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List of abbreviations

List of abbreviations

A list of abbreviations can be helpful to the reader, especially if when you are using numerous and uncom-

mon abbreviations.

AQGs Air Quality Guidelines

BMI Body Mass Index

CIs Confidence Interval

COPD Chronic Obstructive Pulmonary Disease

CO Carbon Monoxide

CSRH Comparative Self-Rated Health

CVDs Cardiovascular Diseases

df Degrees of Freedom

EQ-5D European Quality of Life 5 Dimensions

EQ-5D-5L Five-Level Versions of the European Quality of Life 5 Dimensions
EQ-VAS European Quality Visual Analogue Scale

ETEs Extreme Temperature Events

FH University of Applied Sciences Augsburg

GAM Generalized Additive Model

GDP Gross Domestic Product

HRQoL Health-Related Quality of Life

ICD-10 10th version of the International Classification of Diseases
INGER Integrating Gender into Environmental Health Research
IQR Interquartile Range

KORA-FIT Cooperative Health Research in the Region of Augsburg study-FIT
LUR Land-Use Regression

MCS Mental Component Summaries

mRS Modified Rankin Scale

NDVI Normalized Difference Vegetation Index

NIHSS National Institutes of Health Stroke Scale
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Background

1. Background

1.1  Air pollution burden: From health and economic aspects

In recent decades, both regional and global pollution problems have arisen, such as ozone (O3) depletion,
photochemical smog, and haze !. Consequently, air pollution continues to negatively impact human health
and is emerging as a leading cause of global mortality. The State of Global Air Report 2024 stated that an
estimated 8.1 million global deaths were attributable to air pollution in 2021, which was the second leading
cause of death worldwide 2. Specifically, ambient air pollution accounted for 11.9% (95% uncertainty in-
terval [UI]: 10.1%; 13.8%) of the total global deaths, resulting in an age-standardized disability-adjusted
life years rate per 100,000 of 3037 (95% UI: 2553; 3549) worldwide 3. People with persistent noncom-
municable diseases are particularly at risk from air pollution, which leads to 48% of global deaths caused
by chronic obstructive pulmonary disease (COPD), 28% by ischemic heart disease, 27% by stroke, 19% by
lung cancer, and 18% by type 2 diabetes 2.

While policies and technologies have helped improve air quality in many countries, 99% of the global
population still lives in places where air quality exceeds the World Health Organization (WHO) air quality
guidelines (AQGs) *, suggesting that nearly everyone on the planet breathes unhealthy air every day 2.
Aside from causing substantial health costs, air pollution also imposes a heavy economic burden by reduc-
ing productivity, hindering competitiveness, raising health care expenditures, and overburdening the
healthcare system 2. According to a report from the World Bank Group, the global cost of mortality and
morbidity associated with airborne particles with an aerodynamic diameter < 2.5 um (PM>s) reached $8.1
trillion, accounting for 6.1% of global gross domestic product (GDP) in 2019 °. In Europe, data has also
shown that, for every unit (1pg/m?®) increase in PM, s, the GDP per capita was supposed to decline by 0.8%
6. Contrary to this, an annual reduction in air pollution could boost regional GDP growth by 0.16% . This
suggests that the improving air quality could exceed the relative costs, and bring health, economic, and

social benefits ¢ 7.

Recognizing the gravity and urgency of the problem, in 2021, the WHO updated its global guidance based
on updated evidence that air pollution affects health in a variety of ways at lower levels than previously
thought 8. However, the updated WHO guidelines only provided recommendations for each air pollutant
individually, without recommendations about pollutant mixtures or the combined effects of pollutants. Thus,
it is crucial that we prioritize additional research and systematic measurements to safeguard the health of

populations worldwide and create a cleaner, safer environment for everyone.

1.1.1 The characteristics of different ambient air pollutants

Air pollutants are typically classified as PMs or gaseous pollutants °. Ambient air pollution largely results

from the incomplete combustion of fuels and subsequent chemical reactions among atmospheric gases '°.
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Background

Key contributors to outdoor pollutant concentrations include high-temperature combustion associated with
vehicular traffic, industrial operations, power generation facilities, the resuspension of surface dust, and
construction activities ® 1°. Although the air contains hundreds of measurable chemical compounds, regional
and local authorities maintain accessible databases of only a limited subset, with the selected pollutants
serving as indicators representing various types of air pollution and their primary emission sources. Several
commonly found air pollutants, including PMs s, particles of 10 microns or less in diameter (PMo), nitrogen
dioxide (NO,), ground-level O3, sulfur dioxide (SO.), and carbon monoxide (CO), were determined as the
criteria pollutants due to their common measurements and certain health damages % 3. Of note, the present
dissertation will not address the health effects of SO, and CO, as the ambient concentrations of these pol-
lutants are substantially lower in Germany than in many other regions, particularly in less developed coun-

tries.

As the proxy indicator for air pollution, PMs refer to a mixture of solid inhalable airborne particles, which
are formed through chemical reactions among various atmospheric pollutants, and lipid droplets in the air
%11 There are several sources of airborne PMs, including primary sources like combustion of fuels in ve-
hicles, coal-burning power stations, construction sites, unpaved roads, fields, industrial activities, and waste
burning, as well as secondary sources like chemical reactions between gases > °. The destiny and develop-
ment of particle size distribution in the atmosphere are influenced by their aerodynamic diameters, which
are determined by the physical processes of particle formation °. Aside from PM, s and PM;o mentioned
above, the coarse particles (PMcoarse) refer to particles with diameters from 2.5 um to 10 pm °. The aerody-
namic diameter of PMs further determines the extent to which they can penetrate the respiratory system '°.
Small PMs, especially ultrafine particles (UFPs), are generally characterized as particles measuring 100
nanometers or smaller (<100 nm) '2, have higher capabilities of penetrating deep into the lung and entering
the bloodstream than larger particles, resulting in an increased production of reactive oxygen species (ROS),
damage to DNA and cells, inflammation, endoplasmic reticulum stress, atherosclerosis, and airway remod-

eling, thereby posing the greatest health risk to cardiovascular, cerebrovascular, and respiratory health '*
13

According to the WHO, NO,, O3, SO,, and CO are considered major health-damaging air pollutants . In
general, NO; is a highly reactive gas classified as an oxide of nitrogen (NOx), and its ambient sources are
primarily determined by the high-temperature combustion of fuels and emissions from motor vehicles, in-
dustry, and power generation !> 14, The inhalation of air containing high concentrations of NO; can irritate
the respiratory system, leading to higher occurrences of asthma and respiratory symptoms, and higher hos-
pital admissions or emergency visits 4. When sunlight is present, ground-level O3 forms through photo-
chemical reactions with other pollutants, such as volatile organic compounds, CO, and NOx !°. As a major
component of smog, excessive exposure to ground-level O3 can trigger breathing difficulties, asthma, de-
creased lung function, and lung disease '°. A major source of SO, is combustion without emission control
or an uncontrolled metal processing facility, which can damage the respiratory system and is associated
with excess mortality '°. In contrast, CO is generated by the incomplete combustion of gasoline or diesel

engines, causing unconsciousness, dizziness, and even death * %16,
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Background

1.1.2 The long-term and short-term health effects of air pollution

Exposure to air pollutants from any source, quantified as long- or short-term exposure, can cause health
problems !'°. Temporal variation is a key feature of ambient air pollution because concentrations of pollu-
tants vary with respect to their spatial distribution, and their aggregation (e.g., daily or seasonal), the char-
acteristics and dynamics of pollutants (dispersion, deposition, interaction with other pollutants), and
weather conditions '°. The long-term exposure, typically measured as a mean of one or several years, is
used to assess whether chronic air pollution exposures are contributing to the development or progression
of chronic health outcomes '°, such as cardiovascular diseases (CVDs: hypertension, atherosclerosis, myo-

20,21

cardial infarction, strokes) '8, COPD '°, various cancers , metabolic disorders 22, cognitive decline 2,

and mental issues (depression and anxiety) 2*. By contrast, by exploring the short-term exposure, ranging
from hours to a few days, we can examine whether acute surrogate or intermediate endpoints are linked to
time-varying pollutant concentrations '°. Evidence suggested that short-term air pollution exposure, espe-
cially during smog episodes or traffic peaks, could trigger acute health outcomes, including respiratory

outcomes (COPD acute exacerbations, asthma) 226

or cardiovascular conditions (heart failure, myocardial
infarction, stroke) '7 % 2728 Consequently, the distinction in exposure duration is crucial for assessing
health outcomes, understanding the underlying biological mechanisms, and determining public health strat-

egies for preventing and mitigating them.

1.1.3 The specific concerns about ultrafine particles

Although the overwhelming majority of evidence on the adverse health effects of PM» s and PM is based
on studies of human exposures, few studies focus on the adverse health effects of UFPs. The majority of
UFPs were emitted from anthropogenic activities, including traffic transportation (vehicles, aviation, and
shipping), industrial activities, biomass burning or fuel combustion, and construction 2°. Extremely small
size and vast number make them more likely to be inhaled, and enable them to deeply penetrate the lungs
and transmigrate into the bloodstream, with their high surface area (total exposed surface area per unit of
mass) allowing them to absorb more toxic chemicals, thus making them more threatening than larger par-
ticles 1% 2%3% However, there is insufficient clear quantitative evidence for the WHO to formulate specific
AQGs for ultrafine particles 2, as challenges exist in monitoring atmospheric UFPs and examining their
health effects. First, ambient UFP concentrations, which are not routinely monitored in most places, are
highly variable spatially and heavily influenced by factors such as location and meteorological indicators.
Still, there are no internationally agreed-upon standard technologies or detection limits to quantify ambient
UFPs 81239 Second, the UFPs size fractions can also be classified by their formation processes: the nucle-
ation mode (<30 nm) originating from the condensation of hot gaseous molecules in the vehicle tailpipe,
the accumulation mode (30-500 nm) originating from condensation and coagulation in the engine, and the
Aitken mode (30-100 nm) being associated with the combustion sources %32, Aside from the commonly
used measured metrics, particle number concentration (PNC) or mass concentration (PMC), UFPs can be
assessed as particle length concentration (PLC) and surface area concentration (PSC) per volume *°. Nota-

bly, the PLC, defined as the product of particle number and diameter, exhibited a strong correlation with
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PSC in the lung 3. This is significant because particles with a larger surface area relative to their mass can

adsorb higher amounts of toxic metals and organic pollutants, thereby posing greater health risks °.

Thus, it is challenging to examine the complex health effects of various metrics of UFPs across different
size modes because differences in the chemical composition and physical attributes of UFPs can be related
to divergent toxicological profiles. Exposure to UFPs has been reported to contribute to the development
of acute and chronic health outcomes, including oxidative stress and the generation of reactive oxygen
species 2°, neuro-inflammation 3, and further cause diseases in the respiratory, cardiovascular, and nervous
systems, as well as metabolic diseases and cancers 2% 3. Considering the high spatial and temporal varia-
bilities of UFPs, more advanced approaches and technologies assessing population UFP exposure levels

are needed to draw firm conclusions on health outcomes in response to UFP exposure.

1.2 Potential effects on self-perceived and objective health outcomes

1.2.1 Air pollution and self-perceived health status

The self-perceived health status is useful in understanding how individuals evaluate their current and future
health, taking into consideration physical, psychological, and socioeconomic factors **37. For clinicians,
self-perception of health may represent an underutilized source of information because it can reveal prob-
lems that clinical testing may not detect . For instance, people with poor self-perceived health status may
have a stronger willingness to seek preventive medical services and a higher likelihood of adopting healthy
life behaviors *8. Self-perceived health status can therefore be used to predict chronic diseases, mortality,

recovery from illness, functional decline, and medical utilization 3¢ 37

, especially among older populations
39 There is a growing trend toward assessing a person's perceived health status by asking a simple question
or completing a questionnaire. Health-related quality of life (HRQoL) serves as a suitable indicator of how
individuals perceive their own health status *°, encompassing subjective well-being across physical, emo-
tional, and social health dimensions *!. Based on the definitions of HRQoL above, several preference-based
measurement tools could be used to quantify HRQoL effects. A commonly used HRQoL questionnaire
developed by the European Quality of Life Group (EuroQol Group) is the five-level version of the European
Quality of Life 5 Dimensions (EQ-5D-5L) 2. It is a short, cognitively simple questionnaire, which is pre-
ferred by medical institutions as a tool for measuring HRQoL in adults **. There are two sections to the EQ-
5D-5L: a short descriptive system measuring from five perspectives, in which five responses are available
for each dimension; and a visual analogue scale for measuring European Quality (EQ-VAS), which
measures an individual's overall state of health through a vertical visual analogue scale *?. In order to rep-
resent the health status of a country or region, the EQ-5D index values were calculated by using a formula
that assigns weights to each level within each dimension according to the preferences of the general popu-
lation, with a higher score signifying complete health 2. An additional common measure of general health
perception is self-rated health (SRH) / subjective health, which asks respondents to rate their overall health
4 Rather than focusing on specific dimensions, this general concept allows us to assess objective health

information and people's subjective evaluations of it **. Besides, the age-comparative SRH has also been
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developed with questions asking the respondents about their perceptions of health in comparison with other
people of their age, considering the health of the community that the individuals belong to, and their per-
ception of it . As an indicator of chronic illness or its treatment, self-perceived health status may be af-

fected by personal characteristics 3% 7

and may be associated with air pollution. A recent study in Europe
used the Short Form-36 to measure HRQoL, and it found that higher air pollution levels are related to lower
mental health scores (MCS) “¢. SRH has been shown to be negatively affected by prolonged exposure to
air pollution in the Netherlands 47, Canada *®, China *, Belgium *°, Bulgaria !, Northern Ireland 2, as well
as in South Korea *, in which the HRQoL was measured using the subjective stress, EQ-5D index values,
and depression. Nonetheless, it is still uncertain how various self-assessed health indicators are related to

prolonged exposure to air pollution, and no comparative studies have been undertaken.

1.2.2 Air pollution and objective health status

An objective health status refers to the presence and number of chronic medical conditions assessed objec-
tively 3. As a major part of the objective health conditions, CVDs remain the leading cause of premature
death around the world . Specifically, ischemic heart disease and strokes emerged as the foremost causes
of disability-adjusted life years among individuals aged 50 to 74 and those 75 and older in 2019 6. Notably,
air pollution has become a significant health issue worldwide, particularly affecting cardiovascular health
17.57 " though its associated risk of CVDs is less than that associated with conventional risk factors like
hypertension and hyperlipidemia 3. A growing body of research indicates an association between exposure
to ambient air pollutants and the occurrence of stroke!” 18285 Although both long- and short-term ambient
air pollution exposures have been recognized as risk factors for strokes 7> 18, they likely operate through
distinct biological and epidemiological pathways. In general, acute exposures to air pollution may trigger
stroke events >°, whereas the underlying vascular pathophysiology (e.g., atherosclerosis progression and
enhanced plaque vulnerability) contributing to cerebrovascular events may be more related to chronic ex-
posures %!. Besides, the short-term effects are particularly critical in individuals of advanced age, who might
be more susceptible to the transient spikes in air pollution due to their physiological differences changing
as age increases %2, pre-existing diseases, or higher inflammation %. Consequently, short-term exposure
could be particularly relevant for public health, as its effects are more immediately modifiable through
timely interventions, such as public alerts or behavior changes, and isolating its impacts in some vulnerable

population enhances our understanding of how transient pollution peaks may trigger acute health outcomes.
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Aims of the dissertation

2. Aims of the dissertation

Drawing on data from Augsburg, southern Germany, this doctoral dissertation aims to elucidate whether

air pollution exposure is related to any adverse health outcomes from the following perspectives:

1. To investigate whether long-term exposure to air pollution may negatively affect self-perceived
health—assessed using multiple evaluation tools—and to identify population groups with in-
creased susceptibility.

2. To assess the short-term impact of routinely monitored ambient air pollutants on stroke events,
considering differences by stroke subtype, stroke-induced disability, severity, and susceptibility
among individuals.

3. To evaluate the association between short-term exposure to four UFP metrics across five size
fractions and the occurrence of stroke events; to explore differences by stroke subtype, stroke-
induced disability, and stroke severity; and to examine potential effect modification by time-
invariant factors (e.g., sex, age), seasonal variation, temporal trends, and the extreme temperature

events.

This cumulative dissertation comprises two publications addressing the first two aims. Additionally, a third

manuscript—currently under revision—is included in the appendix and corresponds to the third aim.
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A brief overview of methods

3. A brief overview of methods

The following section outlines the methodological framework of each study and is organized into two parts.
The first part presents research on the association of self-perceived health status with prolonged exposure
to air pollution (Paper I), while the second part examines whether strokes are associated with short-term
exposure to ambient air pollutants, including analyses of routinely monitored air pollutants (Paper II) and
UFPs (Paper III). Further details are provided in the respective manuscript. Figure 1 illustrates the work-

flow of the included papers.
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Figure 1. The workflow of the included papers.

Abbreviations: BMI, body mass index; EQ-5D-5L, Five-level dimensions of the European Quality of Life 5 Dimen-
sions questionnaire; EQ-VAS, European Quality of Life Visual Analogue Scale; ICD-10, 10th version of the Interna-
tional Classification of Diseases; INGER, Integrating Gender into Environmental Health Research; KORA, Coopera-
tive Health Research in the Region of Augsburg study; mRS, Modified Rankin Scale; NDVI, normalized difference
vegetation index; NIHSS, National Institutes of Health Stroke Scale; NO, Nitric oxide; NO2, nitrogen dioxide; NOx,
nitrogen oxide; PLC, particle length concentration; PMcoarse, coarse particles; PMa.s, airborne particles under 2.5 pm in
size; PMa.sabs, fine particle absorbances; PMio, airborne particles under 10 um in size; PMC, particle mass concentration;
PNC, particle number concentration; PSC, particle surface area concentration; SES, socioeconomic status; SRH, self-
rated health; TIAs, transient ischemic attacks; UFP, ultrafine particle.

* The modifying effect of extreme temperature events was only explored in Paper III.

19



A brief overview of methods

3.1 Air pollution and self-perceived health status (Paper I)

3.1.1 Study design and population

Paper I is a cross-sectional analysis based on data from the Cooperative Health Research in the Region of
Augsburg study (KORA), launched in 1984 in Augsburg and its two neighboring districts *. Four baseline
surveys were implemented at 5-year intervals: S1-S4 (1984-2001) . As a follow-up examination, the
KORA-FIT study was conducted in 2018/2019, with 3,059 alive participants born in 1945-1964 being re-
garded as eligible participants . A subgroup of KORA-FIT respondents also participating in the Integrat-
ing Gender into Environmental Health Research (INGER) study was included in the analysis to explore the
potential influence of gender/sex or residential greenness . After excluding ineligible individuals, a final
sample of 2,610 participants remained for Paper I. A concise outline of the studies included in this paper is

shown in Figure 2.

! 1
o KORA-FIT ! E);;:_lu_ded :
(1984/85) (2018/2019) | Missing |
 Information
Al | N=449 !
Alive | b e
>2 -Live in study area
(1989/90) -Bornin 1945-1964 Finally included
93 N=3,059 N=2,610
(1994/95)
INGER
>4 Study
(1999/01) (2019)

Figure 2. Overview of study populations.

Abbreviations: KORA, Cooperative Health Research in the Region of Augsburg study; INGER, Integrating Gender
into Environmental Health Research study.

3.1.2 Outcome assessment

Self-perceived health status was captured using a multidimensional concept of HRQoL and the general
concept of subjective health/self-rated health. HRQoL was assessed using the EQ-5D-5L, which contains
a descriptive system and the EQ-VAS ¢7. Within the descriptive system of EQ-5D-5L, for each of the five
dimensions (mobility; self-care; usual activities; pain/discomfort; anxiety/depression), there were five lev-
els to describe the severity, namely having no problems, slight problems, moderate problems, severe prob-
lems, and extreme problems 7. Participants were instructed to select the option that most accurately re-
flected their current health status in each dimension . Responses on the EQ-5D-5L five-level scale were
dichotomized, with each dimension being converted into a binary variable indicating the presence of no

problems versus any level of reported problems. Furthermore, according to the preferences of the general
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population of Germany developed by Ludwig, ef al. %, the five-digit codes for five dimensions were con-
verted into the EQ-5D index value by attaching weights to each of the levels in each dimension, which
yielded an index between -0,13 and 1.00, with the score below 0 indicating a health status worse than death,

a score of 0 being equivalent to death, and a score of 1 being optimal or full.

Due to the variation in definitions and phrasing used to evaluate SRH across different studies, the overall
notion of SRH in Paper I was evaluated through multiple instruments. The EQ-VAS, which is a component
of the EQ-5D-5L, spans from ‘the best health you can envision’ to ‘the worst health you can envision,’
representing the person's overall perception of their health ¢7. The SRH concept was evaluated based on the
answer to this question: “How do you evaluate your present physical health?” %, The original answers were
labeled as very good, good, less good, and poor. We categorized the responses into good SRH and poor
SRH to streamline the analysis. Additionally, the comparative self-rated health (CSRH) was assessed by
asking the question, “How do you perceive your health in relation to others of your age?”, with the re-
sponses being limited to three choices: better, equal, or worse. Figure 3 illustrates the components and

interrelationships of various self-perceived health indicators.

Self-perceived health status

Health Related Quality
of Life
EQ-5D-5L
5-likert question

(Mobility, Self-care, Usual activity,
Pain/discomfort, Anxiety/depression)

Self-Rated Health

SRH
EQ-VAS | 4-likert question
(0-100 points) ' (Very good, Good, Less good, Poor)

l Transfer
CSRH

3-likert question
(Better, Equal, Worse)

EQ-5D index value
(<0.00 to 1.00 points)

Figure 3. Overview of the indicators used to assess self-perceived health status.

Abbreviations: CSRH, comparative self-rated health; EQ-5D-5L, five-level version of the European Quality of Life 5
Dimensions questionnaire; EQ-VAS, European Quality of Life Visual Analogue Scale; SRH, self-rated health.

3.1.3 Exposure assessment

A land-use regression (LUR) model with a spatial resolution of 50 m x 50 m was employed to assess
personal exposure to outdoor air pollutants, utilizing data collected from three bi-weekly measurements at

20 locations within the KORA study area during the years 2014 and 2015 7°. Paper I employed standardized
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protocols for the European Study of Cohorts for Air Pollutant Effects to estimate the annual mean concen-
trations of residential air pollutants, including PNC (as a surrogate for UFP), PM, s, the absorbances of
PM, s (PMa sas, representing a proxy of black carbon and soot), PMcoarse, PMio, O3, NO, and NOx, using
participants' home addresses and spatial predictors derived from geographic information systems 72, The
suitability of the LUR model was demonstrated by the adjusted model-explained variance (R?) values that
varied from 68% to 94%, as well as the adjusted leave-one-out cross-validation R?, which ranged from 55%

to 89%73. More details about the methods can be found in Paper 1 74.

3.1.4 Statistical analyses

Various analytical models were employed to evaluate the relationship between chronic exposure to air pol-
lution and individuals' self-reported health status. Continuous outcomes (EQ-5D index values and EQ-VAS
scores) were analyzed with a Generalized Additive Model (GAM) using fixed effects; binary outcomes
(SRH and the five dimensions of EQ-5D) were assessed using binary logistic regression; and CSRH was
evaluated with multinomial logistic regression. We implemented four models to adjust for potential con-
founding, with the main model controlling for sex, age, individual socioeconomic status (SES), living with
a partner, body mass index (BMI), smoking, and physical activity. In parallel, potential effect modification
was examined across sex, age, BMI, SES, self-perception of residential greenness, normalized difference
vegetation index (NDVI), self-efficacy, and perceived stress. Finally, we conducted a series of sensitivity
analyses to evaluate the robustness of our findings, including another main model adjusted for covariates
selected by a Directed Acyclic Graph, the heteroscedasticity testing, linearity of the exposure-response

relationship, the two-pollutant model, and additional adjustment for residential duration.

3.2 Air pollution and objective health: strokes (Papers II & III)

3.2.1 Study population and outcome assessment

Daily stroke records spanning 15 years (April 2006 to August 2020) were collected from the Medical In-
formatics Department of University Hospital Augsburg 7°. Daily hospital admissions for stroke were rou-
tinely and anonymously compiled in official analyses, and ethical approval was waived in line with the

Bavarian Hospital Act.

Daily hospital admissions for stroke subtypes were defined as transient ischemic attacks (TIAs, G45), hem-
orrhagic strokes (160—162), and ischemic strokes (163), using the 10th revision of the International Classi-
fication of Diseases (ICD-10). Data on stroke-related functional independence, assessed using the Modified
Rankin Scale (mRS), and stroke severity, measured by the National Institutes of Health Stroke Scale
(NIHSS), were also collected. The analysis was restricted to first-occurrence, non-fatal stroke cases, ex-

cluding cases with undefined diagnoses and repeated hospitalizations.
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3.2.2 Exposure assessment

For the study period (2006-2020), daily average concentrations of ambient air pollutants and meteorological
indicators were collected from different measurement sites in the study areas of Augsburg, Germany. For
the routinely measured air pollutants (PM 1o, PM2.5, PMcoarse, O3, NO2, and NO) of interest in Paper II, the
monitoring sites were selected according to data availability and the adjusted model-explained variance (R?)
of the regression 7. In Paper I1I, four size-segregated UFP metrics (PNC, PMC, PLC, and PSC) were meas-
ured at a representative measurement site (FH, University of Applied Sciences Augsburg) 777, with de-
tailed information regarding the measurement instruments, calibration processes, and data management
being available in the supplementary materials of Paper III. The primary size range of UFP metrics of
interest was the ultrafine range (10-100 nm). Additional analyses were conducted for three different UFP
sub-fractions, including the nucleation mode (10-30 nm), Aitken mode (30-100 nm), accumulation mode
(100-500 nm), and the total measured range (10-500 nm). The impacts of extreme temperature events
(ETESs), including cold spells and heat waves, were analyzed in Paper I1I. We first calculated the specific
cutoffs using the daily 24-hour average ambient temperature (°C). A heat wave was defined as an intense
period lasting 2, 4, or even 6 consecutive days when daily air temperatures soar above the critical thresholds
of the 95.0" and 97.5" percentiles, while a cold spell was defined as 2, 4, or 6 consecutive days with tem-
peratures below the 2.5" and 5.0" percentiles—indicating subnormal conditions relative to the average

temperatures in the study areas 7% 7°.

3.2.3 Statistical analyses

In papers II and III, a time-stratified case crossover design was utilized to control for any potential con-
founding from long-term trends, seasonal variations, day-of-week effects, and time-invariant factors such
as sex and age by comparing the exposure levels on case days and those on control days . We examined
the effects of air pollutants on strokes at single-day lags from lag0 (current day of strokes) to lag6 (6 days
before strokes), at lagged moving averages lag0-1, lag2-4, lag5-6, and at cumulative lag0-6 (7-day moving
average) by conditional logistic regression. We controlled the same lagged days of ambient air temperature
and relative humidity by incorporating a natural cubic spline with three degrees of freedom (df) in the
model. Stratified analyses were conducted by stroke subtypes, stroke-induced disability, and stroke severity
to assess differences in susceptibility. Several sensitivity analyses were carried out to evaluate the robust-
ness of the findings. Additionally, the interaction model was used to examine potential effect modification

by sex, age, season, 5-year admission periods, and ETEs (assessed only in Paper III).
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4. Key findings

This section summarizes the main results from the two published papers and the submitted manuscript
included in this dissertation. Aligned with the structure of the methodological section, the results are orga-
nized as follows: first, the study examining the long-term impacts of air pollution on self-perceived health
status (Paper 1) is evaluated, followed by the studies investigating the associations of strokes with the short-

term exposures to routinely monitored air pollutants (Paper 1) and UFPs (Paper III).

4.1 Long-term effects of air pollution on self-perceived health status

This analysis of self-perceived health status addresses the first specific aim of this dissertation: to investi-
gate whether elevated exposure to air pollution was related to poorer self-perceived health status, assessed

through various instruments.

Increased annual air pollution exposures were associated with decreased EQ-5D index values and EQ-VAS.
An interquartile range (IQR) increase in O3 concentration was related to a reduction in the EQ-5D index
value (percent change [95% confidence interval, CI]: —0.91% [—1.76%; —0.06%]). Likewise, the EQ-VAS
decreased in response to elevated annual concentrations of air pollutants, including PM o (—1.38% [-2.37%);
—0.38%]), PMcoarse (—1.25% [2.28%; —0.23%]), PMasabs (-1.57% [-2.69%; -0.45%]), PNC (=0.89%
[-1.68%; —0.10%]), NO; (=1.30% [-2.36%; —0.23%]), and NOx (—0.96% [—1.83%; —0.10%]). Participants
with a lower BMI and higher self-perceived stress appeared more vulnerable to the impact of air pollution

on EQ-VAS scores.

Individuals exposed to higher levels of air pollution were more likely to report poor SRH and unfavorable
CSRH. For each IQR increase in air pollutant concentrations, the odds ratios (ORs [95% Cls]) of poor SRH
were 2.67 (1.07; 6.67) for PMyy, 1.70 (1.14; 2.54) for PMcoarse, 1.42 (1.01; 1.99) for PNC, and 1.36 (1.04;
1.79) for NOx. A similar trend was also found for worse CSRH in response to elevated concentration of
PM, 5405 (OR=2.59 [1.12; 5.99]). All the above associations were proved to be robust in a series of sensitivity
analyses. Particularly, single-item indicators (EQ-VAS and SRH) may have better performance in assessing
self-perceived health than multi-dimensional measurements (EQ-5D index value) due to their more intui-

tive and straightforward characteristics.

4.2 Short-term effects of routinely measured air pollutants on strokes

This analysis of strokes addresses the second specific aim of this dissertation: to assess the short-term im-

pact of classical air pollutant exposures on stroke occurrence.

Our study found the association between elevated short-term air pollution exposure and a higher likelihood
of stroke occurrence. The delayed effects were primarily observed about 5- or 6-days following exposure

to increased levels of PM3 s, PM1o, PMcoarse, O3, and NO,. The lagged moving average model yielded similar
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trends. Stroke risk increased by 2.11% (0.09%; 4.17%) for PM2 s, 2.55% (0.43%; 4.71%) for PMo, 2.50%
(0.23%; 4.82%) for PMcoarse, and 3.48% (0.61%; 6.44%) for NO, at lag 5-6 days per IQR rise in pollutant

levels. For O3, a negative association with strokes was found at lag 6 and the moving average lag 0-6 days.

Patients with TIAs and hemorrhagic strokes were disproportionately impacted by air pollution. Severe
stroke cases with higher stroke-induced disability were more likely to be affected by particles, whereas
milder cases with lower stroke-induced disability were more affected by gaseous pollutants. The relation-
ship between air pollution and stroke risk was more pronounced during the warmer months and in the 2016—

2020 period. Further sensitivity analyses confirmed the robustness of these findings.

4.3 Short-term effects of UFP metrics on strokes

This analysis addresses the third specific aim of this dissertation: to evaluate the association between short-

term exposure to four size-segregated UFP metrics and stroke events.

Comparable adverse impacts on stroke events were observed for short-term exposure to four distinct UFP
metrics. Consistent delayed effects were observed across the four UFP metrics for both single-day lags of
3 or 4 days and moving average lags of 2—4 days, with the strongest effects appearing at the cumulative lag
of 06 days. Each IQR increase in PNC, PMC, PLC, and PSC in the specific ultrafine fraction (10-100 nm)
was associated with an elevated risk of stroke events of 4.76% (1.06%; 8.60%), 3.99% (0.93%; 7.13%),
4.52% (1.11%; 8.05%), and 4.14% (1.00%; 7.38%), respectively, at the cumulative lag 0-6 days. This sug-
gests that, in addition to PNC, the metrics of PLS and PSC may have promising alternative roles in meas-
uring UFPs. Notably, the effect of PMC warrants further validation in other size ranges, as a substantial

portion of PMC lies outside the 10—100 nm range typically measured.

When examining potential variations in effects across UFP size fractions, we found that, within the size
range of 10—100 nm, the effects of all four UFP metrics appeared stronger in the Aitken mode (30—100 nm)
than in the nucleation mode (10-30 nm). Larger particles in the accumulation mode (100-500 nm) may
exert more immediate adverse health effects. Furthermore, UFP metrics in the total measured range (10—
500 nm) appeared to have a more consistent effect with the Aitken mode, apart from the PMC, which may

be more related to the accumulation mode.

The effect of UFP metrics was more likely to be seen for ischemic strokes than for the other two subtypes.
Besides, a more pronounced UFP effect was found among milder stroke patients with a low stroke-related
disability or stroke severity. Finally, we noticed that the UFP effect on strokes may be amplified by cold

spells with extremely low air temperature in cold seasons.
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5. Discussion

This section provides a brief summary of the overall findings, the susceptible groups or effect modifiers,
and their potential biological mechanisms, as presented in the three papers. Detailed discussions and infor-

mation can be found in each paper.

5.1 Air pollution and self-perceived health status

In Paper 1, higher annual air pollution levels were found to be associated with reduced HRQoL and poor
SRH. More and more studies corroborate this finding, despite the use of different instruments across studies
to assess the general subjective health status. For instance, HRQoL, as measured by both the Short Form-
36 MCS and the EQ-5D related questionnaires, declined with increasing annual mean concentrations of air
pollutants 4% 3331 Similarly, the association with poor SRH has also been found in China *- %> 8, Nether-
lands #’, Canada *, Belgium °, Bulgaria *!, Northern Ireland 32, Chile #, and in the United States . Previ-
ous studies assessed self-perceived health status using a single indicator, highlighting the need for valida-
tion through multiple measurement tools. Our study is the first to concurrently employ various self-rated
health measures, revealing that single-dimensional instruments (EQ-VAS and SRH) may have higher sen-
sitivity to air pollution exposure than multidimensional tools (EQ-5D-5L or EQ-5D index value). Research-
ers can draw new insights from this discovery to inform their choice of subjective health-related indicators.
Of note, inconsistent evidence also exists in studies from Mongolia % and China ¥, as well as a study in
the United Kingdom 38, Multiple factors could account for the inconsistent results regarding the impact of
air pollution on self-perceived health, including spatial and temporal variations in air pollution concentra-

tions, differing subjective health status measurements, or different socioeconomic levels across studies.

The exact biological mechanisms underlying these associations remain unclear. Typically, the negative
effects of prolonged exposure to air pollution on self-perceived health can be attributed to its consequences

for the cardiovascular, respiratory, and immune systems %>

, which can contribute to worse physical health
conditions that negatively influence perceived health. Specifically, individuals with higher exposure to air
pollution may be more prone to developing respiratory symptoms (e.g., cough, breathlessness, wheezing,

91,92

phlegm), which can limit daily activities, increase health-related anxiety , and potentially contribute to

mental health issues and poorer self-perceived health.

The results of this paper indicated that participants with a lower BMI or higher stress perception were more
susceptible to air pollution's detrimental effects on self-perceived health. Air pollutants may have synergis-
tic effects with psychosocial stress in increasing individuals’ inflammatory response and inducing oxidative
stress **. BMI modification might reflect the obesity paradox, which suggests a better prognosis for chronic
diseases for those with higher BMI because of persistent low-grade inflammation **. Additional research is

required to validate these findings.
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5.2 Routinely monitored air pollutants and strokes

In Paper 11, short-term exposure to commonly regulated air pollutants, particularly PM» s, PMio, PMcoarse,
and NO,, was associated with an increased stroke risk among older adults in Augsburg, Germany. This
finding is in line with epidemiological evidence from recent reviews or meta-analyses 7152 Aside from
that, our study employed daily average levels of air pollution in Augsburg, located in southern Germany.
In this less polluted area, air pollution levels meet the WHO air guidelines for two-thirds of the year. The
stroke risk remains adversely correlated with air pollution in areas with lower levels of pollution, under-

scoring the need for further actions to improve air quality and reduce stroke rates worldwide.

The detrimental effects of air pollution varied by stroke etiology, with the estimates being more pronounced
among patients with TIAs and hemorrhagic strokes. In general, hemorrhagic stroke hospitalization is less
commonly associated with short-term air pollution exposure than ischemic stroke hospitalization 2. This
could be due to the lower frequency of hemorrhagic strokes and the less likely influence of transient air
pollution on their pathogenic mechanisms °®. Notably, with limited supporting evidence, the results of TIAs
need to be confirmed due to the difficulties in diagnosing them, as the symptoms resolve within 24 hours,
and an obvious lack of an infarction on magnetic resonance imaging °’. Furthermore, stroke cases associated
with PM caused more severe disability, whereas strokes associated with gaseous pollutants caused less
severe disability. It may be due to differences in physicochemical composition and exposure specificities
among air pollutants %8, calling for more attention to physicochemical properties and related advanced

measurement tools.

Multiple mechanisms may underlie the link between air pollution and acute physiological responses in the
neurovascular system, including local and pro-inflammatory responses, production of ROS, endothelium
dysfunction, acceleration of atherosclerosis, and formation of immune-thrombosis '® 8. Additionally, pol-
lutants may activate receptors of the lung and may thereby interfere with the autonomic nervous system,

causing vasoconstriction and altering cardiac rthythms, leading to hemorrhagic or ischemic strokes '%.

The potentially amplified adverse effects of air pollution during warmer seasons may be attributed to in-
creased personal exposure from greater outdoor activity *°, enhanced solubility and bioavailability of pol-

10

lutants 1%, the synergistic interactions between contaminants !, and reduced detoxification capacity at

102 Besides, we hypothesize that temporal variations in air pollution—related health

higher temperatures
effects between the previous five-year periods (2006-2010, 2011-2015) and the most recent period (2016-
2020) may be related to changes in pollutant sources and composition, advances in engine technology and
fossil fuel use, potential shifts in population susceptibility and socioeconomic conditions, and improve-
ments in disease detection and treatment technologies. There is a need for more research to elucidate the

changes in air pollution's health impacts over time.

5.3 Different UFP metrics and strokes

Using stroke admission data, we further unveiled the comparable detrimental effects of four size-segregated

UFP metrics (PNC, PMC, PLC, and PSC) on strokes, which indicated that, aside from the commonly used
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number and mass concentrations, the physical properties of UFPs need to be further considered. So far, the

evidence from epidemiology has been sparse to clarify the relationship between acute exposure to UFP and

103, 104 103, 105-107

strokes. Additionally, the use of different UFP exposure metrics and size fractions may
further add complexity to the conclusions. Measuring UFP using the PNC metric, a prior study in Finland
observed an adverse association between short-term UFP exposure and strokes, but the effect estimates did
not reach statistical significance '8, Similarly, a related study conducted in Denmark discovered a higher
likelihood of strokes associated with short-term exposure to UFPs !9, The comparable effects across dif-
ferent UFP metrics modes in our research suggest that the particles’ chemical composition might be an
additional important factor. However, the strong correlations among the four UFP metrics limited our abil-
ity to discern the distinct characteristics of each, and the absence of data on particle chemical composition
further constrained our investigation into differences in toxicity and underlying mechanisms linking UFPs
to stroke. Specifically, we noted the largest estimate in the ultrafine defined modes (10-100 nm), while
particles in the Aitken mode (30-100 nm) might have a more consistent effect than particles in the nuclea-
tion mode (10-30 nm). The observed variations in UFP effects across different size fractions may be at-
tributed to their acrodynamic properties, particularly the diffusion losses of smaller particles (<30 nm) dur-
ing measurement, as well as variations in particle-size distributions 3*. Given the daily fluctuations in par-
ticle concentrations driven by traffic peaks and variability in emission sources across regions, it would be
highly beneficial to expand the coverage of real-time UFP monitoring stations to improve spatial and tem-

poral resolution and to develop advanced prediction models with enhanced accuracy to better capture fine-

scale variability in UFP concentrations.

Being inconsistent with the more pronounced effects of routinely monitored air pollutants on TIAs and
hemorrhagic strokes observed in Paper I, the subgroups of patients with ischemic strokes were prone to be
impacted by UFP exposures. This might be explained by that UFPs can deeply penetrate the lungs, enter
the bloodstream, and promote atherosclerosis by triggering vascular inflammation owing to their small size
and large surface area '®. Compared to PM, s, UFPs can thus trigger stronger and broader neuroinflamma-
tion, involving greater activations of immune markers, inflammasome components, cytokines, and chemo-
kines, and especially cause mitochondrial dysfunction and lipid metabolism impairment **. Additionally,
their distinctive small size allows them to traverse alveolar epithelial barriers and directly access the central

nervous system through the olfactory bulb, leading to neuroinflammation ' 19,

The greater vulnerability to UFPs in less severe stroke cases may reflect a ceiling effect in advanced disease
and the preferential targeting of early inflammatory and endothelial pathways by UFPs during early-stage
atherosclerosis ' 112, Additionally, the amplified detrimental health effects of UFPs may be related to
higher vehicle emissions !'3, enhanced particle formation''"%, and limited atmospheric dispersion on days
with low air temperatures ''°, especially at night when stable air layers trap pollutants near their sources.
These findings underscore the importance of considering disease stages and air temperatures when evalu-

ating the health impacts of UFP exposure.
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5.4 Strengths and limitations

The following section briefly summarizes some of the major strengths and their respective limitations.

There is a detailed discussion of the strengths and limitations in each paper.

There are several key strengths of these three papers. Paper I utilized the standardized and comprehensive
data from the well-established KORA-Fit cohort study. Utilizing various self-assessed health tools enabled
a thorough and multi-dimensional evaluation of the impact of air pollution on both physical and psychoso-
cial health aspects. In papers II and III, the validated stroke hospital admission data from the University
Hospital Augsburg over 15 years enhanced the reliability of our findings. Moreover, the time-stratified
case-crossover study design automatically adjusted for fixed individual-level factors and minimized the
bias from seasonal and temporal time trends. Additionally, including both routinely monitored air pollutants
and UFPs allowed for evaluation of potential variations in pollutant sources and aerosol characteristics.
Specifically, there has been no study examining the effects of four UFP metrics in four size fractions on

stroke events until Paper II1.

However, certain limitations across the three publications need to be acknowledged. In Paper I, the valida-
tion of spatial variations in pollutant exposure was not feasible due to the temporal mismatch between the
exposure (2014-2015) and the outcome (2018-2019) assessments. In papers II and II1, reliance on fixed-
station air pollution data restricted the capacity to consider the spatial variability within the city and indi-
vidual movement patterns. As well, misclassification of stroke cases was unavoidable, and the less reliable
diagnosis of TIAs may have attenuated the observed associations. Finally, the generalizability of this dis-

sertation was limited by the single-center observational design (cross-sectional or case-crossover study).
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6. Conclusions and Outlook

In summary, this dissertation provides evidence that elevated ambient air pollution could exert detrimental
effects on self-perceived health and objectively diagnosed stroke events. Prolonged exposure to outdoor air
pollution can influence how a person views their health and overall quality of life, which can be captured
using various instruments from functional, psychological, and social viewpoints. Specifically, EQ-VAS
and SRH may be more sensitive in assessing early or subtle effects of air pollution on general health status.
Notably, individuals with a lower BMI and those who perceive stress as high may have a poorer self-
perception of health when exposed to long-term air pollution. These results provided an understanding of
the disease burden related to the cumulative exposure to air pollution from the viewpoint of the patient, and

emphasized the additional importance of subjective health assessments alongside objective clinical results.

This dissertation also demonstrates the association between short-term exposure to routinely monitored
ambient air pollution with elevated stroke risk, with greater susceptibility observed among patients with
TIAs and hemorrhagic strokes. Stroke cases linked to PM exposure tended to result in more severe disabil-
ities, whereas those associated with gaseous pollutants were more likely to present with milder impairments.
The adverse association between air pollution and stroke risk appeared to be intensified during warmer
seasons and in the most recent five-year period. These findings highlighted the need for more individualized
prevention strategies, enhanced air quality monitoring, and climate-adaptive health policies within stroke

prevention frameworks.

The four distinct UFP metrics were first found to exhibit comparable detrimental associations with stroke
risk, with more consistent effect estimates observed in the 10—100 nm and 30—100 nm size ranges. Ischemic
stroke patients and those experiencing minor strokes with a lower severity appeared more vulnerable to
transient UFP exposure. Besides, extremely low air temperatures and cold spells may exacerbate the ad-
verse health effects of UFPs. This means that expanding size-segregated real-time UFP monitoring and
adopting stricter regulatory policies across different UFP metrics may help in alleviating the stroke burden,
especially among more vulnerable individuals with pre-existing risk factors of ischemic strokes and during

cold spells with extremely low air temperatures.

We have to acknowledge that the observational study data (cross-sectional and case crossover) from the
exclusively German-based participants and the fixed monitoring air pollution data will limit the generali-
zability of our findings. Therefore, we suggest that additional research utilizing data from multiple centers,
which encompass diverse study populations and various sources of air pollutants, should be conducted to
further validate the harmful effects of air pollution on both subjective and objective health outcomes. Fur-
thermore, this dissertation observed the temporal trend that the detrimental health effects of air pollution
exposure have not decreased but have even increased, despite the air pollution levels having substantially
declined across years. We suggested that stricter air quality regulations and focused policy measures are
essential to alleviate the health impact associated with air pollution. Finally, the WHO has not yet estab-

lished specific AQGs for UFPs because of a lack of clear evidence owing to their variations in particle
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metrics, size fractions, chemical compositions, and even exposure settings. It is therefore urgent to imple-
ment the “Good Practice Statements” for UFPs across the world, such as improving quantification, expand-
ing monitoring networks, differentiating concentration levels, and developing standardized assessment
methods, particularly in urban areas with substantial vehicle/traffic emissions, thereby providing more con-

solidated evidence for the re-evaluation and establishment of international limits of UFPs.
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ARTICLE INFO ABSTRACT
Keywords: Background: Little is known about the association between air pollution and self-perceived health (including both
Ambient air pollution health-related quality of life [HRQoL] and self-rated health [SRH]). The aim of this study was therefore to

Health-related quality of life
Self-perceived health
EQ-VAS

Self-rated health

explore whether long-term air pollution exposure is associated with worse self-perceived health, as measured by
different tools.

Methods: We used a land-use regression model to determine the annual average levels of particulate matter with a
diameter <10 pm (PM;), coarse particles (PMcoarse), fine particles (PMy s), fine particle absorbances (PMz sabs),
particle number concentration (PNC), ozone (Os3), nitrogen dioxide (NO3), and nitrogen oxide (NOx) for geo-
coded residential addresses (2014-2015). Questionnaires and face-to-face interviews were used to collect HRQoL
(measured using the European Quality of Life 5 Dimensions [EQ-5D] index and the European Quality of Life
Visual Analogue Scale [EQ-VAS]) and SRH indicators (measured through two survey questions) (2018-2019)
from participants of the Cooperative Health Research in the Region of Augsburg (KORA)-Fit study in Germany.
We explored associations via generalized additive models, multinomial logistic regression, and logistic
regression.

Results: We included 2610 participants with a mean age of 64.0 years in this cross-sectional study, of which 1428
(54.7%) were female. Each interquartile range (IQR) increase in O3 was associated with a reduced EQ-5D index
value (% change of mean points and 95% confidence interval: -0.91% [-1.76; -0.06]). The average EQ-VAS score
declined between -1.57% and -0.96% with each IQR increase in PM;jo, PMcoarses PM2.5abs, PNC, NOo, and NOx.
These pollutants were associated with increased occurrence of poor SRH, with odds ratios ranging from 1.24 to
2.67. PM3 s5abs Was linked to a higher likelihood of reporting a worse comparative SRH (2.59 [1.12; 5.99]). Body
mass index and self-perceived stress modified these associations.

Conclusions: Long-term air pollution exposure was associated with poor self-perceived health, presenting as lower
HRQoL and higher odds of poor SRH. Single-item indicators measuring self-perceived health status may work
better than multi-dimensional indicators.
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1. Introduction

Increasing epidemiological evidence suggests that exposure to
airborne particulate matter (PM) or gaseous air pollutants affects nearly
all human body organ systems (Thurston et al., 2017). Exposure to
ambient PM pollution was one of the top three risk factors accounting for
more than 1% of global disability-adjusted life-years in 2019 (GBD,
2019), and between 1990 and 2019, the number of global deaths and
disability-adjusted life-years attributable to exposure to ambient PM
with a diameter <2.5 pm (PMj3 5) have increased by 102.3% and 67.7%,
respectively (Sang et al., 2022). According to the State of Global Air
(2024), air pollution accounted for 8.1 million premature deaths
worldwide in 2021, including 48% of global deaths from chronic
obstructive pulmonary disease, 28% from ischemic heart disease, and
27% from stroke (Health Effects Institute, 2024). Air pollution, however,
may also affect health without directly manifesting as morbidity or
mortality, instead resulting in feelings of malaise and a lower
self-perceived health status. Within the body, air pollution may
adversely affect health due to oxidative stress, inflammation, dysregu-
lation of the nervous system, and direct particle transfer into organ
systems (de Bont et al., 2022). When exposed to air pollution, people
may perceive an increase in headaches, dizziness, nausea, feeling ill, and
higher perceived psychological stress (Trushna et al., 2021; Zhao et al.,
2018). Even though there is a growing body of evidence supporting the
adverse health effects of air pollution, most studies are focused on
“objective” measures of health status, leaving a gap in the research using
“subjective” measures.

“Self-perceived health status” may include a wide range of constructs
representing different aspects of subjective overall health. Both health-
related quality of life (HRQoL) and the general concept of self-rated
health (SRH) are useful as they can capture a comprehensive summary
of health problems that may not be detected by standard medical
screening procedures (Anillo Arrieta et al., 2021; Ko and Boo, 2016;
Phyo et al., 2021). HRQoL is a multidimensional concept that focuses on
subjective overall well-being in the physical, mental, and social domains
of life (EuroQol-Group, 2023). One of the most commonly used mea-
sures of HRQoL is the standardized European Quality of Life 5 Di-
mensions questionnaire (EQ-5D), which is appropriate for evaluating
quality of life among the general population (EuroQol-Group, 2023) and
among patients in healthcare settings (AlSaeed et al., 2022; Chase et al.,
2022; Guillaumier et al., 2022; Mueller et al., 2021; Munyombwe et al.,
2021). HRQoL can also be assessed as “health utility,” defined as a
person’s preference for their overall health state, by transferring the
EQ-5D into an index value (EuroQol-Group, 2023). SRH can be assessed
using the European Quality of Life Visual Analogue Scale (EQ-VAS), and
a general assessment of SRH and age-comparative SRH (CSRH) which
are gathered using categorical questions (Huohvanainen et al., 2016).
SRH and CSRH are well-established predictors of mortality (Jylha, 2009)
and chronic or severe diseases and can be used to provide a subjective
assessment of individual current physical and mental health
(Huohvanainen et al., 2016; van de Weijer et al., 2022).

A growing number of epidemiological studies have linked air
pollution to worse self-perceived health status. Air pollution effects on
HRQoL and/or SRH have been reported in China (Tan et al., 2023),
Korea (Shin et al., 2018), Japan (Yamazaki et al., 2005), Netherlands
(Klompmaker et al., 2019), Belgium (Hautekiet et al., 2022), Spain
(Moitra et al., 2022), and across Europe (Boudier et al., 2022). In most of
these studies, however, the constructs of self-perceived health status
varied across studies, and only one or two specific outcomes were
generally evaluated in each study. Furthermore, no literature exists on
the association between air pollution exposure and SRH measured using
the EQ-VAS. Without a study that collects HRQoL, SRH, and CSRH at the
same time, it is difficult to identify the most relevant self-perceived
health measure for analyzing the effect of air pollution effects on gen-
eral health status.

Previous studies have demonstrated that air pollution effects on
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health are modified by various biological or social dimensions such as
age, sex/gender, and socioeconomic position (Hooper and Kaufman,
2018). The modification of air pollution on self-perceived health re-
mains inconclusive as one study found more pronounced effect estimates
in those with a higher socioeconomic level (educational background,
income level, and neighborhood) (Tan et al., 2023), while another study
indicated that air pollution exerted a larger effect on poor SRH in par-
ticipants who had lower education, who were experiencing financial
difficulties, or who lived in lower-income areas (Dzhambov et al., 2023).
Moreover, a previous study suggested that the effects of air pollution on
quality of life or SRH were stronger for men or those younger than 65
years (Shin et al., 2018). The effect of air pollution on poor SRH was
found to be modified by residential surrounding greenness in
Netherlands (Klompmaker et al., 2019). Aside from the objective mea-
sures of air quality, neighborhood reputation, the level of individual
knowledge and prior experiences suffering from air pollution are un-
observed latent variables that affect health risk perception, the psy-
chosocial determinants of health (Borbet et al., 2018; Cori et al., 2020;
King, 2015).

Using various measurement tools, our study’s objective was to
explore the associations between long-term air pollution and self-
perceived health status and identify which population groups are most
susceptible to the effects of air pollution.

2. Materials and methods
2.1. Study design and population

This study used data from the Cooperative Health Research in the
Region of Augsburg (KORA) cohort, implemented in Augsburg and two
adjacent districts in southern Germany since 1984 (Holle et al., 2005).
Since the start of the study, four cross-sectional surveys have been
conducted at 5-year intervals: S1 (1984-1985), S2 (1989/1990), S3
(1994-1995), and S4 (1999-2000). In 2018/2019, the follow-up study
KORA-Fit took place, for which all participants of the four surveys aged
54-75 years were invited to participate. After excluding those who were
unable to participate, 3059 participants (64.6% of the net sample)
finished a standardized interview and completed a questionnaire in the
study centre. For the present analysis, we only analyzed KORA-Fit par-
ticipants who were also participants in another subgroup study, Inte-
grating Gender into Environmental Health Research (INGER). In the
INGER project, sex/gender themes were integrated into environmental
health research through a newly developed questionnaire, which com-
bined biological and social information about gender/sex, as well as
environmental information about green spaces (Kraus et al., 2023). All
study methods were approved by the ethics board of the Bavarian
Chamber of Physicians (KORA-Fit EC No.17040) in adherence to the
declaration of Helsinki. All study participants gave written informed
consent before the survey.

2.2. Assessment of outcomes, exposures, and covariates

2.2.1. Health-related quality of life

HRQoL is often measured using standardized questionnaires (Karimi
and Brazier, 2016). Being one of the most widely used generic ques-
tionnaires, the EQ-5D includes two parts: the descriptive system covers
the five domains of mobility, self-care, usual activities, pain/discomfort,
and anxiety/depression, and the visual analogue scale, EQ-VAS
(EuroQol-Office, 2023). We used the five-level version of EQ-5D
(EQ-5D-5L) to determine the current HRQoL of individuals who
participated in KORA-Fit in 2018-2019. Each dimension has five
response levels (1-5 points), which were labeled “1 = no problems”, “2
= slight problems”, “3 = moderate problems”, “4 = severe problems”,
and “5 = unable or extreme problems”.

The EQ-5D can be transformed into an index value (EQ-5D index
value) using the aggregated German preferences developed by Ludwig
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et al. (Ludwig et al., 2018). Because these preferences emerged from
composite time-trade-off and discrete choice experimental data from a
population-based German adult sample, the score could also be seen as
an economic concept "health utility" and can therefore differ between
countries/regions (EuroQol-Office, 2023). In our study, the EQ-5D index
values ranged from -0.13 to 1.00, with a value below 0 equivalent to a
health state “worse than death”, a value of 0 equalling death, and a value
of 1 corresponding to perfect or full health. We also dichotomized the
5-point scales of each EQ-5D dimension as a binary variable by
considering the original response 1 as “0 = have no problems” and
combining responses 2-5 as “1 = any problems”.

2.2.2. Self-rated health

The general concept of SRH was measured via the EQ-VAS as part of
the EQ-5D (EuroQol-Office, 2023). It is a vertical analogue scale with a
range from O (the worst health you can imagine) to 100 (the best health
you can imagine) and was used to directly assess participants’ current
overall health status on the day of questionnaire completion. We also
evaluated the general concept of self-rated health by asking the ques-
tion, “How would you rate your current physical condition?”. Answers
were given on a 4-point Likert scale (1 = very good, 2 = good, 3 = less
good, 4 = poor), and then these variables were dichotomized as “good
SRH” (including the responses “very good” and “good™) and “poor SRH”
(including the responses “less good” and “poor”). When we use the
abbreviation term “SRH” below to refer to our outcome, we are referring
to this binary variable. CSRH was measured by asking the question,
“How would you rate your health compared to other people of your
age?”, with the three answer possibilities being “better”, “equal”, and
“worse”. An overview of the recoding of outcome variables can be found
in the supplementary data (Table S1).

2.2.3. Air pollution

Air pollutants at the residential addresses of participants were esti-
mated via land-use regression models with 50 x 50 m spatial resolution
from March 2014 and April 2015, mainly following the standardized
approach developed by the European Study of Cohorts for Air Pollution
Effects (ESCAPE) project (Beelen et al., 2013; Eeftens et al., 2012). The
details of the process have been previously reported (Wolf et al., 2017).
Briefly, three bi-weekly measurements were taken in different seasons
(warm, cold, and intermediate seasons) at 20 sites within the KORA
study area, involving twelve sites located within the city of Augsburg
and eight in the two adjacent districts of Augsburg and
Aichach-Friedberg. Throughout the whole study period, measurements
were additionally carried out at an urban background site as a reference
to adjust for temporal variations. Linear regression models were used to
calculate the annual mean concentration at the monitoring stations
using potential spatial predictor variables, including local land use,
traffic network, altitude, population, building density, and household
density. Based on participants’ home addresses, we calculated the resi-
dential annual average concentrations of air pollutants including parti-
cle number concentration (PNC) as an indicator for ultrafine particles
(UFP), PM in aerodynamic diameter <10 pm (PMjg), <2.5 pm (PMa5),
between 2.5 pm and 10 pm (PMcoarse), 00t (PM2 s5absorbance; @ Proxy of
elemental carbon related to traffic exhaust), ozone (O3), nitrogen diox-
ide (NO2) and nitrogen oxides (NOx). The performance of the land-use
regression model was validated by leave-one-out cross-validation and
the adjusted model explained variance (Rz) ranged from 0.68 to 0.94,
suggesting a good model fit (Wolf et al., 2017).

2.2.4. Covariates

For our analysis, we operationalized sex dichotomously with the
categories “female” and “male" without further distinguishing between
biological sex and socially constructed gender identity. Participants
indicated their sex through self-report. Other demographic and social
characteristics (age, living with a partner, pension, individual socio-
economic status [SES], self-perception of residential greenness) were
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obtained via a face-to-face interview. SES was calculated based on a
system developed by Mielck A (Mielck, 2000) from the three charac-
teristics, including the level of education, employment status, and in-
dividual income, with higher values indicating a higher socioeconomic
level. We also collected data about lifestyle-related behavior, including
physical activity, alcohol consumption, and smoking status.
Self-efficacy, or one’s ability to plan and execute actions effectively and
successfully, was assessed using the general self-efficacy short scale via a
self-administered questionnaire (Beierlein et al., 2013). Participants
were also invited to complete the 10-item perceived stress scale, which
aimed to rate their subjective perception of stress, with a higher score
indicating greater perceived stress (Cohen et al., 1983).

Physical examinations were carried out to obtain anthropometric
data, including height, weight, waist circumstance, and hip circum-
stance. These measurements were used to calculate body mass index
(BMI, kg/m?) and waist-to-hip ratio. Residential greenness was assessed
using two variables related to greenness: self-perception of residential
greenness and normalized difference vegetation index (NDVI). Self-
perception of residential greenness was estimated by asking partici-
pants how green their neighborhood is in terms of every type of green
space (from green strips along the street to gardens and parks). Answers
included "very green", "a little green", "hardly green", and "not green at
all". Due to the small sample size, the last three answers were combined
and grouped under "hardly green". According to our previous study, the
NDVI within a 300m buffer of participant residential addresses was
calculated using the cloud-free Sentinel-2 satellite images, with a reso-
lution of 10 m (Niedermayer et al., 2024). Each NDVI map of the
Augsburg area was built with two pictures, and the negative pixels of the
NDVI map were excluded before assignment to home addresses
(Niedermayer et al., 2024). We used the mean NDVI data between the
years 2018 and 2019 to match the KORA-Fit data.

2.3. Statistical analyses

2.3.1. Regression models

Participants with missing data on any outcome variable were
excluded from analysis. Generalized additive models with fixed effects
were used to test for associations between each individual air pollutant
and EQ-5D index values and EQ-VAS scores. Binary logistic regression
was used to assess whether each individual air pollutant was associated
with the odds of reporting poor SRH as compared to good SRH. Multi-
nomial logistic regression was used to measure whether each individual
air pollutant was associated with the likelihood of reporting equal or
worse CSRH, as compared to better CRSH. We also examined the asso-
ciations between air pollution exposures and the five dichotomized di-
mensions of EQ-5D using binary logistic regression. We were able to
generate reliable coefficient estimations using maximum likelihood
estimation based on the asymptotic properties of logistic regression with
a large sample size. By doing this, small-sample biases are alleviated,
and robust results are ensured.

Potential covariates were identified based on the disjunctive cause
criterion (VanderWeele, 2019) and the guidance of the World Health
Organization (WHO, 2020). Starting with the full list of potential
covariates, we used a stepwise forward regression method reducing the
Bayesian Information Criterion to select our final list of covariates
separately for each outcome variable. First, we included sex and age in
the minimum model. Next, we included SES, additional socioeconomic
variables, lifestyle variables, and BMI for selection. Based on the results
of this selection process, we included all confounders separately selected
for each outcome variable into one main model containing age, sex, SES,
living with a partner, BMI, physical activity, and smoking status. Apart
from the covariates in the main model, extended model 1 was further
adjusted for the percentage of households with low income (<1250
euro) and degree of urbanization, and extended model 2 for self-efficacy
and perceived stress, to control potential confounding.

Effect estimates are expressed as the percentage changes (% change)
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of the mean of continuous outcomes (EQ-5D index value and EQ-VAS) or
the absolute change of EQ-VAS only, and odds ratios (ORs) for cate-
gorical outcomes (SRH, CSRH, and five dichotomized dimensions of EQ-
5D) together with their 95% confidence intervals (CIs) per interquartile
range (IQR) increase in air pollutant concentration. A positive “%
change” indicates that a participant perceives their health status to be
better, whereas a higher OR value means a person perceives their health
status to be worse.

2.3.2. Sensitivity analyses and effect modification

As sensitivity analysis, in order to further identify the potential bias
introduced by confounders and colliders, we firstly drew the Directed
Acyclic Graphs (DAGs) using the web-version of program “DAGitty”
(http://www.dagitty.net/) (Niedermayer et al., 2024). We developed
another main adjustment model to test the robustness of our results.
Secondly, regarding the continuous outcomes (EQ-5D index value and
EQ-VAS), we tested the regression models for potential hetero-
scedasticity using the “glam” R package including a single global test to
assess the linear model assumptions, and the results indicated that the
assumptions of homoscedasticity were acceptable. Thirdly, we tested the
linearity of the exposure-response relationship for these two continuous
outcomes by including air pollutant concentrations as penalized splines
into generalized additive models using the “mgcv” R package. In testing
for multicollinearity, we found that all models had variance inflation
factors less than 2. Fourthly, we further tested the robustness of our
results by conducting two-pollutant models for all pollutant pairs for
which Spearman’s correlation coefficient was less than 0.7, the
threshold for high correlation (U.S. EPA, 2019). Finally, we additionally
included the “residential duration” in the adjustment model to account
for the potential movement of addresses.

By adding an interaction term to the main model, we then investi-
gated the effect modification of variables that have been categorized: sex
(female, male), age (<65.0 years, >65.0 years), BMI (<30.0 kg/mz,
>30.0 kg/mz), self-perception of residential greenness (very green,
hardly green), SES tertiles (1.0-12.0 points, >12.0-16.5 points, >16.5
points), and three continuous variables, including NDVI (<0.43, >0.43),
self-efficacy score (<4.02, >4.02) and perceived stress scale score
(<13.59, >13.59), which were dichotomized using their mean values as
the threshold. All statistical analyses were performed using R software
(version 3.6.2), with a two-tailed P-value of <0.05 being considered
statistically significant.

3. Results
3.1. Baseline characteristics

Of 3743 eligible participants of both the KORA-Fit and INGER
studies, we included 2610 subjects who completed the standardized
interview and the questionnaire (Fig. S1). As shown in Table 1, partic-
ipants had a mean age of 64.0 years at the time of the survey and 1428
(54.7%) were females. 2066 (79.8%) participants lived with a partner.
The mean values of BMI and SES at study entry were 28.0 kg/m? and
14.9 points, respectively. The baseline characteristics of participants
varied widely across EQ-5D index value and SRH groups. In general,
participants with a higher EQ-5D index value or who reported good SRH
were younger, were more likely to be male, be non-smokers, be physi-
cally active, live in a very green environment, have a higher level of SES,
have higher self-efficacy, consume more alcohol, have a lower BMI, and
have lower perceived stress than participants with a lower EQ-5D index
value or with poor SRH.

3.2. Outcomes and exposures
Table 2 shows that the mean levels for the EQ-5D index value and

EQ-VAS were 0.9 & 0.1 and 79.2 + 14.7, respectively. Most participants
reported having at least slight problems in the dimension of pain/
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discomfort (62.0%). 16.7% of participants reported poor SRH and 8.3%
reported worse CSRH. A moderate positive correlation was found be-
tween the EQ-5D index value and EQ-VAS (Spearman correlation coef-
ficient rho = 0.5), and a weak positive correlation was found between
SRH and CSRH (Kendall correlation coefficient tau = 0.3). As higher
SRH and CSRH values were coded as meaning worse health, we observed
a moderate negative correlation between SRH and both the EQ-5D index
value and the EQ-VAS (both rho and tau were -0.4) and a weak negative
correlation between CSRH with HRQoL measures (coefficients were -0.3
and -0.4). As for different dimensions of EQ-5D-5L, both the EQ-5D
index value and the EQ-VAS score had weak to moderate negative cor-
relations with the five EQ-5D dimensions, aside from a strong negative
correlation between EQ-5D index value and “pain/discomfort” (tau =
-0.7). SRH and CSRH only had weak positive correlations with the five
dimensions since higher codes indicate having problems in the five di-
mensions (Table 2).

Descriptive statistics of average annual air pollution concentrations
are displayed in Table 3. During the study period, the annual average
levels of PMy 5, PM;o, and NO, were within the European Union air
quality standard limits (PMa5: 25 pg/m?; PM;o and NOy: 40 pg/m°>) but
exceeded the air quality guidelines set by the WHO (PMys: 5 pg/m?>;
PMjo and NOy: 10 pg/m>). Most air pollutants were moderately to
strongly positively correlated with each other, with the highest corre-
lation being found for NOx and PNC (rho = 0.9). O3 was weakly posi-
tively correlated with PM;g (rho = 0.1) and PMcoarse (rho = 0.2), but
negatively correlated with PMy s, PMa 545, PNC, NO2, and NOx (rho
ranged from -0.2 to -0.1).

3.3. Regression results

3.3.1. Health-related quality of life

Regression results for the EQ-5D index value and EQ-VAS are shown
in Fig. 1 and Table S2 (supplementary materials). In the main model, we
found adverse associations between the EQ-5D index value and most air
pollutants, particularly for O3 (% change: -0.91% [95% CIL: -1.76;
-0.06]). After adjustment for additional covariates, associations were
strengthened for O3 in extended model 1 and for PMy s,ps in extended
model 2 (Fig. S2). We found that each IQR increase in air pollutant
concentration was associated with decreased EQ-VAS for PM1¢ (-1.38%
[-2.37; -0.381), PMcoarse (-1.25% [-2.28; -0.23]), PMasaps (-1.57%
[-2.69; -0.45]), PNC (-0.89% [-1.68; -0.10]), NO5 (-1.30% [-2.36;
-0.23]), and NOyx (-0.96% [-1.83; -0.10]). Most of these associations
were attenuated in extended model 1 but remained robust in extended
model 2 (Fig. S2). Details of the absolute changes in EQ-VAS are avail-
able in Table S3.

In our analysis of dichotomized EQ-5D-5L dimensions, the dimension
"usual activities" had the strongest associations with increasing air
pollution, though not all associations were statistically significant
(Table S4, Fig. S3). Participants had higher odds of reporting difficulties
in their usual activities when exposed to higher concentrations of PM;o
(OR: 3.46 [95% CI: 1.32; 9.10]), PM3 5aps (1.65 [0.96; 2.84], PNC (1.53
[1.07; 2.19]), and NOx (1.31 [0.98; 1.75]). Those exposed to higher
levels of PMj saps had higher odds of reporting pain/discomfort, and
those exposed to higher levels of PMy s had higher odds of reporting
difficulties with self-care. For the other two dimensions, we observed
only some null tendencies towards increased odds of having problems.

3.3.2. Self-rated health

The long-term effects of air pollution on poor SRH are presented in
Fig. 2 and Table S5. In the main model, we consistently observed
increased odds of reporting poor SRH with increased exposure to PM;o
(2.67 [1.07; 6.671), PMcoarse (1.70 [1.14; 2.54]), PMa 5aps (1.60 [0.96;
2.67]), PNC (1.42 [1.01; 1.99]), NO3 (1.24 [0.98; 1.58]) and NOx (1.36
[1.04; 1.79]). Aside from PMoarse and Os, most of these associations
slightly decreased in the extended model 1, with the extended model 2
similarly leading to lower estimates (Fig. S4).
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Table 1
Descriptive analysis of KORA-Fit & INGER studies (N = 2610).
Missing Overall EQ-5D index value® SRH"
0 Low (n = 806) High (n = 1804) P- Poor (n = 437) Good (n = 2173) P-
value® value*
Mean + SD/No. Mean + SD/No. Mean + SD/No. Mean + SD/No.
(%) (%) (%) (%)
Age, years 0 (0.0) 64.0 + 5.4 64.3 + 5.4 63.8 +5.5 0.047 63.9+5.4 64.0 + 5.5 0.881
0(0.0) <0.001 0.002
Sex
Female 1428 508 (63.0) 920 (51.0) 269 (61.6) 1159 (53.3)
(54.7)
Male 1182 298 (37.0) 884 (49.0) 168 (38.4) 1014 (46.7)
(45.3)
Living with a partner 0(0.0) <0.001 <0.001
Yes 2066 576 (71.5) 1490 (82.6) 311 (71.2) 1755 (80.8)
(79.2)
No 544 (20.8) 230 (28.5) 314 (17.4) 126 (28.8) 418 (19.2)
Pension 1 (0.0) <0.001 <0.001
Yes 136 (5.2) 85 (10.6) 51 (2.8) 54 (12.4) 82 (3.8)
No 2473 720 (89.4) 1753 (97.2) 383 (87.6) 2090 (96.2)
(94.8)
Residential durations, years 0 (0.0) 19.1 £9.7 19.0 £ 9.8 19.1 £9.7 0.746 19.1 £9.7 19.1 £ 9.7 0.997
9(0.3) 14.9 + 5.0 13.9 + 4.7 15.3 £ 5.1 <0.001 13.7 + 4.7 15.1 £ 5.0 <0.001
SES
9(0.3) <0.001 0.001
SES (tertiles)
1.0-12.0 664 (25.5) 248 (31.0) 416 (23.1) 139 (32.0) 525 (24.2)
>12.0-16.5 1048 344 (43.0) 704 (39.1) 178 (40.9) 870 (40.2)
(40.3)
>16.5 889 (34.2) 209 (26.1) 680 (37.8) 118 (27.1) 771 (35.6)
Self-perception of residential 0(0.0) <0.001 0.001
greenness
Very green 2062 598 (74.7) 1464 (81.7) 320 (73.6) 1742 (80.7)
(79.5)
Hardly green 532 (20.5) 203 (25.3) 329 (18.4) 115 (26.4) 417 (19.3)
NDVI 1 (0.0) 0.4 +0.1 0.4 +0.1 0.4 +0.1 0.022 0.4 +0.1 0.4 +0.1 0.055
0(0.0) <0.001 <0.001
Physical activity
Very active 1017 256 (31.8) 761 (42.2) 105 (24.0) 912 (42.0)
(39.0)
Moderately active 885 (33.9) 271 (33.6) 614 (34.0) 143 (32.7) 742 (34.2)
Little active 320 (12.3) 115 (14.3) 205 (11.4) 70 (16.0) 250 (11.5)
Inactive 388 (14.9) 164 (20.4) 224 (12.4) 119 (27.2) 269 (12.4)
Alcohol consumption, g/day 1 (0.0) 14.8 £ 12.9 +19.0 15.6 +£19.8 0.001 12.9 +20.0 15.1 £19.5 0.030
19.6
1(0.0) <0.001 0.003
Alcohol consumption (category, g/
day)
None 675 (25.9) 258 (32.1) 417 (23.1) 141 (32.3) 534 (24.6)
>0-40 1261 463 (57.5) 1158 (64.2) 254 (58.1) 1367 (62.9)
(48.3)
>40-80 280 (10.7) 73 (9.1) 207 (11.5) 34 (7.8) 246 (11.3)
>80 33(1.3) 11 (1.4) 22 (1.2) 8 (1.8) 25 (1.2)
Smoking status 4(0.2) 0.057 0.007
Non-smoker 1186 349 (43.5) 837 (46.4) 175 (40.1) 1011 (46.6)
(45.4)
Ex-smokers 1075 329 (41.0) 746 (41.4) 186 (42.7) 889 (41.0)
(41.2)
Current smokers 345 (13.2) 125 (15.6) 220 (12.2) 75 (17.2) 270 (12.4)
BMI, kg/m? 0(0.0) 28.0 £ 5.2 29.2+6.1 27.5+ 4.7 <0.001 30.0 £ 6.3 27.6 + 4.9 <0.001
0 (0.0) 0.9+ 0.1 0.9+ 0.1 0.9+ 0.1 0.861 0.9+ 0.1 0.9 +0.1 0.012
Waist-Hip-Ratio
75 (2.9) 4.0+ 0.6 3.9+ 0.6 41+0.5 <0.001 3.86 + 0.7 41+0.6 <0.001
Self-efficacy
124 (4.8) 143 £5.6 17.0+5.8 13.1+£5.0 <0.001 18.0 £ 6.0 13.5+5.2 <0.001

Perceived stress

Abbreviations: EQ-5D-5L, European Quality of Life 5-dimensional questionnaire; EQ-5D index, index of EQ-5D-5L questionnaire; EQ-VAS, EuroQol group’s visual
analog scale; SRH, self-rated health; CSRH, comparative self-rated health; NDVI, normalized difference vegetation index; BMI, body mass index; SES, socioeconomic
status; Self-efficacy, General Self-Efficacy Short Scale; Perceived stress, Perceived stress scale.
Note: Continuous variables are presented as means + standard deviations (SDs), as well as their ranges (minimum, maximal), and categorical variables are presented
as total numbers (percentages).

@ Population was divided into groups according to the mean value of the EQ-5D index value (cutoff value = 0.90).

b population was divided into groups according to the recorded SRH (poor/good).

¢ P-value was calculated by using the Kruskal-Wallis test or the Chi-square test.
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Table 2
Results of correlation analysis for outcomes of interest.

Missing Mean Correlation coefficients

(%) (SD)/n

%) EQ-5D EQ- SRH  CSRH
index VAS
value
EQ-5D index 0(0.0) 09+ 1.0 - - -
value 0.1
EQ-VAS 0(0.0) 79.2 0.5 1.0 - -
+14.7
SRH 0(0.0) - -0.4™  —04™ 1.0 -
Good - 2173 - - -
(83.3)
Poor - 437 - - - -
(16.7)
CSRH 42(1.6) - -0.3™  —04™ 03" 1.0
Better - 1287 - - -
(50.1)
Equal - 1069 - - - -
(41.6)
Worse - 212 - - -
(8.3)

EQ-5D-5L 0(0.0) - - - - -

Dimension

(dichotomized)

Mobility, yes% - 727 -0.5™  —0.3™ 04”03
(27.9)

Self-care, yes%  — 85 -0.2" -0.2" 03" 02"
(3.3)

Usual activities, - 366 -0.5" —-0.3" 0.4>  0.3"

yes% (14.0)

Pain/ - 1617 —0.7™  —0.4™ 0.3 0.2™

discomfort, yes (62.0)

%

Anxiety/ - 709 —0.4> -0.3" 03> 02"

depression, yes (27.2)

%

Abbreviations: SD, standard deviation; EQ-5D index value, the index of Euro-
pean Quality of Life 5-dimensional questionnaire; EQ-VAS, EuroQol group’s
visual analog scale; SRH, self-rated health; CSRH, comparative self-rated health.
Note.

# The correlation coefficients (rho) were calculated by Spearman correlation
analysis.

" The correlation coefficients (tau) were calculated by Kendall correlation
analysis.

¢ P<0.10.

4P <0.05.

In the case of CSRH, we found a tendency for decreased odds of equal
CSRH when compared with better CSRH with increasing exposure to air
pollution (Fig. 3, Fig. S5, Table S6). We also generally found increasing

Table 3
Distribution of ambient air pollutant concentrations.
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odds of worse CSRH compared to better CSRH with increasing exposure
to air pollution, but there was no consistent pattern across pollutants.
Each IQR increase in PMj s,ps Was associated with increased odds of
reporting worse CSRH (2.59 [1.12; 5.99]), with similar trends being
found for PMcoarse; PM2 5, and NO,. All these effects were attenuated in
the two extended models (Figs. S6-57).

3.4. Sensitivity analyses

Given that the DAG plot (Fig. S8) shows that BMI and physical ac-
tivity might be theoretical mediators in the causal pathway, we updated
the main adjustment model excluding these two variables. However, as
it is shown in Table S7 and Figs S9 — S12, the exclusion did not greatly
alter the estimated effects. This supports the robustness of our findings
regardless of the inclusion of physical activity and BMI, reducing con-
cerns about over-adjustment. Figs. S13 and S14 show the exposure-
response relationships of two continuous outcomes (EQ-5D index
value and EQ-VAS) with the different air pollutants. Overall, most as-
sociations exhibited a generally linear trend, though associations be-
tween PM, 5 and O3 and the EQ-5D index showed several fluctuations. In
two-pollutant models, most associations were consistent with those of
the main analysis (Table S8). Further adjustments to the residential
duration did not cause great changes in our results (Table S9).

3.5. Effect modification

Effect modification was solely performed for EQ-VAS because this
outcome had the strongest association with air pollution in the main
analysis. Results presented in Fig. 4 show that BMI and perceived stress
modified the association between air pollution and EQ-VAS. Participants
with a BMI below 30.0 kg/m? exhibited a stronger association between
air pollution and EQ-VAS as compared to those with a BMI at or above
30.0 kg/m?. Furthermore, participants with higher perceived stress
(scale score >13.59) showed stronger effects compared to those with
lower stress. We did not observe any considerable modification for other
covariates (sex, age, self-perception of residential greenness, NDVI, and
self-efficacy) (Table S10).

4. Discussion

Our cross-sectional study found that higher long-term exposure to air
pollution was associated with worse HRQoL and worse SRH in German
adults aged 54 and over. Additionally, effect modification was observed
for BMI and perceived stress level. We found that the one-item mea-
surements of self-perceived health status (EQ-VAS and SRH) may show
higher sensitivity to air pollution compared to the multi-dimensional

Mean (SD) Min P25 Median P75 Max

IQR Spearman correlation coefficients

PM;o PMcoarse PMy 5 PM2 5abs PNC O3 NO, NOx
PM; (pg/m%) 16.4 (1.4) 132 152  16.1 17.2 223 1.0
PMcoarse (ig/m>) 4.8 (1.0) 2.5 4.1 4.7 5.5 8.3 0.8 1.0
PM, 5 (ug/m°) 11.7 (1.0) 83 111  11.8 124 143 0.5 0.5 1.0
PM 5405 (10%/m) 1.2 (0.2) 0.8 1.0 1.2 1.3 1.9 0.8° 0.8 0.6 1.0
PNC (10%/cm®) 7.1 (1.8) 3.2 6.1 7.1 80 146 0.8° 0.7 0.6 0.8 1.0
03 (pg/m?) 39.1 (2.4) 321 373 392 409  46.0 0.1 0.2 -0.2"  -0.1 0.0 1.0
NO, (ng/m®) 13.6 (4.2) 69 103 129 165 289 0.7 0.8" 0.7 0.9" 0.8 -0.1 1.0
NOx (ug/m?) 21.3 (7.0) 38 170 220 255 472 0.7 0.7 0.8" 0.7 0.9" -0.1° 08 1.0

Abbreviations: SD, standard deviation; P25, 25th percentile; P75, 75th percentile; IQR, Inter-quartile range; PM;, particulate matter (PM) with an aerodynamic
diameter <10 pm (pg/ms); PM_coarse, cOarse particulate matter; PMy s, PM < 2.5 pm (pg/m3); PMS sabs, the absorbance of PMj s; PNC, particle number concentration;

03, Ozone (pg/m3); NO,, Nitrogen dioxide (pg/m3); NOx, Nitrogen oxide (pg/mg).

Note.

The correlation coefficients (rho) were calculated by Spearman correlation analysis.

2 p<0.10.
b p < 0.05.
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Fig. 1. Results of the main model of linear regression for the associations between air pollutants and EQ-5D index value and EQ-VAS.

Abbreviations: EQ-5D index value, the index of European Quality of Life 5-dimensional questionnaire; EQ-VAS, EQ visual analogue scale; IQR, interquartile range;
PM,, particulate matter (PM) with an aerodynamic diameter <10 pm (pg/m3); PM oarse,; COarse particulate matter; PMys, PM < 2.5 pm (pg/ms); PM, 5415, the
absorbance of PM,s; PNC, particle number concentration; O3, Ozone (ug/m®); NO,, Nitrogen dioxide (ug/m®); NOy, Nitrogen oxide (ug/m>). Note: Estimates

represented as the percentage changes in EQ-5D index value/EQ-VAS mean for IQR increase in annual exposures to air pollutants (1.95 pg/m? for PM; o, 1.40 pg/m

2

for PMecoarse, 1.39 pg/m? for PMy s, 0.28 [10°/m] for PMj saps, 1.92 [10%/cm®] for PNC, 3.54 pg/m? for Os, 6.20 pg/m? for NO, and 8.41 pg/m? for NOy).
The plots were developed based on the main model, which was adjusted for age at the survey, sex, socioeconomic status (SES), living with a partner, physical activity,

and smoking status.

measure (EQ-5D index value).

There is an increasing number of studies on the long-term health
effects of air pollution. However, only two identified studies to date have
assessed HRQoL using the EQ-5D (Shin et al., 2018; Tan et al., 2023).
Measuring HRQoL with the three-level version of the EQ-5D (EQ-5D-3L),
Tan et al. found that per 1 pg/m?® increase in long-term exposures to
PM3 5 and PM; o, the EQ-5D-3L index value among their study population
in Shandong decreased by 0.002 and 0.001, respectively (Tan et al.,
2023). In a study in South Korea, Shin et al. dichotomized the EQ-5D-3L
index values based on a fourth quartile cut-off, defining participants
above the fourth quartile as having poor quality of life. They found that
poor quality of life was associated with increased exposures to PM;( and
NO, particularly in younger people (<65.0 years) (Shin et al., 2018).
Another study used the Short Form-36 Health Survey (SF-36) Physical
and Mental Component Summary scores to assess HRQoL (Boudier et al.,
2022). This European population-based study reported that higher
PM, 5, PM1, and NO, concentrations were associated with lower Mental
Component Summary scores, but no consistent association was found for
Physical Component Summary scores (Boudier et al., 2022).

In terms of the general SRH, there is sparse evidence regarding the
long-term effect of air pollution on EQ-VAS. In China, Li et al. found a
positive association between annual air pollution (PM;o, NO2, and O3)
and worse SRH among 5172 individuals aged >60.0 years from 123
Chinese cities (Li et al., 2023). Another study in China consistently
observed that a higher air pollution index was associated with a greater
likelihood of having poor SRH among 7358 residents aged >65 years
from 171 Chinese cities (Sun and Gu, 2008). Supporting evidence has
also been found in European populations, including a cross-sectional

study of 16,455 participants aged >15 years in Belgium (Hautekiet
et al., 2022), a study including 354,827 Dutch citizens aged >19 years
(Klompmaker et al., 2019), and an analysis of over 500,000 residents
aged 37-73 years from the UK Biobank (Mutz et al., 2021). In general,
these studies observed the detrimental effect of air pollution on
self-perceived health status, in agreement with our results. Until now,
however, there has been no evidence linking long-term air pollution
with CSRH.

Several biological mechanisms may explain our findings. Self-
perceived health is a measurement of both overall subjective physical
and mental well-being (EuroQol-Group, 2023). Within the body,
long-term air pollution exposure is connected to a variety of diseases (de
Bont et al., 2022; Hansel et al., 2016) by producing reactive oxygen
species and causing endothelial dysfunction, which may be related to
worse HRQoL (Akor et al., 2020; Phyo et al., 2021), poor SRH (Farkas
et al., 2009; Ko and Boo, 2016), and worse CSRH (Dong et al., 2018;
Verhoeven et al., 2021). Air pollution toxicity can also damage the
central nervous system or cause neurodegenerative diseases by altering
miRNAs, telomeres, gene expression, and signaling pathways (Costa
et al.,, 2020; van der Meulen et al., 2018). These neurodegenerative
diseases may further worsen HRQoL. Air pollution also affects the sub-
jective experience of physical and mental health. For example, people
living in areas with higher chronic air pollution exposure may be more
stressed and fearful of getting sick (Zhu and Lu, 2023). This high sub-
jective stress in response to ambient air pollution may be related to the
abnormal secretion of hormones (e.g., dopamine) (Pereyra-Munoz et al.,
2006), metabolism of neurotransmitters (e.g., serotonin) (Zhao et al.,
2018), and stimulation of hippocampal pro-inflammatory cytokine
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Poor SRH vs. good SRH
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Fig. 2. Results of the main model of logistic regression for the association
between air pollutants and the odds of reporting poor SRH.

Abbreviations: SRH, self-rated health; IQR, interquartile range; OR, odds ratio;
95% CI, 95% confidence interval; PM,,, particulate matter (PM) with an
aerodynamic diameter <10 pm (pg/m>); PM coarse, COarse particulate matter;
PMy5, PM < 2.5 pm (ng/m®); PMy s4ps, the absorbance of PM, s; PNC, particle
number concentration; O3z, Ozone (pg/mg); NO,, Nitrogen dioxide (pg/mg);
NOy, Nitrogen oxide (pg/m®). Note: With those reported “good SRH™ as
reference group, estimates represented as ORs (with 95% Cls) of poor SRH for
IQR increase in annual exposures to air pollutants (1.95 ug/m2 for PM;, 1.40
pg/m2 for PMcoarse; 1.39 |,1g/m2 for PMys, 0.28 [10°°/m] for PMa saps, 1.92
[10%/ecm®] for PNC, 3.54 pg/m? for O3, 6.20 pg/m? for NO, and 8.41 pg/m? for
NOy).

The plot was developed based on the main model, which was adjusted for age at
the survey, sex, socioeconomic status (SES), living with a partner, physical
activity, and smoking status.

production (Fonken et al., 2011). Moreover, individuals exposed to
higher air pollution are more likely to experience headaches, dizziness,
nausea, and feelings of ill health, ultimately affecting their mental
well-being (Zhao et al., 2018). Other symptoms related to air pollution
exposure (shortness of breath, cough, wheezing, and phlegm) are also
likely to interrupt the performance of daily activities and work
(D’Oliveira et al., 2023), while also resulting in lower physical capacity
and worse self-perceived health (Lopez-Campos et al., 2013). In addi-
tion, health risk perception is the psychosocial determinant of health
and could also be affected by personal perceptions of air quality (Borbet
et al., 2018), neighborhood stigma (King, 2015), and individual’s
knowledge of air pollution (Cori et al., 2020). As there are fewer studies
of the clear specific mechanisms linking air pollution to self-reported
health status, more research is needed to validate our findings due to
the complex etiology of mental and subjective health outcomes.

Our results related to the association between various sizes of PM and
self-perceived health status were somewhat unclear in comparison to
other air pollutants. First, the associations between worse self-perceived
health status and PMjo, PMcoarse, and PMy 5 gradually disappeared as
their particle sizes decreased. This may be because the size fraction of
PM plays a significant role in determining its health effects because PM
deposits in different parts of the respiratory system and enters the cir-
culatory system depending on its aerodynamic diameters (Zhang et al.,
2022). Larger particles lodge in the upper airways, which may cause
more obvious symptoms that affect self-perceived health more signifi-
cantly. Smaller particle sizes and deeper deposit locations are less likely
to result in immediate and noticeable symptoms, which may explain
why we did not find an association between PM; 5 and self-perceived
health. Second, PNC contributes most to UFP, which, due to their
small size, can diffuse into the most distal lung regions and additionally
penetrate all organ systems including the central nervous system
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(Calder6n-Garciduenas and Ayala, 2022; Oberdorster et al., 2007). This
is unlikely to be the scenario for ambient PMjy 5 as it mainly affects the
respiratory and cardiovascular systems (Henning, 2023), and this
inconsistency may also be reflected in self-perceived health outcomes.
Apart from their size, UFPs are more toxic than larger PMs as they have a
larger relative surface area and are highly reactive, meaning that they
can absorb more hazardous metals and toxic organic compounds (Kwon
et al., 2020). In summary, our mixed results for PM suggest that
large-scale scientific studies are needed to determine the effects of PMy 5
on self-perceived health status in more detail.

Within our study, ‘one-item’ measures (EQ-VAS and SRH) were more
affected by air pollution than multi-dimensional measures (EQ-5D index
value). In the EQ-VAS and SRH, respondents’ perceptions of health on
the day of the survey are presented straightforwardly, whereas the EQ-
5D rates specific dimensions based on a certain weight (coefficient). In
general, the EQ-VAS provides more granular information but is less
focused on impairments in specific dimensions of health than the EQ-5D
(EuroQol-Office, 2023). As a result, the EQ-VAS may be more sensitive
when used in a general population sample than the EQ-5D. In addition,
our less pronounced results for poor CSRH as compared to our results for
poor SRH may be explained by a lack of clarity as to which people the
participants were comparing themselves with, and detecting air pollu-
tion effects would be challenging if participants compared themselves to
people in the same residential area since they would be exposed to air
pollution at the same levels. As a result, worse CSRH might be under-
estimated. There were wider intervals of worse CSRH for PMj 5,15 than
for other air pollutants, likely due to the relatively narrow range of
annual PMj saps levels and the gap in sample sizes across the three cat-
egories of CSRH.

We detected significant modification effects for the association be-
tween air pollution and EQ-VAS, with the effect modification being most
apparent for BMI, with the detrimental impacts of ambient air pollution
being stronger among those with a lower BMI. A similar higher sus-
ceptibility to air pollution among those with lower BMI was also found
for cardiovascular and cerebrovascular diseases (Zhang et al., 2011). In
contrast to our results, a previous study measured HRQoL using the
EQ-5D-3L index value and revealed a stronger adverse health effect of
air pollution in those with higher BMI (Tan et al., 2023). A higher sus-
ceptibility to air pollution among study participants with other diseases
(type 2 diabetes, high blood pressure, and brain tumours) was also found
among those with higher BMI (Jorgensen et al., 2016; Li et al., 2021; Liu
et al.,, 2016). Exposed to short-term PM, overweight or obese people
release a smaller amount of extracellular vesicles (particles released by
cells in response to stimuli) which is associated with a lower risk of
narrowing of the coronary arteries (Rota et al., 2020). A potential
explanation for the attenuated effect of BMI is the obesity paradox,
which suggests that obese people of advanced age have a better prog-
nosis for chronic diseases due to their persistent low-grade inflamma-
tion, which is less likely to lead to chronic illnesses (Blum et al., 2011;
Rota et al., 2020). Validating this finding will require further research.

Previous research has also found that people with a higher stress
level appeared to be more vulnerable to air pollution (Schwartz et al.,
2011). We also found that the perceived stress modified the association
between air pollutants and EQ-VAS, with stronger adverse effects on
EQ-VAS being found in the higher perceived stress group. Psychosocial
stress increases vulnerability to the health effects of environmental
hazards (Mehta et al., 2015). A higher self-perceived stress level might
damage general feelings of optimism or promote pessimism about the
future, worsening dynamic feelings of health (Smith et al.,, 2004).
However, a cross-sectional study in the Arab-American community
found no evidence of effect modification of perceived stress (Suleiman
et al., 2021). As there is limited conclusive evidence accounting for
comorbidity or stress-related vulnerability, more in-depth studies are
required regarding their modification effects.

There are several strengths in the present study. First, this study was
conducted based on the KORA-Fit cohort, a well-characterized study
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Fig. 3. Results of the main model of multinominal regression for the association of air pollution with the odds of reporting equal CSRH or worse CSRH.
Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% CI, 95% confidence interval; IQR, interquartile range; PM;, particulate matter (PM) with
an aerodynamic diameter <10 pm (pg/m3); PMoarse, cOarse particulate matter; PMy s, PM < 2.5 pm (pg/m3); PM3 5415, the absorbance of PM; s; PNC, particle number
concentration; Oz, Ozone (ug/m>); NO,, Nitrogen dioxide (ug/m>); NOx, Nitrogen oxide (ug/m®). Note: With those reported “better CSRH” as reference group,
estimates represented as ORs (with 95% ClIs) of equal CSRH or worse CSRH for IQR increase in annual exposures to air pollutants (1.95 pg/m? for PM;, 1.40 pg/m?
for PMecoarse, 1.39 pg/m? for PMy s, 0.28 [10™°/m] for PMa saps, 1.92 [10%/cm®] for PNC, 3.54 pg/m? for Os, 6.20 pg/m? for NO, and 8.41 pg/m? for NOy).

The plots were developed based on the main model, which was adjusted for age at the survey, sex, socioeconomic status (SES), living with a partner, physical activity,

and smoking status.

with standardized and comprehensive information regarding subject
characteristics and outcomes, which enhanced the reliability of our re-
sults. Second, our study examined the potential effect of eight commonly
measured air pollutants, after checking for potential multicollinearity.
This enables us to conclude consistent patterns across various air pol-
lutants and to explore potential differences in sources and aerosol
properties.

Our study also has some limitations. First, using spatial models, we
estimated the annual average concentrations of air pollutants for 2014/
2015, while outcome data were collected in 2018/2019. Yet, we believe
these exposure estimates are valid since previous studies have shown
that spatial variation in exposure over time is stable for historical spatial
contrasts (de Hoogh et al., 2018; Wang et al., 2013). Second, we focused
only on self-perceived ‘physical’ health states by asking the participants
two SRH-related questions, rather than assessing ‘general” health status.
In part, this could be compensated by using the EQ-5D-5L instrument,
which measures the self-perceived health from both physical and mental
health (anxiety/depression) perspectives. Our use of EQ-VAS also helps
to determine general health (EuroQol-Office, 2023). Third, our data may
not be generalizable to other populations since KORA-Fit participants
were mainly of European descent. Finally, the cross-sectional design
prevented us from assessing the causality between self-perceived health
status and air pollution.

5. Conclusions

Worse HRQoL (assessed with the EQ-5D index value and EQ-VAS),
poor SRH, and worse CSRH were associated with increasing exposure
to air pollution. These associations were modified by BMI and perceived
stress level. In studies of the effects of air pollution, a single-item SRH
indicator may be more suitable for assessing self-perceived health status

among older people than multidimensional indicators.
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Fig. 4. Multiple linear regression results for the associations between annual air pollutant exposures and EQ-VAS modified by BMI and perceived stress.
Abbreviations: EQ-VAS, EuroQol group’s visual analog scale; OR, odds ratio; 95% CI, 95% confidence interval; IQR, Interquartile range; PM;,, particulate matter
(PM) with an aerodynamic diameter <10 pm (pg/ms); PMcoarse; COarse particulate matter; PMy 5, PM < 2.5 pm (pg/ms); PM, 5415, the absorbance of PM, s; PNC,
particle number concentration; O3, Ozone (ug/ m®); NO,, Nitrogen dioxide (ug/ma); NOx, Nitrogen oxide (pg/ma); BMI, body mass index. Note: Estimates expressed
as the percentage change in EQ-VAS mean for IQR increase in annual exposures to air pollutants (1.95 pg/m2 for PM; o, 1.40 pg/m2 for PMcoarses 1.39 pg// 'm? for PMy 5,
0.28 (10 °/m) for PMy saps, 1.92 (10°/cm®) for PNC, 3.54 pg/m? for Os, 6.20 pg/m? for NO, and 8.41 pg/m? for NOy).

The plots were developed based on the main model, which was adjusted for age at the survey, sex, socioeconomic status (SES), living with a partner, physical activity,

and smoking status.
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(Appendix A.Supplementary data)

Table Legend
Table S1. Original and re-coding of outcome variables.

Table S2. Results from single-pollutant multiple regression models showing the association between
annual air pollutant exposure and percentage changes in EQ-5D index value/ EQ-VAS.

Table S3. Results from single-pollutant multiple regression models show the association between
annual air pollutant exposure and the absolute changes in EQ-VAS.

Table S4. Results of single-pollutant models showing the associations between annual air pollutant
exposures and individual dichotomized EQ-5D-5L.

Table S5. Results from single-pollutant logistic regression models showing the association between
annual air pollutant exposure and poor SRH.

Table S6. Results from multiple logistic regression showing the associations between annual air
pollutant exposures and equal or worse CSRH, relative to reporting better CSRH.

Table S7. Results of two-pollutant multiple logistic regression or multiple regression models showing
the associations between annual levels of air pollution exposures and the EQ-5D index
value, EQ-VAS, poor SRH, equal or worse CSRH.

Table S8. Results of sensitivity analysis showing the associations between annual levels of air
pollution exposures and the percentage changes in EQ-5D index value and EQ-VAS, and
the odds of reporting poor SRH, equal or worse CSRH, in two main models.

Table S9. Results of sensitivity analysis showing the associations between annual levels of air
pollution exposures and the percentage changes in EQ-5D index value and EQ-VAS, and
the odds of reporting poor SRH, equal or worse CSRH, after further adjustment for
residential duration of the current addresses.

Table S10. Results of interaction analysis for the association between annual levels of air pollutant
exposures and percentage changes in EQ-VAS.

Figure Legend

Fig S1. Flowchart of study population selection.

Fig S2. Results of multiple linear regression models for the associations between air pollutants and
EQ-5D index value and EQ-VAS.

Abbreviations: EQ-5D index value, the index of European Quality of Life 5-dimensional
questionnaire; EQ-VAS, EQ visual analogue scale; IQR, interquartile range; PMyo, particulate matter
(PM) with an aerodynamic diameter < 10pum (ug/m®); PMcoarse, COarse particulate matter; PMzs, PM <
2.5um (ug/m®); PM2sans, the absorbance of PM.s; PNC, particle number concentration; Oz, Ozone
(ug/m®); NO,, Nitrogen dioxide (ng/m®); NOx, Nitrogen oxide (ug/m?).
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Note: Estimates represent percentage changes in EQ-5D index value/EQ-VAS mean for IQR increase
in annual exposures to air pollutants (1.95 pg/m? for PMo, 1.40 pg/m? for PMcoarse, 1.39 ug/m? for
PM_s, 0.28 (107°/m) for PMzsabs, 1.92 (10%/cm?®) for PNC, 3.54 ug/m? for O3, 6.20 pg/m? for NO, and
8.41 pg/m? for NOx).

The minimum model was adjusted for age at survey and sex.

The main model was further adjusted for socioeconomic status (SES), living with a partner, body
mass index (BMI), physical activity, and smoking status.

The extended model 1 was further adjusted for variables in the main model plus the percentage of
households with low income and degree of urbanization.

The extended model 2 was further adjusted for variables in the main model plus the General Self-
Efficacy (ASKU) and Perceived Stress (PSS).

Fig S3. Results of multiple logistic regression model for dichotomized EQ-5D-5L dimensions.
Abbreviations: EQ-5D-5L, European Quality of Life 5 Dimension 5 Level questionnaire; OR, odds
ratio; 95% ClI, 95% confidence interval; IQR, Interquartile range; PMyo, particulate matter (PM) with
an aerodynamic diameter < 10pm (ug/m®); PMcoarse, COarse particulate matter; PMys, PM < 2.5um
(ng/m3); PMzsans, the absorbance of PM;s; PNC, particle number concentration; Os, Ozone (ug/m®);
NO;, Nitrogen dioxide (ug/m®); NOx, Nitrogen oxide (ug/m®).

Note: With those reported “had no problems” as the reference group, estimates represented as ORs
(with 95%ClIs) of “any problems” for IQR increase in annual exposures to air pollutants (1.95 pg/m?
for PMo, 1.40 pug/m? for PMcoarse, 1.39 pg/m? for PM,s, 0.28 (107°/m) for PMasans, 1.92 (10%/cm®) for
PNC, 3.54 ug/m? for O3, 6.20 pg/m? for NO and 8.41 pg/m? for NOx).

The minimum model was adjusted for age at the survey and sex.

The main model was further adjusted for (SES), living with a partner, body mass index (BMI),
physical activity, and smoking status.

The extended model 1 was further adjusted for variables in the main model plus the percentage of
households with low income and degree of urbanization.

The extended model 2 was further adjusted for variables in the main model plus the General Self-
Efficacy (ASKU) and Perceived Stress (PSS).

Fig S4. Results of multiple logistic regression models for the associations between air pollutants and
the odds of reporting poor SRH.

Abbreviations: SRH, self-rated health; IQR, interquartile range; PM1o, particulate matter (PM) with an
aerodynamic diameter < 10pum (ug/m®); PMooarse, COarse particulate matter; PMzs, PM < 2.5um
(ug/m?); PMasabs, the absorbance of PM,s; PNC, particle number concentration; Os, Ozone (ug/m®);
NO;, Nitrogen dioxide (ug/m®); NOx, Nitrogen oxide (ug/m®).

Note: With those reported “good SRH” as reference group, estimates represented as ORs (with
95%ClIs) of poor SRH for IQR increase in annual exposures to air pollutants (1.95 pg/m? for PM,
1.40 pg/m? for PMcoarse, 1.39 pg/m? for PMzs, 0.28 (107%/m) for PMzsabs, 1.92 (10°/cm?®) for PNC, 3.54
pg/m? for O3, 6.20 ug/m? for NO; and 8.41 pg/m? for NOx).

The minimum model was adjusted for age at survey and sex.

The main model was further adjusted for socioeconomic status (SES), living with a partner, body
mass index (BMI), physical activity, and smoking status.

The extended model 1 was further adjusted for variables in the main model plus the percentage of
households with low income and degree of urbanization.

The extended model 2 was further adjusted for variables in the main model plus the General Self-
Efficacy (ASKU) and Perceived Stress (PSS).

Fig S5. Results of the main model of multinominal logistic regression for the association between air
pollution and the odds of reporting: A) equal CSRH vs. better CSRH; B) worse CSRH vs. better
CSRH, with the estimate for PM2sas being excluded due to the large confidence interval.
Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% CI, 95% confidence
interval; IQR, interquartile range; PMo, particulate matter (PM) with an aerodynamic diameter <
10pum (ng/m®); PMeoarse, COarse particulate matter; PMzs, PM < 2.5um (ug/m®); PMzsabs, the
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absorbance of PM,s; PNC, particle number concentration; Os, Ozone (ug/m®); NO,, Nitrogen dioxide
(ug/m®); NOx, Nitrogen oxide (ug/m®).

Note: With those reported “better CSRH” as reference group, estimates represented as ORs (with 95%
Cls) of equal CSRH or worse CSRH for IQR increase in annual exposures to air pollutants (1.95
ng/m? for PMio, 1.40 pg/m? for PMcoarse, 1.39 ug/m? for PMys, 0.28 [107%/m] for PMzsabs, 1.92
[10%/cm?®] for PNC, 3.54 pg/m? for Os, 6.20 pug/m? for NO, and 8.41 pg/m? for NOx).

The plots were developed based on the main model, which was adjusted for age at the survey, sex,
socioeconomic status (SES), living with a partner, physical activity, and smoking status.

Fig S6. Results of the multiple multinominal logistic regression models for the association between air
pollution and the odds of reporting: A) equal CSRH vs. better CSRH; B) worse CSRH vs. better
CSRH.

Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% CI, 95% confidence
interval; IQR, interquartile range; PMo, particulate matter (PM) with an aerodynamic diameter <
10pm (pg/m®); PMcoarse, COarse particulate matter; PMzs, PM < 2.5um (ug/m3); PMa s, the
absorbance of PM.s; PNC, particle number concentration; Os, Ozone (ug/m®); NO,, Nitrogen dioxide
(ug/m?); NOx, Nitrogen oxide (ng/m®).

Note: With those reported “better CSRH” as reference group, estimates represented as ORs (with 95%
Cls) of equal CSRH or worse CSRH for IQR increase in annual exposures to air pollutants (1.95
pg/m? for PMio, 1.40 pg/m? for PMeoarse, 1.39 pg/m? for PMzs, 0.28 [107°/m] for PMzsans, 1.92
[10%/cm?®] for PNC, 3.54 pg/m? for Os, 6.20 pg/m? for NO and 8.41 pg/m? for NOx).

The minimum model was adjusted for age at survey and sex.

The main model was further adjusted for socioeconomic status (SES), living with a partner, body
mass index (BMI), physical activity, and smoking status.

The extended model 1 was further adjusted for variables in the main model plus percentage of
households with low income and degree of urbanization.

The extended model 2 was further adjusted for variables in the main model plus the General Self-
Efficacy (ASKU) and Perceived Stress (PSS).

Fig S7. Results of the multiple multinominal logistic regression models for the association between air
pollution and the odds of reporting: A) equal CSRH vs. better CSRH; B) worse CSRH vs. better
CSRH, with the estimate for PM2sas being excluded due to the large confidence interval.
Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% CI, 95% confidence
interval; IQR, interquartile range; PMao, particulate matter (PM) with an aerodynamic diameter <
10um (ug/m?); PMeoarse, COarse particulate matter; PMys, PM < 2.5um (ug/m®); PMasans, the
absorbance of PM_s; PNC, particle number concentration; Os, Ozone (ug/m?); NO,, Nitrogen dioxide
(ug/m®); NOx, Nitrogen oxide (ug/m®).

Note: With those reported “better CSRH” as reference group, estimates represented as ORs (with 95%
Cls) of equal CSRH or worse CSRH for IQR increase in annual exposures to air pollutants (1.95
ug/m? for PMio, 1.40 pg/m? for PMcoarse, 1.39 pg/m? for PMzs, 0.28 [10°/m] for PM2sabs, 1.92
[10%/cm?] for PNC, 3.54 pg/m? for Os, 6.20 pg/m? for NO2 and 8.41 pg/m? for NOx).

The minimum model was adjusted for age at survey and sex.

The main model was further adjusted for socioeconomic status (SES), living with a partner, body
mass index (BMI), physical activity, and smoking status.

The extended model 1 was further adjusted for variables in the main model plus percentage of
households with low income and degree of urbanization.

The extended model 2 was further adjusted for variables in the main model plus the General Self-
Efficacy (ASKU) and Perceived Stress (PSS).

Fig S8. DAG plot for potential causal pathway

Fig S9. Sensitivity analysis for multiple linear regression models for the associations between air
pollutants and EQ-5D index value and EQ-VAS in two main models.
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Abbreviations: EQ-5D index value, the index of European Quality of Life 5-dimensional
questionnaire; EQ-VAS, EQ visual analogue scale; IQR, interquartile range; PMyo, particulate matter
(PM) with an aerodynamic diameter < 10pum (ug/m®); PMcoarse, COarse particulate matter; PM,s, PM <
2.5um (ug/m®); PMzsas, the absorbance of PM2s; PNC, particle number concentration; Os, Ozone
(ug/m®); NO., Nitrogen dioxide (ng/m®); NOx, Nitrogen oxide (ug/m?).

Note: Estimates represent percentage changes in EQ-5D index value/EQ-VAS mean for IQR increase
in annual exposures to air pollutants (1.95 pg/m? for PMo, 1.40 pg/m? for PMcoarse, 1.39 pg/m? for
PMzs, 0.28 (107°/m) for PMysans, 1.92 (10%/cm®) for PNC, 3.54 pg/m? for Os, 6.20 pg/m? for NO, and
8.41 pg/m? for NOx).

The present main model was adjusted for age at survey, sex, socioeconomic status (SES), living with
a partner, body mass index (BMI), physical activity, and smoking status.

The updated main model was adjusted for age at survey, sex, SES, living with a partner, and smoking
status.

Fig S10. Sensitivity analysis for multiple logistic regression models for the associations between air
pollutants and the odds of reporting poor SRH in two main models.

Abbreviations: SRH, self-rated health; IQR, interquartile range; PMio, particulate matter (PM) with an
aerodynamic diameter < 10um (ug/m?); PMeoarse, COarse particulate matter; PMas, PM < 2.5um
(ng/m?); PM2sans, the absorbance of PM;s; PNC, particle number concentration; Os, Ozone (ug/m®);
NO;, Nitrogen dioxide (ug/m®); NOx, Nitrogen oxide (ug/m®).

Note: With those reported “good SRH” as reference group, estimates represented as ORs (with
95%Cls) of poor SRH for IQR increase in annual exposures to air pollutants (1.95 pg/m? for PM,
1.40 pug/m? for PMcoarse, 1.39 pg/m? for PMas, 0.28 (10 °/m) for PM2sabs, 1.92 (10°/cm?®) for PNC, 3.54
ng/m? for O3, 6.20 ug/m? for NO; and 8.41 pg/m? for NOx).

The present main model was adjusted for age at survey, sex, socioeconomic status (SES), living with
a partner, body mass index (BMI), physical activity, and smoking status.

The updated main model was adjusted for age at survey, sex, SES, living with a partner, and smoking
status.

Fig S11. Sensitivity analysis for the multiple multinominal logistic regression models for the
association between air pollution and the odds of reporting: A) equal CSRH vs. better CSRH; B)
worse CSRH vs. better CSRH in two main models.

Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% CI, 95% confidence
interval; IQR, interquartile range; PMo, particulate matter (PM) with an aerodynamic diameter <
10pm (ug/m®); PMcoarse, COarse particulate matter; PMzs, PM < 2.5um (ug/m?); PM2sabs, the
absorbance of PM_s; PNC, particle number concentration; O3, Ozone (ug/m?); NO,, Nitrogen dioxide
(ug/m?); NOx, Nitrogen oxide (ug/m®).

Note: With those reported “better CSRH” as reference group, estimates represented as ORs (with 95%
Cls) of equal CSRH or worse CSRH for IQR increase in annual exposures to air pollutants (1.95
ng/m? for PMio, 1.40 pg/m? for PMeoarse, 1.39 pg/m? for PMzs, 0.28 (1073/m) for PMzsans, 1.92
(10%cm?®) for PNC, 3.54 ug/m? for Os, 6.20 ug/m? for NO, and 8.41 pg/m? for NOx).

The present main model was adjusted for age at survey, sex, socioeconomic status (SES), living with
a partner, body mass index (BMI), physical activity, and smoking status.

The updated main model was adjusted for age at survey, sex, SES, living with a partner, and smoking
status.

Fig S12. Sensitivity analysis for the multiple multinominal logistic regression models for the
association between air pollution and the odds of reporting: A) equal CSRH vs. better CSRH; B)
worse CSRH vs. better CSRH, with the estimate for PM2.5abs being excluded due to the large
confidence interval in two main models.
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Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% CI, 95% confidence
interval; IQR, interquartile range; PMao, particulate matter (PM) with an aerodynamic diameter <
10um (ug/m?); PMeoarse, COarse particulate matter; PMys, PM < 2.5um (ug/m®); PMa.sans, the
absorbance of PM.s; PNC, particle number concentration; Os, Ozone (ug/m®); NO,, Nitrogen dioxide
(ug/m?); NOx, Nitrogen oxide (ug/m®).

Note: With those reported “better CSRH” as reference group, estimates represented as ORs (with 95%
Cls) of equal CSRH or worse CSRH for IQR increase in annual exposures to air pollutants (1.95
pg/m? for PMio, 1.40 pg/m? for PMeoarse, 1.39 pg/m? for PMzs, 0.28 (107°/m) for PMzsans, 1.92
(10%/cm?) for PNC, 3.54 pg/m? for O3, 6.20 ug/m? for NO, and 8.41 pg/m? for NOx).

The present main model was adjusted for age at survey, sex, socioeconomic status (SES), living with
a partner, body mass index (BMI), physical activity, and smoking status.

The updated main model was adjusted for age at survey, sex, SES, living with a partner, and smoking
status.

Fig S13. Exposure-response relationships for percentage change in EQ-5D index value with different
air pollutants.

Abbreviations: EQ-5D index value, index of European Quality of Life 5 Dimension 5 Level
questionnaire; PMyo, particulate matter (PM) with an aerodynamic diameter < 10um (pg/m?); PMcoarse,
coarse particulate matter; PMzs, PM < 2.5um (ug/m®); PMa sz, the absorbance of PM,s; PNC,
particle number concentration; Os, Ozone (ng/m®); NO;, Nitrogen dioxide (ug/m®); NOx, Nitrogen
oxide (pug/md).

Note: These linearity plots were developed based on the main model, which was adjusted for the age
at the survey, sex, socioeconomic status (SES), living with a partner, body mass index (BMI),
physical activity, and smoking status.

Fig S14. Exposure-response relationships for percentage change in EQ-VAS with different air
pollutants.

Abbreviations: EQ-VAS, EuroQol group's visual analog scale; PMio, particulate matter (PM) with an
aerodynamic diameter < 10um (ug/m?); PMcoarse, COarse particulate matter; PMys, PM < 2.5um
(ug/m®); PM2 a5, the absorbance of PM,s; PNC, particle number concentration; O3, Ozone (ug/m®);
NO;, Nitrogen dioxide (ug/m®); NOx, Nitrogen oxide (ug/m®).

Note: These linearity plots were developed based on the main model, which was adjusted for age at
the survey, sex, socioeconomic status (SES), living with a partner, body mass index (BMI), physical
activity, and smoking status.
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Table S1. Original and re-coding of outcome variables.

Variables Original coding Re-coding

EQ-5D-5L 5-point scale: Binary variable:

(mobility) 1=I have no problems walking around; 0= have no problems (original
2=1 have slight problems walking around;  answer 1);
3=I have moderate problems walking 1= any problems (original
around; answers 2-5).
4=| have great problems walking around,
5=I am not able to walk around.

EQ-5D-5L 5-point scale: Binary variable:

(self-care) 1=I have no problems washing or dressing 0= have no problems (original
myself; answer 1);
2=1 have slight problems washing or 1= any problems (original
dressing myself; answers 2-5).
3=I have moderate problems washing or
dressing myself;
4=| have great problems washing or
dressing myself;
5=1 am unable to wash or dress myself.

EQ-5D-5L 5-piont scale: Binary variable:

(usual activities)

EQ-5D-5L
(pain/discomfort)

EQ-5D-5L
(anxiety/depression)

EQ-5D-5L index
EQ-VAS

SRH from KORA-
Fit cohort 2

CSRH

1=I have no problems going about my
daily activities;

2=1 have slight problems in carrying out
my daily activities;

3=I have moderate problems in carrying
out my daily activities;

4=1 have great problems in carrying out
my daily activities;

5=1 am not able to carry out my daily
activities.

5-point scale:

1=I have no pain or discomfort;

2=1 have mild pain or discomfort;

3=I have moderate pain or discomfort;
4=| have severe pain or discomfort;

5=I have extreme pain or discomfort.
5-point scale:

1=I am not anxious or depressed;

2=1 am a little anxious or depressed;
3=1 am moderately anxious or depressed:;
4=] am very anxious or depressed;

5=1 am extremely anxious or depressed.
Continuous (-0.13 to 1)

Continuous (0 to 100)

1 = very good; 2 = good;

3 = less good; 4 = poor

1 = better;
2 = WOrse;
3 =equal;

4 = don’t know

0= have no problems (original
answer 1);

1= any problems (original
answers 2-5).

Binary variable:

0= have no problems (original
answer 1);

1= any problems (original
answers 2-5).

Binary variable:

0= have no problems (original
answer 1);

1= any problems (original
answers 2-5).

Continuous (-0.13 tol)
Continuous (0 to 100)

1= good (original answers 1-
2);

2= poor (original answers 3-4);
0 = better;

1 =equal;

2 = worse;

NA = don’t know

Abbreviations: EQ-5D-5L, European Quality of Life 5-dimensional questionnaire; EQ-VAS, EuroQol group's visual analog
scale; SRH, self-rated health; CSRH, comparative self-rated health. # An SRH from the INGER study was not recorded.
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Participants who were involved in the
KORA-Fit cohort & INGER study (N=3743)

Participants with missing information in any outcome
were excluded (N=1133)

Participants in anaysis (N=2610)

Fig S1. Flowchart of study population selection.
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Fig S2. Results of multiple linear regression models for the associations between air pollutants and EQ-5D index value and
EQ-VAS.

Abbreviations: EQ-5D index value, the index of European Quality of Life 5-dimensional questionnaire; EQ-VAS, EQ visual
analogue scale; IQR, interquartile range; PMuo, particulate matter (PM) with an aerodynamic diameter < 10um (pg/m?);
PMcoarse, COarse particulate matter; PMzs, PM < 2.5um (ug/m®); PMzsabs, the absorbance of PMzs; PNC, particle number
concentration; Os, Ozone (ug/m°®); NOz, Nitrogen dioxide (ng/m?®); NOx, Nitrogen oxide (ug/m°).

Note: Estimates represent percentage changes in EQ-5D index value/EQ-VAS mean for IQR increase in annual exposures to
air pollutants (1.95 ug/m? for PMio, 1.40 pug/m? for PMcoarse, 1.39 pg/m? for PMzs, 0.28 (107%/m) for PMz2.sabs, 1.92 (10%/cm?®)
for PNC, 3.54 ug/m? for Os, 6.20 ug/m? for NO2 and 8.41 pg/m? for NOx).

The minimum model was adjusted for age at survey and sex.

The main model was further adjusted for socioeconomic status (SES), living with a partner, body mass index (BMI),
physical activity, and smoking status.

The extended model 1 was further adjusted for variables in the main model plus the percentage of households with low
income and degree of urbanization.

The extended model 2 was further adjusted for variables in the main model plus the General Self-Efficacy (ASKU) and
Perceived Stress (PSS).
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Fig S4. Results of multiple logistic regression models for the associations between air pollutants and the odds of reporting
poor SRH.

Abbreviations: SRH, self-rated health; IQR, interquartile range; PM1o, particulate matter (PM) with an aerodynamic diameter
< 10um (pg/m®); PMcoarse, COarse particulate matter; PMzs, PM < 2.5um (ug/m®); PMzsans, the absorbance of PMzs; PNC,
particle number concentration; Os, Ozone (pg/m®); NO2, Nitrogen dioxide (ug/m?); NOx, Nitrogen oxide (pg/m3).

Note: With those reported “good SRH” as reference group, estimates represented as ORs (with 95%ClIs) of poor SRH for
IQR increase in annual exposures to air pollutants (1.95 pg/m? for PMio, 1.40 pug/m? for PMcoarse, 1.39 pg/m? for PMzs, 0.28
(1075/m) for PMzsabs, 1.92 (10%/cmd) for PNC, 3.54 pug/m? for O3, 6.20 pug/m? for NO2 and 8.41 ug/m? for NOx).

The minimum model was adjusted for age at survey and sex.

The main model was further adjusted for socioeconomic status (SES), living with a partner, body mass index (BMI),
physical activity, and smoking status.

The extended model 1 was further adjusted for variables in the main model plus the percentage of households with low
income and degree of urbanization.

The extended model 2 was further adjusted for variables in the main model plus the General Self-Efficacy (ASKU) and
Perceived Stress (PSS).
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Fig S5. Results of the main model of multinominal logistic regression for the association between air pollution and the odds
of reporting: A) equal CSRH vs. better CSRH; B) worse CSRH vs. better CSRH, with the estimate for PM2sabs being
excluded due to the large confidence interval.

Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% Cl, 95% confidence interval; IQR, interquartile
range; PMuo, particulate matter (PM) with an aerodynamic diameter < 10um (pg/m?); PMcoarse, COarse particulate matter;
PM2s, PM < 2.5um (ug/m3); PMz2sans, the absorbance of PM2s; PNC, particle number concentration; Os, Ozone (ug/md);
NOz, Nitrogen dioxide (ug/m®); NOx, Nitrogen oxide (pg/m?®).

Note: With those reported “better CSRH” as reference group, estimates represented as ORs (with 95% Cls) of equal CSRH
or worse CSRH for IQR increase in annual exposures to air pollutants (1.95 ug/m? for PMao, 1.40 ug/m? for PMcoarse, 1.39
pg/m? for PMzs, 0.28 [1075/m] for PM2sans, 1.92 [10%/cm?] for PNC, 3.54 pg/m? for Oz, 6.20 ug/m? for NO2 and 8.41 pg/m?
for NOx).

The plots were developed based on the main model, which was adjusted for age at the survey, sex, socioeconomic status
(SES), living with a partner, physical activity, and smoking status.
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Fig S6. Results of the multiple multinominal logistic regression models for the association between air pollution and the
odds of reporting: A) equal CSRH vs. better CSRH; B) worse CSRH vs. better CSRH.

Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% ClI, 95% confidence interval; IQR, interquartile
range; PMuo, particulate matter (PM) with an aerodynamic diameter < 10pum (ug/m3); PMcoarse, COarse particulate matter;
PM2s, PM < 2.5um (ug/m3); PMz2sans, the absorbance of PM2s; PNC, particle number concentration; Os, Ozone (ug/md);
NOz, Nitrogen dioxide (ug/m®); NOx, Nitrogen oxide (pg/m?®).

Note: With those reported “better CSRH” as reference group, estimates represented as ORs (with 95% Cls) of equal CSRH
or worse CSRH for IQR increase in annual exposures to air pollutants (1.95 ug/m? for PMzo, 1.40 ug/m? for PMcoarse, 1.39
pg/m? for PMzs, 0.28 [1075/m] for PMzsans, 1.92 [10%/cm?] for PNC, 3.54 pg/m? for Oz, 6.20 pug/m? for NO2 and 8.41 pg/m?
for NOx).

The minimum model was adjusted for age at survey and sex.

The main model was further adjusted for socioeconomic status (SES), living with a partner, body mass index (BMI),
physical activity, and smoking status.

The extended model 1 was further adjusted for variables in the main model plus percentage of households with low income
and degree of urbanization.

The extended model 2 was further adjusted for variables in the main model plus the General Self-Efficacy (ASKU) and
Perceived Stress (PSS).

78



Paper |
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Fig S7. Results of the multiple multinominal logistic regression models for the association between air pollution and the
odds of reporting: A) equal CSRH vs. better CSRH; B) worse CSRH vs. better CSRH, with the estimate for PM2.sabs being
excluded due to the large confidence interval.

Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% ClI, 95% confidence interval; IQR, interquartile
range; PMuo, particulate matter (PM) with an aerodynamic diameter < 10pum (ug/m3); PMcoarse, COarse particulate matter;
PM2s, PM < 2.5um (ug/md); PMa2sans, the absorbance of PM2s; PNC, particle number concentration; Os, Ozone (ug/md);
NOz, Nitrogen dioxide (ug/m®); NOx, Nitrogen oxide (pg/m?®).

Note: With those reported “better CSRH” as reference group, estimates represented as ORs (with 95% Cls) of equal CSRH
or worse CSRH for IQR increase in annual exposures to air pollutants (1.95 ug/m? for PMzo, 1.40 ug/m? for PMcoarse, 1.39
ug/m? for PMzs, 0.28 [1075/m] for PMzsans, 1.92 [10%/cm?] for PNC, 3.54 pg/m? for Oz, 6.20 pug/m? for NO2 and 8.41 pg/m?
for NOx).

The minimum model was adjusted for age at survey and sex.

The main model was further adjusted for socioeconomic status (SES), living with a partner, body mass index (BMI),
physical activity, and smoking status.

The extended model 1 was further adjusted for variables in the main model plus percentage of households with low income
and degree of urbanization.

The extended model 2 was further adjusted for variables in the main model plus the General Self-Efficacy (ASKU) and
Perceived Stress (PSS).
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Fig S8. DAG plot for potential causal pathway
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Fig S9. Sensitivity analysis for multiple linear regression models for the associations between air pollutants and EQ-5D
index value and EQ-VAS in two main models.

Abbreviations: EQ-5D index value, the index of European Quality of Life 5-dimensional questionnaire; EQ-VAS, EQ visual
analogue scale; IQR, interquartile range; PMuo, particulate matter (PM) with an aerodynamic diameter < 10um (pg/m?);
PMcoarse, COarse particulate matter; PMzs, PM < 2.5um (ug/m®); PMzsabs, the absorbance of PMzs; PNC, particle number
concentration; Os, Ozone (ug/m°); NOz, Nitrogen dioxide (ng/m?®); NOx, Nitrogen oxide (ug/m°).

Note: Estimates represent percentage changes in EQ-5D index value/EQ-VAS mean for IQR increase in annual exposures to
air pollutants (1.95 pg/m? for PMio, 1.40 pg/m? for PMcoarse, 1.39 pg/m? for PMz2s, 0.28 (10-%/m) for PMz2.sans, 1.92 (10%/cm?)
for PNC, 3.54 ug/m? for Os, 6.20 ug/m? for NO2 and 8.41 pg/m? for NOx).

The present main model was adjusted for age at survey, sex, socioeconomic status (SES), living with a partner, body mass
index (BMI), physical activity, and smoking status.

The updated main model was adjusted for age at survey, sex, SES, living with a partner, and smoking status.
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Fig S10. Sensitivity analysis for multiple logistic regression models for the associations between air pollutants and the odds
of reporting poor SRH in two main models.

Abbreviations: SRH, self-rated health; IQR, interquartile range; PM1o, particulate matter (PM) with an aerodynamic diameter
< 10pm (pg/m?3); PMcoarse, COarse particulate matter; PMzs, PM < 2.5um (ug/m3); PMzsabs, the absorbance of PMzs; PNC,
particle number concentration; Os, Ozone (ug/m®); NOz, Nitrogen dioxide (ug/m?); NOx, Nitrogen oxide (ug/m?3).

Note: With those reported “good SRH” as reference group, estimates represented as ORs (with 95%ClIs) of poor SRH for
IQR increase in annual exposures to air pollutants (1.95 pg/m? for PMuo, 1.40 pg/m? for PMeoarse, 1.39 pg/m? for PM2s, 0.28
(10°%/m) for PMz.saps, 1.92 (10%/cm?) for PNC, 3.54 pg/m? for Os, 6.20 pg/m? for NO2 and 8.41 pug/m? for NOx).

The present main model was adjusted for age at survey, sex, socioeconomic status (SES), living with a partner, body mass
index (BMI), physical activity, and smoking status.

The updated main model was adjusted for age at survey, sex, SES, living with a partner, and smoking status.
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Fig S11. Sensitivity analysis for the multiple multinominal logistic regression models for the association between air
pollution and the odds of reporting: A) equal CSRH vs. better CSRH; B) worse CSRH vs. better CSRH in two main models.
Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% ClI, 95% confidence interval; IQR, interquartile
range; PMuo, particulate matter (PM) with an aerodynamic diameter < 10pum (ug/m3); PMcoarse, COarse particulate matter;
PM2s, PM < 2.5um (ug/m®); PMa2sans, the absorbance of PMz2s; PNC, particle number concentration; Os, Ozone (ug/md);
NOz, Nitrogen dioxide (pg/m®); NOx, Nitrogen oxide (ug/m°).

Note: With those reported “better CSRH” as reference group, estimates represented as ORs (with 95% Cls) of equal CSRH
or worse CSRH for IQR increase in annual exposures to air pollutants (1.95 pg/m? for PM1o, 1.40 pg/m? for PMcoarse, 1.39
ug/m? for PMzs, 0.28 [1075/m] for PMzsans, 1.92 [10%/cm?] for PNC, 3.54 pg/m? for Os, 6.20 pug/m? for NO2 and 8.41 pg/m?
for NOx).

The present main model was adjusted for age at survey, sex, socioeconomic status (SES), living with a partner, body mass
index (BMI), physical activity, and smoking status.

The updated main model was adjusted for age at survey, sex, SES, living with a partner, and smoking status.
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Fig S12. Sensitivity analysis for the multiple multinominal logistic regression models for the association between air
pollution and the odds of reporting: A) equal CSRH vs. better CSRH; B) worse CSRH vs. better CSRH, with the estimate for
PM2sabs being excluded due to the large confidence interval in two main models.

Abbreviations: CSRH, comparative self-rated health; OR, odds ratio; 95% ClI, 95% confidence interval; IQR, interquartile
range; PMuo, particulate matter (PM) with an aerodynamic diameter < 10um (ug/m3); PMcoarse, COarse particulate matter;
PMzs, PM < 2.5um (ug/m®); PMz2sans, the absorbance of PM2s; PNC, particle number concentration; Os, Ozone (ug/md);
NO2, Nitrogen dioxide (pg/m®); NOx, Nitrogen oxide (ug/m®).

Note: With those reported “better CSRH” as reference group, estimates represented as ORs (with 95% ClIs) of equal CSRH
or worse CSRH for IQR increase in annual exposures to air pollutants (1.95 pg/m? for PM1o, 1.40 pg/m? for PMcoarse, 1.39
pg/m? for PMzs, 0.28 [10-5/m] for PMz.sabs, 1.92 [10%/cm?®] for PNC, 3.54 ug/m? for Os, 6.20 ug/m? for NO2 and 8.41 pg/m?
for NOx).

The present main model was adjusted for age at survey, sex, socioeconomic status (SES), living with a partner, body mass
index (BMI), physical activity, and smoking status.

The updated main model was adjusted for age at survey, sex, SES, living with a partner, and smoking status.
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Fig S13. Exposure-response relationships for percentage change in EQ-5D index value with different air pollutants.
Abbreviations: EQ-5D index value, index of European Quality of Life 5 Dimension 5 Level questionnaire; PM1o, particulate
matter (PM) with an aerodynamic diameter < 10um (ug/m®); PMcoarse, COarse particulate matter; PMzs, PM < 2.5um (ug/m?3);
PM2sans, the absorbance of PM2s; PNC, particle number concentration; Os, Ozone (pg/m3); NO2, Nitrogen dioxide (ug/m°);
NOx, Nitrogen oxide (pg/m3).

Note: These linearity plots were developed based on the main model, which was adjusted for the age at the survey, sex,
socioeconomic status (SES), living with a partner, body mass index (BMI), physical activity, and smoking status.
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Fig S14. Exposure-response relationships for percentage change in EQ-VAS with different air pollutants.
Abbreviations: EQ-VAS, EuroQol group's visual analog scale; PMio, particulate matter (PM) with an aerodynamic diameter
< 10um (ug/m3); PMeoarse, COarse particulate matter; PMz2s, PM < 2.5um (ug/m®); PM2.sans, the absorbance of PM2s; PNC,
particle number concentration; Os, Ozone (ug/m®); NO2, Nitrogen dioxide (ug/m?); NOx, Nitrogen oxide (ug/m?3).
Note: These linearity plots were developed based on the main model, which was adjusted for age at the survey, sex,
socioeconomic status (SES), living with a partner, body mass index (BMI), physical activity, and smoking status.
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ARTICLE INFO ABSTRACT

Edited by Dr. RENJIE CHEN Background: Few studies have examined how air pollutants affect various stroke subtypes and how these effects
differ with stroke severity, especially among European populations living in less polluted areas.

Keywords: Methods: We conducted a time-stratified case-crossover study using 15 years of hospital-based stroke data from

Particulate matter
Nitrogen dioxide
Strokes

Disability

the University Hospital Augsburg in Southern Germany. Daily average air pollutants, including particulate
matter (PM) with an aerodynamic diameter < 10pm (PMj), coarse particles (PMcoarse), fine particles (PMa s),
ozone (O3), nitrogen oxides (NOy, NO), and meteorological data were obtained from local fixed urban back-
ground monitoring sites from 2006 to 2020. Conditional logistic regression was utilized to estimate the rela-
tionship between pollutants and daily stroke events, with modification effects being examined through stratified
and interaction analyses.

Results: Based on 19,518 included stroke cases, each interquartile range (IQR) increase in PMy 5, PM19, PMcoarse,
and NO, was associated with a 2.11 %, 2.55 %, 2.50 %, and 3.48 % rise in overall stroke events 5-6 days later.
Positive associations were seen mostly for transient ischemic attacks and hemorrhagic strokes. Notably, people
with severe stroke-induced disabilities were disproportionately affected by PM and NO,, while those with mild
disabilities were more affected by O3 and NO. Moreover, damaging effects were amplified during warm seasons
and the 2016-2020 five-year period.

Conclusion: Short-term air pollution exposure may trigger stroke events, with differential impacts depending on
stroke subtype and severity of pre-existing disability. A coordinated effort is needed for stroke prevention in
response to specific air pollutants, especially in the context of global warming.

1. Introduction adjusted life-years lost throughout the world (Feigin et al., 2025; GBD,
2021). Global stroke burden has been increasing from 1990 to 2021

According to the World Stroke Organization, stroke remains the across the world (GBD, 2021). To date, a number of non-modifiable (age,
second leading cause of death and the third leading cause of disability- sex, genetics, and race/ethnicity) and modifiable (hypertension,
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smoking, diet, and physical activity) risk factors are well established.
Yet, the effect of outdoor air pollution has been identified, among other
environmental factors, as a novel risk factor for stroke (Boehme et al.,
2017).

Air pollution differs in chemical and physical properties depending
on the type and size of chemical and biological contaminants. As a
common proxy indicator for air pollution, outdoor particulate matter
(PM) is mainly generated by traffic and transportation, industrial ac-
tivities, power plants, construction sites, waste burning, fires, and
agriculture (World Health Organization). Outdoor gaseous air pollutants
are primarily produced by motor vehicles, industrial activities, and en-
ergy facilities (World Health Organization). About 8.1 million annual
global deaths have been ascribed to air pollution, which was the second
leading risk factor for deaths in 2021 worldwide (Health Effects Insti-
tute, 2024). Meanwhile, short-term air pollution exposure has been
shown to trigger several diseases, including respiratory diseases (pneu-
monia or asthma) (Yee et al., 2021; Zheng et al., 2021), cardiovascular
diseases (de Bont et al., 2022), and central nervous system disorders
(Alhussaini et al., 2023).

An increasing number of studies have indicated the link between
short-term exposure to ambient PM or gaseous pollutants and the inci-
dence of strokes (de Bont et al., 2022; Lin et al., 2023; Toubasi and
Al-Sayegh, 2023; Tian et al., 2023; Guo et al., 2023; Verhoeven et al.,
2021; Choi et al., 2022). These studies have found that the effect of air
pollution on stroke incidence varies by the type of air pollutant and the
exposure window (Seposo et al., 2020). Research on different Chinese
populations has consistently found positive associations between
stroke-related hospital admissions and short-term exposure to air pol-
lutants (Liu et al., 2017; Tang et al., 2021; Huang et al., 2017; Zeng et al.,
2018; Li et al., 2023; Guo et al., 2020; Jiang et al., 2024; Lv et al., 2023;
Fang et al., 2024; Chen et al., 2020). In contrast, short-term nitrogen
dioxide (NO3) exposure was negatively associated with stroke risk in a
Korean cohort study (Kim et al., 2022). No effect of air pollution on
strokes was found in New York City (Humphrey et al., 2023) and
Thailand (Surit et al., 2023). The health effects of air pollution may
change across subtypes of strokes (Verhoeven et al., 2021; Choi et al.,
2022), but the findings of studies to date have remained inconclusive.

A recent systematic review and meta-analysis demonstrated strong
and significant associations between short-term exposures to gaseous
and ambient particulate air pollutants and the incidence and mortality
of strokes (Toubasi and Al-Sayegh, 2023). However, the majority of
these studies were implemented in Asia, primarily in low- and
middle-income countries (58.8 %), whereas Europe only contributed
24.6 % of recent publications. More European population-based studies
are therefore needed to further clarify these relationships within coun-
tries with comparatively lower air pollution levels. Furthermore, a sys-
tematic review revealed positive associations between short-term air
pollution exposures and increased risks of ischemic strokes and intra-
cerebral hemorrhage (Verhoeven et al., 2021). Transient ischemic at-
tacks (TIAs), however, were poorly investigated, and the findings of
these studies were inconsistent. Research demonstrating positive asso-
ciations between short-term air pollution exposure and TIAs came from
China (Zhang et al., 2021), Israel (Gaines et al., 2023), and the U.S
(Lisabeth et al., 2008)., but no association was reported in Canada
(Villeneuve et al., 2012).

Hence, we aimed to investigate the association between short-term
exposures to several classical outdoor air pollutants and the occur-
rence of overall stroke and stroke subtypes in the area of Augsburg,
Germany. Furthermore, we implemented effect modification analyses to
identify individuals with high susceptibility, which could provide
important evidence for the development of tailored prevention policies
and treatment strategies.

Ecotoxicology and Environmental Safety 298 (2025) 118296

2. Materials and methods
2.1. Study population

Data on daily stroke events were collected by the Department of
Neurology at the University Hospital Augsburg between April 2006 and
August 2020 (He et al., 2024). This research was conducted following
guidelines set out in the Declaration of Helsinki and STROBE guidelines.
According to the Bavarian Hospital Act, ethical approval was waived in
the present study.

2.2. Assessment of outcomes and covariates

The Medical Informatics Department of the University Hospital
Augsburg provided data on demographic characteristics (sex and age at
admission), clinical details of patients (subtypes of strokes, disability,
and severity), and some related covariates were collected during their
hospital stay. Different types of strokes were defined according to the
10th version of the International Classification of Diseases (ICD-10) and
classified as TIAs (code G45), hemorrhagic strokes (code 160, 161, 162),
and ischemic strokes (code 163). In measuring functional independence
after strokes, we utilized the modified Rankin Scale (mRS), which is a 7-
level categorical scale (0-6 points), with the stroke severity being
determined using the National Institutes of Health Stroke Scale (NIHSS),
which ranges from 0 to 42 (Kasner, 2006).

2.3. Air pollution and meteorological data

The measurement details of ambient air pollution and meteorolog-
ical parameters have been described elsewhere (Birmili et al., 2010;
Wolfetal., 2015). Briefly, throughout the study period (2006-2020), we
obtained the city-level daily 24-hour average concentrations of partic-
ulate matter (PM) with an aerodynamic diameter < 10pm (PMjg),
< 2.5um (PMay5), and PMcgarse (PM with an aerodynamic diameter be-
tween 2.5 and 10 pm) from the measurement stations operated by the
Helmholtz Munich German Research Center for Environmental Health,
Institute of Epidemiology (HMGU-EPI) in cooperation with the Envi-
ronmental Science Center of the University of Augsburg (aerosol mea-
surement station). The daily average concentrations of nitric oxide (NO),
NO., and the daily maximum 8-hour average for ozone (O3) were ob-
tained from the network monitoring sites run by the Bavarian Envi-
ronment Agency (LfU).

Given the different operating periods of monitoring sites (Birmili
et al,, 2010; Yao et al., 2023), we chose the site with the longest
monitoring period for each air pollutant as the master site. Between
2006 and 2016, the daily averages of PM; 5 were measured at the aerosol
measurement station on the premises of the Fachhochschule Augsburg
(FH; Technical University of Applied Sciences Augsburg), the repre-
sentative of the urban background of Augsburg, which is located at 1 km
southeast of the city center with a distance of 100 m to the main road in
the north-east (Yao et al., 2023). Daily PM;o measurements were ob-
tained from the urban background monitoring site located at Bourges
Platz, which is located two kilometers to the north of the city center (Yao
etal., 2023). Between 2017 and 2020, daily concentrations of both PM;(
and PMy s were mainly obtained from the network monitoring site
located four kilometers south of the city center on the premises of the
LfU. PMcoarse Was calculated as the difference between PM;y and PMj 5.
Finally, PM data from FH and Bourges Platz monitoring sites
(2006-2016) were calibrated with the data from the LfU monitoring site
(2017-2020) to yield continuous levels of PMyg, PMa s, and PMcoarse
throughout the whole study period (2006-2020). The daily maximum
8-hour O3 level was measured at the LfU monitoring site, with NO and
NO; being obtained from the Bourges Platz monitoring site. The missing
values were imputed by the data obtained from the Bourges Platz (PM;o
and PM, s5) or LfU (NO and NO») sites. The selection of the measurement
stations for data imputation depended on which station had a higher
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explained variance (R?) against data at the FH monitoring site (Yao
et al., 2023; Cyrys et al., 2008). The daily 24-hour average air temper-
ature and relative humidity were obtained from the LfU monitoring site.
By combining all of these data sources, a continuous time series of all six
ambient air pollutants and two meteorological indicators were derived
for the full study period.

2.4. Statistical analysis

The time-stratified case-crossover study design was applied to esti-
mate the association between air pollutants and stroke events. Case days
were defined as the dates of stroke events, while control days were
defined as the days in the same month and year that shared the same day
of the week as the case day. Each stroke case day was therefore matched
to 3 or 4 control days. By comparing the exposure levels on the case and
control days, the case-crossover study minimizes potential confounding
from long-term trends, seasonality, day of the week, and time-invariant
confounders like sex and age (Carracedo-Martinez et al., 2010). Condi-
tional logistic regression with a generalized additive model (GAM) was
utilized to quantify the short-term effects of air pollution on stroke
events. To keep alignment with existing evidence (Shah et al., 2015), the
single-day lagged effect of air pollution was investigated from the case
day (lag 0) to a maximum of six days before the case day (lag 1 to lag 6).
The moving averages of air pollution were examined for periods 0-1,
2-4, 5-6, and 0-6 days before stroke events. To control for potential
confounding by meteorological factors, we adjusted for daily mean air
temperature and relative humidity for corresponding lag days and pe-
riods using natural splines with three degrees of freedom. Effect esti-
mates were calculated as percent changes in daily stroke events with
95 % confidence intervals (CIs) based on the odds ratios (ORs) of stroke
events corresponding to each IQR increase in air pollutant concentra-
tion. We further conducted subgroup analyses to explore the effect of air
pollution on three stroke sub-types (TIAs, hemorrhagic strokes, and
ischemic strokes), as well as stratified analyses based on the mRS for
stroke-induced disability (no symptoms to slight disability [mRS = 0-2]
vs. moderate disability to death [mRS = 3-6]) and stroke severity (no
stroke to minor stroke [NIHSS = 0-3] vs. moderate to severe stroke
[NIHSS = 4-42]).

Effect modification was explored by including an interaction term
between air pollutants at each exposure window and potential modi-
fiers, including sex (men vs. women) and age (<67.0, 67.0-78.0, >78.0
years), and daily average air temperature (tertiles 1-3). To further assess
the time-varying effects of air pollutant values, the season of hospital
admission was classified as warm (from May to October) or cold (from
November to April). Admission years were divided into three five-year
periods at an interval of five years (2006-2010, 2011-2015,
2016-2020), which were chosen due to their similar time durations and
comparable total number of cases.

We conducted sensitivity analyses to assess the robustness of our
findings. First, two-pollutant models were implemented for all air
pollutant pairs that were not strongly correlated (rs <0.7). Second, we
used a restricted cubic spline with three degrees of freedom to assess the
potential nonlinear relationship between daily mean air pollution and
stroke events. The linearity of the exposure-response curves for air
pollutants was determined by the visual inspection and likelihood ratio
tests. All statistical analyses were done with R software (version 4.1.2);
2-sided P values < 0.05 were considered statistically significant, with a
P < 0.10 being regarded as marginally significant.

3. Results
3.1. Study population characteristics
A total of 19,518 stroke patients aged 18 and older were recruited

after excluding patients with missing exposure and outcome data. As
shown in Table 1, the mean age and standard deviation (SD) of patients

Ecotoxicology and Environmental Safety 298 (2025) 118296

Table 1
Basic characteristics of stroke survivors (N = 19,518) included in our study in
Augsburg, Germany, from 2006 to 2020.

Characteristics Mean+SD / n (%)
Sex

Men 6290 (32.2)
Women 8585 (44.0)
Unknown 4643 (23.8)
Age (y) 70.9+13.3
Type of strokes®

Transient ischemic attack 5024 (25.7)
Hemorrhagic stroke 1208 (6.2)
Ischemic stroke 13,242 (67.8)
Not specified stroke 44 (0.2)
Disability due to strokes (by mRS score)

No symptoms to slight disability” 5879 (30.1)
Moderate disability to death® 6214 (31.8)
Unknown 7425 (38.0)
Stroke severity (by NIHSS score)

No to minor stroke? 8189 (42.0)
Moderate to severe stroke® 5425 (27.8)
Unknown 5904 (30.2)
Seasons'

Warm seasons 9667 (49.5)
Cold seasons 9851 (50.5)
5-year periods®

2006-2010 6649 (34.1)
2011-2015 6966 (35.7)
2016-2020 5903 (30.2)

Abbreviations: mRS, Modified Rankin scale (a scale ranging from 0 to 6, with
higher scores indicating greater disability); NIHSS, National Institutes of Health
Stroke Scale (a scale ranging from 0 to 42, with higher scores indicating greater
stroke severity).

Note: ® Types of strokes were defined based on the ICD-10 code; ® the mRS score
of 0-2 is “no symptoms to slight disability”; “ mRS 3-6 is “moderate disability to
death”. ¢ NIHSS score of 0-3 is “no to minor stroke”; ¢ NIHSS score of 4-42 is
“moderate to severe stroke”; { Seasons: warm seasons: May to October; cold
seasons: November to April; 8 5-year periods: the year of admission.

at enrollment was 70.9 (13.3) years, and 44.0 % of them were women.
Most patients were diagnosed with ischemic strokes (67.8 %). In most
cases, stroke patients were diagnosed with a moderate disability to
death (31.8 %) or no stroke to minor stroke severity (42.0 %). Half of the
strokes (50.6 %) occurred during cold seasons, and more than one third
of stroke patients (35.7 %) were diagnosed during the second five-year
period (2011-2015) (S.Fig 1).

3.2. Outdoor air pollutants

Distributions of daily exposure levels are displayed in Table 2. There
were 3227 (58.9 %) days for NO2, 1580 (28.8 %) days for PMa s, 157
(2.9 %) days for PM;, and 35 (0.6 %) days for O3 that exceeded World
Health Organization (WHO) daily air quality standards (NOy: 25 ug/m?;
PM;,5: 15 pg/m3; PMio: 45 pg/mg; 8-hour O3: 100 pg/mg) (World Health
Organization, 2021), respectively. There was little change in the levels
of most air pollutants during the study period of 2006-2020 (S.Fig 2).
Following stratification of the data according to seasons, our analysis
revealed significantly elevated concentrations of PMcgarse and Og during
warmer compared to colder periods. Conversely, PMjy 5, PM;o, NO, NO,,
and relative humidity exhibited higher atmospheric levels in cold sea-
sons (S.Table 1).

We noticed a very high positive correlation between PMy 5 and PM
(rs = 0.95). NO exhibited high correlations with NO, (rs = 0.81) and O3
(rs = —0.70), but in opposite directions. Both PM5 5 and PM;y were
moderately positively correlated with NO and NO,. O3 was moderately
positively correlated with air temperature (rs = 0.59) but negatively
correlated with relative humidity (rs = —0.64) (S.Table 2).
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Table 2

Summary of daily ambient air pollutants and meteorological parameters in Augsburg, Germany, from 2006 to 2020.
Variables Mean + SD Min P25 P50 P75 Max IQR
PM, 5 (pg/m®) 13.0 £ 10.6 0.0 6.4 10.4 16.3 126.4 9.9
PM; (pg/m>) 17.3 £12.2 0.0 9.3 14.6 21.8 138.7 12.5
PMcoarse (ug/ma) 4.3+ 3.7 0.0 1.7 3.5 5.8 50.6 4.1
O3 (pg/m3) 46.1 £ 23.3 0.6 27.6 48.0 63.4 127.8 35.8
NO (pg/rn3) 11.9 +18.7 0.0 2.5 5.4 13.2 238.8 10.7
NO, (ug/mg) 29.1 £12.9 3.6 19.7 27.7 36.4 113.3 16.7
Air temperature (°C) 10.4 + 8.1 -13.9 3.9 10.5 16.7 30.3 12.8
Relative humidity (%) 74.2 £11.9 38.4 65.1 74.9 84.0 99.0 18.9

Abbreviations: SD, Standard deviation; IQR, interquartile range; PMj s, particulate matter with an aerodynamic diameter below 2.5 pm; PM; , particulate matter with
an aerodynamic diameter below 10 pm; PMcoarse, COarse particulate matter with an aerodynamic diameter between 2.5 and 10 pm; O3, ozone; NO, Nitric oxide; NOo,

nitrogen dioxide.

Note: Ambient air pollutants and meteorology were consecutively measured between 2006 and 2020.

3.3. Association between outdoor air pollution and overall stroke events

As shown in Fig. 1, we observed statistically significant, albeit small,
delayed effects for most air pollutants at lag 5 and 6 days. An IQR in-
crease in PMy 5, PM19, PMcoarse, and NO- at lag 5 and 6 days was asso-
ciated with increased odds of overall stroke events. By contrast, a
delayed decrease in the odds of stroke was observed for O3 at lag 6 days
(percent change = —4.28 [-8.36; —0.02]). More numeric data are
available in S.Table 3.

A similar pattern was found in the lagged moving average model
(Fig. 2). During the peak lag of 5-6 days, each IQR increase in moving
averages of PMy 5, PM1g, PMcoarse; and NOy was positively associated
with overall stroke events (all P < 0.05). Additionally, NO, showed a
significantly positive association with stroke at the lag of 0-6 days,

while O3 showed a marginally negative association (P < 0.10). See S.
Table 4 for further details.

3.4. Subgroup / stratified analyses

The relationships between air pollution and stroke events varied by
their subtypes. In the single-day lagged model, there was a 6-day
delayed effect of four air pollutants on TIAs. Each IQR increase in
PMa 5, PM;0, and NOy was positively associated with TIA events at a 6-
day lag, whereas each IQR increase in O3 was negatively associated with
TIAs (percent change = —12.49 [-19.73; —4.60]). For hemorrhagic
strokes, 5- and 6-day delayed effects were both observed for PMj 5, and
lag 4- and 5-day delayed effects were found for NOy (S.Fig. 3). In
particular, we found an isolated association between ischemic stroke
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and PMarse exposure at lag day 5, suggesting that this finding should be
interpreted cautiously due to its exclusivity to PMcoarse and lack of
broader consistency across pollutant types (S.Table 5). Consistent with
prior findings, the lagged moving average model demonstrated elevated
odds of TIAs associated with NO exposure at lag days 0-6, alongside
increased odds of hemorrhagic strokes linked to particulate matter
(PM, 5 and PM;() and NO; at lag days 5-6 (Fig. 3 and S.Table 6).

Stratified analyses by stroke-induced disability further revealed that
patients with a severe disability whose stroke occurred at peak lag 5 and
5-6 days were more adversely affected by particulates (PMgs, PMj0)
and NOg, whereas those with a slight disability had greater sensitivity to
gaseous pollutants (O3 and NO) at lag 0-6 days (Fig. 4,S.Fig. 4). The
effect of O3 at a lag of 0-6 days seemed to be more evident among those
with slight stroke severity (S.Figs. 5 and 6). Numeric data are available
in S. Tables 7 and 8.

3.5. Effect modification and sensitivity analyses

As shown in S.Table 9, we observed significant effect modification by
sex, seasons, and 5-year periods (all P-interactions <0.05). Compared to
men, women seem to be more susceptible to the effect of PM¢oarse at lag 5
days (percent change = 5.41 [2.32; 8.60]; P-interaction = 0.015) and a
5-6 day lag (percent change = 5.60 [2.29; 9.02]; P-interaction=0.041)
(S.Fig.7). However, this result needs to be treated with caution because
it only exists for PMcoarse- As for seasons, the effects of O3, NO, and NOy
at a 6-day lag on overall strokes were stronger during the warm seasons
(percent changes were —10.79, 8.26, and 12.27, respectively; P-in-
teractions < 0.05). A similar pattern of effect modification was found for
moving average 5-6 day lags for NO (percent change = 7.42 [0.98;

14.27]; P-interaction = 0.031) (S.Fig.8). Regarding 5-year time periods,
the effect of PM3 5 and PM; on stroke events at a 5-day lag was stronger
during 2016-2020 than in prior periods (percent changes were 6.07 and
5.32; both P-interactions < 0.05), with similarly stronger effects being
also found in the moving 5-6 day average (percent changes were 6.01
and 5.70; both P-interactions < 0.05) (S.Fig.9). However, we did not
observe any effect modification by age and air temperatures across air
pollutants in different exposure windows.

Findings from the two-pollutant models suggest that the associations
between air pollution and elevated overall stroke risk in the single-day
lagged and lagged moving average models remained mainly stable
after further adjustment for other air pollutants (S.Tables 10 and 11). We
did not capture substantial deviation from linearity in the exposure-
response functions between most air pollutants and stroke events at
the lag of 5-6 days (all P for likelihood ratio test > 0.05) (sFig. 10).

4. Discussion

Our findings suggest that short-term exposure to air pollution,
particularly PM and NOy, is linked to stroke events, with the strongest
effects occurring five to six days after exposure. TIAs and hemorrhagic
strokes increased following short-term exposure in this timeframe.
Strokes that caused severe disabilities were associated with particulate
pollutants, whereas strokes that caused milder disabilities could be
attributed to gaseous pollutants. Seasonal and temporal factors also
played a role, with air pollution effects appearing stronger during
warmer months and in the 2016-2020 timeframe.

Consistent with our findings, growing evidence supports the link
between short-term air pollution exposure and stroke risk (de Bont et al.,
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Fig. 3. Subgroup percent change (95 % CI) in the odds of stroke events in each interquartile range (IQR) increase in moving averaged air pollutants (over lag 5-6 and
lag 0-6 days) by three subtypes. Note: Different scaling on the y-axis for better visibility. *, P < 0.10; * *, P < 0.05.

2022; Lin et al., 2023; Kulick et al., 2023). A nationwide study in China
showed a 13.1 % increase in stroke risk with a 10 pg/m°® increase in
same-day NO3 levels (Jiang et al., 2024). Similar studies in Beijing and
Chengdu found stroke admissions increased by 0.82 % and 0.60 % per
10 pg/m3 increase in same-day NOg and PMj s, respectively (Huang
et al., 2017; Zeng et al., 2018), with similar positive associations being
also found per 10 pg/m3 increase in 0-3 days of PM3 5, NOy and Os, in
Shenzhen (Guo et al., 2020) and hourly exposures to PM3 5, PM;, NOy
in Zhejiang and Shanghai, China (Lv et al., 2023; Fang et al., 2024).
However, a study in Thailand found no significant impact of PM5 5 on
stroke-related emergency visits, possibly due to limited sample size and
duration of data collection (Surit et al., 2023). Most existing studies have
focused on Asian populations, leaving a gap in the evidence for Cauca-
sian populations (Humphrey et al., 2023; Lisabeth et al., 2008; Ville-
neuve et al., 2012; Wing et al., 2017; Gutiérrez-Avila et al., 2023;
Vivanco-Hidalgo et al., 2018; Maheswaran et al., 2012; Butland et al.,
2017). Furthermore, the adverse health effects observed in China and
South Asia may be more pronounced because these areas are commonly
known to experience higher levels of outdoor air pollution (Health Ef-
fects Institute, 2024). The present study utilized data from Augsburg,
Germany, where daily air pollution levels exceeded WHO guidelines for
less than one-third of the year. This point is extremely important because
it shows that the associated risk of stroke is already significantly
increased in regions with moderate particulate matter pollution overall.

The results of studies on the effect of air pollution on specific stroke
subtypes have been inconsistent. Most existing studies have focused on
ischemic strokes, with strong evidence of a link to air pollution in Asia,
including China (Liu et al., 2017; Li et al., 2023; Lv et al., 2023; Fang
et al., 2024; Liu et al., 2023; Tian et al., 2018; Zhao et al., 2022; Chen
et al., 2021; Guo et al., 2017), Japan (Hasegawa et al., 2022), South
Korea (Kim et al., 2022), and Singapore (Ho et al., 2018). However, in
our study, we found no significant association between air pollution and
ischemic strokes in a European Caucasian population, similar to findings

in Spain (Vivanco-Hidalgo et al., 2018), Thailand (Surit et al., 2023),
and the U.S (Wing et al., 2017). This suggests that ethnic differences,
pollution measurement, or distribution variations may affect outcomes,
highlighting the need for diverse research on this topic.

There is limited evidence on TIAs, partly due to inconsistent defini-
tions, which make the diagnosis complicated. TIAs are typically defined
by symptoms resolving within 24 hours or by magnetic resonance im-
aging (MRI) results showing no infarction (Perry et al., 2022). Despite
challenges in defining TIAs, studies from China (Zhang et al., 2021),
Israel (Gaines et al., 2023), and the U.S (Lisabeth et al., 2008). have
reported the association between air pollution and TIA hospitalizations,
while a Canadian study found no such effect (Villeneuve et al., 2012).
Despite that, we found an association between TIAs and increased air
pollution exposure; larger population-based studies are needed to better
reveal the adverse health effects of air pollution on TIAs.

In line with our findings, short-term exposure to NO, was found to be
associated with hemorrhagic strokes in both China (Liu et al., 2017) and
the U.S (Sun et al., 2019). in previous studies. PM;o, NO3, and NO ex-
posures were also associated with hemorrhagic strokes in the UK
(Butland et al., 2017; Czernych et al., 2024) and South Korea (Kim et al.,
2022), as well as PMy 5 in China (Wang et al., 2023a). There are also a
few reports that have explored this relationship in comparison to those
for ischemic strokes, possibly due to hemorrhagic strokes being less
common and their mechanisms being less influenced by air pollution
(Estol, 2019). In line with a Chinese study (Chen et al., 2020), we
noticed an inverse association of strokes with Os. This inverse associa-
tion may reflect confounding by co-pollutants and photochemical pro-
cesses. O3 could be titrated by NO in high-traffic environments, which
might be related to the photochemical reaction between them (Sillman,
1999). Also, adjustments for temperature and relative humidity did not
fully attenuate this association, and the association was not robust in the
two-pollutant model, suggesting residual confounding by unmeasured
factors tied to pollution mixtures. Thus, the observed association may
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reflect competing sources rather than a “protective” effect, as Os re-
mains harmful in contexts where it is the dominant oxidant. All of the
evidence from previous studies is summarized in the S.Table 12.

The mechanisms underlying air pollution and stroke are still unclear.
Vascular endothelial dysfunction, increased cerebrovascular resistance,
and reduced cerebral blood flow have been discussed as possible factors
(Toubasi and Al-Sayegh, 2023; Miinzel et al., 2020; Wellenius et al.,
2013). Air pollution may also cause oxidative stress and inflammation,
which can damage blood vessels and the brain (Alhussaini et al., 2023;
Wellenius et al., 2013; Peters et al., 1997). IIt’s possible also that air
pollution changes cerebrovascular hemodynamics, such as by increasing
cerebrovascular resistance, lowering cerebral blood flow velocity
(Toubasi and Al-Sayegh, 2023; Wellenius et al., 2013), increasing
plasma viscosity (Peters et al., 1997), increasing sympathetic tone,
causing acutely constricting arteries (Brook et al., 2002), and thereby
contributing to elevated blood pressure, ischemia, and thrombosis risks
(Toubasi and Al-Sayegh, 2023; Louis et al., 2023).

Gaseous pollutants are known to trigger respiratory inflammation
(Glencross et al., 2020). Redox imbalance related to the decreased ac-
tivity of nitric oxide, and the existence of reactive oxygen species (ROS)
could directly damage the vasodilatory, antithrombotic, antioxidant,
and anti-inflammatory effects in an intact endothelium (Hahad et al.,
2020). After being inhaled, small particles can cause blood-brain barrier
impairment by passing through the nose-brain barrier (Hahad et al.,
2020) and entering the brain parenchyma (Kafa et al., 2015), thus
inducing mitochondrial dysfunctions (Ku et al., 2016), contributing to
increased monocyte infiltration, activation of microglia, and ROS pro-
duction, finally triggering neuroinflammation in the brain (Arias-Pérez
et al., 2020). Additionally, due to their complex composition, PMs have

been thought to be more important in causing disease because they
contain metals, carbon, sulfates, and nitrates, compared with gaseous
pollutants (Glencross et al., 2020). This could explain the fact that
strokes with different severities may be differently related to ambient air
pollutants, with more disabling strokes occurring mainly in relation to
PM exposure.

Effect modifications by seasonal and temporal trends were found,
with stronger adverse health effects of gaseous pollutants being
observed during warm seasons, as well as the effect of particles between
2016 and 2020. The observed effect modification by season may be
explained by the amount of time spent outdoors or the fact that windows
may be opened for ventilation with more frequency and longer duration
during warm season as compared to cold season, which results in higher
personal exposure to ambient air pollutants (Turner et al., 2012), despite
the fact that based on daily monitoring data, PMs, NO, and NO;, levels
were lower during the warm seasons than in cold seasons in our study
areas. The activated thermoregulatory mechanisms caused by increases
in exercise in warm weather also elevate inhalation rates, enhancing
pollutant uptake into the airways (Gordon, 2003; Rai et al., 2023).
Though we did not capture a direct effect modification by temperature
in our study, heat stress has been shown to increase stroke risk as an
additional factor (He et al., 2024). Higher ambient temperature could
increase the solubility and bioavailability of contaminants, thus exag-
gerating the toxicokinetic characteristics of contaminants (Wang et al.,
2023b), whereas the related ability of the body to detoxify chemicals
may be reduced by increased thermoregulatory responses to heat stress
(Gordon, 2003; Rai et al., 2023). Furthermore, in warm seasons, higher
levels of sunlight and air temperature can drive photochemical reactions
between nitrogen oxides and volatile organic compounds, forming
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secondary pollutants, which might be more biologically reactive and
damaging than primary pollutants (NO/NO2) (Pinto et al., 2010). The
temporal trends we identified indicating stronger adverse health effect
of PMs during the 2016-2020 timeframe were contradictory to a study
on intracerebral hemorrhage which compared an earlier study period
(2014-2017) to 2018-2021 (Wang et al., 2023a). However, in a recent
multicenter study, increased cardiovascular mortality has been observed
as a result of exposure to PMy s, despite a declining trend of PMj 5
exposure concentrations (Schwarz et al., 2024). The temporal increase
in the effect of PMs may be related to the following two points: i) the
composition of particles and aerosol mixtures may have changed over
time due to changes in vehicle fleets, fossil fuel types, and combustion
technologies used for heating and industrial processes in recent years,
thus causing different patterns of pollutants’ effect on strokes across
time; ii) we cannot completely elucidate the potential deviation from
linearity, despite finding no evidence of non-linear exposure-response
relationships. There may exist a supralinear concentration-response
relationship, characterized by steeper slopes at low concentrations and
either flat or continuously gradual slopes at high concentrations. This
pattern may indicate a significant change, particularly in
low-concentration contexts (Weichenthal et al., 2022). Furthermore, the
temporal variation in the toxicity may partly be ascribed to the changes
in socioeconomic factors, population distribution, and susceptibility
(Schwarz et al., 2024). More studies are needed to clarify the time trend
of the health impacts of air pollution.

This study has several strengths. Firstly, this study was conducted
based on the validated registration of stroke events by the University
Hospital Augsburg, with the time of stroke events being obtained from
the medical records. Second, the design of a case-crossover study en-
ables us to control long-term time trends, seasonality, the effects of days
of week, and time-invariant individual-level confounders. Conversely,
there were some limitations to our study. First, we cannot account for
intra-city spatial variability or personal mobility because the air pollu-
tion data was collected from fixed monitoring stations. Future studies
incorporating individual-level exposure models or satellite-based esti-
mates could shed further light on this topic. Second, potential misclas-
sification is inevitable in our study. Nevertheless, the stroke data used in
our study comes from the University Hospital Augsburg, one of Ger-
many’s largest stroke centers serving approximately 750,000 residents
in the region (Ertl et al.,, 2019). Consequently, non-differential
misclassification could only cause Berkson bias, which may not have
much effect on the associations (Zeger et al., 2000; Armstrong, 1998).
Third, the diagnosis for TIAs may be less reliable due to their symptoms
and signs usually being resolved by the time of assessment. However,
this would only reduce the precision of association rather than blur the
effect of air pollution on stroke risk, as the misclassification is less likely
to be related to air pollution. Fourth, the relatively older age of our study
population may limit the generalizability of the findings to younger or
more diverse demographic groups. Finally, the inference of causality
from our findings could be questionable because of our observational
study design.

5. Conclusions

In summary, our 15-year time-stratified case-crossover study found
that short-term exposure to air pollution (mainly PM;, PMa 5, PMcoarse,
and NO;) was associated with higher odds of stroke events, particularly
TIAs and hemorrhagic strokes, with the events mainly occurring after
the fifth to sixth day post-exposure. Stroke severity also seems to be
related to specific types of air pollutants. Hospitalizations of patients
with stroke, triggered by higher air pollution exposure, were mainly
increased during warmer seasons and within the period of 2016-2020.
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(Supplementary materials)

Table Legends

sTable 1. Seasons-stratified summary of daily ambient air pollutants and meteorological parameters in
Augsburg, Germany, from 2006 to 2020.

sTable 2. Spearman correlation coefficients between daily air pollutants and meteorological parameters in
Augsburg, Germany, from 2006 to 2020.

sTable 3. Percent changes and 95% Cls in the odds of overall stroke events associated with each IQR increase
in single-day lagged ambient air pollutant concentrations over lag 0 to lag 6 days.

sTable 4. Percent changes and 95% Cls in the odds of overall stroke events associated with each IQR increase
in lagged moving average ambient air pollutant concentrations over lag 0 to lag 6 days.

sTable 5. Subgroup percent changes and 95% Cls in the odds of stroke events associated with each IQR
increase in single-day lagged ambient air pollutant concentrations over lag 4 to lag 6 days by three subtypes.

sTable 6. Subgroup percent changes and 95% Cls in the odds of stroke events associated with each IQR
increase in lagged moving average ambient air pollutant concentrations over lag 5 to lag 6 days by three
subtypes.

sTable 7. Stratified percent changes and 95% Cls in the odds of overall stroke events associated with each IQR
increase in single-day lagged ambient air pollutant concentrations over lag 4 to lag 6 days by disability due to
strokes or stroke severity.

sTable 8. Stratified percent changes and 95% Cls in the odds of overall stroke events associated with each IQR
increase in lagged moving average ambient air pollutant concentrations over lag 5 to lag 6 days by disability due
to strokes or stroke severity.

sTable 9. The effect modification on the overall stroke events associated with each IQR increase in ambient air
pollutant concentrations.

sTable 10. Percent changes and 95% Cls in the odds of overall stroke events associated with each IQR increase
in single-day lagged ambient air pollutant concentrations (over lag 5 and lag 6 days) in the two-pollutant
models.

sTable 11. Percent changes and 95% Cls in the odds of overall stroke events associated with each IQR increase
in lagged moving average ambient air pollutant concentrations (over lag 5-6 and lag 0-6 days) in the two-
pollutant models.

sTable 12. Summary of cited epidemiological evidence on the associations between air pollution and strokes.

Figure Legends

sFig 1. The time series of annual cases of overall stroke events from Augsburg, Germany, from 2006 to 2020.
Note: The red dashed line represents the smooth curve of stroke cases across years.

sFig 2. The daily average concentrations of six air pollutants from Augsburg, Germany, from 2006 to 2020.

sFig 3. Subgroup percent changes (95% ClIs) in the odds of stroke events in each interquartile range (IQR)
increase in single-day lagged air pollutants by three subtypes. Note: *, P<0.10; **, P<0.05.

sFig 4. Stratified percent change (95% ClI) in the overall stroke events in each interquartile range (IQR) increase
in single-day lagged air pollutants by disability levels. Note: *, P<0.10; **, P<0.05.
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sFig 5. Stratified percent change (95% ClI) in the overall stroke events in each interquartile range (IQR) increase
in single-day lagged air pollutants by severity levels. Note: *, P<0.10; **, P<0.05.

sFig 6. Stratified percent change (95% CI) in the overall stroke events in each interquartile range (IQR) increase
in moving average air pollutants by severity levels. Note: *, P<0.10; **, P<0.05.

sFig 7. Percent changes (95% Cls) in the odds of overall stroke events in each interquartile range (IQR) increase
in lag 5-6 and 0-6 days of air pollutants modified by sex. Note: *, P<0.10; **, P<0.05.

sFig 8. Percent changes (95% Cls) in the odds of daily overall stroke events in each interquartile range (IQR)
increase in lag 5-6 and 0-6 days of air pollutants modified by seasons. Note: *, P<0.10; **, P<0.05.

sFig 9. Percent changes (95% CIs) in the odds of daily overall stroke events in each interquartile range (IQR)
increase in lag 5-6 and 0-6 days of air pollutants modified by 5-year periods. Note: *, P<0.10; **, P<0.05.

sFig 10. The exposure-response analysis between seven air pollutants and the odds of overall stroke events at
lag 5-6 days using the restricted cubic splines.
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Paper I

sTable 6. Subgroup percent changes and 95% Cls in the odds of stroke events associated with each IQR
increase in moving average lagged ambient air pollutant concentrations over lag 5 to lag 6 days by three

subtypes.

Percent changes (95%ClIs) in the odds of specific stroke events

Lag 5-6

Lag 0-6

Transient ischemic attack

PM2s 3.56 (-0.36; 7.63)* 3.17 (-1.22; 7.75)
PM1o 3.92 (-0.24; 8.24)* 3.11 (-1.40; 7.82)
PMcoarse 2.79 (-1.82; 7.61) 1.56 (-3.95; 7.38)
Os -9.62 (-17.76; -0.67)** -9.72 (-21.01; 3.20)
NO 1.47 (-0.82; 3.81) 3.92 (0.13; 7.86)**
NO2 4.38 (-1.31; 10.39) 5.95 (-0.83; 13.20)*

Hemorrhagic stroke
PMz2s

11.37 (2.90; 20.54)**

5.59 (-3.74; 15.81)

PM1o 10.50 (1.79; 19.96)** 5.05 (-4.39; 15.43)
PMcoarse 1.95 (-6.69; 11.40) 0.91(-9.97; 13.11)
O3 -6.01 (-22.59; 14.12) -6.49 (-28.78; 22.79)
NO 0.81 (-3.97; 5.84) -0.68 (-8.19; 7.45)
NO2 13.83 (1.16; 28.09)** 9.05 (-4.96; 25.12)
Ischemic stroke
PM2s 0.84 (-1.59; 3.34) 0.84 (-1.89; 3.64)
PM1o 1.44 (-1.12; 4.06) 0.80 (-2.02; 3.71)
PMcoarse 2.49 (-0.23; 5.29)* 0.30 (-3.05; 3.77)
O3 -0.01 (-5.66; 5.98) -4.79 (-12.27; 3.33)
NO 0.07 (-1.33; 1.49) 0.82 (-1.42; 3.10)
NO2 2.51 (-0.91; 6.05) 3.40 (-0.63; 7.60)*

Abbreviations: Cls, confidence intervals; PMzs, particulate matter with an aerodynamic diameter below 2.5 pum; PMuo,
particulate matter with an aerodynamic diameter below 10 um; PMcoarse, COarse particulate matter with an aerodynamic
diameter between 2.5 and 10 um; Os, ozone; NO, Nitric oxide; NOz, nitrogen dioxide.

Note: *, P<0.10; **, P<0.05; Percent changes were estimated based on the odds ratios using conditional logistic regression;
The model was adjusted for the corresponding lagged days of air temperature and relative humidity.
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sTable 8. Stratified percent changes and 95% Cls in the odds of overall stroke events associated with each IQR
increase in moving average lagged ambient air pollutant concentrations over lag 5 to lag 6 days by disability due
to strokes or stroke severity.

Stratified percent changes (95%CIs) in the odds of overall stroke
events
Lag 5-6 Lag 0-6

Disability due to strokes
No symptoms to slight disability @

PMzs 0.06 (-3.49; 3.73) -1.12 (-4.96; 2.88)
PMuo 0.76 (-2.96; 4.61) -1.18 (-5.27; 3.09)
PMooarse 2.38 (-1.61; 6.50) -0.77 (-5.68; 4.39)
0s -5.63 (-13.54; 2.99) -13.60 (-23.76; -2.08)**
NO 1.32 (-0.71; 3.39) 3.91 (0.56; 7.37)**
NO: 4.62 (-0.64; 10.16)* 5.87 (-0.28; 12.40)*

Moderate disability to death ®

PMzs 4.33 (0.68; 8.12)** 1.73 (-2.27; 5.89)
PM1o 4.62(0.77; 8.62)** 1.46 (-2.70; 5.80)
PMcoarse 2.77 (-1.19; 6.89) -0.14 (-4.97; 4.93)
0s 1.58 (-6.68; 10.58) -2.38 (-13.38; 10.00)
NO 0.13 (-1.93; 2.23) -0.09 (-3.27; 3.20)
NO2 5.82 (0.67; 11.22)** 2.73(-3.08; 8.89)

Stroke severity

No to minor stroke ¢

PMzs 1.57 (-1.52; 4.75) -0.45 (-3.77; 3.00)
PM1o 1.93 (-1.29; 5.25) -0.12 (-3.64; 3.53)
PMcoarse 1.95 (-1.47; 5.49) 1.16 (-3.07; 5.57)
0s -5.86 (-12.55; 1.34) -10.60 (-19.55; -0.66)**
NO 0.62 (-1.11; 2.38) 2.21(-0.70; 5.21)
NO2 2.68(-1.71; 7.27) 3.44(-1.64; 8.79)

Moderate to severe stroke 9

PMzs 2.15 (-1.65; 6.11) 0.54 (-3.71; 4.98)
PM1o 2.64(-1.37; 6.81) 0.04 (-4.35; 4.64)
PMcoarse 2.61(-1.61; 7.02) -1.81 (-6.97; 3.63)
0s 5.60 (-3.68; 15.78) 2.40 (-9.75; 16.17)
NO 0.57 (-1.69; 2.88) 0.71 (-2.67; 4.20)
NO2 4.63 (-0.78; 10.33)* 2.08 (-4.03; 8.57)

Abbreviations: Cls, confidence intervals; PMzs, particulate matter with an aerodynamic diameter below 2.5 pum; PMuo,

particulate matter with an aerodynamic diameter below 10 pum; PMcoarse, COarse particulate matter with an aerodynamic

diameter between 2.5 and 10 pm; Oz, 0zone; NO, Nitric oxide; NO2, nitrogen dioxide.
Note: *, P<0.10; **, P<0.05; Percent changes were estimated based on the odds ratios using conditional logistic regression;
The model was adjusted for the corresponding lagged days of air temperature and relative humidity. ® the mRS score of 0-2

is “no symptoms to slight disability”; ® mRS 3-6 is “moderate disability to death”. ¢ NIHSS score of 0-3 is “no to minor

stroke”; ¢ NIHSS score of 4-42 is “moderate to severe stroke”.
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The Time Series of Stroke Events
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Years

sFig 1. The time series of annual cases of overall stroke events from Augsburg, Germany, from 2006 to 2020.
Note: The red dashed line represents the smooth curve of stroke cases across years.
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Daily levels of air pollutants across measured years (2006-2020)
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sFig 2. The daily average concentrations of six air pollutants from Augsburg, Germany, from 2006 to 2020.
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TIA (n=5024)
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sFig 3. Subgroup percent changes (95% Cls) in the odds of stroke events in each interquartile range (IQR)
increase in single-day lagged air pollutants by three subtypes. Note: *, P<0.10; **, P<0.05.

122



Paper I

%change in the odds of stroke events by disability levels per IQR increase in air pollutants
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sFig 4. Stratified percent change (95% CI) in the overall stroke events in each interquartile range (IQR)

increase in single-day lagged air pollutants by disability levels. Note: *, P<0.10; **, P<0.05.
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No to minor stroke (n=8189)
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sFig 5. Stratified percent change (95% CI) in the overall stroke events in each interquartile range (IQR)
increase in single-day lagged air pollutants by severity levels. Note: *, P<0.10; **, P<0.05.
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%change in the odds of specific stroke events by disability levels per IQR increase in air pollutants
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sFig 6. Stratified percent change (95% CI) in the overall stroke events in each interquartile range (IQR)

increase in moving average air pollutants by severity levels. Note: *, P<0.10; **, P<0.05.
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Lag 5-6 days ~—- ~—
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sFig 7. Percent changes (95% Cls) in the odds of overall stroke events in each interquartile range (IQR)
increase in lag5-6 and 0-6 days of air pollutants modified by sex. Note: *, P<0.10; **, P<0.05.
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Lag 5-6 days "
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sFig 8. Percent changes (95% Cls) in the odds of daily overall stroke events in each interquartile range (IQR)
increase in lag5-6 and 0-6 days of air pollutants modified by seasons. Note: *, P<0.10; **, P<0.05.
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sFig 9. Percent changes (95% Cls) in the odds of daily overall stroke events in each interquartile range (IQR)
increase in lag5-6 and 0-6 days of air pollutants modified by 5-year periods. Note: *, P<0.10; **, P<0.05.
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Abstract

Background: The effects of different ultrafine particle (UFP) metrics on strokes are unclear. This
case-crossover study investigated the association between short-term exposure to four size-segregated
UFP metrics and stroke occurrence.

Methods: From 2006 to 2020, we included 19,518 stroke cases from the University Hospital
Augsburg, Germany, a less polluted area. Meanwhile, daily averages of four size-segregated UFP
metrics, including particle number (PNC), mass (PMC), length (PLC), and surface area (PSC)
concentrations, were collected from fixed monitoring sites in Augsburg. Conditional logistic
regression was employed to assess the association between UFP metrics and stroke risk. Potential
individual vulnerability and effect modification were examined using the stratified and interaction
analyses, respectively.

Results: Short-term UFP exposures were associated with increased stroke risk, with the odd ratios
(95% confidence intervals) of strokes for each interquartile range increase in lag 0-6 days of UFPs
being 4.76% (1.06; 8.60) for PNC, 3.99% (0.93; 7.13) for PMC, 4-52% (1-11; 8.05) for PLC, and
4.14% (1.00; 7.38) for PSC. More attention should be given to the particles within the size fractions of
10-100 nm and 30-100 nm. The cumulative effects of UFP were more pronounced for ischemic
strokes and minor strokes with less severe severity. Cold spells might exaggerate the effects of UFPs.
Conclusion: UFP metrics like particle length and surface area concentration, in addition to particle
number, may provide valuable insights into particle properties relevant to stroke risk. Expanding real-
time, size-segregated monitoring of UFPs represents an effective strategy to mitigate the health
impacts of traffic-related air pollution.

Keywords: Ultrafine particle; Particle number concentration; Particle length concentration; Particle
surface area concentration; Particle mass concentration; Cold spells
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1. Introduction

According to the Health Effects Institute, air pollution accounted for 8.1 million deaths in 2021,
making it the second-largest risk factor of death worldwide *. Increasing epidemiological evidence has
indicated the short-term adverse health impacts of ambient particulate matter (PM) exposure, such as
increased hospital admissions 2 and mortality 2, particularly for cardiovascular and respiratory
diseases *°. Ultrafine particles (UFPs), which have an aerodynamic diameter < 0.01um, are typically
generated as by-products of fossil fuel combustion and emissions from motor vehicles ’. The small
size of UFPs endows them with enhanced capabilities in depositing in the lung and translocating to
other organs ’. Additionally, their large active surface makes them more threatening by absorbing
greater quantities of hazardous metals and organic compounds 8. These unique physical properties
allow them to exert higher toxicity than larger particles ". UFPs are mainly measured as particle
number concentration (PNC, number of particles/cm?®), as they constitute 85% or more of the total
number of fine particulate matter (e.g., with a diameter of < 2.5 um; PM.5s) °, but contribute little to
the particle mass concentrations (PMC, pug/m?®) in ambient air ’. In addition, particle surface area
concentration (PSC, um?/cm?) considers the absorption and retention of toxic substances and plays an
important role in determining the biological activity of nanoparticles °.

Studies have shown an association between short-term exposure to UFPs and adverse health
effects, such as myocardial infarction (M1) risk ****, cardiovascular hospitalizations *°, and even
mortality ***°. The difference in physical properties of various UFP-related metrics may influence
their health effects; however, evidence on the impact of different UFP metrics on well-being has
remained insufficient. A case-crossover study reported that daily UFP exposure, measured using PNC,
over the previous four days (0-4) was associated with increased hospital admissions for ischemic
stroke in Copenhagen, Denmark %°. Another case-crossover study in New York State, U.S., also
noticed an association between UFP exposure, measured using PSC, and elevated stroke risk, with
PSC showing to be a more sensitive indicator than PNC *. Furthermore, compared to PNC, the
particle length concentration (PLC, mm/cm?®) was found to be a UFP metric being more closely
associated with blood inflammatory biomarkers in blood # and the risk of MI in Augsburg, Germany
11

Within the conventional range in aerodynamic diameter (<100 nm), the size fractions of UFPs in
urban environments can be related to the nature of the fuel and the processes by which they are
typically formed, specifically the primary particles emitted directly from the engine (>30 nm). In
particular, the secondary particles (newly formed nucleation mode, <30 nm) are a considerable
number of very small particles formed after cooling and condensation of exhaust gases %, and the
Aitken mode (30-100 nm) is typically associated with combustion sources %%, Both modes contribute
to the concentration of traffic-related peaks during rush hour %. The accumulation mode (100-1000
nm) commonly results from the emissions of fine particles and dynamic events, including
condensation and coagulation #. Epidemiological evidence, however, focusing on the pathogenic
effects of size-segregated UFP metrics is limited. In addition, our previous research has revealed that
nocturnal heat exposure is related to elevated stroke risk 2. Similarly, cold spells were associated with
an increased risk of hospitalization for MI ?°, Furthermore, studies unveil that heat waves interact
synergistically with PM_ s, increasing mortalities of M1 ?' and strokes *%. No evidence exists for the
potential influence of extreme temperature events (ETES), including heat waves and cold spells, on
the association between UFPs and strokes.

Using four UFP metrics of different size fractions, this study aims to distinguish the association
between various UFPs and stroke events using daily hospitalization data collected over a study period
of 15 years in Augsburg, Germany, in which monitoring stations were designed for the collection of
several physical and chemical particulate characteristics 2*. Additionally, we estimated the effects
across stroke subtypes, disabilities, and severities and explored the potential modification effect by
time-invariant factors (sex assigned at birth, age), seasons, time trends, and ETEs.

2. Materials and methods

2.1 Study population
We used the first stroke events that occurred during the study period (between January 1%, 2006,
and August 31%, 2020) at the University Hospital Augsburg. This is one of the biggest stroke centers
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in Germany and is responsible for more than 750,000 inhabitants in the region #. This study was
performed following the Declaration of Helsinki. Ethical approval was waived in the present study
according to the Bavarian Hospital Act.

2.2 Outcome and covariates

Based on the records from this comprehensive stroke care facility, we collected demographic
characteristics (sex and age) and basic clinical data of patients (subtypes of strokes, disability, and
severity) at admission. The following three main subtypes of strokes were defined according to the
International Statistical Classification of Diseases and Related Health Problems, 10™ version (ICD-10
codes): transient ischemic attacks (TIAs) (G45), hemorrhagic strokes (160, 161, 162), and ischemic
strokes (163). Following the occurrence of a stroke, we measured functional independence using the
Modified Rankin Scale (mRS), a 7-level scale ranging from 0 (no symptoms) to 6 (death) 2°°.
Besides, a severe stroke was represented by a higher score on the National Institutes of Health Stroke
Scale (NIHSS), a scale of 0 to 42 that assessed the stroke severity *°. To simplify the analysis, we
defined “Disability due to strokes” by combining an mRS score of 0-2 as “No symptoms to slight
disability” with an mRS score of 3-6 as “Moderate disability to death”. Furthermore, we calculated
the "Stroke severity" by combining the NIHSS scores of 0-3 and 4-42 as "No symptoms to minor
stroke” and “Moderate to severe stroke”, respectively.

2.3 Exposures
2.3.1 Air pollution and meteorological data

The UFP measurements have been conducted since 2004 at a fixed urban background site on the
premises of the Fachhochschule Augsburg (FH, University of Applied Sciences Augsburg) in
Augsburg, Germany, and were available for the whole study period. The daily average concentrations
of the four metrics of UFPs, including particle number (PNC), mass (PMC), length (PLC), and surface
area (PSC) concentrations, were obtained from this aerosol monitoring station located 1 km southeast
of the city center, with the nearest major road in the northeast at a distance of 100 m . The
supplemental materials section | explains details regarding the devices for collecting and the
calculation methods for the four different UFP metrics.

Based on the particle behavior, origin, and deposition in the respiratory tract *’, we mainly
focused on four metrics within the size of 10-100 nm, the typical range of UFPs by convention *2. In
addition, we further subdivided the particle size distribution into the following ranges: 10-30 nm
(nucleation mode) and 30-100 nm (Aitken mode) due to their likely deposition in the lung **. Given
that the probability of an increase in measurement uncertainty increases substantially for the particles
below 10 nm in size *, we thus excluded the extremely small UFPs of 3-10 nm from our analysis.
Smaller particles of 100-500 nm are more likely to deposit in the lung than those of >500 nm, which
tend to deposit more in the upper respiratory tract *. Particles in the range of 100-500 nm
(accumulation mode) were also included in the analysis to further explore the effect of UFPs in larger
sizes.

In addition to UFPs, classic air pollutants were routinely measured at different monitoring sites
for specific study periods *, owing to different operating periods across monitoring sites. In detail, the
continuous levels of PM with an aecrodynamic diameter of <10 pm (PM310) and PM;s and
meteorological parameters (ambient air temperature and relative humidity) were obtained from the FH
measuring site throughout the whole study period (2006-2020). The 24-hour average nitrogen oxides
(NO-, NO) were obtained from an urban background monitoring site at Bourgesplatz (BP), located
approximately 1.5 km north of the city center of Augsburg **. The daily average ozone (Os) level was
measured at the monitoring site operated by the Bavarian Environment Agency (LfU), which is
located 4 km south of the city center *. Specifically, missing PMio and PM_ s values were imputed
from existing LfU or BP data, while missing NO and NO: values were imputed from measurements at
the LfU.

2.3.2 ETE definitions

Considering that ambient air temperature plays a role in concentrations of UFP, from the
perspective of PNC 2%, we defined the ETEs (heat waves or cold spells) with a combination of
intensity and duration of extreme air temperatures according to the relative threshold approach 2%,
We then calculated the specific cutoffs of air temperature for heat waves (95.0" and 97.5" percentiles)
and cold spells (2.5" and 5.0™ percentiles). Days with air temperature equaling or exceeding any of
the heat wave cutoffs were considered heat waves, whereas days with air temperature equaling or

4
134



Appendix: Paper IlI

below any of the cold spell cutoffs were considered cold spells. In each definition of ETES, the heat
waves and the cold spells were coded as “1” and “2”, respectively, while the remaining non-ETE days
with normal air temperature were coded as “0” %", The details of air temperature thresholds and the
number of ETE days in different ETE definitions are provided in sTable 1 in the supplementary
materials-section I1.

2.4 Statistical analysis

A time-stratified case-crossover design was applied to explore the association between four UFP
concentration metrics and stroke events. The case day referred to the date of hospital admission owing
to stroke events, and the corresponding control days were defined as dates on the identical day of the
week and in the same calendar month as the case day, with each patient serving as his or her own
control *. The case-crossover study design controls for time-invariant confounding (e.g., sex, age,
family history, and genetic variations) by making within-subject comparisons within reference
windows *. In addition, choosing the control days close to the case days enabled us to control for
varioussgime-varying variables, such as seasonality and long-term trends in air pollution and stroke
events *.

Conditional logistic regression models were implemented by applying a linear term for the four
size-segregated UFP metrics during different lag periods in separate models. Effect estimates were
reported as the percent changes (PCs) in the odds ratios (ORs) and their corresponding 95%
confidence intervals (Cls) associated with per interquartile range (IQR) increases in UFPs. After
excluding the days with missing values of UFP metrics, we explored UFP effects across different
exposure windows: i) the single-day lags: current day (lag 0) and up to six days before the events (lag
1-lag 6); ii) the moving average lags: multi-days preceding the events representing immediate (lag O-
1) and delayed (lag 2-4, 5-6); and iii) the cumulative effects (lag 0-6). Using a natural cubic spline
with three degrees of freedom (df), our main model further adjusted for the same lag day of ambient
air temperature and relative humidity to control for potentially remaining confounding factors.

To identify whether specific subgroups exhibit differential susceptibility, stratified analyses were
conducted by fitting separate models by subtypes of strokes (T1As, hemorrhagic, and ischemic
strokes), stroke-induced disability (No symptoms to slight disability [mRS 0-2] vs. Moderate
disability to death [mRS 3-6]), and severity of stroke (No symptoms to minor stroke [NIHSS 0-3] vs.
Moderate to severe stroke [NIHSS 4-42]). The nonspecific types of strokes were excluded from the
stratified analysis.

To explore potential effect modifications on the associations between UFP exposures and stroke
risk, we further included interaction terms in the model, including sex (men vs. women), age (<65.0
years vs. >65.0 years), seasons (warm seasons [from May to October] vs. cold seasons [from
November to April]), and five-year periods of admission (2006-2010, 2011-2015, 2016-2020), which
were divided due to their similar time durations and comparable total number of cases. To further
assess the potential modification effects of two types of ETES, the interaction models were also built
for heat waves during the warm seasons (non-ETE days vs. heat waves) and cold spells during the
cold seasons (non-ETE days vs. cold spells), respectively.

A series of sensitivity analyses were carried out to test the robustness of our results: i) we fitted
the two-pollutant models for investigating the potential independence of the UFP effects by
additionally controlling for the same lag day of routinely measured air pollutants (PM2s, PM1o, NO,
and NO>), which were selected if they had a Spearman correlation coefficient (rs) <0.70 and a
variance inflation factor (VIF) < 5 to avoid collinearity *'; ii) to assess the potential influence of
missing values, the main analysis was repeated after missing values were imputed using the average
value of the non-missing values for the same date in the neighboring 1-week (one week before and
after); iii) we excluded patients who admitted to the hospital after the beginning of the COVID-19
pandemic (February 2020) to avoid the potential fluctuation in ambient air pollution concentrations
due to the “lock-down” in Germany; v) according to Stafoggia M, et al., *, we separately adjusted for
high and low temperatures, which were defined as the average temperature on the current and
previous 1 day before the event (lag 0-1) above the median annual temperature and the average
temperature on the previous 6 days (lag 1-6) below the median annual temperature, respectively. The
optimal degree for natural cubic splines was set at 3 to allow better comparability when entering
different temperatures; v) we plotted the exposure-response curve by introducing a restricted cubic
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spline function (df=3) for UFPs in the main model to check the linearity of the association between
UFP metrics and the odds of stroke events.

All data management and statistical analyses were conducted using R software (Version 4.1.2).
Statistical tests were two-sided, with a significance level () set at 0.05 and a marginal significance at
0.10.

3. Results
3.1 Descriptive statistics

The basic characteristics of the study population by subtypes of strokes are shown in Table 1.
Over 15 years, 19,518 patients were admitted to the hospital for a stroke, including 5,024 (25.7%)
TIAs, 1,208 (6.2%) hemorrhagic strokes, and 13,242 (67.8%) ischemic strokes, with the remaining 44
(0.2%) events of unknown stroke type. The mean (SD) age of all patients was 70.9 (13.3) years, with
8,585 (44.0%) being women. A substantial proportion of patients were >65.0 years of age (14,030;
73.1%), and a larger part of them were diagnosed with a “Moderate disability to death [mRS 3-6]
(31.8%) or “No symptoms to minor stroke [NIHSS 0-3]” (42.0%). Stroke events occurred more often
during the cold seasons (60.4%), the period between 2011 and 2015 (35.7%), than during the other
periods of similar length. The distribution of strokes between heat waves (4.7%) and cold spells
(4.9%) was even.

The daily means of the four UFP metrics in four size fractions throughout the study period are
displayed in Table 2. At the size of 10-100 nm, the mean (SD) estimated exposure concentrations
were 7,411.5 (4,370.0) particles/cm?®for PNC, 0.7 (0.5) ug/m® for PMC, 283,123.1 (17,5247.6)
mm/cm?® for PLC and 46.0 (29.8) um?%cm?® for PSC, respectively. Especially, within the ultrafine range
(10-100 nm), a larger contribution from the Aitken mode (30-100 nm) than from the nucleation mode
(10-30 nm) was observed among the four UFP metrics. The mean concentrations of PMC and PSC in
the accumulation mode (100-500 nm) were notably higher than those of other size fractions. As
sTable 2 presents, the distribution of UFPs after imputation was quite similar to the original data.
sTable 3 provides the mean levels of the current-day UFP metrics by different definitions of ETEs.
Notably, the daily averages of four UFP metrics appeared to be higher during cold spells than during
heat waves.

The Spearman correlation coefficients between the four UFPs in four size ranges and two
meteorological parameters are shown in sTable 4. Overall, daily UFPs within different size fractions
displayed positive correlations with each other (Spearman rs = 0.37 to 0.99) but were predominantly
inversely related to ambient air temperature and relative humidity. For each specific UFP metric
within the size of 10-100 nm, their correlations with four traditionally measured ambient air pollutant
parameters (PM.s, PMzo, NO, and NO>) are provided in sTable 5. In general, there were weak positive
correlations (Spearman rs = 0.03 to 0.11) between all four UFP metrics and classical air pollutants.

3.2 Association between daily UFPs and overall stroke events

Figure 1 describes the associations between daily UFPs within the size of 10-100 nm and the
occurrence of overall stroke events across different exposure windows, with the single-day model
showing the 3 days transient effects and the lagged moving average model indicating the 2-4 days
delayed and 0-6 days cumulative adverse health effects of UFPs on strokes. Particles within the size
ranges of 30-100 nm and 100-500 nm also showed similar results, however, the effect of the smallest
particles (10-30 nm) tended to occur later (sFigs 1-3).

For the single-day lags, elevated risk of stroke events was consistently seen for the exposure
window of lag 3 days, across all four UFP metrics. An IQR increase in four UFP metrics (10-100nm)
at lag 3-day was associated with an increase in the odds of 2.45% (0.14; 4.81), 2.54% (0.26; 4.87),
2.57% (0.27; 4.92), and 2.57% (0.29; 4.90), respectively. Compared to the smaller particles in the
nucleation mode (10-30 nm), the effect estimates from the Aitken mode (30-100nm) were larger and
more consistently observed across four metrics (see sTable 6). For the moving average lags, we
noticed a delayed effect (2-4 days) and a cumulative effect (0-6 days) of all four UFP metrics within
the range of 10-100 nm on stroke events. Across four UFP metrics, we found for lag 0-6 the strongest
impact of PNCio.100 0n strokes (PC = 4.76% [1.06; 8.60]), followed by PLC10.100 (PC = 4.52% [1.11;
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8.05]), and PSCio-100 (PC = 4.14% [1.00; 7.38]), with the weakest impact being found for PMCio-100
(PC =3.99% [0.93; 7.13]) (see sTable 7).

As most of the effects across the four metrics were consistently observed at the lag of 3 and 0-6
days, these exposure windows were consequently used as the main lag periods for secondary analyses.
When comparing the four size-fractioned UFPs in association with strokes, we noticed that the
patterns of associations were similar and comparable across the four metrics (Figure 2). Within the
ultrafine range (10-100 nm), it is noteworthy that the effects of particles from the Aitken mode (30-
100 nm) were more robust than the smaller particles from the nucleation mode (10-30 nm) between
the two exposure windows. The effects of large particles in the accumulation mode (100-500 nm)
were less stable than particles in other size ranges (data are available in sTables 6&7).

3.3 Stratified analyses

When dividing stroke patients by their sub-types, the adverse health effects of UFPs on strokes
were mostly found for patients with ischemic strokes, which were significantly associated with the
cumulative 0-6 days of PMCio.100 (3.83% [0.15; 7.64]), PLC10-100 (PC = 4.16% [0.08; 8.42]), and
PSCio-100 (PC = 3.91% [0.13; 7.83]). Aside from the UFPs (10-100 nm), ischemic stroke patients were
more vulnerable to PMC, PLC, and PSC from the Aitken mode (30-100 nm) than UFPs in other sizes
in the exposure window of lag 0-6 days (Figure 3, sFigs 4-6). Numeric data are available in sTable 8.

The stratification by stroke-induced disability revealed that the effect of lagged moving average
0-6 days of PNCio.100 Was more pronounced among patients with slight disability levels (No
symptoms to slight disability) (see sFig 7 & sTable 9). Comparable patterns were identified for the
stratification by stroke severity, with the effect estimates for lag 0-6 days of PNC10.100 and PLC10-100
being stronger among patients with milder stroke severity (No symptoms to minor stroke). In
particular, we noticed that the effects of all UFP metrics from the nucleation mode (10-30 nm) were
larger among patients with a milder disability or severity than their more severe counterparts (see sFig
8 & sTable 10).

3.4 Effect modification

Generally, as presented in sTables 11-13, the association between four UFP metrics (10-100 nm)
in two exposure windows did not vary across sex, age, seasons, and five-year periods, but the cold
spells of ETEs seem to modify the effect of UFPs on strokes. Although no significant effect
modification was noticed for seasons or ETES, the adverse effects of UFPs (10-100 nm) in triggering
stroke events were stronger during cold spells within the cold seasons (sTable 12). Under the
definitions of P5.0_2d or P5.0_4d of the cold spells, the lag 3-day exposures to PMCio-100, PLC10-100,
and PSCio-100 displayed stronger effects on stroke events compared to the days with normal air
temperature (P-interaction < 0.10) (Figure 4), with the modification effect of the P5.0 threshold of
cold spells being attenuated with longer durations. In contrast, we did not observe any modification
effect of cold spells on the effects of four metrics for lag 0-6 days (sFig 9), and no modification effect
was observed for exposure to heat waves under different definitions during warm seasons, regardless
of exposure windows (sFigs 10-11, sTable 13).

3.5 Sensitivity analyses

In the two-pollutant models, the results of lag 0-6 days UFPs (10-100 nm) remained stable after
additional adjustment for selected co-pollutants. By contrast, the effects of UFP exposures at a lag of
3 days were slightly attenuated after the adjustments for NO2, which shares similar sources with UFPs
% (see sFigs 12-13 & sTable 14). In addition, the significant associations between overall stroke
events and UFPs (10-100 nm) at the lag 3 day and lag 0-6 days persisted in the models that used the
imputed data, excluded patients diagnosed with strokes after the beginning of COVID-19 pandemic,
as well as adjusted for high and low temperatures (sFigs 14-15 & sTable 15).

The exposure-response functions between the four metrics (10-100 nm) and overall stroke events
during the lag 3 day and 0-6 days are illustrated in sFigs 16 & 17. Based on the likelihood ratio test,
no deviation from linearity was observed for all four metrics in the two exposure windows, with the
likelihood ratio test consistently indicating no differences between linear and non-linear models (all P-
values for the likelihood ratio test > 0.05).

4. Discussion
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In this 15-year population-based study, we unveiled the delayed and cumulative adverse effects
of UFP metrics (10-100 nm) on strokes, with the effect estimates for IQR increases in four metrics
being comparable. Particles in the Aitken mode (30-100 nm) showed more consistent and positive
associations with strokes than in the nucleation mode (10-30 nm). Furthermore, UFPs were more
likely to adversely affect patients with ischemic and minor strokes. The UFP effects might be
amplified during days with extremely low temperatures.

These results were consistent with supporting evidence of the detrimental health effects of UFPs,
such as increased hospital admissions for diseases in the respiratory, cardiovascular, and neurological
systems 31, There might be potential crosstalk between the heart and brain by sharing the same
pathophysiological mechanisms “. However, in comparison to literature linking short-term exposure
to ambient UFP with heart diseases ™4, the evidence regarding strokes is sparse. So far, an early
study in Helsinki, Finland (1998-2004) underscored a positive but insignificant association between
the previous-day level of UFP and stroke mortality (8.5% [-1.2; 19.1]) **. Subsequently, another study
in Copenhagen, Denmark (2003-2006) found that IQR increases in UFP at lag 4 days increased the
risk of mild stroke by 14.0% (4.0; 25.0) and the risk of ischemic strokes without atrial fibrillation by
9.0% (1.0; 17.0) . There is even less evidence focusing on different UFP metrics. The increased Ml
risks in response to hourly exposures to PLC and PSC were larger than for PNC, within the ultrafine
range of 10-100 nm **. Another study found that PSC might be a more sensitive indicator than PNC
regarding the association with hospital admissions for cardiovascular diseases in New York State,
U.S. (2013-2018) **. Contrarily, we saw comparable effects across four UFP metrics across particle
size distribution. This means that, aside from commonly used metrics (PNC and PMC), the physical
characteristics of UFPs (PLC and PSC) might be additional indicators measuring the health
impairment of UFPs. We hypothesize that particle toxicity and the biological pathways linking UFPs
to strokes might be driven more by intrinsic properties (e.g., chemical composition) rather than size-
specific characteristics (sizes or metrics), but we were unable to clarify this due to the unavailability
of particulate chemical composition data. Notably, the strong correlations between the UFP metrics
prevented us from separating their individual effects or assessing whether the high PNC in the 10—
30 nm range compensated for lower PMC, PLC, and PSC, leading to similar overall results. Of note,
the health effects of PMC warrant further investigation, as only a limited fraction of PMC can be
measured within the conventional size threshold of 100 nm . This measurement constraint hampers a
comprehensive assessment of their potential impact on stroke risk. More studies are needed to further
distinguish their effects and assess whether PMC, PSC, and PLC can fully capture the health-relevant
aspects of UFPs.

Some studies have detected the variations in health effects of UFP metrics due to size fractions,
but their findings have remained inconclusive. For instance, a time-series study in the Ruhr Area,
Germany, showed that size-specific PNC (100-750 nm) and lung-deposited PSC had similar
immediate and delayed associations with increased natural and cardiovascular mortalities, with PNC
(100-500 nm) having the strongest effect on natural mortality . Larger PNC, especially particles in
the ranges of 30-100 nm and 100-800 nm, had stronger effects on hospital admissions for heart
diseases, cardiovascular and respiratory diseases, compared to smaller size fractions (10-30 nm) .
The effects of larger PNC on cardiovascular or respiratory hospital admissions were consistently
reported by the observations in Prague, Czech Republic (>346 nm vs. <346 nm) “® and in Beijing,
China (100-300 nm vs. <100 nm) *’. However, a study in Augsburg, Germany, noticed a more precise
positive association with M1 for UFPs (30-100 nm), compared to the particles in the smaller or larger
size range ™. Our size-fractioned analyses showed that the 10-100 nm and 30-100 nm ranges were
consistently more pathogenic than other modes across all four UFP metrics. The heterogeneity in
findings across studies may be attributed to variations in the methodological issues and emission
sources across study areas . The diffusion coefficients and measurement uncertainty of particle size
distribution measurement below 30 nm are high **. This means that the bulk of the daily average UFP
was detected in the size range above 30 nm, which yielded higher exposure levels and more precise
effect estimates in the Aitken mode than those in the nucleation mode. Daily variation of particles of
this size cannot be ruled out because of their association with fresh and aged traffic emissions, which
showed a noticeable peak during morning rush hour, as well as the distance from measurement
locations to roadways **“%. Despite this, particles within the range of 10-100 nm mainly reflect
emissions from the diesel-driven motor vehicles in Augsburg *, but massive amounts of airborne
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particles in the range of 100-500 nm are associated with stationary combustion, which is influenced
by the use of residential heating facilities “¢. These may partly explain the inconsistent results from
this size range. In addition to particle size distribution, we noticed the effect of particle size fraction
(30-100 nm) in both delayed mode (lag 3) and cumulative mode (lag 0-6), with larger effects being
found in the accumulation mode. The effect of the smallest particles (10-30 nm) was only found at lag
0-6 days, suggesting that larger particles in the Aitken mode may exert effects after shorter exposure
lags than their smaller counterpart in the nucleation mode. This finding needs to be interpreted with
caution due to the methodological difficulties in measuring particles in this size fraction of UFPs.

There are direct and indirect pathways of UFPs being thought to trigger acute cerebrovascular
stroke. Direct pollutant effects are hypothesized because inhaled UFPs are unique in their small size
and high concentration, which enables them to deposit and retain in the distal airways and alveoli,
penetrate the alveolar-capillary barrier, or cross the blood-brain barrier and subsequently gain access
to the central nervous system, thus causing platelet aggregation and neuroinflammation “49°!, After
being exposed to UFPs for a longer period, the cumulative toxic effect may be evoked as UFPs can
cross the alveolar membranes and release toxins into the bloodstream upon depositing on the vascular
endothelium, then modify the integrity of vascular tissue by eliciting a surge in local oxidative stress
and inflammation and facilitating plaque instability and thrombosis **°. Convincing evidence has
been presented that UFP exposure could access to blood cells, elicit elevated blood levels of pro-
inflammatory cytokines, initiate the hepatic synthesis of acute-phase proteins 2. The UFP-triggered
oxidative stress would further promote vascular dysfunction and increase mitochondrial reactive
oxygen species (ROS) formation and lipid oxidation “*. Excess ROS formation can influence blood
pressure, accelerate atherosclerosis, and contribute to strokes “**°. By indirect pathways, the toxic
effects of UFPs may be strengthened as their chemical constituent can cause not only vascular
activation via producing circulating stress hormones and vasoconstrictors but also neuronal activation
through autonomic lung arc reflexes or by a spill-over of local inflammation into systemic
inflammation *°.

The risk of strokes associated with UFPs may vary depending on their subtypes and severity
levels, with adverse effects predominantly found for ischemic strokes and minor strokes with lower
severity levels. There is supportive evidence of the positive association between short-term exposure
to particulate air pollutants and ischemic stroke risk >3, which are typically caused by the narrowing of
vessels due to atherosclerosis or systemic embolism **. Furthermore, our findings are in line with
another study stating that strokes associated with UFP exposures were at the mild end of the stroke
spectrum and probably resulted from blockages of small vessels 2°. This may also be related to the
“ceiling effect” that additional UFP exposure may not produce a detectable incremental effect when
those with advanced disease may have reached a plateau in disease progression **. Given that the
existing evidence on the biological mechanisms of particles in TIAs and hemorrhagic strokes remains
insufficient, more investigations should attempt to elucidate their associations with UFPs.

The interaction model showed that the cold spells might modify the association, with the
detrimental effects of UFPs on strokes being stronger in days with extreme cold air temperature,
especially on the coldest 5.0% of days lasting two or four days. As highlighted in previous research,
the cold air temperature may amplify the adverse health effects of UFPs on the cardiovascular system,
such as PSC-related hospitalizations ** and PNC-related mortality *°. In particular, we noticed that the
daily averages of four UFP metrics tended to increase during cold spells, as the levels increased when
the cold spell cutoffs became more rigorous. We hypothesize that the excess risk of strokes in
response to UFPs during cold spells may be attributed to elevated emissions of UFP from vehicles *,
enhanced particle formation, and slower atmospheric dispersion under low air temperatures ",
Likewise, as temperatures drop near ground level at night, stable atmospheric layers of air form, thus
trapping primary pollutants near their emissions sources "*°, thus amplifying their adverse health
effects. No modification effect was observed for heat waves, so future studies are still needed to
elucidate the effect of two sides of ETESs on strokes, especially under a changing climate.

This is the first study comparing the effects of four UFP metrics in different size fractions on
stroke events. Besides, the validated and complete registration for strokes over 15 years enables us to
systematically investigate the association of UFP exposure with strokes and their subtypes with
sufficient statistical power. Moreover, the application of the case-crossover study design provides us
with opportunities to control time-invariant factors. However, our study suffers from several
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limitations. First, the measurement of UFPs in our study relied on one fixed measuring site. However,
short-term health effect studies are usually not biased by potential spatial variation, and a carefully
selected monitoring site could be considered adequate for UFP because of the high temporal
correlations of PNC across the city area of Augsburg *!. For clinicians, conducting local analyses
might provide a more precise picture of what matters. Second, it is challenging for us to differentiate
the health effects of the four UFP metrics because they are highly correlated with each other. In
general, the four UFP metrics exhibit largely consistent associations with strokes, indicating a certain
level of comparability among these metrics. Third, there may be potential misclassification of
reported TIAs, as their diagnosis is often challenging; transient symptoms may resolve quickly and
are not always confirmed by imaging, meaning they might not result from a cerebral ischemic event.
However, this would only cause reduced precision of associations in response to UFPs rather than
blurring the real adverse effects. Finally, the generalizability of our findings to other populations is
limited due to the potentially different demographic and socioeconomic characteristics and emission
sources across study areas.

5. Conclusions

Short-term exposure to UFP may be associated with the occurrence of strokes, with similar
effects of the four UFP metrics, suggesting that PNC, PLC, and PSC may serve as promising
indicators capturing the properties of UFPs. The detrimental impacts of UFPs were more pronounced
for ischemic strokes and minor strokes with a lower severity. Particular attention should be directed
toward particles within the conventional ultrafine range (10-100 nm) and those classified under the
Aitken mode (30-100 nm). Notably, cold spells may amplify the damage of UFPs. More efforts are
needed to monitor UFPs and to set up control levels, especially during days with extremely low air
temperatures, thus alleviating the stroke burden.
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Table Legends

Table 1. Description of stroke patients hospitalized in the study areas of Augsburg, Germany, from
2006 to 2020.

Table 2. Basic descriptive statistics of daily levels of four size-fractioned ultrafine particle metrics in
the study areas of Augsburg, Germany, from 2006 to 2020.
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Tables

Table 1. Description of stroke patients hospitalized in the study areas of Augsburg, Germany, from 2006
to 2020.

Characteristics (sjt\nfgll’(aelsl TIAs? He;?r%r‘:?;g'c Ischemic strokes?
N (%) 19518 5024 (25.7) 1208 (6.2) 13242 (67.8)
Age (y), continuous 70.9+13.3 69.06 +13.20 71.61 £13.54 71.53 £13.27
Age (y), categorical
<65.0 5488 (28.1) 1634 (32.5) 314 (26.0) 3532 (26.7)
>65.0 14030 (71.9) 3390 (67.5) 894 (74.0) 9710 (73.3)
Sex
Men 6290 (32.2) 1535 (30.6) 416 (34.4) 4328 (32.7)
Women 8585 (44.0) 2176 (43.3) 537 (44.5) 5859 (44.2)
Missing 4643 (23.8) 1313 (26.1) 255 (21.1) 3055 (23.1)
Disability due to strokes
(by mRS score)
No symptoms to slight disability © 5879 (30.1) 2358 (86.2) 146 (22.1) 3374 (38.8)
Moderate disability to death © 6214 (31.8) 378 (13.8) 516 (77.9) 5316 (61.2)
Missing 7425 (38.0) 2288 (45.5) 546 (45.2) 4552 (34.4)
Stroke severity
(by NIHSS score)
No symptoms to minor stroke ¢ 8189 (42.0) 2837 (93.5) 271 (35.6) 5070 (51.7)
Moderate to severe stroke © 5425 (27.8) 196 (6.5) 490 (64.4) 4733 (48.3)
Missing 5904 (30.2) 1991 (39.6) 447 (37.0) 3439 (26.0)
Seasonsf
Warm seasons 9667 (50.0) 2558 (50.9) 581 (48.1) 6512 (49.2)
Cold seasons 9851 (50.0) 2466 (49.1) 627 (51.9) 6730 (50.8)
Extreme temperature events (ETE)
Heat waves ¢ 912 (4.7) 255(5.1) 32(2.6) 622 (4.7)
Cold spells " 953 (4.9) 240 (4.8) 68 (5.6) 641 (4.8)
Non-ETE days 17653 (90.4) 4529 (90.1) 1108 (91.7) 11979 (90.5)
5-year periods
2006-2010 6649 (34.1) 1825 (36.3) 437 (36.2) 4351 (32.9)
2011-2015 6966 (35.7) 1767 (35.2) 434 (35.9) 4757 (35.9)
2016-2020 5903 (30.2) 1432 (28.5) 337(27.9) 4134 (31.2)

Note: 2 Types of strokes were defined based on the ICD-10 code; ® the mRS score of 0-2 is “No symptoms to
slight disability”; ¢ mRS 3-6 is “Moderate disability to death”. ¢ NIHSS score of 0-3 is “No symptoms to minor
stroke”; ¢ NIHSS score of 4-42 is “Moderate to severe stroke”; f Seasons: determined by the official time of
heating time in Germany, warm seasons: May to October; cold season: November to April; 9 Heat waves are
defined as the days with air temperature equaling to or exceeding the 95.0"" or 97.5™ percentiles; " Cold spells
are defined as the days with air temperature equaling to or lowering than the 2.5 or 5.0 percentiles; ' 5-year
periods: the year of admission.

Abbreviations: TIA, Transient ischemic attacks; mRS, Modified Rankin scale (a scale ranging from 0 to 6, with
higher scores indicating greater disability); NIHSS, National Institutes of Health Stroke Scale (a scale ranging
from 0 to 42, with higher scores indicating greater stroke severity).
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Figure 2. Percent change (95%0Cl) in the odds of overall stroke events per interquartile range (IQR)
increase in four sizes of a) lag 3 and b) 0-6 days of UFP metrics. Note: * P<0.10; ** P<0.05.
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Figure 3. Percent change (95%0Cl) in the odds of three stroke subtypes per interquartile range (IQR)
increase in lag 3 and 0-6 days of UFP metrics (10-100 nm). Note: * P<0.10; ** P<0.05.
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Figure 4. Effect modification by the consecutive a) 2 days, b) 4 days and c) 6 days of P5.0 thresholds of
cold spells on the association between lag 3 days of UFP metrics (10-100 nm) and the percent changes in
the odds of overall stroke events. Note: * P-interaction <0.10.
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Short-term effects of ultrafine particles on stroke events: Assessment using four
exposure metrics
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1) Description of pollution measurement devices:

A Twin Differential Mobility Particle Sizer (TDMPS) system was used in conjunction with an
aerodynamic particle sizer (APS, Model 3321, TSI Inc., U.S,, size range 0.8 to 10 um) to continuously measure
particle size distribution (PSD) ranging from 3 nm to 10 pm 3.

The condensation particle counter (CPC) was used to measure total particle particulate number
concentration (PNC) with sizes ranging from 3 nm to 3um 3. An electrical aerosol detector (EAD, model
3070A; TSI Inc., U.S.) was used to measure the length of particles (PLC) in sizes 10nm-1000um in
aerodynamic diameter (or 10 nm to 800 nm in mobility equivalent diameter, Dp), and the response of the EAD
is almost proportional to the diameter, Dp 2. A Diffusion Charging Particle Sensor (DCPS, model LQ1; Matter
Aerosol AG, Switzerland) was utilized to obtain the total active (or Fuchs) surface of particles (PSC) in the size
range <1 um %5, Measurement of particle mass concentration (PMC) was performed using two independent
Tapered Element Oscillating Microbalances (TEOM, model 1400ab, Thermo Fisher Scientific Inc., U.S.)
equipped with a Filter Dynamics Measurement System (FDMS model 8500b, Thermo Fisher Scientific Inc.,
U.S.) to correct the loss of volatile fractions from particulate mass **.

To determine the physical properties of particles within the ultrafine range, total PLC in a given air volume
is obtained by summing the particle diameters in a certain amount of time, and PSC equals the particle number
concentration times the squared diameter of the particle within a certain size range®. (1)-(4) showed the
calculation methods for PNC, PLC, PSC, and PMC based on the PSD data measured above 3.

NC(d, —d,) = g2 NC; (1)
LC(d, —d;) = 2@ NC; x d; @)
SC(d; —d;) = mX@NC; x d;’ ©)
MC(d, — dp) =< pr¥g2 NC; x d° 4)

where d; and d, are the lower and upper edges of the size range, respectively. d; is one of the size bins within
the size range d, — d, and p is the particle density 2.
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I1) Definitions of Extreme temperature events (ETES):

1.

We calculated the cutoffs for heat waves, including the 95.0" and 97.5" percentiles of daily air
temperature, then we defined the heat waves as the days with air temperature equaling or exceeding any
of these thresholds for at least 2, 4, 6 consecutive days 57.

The cutoff values for cold spells were the 2.5" and 5.0 percentiles of daily air temperature, and the
cold spells were defined as air temperature equal to or lower than any of these thresholds for at least 2,
4, 6 consecutive days 5.

As an example, “P97.5_4d” suggests a heat wave event that occurs at or above the 97.5" percentile of
AT for at least 4 consecutive days, whereas “P2.5_4d” indicates a cold spell event that occurs at or
below the 2.5 percentile of AT for at least 4 consecutive days.

These methods built 6 definitions for the heat waves or cold spells, respectively.
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I11) Tables

sTable 1. The definitions of different ETEs in Augsburg, Germany, from 2006 to 2020.

Model name

ETEs definition ?

Percentile Duration day Threshold, °C No. of ETEs®
Heat waves °
P95.0_2d . >2 days 22.36 274
P95.0_4d 295.0th percentile of >4 days 22.36 272
- apparent temperature
P95.0_6d >6 days 22.36 269
P97.5_2d . >2 days 23.79 137
- >97.5th percentile of
P97.5_4d >4 days 23.79 136
P97.5_6d apparent temperature >6 days 23.79 135
Cold spells ¢
P5.0_2d . >2 days -2.37 274
- <5.0th percentile of
P5.0_4d apparent temperature >4 days -2.37 265
P5.0_6d >6 days -2.37 251
P2.5_2d . >2 days -4.28 137
- <2.5th percentile of
P2.5_4d >4 days -4.28 134
P25 6d apparent temperature =6 days 498 130
Note:

2 The ETEs were defined by the threshold of ambient air temperature (°C);
® The total number of ETE days in each definition during 2006-2020;

¢ Heat waves are defined as the days with apparent temperature equaling or exceeding the 95.0" or 97.5th

percentiles for consecutive 2, 4, 6 days;

dCold spells are defined as the days with apparent temperature equaling or lowering than the 2.5" or 5.0th

percentiles for consecutive 2, 4, 6 days.

Abbreviations: ETEs, extreme temperature events.
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sTable 3. Mean levels of four ultrafine particle metrics (10-100 nm) by different definitions of ETEs in
Augsburg, Germany, from 2006 to 2020.

The current day of four ultrafine particle metrics (10-100 nm) ®

ETEs PNC PMC PLC PSC
(particles/cm®) (ug/m®) (mm/cm®) (um?/cm?®)
Heat waves °
P95.0_2d 7490.1+£2805.9 0.9+0.3 308628.7+121696.6 52.7£21.0
P95.0_4d 7502.3+2813.8 0.9+0.3 309037.9+122104.6 52.8+21.0
P95.0_6d 7507.0+2828.9 0.9+0.3 309399.7+£122767.1 52.9+21.1
P97.5_2d 7054.3+2133.7 0.8+0.2 292801.8+85007.3 50.5+£14.8
P97.5_4d 7059.1+2141.8 0.8+0.2 293127.2+85277.4 50.6+14.9
P97.5 6d 7059.8+2150.6 0.8+0.3 293203.7+85624.8 50.6+14.9
Cold spells ©
P5.0_2d 10150.5+5862.4 1.1+0.7 412372.1+£245270.1 70.0+42.3
P5.0_4d 9957.2+5590.1 1.1+0.7 402750.1+231707.5 68.2+39.8
P5.0_6d 9565.1+5280.6 1.1+0.6 384046.5+212588.2 64.8+35.8
P2.5_2d 11575.7£5987.3 1.3£0.7 472883.4+244759.9 80.6+41.7
P2.5_4d 11502.5+£5922.5 1.3+0.7 468813.3+240700.5 79.7+40.8
P2.5_6d 11379.5+5796.8 1.3+0.6 462071.8+233344.1 78.4+39.3

Note:

2 Data were presented as mean + standard deviation;

b Heat waves are defined as the days with ambient air temperature equaling or exceeding the 95.0" or 97.51

percentiles for consecutive 2, 4, 6 days;
°Cold spells are defined as the days with ambient air temperature equaling or lowering than the 2.5™ or 5.0"
percentiles for consecutive 2, 4, 6 days.
Abbreviations: ETEs, extreme temperature events; PNC, particle number concentration; PMC, particle mass

concentration; PLC, particle length concentration; PSC, particle surface concentration; 10-100, from 10 to 100
nm mobility diameter; P, percentile
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sTable 5. Spearman correlation coefficients between daily levels of four UFP metrics (10-100 nm) and
routinely measured air pollutants in Augsburg, Germany, from 2006 to 2020.

PNCio-100 PLC10-100 PSCio-100 PMCi.100 PMio PMys NO NO,
PNCi0-100 1.00
PLC10-100 0.98 1.00
PSCi0-100 0.94 0.99 1.00
PMCi0-100 0.90 0.97 1.00 1.00
PMo 0.04 0.04 0.04 0.03 1.00
PM,s 0.07 0.07 0.06 0.05 0.94 1.00
NO 0.06 0.05 0.05 0.04 0.54 0.56 1.00
NO, 0.11 0.10 0.09 0.08 0.65 0.65 0.81 1.00

Note: All ultrafine particle metrics and meteorological indicators were consecutively measured between 2006
and 2020.

Abbreviations: 10-100, from 10 to 100 nm mobility diameter; PNC, particle number concentration; PMC,
particle mass concentration; PLC, particle length concentration; PSC, particle surface concentration; PMs,
particulate matter with aecrodynamic diameter below 2.5 pm; PMyo, particulate matter with aerodynamic
diameter below 10 pwm; NO, Nitric oxide; NO,, nitrogen dioxide.
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sTable 11. The modification effects on the association of overall stroke events with per IQR increase in
the single lag 3 day and lagged moving average 0-6 days of ultrafine particle metrics (10-100 nm).

Lag 3 day Lag 0-6 days

Percent changes (95%Cls) ? pb Percent changes (95%Cls) 2 pb

Sex
PNC, particles/cm®

Men 2.94 (-0.84; 6.86) Ref 6.53 (0.53; 12.88) Ref
Women 3.28 (-0.16; 6.85) 0.89 3.27 (-2.04; 8.88) 0.42
PMC, pg/m®
Men 3.10 (-0.60; 6.93) Ref 457 (-0.25; 9.63) Ref
Women 2.34 (-0.97; 5.76) 0.76 3.42 (-0.89; 7.92) 0.72
PLC, mm/cm?®
Men 2.87 (-0.87; 6.75) Ref 5.60 (0.11; 11.39) Ref
Women 3.08 (-0.31; 6.58) 0.93 3.50 (-1.39; 8.63) 0.57
PSC, pm?/cm?®
Men 2.93 (-0.77;6.77) Ref 4.86 (-0.17; 10.14) Ref
Women 2.68 (-0.66; 6.13) 0.92 3.45 (-1.04; 8.15) 0.67
Age, years
PNC, particles/cm®
<65.0 3.19 (-0.94; 7.49) Ref 8.71(1.99; 15.88) Ref
>65.0 2.16 (-0.51; 4.90) 0.68 3.27 (-0.93; 7.64) 0.17
PMC, pg/m®
<65.0 3.66 (-0.43; 7.92) Ref 5.87 (0.60; 11.41) Ref
>65.0 2.10 (-0.51; 4.77) 0.52 3.19 (-0.24; 6.73) 0.39
PLC, mm/cm?®
<65.0 3.49 (-0.63; 7.78) Ref 7.47 (1.39; 13.92) Ref
>65.0 2.22 (-0.43; 4.93) 0.61 3.38 (-0.49; 7.41) 0.26
PSC, pm?/cm?®
<65.0 3.62 (-0.48; 7.89) Ref 6.40 (0.87; 12.23) Ref
>65.0 2.17 (-0.45; 4.85) 0.55 3.26 (-0.31; 6.96) 0.34
Seasons®
PNC, particles/cm®
Warm seasons 0.82 (-3.24,; 5.06) Ref 5.75 (-0.87; 12.81) Ref
Cold seasons 3.10 (0.40; 5.87) 0.36 4.38 (0.10; 8.84) 0.73
PMC, pg/m*
Warm seasons 1.08 (-2.95; 5.27) Ref 3.96 (-1.46; 9.69) Ref
Cold seasons 3.13(0.45;5.87) 0.41 3.93 (0.41;7.57) 0.99
PLC, mm/cm?®
Warm seasons 1.24 (-2.85; 5.49) Ref 5.30 (-0.91; 11.90) Ref
Cold seasons 3.11(0.42;5.87) 0.45 4.23(0.29; 8.32) 0.78
PSC, pm?/cm?®
Warm seasons 1.26 (-2.78; 5.47) Ref 4.46 (-1.22; 10.46) Ref
Cold seasons 3.10 (0.42; 5.85) 0.46 4.02 (0.37; 7.80) 0.90
Five-year periods
PNC, particles/cm®
2006-2010 2.10 (-0.91; 5.21) Ref 3.25(-1.39; 8.10) Ref
2011-2015 3.41 (-0.44;7.41) 0.60 7.02 (0.66; 13.79) 0.34
2016-2020 1.46 (-4.47;7.76) 0.85 6.46 (-3.07; 16.94) 0.56
PMC, pg/m®
2006-2010 1.72 (-1.09; 4.62) Ref 2.21 (-1.48; 6.05) Ref
2011-2015 4.49 (0.12; 9.06) 0.29 5.84 (0.42; 11.55) 0.26
2016-2020 2.70 (-2.52; 8.20) 0.75 7.43 (0.40; 14.94) 0.20
PLC, mm/cm?®
2006-2010 1.83 (-1.03; 4.78) Ref 2.68 (-1.47;7.01) Ref
2011-2015 4.35 (0.09; 8.78) 0.33 7.25 (1.05; 13.83) 0.22
2016-2020 2.47 (-3.11;8.37) 0.84 7.61 (-0.86; 16.81) 0.31
PSC, pm?/cm?®
2006-2010 1.73 (-1.08; 4.63) Ref 2.35(-1.48; 6.32) Ref
2011-2015 4.60(0.21;9.18) 0.27 6.46 (0.74; 12.50) 0.23
2016-2020 2.76 (-2.58; 8.39) 0.74 7.57 (0.06; 15.64) 0.22
Note:

@ Estimates for interaction model;

® P for interaction;

¢ Seasons: warm seasons: May to October; cold seasons: November to April.

The model was adjusted for the corresponding lagged moving average of air temperature and relative humidity.
Abbreviations: Cls, confidence intervals; PNC, particle number concentration; PMC, particle mass
concentration; PLC, particle length concentration; PSC, particle surface concentration; 10-100, from 10 to 100
nm mobility diameter.
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sTable 12. The modification effects of 6 definitions of cold spells during the cold seasons on the association
of overall stroke events with per IQR increase in the single lag 3 day and lagged moving average 0-6 days
of ultrafine particle metrics (10-100 nm).

ETE definitions

Lag 3 day?

Lag 0-6 days ?

Percent changes (95%Cls) °

Percent changes (95%Cls) °

PNC, particles/cm®

P5.0_2d

Normal temperature days 2.80 (-0.53; 6.24) Ref 3.43(-2.01;9.17) Ref
Cold spells 9.37 (1.40; 17.97) 0.13 11.54 (0.80; 23.42) 0.16
P5.0_4d
Normal temperature days 2.95 (-0.36; 6.37) Ref 3.93 (-1.50; 9.66) Ref
Cold spells 8.97 (0.87;17.72) 0.17 9.77 (-0.88; 21.56) 0.31
P5.0_6d
Normal temperature days 3.26 (-0.06; 6.68) Ref 4.31(-1.13; 10.05) Ref
Cold spells 6.97 (-1.20; 15.81) 0.41 7.99 (-2.94; 20.15) 0.54
P2.5_2d
Normal temperature days 3.22 (-0.03; 6.58) Ref 4.02 (-1.30; 9.63) Ref
Cold spells 8.27 (-2.13; 19.79) 0.37 10.09 (-3.74; 25.92) 0.42
P2.5_4d
Normal temperature days 3.32(0.07; 6.68) Ref 4.58 (-0.75; 10.19) Ref
Cold spells 7.76 (-2.73; 19.38) 0.44 6.37 (-7.28; 22.03) 0.81
P2.5_6d
Normal temperature days 3.40 (0.15; 6.74) Ref 4.71 (-0.63; 10.33) Ref
Cold spells 7.34 (-3.47; 19.37) 0.50 5.65 (-7.95; 21.25) 0.90
PMC, pg/m®
P5.0_2d
Normal temperature days 2.27 (-1.00; 5.65) Ref 2.95(-1.67; 7.78) Ref
Cold spells 9.84 (2.73; 17.45) 0.05 9.31(1.27; 18.00) 0.16
P5.0_4d
Normal temperature days 2.50 (-0.74; 5.84) Ref 3.56 (-1.03; 8.37) Ref
Cold spells 9.49 (2.23;17.27) 0.08 7.81 (-0.19; 16.45) 0.34
P5.0_6d
Normal temperature days 2.90 (-0.34; 6.26) Ref 3.97 (-0.62; 8.77) Ref
Cold spells 7.49 (0.04; 15.49) 0.27 6.35 (-2.12; 15.54) 0.62
P2.5_2d
Normal temperature days 2.92 (-0.24; 6.18) Ref 3.63 (-0.80; 8.26) Ref
Cold spells 8.42 (-0.95; 18.68) 0.28 7.38 (-2.87; 18.70) 0.51
P2.5_4d
Normal temperature days 3.09 (-0.07; 6.35) Ref 4.28 (-0.15; 8.90) Ref
Cold spells 7.55 (-1.89; 17.90) 0.39 4.15 (-6.09; 15.51) 0.98
P2.5_6d
Normal temperature days 3.18 (0.03; 6.42) Ref 4.43 (-0.01; 9.07) Ref
Cold spells 7.32 (-2.54; 18.18) 0.44 3.53 (-6.68; 14.86) 0.88
PLC (mm/cm?®)
P5.0_2d
Normal temperature days 2.49 (-0.78; 5.86) Ref 3.22 (-1.84; 8.54) Ref
Cold spells 9.44 (2.11; 17.30) 0.08 10.27 (1.05; 20.34) 0.16
P5.0_4d
Normal temperature days 2.68 (-0.57; 6.02) Ref 3.79 (-1.25; 9.09) Ref
Cold spells 9.09 (1.61;17.11) 0.12 8.65 (-0.52; 18.66) 0.34
P5.0_6d
Normal temperature days 3.04 (-0.21; 6.39) Ref 4.20 (-0.85; 9.50) Ref
Cold spells 7.10 (-0.51; 15.28) 0.33 7.03 (-2.52; 17.52) 0.60
P2.5_2d
Normal temperature days 3.02 (-0.16; 6.30) Ref 3.87 (-1.04; 9.02) Ref
Cold spells 8.18 (-1.41; 18.70) 0.32 8.51 (-3.30; 21.76) 0.48
P2.5_4d
Normal temperature days 3.16 (-0.02; 6.44) Ref 4.49 (-0.42; 9.64) Ref
Cold spells 7.50 (-2.17; 18.12) 041 5.02 (-6.71; 18.23) 0.94
P2.5_6d
Normal temperature days 3.24 (0.07; 6.50) Ref 4.64 (-0.28; 9.80) Ref
Cold spells 7.18 (-2.87; 18.27) 0.47 4.34 (-7.35; 17.51) 0.96
PSC, pm?/cm?®
P5.0_2d
Normal temperature days 2.36 (-0.96; 5.80) Ref 3.05 (-1.73; 8.06) Ref
Cold spells 9.85 (2.55; 17.67) 0.06 9.60 (1.18; 18.72) 0.16
P5.0_4d
Normal temperature days 2.58 (-0.72; 5.99) Ref 3.65 (-1.11; 8.63) Ref
Cold spells 9.50 (2.05; 17.49) 0.09 8.06 (-0.31; 17.13) 0.34
P5.0_6d
Normal temperature days 2.98 (-0.32; 6.40) Ref 4.05 (-0.70; 9.04) Ref
Cold spells 7.46 (-0.16; 15.65) 0.29 6.54 (-2.26; 16.14) 0.62
P2.5_2d
Normal temperature days 2.99 (-0.24; 6.32) Ref 3.71(-0.89; 8.53) Ref

17

168



Appendix: Paper IlI

Cold spells 8.47 (-1.12; 18.97) 0.29 7.73 (-3.01; 19.66) 0.50
P2.5_4d

Normal temperature days 3.15 (-0.08; 6.48) Ref 4.35(-0.25; 9.17) Ref

Cold spells 7.65 (-2.00; 18.26) 0.39 4.41 (-6.30; 16.35) 0.99
P2.5_6d

Normal temperature days 3.23(0.02; 6.54) Ref 451 (-0.11; 9.34) Ref

Cold spells 7.39 (-2.69; 18.50) 0.45 3.76 (-6.92; 15.67) 0.90
Note:

2The modification effect by cold spells was explored restricted within the cold seasons (from November to

April);
b Estimates for interaction models;
P for interaction.

Abbreviations: ETEs, extreme temperature events; Cls, confidence intervals; PNC, particle number

concentration; PMC, particle mass concentration; PLC, particle length concentration; PSC, particle surface

concentration; 10-100, from 10 to 100 nm mobility diameter.
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sTable 13. The modification effects of 6 definitions of heat waves during the warm seasons on the percent
changes and 95% Cls in the odds of overall stroke events associated with per IQR increase in the single

lag 3 day and lagged moving average 0-6 days of ultrafine particle metrics (10-100 nm).

ETE definitions

Lag 3day?

Lag 0-6 days ?

Percent changes (95%Cls)

Percent changes (95%Cls) °

PNC, particles/cm®

P95.0_2d

Normal temperature days 0.27 (-3.06; 3.71) Ref 4.32 (-0.59; 9.48) Ref
Heat waves 3.89 (-8.42; 17.85) 0.59 4.35 (-8.95; 19.59) 1.00
P95.0_4d
Normal temperature days 0.27 (-3.06; 3.71) Ref 4.36 (-0.55; 9.52) Ref
Heat waves 4.05 (-8.29; 18.04) 0.57 4.20 (-9.07; 19.42) 0.98
P95.0_6d
Normal temperature days 0.26 (-3.06; 3.70) Ref 4.39 (-0.53; 9.55) Ref
Heat waves 4.29 (-8.08; 18.31) 0.55 4.22 (-9.06; 19.45) 0.98
P97.5_2d
Normal temperature days 0.54 (-2.75; 3.93) Ref 4.55 (-0.34; 9.67) Ref
Heat waves -0.59 (-20.47; 24.26) 0.92 -0.89 (-20.13; 22.98) 0.63
P97.5_4d
Normal temperature days 0.54 (-2.74; 3.93) Ref 4.57 (-0.32; 9.69) Ref
Heat waves -0.22 (-20.17; 24.73) 0.95 -0.81 (-20.06; 23.06) 0.63
P97.5_6d
Normal temperature days 0.57 (-2.71; 3.96) Ref 4.56 (-0.32; 9.69) Ref
Heat waves -1.69 (-21.43; 22.99) 0.84 0.00 (-19.30; 23.93) 0.68
PMC, pg/m®
P95.0_2d
Normal temperature days 0.78 (-2.45; 4.11) Ref 3.21(-0.72; 7.30) Ref
Heat waves -0.68 (-11.61; 11.60) 0.81 3.47 (-7.12; 15.27) 0.97
P95.0_4d
Normal temperature days 0.77 (-2.45; 4.10) Ref 3.21(-0.71; 7.30) Ref
Heat waves -0.49 (-11.44; 11.80) 0.84 3.48 (-7.10; 15.27) 0.96
P95.0_6d
Normal temperature days 0.76 (-2.46; 4.09) Ref 3.23(-0.70; 7.31) Ref
Heat waves -0.29 (-11.25; 12.03) 0.86 3.47 (-7.11;15.27) 0.97
P97.5_2d
Normal temperature days 0.86 (-2.30; 4.13) Ref 3.26 (-0.60; 7.28) Ref
Heat waves -5.69 (-23.23; 15.86) 0.53 -1.05 (-18.16; 19.64) 0.66
P97.5_4d
Normal temperature days 0.87 (-2.29; 4.14) Ref 3.27 (-0.60; 7.29) Ref
Heat waves -5.60 (-23.14; 15.95) 0.53 -1.01 (-18.12; 19.66) 0.66
P97.5_6d
Normal temperature days 0.90 (-2.26; 4.17) Ref 3.26 (-0.61; 7.28) Ref
Heat waves -6.52 (-23.92; 14.86) 0.47 -0.37 (-17.51; 20.33) 0.71
PLC (mm/cm?®)
P95.0_2d
Normal temperature days 0.71 (-2.60; 4.12) Ref 4.17 (-0.45; 9.01) Ref
Heat waves 1.61(-10.17; 14.92) 0.89 4.26 (-7.93; 18.06) 0.99
P95.0_4d
Normal temperature days 0.70 (-2.60; 4.12) Ref 4.20 (-0.43; 9.04) Ref
Heat waves 1.79 (-10.01; 15.12) 0.87 4.19 (-7.98; 17.97) 1.00
P95.0_6d
Normal temperature days 0.70 (-2.61; 4.12) Ref 4.22 (-0.41; 9.06) Ref
Heat waves 2.00 (-9.82; 15.37) 0.84 4.21 (-7.97; 17.99) 1.00
P97.5_2d
Normal temperature days 0.89 (-2.37; 4.25) Ref 4.31 (-0.26; 9.10) Ref
Heat waves -3.16 (-22.18; 20.50) 0.72 -1.11 (-19.97; 22.20) 0.62
P97.5_4d
Normal temperature days 0.89 (-2.36; 4.26) Ref 4.33 (-0.25; 9.11) Ref
Heat waves -2.90 (-21.97; 20.83) 0.73 -1.01 (-19.88; 22.30) 0.63
P97.5_6d
Normal temperature days 0.93 (-2.33; 4.29) Ref 4.32 (-0.26; 9.10) Ref
Heat waves -4.12 (-23.00; 19.39) 0.65 -0.12 (-19.06; 23.25) 0.69
PSC, pm?/cm?®
P95.0_2d
Normal temperature days 0.84 (-2.43; 4.23) Ref 3.58 (-0.59; 7.93) Ref
Heat waves 0.15 (-11.19; 12.94) 0.91 3.74 (-7.34; 16.15) 0.98
P95.0_4d
Normal temperature days 0.84 (-2.44; 4.23) Ref 3.59 (-0.58; 7.94) Ref
Heat waves 0.33(-11.02; 13.14) 0.94 3.72 (-7.35; 16.12) 0.98
P95.0_6d
Normal temperature days 0.83 (-2.44; 4.22) Ref 3.61 (-0.56; 7.96) Ref
Heat waves 0.54 (-10.84; 13.37) 0.96 3.73 (-7.35; 16.13) 0.99
P97.5_2d
Normal temperature days 0.97 (-2.25; 4.29) Ref 3.66 (-0.45; 7.94) Ref
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Heat waves -4.92 (-23.23; 17.76) 0.59 -1.13 (-18.90; 20.54) 0.64
P97.5_4d

Normal temperature days 0.97 (-2.24; 4.30) Ref 3.67 (-0.44; 7.95) Ref

Heat waves -4.75 (-23.09; 17.95) 0.60 -1.06 (-18.84; 20.61) 0.65
P97.5_6d

Normal temperature days 1.01 (-2.21; 4.33) Ref 3.66 (-0.45; 7.94) Ref

Heat waves -5.80 (-23.97; 16.72) 0.53 -0.29 (-18.12; 21.42) 0.70
Note:

2The modification effect by Heat waves was explored restricted within the warm seasons (from May to

October);

b Estimates for interaction models;

P for interaction.

Abbreviations: ETEs, extreme temperature events; Cls, confidence intervals; PNC, particle number

concentration; PMC, particle mass concentration; PLC, particle length concentration; PSC, particle surface

concentration; 10-100, from 10 to 100 nm mobility diameter.

20

171



Appendix: Paper IlI

sTable 14. Percent changes and 95% Cls in the odds of overall stroke events associated with per IQR
increase in the single lag 3 day and lagged moving average 0-6 days of four ultrafine particle metrics (10-
100 nm) in the two-pollutant model.

Percent changes (95% Cls)

Lag 3 day

Lag 0-6 days

PNC (particles/cm®)
+PMzs

2.05 (-0.33; 4.49)*

4.28 (0.41; 8.30)**

+PMyo 2.11 (-0.31; 4.59)* 4.38 (0.43; 8.49)**
+NO 2.11 (-0.61; 4.91) 252 (-2.14; 7.41)
+NO;, 1.72 (-1.15: 4.67) 4.24 (-0.28; 8.96)*

PMC (ng/m®)
+PMps 2.05 (-0.43; 4.59) 3.68 (0.25; 7.22)**
+PMyo 2.21 (-0.33; 4.82)* 3.89 (0.36; 7.54)**
+NO 2.46 (-0.55: 5.55) 1.97 (-2.29; 6.41)
+NO, 1.92 (-1.17;5.11) 3.95 (-0.24; 8.32)*

PLC (mm/cm?®)
+PMs 213 (-0.29; 4.61)* 4.11 (0.43; 7.92)**
+PMyo 2.24 (-0.24; 4.77)* 4.27 (0.50; 8.18)**
+NO 2.39 (-0.48; 5.35) 2.43 (-2.12;7.18)
+NO;, 1.94 (-1.06: 5.03) 4.30 (-0.12; 8.92)*

PSC (pm?%cm?)
+PM; 5 2.10 (-0.35; 4.60)* 3.79 (0.33; 7.38)**
+PMyo 2.24 (-0.27: 4.81)* 3.98 (0.42; 7.67)**
+NO 2.47 (-0.48; 5.50) 214 (-2.17; 6.64)
+NO, 1.97 (-1.08; 5.11) 4.05 (-0.17; 8.45)*

Note: *, P<0.10; **, P<0.05.

The model was adjusted for the corresponding lagged days of air temperature and relative humidity.
Abbreviations: Cls, confidence intervals; IQR, interquartile range; PNC, particle number concentration; PMC,
particle mass concentration; PLC, particle length concentration; PSC, particle surface concentration; 10-100,
from 10 to 100 nm mobility diameter.
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sTable 15. Percent changes and 95% Cls in the odds of overall stroke events associated with per IQR
increase in the single lag 3 day and lagged moving average 0-6 days of ultrafine particle metrics over (10-
100 nm) in specific sensitivity models.

Percent changes (95% Cls)

Lag 3 day Lag 0-6 days

PNC (particles/cm®)

Model 1 2.75 (0.55; 4.99)** 5.10 (1.64; 8.68)**

Model 2° 2.51 (0.14; 4.94)** 4.55 (0.77; 8.46)**

Model 3 ¢ 2.41 (0.11; 4.76)** 4.26 (0.69; 7.95)**
PMC (ng/m?®)

Model 12 2.59 (0.49; 4.73)** 4,04 (1.22; 6.93)**

Model 2° 2.66 (0.34; 5.04)** 3.98 (0.83; 7.24)**

Model 3 ¢ 2.45 (0.21; 4.74)** 3.52 (0.59; 6.53)**
PLC (mm/cm?®)

Model 12 2.78 (0.62; 4.98)** 4.72 (1.55; 7.99)**

Model 2° 2.67 (0.32; 5.07)** 4.45 (0.92; 8.12)**

Model 3 ¢ 2.52 (0.25; 4.85)** 4.04 (0.75; 7.44)**
PSC (um?%cm®)

Model 12 2.67 (0.56; 4.83)** 4.20 (1.32; 7.16)**

Model 2° 2.67 (0.35; 5.05)** 4.11 (0.86; 7.46)**

Model 3 © 2.49 (0.25; 4.79)** 3.68 (0.66; 6.79)**

Note: *, P<0.10; **, P<0.05.

2 Model 1 was conducted using the imputed data using 1-neighboring week values;

® Model 2 was conducted after excluding patients who were diagnosed after the beginning of the COVID-19
pandemic;

¢ Model 3 was adjusted for cold and warm air temperatures.

Abbreviations: Cls, confidence intervals; IQR, interquartile range; PNC, particle number concentration; PMC,
particle mass concentration; PLC, particle length concentration; PSC, particle surface concentration; 10-100,
from 10 to 100 nm mobility diameter.
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a) Transient ischemic attacks
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sFig 4. Percent change (95%Cl) in the odds of three stroke subtypes per interquartile range (IQR) increase in
single 3 day and moving average 0-6 days of UFP metrics (10-30 nm). Note: * P<0.10.
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%change in the odds of overall stroke events per IQR increase in four UFP (30-100nm)
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sFig 5. Percent change (95%Cl) in the odds of three stroke subtypes per interquartile range (IQR) increase in
single 3 day and moving average 0-6 days of UFP metrics (30-100 nm). Note: * P<0.10; ** P<0.05.
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a) Transient ischemic attacks
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a) Disability:No symptoms to slight disability
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levels per IQR increase in single 3 day and moving average 0-6 days of UFP metrics (10-100 nm). Note: *

P<0.10; ** P<0.05.
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a) Severity:No symptoms to minor stroke
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of overall stroke events.
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