrier” (Pattison, 1965). 

Though inter-species transmission might be possible, incubation times in primary 

transmission are increased compared to those observed in transmission within the 

same species. After passage of the infectious agent in the same species incubation 

times are narrowed down to those seen in intra-species transmission.  

The “height” of a species barrier can be estimated through measurement of the 

comparative drop in mean incubation period between first and second same-species 

passage (Collinge, 2001). Species barriers were first thought to arise through 

differences in the amino acid sequence of host PrPC and the infectious agent. 

Experiments in transgenic mice expressing chimeric PrP genes demonstrated that 

substitutions in the amino acid chain of PrPC influence disease susceptibility between 

species. Mice whose PrPC contained amino acid substitutions encoded by the Syrian 

hamster PrP gene were preferably targeted by chimeric PrPSc, while nontransgenic 

mice as well as nontransgenic hamsters were infected much less efficiently (Scott et 

al., 1993). It was suggested that the greater homology between the agent and host 

PrPC enhanced prion propagation in the animals.   

It then became obvious that factors other than amino acid sequence of the donor 

PrPSc and recipient PrPC were influential with regard to the “species barrier”, 

especially such that are modulating structure and conformation of the proteins. A 

certain conformation of PrPSc in the infectious agent deduced from one species might 

preferably infect a species that possesses PrPC inclining to the same PrPSc 

conformation. In prion strains that can cross species barriers relatively easily, PrPSc 

might be in congruence with PrPSc conformations that are favoured by PrPC structure 

in a wide range of host species.  

The strain type of the infectious agent has increasingly gained in importance in 

connection with the species barrier (Bruce et al., 1994). Distinct glycosylation types 

observed in different strains might have an influence on conformational properties of 

PrPSc and therefore on the ability of interspecies transmission.   

 



 

 18

Prion Protein and Prion Disease 
 

The impact of host PrPC amino acid sequence in connection with observed clinical 

cases of prion disease came to notice when polymorphisms in the murine and ovine 

prion protein were found to influence scrapie incubation times (Westaway et al., 

1987; Goldman et al., 1994). In humans, an association between polymorphisms in 

the PrPC gene and CJD was revealed by Windl et al. (1996).  

To further investigate the role of the PrPC concerning TSEs, knockout experiments in 

mice were conducted. A first approach (Bueler et al., 1992) showed that PrPC-

deficient mice developed normally and did not exhibit impaired behaviour. However, 

contrary to wildtype controls it was not possible to infect these PrPC knockout animals 

with scrapie (Bueler et al., 1993). The importance of these results was furthermore 

corroborated as heterozygous mice showed enhanced resistance to disease.  

In other mouse models considerable defects such as altered circadian activity 

rhythms and sleep patterns (Tobler et al., 1996) and loss of cerebellar Purkinje cells 

and ataxia (Sakaguchi et al., 1996) were observed. Another knockout approach 

resulted in impairment of GABAA receptor-mediated fast inhibition as part of a 

disrupted synaptic neurophysiology in the animals (Collinge et al., 1994). A latter 

study suggested that ataxia and loss of Purkinje cells in knockout mouse models 

could not be attributed to the absence of PrPC in the body but to the upregulation of 

Dpl, which resembles PrPC (Moore et al., 1999). Nevertheless it was demonstrated 

by these murine knockout models that the presence of PrPC is crucial for TSE 

infection.  

The depletion of endogenous neuronal PrPC even protected mice with neuroinvasive 

prion infection from developing clinical symptoms of the disease (Mallucci et al., 

2003). In this study, transgenic mice generated on a PrP knockout background 

expressed endogenous PrPC at 1- to 3-fold wildtype levels, so that scrapie infection 

could take place. Their neuronal PrPC expression was stopped by Cre recombinase 

mediated depletion at approximately 12 weeks of age. This led to an approximately 

3-fold life span in comparison to animals that did not express Cre recombinase. The 

mice did not show neuronal loss despite of ongoing gliosis and accumulation of 

proteinase-resistant PrPSc in the brain. These findings indicated that the presence of 

neuronal PrPC is required for the occurrence of clinical scrapie in the transgenic 
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model, which again highlights the importance of PrPC for the pathogenesis of prion 

diseases.   

 

Conversion of PrPC to PrPSc 

 

The commonly accepted “protein-only” hypothesis states that the causing agent for 

prion diseases is an infectious isoform of PrPC (Prusiner, 1982). The non-pathogenic 

form PrPC apparently alters its normally α-helix rich conformation to an isoform that 

contains mainly β-sheet structures (Pan et al., 1993) (see Figure 2).  

 

 

 

Figure 2: Model of recombinant PrP (right) and PrPSc (left) (Prusiner, 2001) 

 

The model to the left depicts Syrian hamster recombinant PrP90-231, which presumably resembles 

that of the cellular isoform PrP. α-helixes A (residues 144 through 157), B (172 through 193) and C 

(200 through 227) are purple with loops in yellow; residues 129 through 134 in strand S1, and 

residues 159 through 165, in strand S2, are blue. A plausible model of the tertiary structure of human 

PrPSc is shown on the right side. S1 β-strands (residues 108 through 113 and 116 through 122) and 

S2 β-strands (residues 128 through 135 and 138 through 144) are blue. α-helixes B (residues 178 

through 191) and C (residues 202 through 218) are purple, with yellow loops. 

 

 

The variable N-terminal “tail” thereby changes its structure by extending the β-sheets 

The mechanisms underlying this conversion have been poorly understood until now. 

Transition might either take place spontaneously or could be triggered by the 
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presence of PrPSc. There are different models available to explain such 

conformational conversion (see Figure 3).  

 

 

 

 

 

Figure 3: Models for the conformational conversion of PrPC to PrPSc (Weissmann, 

1999) 

         

A   “refolding” model 

B   “nucleation” model 

 

 

The “refolding” theory (Figure 3, A) interpreted PrPSc formation as a result of 

interaction between the infectious PrPSc and PrPC. The process would be kinetically 

controlled and led to an exponential conversion cascade (Prusiner et al., 1991).  

The “nucleation” model (Figure 3, B) regarded the formation of PrPC from PrPSc as 

reversible. The infectious isoform remains stabilised only by the presence of a PrPSc 

aggregate or “seed”. First steps leading to aggregation would be slow, with speed 

increasing as more and more monomers are added to the seed (Brown et al., 1991).  

Transmutation could be aided by a chaperon, designated protein X, whose binding 

sites are located in the C-terminal region of PrPC (Telling et al. 1995, Kaneko et al., 
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1997). Experimental studies revealed that substitution of amino acids in the PrPC 

sequence stopped the protein from being converted to PrPSc (Kaneko et al., 1997). 

The mutant forms of PrPC seem to bind to protein X thus prohibiting the formation of 

PrPSc. A latter study (Cordeiro et al., 2001) comes to the conclusion that this 

chaperon might not be a protein at all but a nucleic acid or protein-nucleic acid 

complex.  

This hypothesis was further substantiated as Deleault et al. (2003) discovered that 

specific host-encoded RNA molecules stimulated the in vitro amplification of PrPres. 

This protein-resistant protein showed similarities to PrPSc. Tests were conducted in 

vitro in the absence of other cellular factors to exclude the possibility of additional 

interactions. Nucleic acids of the host might thus play a role in prion disease 

pathogenesis. The question whether these RNA factors involved in conversion might 

have further effects, e.g. in the generation of prion strain diversity, has yet to be 

answered.  

 

Prion and Prion Aggregation  
 

The infectious prion, PrPSc, cannot be chemically distinguished from PrPC but there 

are properties that allow differentiation. PrPC is sensitive to enzymatic degradation by 

proteinase K, contrary to the infectious prion. The latter is partially resistant to 

proteolysis, and after PK digestion forms a fragment designated PrP27-30 (Oesch et 

al., 1985). In contrast to PrPC, PrPSc cannot be solubilized in detergents (Meyer et al., 

1986). PrPC shows rapid turnover in the organism while PrPSc accumulates in the 

brain of affected subjects (Borchelt et al., 1990). Furthermore, PrPC distribution in the 

brain differs from that of PrPSc as both isoforms localise in specific regions 

(Taraboulos et al., 1992). In the course of disease the core fragment of PrPSc   

(PrP27-30) polymerises into amyloid-like deposits or rods (Prusiner et al., 1983), which 

are found in the brain of individuals affected by prion disease.  

Not only in prion diseases but also in other neurodegenerative diseases such as 

Alzheimer’s or Parkinson’s illness the accumulation of proteins has been observed in 

a range of different tissues. In the group of diseases termed amyloidoses, fibrillar 

structures composed of proteins are therefore encountered in the extracellular space. 

Nevertheless it is yet unclear by which mechanism and pathogenic species i.e. 

conformational state of the proteins or aggregates neurodegeneration is caused.  
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Protein molecules fold into their specific conformational state after the polypeptide 

chain has been synthesised at the ribosomes (Dobson, 2001). This final 

conformation is basically determined by the amino acid sequence of the protein 

although the folding process is accomplished with the help of chaperones and 

catalytic enzymes. Chaperones prohibit undesirable interactions of other molecules 

with the unfolded protein or accelerate certain stages of the folding process. As 

misfolding of proteins can take place in the transition phase there are protective 

mechanisms. They prevent negative effects like accumulation and aggregation of 

damaged or misfolded proteins (Sherman and Goldberg, 2001). For example, heat-

shock proteins (Hsps) can diminish prion aggregation, dissociate aggregates, 

degrade abnormal proteins etc. In prion diseases and other disorders in which 

protein aggregation can be observed these protective mechanisms seem to be 

impaired. Aggregation processes can thus occur if the correct conformational state of 

the proteins is not achieved. This effect can be caused by mutations of the amino 

acid chain, abnormal interaction with metal ions, alteration of pH levels, temperature 

or other environmental factors. Chemical processes such as oxidation can 

furthermore be involved in aggregation (Stefani and Dobson, 2003). Reasons for an 

increasing presence of misfolded proteins could be enhanced protein synthesis or 

otherwise reduced clearance of the molecules.  

 

Aggregation and Toxicity 

 

The ability to aggregate into fibrils does not seem to be an exclusive property of 

disease-related proteins. Guijarro et al. (1998) demonstrated that a domain of the 

globular protein bovine phosphatidylinositol 3-kinase (PI-SH3), an enzyme that is not 

associated with disease, can form amyloid fibrils. Toxic effects have been 

demonstrated for aggregated forms of PI-SH3 and the HypF Protein (HypF-N) which 

is found in Escherichia coli (Bucciantini et al., 2002). 

The main factor that influences aggregate formation seems to be protein core 

structure. Protein side chains are nevertheless supposed to be involved in structural 

variation of amyloids and in the assembly of protofibrils, the precursors of amyloid 

fibrils (Stefani and Dobson, 2003). Conversion from one conformational state into 

another is apparently taking place via a number of intermediates. It has been an 

object of discussion in which way aggregates are formed.  
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Lorenzo and Yanker (1994) were able to show that a specific aggregation state is 

necessary for toxicity of the amyloid in Alzheimer’s disease (AD). An amorphous form 

of β-amyloid aggregates did not lead to neurotoxic effects in a rat cell culture model. 

The amorphous aggregates were regarded as analogous to diffuse plaques. A 

fibrillar form analogous to AD compact plaques of the amyloid was found to mediate 

neuronal loss of synapses. Synapse number was not influenced by the amorphous β-

amyloid. Furthermore, fibril-binding dye (Congo red) prevented the formation of fibrils 

and, consequently, neurotoxicity. Both forms of the amyloid are known to be present 

in human AD though only one form of fibrillar aggregation elicits toxic effects. This 

indicates that structure of aggregates should be of importance for the mechanism 

leading to synapse loss and ensuing neuronal death. 

The results of this study suggested that fibril formation is necessary for neurotoxicity 

in amyloidoses. Nevertheless there has been increasing experimental evidence that 

not only full-formed fibrils are toxic to cells but that pre-fibrillar intermediates have 

even greater neurotoxic properties (Stefani and Dobson, 2003). Supramolecular 

organisation of the amyloids was found to be an important factor in this context. 

Cytotoxicity was higher for rapidly–formed aggregates that did not possess fibrillar 

structure compared to organised fibrillised aggregates. Mature fibrils appeared to 

have no toxic effects on cells. The more pronounced toxicity of pre-fibrillar 

aggregates might be due to the better accessibility of certain protein regions. 

Hydrophobic side chains and putative sites of interaction are supposed to be buried 

in the native state and also in fibrillar structures. Mature fibrils seem to be more 

resistant to protein degradation which also indicates a lower ability to interact with 

other molecules. Protofibrils might thus be more appropriate to interact with cell 

components because of the disordered nature of their surface. Exposed groups of 

amino acids on the protein surface may more easily form interaction sites in a 

combinatorial way. Binding partners or receptors of a wider range of molecules might 

thus be more eligible for interaction. 

Results of several studies suggest that the neurotoxic effects of aggregated proteins 

are caused by direct interaction between these structures and cellular components 

(Stefani and Dobson, 2003). An experimental study by Thomas et al. (1996) 

demonstrated that β-amyloid can interact with endothelial cells in blood vessels. 

Moreover, free oxygen radicals probably mediated the detrimental effects of the 

aggregates. Slight endothelial damage was thus prevented by the presence of 
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superoxide dismutase (SOD). β-amyloid aggregates might therefore interfere 

negatively with the oxidative stress response of cells. Apart from the possibility of 

direct interaction it is not to be excluded that major accumulation of protein 

aggregates itself might cause neurodegeneration. A low clearance rate of the 

aggregates might be responsible for the occurrence of clinical symptoms.  

Another aspect of protein aggregation is loss of function of the initially correctly 

folded proteins. In the case of prion diseases, the exact function of PrPC has yet to be 

discovered but an involvement in cellular stress response has been proposed. Thus 

a large number of misfolded proteins might not only have negative effects by their 

structural state but also by the failure to provide protective cell reaction.  

Pre-fibrillar structures are known to interact with cell membranes (Hirakura et al., 

2002), which supposedly leads to destabilisation and inhibition of membrane-

associated protein function (Zhu et al., 2000). One mechanism by which interaction 

between protofibrils and cell membranes might take place would be comparable to 

that of bacterial toxins. Oligomerisation of these toxins takes place in the membrane 

leading to the establishment of pore-like structures that destabilise the bilayer and 

hamper ion balance. This so-called “channel hypothesis” predicts that a pre-fibrillar 

aggregate could interact with the membrane in a two-step mechanism (Kourie and 

Henry, 2002). Electrostatic interaction of complementary charged residues would be 

followed by insertion of hydrophobic aggregate regions into the membrane interior. 

The defective folding of the protein could, according to the hypothesis, have cytotoxic 

effects. By exposure of hydrophobic areas, interaction with the bilayer might lead to 

the formation of pore or channel structures described for a range of proteins, among 

them β-amyloid (Zhu et al., 2000). Oxidative stress may furthermore favour the 

impairment of ion balance between cell and extracellular space. This does not 

exclude the possibility that oxidative stress itself could have cytotoxic effects by 

damaging proteins.  

Protective mechanisms exist in order to prevent detrimental effects elicited by protein 

misfolding, e.g. proteasome degradation and detoxification by heat-shock proteins. 

Possibly there is a certain binding capacity of molecular chaperones. If this capacity 

were to be exceeded a “chaperone overload” would allow the accumulation of the 

defective proteins and, finally, their accumulation. Indeed, abnormal expression of 

molecular chaperones has been observed in the brains of AD patients. Therefore 

defence mechanisms against protein misfolding may be modulated through 
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mutations in the encoding genes. Genetic factors thus may have an influence on the 

ability of these mechanisms to prevent accumulation and aggregation of proteins and 

the toxic effects of the resulting protein structures on cells. 

 

Influence of Genetic Mutations 

 

In order to investigate the fundamental influence of genetic mutations on amyloid 

formation, the in vitro aggregation process of muscle acylphosphatase (Acp) was 

studied by Chiti et al. (2002). Mutant proteins carrying amino acid substitution were 

designed. It was taken into consideration that conformation (α-helixes or β-sheets) 

and hydrophobicity of the protein was not to be disturbed by these substitutions, i.e. 

they were to lie in charged or hydrophilic regions. Unfolding and aggregation of the 

mutant proteins were monitored in the study. Conformational stability was decreased 

but not to a considerable extend when compared to the destabilising effect of 

substitutions in hydrophobic regions (Chiti et al., 1999). Concerning protein 

aggregation, modification of net charge through mutations leads to altered 

aggregation rate. In particular, mutations that increased overall net charge of the 

protein slowed the aggregation process, while mutations that reduced the net charge 

favoured aggregation. The net charge thereby is not restricted to local regions as is 

observed in hydrophobic interactions and secondary structural implications. 

Consequently, changes in aggregation rate rather resulted from overall net charge 

alteration than charge of specific areas of the amino acid chain. Nevertheless, a 

range of mutations found in human amyloid diseases reduce protein net charge 

which implicates that such alterations may be of importance in at least some 

amyloidoses.  

To explore the effects of mutations in human PrPC on structural conversion Vanik and 

Surewicz (2002) designed a recombinant protein variant carrying a mutation at 

residue 198. The substitution of Phe by Ser (F198S) is associated with Gerstmann-

Sträussler-Scheinker disease in humans. The mutant protein exhibited considerably 

reduced thermodynamic stability at different pH levels. When conformational 

conversion to β-sheet-rich structure was induced by acidic environment, the transition 

of the protein carrying the substitution was about 50 times faster than that observed 

for a wildtype control. Furthermore, the F198S form of PrPC was more unstable than 

the wildtype and tended to undergo spontaneous conversion to mainly β-sheet 
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structure. The mutant form was also found to display increased resistance to 

proteinase K treatment. These findings indicate that partial destabilisation by amino 

acid substitutions is an important factor influencing the conformational transition to β-

sheet-rich oligomers. Partial instability caused by such mutations seems to be critical 

for spontaneous conversion, an effect that appears to favour PrPSc-induced transition 

of PrPC in cell-free assays (Kocisko et al., 1994). 

One of the models proposed for aggregate formation suggests that aggregation 

starts with an initial seed of a misfolded monomeric protein to which further 

monomers are attached. This continuous addition of correctly folded monomers, 

which misfold when attached to the existing aggregate, leads to further growth of the 

complex structure (Mobley et al., 2003). It is also not to be excluded that protein 

aggregation is accomplished via several intermediates. In such a model, independent 

intermediates that are themselves not misfolded attach to one other. The misfolding 

step is only taking place in case a misfolded seed is presented or if intermediates are 

joined together to form a larger aggregate. Mobley et al. (2003) explored both models 

under premise of two-dimensional (also called areal) aggregation of prion proteins. In 

their study monomeric growth, as proposed in the first model, would take place too 

slowly when compared to experimental data on incubation times. Therefore 

aggregation via intermediates was considered more probable.  

There are nevertheless other models of the PrPSc structure than the two-dimensional 

one. Electron crystallography analysis by Wille et al. (2002) led to the construction of 

a β-helix model in which two of these structures exist in a parallel orientation. 

Together they form the key element of the aggregation process. Crystals of N-

terminally truncated PrPSc (PrP27-30) and a miniprion termed PrPSc106 were prepared 

and analysed by electron microscopy. Image maps of both proteins were compared 

to localise N-linked sugars. Afterwards the parallel β-helix model was designed in 

order to meet requirements like the high β-sheet content, dimensions of the protein 

monomers and location of the sugars. Parallel orientation of fibril had beforehand 

been investigated in connection with AD. In AD β-amyloid is produced during the 

course of the illness. Antzutkin et al. (2000) analysed fibrils formed by the β-amyloid 

peptide by multiple quantum solid-state NMR (MQNMR). A parallel orientation of 

fibrils was consistent with data derived from MQNMR data and successive 

simulations. 
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In order to investigate the formation of putative intermediates in PrPSc fibrillisation this 

process was simulated by means of Syrian hamster PrPC containing a D147N 

mutation (DeMarco and Daggett, 2004). As the pH level was decreased the proteins 

increased in β-structure while the helical structure was reduced. A new extended 

region manifested itself in the protein structure. This increase in extended structure 

was located at the N-terminus of the protein. The area was unstructured in original 

PrPC but adopted β-sheet structure during the simulation. The conversion process led 

to an increase of hydrophobic residues in the protein. According to the study 

protofibrillisation includes the attachment of further monomers to an already existing 

aggregate forming a spiralling protofibril (see Figure 4).  
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Figure 4: Dimensions of PrP protofibril model and higher-order oligomers  

 

(a) A diglycosylated PrPSc-like trimer with circumferences (dashed circles) of the 
�
-extended core 

(magenta), all protein atoms (grey), and the diglycosylated protofibril (cyan).  

(b) Same view as in (a) of a 48-mer protofibril with the protein surface shown in grey and the sugars 

shown in cyan.  

(c) Side view of a 48-mer protofibril. Bars at the top indicate diameters of the 35-Å extended 
�
-core 

(magenta), 65-Å protein diameter (grey), and a 110-Å diglycosylated protofibril (cyan). 

 

 

Specific regions of PrPC have been implied in stabilisation and conversion of its 

structure. Particular emphasis has been assigned to the role of PrPC helix 1 which is 

located between residues 144 and 153. Hydrophobic regions in both α-helices and β-

sheet structures can interact with the core domain in proteins influencing stability of 

their secondary structure (Minor and Kim, 1996). Surprisingly, helix 1 of PrPC 

considerably differs from this concept. It exclusively contains hydrophilic residues, 

which impairs its ability to interact with the core structure. The helix itself derives its 

stability from two internal salt bridges between amino acids Asp and Arg but forms no 
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external bridges with other regions of the protein. A favourable ordering of charges 

seems to interact with the dipole moment of the helix providing additional 

stabilisation. Morrissey and Shakhnovich (1999) proposed the so-called β-nucleation 

model in order to fit these unusual properties of PrPC helix 1 into an aggregation 

model. Accordingly, unravelling of the helix leads to conversion to PrPSc. Residues of 

helix 1 are then added to the core β-sheet aggregate which is parallel. In the model 

this mechanism is supposed to be catalysed by PrPSc and stability of the aggregate 

upheld by salt bridges between helix 1 residues and other protein molecules. The 

importance of helix 1 in the conversion process was further underlined by a cell 

culture experiment by Vorberg et al. (2001). PrPC mutants in which the first or second 

β-strand and the α-helix 1 was deleted were supposed to be converted to PrPSc. 

Contrary to the deletion of the first β-strand, the removal of both the second β-strand 

and helix 1 resulted in different processing and cellular localisation of the protein in 

comparison to wildtype. All mutants considerably impaired conversion in a cell culture 

system, while the removal of helix 1 led to complete inhibition of PrPSc conversion.  

In order to further investigate the role of PrPC helix 1 in this process Speare et al. 

(2003) created mutant forms of PrPC. The aspartic acids at residues 144 and 147 

were replaced, so that salt bridges formed in these areas would be removed. No 

difference was observed between the mutant and wildtype in a cell-free conversion 

assay. Consequently, salt bridges do not appear to considerably stabilise helix 1 of 

PrPC. Thermal denaturation of the proteins nevertheless revealed differences 

between the PrPC variants. Comparison of thermal unfolding curves of mutant and 

wildtype proteins suggested that mutants unfold differently and more reluctantly. This 

was also true concerning states of denaturation and reversibility of the reaction, 

which was not observed for the wildtype protein. Cell-free experiments demonstrated 

that aspartic acids at position 144 and 147 do not play an essential role for 

conversion. When conversion was tested without detergents and denaturants mutant 

PrP performed the process with up to 4-fold higher efficiency compared to the 

wildtype. In conclusion, though helix 1 salt bridges have no intrinsically stabilising 

effects on PrPC, its aspartic acids might prevent the wildtype protein from converting 

to PrPSc. Ziegler et al. (2003) showed by CD and NMR studies of mammalian prion 

proteins that the helix 1 region favours the helical state even under varying 

conditions. Salt content and pH level can be altered and organic co-solvents supplied 

without loss of helicity. Consequently, extension of the helix 1 region does not seem 
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to be the initial step in the conversion from the wildtype PrPC to PrPSc but more likely 

prevents conversion processes. 

Another region that was implicated in the aggregation process of PrPC is the copper-

binding octapeptide region. Zahn (2003) conducted NMR and dynamic light-

scattering experiments in recombinant human PrP(23-230) as a model for natural 

PrPC. NMR data indicated that binding sites, which are involved in the aggregation of 

hPrP(23-230), are contained within the octapeptide region (residues 60-91). These in 

vitro experiments demonstrated that the aggregation states of PrP(23-230) and 

(assuming similar behaviour in vivo) PrPC are pH-dependent. The protein 

aggregation appears nevertheless to be due to homo-oligomeric interaction at the 

site of the octarepeats. Thus the octapeptide region might modulate aggregation in 

copper-dependent conformational change.  

There exists a range of areas that appear to play a role in the process of 

conformational shift and aggregation of PrPC. Fibril formation might furthermore be 

influenced by glycosylation of the protein. Unglycosylated and glycosylated 

fragments (residues 175-195) from helix 2 of the human PrPC were prepared in a 

study by Bosques and Imperiali (2003). The fragment encompassed a glycosylation 

site (Asn-181) and a cysteine at residue 179. When dissoluted, both forms of the 

peptide showed random coil structure, which after incubation changed to aggregated 

β-sheets. In a reducing environment fibril formation was favoured for both peptides 

though the glycosylated form was found to be more stable. Thus N-linked 

glycosylation appears to reduce the rate of fibrillisation. Inhibition of this process 

might be caused by alteration of Cys-179 redox properties. As a consequence the 

peptide would be stabilised as a homodimer linked by a disulphide bond, which 

showed considerable resistance to form fibrils. The role of Cys-179 in this context 

was further investigated by the construction of C179S, a mutant protein of the 

unglycosylated form. A high liability to aggregation was observed for the peptide, 

which implicates Cys-179 in fibril formation. In the native PrPC part of residues 175-

195 is shielded by helix 3, a conformational state stabilised by disulphide bonding at 

Cys-179. Reducing environment leads to exposition of the area and consequently to 

fibrillisation which effect assigns an important role to the disulphide bond. The 

glycosylation of the protein could in different ways be influential for the forming of 

fibrils, e.g. steric effects could impair intermolecular interaction necessary for 
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fibrillisation. Otherwise, oxidation potential of the cysteine residue could be altered 

which might lead to formation of a cysteine dimer instead of fibrils.  

Taken together, the ability to aggregate seems to be a generic property of proteins. 

Even proteins that are not associated with disease can form structures that impair 

cell function. Furthermore, the substantial toxic effects seem to be caused by pre-

fibrillar states that may interact with the cell membrane, possibly involving oxidative 

stress. The cellular protective mechanisms against protein misfolding seem to be 

overwhelmed in the amyloidoses, which might be also due to genetic factors.  

There are several models proposed for fibril structures in prion diseases. Some 

evidence in favour of the existence of parallel β-helices has been put forward 

although other models could also be feasible. It has been suggested that specific 

regions of the protein e.g. helix 1 play a special role in the conversion process by 

exceptional stabilising properties. Though this has not yet been clarified, the 

existence of salt bridges or disulphide bonds within the protein or between several 

molecules may influence the liability to convert conformation state. In this context 

modulation of the conversion process by protein glycosylation has been mentioned. It 

seems to be likely that a number of factors such as amino acid sequence, stability of 

α-helix structures and glycosylation determine the intrinsic liability of PrPC to convert 

to a structure rich in β-sheet. The presence and action of molecular chaperones and 

cellular defence mechanisms might then modify accumulation and aggregation of the 

misfolded proteins. Aggregation process and the formation of fibrillar structures 

together with oxidative stress and loss of function may then lead to cytotoxic effects, 

formation of stable aggregates and cell death through apoptosis.  

 

Influence of Genetic Polymorphisms on PrPC conversion 
 

The existence of a species barrier implies that genetic factors of the host, in 

particular those that determine PrPC properties, have an impact on disease 

pathogenesis and susceptibility. Moreover, the conformational transition could also 

be influenced by the genetic disposition of the host. 

Experimental studies confirmed that polymorphisms within the human prion protein 

gene (PRNP) interfere with PrPC conformation. Petchanikow et al. (2001) carried out 

dichronism studies of human PrPC fragments polymorphic at residue 129. In acidic 

environment the PrPC fragments (PrP 109-139) with either methionine or valine at 
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residue 129 both showed β-sheet, β-turn and unordered structures. The methionine-

containing peptide PrP109-136M had more β-sheet structures and less random coils 

than the valine-comprising PrP109-136V. This constitutes a significantly different 

content of ordered and unordered structural properties between both PrPC isoforms. 

Furthermore, amyloid fibrils can be formed by both PrP109-136M and PrP109-136V. 

The former peptide produces a much higher amount of amyloid than the latter. Parchi 

et al. (2000) found an additional effect of the same polymorphism. Analysis of the 

proteinase K cleavage pattern resulted in the identification of different structural 

regions in human PrPSc. An important role was consequently attributed to the 

polymorphism at codon 129 as to regulation of the extent of β-sheet transformation in 

PrPSc.  

Studies aimed at determining the structure of Syrian hamster PrPC in different pH 

values showed that a different polymorphism at Asp-178 decreases the 

conformational change from PrPC to PrPSc. In case Asp-178 is protonated, interaction 

with Tyr-128 is impaired and the conversion to PrPSc is favoured (Alonso et al., 

2001). This is especially notable, as a mutation to Asn-178 appears to be the cause 

of CJD or FFI in humans as well. Phenotypic expression of these medical disorders 

is nevertheless controlled by a polymorphism at codon 129 of the human prion 

protein gene (Goldfarb et al., 1994). 

In sheep there exist different allelic variants of PrPC and correlation between PrPC 

genotype and prion disease susceptibility phenotype can be observed. Rezaei et al. 

(2002) investigated the conformation of various PrPC forms. Susceptibility variants of 

the ovine PrPC exhibited higher thermal stability than resistance variants, and the 

structure of their unfolding intermediates also differed. It was possible to demonstrate 

that resistance variants when unfolded showed coil structure whereas susceptible 

variants on their part possessed β-sheet structure. The rate of unfolding is 

considerably different between the ovine PrPC allelotypes. Thus polymorphisms in 

the prion protein amino acid sequence can have an important influence regarding the 

susceptibility to disease, at least in some species.  
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Routes of Infection and Pathogenesis  
 

The ability of prion diseases to cross species barriers was highlighted by the 

occurrence of a new variant of CJD (vCJD) in the UK (Will et al., 1996). It quickly 

emerged that the neuropathological features of the new variant CJD differed from 

hitherto known human prion diseases like sporadic CJD with regard to plaque type 

and in the comparatively early onset of disease. The examined lesions moreover 

closely resembled the florid plaques seen in brains of scrapie-infected sheep. It was 

demonstrated that transgenic mice expressing the bovine PrPC easily succumbed to 

vCJD while no difference in clinical symptoms could be observed (Scott et al., 1999). 

Serially passaged BSE and vCJD inoculation led to the same neuropathological 

features regarding spongiform degeneration, plaque type and localisation. These 

findings indicate that it was possible for vCJD to be transmitted from BSE-infected 

cattle to humans. The hypothesis implying that the causing agent might be the same 

as in BSE was further corroborated by mouse experiments in which vCJD was 

transmitted (Bruce et al., 1997). Neuropathological features and lesion profiles were 

strikingly similar to those manifesting in mice infected with BSE but differed from 

those called forth by other prion diseases such as natural scrapie. Despite of this 

evidence that BSE had crossed the species barrier from cattle to humans it was not 

clear by which route of infection the causing agent had been transmitted from one 

species to the other. In laboratory studies of prion diseases the infectious agent is 

usually inoculated into the animal brain. Under natural conditions, however, infection 

must take place through a peripheral route. Aside from intravenous injection and 

corneal grafts it is possible to induce prion diseases through oral administration of 

infectious feed. In order to investigate the circumstances of transmission, calves 

were orally dosed with BSE brain homogenate. They consequently succumbed to 

disease, which demonstrated the efficiency of the oral route of infection (Wells et al., 

1998). Prion infectivity following oral challenge is normally detected first in the 

gastrointestinal tract. Membranous epithelial cells (M-cells) in Peyer’s patches have 

already been identified as candidates for transepithelial transport of prions from the 

intestinal lumen into the intra-epithelial pockets. These spaces contain lymphocytes 

and dendritic cells (Neutra et al., 1996, Aguzzi et al., 2003). Lymphocytes appear to 

be involved in the pathogenesis but are not necessarily the main means of transport 

of infectivity (Aguzzi et al., 2003). During the course of disease prions can be 
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detected in lymphatic organs like the spleen, particularly in follicular dendritic cells 

(FDCs). At an even later stage prions are found along peripheral nerves in a PrPC-

dependent fashion. Infectivity seems to route through the spinal cord prior to attaining 

the CNS. To date it is not known whether prions can reach sympathetic nerve 

endings directly from FDCs. 

The actual transport from the lymphatic to the central nervous system is yet unclear. 

Brandner et al. (1996) inoculated scrapie prions both intracerebrally and intraocularly 

into PrP-knockout mice that had been grafted with neuroectoderm of PrP-

overexpressing embryos. Intracerebrally infected mice readily succumbed to disease 

showing typical scrapie pathology along the optic nerve, then generalised pathology 

and death. The intraocularly challenged mice developed no signs of disease in the 

graft. As grafts gave rise to an immune response that might have influenced the prion 

spread the same procedure was carried out with immunotolerant knockout mice. No 

signs of disease were observed in the immunotolerant animals. Thus it could be 

shown that the presence PrPC is indispensable for CNS prion propagation. 

Transmission and pathogenesis of TSEs appears to be largely dependent on the 

expression of PrPC in certain tissues, especially in the gastrointestinal tract. The 

nature of the cells that are responsible for the invasion of the lymphatic system from 

the gut lumen is yet unclear. It is nevertheless likely that prion pathogenesis is the 

result of a chain of PrPC-expressing cells leading from the intestine to the CNS from 

where widespread prion propagation can occur. 

 

Prion Diseases in Humans and Genetic Implications 
 

The human PrPC is encoded by a single gene (PRNP) on chromosome 20, which 

possesses two exons, of which one comprises the complete open reading frame 

(ORF) of the gene. The precursor of human PrPC consists of an amino acid chain of 

253 acids. In NMR structure studies of recombinant human PrPC it was possible to 

determine the globular domain, which extends from residue 125 to 228 and 

comprises three α-helices at residues 144-154, 173-194 and 200-228. The β-sheet 

extends from residues 128-131 and 161-164 (Zahn et al., 2000).  

To generate the mature PrPC the first 22 amino acids are cleaved off the precursor 

(Collins et al., 2004). Glycosylation sites that have been mentioned above are 

positioned at amino acids 181 and 197, respectively. One N-terminal copper–binding 
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octarepeat region of PrPC was found to consist of a nonapeptide that is positioned 

between residues 51 and 91. A second site was detected between residues 96 and 

111 (Jackson et al., 2001), which includes binding sites for metal ions, preferably for 

copper. 

The basic structure of human PrPC is similar to that of other mammalian prion 

proteins. It comprises three alpha-helices and a short ß-sheet plus a flexible N-

terminal tail. In human beings PrPC is expressed throughout the body, where the 

highest titers are found in neuronal tissues (Martins and Brentani, 2002). 

 A number of neurological disorders have been described in humans that are linked 

to certain conformational changes of PrPC. With the help of phenotypic 

characteristics they can roughly be distinguished into sporadic, familial and acquired 

diseases. It is important to note that there is no possibility to absolutely classify 

human TSEs. Terms like sCJD or vCJD are employed to describe a certain spectrum 

of both clinical symptoms and neuropathological data. Untypical cases occur in all 

human TSEs, which hampers a strict definition of each syndrome.  

The pronounced heterogeneity in human prion disease led to the specification of a 

group of determinants that are applied as tools for diagnosis. Criteria are primarily 

epidemiological factors (age at onset and duration of disease), genetic disposition 

(codon 129 genotype and/or causative PRNP mutations), clinical presentation and 

neurological and immunohistochemical findings. Clinical presentation is mainly 

focussed on the presence or absence of cognitive symptoms/dementia, ataxia and 

cerebellar symptoms, psychiatric symptoms, visual and sensory symptoms, and 

sleep disorder. Further diagnostic tools are electroencephalography (EEG) tests, 

magnetic resonance imaging (MRI) examination and the detection of 14-3-3 proteins 

in the cerebrospinal fluid (CSF). Neuropathologic criteria are primarily vacuolisation, 

PrPSc accumulation and astrogliosis as well as loss of neurons in certain tissues and 

areas of the CNS. Classification of vacuoles and PrPSc plaques according to 

morphology is also important. Location and degree of these neuropathologic changes 

in the CNS furthermore have to be considered. Western blotting techniques and PrP 

immunostaining are employed in these analyses. With the help of data available for 

these different disease characteristics a diagnosis is possible under the premise that 

not all of the symptoms are recognised in a patient. It is furthermore necessary to 

incorporate the temporal pattern in which the clinical signs manifest themselves. The 

same symptoms can appear in different forms of CJD, only in a deviant chronology.  
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Sporadic CJD 

 

Sporadic Creutzfeldt-Jakob Disease (sCJD) is observed in about 0.5 to 1 case per 

million human beings world-wide (Belay, 1999). The first clinical features are 

headache or dizziness but also involve psychiatric symptoms such as depression, 

anxiety, behavioural change and emotional imbalance (Beisel and Morens, 2004). 

Furthermore, impairment of cognitive and visual functions can occur. Later on 

progressive dementia and myoclonic contractions in muscles can be observed before 

ataxia, dysarthria and delirium lead to coma and finally death. EEG is usually normal 

or non-specifically abnormal in the first stages of disease. As it progresses, periodic 

waves of 1 Hz frequency with high amplitude appear over a diminished background. 

Another sign of sCJD can be high-amplitude delta waves in an irregular pattern 

(Beisel and Morens, 2004).  

Epidemiologically, the distribution of sCJD cases does not show a specific 

geographical or temporal pattern, which is contrary to what is seen in other human 

prion diseases, especially in vCJD (Beisel and Morens, 2004).   

Phenotypes observed in patients with sCJD vary considerably, depending on their 

genetic predisposition and strain type. Predisposition and phenotypic appearance of 

the disease are mainly thought to be determined by a polymorphic site at codon 129 

of the prion protein gene (Palmer et al., 1991). At this position either methionine or 

valine can be encoded. Homozygosity for methionine seems to favour the conversion 

of PrPC in humans. In about 80% of sCJD patients in Europe this homozygous 

genotype has been encountered (Ironside, 1998).  

Two PrPSc types (type 1 and type 2) can be distinguished after proteolytic digestion 

and Western blotting. Together with the genotype at codon 129, six distinct subtypes 

of sCJD were proposed by Gambetti et al. (2003). They have been termed 

sCJDMM1/sCJDMV1, sCJDVV2, sCJDMV2, sCJDMM2, sCJDVV1 and sporadic fatal 

insomnia (sFI). Clinical symptoms as well as histopathologic properties were seen to 

vary between those subtypes. Apparently, there is a preferred interaction between 

codon 129 genotype and PrPSc type.  

The majority (95%) of M129M sCJD cases succumb to the PrPSc 1 type in contrast to 

86% of M129V and V129V sCJD victims who posses the PrPSc type 2 (Parchi et al., 

1996, 1999). After proteinase K treatment two cleavage sites at residues 82 and 97 

of the prion can be observed which led to distinction of PrPSc type 1 and type 2. In 
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addition to these primary fragments there are groups of secondary fragments starting 

at different residues (Parchi et al., 2000). The cleavage sites of the secondary 

fragments are associated with PrPSc type and codon 129 genotype. A smaller PK-

resistant PrPSc fragment of either 12 or 13 kDa has also been identified but the effect 

on disease phenotype is yet unclear (Zou et al., 2003).  

The most common sCJD phenotype – also called “classical” CJD, myoclonic CJD or 

Heidenhain’s variant phenotype - is found in M129M or M129V patients with PrPSc 

type 1 (Parchi et al., 1999) (sCJDMM1 and sCJDMV1). For sCJD subtype 1 initial 

clinical symptoms of the disease can be observed at a mean age of 65 years (range 

42-91 years). Duration is rather short with a mean of 4 months (range 1-18 months) 

(Parchi et al., 1999). A typical clinical sign in the early phase is cognitive impairment. 

Later on, ataxia, psychiatric and visual defects emerge. Heterozygous patients 

preferably show ataxia compared to cognitive distortion. As the illness advances 

symptoms become more severe leading to terminal coma and death (Parchi et al., 

1999). Homogeneously distributed spongiform change is seen in the brain along with 

astrogliosis, loss of neurons and fine vacuoles. Distribution of proteinase-resistant 

PrPSc follows a punctuate (so-called synaptic) pattern. 

Subtype 2 (sCJDVV2) is also called ataxic variant of sCJD. The epidemiological data 

for this subtype is similar to those of subtype 1. Yet, the most striking feature is ataxic 

impairment with cognitive defects while myoclonus is seldom observed. Spongiosis, 

astrocytic gliosis and neuronal loss are much like in subtype 1 only differing in the 

distribution within brain compartments. Contrary to the more common subtype 1, 

PrPSc aggregates reminiscent of plaques are visible and PrPSc immunostaining is 

mainly observed in the basal ganglia and thalamus.  

Other sCJD subtypes observed in humans each constitute less than 10% of reported 

sCJD cases. Subtype 3 (sCJDMV2) shows considerable phenotypic similarity to 

subtype 2 regarding age of onset, clinical and histopathologic features. Nevertheless, 

duration is much longer than in subtype 2 sCJD (17 months with a range of 5-72 

months). The predominant clinical symptom is ataxia but also cognitive and 

psychiatric impairment, myoclonus, aphasia and aphraxia, which sharply contrasts 

from sCJDVV2. Histopathologic differences are the presence of kuru plaques in the 

cerebellum and comparatively coarse spongiosis.   

The dominant features of subtype 4 (sCJDMM2) are cognitive defects and, to a 

lesser extent, aphasia. Typically large vacuoles can be observed in the brain, which 
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are much larger than those seen in subtype 1 and often confluent. Severe 

astrogliosis is also apparent. Immunostaining is present in the rim of large vacuoles 

and in spot-like pattern where plaque-like regions are located.  

Subtype 5 (sCJDVV1) can only be observed in 1% of sCJD cases. Its outstanding 

property is the comparatively early onset of disease, which is an average 39 years 

(range 24-49 years). Characteristic for this subtype is progressive dementia, later 

accompanied by myoclonus and pyramidal signs. Histopathologically, fine 

spongiosis, gliosis and, to a lesser extent, neuronal loss can be observed. The 

distribution of the lesions is considerably different from that exhibited by subtype 1 

patients, with cerebellum and thalamus showing only minor spongiform changes. 

The sFI subtype of sCJD is generally indistinguishable from fatal familial insomnia 

(FFI) and has been earlier described as thalamic sCJD. It corresponds to the MM 

genotype at codon 129 in connection with PrPSc type 2. Age at onset ranges from 36 

to 72 years, with a median of 50 years and a rather long duration of 24 months 

(range 15-53 months). Ataxia, visual impairment and cognitive defects are among the 

common clinical symptoms. Furthermore, insomnia, dementia, myoclonus, tremor 

and dysarthria are apparent. Astrogliosis and neuronal loss concentrate on the 

thalamus while other brain compartments are much less affected. Spongiform 

changes are only moderately expressed. The amount of PrPSc found in sFI is 

considerably lower than in sCJDMM1. sFI PrPSc differs from that found in FFI with 

regard to the glycoform ratio. It more closely resembles PrPSc that is detected in 

sCJD subtypes.  

It is important to note that both forms of PrPSc can be present in sCJD patients. In the 

organism they are either found collocated or separately (Puoti et al., 1999). The 

phenotype of a patient with both PrPSc types is determined by the dominance of one 

of the PrPSc forms. In patients that are homozygous for methionine at codon 129 this 

seems to be type 1 while in VV patients type 2 determines the disease phenotype. 

Accordingly, MM1 and MM2 cases mostly exhibit the MM1 phenotype while VV1 and 

VV2 patients resemble sCJDVV2 phenotype. Immunostaining techniques are used in 

order to distinguish these cases of co-occurrence from each other. 

 

Familial forms of human TSEs include Familial CJD (fCJD), GSS and FFI, which are 

predisposed by autosomal dominant mutations within the PRNP gene. Humans who 

possess a susceptible genotype are liable to disease (see Table 3).  
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Table 3: Variations in the human prion protein gene region (Kovacs et al., 2002) 

 

 

Polymorphism Mutation 

Silent Influential Point Insertional 

P68P 

A117A 

G124G 

V161V 

N173N* 

H177H 

T188T* 

D202D 

Q212Q 

R228R 

S230S 

M129V 

N171S? 

E219K? 

24bp deletion? 

P102L                   T188A 

P105L                   T188K 

A117V                   E196K 

G131V                   F198S 

I138M*                   E200K 

G142S*                  D202N 

Y145s                    V203I 

Q160s                    R208H 

D178N-129V          V210I 

D178N-129M         E211Q 

V180I                     Q212P 

V180I + M232R     Q217R 

T183A                    M232R 

H187R                    M232T 

T188R                     P238S 

27bp 

48bp 

96bp 

120bp 

144bp 

168bp 

192bp 

216bp 

 

 

Bold indicates CJD phenotype, underlined indicates GSS, italics indicate FFI. Others are not 

categorized, as the published data are insufficient, or findings are unusual to the known disease 

subtypes. *Referred from: http.//mad-cow-org/prion_point_mutations.html 

 

 

Familial CJD 

 

The first case of fCJD was reported as early on as 1924 but not until 1930 did 

Meggendorfer find out that the illness was inherited within families. A range of 

different polymorphisms in the human PRNP gene leads to fCJD. Like the sporadic 

form of CJD it occurs very seldom, i.e. in about 1 of 10 million humans (Lee at al., 

1999). Interestingly, the M/V polymorphism at codon 129 of the gene affects disease 

phenotype on the allele carrying the causative mutation. The same polymorphic site 
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on the other allele influences age at onset and duration of fCJD. Phenotypes can be 

differentiated by the codon 129 genotype in addition to the causative mutation. The 

denotation of the fCJD phenotype refers to the haplotype of the mutant allele 

(Gambetti et al., 2003). The most common phenotypes will be characterised in the 

following. 

 

The pathogenic mutation most often observed in fCJD cases consists of an E200K 

polymorphism combined with the encoding of methionine at codon 129 of the PRNP 

gene allele (haplotype CJDE200K-129M). It shows a close similarity to sCJDMM1 with an 

age of onset between 33 and 84 years (mean age 58 years) while the duration 

ranges between 2 and 41 months (mean duration 6 months). The most striking 

clinical features are cognitive and mental impairment but also cerebellar and visual 

abnormalities, myoclonus etc. As the illness progresses, dementia, myoclonus, 

cerebellar impairment and seizures become apparent (Gambetti et al., 2003). In 

contrast to sCJD victims, motor and sensory peripheral neuropathy is occurring. 

Histopathological implications are mainly spongiosis, astrocytic gliosis and neuronal 

loss. The latter two seem to depend on disease duration. Immunostaining in the brain 

can usually be seen in a synaptic pattern. The deposition pattern of PrPSc in the 

cerebellum appears to be controlled by the codon 129 polymorphism on the normal 

allele. Thus the synaptic pattern is limited to 129MM patients while plaque-like 

conformations are observed in 129MV cases (Gambetti et al., 2003). PrPSc type 1 is 

found in CJDE200K-129M subjects.  

The CJDE200K-129V phenotype is rarely observed. PrPSc in such patients is classified as 

type 2. This phenotype closely resembles that of sCJDVV2 with ataxia and later 

myoclonus being the rule. Plaque-like formation of PrPSc in the cerebellum is typical 

in CJDE200K-129V patients. 

The haplotype of D178N-129V was confirmed in a number of patients, among them 

the persons who were originally diagnosed with fCJD at the beginning of the 20ieth 

century (Gambetti et al., 2003). This haplotype is of special importance as the same 

mutation is also observed in FFI with the difference that at codon 129 a methionine is 

encoded for. In CJDD178-129V patients cognitive impairment in the form of memory loss 

is pronounced but psychiatric symptoms e.g. depression have also been reported. At 

a later stage of disease ataxia, dysarthria and aphasia, tremor and myoclonus 

become apparent. Age of onset varies according to codon 129 polymorphism on the 
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non-mutant allele. In 129VV subjects the mean age at onset lies at 39 years (range 

26-47 years) with mean duration of 14 months (range 9-18 months) compared to 49 

years (range 45-56 years) and 27 months (Range 7-51 months) in 129VM subjects. 

Spongiform change and astrogliosis in the brain is commonly observed in association 

with neuronal loss. No PrPSc plaques are found in this phenotype but punctuate 

immunostaining patterns are predominant where type 1 PrPSc is present.  

Another fCJD haplotype is CJDV210I-129M in which PrPSc type 1 is detected. In average 

it occurs at 59 years of age (range 46-80 years) and has a mean duration of 6 

months (range 2 to 24 months). At first, clinical signs like memory and gait 

impairment combined with behavioural change present themselves, later leading to 

defects in sensory and motor function. Other symptoms such as myoclonus, 

dysarthria and cerebellar impairment follow. The main characteristic in histopathology 

is spongiosis and gliosis of the grey matter.  

In addition to fCJD stemming from substitutions of single amino acids in PrPC there 

are also forms that are linked to insertional repeat mutations in the PRNP gene (base 

pair inserts (BPI)). Those mutations can be associated both with 129V or 129M. 

Taken as a group, subjects show a very unspecific phenotype. Nevertheless they are 

more distinguishable when classified according to number of repeats. With four 

repeats or less a duration of an average of 6 months (range 2-14 months) with a 

mean age of onset of 62 years (52-82 years) can be observed though there are 

exceptions with a much longer duration of illness (Gambetti et al., 2003). If the 

patient possesses five additional repeats or more, the average age of onset is lower 

(32 years with a range of 21 to 61 years) and a much longer duration of onset of 6 

years has been reported (range 3 months to more than 19 years). In the first group of 

patients dementia is rapidly progressing and ataxia, visual impairment and 

myoclonus is present. In contrast, the second group exhibits a much slower progress 

of disease associated with mental impairment and cerebellar and pyramidal signs. 

BPI patients with up to four repeats show the same phenotype observed in classical 

CJD which contrasts with the second group of subjects in which a wide range of 

phenotypes is present, either similar to CJD, GSS or to neither (Gambetti et al., 

2003). Either type of PrPSc can be found in patients with such form of BPI. 

Furthermore, several other rare mutations led to fCJD forms that are hardly 

encountered. They can be distinguished by usage of clinical characteristics such as 

PrPSc type and immunohistopathologic features but will not be described in detail.  
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Fatal Familial Insomnia  

 

The phenotype of FFI in humans is connected with a specific mutation of PrPC, 

namely D178N-129M (Kovacs et al., 2002). As mentioned above D178N can also be 

observed in fCJD cases. Autosomal dominant heritance of the polymorphism typically 

leads to the onset of the disease at a mean age of 49 years (range 20 to 72 years) 

(Gambetti et al., 2003). Survival time is at a mean of 11 months (±4 months) in 

129MM patients and 23 months (±19 months) in 129MV individuals. The most striking 

clinical symptoms in FFI patients are a thoroughly disturbed circadian cycle including 

insomnia, sympathetic overactivity, endocrine abnormalities and attention deficits 

(Collins et al., 2000). Patients may differ regarding these signs (Gambetti et al., 

2003). Thus insomnia, myoclonus and autonomic impairment seem to be more 

pronounced in 129MM patients in comparison to 129MV patients in whom more 

severe ataxia, dysarthria and seizures are present. In FFI cases prominent neuronal 

loss and astrogliosis can be seen in the thalamus (Montagna et al., 2003). The 

presence of PrPSc deposits is seldom observed. If such are detected, they are 

located in the molecular layer of the cerebellum and in the subiculum-enthorinal 

region (Gambetti et al., 2003). Furthermore, very little total PrPSc is deposited in FFI 

compared to sporadic CJD (Parchi et al., 1995) and it is very far distributed 

throughout the brain. In FFI, type 2 PrPSc is observed exclusively, which is 

contrasting with the findings in fCJD with the D178N-129V haplotype in which type 1 

PrPSc is present (Montagna et al., 2003). Accordingly, the genetic polymorphism at 

codon 129 of PRNP determines the phenotype resulting from the D178N mutation on 

the same allele: FFI in case the amino acid is methionin and CJD if it is valine.   

 

Gerstmann-Sträussler-Scheinker Syndrome 

 

The phenotype of GSS is characterised by very slowly progressing cerebellar ataxia 

(Collins et al., 2000) followed by dementia and spinal cord and tract involvement 

(Barbanti et al., 1996). Taken as a whole, phenotypic variability is very pronounced, 

even among members of the same family. Phenotypes may resemble classical GSS, 

CJD or AD (Barbanti, 1996). The mean time of duration is more than 50 months 

(Kovacs et al., 2002) with a mean age of onset of about 45 years. Humans 

succumbing to GSS always exhibit the widespread presence of multicentric amyloid 
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plaques in the brain (Collins et al., 2000) while spongiosis is not present in all cases 

(Barbanti et al., 1996). In the Austrian family in which GSS was first described by 

Gerstmann a polymorphism at codon 102 of the PRNP gene was associated with the 

illness, the same as in a range of other familiar cases (Barbanti et al., 1996). 

Nevertheless there are a number of other point mutations (e.g. G131V) and an insert 

mutation of eight or nine extra octarepeats in the PRNP gene that can lead to the 

GSS phenotype in humans. Contrary to the situation in CJD, the codon 129 

polymorphism does not seem to have a prominent influence on disease phenotype. 

 

Acquired human TSEs are represented by the syndromes of kuru, iatrogenic CJD 

(iCJD) and (new) variant CJD (vCJD). Here, the polymorphism at codon 129 is 

involved in the liability to acquire kuru (Lee et al., 2001), iatrogenic CJD (Collinge et 

al., 1991) and variant CJD (Ironside, 1998). Humans homozygous for methionine 

appear to be more susceptible to these forms of prion disease.  

 

Iatrogenic CJD 

 

Iatrogenic CJD is caused through transmission of CJD, often through neurosurgery, 

corneal grafts and use of human dura mater and human pituitary growth hormone 

taken from corpses for therapeutic purposes. The first case of iCJD was reported in 

1974 in a woman that had received a corneal transplant from a donor that developed 

CJD (Duffy et al., 1974). In 1985 transmission through pituitary human growth 

hormone (hGH) was described and by 1988 infection through dura mater grafts had 

been observed (Thadani et al., 1988). Reports of iCJD arising from neurosurgical 

procedures can be traced as early as 1977 (Bernoulli et al., 1977).  

As to clinical symptoms there is evidence that disease phenotype is associated with 

the route of infection. While patients infected through contaminated corneal grafts, 

neurosurgery or dura mater transplants develop symptoms similar to those seen in 

sCJD (except for some atypical cases), transmission through hGH causes quite a 

different spectrum of clinical signs. Dementia is hardly seen in those cases and initial 

characteristics involve a so-called cerebellar syndrome (Will, 2003). It has also been 

suggested that infection via a peripheral route, e.g. through hGH injection, would 

cause longer incubation times than those infected by dura mater or corneal grafts. 

Yet there is some contradicting evidence as the longest iCJD incubation period has 
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been reported in a patient with corneal graft transmission (Lang et al., 1998). 

Furthermore, iCJD patients that had received peripheral injection of dura mater 

particles showed no difference to those that had been treated by intracerebral 

inoculation of dura mater grafts (Lang et al., 1998). 

In 2000, Brown et al. examined 267 iCJD patients of whom 139 where infected by the 

donation of contaminated growth hormone and 114 by dura mater grafts. Other 

infections occurred through transplantation of corneal grafts (3 cases), neurosurgery 

(5 cases), gonadotropin donation (4 cases) and stereotactic EEG (2 cases). The 

range of iCJD incubation times was generally very broad, from 18 months to several 

decades (Will, 2003). As the risk of infection through dura mater grafts was 

considerably lowered by the invention of recombinant hormones for therapeutic 

purposes during the mid-1980ies, the majority of patients examined in the study had 

an incubation time of more than 10 years. The median incubation time among the 

hGH-infected cases was 12 years (range 5 to 30 years). This is probably dependent 

on the site of distribution of infectious agent and on the amount of proteinase-

resistant PrP (PrPres) transmitted. Low amounts and peripheral distribution, i.e. by 

subcutaneous injection, can lead to long delays until clinical symptoms can be 

observed in patients. The question whether codon 129 genotype has an influence on 

iCJD susceptibility or incubation time cannot be sufficiently answered. Homozygosity 

for methionine seems to be overrepresented among patients infected by dura mater 

grafts while among patients infected through hGH valine homozygosity is 

overproportional (Brown et al, 2000). The preference for one phenotype or the other 

nevertheless may depend on the genotype of the infected donor.  

Valuable statistical results are scarce as the time of infection often had to be 

estimated, e.g. if a patient had received several injections of hGH, the mean of this 

timespan was declared as the point of infection. This, together with the relatively 

small size of samples, does not lead to assured statistical results concerning 

incubation times. 
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Kuru 

 

Kuru is an acquired human TSE that was first described when an epidemic course of 

the disease was observed in the Fore tribe of Papua New Guinea. The Fore people 

that are situated in the Eastern Highlands numbered about 11000 in the 1950ies 

when the kuru phenomenon came to the attention of Western researchers (Gajdusek 

and Zigas, 1959). Kuru (“shaking” or “trembling” in the Fore language) was probably 

spread through endocannibalistic practices. At the death of a close relative a rite of 

mourning took place that involved the consumption of the deceased person’s body 

parts. Women and children of both sexes mostly executed the ceremonies whereas 

male adults very seldom took part in the rituals. If they did so, they mainly consumed 

skeletal muscle, which was less infectious than neuronal tissue. In contrast, women 

and children consumed highly infectious tissues like the brain and other parts of the 

CNS. Regarded by the Fore as kind of sorcery, kuru was first thought to be a genetic 

disorder as it was confined to the area of the Fore people and some bordering tribes. 

The yearly incidence rate of the disease was about one percent of the population and 

up to ten percent in certain clans, which argued against a solely genetic cause of 

kuru. As the disease was of a fatal and very common kind the lethal genotype would 

soon have died out. Later on, kuru was regarded as some sort of slow virus with an 

extremely long incubation period (Gajdusek et al., 1967).  

It was possible to intracerebrally infect chimpanzees with kuru brain tissue with a 

resulting incubation time of 1.5 to 2.5 years while the clinical symptoms closely 

resembled those observed in human kuru victims. Further passage of the disease 

within the chimpanzee by inoculating animals with infected brain tissue also proved 

successful. Same-species transmission shortened incubation times considerable to 

approximately one year, which seemed to be an effect of the species barrier between 

humans and chimpanzees. The theory of a viral causative agent seemed valid at that 

time as other TSEs and scrapie were also regarded as disorders caused by a slow 

virus (Gajdusek et al., 1967, Gajdusek, 1977).   

The progress of kuru can be (according to Gajdusek) partitioned in three distinct 

stages: The ambulant stage, the sedentary stage and the terminal stage of disease. 

In the beginning the patient is still able to stand up and work. Then first signs of slight 

ataxia, postural instability and tremor especially in the limbs appear, along with 

dysarthria, impairment of speech and strabismus (Kompoliti et al., 1999). In the 
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sedentary stage the kuru victim is no longer able to walk or stand independently. 

Tremors are more marked and severe while slight mental slowing can be observed. 

Psychiatric symptoms such as smiling, excessive laughter or crying and emotional 

instability is apparent. The phenomenon of uncontrollable laughter and euphoric 

behaviour led to the synonym “laughing sickness” in connection with kuru. In the last 

stage of the illness kuru victims are no longer able to sit up and exhibit increasing 

tremor, ataxia and dysarthria. Finally the patient develops complete incontinence and 

dysphagia from which results death because of the inability to drink and eat 

(Kompoliti et al., 1999). The usual duration of the clinical course of disease lay 

between three and nine months (Gajdusek, 1977).  

Examination of kuru brains revealed excessive neurodegeneration, together with 

astrocytic gliosis, myelin degeneration and spongiform vacuolisation (Gajdusek, 

1977). Especially notable was the presence of plaques in the cerebellum. The 

characteristic “kuru-type” plaques measure approximately 30µ in diameter. The 

central core has a higher density than the surrounding fibrillar structure it is 

embedded in (Goldfarb, 2002). Microglial proliferation can be observed as well as 

severe loss and degeneration of Purkinje and granule cells in the cerebellar area. 

A particularly specific feature of kuru is its age and sex distribution. The youngest 

patient examined in the study by Gajdusek and Zigas (1959) was aged between four 

and five while more than two thirds of the victims (76.5%) were adults. In terms of 

sex distribution one of the striking features was the predominance of kuru in women. 

This inequilibrium was not apparent in patients below the age of 20 years. In 

contrast, the male:female ratio for the age group between 20 and 29 was 1:7.8 . This 

effect was probably due to the predominance of women and children in cannibalistic 

ceremonies. Thus children of both sexes could infect themselves through 

consumption of contaminated food and often died before they reached adulthood. 

There was also the possibility of kuru inoculation through contact of infectious 

material with skin, conjunctiva or wounds. The adult participants in endocannibalism 

were female with a few exceptions. As the epidemic subsided after the official 

prohibition of cannibalistic rituals in the 1960s, less and less child patients could be 

observed while the age of onset continuously rose (Liberski and Gajdusek, 1997). 

Patients with kuru reported in latter years exhibited incubation times of several 

decades. 
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Apart from age and sex-dependent features genetic predisposition seems to play an 

important role in connection with kuru susceptibility. The above-mentioned 

polymorphism at codon 129 of the PRNP gene has a considerable effect. At the 

beginning of the epidemic, persons with the MM genotype and early contact with 

infectious tissues, i.e. young children, were the first to succumb to disease. At a later 

stage, heterozygous persons (MV) and those homozygous for valine (VV) developed 

kuru, depending on the amount of infectious agent they had consumed and also 

depending on age of exposure. The circumstances of the epidemic led to a distinct 

distribution of PRNP codon 129 polymorphisms among the Fore as no person with 

the MM genotype was among the survivors of the original epidemic and the majority 

(77%) of contemporary survivors (women older than 50 years) possess the 

heterozygous genotype (Collins et al., 2000). Through this mechanism the MM 

genotype is nearly extinct in the surviving Fore because of the high incidence of kuru 

(Lee et al., 2000). In a study by Cervenakova et al. (1998) it was shown that when a 

group <15 years of age was compared to an adult group >30 years, the difference in 

genotype frequency between codon 129 homozygous methionine kuru victims and 

heterozygous ones was significant. Homozygosity for methionine is moreover 

significantly linked to shorter duration of illness. It is also of interest that the 

neuropathology of heterozygous kuru patients slightly differs from that observed in 

homozygous patients. The development of the typical kuru amyloid plaques is 

obvious only in patients with at least one methionine allele at position 129 in contrast 

to patients homozygous for valine (Cervenakova et al., 1998).  

How kuru initially came into existence can be best explained by the occurrence of a 

case of fatal sCJD among the Fore and the subsequent consumption of infectious 

CNS tissue by family members (Gajdusek, 1977). Thus the illness would have 

spread among the tribe. 

The insights won in analysing the kuru epidemic have gained a new importance since 

the emergence of vCJD. Beforehand, kuru had been the only human TSE in which 

the infectious agent had presumably been transmitted via the oral route. Like 

observed in kuru, there is also the common predisposition arising from the codon 129 

genotype. It is therefore possible that the epidemiology of vCJD may take a similar 

course as compared to kuru, with more cases occurring as less susceptible 

genotypes are affected, though at the moment this is in no way predictable.  
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New Variant CJD  

 

The first case of a new variant of CJD was reported in 1995, ten years after the first 

report of BSE in cattle (Beisel and Morens, 2004). Typical for the initial presentation 

of vCJD are psychiatric symptoms like anxiety, depression, behavioural change and 

memory loss that can be observed in more than half of the patients (60%). Thus 

psychiatric symptoms are very common in the early stages of vCJD. Other signs of 

the disease are headache, dizziness, memory loss and disturbances of gait, 

cognition and sight (Beisel and Morens, 2004). In the later stages neurological 

symptoms such as dementia, ataxia and dysarthria become predominant that 

gradually lead to delirium and terminal coma.  

PrP plaques and florid plaques (plaques surrounded by vacuoles) can be observed in 

the brains of vCJD cases (Will et al., 1996), a pattern unusual in sCJD but 

resembling plaque types seen in scrapie infection. Immunostaining for PrPSc also 

revealed an accumulation of small plaques in the brain (Will et al., 1996).  

In contrast to classical forms of CJD like sCJD, vCJD has a much earlier age of 

onset. The first 97 cases of confirmed and probable vCJD had a median age of onset 

of 28 years (Valleron et al., 2001). Duration of the disease was rather longer than 

that usually observed in other CJD variants. Median duration ranged from 6 to 39 

months (average 13 months) in the first hundred patients (Spencer et al., 2002).  

The new variant of CJD has up to now been observed mainly in patients 

homozygous for methionine at position 129 of the PRNP gene, which seems to be 

the major predisposing factor in vCJD (Will et al., 2000). As seen in iCJD 

homozygosity itself (either MM or VV) might influence incubation times. The evidence 

gained from the kuru epidemic in New Guinea indicates that food-borne prion 

diseases can well lead to incubation periods of several decades. Accordingly it can 

be speculated that vCJD cases with either heterozygous (MV) or homozygous (VV) 

PRNP genotype will be observed in the future. The recent finding of preclinical vCJD 

in a PRNP codon 129 heterozygous patient that had been infected through blood 

transfusion suggests that this might be the case (Peden et al., 2004). PrPres was 

absent in the brain of the patient but was observed in the spleen. Thus vCJD 

infection, if only subclinical, does not seem to be limited to codon 129 homozygous 

humans. 
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As the first occurrence of vCJD in the United Kingdom followed an epidemic of the 

prion disease BSE in cattle it was soon speculated whether the disease might have 

crossed the species barrier. In support of this theory glycoform ratio patterns i.e. 

strain characteristics of vCJD and BSE are very similar to each other (Collinge et al., 

1996). Western blotting revealed clearly differing patterns of PK-resistant PrP. In 

sCJD and iCJD cases, type 1 and 2 have been observed. Type 3 occurred in patients 

who derived iCJD primarily via peripheral distribution of the infectious agent. This 

includes injection of contaminated hormones like hGH and gonadotropin. The band 

pattern of vCJD in Western blots resembles that of type 3 CJD but the band 

intensities are clearly distinguishable from the other PrPSc patterns.   

There are additional implications in favour of a connection between BSE and vCJD 

raised by epidemiological factors. The number of sCJD cases diagnosed has only 

slightly risen over the last years, probably owing to better diagnostic measures and 

awareness. On the other hand, the number of reported vCJD cases in the UK has 

increased significantly since the disease was first discovered (Andrews et al., 2000). 

In Andrew’s study the number of vCJD onsets was estimated to increase by 23% per 

year between 1994 and 2000 and by 33% between 1995 and 2000 as far as 

probable and definite cases of vCJD were concerned. The cause of this rise in 

incidence was explainable when the temporal incidence of BSE and mortality of 

vCJD were compared. With the BSE epidemic seemingly declining, incidence of 

vCJD was increasing. Currently the number of deaths through vCJD is decreasing in 

the UK (Andrews et al., 2003), so that a slowing of the trend is apparent. This 

nevertheless does not point at a future steady decline of vCJD cases because of the 

genetic implications described above. Since cases of vCJD in other codon 129 

genotypes than the one hitherto observed might occur there could be another rise in 

the number of vCJD deaths. In connection with epidemiological issues it should also 

be noted that vCJD has hitherto only been diagnosed in countries in which BSE has 

occurred (Trevitt and Singh, 2003) while the incidence of sCJD shows a worldwide 

uniformity.  

If vCJD was indeed caused by infection through BSE prions the infection would 

probably have taken place through oral infection with contaminated beef. As the 

example of kuru shows, such an infection route seems to be realistic. Proteinase-

resistant PrP is mainly found in tissues of the central nervous system so that the 

greatest transmission risk appears to be related to processed meat (Trevitt and 
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Singh, 2003). Statistical examination revealed that there is a geographical difference 

in vCJD cases (1994-2000) in the UK. In the North of Great Britain the incidence of 

vCJD is higher than in the southern part. The rate ratio comparing the north with the 

south was 1.94 (confidence intervall: 1.27-2.98) for all 84 cases examined (Cousens 

et al., 2001). It is yet unclear in which way consumption of meat or specific kinds of 

meat and meat products or slaughtering and cutting techniques have an influence on 

these numbers. Difficulties arise from evaluating the regional dietary intake of certain 

products and the possibility of cross-contamination of meat with CNS tissue. Rates of 

vCJD incidence could thus be correlated with meat consumption on the basis of data 

from the Household Food Consumption and Expenditure Survey (r=0,72). Correlation 

was not demonstrated for data recorded in a different survey (Dietary and Nutritional 

Survey of British Adults).  

Apart from infection through infectious agent in meat and meat products it is 

necessary to address the question whether vCJD could be transmitted through blood 

transfusion or contamination of neurosurgical instruments. Llewelyn et al. (2004) 

investigated the case of an elderly blood recipient who developed vCJD 6.5 years 

after treatment. The red cells transmitted had come from a 24-year-old donor who, 

after 3 years and 4 months past the time of donating blood, succumbed to vCJD. 

Neuropathology in the recipient was characteristic for the changes seen in vCJD 

patients. Nevertheless, of the 48 recipients of blood components from different 

donors examined in the study only one developed vCJD. An alternative theory would 

be that the recipient was infected through consumption of contaminated meat though 

this is statistically unlikely (Llewelyn et al., 2004). Experiments in rodents and sheep 

have furthermore produced evidence that infectivity can be transmitted by blood 

transfusion even before the donor had completed the incubation period (Houston et 

al., 2000, Hunter et al., 2002). Whether transmission through blood donation is 

possible in humans is unclear because little information exists as to the amount of 

infectivity in blood or blood compartments and to the dose necessary to infect a 

human being.  

Neurosurgery may also bear the risk of transmission of infectious material, a 

possibility that was highlighted by the occurrence of iCJD after such invasive 

techniques. Here, as with blood donation, the amount of infectious agent transmitted 

and the mode of administration (peripheral or intracerebral) should play an important 

role. That neurosurgical procedures, which involve invasion into lymphoreticular 
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tissue, pose an increased risk as to vCJD infection has not yet been substantiated. 

Implicated in these considerations are the distribution and amount of host PrPC 

throughout the body. In tissues that show high expression levels of PrPC or in organs 

that are involved in prion propagation administration of infectious agent might lead to 

early onset of prion disease. 

 

Distribution of PrPSc in Human Prion Diseases 
 

The cellular form of the prion protein is mainly expressed in the brain and CNS, 

presumably in nerve endings. It seems to localise both on the presynaptic and 

postsynaptic side of neurons (Gohel et al., 1999). As it was first detected in neuronal 

cells of the CNS, the expression of PrPC was thought to be exclusively restricted to 

neuronal cells. Further investigations demonstrated that PrPC was not only present in 

nerve cells of the CNS and peripheral nervous system but also in extraneuronal 

tissues and cells. 

Immunogold labelling by Fournier et al. (1998) revealed that PrPC is expressed in 

human lymph nodes, at the plasma membrane of tubule cells in the kidney and in 

cytoplasmic vesicles.  

Like PrPC, the infectious proteinase-resistant form PrPSc is localised in tissues other 

than those of the CNS. By analysing extraneural organs of 36 persons that had died 

of sporadic CJD Glatzel et al. (2003) demonstrated that PrPSc was present in spleen 

and muscle tissue in a number of patients. PrPSc amounts in those tissues were 

considerably lower than PrPSc levels found in the brain (by factor 1×10-4). It was not 

possible to detect non-neural PrPSc by common Western blotting but differential 

precipitation of the protein was carried out in order to improve sensitivity of the 

analysis.  

The presence of PrPSc in the sympathetic nervous system of vCJD victims was 

confirmed by Haik et al. (2003) who could detect PrPSc accumulation in neurons of 

gut-associated ganglia. Ganglia of the sympathetic nervous system did not harbour 

PrPSc in a sCJD case used as a control. These findings suggest involvement of 

sympathetic nerves in vCJD pathogenesis.  

The results of the study also showed that the distribution of PK-resistant PrPSc is 

apparently determined by the CJD form. Contrary to the observations in sporadic or 

familial CJD, a high amount of PrPSc can be found in the lymphoreticular system in 
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vCJD. Head et al. (2004) were able to detect PrPSc in tonsils, spleen, lymph nodes 

and in the submucosa of the appendix in vCJD patients. The presence of extraneural 

PrPSc was limited to the tissues of these persons and was not observed in sCJD and 

iCJD cases. In this study, PrPSc was detected in adrenal, kidney, lung, heart or 

muscle, which finding was independent of CJD form. Hill et al. (1999) demonstrated 

that the accumulation of PrPSc in the lymphoreticular system is a feature 

characteristic of vCJD. Western blotting examination of tissue samples led to the 

result that PrPSc was present in all samples that were eligible for testing. Glycotyping 

of the PrPSc detected in the tonsils resulted in the discovery of a glycolysation pattern 

(type 4t) that was similar but clearly distinguishable from the one commonly found in 

vCJD-infected brains (type 4). This is probably due to the fact that glycosylation 

patterns generally vary between cells and tissues. In 2001 Wadsworth et al. found 

that PrPSc was located in the retina and proximal optic nerve of vCJD patients. Low 

concentration of the proteinase-resistant protein could be observed in rectum, 

adrenal gland and thymus of a single case among the four patients included in the 

study.  

Taken together, these results give a hint as to the possible pathology of prion 

diseases. Peripheral and extraneural accumulation of PrPSc indicates which tissues 

might play a role in prion propagation and the mode of infection. Location in stomach 

and guts points to an oral uptake of the infectious agent. The presence of PrPSc in 

the lymphoreticular system seems to indicate peripheral propagation. Whether PrPSc 

found in muscle is the result of a spillover after the brain is infected or whether 

propagation in this tissue can take place at an earlier stage of the disease remains 

yet unclear.  

Genetic implications in PrPSc distribution were observed in the study by Glatzel et al. 

(2003) relating to the human codon 129 polymorphism. Heterozygous and 

homozygous VV patients were tendentially overrepresented among patients with 

splenic PrPSc. In contrast, persons in whose muscle PrPSc was detected were in the 

majority homozygous for methionine. After analysis of PrPSc isoforms it was shown 

that the number of rare sCJD variants was above average among the patients 

examined in the study. The observation of splenic PrPSc was furthermore connected 

to a longer duration of the disease, which indicates a spillover of prions from the 

infected brain to non-neuronal tissues.  
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Genetic disposition i.e. genotype of the host seems to have an influence on disease 

pathogenesis resulting in various patterns of PrPSc distribution in the body. A crucial 

role has to be assigned to detection techniques for the protein in this context. PrPSc 

concentrations in specific tissues might have remained unobserved being present in 

amounts that lie below the limit of detection.  

 

Mouse Models and Genetic Implications 
 

Knockout Mouse Models 

 

Mouse models are important to explore pathomechanisms of prion diseases. 

Knockout experiments in this species resulted in the identification of the prion as the 

probable causative agent of spongiform encephalopathies and of PrPC as 

prerequisite of infection.  

When the first knockout approaches were made, the occurrence of defective murine 

phenotypes was to be expected, as the unknown PrPC function was expected to be 

impaired in the animals. Nevertheless, the knockout mice generated by Bueler et al. 

(1992) did not show any abnormalities although no PrPC was detected in their bodies. 

In the so-called Zrch Prnp0/0 mouse line a neomycin phosphotransferase (neo) gene 

cassette replaced 552 bp of the Prnp gene. In a successive study the same mouse 

line was challenged with mouse-adapted scrapie prions (Bueler et al., 1993). An 

intracerebral inoculum of the agent was used. Brains of knockout mice did not exhibit 

scrapie pathology nor were they differing from those of mice injected with normal 

brain homogenate. In contrast, wildtype mice presented typical characteristics of 

prion disease such as vacuolisation, neuronal loss and astrocytic gliosis especially in 

cortex, thalamus and hippocampus, beginning at 23 to 25 weeks p.i. Furthermore, 

heterozygous Prnp+/- mice, though contracting scrapie, showed considerably 

increased incubation times (more than 253 days compared to 180 days in wildtype 

mice). The impact of PrPC on scrapie infection was mirrored in the duration of the 

disease: no heterozygous mice had died prior to 322 days post infection, while 

wildtype animals had died 13 days after the onset of clinical symptoms. In 

conclusion, the presence of PrPC and the PrPC amount in the body was crucial for 

prion infection and moreover associated with incubation times in mice.  
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In other mouse models the inactivation of the Prnp gene was accompanied by 

defects in the knockout mice lines (see Figure 5). Sakaguchi et al. (1995) had 

established a Prnp-/- mouse model that was resistant to mouse-adapted CJD 

infection. Infection of both wildtype and Prnp heterozygous mice was achieved and 

PrPres was detected in their brains, contrary to Prnp0/0 animals. Incubation times were 

ranging from 138 days in wildtype mice to 259 days in heterozygous animals. This 

mouse line, termed Ngsk Prnp0/0, was generated by replacing the entire Prnp ORF by 

a resistance cassette. Ensuing observations of the mouse line revealed progressive 

gait impairment and hind limb ataxia in the animals (Sakaguchi et al., 1996). Atrophy 

of the cerebellum and dramatic loss of Purkinje cells was observed in their brains. 

The number of GABA synapses was markedly reduced. Impairment of GABA-

mediated synaptic function in Prnp knockout mice had already been described by 

Collinge et al. (1994). Changes in circadian rhythm were furthermore reported by 

Tobler et al. (1996). In knockout mice the periods of activity were significantly longer 

than in the wildtype control animals. Sleep regulation and sleep patterns were 

different between knockout and wildtype mice, e.g. sleep fragmentation was more 

distinct in the knockout model.  

The question whether these defects were caused by the lack of PrPC in the mice or 

were simply an artefact of knockout experiments was addressed by Moore et al. 

(1999). They reported the discovery of a protein that shares approximately 25% 

identity with PrPC, which was termed doppel (Dpl). The encoding gene locus (Prnd) is 

located downstream of the Prnp locus. Interestingly, intergenic splicing of Prnd and 

Prnp generates chimeric mRNA transcripts. This pathway might be upregulated in 

Prnp0/0 mouse lines (Rcm0 and Ngsk) that exhibit progressive ataxia and loss of 

Purkinje cells. Moore et al. (1999) measured Dpl mRNA levels in the brains of 

different knockout mouse lines and compared the target alleles in the mice. 

According to this study, Prnp0/0 mouse lines can be distinguished into two fractions. 

In the first group the targeted disruption is restricted to Prnp exon 3 and consequently 

no phenotypic abnormalities have been observed. In the other case an exon 3 splice 

acceptor site is removed together with a flanking region 5’ to exon 3. As a result, 

more chimeric mRNA is produced by the animals of this genotype in comparison to 

wildtype mice. It was also noted that Dpl expression was considerably higher in 

defective mouse lines than in the Zrch mice. Thus the abnormalities observed in 
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Ngsk and other Prnp0/0 mouse lines were apparently caused by Dpl upregulation 

rather than by absence of PrPC.  

 

 

 

Figure 5: Structures of PrP gene disruptions in four lines of Prnp0/0 mice (Moore et al., 1999) 

 

Alignment of published PrP knockout alleles showing the genomic region spanning PrP exon 3, the 

extent of PrP exon 3 deletion, the selectable marker used, and direction of selectable marker 

transcription (indicated by the large arrow). The structure of the wt Prnp allele is shown at the top. The 

large black arrows indicate the alleles that delete the exon 3 splice acceptor and are associated with 

the development of a late-onset ataxia. A small vertical arrow indicates the position of the exon 3 

splice acceptor (s.a.) deleted in the Ngsk Prnp0/0 and Rcm0 Prnp0/0 alleles (Sakaguchi et al., 1995; 

Moore et al., 1995)  

Open box: PrP coding region; arrow,: selectable marker; grey box: PrP UTR; E: EcoRI; X,: XbaI; K,: 

KpnI. TK: human HSV-1 thymidine kinase promoter; MT: mouse metallothionein promoter; PGK: 

mouse phosphoglycerate kinase promoter; Neo: neomycin phosphotransferase; HPRT: mouse 

hypoxanthine phosphoribosyltransferase. 
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However, a study by Wong et al. (2001) found changes in oxidative stress response 

of Prnp0/0 knockout mice. The group measured a range of oxidative markers 

(ubiquitination, protein oxidation, lipid peroxidation and proteasome activity) in Prnp-

deficient mice as compared to wildtype animals. These indicators of oxidative stress 

were elevated in brain lysates of the knockout animals. As implied by other 

experimental studies (Brown et al., 1999, Wong et al., 2001) the findings point to a 

role of PrPC in cellular oxidative stress response in vivo. As a further approach Miele 

et al. (2002) investigated whether absence of PrPC had an effect on gene expression 

in the brain. With the help of PCR techniques gene expression patterns were 

generated in Prnp-deficient and wildtype mice during brain development. For most 

genes expression levels were similar in both mouse lines although differences were 

detected for genes contributing to mitochondrial biogenesis and physiology. The 

findings were corroborated when mitochondrial morphology was examined by 

electron microscopy. The amount of mitochondria in hippocampal neuropil was 

markedly reduced in Prnp0/0 mice (40%) compared to the wildtype controls. Not only 

was there a difference in the total number of mitochondria, there were also 

morphological changes. Significantly more of Prnp0/0 mitochondria exhibited an 

unusual morphology with few and poorly outlined cristae, although the majority of 

mitochondria appeared to be normal. Significant discrepancy was also found in the 

diameters of the mitochondria, which were 21% larger in knockout mice than in the 

wildtype. Activity of mitochondrial manganese-dependent superoxide dismutase 

(MnSOD) was elevated in brains of Prnp-deficient mice, which was in accordance 

with the findings of Brown et al. (1998). This group had reported elevated MnSOD 

levels in the brain of knockout models. Miele et al. (2002) also noted that number of 

mitochondria and MnSOD activity was inversely correlated with PrPC expression in 

various tissues. Taken together, an association between PrPC expression and 

amount and physiology of mitochondria has been indicated. This mechanism could 

be involved in the pathogenesis of prion diseases. A role for PrPC in oxidative stress 

response has been suggested as in scrapie infection SOD-like activity of PrPC was 

considerably reduced in the brain (Wong et al., 2001). This might have been a result 

of PrPC loss of function. 
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Genetic Implications in Mice 

 

Mouse PrPC in its mature form contains 208 residues and shares the common 

characteristics of prion proteins (Riek et al., 1996). It contains three α-helices, a short 

antiparallel β-sheet and the characteristic octapeptide repeat sequence. The Prnp 

gene encoding the protein comprises three exons with the ORF and two introns 

(Westaway et al., 1994). It is located on the murine chromosome 2. 

After inoculation with prions, incubation times differ dramatically in mice. These 

differences have been associated with polymorphisms in the murine prion protein 

gene (Prnp) (Carlson et al., 1994, Moore et al., 1998). A dimorphism at codon 108 

and 189 of the Prnp gene determines whether the murine PrPC is designated Prnp-a 

or Prnp-b. Mice that possess Prnp-a (with leucine at position 108, threonine at 

position 189) show considerably shorter incubation times than those with Prnp-b 

(with phenylalanine at position 108, valine at position 189) (Westaway et al., 1987). 

Both isoforms also differ in the length of intron 2 (Westaway et al., 1994). Prnp-b is 

characterised by a deletion of about 6 kb within the intron in comparison to Prnp-a. 

Nevertheless the size of intron 2 does not seem to have a considerable impact on 

experimental scrapie incubation times in mice (Carlson et al., 1988).  

In addition to these two alleles (Prnp-a and Prnp-b) Lloyd et al. (2003) identified 

another murine prion protein gene variant (Prnp-c). It encodes for phenylalanine at 

position 108 and threonine at residue 189. After inoculating Prnp-c mice with mouse-

adapted scrapie prions intracerebrally, incubation times were considerably prolonged 

in the animals. Distinct neuropathologic features such as lesion profiles or pattern of 

PrP accumulation were not observed in the study.   

Stephenson et al. (2000) searched for quantitative trait loci (QTLs) that might 

influence the development of prion disease in mice. Incubation times after inoculation 

with scrapie prions were analysed in animals carrying the Prnp-a allele. Marker 

analysis identified QTLs within chromosomes 9 and 11 that were significantly linked 

to scrapie incubation time in simple interval mapping. For both QTLs the interval of 

significance was found to be a rather broad one, which leaves the possibility that not 

one, but several influential polymorphisms can be found there. Successive composite 

interval analysis on the chromosomes indicated suggestive linkage for a possible 

QTL distal from the marker on chromosome 9 while on chromosome 11 no evidence 

for a marker outside the already determined interval was found. Notably, the laminin 
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receptor gene (Lamr1) is located on murine chromosome 9. The product, which is 

encoded by the gene, has been shown to interact with PrPC (Rieger et al., 1997). 

Heat-shock protein cognate 70 gene (Hsc70, also Hspa8) has also been mapped to 

chromosome 9 in the mouse. It is a putative candidate for involvement in scrapie 

pathogenesis because expression of heat-shock proteins is known to increase in 

scrapie-infected mice.   

In a different approach Lloyd et al. (2001) examined Prnp-a mice that had been 

inoculated with scrapie prions and showed significantly different incubation times. 

Genomic screening by interval mapping identified three regions on chromosomes 2, 

11 and 12, which might be linked to incubation time. Less significant linkage was 

confirmed for sections of chromosomes 6 and 7. Subsequent composite interval 

analysis by Lloyd et al. (2001) implied that multiple linked QTLs exist in these 

regions. For effects of three linked QTLs on murine chromosomes 2 and 12 only 

modest significance was calculated, whereas more than 45% of total variance 

observed in scrapie incubation times could be accounted for by two linked QTLs 

located on chromosome 11. Additional single nucleotide polymorphisms (SNPs) were 

identified in the promoter region of the Prnp gene though a possible effect on 

incubation times has yet to be examined. These findings indicate that polymorphisms 

other than the one already identified within the Prnp gene coding region may 

influence scrapie incubation times in mice. In a subsequent study mice were 

intracerebrally inoculated with a BSE strain instead of scrapie (Lloyd et al., 2002). 

Once again regions on chromosomes 2 and 11 were found to be significantly 

associated with incubation times. Ensuing composite interval mapping moreover 

implied the existence of three linked QTLs on chromosome 2 like in accordance with 

the results of the previous study. It has not yet been determined whether these latter 

loci are the same. If so, their influence on incubation times in mice would be 

independent of the strain type. Incubation time variation was also observed in mice 

intercerebrally inoculated with BSE by Manolakou et al. (2001). Two mouse strains 

used in the study were similar with regard to the Prnp alleles. Nevertheless, a 

difference of 100 days in incubation time was seen in the animals. QTL mapping 

revealed loci on chromosomes 2, 4 and 8 that were highly significant. One QTL on 

chromosome 15 was significantly linked to incubation time in the mice. When effects 

of the single QTLs were measured independently from each other the phenotypic 

variance caused by one of them ranged between 4 and 7 %. Cumulative effects of all 
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QTL, when corrected for dominance, where adding to 50% of the difference in 

phenotype. Epistatic effects below the line of significance should be responsible for 

the remaining variance.  

Not only can QTLs on different chromosomes play a role in controlling prion disease 

incubation times in mice, it is also possible that polymorphisms in functional regions 

of PrPC led to alterations in their effects. The copper-binding octarepeat region of 

PrPC has been an object of investigation because it is implicated in aspects of 

conversional transition of PrPC to the infectious PrPSc isoform.  

In order to elucidate these aspects Castilla et al. (2004) investigated the effect of an 

additional insertion in the octapeptide repeat sequence with regard to BSE infection. 

Mice transgenic for the bovine PrPC (boTg mice) were intracerebrally inoculated with 

BSE agent. One of the mouse lines possessed six octarepeats (bo6ORTg mice) in 

the PRNP gene representing the bovine wildtype while the other mouse line had a 

sequence of seven repetitive octapeptides (bo7ORTg mice). Immunohistochemistry 

findings of the BSE-affected CNS were similar for animals of both lines. Incubation 

times clearly depended on the amount of PrPSc contained in the inoculum and on the 

expression levels of PrPC in the animals. The more PrPSc was injected and the higher 

PrPC expression in the mice the shorter were the incubation times measured. 

Nevertheless, incubation periods and survival times even varied between mouse 

lines with similar PrPC expression, regardless of which inoculum was used for 

infection. The bo7ORTg mouse exhibited markedly decreased BSE incubation times 

and shorter lifespan. There also seemed to be an effect of number of octarepeats 

concerning disease susceptibility. Brain homogenate of bo6ORTg mice infected with 

BSE and killed at 120 and 150 days, respectively, was inoculated in both transgenic 

mouse lines. 33% and 50% of the inoculated bo7ORTg animals were tested positive 

for PrPSc Western blotting while in none of the inoculated bo6ORTg mice the 

proteinase-resistant protein was detected.  

Differences in the number of octapeptide repeats of PrPC, i.e. the insertion of 

additional repeats in the amino acid sequence, have been implicated in familial forms 

of human CJD. The neuropathologic syndromes might be due to the same 

mechanism. It was suggested that the presence of seven octarepeats in PrPC 

influences the structure of PrPC. In comparison to wildtype prion proteins such a 

structure could transformed into PrPSc with a greater efficiency. Propagation would 

be taking place much quicker than in the wildtype and the infectious isoform of PrPC 
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would be present in the organism after a shorter lifespan following BSE infection. 

This idea was corroborated by the finding that inocula taken from asymptomatic 

transgenic mice were more efficient in infecting bo7ORTg animals than those 

possessing six octarepeats. These results imply a role of the octarepeats in prion 

propagation and disease susceptibility especially interesting with regard to the 

genetic situation in bovine BSE. Variation in the number of octapeptide repeats 

between five and seven has been observed in cattle and although the genotypes of 

five and six octarepeats seem to have no influence on BSE susceptibility these 

aspects have not been sufficiently investigated in the seven-octarepeat genotype.  

It has been mentioned that additional octapeptides in the repeat region are 

associated with familial prion disease. Chiesa et al. (1998) generated transgenic 

Tg(PG14) mice with additional nine octarepeats, so that the animals possessed an 

overall number of 14 octapeptides. In transgenic mice exhibiting the highest 

expression levels a slowly progressive neurological syndrome was apparent. Initial 

symptoms consisted in ataxia, abnormal posture and clasping of the hindlimbs, when 

animals were held by the tail. In a later stage of the disease gait impairment became 

more pronounced, mice lost weight and neglected grooming of their coats. In the 

brain of the affected Tg(PG14) mice cerebellar atrophy and significant reduction in 

the number of granule cells and thickness of the molecular layer was observed, 

changes increasing with duration of disease. No signs of neuronal loss or spongiosis 

were apparent. Antibody staining revealed that gliosis and astrocytic hypertrophy 

were present mainly in the cerebellar cortex. Fine deposits of PrP were visibly 

immunostained in various regions of the brain. Further analysis demonstrated that 

part of PrP in the brains of the animals was detergent insoluble and resistant to low 

concentrations of proteinase K. PrP found in the Tg(PG14) animals also had a 

different cleavage pattern than that of wildtype mice implying conformational 

differences between the proteins. Cleavage resulted in a core fragment (PrP27-30) that 

is also seen after cleavage of PrPSc. These results imply an association between the 

number of octarepeats in PrPC and the liability of the protein to transition into a 

different conformational state with markedly distinct biochemical properties.     

Experiments in transgenic mice have furthermore provided clues, which effect the 

octapeptide repeat region of PrPC might have in modulating prion disease properties. 

Flechsig et al. (2000) introduced a truncated murine PrP transgene into PrPC 

knockout mice. Codons 32 to 93 of the PrP transgene had been deleted, so that 
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transgenic mice were devoid of all five octarepeats. The transgenic animals were 

challenged with scrapie prions, which led to the development of scrapie-like 

syndromes that were similar to those observed in wildtype mice. Ataxia was 

pronounced but it was more apparent in the front legs while hind extremities were 

affected to a lesser extent than usual in mouse scrapie. The overall incubation times 

observed in the transgenic mice were longer than those seen in wildtype controls (31 

to 45 weeks compared to 22.5 weeks). Furthermore, prion titers were found to be 

lower in the animals devoid of the octarepeat region. The alterations in disease 

characteristics were regarded as a direct result of the N-terminal deletion. Moreover, 

histopathological differences were detectable in brain and brainstem in which neither 

the typical lesions nor astrogliosis was observed. In contrast to this, no discrimination 

between wildtype and transgenic animals was possible in the histopathology of the 

spinal cord. The results of these mouse experiments implied that the octarepeat 

region of PrPC is not essential for the occurrence of scrapie-like syndromes in the 

animals. The properties, i.e. incubation times, clinical presentation and 

histopathological aspects of such disorders are nonetheless affected by the murine 

genotype. The region comprising the octapeptide repeat sequence therefore 

efficiently modulates disease characteristics.   

Scott et al. (1997) inoculated Tg(MBo2M) with BSE agent. MBo2M is a chimeric 

transgene consisting of bovine PRNP and murine Prnp-a sequences. Mice 

expressing the transgene were surprisingly resistant to BSE though Prnp-a mice are 

susceptible to the disease. The same technique was applied to mouse and human 

PrP genes in order to create a chimeric transgene (Telling et al., 1994). Inoculation 

with both human (CJD) prions and mouse prions resulted in disease. By comparing 

chimeric transgene and mouse PrPC encoded by Prnp-a sequences differences in 

the amino acid chain were revealed. Bovine substitutions in the transgene sequence 

were located between residues 97 to 186 while human substitutions in the human 

transgene only extended from residues 97 to 167. As positions 184 and 186 are not 

homologous in bovine and murine PrPC, amino acid substitutions at these residues 

might influence prion disease susceptibility in the chimeric mice. As an alternative 

amino acid residue 203 differs between PrP alleles (MoPrP and HuPrP: valine, 

BoPrP: isoleucine, MBo2M: valine) and thus might have modulating effects on TSE 

transmission. 
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Scrapie and Genetic Implications in Sheep 
 

Scrapie is a slowly progressive disease of sheep and goats that belongs to the group 

of TSEs. It probably is the longest-known TSE in animals and has first been 

described in British sheep flocks in 1732. Scrapie occurs in European countries and 

has also spread to Canada and the United States while it could hitherto not be found 

in Australia and New Zealand.  

The main route of transmission is thought to exist between ewe and offspring through 

contact with the placenta or placental fluids. Another source of transmission is 

supposed to be the consumption of infected placental tissues. Lateral transmission 

appears to be possible, as scrapie has been observed in mixed flocks of sheep and 

goats (Capucchio et al., 2001). The scrapie agent seems to be able to survive for 

longer periods in the environment. Scrapie cases generally occur in single animals of 

a flock. Several cases of the disease can only be observed if the amount of infectious 

material circulating within the herd is immense, in which case scrapie incidence can 

be high.  

Clinical symptoms of scrapie are seldom apparent in animals below an age of 12 

months. Commonly first signs of the disease appear between 2 and 5 years of age. 

Scrapie disease duration ranges between 1 and 6 months. In the initial stages of the 

disease change of behaviour presents itself as infected sheep tend to separate 

themselves from the flock. There may also be increased excitability, nervousness, 

fear and increased sensitivity against noise and touch (Healy et al., 2003). 

Aggressive behaviour is known to occur sometimes. As the disease progresses, 

ataxia and incoordination in the hind limbs and the characteristic “bunny hop” gait 

can be seen. Tremor of the head or generalised tremors, grinding of teeth and vacant 

stare are other clinical symptoms. The infected animals are gradually deteriorating. 

While no loss of appetite is apparent, chronical severe weight loss is present. One of 

the most striking clinical features of scrapie is the continual scratching from which the 

disease derived its name. Affected sheep generally scratch flanks and rear quarters 

on objects or scratch their body parts with a hind foot. Nibbling or grinding of teeth 

often accompanies scratching. The constant scratching and rubbing leads to wool 

loss and skin damage in certain body regions. Rare symptoms observed in scrapie 

are apathy and drooling. The condition is invariably fatal.  
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As in other prion diseases vacuolisation and lesions in the brain, the loss of neurons 

and gliosis are observed in the brain of scrapie-affected sheep (Wood et al., 1997).  

The pathogenesis of scrapie has been addressed in numerous studies. The oral 

route is held to be the main entrance of the infectious agent into the body. Van 

Keulen et al. (2002) determined the presence of PrPSc in the bodies of scrapie-

infected sheep at various stages of disease. Lambs examined in the study were aged 

between 1 and 5 months. The same group also detected PrPSc in the later stages of 

the disease in lambs between 5 and 26 months of age (Van Keulen et al., 2000). The 

findings indicate that in scrapie there are three different phases of prion pathology 

after probable infection via the oral route. Initially, the gut associated lymphoid 

system (GALT) is infected where PrPSc can be found in palatine tonsils, Peyer’s 

patches and draining lymph nodes of the jejunum and ileum. Thus prions seem to be 

propagated in GALT areas in the early stages of scrapie. From there, infectious 

agent may gain access to other tissues, possibly via M-cells that are able to transport 

contents of the lumen to the mucosal immune system (Neutra et al., 1996). As it has 

been observed for different types of pathogens (viruses and bacteria) this route could 

also be employed by prions. Van Keulen et al. (2002) furthermore determined the 

existence of PrPSc in GALT lymphoid follicles and as yet unidentified cells located 

beneath the surface epithelium. They proposed these cells to be either dendritic cells 

(DCs) or macrophages that might serve in the transport of infectious agent to 

germinal centres in lymphoid follicles. The death of DCs after interaction with 

lymphocytes supposedly releases their burden. Scrapie agent could then be 

phagocytised by lymphoid macrophages in the follicles. At a later stage of scrapie-

infection PrPSc could already be found at follicular DCs, which might suggest a role 

for these cells as centres of PrPSc accumulation. Otherwise they could themselves be 

infected by the infectious agent. DCs and macrophages are thus candidates of 

transmission of the scrapie agent to GALT-draining lymph nodes. In such a manner 

the infectious agent would gain access to cortical and paracortical sinuses. PrPSc can 

be detected in cells in the sinuses, which might be the means of transportation of 

infectivity to lymph and to the blood system. This would represent the second stage 

of pathogenesis, namely the invasion of non-GALT-tissues. Neuroinvasion is the third 

phase of scrapie pathogenesis in sheep. According to Van Keulen’s study, the 

connection between the enteric nervous system and the gut-related Peyer’s patches 

could lead to the entry of infectivity into the neural tissue. After the enteric nervous 
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system (ENS) is infected, both sympathetic and parasympathetic neuronal pathways 

could lead the scrapie agent to brain and spinal cord via the N. vagus and the thorax-

associated tissues. Both portals of entry are connected to neuronal cell bodies that 

innervate the abdominal viscera. Having reached the CNS the scrapie agent could 

spread further.  

Beside this model of scrapie pathogenesis, there are other putative mechanisms 

which might be involved in pathogenesis, among them the invasion of the CNS 

through peripheral nerve endings in non-GALT lymphoid tissues or a sort of virus-like 

haematogenic spread. Such a phase of “viremia” could possibly occur during scrapie 

pathogenesis as PrPSc amyloid formations can be found in capillary endothelial cells 

of the hypothalamus at a stage of disease when PrPSc has only reached a limited 

region in brain and spinal cord (Van Keulen et al., 2000).  

From the results of various studies it seems to be plausible that scrapie is caused by 

the consumption of contaminated infectious feed. This is due to the presence of 

scrapie prions in the gut and gut-associated systems in the early stages of the 

disease. Other possible routes of infection are transmission via contact to wounds or 

body fluids (milk, blood etc.).  

The ovine prion protein gene (Prnp) comprises three exons, 52, 98 and 4028 base 

pairs in length and two introns with a length of 2421 and 14031 base pairs 

respectively. It is located on chromosome 13 and characteristically possesses an 

extraordinary long 3’ untranslated region (3’UTR) of 3246 bp while the open reading 

frame is but 768 bp in length (Lee et al., 1998). The exceptional length of the ovine 

PrP mRNA is caused by the insertion of three transposable elements in the 3’UTR 

that is supposedly ruminant-specific (Tranulis, 2002). The ovine PrPC shares the 

common architecture of mammalian PrPs, which consist mainly of α-helices and two 

short antiparallel β-sheets. 

Within the ovine Prnp gene, 23 polymorphisms have been described to date (Hills et 

al., 2003). Among those are three polymorphisms at codons 136, 154 and 171 that 

cause amino acid exchange in PrPC (see Table 4). A number of different PrPC alleles 

can be distinguished by the amino acids encoded for at these residues. The PrP 

genotypes arising from the combination of the different alleles show diverse 

susceptibility to scrapie with codons 136 and 171 being the strongest determinants 

for this effect (Hunter, 1997, Tranulis, 2002).  
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Table 4: Sheep PrP gene – the three most important disease-related polymorphisms 

(Hunter, 1997) 

 

 

 

Codon 

 

Amino acid alternatives 

 

Single-letter code 

 

136 

 

154 

 

171 

 

Valine 

Alanine 

Arginine 

Histidine 

Arginine 

Glutamine 

Histidine 

 

V136 

A136 

R154 

H154 

R171 

Q171 

H171 

 

 

Among the so-called “valine” breeds (Cheviot, Swaledale etc.) that carry alleles with 

valine at codon 136, the VV136 RR154 QQ171 genotype is highly susceptible to natural 

scrapie and scrapie isolate SBBP/1 (Scrapie Sheep Brain Pool number 1) (Houston 

et al., 2002). Incubation time is nevertheless also influenced by the polymorphic 

codons 154 and 171 (Elsen et al., 1999). Within other breeds such as Suffolk, the 

V136 R154 Q171 allele is hardly encountered, so that the AA136 RR154 QQ171 genotype is 

most susceptible to scrapie (Hunter, 1997). This pattern can be partly explained by 

the existence of different scrapie strains. Thus SSBP/1 seems to target sheep 

encoding the V136 R154 Q171 allele, if present among the flock, while scrapie isolate 

CH1641 and BSE prions have been shown to target sheep according to codon 171 

genotype, QQ171 animals being the most vulnerable (Goldmann et al., 1994). 

In addition to these “classical” allelic variants, two new Prnp forms have been 

recognised in Germany (Kutzer et al., 2002), namely A136H154R171 and V136R154R171. 

Though present at low frequencies they have been found in common breeds such as 

Texel or Suffolk. It has to be taken into account that such unknown variants might 

have an influence on the evaluation of resistance grade of PrP genotypes. 

Furthermore, scrapie susceptibility of sheep appears to be breed-specific, i.e. 
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genotypes known to be the most susceptible in one breed are not necessarily 

vulnerable in a different breed, also depending on the frequency of single alleles. 

Lühken et al. (2004) determined PrP genotypes in atypical scrapie cases in German 

Merinoland animals. All of these cases carried at least one AHQ allele, an allelic 

variant that has been suggested to be to a certain degree protective against scrapie. 

Elsen et al. (1999) investigated the relationship between PrP genotypes and scrapie 

susceptibility in a flock of Romanov sheep. In the study both the ARR and AHQ allelic 

variants inferred almost dominant resistance to the animals. ARQ and VRQ were 

found to cause susceptibility and behave in a codominant way. In the German study 

no such effect was observed, as the AHQ allele was not associated with higher 

resistance to scrapie. This might be due to the occurrence of high AHQ frequency 

together with low VRQ allelic frequency in German Merinoland. Consequently, 

relative resistance conferred by ovine PrP haplotypes and genotypes has to be 

viewed in the light of breed-specific and even flock-specific factors.    

The A136 R154 R171 allele appears to have a protective effect against the occurrence of 

natural scrapie, AA136 RR154 RR171 homozygotes that develop scrapie are extremely 

rare (Ikeda et al., 1995) and were at first considered to be resistant against TSEs. In 

contrast to this opinion it could recently be shown that this genotype can be 

experimentally infected with cattle BSE prions by intracerebral inoculation (Houston 

et al., 2003). Thus no ovine PrP genotype seems to infer absolute genetic resistance 

to TSEs. In contrast, scrapie infection by the oral route has not yet been 

demonstrated in experimental studies. Nevertheless there is a possibility that 

ARR/ARR animals might be subclinically affected by the disease and therefore act as 

carriers of scrapie. No evidence of PrPSc presence has been found in lymphoid 

tissues of the animals successfully inoculated in Houston’s study so that it is highly 

unlikely that they could transmit infectivity.  

Caplazi et al. (2004) interpreted the high resistance level of the ARR/ARR as well as 

the ARR/ARQ PrP genotype in natural sheep scrapie as an indication of dominance 

of the ARR allele over the ARQ allele. In heterozygous (ARR/ARQ) sheep equivalent 

PrP expression was assessed followed by an analysis of allelic use. DNA clones 

containing the prion protein gene coding region were derived by RT-PCR and 

afterwards sequenced. The ratio of ARR to ARQ in the clones comparable to Prnp 

mRNA was similar, so that no difference in allelic use was detectable. Preferential 
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use of the ARR allele thus does not seem to overrule ARQ expression and therefore 

does not confer scrapie resistance in the heterozygous ovine genotype.  

Remarkably, cells which express a susceptibility allele (V136 R154 Q171) replicate PrPSc 

much more effectively than those expressing the A136 R154 R171 allele. The level of 

PrPC expression in both cases was similar (Sabuncu et al., 2003). This might point at 

the involvement of ovine PrP polymorphisms in prion propagation already at the 

cellular level. 

It is noteworthy that apart from the polymorphisms already mentioned here there are 

a number of others, e.g. at codons 112 and 141 that show minor or no influence on 

scrapie susceptibility in sheep (Bossers et al., 2000). In a cell-free system, 

conversion efficiencies of nine different allelic variants of the ovine PrP were 

compared to each other. Efficiency was high for PrP136V, PrPARQ and PrP141F alleles. 

In contrast PrP154H, PrP171R and PrP112T had low conversion efficiency. Differences in 

the liability of the alleles to convert to PrPSc thus seem to modulate susceptibility in 

sheep though it has yet to be shown that such experimental results also apply to the 

situation in vivo.  

Furthermore, Seabury and Derr (2003) reported the discovery of another allelic 

variant of PrPC (P116A136R154Q171) and the new genotypes PARQ/ARR and 

PARQ/ARQ) in hair sheep breeds. Albeit association with scrapie susceptibility has 

not been examined, such polymorphism could prove important for the understanding 

of PrP conversion.  

As already mentioned above, genetic polymorphisms supposedly influence 

conformational properties of the PrPC. This could either be due to an effect on the 

structural stability of the PrPC or polymorphisms could hinder interaction and binding 

to chaperones. Impairment of PrP clearance would be another mechanism by which 

mutations might play a role. Rezaei et al. (2000), who also examined intermediates of 

ovine PrPC variants, investigated the effects of polymorphisms on physio-chemical 

properties of PrP alleles. High-yield purification techniques were employed to 

produce recombinant sheep PrP in order to compare alleles with different amino 

acids as determined by codons 136 and 171 of Prnp (A136R171, V136Q171, 

A136Q171) that occur in natural scrapie and a further recombinant PrP allele that 

had been mutated (V136R171). At different pH levels standard free energy of 

unfolding was measured. As a result susceptibility variants with valine at position 136 

exhibited higher energies than other variants. Furthermore, the natural scrapie 
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susceptibility allele VQ possessed an increased chemical and thermal stability. 

Accordingly there have to exist other factors except from intrinsic stability of the 

protein, which influence scrapie susceptibility. Possibly susceptibility diversity of 

ovine PrPC alleles could be explained by the difference in potential interacting sites 

with chaperones e.g. access to functional sites could be blocked in PrP 

conformations determined by polymorphisms. Moreover, Rezaei et al. (2002) 

investigated whether differences in the proteolytic digestion of the alleles occurred. 

The susceptibility allele VQ showed increased proteinase-resistance at approximate 

neutral pH level. From these results it could be postulated that the VQ allele has a 

lower clearance rate than other variants of ovine PrP, which would consequently lead 

to a shortened scrapie incubation period in sheep of the VQ genotype.  

Eghiaian et al. (2004) further investigated the implication of ovine PrP polymorphisms 

on PrPC to PrPSc conversion. In the study the C-terminal domain of several PrP allelic 

variants was crystallised in order to determine the X-ray structure. Cocrystallisation 

with a Fab fragment provided additional information about the positions of PrPC 

chains. The structures of the VRQ, ARQ and ARR PrP variants were afterwards 

determined and compared with each other. These PrP alleles are associated with 

high, medium and low scrapie susceptibility, respectively. The substitution of alanine 

by valine at residue 136 causes a rotation of a sidechain, which leads to the 

stabilisation of the VRQ allele through a hydrogen bond. Substitution of glutamine by 

arginine at position 171 displaces a sidechain thereby destabilising the protein by 

undoing a hydrogen bond. Thus a destabilisation of ARR and AHQ is apparent when 

compared to the susceptibility variants ARQ or VRQ. This seemingly contradicts the 

concept which proposes that destabilisation of PrPC increases the probability of 

conversional transition. Yet stabilisation of the PrPC leads to increased proteinase K 

resistance (Rezaei et al., 2000). This would lead to a longer lifetime of the protein in 

the cell and the risk for the molecule to undergo aggregation or misfolding would be 

heightened. Furthermore, amyloidogenesis is slower for the resistance variant ARR 

than for ARQ (Rezaei et al., 2002). Both properties of the resistance variant 

combined could reduce the sensitivity to prion disease. It is evident that substitutions 

of single amino acids in PrPC lead to important implications for conformation aspects, 

though the mechanisms by which this accomplished are not yet clear.   

The ability of PrPC to bind copper has already been mentioned but there are also 

structural aspects to be considered. Wong et al. (2004) investigated the structural 
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features of two different recombinant ovine PrP alleles (PrPVRQ and PrPARR). The 

melting curves of both alleles were compared, revealing that PrPVRQ excels PrPARR in 

transition temperature (tm). Thus the susceptibility allele seems to possess a higher 

thermodynamic stability than its resistant counterpart. N-terminally truncated forms of 

both alleles did not exhibit a different tm as compared to the full-length proteins. This 

would indicate a crucial role for the core domain of PrP in terms of thermodynamic 

stability. Furthermore, the PrP alleles were incubated with copper in order to 

investigate the influence of the metal ions on PrP structural conformation. β-sheet 

content increased in PrPVRQ while PrPARR did not show any considerable changes. In 

incubation at physiological temperature (37°C) this effect seems to depend on the 

presence of copper. The absence of copper ions increased β-sheet content in both 

PrP forms but the susceptibility allele maintained a higher amount of α-helical 

structures in comparison to PrPARR. The polymorphism at codon 171 could possibly 

determine the extent of β-sheet formation in the conversion process from PrPC to 

PrPSc. Murine PrP, which closely resembles ovine PrPVRQ and PrPARQ, carries a 

glutamine at a position that corresponds to codon 171 in the ovine PrP. In contrast, 

PrPARR contains arginine at residue 171 therefore this position might have a pivotal 

influence on the β-sheet content of PrP. These findings indicate that structural 

properties of the different ovine PrP alleles in connection with copper-binding 

faculties might be responsible for the modulation of the conversion to PrPSc. Thus 

differences in the rate of conformational shifting observed between ovine PrP forms 

might only occur in the presence of copper. In the study of Wong et al. (2004) both 

forms of ovine PrP exhibited proteinase-resistance after incubation with copper. 

Western blotting nevertheless showed that PK-resistant banding for PrPVRQ and 

PrPARR differed from each other. As non-PK digested bands were found to be of 

equal intensity this might mirror quantitative differences as to β-sheet content, which 

causes distinguishable levels of PK-resistant matter. Unfortunately, PK-resistant 

fragments of recombinant PrP alleles differed from those suggested for similarly 

treated ovine PrPSc as regards molecular mass and, consequently, conformation, so 

that findings do not necessarily apply to the situation in vivo. Alternatively, 

recombinant PrP might constitute a structural intermediate of PrPSc formation. The 

finding that also ovine PrPARR might acquire proteinase resistance is in accordance 

with the results of Houston et al. (2003) who demonstrated the possibility of 

experimental scrapie inoculation in sheep carrying the genotype ARR/ARR. Copper 
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incubation did not lead to the same effects in the truncated form of ovine PrPVRQ as 

compared to the full-length allele by maintaining a conformation dominated by         

α-helices. This points to the N-terminal domain as an important factor in connection 

with conversional change. Other metal binding sites in the C-terminus therefore are 

supposed to play a rather restricted role in structural conversion. Copper-related 

mechanisms might be involved in the function of PrPC. If it indeed is responsible for 

the transport of copper changes between predominantly α-helical and increased β-

sheet content might take place as a peculiar property of PrPC. The presence of 

copper ions would then determine the extent of β-sheet structures and therefore 

convey PK-resistance to the protein. In vivo regulation of this mechanism might be 

achieved by chaperones and other ligands.  

Apart from genetic disposition arising from polymorphisms in the PrP amino acid 

sequence and the ensuing effects on conformational change, it is possible that 

regulation of Prnp gene expression influences disease susceptibility (Hunter, 1997). 

The untranslated flanking regions of Prnp (3’UTR and 5’UTR) supposedly contain 

regulatory elements responsible for mRNA function (Goldmann et al., 1999). 

Alternative polyadenylation of the prion protein gene generates two different variants 

of mRNA (4.6 kb and 2.1 kb). They both encode the same open reading frame. 

Experiments in cell models demonstrated that production of the ovine PrPC can be 

influenced by sequences within the 3’UTR of the Prnp gene. Cellular transfection with 

constructs containing a short 3’UTR region resulted in varying expression of PrPC. 

Cells transfected with full-length PrP 3’UTR (4.6 kb mRNA) expressed the protein at 

very low levels contrary to the situation in vivo. It has therefore been suggested that, 

in vivo, additional factors stabilise or activate the 4.6 kb mRNA. Polymorphisms of 

the 3’UTR may thus modulate the prion protein gene expression levels in sheep. 

However, a restriction fragment length polymorphism (RFLP) already identified within 

the 3’UTR by Hunter et al. (1991) showed no significant association with disease 

status in sheep. 
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BSE in Sheep? 

 

Since the occurrence of BSE in the 1980ies it has been discussed whether the origin 

of the BSE agent might lie in the transmission of scrapie prions from sheep to cattle. 

Strain characteristics are distinct between scrapie and BSE agent but this might be 

due to cycling in the bovine species and the evolvement of the BSE strain. An 

alternative hypothesis is the original existence of a scrapie strain, exhibiting 

properties similar to those of the BSE agent, which had been transmitted to cattle but 

preserved its characteristic features.  

Transmission of BSE to sheep via the oral route has already been demonstrated 

(Foster et al., 1993, 2000). Therefore a transmission of BSE from cattle to sheep 

through meat and bone meal (MBM)-containing fed components is not to be 

excluded. Notably, transmission of BSE to sheep has been accomplished also by 

blood transfusion (Houston et al., 2000). Whole blood was taken from an animal in 

the preclinical phase of BSE infection, i.e. from a sheep that had orally been 

challenged with BSE agent but did not yet show clinical signs of the disease. The 

recipient of the transfusion developed BSE symptoms after an incubation period 

comparable to that of the donor animal (610 and 629 days). This result has only been 

obtained in a single animal. It demonstrated that BSE infectivity is present in blood in 

the preclinical phase and that same-species transmission is possible via blood 

transfusion. This finding might lead to the establishment of sheep as animal models 

for diagnostic tests on blood samples and testing of leucodepletion efficiency.  

The successful intracerebral transmission of BSE to sheep of the ARR/ARR PrP 

genotype has highlighted the need for BSE surveillance in the ovine species. 

Nevertheless the experimental infection of the relatively resistant ARR genotype 

does not significantly alter the risk of potential BSE transmission to sheep via the oral 

route which is supposed to be the principal route of infection in natural scrapie (Kao 

et al., 2003).  

Natural cases of BSE in sheep have hitherto not been reported which does not 

exclude that such cases, possibly in a subclinical form, might exist. It is therefore 

important to establish a reliable system in order to distinguish between both TSEs. 

The search for such surveillance tools has led to the development of several 

approaches in the field of sheep strain typing.   
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In sheep approximately 20 scrapie strains have been identified. Scrapie strain 

differences are visible in the pattern of vacuolisation (lesion profile) in the brain of 

infected laboratory mice. PrPSc distribution and distinct scrapie incubation times in 

mice of different genotypes are also taken into consideration. A drawback to this 

method is the fact that a number of scrapie strains do not produce disease in mice. 

Ligios et al. (2002) attempted to create a method of lesion profiling in sheep naturally 

affected by scrapie strains. 69 cases of natural scrapie stemming from different flocks 

were used in the study. As PrPC genotype is critical for scrapie susceptibility, sheep 

were genotyped. Variation was merely present at codon 136 of PrPC (VV, AV or AA). 

Different regions of the brain were examined in order to assess severity and 

distribution of vacuoles in the brain. When grouped according to genotype, 

differences in lesion profiles were evident. As was to be expected, sheep of different 

genotype exhibited distinct profiles. Though variation was restricted to PrPC codon 

136, sheep homozygous for alanine showed more severe vacuolisation than those 

homozygous for valine, while heterozygous animals took an intermediate position. 

Furthermore, variation was also observed within sheep of the same codon 136 

genotype. This is probably due to differences in overall genetic background, infection 

dose, disease duration, route of infection and combination of these factors. As these 

influences are hardly to be separated from each other, scrapie strains cannot be 

reliably distinguished by lesion profiles in natural scrapie cases.  

These findings were corroborated in a study conducted by Begara-McGorum et al. 

(2002). Vacuolar lesion profiles of sheep infected with experimental (SSBP/1 scrapie 

source) or natural scrapie were compared to each other. The genotypes of the 

animals were VRQ/VRQ, VRQ/ARQ, VRQ/ARR and ARQ/ARQ respectively. 

Variation with regard to vacuolar lesion profiles of different brain regions was 

observed which were attributed to PrP genotype variation, breed-specific factors and 

scrapie agent. Furthermore, variation between the individual animals was visible. The 

study once again highlighted the multi-factorial influences on ovine scrapie lesion 

profiles, which prevent the usage of lesion profiling as a tool of strain discrimination. 

Furthermore, vacuolisation pattern can be an additional factor in the distinction of 

BSE from scrapie in sheep, together with determination of glycolysation pattern 

analysed by Western blotting after PK-digestion. 

It has been suggested that physiochemical differences characteristic for scrapie 

strains are „translated“ into pathological features after infection, depending on the cell 
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type affected by the agent (Safar et al., 1998). This might be due to PrPC expression 

levels, accumulation rates, stability of aggregates and clearance of these structures. 

Consequently, cell-specific prion conformation and glycosylation might thus play a 

role in strain-specific prion propagation (Weissmann, 1991). Birkett et al. (2001) 

showed that isolated cell lines reproduce scrapie strain characteristics independently 

of host-specific factors. This points to high stability of strain specific features in 

scrapie.   

Clinical signs in sheep affected by experimental BSE are not distinguishable from 

those seen in naturally occurring scrapie (Foster et al., 1993). For that reason it is 

indispensable to apply strain typing methods to allow differentiation between scrapie 

and putative BSE cases among sheep.  

Bruce et al. (2002) employed serial passage of scrapie agent in mice in order to 

distinguish between strains. Transmission characteristics, i.e. lesion profiles and 

incubation times, varied considerable between the sources from which the material 

was derived, so that a number of strains were identified. A new strain was also 

distinguished that had not been observed beforehand. This might indicate that the 

strain spectrum might change over time, leading to new strains evolving. Strain 

identity with BSE was not observed in any of the animals used in the experiment, so 

that no evidence for the presence of BSE infection in the sample was found.  

There has been experimental evidence that molecular mass of the non-glycosylated 

form of PrPSc is lower than in scrapie but there also have been contradicting results. 

Furthermore, there has been no agreement about glycoform ratio of the different 

strains. The high variability of scrapie strains represents an additional difficulty in this 

context, together with the genotypic variance caused by polymorphic residues in the 

ovine PrP gene. Nonno et al. (2003) investigated whether molecular strain typing 

could be a surveillance tool in order to differentiate strain types and PrPSc in sheep 

scrapie, BSE and ovine BSE. Glycoprofile and fragment size of PrPSc derived from 

natural scrapie cases was analysed. Sheep experimentally challenged with BSE 

were used to compare the results of the analysis. Scrapie and BSE cases were 

differing regarding glycoform ratio and molecular mass of the unglycosylated PrPSc 

form as was demonstrated by Western blotting of PK-treated material. A high 

proportion of diglycosylated protein and low molecular mass of the unglycosylated 

PrPSc form was observed in the ovine BSE cases when compared to scrapie-affected 

animals. This finding was pronounced in Cheviot sheep which points to breed-
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specific or genetic influence on Western blotting characteristics. The 

monoglycolysated fraction in scrapie PrPSc was observed as a doublet band while in 

ovine BSE a single band was apparent. A higher proportion of fully glycosylated 

PrPSc might thus be present in BSE while variation may occur in scrapie cases. All 

scrapie-affected sheep in the study possessed the same PrP genotype (ARQ/ARQ) 

so that the impact of genetic factors on strain characteristics was not investigated. 

Sensitivity to PK-digestion was found to be distinct in BSE samples on the one hand 

and scrapie and ovine BSE on the other hand. This might be an adaptive effect 

leading to change of conformation and PK-sensitivity if the BSE agent is transmitted 

between species. Further adaptation could follow after additional same-species 

passages of the agent. Extensive strain typing appears to be a viable tool in 

distinguishing natural scrapie and BSE in sheep although there are some 

implications that differentiation might be impaired by the existence of scrapie strains, 

e.g. CH1641, that exhibit features similar to those seen in ovine BSE. Therefore, 

analysis of a greater number of natural scrapie samples and of BSE repeatedly 

passaged in sheep has to be carried out in order to improve the knowledge of PrPSc 

characteristics, also with regard to the different PrP genotypes present in sheep.  

Further attempts have been made to enable discrimination of BSE and scrapie in 

sheep. Thuring et al. (2004) employed glycosylation profiling of proteinase K-

digested brain tissues by Western blotting in cases of experimental BSE and natural 

scrapie. Glycoform ratios were compared with help of antibody binding. Epitope 

mapping had revealed that the monoclonal antibody P4 used in the study bound to a 

specific N-terminal amino acid sequence in the PrPSc molecules (WGQGGSH). 

Binding of the P4 antibody was pronounced in ovine scrapie cases compared to that 

of the other antibody used in the study, 66.94b4. Therefore, the authors suggested 

the 66.94b4/P4 antibody binding ratio in Western blotting as an indicator of putative 

BSE infection in sheep, values above 1.5 indicating the presence of the bovine 

spongiform encephalopathy. The same tools for characterisation were used in a 

further study by Lezmi et al. (2004) together with an immunosorbent assay which 

resulted in the finding of increased PK-resistance in BSE-infected compared to 

scrapie-affected animals. Analysis of glycosylation pattern and antibody binding were 

similar to those described by Thuring et al. (2004). Moreover, immunohistochemical 

PrP labelling of brain and lymphoid tissues showed clearly distinct pattern for BSE 

and scrapie cases. An ensuing experimental design analysed features of both agents 
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when transmitted to ovine transgenic and wildtype mice (Baron et al., 2004) by 

Western blotting. Biochemical properties of both BSE and scrapie PrPSc already 

described were once again observed as well as the apparent similarity of the 

experimental scrapie isolate CH1641 with BSE. Brain samples of wildtype mice 

infected with scrapie strains or BSE were also inoculated into mice transgenic for 

ovine PrPC. Resultant strain properties resembled those observed in wildtype mice as 

regards glycoform molecular masses and ratio which indicated the maintenance of 

strain-specific features on primary transmission.  

Thus Western blotting of PK-digested material together with antibody binding and 

immunohistochemical tests seems to constitute potent tools to distinguish between 

BSE and scrapie in sheep. Stable and clearly distinct features of the different strains 

have been reported in a number of studies in several models. Despite of this 

observation, genetic implications present in sheep, i.e. PrP genotype, have not been 

sufficiently addressed. Animals used in the studies were predominantly of highly 

susceptible genotypes (ARQ/ARQ or AHQ/AHQ), which does not completely reflect 

the situation in sheep flocks. Furthermore, it has been mentioned that the genetic 

background is not restricted to the three main polymorphisms in the prion protein 

gene, so that the consistency of the analysed strain properties has to be investigated 

in a greater number of animals.  

 

BSE and Genetic Implications in Cattle 
 

The first case of BSE was reported in November 1986 in Great Britain (Donnelly et 

al., 1997). By 1997 the number of confirmed BSE cases had risen to about 170 000. 

Supposedly the disease is caused by the consumption of meat and bone meal 

(MBM) contaminated with an infectious TSE agent. Whether this agent was originally 

derived from scrapie-affected sheep or from a spontaneously occurring BSE case is 

yet unclear. Indications that oral uptake of infectious material was the main cause for 

the BSE epidemic were brought forth by the drastic drop in reported BSE cases after 

a ban on MBM in cattle feed was introduced in the summer of 1988. Although BSE 

infections were still occurring in animals that were born after the ban, this probably 

was due to an incomplete enforcement. Moreover, experimental oral dosing of 30 

Friesian/Holstein calves with BSE brain homogenate resulted in the transmission of 

the disease (Wells et al., 1998). The calves originated from farms with no history of 



 

 76

BSE and were given pooled brain stems from BSE-infected cattle and then killed at 

different ages starting at two months after inoculation to an age of 44 months. 

Neuropathological features of the infected calves were then compared to those of 

controls. First signs of infection, i.e. presence of PrPSc, fibrils and infectivity were not 

detected until 32 months after inoculation. Clinical symptoms of the disease were 

observed 36 months after inoculation. Incubation periods in this experimental study 

were thus shorter than seen in natural BSE cases.  

Incubation periods of BSE naturally occurring in cattle were estimated to be around 

five years as the majority of BSE cases were detected within the range of this age 

(Bradley, 1991). The possibility of maternal transmission has been addressed in 

several studies (Donnelly et al., 1997, Ferguson et al., 1997, Wilesmith et al., 1997). 

Views on vertical transmission and interpretation of the enhanced risk for offspring of 

BSE-infected cows to develop BSE vary, though maternal transmission as a risk 

factor cannot be excluded. Stage of incubation of the dam when giving birth to a calf 

seems to play a critical role in this matter. In contrast, the transmission of BSE 

through embryo transfer is unlikely. Wrathall et al. (2002) found no signs of infection, 

neither in recipients of embryos derived from BSE-affected cows nor in the offspring.  

  

The initial clinical presentation of BSE in cattle is limited to unspecific symptoms like 

decrease in milk yield, loss of weight despite uptake of feed and impairment of 

behaviour and gait (Braun, 2002). Behavioural changes are typical for BSE infection. 

They include nervousness, anxiety, aggressiveness and alarmed behaviour. 

Symptoms may not be apparent as long as the animal is not advanced upon or 

touched. Reactions to touch can be jerking, avoidance, licking of the muzzle and 

grinding of teeth. Often observed is tremor of lips, muzzle, throats, and parts of the 

body or generalised trembling. Symptoms can manifest themselves singly or in 

combination. There is an increased sensitiveness of BSE-affected animals to stimuli 

such as touch, noise and light which is typically not wearing away with continuation of 

the said stimuli and can be reproduced over and over again. Responsiveness to 

tactile stimuli is especially pronounced at the head and throat. In a later stage of the 

disease ataxia and impairment of balance appears to be more and more pronounced 

until the BSE-infected animal is no longer able to stand. The final stage of the 

disease is marked by terminal recumbence, coma and death.  



 

 77

The neuropathological changes seen in the brain of BSE-affected cattle 

characteristically consists of widely distributed vacuolisation of grey matter neuropil 

and neurons, gliosis and mild neuronal degeneration accompanied by PrPSc 

accumulation (Debeer et al., 2003). Lesions can also be observed in the spinal cord. 

PrPSc accumulates in the form of abnormal brain fibrils that are termed scrapie-

associated fibril (SAF) (Scott et al., 1990). In comparison to scrapie where lesion 

profiles in the ovine brain mirror the strain type of the infectious agent, appearance of 

vacuolisation in the BSE brain is very uniform. This argued in favour of a single BSE 

strain responsible for BSE infections world-wide (Fatzer et al., 1996, Orge et al., 

2000). Contrary to this, recent findings in French and Italian cattle have suggested 

the existence of more than one strain of the BSE agent in the bovine species 

(Biacabe et al., 2004, Casalone et al., 2004). To further elucidate the question 

whether several BSE strains can be detected, Lloyd et al. (2004) examined the 

properties of PrPSc in inbred mouse lines after primary passage of BSE agent. 

Comparison of neuropathological aspects, immunohistochemistry and Western 

blotting analysis in these mice resulted in the discrimination of two distinct BSE 

strains. On subpassage in mice, strain characteristics were stably reproduced. One 

strain, termed MRC1, caused a relatively short incubation time of 100±3 days and an 

overall diffuse PrP immunostaining pattern of the brain. The monoglycosylated form 

of PrPSc was predominant on Western blots of PK-digested brain homogenate 

samples in MRC1. Animals infected with the other putative BSE strain, called MRC2, 

exhibited a longer incubation time of 155±1days. Immunostaining of brain tissues 

showed distinct PrP deposits or plaques and neuronal loss. MRC2-derived PrPSc 

showed a diglycosylated-dominant pattern in immunostaining procedures. Strain 

characteristics determined by the available methods suggested that there might be a 

range of BSE strains in existence. It is nevertheless notable that strain characteristics 

varied with the genetic background of the inoculated mouse lines. Thus host 

genotype has to be taken into consideration when putative BSE strains are identified 

in inbred mouse lines.    

The pathogenesis of BSE shares characteristics that are also observed in scrapie 

infection. In the rodent model PrPres is first detected in Peyer’s patches and 

mesenteric lymph nodes (Maignien et al., 1999). Later on, the protein is found in 

spleen and axillary lymph nodes. The terminal stage of BSE infection involves the 

accumulation of PrPres in the LRS organs and CNS. Comparing scrapie and BSE 
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infection it is notable that only in the former PrPres can be detected in the region of 

the digestive tract between ileum and colon. Thus scrapie PrPres is far wider 

distributed in this area than is BSE PrPres. Findings in the rodent model nevertheless 

do not necessarily apply to the situation in vivo. In an experimental study in which 

calves were orally infected with BSE, infectivity was confined to CNS, peripheral 

nervous system (PNS) and ileum (Wells et al., 1998).  

The bovine prion protein gene PRNP extends over 20 kbp and is located on 

chromosome 13. It comprises three exons and two introns about 2.4 kbp and 14 kbp 

in length (Horiuchi et al., 1998). Investigation of a recombinant bovine PrP of 217 

residues (bPrP23-230) revealed the conformational structure that is common to 

mammalian prion proteins (Lopez Garcia et al., 2000). The three-dimensional 

structure was found to be to a large extent similar to that of human and murine PrPC. 

There were nevertheless local differences observed concerning backbone 

conformations and the regions of helix 1, helix 3 and a loop at residues 166-177. The 

apparent sequence identity in helix 1 and adjacent loop structures combined with the 

close resemblance of helix 1 backbone between human and bovine PrPC might 

influence the height of the species barrier. In contrast, amino acid exchanges are 

seen in adjoining regions when bovine (or human) and murine PrPC are compared. If 

such areas were indeed implicated in conformational change of PrPC, these findings 

would indicate that the species barrier between humans and cattle is rather low. The 

barrier between cattle and humans on one hand and mice on the other hand would 

be far more effective. Protein surface charge was seen to vary between human PrP 

and bovine PrP, which might affect species barrier properties. Nevertheless, the 

relatively high similarity could argue for a transmission of BSE prions from cattle to 

human beings and the subsequent development of vCJD.  

 

In cattle, an association between genotype and susceptibility to BSE remains yet to 

be established. In search for mutations in the bovine PRNP Hunter et al. (1994) 

investigated the coding region of the bovine PRNP gene by restriction fragment 

polymorphism (RFLP) and PCR analysis. Two polymorphisms were detected in the 

coding region of the gene. They consisted in a silent HindII RFLP and a variation in 

the number of octapeptides in a repeat sequence of the PRNP gene (see Figure 6). 

The number of these peptides was found to be either five or six. Comparison of 

genotypes in healthy and BSE-affected cattle did not suggest any influence of these 
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polymorphisms regarding BSE susceptibility. Also neither breed-specific differences 

nor differences at the age of onset of the disease were apparent. The genotype 

homozygous for five copies of the octarepeats seems to be rare in common cattle 

breeds and BSE-affected cows of this genotype were not included in Hunter’s study.  
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Figure 6: Model of the bovine PRNP gene and octarepeat region (Hunter et al., 1994, 

modified) 

 
(A) Distance of HindII-restriction sites (H)  

(B) The ovine PRNP gene (open reading frame), untranslated region 

(UTR), polymorphic HindII-restriction site (H*) and octarepeats 

 

 

 

In a further study, Neibergs et al. (1994) detected two amplified double-strand 

fragment length polymorphisms (AMFLPs) representing six and five octarepeats in 

BSE-cases and in a group of unaffected cattle. As in Hunters’ investigation no 

difference in distribution of genotypes between both groups could be observed. 
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Though no effect of the polymorphism on disease susceptibility was established, 

distribution of octarepeat-genotypes seemed to vary between cattle breeds. Rare 

breeds and Brown Swiss cattle showed a higher frequency of the genotype 

homozygous for five octarepeats compared to more common breeds (Schlaepfer et 

al., 1999, Premzl et al., 2000). Schlaepfer et al. (1999) identified another genotype 

with seven octapeptide repeats in Brown Swiss cattle, a genotype hitherto also 

observed in the Italian cattle breed Bruna Alpina by Leone et al. (2002).  

Hills et al. (2003) detected 51 polymorphisms (including the above mentioned) in the 

entire bovine PRNP gene, which consisted of 42 single nucleotide polymorphisms 

(SNPs) and 9 insertion deletion (indel) mutations (see Figure 7). 

 

 

 

 

Figure 7: Diagram illustrating the genomic architecture of the bovine PRNP gene (Hills 

et al., 2003).  

 

 

In (A) the three exons are depicted by solid black boxes and the ORF is shown as a hatched box 

within exon 3. The solid line underneath exon 1 marks the promoter region identified by Inoue et al. 

(1997).  

(B) Indicates location of repeat elements.  

(C) Shows the positions of the variants identified here within GenBank Accession  

      number AJ298878.  

(D) Indicates the positions of the variants within the exon 3 region of ovine PRNP but   

      the positions are not given for clarity. 
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Sequence variation within exon 3 of PRNP was observed to be even higher than 

variation throughout the whole gene sequence. Polymorphisms that have been 

identified in cattle and sheep are to a higher proportion indels as compared to 

polymorphism found in the human PRNP gene and are spread throughout the gene.  

In search for markers associated with BSE incidence in the bovine genome 

Hernández-Sánchez et al. (2002) performed a range of Transmission-Disequilibrium 

Tests (TDTs), which found significant segregation distortion for three marker loci on 

chromosomes 5, 10, and 20. After further analysis, only the marker on chromosome 

10 showed significant segregation distortion. Analysis by flanking markers merely 

linked the marker on chromosome 5 significantly with BSE. Surprisingly, no markers 

on chromosome 13 which contains the PRNP gene sequence were connected to 

health status in the examined healthy and BSE- affected animals. This would argue 

for areas of the bovine genome other than the PRNP gene to be involved in putative 

genetic susceptibility. Another point mutation in the coding region, nevertheless a 

silent one, was detected at codon 192 of the bovine prion protein gene (Kuppinger et 

al. 2002). Association to differences in allelic frequencies could unfortunately not be 

examined because of lack of sample material. Takasuga et al. (2003) investigated 

the variability of the PrPC sequence in eleven different cattle breeds among them 

Indonesian cattle in which two polymorphisms were found. One of these 

polymorphisms, a substitution of Asn-185 to Ser, had not been described before as 

Asn-185 is highly conserved among mammalian PrP sequences.  

The overall findings of these studies indicated that in cattle contrary to the situation in 

humans or sheep polymorphism of the PRNP coding region do not seem to play a 

significant role in the genetic disposition to prion disease. The recent findings in 

mouse models that implicated the number of octarepeat region in the modulation of 

prion propagation and incubation times however shed a new light on this issue. It 

would therefore be necessary to investigate a putative connection between 

incubation periods and octapeptide number in cattle breeds e.g. Brown Swiss in 

which a seven-repeat genotype occurs. 

Additionally, putative promoter regions in the 3’ and 5’ UTR areas of the PRNP gene 

have been searched for influential polymorphisms, as the regulation of PrPC 

expression levels might be another mechanism by which BSE susceptibility could be 

determined. The UTRs of the gene is therefore an important focus of investigation 

and a number of polymorphisms have already been found in this region. 
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DNA sequencing by Humeny et al. (2002) led to the identification of further three 

polymorphisms in the coding region of the PRNP gene, two of them silent. Moreover, 

three novel polymorphic positions in the two 5’ UTR exons of the PRNP gene were 

revealed whose significance regarding regulatory functions has yet to be 

investigated.  

Sander et al. (2004) reported the discovery of 36 new polymorphisms in the PRNP 

gene of German cattle breeds. 48 healthy animals from six German cattle breeds and 

43 BSE cases were included in the study in which the complete DNA sequence of 

the gene was investigated. None of the newly discovered polymorphisms led to a 

change in the PrPC amino acid sequence. Nevertheless, a 32-bp insertion/deletion in 

the suggested promoter area in the 5’-flanking sequence of the PRNP gene was 

detected that might influence gene regulation. The 32-bp insertion is more often 

found in healthy animals than in BSE-affected ones, which led to a significant 

difference both in allele and genotype frequency between both groups of animals 

while a breed-specific effect was not observed. 

The genomic DNA of the 5’-UTR region as well as exon 1, exon 2 and intron 1 of the 

bovine PRNP gene were cloned in order to disclose the regulation of PrPC 

expression (Inoue et al., 1997). Two regions of the promoter area showed expression 

activity. One of these comprises a potential binding site that could interact with Sp1 

transcription factor (Sp1) in PrPC expression, comparable to the situation in the 

rodent model. Sp1-sites are functional areas of promoters that are activated by 

transcription factors (Anderson et al. 1991). Transfection experiments in cells 

indicated that in order to generate sufficient promoter activity the existence of intron 1 

is required, suggesting that a considerable influence of the intron on bovine PRNP 

gene expression exists (Inoue et al., 1997). Hills et al. (2003) observed a 12 bp-

insertion/deletion polymorphism in intron 1 of the PRNP gene. When deletion was 

observed, the mutation caused the removal a putative Sp1 binding site in this area. 

Thus the indel polymorphism could cause differences in allele expression levels. 

Otherwise, the suggested Sp-1 deletion could lead to an alteration of the site of 

PRNP gene expression or both effects might occur in combination.  

It is also possible that the mechanism of alternative splicing affects translational 

efficiency of the PRNP mRNA in vivo. By analysing the 5’UTR of the bovine PRNP 

mRNA, two distinguishable mRNA species were detected that differed from each 

other in length (Horiuchi et al., 1997). As usage of exon 2 and exon 3 did not vary 
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between both mRNA species, the difference in length was caused by alternative 

usage of a 5’ splice site, so that the second fragment possessed a longer exon 1 

(115 nt compared to 53 nt). PrP mRNA alternative splicing has as yet not been 

observed in sheep or any other species which points it out as a mechanism specific 

for cattle. Subsequent in vitro translation of the mRNAs did not lead to any 

considerable difference in translation efficiency between both. Thus it remains 

unclear whether alternative splicing is implicated in the pathogenesis of BSE in vivo. 

Taken together, the untranslated regions and especially the promoter area constitute 

elements in which factors that modulate genetic susceptibility to BSE might be found. 

Structural implications arising from amino acid exchange in the bovine PrPC 

sequence seem to be of minor consequence for the development of BSE in cattle. 

Regulation of PrPC expression is therefore increasing in importance, at least in BSE 

as a transmissible prion disease. 

 

A Sporadic Form of BSE? 

 

Only recently, there have been implications that a second form of BSE might be in 

existence. When brains of eight Italian BSE cases were examined there were 

neuropathological differences observed between two groups of animals (Casalone et 

al., 2003). The first group resembled the typical phenotype seen in BSE, with 

granular, linear and glial PrPSc deposition while the second group exhibited plaque-

like deposits, unicentric kuru-like plaques and granular deposits. The regional 

distribution was also distinguishable. While in the first group of animals the brainstem 

and thalamus were the main centres of PrP deposition and little involvement of 

olfactory bulb and cerebral cortexes was to be seen, in group 2 mainly thalamus, 

cerebral cortex and olfactory bulb were immunostained for PrP. In the cerebellum 

there were glial PrP deposits in group 1 and amyloid structures in group 2. Also PrPSc 

glycotype was differing considerably between the groups regarding molecular mass 

of the unglycosylated forms and ratio of glycosylated PrP in Western blotting. PK-

treated brain homogenate from group 1 cattle presented the typical pattern with 

predominance of the high mass molecular glycoform, while group 2 individuals 

showed overrepresentation of low mass molecular glycoform and additionally, a PrP 

fragment with higher mobility in electrophoresis. These different PrPSc types seem to 

lead to divers PrP patterns and cerebral distribution. Casalone et al. (2003) also 
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pointed out that route of infection and prion propagation may have differed between 

both phenotypes. The genetic background of the animals was relatively similar, so 

that differences observed are probably not due to variation in genetic disposition 

though genetic factors hitherto unknown might also have played a role in disease 

pathogenesis. It is also notable that the animals showing the atypical phenotype were 

the oldest ones examined in the study. This should be taken into account as 

prolonged incubation times might influence PrP deposition in the body.  

There were similarities observed between the properties of this apparently new form 

of BSE and sCJD as regards molecular properties of PrPSc. The presence of plaques 

was unusual for typical BSE but reminiscent of sCJDM/V2 albeit differences occurred 

in the amount of PrP distributed in specific areas of the brain i.e. cerebellum and 

thalamus. It is therefore not obvious whether the new BSE phenotype termed Bovine 

Amyloidotic Spongiform Encephalopathy (BASE) is a distinct disease form 

comparable to sCJD. Atypical cases of prion disease are also observed in humans 

(Kretzschmar et al., 2003). Consequently, molecular properties of the PrPSc types 

have to be closely surveyed in the future, especially with regard to the so-called 

atypical phenotypes.  

 

Prion Diseases in Other Species 
 

Goat Scrapie and Genetic Implications 

 

Cases of natural goat scrapie were first reported in 1942 (Cappucchio et al., 2001). 

The incidence of this disease is very low and only a small number of scrapie cases 

has since been reported in goats.  

The initial clinical signs are mostly behavioural changes occurring in irregular 

intervals. They include separation from the herd, resistance to milking and 

aggressive behaviour. The response to external stimuli like touch, noise and 

movements of people or animals is abnormally exaggerated. Grinding of teeth can be 

observed in this stage of the disease. With the progress of scrapie, nervousness and 

aggressiveness increase, leading to ongoing biting among the flock and attacks on 

other animals and humans. In the later stage of the disease, animals drift into a 

trance-like state while isolating themselves even more, finally falling into terminal 

recumbence. In the late stages cannibalism can be seen among scrapie-infected 
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goats, mainly executed on aborted foetuses. In the early stage ataxia in the back 

limbs is observed, impairing the balance of the animals. Muscular tremors in face and 

limbs are common signs, gradually increasing in frequency and finally being 

generalised. As in sheep scrapie, scratching and nibbling which results in skin 

lesions is apparent. The main difference between sheep and goat scrapie is that 

clinical symptoms appear earlier (between two and three months) in goats, probably 

due to a shorter incubation period, and that aggressive behaviour is more common 

and pronounced. In comparison to scrapie-affected sheep, goats refrain from rubbing 

themselves against objects but rather scratch themselves.  

In goats several polymorphisms of the coding region of the prion protein gene can be 

found. Goldmann et al. (1996) observed three different goat specific PrPC variants 

with amino acid exchanges encoded by codons 142, 143 and 240. Of these 

polymorphisms the dimorphism at codon 142 seemed to be associated with different 

incubation times of experimental BSE and scrapie strains. A fourth PrP allelotype 

was identical to the ARQ allele in sheep. Billinis et al. (2002) determined the 

genotypes of 51 goats, among them seven cases of clinical scrapie. In addition to the 

polymorphisms previously described (112, 136, 137, 138, 141, 142, 143, 151, 154, 

171, 211, 240) eight additional polymorphisms, two of which were classified as silent 

mutations, were detected. Eleven different PrP genotypes were thus found. The 

majority of scrapie-infected goats which where screened for these polymorphisms 

possessed the H143H R154R (homozygous for histidine at codon 143, homozygous 

for arginine at codon 154) genotype. Animals with other genotypes did not show any 

clinical signs or histopathological characteristics of scrapie though protease-resistant 

PrP could be found in their brains. In animals carrying a different PrP genotype were 

seldom (7%) affected by scrapie. Consequently, these two polymorphisms of the 

Prnp gene seem to have an influence on scrapie susceptibility in goats. Considering 

the breed-specific effects of PrP alleles in sheep it is to be expected that liability to 

develop goat scrapie is additionally modulated by yet unidentified genes other than 

the Prnp gene. 
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CWD and Genetic Implications 

 

Chronic Wasting Disease (CWD) is a fatal TSE hitherto only described in cervids, 

especially affecting elk and deer. The syndrome was first reported in 1967 in mule 

deer in Colorado and confirmed as a TSE in 1997. Today it is present in parts of 

North America that belong to the United States and Canada (see Figure 8). 

 

 

 

 

 

Figure 8: Distribution of CWD in North America 

(National Wildlife Health Center, 2003) 
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The origin of CWD yet remains in the dark. There are several theories as to how the 

disease could have developed in North America. One of the possibilities is the 

transmission of sheep scrapie to deer (Salman, 2003). Outbreaks of scrapie have 

been recognised in the US, which would provide an argument in favour of this theory. 

Transmission of scrapie by intracerebral inoculation from sheep to elk has been 

successfully demonstrated (Hamir et al., 2003). Of six elk inoculated with scrapie 

agent in the study only two animals succumbed to the disease, which might be the 

result of varying genetic disposition in elk. Another theory is that CWD is a genetic 

TSE occurring solely in deer or that it represents a yet unidentified TSE that could be 

present in other species. A sporadic case of CWD that was subsequently transmitted 

to other cervidae as the source of this TSE is also within the range of possibilities.  

The clinical presentation of the disease is dominated by gradual weight loss, which is 

the most apparent and prevalent sign of CWD. Affected animals alter their behaviour, 

isolating themselves and falling into a state of lethargy with lowering of the head and 

blank stare. Free-ranging animals might show decreased fear of humans (Salman, 

2003). Repeated walking in consistent patterns can furthermore be observed in CWD 

cases. Elk may also exhibit increased excitability and nervousness. Uptake of feed is 

not impaired though animals might loose interest in certain feedstuff such as hay. 

The uptake of fluids and urination is increased considerably. Excessive salivation and 

gnashing of teeth is another clinical sign of CWD (Williams and Young, 1992). The 

actual cause of death often appears to be pneumonia, which is commonly diagnosed 

in CWD animals.  

CWD is primarily recognised in adult cervidae between three and five years of age 

though much older cases of the disease have been found (Salman, 2003). Duration 

of the clinical course approximates between several days up to a year.  

The outstanding neuropathological signs of CWD are spongiform lesions in the grey 

matter of the CNS accompanied by intraneuronal vacuolisation, formation of amyloid 

plaques and astrocytosis. The lesions are found predominantly in olfactory tubercle, 

cortex, hypothalamus and vagal nucleus (Williams and Young, 1992). Minor 

differences occur between elk and deer concerning the location of the lesions. 

Inflammation is not present in these areas. Brain tissues are stained positively for the 

presence of disease-specific proteinase-resistant protein (PrPCWD). Other tissues in 

which PrP antibody staining can be observed are tonsils, visceral and regional lymph 
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nodes, Peyer’s patches and lymphoid tissue of the intestines and the spleen 

(Salman, 2003). This suggests that prion propagation in CWD is similar to that of 

scrapie in sheep or BSE in cattle.  

Transmission routes of the infectious agent are largely unknown. CWD is seen both 

in free-ranging and farm animals. From this fact one can assume that contaminated 

feed is probably not the primary cause of CWD as the disease has also been 

observed in herds that were not fed with MBM. Additionally, the possibility of wild 

animals coming in contact was such feed components was estimated to be very 

small. Epidemiological data suggests that CWD is transmitted horizontally either 

directly or indirectly between animals (Miller and Wild, 2004). Oral inoculation of 

CWD has been demonstrated in mule deer and appears to be an efficient lateral 

route of transmission (Sigurdson et al., 1999). The pathogenesis of CWD furthermore 

indicates that the infectious agent could be present in faeces or saliva, which might 

enable transmission of the disease to susceptible cervids through social contact. 

Therefore it is also possible that the infectious agent survives in the environment 

causing further infections in animals feeding from the contaminated soil. Cervids 

consume soil as a dietary mineral supplement and when feeding come in close 

contact to the soil (Bunk, 2004).  

A connection between the consumption of venison potentially contaminated with 

CWD agent and the occurrence of CJD in humans has repeatedly been discussed. 

Belay et al. (2001) investigated three cases of CJD in unusually young patients but 

did not find a causal link to CJD. Patients were not genetically predisposed by 

homozygosity at codon 129 of the prion protein gene and the neuropathological 

presentation was not differing from that seen in classical CJD forms. Though 

transmission to humans appears to be unlikely, CJD surveillance including strain 

typing and molecular characterisation plays an important role in assessing the 

potential risk of exposure to CWD agent.  

As observed in other TSEs e.g. scrapie in sheep genetic disposition might influence 

disease susceptibility to CWD in elk and deer which possibility was addressed in 

several studies of the elk and deer PrP gene. The cervid PrP gene consists of three 

exons with two intervening introns (O’Rourke, 2004). The complete sequence of the 

ORF, which encodes an octapeptide sequence comprising five repeats, is located in 

exon 3. O’Rourke et al. (1999) examined the sequence of the elk PrP gene and 

thereby revealed a polymorphism at cervid residue 132 (methionine to leucine) and a 
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silent polymorphism at codon 104. The polymorphic site at residue 132 corresponds 

to codon 129 in the human PRNP gene that is implicated in TSE susceptibility. Elk 

homozygous for methionine at codon 132 of the protein were overrepresented in 

CWD-affected animals when compared to healthy control animals (O’Rourke et al., 

1999). Consequently, homozygosity for methionine seems to predispose elk to CWD 

infection.  

Brayton et al. (2003) investigated the structure of the mule deer PrP gene which led 

to the discovery of coding changes at residues 20 and 225 and silent mutations at 

codons 131, 146, 156, 202, 206. As up to four alleles differing at residue 138 (N/S) 

were seen, in a subsequent analysis of BAC clones a pseudogene (PRNPψ) was 

detected that comprised the three exons of the functional PRNP gene but lacked 

introns. PRNPψ encodes five or six octapeptide repeats, as a 24 bp repeat unit can 

be inserted after the second repeat. Both alleles of the pseudogene contained 

asparagine (N) at residue 138 which variation was used to distinguish it from the 

PRNP gene. Two coding changes were also seen in the pseudogene at codons 65 

and 151.  

In a group of 133 white-tailed deer O’Rourke et al. (2004) detected three 

polymorphism in the PrP gene, at codons 95 (Q to H), 96 (G to S), 116 (A to G) and 

three silent mutations at codons 51, 81 and 146 in order to analyse a possible 

association with CWD disease status. The polymorphisms, which caused amino acid 

substitution in the cervid PrPC, had been reported before (Johnson et al., 2003, 

Heaton et al., 2003). Four different functional PRNP allelotypes (QGAS, QSAS, 

QGGS and HGAS) were found which all of them possessed serine (S) at residue 

138. Furthermore, the influence of the PRNP pseudogene first recognised by Brayton 

et al. (2003) was analysed in deer. All PRNP genotypes were found in the animals 

but CWD-affected deer was more likely to posses the QGAS PRNP allele than the 

QSAS allele. This finding points to an involvement of residue 96 polymorphism in 

CWD susceptibility in the studied deer. The pseudogene PRNPψ was not linked to 

CWD health status.  

Taken together, polymorphisms of the PrP gene seem to influence CWD 

susceptibility in both deer and elk. It is nevertheless hard to say how the distribution 

of such genotypes looks like in free-ranging population of cervids as routes of 

transmission and exposure levels are still unclear and migration of animals into 

different areas is common.  



 

 90

Transmissible Mink Encephalopathy and Genetic Implications 

 

Outbreaks of Transmissible Mink Encephalopathy (TME) have been reported in the 

United States in 1947 and later in Canada, Finland, Germany, Eastern Europe and 

other countries of the world.  

Clinical signs of this TSE usually have durations between three days and six weeks. 

In the initial stages increased soiling of the nest and dispersal of faeces can be 

observed. Affected animals also step into their food and have difficulties in eating. 

Later in the course of TME, mink show unusual excitability and may arch their tails 

back comparable to a squirrel. Impairment of gait and ataxia of the hind limbs are 

present. In the final stages of the disease the animals circle rapidly, chew their tails 

and show increased jaw clenching. Seizures are detectable in single cases. Terminal 

recumbence and numbness invariably leads to death in TME-infected animals.  

Neuropathological changes such as spongiosis and astrocytosis are limited to the 

nervous system, i.e. cerebral cortex, hippocampus etc. (Robinson et al., 1994).  

TME is apparently differing from other TSEs, especially scrapie, as far as 

pathogenesis and propagation of the infectious agent are concerned. Hadlow et al. 

(1987) subcutaneously injected TME agent into royal pastel mink and investigated 

the distribution of PrPSc. Initially the agent was present in lymph nodes at the site of 

inoculation. As the disease progressed, PrPSc was found in the CNS although mink 

did not exhibit clinical symptoms yet. After spreading through the CNS the TME 

agent was detected in nonneuronal sites such as spleen, liver, kidney, intestine, 

lymph nodes and salivary gland. Thus, contrary to other TSEs, in TME there appears 

to be no pronounced lymphoreticular propagation of PrPSc prior to CNS invasion. In 

order to investigate the possible transmission of the TME agent between species 

Robinson et al. (1994) inoculated standard dark mink both intracerebrally and orally 

with brain homogenate of BSE-affected cows. Mink succumbed to a spongiform 

encephalopathy after a mean of 12 months in the group that had been treated 

intracerebrally and after 15 months if orally dosed with infectious agent. The clinical 

presentation was nevertheless differing from that commonly seen in TME. Animals 

showed decreased appetite, falling into a state of lethargy and pelvic ataxia of the 

limbs was observed. The neuropathological features were at variance as the 

encephalopathy induced by inoculation was milder in the cerebral cortex, with more 

marked changes in the caudal brainstem while the hippocampus was not affected. 
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Thus transmission of BSE to mink could be demonstrated which implies an 

association between the consumption of feedstuff contaminated with BSE agent and 

the outbreak of TME. Marsh et al. (1991) had already transmitted TME agent from 

mink to cattle. Intracerebral inoculation of two calves with TME mink brain led to 

spongiform encephalopathy in the animals at 18 and 19 months post inoculation. 

Furthermore, both cattle brains caused encephalopathy when inoculated back into 

mink both intracerebrally and orally. The farm, which provided the TME agent used in 

the study, had never employed feedstuff derived from sheep but a high amount of 

cattle-derived protein from fallen animals. 

When the TME agent was first isolated from infected animals it was soon discovered 

that its biochemical characteristics resembled those of the scrapie agent (Marsh and 

Hanson, 1969). In TME, two strains can be distinguished by several properties 

transmitted to Syrian hamster. The drowsy (DY) strain leads to increasing lethargy in 

infected animals in contrast to the hyper (HY) strain that is characterised by 

cerebellar ataxia and increased excitability (Bessen and Marsh, 1992). Apart from 

clinical presentation, differing brain lesion profiles and brain titre of the proteinase-

resistant PrPTME, disease incubation times differ between the strains. The mean 

incubation time in DY-affected hamster is 168 days compared to 65 days in HY 

cases that latter show much more infectivity of brain tissue than observed in DY 

animals (100-fold). When passaged from hamsters into mink pathogenicity was only 

maintained by the DY strain. Thus the HY TME agent replicates faster in hamster 

brain as judged by titres but is not leading to infections in mink when repassaged. 

Biochemical properties of PrPTME from both strains were closely characterised by 

several techniques (Bessen and Marsh, 1992). Due to differences in sedimentation in 

detergents, digestibility by proteinase K and electrophoresis pattern the HY and DY 

strain could be distinguished. PrPTME of DY-affected brain was more readily 

proteolysed than was HY PrPTME. Immunoreactivity to antibodies also differed for 

both strains in the N-terminal end of PrPTME (residues 89 to 103). By sequencing of 

PK-digested PrPTME the reason for the diverse migration patterns was discovered 

(Bessen and Marsh, 1994). The amino terminal end of PrPTME starts at 10 amino 

acids or more prior to the HY strain in comparison to the DY strain. Degradation rates 

itself were found to be strain-specific as DY PrPTME was more quickly hydrolysed. 

Strains produced different PrPTME accumulation in brains of TME-infected hamsters, 

which implies specific mobility or aggregation processes of DY and HY. This might be 
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caused by variation in protein structure and conformations, interactions with 

chaperones and ligands or both. Bessen and Marsh (1994) additionally suggested 

that specific neuron populations could be targeted depending on strain type of the 

agent.  

TME strain types are known to interfere with each other based on a study by Bartz et 

al. (2000) in which serial passage of TME agent in hamsters resulted in selection of 

one strain type. According to the presence of specific PrPTME the DY strain was the 

major strain in the animals on first inoculation. When the TME agent was serially 

passaged in hamster, PrPTME of the HY strain and conformation was detected while 

strain-specific phenotypes were confirmed. Only in case of a low-dose inoculum 

employed in the serial passage were DY clinical signs retained. To confirm the 

impression of interaction between both strain types, coinfection with hamster-adapted 

HY and DY strains followed. First passage could lead to DY phenotype and PrPTME 

though further passage resulted in HY TME diagnosis. Consequently, strain 

adaptation appears to lead to selective determination for one PrPTME conformation. 

Bartz et al. (2003) examined the competitive relationship between the two TME 

strains in hamsters. Cerebral PrPSc accumulation was apparent after DY TME 

inoculation into brain and sciatic nerve while no proteinase-resistant PrP could be 

found in tissues of the lymphoreticular system. Intraperitoneal injection of infectious 

agent was not successful in producing TME infection. Thus the DY strain 

pathogenesis does not seem to include replication processes in lymphoid organs. 

Nevertheless, when intraperitoneal superinfection of HY TME agent followed that of 

DY, animals exhibited TME infection. Clinical phenotype and strain properties were 

those of the HY TME strain though incubation times were longer than usually 

observed for this strain. Interestingly, this effect depended on the interval between 

both inoculations, as it was present within a 60 day-timespan but absent when 30 

days lay between inoculations. Also there was no delay in incubation time when both 

inoculi were injected into sciatic nerve (DY strain) and intrasciatic nerve (HY strain). 

These findings indicate that DY TME infection can extend incubation times of the HY 

agent upon extraneuronal inoculation. Thus competition between both agents might 

take place at a replication site prior to infection of lymphoreticular and nervous 

system. The existence of distinct TME strains, which give risen to specific 

phenotypes, makes it difficult to determine whether genetic host factors might modify 

disease susceptibility and pathogenesis in mink. The mink PrP gene is located on 
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chromosome 11 (Khlebodarova et al., 1995), consists of a 257 amino acid chain and 

shares up to 90% sequence homology to other mammalian PrPs (Kretzschmar et al., 

1992). It is yet unclear if there are influential polymorphisms to be found within the 

coding region of mink Prnp or in its UTRs.  

 

Feline Spongiform Encephalopathy  

 

Feline Spongiform Encephalopathy (FSE) is a TSE found in domestic cat and feline 

zoo animals. It was recognised for the first time in 1990 in domestic cats in the UK 

(Wyatt et al., 1991). The clinical symptoms resemble those seen in other TSEs. 

Among the most common presentations are impairment of motoric functions, 

alteration of behaviour and sensorial disturbances. Ataxic and incoordinated gait, 

nervousness, anxiety or otherwise aggressiveness and increasing isolation are seen 

in affected cats (Wyatt et al., 1991). Often there is also hypersensibility to touch and 

noise or hypersalivation present in FSE animals. 

The neuropathological presentation is dominated by spongiform changes in the grey 

matter of the brain and broadly distributed vacuolisation accompanied by 

astrocytosis. Protein rods also seem to be a feature of FSE in cats (Wyatt et al., 

1991, Bratberg et al., 1995, Leggett et al., 1990). Pearson et al. (1992) examined the 

brains of 18 suspected FSE-cases. Of these, five were confirmed as FSE-affected 

presenting the typical lesions of the brain, presence of PrPSc and fibrils that consisted 

of the abnormal protein. The average age of the infected animals was 6.4 years, 

which is well in accordance with observations in other FSE-cases.  

Ryder et al. (2001) investigated the distribution of PrP in extraneuronal tissues of 

FSE-affected cats. In most cases the lymphoid organs were free of PrPSc although in 

some cases PrP accumulation in the spleen and Peyer’s patches was detectable and 

kidneys of all examined animals were found to be positive for PrP immunostaining. In 

a case of FSE that had been examined by Lezmi et al. (2003) the disease was 

recognised in a captive cheetah in France. Initial clinical signs were mainly 

progressive ataxia and weight loss despite of undiminished feed uptake. In the final 

stage hyperaesthesia became apparent while the ataxia had led to terminal 

recumbence. Duration of disease beginning at the occurrence of clinical signs was 

approximately eight weeks. The brain of the FSE-affected animal showed 

vacuolisation of the cerebellum accompanied by the presence of PrPSc. PrPSc 
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deposits were also observed in the cerebral cortex, grey matter of the brain stem and 

spinal cord. Additionally, retina and lymph nodes, kidney and adrenal gland were 

immunostained for PrPSc. In contrast, no PrPSc could be found in the enteric nervous 

system. This distribution of the abnormal PrP form shares characteristics with pattern 

of other TSEs both in humans (e. g. retinal accumulation of PrPSc in sCJD and vCJD) 

and animals (e.g. PrPSc in ovine scrapie cases).  

Inoculating mice with FSE agent from brain homogenates of affected cats can 

distinguish FSE strains. Fraser et al. (1994) thus recorded incubation periods and 

patterns of brain lesions for FSE- and BSE-affected mice. A similarity could be 

observed between both TSEs, which suggests that both types of infectious agent 

might be of common origin. Cats could have been infected by feed containing BSE 

agent, which led to the development of FSE in the feline species.  

To date, no genetic factors have been identified that might modulate FSE disease 

characteristics due to the low number of cases.  

 

Spongiform Encephalopathy in Zoo Animals 

 

TSEs do not only occur in free-ranging or farm animals, zoological gardens have also 

reported a number of cases among their inhabitants, both imported and born in 

captivity. Among the animals in which spongiform encephalopathies could be 

observed were feline, cheetah, puma, ocelot, tiger, and lion. Also kudu, oryx, nyala, 

eland, chamois and bison were affected.  

FSE in captive animals has been recognised since the early 90ies. Willoughby et al. 

(1992) first reported the disease in a puma that was five years of age when clinical 

symptoms emerged. Progressive ataxia, gait disturbance and body tremor were seen 

in the puma born at an English zoo. Histopathology showed typical properties of 

spongiform encephalopathies such as brain lesions and gliosis. PrP immunostaining 

was positive in medulla and spinal cord. The animals had to be killed after disease 

duration of six weeks. Another exemplary case was that of an imported cheetah in an 

Australian zoo that showed locomotion impairment, imbalance and behavioural 

change (Peet and Curran, 1992). Grey matter in the corpus striatum, midbrain and 

thalamus was severely affected by spongiform lesion and the animal was killed at an 

age of five and a half years after a clinical course of four weeks. Other observations 

resemble these supposed cases of FSE in feline zoo animals. Common to these 
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incidences of FSE was the fact that the affected animals were fed with meat derived 

from culled cattle or other animals, either supplied from the zoo itself or from 

slaughterhouses. Thus it is very well possible that meat contaminated with BSE 

agent was fed to the animals who as a result succumbed to FSE. Recycling of the 

infectious agent within the zoo could have occurred.  

A first case of spongiform encephalopathy was observed in a nyala that died in 1986 

(Jeffrey and Wells, 1988). Ataxia of the hindlimbs and abnormal holding of the head 

finally led to its euthanisation after a 3-week-long duration of clinical signs. 

Histopathological findings resembled those seen in other TSEs and when mice were 

incubated with infectious material they succumbed with neuropathology comparable 

to that seen in BSE. It is notable that the nyala had been fed with MBM. More cases 

of spongiform encephalopathies were subsequently reported in eland (Fleetwood and 

Furley, 1990), oryx and kudu (Kirkwood et al., 1990). Animals were mainly presenting 

progressive ataxia and gait impairment and TSE was diagnosed upon examination of 

the brains. Kirkwood et al. (1993) investigated TSE in kudu by several studies. 

Spongiform encephalopathy was detected in three kudus with no record of having 

been feed animal protein (Kirkwood et al., 1993). Only one among them had a clinical 

presentation of the disease although all three kudus were found to exhibit positive 

PrP immunostaining. This finding led to the suggestion that spongiform 

encephalopathy might be transmitted horizontally between animals. This view was 

supported by the case of another kudu that succumbed to disease but had never 

received ruminant-derived protein (Kirkwood et al., 1993). In this case both lateral 

and maternal transmission could have been the cause of TSE infection. A further 

possibility to study transmission dynamics was the introduction of a healthy kudu into 

a group of animals affected by the disease (Kirkwood et al., 1994). More than a year 

after the transfer the kudu showed clinical symptoms for eight weeks before it had to 

be killed. As a feed-borne infection of the animal was not likely according to the 

records both maternal and horizontal routes of transmission had to be taken into 

consideration.  

From these case reports it can be concluded that feeding of contaminated feedstuff 

seems to be the major route in which the infectious agent was transmitted to zoo 

animals. In kudu, there is evidence for additional maternal or/and lateral 

transmission, which is difficult to distinguish from each other.  
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Cunningham et al. (2004) conducted mouse bioassay studies in order to investigate 

tissue distribution of infectious agent in kudu. BSE agent was found in skin, 

conjunctiva and salivary gland. This indicates the possibility of BSE transmission via 

a lateral route, possibly via saliva. Nevertheless, apart from lateral transmission, 

infection through feedstuff cross-contaminated with ruminant-derived protein cannot 

be excluded. Contamination in various stages of processing could have occurred 

even after the feed ban on potentially infectious material had been introduced in 

Great Britain in 1988.  

Transmission of CJD to monkeys can lead to the development of a spongiform 

encephalopathy (Tateishi et al., 1981). The disease has also been observed in 

rhesus monkeys (Bons et al., 1996) and lemurs (Bons et al., 1997) housed in zoos. 

After showing signs of a progressive neuropathological disorder tissues of these 

animals were examined by PrP immunohistochemistry. Monkeys exhibited 

vacuolisation of the neurons, astrogliosis and accumulation of abnormal PrP in the 

brain. The protein could also be detected in the gastrointestinal tract, tonsils and 

lymph vessels of the intestines in lemurs. All the animals had received animal-

derived protein as part of their diet. To further investigate the pathogenesis of 

spongiform encephalopathy in zoo monkeys Bons et al. (1999) stained tissues of 

lemurs that had been orally inoculated with BSE agent for proteinase-resistant PrP. 

Although the infection was still subclinical in the animals, the protein could be found 

in tonsils, gastrointestinal tract and its lymphoid tissues and in the spleen. PrPSc was 

furthermore located in the CNS, namely the spinal cord and cerebral cortex. These 

findings coincided with those observed in zoo lemurs that had been fed with cattle-

derived protein and later developed a neuropathological disorder. Neuropathology 

closely resembled the one present in the experimentally inoculated monkeys, even in 

subclinically infected animals. Consequently, more zoo animals than hitherto thought 

could have been infected by the BSE agent though clinical symptoms might have 

been absent.   
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Prion Disease in Pigs, Fish and Poultry? 

 

As has been described a range of different species is liable to TSEs. Hitherto 

naturally occurring spongiform encephalopathy was not detected in the pig although 

animals were likely to be exposed to TSE agents stemming from scrapie-infected 

sheep or BSE-affected cattle. Successful transmission of BSE to the porcine species 

was only achieved through parenteral inoculation, i.e. simultaneous injection of BSE 

brain homogenate by three routes (intracranially, intravenously and intraperitoneally) 

(Dawson et al., 1990, Wells et al., 2003). Initial clinical signs of the disease consisted 

in change of behaviour, reduced appetite and slight ataxia, which were followed by 

increased confusion, impairment of gait and other locomotor functions. In the terminal 

stages tremor was apparent and animals were continuously recumbent. Incubation 

periods ranged between 74 and 163 weeks. BSE infection in pigs was characterised 

by severe vacuolisation of the brain neuropil in which changes in the forebrain were 

predominant (Ryder et al., 2000). The extent of vacuolisation seems to depend on 

the progress of disease (Wells et al., 2003). PrP accumulation patterns in the CNS 

were similar to those seen in spongiform encephalopathies of other species. PrP 

immunostaining was found in the neuropil, glial cells and neurons and increased in 

intensity during the terminal stages of infection. Though being easily distinguishable 

from BSE-affected animals, healthy control pigs exhibited vacuolisation of the 

neuropil and hypothalamus to a limited extent. In contrast to these experimental 

findings oral transmission of BSE by feeding of BSE brain homogenate to pigs 

proved unsuccessful (Dawson et al., 1990, Wells et al., 2003). Infectivity was not 

even detected in the digestive tract of the animals until seven years after threefold 

inoculation with infectious agent. Recently, transgenic mice have provided an 

opportunity to investigate the species barrier between cattle and pig. Castilla et al. 

(2004) inoculated porcine PrP transgenic mice (poTg mice) via the intracerebral 

route. Animals treated with a high dose of the agent exhibited clinical symptoms, 

vacuolisation and gliosis in the brain while in 14% of these animals PrPres could be 

found. When inoculated with a reduced dose of BSE agent no clinical symptoms 

were observed nor could PrPres be detected in the mice. Despite this, second 

passage of the agent was more successful. Brain homogenate of animals that had 

previously been classified as negative for the presence of PrPres was inoculated in 

poTg mice. These latter animals exhibited neuropathology of prion disease and one 
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third of the mice were tested positive for PrPres in Western blot analysis. Thus the 

initial inoculation of poTg mice seems to have led to subclinically infected mice 

whose brain homogenates were sufficiently infectious to cause spongiform 

encephalopathy in other poTg mice. Neuropathology in the latter animals was similar 

to the one observed for the first passage.   

As other non-ruminant species such as lemurs are susceptible to BSE infection, the 

question remains as to why pigs are not. Oral infection has been found to be less 

efficient compared to intracerebral inoculation in other species such as sheep. Thus, 

the species barrier between cattle and pig seems to be high enough to prevent pigs 

from contracting natural TSE while being exposed to the BSE agent through MBM 

feeding. There is still no explanation as to why BSE incubation times in pigs vary 

widely between animals. This may be an effect of the species barrier, which is 

influenced by the strain of the infectious agent and the host genotype. A comparison 

of PrP gene sequences shows that although a similarity exists there are single 

polymorphic residues that may account for the species barrier. As the BSE agent is 

exceptionally invariable during transmission, incubation time variance could be due to 

this genetic disposition in the recipient. Martin et al. (1995) sequenced the coding 

region of the PrP gene in six pigs. No differences were apparent between the 

sequences that encode for a 257 amino acid protein. In a further approach a total 

number of 66 pigs stemming from 12 different breeds were examined for PrP gene 

heterogeneity (Lipp et al., 2004). The prion protein gene was amplified from genomic 

DNA and sequenced. No variation could be observed in the sequence and the results 

were identical to the porcine sequence that had been published beforehand (Martin 

et al., 1995). The pig breeds included common breeds e.g. Piétrain but also Chinese 

Meishan and wild boar. From these results it can be suggested that the porcine PrP 

gene is, contrary to what is observed in other species such as sheep or cattle, 

homogeneous to a high extent. This together with the relative resistance of pigs to 

TSE infection implies that the risk of transmission of TSEs to this species is unlikely. 
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Figure 9: Alignments of amino acid sequences of bovine, porcine, and murine PrPs. 

(Castilla et al., 2004) 

 

White letters with grey shading represent amino acid changes with respect to the bovine sequence. 

Vertical boxes indicate the protein X epitope. 

 

 

Other species that are kept for food production have been fed with feed components, 

which contained ruminant-derived protein, namely poultry and fish. Theoretically, 

they might develop spongiform encephalopathies.  

Homologues of the tetrapod prion proteins have been demonstrated to exist in 

Atlantic salmon and pufferfish (Oidtmann et al., 2003). The genes exhibit sequence 

homology and common structural features to PrPC-encoding genes. Fish prion mRNA 

was also identified by Rivera-Milla et al. (2003) but differed widely from the one seen 

in mammals (see Figure 9). It is thus unlikely that fish could contract prion diseases 

from contaminated feed. Among other factors, the species barrier is influenced by the 

degree of homology in the PrPC amino acid sequence that two species bear to each 

other. However, the understanding of the species barrier is still far from complete, so 

fish prion-like proteins and their association to their mammalian counterparts remain 

to be investigated.  
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Figure 10: Phylogenetic relationships among vertebrate prion proteins (Rivera-Milla et 

al., 2003) 

 

The neighbour-joining tree is based on genetic distances between amino acid sequences of globular 

domains. Numbers at the internodes are bootstrap confidence values (1000 replications). The 

horizontal scale bar indicates genetic distance. Taxa known to develop prion disease are shown in 

red. 

 

In chicken a prion-like protein was identified by Harris et al. (1991). The sequence 

identity to mammalian prion proteins such as mouse PrPC is rather low (33%) but 

structural compartments are similar. The newly-discovered protein comprises a 

repeat sequence of hexapeptides and hydrophobic regions. It was termed ch-PrPLP 

(chicken prion protein-like protein) and also possesses a GPI anchor with which it is 

attached to the cell surface. Its expression is limited to spinal cord and brain. A 

further examination of the ch-PrPLP gene revealed that a single-copy gene encodes 

the protein and that its ORF is confined to a single exon (Gabriel et al., 1992). 

Leaving aside variation in the N-terminal repeat region and signal sequences, ch-
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PrPLP is approximately 55% homologous compared to mammalian prion protein. 

The mRNA localization was investigated by in situ hybridisation, which revealed the 

presence of ch-PrPLP in neurons of the CNS. It is distributed throughout the brain 

and spinal cord in adult animals, in embryos it can additionally be detected in 

nonneuronal tissues such as intestine and heart (Harris et al., 1993). In order to 

clarify the function of the suggested chPrP, copper binding ability of the N-terminal 

repeats was tested (Hornshaw et al., 1995). Synthetic peptides of the hexarepeats 

were found to bind copper ions. This was interpreted as a hint at a possible function 

of chPrP in copper metabolism, which is also suggested for mammalian proteins. 

However, mass spectrometry and dichronism studies of chPrP recombinant cDNA 

showed that this does not seem to be true for the mature chPrP. No copper-binding 

ability was observed though the presence of Cu2+ ions destabilised the protein. 

According to these results, the functions of chicken PrPC could be different from 

those of mammalian prion proteins, possibly in intercellular processes or embryonic 

development. Taken together, the existence of a chicken PrPC might raise concerns 

regarding spongiform encephalopathies in poultry. Based on the low degree of 

homology between chPrP and mammalian PrPs a feed-borne infection by BSE or 

scrapie agent seems rather unlikely.  

 

Candidate Genes in Prion Diseases 
 

Genetic dispositions to prion diseases have been already found in a range of 

species. Polymorphisms that increase or decrease susceptibility have first been 

described within the coding region of the PrP gene. Consequently, this area provided 

the main focus of experimental studies. Recent experiments have raised the question 

as to the role of regulatory factors in the untranslated regions of the PRNP gene. 

Polymorphisms in these regions could have a considerable influence on genetic 

liability to disease through varying regulation of PrP gene expression. Furthermore, 

there are a number of proteins that could be involved in the overall context of prion 

diseases and accordingly are considered as candidate genes for susceptibility. 

It has already been mentioned that chaperones (e.g. protein X) might aid the 

conformational conversion of PrPC. If this is true, variability in the genes encoding 

such chaperones could affect the rate of transition or the amount of PrPSc produced 
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during pathogenesis. Specific agents can not only influence the conversion, but also 

the metabolism of PrPC and PrPSc.  

 

The Laminin Receptor 

 
 
In a yeast two-hybrid system, interaction between the laminin receptor precursor 

(LRP) and PrPC was identified (Rieger et al., 1997). By mapping analysis a common 

binding domain of PrPC and laminin was localised between amino acids 161 to 180 of 

LRP. In insect and mammalian cells the same interaction was observed in vivo. In 

murine scrapie–infected neuroblastoma cells (N2a cells), LRP concentration was 

considerably increased, as were LRP levels in brain and spleen of scrapie-infected 

mice. In contrast, after inoculation with BSE, mice showed no alteration in LRP levels 

in these organs, contrary to findings in a hamster model in which a dramatic elevation 

of LRP expression in brain was confirmed. LRP levels were found to be correlated 

with PrPSc accumulation in rodent models. These results implicated a role of the cell-

surface laminin receptor precursor in PrP interaction, possibly as a receptor or co-

receptor. Evidence for such a relationship was found by Gauczynski et al. (2001). 

They were able to confirm localisation of the 37 k-Da LRP on the cell surface of N2a 

cells. It has been demonstrated that the mature form of the protein, the 67 k-Da 

laminin receptor (LR), is present on the cell surface (Gauczynski et al., 2001). This 

was also the case in the former study. Consequently, the 37 k-Da LRP/67 k-Da LR 

system was supposed to constitute a receptor for PrPC. The C-terminal domain of the 

laminin receptor precursor was apparently directed to the extracellular space. Thus 

PrPC would be allowed to interact with binding domains of the precursor molecule. In 

order to identify these specific binding domains for PrPC, Hundt et al. (2001) 

employed a yeast two-hybrid system and PrP-binding assays in both neuronal and 

non-neuronal cells. Yeast two-hybrid analysis revealed that the region between 

amino acid residues 144 and 179 of PrPC is a direct LRP-binding domain, termed 

PrPLRPbd1 which results were corroborated by cell-binding assays. In these assays 

the presence of a second interaction domain (PrPLRPbd2) was indicated which is 

localised between amino acid positions 53 and 93 of PrPC. Moreover, the 

experimental assays demonstrated that the latter binding domain was heparan 

sulfate proteoglycan (HSPG)-dependent. Binding domains on the LRP were also 

identified in the study. The direct PrP interaction was localised between residues 161 
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and 179 of the precursor while there was evidence of another HSPG-dependent 

binding domain either in the area between amino acid position 101 and 160 or 181 

and 285 of the precursor molecule. The authors proposed a model of LRP-LR 

function as a PrPC receptor. In this model binding takes place directly via PrPLRPbd1 

and in a HSPG-dependent fashion via PrPLRPbd2. While simultaneous binding to 

both interaction domains of the receptor the binding complex with PrPC would be 

significantly stabilised (see Figure 10). This model suggests a mechanism in which 

interaction between the PrPC and the LRP would faciliate possible functions of the 

protein, among them cell to cell interaction.    

 

 

  
 

Figure 11: Model for the function of LRP-LR as receptor for PrP (Hundt et al., 2001) 

 

The PrP molecule binds to LRP-LR via PrPLRPbd1 and PrPLRPbd2. PrPLRPbd2 (aa 53-93) is 

dependent on the presence of a heparan sulfate arm of a HSPG molecule whereas PrPLRPbd1 (aa 

144-179) interacts directly with LRP-LR. 

 

Leucht et al. (2003) further examined the role of the 37 k-Da/67 k-Da LR in PrPSc 

propagation in a neuronal cell model. The accumulation of the PK-resistant protein 

was prevented in scrapie-infected cells by three different approaches. Cells were 

either transfected with antisense LRP-RNA-expression plasmid, LRP mRNA-specific 

siRNAs or incubated with anti-LRP/LR-antibodies. The first two knockdown 

approaches were efficient in reducing the expression of the targeted receptor thereby 

preventing accumulation of PrPSc in the cells. An additional effect was the reduction 
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of PrPC levels. After a seven-day time span the same effect was observed in the 

approach employing antibodies.  

Taken together, by knocking down LRP/LR on the surface of cells or blocking the 

binding sites to interaction, prion propagation in cells can be abolished. This might be 

due to a blockage of the PrPC internalisation process although the cell could express 

a low amount of PrPC. The negative effect of laminin receptor inhibition on PrPSc 

accumulation and propagation in neuronal cell cultures could be due to lack of PrPC 

in the endocytic pathway of the cell. Otherwise, the LRP/LR system on the cell 

surface itself could be involved in PrPSc formation so that blockage of receptor 

expression would prevent the conversion process.  

Shmakov et al. (2000) tried to localise the 67 k-Da LR in human small intestinal 

mucosa. Immunohistochemical proceedures and a monoclonal antibody were used 

to determine LR expression in duodenal and jejunal biopsy samples. Two patterns of 

LR expression were observed in this study. The first of them consisted of LR 

expression in the brush border of intestinal epithelial cells, in the Golgi apparatus of 

enterocytes and in secretory granules of Paneth cells. The other pattern consisted in 

an immunostained endothelium while the epithelium was found to be negative for the 

presence of the receptor. The mechanisms of this differential LR expression in the 

brush border have yet to be determined. Nevertheless, secretory and endocytic 

functions are implied by LR expression in the brush border of epithelial cells and in 

secretory granules. There may also be a connection of the expression patterns with 

sensitivity to prion disease infection via the oral route. Individuals possessing LR 

expression in the brush border of intestine cells might be more liable to such an 

infectious challenge as binding sites for pathogens i.e. prions would be provided to a 

greater extent.  

The fact that a number of isoforms of the LR exist has been an object of speculation 

in connection with PrPC binding. Simoneau et al. (2003) addressed the question 

which of those isoforms can interact with the receptor. Purification of LR-rich mouse 

brain fraction and ensuing overlay assays identified such LR forms of 44, 60, 67 and 

220 kDa. The isoforms were corresponding to distinct maturation states of the LR 

molecule. All of these receptor variants were detected in the mouse brain samples 

and in addition to this all of them were found to bind PrPC. These findings highlight 

the importance of the LR as a PrPC interaction partner in the brain and its 

involvement in putative physiological functions of PrPC.  
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In conclusion, the LRP/LR system appears to play a significant role in interaction with 

PrPC and its metabolism. Impairment of receptor function has been shown to inhibit 

PrPSc propagation in cell culture, so that LRP/LR seems to be involved in 

mechanisms of prion disease pathology. Differential expression of the receptor on 

the surface of intestine epithelial cells may also affect the susceptibility of individuals 

to prion infection. These implications qualify LRP/LR gene as a candidate in 

connection with the susceptibility to prion diseases.  

 

The Neurotrophin Receptor 

 

Another receptor, the low affinity neurotrophin receptor (p75NTR), was shown to 

mediate the effects of a neurotoxic PrPC fragment (PrP(106-126)) (Della-Bianca et 

al., 2001). In presence or absence of the receptor human neuroblastoma cells were 

challenged with the peptide and cell damage following this treatment was analysed. 

PrP(106-126) toxicity induced cell death in presence of p75NTR already at low 

concentration while no negative effect was visible when the receptor was absent. 

Thus p75NTR might modulate prion neurotoxicity in cells. In further experiments, 

binding of PrPC to the receptor was demonstrated as well as the involvement of both 

the extracellular and intracellular p75NTR domain in the cytotoxic effects of PrP(106-

126). Activation of the receptor was therefore necessary to elicit neurotoxicity. If the 

same was true for PrPSc p75NTR would represent a molecule involved in mediation of 

neurotoxic effects in prion diseases. 

 

The Doppel Protein 

 

It has been mentioned above that a homologue of PrPC designated doppel (Dpl) is 

encoded by Prnd, downstream of the prion protein gene. Dpl exhibits 25% identity of 

amino acids when compared to PrPC. Resemblance to PrPC is also apparent 

regarding structural properties. Dpl formation is mainly α-helical and intra-molecular 

disulfide bonds stabilise its conformational state. Like PrPC, Dpl is attached to the 

surface of cells by a GPI anchor. In contrast to the ubiquitous expression of PrPC, Dpl 

expression is limited to the reproductive system. Similar functions for PrPC and Dpl 

have nevertheless been suggested because of the similarities between both proteins. 
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Figure 12: Sequences of (murine) Dpl and PrP showing the relative positions of key 

structural features (Whyte et al., 2003) 

 

Grey boxes: α-helices A, B and C; dotted boxes: N-terminal and C-terminal cleavable signal peptides 

(predicted N-terminal signal peptide cleavage site at Dpl residues 24 or 27, C-terminal cleavage and 

GPI addition site predicted at codon 155); CHO: Asn-linked glycosylation sites; GPI: 

glycosylphosphatidylinositol addition sites. Disulfide bonds are as indicated. 

Black boxes: octa-repeat region; TM region: transmembrane region containing the palindromic 

sequence (112–119); STE: stop transfer effector region; box with vertical stripes: transmembrane 

region (TM); white box with the + symbols: cluster of basic residues. 

The numbering of both sequences is that of the mouse.  

 

 

It has recently been reported that, like PrPC, Dpl can interact with the 37 k-Da LRP 

(Yin et al., 2004). In a yeast two-hybrid system, Dpl bound to the LRP which was 

afterwards confirmed in transfected cell lines and in tissue extracts. Mapping 

approaches showed that the interaction site of Dpl with LRP was located between 

amino acids 100 and 220, in the middle segment of LRP. Moreover, interaction 

between Dpl and the receptor was inhibited by the deletion of an N-terminal region of 

54 amino acids in LRP. It has been suggested that the N-terminal deletion might lead 

to shielding of residues 100-220 necessary for proper receptor interaction with Dpl.  

Interaction between PrPC and Dpl has been suggested since the negative effects of 

Dpl in certain knockout mouse lines described above had been reported. Massimino 

et al. (2004) examined the interactions of human Dpl and PrPC in neuroblastoma 

cells. Analysis of the distribution of both proteins in single and double transfected 

cells showed that Dpl and PrPC co-localise on the plasma membrane to a 
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considerable extent. In transfected cells expressing both Dpl and PrPC, 

immunofluorescent labelling signals indicated that the proteins share microdomains 

of the plasma membrane. This implies that both proteins can interact with each other 

and are apparently endocytosed together. Additionally, the Dpl glycosylation pattern 

was determined and compared to that of PrPC. As the mature Dpl protein is shorter in 

length than PrPC and a range of glycoforms comparable to those seen in PrPC was 

observed, glycosylation of human Dpl appears to be more complex and highly 

heterogeneous. Nevertheless, the obvious similarities which both proteins exhibit in 

their properties and their physiological features implicated them in common functions 

in the organism.  

One of the functions suggested for PrPC is the binding of copper in synaptic regions. 

The major site of copper binding in PrPC is the octapeptide repeat region. As the Dpl 

protein lacks such an octarepeat region it was to be expected that copper binding 

would not be detected. Despite of this Qin et al. (2003) investigated such a putative 

ability in a rodent Dpl peptide (101-145) by MALDI mass spectronomy. Further 

analyses revealed that copper ions were indeed bound selectively to an α-helical 

region of the peptide. Possibly additional copper binding sites are present in the Dpl 

protein. Like in PrPC, the copper binding ability of Dpl might have implications for the 

neurotoxic effects of Dpl. Cereghetti et al. (2004) further clarified copper binding 

properties of Dpl. Analysis of in vitro copper(II) binding of human recombinant Dpl 

demonstrated that binding took place in a different pattern as compared to PrPC. In 

addition to two affinity sites at physiological pH, two other copper binding sites were 

observed at lower pH levels. Electron paramagnetic resonance analyses revealed 

that the complexes composed of Dpl protein and copper ions possessed a different 

number and co-ordination sphere than PrPC-copper complexes. Consequently, there 

might be distinct structural and functional effects of Dpl copper binding which might 

be an explanation why both Dpl and PrPC are located in different tissues in an 

organism and why a Dpl isoform comparable to PrPSc has not been found.  

It has been previously described that Dpl overexpression causes Purkinje cell loss 

and ataxia in Prnp knockout mice. Furthermore, overexpression of N-terminally 

truncated PrPC in Purkinje cells of transgenic mice causes a similar cerebellar 

syndrome in the animals (Flechsig et al., 2003). Co-expression of the complete PrPC 

could abolish the negative effects of the transgene. As mentioned above the same is 

true for neurological syndromes caused by Dpl overexpression. A common 
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pathologic mechanism of both the truncated PrPC and Dpl might be responsible for 

this effect. Impairment of a cell signalling pathway might be such a mechanism. 

Anderson et al. (2004) therefore generated transgenic mice that selectively 

expressed the Dpl protein in Purkinje cells. Ataxia and Purkinje cell loss were 

afterwards apparent, similar to the phenotypes observed in N-terminal truncated PrP 

transgenic mice. The dose-dependent ataxia caused by moderate Dpl expression in 

Purkinje cells was counterbalanced by the presence of two Prnp alleles in the mice. 

These results indicate a common mechanism by which negative cellular effects of 

Dpl and N-terminally truncated PrPC are mediated, though the exact nature of this 

process is yet unclear. The impact of deletion of the PrPC N-terminal domain points to 

a critical involvement of this region. Intracellular trafficking or the physiological 

function of PrPC might be altered by the deletion, which might be also true for the 

structurally similar Dpl protein.  

Taken together, expression of Dpl and N-terminally truncated PrPC elicit considerably 

similar phenotypes arising through Purkinje cell death. This implies common 

mechanisms of Dpl and PrPC by which these changes are caused and highlights the 

physiological relationship between both proteins. In a further approach by Yamaguchi 

et al. (2004) the background of Zrch I Prnp knockout transgenic mice that are non-

ataxic was used to study the effect of Dpl expression. The animals expressed the Dpl 

protein either in neurons or specifically in Purkinje cells. The knockout mice 

developed ataxia and Purkinje cell loss in contrast to Prnp+/+ animals used as 

controls. Thus Dpl itself appeared to be toxic in this cell type while the presence of 

PrPC rescued these effects. Functional implications of Dpl and N-terminally truncated 

PrPC were once again highlighted by the development of comparable 

neuropathological phenotypes in the transgenic animals.     

  

Plasminogen 

 

In several species including human, sheep and cattle, plasminogen is able to form a 

complex with PrPSc (Maissen et al., 2001). Plasminogen selectively precipitates with 

the infectious PrPSc from TSE-infected mouse brains. The same is true for PrPSc and 

human plasminogen in brain homogenate of sCJD patients, PrPSc and bovine 

plasminogen in BSE-infected cattle and PrPSc and ovine plasminogen in scrapie-
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affected sheep of both the VRQ/AHQ and VRQ/ARR PrP genotype. The exact 

function which plasminogen fulfils in the complex has yet to be determined.  

An important finding was made by Ellis et al. (2002) who investigated the effect of 

PrPC on plasminogen activation. Tests were conducted in the presence or absence of 

copper. A PrPC mutant lacking the octapeptide repeat region did not activate 

plasminogen, contrary to wildtype, which stimulated activation of the molecule. 

Interaction of plasminogen and PrPC is apparently depending on copper levels and 

might be involved in prion disease pathogenesis. As has been mentioned above, 

activation of plasminogen by PrPC in the CNS can furthermore be accomplished by   

t-PA-mediation (Epple at al., 2004).  

Kornblatt et al. (2003) demonstrated that the human plasminogen molecule binds to 

the ovine PrPC. PrPC was afterwards degraded to form a single fragment that 

contained the core structure of the protein, an effect also elicited by plasmin. 

Theoretically, this mechanism could constitute a protective process by which prion 

propagation could be prevented.    

 

Protein X 

 

Chaperones that have protective or enhancing functions on protein formation appear 

to be important binding partners of PrPC. A molecule designated protein X has been 

implicated in the conversion process of PrPC to PrPSc. Its existence had been 

suggested by experimental studies in transgenic mice. Telling et al. (1994) 

constructed mouse lines, termed Tg(HuPrP), which expressed the human PrPC at 

much higher levels (4- to 8-fold) compared to endogenous mouse PrPC. Inoculation 

of the transgenic animals with human prions less frequently led to infection than of 

wildtype controls. In order to further investigate this effect transgenic mice expressing 

a chimeric transgene of human and murine PrPC (MHu2M mice) were generated by 

Telling et al. (1995). It was known that such chimeric transgenes led to transmission 

of either one of the corresponding prions, in this case either human or murine prions. 

MHu2M animals were highly susceptible to infection by human prions. In order to 

explain this apparent difference to Tg(HuPrP) mice, these latter animals were 

crossed with Prnp knockout mice. The animals resulting from this cross were 

susceptible to human prions, an effect which was only observed to a limited extent in 

offspring from crosses of Tg(MHu2M) with knockout mice. Thus the murine PrPC 
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seemed to inhibit propagation of human prions except when the murine Prnp gene 

was ablated. The species barrier caused by amino acid difference in the PrPC 

sequence between human and murine PrPC is mainly determined by a central 

domain between residues 96 and 167 with which the proteins are thought to bind to 

PrPSc. It has been suggested that a different, non-central domain of PrPC binds to a 

macromolecule designated protein X. The affinity of this binding appeared to be 

dependent on species-specific factors, i.e. it would be highest when prion protein and 

protein X stem from the same species. As even low levels of murine PrPC in 

transgenic HuPrP mice abolished the conversional transition of PrPC to the infectious 

isoform, the murine protein was proposed to have a higher affinity to protein X in 

comparison to human PrPC. N-terminally truncated PrPC elicited PrPSc formation, so 

that the PrPC binding site of protein X might lie at the C-terminus (amino acid 

residues 215 and 230), a region differing in five positions between human and murine 

PrPC. It is yet unclear whether protein X is a folding chaperone of PrPC, comparable 

to heat-shock proteins, or otherwise chemically modifies PrPC so as to convert to the 

PrPSc isoform. An alternative hypothesis is that protein X might aid in the interaction 

between PrPC and PrPSc.   

Kaneko et al. (1997) examined the putative protein X binding more closely in scrapie-

infected murine N2a cells. In the transgenic mouse/human chimeric cell line amino 

acids at specific residues of the murine C-terminal PrPC domain were replaced by 

those found in the human PrPC. Changes at positions 214 or 218 inhibited the 

formation of PrPSc from murine PrPC. Binding of protein X was suggested to take 

place through specific side chains of the residues that are part of the same surface in 

the C-terminal α-helix of PrPC. The side chains themselves appear to form a 

discontinuous epitope with two residues of a neighbouring loop of the amino acid 

chain. PrPSc formation was also abolished by the substitution of a basic residue at 

positions 167, 171 and 218, which mutations seem to cause a dominant negative 

inhibition. They might bind to protein X and consequently would keep it from fulfilling 

its role in the conversion process of PrPC to PrPSc.  

The results of these studies suggest that a factor, probably a protein, may influence 

transition of PrPC by an unknown mechanism and that putative binding sites have 

been identified that modulate these functions.  
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Heat Shock Proteins 

 

Heat shock proteins (Hsp) are also implicated in prion propagation. Hsp70 

expression was found to be increased in mice terminally ill with scrapie (Kenward et 

al., 1994). It is not clear whether this is solely due to cell stress response. Hsps are 

chaperone molecules that can prevent the aggregation of prion proteins. Hsps 

therefore might be part of a protective system against detrimental effects of certain 

protein structures that have negative effects on cells. They bind and release 

hydrophobic regions of proteins which stops proteins from aggregating. This process 

also enables the proteins to refold into an innocuous conformational state. The 

finding that not only Hsp70 genes but also polyubiquitin C were increasingly 

expressed in murine scrapie infection supported the hypothesis of Hsps as 

chaperone molecules (Kenward et al., 1994). Polyubiquitinisation is one of the 

mechanisms that can protect cells against negative effects of misfolded or 

aggregated proteins. Increased expression of both chaperones implies that both act 

as protectors against these unwanted consequences. 

Notably, when human NT-2 cells were treated with heat shock stress not only the 

mRNA levels of the Hsp70 gene were increased but also those of the PrP gene 

(Shyu et al., 2002). This simultaneous increase of gene expression was also 

demonstrated for resulting protein levels. The rat PrPC promoter used in the study 

was found to contain two heat-shock elements that interact with a heat-shock 

transcription factor. Thus, cellular stress apparently upregulated expression of both 

genes and synthesis of the proteins.   

Contrary to Hsp70 in mammalian cells, in yeast the expression of Hsp104 is required 

for the propagation of infectious protein forms, e.g. [PSI+] that are comparable to 

prions (Jung et al., 2002). This is probably due to the modifying effects of heat-shock 

proteins on prion formation. Curing of yeast prions can be accomplished by adding 

guanidine to the yeast culture. Notably, a mutation in the amino acid sequence of 

Hsp104 impaired the effects of guanidine in curing yeast prion. Theses findings 

suggest that mutations in heat-shock proteins may modulate prion propagation. The 

importance of heat-shock proteins in aggregation processes of yeast prions was 

further highlighted Krobitsch et al. (2000). The deletion of the gene encoding for 

Hsp104 stopped aggregation of fusion proteins. This result corroborates the 

suggestion that heat-shock proteins can be crucial for protein conversion processes. 
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Wegrzyn et al. (2001) further investigated yeast prion loss after Hsp inactivation. 

Three approaches were employed to secure the ablation of the Hsp: deletion of the 

Hsp104 gene, modification of the gene promoter leading to merely low levels of 

expression and overexpression of an inactive mutant of Hsp104. In each case loss of 

[PSI+] prions was afterwards observed. When Hsp104 levels were reduced, prion 

aggregates decreased in number but increased in size. From these results it was 

concluded that Hsp 104 caused large prion aggregates to break up and favoured the 

formation of small aggregate structures or seeds that might lead to further prion 

propagation.  

Hsp70, another member of the heat-shock family, might also be involved in prion 

maintenance. Recently, Roberts et al. (2004) investigated the propagation of yeast 

prions designated URE3 under the influence of cytosolic Hsp70 and a mutant form of 

the heat-shock protein. This latter form of Hsp70 contained an amino acid 

substitution in the peptide-binding domain of the molecule. In yeast, Hsp70, together 

with Hsp40 and Hsp140 forms can convert denatured proteins back to their normal 

form. It was surprising that URE3 was maintained in the cells under influence of 

Hsp70 but abolished when the heat-shock protein was mutated. Roberts et al. (2004) 

proposed a model in which Hsp70 continues to bind and released a URE3 prion 

binding domain. Through this mechanism, the protein becomes ever more 

unstructured. This situation changes in the presence of aggregated prions. Then, the 

Hsp70 can only interact with URE3 as long as the prion domain is exposed. In this 

case, while Hsp70 acts in order to refold proteins in a non-aggregated state, it might 

favour prion formation.  

Studies of heat-shock proteins in yeast and mammalian cells have implied that this 

group of proteins plays an important role in the conversion process to prion-like 

states and aggregation of prions. The mechanisms by which this is achieved are yet 

not clear and there seems to be a range of factors that influence Hsp action, e.g. the 

aggregation state of the protein substrate. Nevertheless, Hsps are valid candidates 

for influencing the susceptibility to prion disease because of the pivotal effects their 

expression has on prion propagation. 
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Squalestatin and Clusterin 

 

PrPSc formation leading to neurotoxicity in cells can be influenced by other molecules 

such as clusterin and squalestatin. Both proteins can prevent PrP aggregation in 

cells. Bate et al. (2004) investigated the effects of squalestatin, a protein involved in 

cholesterol metabolism of cells, on prion propagation. Three prion-infected cells lines 

(N2a, SMB and ScGT1 cells) were treated with squalestatin. The accumulation of 

PrPSc in these cells was reduced in a dose-dependent fashion following the 

treatment. Neuronal cells that were treated with squalestatin survived significantly 

longer after incubation with prions than did untreated cells. It has been suggested 

that squalestatin could have an effect on the trafficking of PrPC in the cell. PrPC thus 

could be prevented from interacting with other molecules, also with such necessary 

for conformational conversion to PrPSc. Cholesterol-sensitive processes have been 

implicated in modification of prion propagation and PrPSc-induced cell death, so that 

squalestatin might be a modulator of such pathogenic processes.  

 

Clusterin, also designated apolipoprotein J, is a multifunctional heterodimeric 

glycoprotein. Clusterin mRNA is primarily expressed in the brain, ovary, testis and 

liver but also in other tissues such as heart, spleen or lung (DeSilva et al., 1990). An 

impact of the protein on prion disease pathogenesis was first revealed when 

interaction between clusterin and soluble AD β-amyloid (sβA) was affirmed 

(Matsubara et al., 1995). The mechanism was characterised with the help of a 

synthetic peptide (Aβ1-40). The formation of complexes was specifically inhibited by 

clusterin at physiologic pH. These findings were furthermore corroborated by the 

experimental results of McHattie et al.(1999). The neurotoxic peptide PrP106-126 

can spontaneously form fibrillar structures in vitro and therefore was used as a model 

for PrPC. Clusterin was found to prevent maximal aggregation of the peptide, an 

effect was dose-dependent. The inhibition was reversed by the application of an 

antibody that binds to clusterin. This indicated that clusterin might interact with PrPSc 

in prion diseases thereby impairing the aggregation process. In a further approach 

the role of clusterin in BSE infection was investigated. Clusterin mRNA levels were 

significantly elevated in spinal cord of BSE field cases (McHattie et al., 1999). Sites 

of increase in clusterin mRNA were neuroglia including the astrocytes. The amount of 

total mRNA did not differ between BSE-affected cattle and clinically normal control 
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animals, so that the differences were supposedly elicited as a reaction to BSE 

infection.  

The localisation of clusterin with reference to PrPSc disposition was examined in other 

TSEs, namely in human prion diseases (GSS, CJD forms, FFI) and in a mouse 

model of human TSE (Sasaki et al., 2002). Clusterin expression rose with duration of 

the disease. Co-localisation of clusterin with PrPSc deposits was observed and 

seemed to be dependent on the type of disposition. It was more pronounced in kuru 

plaques than in punctuate or synaptic PrPSc aggregates. In the mouse model an 

induction of clusterin in astrocytes was observed that was linked to PrPSc disposition. 

Why clusterin expression should be dependent on plaque type and PrPSc 

accumulation patterns could be explained in several ways. Dependency might be 

caused by the localisation site (extracellular or intracellular) of the protein and PrPSc 

aggregates. Intracellular PrPSc plaques of the synaptic type would be less accessibly 

to the extracellulary expressed clusterin molecules. Another possibility is an 

association with deposition properties of PrPSc, which would allow compact 

aggregates to interact more efficiently with clusterin. Increased astrocytic clusterin 

expression in this mouse model furthermore confirmed the findings of McHattie et al. 

(1999). In the mice, weak immunostaining for PrPC was combined with enhanced 

presence of clusterin in later stages of the disease. This moreover indicates that 

clusterin might inhibit PrPSc aggregation. In fact, a recent report suggests that the 

effects of clusterin on prion disease pathology should not be underestimated. 

Clusterin knockout mice were inoculated with BSE prions and compared to wildtype 

controls by Kempster et al. (2004). Deletion of clusterin led to significantly increased 

incubation times (mean incubation time 386 days compared to 346 days in the 

wildtype). Astrocytosis was apparent in both groups of mice though more pronounced 

in the knockout animals. Furthermore, there was an increased number of diffuse 

proteinase-resistant PrPBSE detected in the latter group. From these results one could 

conclude that clusterin may bind to PrPBSE in order to sequester the protein. This 

mechanism might induce neurons to produce further PrPC, which may serve as a 

substrate for prion propagation and neurotoxic aggregation. This feed back effect 

may in turn lower the expression of PrPC if the misfolded protein remains 

unsequestered and decrease the growth in number of neurotoxic aggregates. At the 

same time PrPBSE, which is not bound by clusterin, may stimulate astrocytosis. It is 
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nevertheless possible that other proteins interact with PrPBSE in the absence of 

clusterin thus accelerating BSE incubation times in the knockout mice.  

Although it seems likely that clusterin is involved in the aggregation process of 

misfolded proteins and in the pathogenesis of prion diseases, the exact mechanisms 

by which it exerts its impact are not yet clear. 

 

Other Candidates 

 

The relevance of other genes or gene products in connection with prion disease 

remains yet to be determined. Miele et al. (2001) employed a differential display 

reverse-transcriptase PCR (DDRT-PCR) approach in order to investigate differential 

expression of genes following TSE infection. Expression profiles of genetic 

transcripts in the spleens of TSE-inoculated laboratory mice were compared to those 

of wildtype controls. Increase of expression levels in spleen was delectable for a 

transcript exhibiting 100% homology to the erythroid differentiation-related factor 

(EDRF, also erythroid associated factor eraf). In the terminal stages of prion disease 

EDRF expression levels were increased in scrapie-infected mice. Northern blotting 

analysis of EDRF gene expression indicated that the distribution of the protein was 

limited to spleen, bone marrow and blood in mice and blood and bone marrow in 

humans. As EDRF seems to be associated with hematopoeitic activity, expression 

levels of the differentiation factor were examined in naturally BSE-infected and 

scrapie-infected sheep. Expression was restricted to bone marrow and spleen 

tissues in cattle and blood in sheep. The level of expression was significantly 

reduced in bone marrow in the initial clinical stages of BSE-infection and also in 

blood taken from sheep in the clinical stage of scrapie. A TSE infection influences the 

expression of EDRF in erythroid cells although the mechanism by which this effect is 

produced is not known. It can therefore not be excluded that EDRF may play a role in 

prion propagation or otherwise TSE pathogenesis.      

Glycosylation differences between PrPC and PrPSc could be caused by decreased 

activity of N-acetylglucosaminyltransferase III (GnTIII) in cells that produce PrPSc 

(Rudd et al., 1999). Some cells forming PrPSc apparently show a diminished function 

of the enzyme although the cause and impact thereof needs to be clarified.  
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Taken together, a range of molecules appears to interact with PrPC and/or PrPSc in 

different ways. The mechanism by which this takes place is not yet clear in many 

cases. Special emphasis has to be put on the relationship between PrPC and Dpl, as 

the interaction between both proteins and studies of the Dpl protein itself provide 

important information about PrPC metabolism and function. The LR is another 

important interaction partner of PrPC. It appears to be involved not only in PrPC life 

cycle within the cell but might modulate its action in the organism. Other molecules 

such as the heat-shock protein family may be directly involved in prion protein 

structural conversion and aggregation as well as cell mechanisms protecting against 

protein misfolding. For some substances e.g. clusterin, an association with PrPSc 

propagation is apparent though the definite mechanisms of this relationship are 

unclear.  

Deletion of genes encoding for such interaction partners and also the introduction of 

mutations in the DNA sequence has been employed in order to study their effects on 

prion protein and prions. Specific regions of the amino acid sequence have been 

found to be necessary to maintain their functions. Thus mutations in the encoding 

genes may be of considerable importance for the modulation of prion disease 

pathogenesis and susceptibility. Consequently, they should be regarded as 

candidate genes for involvement in prion diseases. A better understanding of genetic 

disposition of an individual at such loci might provide an improved insight into prion 

disease-associated factors.        

 

Genetic Implications in Prion Diseases  
 

Many questions concerning the cause and course of prion diseases remain to be 

answered. Disease susceptibility and pathogenesis are two major factors that are 

influenced by genetic determinants of the host individual. Together with properties of 

the infectious agent such as strain type and prion structure, apparently host genetic 

dispositions are associated with distinct phenotypic disease characteristics. This also 

includes transmissibility of the agent between species, incubation times, pathological 

changes and clinical presentation.  

There are several properties of PrPC that are controlled by genetic factors. Its amino 

acid sequence is determined by the coding region of the PrP gene sequence. The 

sequence of the amino acids has implications for the protein conformation as well as 



 

 117

for the stability of such structures. Hydrogen bonding or salt bridges between certain 

amino acids can prevent α-helices from being destabilised. Mutational substitution of 

single amino acids can disturb this protective mechanism against misfolding. 

Moreover, polymorphisms in protein areas important for structural properties e.g. the 

octapeptide repeat region may modulate the conversion process. Therefore 

polymorphisms of the coding Prnp gene region appear to influence the susceptibility 

of PrPC to shift to the infectious isoform PrPSc. Glycosylation differences also seem to 

be associated with structural conversion. How far they are determined by host 

genetic disposition is yet unclear.  

The propensity of proteins to aggregate is not only dependent on the conformational 

stability of the protein that serves as a substrate. The higher the amount of protein 

present, the higher the risk that accumulation and, finally, aggregation of stable 

isoforms, may take place. Conversional transition might therefore be enhanced by 

the synthesis of high titers of PrPC in cells. Expression levels of the PrP gene can 

thus indirectly influence prion propagation. As gene expression is regulated by the 

promoter area in the non-coding sequence of the gene, polymorphisms in this region 

may modulate PrPC expression. A high amount of PrPC could thus lead to faster 

aggregation and shorter incubation times in prion diseases. Apart from disease-

associated factors that are determined by protein sequence, structure and 

expression, a number of factors has been identified that interact with the prion protein 

and/or its proteinase-resistant isoform.  

Receptors probably mediate effects of PrPC so that its functions might by impaired or 

modulated by mutations in genes encoding for such receptors. Other molecules are 

apparently involved in the formation of aggregates, which implies a role in structural 

conversion process. The Dpl protein has a special status in this context because of 

its similarity to PrPC.  

Genetic host factors also influence the susceptibility of one species to be infected 

with agent derived from another. The height of the species barrier is supposed to be 

dependent on the degree of homology between amino acid sequence of the prion 

agent and host PrPC. Furthermore, variation in glycosylation of host proteins seems 

to influence transmission. Thus prion diseases should be more easily transmitted 

between species with a similar primary amino acid structure. 

In human prion diseases implications of genetic disposition are relatively well known. 

A range of polymorphisms in the human PRNP gene has been defined and disease 
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phenotypes are classified by several characteristics. In the ovine species the 

association between distinct PrPC alleles and disease susceptibility is especially 

pronounced. Although there may be additional genetic host factors and breed-

specific differences the observed risk of scrapie infection is mainly dependent on 

three known polymorphic sites in the coding region of the PrP gene. In several other 

species such as mouse, goat and mink, polymorphisms in the coding region are 

known to affect disease characteristics.  

In cattle, the genetic disposition in connection with BSE is less clear. Polymorphisms 

located in the coding region of the PRNP gene did not seem to have any effect on 

disease susceptibility. Nevertheless experiments in mice have highlighted the 

importance of the number of octapeptides in the PrPC amino acid sequence. 

Therefore it might be possible that the allele carrying seven repeats elicits shorter 

incubation times in certain breeds, e.g. Brown Swiss, which has not yet been 

thoroughly investigated. A polymorphism in the promoter region has been described 

which is supposed to influence BSE susceptibility by modulating expression of the 

PRNP gene.   

In species used for food production, genetic background may be of crucial 

importance. In the United Kingdom, a sheep breeding program already exists with 

the aim to eradicate genotypes susceptible to scrapie from the flock and favour 

breeding of less susceptible animals. It has been a matter of discussion whether 

such a program is appropriate considering the breed-specific differences in genotype 

susceptibility. As the infection of sheep with BSE prions cannot be excluded it is 

moreover necessary to develop a reliable surveillance system in order to identify 

putative ovine BSE cases. The role of genetic disposition in cattle has hitherto not 

been determined, so that breeding programs to this effect cannot yet be established. 

Other species such as poultry or fish seem to have a very low risk to be affected by 

prion diseases though they should be surveyed for the possible occurrence of 

spongiform encephalopathies.           

The genetic background of humans and animals apparently constitutes an important 

influence both on the transmission between species and the readiness with which 

subjects succumb to disease. It is therefore necessary to further explore which 

structural properties of PrPC can predispose for prion infection and what role 

differential expression of its gene may play in pathogenesis. Candidate genes, i.e. 

genes that either encode for proteins that interact with prions or PrPC or exhibit 
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similar characteristics, have to be closely examined with regard to a possible effect 

on TSEs. 

  



 

 120

References 
 

Aguzzi,A., Heppner,F.L., Heikenwalder,M., Prinz,M., Mertz,K., Seeger,H., and 

Glatzel,M. (2003). Immune system and peripheral nerves in propagation of prions to 

CNS. Br. Med. Bull. 66, 141-159. 

Alonso,D.O., DeArmond,S.J., Cohen,F.E., and Daggett,V. (2001). Mapping the early 

steps in the pH-induced conformational conversion of the prion protein. Proc. Natl. 

Acad. Sci. U. S. A 98, 2985-2989. 

Anderson,G.M. and Freytag,S.O. (1991). Synergistic activation of a human promoter 

in vivo by transcription factor Sp1. Mol. Cell Biol. 11, 1935-1943. 

Anderson,L., Rossi,D., Linehan,J., Brandner,S., and Weissmann,C. (2004). 

Transgene-driven expression of the Doppel protein in Purkinje cells causes Purkinje 

cell degeneration and motor impairment. Proc. Natl. Acad. Sci. U. S. A 101, 3644-

3649. 

Andrews,N.J., Farrington,C.P., Cousens,S.N., Smith,P.G., Ward,H., Knight,R.S., 

Ironside,J.W., and Will,R.G. (2000). Incidence of variant Creutzfeldt-Jakob disease in 

the UK. Lancet 356, 481-482. 

Andrews,N.J., Farrington,C.P., Ward,H.J., Cousens,S.N., Smith,P.G., 

Molesworth,A.M., Knight,R.S., Ironside,J.W., and Will,R.G. (2003). Deaths from 

variant Creutzfeldt-Jakob disease in the UK. Lancet 361, 751-752. 

Antzutkin,O.N., Balbach,J.J., Leapman,R.D., Rizzo,N.W., Reed,J., and Tycko,R. 

(2000). Multiple quantum solid-state NMR indicates a parallel, not antiparallel, 



 

 121

organization of beta-sheets in Alzheimer's beta-amyloid fibrils. Proc. Natl. Acad. Sci. 

U. S. A 97, 13045-13050. 

Askanas,V., Bilak,M., Engel,W.K., Leclerc,A., and Tome,F. (1993). Prion protein is 

strongly immunolocalized at the postsynaptic domain of human normal 

neuromuscular junctions. Neurosci. Lett. 159, 111-114. 

Barbanti,P., Fabbrini,G., Salvatore,M., Petraroli,R., Cardone,F., Maras,B., 

Equestre,M., Macchi,G., Lenzi,G.L., and Pocchiari,M. (1996). Polymorphism at codon 

129 or codon 219 of PRNP and clinical heterogeneity in a previously unreported 

family with Gerstmann-Straussler-Scheinker disease (PrP-P102L mutation). 

Neurology 47, 734-741. 

Baron,T., Crozet,C., Biacabe,A.G., Philippe,S., Verchere,J., Bencsik,A., Madec,J.Y., 

Calavas,D., and Samarut,J. (2004). Molecular analysis of the protease-resistant prion 

protein in scrapie and bovine spongiform encephalopathy transmitted to ovine 

transgenic and wild-type mice. J Virol. 78, 6243-6251. 

Bartz,J.C., Bessen,R.A., McKenzie,D., Marsh,R.F., and Aiken,J.M. (2000). 

Adaptation and selection of prion protein strain conformations following interspecies 

transmission of transmissible mink encephalopathy. J Virol. 74, 5542-5547. 

Begara-McGorum,I., Gonzalez,L., Simmons,M., Hunter,N., Houston,F., and 

Jeffrey,M. (2002). Vacuolar lesion profile in sheep scrapie: factors influencing its 

variation and relationship to disease-specific PrP accumulation. J Comp Pathol. 127, 

59-68. 



 

 122

Beisel,C.E. and Morens,D.M. (2004). Variant Creutzfeldt-Jakob disease and the 

acquired and transmissible spongiform encephalopathies. Clin. Infect. Dis. 38, 697-

704. 

Belay,E.D. (1999). Transmissible spongiform encephalopathies in humans. Annu. 

Rev. Microbiol. 53, 283-314. 

Belay,E.D., Gambetti,P., Schonberger,L.B., Parchi,P., Lyon,D.R., Capellari,S., 

McQuiston,J.H., Bradley,K., Dowdle,G., Crutcher,J.M., and Nichols,C.R. (2001). 

Creutzfeldt-Jakob disease in unusually young patients who consumed venison. Arch. 

Neurol. 58, 1673-1678. 

Bendheim,P.E., Brown,H.R., Rudelli,R.D., Scala,L.J., Goller,N.L., Wen,G.Y., 

Kascsak,R.J., Cashman,N.R., and Bolton,D.C. (1992). Nearly ubiquitous tissue 

distribution of the scrapie agent precursor protein. Neurology  42, 149-156. 

Bernoulli,C., Siegfried,J., Baumgartner,G., Regli,F., Rabinowicz,T., Gajdusek,D.C., 

and Gibbs,C.J., Jr. (1977). Danger of accidental person-to-person transmission of 

Creutzfeldt-Jakob disease by surgery. Lancet 1, 478-479. 

Bessen,R.A. and Marsh,R.F. (1992). Identification of two biologically distinct strains 

of transmissible mink encephalopathy in hamsters. J Gen. Virol. 73 ( Pt 2), 329-334. 

Bessen,R.A. and Marsh,R.F. (1992). Biochemical and physical properties of the prion 

protein from two strains of the transmissible mink encephalopathy agent. J Virol. 66, 

2096-2101. 



 

 123

Bessen,R.A. and Marsh,R.F. (1994). Distinct PrP properties suggest the molecular 

basis of strain variation in transmissible mink encephalopathy. J Virol. 68, 7859-7868. 

Biacabe,A.G., Laplanche,J.L., Ryder,S., and Baron,T. (2004). Distinct molecular 

phenotypes in bovine prion diseases. EMBO Rep. 5, 110-115. 

Billinis,C., Panagiotidis,C.H., Psychas,V., Argyroudis,S., Nicolaou,A., Leontides,S., 

Papadopoulos,O., and Sklaviadis,T. (2002). Prion protein gene polymorphisms in 

natural goat scrapie. J Gen. Virol. 83, 713-721. 

Birkett,C.R., Hennion,R.M., Bembridge,D.A., Clarke,M.C., Chree,A., Bruce,M.E., and 

Bostock,C.J. (2001). Scrapie strains maintain biological phenotypes on propagation 

in a cell line in culture. EMBO J 20, 3351-3358. 

Bons,N., Mestre-Frances,N., Charnay,Y., Salmona,M., and Tagliavini,F. (1996). 

Spontaneous spongiform encephalopathy in a young adult rhesus monkey. C. R. 

Acad. Sci. III 319, 733-736. 

Bons,N., Mestre-Frances,N., Guiraud,I., and Charnay,Y. (1997). Prion 

immunoreactivity in brain, tonsil, gastrointestinal epithelial cells, and blood and lymph 

vessels in lemurian zoo primates with spongiform encephalopathy. C. R. Acad. Sci. 

III 320, 971-979. 

Bons,N., Mestre-Frances,N., Belli,P., Cathala,F., Gajdusek,D.C., and Brown,P. 

(1999). Natural and experimental oral infection of nonhuman primates by bovine 

spongiform encephalopathy agents. Proc. Natl. Acad. Sci. U. S. A 96, 4046-4051. 



 

 124

Borchelt,D.R., Scott,M., Taraboulos,A., Stahl,N., and Prusiner,S.B. (1990). Scrapie 

and cellular prion proteins differ in their kinetics of synthesis and topology in cultured 

cells. J Cell Biol. 110, 743-752. 

Bosques,C.J. and Imperiali,B. (2003). The interplay of glycosylation and disulfide 

formation influences fibrillization in a prion protein fragment. Proc. Natl. Acad. Sci. U. 

S. A 100, 7593-7598. 

Bossers,A., de Vries,R., and Smits,M.A. (2000). Susceptibility of sheep for scrapie as 

assessed by in vitro conversion of nine naturally occurring variants of PrP. J Virol. 74, 

1407-1414. 

Bradley,R. (1991). Bovine spongiform encephalopathy (BSE): the current situation 

and research. Eur. J Epidemiol. 7, 532-544. 

Brandner,S., Raeber,A., Sailer,A., Blattler,T., Fischer,M., Weissmann,C., and 

Aguzzi,A. (1996). Normal host prion protein (PrPC) is required for scrapie spread 

within the central nervous system. Proc. Natl. Acad. Sci. U. S. A 93, 13148-13151. 

Bratberg,B., Ueland,K., and Wells,G.A. (1995). Feline spongiform encephalopathy in 

a cat in Norway. Vet. Rec. 136, 444. 

Braun,U. (2002). [Clinical signs and diagnosis of BSE]. Schweiz. Arch. Tierheilkd. 

144, 645-652. 

Brayton,K.A., O'Rourke,K.I., Lyda,A.K., Miller,M.W., and Knowles,D.P. (2004). A 

processed pseudogene contributes to apparent mule deer prion gene heterogeneity. 

Gene 326, 167-173. 



 

 125

Brown,D.R. and Besinger,A. (1998). Prion protein expression and superoxide 

dismutase activity. Biochem. J 334 ( Pt 2), 423-429. 

Brown,D.R., Wong,B.S., Hafiz,F., Clive,C., Haswell,S.J., and Jones,I.M. (1999). 

Normal prion protein has an activity like that of superoxide dismutase. Biochem. J 

344 Pt 1, 1-5. 

Brown,D.R., Clive,C., and Haswell,S.J. (2001). Antioxidant activity related to copper 

binding of native prion protein. J Neurochem. 76, 69-76. 

Brown,P., Goldfarb,L.G., and Gajdusek,D.C. (1991). The new biology of spongiform 

encephalopathy: infectious amyloidoses with a genetic twist. Lancet 337, 1019-1022. 

Brown,P., Preece,M., Brandel,J.P., Sato,T., McShane,L., Zerr,I., Fletcher,A., 

Will,R.G., Pocchiari,M., Cashman,N.R., d'Aignaux,J.H., Cervenakova,L., Fradkin,J., 

Schonberger,L.B., and Collins,S.J. (2000). Iatrogenic Creutzfeldt-Jakob disease at 

the millennium. Neurology 55, 1075-1081. 

Bruce,M., Chree,A., McConnell,I., Foster,J., Pearson,G., and Fraser,H. (1994). 

Transmission of bovine spongiform encephalopathy and scrapie to mice: strain 

variation and the species barrier. Philos. Trans. R. Soc. Lond B Biol. Sci. 343, 405-

411. 

Bruce,M.E., McConnell,I., Fraser,H., and Dickinson,A.G. (1991). The disease 

characteristics of different strains of scrapie in Sinc congenic mouse lines: 

implications for the nature of the agent and host control of pathogenesis. J Gen. 

Virol. 72 ( Pt 3), 595-603. 



 

 126

Bruce,M.E., Will,R.G., Ironside,J.W., McConnell,I., Drummond,D., Suttie,A., 

McCardle,L., Chree,A., Hope,J., Birkett,C., Cousens,S., Fraser,H., and Bostock,C.J. 

(1997). Transmissions to mice indicate that 'new variant' CJD is caused by the BSE 

agent. Nature 389, 498-501. 

Bruce,M.E., Boyle,A., Cousens,S., McConnell,I., Foster,J., Goldmann,W., and 

Fraser,H. (2002). Strain characterization of natural sheep scrapie and comparison 

with BSE. J Gen. Virol. 83, 695-704. 

Bucciantini,M., Giannoni,E., Chiti,F., Baroni,F., Formigli,L., Zurdo,J., Taddei,N., 

Ramponi,G., Dobson,C.M., and Stefani,M. (2002). Inherent toxicity of aggregates 

implies a common mechanism for protein misfolding diseases. Nature 416, 507-511. 

Bueler,H., Fischer,M., Lang,Y., Bluethmann,H., Lipp,H.P., DeArmond,S.J., 

Prusiner,S.B., Aguet,M., and Weissmann,C. (1992). Normal development and 

behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577-

582. 

Bueler,H., Aguzzi,A., Sailer,A., Greiner,R.A., Autenried,P., Aguet,M., and 

Weissmann,C. (1993). Mice devoid of PrP are resistant to scrapie. Cell 73, 1339-

1347. 

Bunk,S. (2004). Chronic wasting disease-prion disease in the wild. PLoS. Biol. 2, 

E121. 

Calzolai,L., Lysek,D.A., Guntert,P., von Schroetter,C., Riek,R., Zahn,R., and 

Wuthrich,K. (2000). NMR structures of three single-residue variants of the human 

prion protein. Proc. Natl. Acad. Sci. U. S. A 97, 8340-8345. 



 

 127

Caplazi,P.A., O'Rourke,K.I., and Baszler,T.V. (2004). Resistance to scrapie in PrP 

ARR/ARQ heterozygous sheep is not caused by preferential allelic use. J Clin. 

Pathol. 57, 647-650. 

Capucchio,M.T., Guarda,F., Pozzato,N., Coppolino,S., Caracappa,S., and Di,M., V 

(2001). Clinical signs and diagnosis of scrapie in Italy: a comparative study in sheep 

and goats. J Vet. Med. A Physiol Pathol. Clin. Med. 48, 23-31. 

Carlson,G.A., Goodman,P.A., Lovett,M., Taylor,B.A., Marshall,S.T., Peterson-

Torchia,M., Westaway,D., and Prusiner,S.B. (1988). Genetics and polymorphism of 

the mouse prion gene complex: control of scrapie incubation time. Mol. Cell Biol. 8, 

5528-5540. 

Carlson,G.A., DeArmond,S.J., Torchia,M., Westaway,D., and Prusiner,S.B. (1994). 

Genetics of prion diseases and prion diversity in mice. Philos. Trans. R. Soc. Lond B 

Biol. Sci. 343, 363-369. 

Casalone,C., Zanusso,G., Acutis,P., Ferrari,S., Capucci,L., Tagliavini,F., Monaco,S., 

and Caramelli,M. (2004). Identification of a second bovine amyloidotic spongiform 

encephalopathy: molecular similarities with sporadic Creutzfeldt-Jakob disease. Proc. 

Natl. Acad. Sci. U. S. A 101, 3065-3070. 

Castilla,J., Gutierrez-Adan,A., Brun,A., Pintado,B., Parra,B., Ramirez,M.A., 

Salguero,F.J., Diaz,S.S., Rabano,A., Cano,M.J., and Torres,J.M. (2004). Different 

behavior toward bovine spongiform encephalopathy infection of bovine prion protein 

transgenic mice with one extra repeat octapeptide insert mutation. J. Neurosci. 24, 

2156-2164. 



 

 128

Castilla,J., Gutierrez-Adan,A., Brun,A., Doyle,D., Pintado,B., Ramirez,M.A., 

Salguero,F.J., Parra,B., Diaz,S.S., Sanchez-Vizcaino,J.M., Rogers,M., and 

Torres,J.M. (2004). Subclinical bovine spongiform encephalopathy infection in 

transgenic mice expressing porcine prion protein. J Neurosci. 24, 5063-5069. 

Caughey,B., Raymond,G.J., and Bessen,R.A. (1998). Strain-dependent differences 

in beta-sheet conformations of abnormal prion protein. J Biol. Chem. 273, 32230-

32235. 

Cereghetti,G.M., Negro,A., Vinck,E., Massimino,M.L., Sorgato,M.C., and Van 

Doorslaer,S. (2004). Copper(II) binding to the human Doppel protein may mark its 

functional diversity from the prion protein. J Biol. Chem. 279, 36497-36503. 

Cervenakova,L., Goldfarb,L.G., Garruto,R., Lee,H.S., Gajdusek,D.C., and Brown,P. 

(1998). Phenotype-genotype studies in kuru: implications for new variant Creutzfeldt-

Jakob disease. Proc. Natl. Acad. Sci. U. S. A 95, 13239-13241. 

Chiesa,R., Piccardo,P., Ghetti,B., and Harris,D.A. (1998). Neurological illness in 

transgenic mice expressing a prion protein with an insertional mutation. Neuron 21, 

1339-1351. 

Chiti,F., Taddei,N., White,P.M., Bucciantini,M., Magherini,F., Stefani,M., and 

Dobson,C.M. (1999). Mutational analysis of acylphosphatase suggests the 

importance of topology and contact order in protein folding. Nat. Struct. Biol. 6, 1005-

1009. 

Chiti,F., Calamai,M., Taddei,N., Stefani,M., Ramponi,G., and Dobson,C.M. (2002). 

Studies of the aggregation of mutant proteins in vitro provide insights into the 



 

 129

genetics of amyloid diseases. Proc. Natl. Acad. Sci. U. S. A 99 Suppl 4, 16419-

16426. 

Collinge,J., Palmer,M.S., and Dryden,A.J. (1991). Genetic predisposition to 

iatrogenic Creutzfeldt-Jakob disease. Lancet 337 , 1441-1442. 

Collinge,J., Whittington,M.A., Sidle,K.C., Smith,C.J., Palmer,M.S., Clarke,A.R., and 

Jefferys,J.G. (1994). Prion protein is necessary for normal synaptic function. Nature 

370, 295-297. 

Collinge,J., Sidle,K.C., Meads,J., Ironside,J., and Hill,A.F. (1996). Molecular analysis 

of prion strain variation and the aetiology of 'new variant' CJD. Nature 383, 685-690. 

Collinge,J. (2001). Prion diseases of humans and animals: their causes and 

molecular basis. Annu. Rev. Neurosci. 24, 519-550. 

Collins,S., McLean,C.A., and Masters,C.L. (2001). Gerstmann-Straussler-Scheinker 

syndrome,fatal familial insomnia, and kuru: a review of these less common human 

transmissible spongiform encephalopathies. J Clin. Neurosci. 8, 387-397. 

Collins,S.J., Lawson,V.A., and Masters,C.L. (2004). Transmissible spongiform 

encephalopathies. Lancet 363, 51-61. 

Cordeiro,Y., Machado,F., Juliano,L., Juliano,M.A., Brentani,R.R., Foguel,D., and 

Silva,J.L. (2001). DNA converts cellular prion protein into the beta-sheet 

conformation and inhibits prion peptide aggregation. J Biol. Chem. 276, 49400-

49409. 



 

 130

Cousens,S., Smith,P.G., Ward,H., Everington,D., Knight,R.S., Zeidler,M., Stewart,G., 

Smith-Bathgate,E.A., Macleod,M.A., Mackenzie,J., and Will,R.G. (2001). 

Geographical distribution of variant Creutzfeldt-Jakob disease in Great Britain, 1994-

2000. Lancet 357, 1002-1007. 

Cunningham,A.A., Kirkwood,J.K., Dawson,M., Spencer,Y.I., Green,R.B., and 

Wells,G.A. (2004). Bovine spongiform encephalopathy infectivity in greater kudu 

(Tragelaphus strepsiceros). Emerg. Infect. Dis. 10, 1044-1049. 

Dawson,M., Wells,G.A., Parker,B.N., and Scott,A.C. (1990). Primary parenteral 

transmission of bovine spongiform encephalopathy to the pig. Vet. Rec. 127, 338. 

de Silva,H.V., Harmony,J.A., Stuart,W.D., Gil,C.M., and Robbins,J. (1990). 

Apolipoprotein J: structure and tissue distribution. Biochemistry 29, 5380-5389. 

DeArmond,S.J., Sanchez,H., Yehiely,F., Qiu,Y., Ninchak-Casey,A., Daggett,V., 

Camerino,A.P., Cayetano,J., Rogers,M., Groth,D., Torchia,M., Tremblay,P., 

Scott,M.R., Cohen,F.E., and Prusiner,S.B. (1997). Selective neuronal targeting in 

prion disease. Neuron 19, 1337-1348. 

DeArmond,S.J. and Bouzamondo,E. (2002). Fundamentals of prion biology and 

diseases. Toxicology 181-182, 9-16. 

Debeer,S., Baron,T., and Bencsik,A. (2003). Neuropathological characterisation of 

French bovine spongiform encephalopathy cases. Histochem. Cell Biol. 120, 513-

521. 



 

 131

Deleault,N.R., Lucassen,R.W., and Supattapone,S. (2003). RNA molecules stimulate 

prion protein conversion. Nature 425, 717-720. 

Della-Bianca,V., Rossi,F., Armato,U., Dal Pra,I., Costantini,C., Perini,G., Politi,V., and 

Della,V.G. (2001). Neurotrophin p75 receptor is involved in neuronal damage by 

prion peptide-(106-126). J Biol. Chem. 276, 38929-38933. 

DeMarco,M.L. and Daggett,V. (2004). From conversion to aggregation: protofibril 

formation of the prion protein. Proc. Natl. Acad. Sci. U. S. A 101, 2293-2298. 

Dobson,C.M. (2001). Protein folding and its links with human disease. Biochem. Soc. 

Symp. 1-26. 

Donnelly,C.A., Ghani,A.C., Ferguson,N.M., and Anderson,R.M. (1997). Recent 

trends in the BSE epidemic. Nature 389, 903. 

Duffy,P., Wolf,J., Collins,G., DeVoe,A.G., Streeten,B., and Cowen,D. (1974). Letter: 

Possible person-to-person transmission of Creutzfeldt-Jakob disease. N. Engl. J 

Med. 290, 692-693. 

Eghiaian,F., Grosclaude,J., Lesceu,S., Debey,P., Doublet,B., Treguer,E., Rezaei,H., 

and Knossow,M. (2004). Insight into the PrPC-->PrPSc conversion from the 

structures of antibody-bound ovine prion scrapie-susceptibility variants. Proc. Natl. 

Acad. Sci. U. S. A 101, 10254-10259. 

Ellis,V., Daniels,M., Misra,R., and Brown,D.R. (2002). Plasminogen activation is 

stimulated by prion protein and regulated in a copper-dependent manner. 

Biochemistry 41, 6891-6896. 



 

 132

Elsen,J.M., Amigues,Y., Schelcher,F., Ducrocq,V., Andreoletti,O., Eychenne,F., 

Khang,J.V., Poivey,J.P., Lantier,F., and Laplanche,J.L. (1999). Genetic susceptibility 

and transmission factors in scrapie: detailed analysis of an epidemic in a closed flock 

of Romanov. Arch. Virol. 144, 431-445. 

Epple,G., Schleunig,W.-D., Kettelgerdes,G., Köttgen,E., Geßner,R., and Praus,M. 

(2004). Prion protein stimulates tissue-type plasminogen activator-mediated plasmin 

generation via a lysine-binding site on kringle 2. J Thromb Haemost 2, 962-968. 

Fatzer,R., Graber,H.U., Meyer,R.K., Cardozo,C., Vandevelde,M., and Zurbriggen,A. 

(1996). Neuronal degeneration in brain stem nuclei in bovine spongiform 

encephalopathy. Zentralbl. Veterinarmed. A 43, 23-29. 

Ferguson,N.M., Donnelly,C.A., Woolhouse,M.E., and Anderson,R.M. (1997). A 

genetic interpretation of heightened risk of BSE in offspring of affected dams. Proc. 

R. Soc. Lond B Biol. Sci. 264, 1445-1455. 

Flechsig,E., Shmerling,D., Hegyi,I., Raeber,A.J., Fischer,M., Cozzio,A., von 

Mering,C., Aguzzi,A., and Weissmann,C. (2000). Prion protein devoid of the 

octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. 

Neuron 27, 399-408. 

Flechsig,E., Hegyi,I., Leimeroth,R., Zuniga,A., Rossi,D., Cozzio,A., Schwarz,P., 

Rulicke,T., Gotz,J., Aguzzi,A., and Weissmann,C. (2003). Expression of truncated 

PrP targeted to Purkinje cells of PrP knockout mice causes Purkinje cell death and 

ataxia. EMBO J 22, 3095-3101. 



 

 133

Fleetwood,A.J. and Furley,C.W. (1990). Spongiform encephalopathy in an eland. 

Vet. Rec. 126, 408-409. 

Foster,J., Goldmann,W., Parnham,D., Chong,A., and Hunter,N. (2001). Partial 

dissociation of PrP(Sc) deposition and vacuolation in the brains of scrapie and BSE 

experimentally affected goats. J Gen. Virol. 82, 267-273. 

Foster,J.D., Hope,J., and Fraser,H. (1993). Transmission of bovine spongiform 

encephalopathy to sheep and goats. Vet. Rec. 133, 339-341. 

Fournier,J.G., Escaig-Haye,F., Billette,d., V, and Robain,O. (1995). Ultrastructural 

localization of cellular prion protein (PrPc) in synaptic boutons of normal hamster 

hippocampus. C. R. Acad. Sci. III 318, 339-344. 

Fournier,J.G., Escaig-Haye,F., Billette,d., V, Robain,O., Lasmezas,C.I., Deslys,J.P., 

Dormont,D., and Brown,P. (1998). Distribution and submicroscopic immunogold 

localization of cellular prion protein (PrPc) in extracerebral tissues. Cell Tissue Res. 

292, 77-84. 

Fournier,J.G., Escaig-Haye,F., and Grigoriev,V. (2000). Ultrastructural localization of 

prion proteins: physiological and pathological implications. Microsc. Res. Tech. 50, 

76-88. 

Fournier,J.G. and Grigoriev,B. (2001). Prion diseases: contribution of high-resolution 

immunomorphology. J Cell Mol. Med. 5, 367-377. 

Fraser,H. and Dickinson,A.G. (1968). The sequential development of the brain lesion 

of scrapie in three strains of mice. J Comp Pathol.  78, 301-311. 



 

 134

Fraser,H., Pearson,G.R., McConnell,I., Bruce,M.E., Wyatt,J.M., and Gruffydd-

Jones,T.J. (1994). Transmission of feline spongiform encephalopathy to mice. Vet. 

Rec. 134, 449. 

Gabriel,J.M., Oesch,B., Kretzschmar,H., Scott,M., and Prusiner,S.B. (1992). 

Molecular cloning of a candidate chicken prion protein. Proc. Natl. Acad. Sci. U. S. A 

89, 9097-9101. 

Gajdusek,C., Gibbs,C.J., and Alpers,M. (1967). Slow-acting virus implicated in kuru. 

JAMA 199, 34. 

Gajdusek,D.C. and ZIGAS,V. (1959). Kuru; clinical, pathological and epidemiological 

study of an acute progressive degenerative disease of the central nervous system 

among natives of the Eastern Highlands of New Guinea. Am. J Med. 26, 442-469. 

Gajdusek,D.C., Gibbs,C.J., and Alpers,M. (1966). Experimental transmission of a 

Kuru-like syndrome to chimpanzees. Nature 209, 794-796. 

Gajdusek,D.C. (1977). Unconventional viruses and the origin and disappearance of 

kuru. Science 197, 943-960. 

Gambetti,P., Kong,Q., Zou,W., Parchi,P., and Chen,S.G. (2003). Sporadic and 

familial CJD: classification and characterisation. Br. Med. Bull. 66, 213-239. 

Gauczynski,S., Peyrin,J.M., Haik,S., Leucht,C., Hundt,C., Rieger,R., Krasemann,S., 

Deslys,J.P., Dormont,D., Lasmezas,C.I., and Weiss,S. (2001). The 37-kDa/67-kDa 

laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO 

J 20, 5863-5875. 



 

 135

Glatzel,M., Abela,E., Maissen,M., and Aguzzi,A. (2003). Extraneural pathologic prion 

protein in sporadic Creutzfeldt-Jakob disease. N. Engl. J Med. 349, 1812-1820. 

Gohel,C., Grigoriev,V., Escaig-Haye,F., Lasmezas,C.I., Deslys,J.P., Langeveld,J., 

Akaaboune,M., Hantai,D., and Fournier,J.G. (1999). Ultrastructural localization of 

cellular prion protein (PrPc) at the neuromuscular junction. J Neurosci. Res. 55, 261-

267. 

Goldfarb,L.G., Brown,P., Cervenakova,L., and Gajdusek,D.C. (1994). Molecular 

genetic studies of Creutzfeldt-Jakob disease. Mol. Neurobiol. 8, 89-97. 

Goldfarb,L.G. (2002). Kuru: the old epidemic in a new mirror. Microbes. Infect. 4, 

875-882. 

Goldmann,W., Hunter,N., Smith,G., Foster,J., and Hope,J. (1994). PrP genotype and 

agent effects in scrapie: change in allelic interaction with different isolates of agent in 

sheep, a natural host of scrapie. J. Gen. Virol. 75 ( Pt 5), 989-995. 

Goldmann,W., Martin,T., Foster,J., Hughes,S., Smith,G., Hughes,K., Dawson,M., and 

Hunter,N. (1996). Novel polymorphisms in the caprine PrP gene: a codon 142 

mutation associated with scrapie incubation period. J Gen. Virol. 77 ( Pt 11), 2885-

2891. 

Goldmann,W., O'Neill,G., Cheung,F., Charleson,F., Ford,P., and Hunter,N. (1999). 

PrP (prion) gene expression in sheep may be modulated by alternative 

polyadenylation of its messenger RNA. J. Gen. Virol. 80 ( Pt 8), 2275-2283. 



 

 136

Guijarro,J.I., Sunde,M., Jones,J.A., Campbell,I.D., and Dobson,C.M. (1998). Amyloid 

fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. U. S. A 95, 4224-4228. 

Hadlow,W.J., Race,R.E., and Kennedy,R.C. (1987). Temporal distribution of 

transmissible mink encephalopathy virus in mink inoculated subcutaneously. J Virol. 

61, 3235-3240. 

Haeberle,A.M., Ribaut-Barassin,C., Bombarde,G., Mariani,J., Hunsmann,G., 

Grassi,J., and Bailly,Y. (2000). Synaptic prion protein immuno-reactivity in the rodent 

cerebellum. Microsc. Res. Tech. 50, 66-75. 

Haik,S., Faucheux,B.A., Sazdovitch,V., Privat,N., Kemeny,J.L., Perret-Liaudet,A., 

and Hauw,J.J. (2003). The sympathetic nervous system is involved in variant 

Creutzfeldt-Jakob disease. Nat. Med. 9, 1121-1123. 

Hamir,A.N., Miller,J.M., Cutlip,R.C., Stack,M.J., Chaplin,M.J., and Jenny,A.L. (2003). 

Preliminary observations on the experimental transmission of scrapie to elk (Cervus 

elaphus nelsoni) by intracerebral inoculation. Vet. Pathol. 40, 81-85. 

Harris,D.A., Falls,D.L., Johnson,F.A., and Fischbach,G.D. (1991). A prion-like protein 

from chicken brain copurifies with an acetylcholine receptor-inducing activity. Proc. 

Natl. Acad. Sci. U. S. A 88, 7664-7668. 

Harris,D.A., Lele,P., and Snider,W.D. (1993). Localization of the mRNA for a chicken 

prion protein by in situ hybridization. Proc. Natl. Acad. Sci. U. S. A 90, 4309-4313. 

Head,M.W., Ritchie,D., Smith,N., McLoughlin,V., Nailon,W., Samad,S., Masson,S., 

Bishop,M., McCardle,L., and Ironside,J.W. (2004). Peripheral tissue involvement in 



 

 137

sporadic, iatrogenic, and variant Creutzfeldt-Jakob disease: an 

immunohistochemical, quantitative, and biochemical study. Am. J Pathol. 164, 143-

153. 

Healy,A.M., Weavers,E., McElroy,M., Gomez-Parada,M., Collins,J.D., O'Doherty,E., 

Sweeney,T., and Doherty,M.L. (2003). The clinical neurology of scrapie in Irish 

sheep. J Vet. Intern. Med. 17, 908-916. 

Heaton,M.P., Leymaster,K.A., Freking,B.A., Hawk,D.A., Smith,T.P., Keele,J.W., 

Snelling,W.M., Fox,J.M., Chitko-McKown,C.G., and Laegreid,W.W. (2003). Prion 

gene sequence variation within diverse groups of U.S. sheep, beef cattle, and deer. 

Mamm. Genome 14, 765-777. 

Hernandez-Sanchez,J., Waddington,D., Wiener,P., Haley,C.S., and Williams,J.L. 

(2002). Genome-wide search for markers associated with bovine spongiform 

encephalopathy. Mamm. Genome 13, 164-168. 

Hill,A.F., Butterworth,R.J., Joiner,S., Jackson,G., Rossor,M.N., Thomas,D.J., 

Frosh,A., Tolley,N., Bell,J.E., Spencer,M., King,A., Al Sarraj,S., Ironside,J.W., 

Lantos,P.L., and Collinge,J. (1999). Investigation of variant Creutzfeldt-Jakob 

disease and other human prion diseases with tonsil biopsy samples. Lancet 353, 

183-189. 

Hills,D., Schlaepfer,J., Comincini,S., MacLean,I., Dolf,G., Ferretti,L., Olsaker,I., and 

Williams,J.L. (2003). Sequence variation in the bovine and ovine PRNP genes. Anim 

Genet. 34, 183-190. 



 

 138

Hirakura,Y. and Kagan,B.L. (2001). Pore formation by beta-2-microglobulin: a 

mechanism for the pathogenesis of dialysis associated amyloidosis. Amyloid. 8, 94-

100. 

Horiuchi,M., Ishiguro,N., Nagasawa,H., Toyoda,Y., and Shinagawa,M. (1997). 

Alternative usage of exon 1 of bovine PrP mRNA. Biochem. Biophys. Res. Commun. 

233, 650-654. 

Horiuchi,M., Ishiguro,N., Nagasawa,H., Toyoda,Y., and Shinagawa,M. (1998). 

Genomic structure of the bovine PrP gene and complete nucleotide sequence of 

bovine PrP cDNA. Anim Genet 29, 37-40. 

Hornshaw,M.P., McDermott,J.R., Candy,J.M., and Lakey,J.H. (1995). Copper binding 

to the N-terminal tandem repeat region of mammalian and avian prion protein: 

structural studies using synthetic peptides. Biochem. Biophys. Res. Commun. 214, 

993-999. 

Hornshaw,M.P., McDermott,J.R., and Candy,J.M. (1995). Copper binding to the N-

terminal tandem repeat regions of mammalian and avian prion protein. Biochem. 

Biophys. Res. Commun. 207, 621-629. 

Houston,E.F., Halliday,S.I., Jeffrey,M., Goldmann,W., and Hunter,N. (2002). New 

Zealand sheep with scrapie-susceptible PrP genotypes succumb to experimental 

challenge with a sheep-passaged scrapie isolate (SSBP/1). J. Gen. Virol. 83, 1247-

1250. 

Houston,F., Foster,J.D., Chong,A., Hunter,N., and Bostock,C.J. (2000). Transmission 

of BSE by blood transfusion in sheep. Lancet 356, 999-1000. 



 

 139

Houston,F., Goldmann,W., Chong,A., Jeffrey,M., Gonzalez,L., Foster,J., Parnham,D., 

and Hunter,N. (2003). Prion diseases: BSE in sheep bred for resistance to infection. 

Nature 423, 498. 

Humeny,A., Schiebel,K., Seeber,S., and Becker,C.M. (2002). Identification of 

polymorphisms within the bovine prion protein gene (Prnp) by DNA sequencing and 

genotyping by MALDI-TOF-MS. Neurogenetics. 4, 59-60. 

Hundt,C., Peyrin,J.M., Haik,S., Gauczynski,S., Leucht,C., Rieger,R., Riley,M.L., 

Deslys,J.P., Dormont,D., Lasmezas,C.I., and Weiss,S. (2001). Identification of 

interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. 

EMBO J 20, 5876-5886. 

Hunter,N., Foster,J.D., Benson,G., and Hope,J. (1991). Restriction fragment length 

polymorphisms of the scrapie-associated fibril protein (PrP) gene and their 

association with susceptibility to natural scrapie in British sheep. J Gen. Virol. 72 ( Pt 

6), 1287-1292. 

Hunter,N., Goldmann,W., Smith,G., and Hope,J. (1994). Frequencies of PrP gene 

variants in healthy cattle and cattle with BSE in Scotland. Vet. Rec. 135, 400-403. 

Hunter,N. (1997). PrP genetics in sheep and the applications for scrapie and BSE. 

Trends Microbiol. 5, 331-334. 

Hunter,N., Foster,J., Chong,A., McCutcheon,S., Parnham,D., Eaton,S., 

MacKenzie,C., and Houston,F. (2002). Transmission of prion diseases by blood 

transfusion. J Gen. Virol. 83, 2897-2905. 



 

 140

Ikeda,K., Kawada,N., Wang,Y.Q., Kadoya,H., Nakatani,K., Sato,M., and Kaneda,K. 

(1998). Expression of cellular prion protein in activated hepatic stellate cells. Am. J 

Pathol. 153, 1695-1700. 

Ikeda,T., Horiuchi,M., Ishiguro,N., Muramatsu,Y., Kai-Uwe,G.D., and Shinagawa,M. 

(1995). Amino acid polymorphisms of PrP with reference to onset of scrapie in 

Suffolk and Corriedale sheep in Japan. J Gen. Virol. 76 ( Pt 10), 2577-2581. 

Ilangumaran,S., Robinson,P.J., and Hoessli,D.C. (1996). Transfer of exogenous 

glycosylphos-phatidylinositol (GPI)-linked molecules to plasma membranes. Trends 

Cell Biol. 6, 163-167. 

Inoue,S., Tanaka,M., Horiuchi,M., Ishiguro,N., and Shinagawa,M. (1997). 

Characterization of the bovine prion protein gene: the expression requires interaction 

between the promoter and intron. J. Vet. Med. Sci. 59, 175-183. 

Ironside,J.W. (1998). Prion diseases in man. J Pathol. 186, 227-234. 

Jackson,G.S., Murray,I., Hosszu,L.L., Gibbs,N., Waltho,J.P., Clarke,A.R., and 

Collinge,J. (2001). Location and properties of metal-binding sites on the human prion 

protein. Proc. Natl. Acad. Sci. U. S. A 98, 8531-8535. 

Jeffrey,M. and Wells,G.A. (1988). Spongiform encephalopathy in a nyala 

(Tragelaphus angasi). Vet. Pathol. 25, 398-399. 

Johnson,C., Johnson,J., Clayton,M., McKenzie,D., and Aiken,J. (2003). Prion protein 

gene heterogeneity in free-ranging white-tailed deer within the chronic wasting 

disease affected region of Wisconsin. J Wildl. Dis.  39, 576-581. 



 

 141

Jung,G., Jones,G., and Masison,D.C. (2002). Amino acid residue 184 of yeast 

Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and 

thermotolerance. Proc. Natl. Acad. Sci. U. S. A 99, 9936-9941. 

Kaneko,K., Zulianello,L., Scott,M., Cooper,C.M., Wallace,A.C., James,T.L., 

Cohen,F.E., and Prusiner,S.B. (1997). Evidence for protein X binding to a 

discontinuous epitope on the cellular prion protein during scrapie prion propagation. 

Proc. Natl. Acad. Sci. U. S. A 94, 10069-10074. 

Kao,R.R., Houston,F., Baylis,M., Chihota,C.M., Goldmann,W., Gravenor,M.B., 

Hunter,N., and McLean,A.R. (2003). Epidemiological implications of the susceptibility 

to BSE of putatively resistant sheep. J Gen. Virol. 84, 3503-3512. 

Kempster,S., Collins,M.E., Aronow,B.J., Simmons,M., Green,R.B., and Edington,N. 

(2004). Clusterin shortens the incubation and alters the histopathology of bovine 

spongiform encephalopathy in mice. Neuroreport 15, 1735-1738. 

Kenward,N., Hope,J., Landon,M., and Mayer,R.J. (1994). Expression of polyubiquitin 

and heat-shock protein 70 genes increases in the later stages of disease progression 

in scrapie-infected mouse brain. J Neurochem. 62, 1870-1877. 

Khlebodarova,T.M., Malchenko,S.N., Matveeva,N.M., Pack,S.D., Sokolova,O.V., 

Alabiev,B.Y., Belousov,E.S., Peremislov,V.V., Nayakshin,A.M., and Brusgaard,K. 

(1995). Chromosomal and regional localization of the loci for IGKC, IGGC, ALDB, 

HOXB, GPT, and PRNP in the American mink (Mustela vison): comparisons with 

human and mouse. Mamm. Genome 6, 705-709. 



 

 142

Kim,B.H., Lee,H.G., Choi,J.K., Kim,J.I., Choi,E.K., Carp,R.I., and Kim,Y.S. (2004). 

The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and 

mitochondrial dysfunction induced by serum deprivation. Brain Res. Mol. Brain Res. 

124, 40-50. 

Kirkwood,J.K., Wells,G.A., Wilesmith,J.W., Cunningham,A.A., and Jackson,S.I. 

(1990). Spongiform encephalopathy in an arabian oryx (Oryx leucoryx) and a greater 

kudu (Tragelaphus strepsiceros). Vet. Rec. 127, 418-420. 

Kirkwood,J.K., Cunningham,A.A., Wells,G.A., Wilesmith,J.W., and Barnett,J.E. 

(1993). Spongiform encephalopathy in a herd of greater kudu (Tragelaphus 

strepsiceros): epidemiological observations. Vet. Rec. 133, 360-364. 

Kirkwood,J.K. and Cunningham,A.A. (1994). Epidemiological observations on 

spongiform encephalopathies in captive wild animals in the British Isles. Vet. Rec. 

135, 296-303. 

Kirkwood,J.K., Cunningham,A.A., Austin,A.R., Wells,G.A., and Sainsbury,A.W. 

(1994). Spongiform encephalopathy in a greater kudu (Tragelaphus strepsiceros) 

introduced into an affected group. Vet. Rec. 134, 167-168. 

Kitamoto,T., Ogomori,K., Tateishi,J., and Prusiner,S.B. (1987). Formic acid 

pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab 

Invest 57, 230-236. 

Kocisko,D.A., Come,J.H., Priola,S.A., Chesebro,B., Raymond,G.J., Lansbury,P.T., 

and Caughey,B. (1994). Cell-free formation of protease-resistant prion protein. 

Nature 370, 471-474. 



 

 143

Kompoliti,K., Goetz,C.G., Gajdusek,D.C., and Cubo,E. (1999). Movement disorders 

in Kuru. Mov Disord. 14, 800-804. 

Kornblatt,J.A., Marchal,S., Rezaei,H., Kornblatt,M.J., Balny,C., Lange,R., 

Debey,M.P., Hui Bon,H.G., Marden,M.C., and Grosclaude,J. (2003). The fate of the 

prion protein in the prion/plasminogen complex. Biochem. Biophys. Res. Commun. 

305, 518-522. 

Kourie,J.I. and Henry,C.L. (2002). Ion channel formation and membrane-linked 

pathologies of misfolded hydrophobic proteins: the role of dangerous unchaperoned 

molecules. Clin. Exp. Pharmacol. Physiol 29, 741-753. 

Kovacs,G.G., Trabattoni,G., Hainfellner,J.A., Ironside,J.W., Knight,R.S., and 

Budka,H. (2002). Mutations of the prion protein gene phenotypic spectrum. J Neurol. 

249, 1567-1582. 

Kretzschmar,H.A., Neumann,M., Riethmuller,G., and Prusiner,S.B. (1992). Molecular 

cloning of a mink prion protein gene. J Gen. Virol. 73 ( Pt 10), 2757-2761. 

Kretzschmar,H.A., Sethi,S., Foldvari,Z., Windl,O., Querner,V., Zerr,I., and Poser,S. 

(2003). Latrogenic Creutzfeldt-Jakob disease with florid plaques. Brain Pathol. 13, 

245-249. 

Krobitsch,S. and Lindquist,S. (2000). Aggregation of huntingtin in yeast varies with 

the length of the polyglutamine expansion and the expression of chaperone proteins. 

Proc. Natl. Acad. Sci. U. S. A 97, 1589-1594. 



 

 144

Kuppinger, O., Krebs, S., and Förster, M. (2002). Prionenvariabilität im Deutschen 

Fleckvieh und Braunvieh. Vortragstagung der DGfZ und GfT am 18./19. September 

in Halle. 

Kutzer,T., Pfeiffer,I., and Brenig,B. (2002). Identification of new allelic variants in the 

ovine prion protein (PrP) gene. J Anim Breed Genet 119, 201-208. 

Lang,C.J., Heckmann,J.G., and Neundorfer,B. (1998). Creutzfeldt-Jakob disease via 

dural and corneal transplants. J Neurol. Sci. 160, 128-139. 

Lee,H.S., Sambuughin,N., Cervenakova,L., Chapman,J., Pocchiari,M., Litvak,S., 

Qi,H.Y., Budka,H., del Ser,T., Furukawa,H., Brown,P., Gajdusek,D.C., Long,J.C., 

Korczyn,A.D., and Goldfarb,L.G. (1999). Ancestral origins and worldwide distribution 

of the PRNP 200K mutation causing familial Creutzfeldt-Jakob disease. Am. J Hum. 

Genet 64, 1063-1070. 

Lee,H.S., Brown,P., Cervenakova,L., Garruto,R.M., Alpers,M.P., Gajdusek,D.C., and 

Goldfarb,L.G. (2001). Increased susceptibility to Kuru of carriers of the PRNP 129 

methionine/methionine genotype. J Infect. Dis. 183, 192-196. 

Lee,I.Y., Westaway,D., Smit,A.F., Wang,K., Seto,J., Chen,L., Acharya,C., 

Ankener,M., Baskin,D., Cooper,C., Yao,H., Prusiner,S.B., and Hood,L.E. (1998). 

Complete genomic sequence and analysis of the prion protein gene region from 

three mammalian species. Genome Res. 8, 1022-1037. 

Leggett,M.M., Dukes,J., and Pirie,H.M. (1990). A spongiform encephalopathy in a 

cat. Vet. Rec. 127, 586-588. 



 

 145

Legname,G., Baskakov,I.V., Nguyen,H.O., Riesner,D., Cohen,F.E., DeArmond,S.J., 

and Prusiner,S.B. (2004). Synthetic mammalian prions. Science 305, 673-676. 

Leone,P., Castiglioni,B., Sechi,T., Cassini,P., and Stella,A. (2002). Prion gene 

octarepeat variability in Italian cattle breeds. Proceedings of the 7th World Congress 

on Genetics Applied to Livestock Production,Montpellier, 19-23 August 2002, 

Session 13 13-40. 

Leucht,C., Simoneau,S., Rey,C., Vana,K., Rieger,R., Lasmezas,C.I., and Weiss,S. 

(2003). The 37 kDa/67 kDa laminin receptor is required for PrP(Sc) propagation in 

scrapie-infected neuronal cells. EMBO Rep. 4, 290-295. 

Lezmi,S., Bencsik,A., Monks,E., Petit,T., and Baron,T. (2003). First case of feline 

spongiform encephalopathy in a captive cheetah born in France: PrP(sc) analysis in 

various tissues revealed unexpected targeting of kidney and adrenal gland. 

Histochem. Cell Biol. 119, 415-422. 

Lezmi,S., Martin,S., Simon,S., Comoy,E., Bencsik,A., Deslys,J.P., Grassi,J., 

Jeffrey,M., and Baron,T. (2004). Comparative molecular analysis of the abnormal 

prion protein in field scrapie cases and experimental bovine spongiform 

encephalopathy in sheep by use of Western blotting and immunohistochemical 

methods. J Virol. 78, 3654-3662. 

Liberski,P.P. and Gajdusek,D.C. (1997). Kuru: forty years later, a historical note. 

Brain Pathol. 7, 555-560. 



 

 146

Ligios,C., Jeffrey,M., Ryder,S.J., Bellworthy,S.J., and Simmons,M.M. (2002). 

Distinction of scrapie phenotypes in sheep by lesion profiling. J Comp Pathol. 127, 

45-57. 

Lipp,O., Ritzmann,M., Kixmoller,M., Heinritzi,K., Hensel,A., and Truyen,U. (2004). 

Homogeneity of the prion protein gene in various European and Asian pig breeds. J 

Vet. Med. B Infect. Dis. Vet. Public Health 51, 97-98. 

Llewelyn,C.A., Hewitt,P.E., Knight,R.S., Amar,K., Cousens,S., Mackenzie,J., and 

Will,R.G. (2004). Possible transmission of variant Creutzfeldt-Jakob disease by blood 

transfusion. Lancet 363, 417-421. 

Lloyd,S.E., Onwuazor,O.N., Beck,J.A., Mallinson,G., Farrall,M., Targonski,P., 

Collinge,J., and Fisher,E.M. (2001). Identification of multiple quantitative trait loci 

linked to prion disease incubation period in mice. Proc. Natl. Acad. Sci. U. S. A 98, 

6279-6283. 

Lloyd,S.E., Uphill,J.B., Targonski,P.V., Fisher,E.M., and Collinge,J. (2002). 

Identification of genetic loci affecting mouse-adapted bovine spongiform 

encephalopathy incubation time in mice. Neurogenetics. 4, 77-81. 

Lloyd,S.E., Thompson,S.R., Beck,J.A., Linehan,J.M., Wadsworth,J.D., Brandner,S., 

Collinge,J., and Fisher,E.M. (2004). Identification and characterization of a novel 

mouse prion gene allele. Mamm. Genome 15, 383-389. 

Lloyd,S.E., Linehan,J.M., Desbruslais,M., Joiner,S., Buckell,J., Brandner,S., 

Wadsworth,J.D., and Collinge,J. (2004). Characterization of two distinct prion strains 



 

 147

derived from bovine spongiform encephalopathy transmissions to inbred mice. J 

Gen. Virol. 85, 2471-2478. 

Lopez,G.F., Zahn,R., Riek,R., and Wuthrich,K. (2000). NMR structure of the bovine 

prion protein. Proc. Natl. Acad. Sci. U. S. A 97, 8334-8339. 

Lorenzo,A. and Yankner,B.A. (1994). Beta-amyloid neurotoxicity requires fibril 

formation and is inhibited by congo red. Proc. Natl. Acad. Sci. U. S. A 91, 12243-

12247. 

Luhken,G., Buschmann,A., Groschup,M.H., and Erhardt,G. (2004). Prion protein 

allele A136 H154Q171 is associated with high susceptibility to scrapie in purebred 

and crossbred German Merinoland sheep. Arch. Virol. 149, 1571-1580. 

Maignien,T., Lasmezas,C.I., Beringue,V., Dormont,D., and Deslys,J.P. (1999). 

Pathogenesis of the oral route of infection of mice with scrapie and bovine 

spongiform encephalopathy agents. J Gen. Virol. 80 ( Pt 11), 3035-3042. 

Mallucci,G., Dickinson,A., Linehan,J., Klohn,P.C., Brandner,S., and Collinge,J. 

(2003). Depleting neuronal PrP in prion infection prevents disease and reverses 

spongiosis. Science 302, 871-874. 

Manolakou,K., Beaton,J., McConnell,I., Farquar,C., Manson,J., Hastie,N.D., 

Bruce,M., and Jackson,I.J. (2001). Genetic and environmental factors modify bovine 

spongiform encephalopathy incubation period in mice. Proc. Natl. Acad. Sci. U. S. A 

98, 7402-7407. 



 

 148

Marsh,R.F. and Hanson,R.P. (1969). Physical and chemical properties of the 

transmissible mink encephalopathy agent. J Virol. 3, 176-180. 

Marsh,R.F., Bessen,R.A., Lehmann,S., and Hartsough,G.R. (1991). Epidemiological 

and experimental studies on a new incident of transmissible mink encephalopathy. J 

Gen. Virol. 72 ( Pt 3), 589-594. 

Marsh,R.F. and Bessen,R.A. (1993). Epidemiologic and experimental studies on 

transmissible mink encephalopathy. Dev. Biol. Stand. 80, 111-118. 

Martin,T., Hughes,S., Hughes,K., and Dawson,M. (1995). Direct sequencing of PCR 

amplified pig PrP genes. Biochim. Biophys. Acta 1270, 211-214. 

Martins,V.R. and Brentani,R.R. (2002). The biology of the cellular prion protein. 

Neurochem. Int. 41, 353-355. 

Massimino,M.L., Ballarin,C., Bertoli,A., Casonato,S., Genovesi,S., Negro,A., and 

Sorgato,M.C. (2004). Human Doppel and prion protein share common membrane 

microdomains and internalization pathways. Int. J Biochem. Cell Biol. 36, 2016-2031. 

Matsubara,E., Frangione,B., and Ghiso,J. (1995). Characterization of apolipoprotein 

J-Alzheimer's A beta interaction. J Biol. Chem. 270, 7563-7567. 

McHattie,S. and Edington,N. (1999). Clusterin prevents aggregation of neuropeptide 

106-126 in vitro. Biochem. Biophys. Res. Commun. 259, 336-340. 

McHattie,S., Wells,G.A., Bee,J., and Edington,N. (1999). Clusterin in bovine 

spongiform encephalopathy (BSE). J Comp Pathol. 121, 159-171. 



 

 149

Meyer,R.K., McKinley,M.P., Bowman,K.A., Braunfeld,M.B., Barry,R.A., and 

Prusiner,S.B. (1986). Separation and properties of cellular and scrapie prion proteins. 

Proc. Natl. Acad. Sci. U. S. A 83, 2310-2314. 

Miele,G., Manson,J., and Clinton,M. (2001). A novel erythroid-specific marker of 

transmissible spongiform encephalopathies. Nat. Med. 7, 361-364. 

Miele,G., Jeffrey,M., Turnbull,D., Manson,J., and Clinton,M. (2002). Ablation of 

cellular prion protein expression affects mitochondrial numbers and morphology. 

Biochem. Biophys. Res. Commun. 291, 372-377. 

Miller,M.W. and Wild,M.A. (2004). Epidemiology of chronic wasting disease in captive 

white-tailed and mule deer. J Wildl. Dis. 40, 320-327. 

Minor,D.L., Jr. and Kim,P.S. (1996). Context-dependent secondary structure 

formation of a designed protein sequence. Nature 380, 730-734. 

Mobley,D.L., Cox,D.L., Singh,R.R., Kulkarni,R.V., and Slepoy,A. (2003). Simulations 

of oligomeric intermediates in prion diseases. Biophys. J 85, 2213-2223. 

Montagna,P., Gambetti,P., Cortelli,P., and Lugaresi,E. (2003). Familial and sporadic 

fatal insomnia. Lancet Neurol. 2, 167-176. 

Moore,R.C., Hope,J., McBride,P.A., McConnell,I., Selfridge,J., Melton,D.W., and 

Manson,J.C. (1998). Mice with gene targetted prion protein alterations show that 

Prnp, Sinc and Prni are congruent. Nat. Genet 18, 118-125. 

Moore,R.C., Lee,I.Y., Silverman,G.L., Harrison,P.M., Strome,R., Heinrich,C., 

Karunaratne,A., Pasternak,S.H., Chishti,M.A., Liang,Y., Mastrangelo,P., Wang,K., 



 

 150

Smit,A.F., Katamine,S., Carlson,G.A., Cohen,F.E., Prusiner,S.B., Melton,D.W., 

Tremblay,P., Hood,L.E., and Westaway,D. (1999). Ataxia in prion protein (PrP)-

deficient mice is associated with upregulation of the novel PrP-like protein doppel. J 

Mol. Biol. 292, 797-817. 

Morot-Gaudry-Talarmain,Y., Rezaei,H., Guermonprez,L., Treguer,E., and 

Grosclaude,J. (2003). Selective prion protein binding to synaptic components is 

modulated by oxidative and nitrosative changes induced by copper(II) and 

peroxynitrite in cholinergic synaptosomes, unveiling a role for calcineurin B and 

thioredoxin. J Neurochem. 87, 1456-1470. 

Morrissey,M.P. and Shakhnovich,E.I. (1999). Evidence for the role of PrP(C) helix 1 

in the hydrophilic seeding of prion aggregates. Proc. Natl. Acad. Sci. U. S. A 96, 

11293-11298. 

Mouillet-Richard,S., Ermonval,M., Chebassier,C., Lehmann,S., Launay,J.M., and 

Kellermann,O. (2000). Signal transduction through prion protein. Science 289, 1925-

1928. 

Mulcahy,E.R. and Bessen,R.A. (2004). Strain-specific kinetics of prion protein 

formation in vitro and in vivo. J Biol. Chem. 279, 1643-1649. 

National Wildlife Health Center (2003). Chronic Wasting Disease Map 

http://www.nwhc.usgs.gov/research/chronic_wasting/chronic_wasting_map.html 

Neibergs,H.L., Ryan,A.M., Womack,J.E., Spooner,R.L., and Williams,J.L. (1994). 

Polymorphism analysis of the prion gene in BSE-affected and unaffected cattle. Anim 

Genet. 25, 313-317. 



 

 151

Neutra,M.R., Frey,A., and Kraehenbuhl,J.P. (1996). Epithelial M cells: gateways for 

mucosal infection and immunization. Cell 86, 345-348. 

Nonno,R., Esposito,E., Vaccari,G., Conte,M., Marcon,S., Di Bari,M., Ligios,C., Di 

Guardo,G., and Agrimi,U. (2003). Molecular analysis of cases of Italian sheep 

scrapie and comparison with cases of bovine spongiform encephalopathy (BSE) and 

experimental BSE in sheep. J Clin. Microbiol. 41, 4127-4133. 

O'Rourke,K.I., Besser,T.E., Miller,M.W., Cline,T.F., Spraker,T.R., Jenny,A.L., 

Wild,M.A., Zebarth,G.L., and Williams,E.S. (1999). PrP genotypes of captive and 

free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting 

disease. J Gen. Virol. 80 ( Pt 10), 2765-2769. 

O'Rourke,K.I., Spraker,T.R., Hamburg,L.K., Besser,T.E., Brayton,K.A., and 

Knowles,D.P. (2004). Polymorphisms in the prion precursor functional gene but not 

the pseudogene are associated with susceptibility to chronic wasting disease in 

white-tailed deer. J Gen. Virol. 85, 1339-1346. 

Oesch,B., Westaway,D., Walchli,M., McKinley,M.P., Kent,S.B., Aebersold,R., 

Barry,R.A., Tempst,P., Teplow,D.B., Hood,L.E., and . (1985). A cellular gene 

encodes scrapie PrP 27-30 protein. Cell 40, 735-746. 

Oidtmann,B., Simon,D., Holtkamp,N., Hoffmann,R., and Baier,M. (2003). 

Identification of cDNAs from Japanese pufferfish (Fugu rubripes) and Atlantic salmon 

(Salmo salar) coding for homologues to tetrapod prion proteins. FEBS Lett. 538, 96-

100. 



 

 152

Orge,L., Simas,J.P., Fernandes,A.C., Ramos,M., and Galo,A. (2000). Similarity of the 

lesion profile of BSE in Portuguese cattle to that described in British cattle. Vet. Rec. 

147, 486-488. 

Palmer,M.S., Dryden,A.J., Hughes,J.T., and Collinge,J. (1991). Homozygous prion 

protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 352, 

340-342. 

Pan,K.M., Baldwin,M., Nguyen,J., Gasset,M., Serban,A., Groth,D., Mehlhorn,I., 

Huang,Z., Fletterick,R.J., Cohen,F.E., and . (1993). Conversion of alpha-helices into 

beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. 

Sci. U. S. A 90, 10962-10966. 

Parchi,P., Castellani,R., Cortelli,P., Montagna,P., Chen,S.G., Petersen,R.B., 

Manetto,V., Vnencak-Jones,C.L., McLean,M.J., Sheller,J.R., and . (1995). Regional 

distribution of protease-resistant prion protein in fatal familial insomnia. Ann. Neurol. 

38, 21-29. 

Parchi,P., Castellani,R., Capellari,S., Ghetti,B., Young,K., Chen,S.G., Farlow,M., 

Dickson,D.W., Sima,A.A., Trojanowski,J.Q., Petersen,R.B., and Gambetti,P. (1996). 

Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann. 

Neurol. 39, 767-778. 

Parchi,P., Giese,A., Capellari,S., Brown,P., Schulz-Schaeffer,W., Windl,O., Zerr,I., 

Budka,H., Kopp,N., Piccardo,P., Poser,S., Rojiani,A., Streichemberger,N., Julien,J., 

Vital,C., Ghetti,B., Gambetti,P., and Kretzschmar,H. (1999). Classification of sporadic 

Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 

subjects. Ann. Neurol. 46, 224-233. 



 

 153

Parchi,P., Zou,W., Wang,W., Brown,P., Capellari,S., Ghetti,B., Kopp,N., Schulz-

Schaeffer,W.J., Kretzschmar,H.A., Head,M.W., Ironside,J.W., Gambetti,P., and 

Chen,S.G. (2000). Genetic influence on the structural variations of the abnormal 

prion protein. Proc. Natl. Acad. Sci. U. S. A 97, 10168-10172. 

Pattison,I.H. (1965). Scrapie in the welsh mountain breed of sheep and its 

experimental transmission to goats. Vet. Rec. 77, 1388-1390. 

Pearson,G.R., Wyatt,J.M., Gruffydd-Jones,T.J., Hope,J., Chong,A., Higgins,R.J., 

Scott,A.C., and Wells,G.A. (1992). Feline spongiform encephalopathy: fibril and PrP 

studies. Vet. Rec. 131, 307-310. 

Peden,A.H., Head,M.W., Ritchie,D.L., Bell,J.E., and Ironside J.W. (8004). Preclinical 

vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 

264, 527-529. 

Peet,R.L. and Curran,J.M. (1992). Spongiform encephalopathy in an imported 

cheetah (Acinonyx jubatus). Aust. Vet. J 69, 171. 

Petchanikow,C., Saborio,G.P., Anderes,L., Frossard,M.J., Olmedo,M.I., and Soto,C. 

(2001). Biochemical and structural studies of the prion protein polymorphism. FEBS 

Lett. 509, 451-456. 

Premzl,M., Bozic,P., and Gamulin,V. (2000). PRNP octarepeat allele genotype 

frequencies among the modern and rare cattle breeds in Croatia. Anim Genet 31, 

408-409. 



 

 154

Prusiner,S.B. (1982). Novel proteinaceous infectious particles cause scrapie. 

Science 216, 136-144. 

Prusiner,S.B., McKinley,M.P., Bowman,K.A., Bolton,D.C., Bendheim,P.E., 

Groth,D.F., and Glenner,G.G. (1983). Scrapie prions aggregate to form amyloid-like 

birefringent rods. Cell 35, 349-358. 

Prusiner,S.B. (1991). Molecular biology of prion diseases. Science 252, 1515-1522. 

Puoti,G., Giaccone,G., Rossi,G., Canciani,B., Bugiani,O., and Tagliavini,F. (1999). 

Sporadic Creutzfeldt-Jakob disease: co-occurrence of different types of PrP(Sc) in 

the same brain. Neurology 53, 2173-2176. 

Rezaei,H., Marc,D., Choiset,Y., Takahashi,M., Hui Bon,H.G., Haertle,T., 

Grosclaude,J., and Debey,P. (2000). High yield purification and physico-chemical 

properties of full-length recombinant allelic variants of sheep prion protein linked to 

scrapie susceptibility. Eur. J Biochem. 267 , 2833-2839. 

Rezaei,H., Choiset,Y., Eghiaian,F., Treguer,E., Mentre,P., Debey,P., Grosclaude,J., 

and Haertle,T. (2002). Amyloidogenic unfolding intermediates differentiate sheep 

prion protein variants. J Mol. Biol. 322, 799-814. 

Rieger,R., Edenhofer,F., Lasmezas,C.I., and Weiss,S. (1997). The human 37-kDa 

laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat. 

Med. 3, 1383-1388. 

Rieger,R., Lasmezas,C.I., and Weiss,S. (1999). Role of the 37 kDa laminin receptor 

precursor in the life cycle of prions. Transfus. Clin. Biol. 6, 7-16. 



 

 155

Riek,R., Hornemann,S., Wider,G., Billeter,M., Glockshuber,R., and Wuthrich,K. 

(1996). NMR structure of the mouse prion protein domain PrP(121-321). Nature 382, 

180-182. 

Riek,R., Wider,G., Billeter,M., Hornemann,S., Glockshuber,R., and Wuthrich,K. 

(1998). Prion protein NMR structure and familial human spongiform 

encephalopathies. Proc. Natl. Acad. Sci. U. S. A 95, 11667-11672. 

Rivera-Milla,E., Stuermer,C.A., and Malaga-Trillo,E. (2003). An evolutionary basis for 

scrapie disease: identification of a fish prion mRNA. Trends Genet 19, 72-75. 

Roberts,B.T., Moriyama,H., and Wickner,R.B. (2004). [URE3] prion propagation is 

abolished by a mutation of the primary cytosolic Hsp70 of budding yeast. Yeast 21, 

107-117. 

Robinson,M.M., Hadlow,W.J., Huff,T.P., Wells,G.A., Dawson,M., Marsh,R.F., and 

Gorham,J.R. (1994). Experimental infection of mink with bovine spongiform 

encephalopathy. J Gen. Virol. 75 ( Pt 9), 2151-2155. 

Rudd,P.M., Endo,T., Colominas,C., Groth,D., Wheeler,S.F., Harvey,D.J., 

Wormald,M.R., Serban,H., Prusiner,S.B., Kobata,A., and Dwek,R.A. (1999). 

Glycosylation differences between the normal and pathogenic prion protein isoforms. 

Proc. Natl. Acad. Sci. U. S. A 96, 13044-13049. 

Rudd,P.M., Wormald,M.R., Wing,D.R., Prusiner,S.B., and Dwek,R.A. (2001). Prion 

glycoprotein: structure, dynamics, and roles for the sugars. Biochemistry 40, 3759-

3766. 



 

 156

Ryder,S.J., Hawkins,S.A., Dawson,M., and Wells,G.A. (2000). The neuropathology of 

experimental bovine spongiform encephalopathy in the pig. J Comp Pathol. 122, 131-

143. 

Ryder,S.J., Wells,G.A., Bradshaw,J.M., and Pearson,G.R. (2001). Inconsistent 

detection of PrP in extraneural tissues of cats with feline spongiform encephalopathy. 

Vet. Rec. 148, 437-441. 

Sabuncu,E., Petit,S., Le Dur,A., Lan,L.T., Vilotte,J.L., Laude,H., and Vilette,D. 

(2003). PrP polymorphisms tightly control sheep prion replication in cultured cells. J 

Virol. 77, 2696-2700. 

Safar,J., Wille,H., Itri,V., Groth,D., Serban,H., Torchia,M., Cohen,F.E., and 

Prusiner,S.B. (1998). Eight prion strains have PrP(Sc) molecules with different 

conformations. Nat. Med. 4, 1157-1165. 

Sakaguchi,S., Katamine,S., Shigematsu,K., Nakatani,A., Moriuchi,R., Nishida,N., 

Kurokawa,K., Nakaoke,R., Sato,H., Jishage,K., and . (1995). Accumulation of 

proteinase K-resistant prion protein (PrP) is restricted by the expression level of 

normal PrP in mice inoculated with a mouse-adapted strain of the Creutzfeldt-Jakob 

disease agent. J Virol. 69, 7586-7592. 

Sakaguchi,S., Katamine,S., Nishida,N., Moriuchi,R., Shigematsu,K., Sugimoto,T., 

Nakatani,A., Kataoka,Y., Houtani,T., Shirabe,S., Okada,H., Hasegawa,S., 

Miyamoto,T., and Noda,T. (1996). Loss of cerebellar Purkinje cells in aged mice 

homozygous for a disrupted PrP gene. Nature 380, 528-531. 



 

 157

Sakudo,A., Lee,D.C., Yoshimura,E., Nagasaka,S., Nitta,K., Saeki,K., Matsumoto,Y., 

Lehmann,S., Itohara,S., Sakaguchi,S., and Onodera,T. (2004). Prion protein 

suppresses perturbation of cellular copper homeostasis under oxidative conditions. 

Biochem. Biophys. Res. Commun. 313, 850-855. 

Salman,M.D. (2003). Chronic wasting disease in deer and elk: scientific facts and 

findings. J Vet. Med. Sci. 65, 761-768. 

Sander,P., Hamann,H., Pfeiffer,I., Wemheuer,W., Brenig,B., Groschup,M.H., 

Ziegler,U., Distl,O., and Leeb,T. (2004). Analysis of sequence variability of the bovine 

prion protein gene (PRNP) in German cattle breeds. Neurogenetics. 5, 19-25. 

Sasaki,K., Doh-ura,K., Ironside,J.W., and Iwaki,T. (2002). Increased clusterin 

(apolipoprotein J) expression in human and mouse brains infected with transmissible 

spongiform encephalopathies. Acta Neuropathol. (Berl) 103, 199-208. 

Schlapfer,I., Saitbekova,N., Gaillard,C., and Dolf,G. (1999). A new allelic variant in 

the bovine prion protein gene (PRNP) coding region. Anim Genet. 30, 386-387. 

Scott,A.C., Wells,G.A., Stack,M.J., White,H., and Dawson,M. (1990). Bovine 

spongiform encephalopathy: detection and quantitation of fibrils, fibril protein (PrP) 

and vacuolation in brain. Vet. Microbiol. 23, 295-304. 

Scott,M., Groth,D., Foster,D., Torchia,M., Yang,S.L., DeArmond,S.J., and 

Prusiner,S.B. (1993). Propagation of prions with artificial properties in transgenic 

mice expressing chimeric PrP genes. Cell 73, 979-988. 



 

 158

Scott,M.R., Safar,J., Telling,G., Nguyen,O., Groth,D., Torchia,M., Koehler,R., 

Tremblay,P., Walther,D., Cohen,F.E., DeArmond,S.J., and Prusiner,S.B. (1997). 

Identification of a prion protein epitope modulating transmission of bovine spongiform 

encephalopathy prions to transgenic mice. Proc. Natl. Acad. Sci. U. S. A 94, 14279-

14284. 

Scott,M.R., Will,R., Ironside,J., Nguyen,H.O., Tremblay,P., DeArmond,S.J., and 

Prusiner,S.B. (1999). Compelling transgenetic evidence for transmission of bovine 

spongiform encephalopathy prions to humans. Proc. Natl. Acad. Sci. U. S. A 96, 

15137-15142. 

Seabury,C.M. and Derr,J.N. (2003). Identification of a novel ovine PrP polymorphism 

and scrapie-resistant genotypes for St. Croix White and a related composite breed. 

Cytogenet. Genome Res. 102, 85-88. 

Sherman,M.Y. and Goldberg,A.L. (2001). Cellular defenses against unfolded 

proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15-32. 

Shmakov,A.N., Bode,J., Kilshaw,P.J., and Ghosh,S. (2000). Diverse patterns of 

expression of the 67-kD laminin receptor in human small intestinal mucosa: potential 

binding sites for prion proteins? J. Pathol. 191, 318-322. 

Shyng,S.L., Heuser,J.E., and Harris,D.A. (1994). A glycolipid-anchored prion protein 

is endocytosed via clathrin-coated pits. J Cell Biol. 125, 1239-1250. 

Shyu,W.C., Harn,H.J., Saeki,K., Kubosaki,A., Matsumoto,Y., Onodera,T., Chen,C.J., 

Hsu,Y.D., and Chiang,Y.H. (2002). Molecular modulation of expression of prion 

protein by heat shock. Mol. Neurobiol. 26, 1-12. 



 

 159

Si,K., Lindquist,S., and Kandel,E.R. (2003). A neuronal isoform of the aplysia CPEB 

has prion-like properties. Cell 115, 879-891. 

Sigurdson,C.J., Williams,E.S., Miller,M.W., Spraker,T.R., O'Rourke,K.I., and 

Hoover,E.A. (1999). Oral transmission and early lymphoid tropism of chronic wasting 

disease PrPres in mule deer fawns (Odocoileus hemionus). J Gen. Virol. 80 ( Pt 10), 

2757-2764. 

Simoneau,S., Haik,S., Leucht,C., Dormont,D., Deslys,J.P., Weiss,S., and 

Lasmezas,C. (2003). Different isoforms of the non-integrin laminin receptor are 

present in mouse brain and bind PrP. Biol. Chem. 384 , 243-246. 

Spencer,M.D., Knight,R.S., and Will,R.G. (2002). First hundred cases of variant 

Creutzfeldt-Jakob disease: retrospective case note review of early psychiatric and 

neurological features. BMJ 324, 1479-1482. 

Spielhaupter,C. and Schatzl,H.M. (2001). PrPC directly interacts with proteins 

involved in signaling pathways. J Biol. Chem. 276, 44604-44612. 

Stefani,M. and Dobson,C.M. (2003). Protein aggregation and aggregate toxicity: new 

insights into protein folding, misfolding diseases and biological evolution. J Mol. Med. 

81, 678-699. 

Stephenson,D.A., Chiotti,K., Ebeling,C., Groth,D., DeArmond,S.J., Prusiner,S.B., and 

Carlson,G.A. (2000). Quantitative trait loci affecting prion incubation time in mice. 

Genomics 69, 47-53. 



 

 160

Stuermer,C.A.O., Lanhorst,M.F., Wiechers,M.F., Legler,D.F., Hannbeck von 

Hanwehr,S., Guse,A.H., and Plattner,H. (2004). PrPC capping in T cells promotes its 

association withthe lipid raft proteins reggie-1 and reggie-2 and leads to signal 

transduction. FASEB J. 

Stewart,R.S. and Harris,D.A. (2003). Mutational analysis of topological determinants 

in prion protein (PrP) and measurement of transmembrane and cytosolic PrP during 

prion infection. J Biol. Chem. 278, 45960-45968. 

Takasuga,A., Abe,T., Ito,T., Watanabe,T., Kamatani,N., and Sugimoto,Y. (2003). 

Novel prion protein polymorphisms in cattle. Anim Genet 34, 396-397. 

Taraboulos,A., Jendroska,K., Serban,D., Yang,S.L., DeArmond,S.J., and 

Prusiner,S.B. (1992). Regional mapping of prion proteins in brain. Proc. Natl. Acad. 

Sci. U. S. A 89, 7620-7624. 

Tateishi,J., Koga,M., and Mori,R. (1981). Experimental transmission of Creutzfeldt-

Jakob disease. Acta Pathol. Jpn. 31, 943-951. 

Telling,G.C., Scott,M., Hsiao,K.K., Foster,D., Yang,S.L., Torchia,M., Sidle,K.C., 

Collinge,J., DeArmond,S.J., and Prusiner,S.B. (1994). Transmission of Creutzfeldt-

Jakob disease from humans to transgenic mice expressing chimeric human-mouse 

prion protein. Proc. Natl. Acad. Sci. U. S. A 91, 9936-9940. 

Telling,G.C., Scott,M., Mastrianni,J., Gabizon,R., Torchia,M., Cohen,F.E., 

DeArmond,S.J., and Prusiner,S.B. (1995). Prion propagation in mice expressing 

human and chimeric PrP transgenes implicates the interaction of cellular PrP with 

another protein. Cell 83, 79-90. 



 

 161

Thadani,V., Penar,P.L., Partington,J., Kalb,R., Janssen,R., Schonberger,L.B., 

Rabkin,C.S., and Prichard,J.W. (1988). Creutzfeldt-Jakob disease probably acquired 

from a cadaveric dura mater graft. Case report. J Neurosurg. 69, 766-769. 

Thomas,T., Thomas,G., McLendon,C., Sutton,T., and Mullan,M. (1996). beta-

Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380, 168-

171. 

Thuring,C.M., Erkens,J.H., Jacobs,J.G., Bossers,A., van Keulen,L.J., Garssen,G.J., 

van Zijderveld,F.G., Ryder,S.J., Groschup,M.H., Sweeney,T., and Langeveld,J.P. 

(2004). Discrimination between scrapie and bovine spongiform encephalopathy in 

sheep by molecular size, immunoreactivity, and glycoprofile of prion protein. J Clin. 

Microbiol. 42, 972-980. 

Tobler,I., Gaus,S.E., Deboer,T., Achermann,P., Fischer,M., Rulicke,T., Moser,M., 

Oesch,B., McBride,P.A., and Manson,J.C. (1996). Altered circadian activity rhythms 

and sleep in mice devoid of prion protein. Nature 380, 639-642. 

Tranulis,M.A. (2002). Influence of the prion protein gene, Prnp, on scrapie 

susceptibility in sheep. APMIS 110, 33-43. 

Trevitt,C.R. and Singh,P.N. (2003). Variant Creutzfeldt-Jakob disease: pathology, 

epidemiology, and public health implications. Am. J Clin. Nutr. 78, 651S-656S. 

Valleron,A.J., Boelle,P.Y., Will,R., and Cesbron,J.Y. (2001). Estimation of epidemic 

size and incubation time based on age characteristics of vCJD in the United 

Kingdom. Science 294, 1726-1728. 



 

 162

van Keulen,L.J., Schreuder,B.E., Vromans,M.E., Langeveld,J.P., and Smits,M.A. 

(2000). Pathogenesis of natural scrapie in sheep. Arch. Virol. Suppl 57-71. 

van Keulen,L.J., Vromans,M.E., and van Zijderveld,F.G. (2002). Early and late 

pathogenesis of natural scrapie infection in sheep. APMIS  110, 23-32. 

Vanik,D.L. and Surewicz,W.K. (2002). Disease-associated F198S mutation increases 

the propensity of the recombinant prion protein for conformational conversion to 

scrapie-like form. J Biol. Chem. 277, 49065-49070. 

Vorberg,I., Chan,K., and Priola,S.A. (2001). Deletion of beta-strand and alpha-helix 

secondary structure in normal prion protein inhibits formation of its protease-resistant 

isoform. J Virol. 75, 10024-10032. 

Wadsworth,J.D., Joiner,S., Hill,A.F., Campbell,T.A., Desbruslais,M., Luthert,P.J., and 

Collinge,J. (2001). Tissue distribution of protease resistant prion protein in variant 

Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet 

358, 171-180. 

Wegrzyn,R.D., Bapat,K., Newnam,G.P., Zink,A.D., and Chernoff,Y.O. (2001). 

Mechanism of prion loss after Hsp104 inactivation in yeast. Mol. Cell Biol. 21, 4656-

4669. 

Weissmann,C. (1991). A 'unified theory' of prion propagation. Nature 352, 679-683. 

Weissmann,C. (1999). Molecular genetics of transmissible spongiform 

encephalopathies. J Biol. Chem. 274, 3-6. 



 

 163

Wells,G.A., Hawkins,S.A., Green,R.B., Austin,A.R., Dexter,I., Spencer,Y.I., 

Chaplin,M.J., Stack,M.J., and Dawson,M. (1998). Preliminary observations on the 

pathogenesis of experimental bovine spongiform encephalopathy (BSE): an update. 

Vet. Rec. 142, 103-106. 

Wells,G.A., Hawkins,S.A., Austin,A.R., Ryder,S.J., Done,S.H., Green,R.B., Dexter,I., 

Dawson,M., and Kimberlin,R.H. (2003). Studies of the transmissibility of the agent of 

bovine spongiform encephalopathy to pigs. J Gen. Virol. 84, 1021-1031. 

Wells,G.A., Hawkins,S.A., Austin,A.R., Ryder,S.J., Done,S.H., Green,R.B., Dexter,I., 

Dawson,M., and Kimberlin,R.H. (2003). Studies of the transmissibility of the agent of 

bovine spongiform encephalopathy to pigs. J Gen. Virol. 84, 1021-1031. 

Westaway,D., Goodman,P.A., Mirenda,C.A., McKinley,M.P., Carlson,G.A., and 

Prusiner,S.B. (1987). Distinct prion proteins in short and long scrapie incubation 

period mice. Cell 51, 651-662. 

Westaway,D., Cooper,C., Turner,S., Da Costa,M., Carlson,G.A., and Prusiner,S.B. 

(1994). Structure and polymorphism of the mouse prion protein gene. Proc. Natl. 

Acad. Sci. U. S. A 91, 6418-6422. 

Whyte,S.M., Sylvester,I.D., Martin,S.R., Gill,A.C., Wopfner,F., Schatzl,H.M., 

Dodson,G.G., and Bayley,P.M. (2003). Stability and conformational properties of 

doppel, a prion-like protein, and its single-disulphide mutant. Biochem. J 373, 485-

494. 



 

 164

Wilesmith,J.W., Wells,G.A., Ryan,J.B., Gavier-Widen,D., and Simmons,M.M. (1997). 

A cohort study to examine maternally-associated risk factors for bovine spongiform 

encephalopathy. Vet. Rec. 141, 239-243. 

Will,R.G., Ironside,J.W., Zeidler,M., Cousens,S.N., Estibeiro,K., Alperovitch,A., 

Poser,S., Pocchiari,M., Hofman,A., and Smith,P.G. (1996). A new variant of 

Creutzfeldt-Jakob disease in the UK. Lancet 347 , 921-925. 

Will,R.G., Zeidler,M., Stewart,G.E., Macleod,M.A., Ironside,J.W., Cousens,S.N., 

Mackenzie,J., Estibeiro,K., Green,A.J., and Knight,R.S. (2000). Diagnosis of new 

variant Creutzfeldt-Jakob disease. Ann. Neurol. 47, 575-582. 

Will,R.G. (2003). Acquired prion disease: iatrogenic CJD, variant CJD, kuru. Br. Med. 

Bull. 66, 255-265. 

Wille,H., Michelitsch,M.D., Guenebaut,V., Supattapone,S., Serban,A., Cohen,F.E., 

Agard,D.A., and Prusiner,S.B. (2002). Structural studies of the scrapie prion protein 

by electron crystallography. Proc. Natl. Acad. Sci. U. S. A 99, 3563-3568. 

Williams,E.S. and Young,S. (1992). Spongiform encephalopathies in Cervidae. Rev. 

Sci. Tech. 11, 551-567. 

Willoughby,K., Kelly,D.F., Lyon,D.G., and Wells,G.A. (1992). Spongiform 

encephalopathy in a captive puma (Felis concolor). Vet. Rec. 131, 431-434. 

Windl,O., Dempster,M., Estibeiro,J.P., Lathe,R., de Silva,R., Esmonde,T., Will,R., 

Springbett,A., Campbell,T.A., Sidle,K.C., Palmer,M.S., and Collinge,J. (1996). 

Genetic basis of Creutzfeldt-Jakob disease in the United Kingdom: a systematic 



 

 165

analysis of predisposing mutations and allelic variation in the PRNP gene. Hum. 

Genet 98, 259-264. 

Wong,B.S., Brown,D.R., Pan,T., Whiteman,M., Liu,T., Bu,X., Li,R., Gambetti,P., 

Olesik,J., Rubenstein,R., and Sy,M.S. (2001). Oxidative impairment in scrapie-

infected mice is associated with brain metals perturbations and altered antioxidant 

activities. J Neurochem. 79, 689-698. 

Wong,E., Thackray,A.M., and Bujdoso,R. (2004). Copper induces increased beta-

sheet content in the scrapie-susceptible ovine prion protein PrPVRQ compared with 

the resistant allelic variant PrPARR. Biochem. J 380, 273-282. 

Wood,J.L., McGill,I.S., Done,S.H., and Bradley,R. (1997). Neuropathology of scrapie: 

a study of the distribution patterns of brain lesions in 222 cases of natural scrapie in 

sheep, 1982-1991. Vet. Rec. 140, 167-174. 

Wrathall,A.E., Brown,K.F., Sayers,A.R., Wells,G.A., Simmons,M.M., Farrelly,S.S., 

Bellerby,P., Squirrell,J., Spencer,Y.I., Wells,M., Stack,M.J., Bastiman,B., Pullar,D., 

Scatcherd,J., Heasman,L., Parker,J., Hannam,D.A., Helliwell,D.W., Chree,A., and 

Fraser,H. (2002). Studies of embryo transfer from cattle clinically affected by bovine 

spongiform encephalopathy (BSE). Vet. Rec. 150, 365-378. 

Wyatt,J.M., Pearson,G.R., Smerdon,T.N., Gruffydd-Jones,T.J., Wells,G.A., and 

Wilesmith,J.W. (1991). Naturally occurring scrapie-like spongiform encephalopathy in 

five domestic cats. Vet. Rec. 129, 233-236. 



 

 166

Yamaguchi,N., Sakaguchi,S., Shigematsu,K., Okimura,N., and Katamine,S. (2004). 

Doppel-induced Purkinje cell death is stoichiometrically abrogated by prion protein. 

Biochem. Biophys. Res. Commun. 319, 1247-1252. 

Yin,S.M., Sy,M.S., Yang,H.Y., and Tien,P. (2004). Interaction of Doppel with the full-

length laminin receptor precursor protein. Arch. Biochem. Biophys. 428, 165-169. 

Zahn,R., Liu,A., Luhrs,T., Riek,R., von Schroetter,C., Lopez,G.F., Billeter,M., 

Calzolai,L., Wider,G., and Wuthrich,K. (2000). NMR solution structure of the human 

prion protein. Proc. Natl. Acad. Sci. U. S. A 97, 145-150. 

Zahn,R. (2003). The octapeptide repeats in mammalian prion protein constitute a pH-

dependent folding and aggregation site. J Mol. Biol.  334, 477-488. 

Zhu,Y.J., Lin,H., and Lal,R. (2000). Fresh and nonfibrillar amyloid beta protein(1-40) 

induces rapid cellular degeneration in aged human fibroblasts: evidence for AbetaP-

channel-mediated cellular toxicity. FASEB J 14, 1244-1254. 

Ziegler,J., Sticht,H., Marx,U.C., Muller,W., Rosch,P., and Schwarzinger,S. (2003). 

CD and NMR studies of prion protein (PrP) helix 1. Novel implications for its role in 

the PrPC-->PrPSc conversion process. J Biol. Chem. 278, 50175-50181. 

Zou,W.Q., Capellari,S., Parchi,P., Sy,M.S., Gambetti,P., and Chen,S.G. (2003). 

Identification of novel proteinase K-resistant C-terminal fragments of PrP in 

Creutzfeldt-Jakob disease. J Biol. Chem. 278, 40429-40436. 

 

 

 


