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We ought then to regard the present state of the universe as the effect of its anterior
state and as the cause of the one which is to follow. Given for one instant an in-
telligence which could comprehend all the forces by which nature is animated and the
respective situation of the beings who compose it - an intelligence sufficiently vast to
submit these data to analysis - it would embrace in the same formula the movements of
the greatest bodies of the universe and those of the lightest atom; for it, nothing would
be uncertain and the future, as the past, would be present to its eyes.

Laplace (1825) on his vision of a universe where the present is shaped by the past and dictates the
future. Yet, despite this deterministic view, the complexities of human life and death transcend
mere mathematical formulations, suggesting a higher order that extends empirical analysis. This
order appears to balance scientific determinism with the enigmatic nature of human existence,
while concurrently echoing the enduring impact of data. The data we leave behind continues to
fuel scientific advancements for future generations, even beyond death.
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Summary

Understanding human mortality is critical in a time of increasing longevity, aging populations,
and unanticipated mortality phenomena like the COVID-19 pandemic. While it is impossible
to predict individual mortality precisely, it is essential to develop reliable models that capture
mortality trends to support decision-making in insurance, public health, and policy planning.
Global increases in life expectancy have led to new challenges in pension sustainability, healthcare
costs, and longevity risk assessment. Meanwhile, events such as pandemics demonstrate the need
for models that can dynamically adjust to extremes on short notice. This dissertation presents a
multifaceted approach to mortality modeling, integrating classical actuarial models with modern
statistical and machine learning techniques. The focus lies not just on predictive accuracy, but
also on addressing complex scenarios, such as data scarcity, whether due to limited experience or
insufficient specific details, extreme events and structural differences across populations.

This thesis comprises four papers, each addressing a unique modeling challenge. The first study
introduces a Generalized Additive Model (GAM) within an Age-Period-Cohort (APC) framework
to incorporate pandemic effects into multi-populational and cross-country mortality forecasting.
By modeling COVID-19 as a temporal disruption, the method extrapolates mortality under vary-
ing pandemic scenarios. GAM-APC achieved the most accurate post-pandemic forecasts among
the observed benchmark models, with the flattening pandemic effect showing best alignment to
observed data for middle-aged and elderly.

The second study proposes a hierarchical Gradient Boosting Machine model to support mortality
estimation in data-scarce countries by learning from data-rich regions. A global-local modeling
structure ensures transferability and interpretability. The two-step model strongly outperformed
single-country models, especially in smaller countries, while preserving local specificity.

The third study addresses regions with no portfolio data at all by developing a transfer learning
framework. By leveraging overall population data categorized by age and gender, along with
comprehensive insured data from eight other countries, the study bridges the gap using correlations
and public data from these countries. It reuses the pretrained global model from the previous
study on similar countries and projects to the United Kingdom (UK) by synthetic data generation
and a drift adjustment model. This approach yields predictions that closely align with official
insured tables for UK. While the official tables are used here for evaluation purposes, in many
countries, such official references are either unavailable or lack the granularity needed for portfolio-
specific applications. Therefore, the framework demonstrates its value in reconstructing detailed
mortality structures beyond age and gender, especially for markets or products where no insured
data exist.

The fourth study builds a simulation framework using Iterative Proportional Fitting to generate
synthetic segmented mortality datasets. These simulations allow researchers to model mortality for
populations where detailed demographic or insured data is unavailable. The synthetic datasets
preserve realistic distributions and enable modeling precision across different demographic seg-
ments.

Across all papers, reproducibility and practical implementation are ensured through open-source
R and Python software. This work contributes to the evolving field of mortality modeling by inte-
grating methodological innovation with real-world constraints, laying the groundwork for further
demographic and actuarial advancements.





Zusammenfassung

Das Verständnis der Sterblichkeit ist angesichts steigender Lebenserwartung, alternder
Bevölkerungen und Ereignissen wie der COVID-19-Pandemie zentral. Verlässliche Modelle sind
nötig, um fundierte Entscheidungen in Versicherung, Gesundheitswesen und Politik zu treffen. Der
weltweite Anstieg der Lebenserwartung hat zu neuen Herausforderungen in der Nachhaltigkeit von
Rentensystemen, den Gesundheitskosten und der Bewertung des Langlebigkeitsrisikos geführt.
Zudem verdeutlichen unvorhergesehene Ereignisse wie Pandemien den Bedarf an Modellen, die
sich schnell an extreme Bedingungen anpassen können. Diese Dissertation stellt einen vielseitigen
Ansatz zur Sterblichkeitsmodellierung vor, der traditionelle versicherungsmathematische Modelle
mit modernen statistischen und Machine Learning Techniken verbindet. Der Fokus liegt nicht
nur auf Vorhersagegenauigkeit, sondern auch auf komplexen Szenarien wie Datenknappheit, Ex-
tremereignissen und strukturellen Unterschieden zwischen Bevölkerungen.

Die Dissertation umfasst vier Arbeiten, die jeweils eine Modellierungsherausforderung adressieren.
Die erste Studie führt ein Generalisiertes Additives Modell (GAM) in einer Age-Period-Cohort
(APC) Struktur ein, um Pandemieeffekte in länderübergreifende Sterblichkeitsprognosen zu in-
tegrieren. COVID-19 wird als zeitlicher Bruch modelliert, um Sterblichkeit unter verschiedenen
Pandemieszenarien zu extrapolieren. GAM-APC erzielte die genauesten Prognosen für die Zeit
nach der Pandemie unter den untersuchten alternativen Modellen, wobei der abflachende Pan-
demieeffekt die beste Übereinstimmung mit den beobachteten Daten für Menschen mittleren und
höheren Alters zeigte.

Die zweite Studie schlägt ein hierarchisches Gradient Boosting Machine Verfahren vor, um die
Sterblichkeitsschätzung in datenarmen Ländern zu unterstützen, indem von datenreichen Re-
gionen gelernt wird. Eine global-lokale Modellstruktur gewährleistet Übertragbarkeit und Inter-
pretierbarkeit. Das zweistufige Modell übertraf die isolierten Modelle für einzelne Länder deutlich,
insbesondere in kleineren Ländern, und bewahrte die lokalen Eigenschaften.

Die dritte Studie entwickelt einen Transfer Learning Ansatz für Regionen ohne Portfoliodaten.
Es nutzt Sterblichkeitsdaten der Gesamtbevölkerung, kategorisiert nach Alter und Geschlecht,
sowie detailliertere Sterblichkeitsdaten der versicherten Bevölkerung aus acht Ländern, um die
fehlenden Informationen durch Korrelationen zu gewinnen. Das vortrainierte globale Modell aus
der vorherigen Studie wird auf das Vereinigte Königreich übertragen, liefert Vorhersagen nahe
den offiziellen Sterbetafeln und ermöglicht die Rekonstruktion von Sterblichkeitsstrukturen. Da
in vielen Ländern solche offiziellen Sterbetafeln entweder nicht verfügbar oder nur stark aggregiert
sind, sind sie für portfoliospezifische Anwendungen kaum nutzbar, insbesondere in Märkten oder
bei Produkten ohne versicherungsspezifische Daten.

Die vierte Studie entwickelt ein Simulationsmodell, das Iterative Proportional Fitting verwendet,
um synthetische Sterblichkeitsdatensätze zu erzeugen. Diese Simulationen ermöglichen die Mod-
ellierung für Bevölkerungsgruppen ohne detaillierte demografische oder versicherungsspezifische
Daten. Die synthetischen Datensätze spiegeln realistische mehrdimensionale Verteilungen wider
und ermöglichen präzise Modellierung über demografische Segmente hinweg.

Reproduzierbarkeit und praktische Umsetzung werden durch Open-Source-Software R und Python
sichergestellt. Diese Arbeit trägt zur Sterblichkeitsmodellierung bei, indem sie methodische Inno-
vationen mit realen Einschränkungen verbindet und die Grundlage für weitere demografische und
versicherungsmathematische Fortschritte schafft.
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Part I.

Introduction and background





1. Introduction

1.1. Outline

The focus of this doctoral thesis is on advanced methods of mortality modeling, a topic of signif-
icant importance due to its complexity and the multitude of factors influencing human mortality.
Gaining a comprehensive understanding of mortality risk, both present and in the future, is crucial,
especially in light of recent changes such as increased life expectancy due to medical advancements
and the impact of extreme events like pandemics. These changes necessitate reliable planning and
decision-making tools for pensioners, life insurers, and public health authorities. All methods are
motivated by real-world applications in either mortality research or insurance science.
The remainder of this introductory chapter is organized as follows. This section gives a brief
overview of the research questions covered by this dissertation and motivates their statistical rel-
evance in the historical context. Sections 2 to 5 introduce the individual statistical problems and
our contributions that are the core of this dissertation, summarize the utilized methodological
approaches and potential alternative techniques, comment on the current state of statistical re-
search in the respective field and shortly discuss potential directions for future research. Section 6
concludes the chapter by summarizing the key findings and offering an outlook on future research
possibilities. An in-depth exploration of the individual core contributions made throughout this
work is provided in Chapters II to IV. In the spirit of open science and to ensure full reproducibil-
ity, all contributions are accompanied by either direct implementations or a detailed, step-by-step
algorithmic description of the methodological approaches in the statistical open-source software R
(R Core Team, 2025) and Python (Python Software Foundation, 2025).

1.2. Motivation and scope

The risk associated with human mortality is driven by uncertainties and variables that cannot be
fully captured by a single mathematical formula or explained by a single statistical model. Rather
than modeling individual mortality as in limited clinical studies, the focus is on population-
level mortality data. A multifaceted approach is crucial to estimate and predict mortality, thus
this thesis introduces four innovative methods that utilize observed trends in several complex
demographic and data availability settings. Longevity risk, defined as the risk that people live
longer than expected, presents significant challenges for societies today. While increased longevity
enhances productivity and welfare, it also imposes financial burdens on pension systems and
public health expenditures, threatening the solvency of financial institutions due to unanticipated
liabilities. This is particularly relevant in the context of pay-as-you-go (PAYG) systems, which
face increased pressure as the ratio of working individuals to retirees shifts unfavorably. Events like
the global pandemic further complicate mortality modeling. SARS-CoV-2 is not the first virus to
cause a pandemic, nor will it be the last. Studies indicate that globalization and population growth
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1. Introduction

increase the likelihood of epidemics and pandemics, which can lead to sudden mortality shocks
(Engel and Ziegler, 2020). They discuss how globalization has exacerbated the spread of infectious
diseases, creating new challenges for mortality modeling. Woolhouse and Gaunt (2007) find that
over 6% of all known human pathogens were first reported in humans after 1980, many of which
are globally spreading viruses. Mortality modelers must consider whether their models should
account for such shocks, which are crucial for pricing mortality catastrophe bonds and making
risk management decisions in life insurance. Cairns et al. (2011b) highlight the need to incorporate
these shocks into actuarial practices to ensure the financial stability of life insurance companies.
To address these rapid changes and mitigate negative consequences, accurately assessing longevity
risk is essential. Mortality estimation models must capture the effects of various factors driving
changes in life expectancy. While achieving Laplace’s vision of perfect predictability is unrealistic,
approaching mortality from multiple perspectives enhances the validity of predictions (Laplace,
1825). One promising approach is to integrate traditional actuarial models with modern machine
learning (ML) techniques to improve accuracy while maintaining interpretability. This work builds
upon existing literature, which has evolved from simple mathematical calculations of life tables in
the 18th century to stochastic models like the Lee-Carter (LC) model in the late 20th century. This
model introduced a three-dimensional framework for mortality, which has since been expanded
with further effects, such as cohort, and ML enhancements. Lee and Carter (1992) propose a
log-bilinear model for mortality rates incorporating age and year effects, a framework widely
used for long-run forecasts by institutions like the U.S. Bureau of the Census (Hollmann et al.,
2000). Subsequent models, such as the Augmented Common Factor Model by Li and Lee (2005),
impose coherence in mortality developments across populations, ensuring long-term stability in
mortality ratios (Cairns et al., 2011b; Hyndman et al., 2013). Research has also explored the
application of ML techniques. Perla et al. (2021) suggest using Convolutional Neural Networks
(CNN) with one-dimensional convolutions, while Meier and Wuthrich (2020) employ CNNs with
two-dimensional convolutions to detect anomalies in mortality data. Richman and Wüthrich
(2021) advocate for the use of feed-forward neural networks to learn mortality intensities from
historical data, highlighting the potential of ML to outperform traditional models. To maintain
also interpretability, Richman and Wüthrich (2023) propose the LocalGLMnet, a more explainable
deep learning model that attempts to maintain the interpretable structure of GLMs while enabling
variable selection and interaction identification. Building on this, Perla et al. (2024) extend
the LocalGLMnet to mortality grids, enhancing point forecast accuracy but without addressing
forecast uncertainties needed by actuaries.

Open-source mortality data, such as that from the Human Mortality Database (HMD) (HMD,
2024), typically exist at aggregated levels like year, age, and gender. While these provide valu-
able insights into demographic trends, integrating socioeconomic, behavioral, and health variables
collected at the individual level in insurance portfolios can enhance mortality analysis with more
accurate risk assessments and predictive modeling, while also considering data privacy and protec-
tion. Therefore, the proposed models are inherently multipopulational, allowing for the inclusion
of diverse variables. A significant body of research assumes that death counts follow a Poisson
distribution (Brouhns et al., 2002; Booth et al., 2002; Delwarde et al., 2006). This approach offers
the benefit of eliminating the unrealistic assumption of error homoskedasticity present in models
like the LC model by assigning greater importance to age groups with higher mortality counts.
However, the Poisson model has the drawback of assuming that the expected number of deaths is
equal to its variance. Empirical observations often show that the variance is larger, a phenomenon
known as overdispersion, which is common in insurance portfolios. This can be addressed by intro-
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1.2 Motivation and scope

ducing additional model parameters (Renshaw and Haberman, 2003) or by adopting alternative
distribution assumptions, such as the negative binomial distribution (Renshaw and Haberman,
2008). Since determining the optimal distribution for death counts is not the primary focus of
this work, we will consistently use the Poisson assumption, which has been extensively validated
for mortality modeling both theoretically and empirically by Brillinger (1986). Consequently, all
models assume that the observed number of insured deaths Di follows a Poisson distribution:
Di ∼ Poisson(µi · Ei). Here, µi represents the mortality rate for demographic index i, where i
denotes a unique combination of demographic characteristics specific to the dataset used for each
study and problem. Ei is the exposure for demographic index i, reflecting the population at risk
or person-years at risk, which scales the mortality rate.

The data accumulates slowly, particularly in life insurance where death events are infrequent.
This varies by company, country, and portfolio, resulting in data-rich and data-poor subgroups.
Therefore with this thesis we aim to provide innovative solutions for demographers and actuar-
ies, addressing the complexities associated with mortality modeling and forecasting. It seeks to
enhance the estimation of mortality rates and actuarial life tables proposing novel advanced tech-
niques, while evaluating the applicability of these approaches across diverse settings. Thus the
focus is on the multifaceted approach, the integration of traditional and modern techniques, the
importance of open-source data, and the specific contributions of the thesis in addressing practical
challenges.

In contrast to other studies that presuppose data availability, this research prioritizes special data
situations, such as extreme events, regional dynamics and cross-country perspectives to establish a
solid data foundation for modeling. By utilizing insights from data-rich regions, we aid areas with
limited or no data, effectively tackling computational challenges while improving model accuracy
and maintaining interpretability. Thus we build upon various historical advancements in mortality
modeling, including both single and multipopulation models, with the goal to not only achieve high
predictive accuracy but also to tackle practical challenges beyond mere prediction quality. The
following four methodological contributions illustrate how this thesis addresses these challenges:

1. Modeling extreme events with Generalized Additive Models (GAMs) in an Age-Period-
Cohort (APC) framework. COVID-19 effects are integrated into future mortality projections
to capture long-term impacts and quantify mortality shocks reliably. The proposed models
dynamically adapt to new data and account for abrupt changes in mortality patterns, even
at the boundaries of the observed time series.

2. Regional mortality estimation through hierarchical Gradient Boosting Machines (GBMs).
A hierarchical modeling strategy enables data-rich countries to support those with limited
mortality data or computational resources. The approach combines data-sharing and
collaborative modeling mechanisms to integrate multi-source information while preserving
local population characteristics.

3. Transfer learning for data-scarce regions. In settings where direct mortality data are
unavailable, with the example of the UK, transfer learning techniques adapt pretrained
models from other populations to estimate mortality risks. This facilitates accurate,
context-sensitive predictions even under severe data limitations.
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1. Introduction

4. Segmented mortality simulation using Iterative Proportional Fitting (IPF). To differentiate
between population segments, such as insured individuals and the general public, IPF-based
simulations generate realistic, granular mortality datasets for flexible feature extensions and
tailored analyses across demographic groups, providing a foundational data infrastructure
for research.

1.3. Historical context

Mortality modeling has deep roots in actuarial and demographic practice. The formal study of
human mortality began with the construction of life tables in the 17th century. Graunt (1662) was
the first to aggregate demographic records and demonstrate that, although individual lifespan
is random, mortality in large populations follows systematic age patterns. Halley (1693) built
on this insight by constructing an empirical life table from parish records of births and deaths,
and used it to compute annuity values. Over the next two centuries, mathematicians devised
theoretical mortality laws to simplify life insurance calculations. For example, de Moivre (1725)
assumed a uniform distribution of deaths between ages 0 and a limiting age, allowing simple
annuity formulas. Gompertz (1825) proposed that adult mortality increases exponentially with
age, and Makeham (1867) added a constant term (the “Makeham term”) to Gompertz’s law to
capture age-independent background mortality. The resulting Gompertz-Makeham model thus
became a classical two-parameter model of adult human mortality, though it is static and can-
not model calendar-time improvements on its own. By the late 19th century, actuaries began
fitting more flexible formulas to life tables yielding in even more generic parametric curves. Early
contributors included Danish mathematicians such as Thiele (1871) and Oppermann (1870) who
developed actuarial models, though these ideas circulated slowly due to language barriers and lack
of interdisciplinary collaboration (Hoem, 1983).

Classical parametric laws and complex models

Through the late 19th and 20th centuries, actuaries and demographers proposed numerous para-
metric ”laws” to capture the age pattern of mortality. Well-known parametric curves include
Beard’s logistic formulation (Beard, 1959). In addition, model life tables, e.g., Coale-Demeny,
UN model tables, were used for population forecasts. To handle complexity, multi-parameter haz-
ard models were developed. For example, Siler (1983) introduced a five-parameter competing-risk
model that explicitly describes three mortality phases (immaturity, accident hump and senescence)
by separate location and dispersion parameters. Heligman and Pollard (1980) later proposed an
eight-parameter model that fits the entire lifespan by summing three components (childhood,
accident, adult). Empirical comparisons found that a logistic form often best describes adult
mortality at extreme ages: Beard (1971) and Thatcher et al. (1998) showed that a logistic hazard
model outperformed the Gompertz-Makeham model for data above age 80.

Table 1.1 gives an overview of selected parametric models. Each of them have advantages, such
as closed-form and interpretability, but also rigidity: they assume fixed shapes and cannot easily
adapt to changing mortality trends or structural breaks. These limitations motivated the move
towards stochastic and nonparametric methods in the late 20th century.
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1.3 Historical context

Table 1.1.: Overview of selected landmark mortality laws

Law Mathematical formulation

Gompertz-Makeham
(1825/1867)

µ(x) = AeBx + C, µ(x): force of mortality at age x, A:
baseline mortality, B: exponential age effect, C: constant
background risk.

Siler’s Hazard (1983) µ(x) = a1e−b1x + a2 + a3eb3x, models infant (a1, b1),
midlife (a2), and senescent (a3, b3) mortality components.

Heligman-Pollard
(1980)

qx

1 − qx
= A(x+B)C + De−E(log x−log F )2 + GHx, qx: proba-

bility of death at age x, 8 parameters A-H capture child,
accident, and old-age mortality.

Beard-Thatcher
(1959/1998)

µ(x) = KAeBx

1 + AeBx
, logistic, K is the asymptotic mortality

limit, models mortality deceleration due to population
frailty.

Stochastic mortality models

With advances in data availability and computing power, the focus shifted to stochastic models
that incorporate calendar-time dynamics. A landmark contribution was the LC model (Lee and
Carter, 1992). They represented the log of the central death rate µ(x, t) at age x and year t as

log µ(x, t) = a(x) + b(x) k(t) + ε(x, t) (1.1)

where a(x) is the average log-mortality by age, b(x) is the age-specific sensitivity to changes in
the mortality index k(t), and ε(x, t) is a mean-zero error. In practice, a(x) and b(x) are estimated
from historical rates, for example by singular value decomposition, and the time index k(t) is
fitted as a univariate time series, typically a random walk with drift. This one-factor model
often explains 80-95% of past mortality variation and became a standard forecasting benchmark.
For example, agencies such as the U.S. Social Security Administration have used LC projections
of mortality to forecast life expectancy (Lee and Miller, 2000). Because k(t) is stochastic, LC
yields probabilistic forecasts for future death rates. Its simplicity also spurred many extensions:
Renshaw and Haberman (2006) added a cohort (birth-year) effect, multi-factor versions include
additional principal components, and state-space or Bayesian formulations have been proposed to
improve estimation and capture uncertainty. Another influential model is the Cairns-Blake-Dowd
(CBD) Cairns et al. (2006). The CBD model targets older ages (typically age 60 and above) and
uses a logistic (logit) link for death probabilities. In its simplest form it posits

logit qx(t) = κ1(t) + κ2(t) (x − x̄) (1.2)

where qx(t) is the one-year death probability at age x, and κ1(t), κ2(t) are time-varying intercept
and slope. This linear-in-age form captures the roughly linear increase of logit-mortality with age
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1. Introduction

in late life, while allowing the level and slope to evolve. Because of its focus on retirement ages,
the CBD model is popular in pension risk modeling and has fewer parameters than LC. Other
models, e.g. Plat’s model, combine features of LC and CBD to cover wider age ranges (Plat,
2009). These stochastic models have become the basis for forecasting mortality with quantified
uncertainty in demography and actuarial science.

Multi-population models and coherence

Over the past two decades, multi-population models have become a key advance to ensure coherent
behavior and share common components across groups, such as males and females, or different
countries. Naive independent forecasts can imply implausible divergence of trends, for example,
predicting that male mortality will fall so fast that male life expectancy surpasses female. Li
and Lee (2005) proposed the Augmented Common-Factor model. In this approach, multiple
populations share a single mortality index estimated from pooled data, plus population-specific
offsets. This enforces a common long-term trend while allowing group differences. Hyndman
et al. (2013) proposed the product-ratio method, which forecasts the average mortality curve of
all populations and then models each population’s deviation (ratio) from this mean, ensuring
that forecasts remain coherent. Raftery et al. (2014) developed a Bayesian coherent model for
male/female mortality: first projecting female longevity and then using a hierarchical model for
the historical gap to produce joint probabilistic forecasts. Other multi-population approaches
include multivariate extensions of single-population models. Jarner and Kryger (2011) and Cairns
et al. (2011a) formulated multivariate LC models allowing two populations to co-evolve. These
models jointly fit all populations, borrowing strength across groups and capturing correlations in
mortality improvements. In general, coherent multi-population model tend to improve accuracy,
especially when some populations have sparse data, and ensure that forecasted mortality curves
move together in a realistic way.

While coherence prevents unrealistic crossings of trajectories, it comes with trade-offs. Technically,
coherence forces age-specific mortality ratios between populations to converge to fixed constants.
While this ensures aggregate measures, like life expectancy differences, stay bounded, it can
sometimes conflict with data. For example, imposing a converging gender ratio trend may not be
empirically supported and can yield implausible future gender-gap dynamics. This points to a need
for models that adapt to changing cross-population dynamics without arbitrary constraints.

Machine learning approaches in mortality modeling

In the last decade, ML and Artificial Intelligence (AI) techniques have begun to influence mortality
modeling by introducing new approaches. ML methods can ingest large or complex datasets and
capture nonlinear interactions that classical models may miss.

Ensemble tree methods, including algorithms such as random forests and gradient boosting have
been applied to mortality tables. These models can flexibly fit irregular age-period patterns.
Deprez et al. (2017) and Levantesi and Pizzorusso (2019) used random forests to model histor-
ical mortality data, finding that ML models captured nonlinear age effects and interactions not
captured by LC, yielding lower in-sample error. Gradient boosting machines have similarly been
employed. These methods are powerful for complex patterns but require careful tuning to avoid
overfitting in limited datasets.

Deep learning models, particularly recurrent neural networks (RNNs), have been explored for
time-series mortality data. Empirical comparisons show that these networks can forecast mor-
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tality effectively and suggest that RNNs can learn cohort and period patterns without explicit
modeling, though they typically require long training histories. For example, Chen and Khaliq
(2022) compared Long Short-Term Memory (LSTM), bidirectional LSTM (BiLSTM), and Gated
Recurrent Unit (GRU) models to the LC model using U.S. mortality rates (1966-2015), and found
that all deep learning models achieved comparable or better forecast accuracy. Similarly, Nigri
et al. (2019) applied RNNs to several national mortality series with encouraging results.

Transformer and hybrid models, such as attention-based neural architectures, e.g. the Temporal
Fusion Transformer, can incorporate additional covariate time series. These models can learn rela-
tionships between mortality and external factors, such as economic, environmental, etc. Postema
and van Es (2022) trained a Temporal Fusion Transformer on multi-country, age-specific mortal-
ity data augmented with socio-economic covariates, and reported improved forecast accuracy over
standard models, such as the LC model and its extensions. More generally, hybrid models and
ensembles, combining ML and traditional models, have been studied, often yielding more precise
forecasts by blending strengths of different methods, while compromising aspects of interpretabil-
ity. A key advantage of ML is the ability to incorporate new data sources. For example, features
from electronic health records, insurance claims, wearable devices, or even social media and search
trends analyzed via Natural Language Processing (NLP) can be used to enrich mortality models.
Wang (2024) discusses how AI can analyze large-scale health data streams to identify emerging
risk factors, e.g. novel diseases or lifestyle changes, that may affect mortality. Including such
high-dimensional inputs, ML models may adapt forecasts based on real-time health indicators
and emerging threats. These ML-based approaches have demonstrated promising performance in
retrospective studies, also suggesting that ML can be a useful complement to traditional actuarial
models when rich data are available.

Despite these advances, integrating ML also raises new challenges. Many traditional models cannot
accommodate sudden shocks, such as COVID-19, as they assume constant trends. Data sparsity
in subpopulations limits the reliability of direct model fitting. Coherent models sometimes over-
constrain gender or regional trends, conflicting with observed divergences. Furthermore, many
ML models struggle with regulatory requirements in actuarial practice and lack interpretability,
as we discuss next.

The challenge of model interpretability and transferability

As ML techniques become more prevalent in mortality modeling, the challenge of interpretability
and transferability becomes increasingly important. While ML models offer powerful tools for
capturing complex patterns, their opaque nature can hinder understanding and acceptance in
actuarial practice. A primary concern is interpretability. Actuaries and regulators typically require
transparency about how models make predictions. Traditional models have parameters with clear
demographic meaning, e.g. age curvature or time trend, whereas ML models and deep nets are
often considered as “black boxes”. As Rajendran (2024) notes, AI-driven mortality forecasts can be
opaque, making it hard to explain why a certain projection was made. This lack of transparency
can undermine stakeholder confidence. To mitigate this, practitioners may apply explainable
AI techniques, such as feature importance measures or partial dependence plots, to interpret
complex models and ensure they align with expert judgment. Transferability and data bias are
another concern. A model trained on one population or period may not generalize to another.
For example, a neural net trained on pre-2020 data may fail to anticipate mortality shifts during
or after the COVID-19 pandemic. Different countries or demographic groups can have vastly
different mortality determinants, health systems, behaviors, so an ML model blindly calibrated on

9



1. Introduction

one population may mis-predict another. Furthermore, ML models can inadvertently perpetuate
data biases: if certain groups, e.g. ethnic minorities, rural communities, are underrepresented in
the training data, the model’s predictions for those groups may be biased. Actuarial practice thus
demands carefully validated frameworks for models across subpopulations and adjusting training
data. In practice, this often means retraining or recalibrating models for each target population
or scenario, and combining multiple models to hedge against misspecification.

The challenge of complex data situations

Real-world mortality data rarely meet the assumptions of classical stochastic mortality models.
In actuarial and demographic applications, data complexity arises from several sources: limited
sample sizes (e.g., small countries or subnational regions), short or interrupted time series, unob-
served covariates, reporting errors, and structural heterogeneity across populations. These issues
pose serious challenges for model calibration, identifiability, and predictive reliability.

In small or developing countries and in niche insurance portfolios, mortality experience may be
insufficient to support stable parameter estimation. While Bayesian hierarchical models and
multi-population frameworks (Li and Lee, 2005; Cairns et al., 2011a; Dowd et al., 2020) allow
for partial pooling of information, their empirical application remains largely confined to settings
with relatively complete and homogeneous data. Evidence on their effectiveness under extreme
data sparsity or fragmented information is still limited.

In related statistical and ML fields, transfer learning and domain adaptation have shown promise
for knowledge sharing across data-rich and data-poor contexts (Pan and Yang, 2009; Weiss et al.,
2016). However, these approaches have not been systematically explored for mortality data,
where age, cohort, and temporal structures impose constraints that differ fundamentally from
other predictive domains. The absence of studies applying transfer learning within actuarial or
demographic modeling highlights a significant methodological gap.

Similarly, fragmented and aggregated mortality datasets, where only marginal information by
age or gender is available, are typically treated with basic smoothing or interpolation. Although
IPF and synthetic population generation methods are well established in survey statistics and
transportation modeling (Agresti, 2012; Beckman et al., 1996; Lomax and Norman, 2016), their
systematic evaluation for reconstructing joint mortality structures is virtually absent in the de-
mographic literature.

Population heterogeneity across countries or subgroups further complicates mortality modeling.
While multi-population approaches (e.g., Renshaw and Haberman, 2006; Cairns et al., 2011a)
partially address this issue, they often assume consistent structural relationships or proportional
trends, which are rarely verified empirically. There is limited historical evidence on how to quantify
or propagate structural heterogeneity in mortality forecasts, particularly when combining actuarial
and demographic populations.

Finally, extreme events, such as pandemics, wars, and environmental crises, introduce nonstation-
arity and structural breaks. While changepoint and regime-switching models have been proposed
in other time-series domains (Robben et al., 2022; Shiferaw, 2021), there remains no unified
framework for integrating sudden mortality shocks into long-term stochastic projections. The
Short-Term Mortality Fluctuations (STMF) database (Human Mortality Database, 2024) has
only recently enabled such analyses, and empirical methods remain fragmented.
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Overall, while these individual statistical and computational techniques exist across disciplines,
the literature lacks a coherent, empirically validated framework for handling complex data sit-
uations in mortality modeling. There is no historical evidence of an integrated approach that
simultaneously addresses data sparsity, aggregation, heterogeneity, extreme shocks, and missing-
ness within a single modeling paradigm. Filling this gap constitutes the central motivation and
contribution of this dissertation to that evolving literature by synthesizing such complex structures
using a combination of flexible modern statistical models and ML tools tailored for heterogeneous
populations.

Application perspectives in public health and financial planning

Forecasts of future mortality and life expectancy are critical for public health and social policy
planning. Governments and international agencies use projected death rates to anticipate needs
for healthcare, pensions, and long-term care. For example, mortality projections feed into national
population forecasts, such as those produced by the United Nations (2022) or World Health Orga-
nization (2024), that estimate the number of elderly and dependent individuals over time. These
demographic projections influence decisions on retirement age, pension funding, and healthcare
infrastructure. In particular, rapidly aging populations worldwide, given for example UN pro-
jections, which show that the population over age 60 will nearly double by 2050, make accurate
mortality forecasts essential for avoiding resource shortfalls (World Health Organization, 2024).
Mortality modeling also underpins evaluations of public health interventions and disease burden.
For instance, forecast models for cause-specific mortality help estimate how many future deaths
could be prevented by medical advances or prevention programs. During pandemics and health
crises, mortality forecasting is indispensable. In the COVID-19 pandemic, for example, analysts
compared observed deaths to model-based baselines to estimate “excess mortality” and assess the
pandemic’s true toll. By quantifying expected versus actual deaths, these models informed public
health responses, including vaccine rollout, lockdown policies, and assessed the impact on life
expectancy thus testifying that sophisticated mortality forecasts enable policymakers to allocate
medical and social resources efficiently and to evaluate the potential impact of health policies.

These limitations are not merely theoretical. They directly impact high-stakes domains such
as public health resource allocation, and insurance pricing. Therefore accurate and adaptive
mortality forecasts are essential for managing long-term population risks today.

In the insurance and pension industries, mortality models directly affect financial decision-making.
Life insurers and annuity providers use projected mortality rates to price products and set technical
reserves for future payouts. Pension funds use forecasts of future lifespans to calculate liabilities
for retirement benefits and to set contribution rates. Regulatory and accounting frameworks
explicitly incorporate longevity risk. Under Solvency II (in Europe) and the global Insurance
Capital Standard, insurers must account for adverse longevity scenarios when determining capital
requirements. For example, standard shocks (on the order of 10-15% additional life expectancy) are
prescribed to test solvency under faster mortality improvement of Insurance Supervisors (IAIS).
Similarly, IFRS 17 accounting requires companies to regularly update their best-estimate mortality
assumptions and to disclose the uncertainty of those assumptions (IASB). In practice, insurers use
stochastic mortality models, such as LC, CBD or more advanced frameworks, within their asset-
liability models and scenario generators. More accurate and flexible modeling of mortality thus
reduces the risk of underestimating future payouts or over-reserving capital, directly impacting
an insurer’s profitability and solvency.
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1.4. Notation

The following table summarizes the relevant notations used throughout this thesis. While not
exhaustive, it includes the most frequently used symbols and terms essential for understanding
the methodology and results.

i Flat index identifying unique demographic groups in aggregated datasets
(e.g., age, period, gender, country).

µi Mortality rate for demographic group i

Di Observed number of deaths in demographic group i

Ei Exposure (population or life years at risk) for demographic group i

fap(a, p) Smooth tensor-product spline surface over age a and period p, used in
GAMs

β0 Intercept term in regression models
covidi Binary indicator (0/1) for pre-/post-COVID years, used in pandemic

modeling
q(·) Prediction function from the global model in hierarchical boosting
hj(·) Country-specific local model prediction function for country j

Xi,j Feature vector for group i in country j

Xglobal
i Subset of Xi containing global features shared across countries

X local
i,j Country-specific local features for country j

θk Coefficient or learning rate of the k-th weak learner in boosting
uk(X) Base learner applied to feature set X in the k-th boosting step
δi Drift adjustment factor between transferred and expected mortality

Dpretrained
i,M Predicted deaths in the target country M using the pretrained global

model
Dspecialized

i,M Refined predictions in target country M using country-specific adapta-
tion
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2. GAM in Semiparametric APC for
Cross-Country COVID-19 Forecast

2.1. Research question

Firstly, we tackle the complexities brought about by the pandemic by comparing traditional
actuarial models with modern ML techniques. The study introduces an enhanced cross-country
coherent framework for modeling and multipopulational projection, specifically focusing on the
effects of COVID-19 on mortality forecasting.

The primary research question addressed is how to effectively capture the mortality-related ex-
treme event at the edge of a time series, specifically the impact of COVID-19 on future mortality
forecasting. This involves developing a reliable model and detailed scenarios that are crucial for
policymakers and stakeholders, providing guidance in navigating the uncertainties brought about
by the pandemic, especially focusing on life insurance and pension funds, sectors significantly
affected by mortality trends. Existing research in mortality modeling spans from traditional
stochastic models to ML and neural networks. While these approaches deliver high predictive
power, they typically demand strong computational resources and may not offer the interpretabil-
ity and ability to measure confidence that traditional models provide. This is particularly true
for applications in COVID-related studies, where complex data situations often fail to adequately
evaluate or explain the factors influencing mortality trends (Ioannidis, 2021). Our goal is to strike
a balance between these aspects.

2.2. Literature review and research gap

The literature presents a diverse range of approaches to mortality modeling that can be used
for extrapolation. Traditional stochastic models, as discussed previously, provide a foundational
framework for mortality forecasting. Recent studies have demonstrated the efficacy of ML, such as
GBM and Random Forest, in enhancing predictive performance (Richman and Wüthrich, 2023).
Hierarchical approaches building upon simpler LC models have also gained traction, offering im-
proved forecasts (Li and Lee, 2005; Cairns et al., 2011b). The COVID-19 pandemic has exposed
the limitations of conventional mortality models that were primarily designed under assumptions
of gradual demographic transitions and stable trends. Classical actuarial models typically extrap-
olate historical mortality patterns and therefore lack mechanisms to accommodate abrupt shocks.
Neural networks, including the Common-Age-Effect Model (Kleinow, 2015), have been applied to
mortality modeling, providing enhanced accuracy but often lacking interpretability. GAMs, intro-
duced by Hastie and Tibshirani (1990), offer a flexible framework for mortality analysis. Recent
advancements include Bayesian APC models with autoregressive priors (Clements et al., 2005)
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and bivariate spline functions within GAMs (Weigert et al., 2021, 2022). The literature on ac-
counting for COVID-19 in mortality projections is growing, with studies using stochastic models
and polynomial basis decompositions (Barigou et al., 2020; Robben et al., 2022; Schnürch et al.,
2022). While these models address various aspects of mortality forecasting, none have extrapo-
lated GAMs within the APC framework in a multi-populational context to evaluate post-pandemic
scenarios.

Overall, the literature indicates a methodological divide between interpretable, theory-based mod-
els and flexible, data-driven algorithms. While traditional stochastic models offer transparency
and coherence, they often fail to capture sudden, large-scale disruptions such as the COVID-19
pandemic. Conversely, ML methods can flexibly fit complex patterns but lack interpretability and
formal uncertainty quantification. Few studies have yet achieved a coherent integration of these
approaches capable of producing reliable long-term mortality scenarios under extreme shocks.
Addressing this gap, particularly through frameworks that support scenario design, uncertainty
assessment, and communication of model confidence, remains a central challenge for actuarial
science and longevity risk management.

Therefore, the specific contribution of the GAM approach within the APC framework in this
research lies in its novel application to mortality trend forecasting, in particular, its use to in-
corporate the impact of COVID-19 in a cross-country, multipopulation context as well as the
evaluation of it in a post-pandemic fashion. Our research demonstrates the reliability of GAMs
within the APC framework and their capacity to extrapolate mortality forecasts, compared to
other models, accounting for the impact of the COVID-19 pandemic. GAMs address the identifia-
bility issue inherent in APC analysis by circumventing the linear dependency between age, period,
and cohort effects. This semiparametric approach estimates a two-dimensional interaction surface,
representing all three temporal dimensions, using a tensor product spline basis. This methodology
implicitly deals with the linear dependency of temporal dimensions, offering a nonlinear, highly
flexible approach.

2.3. Contribution and prospects

Observed developments of a process of interest can be associated with a person’s life cycle (age ef-
fect), changes affecting the whole population over some time period, like macro-economic develop-
ments or scientific progress in medicine (period effect), or structural differences between members
of different generations like socialization or exposure processes (cohort effect). Nowadays, such
research questions appear frequently not only in demographic or epidemiological contexts but also
in economic, social, or general medical sciences. Flexible and precise approaches are required both
for the estimation and visualization of nonlinear associations with said temporal dimensions.

The central challenge for statistical approaches in APC analysis is to circumvent the identification
problem, which describes the linear dependency of the temporal dimensions. Many regression-
based approaches solve this problem by estimating linear effects while putting hard constraints
on specific parameters. When trying to differentiate between the individual temporal dimensions,
statistical methods have to account for their linear dependency:

cohort = period − age (2.1)
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Due to this identification problem, a perfect separation of the temporal effects is not possible.
Still, different techniques were developed that aim to circumvent this issue. Descriptive approaches
typically focus on jointly visualizing all three temporal dimensions, usually building on the concept
of Lexis diagrams where age and period groups are depicted in horizontal and vertical direction,
respectively, so that individual cohorts are represented along the diagonals (Carstensen, 2007). To
estimate individual association structures with the temporal dimensions, we utilize a regression
model-based approach. Weigert et al. (2021) outlines a semiparametric approach based on the
estimation of a two-dimensional interaction surface to represent all three temporal dimensions.
Following Clements et al. (2005), we estimate a GAM with the following structure: g(µi) =
β0 + fap(agei, periodi) + ηi, i = 1, . . . , n with observation index i, µi the expected value of an
exponential family response, link function g(·), and the intercept β0. The interaction surface
fap(agei, periodi) is represented by a two-dimensional tensor product spline basis based on two
marginal P-spline bases. ηi represents an optional linear predictor that contains further covariates.
In contrast to alternative approaches, which are often based on the estimation of linear parameters
under specific hard constraints, this semiparametric estimation approach has the main benefit that
the linear dependency of the temporal dimensions is dealt with implicitly. Instead of using explicit
constraints, a nonlinear, highly flexible approach is used where one temporal dimension (typically
cohort) is naturally represented as the interaction of the other two dimensions (typically age and
period).

The study relies on the Human Mortality Database (HMD, 2024), which provides yearly mortality
rates µi, death counts Di, and population sizes Ei for selected countries. These are categorized
by a demographic index i, where each i corresponds to a unique combination of age (a), year (t),
gender (g), and country (j). The selection of countries is based on their geographic context and
the contrasting impact of the COVID-19 pandemic. Specifically, Finland (until 2019), Germany
(until 2017), Italy (until 2018), and the Netherlands (until 2019) represent Europe, while the
United States (until 2019) represents North America. For the most recent years up until 2023,
the STMF series offers partial information on mortality rates and population, grouped by week
and age buckets. However, the study requires data on a yearly basis and in a metric age scale.
To address this, we employ a methodology to construct mortality data on a yearly basis and in a
metric age scale, which are then combined with the original HMD data (Li and Lee, 2005).

For forecasting purposes, the impact of COVID-19 on mortality rates is incorporated into the
mortality model using an additional variable. This variable is specific to each country c and takes
the value of 0 for years until 2019 and 1 for the years 2020 and 2021, representing the period
during which the COVID-19 pandemic has proven to have a strong impact. Under assumption of
a Poisson distribution for death counts

Di ∼ Poisson(µi · Ei),

this leads to the final model specification:

log(µi) = β0 + fg,j(agei, timei) + βc,j · (covid × country)i + log(Ei)

.

log(µi) is the logarithm of the expected mortality rate for demographic index i, where i represents a
unique combination of demographic characteristics, including age, gender, country, and year. β0 it
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the intercept term in the model, representing the baseline level of mortality rate on the logarithmic
scale. βc,j · (covid × country)i is the interaction term that captures the country-specific impact of
the COVID-19 pandemic on mortality rates. The interaction between binary COVID-indicator c
and country j allows the model to consider variations in how different countries experienced the
pandemic during the years 2020 and 2021, and project these effects into the future. log(Ei) is the
logarithm of the exposure for demographic index i, representing the population at risk or person-
years at risk, which scales the mortality rate. The spline function fg,j(agei, timei) is a function that
captures the bivariate tensor effect of age and time on mortality rates, varying by gender g and
country j. It can be represented using basis functions: f(agei, timei) = ∑K

k=1 αkBk(agei, timei)
with basis functions Bk(agei, timei), which form the building blocks of the spline. αk are the
estimated coefficients for the basis functions, which determine the contribution of each basis
function to the overall spline for each k-th basis function.

The values taken for future predictions are subject to the scenario assumptions that offer insights
into public health strategies and their implications for mortality modeling during the pandemic:
Scenario 1 (no COVID effect) models the situation assuming the virus has no impact, providing
a baseline understanding of mortality without the influence of the pandemic. Scenario 2 (COVID
full effect) examines the effects of the virus assuming no intervention, highlighting the poten-
tial spread and impact on the healthcare system. Scenario 3 (flattening COVID effect) involves
measures aimed at reducing the virus’s impact, such as social distancing and partial lockdowns,
aiming to control transmission while maintaining some social and economic activity. Lastly, Sce-
nario 4 (excess mortality) assesses the impact of the pandemic on mortality rates beyond typical
expectations, considering factors like healthcare system strain and indirect consequences of the
virus.

First, we compare the predictive performance of four models, conventional models such as LC
and APC; a contemporary two-step approach utilizing GBM; and, lastly, the proposed GAM
integrated within the APC framework, for modeling and projecting future mortality rates for
five countries. We find that the most promising approach is based on a GAM, where cohorts
are represented as an interaction between age and period, performing noticeably better than
alternative methods in capturing complex mortality dynamics. This framework, adaptable for
both aggregated and individual survival data, introduces a state-of-the-art method for the field
of multi-populational cross-country mortality research. GAM-APC is the most effective approach
for mortality forecasting: It has superior forecast performance, is computationally efficient, and
allows interpretability. Furthermore, this work is the first to apply partial APC plots in mortality
research, providing useful visual insights into APC effects. This tool aids in communicating
complex temporal patterns and highlights gender-specific and cross-country differences as shown
in Figure 2.1. The framework can be extended to further features, such as socio-economic variables,
and can be used for interpreting each contributing driver to mortality predictions.

Finally, we provide insights into the factors driving the impact of the COVID-19 pandemic on
mortality for the five countries. Through analyzing age, period, and cohort associations in a
multi-population context using a GAM within an APC framework, we extrapolate mortality rates
into the future. Four scenarios, representing varying degrees of pandemic impact, are evaluated
against observed mortality data post-pandemic to identify the most accurate scenario. Among the
four pandemic impact scenarios, Scenario 3, which assumes a diminishing impact of COVID-19,
is the most consistent, particularly for middle-aged and elderly populations. In general, when
evaluating the future scenarios based on the two years of the “future” set that we meanwhile
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Figure 2.1.: Estimated marginal effects of age, period, and cohort on mortality rates, differentiated by
countries and genders. The horizontal lines represent the level of no effect. The GAM model was fitted for
the years 1990–2015 and ages 0–90.

have the observed data for from STMF, Scenario 3 (flattening COVID effect) tends to perform
well for middle-aged individuals and, in addition, also Scenario 2 (COVID full effect) for older
ages. Substantial variations in scenario performance are observed across different countries and
age groups. For younger age groups, Scenario 1 (no COVID effect) performs best in Italy and the
Netherlands, where substantial COVID impact was observed. Middle-aged groups demonstrate
similarly high performance across all scenarios. Older age groups show stronger scenario differences
with a clear preference for Scenarios 2 and 3, indicating a better fit. Scenarios do not perform
well for those under 19, possibly due to the unique characteristics and weak impact of COVID in
this age group.

Future research may explore seasonality in the HMD STMF data, examine the impact of socioeco-
nomic variables, and extend extrapolation with GAMs over longer time ranges. Adapting scenar-
ios to new developments and societal attitudes will enhance the goodness of mortality forecasts.
The formulation of potential future scenarios related to the pandemic is a complex undertaking,
shaped by a multitude of factors, including political decisions and societal acceptance. Despite
the inherent challenges, these presented scenarios offer a valuable foundation for mortality fore-
casts, taking into account the evolving attitudes of life insurers and contributing to the ongoing
discourse surrounding the impact of the pandemic.
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3. Regional Mortality Support with Hierarchical
Boosting

3.1. Research question

Mortality rates exhibit considerable variation not only across countries but also within regions,
revealing pronounced subnational disparities in life expectancy. These differences challenge the
actuarial fairness of annuities and public pension schemes (Sánchez-Romero et al., 2019). Re-
liable regional mortality projections are therefore essential for both insurers and policymakers.
However, such projections are frequently constrained by limited or inconsistent subnational data,
particularly in developing countries and within insurance portfolios, where mortality records are
often sparse or incomplete. The heterogeneous and dynamic nature of regional data availability
necessitates a reliable modeling framework that can flexibly adapt to diverse contexts.

The central research question guiding this study is: How can regional and subnational mortal-
ity be modeled accurately in data-scarce environments while balancing global patterns with local
variations? This question holds practical significance for enhancing the equity of pension sys-
tems and improving the pricing fairness of global life insurance products across heterogeneous
populations.

Existing mortality models often struggle to reconcile global and local dynamics, resulting in frame-
works that either overgeneralize or fail to capture region-specific characteristics. To address this
gap, the study proposes a hierarchical modeling framework based on Poisson-distributed Gradient
Boosting Machines (GBMs). This approach integrates local and global data sources to enhance
predictive accuracy, improve computational efficiency, and provide accurate handling of missing
or incomplete mortality information.

3.2. Literature review and research gap

Bayesian hierarchical models (Congdon, 2007) and generalized linear models (GLMs) (Roux, 2002)
have long been used for multilevel modeling in mortality and epidemiology. These approaches
typically rely on random effects to capture unobserved heterogeneity across populations. More
recent studies have extended such frameworks with ML models, including random forests and
gradient boosting methods, for mortality prediction (Yakovyna et al., 2024). While these modern
approaches provide state-of-the-art predictive performance, they often lack interpretability and
theoretical transparency, which are crucial for actuarial and demographic applications.

Despite these advances, current models face persistent challenges. They often suffer from overdis-
persion (Van Buuren and Van Buuren, 2018) and computational inefficiency when processing large
or incomplete datasets containint missing data (Banerjee et al., 2003). Mortality data availability
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varies widely across regions, especially at subnational levels, which limits model accuracy and
comparability (Murray et al., 2007). Moreover, few studies fully exploit the hierarchical structure
of mortality data, where regional or demographic layers can be leveraged to improve predictive
stability, leaving a gap between global modeling and local relevance.

To address these issues, this study introduces a hierarchical gradient boosting framework inspired
by knowledge distillation. The approach leverages global mortality patterns from data-rich regions
to inform predictions in data-scarce areas while preserving regional specificity. It employs sequen-
tial residual learning and multiplicative retraining to refine local estimates across diverse feature
sets. Building on the strengths of Poisson regression for modeling count data (Cameron and
Trivedi, 2013) and the efficiency of gradient boosting algorithms (Ke et al., 2017), the proposed
model enhances both interpretability and scalability in multilevel mortality forecasting.

3.3. Contribution and prospects

Our study introduces a novel approach to mortality risk modeling, integrating local and global
data through a hierarchical two-step GBM-based model, inspired by the Poisson Regression model
and knowledge distillation techniques. This innovative blend of structured probabilistic models
with ML techniques is derived from the Cox Proportional Hazards (Cox PH) model aimed at
estimating mortality rates (Cox, 1972). We assume a Poisson distribution for deaths, crafting a
Poisson log-likelihood assumption as the loss function. The adoption of LightGBM for simplifying
implementation highlights the proposed method’s strength in leveraging existing tools to enhance
efficacy and accessibility (Ke et al., 2017; Shi et al., 2025).

Data for the study was collected in a pseudonymized form from eight different operating units of
a global primary insurance company, each representing a distinct country. The dataset includes
policy data that remained active during this period, even if initially issued before the earliest year
studied. In total, the dataset encompasses nearly 10 million life-years of exposure and close to
10,000 recorded insurance claims (deaths). The data underwent analysis in an aggregated form,
grouped into (N = 16,689,304) unique combinations of feature values. Specifically, the feature set
Xi,j , where group i ranges from 1 to N and j ranges from 1 to 8, representing the eight countries,
consists of a total of 26 features. Among these features, 9 are global, and up to 17 are local
features, encompassing information about policyholders, insurance policies, and claims. Given
these potential risk factors, our target is to model the number of deaths Di,j in relation to the life
years of risk exposure Ei,j .

Our primary goal is to accurately evaluate mortality rates for all countries and feature combina-
tions. We aim to estimate the conditional expectation of death counts, denoted as Di,j , given the
available information summarized in the feature set Xi,j and the exposure in life years at risk Ei,j .
Assuming a Poisson distribution again:

Di,j ∼ Poisson(µi,j · Ei,j),

the expectation for death counts is:

E[Di,j |Xi,j , Ei,j ] = µi,j · Ei,j = exp
(
X⊺

i,jβj

)
· Ei,j .
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The Poisson log-likelihood is defined as:

l(βj |Xi,j , Di,j) =
Nj∑
i=1

(
Di,j · log(D̂i,j) − D̂i,j

)
,

where Di,j denotes the observed death counts, D̂i,j = µ̂i,jEi,j denotes the predicted death counts,
and βj is the parameter vector.

This formulation assumes that deaths follow a Poisson distribution and by assuming piecewise
constant hazard rates over time, the likelihood of the Cox PH model coincides with the likelihood
of the Poisson GLM when employing log(Ei,j) as an offset parameter. An advantage of simplifying
the Cox PH model into a Poisson GLM is its adaptability to the ML realm, where optimization
using Poisson log-likelihood allows for defining offsets or observation weights. ML models, which
typically do not assume specific additive relationships between features and targets, can lever-
age this flexibility, yielding in the formulation: E[Di,j |Xi,j ] = µi,j · Ei,j = exp(f(Xi,j)) · Ei,j .
Here, f(Xi,j) within the exponential function demonstrates the ability to capture interactions
and non-linear relationships without explicit specification, offering a key advantage over tradi-
tional GLMs. This transition from GLMs to ML models provides additional benefits, including
integrated variable selection mechanisms and enhanced ability to model complex interactions.

To distinguish between local and global features and ensure high accuracy in each country, we
propose a two-step LightGBM model approach. This approach involves two distinct modeling
steps: The first model identifies global patterns and uses a training set that includes data from
all countries, focusing solely on ”global” features. These global features are those where data
across countries is comparable, such as age. In contrast, factors like postal code, which lack
comparability between regions, are excluded. In the second step, we calculate one Local model
per country, totaling eight Local models. The regional models extend the global framework by
incorporating local features, effectively distilling information from a large model into smaller,
specialized ones. This hierarchical transfer preserves model accuracy, reduces deployment costs,
and facilitates the use of heterogeneous data while maintaining interpretability across scales. Each
Local model takes the output of the Global model and adjusts it to the specific circumstances of the
respective country. Specialized Local models use all global factors plus the country-specific local
factors. The distinction of the feature set into global and local features is based on the availability
of data across countries as well as domain-specific expert knowledge. This final estimates combine
multiplicatively the estimates from both the global and specialized Local models as illustrated in
Figure 3.1.

Mathematically, we can express the process of estimating death counts for a policy with given
characteristics as follows: E[Di,j |Xi,j ] = µi,j ·Ei,j = q(Xglobal

i,j ) ·hj(Xall
i,j ) ·Ei,j where Di,j represents

the expected number of deaths given a set of features Xi,j for group i and country j; q(·) represents
the Global model’s prediction function; hj(·) represents the Local model’s prediction function for
country j; Xglobal

i,j represents a set of factor values for group i and country j, containing only global
factors; Xall

i,j represents a set of factor values for country j, containing both global and local factors.
In technical terms, the predicted mortality rates from the first Global model are used to initialize
the second specialized Local model. Accordingly, the model continues to work on the resulting
residuals and iteratively optimizes the second model through boosting, but now with the extended
feature set including localized characteristics. The final predicted number of deaths results from

21



3. Regional Mortality Support with Hierarchical Boosting

Figure 3.1.: Qualitative illustration of proposed methodology. Gearwheels illustrate the features.

the multiplication of the predictions from the Global model (first step), the predictions from the
specialized Local model (second step), and the exposure. The following derivation shows that the
multiplication is justified by the nature of the boosting algorithm and the exponentiation by the
log link of the Poisson distribution:

µi,j = exp
(

K∑
k=1

θk · uk(Xi,j)
)

=
K∏

k=1
exp (θk · uk(Xi,j)) g := exp (θ · u(X))=

P∏
k=1

gk(Xi,j)︸ ︷︷ ︸
Global model = q(.)

·
K∏

l=P +1
gl(Xi,j)︸ ︷︷ ︸

Local model = hj(.)

The starting point is formulated as a linear combination of the base learners with θk is the weight
of the k-th tree, and uk(Xi,j) represents the tree associated with the set of leaves of the k-th tree.
Splitting the modeling into two steps offers the advantage of cleanly separating effects into local
and global categories. It also optimizes model performance for each market by tailoring the model
to local patterns while allowing knowledge sharing across countries via the Global model. When
onboarding a new country, we now have the possibility to keep the existing Global model and
efficiently compute a new Local model for the country using less data.

The results are reported across several metrics and benchmark methods for all eight countries
involved in the study, providing a comprehensive view of the method’s effectiveness. All four
benchmarked methods are as follows:
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3.3 Contribution and prospects

• Local models: For each country, we take this country’s data and run the model separately.
This is only applicable if we have enough claims and exposure available for a given country
as a solid foundation for training. The information contained in each other country about
certain features and their correlation patterns to mortality rates remain unseen for each
model.

• Two-step approach: This is the proposed novel approach that combines global features
in the first step model, using common features across countries. In the second step, a Local
model is trained to capture each country’s specificities based on residuals from the first step.

• Global one-step with single value imputation: Data from different countries are first
aggregated through an early data fusion process to create a unified dataset. Discrepancies in
feature sets and variable coverage across countries lead to missing data blocks, which were
imputed using a single-value imputation strategy.

• Global one-step with bootstrapped multiple imputation: Similar to the third ap-
proach, this method involves early data fusion by combining datasets from all countries. In
this case, we use Bootstrapped Multiple Imputation with Decision Tree as an imputation
technique for missing values.

This framework outperforms both purely local models and standard imputation techniques when
pooling together different sets of features, particularly in data-scarce regions, by leveraging global
patterns to improve generalization. The model is computationally efficient and accurate in han-
dling missing values, making it adaptable for other domains requiring integration of multi-regional
data. Overall, our proposed two-step hierarchical modeling approach achieves superior predictive
performance for nearly all countries, outperforming Local models and the MICE method, with log-
likelihood proving to be a more reliable measure than RMSE due to the distributional assumptions
of the data generation process. The two-step model significantly enhances the generalization for
smaller countries by protecting local specifics and improves performance even stronger compared
to larger countries.

Future research could examine the ethical and policy implications of applying ML in mortality
risk estimation, particularly in the context of this modeling approach. Since mortality models
influence life insurance pricing and public health policy, it is important to assess their societal
impact, fairness, and potential algorithmic biases. Future work may therefore focus on developing
fairness-aware ML techniques that mitigate bias while accommodating regional differences and
local regulatory requirements. Although this study’s methodology is designed to be interpretable
by definition, its interpretability could not be fully demonstrated due to data privacy and com-
pliance constraints. Subsequent research could extend this work by incorporating explainable ML
methods, such as SHAP value visualizations, to highlight influential features and cross-country
differences (Lundberg and Lee, 2017).
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4. Transfer Learning for No Data Scenario

4.1. Research question

The third study addresses an extreme data-scarce scenario with regions or countries where no
mortality data are available. The core research question guiding this work is:

How can transfer learning be effectively applied to mortality modeling when no local mortality
experience data exist?

This question is particularly relevant for emerging life insurance markets or newly introduced
products that lack sufficient historical experience data. Addressing it is essential to enable accu-
rate mortality estimation, equitable pricing, and risk management also in data-deficient environ-
ments.

To tackle this challenge, the study proposes a transfer learning framework that leverages informa-
tion from data-rich countries, guided by a country similarity index to ensure meaningful knowledge
transfer. A case study based on the UK demonstrates the validity and evaluated the goodness of
the proposed method, illustrating how transfer learning can be used to construct reliable mortal-
ity estimates and facilitate the development and pricing of new insurance products even in the
complete absence of local experience data.

4.2. Literature review and research gap

The concept of transfer learning has been adapted to mortality modeling, particularly in set-
tings where data are limited but not entirely absent. Vincelli (2019) proposed an innovative
framework that effectively ”reverse-engineers” the structure of an industry mortality table into
a set of learned, high-dimensional features. These features serve as transferable representations
of mortality dynamics, which can then be fine-tuned to a company’s own sparse experience data
using nonlinear models such as neural networks. This approach enables knowledge transfer from
well-populated industry tables to smaller, company-specific datasets, thereby stabilizing estimates
across age-duration cells. Building on this foundation, Lim and Shyamalkumar (2021) incorpo-
rated monotonicity constraints to ensure that such data-driven models remain consistent with
actuarial principles of smoothness and interpretability.

Our study extends this line of research to a more extreme setting in which the target population
lacks any observed mortality data. This represents a non-trivial generalization of prior work, as
it requires generating synthetic observations that act as proxies for empirical experience. Within
our framework, synthetic data generation is coupled with a boosting-based fine-tuning process,
allowing the pretrained model to gradually adapt to the inferred characteristics of the target
population.

25



4. Transfer Learning for No Data Scenario

In addition, we introduce a drift model to explicitly capture demographic and epidemiological di-
vergences between source and target populations, thereby providing a principled explanation for
risk differentials and pricing variations across heterogeneous contexts. Together, these contribu-
tions offer both methodological advancement and practical value for actuarial modeling, enhancing
interpretability, supporting cross-population calibration, and addressing the limitations of existing
mortality modeling frameworks that often neglect cross-regional information integration.

4.3. Contribution and prospects

Building on global and local datasets from prior research, we employ a pretrained GBM trained on
pooled insurance data from eight countries (excluding the UK) using a common feature set. This
model is then used to generate mortality predictions for synthetic populations representing coun-
tries most similar to the UK. Figure 4.1 illustrates the target population segments for estimating
UK insured population mortality. Although UK-specific insured mortality data is unavailable,
we have access to publicly available overall population data categorized by age and gender. The
objective is to use this data to bridge the gap and project correlations between insured and overall
population mortality from these countries to the UK scenario. This dataset includes common
global characteristics shared across different countries, such as age, gender, and sum assured, al-
lowing for cross-country data comparison, plus the overall population mortality for all countries,
yielding a total of nine global features.

Figure 4.1.: Illustration of targeted population segments across different datasets and models.

The feature set Xi,j ∈ RN×p consists of two components: global features Xglobal
i,j , which are

comparable and available across countries (including data such as the overall population from the
HMD (HMD, 2024)), and local features X local

i,j , which are specific to each country j and unique
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feature combination i, representing demographic characteristics. Our challenge lies in estimating
mortality rates Di,M for country M , where we lack internal portfolio data but publicly available
population mortality rates exist for this and other countries. To address this, we leverage external
population-level information, along with internal experience data from other markets, to infer
company-specific mortality estimates for the target country M. In this study, M corresponds to
the UK.

We generate synthetic data through proportional resampling and data augmentation, central to
the study’s findings, offering detailed instructions for its creation to enhance reproducibility and
allow other researchers to build upon this work. To measure how similar the target country M is
to the K source countries, we create a country similarity index based on Q external insurance and
mortality specific demographic items Xext ∈ R(K+1)×Q, with K number of source countries and 1
target country. In our application case, Q is equal to 13, larger than K + 1 = 9. After centering
and scaling, the Manhattan distance between vectors Xext

j of each source j = 1, . . . , K and Xext
M

of target country M is calculated as the sum of the absolute differences between corresponding
components of vectors: d(Xext

j , Xext
M ) = ∥Xext

j − Xext
M ∥1 (Cover and Hart, 1967). This results in

a k-dimensional vector, representing the sum of item-wise distances between j = 1, . . . , K and
M across all Q items. The summation of distances over the countries is then transformed into
the normed similarity score s(Xext

j , Xext
M ) = e−d(Xext

j ,Xext
M ) using the exponential function, so that

the value range changes from [0, ∞) to (0, 1]. For detailed construction of this index, please
refer to Chapters IV. Assuming the known age and gender distribution for M, we resample feature
combinations (rows) from the K datasets, encompassing both global and local features, along with
the number of deaths, proportional to each similarity score s(Xext

i,j , Xext
i,M ) for i = 1, . . . , N and

j = 1, . . . , K. After substituting the feature of overall population mortality with that of country M
obtained from the HMD, we utilize the global features of the synthetic dataset Xglobal

i,M to generate
preliminary predictions D̂pretrained

i,M using a pretrained model. Subsequently, we enhance these
predictions by employing specialized GBM models tailored for countries j = 1, . . . , K. Through
iterative boosting, the specialized model adjusts to the characteristics of the countries according to
their similarity, refining the mortality rate predictions. The final mortality rate predictions D̂i,M

are determined by combining the specialized predictions D̂specialized
i,M and the pretrained predictions

D̂pretrained
i,M for all countries. Using several metrics, we evaluate the agreement of transferred

mortality rates µ̂i,M = D̂i,M /Ei,M with the CMI mortality rates µi,cmi, as a proxy for expected
insured population mortality in the UK. We validate results using well-suited metrics such as
Spearman correlation, cosine similarity, and R-squared. We propose a drift model to evaluate the
remaining disagreement by identifying and quantifying the impact of the drift drivers between the
target country’s expected mortality and the mortality rates transferred from other countries to
M. The inclusion of a drift model to assess residual discrepancies between predicted and expected
mortality rates is particularly noteworthy and adds depth to the analysis. We assume again a
Poisson distribution for mortality counts in country M, denoted as Di,M ∼ Poisson(µi,M · Ei,M ).
Our study focuses on examining the discrepancy between the predicted mortality rate µ̂i,M and
the actual rate µi,cmi across various features or feature categories. This discrepancy, denoted as
δi, serves as an indicator of the quality of transfer learning. We adopt the two-stage or residual
model proposed by Levantesi and Pizzorusso (2019) to estimate δi:

Di,M ∼ Poisson(δi · µi,cmi︸ ︷︷ ︸
=µi,M

·Ei,M ).
(4.1)

27



4. Transfer Learning for No Data Scenario

A GLM is used with new exposure Di,cmi = µi,cmi · Ei,M , target D̂i,M = µ̂i,M · Ei,M , and model
specification as follows (Fahrmeir et al., 2013):

log(δi) = β0 + βage · agei,M + . . . + βgender · genderi,M + log(Di,cmi) (4.2)

In the Poisson case, Yan et al. (2009) demonstrated that the method is mathematically equivalent
to using the ratio Di,M

Di,cmi
as target and Di,cmi as weights:

log
(

Di,M

Di,cmi

)
= β0 + βage · agei,M + . . . + βgender · genderi,M (4.3)

Additionally, validation techniques, including the inclusion of confidence intervals via bootstrap-
ping methods, are applied to provide a more detailed assessment of the uncertainty associated
with the predictions. This is essential to solidify the reliability of the results, especially given the
reliance on synthetic datasets. We rely exclusively on anonymized and publicly available data, en-
suring compliance with ethical research standards. The lack of reliance on proprietary UK-specific
portfolio data also strengthens the ethical standing of the work.

The results indicate that the confidence interval mostly contains the CMI, particularly for males,
solidifying the reliability of the results, especially given the reliance on synthetic datasets. Re-
garding gender-specific mortality risks, while both the transferred results and CMI indicate higher
mortality rates for males than females, the transferred estimations may show slight discrepancies:
males are slightly overestimated and females underestimated compared to the average mortality
risk. However, these deviations appear minor and likely stem from cohort distinctions between
CMI and internal data, as well as cultural differences between the primary reference countries
and the UK’s insurance mortality data, possibly reflecting subtle cultural influences and evolving
gender roles in different countries. With the CMI serving as the insurer’s base table, the exponenti-
ated effects estimated by the drift model for additional variables provide direct insight to insurers.
This allows them to assess the potential impact of including these variables in the pricing model
and to determine possible loadings or discounts accordingly. Practical benefits include not only
strong predictive performance, but also reduced reliance on local data, and lower computational
demands, making it efficient for multi-center studies. It simplifies the development and deploy-
ment of ML models by eliminating the need for extensive training data in each new country. Our
findings suggest that transfer learning is particularly effective for factors that are less influenced
by cultural differences, although it may experience drift when capturing local specificities.

In summary, this framework enables accurate mortality predictions in data-scarce markets, and
the findings demonstrate strong agreement with the CMI mortality tables for the UK. The transfer
learning leverages a pretrained model from eight other countries due to a lack of local mortality
portfolio data, while refining the model using open-source UK total population mortality rates
and data synthesized from the available countries according to their similarity degree. While the
model performs well with less culture-specific risk factors, discrepancies with CMI mortality tables
highlight the need for evaluation using the drift model. This is essential for comprehensive risk
assessment and to inform pricing strategies by quantifying expected discrepancies.

While the transfer learning framework holds considerable promise, its generalizability in the ab-
sence of local data depends on the similarity between source and target countries. By incorpo-
rating mechanisms like the country similarity index, drift model, and bootstrapping confidence
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4.3 Contribution and prospects

intervals, we facilitate more informed and reliable applications in regions with differing cultural,
demographic, or economic conditions, even when local data is completely missing. Further re-
search could explore the generalizability of this approach, specifically examining its performance
in regions with differing cultural, demographic, or economic conditions. Local covariates being
as homogeneous as possible across the target and source countries would be beneficial. Other-
wise, adjustments are necessary when creating the synthetic dataset if the source datasets’ local
covariates do not apply to the target country at all. Future research could examine possibilities
of overcoming this challenge by homogenizing either data collection procedures or post-processing
techniques.
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5. IPF Simulation for Segmented Mortality

5.1. Research question

Accurate mortality estimates are essential for insurers and pension funds to set fair premiums,
manage longevity risk, and design products that reflect the demographic composition of their
insured populations. However, access to granular, individual-level mortality data remains highly
restricted. Insurers and pension funds hold most detailed records, but privacy regulations, data
protection laws, and competitive considerations limit data sharing. As a result, researchers and
policymakers often rely on aggregated or anonymized sources that fail to capture the full demo-
graphic heterogeneity underlying mortality trends. This reliance can introduce systematic biases
in mortality estimation and limit the precision of risk assessments.

To address these limitations, this study develops a simulation-based framework that generates
synthetic yet statistically consistent mortality datasets using Iterative Proportional Fitting (IPF).
The framework enriches conventional mortality tables with key demographic covariates, such as
smoker status, gender, and segmented population counts, enabling finer-grained mortality anal-
ysis. By combining IPF-based data synthesis, confidence interval estimation, and an interactive
Shiny dashboard, the study provides open-source tools and datasets for both insured and general
populations.

This framework offers a practical and replicable solution for enhancing mortality modeling in
data-scarce environments by bridging the gap between the need for granular mortality inputs and
the constraints imposed by privacy and data availability, ultimately supporting both actuarial and
public health applications where demographic differentiation is crucial.

5.2. Literature review and research gap

Existing research on mortality estimation provides important insights into demographic and tem-
poral mortality patterns but remains constrained by data limitations and narrow methodological
scope. Prior work has explored small-area mortality estimation (Denecke et al., 2023), mortality
prediction within restricted age ranges (Goldstein et al., 2023), and COVID-related mortality
forecasting (Duchemin et al., 2022). These studies demonstrate the value of targeted estimation
techniques but also highlight the persistent lack of comprehensive, high-resolution mortality data.
The need for standardized and accessible data has been consistently emphasized in demographic
and epidemiological research (RKI, 2014; Nusselder and Mackenbach, 1997), as well as in recent
studies focused on state-level and population-segmented mortality analyses (Smith et al., 2021;
Johnson et al., 2023).
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5. IPF Simulation for Segmented Mortality

Despite these advances, researchers and actuaries remain constrained by reliance on aggregated
data, which obscures within-group variation and limits the ability to model demographic het-
erogeneity. Addressing this gap, the present study introduces a simulation-based framework for
mortality data generation that produces synthetic but statistically valid datasets with embedded
demographic structure. By enriching mortality tables with demographic covariates and ensuring
internal consistency through IPF, this approach facilitates high-resolution mortality modeling and
enhances the methodological capacity of subsequent actuarial and public health analyses.

5.3. Contribution and prospects

We propose IPF to calculate multi-dimensional distributions for both deaths and population sim-
ulations. Given that mortality data comprises populations and deaths within each subgroup, our
objective is to determine the joint distribution for each additional variable. For instance, knowing
the age and state population distributions, we aim to compute the joint distribution across age
and state categories. Consider a multiway table in N dimensions, each representing a sociode-
mographic variable. For illustrative purposes, assume N = 3. The multiway table πijk contains
unknown components, subject to constraints defined by marginal distributions xij·, xi·k, x·jk. The
constraints ensure that the sum of observations in each category matches the known marginals
and the total number of observations n.

The IPF process begins with an initial estimate π
(0)
ijk and iteratively adjusts the values in the

deaths or populations table or both based on the specified marginal totals. The algorithm can be
extended to higher dimensions, facilitating the synthesis of population data at varying resolutions.
For instance, when considering three demographic variables, one iteration of the IPF process can
be represented as follows:

π
(1)
ijk = 1

n

xij·π
(0)
ijk

π
(0)
ij·

(5.1)

π
(2)
ijk = 1

n

xi·kπ
(1)
ijk

π
(1)
i·k

(5.2)

π
(3)
ijk = 1

n

x·jkπ
(2)
ijk

π
(2)
·jk

(5.3)

Each equation represents an update step where the estimated cell probability πijk is iteratively
adjusted to match the given marginals. Specifically, equation (1) adjusts the initial estimate π

(0)
ijk

to align with the marginal totals xij·, ensuring consistency along the first dimension. Equation
(2) further refines πijk using the marginal totals xi·k from the second dimension. Equation (3)
completes the iteration by incorporating x·jk, ensuring alignment with the third dimension. This
iterative process continues until convergence, ensuring that the synthesized dataset accurately
represents the given marginal distributions across all dimensions (Agresti, 2012).
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Incorporating additional variables, like smoker status, into mortality risk assessments involves
disaggregating mortality data to account for distinct risks associated with these variables, while
keeping other characteristics constant, similar to the process of disaggregating population data. By
applying known hazard ratios or marginal death counts, we can refine mortality tables to reflect
these differences accurately. To obtain reliable estimates in countries where insured mortality
rates are unavailable, we train the GAM specified with Poisson distributional assumption and
log-link on data from the most similar country where insured rates exist. We assume that the
ratio between insured and general population mortality rates remains constant across comparable
demographic variables between these two countries.

Di ∼ Poisson(µi · Ei), (5.4)

Thus, the proposed model for expected insured mortality rates µ̂i is as follows:

log(µi) = fa(agei) + fg,s(DP
i ) + log(Ei) (5.5)

The application of IPF allows us to disaggregate the population count while maintaining correct
multidimensional distributions in the exposure structure.

Scenario 1 serves as a proof of concept, both for the application of IPF in enriching demographic
resolution by including an additional variable (in this case, regional segmentation), and for in-
troducing a Monte Carlo layer of uncertainty given minimal data input. It focuses on enhancing
demographic precision while assuming uniform mortality rates across states, applying IPF only
to population counts to refine segmentation while keeping mortality fixed. This scenario high-
lights what can be achieved when only marginal population distributions are available. While
aggregating over states leads to the same overall mortality rates as in the DAV tables (DAV,
2022), the value added lies in the disaggregation step: we now obtain a joint population structure
including state, which allows us to reflect demographic heterogeneity in the simulated exposure.
This is particularly useful when modeling local effects, insurance penetration, or regional port-
folio dynamics. Even without direct state-level mortality data, applying uniform mortality rates
to demographically distinct state populations yields differentiated death counts. In this sense,
the structure alone becomes informative. Monte Carlo simulations add a quantification of uncer-
tainty, showing how mortality outcomes may vary due to differences in exposure structure alone,
especially relevant for small regions or sub-portfolios.

Scenarios 2 and 3 build on the same foundational idea: the use of IPF to construct joint de-
mographic distributions, but now extended to incorporate variation in mortality rates as well.
Scenario 2 includes smoker status as an additional risk dimension, using hazard ratios to differ-
entiate mortality between smokers and non-smokers. Scenario 3 further applies this framework
to general population data, inferring insured mortality using regression-based adjustments. In
both cases, IPF is applied not only to population segmentation but also to disaggregate mortality
across subgroups. This enables the modeling of more realistic mortality structures when additional
marginal information, such as prevalence or hazard ratios, is available. These scenarios illustrate
how a common foundation (joint distribution reconstruction via IPF and uncertainty quantifi-
cation via Monte Carlo) can be extended from pure population modeling to fully differentiated
mortality modeling.
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In summary, we offer disaggregated mortality data, including both population and death counts,
for Germany, Italy, and Switzerland, taking into account demographic distributions like age, gen-
der, smoker status, and state, along with their interactions. Our findings show that the simulated
mortality rates closely match the base tables when aggregated at a higher level. They also provide
significant insights into demographic impacts on mortality at a more granular level, generating
synthetic insured and general populations while preserving realistic distributional assumptions.

As a prototypical framework, this study introduces a statistically rigorous and privacy-compliant
methodology that advances both mortality research and actuarial practice. The approach is mod-
ular and extensible: each simulation scenario can be expanded to incorporate additional coun-
tries, demographic variables, or higher-dimensional interactions. All tools and datasets developed
within this framework are made available through an open-source interactive dashboard, alongside
the accompanying codebase, to promote transparency, reproducibility, and future methodological
extensions. The proposed methodology improves mortality modeling by explicitly accommodat-
ing insured-specific marginal distributions where such data exist, thereby enabling precise de-
mographic representation without assuming equivalence to general populations. In cases where
insured-level data are unavailable, general population marginals are used as a proxy, acknowl-
edging that certain selection effects may not be fully captured. To mitigate this limitation, we
introduce refinements such as integrating empirical data on insured smokers to adjust hazard ratios
and disentangle selection effects from broader demographic differences. Furthermore, we employ
a GAM with Poisson regression to statistically estimate these selection effects, ensuring that mor-
tality differentials between insured and general populations are appropriately represented. Future
work could extend the framework by incorporating insured amounts as an additional stratification
variable, enabling the segmentation of risk by coverage level and capturing the impact of benefit
size on selection effects and mortality outcomes. Such extensions would further enhance model
precision and the interpretive value of simulated mortality datasets.
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6. Summary and outlook

The contributions of this dissertation can be summarized as a multifaceted methodological ad-
vancement in mortality modeling, integrating classical actuarial models with modern statistical
and ML techniques. In particular, it develops four novel approaches: (1) a semiparametric GAM-
APC model to incorporate pandemic-related mortality shocks, (2) a hierarchical gradient boosting
framework that leverages data-rich populations to improve estimates in data-scarce countries, (3)
a transfer-learning scheme using synthetic data and drift correction to model completely unob-
served insurance populations, and (4) an IPF-based synthetic data simulator to generate realistic
subpopulation mortality datasets. Together, these methods extend mortality forecasting to set-
tings marked by extreme events and sparse or fragmented data, contributing new tools to the
demographic and actuarial modeling literature.

All of the proposed innovations have direct real-world relevance. For example, the GAM-APC
approach provides accurate post-pandemic extrapolations mortality projections with penalized
smoothing splines revealing the mortality patterns across multiple countries, which are critical for
pension planning and public-health decision-making in the wake of COVID-19. The hierarchical
boosting and transfer learning models enhance actuarial and insurance analytics by improving
longevity risk estimates in emerging markets or small portfolios where traditional country-specific
models often fail. The IPF simulation framework enables analysis of segmented populations (e.g.
insured vs. general) when detailed data are unavailable, supporting research advancements for
difficulty accessible data sources and thus informed decision-making in health policy and insurance
planning. All methods are accompanied by implementations in open-source software to ensure
reproducibility and facilitate adoption by practitioners.

Looking ahead, this work opens several general future directions. One extension is to enrich these
models with additional covariates (for example socioeconomic, health or behavioral indicators)
to capture more granular demographic risk factors. Another is to incorporate fairness-aware
and privacy-preserving techniques (for example via federated learning) to ensure equitable and
secure mortality predictions across subpopulations. Finally, leveraging emerging cause-of-death
databases, future work can develop models for specific diseases or death causes, enabling finer
analysis of longevity trends. These future directions are aligned with existing best practices
and are achievable using current technologies, offering a clear pathway for advancing mortality
modeling in complex real-world scenarios.
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Article

Forecasting Mortality Trends: Advanced Techniques and the
Impact of COVID-19
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Abstract: The objective of this research is to evaluate four distinct models for multi-population
mortality projection in order to ascertain the most effective approach for forecasting the impact of
the COVID-19 pandemic on mortality. Utilizing data from the Human Mortality Database for five
countries—Finland, Germany, Italy, the Netherlands, and the United States—the study identifies the
generalized additive model (GAM) within the age–period–cohort (APC) analytical framework as
the most promising for precise mortality forecasts. Consequently, this model serves as the basis for
projecting the impact of the COVID-19 pandemic on future mortality rates. By examining various
pandemic scenarios, ranging from mild to severe, the study concludes that projections assuming
a diminishing impact of the pandemic over time are most consistent, especially for middle-aged
and elderly populations. Projections derived from the superior GAM-APC model offer guidance
for strategic planning and decision-making within sectors facing the challenges posed by extreme
historical mortality events and uncertain future mortality trajectories.

Keywords: mortality modeling; COVID impact; multi-populational; cross-country; generalized
additive models; partial APC plots; APC; machine learning; excess mortality

1. Introduction

In recent decades, life expectancy in the developed world has shown a substantial
increase, exemplified by a notable 56.7% reduction in the mortality rate of 80-year-old men
in the USA from 1933 to 2019. This trend, reflecting societal advancements and improved
healthcare systems, underscores the importance of accurately predicting mortality trends
for informed decision-making by policymakers, pension schemes, insurers, and social
security systems. The emergence of the COVID-19 pandemic has further underscored
the need to understand its impact on mortality trends over the short- to mid-term. Our
study focuses on assessing the impact of COVID-19 on mortality trends, aiming to enhance
existing mortality models while maintaining explainability.

The literature presents a diverse range of approaches to mortality modeling, from
traditional stochastic models like those discussed by [1] to modern methods such as the
use of machine learning (ML) techniques. Recent studies have shown that methods like
pure Gradient Boosting or Random Forest perform exceptionally well [2], while others
have explored hierarchical approaches with ML building upon simpler LC models [3].
Furthermore, recent advancements include the application of neural networks to enhance
mortality models, such as the Common-Age-Effect Model proposed by [4] and the extension
of LC models for multiple populations demonstrated by [5]. Generalized Additive Models
(GAMs), a well-established model class, was first introduced by [6] and has been applied in
the mortality context; [7] describes a Bayesian APC model with an autoregressive prior on
the age, period, and cohort terms; and [8] proposed the use of a bivariate spline function
within a GAM to effectively capture two-dimensional cohort information. A similar model
was applied by [9] for projecting cancer incidence and mortality in Finland, by [10] for
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mortality in the UK, and by [11] for projecting breast cancer mortality in Spain. However,
none of them model and extrapolate GAM in the APC framework with a tensor product
in a multi-populational fashion. The literature on accounting for COVID in mortality
projections is also growing, e.g., [12], which uses the stochastic Li and Lee model; [13],
which proposes parsimonious decomposition of the mortality surface on a polynomial basis
with regularization and cross-validation; and [4], which quantifies the impact of the 2020
mortality shock by calibrating the Lee–Carter model. However, none of the aforementioned
studies employ GAM in APC and evaluate scenarios post-pandemic.

To compare with the traditional stochastic mortality models, LC [1] and age–period–
cohort (APC) [14], alongside contemporary ML methodology proposed by [3], this study
introduces a cross-country GAM within an APC framework, utilizing a smoothed second-
order spline with penalty points. To our knowledge, this research is the first to integrate
the GAM method into the APC framework in a multi-population context and employ it
to extrapolate the impact of COVID-19 on future mortality trends. We examine Germany,
Finland, the Netherlands, Italy (representing Europe), and the United States (representing
North America) using data from the Human Mortality Database [15]. We employ a cross-
country approach, enabling the model to learn from multiple countries concurrently, thereby
capturing both universal trends and country-specific variations in mortality patterns.

Our research makes three key contributions, which are visually summarized in
Figure 1. First, we compare the predictive performance of four models, including tra-
ditional single-population and contemporary multi-populational models, for modeling
and projecting future mortality rates for five countries. We find that the most promising
approach is based on a GAM, where cohorts are represented as an interaction between
age and period. This framework, adaptable for both aggregated and individual survival
data, introduces a state-of-the-art method for the field of multi-populational cross-country
mortality research. Secondly, we introduce partial APC plots as a novel graphical tool in
mortality research, enabling the analysis of specific APC structures. This tool aids in com-
municating complex temporal patterns and highlights gender-specific and cross-country
differences. Finally, we provide fresh insights into the factors driving the impact of the
COVID-19 pandemic on mortality for the five countries. Through analyzing age, period,
and cohort associations in a multi-population context using a GAM within an APC frame-
work, we extrapolate mortality rates into the future. Four scenarios, representing varying
degrees of pandemic impact, are evaluated against observed mortality data post-pandemic
to identify the most accurate scenario.

Figure 1. Schematic illustration of the key findings: (1) GAM-APC is the most effective approach
for mortality forecasting. (2) The model provides multi-populational and cross-country insights.
(3) Among the four pandemic impact scenarios, Scenario 3, which assumes a diminishing impact of
COVID-19, is the most consistent, particularly for middle-aged and elderly populations.
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The practical implications of our findings are considerable. Our research demonstrates
the efficacy of the GAM within the APC framework and its capacity to extrapolate mortality
forecasts, accounting for the impact of the COVID-19 pandemic. This offers invaluable
insights for policymakers and stakeholders, providing guidance in navigating the uncer-
tainties brought about by the pandemic, with a particular emphasis on matters pertaining
to life insurance and pension funds.

Our study follows a structured approach, beginning with an overview of the database
and methodology. We then compare the predictive performance of benchmark methods
across countries, offering insights into optimal trend forecasting techniques. Additionally,
we conduct scenario analyses to evaluate the impact of COVID-19 on mortality trends.
Finally, we conclude by summarizing our key findings and implications.

2. Data and Methods
2.1. Data

The study relies on the Human Mortality Database (HMD) [15], which provides
mortality rates µa,t,g,c, death counts Da,t,g,c, and population sizes Ea,t,g,c categorized by age
a, year t, gender g, and country c. The selection of countries is based on their geographic
context and the contrasting impact of the COVID-19 pandemic. Specifically, Finland (until
2019), Germany (until 2017), Italy (until 2018), and the Netherlands (until 2019) represent
Europe, while the United States (until 2019) represents North America.

For the most recent years up until 2023, the Short-Term Mortality Fluctuations (STMF) [16]
series offers partial information on mortality rates and population, grouped by week and
age categories. However, the study requires data on a yearly basis and in a metric age scale.
To address this, we employ a methodology to construct mortality data on a yearly basis and
in a metric age scale, which are then combined with the original HMD data. This process is
based partly on the proposal by [12] and further detailed in Appendix A.

Figure 2’s heatmaps visualize mortality rate changes in the United States, showing
a decreasing trend over the years. Darker red colors indicate higher mortality rates, with
females generally exhibiting lower rates than males, especially in older age categories.
Infant mortality rates have strongly improved, transitioning from red to white. The diagonal
lines symbolize distinct birth cohorts, highlighting the three primary effects examined in
this study: age, period, and cohort.

Figure 2. Heatmaps of mortality rates for the US population are shown, with age groups and periods
represented horizontally and vertically, respectively. The diagonal lines display unique cohorts.
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2.2. Methods

The aim of the developed and applied methodology is to enhance mortality modeling
by prioritizing predictive performance and future trend forecasting. To achieve this goal,
four different methods have been benchmarked and outlined below: traditional ones such
as Lee–Carter (LC) and age–period–cohort (APC); a more modern two-step approach using
Gradient Boosting Machine (GBM); and finally, Generalized Additive Model (GAM) within
the APC framework.

2.2.1. Lee–Carter (LC)

The classical LC model, initially proposed by Lee and Carter (1992) [1], estimates
and forecasts mortality rates µa,t at age a in year t. This model is applicable on single-
populational data, considering one gender category for each country:

log µa,t = αa + βaκt + εa,t (1)

Here, αa represents the age-specific average over time, βa describes the rate of mortality
improvement at age a, and κt denotes the general trend of mortality at time t. The error
terms εa,t reflect the residual age- and year-specific historical influence on mortality rates
that the model cannot capture. The authors suggest using the singular value decomposition
(SVD) method to find the least squares solution to minimize the residual sum of squares.
The original method is embedded in a single-populational Poisson regression model by [17]:

Da,t∼Poisson(Ea,t · µa,t) (2)

The expected number of deaths according to the LC fit can be calculated as
Da,t = Ea,t · µa,t using linear predictor ηa,t = log µa,t = αa + βaκt with constraints like
∑a βa = 1, ∑t κt = 0 [18].

2.2.2. Age–Period–Cohort (APC)

The APC model extends the LC model by including a cohort effect γt−a and omitting
the age-specific improvement rates, yielding in the following linear predictor:
ηa,t = αa + κt + γt−a. The cohort is generally computed by cohort = year − age. This
model is applicable on single-populational data and has its origins in the fields of medicine
and demography, going back a long way ([14,19]). However, [20] was the first who con-
sidered this type of model in the actuarial field. With the Poisson distribution assumption
and the log link function remaining the same, it can be traced back to the general shape of
Generalized APC models [18]. The identifiability is ensured with the following constraints:
∑t κt = 0, ∑tmax−0

c=tmin−90 γc = 0, and ∑tmax−0
c=tmin−90 cγc = 0, indicating that the cohort effect oscil-

lates around zero with no apparent linear trend.

2.2.3. Two-Step Approach with Gradient Boosting Machine (GBM)

In this study, we adopt the two-step approach proposed by [3] to refine mortality rate
estimations derived from the LC model using Gradient Boosting Machine (GBM).

Firstly, we employ the LC model to estimate mortality rates µLC
a,t,g,c separately for

each country c and gender g. Secondly, we leverage GBM to adjust these estimations by
estimating the improvement factor qa,t,g,c, which corrects for underestimations (values
greater than 1) or overestimations (values smaller than 1). This step involves training GBM
with hyperparameter optimization on a multi-populational level using age, year, cohort,
gender, and country as features, with death counts Da,t,g,c as the target variable:

Da,t,g,c ∼ Poisson(qa,t,g,c · µLC
a,t,g,c︸ ︷︷ ︸

=µa,t,g,c

·Ea,t,g,c).
(3)
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The adapted exposure Ẽa,t,g,c is calculated as µLC
a,t,g,c · Ea,t,g,c. Although the software

does not permit the direct inclusion of Ẽa,t,g,c as an offset, we circumvent this limitation by
scaling the death counts by exposure Da,t,g,c/Ẽa,t,g,c and using Ẽa,t,g,c as weights, a method
shown to be mathematically equivalent to using death counts as target and exposure as
offset in the Poisson case by [21]. Details on the GBM methodology are given in Appendix B.
Finally, the refined mortality rates are obtained as µa,t,g,c = µLC

a,t,g,c · qa,t,g,c.

2.2.4. Generalized Additive Model (GAM) in APC Framework

We integrate the APC framework into GAM in a multi-populational setting, allowing
for the modeling of nonlinear, smooth effect structures and facilitating the capture of
complex relationships.

In the traditional regression framework, collinearity arises among the three temporal
components (age, period, and cohort) leading to identification problems. To mitigate this,
we employ a bivariate tensor product with penalized B-splines between age and period,
establishing a two-dimensional interaction surface. This surface inherently incorporates
cohort information along its diagonals, as illustrated in Figure 2. By doing so, we address
the identification problem without imposing restrictive assumptions or constraints [8,14].

By employing multi-populational modeling, within the same GAM framework, we
estimate a separate bivariate function for each country and gender interaction. This en-
ables the capture of specific mortality patterns within each subpopulation while allowing
countries to learn from each other’s experiences through the intercept term.

Finally, we fit a semiparametric additive Poisson regression with a log link, using
death counts Da,t,g,c as the target and offsetting for population size Ea,t,g,c. The model
structure is formulated as follows:

log(µa,t,g,c) = β0 + fa,t,g,c(age, time) + log(Ea,t,g,c) (4)

Here, fa,t,g,c represents the bivariate function for the interaction of age a and period t,
specific to each gender g and country c combination.

To visualize the marginal effects of each component effectively, temporal developments
are condensed in one specific dimension (either age, period, or cohort) and averaged over the
respective other component. This approach allows for examining the effects of age or period
by country and gender while considering the cohort values as post-stratification [22–24]:

fa,g,c(age) =
1
T ∑

time∈T
fa,t,g,c(time | age)

ft,g,c(time) =
1
A ∑

age∈A
fa,t,g,c(age | time)

fc,g,c(cohort) =
1

A · T ∑
age∈A

∑
time∈T

fa,t,g,c(age, time | cohort)

(5)

For forecasting purposes, the impact of COVID-19 on mortality rates is incorporated
into the mortality model using an additional variable called covid. This variable is specific
to each country c and takes the value of 0 for years until 2019 and 1 for the years 2020
and 2021, representing the period during which the COVID-19 pandemic has proven to
have a strong impact. The values taken for future predictions are subject to the scenario
assumptions elaborated in Section 3.

log(µa,t,g,c) = β0 + fa,t,g,c(age, time) + βcovidcovid∗c + log(Ea,t,g,c) (6)

The interaction covid∗c allows the model to capture the country-specific impact of
the pandemic on mortality rates during the years 2020 and 2021 and, thus, project into
the future.

7. Forecasting mortality trends: Advanced techniques and the impact of COVID-19
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To forecast the mortality rates into the future, we follow a differentiated approach,
as outlined in Figure 3. For the time-dependent components (period and cohort) of the
LC, APC as well as the final rates of the two-step approach with GBM ARIMA model as
random walk with linear drift and automated parameter estimation are selected [25–27].
The forecast of mortality rates for GAM is based on extrapolation of the spline fit, assuming
a globally quadratic structure and a persistent curvature outside the observed data. The
choice of degrees of freedom for the covariates can be either predetermined or estimated
automatically. We caution against extrapolating too far into the future [24].

Figure 3. Illustration of the models used for fit and forecast.

We employed R for the technical implementation of the LC and APC models [28], and
their forecasting [25], as well as for GAM [29]. Additionally, for the two-step approach, we
utilized Python 3.11.10 to implement a Light GBM algorithm [30] and Hyperopt [31] for
hyperparameter optimization.

To evaluate the accuracy of the models, the root-mean-square error (RMSE) is calcu-
lated, which measures the average difference between the mortality rates µ̂a,t,g,c and the
observed mortality rates µa,t,g,c across all ages a, years t, genders g, and countries c. The
RMSE is computed as follows:

RMSEa,t,g,c =

√
∑a∈A ∑t∈T ∑g∈G ∑c∈C(µ̂a,t,g,c − µa,t,g,c)2

n
(7)

where n represents the total number of observations.

3. Results

This section begins with an evaluation of predictive performance, both in-sample and
out-of-sample, for all four models. Table 1 gives an overview of the different training and
test sets used in the analysis. It should be noted that for the purposes of benchmarking,
years up to and including 2019 are used on the assumption that they are not affected
by the impact of the COVID-19 pandemic. This approach eliminates any year-specific
artifacts that might otherwise affect the assessment of the predictive performance of the
models themselves. The single-populational models LC, APC, and GBM (based on LC
in the first step) are limited to using data from Germany from 1990 onwards due to data
inconsistencies before reunification. In order to maintain comparability across the tensor–
product spanned by years and ages, it is necessary to ensure that the multi-population
GAM is coherent. This is because GAM requires a joint coverage of years—a prerequisite
for coherent modeling. As a result, available years for all countries will be restricted to
1990–2015 to ensure sufficient training for capturing current effects on mortality rates and
projecting them into the future for 2016–2019. Conversely, to ensure comparability among
the LC, APC, and GBM models, we permit a shorter training period for Germany (until
2010), resulting in a longer testing period. This approach is especially appropriate for LC,
which, due to its linear nature, does not require extensive historical data to accurately
forecast future trends.
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Table 1. Model training and test periods for benchmarking.

Model Country Training Set (Fitting Period) Test Set (Forecast Period)

LC, APC, GBM Finland, Italy, Netherlands, US 1950–2010 2011–2019
LC, APC, GBM Germany 1990–2010 2011–2019

GAM Finland, Italy, Netherlands, US, Germany 1990–2015 2016–2019

Focusing on in-sample RMSE for single-populational LC, APC, multi-populational
GBM, and GAM models, we fit the training periods range from 1950 to 2010 for Finland,
Italy, the Netherlands, and the US, and from 1990 to 2010 for Germany. GAM models are
fitted from 1990 to 2015 for all countries. In-sample error is calculated within the same
range as the model training period and reveals that the two-step approach with GBM and
GAM in the APC framework exhibits superior performance over traditional stochastic
mortality models LC and APC. There is no clear preference between GBM and GAM,
with both achieving strong reductions in RMSE compared to LC and APC for in-sample
predictions. Table A1 in Appendix D provides an overview of the goodness-of-fit for
information reasons.

GBM demonstrates proficiency in adaptive learning, which enables it to discern intri-
cate, non-linear relationships that markedly enhance model fit. However, this also gives rise
to the possibility of overfitting, whereby the learning process is influenced by noise rather
than the underlying trends, thereby enhancing training performance but not ensuring better
long-term generalization. Table 2 highlights the differences in computational efficiency.
The APC model, being slightly larger and taking longer to run than the LC model, reflects
its added complexity due to the cohort dimension. As expected, LightGBM (GBM) takes
significantly longer to train and uses substantially more memory than GAM. This is because
gradient boosting involves iterative training and optimization across many decision trees,
which requires more computational resources than fitting a GAM model in Appendix C.
The model size of GBM is also larger than that of GAM, reflecting its complexity and the
higher number of parameters.

Table 2. Computational efficiency for training, summarized for all 10 single populations for LC
and APC.

Metric LC APC GBM GAM

Runtime (s) 63.15 87.31 799.75 412.49
Memory (MB) 17.9 20.3 301 76.2
Storage (MB) 0.0274 0.0308 72.10 11.78

Table 3 presents the out-of-sample results for different models, indicating the fore-
casting quality across countries and genders. Out-of-sample RMSE is calculated based on
forecast periods ranging from 2011 to 2019 for LC, APC, and GBM models, while GAM
forecasts span from 2016 to 2019 for all countries.

Table 3. Out-of-sample RMSE comparison for LC, APC, GBM, and GAM models. Forecast for LC,
APC, and GBM based on ARIMA (2011–2019), while GAM extrapolates tensor product (2016–2019).

Country Female Male
LC APC GBM GAM LC APC GBM GAM

FIN 0.0021 0.0029 0.0028 0.0012 0.0029 0.0029 0.0027 0.0015
DE 0.0048 0.0046 0.0039 0.0021 0.0052 0.0045 0.0045 0.002
ITA 0.0045 0.0025 0.0044 0.0016 0.0042 0.0021 0.0026 0.0013

NLD 0.003 0.0020 0.0024 0.0013 0.0035 0.0038 0.0027 0.0011
US 0.0023 0.0018 0.0014 0.0010 0.0054 0.0020 0.0031 0.0016

7. Forecasting mortality trends: Advanced techniques and the impact of COVID-19
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The differing training periods for the multi-populational GAM model and single-
populational models were necessary to ensure coherent modeling based on historical data
availability. We used RMSE as a consistent metric to measure mean forecast error across
models, and despite concerns regarding GAM’s shorter training period, outlier analysis
confirmed the reliability of its RMSE mean.

While GBM shows improved fit and forecast performance, GAM exhibits stronger
improvement in forecast accuracy, especially for short-term forecasts within a few years.
The GAM-based APC model achieves notable reductions not only in fit but also in forecast
errors compared to the classical APC model, implying improved accuracy of mortality
rate predictions. The choice of GAM for further analysis is justified based on its superior
forecast performance.

One key highlight of the GAM in APC framework is its multi-populational nature,
enabling the interpretation of exponential marginal effects, with age, period, and cohort
being the components analyzed further. Figure 4 displays the effects of the model based
on these components: Both age and cohort effects conform to expectations; thus, higher
ages correspond to higher mortality rates while cohort effects reflect variations stemming
from individuals’ unique experiences based on their birth year [32–34]. Conversely, similar
reverse effects are observable for age and cohort.

Figure 4. The figure illustrates the estimated marginal effects of age, period, and cohort on mortality
rates across multiple countries and genders based on GAM fitted for years 1990–2020.

The period effect, which indicates the improvement of mortality over time and is
influenced by external factors affecting all age groups equally at a given point in time,
exhibits a notable increase leading up to 2020 [35,36]. However, the period effect notably
spikes, particularly approaching 2020, signifying a strong influence of this year on mortality
rates. Specifically, the strides made in improving mortality rates over preceding years or
even decades appear to have been offset by the effect of COVID-19, resulting in a regression
to levels observed around 2003. Appendix D contains this figure stratified by countries and
genders for more detailed interpretation.

Following the benchmarking of the four models, we delve into an analysis of the
effects of each temporal component on mortality rates throughout the considered time
period. Finally, based on GAM in APC framework, we assess the trend forecast into the
future considering the impact of COVID-19.
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Even though the impact of COVID-19 is, fortunately, diminishing in the present time,
its impact on historical (and future) data and the persisting uncertainties in the future
cannot be overlooked. These factors necessitate continued attention for many years to
come. It is important to note that the idea and methodology employed in this study extend
beyond COVID-19 and encompass other events, especially those occurring at the edge of
time series, which can present challenges for standard breakpoint analyses.

The scenarios depicted herein must be viewed in light of a meticulous plausibility
assessment and the underlying assumptions. To validate the scenario-based findings, we
engaged with epidemiological experts. This collaboration is paramount for ensuring the
reliability and robustness of the analysis, especially given the complexities inherent in such
events. Comparing our framework with expert opinions in the literature, as conducted
by citetelenti2021after, reveals a high level of agreement.

Scenario 1: In this scenario, the assumption is made that COVID-19 will disappear
in the future. The model is trained using data up to 2019 only, excluding the years 2020
and 2021. The predictions are then made for the years 2020–2025, assuming no long-term
effects of COVID-19 on mortality. This approach treats COVID-19 as a special event that
does not have any influence on mortality in the upcoming years. The model focuses on
the underlying mortality trend without considering the impact of COVID-19 and, thus,
without the COVID-indicator.

Scenario 2: In Scenario 2, the expectation is that the full effect of COVID will persist in
the future. The model is trained on mortality data up to and including 2021, encompassing
years impacted by COVID-19. The indicator variable covid is incorporated, set to 0 for
years before 2019 and 1 for 2020 and 2021. Predictions are then made for subsequent years,
assuming that covid remains set to 1 to indicate the ongoing presence of COVID-19. This
scenario assumes that the COVID-related situation will continue similarly as it did until
2021 and that it will have a consistent effect on mortality over the coming years.

Scenario 3: In this scenario, the assumption is made that the COVID effect will
flatten over time. Similar to Scenario 2, the model is trained using mortality data up to
and including 2021. However, in this case, the COVID-19 effect is assumed to decrease
exponentially over time. The predictions take into account the diminishing impact of
COVID-19 in the future, reflecting the belief that the effect of COVID-19 on health and
mortality will slowly flatten out and eventually disappear after a few years. Therefore, the
covid indicator takes exponentially decreasing values between 1 and 0 for each year.

Scenario 4: In Scenario 4, the focus is on adjusting for excess mortality associated
with COVID-19. The years 2020 and 2021 are treated as outliers, but the excess mortality
is explicitly considered. The model calculates the difference between the expected death
counts and the actual mortality counts for these two years to account for the excess mortality.
It is assumed that the excess mortality will not average out over the coming years and
must be explicitly accounted for. The baseline mortality, representing the mortality trend
without the influence of COVID-19, remains unchanged. This scenario allows for separate
consideration of the excess mortality caused by COVID-19 while keeping the baseline
mortality unchanged.

The formulation of potential future scenarios related to the pandemic is a complex
undertaking, shaped by a multitude of factors, including political decisions and societal
acceptance. Despite the inherent challenges, these presented scenarios offer a valuable
foundation for mortality forecasts, taking into account the evolving attitudes of life insurers
and contributing to the ongoing discourse surrounding the impact of the pandemic. A
summary of the key assumptions underlying each scenario is provided in Table 4.

Table 5 presents the different training and test periods used in the scenario analysis,
now also considering years after 2019.

7. Forecasting mortality trends: Advanced techniques and the impact of COVID-19
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Table 4. Discussion of assumptions underlying COVID-19 mortality impact scenarios.

Assumption Description

Scenario 1: Complete disappearance of COVID-19
No long-term effects Assumes no long-term health consequences for recovered individuals,

despite evidence of “Long Covid” [37]. Assumes no lasting psychologi-
cal or social impacts from lockdowns [38].

Vaccination effectiveness Assumes widespread vaccination will lead to the abrupt disappearance
of the pandemic, despite uncertainties about long-term vaccine efficacy.

Excess mortality Assumes excess mortality will average out in the coming years, with no
rapid population reductions.

Scenario 2: Continuous COVID-19 impact
Viral variants Acknowledges that while vaccines reduce infection risk [39], rising inci-

dence rates suggest ongoing challenges [40]. Considers the potential for
emerging variants to undermine vaccine effectiveness.

Consistent mortality impact Assumes the impact on mortality will remain unchanged over the next
years, despite short-term decreases and uncertainties as well as advance-
ments in science and medicine [41].

Economic and health conse-
quences

Recognizes the negative economic and health impacts of prolonged lock-
downs and containment measures.

Scenario 3: Gradual decline in COVID-19 impact
Medical progress and behav-
ioral changes

Credits medical advancements, behavioral changes, and herd or vaccine
immunity for the reduced impact.

Residual effect Recognizes a residual effect of the pandemic but anticipates it will di-
minish over time.

Scenario 4: Adjustment for 2020/2021 excess mortality
Disappearance of adverse ef-
fects

Assumes the adverse health effects of the pandemic will disappear with
no long-term consequences.

Explicit excess mortality ac-
counting

Assumes excess mortality from 2020 and 2021 will not average out and
must be explicitly accounted for.

Unchanged baseline mortality Assumes baseline mortality remains unchanged, discounting behavioral
changes (e.g., reduced traffic fatalities, fewer influenza deaths due to
hygiene, and quarantine measures).

Table 5. Overview of different scenario periods.

Scenario Fitting Period Forecast Period Validation Period

1—Without COVID-effect 1990–2019 2020–2025 2022–2023
2—Full COVID-effect 1990–2021 2022–2025 2022–2023

3—Flattening COVID-effect 1990–2021 2022–2025 2022–2023
4—Excess mortality 1990–2019 2020–2025 2022–2023

Figure 5 presents outcomes for four scenarios across various countries and genders,
focusing on 80-year-olds. We chose age 80 for illustration, but the overall structure is
similar for other ages, albeit with less intense COVID-19 effects for younger age groups.
Notable high-value outliers for Italy, the US, and the Netherlands in 2020 and 2021 indicate
a pronounced impact of COVID-19. Different trend forecasts capture varying effects of
COVID-19 on mortality rates. Scenario 1 represents a milder assumption, while Scenario
2 depicts a more severe projection. Future forecasts vary by country and age group,
influenced by past behaviors and responses to the pandemic. Trend forecasts in different
scenarios generally align with plausibility. Excluding 2020 and 2021 in Scenario 1 results
in lower mortality rates, while adjusting for excess mortality in Scenario 4 leads to even
lower rates, considering the population shift due to previous deaths. Scenario 2 with
full COVID effect shows the highest mortality trend, which is particularly evident for
older age groups. However, younger populations appear less affected. Scenario 3 starts
similar to Scenario 2 but gradually decreases over time. Different countries show distinct
trends, likely influenced by COVID’s demographic and political impact. The Netherlands’
observed rates in years 2022 and 2023 align with Scenario 2, whereas Italy and the US
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show patterns more consistent with the flattening effect. German scenarios show less
differentiation, aligning closely with observations, while Finland’s forecast suggests lower
mortality rates than observed.

Figure 5. Trend forecasts for 80-year-olds across four distinct scenarios. Training data span from 1990
to a maximum of 2021, depending on the scenario, with forecasts projected up to 2025. Circles and
triangles represent observed rates, with red markers indicating those used for validation purposes.

The heatmap (Figure 6) illustrates both a cross-country and country-specific perspec-
tive on the y-axis, while age groups are delineated on the x-axis. Colors within the heatmap
indicate the normalized RMSE (NRMSE) values for the years 2022 and 2023 when com-
pared with the observed mortality rates from STMF and processed in accordance with
Appendix A.

Figure 6. Heatmap showing the normalized RMSE of scenarios for extrapolated years 2022 and 2023
for males across different countries and age groups. The cross-country section presents a summary of
the NRMSE across all countries.
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NRMSE is calculated by dividing RMSE by the mean of observed mortality rates in
a specific category with values ranging usually from 0 to 1. A value of 0 means perfect
predictions, while 1 suggests predictions are as accurate as predicting the mean. Values
above 1 often suggest that the model’s performance may not be optimal. We prioritize the
analysis on males since previous findings suggest a more pronounced emphasis on the
COVID effect for this gender, although the overall patterns for females exhibit similarity.
For males in the 20-year age brackets, the graph shows a generally good overall forecast
accuracy, especially for ages over 20, as colors tend towards blue for middle and older ages,
indicating smaller NRMSE values closer to 0 and suggesting better forecast accuracy. No
clear scenario preference is evident in the cross-country view across all age groups. In gen-
eral, Scenario 3 (flattening COVID effect) tends to perform well for middle-aged individuals
and, in addition, also Scenario 4 (COVID full effect) for older ages. Substantial variations in
scenario performance are observed across different countries and age groups. For younger
age groups, Scenario 1 (no COVID effect) performs best in Italy and the Netherlands, where
substantial COVID impact was observed. Middle-aged groups demonstrate similarly high
performance across all scenarios. Older age groups show stronger scenario differences with
a clear preference for Scenarios 2 and 3, indicating better fit. Scenarios do not perform well
for those under 19, possibly due to the unique characteristics and weak impact of COVID
in this age group. Appendix D contains the same graph with individual ages instead of
grouped age buckets for a more detailed overview.

4. Conclusions

To summarize, this research work focused on addressing the challenge of capturing
the mortality-related extreme event at the edge of a time series—in particular, COVID-19’s
effect on future mortality forecasting.

The key findings of our research include identifying the GAM within APC frame-
work as the most effective method for forecasting future mortality rates across multiple
countries. This innovative approach, utilizing a smoothed second-order spline, surpasses
traditional stochastic models (e.g., LC) and machine learning techniques (e.g., GBM) in
predictive accuracy. By applying the GAM-APC model to data from Germany, Finland,
Italy, the Netherlands, and the United States, the study provides valuable cross-country
and multi-populational insights into mortality trends. This enables the capture of both
universal mortality patterns and country-specific variations, offering a comprehensive
understanding of global and localized mortality dynamics. The research develops and eval-
uates four pandemic impact scenarios (ranging from mild to severe) to forecast the impact
of COVID-19 on future mortality rates. It concludes that scenarios assuming a diminishing
impact of the pandemic over time are the most consistent, especially for middle-aged and
elderly populations.

To ensure a rigorous assessment, these scenarios and their underlying assumptions
were thoroughly evaluated and discussed in collaboration with epidemiological experts.
This approach including the content of scenarios aligns with existing literature and enhances
the credibility of the forecast analysis [42].

Overall, this work contributes to the existing literature by introducing traditional,
enhanced, and novel models, comparing different approaches and providing insights into
future trends in mortality rates while considering the impact of COVID-19 in a cross-
country context. The specific contribution of the GAM approach with the APC framework
in this research lies in its novel application for mortality trend forecasting, particularly
incorporating the impact of COVID-19 in a multi-populational cross-country fashion.

Despite the current waning impact of COVID-19, it is crucial to acknowledge the
lasting importance of historical data and the persisting uncertainties that lie ahead. These
factors emphasize the need for ongoing attention in the years to come. It is important
to acknowledge that the concept and methodology utilized in this study extend beyond
COVID-19, encompassing other events that occur at the edges of time series data. Look-
ing ahead to future research directions, the GAM with APC framework has a promising
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potential for expanding the feature set by the inclusion of socioeconomic status, income,
and education as additional factors, allowing for a more complete understanding of mortal-
ity trends.

Author Contributions: Conceptualization, A.N., C.H. and S.P.; methodology, A.N., C.H. and S.P.;
formal analysis, A.N.; writing—original draft preparation, A.N.; writing— review and editing, A.N.,
C.H. and S.P.; visualization, A.N.; supervision, C.H.; funding acquisition, A.N. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original data and the code are available at https://doi.org/10.528
1/zenodo.13905807.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Data Preparation

This section discusses the methodology employed to enrich existing mortality data
obtained from [16], focusing on the number of deaths and population size for recent years
absent in the [15] dataset. The primary challenge addressed is the aggregation of data into
rough age categories, while the study requires a metric age scale.

The methodology involves several steps. Firstly, weekly population sizes are derived
from the mortality dataset followed by extrapolation to annual levels. Using mortality
rates and death counts, the weekly population size can be calculated. These weekly data
are then aggregated to annual figures. Similarly, weekly death counts are summed to
obtain annual totals. To construct annual death counts and populations for individual ages
for the aforementioned years, specific procedures were applied, as described below. The
methodology ensures that the derived data align with observed mortality patterns within
each age group.

Once the weekly population is extrapolated to the annual level by multiplying by a
factor of 52, the approach leverages cohort-wise population patterns from previous years
(2015–2019) and assumes a similar age distribution for 2020–2023. The initial population
course, i.e., for 2020, is created by shifting the population size pattern of 2019 one year
forward. This shift leads to an initial gap at age 0 in 2020, which is linearly extrapolated
based on data from 2018 and 2019. The resulting population values are adjusted to match
observed data within age groups.

A three-stage approach is employed to distribute death counts from grouped to metric
age scale on an annual basis. Firstly, averaged weights for each age in each age bucket [l, u]

are computed based on data from the previous five years (2015–2019): w{l,u} =
D{l,u}

1
u−l+1 ·D[l,u]

.

Secondly, these weights are applied to the averaged death counts in each age group to
correct for deviations from the mean: D∗{l,u} = ( 1

5 ∑2019
j=2015 w{l,u},j) · 1

u−l+1 ·D[l,u],2020. Finally,
the corrected death counts are adjusted to ensure equal counts in both grouped and metric

versions within each age group: D{l,u},2020 = k{l,u} · D∗{l,u}, with k{l,u} =
D[l,u],2020

∑u
i=l D∗i,2020

.

The resulting mortality rates are computed by dividing death counts by population
size for each individual age and subpopulation. These enriched mortality data are used to
impute the [15] dataset for the years 2020–2023. The same procedure is applied across all
subpopulations and missing years.

Appendix B. Details on Gradient Boosting Machine

Gradient Boosting is another form of an ensemble learner that is based on the weighted
combination of weak predictive learners such as Decision Trees, usually outperforming
Random Forest. The model is built stepwise and optimized by a differentiable loss function,
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minimizing the in-sample loss [43]. It builds the model stepwise, like other boosting
methods, and generalizes by allowing optimization of any differentiable loss function.
Whereas multiple samples of the original training dataset are used to fit a separate decision
tree to each one independent of the others and to combine all trees into a single predictive
model in bagging, boosting grows the trees sequentially, meaning the information gained
from the previous trees is used to grow the current one. This helps to overcome the major
issue of training a single large Decision Tree by possibly resulting in an overfitting problem.
The gradient boosting algorithm instead learns by constructing a new model based on the
previous one and adding the ith base learner h(i)

a,t,g,c:

q̂(i)
a,t,g,c = q̂(i−1)

a,t,g,c + λih
(i)
a,t,g,c (A1)

The model is improved in such a way that the current residual will be used as an
outcome to fit a new Decision Tree and to add this into the originally fitted function with the
notion to update the residuals. So, the gradient boosting algorithm fits the new predictor to
the residual errors made by the previous predictor. The shrinkage parameter λi helps to
run the process even slower, allowing for more trees and more detailed enhancement of the
residuals. All parameters of the Decision Trees undergo optimization through the training
of Poisson boosted trees, with the objective of minimizing the negative log-likelihood
associated with the Poisson distribution, serving as the designated loss function. Overall,
in contrary to the bagging methodology, each tree depends on the previous ones [44]. Even
though the gradient boosting keeps on minimizing the errors, this can cause overfitting
in cases where there is a lot of noise in the data and is computationally time and memory
expensive, especially because trees are built sequentially (not in parallel as Random Forest
does). Due to the high flexibility, the gradient boosting algorithm also tends to be harder
to tune than Random Forest [43]. In this study, we specifically utilized LightGBM [45],
employing Microsoft’s library for implementing these models, which have demonstrated
high accuracy in various scenarios [30].

Appendix C. Details on Hyperparameter Optimization

For hyperparameter optimization of the GBM, we used Hyperopt, a Python library
that employs the Tree Parzen Estimator (TPE) algorithm. TPE is an efficient method that
utilizes a probabilistic model to guide the search for optimal hyperparameters. The TPE
workflow can be summarized as follows: First, TPE begins by randomly sampling a
few hyperparameter combinations to create an initial set of observations, serving as the
starting point for optimization. Next, TPE models the relationship between hyperparameter
values and the performance metric (e.g., loss or accuracy), estimating the probability that a
configuration will yield better results.

TPE then balances exploration, trying new configurations, and exploitation, focusing
on promising configurations based on probabilistic models. It emphasizes configurations
likely to lead to better results, similar to how gradient descent focuses on the gradient of the
loss function. As TPE evaluates more configurations, it iteratively refines its probabilistic
models, making more informed decisions.

By continually balancing exploration and exploitation, TPE efficiently navigates the
hyperparameter space, eventually converging on an optimal set of hyperparameters for a
given machine learning model. For a deeper understanding of the TPE algorithm and its
practical application, refer to [46,47].

As for GAMs, each smooth term has associated smoothing parameters that control
the trade-off between fit and smoothness. The mgcv package’s gam() function automates
the process of smoothing parameter optimization when the method is set to Restricted
Maximum Likelihood (REML). After specifying the model, the mgcv package automatically
selects the optimal smoothing parameters by maximizing the restricted likelihood, using an
internal Newton–Raphson numerical optimization algorithm. The result is a model with
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optimally chosen smoothing parameters that balance fit and smoothness according to the
restricted likelihood criterion [24].

Appendix D. Additional Results

The analysis in Table A1 highlights the superior in-sample predictive performance of
the two-step GBM and GAM models within the APC framework over traditional LC and
APC models, with no clear preference between GBM and GAM, across various training
periods for different countries.

Table A1. In-sample RMSE comparison for LC, APC, GBM, and GAM models. LC, APC, and GBM
are fitted from 1950 to 2010 (Finland, Italy, Netherlands, US) and 1990 to 2010 (Germany). GAM is
fitted from 1990 to 2015 for all countries.

Country
Female Male

LC APC GBM GAM LC APC GBM GAM
FIN 0.0045 0.0015 0.0035 0.0011 0.0072 0.0027 0.0066 0.0013
DE 0.0015 0.0022 0.0004 0.001 0.0021 0.0021 0.0007 0.001
ITA 0.0025 0.0021 0.001 0.001 0.0012 0.0025 0.0008 0.001

NLD 0.0019 0.0032 0.0014 0.001 0.0017 0.0015 0.0014 0.001
US 0.0014 0.0033 0.0005 0.0013 0.0017 0.0028 0.0004 0.0011

Figure A1. Estimated marginal effects of age, period, and cohort on mortality rates, differentiated by
countries and genders. The horizontal lines represent the level of no effect. The GAM model was
fitted for the years 1990–2015 and ages 0–90.

GAM enables the interpretation of exponential marginal effects, with age, period, and
cohort being the components analyzed and differentiated by countries and gender. Notably,
while the descending trend in period effect for women is relatively consistent and shallow
across all countries, men exhibit a much steeper decline, indicating a stronger improvement
in mortality rates over the years. There are noticeable increases in mortality rates for Italy
and the US in recent years, particularly for US males, which may be associated with factors
such as the opioid crisis.

The heatmap depicted in Figure A2 offers a detailed examination on an individual age
basis for assessing the scenario analysis across the years 2022 and 2023.

7. Forecasting mortality trends: Advanced techniques and the impact of COVID-19
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Figure A2. Heatmap showing the normalized RMSE of scenarios for extrapolated years 2022 and
2023 for males across different countries and individual ages.
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Abstract

Accurate mortality risk assessment is critical for decision-making in life insurance,
healthcare, and public policy. Regional variability in mortality, driven by diverse local
factors and inconsistent data availability, presents significant modeling challenges. This
study introduces a novel hierarchical mortality risk model that integrates global and
local data, enhancing regional mortality estimation across diverse regions. The proposed
approach employs a two-stage process: first, a global Light Gradient Boosting Machine
model is trained on globally shared features; second, region-specific models are
developed to incorporate local characteristics. This framework outperforms both purely
local models and standard imputation techniques, particularly in data-scarce regions, by
leveraging global patterns to improve generalization. The model is computationally
efficient, scalable, and robust in handling missing values, making it adaptable for other
domains requiring integration of multi-regional data. This method enhances predictive
accuracy across various regions and provides a more reliable approach for mortality risk
estimation in data-scarce environments.

Introduction 1

Mortality risk assessment plays a crucial role in various sectors, including life insurance, 2

healthcare, and public policy. Reliable estimates of mortality rates are essential for 3

strategic planning, policy formulation, and ensuring the financial stability of life 4

insurance systems. However, accurately estimating mortality risk presents an essential 5

challenge due to the diverse and dynamic nature of regional data availability and factors 6

that affect mortality rates. 7

Hierarchical models have been utilized in mortality studies to account for variations 8

at different levels, including regional, individual and national. Originally developed in 9

fields like education, sociology, and demography, these models have gained significant 10

traction in public health and epidemiology. By generalizing the classical pooling of 11

group estimates, hierarchical or multilevel models offer a flexible framework for 12

analyzing mortality data [50]. This flexibility allows researchers to better understand 13

and interpret the complex factors influencing mortality rates across different 14

populations. 15

Existing models in hierarchical mortality modeling include Bayesian approaches, 16

generalized linear models, and machine learning (ML) techniques. Bayesian hierarchical 17

models estimate mortality rates by incorporating prior distributions to handle 18

uncertainty [48]. Generalized linear models, including multilevel Poisson regression, 19

have been applied to mortality data to account for overdispersion and hierarchical 20
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structure [49]. Although the existing literature predominantly employs random effects 21

for both methodologies, our approach diverges by sequentially processing the residuals. 22

Recent studies have also explored ML methods such as random forests and gradient 23

boosting for COVID-19 mortality modeling [58]. 24

Studies have highlighted the importance of balancing global patterns with local 25

specifics in mortality modeling to ensure both generalizability and relevance [56,57]. 26

However, the availability of mortality data varies widely across regions, posing 27

challenges for model accuracy and reliability [54]. Poisson regression is commonly used 28

for modeling count data, including mortality rates [47], whereas Light Gradient 29

Boosting Machine (LightGBM) has been recognized for its efficiency and accuracy in 30

handling large datasets, making it suitable for hierarchical mortality modeling [52]. 31

Existing mortality models often struggle to balance global trends and local 32

variations, leading to models that either overgeneralize or fail to capture region-specific 33

nuances. Furthermore, inconsistent and sparse data availability across regions intensifies 34

these challenges, reducing the reliability of predictions, especially in data-scarce 35

environments [54]. Current approaches often suffer from overdispersion [46] or are 36

computationally inefficient when handling large datasets [53] or missing data [53]. 37

These limitations underscore the need for a more flexible and scalable solution. 38

To address these challenges, this study introduces a novel hierarchical mortality 39

modeling approach that integrates both global and local data. By using a two-stage 40

process, our model first captures global patterns through a LightGBM model with a 41

Poisson regression objective and then refines these predictions with region-specific 42

models that account for local characteristics. While the first step includes shared 43

variables that apply to all countries, such as age and gender, the country-specific models 44

capture unique regional characteristics by incorporating additional region-specific 45

factors, such as lifestyle habits and environmental conditions. This method markedly 46

improves predictive performance, particularly in data-sparse regions, by leveraging 47

global insights while remaining adaptable to the unique conditions of each region. 48

Additionally, the model is computationally efficient, scalable, and capable of handling 49

missing values, making it superior to traditional pooling methods. Beyond mortality 50

risk estimation, this hierarchical modeling framework is applicable to other domains 51

requiring multi-regional data integration, such as public health planning, 52

epidemiological forecasting, and financial risk assessments. Its ability to generalize well 53

across different regions makes it particularly valuable in scenarios where data sparsity or 54

inconsistency is a common obstacle. 55

The structure of this paper is as follows: Section 2 provides a brief overview of our 56

database and Section 3 presents our proposed methodology in detail. Section 4 57

examines the effectiveness of our methodology by presenting and discussing the results. 58

Finally, Section 5 concludes by summarizing the main findings and suggesting research 59

and industry perspectives. 60

Database 61

Data for the study was collected in a pseudonymised form from eight different operating 62

units of a global primary insurance company, each representing a distinct country. Data 63

privacy regulations prohibit the disclosure of these countries’ names, keeping the focus 64

on the technical aspects of the model evaluation and comparison, rather than on 65

potential privacy breaches. The chosen organizations were based on two key factors: 66

having relevant data available of high quality and representing diverse geographic 67

regions. 68

The dataset includes policy data that remained active during this period, even if 69

initially issued before the earliest year studied. In total, the dataset encompasses nearly 70
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10 million life-years of exposure and close to 10,000 recorded insurance claims (=deaths). 71

The data underwent analysis in an aggregated form, grouped into N = 16.689.304 72

unique combinations of feature values. Specifically, the feature set Xi,j , where group i 73

ranges from 1 to N and j ranges from 1 to 8 - representing the eight countries, consists 74

of a total of 26 features. Among these features, 9 are global, and up to 17 are local 75

features, encompassing information about policyholders, insurance policies, and claims. 76

Given these potential risk factors, our target is to model the number of deaths Di,j in 77

relation to the life years of risk exposure Ei,j . To facilitate model training and 78

evaluation, an artificial variable was constructed before aggregating to create an 80-20 79

train-test split, ensuring that all unique combinations are adequately represented in 80

both the training and test sets. 81

Table 1 provides an overview of Di,j , Ei,j , and the total number of years included 82

Ti,j for group i in country j, thereby facilitating a comprehensive understanding of the 83

dataset’s key characteristics and distribution. 84

Table 1. Overview of death counts Dj , exposure in life years Ej , unique feature
combination Nj , and observed years Tj for each country j.

Country j Dj Ej Nj Tj

1 1699 1295299 1880792 2013–2020
2 1291 1686299 2190943 2010–2020
3 494 815795 1868691 2010–2020
4 1225 1347150 1572539 2017–2020
5 1816 1825901 4825792 2016–2020
6 2132 1548157 3852306 2016–2020
7 458 498560 207951 2017–2020
8 297 99473 290290 2015–2020

Total 9412 9116634 16689304 2010–2020

Methodology 85

The foundation of our approach is rooted in the Cox Proportional Hazards model (Cox 86

PH), a class of survival models in statistics that aligns with our objective of estimating 87

mortality rates [2]. To simplify the complexity of Cox PH model calculations, we 88

leveraged the connection between Cox PH and a Poisson Generalized Linear Model 89

(GLM). Assuming piecewise constant hazard rates over time, the likelihood of the Cox 90

PH model coincides with the likelihood of the Poisson GLM when we employ log(Ei,j) 91

as an offset parameter, as detailed by [29] who noted, ”we do not assume [the Poisson 92

model] is true, but simply use it as a device for deriving the likelihood”. Independent 93

of [29], [45] published a similar insight, emphasizing that the piece-wise proportional 94

hazards model is equivalent to a specific Poisson regression model. 95

Our primary goal is to accurately evaluate mortality rates. We aim to estimate the 96

conditional expectation of death counts, denoted as Di,j , given the available information 97

summarized in the feature set Xi,j and the exposure in life years at risk Ei,j . Assuming 98

that Di,j
ind.∼ Poisson(µi,j ·Ei,j), the expectation according to the Poisson distributional 99

assumption is: 100

E[Di,j |Xi,j , Ei,j ] = µi,j · Ei,j = exp
(
X⊺

i,jβj

)
· Ei,j

The Poisson log-likelihood is defined: 101

l(βj |Xi,j , Di,j) =

Nj∑

i=1

(
Di,j · log(D̂i,j) − D̂i,j)

)
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where Di,j denotes the observed death counts, D̂i,j = µ̂i,jEi,j denotes the predicted 102

death counts, and βj is the parameter vector. 103

This formulation assumes that deaths follow a Poisson distribution. An advantage of 104

simplifying the Cox PH model into a Poisson GLM is its adaptability to the ML realm, 105

requiring optimization using Poisson log-likelihood and the ability to define an offset or 106

observation weights. ML models, which generally do not assume specific (i.e. additive) 107

relationships between features and targets, can leverage this flexibility: 108

E[Di,j |Xi,j ] = µi,j · Ei,j = exp(f(Xi,j)) · Ei,j

This transition from GLMs to ML models offers additional benefits, including 109

integrated variable selection mechanisms and the ability to capture interactions without 110

explicit specification. 111

To implement this approach, we employ the LightGBM algorithm [52], a popular ML 112

technique based on boosting. LightGBM iteratively builds an ensemble of decision trees 113

to model the relationship between features and the target variable, optimizing the 114

model to minimize the negative log-likelihood of the Poisson distribution [25]. Trees are 115

fit to residuals derived from the loss function, and the model is updated iteratively to 116

minimize this loss. The prediction is formulated as a linear combination of the base 117

learners: 118

µi,j = exp(f(Xi,j |θ)) = exp

(
K∑

k=0

θk · uk(Xi,j)

)

where θk is the weight of the k-th tree, and uk(Xi,j) =
∑

l∈Vk
bl · I[Xi,j ∈ Rl] 119

represents the tree associated with Vk as set of leaves of the k-th tree, bl as the 120

predicted value in the l-th leaf, and Rl as the region defined by disjoint partitions of the 121

training set associated with the l-th leaf [28]. LightGBM uses a leaf-wise growth 122

strategy, splitting the leaf with the highest loss reduction first, and adopts a 123

histogram-based algorithm to improve the efficiency and speed of building decision trees. 124

This approach results in efficient and accurate models, particularly for datasets with 125

complex or imbalanced relationships. Mechanisms we employ to control overfitting and 126

ensure robust performance are detailed in S2 Appendix. 127

Two-step model: To distinguish between local and global features and ensure high 128

accuracy in each country, we propose a Two-step model approach. This approach 129

involves two distinct modeling steps: 130

Step 1: Global model: The first model identifies global patterns and uses a 131

training set that includes data from all countries, focusing solely on ”global” factors. 132

These global factors are those where data across countries is comparable, such as age. 133

In contrast, factors like postal code, which lack comparability between regions, are 134

excluded. 135

Step 2: Specialized Local model: In the second step, we calculate one Local 136

model per country, totaling eight Local models. Each Local model takes the output of 137

the Global model and adjusts it to the specific circumstances of the respective country. 138

Specialized Local models use all global factors plus the country-specific local factors. 139

The distinction of the feature set into global and local features is based on the 140

availability of data across countries as well as domain-specific expert knowledge. 141

This approach combines the estimates from both the global and specialized Local 142

models as illustrated in Fig 1. 143

Mathematically, we can express the process of estimating death counts for a policy 144

with given factors as follows: 145

E[Di,j |Xi,j ] = µi,j · Ei,j = q(Xglobal
i,j ) · hj(X

all
i,j ) · Ei,j
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Fig 1. Qualitative illustration of proposed methodology. Gearwheels illustrate the
features.

where Di,j represents the expected number of deaths given a set of features Xi,j for 146

group i and country j; q(·) represents the Global model’s prediction function; hj(·) 147

represents the Local model’s prediction function for country j; Xglobal
i,j represents a set 148

of factor values for group i and country j, containing only global factors; Xall
i,j represents 149

a set of factor values for country j, containing both global and local factors. 150

In technical terms, the predicted mortality rates from the first Global model are 151

used to initialise the second specialized Local model. Accordingly, the model continues 152

to work on the resulting residuals and iteratively optimises the second model - but now 153

with the broader, localised data set. The final predicted number of deaths results from 154

the multiplication of the predictions from the Global model (first step), the predictions 155

from the specialised Local model (second step) and the exposure. The following 156

derivation shows that the multiplication is justified by the nature of the boosting 157

algorithm and the exponentiation by the log link of the Poisson distribution: 158

µi,j = exp

(
K∑

k=1

θk · uk(Xi,j)

)

=

K∏

k=1

exp (θk · uk(Xi,j))
g := exp (θ · u(X))

=

P∏

k=1

gk(Xi,j)

︸ ︷︷ ︸
Global model = q(.)

·
K∏

l=P+1

gl(Xi,j)

︸ ︷︷ ︸
Local model = hj(.)

Splitting the modeling into two steps offers the advantage of cleanly separating 159

effects into local and global categories. It also optimizes model performance for each 160

market by tailoring the model to local patterns while allowing knowledge sharing across 161

countries via the Global model. Additionally, when onboarding a new country, we can 162

choose to retain the existing Global model and calculate a new Local model for this new 163

country. 164

We employ Microsoft’s ML library ”LightGBM” for implementing these models, 165

which have demonstrated high accuracy in various scenarios. As the software does not 166
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allow the inclusion of an offset, we utilize observed mortality rates as the target variable, 167

thus the death counts are scaled by exposure Di,j/Ei,j and exposure Ei,j is used as 168

weights, a method demonstrated to be mathematically equivalent in the Poisson case 169

by [33]. These residuals Ri,j represent the deviation of the observed deaths from the 170

expected deaths D̂global
i,j predicted by the first step, and are calculated as follows: 171

Ri,j =
Di,j

D̂global
i

. In the second step, these residuals serve as the target variable for further 172

modeling. The new weights for this step are the expected deaths from the first step, 173

D̂global
i . It is important to note that in the second step, we use the complete feature set 174

of a single country, whereas in the first step, we utilize pooled data with global features 175

only. Details on prediction calibration are provided in S3 Appendix. 176

Benchmarking results 177

Our objective is to benchmark the proposed methodology against three other 178

approaches using specific evaluation metrics. This aims to determine the predictive 179

performance and computational efficiency of the proposed model compared to the 180

alternatives. All these methods are based on the model specification proposed in the 181

previous section, where death counts are estimated in relation to exposure using the ML 182

model LightGBM, optimizing the Poisson log-likelihood assumption. The differences 183

among these methods are outlined below and illustrated in Fig 2: 184

(a) Local model (b) Two-step model

(c) One-step model with single value imputation (d) One-step model with MICE

Fig 2. Comparison of benchmarked models and their frameworks. Gearwheels
represent features: grey for global features, blue and orange for local features specific to
different countries, and patterned dark cells indicate missing values.

1.Local models for individual countries: For each country, we take this country’s 185

data and run the model separately. This is, of course, only applicable if we have enough 186

claims and exposure available for a given country as a solid foundation for training. The 187

information contained in the each other countries about certain features and their 188

correlation patterns to mortality rates remain unseen for each model. 189

2. Two-step approach: As detailed in the previous section, this approach combines 190
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global features in the first step model, using common features across countries. In the 191

second step, a Local model is trained to capture also each country’s specificities based 192

on residuals from the first step. 193

3. Global one-step with single value imputation: All datasets from different countries 194

are combined in this early data fusion technique. The discrepancy in feature sets and 195

values across countries results in missing blocks, as shown in Table 2. 196

Country F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26
1 0 0 0 0 0 0 0 0 0 0 0 33 0 72 0 0 0 0 0 0 0 72 72 72 72 0
2 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 48 48 48 48 48 48
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 33 0 0 0 0 33 5 6 0 0
4 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 28 0 28 0 0 0 28 0 28 28 28
5 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 72 0 100 100 0
6 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 62 0 0 0 0 62 58 56 0 62 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 2 8 0 6 0 8 8 8 8 8 8
8 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 6 0 0 0 6 6 0 0 6 6 6

Table 2. Percentage of missing values in each feature by country

For all three model types, missing values are imputed based on feature type: 197

categorical features receive ”Missing” and metric features receive ”-1”. This approach 198

retains information from non-missing values and identifies missing values during 199

interactions for local features. In contrast, global features are free from missing values 200

due to the design of the data collection process. 201

In cases where a local model cannot be trained due to small data size, the One-Step 202

approach may be the only viable option, but it results in missing blocks that must be 203

imputed. The Two-Step model offers a valuable alternative by providing flexibility: if a 204

local feature is entirely missing, it can be dropped, similar to local models, while global 205

features are retained based on global patterns. For partially missing local features, 206

single value imputation is applied, and the researcher has the option to drop or keep the 207

imputed feature for a specific country. We chose to retain all features that are not 208

completely missing within a country to ensure no information is lost. 209

4. Global one-step with bootstrapped multiple imputation: Similar to the previous 210

approach, this method involves early data fusion by combining datasets from all 211

countries. In this case, we use Bootstrapped Multiple Imputation with Decision Tree as 212

imputation technique for missing values that arise due to the synthetic dataset creation. 213

The procedure is as follows: 214

• First draws k bootstrap samples from the combined dataset including missing 215

values. 216

• Fit a classification or regression tree by recursive partitioning, variable by variable. 217

• After fitting a tree for the missing value based on the other values of the variable 218

from the corresponding leaf, a value is randomly drawn. 219

This ensures that we can use it properly for multiple imputation, so that we are 220

inducing some variation and not just the randomness in the leaf. The implementation 221

was done in Python [30] with an adapted version of IterativeImputer [43], using 4 222

bootstrap samples and 2 imputations iterations each. We refer to [32] for further 223

algorithm details. The number of iterations was determined based on a trial-and-error 224

approach, as higher numbers had no significant impact on the final model results due to 225

the dataset’s size. Based on each dataset resulting from the bootstrapped iteration, we 226

trained the proposed model and finally pooled the eight predictions by averaging. 227

Evaluation criteria: To evaluate our proposed methodology, we place a strong 228

emphasis on two critical dimensions: predictive accuracy and computational efficiency. 229

To gauge the predictive performance of our models, we employ two essential metrics: 230

Root Mean Square Error (RMSE) for both in-sample and out-of-sample assessments. 231

For a given country j it is calculated as follows: 232
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RMSEj =

√√√√
Nj∑

i=1

(D̂i,j −Di,j)2

Additionally, we utilize the Poisson log-likelihood, which serves a dual role as a loss 233

function and evaluation metric: 234

lj =

Nj∑

i=1

(
Di,j · log(D̂i,j) − D̂i,j

)

In the equations, D̂i,j = µ̂i,j · Ei,j represents the predicted, while Di,j the observed 235

death counts. The in-sample metrics allow us to examine how well the model fits the 236

training data. On the other hand, the out-of-sample metrics serves as a litmus test for 237

the model’s ability to generalise to new, unseen data. 238

A higher log-likelihood and lower RMSE signify a closer fit between the model and 239

the data, indicating superior performance. Conversely, a lower log-likelihood and higher 240

RMSE are indicative of a less suitable model for the given data. 241

We consider runtime, memory usage, and storage requirements to evaluate the 242

computational efficiency of our models, aiming for lower values to enhance their 243

practical utility. These criteria offer a comprehensive assessment of our models’ 244

performance in estimating mortality rates and pricing life insurance. 245

Outcomes: This section details the benchmarking process for all four models, 246

focusing on key metrics for performance and efficiency assessment. We evaluated the 247

models using multiple metrics, including train and test RMSE and log-likelihood. 248

Although RMSE is reported, log-likelihood is more reliable due to the distributional 249

assumptions of the data. Additionally, we assessed computational efficiency through run 250

time (seconds), memory consumption (megabytes), and storage space of the model 251

object (kilobytes). 252

In Tables 3 and 4 we present the results exemplarily for country 5 and 7, and in S1 253

Appendix an overview of all countries as well as the cross-country results. Each table 254

provides an insight into the performance of the four benchmarked models, highlighting 255

their strengths and weaknesses in various aspects. For ease of interpretation, we have 256

used colour coding in dark grey to identify the best model within each row, based on 257

the respective metric. The comparison is based on original values, before rounding for 258

readability reasons. 259

Table 3. Performance evaluation for country 5
Metric Local model Two-step model One-step model (Single Value) One-step model (MICE)

RMSE (Train) 1.990 × 10−2 1.979 × 10−2 2.009 × 10−2 2.126 × 10−2

RMSE (Test) 1.709 × 10−2 1.706 × 10−2 1.709 × 10−2 1.811 × 10−2

Log Likelihood (Train) −1.110 × 104 −1.069 × 104 −1.295 × 104 −1.315 × 104

Log Likelihood (Test) −3.429 × 103 −3.399 × 103 −3.938 × 103 −3.998 × 103

Runtime (Sec) 1.370 × 104 3.970 × 102 - -

Memory (MB) 2.998 × 103 1.663 × 102 - -

Storage (KB) 2.174 × 106 2.162 × 106 - -

Table 4. Performance evaluation for country 7
Metric Local model Two-step model One-step model (Single Value) One-step model (MICE)

RMSE (Train) 5.358 × 10−2 5.061 × 10−2 5.736 × 10−2 5.847 × 10−2

RMSE (Test) 3.542 × 10−2 3.604 × 10−2 3.983 × 10−2 3.714 × 10−2

Log Likelihood (Train) −1.821 × 103 −1.469 × 103 −2.439 × 103 −2.682 × 103

Log Likelihood (Test) −5.615 × 102 −5.529 × 102 −5.682 × 102 −5.693 × 102

Runtime (Sec) 9.144 × 102 1.518 × 101 - -

Memory (MB) 3.041 × 102 1.983 × 102 - -

Storage (KB) 9.816 × 104 9.376 × 104 - -
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Our Two-step modeling approach demonstrates the best predictive performance for 260

nearly all countries, as evidenced by our comprehensive evaluation. This method 261

outperforms Local models in most cases and shows significant advantages over the 262

MICE method. Detailed results can be found in the tables and figures, highlighting the 263

effectiveness of our approach. 264

The Two-step model shows the most substantial improvements for smaller countries 265

(e.g., countries 7 and 8), compared to larger countries (e.g., countries 4 and 5). This is 266

particularly evident in the test log-likelihood improvements from Local models to the 267

Two-step model. By leveraging a Global model in the first step, we protect local 268

specifics while enhancing the generalization capability, especially for smaller datasets. 269

Our research compares also one-step models, including single value imputation and 270

MICE, with the proposed two-step approach. The findings consistently show that 271

one-step models underperform and demand substantial computational resources. 272

Specifically, MICE exhibits inferior performance for country-specific results. In terms of 273

storage, single value imputation slightly outperforms the proposed model, if considered 274

both steps. However, the one-step approaches require full retraining when new data 275

becomes available, which can impact results for other countries. 276

When considering computational efficiency, encompassing aspects like runtime and 277

memory consumption, the two-step approach stands out as the preferred choice. It’s 278

important to emphasise that the performance of Local models is closely linked to the 279

availability and quality of data within a given country. While this study has the 280

privilege of using high-quality data with rich claims and exposures, this may not be the 281

case for every country or data source. In such cases, the two-step approach with its 282

cross-country learning capabilities provides a distinct advantage, as we can use the 283

insights gained from the Global model to retrain the second step of the process. 284

Overall, our proposed two-step hierarchical modeling approach achieves superior 285

predictive performance for nearly all countries, outperforming Local models and the 286

MICE method, with log-likelihood proving to be a more reliable measure than RMSE 287

due to the distributional assumptions of the data generation process. The Two-step 288

model significantly enhances generalization for smaller countries, such as countries 7 289

and 8, by leveraging a Global model in the first step, which protects local specifics and 290

improves performance even stronger compared to larger countries like countries 4 and 5. 291

Summary and outlook 292

This study introduces a novel two-stage hierarchical mortality model that integrates 293

global and local data to improve regional mortality risk estimation, particularly in 294

data-scarce regions. The model leverages a LightGBM [31] in the first stage to capture 295

global patterns, followed by country-specific refinements in the second stage. This 296

approach demonstrated superior predictive accuracy compared to traditional methods 297

and effectively addressed challenges related to missing data, scalability, and 298

overgeneralization, offering a robust solution for mortality risk modeling across diverse 299

regions. 300

The two-stage hierarchical modeling approach not only enhances predictive 301

performance but also offers practical benefits in fields such as life insurance pricing, risk 302

assessment, and public health planning. By generating more accurate mortality risk 303

estimates, particularly in regions with limited local data, the model supports 304

better-informed decision-making in industries that rely on precise risk evaluations. Its 305

scalability and computational efficiency make it especially valuable in large-scale, 306

multi-regional contexts. 307

Our model also stands out for its computational efficiency, excelling in runtime, 308

memory usage, and storage requirements, particularly when the first-stage global model 309
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is excluded. This efficiency is advantageous when scaling to new countries, as only the 310

second step requires retraining, leaving existing predictions unaffected. The reduced 311

model size speeds up training times while maintaining high performance, making it 312

suitable for applications where rapid training is essential. Additionally, the model 313

provides an efficient solution for handling missing data, outperforming other methods 314

like single-value imputation or MICE, particularly when working with small datasets 315

where local data alone is insufficient, and the pre-learned knowledge of a larger model 316

becomes critical. 317

Despite its strong performance across multiple regions, the model’s effectiveness 318

depends on the availability and quality of data. In regions with low or inconsistent data 319

quality, future research could explore more advanced imputation techniques or 320

alternative methods for managing missing data. Further work could also investigate 321

optimizing computational efficiency for even larger datasets or extending the model’s 322

applicability to domains such as epidemiological forecasting, financial risk modeling, or 323

public health surveillance. Integrating techniques like deep learning could enhance 324

performance for more complex datasets, though this may compromise its 325

interpretability. 326

The flexibility and robustness of the proposed hierarchical model open up new 327

possibilities for accurate risk estimation, particularly in data-scarce environments. As 328

industries continue to rely on precise mortality estimates for strategic decision-making, 329

this approach sets the foundation for more reliable, scalable, and adaptable models 330

capable of addressing the complexities of regional variability without compromising 331

performance. 332

Supporting information 333

S1 Appendix. Rest of country-specific results 334

Table 5. Cross-country evaluation of computational efficiency
Metric Local model Two-step model (Step 1 & 2) One-step model (Single Value) One-step model (MICE)

Runtime (Sec) 4.586× 104 6.122× 103 + 8.064× 102 4.696× 104 5.119× 105

Memory (MB) 1.382× 104 5.562× 102 + 4.909× 103 1.069× 104 2.004× 105

Storage (KB) 7.903× 106 8.816× 106 + 7.837× 106 6.669× 106 5.785× 107

Table 6. Performance evaluation for country 1
Metric Local model Two-step model One-step model (Single Value) One-step model (MICE)

RMSE (Train) 2.509 × 10−2 2.506 × 10−2 2.539 × 10−2 2.614 × 10−2

RMSE (Test) 2.181 × 10−2 2.180 × 10−2 2.210 × 10−2 2.259 × 10−2

Log Likelihood (Train) −6.575 × 103 −6.538 × 103 −7.927 × 103 −7.916 × 103

Log Likelihood (Test) −2.071 × 103 −2.066 × 103 −2.409 × 103 −2.459 × 103

Runtime (Sec) 3.565 × 103 3.832 × 101 - -

Memory (MB) 1.301 × 103 7.233 × 101 - -

Storage (KB) 8.420 × 105 8.371 × 105 - -

Table 7. Performance evaluation for country 2
Metric Local model Two-step model One-step model (Single Value) One-step model (MICE)

RMSE (Train) 2.631 × 10−2 2.628 × 10−2 2.853 × 10−2 2.855 × 10−2

RMSE (Test) 1.872 × 10−2 1.872 × 10−2 1.920 × 10−2 1.941 × 10−2

Log Likelihood (Train) −7.877 × 103 −7.673 × 103 −8.017 × 103 −8.201 × 103

Log Likelihood (Test) −2.152 × 103 −2.151 × 103 −2.542 × 103 −2.537 × 103

Runtime (Sec) 2.759 × 103 0.988 × 102 - -

Memory (MB) 1.580 × 103 5.512 × 102 - -

Storage (KB) 9.751 × 105 9.688 × 105 - -
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Table 8. Performance evaluation for country 3
Metric Local model Two-step model One-step model (Single Value) One-step model (MICE)

RMSE (Train) 1.674 × 10−2 1.673 × 10−2 1.764 × 10−2 1.783 × 10−2

RMSE (Test) 1.329 × 10−2 1.328 × 10−2 1.328 × 10−2 1.331 × 10−2

Log Likelihood (Train) −3.314 × 103 −3.119 × 103 −3.471 × 103 −3.479 × 103

Log Likelihood (Test) −9.515 × 102 −9.506 × 102 −1.109 × 103 −1.210 × 103

Runtime (Sec) 2.387 × 103 9.700 × 101 - -

Memory (MB) 1.324 × 103 9.292 × 102 - -

Storage (KB) 8.326 × 105 8.279 × 105 - -

Table 9. Performance evaluation for country 4
Metric Local model Two-step model One-step model (Single Value) One-step model (MICE)

RMSE (Train) 2.999 × 10−2 2.219 × 10−2 3.183 × 10−2 3.183 × 10−2

RMSE (Test) 2.219 × 10−2 2.998 × 10−2 3.307 × 10−2 3.307 × 10−2

Log Likelihood (Train) −6.842 × 103 −6.730 × 103 −1.166 × 104 −1.167 × 104

Log Likelihood (Test) −1.907 × 103 −1.900 × 103 −2.275 × 103 −2.275 × 103

Runtime (Sec) 1.772 × 103 1.401 × 101 - -

Memory (MB) 1.084 × 103 1.074 × 103 - -

Storage (KB) 7.004 × 105 6.954 × 105 - -

Table 10. Performance evaluation for country 6
Metric Local model Two-step model One-step model (Single Value) One-step model (MICE)

RMSE (Train) 2.404 × 10−2 2.396 × 10−2 2.731 × 10−2 2.846 × 10−2

RMSE (Test) 2.129 × 10−2 2.128 × 10−2 2.565 × 10−2 2.648 × 10−2

Log Likelihood (Train) −1.081 × 104 −1.060 × 104 −1.191 × 104 −1.285 × 104

Log Likelihood (Test) −3.194 × 103 −3.186 × 103 −3.492 × 103 −3.621 × 103

Runtime (Sec) 1.093 × 104 3.421 × 103 - -

Memory (MB) 2.666 × 103 1.331 × 103 - -

Storage (KB) 1.735 × 106 1.724 × 106 - -

Table 11. Performance evaluation for country 8
Metric Local model Two-step model One-step model (Single Value) One-step model (MICE)

RMSE (Train) 3.283 × 10−2 3.230 × 10−2 3.304 × 10−2 3.514 × 10−2

RMSE (Test) 2.909 × 10−2 2.906 × 10−2 2.907 × 10−2 2.955 × 10−2

Log Likelihood (Train) −1.247 × 103 −1.546 × 103 −1.730 × 103 −1.845 × 103

Log Likelihood (Test) −5.275 × 102 −5.211 × 102 −6.318 × 102 −6.398 × 102

Runtime (Sec) 5.235 × 102 4.571 × 101 - -

Memory (MB) 2.641 × 102 8.588 × 101 - -

Storage (KB) 1.334 × 105 1.303 × 105 - -

S2 Appendix. Hyperparameter optimization 335

For the hyperparameter optimization we used Hyperopt, a Python library that uses 336

the Tree Parzen Estimator (TPE) algorithm. TPE is an efficient method leveraging a 337

probabilistic model to guide the search for optimal hyperparameters. TPE workflow can 338

be briefly characterized as follows: 339

Initialisation: TPE starts by randomly sampling a few hyperparameter combinations 340

to create an initial set of observations. These initial combinations serve as a starting 341

point for the optimisation process. 342

Probabilistic Modelling : TPE uses probabilistic models to capture the relationship 343

between hyperparameter values and the performance metric (e.g., loss or accuracy). 344

Specifically, it models the probability that a configuration will produce better results. 345

Exploitation and exploration: Based on the probabilistic models, TPE tries to 346

balance exploration and exploitation. It aims to understand the correlation between 347

hyperparameter values and performance, emphasising configurations that are likely to 348

lead to better results. This process is similar to the gradient descent algorithm, but 349

instead of searching for the gradient of the loss function, it focuses on the probability 350

distribution of the hyperparameters. 351

Updating the model : As TPE collects more observations and evaluates additional 352

configurations, it updates its probabilistic models. The algorithm iteratively learns and 353
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refines its models to make more informed decisions. 354

By iteratively balancing exploration and exploitation, TPE efficiently navigates the 355

hyperparameter space, eventually converging on an optimal set of hyperparameters for a 356

given ML model. For a deeper understanding of the TPE algorithm and practical 357

application we refer to [27] and [26]. The optimized hyperparameters of the discussed 358

models are represented in Table 12 (For the sake of clarity and simplicity, MICE has 359

been excluded). 360

Table 12. Optimal Hyperparameters for Local, Two-step and One-step models
Country n estimators subsample colsample bytree num leaves min child samples learning rate

Local models

1 1806 0.8247 0.7842 51 76 0.01
2 1452 0.7526 0.5450 6 78 0.01
3 627 0.6610 0.5325 4 49 0.01
4 1118 0.5877 0.5378 4 89 0.01
5 1875 0.9231 0.6487 50 13 0.01
6 1223 0.8147 0.5253 15 41 0.01
7 1197 0.9384 0.8898 51 5 0.01
8 1990 0.7399 0.6098 5 80 0.01

Two-step model

1st step 441 0.7833 0.8400 27 734 0.1

2nd step - 1 1488 0.6711 0.9983 9 644 0.01

2nd step - 2 322 0.9983 0.8304 98 992 0.01

2nd step - 3 1580 0.5496 0.6262 97 43 0.01

2nd step - 4 895 0.8998 0.8485 44 666 0.01

2nd step - 5 1786 0.9210 0.8615 94 294 0.01

2nd step - 6 1993 0.7889 0.8863 18 735 0.01

2nd step - 7 82 0.7024 0.6998 22 421 0.01

2nd step - 8 1538 0.7188 0.6480 78 166 0.01

One-step model (Single Value)

− 1355 0.5807 0.8553 17 296 0.05

S3 Appendix. Evaluation of prediction calibration 361

The balance property is a critical consideration in the context of statistical modeling. 362

It signifies that a well-calibrated model should exhibit no deviations between the mean 363

of observed and predicted values. This property is satisfied for any generalized linear 364

model (GLM) within the exponential dispersion family (EDF) as long as the canonical 365

link function is employed ( [40], [42]). However, deviations can arise when the chosen 366

link function departs from the canonical link. In such cases, it’s essential to address this 367

issue. [41] provides a relatively straightforward approach to correct for balance property 368

failures, ensuring that the model remains well-calibrated. 369

To mitigate these issues and achieve calibration, we leverage Gradient Boosting 370

advantages, which allows us to optimize the model with a Poisson loss function, 371

implicitly using a log-link function. This strategic choice corrects any balance property 372

problems and results in a well-calibrated model. Table 13 below illustrates that our 373

models, in general, exhibit either no deviations or very minimal differences between 374

observed and predicted death counts. Calibration is more meaningful when applied to 375

training data, where models are meticulously adapted and fine-tuned. Any minor 376

deviations observed in the test set are typically of negligible significance. For the 377

Two-step model, the final mean predictions are computed by multiplying the means 378

from the first and second steps, ensuring robustness in our approach. 379
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Table 13. Predicted vs. observed avg. death counts (Train/Test)
Country 1 2 3 4 5 6 7 8
Local models
Predicted Mean (Train) 0.0013 0.0008 0.0006 0.0009 0.001 0.0014 0.0009 0.003
Observed Mean (Train) 0.0013 0.0008 0.0006 0.0009 0.001 0.0014 0.0009 0.003
Predicted Mean (Test) 0.0013 0.0008 0.0006 0.0009 0.001 0.0014 0.0008 0.003
Observed Mean (Test) 0.0012 0.0008 0.0006 0.0009 0.0009 0.0013 0.0008 0.0029
Two-step model 1st step 2nd step
Predicted Mean (Train) 0.001 1.0302 0.9826 0.9791 0.9813 0.9833 0.9885 1.0031 1.056
Observed Mean (Train) 0.001 1.0337 0.9908 0.98 0.9855 0.9958 0.9892 1.0049 1.0639
Predicted Mean (Test) 0.001 1.0295 0.984 0.9805 0.9826 0.955 0.9952 1.003 1.0566
Observed Mean (Test) 0.001 0.9687 1.0172 0.9351 0.9218 0.9101 0.9094 0.9027 1.0156
One-step model (Single-Value)
Predicted Mean (Train) 0.0013 0.0008 0.0006 0.0009 0.001 0.0014 0.0009 0.003
Observed Mean (Train) 0.0013 0.0008 0.0006 0.0009 0.001 0.0014 0.0009 0.003
Predicted Mean (Test) 0.0013 0.0008 0.0006 0.0009 0.001 0.0014 0.0009 0.0029
Observed Mean (Test) 0.0012 0.0008 0.0006 0.0009 0.0009 0.0013 0.0008 0.0029
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Abstract
This study introduces a transfer learning framework to address data scarcity in mortality
risk prediction for the UK, where local mortality data is unavailable. By leveraging a pre-
trained model built from data across eight countries (excluding the UK) and incorporating
synthetic data from the countries most similar to the UK, our approach extends beyond
national boundaries. This framework reduces reliance on local datasets while maintain-
ing strong predictive performance. We evaluate the model using the Continuous Mortal-
ity Investigation (CMI) dataset and a Drift model to address discrepancies arising from
local demographic differences. Our research bridges machine learning and actuarial sci-
ence, enhancing mortality risk prediction and pricing strategies, particularly in data-poor
settings.

Introduction
In life insurance, accurate mortality risk prediction is essential for pricing and managing risks.
However, this process is often hindered by data scarcity, particularly in underrepresented
demographic segments or smaller niches of the market. Mortality events are infrequent,
meaning data accumulates slowly, making it difficult for insurers to build robust predic-
tive models. This lack of data can lead to unreliable risk assessments and pricing strategies,
ultimately affecting profitability and customer affordability.

Transfer learning offers a promising solution to these challenges by leveraging models
trained on data-rich countries and adapting them to data-poor environments. This allows
insurers to generate reliable mortality predictions even when local data is unavailable. Pre-
vious studies, such as those by [1] and [2], have laid the groundwork for transfer learning
in mortality risk prediction, but have primarily focused on scenarios with small volumes of
target data. Additionally, much of the research has relied on deep neural networks (DNNs),
which, while powerful, can be computationally intensive and require extensive fine-tuning,
especially for small datasets [3,4].

In contrast, gradient boosting machines (GBMs) offer a more efficient and interpretable
alternative for transfer learning, particularly in cases where no target data is available. Despite
their potential, GBMs have received less attention in the context of mortality risk predic-
tion. Inspired by the success of machine learning (ML) models in clinical research [5–7], this
study introduces a GBM-based transfer learning framework for predicting mortality rates in
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the UK, where no local life insurance data is available. By incorporating synthetic data from
countries most similar to the UK, this approach demonstrates high predictive accuracy while

included a comprehensive workflow outlining
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Appendix S5 and provided visual and textual
descriptions of the dataset in the manuscript’s
Data Section. We have also properly cited and
acknowledged external data sources, such as
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guidance for researchers interested in the
original data from the third-party sources. Here
is the minimal anonymized dataset we are able
to provide: [DOI 10.5281/zenodo.14546939 or
URL https://zenodo.org/records/14547227].
This dataset corresponds to the figure titled
“Comparison of UK mortality rates between
Transfer Learning and CMI by age and gender.”
The information included is made public without
ethical concerns, as the grouping by age and
gender ensures that there is a sufficient amount
of data to prevent tracing back to individuals.
Extending the dataset beyond this point could
raise ethical issues by introducing more
granular data, which could potentially be used
to identify individuals based on additional
characteristics and country information. Such
an extension would compromise the ethical
integrity of the study. The authors have
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institutional data availability requirements, we
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München as the official institutional contact for
data-related inquiries. The MLCU can be
reached at mlcu@stat.uni-muenchen.de,
ensuring long-term accessibility for any data
requests. The primary contact person is Dr.
Andreas Bender, whose details are as follows:
Institut für Statistik,
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reducing dependence on local datasets. To further enhance the model, we introduce a Drift
model to evaluate and correct discrepancies arising from demographic differences between
countries.

This research not only extends the boundaries of transfer learning in actuarial science but
also has broader implications for improving mortality risk prediction and pricing strategies
in data-poor markets. Our study—the workflow of which is illustrated in Fig 1—is guided by
three primary research questions:

(i) How can we estimate mortality rates in a country with no internal life portfolio data?
This involves implementing a ML-based transfer method, focusing on the UK, and
constructing a Country similarity index using external data to identify relevant source
countries.

(ii) How accurate is the model, and how can a Drift model address discrepancies between pre-
dicted and expected mortality? The accuracy of the transfer learning method is assessed
using various metrics, with a Drift model employed to explore factors contributing to
discrepancies between transferred mortality tables and expected outcomes from the
CMI dataset.

(iii) How can additional variables beyond age and gender improve mortality risk predictions.
We investigate how the inclusion of additional variables can enhance the baseline mor-
tality predictions, providing an application case to demonstrate improvements.

Related work
Previous research has predominantly focused on leveraging DNNs to model mortality data.
A notable example is the work by [8], which discussed the integration of Generalized Lin-
ear Models (GLMs) within residual networks to capture both linear and nonlinear effects.
Despite their potential, these Combined Actuarial Neural Networks (CANNs) face chal-
lenges in enforcing monotonicity, which is crucial for mortality data [9]. In contrast, our
study explores the use of GBMs, which offer a more flexible, interpretable and computation-
ally efficient alternative, particularly in data-scarce environments. GBMs have shown promise
in various actuarial applications, providing a transparent framework for mortality prediction.
Our approach extends previous methodologies by incorporating a Drift model to explicitly
address demographic discrepancies, enhancing the model’s adaptability to different popula-
tion characteristics.

Numerous studies have aimed to compare health care systems, financing mechanisms
and health outcomes across countries. Bauer and Ameringer [10] emphasizes the difficulty
of collecting comprehensive data from different countries due to logistical and financial
constraints. However, incorporating statistical data from credible sources like the World
Health Organization (WHO) and the Organization for Economic Co-operation and Devel-
opment (OECD), along with a proposed multivariate statistics framework, serves as a valu-
able supplement. The significance of conducting cross-national research on healthcare sys-
tem performance is underscored since it is considered crucial for guiding public policy [11].
For example, [12] revealed that the difference in spending between the United States and
European countries can be traced back to disparities in diagnosis and treatment rates for
certain chronic conditions. Another study explored the impact of culture in forecasting a
country’s population health, gauged through life expectancy and healthcare spending [13].
Hofstede’s influential study on cross-cultural research argues that comprehending a nation’s
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Fig 1. Graphical abstract to summarize our workflow and value-added.

https://doi.org/10.1371/journal.pone.0313378.g001

culture demands exploring dimensions like Power Distance, Individualism-Collectivism,
Masculinity-Femininity, and Uncertainty Avoidance [14]. To tackle the issue of determining
and gauging population health, [15] suggested two models. The descriptive model assesses
population health through indicators like life expectancy, categorized by markers such as
socio-economic status or race. Various indices measure similarities between countries across
a range of dimensions, yet there is currently a gap in addressing both mortality and life insur-
ance specifics. Our approach involves constructing and optimizing a distance-based index
for country similarity. We base this approach on solely external sources. The forthcoming
sections outline our proposed method in a reproducible manner.

Database and methodology
Data
In our study, we rely on the open source Human Mortality Database (HMD) as our primary
external data source. HMD offers age and gender-specific mortality rates for the overall popu-
lation across various countries. However, our primary focus is not on estimating the mortality
of the overall population in the UK. Instead, our goal is to estimate the mortality rates within
the company’s own life insurance portfolio in the UK. It’s important to note that there are
often differences between overall mortality rates and those within a specific portfolio, partic-
ularly due to the underwriting process in life insurance. To address this limitation, we lever-
age data from eight countries and establish connections to capture this discrepancy between
overall and portfolio mortality rates. To ensure that the analysis accurately reflects the mor-
tality patterns across different countries and within the company’s life insurance portfolio,
our approach involves three different populations, as illustrated in Fig 2: the global overall
population, the global insured population of the company, and the insured population of the
company within a particular country.

Overall population: Age- and gender-specific overall population mortality rates from the
HMD are retrieved for all countries. While these represent total population mortality, not
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Fig 2. Illustration of targeted population segments across different datasets and models.

https://doi.org/10.1371/journal.pone.0313378.g002

insured population mortality, they bridge the gap between total and insured mortality, as it
is the only feature we have available for the target country. To minimize yearly artifacts mor-
tality rates from 2008 to 2018 were projected one year ahead using the Lee Carter model [16]
(see Methodology section and S2 Appendix).

Insured population:We utilize a pooled internal portfolio dataset from different countries
to pretrain a GBMmodel [17] for predicting mortality rates for the insured population glob-
ally. This dataset incorporates common global characteristics shared across different coun-
tries, such as age, gender, sum assured, allowing for cross-country data comparison, and inte-
grates the overall population mortality, yielding in a total of 9 global features, without any
country indicator. (see Methodology section and S1 Appendix).

The dataset includes policy data from a global primary insurer that was active during the
specified period, totaling almost 10 million life-years of exposure and recording nearly 10,000
insurance claims (deaths). The data analysis was conducted in an aggregated form, grouped
into distinct combinations of feature values, summarizing the deaths Dj and exposure Ej data
for each unique combination features across all j = 1,… ,K countries, in this case K = 8, the
names of which have been withheld to maintain confidentiality. Four of the countries are
located in Western Europe, three in Latin America, and one in Central and Eastern Europe.

Table 1 provides a detailed overview of Dj, Ej and the total number of years Tj in coun-
try j, to give the main characteristics and distribution of the pooled dataset. This paper will
analyse age and gender as internal features, while keeping other features used in the modeling
anonymous for privacy reasons.

Insured population in specific countries: In addition to the global features, including
the overall population mortality of these countries, we include 12-16 local features from
each country j, depending on local data availability, such as occupational class, which are
not comparable across regions. After retraining the specialized GBMmodels on a total of
21-25 features, initialized by the pretrained model, we predict mortality rates for the port-
folio of country M using a synthetic dataset tailored specifically for M. Our method for cre-
ating the synthetic dataset combines stochastic and rule-based techniques to bootstrap by
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Table 1. Overview of death countsDj, exposure in life years Ej, and total number of years Tj in country j.
Country j Dj Ej Tj
1 1 699 1 295 299 2013–2020
2 1 291 1 686 299 2010–2020
3 494 815 795 2010–2020
4 1 225 1 347 150 2017–2020
5 1 816 1 825 901 2016–2020
6 2 132 1 548 157 2016–2020
7 458 498 560 2017–2020
8 297 99 473 2015–2020
Total 9 412 9 116 634 2010–2020

https://doi.org/10.1371/journal.pone.0313378.t001

resampling from the internal portfolio of K countries, while introducing variations to account
for uncertainty [18] (see Methodology section and S1 Appendix).

Mortality of UK’s insurance population for evaluation:
We utilize the ’16’ series mortality tables fromWorking Paper 154 [19] for the evaluation

purposes and the Drift model, given the absence of an actual UK portfolio for comparison.
These tables, derived from data from different UK life insurance companies, offer detailed
insights into age, gender, smoking status, and curtate duration. To guarantee an impartial
assessment and prevent undue complication, we consolidate the tables according to age and
gender categories that correspond to population proportions.

External data for the Country similarity index:
The Country similarity index seeks to measure the similarity between the target coun-

try M and the K (= 8) source countries in the internal dataset in terms of mortality and life
insurance characteristics. We develop this by considering various indicators, selected based
on prior research and expert input, adaptable to specific contexts. These indicators are catego-
rized into three dimensions: Life Insurance Performance Indicators, Healthcare Statistics, and
Overall Population Mortality. The details of these indicators are outlined in Table 2, with the
methodology for their construction discussed in the subsequent subsection.

Methodology
General setup

Consider a scenario where K source datasets with aggregated sample size nj are collected
from countries j = 1,… ,K representing life insurance portfolios. The pooled dataset has total
aggregated sample size N =∑K

j=1 nj. The objective is to estimate death counts D∈ℝN relative
to exposure. The feature set X∈ℝN×p comprises global features Xglobal that are comparable
and available across countries including the overall population from HMD and local features
Xlocal

j that are specific to each country. Our challenge arises in estimating mortality rates DM

due to the lack of internal data. However, we do have access to external data that provides
information about mortality rates in different countries, including M. So, the scenario we
are dealing with is comparing what we know from this external data along with some inter-
nal data we have (which is not specific to M) to try to estimate mortality rates specifically for
country M. Fig 3 is a visual representation of the transfer learning framework: From the pre-
trained global model to the refined mortality rate predictions for the target county M based
on a synthetic dataset.

Pretrained model
Consider a broad category of risk prediction models, where the process of fitting the

model involves using a loss function L(𝛾;D,X). With an estimated parameter vector ̂𝛾
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Table 2. Dimensions and items obtained from external sources for the construction of a Country similarity index
related to mortality in life insurance.
Item Description and source
1. Life Insurance Performance Indicators from OECD
1.1 Life Insurance Share The ratio of gross life insurance premium to total gross premium, indicating

the relative importance of life insurance compared to non-life insurance [20].
1.2 Density The ratio of life insurance premiums to the whole population, measured in

US Dollars [21].
1.3 Penetration The level of development of the life insurance sector in a country, represented

as a percentage [22].
1.4 Total Gross Premiums Aggregate amount of premiums collected by life insurance companies in US

Million Dollars [23].
1.5 Retention Ratio Percentage of premiums retained by an insurance company rather than being

transferred to reinsurers [24].
2. Healthcare Statistics
2.1 Health Care Measured byThe Health Index by Global Residence Index, providing an

overall assessment of the healthcare system and general health of the local
population. Ranges from 0 to 1, indicating low to high healthcare levels [25].

2.2 Retirement Pension Country-specific Minimum Pensionable Age for Men obtained from
Indicator Data [26].

2.3 Medical Staff per Capita Number of physicians, nurses, and midwives per 1,000 people [27].
2.4 Hospital Beds per Capita Number of hospital beds per 10,000 population [28].
2.5 Access to Basic Healthcare Percentage of people with access to basic healthcare [29].
2.6 Healthcare Expenditure per Capita Expenditure on healthcare per capita in US Dollars [30].
2.7 Risk of Impoverishing Expenditure
for Surgical Care

Percentage of people at risk [31].

3. Overall Population Mortality
3.1 HMD Rates Utilizing also here HMD’s age- and gender-specific mortality rates by

country [32].

https://doi.org/10.1371/journal.pone.0313378.t002

Fig 3. Framework sketch: Synthetic-data-based mortality predictions for target country M using a pretrained global mortality risk model.

https://doi.org/10.1371/journal.pone.0313378.g003
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corresponding to the coefficients in a GBM, the predicted outcome is given by D̂ = f(X, ̂𝛾).
Specifically, we employ the negative Poisson log-likelihood function with Poisson distribu-
tional assumption. By minimizing the expected loss function based on Xglobal we result in the
parameter set estimate ̂𝛾pretrained an thus predicted number of deaths D̂pretrained. A detailed
methodology for the GBMmodel is provided in S1 Appendix. Up to this point, a bench-
mark model has been developed without considering the country M. Previous work such
as [33], [34], [4] and [35] characterize the similarity between the target model and the source
models by a certain distance measure. Based upon this idea, we will generate a synthetic port-
folio dataset XM for country M, leveraging the similarity of the external data between the
target population M and the source populations 1 to K (excluding M).

Country similarity index
To measure how similar the target country M is to the K source countries, we create a

Country similarity index based on external insurance and mortality data Xext ∈ℝ(K+1)×Q,
with K number of source countries and 1 target country. In our application case, Q is equal to
13, larger than K + 1 = 9. These Q items, which are given in Table 2 apply to the entire popu-
lation of a country, rather than internal data X, which specifically characterizes the country’s
insured population. After centering and scaling, the Manhattan distance between vectors Xext

j
of each source j = 1,… ,K and Xext

M of target country M is calculated, as the sum of the absolute
differences between corresponding components of vectors: d(Xext

j ,Xext
M ) = ∥Xext

j – Xext
M ∥1 [36].

Finally, this results in a k-dimensional vector, representing the sum of item-wise distances
between the j = 1,… ,K and M across all Q items. The summation of distances over the coun-
tries is then transformed into the normed similarity score s(Xext

j ,Xext
M ) = e–d(Xext

j ,Xext
M ) using the

exponential function, so that the value range changes from [0,∞) to (0, 1]. This transforma-
tion allows a similarity comparison rather than an absolute measure of distance, and becomes
important later in the resampling stage to define the variance of the Gaussian distribution.

Synthetic portfolio data for country M
In countries with no mortality data at all due to portfolio characteristics and size, syn-

thetic data generation offers an efficient solution to address data limitations [37]. The pro-
cess of producing mortality datasets that closely mimic actual data may comprise stochastic
techniques [38], rule-based approaches set by human experts [39] or deep generative models
(e.g., [40], [41]).

Assuming the known age and gender distribution for M, we resample feature combina-
tions (rows) from the K datasets, encompassing both global and local features, along with the
number of deaths, proportional to each similarity score s(Xext

j ,Xext
M ) for j = 1,… ,K. The over-

all population mortality of those countries has been substituted with the one of country M
obtained from the HMD.

To address potential unknown heterogeneity between j and M, we use a data augmentation
technique with noise drawing inspiration from established practices (e.g., [42], [43]):

1. Metric Data: We introduce Gaussian noise with a mean 𝜇 of 0 and a standard deviation
𝜎 that is inversely proportional to the similarity score: 𝜎 = 1 – s(Xext

j ,Xext
M ) + 0.000001.

Higher similarity measure corresponds to a lower standard deviation, implying less
noise is added to metric data.

2. Categorical Data: For categorical data, a noise level is drawn fromN(0,𝜎2), where
again 𝜎 = 1 – s(Xext

j ,Xext
M ) + 0.000001. If the drawn value falls within a predefined inter-

val around 0, the original value is retained, otherwise, a new value is drawn from the
uniform distribution.
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Finally, the synthetic dataset for the target country M is generated and contains the fea-
ture sets Xglobal

M (including HMD) and Xlocal
M as well as the exposure EM for country M. The

estimation of death counts, denoted as D̂M, is required. More details on the workflow of syn-
thetic data generation is available in S5 Appendix.

Transfer model
Since the pretrained model excludes local factors like occupation class, which cannot be

compared across countries, but may have significant impact on mortality, we calculate the
specialized models with the local data on top. Each specialized model takes the output of the
pretrained model from the first step and makes it more precise for that country. We find that
incorporating local attributes during the latter phase of training offers optimal adaptability;
this approach allows local nuances to be effectively integrated and, in cases where they are not
applicable or transferable to the target country, they can be subsequently adjusted or miti-
gated. Initially, we utilize the global features of the synthetic dataset Xglobal

M to generate pre-
liminary predictions D̂pretrained

M using a pretrained model. Subsequently, we enhance these pre-
dictions by employing the specialized GBMmodels tailored for countries j = 1,… ,K. Through
iterative boosting, the specialized model adjusts to the characteristics of the countries accord-
ing to their similarity, thereby refining the mortality rate predictions. The final mortality rate
predictions D̂M are determined by combining the specialized predictions D̂specialized

M and the
pretrained predictions D̂pretrained

M for all countries, as elaborated in the following Algorithm 1
and detailed out in S1 Appendix.

Agreement metrics
Using several metrics we evaluate the agreement of transferred mortality rates 𝜇̂M =

D̂M/EM with the CMI mortality rates 𝜇cmi, as proxy for expected UK mortality. Specifically,
we employed Spearman correlation, cosine similarity and R-squared with centered expected
versus predicted mortality rates. These metrics are defined as follows:

1. Spearman correlation:

𝜌 = cov(rank(𝜇̂M), rank(𝜇cmi))
𝜎rank(𝜇̂M)𝜎rank(𝜇cmi)

2. Cosine similarity:

c = 𝜇̂M ⋅ 𝜇cmi∥𝜇̂M∥∥𝜇cmi∥
3. R-squared with centered actuals 𝜇(i)cmi versus centered predicted vectors 𝜇̂(i)M :

R2 = 1 – ∑N
i=1(𝜇(i)cmi – 𝜇̂

(i)
M )2

∑N
i=1(𝜇(i)cmi – 𝜇̄cmi)2

The selection of Spearman correlation, cosine similarity, and centered R-squared is justi-
fied by their complementary insights into the evaluation of age- and gender-specific mortality
predictions. Spearman correlation is robust for assessing rank-order relationships, making
it ideal for capturing the alignment of predicted and actual mortality rankings, especially in
the presence of non-linear trends and outliers. Cosine similarity focuses on the directional
consistency of the predicted mortality distribution, ensuring that the shape and pattern of
predictions align with CMI benchmarks, independent of magnitude differences. Centered
R-squared evaluates the variance alignment between predictions and observed rates, empha-
sizing the model’s goodness of fit to capture demographic-specific fluctuations. For instance,
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Algorithm 1. Algorithmic representation of the transfer framework

1: Train the global GBM model q(Xglobal) on the pooled dataset, containing the
datasets from countries 1,… ,K. Here, Xglobal represents the features common across
all countries.

2: For each country j = 1,… ,K train a local GBM model hj(Xj) using country j’s dataset,

which includes both global features Xglobal and local features specific to country
j. These models are initialised using the output predictions of the pre-trained
global GBM model (as opposed to more conventional, i.e. random, initialisation).

3: For country M (= UK), calculate the similarity scores with each country j = 1,… ,K,
based on external data with predefined similarity metric, which can include
factors specific to life insurance, economic, and mortality.

4: For each country j = 1,… ,K, perform the following steps to create the synthetic
dataset for country M (UK):
• Use the calculated similarity scores to proportionally resample exposures
from each country j’s dataset to contribute to country M’s synthetic dataset.
Ensure the total exposure for country M, EM, is equal to the sum of resampled
exposures EMj from each country j, which in total should amount to 100,000,000.

• Apply data augmentation by adding noise to the features to generate
variability and improve the robustness of the model.

• Replace the population mortality variable in the dataset with that from
country M, aligning the dataset with the mortality conditions of country M.

• Compile the resampled and augmented data to form the synthetic dataset XM
for country M. This dataset will be a row-block matrix where each block
corresponds to data from a specific country j with different dimension, con-
taining both global and local features. The first columns consist of global
features to which the global model will be applied. Record the origin of each
row to ensure that the specialized GBM model trained for that country can be
subsequently applied.

5: Use the global model q(Xglobal
M ) and the respective local models hj(XM) to predict

the expected value E[DM|XM] for the synthetic dataset of country M:

E[DM|XM] = K
∑
j=1 𝜇Mj ⋅ EMj = K

∑
j=1 q(Xglobal

Mj
) ⋅ hj(XMj) ⋅ EMj (1)

where 𝜇Mj is the expected mortality rate for the synthetic data of country M

derived from country j. The term q(Xglobal
Mj

) is the global model’s prediction using

the global features of the synthetic dataset for country M derived from country
j. The term hj(XMj) represents the adjustment made by the local model of country
j, applied to the portion of the synthetic dataset XM that originated from coun-
try j. This ensures that the global model’s predictions are fine-tuned to reflect
the specific characteristics of country j that are as similar to country M, as
determined by the similarity scores.

consider a scenario where the model accurately predicts mortality rates for males aged 30-
50 but underestimates rates for older females (e.g., 70+). In this case, Spearman correlation
would remain high if the ranking within age groups is preserved, even if predictions for older
ages deviate in magnitude. Meanwhile, cosine similarity would decline due to a directional
mismatch in the mortality profile for older females, reflecting a flatter or inconsistent trend
compared to CMI rates. Lastly, the underprediction for older females would reduce the over-
all explained variance in the R-squared metric, highlighting that the model struggles with
these demographic subgroups. Together, these metrics provide a fair assessment of the pre-
dictions, ensuring that both ranking, shape, and variance are considered, which is essential for
accurately comparing predictions with CMI tables and understanding demographic trends.

Drift model evaluation
We propose a Drift model to evaluate the remaining disagreement by identifying and

quantifying the drift drivers between target country’s expected mortality and the mortality
rates transferred from other countries to M.

We assume a Poisson distribution for mortality counts in country M, denoted as DM ∼
Poisson(𝜇M ⋅ EM). Our analysis focuses on examining the discrepancy between the predicted
mortality rate 𝜇̂M and the actual rate 𝜇cmi across various features or feature categories. This
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discrepancy, denoted as 𝛿, serves as an indicator of the quality of transfer learning. We adopt
the two-stage or residual model proposed by [44] to estimate 𝛿:

DM ∼ Poisson(𝛿 ⋅ 𝜇cmi´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶=𝜇M

⋅EM). (2)

A GLM is used with new exposure Dcmi = 𝜇cmi ⋅ EM, target D̂M = 𝜇̂M ⋅ EM and model specifi-
cation as follows [45]:

log(𝛿) = 𝛽0 + 𝛽age ⋅ x1 + ... + 𝛽gender ⋅ xp + log(Dcmi) (3)

In the Poisson case, [46] demonstrated that the method is mathematically equivalent to
using the ratio DM

Dcmi
as target and Dcmi as weights:

log( DM

Dcmi
) = 𝛽0 + 𝛽age ⋅ x1 + ... + 𝛽gender ⋅ xp (4)

The validation of our approach, presented in Results section, includes comprehensive eval-
uation, such as its application to the UK insurance population and drift analysis from CMI
mortality tables.

Due to exclusive usage of publicly available anonymized data (CMI and HMD) and aggre-
gated, anonymized insurance data for model pretraining, there was no direct interaction with
human participants, and no personally identifiable information was accessed. The insurance
company data used for pretraining was provided in an aggregated and anonymized form,
with no possibility of tracing back to any individual policyholder. No UK-specific data from
the insurance company was used. The UK-specific results were derived entirely from pub-
licly available data and a synthetic dataset generated for this study, with no real UK life insur-
ance data being used. Therefore, this study does not involve new data collection from human
participants and participant consent was not applicable.

Results
Transfer learning application in the UK
The following section introduces the application of the transfer learning framework to the
UK, where internal mortality data is unavailable. This analysis establishes the foundation for
subsequent discussions and demonstrates a high level of agreement with expected outcomes.

The point of Fig 4 is to show the plausible transfer of knowledge from the countries to the
UK, according to their similarity. It is clear that the degree of proximity is more pronounced
in Europe, and therefore it makes more sense to resample from there than from the Latin
American countries.

Fig 5 shows the predicted number of deaths for the UK based on the transfer model for age
and gender. The remaining variables are not disclosed as they are considered to be insurer-
specific and require confidential background information for proper interpretation. The cat-
egories with the highest exposure and claims are based on more original data, indicating
greater reliability of the estimation and deserving of our focus.

Furthermore addressing the second research question, we aim to evaluate the transfer
model’s accuracy in matching the expected age-gender mortality rates using agreement met-
rics. CMI stands in for expected mortality rates in the UK’s insured population, given the lack
of access to internal portfolio data. Despite differences in datasets and modeling, we regard
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Fig 4. The composition of the exposure drawn from the countries for the synthetic dataset for the UK,
proportional to the similarity score.

https://doi.org/10.1371/journal.pone.0313378.g004

Fig 5. Exposure (bars) and predicted death counts (lines) by age and gender, derived from the synthetic-data-based transfer model. Age groups are defined
retrospectively, and modeling is conducted using a metric scale. A. Age. B. Gender.

https://doi.org/10.1371/journal.pone.0313378.g005

CMI as a reliable proxy for UK policyholders’ actual mortality rates. The analysis focused on
transferring insights about the relative mortality impact from different features in the data
as opposed to producing an accurate estimate of the overall rate of mortality. This decision
was made in part because it is expected that data will be available in the receiving country to
estimate the overall rate of mortality, either from publicly available resources, or more likely
from internal data that better reflects the specifics of the cohort being considered. Therefore,
for evaluation purposes, we use Spearman correlation, cosine similarity, and R-squared as
agreement metrics. These metrics do not consider the agreement of the difference in average
mortality, ensuring objectivity in our evaluation.

Table 3 provides these measures not only for the UK but also for 8 other countries in the
pooled dataset, as the transfer model’s predictive performance was also quantitatively exam-
ined for each of the 8 countries by pretraining the global model on the remaining seven.
Given that the highest possible score is 1 for all metrics, we are within the highest acceptable
range for the UK, as well as for the extended experiment.
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Table 3. Evaluation metrics for different countries.
Country Spearman Correlation Cosine Similarity R-squared
UK 0.9922 0.9878 0.9641
1 0.9221 0.9796 0.8641
2 0.8421 0.9253 0.8516
3 0.9711 0.9214 0.8912
4 0.9334 0.9658 0.8763
5 0.9242 0.9754 0.8773
6 0.8756 0.9564 0.8977
7 0.9360 0.8612 0.7822
8 0.9145 0.9700 0.8948

https://doi.org/10.1371/journal.pone.0313378.t003

While the table indicates a high level of precision in estimating the age-gender mortality
using the transfer learning framework, the following section proposes using the Drift model
to identify the cause of any remaining marginal discrepancies.

Fig 6 offers an initial insight into the disparities between the predictions of the transfer
model and the CMI mortality rates, specifically examining age and gender. Despite an overall
trend of underestimation in our estimates compared to CMI, our attention shifts to under-
standing the specific impacts of various features. Subsequently, we delve into the examina-
tion of age and gender as overlapping features present in both the predicted (transfer) and
expected benchmark (CMI) mortality rates. To ensure monotonicity, it may be desirable to
smooth the curves, i.e. to use them directly in pricing. We present our proposal for this in
S3 Appendix, but in the main body we continue with the original version in order to remain
faithful to the portfolio context and not to lose its specificity. Additionally, we offer the inclu-
sion of confidence intervals through bootstrapping method as a validation technique, to pro-
vide a more detailed assessment of the uncertainty associated with the predictions. From
Fig 7 it becomes evident that the confidence interval mostly contains the CMI, particularly

Fig 6. Comparison of UKmortality rates between Transfer Learning and CMI by age and gender. While transfer
weighted by similarity score shows the above approach in black, the blue line shows the alternative of resampling
only from the most similar country (MSC), which leads to a less accurate prediction.

https://doi.org/10.1371/journal.pone.0313378.g006
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Fig 7. Bootstrap validation for 95% confidence interval of (weighted) transfer results.

https://doi.org/10.1371/journal.pone.0313378.g007

for males, solidifying the reliability of the results, especially given the reliance on synthetic
datasets. The methodology details are documented in S4 Appendix.

Fig 8 illustrates the exponentiated coefficients of the Drift model, offering insights into
the relationship between the two mortality tables by quantifying deviations from the aver-
age ratio. The red dashed line at approximately 0.5 represents the exponentiated intercept
exp( ̂𝛽0), indicating the average ratio across all features. An exponentiated effect of 1 for a spe-
cific feature implies no impact on the ratio, suggesting effective capture of pattern differences
between the source and target countries for that feature.

The multiplicative effect of age in relation to the average ratio is approximately 1, indi-
cating that age does not significantly influence the relationship between the transfer model
and CMI. Although slight differences may exist in the age curve and average values, this sug-
gests that the transfer learning framework effectively captured the shape variances between
the other K (= 8) countries and the UK by age, resulting in a close replication of CMI. This

Fig 8. Exponentiated effects of age and gender on the ratio of transfer to CMI.The gray line represents the
no-effect line, while the red dashed line is the exponentiated intercept.

https://doi.org/10.1371/journal.pone.0313378.g008
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successful matching of age curves is a critical finding for insurance purposes, and lends con-
fidence to subsequent analyses. Despite being from a different country, the methodology
achieves a close match to the expected age curve, providing a strong basis for further analysis.

Regarding gender-specific mortality risks, while both the transferred results and CMI indi-
cate higher mortality rates for males than females, the transferred estimations may show slight
discrepancies: males are slightly overestimated and females underestimated compared to the
average mortality risk. However, these deviations appear minor and likely stem from cohort
distinctions between CMI and internal data, as well as cultural differences between the pri-
mary reference countries and the UK’s insurance mortality data, possibly reflecting subtle
cultural influences and evolving gender roles in different countries.

Building upon the strong alignment observed in the transfer learning process, the subse-
quent section investigates additional variables.

Improving baseline mortality through additional variables in the transfer
model
The Drift model, which actually goes beyond age and gender, examines additional variables
found in portfolio datasets but not included in the CMI. With the CMI serving as the insurer’s
base table, the exponentiated effects estimated by the Drift model for additional variables
provide direct insight to insurers. This allows them to assess the potential impact of includ-
ing these variables in the pricing model, and to determine possible loadings or discounts
accordingly.

For example, considering Feature A with values A1, A2, A3, A4, A5, A6, absent from the
CMI, Fig 9a shows that the predicted mortality rates increase from A1 to A6. Consequently,
the Drift model’s exponentiated effects reveal that policies falling under A1 have a 33% lower
mortality ratio compared to the average, while those under A6 exhibit a 24% higher ratio,
both ceteris paribus. Therefore, a UK insurer may include an extra risk factor in their pricing
strategy due to the relative risk of A1 being approximately 54% (67/124) of A6. This justifies
a 33% loading for A6 policyholders. It is suggested that selection effects would significantly
impact the risk profile. The estimation of all other variables is presented in S3 Appendix.

In summary, the transfer learning framework effectively provides mortality risk predic-
tions for the UK, leveraging a pretrained model from 8 other countries due to a lack of local
mortality portfolio data, while refining the model using open-source UK total population
mortality rates and data synthesized from the available countries accordingly to their simi-
larity degree. While the model performs well with less culture-specific risk factors, discrepan-
cies with CMI mortality tables highlight the need for evaluation using the Drift model. This
is essential for comprehensive risk assessment and to inform pricing strategies, particularly in
scenarios where data is not available.

Limitation of generalizability
Overall, the transfer model results provide notable advantages for generalizability, especially
when new country data is entirely absent. It allows us to leverage existing models trained on
data from other regions, thereby circumventing the need for extensive local data collection
and reducing both time and resource requirements. By utilizing knowledge from a previously
trained model, transfer learning can enhance performance in target countries that share simi-
lar characteristics with the source countries, effectively applying pretrained insights. However,
the absence of local data presents unique challenges. Transfer learning is most effective when
the source and target countries exhibit substantial similarity. As the disparity between these
countries increases, the effectiveness of transfer learning diminishes. For example, applying
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Fig 9. Feature A (with values A1-A6) evaluation as a risk factor for mortality. Transfer model results and evaluation of drift from CMI. (A) The
mortality rates for the UK are displayed on a logarithmic scale, segmented by Feature A. Red line represents CMI mortality rates. (B) Exponentiated
effects of Feature A on the ratio of transfer to CMI. The red line represents the exponentiated intercept, while the gray line represents the no-effect
line.

https://doi.org/10.1371/journal.pone.0313378.g009

a model trained only on South American countries to predict outcomes in Asian countries
may not be successful due to demographic, cultural, and economic differences. To address
these challenges, we have implemented several mechanisms. The Country similarity index
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considers external demographic, insurance, and mortality-specific characteristics, captur-
ing the degree of similarity between countries. This index aids in selecting appropriate source
countries, minimizing the risk of misaligned data transfer. Additionally, the Drift model
helps analyze discrepancies between source and target countries, offering a tool to understand
the limits of generalizability and the extent to which transfer learning can be applied. Boot-
strapping confidence intervals provide an additional layer of validation, helping to under-
stand potential biases and offering robust insights into model performance and reliability in
regions lacking local data. In practical terms, while the transfer learning framework holds
considerable promise, its generalizability in the absence of local data depends on the similarity
between source and target countries. By incorporating mechanisms like the Country similar-
ity index, Drift model, Bootstrapping confidence intervals we facilitate more informed and
reliable applications in regions with differing cultural, demographic, or economic conditions,
even when local data is completely missing.

Summary and outlook
This research presents a novel transfer learning framework designed to provide accurate mor-
tality risk predictions for the UK, despite the complete absence of local mortality portfolio
data. By leveraging pretrained and specialized models from eight other countries, along with
UK population mortality rates obtained from open sources and synthesized data, we refine
predictions for this data-scarce environment.

The framework establishes a solid foundation for mortality risk estimation and pricing,
particularly benefiting small countries with insufficient data. Our predictive model shows
strong agreement with the CMI mortality tables for age and gender, with only slight devia-
tions detected via the Drift model. Expert validation further supports the inclusion of addi-
tional variables to enhance mortality risk estimation.

The approach offers several practical benefits, including strong predictive performance,
reduced reliance on local data, and lower computational demands, making it efficient for
multi-centre studies. It simplifies the development and deployment of ML models by elim-
inating the need for extensive training data in each new country. Our findings suggest that
transfer learning is particularly effective for factors that are less influenced by cultural differ-
ences, although it may experience drift when capturing local specificities.

While the reliance on synthetic data helps overcome data scarcity, it may introduce uncer-
tainties, particularly when source countries differ demographically or economically from the
target country. The effectiveness of the Drift model also depends on the quality and similarity
of external data used in the transfer learning process.

Future research could focus on addressing uncertainties in predictions by incorporat-
ing additional socio-economic and regional factors that may further improve mortality pre-
dictions. Expanding the framework to other regions and markets, especially those lacking
sufficient local data, would provide valuable insights into its broader applicability. Testing
the model in different settings could refine its use for life insurance product development in
underserved demographic segments and emerging markets.
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Mortality simulations for insured and general

populations

Asmik Nalmpatiana, Christian Heumanna

aDepartment of Statistics, LMU Munich, Germany

Abstract

This study presents a framework for high-resolution mortality simulations

tailored to insured and general populations. Due to the scarcity of detailed

demographic-specific mortality data, we leverage Iterative Proportional Fit-

ting (IPF) and Monte Carlo simulations to generate refined mortality ta-

bles that incorporate age, gender, smoker status, and regional distributions.

This methodology enhances public health planning and actuarial analysis

by providing enriched datasets for improved life expectancy projections and

insurance product development.

Keywords: mortality, simulation, actuarial science, smoker status, insured

population, statistical modeling

1. Statement of need

Detailed and disaggregated mortality simulations are critical for under-

standing variations in mortality risk across different demographic groups.

However, acquiring high-quality, granular mortality datasets is challenging

due to privacy restrictions, proprietary control over insurance data, and le-

gal barriers to data sharing. This lack of detailed data affects public health

policy, risk assessment, and insurance calculations.

Current efforts, while valuable, often suffer from limited scope, resolu-

tion, or are confined to specific demographics. For instance, methodologies

for estimating mortality rates from narrow age windows (Goldstein et al.,

2023), small-area mortality estimation (Denecke et al., 2023), and COVID-

related predictions (Duchemin et al., 2022) demonstrate the utility of such
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approaches but also underscore the inadequacy of existing data for high-

resolution research. Further studies have shown the potential of granularity

for improving mortality modeling but also highlight the challenges associated

with data standardization and accessibility (RKI, 2014; El Emam et al., 2011;

Nusselder and Mackenbach, 1997).

For insured populations, precise mortality estimates are essential for set-

ting fair premiums, evaluating longevity risk, and designing insurance prod-

ucts that accurately reflect demographic differences. In the absence of com-

prehensive datasets, actuaries and researchers must rely on aggregated data,

leading to potential biases in mortality estimates.

This study introduces a simulation-based framework that overcomes these

limitations by generating synthetic but statistically accurate mortality datasets.

By enriching mortality tables with demographic covariates, we enable more

precise analysis of mortality trends, supporting both public health initiatives

and actuarial applications.

2. Notation

In this section, we provide a summary of the notation and symbols used

throughout the paper for clarity and ease of reference. Our analyses are

based on multi-dimensional demographic cells (e.g., combinations of age,

gender, smoker status, region, etc.), which are often indexed using multiple

subscripts. To simplify later model specification, we introduce a unified in-

dexing scheme that maps each multi-dimensional demographic subgroup to

a single index.

• xijk: Count (e.g., population or deaths) in the demographic subgroup

defined by the combination of dimensions i, j, and k. For example, i

might index age groups, j gender, and k smoker status.

• xij·: Marginal count obtained by summing over the third dimension

(e.g., smoker status), i.e., xij· =
∑

k xijk.

• πijk: Joint probability (e.g., population share) associated with sub-

group (i, j, k).

To facilitate model estimation, we collapse and re-index the multidimen-

sional demographic structure into a single flat index i, where each value of

2

103



i corresponds to a unique combination of categorical levels across all dimen-

sions (e.g., a 40-year-old female smoker in Bavaria). This one-dimensional

indexing refers to demographic subgroups — not individual persons — and

simplifies notation in subsequent modeling steps such as regression:

• Di: Observed number of deaths in the insured population for demo-

graphic subgroup i.

• DP
i : Observed number of deaths in the general population for demo-

graphic subgroup i.

• Ei: Exposure (e.g., population size or person-years) for subgroup i.

• µi: Mortality rate for subgroup i in the insured population, to be esti-

mated.

• µ̂i: Estimated mortality rate for subgroup i in the insured population.

• f1(agei): Smooth function capturing the non-linear effect of age on

mortality.

• f2(D
P
i ): Smooth function capturing the relationship between deaths in

the general population and mortality in the insured population.

• genderi×smokeri: Interaction term indicating combined effect of gender

and smoking status in the model.

Throughout the paper, we use the term *demographic subgroup* to refer

to a unique combination of variables such as age, gender, region, and smoker

status. When referring to the index i, we mean a specific demographic sub-

group (not an individual), and in the context of modeling, we treat each

subgroup as one observation unit.

3. Methodology

To address the challenge of generating high-resolution mortality data,

our methodological framework proceeds in three key stages. It combines

demographic inference, synthetic data generation, and advanced statistical

modeling to create reliable and granular mortality estimates for both insured

and general populations:

1. We start by estimating mortality rates using available marginal distri-

butions of demographic variables such as age, gender, and smoker sta-
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tus. Due to limitations in fully observed data, we incorporate known

constraints via marginals to approximate mortality across subgroups.

2. Using Iterative Proportional Fitting (IPF), we derive joint distributions

over the population structure and associated mortality patterns that

are consistent with the known marginals. These joint distributions

serve as the basis for generating new data via Monte Carlo simulation,

where death counts are sampled from Poisson distributions according

to the inferred demographic composition.

3. The simulated datasets are then used to estimate mortality rates with

greater granularity. Specifically, we apply Generalized Additive Mod-

els (GAMs) with Poisson assumptions and demographic covariates to

account for non-linear effects and interactions, enabling flexible and

robust predictions even in sparse data settings. This modeling step en-

ables us to infer insured population mortality rates from general pop-

ulation data, particularly in countries where insured-specific data is

limited or unavailable.

3.1. Iterative Proportional Fitting

IPF is a widely used deterministic method for adjusting contingency ta-

bles to match known marginal totals and has been a cornerstone in statistical

analysis since its introduction (Deming and Stephan, 1940). It iteratively re-

fines initial estimates to ensure consistency across multiple demographic di-

mensions while preserving the structure of the observed data. Renowned for

its efficiency and robustness, IPF calculates non-integer weights that reflect

how representative each individual is within each zone, effectively reweighting

the data to align with known marginal totals. This method is particularly ad-

vantageous in scenarios requiring the estimation of internal cells of a matrix

based on these marginals, as it maximizes entropy by exploring the number

of configurations that could yield the same marginal counts (Cleave et al.,

1995).

The IPF process involves iteratively adjusting an input matrix to ensure

that its internal cells align with given marginal totals, which typically rep-

resent known values across an entire population. For example, in voter mi-

gration analysis, the input matrix might represent voter preferences across

4
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different election years, with known marginal totals indicating actual vote

distributions. Each iteration of IPF refines the matrix by alternately adjust-

ing row and column totals to match the respective marginal distributions,

using Maximum Likelihood estimation to update internal cell values. How-

ever, convergence is not always guaranteed, particularly when zero entries

are present, necessitating practical constraints such as iteration limits or tol-

erance thresholds for deviations (Pukelsheim, 2014).

In our context, IPF is employed to calculate multi-dimensional distribu-

tions essential for population simulations. Given that mortality data com-

prises populations and deaths within each subgroup, our objective is to de-

termine the joint distribution for each additional variable. For instance,

knowing the age and state population distributions, we aim to compute the

joint distribution across age and state categories. Consider a multiway ta-

ble in N dimensions, each representing a sociodemographic variable. For

illustrative purposes, assume N = 3. The multiway table πijk contains un-

known components, subject to constraints defined by marginal distributions

{xij·, xi·k, x·jk}. The constraints ensure that the sum of observations in each

category matches the known marginals and the total number of observa-

tions, n. The IPF process begins with an initial estimate π
(0)
ijk and proceeds

through iterations to adjust the table according to the given marginals. The

algorithm can be extended to higher dimensions, facilitating the synthesis of

population data at varying resolutions. For instance, when considering three

demographic variables, one iteration of the IPF process can be represented

as follows:

π
(1)
ijk =

1

n

xij·π
(0)
ijk

π
(0)
ij·

(1)

π
(2)
ijk =

1

n

xi·kπ
(1)
ijk

π
(1)
i·k

(2)

π
(3)
ijk =

1

n

x·jkπ
(2)
ijk

π
(2)
·jk

(3)

Each equation represents an update step where the estimated cell proba-

bility πijk is iteratively adjusted to match the given marginals. Specifically,
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equation (1) adjusts the initial estimate π
(0)
ijk to align with the marginal totals

xij·, ensuring consistency along the first dimension. Equation (2) further re-

fines πijk using the marginal totals xi·k from the second dimension. Equation

(3) completes the iteration by incorporating x·jk, ensuring alignment with

the third dimension.

This iterative process continues until convergence, ensuring that the syn-

thesized dataset accurately represents the given marginal distributions across

all dimensions (Agresti, 2012).

Incorporating additional variables, such as smoker status, into mortality

risk assessments requires accounting for distinct mortality risks while keeping

all other characteristics constant. By applying known hazard ratios for dif-

ferent categories, we can refine mortality tables to reflect these differences ac-

curately. Specifically, we first estimate total deaths using age-gender-specific

mortality rates for a hypothetical population of 100.000. Then, using the

given hazard ratios, we allocate these deaths proportionally across smoker

and non-smoker groups of the same total size. This approach ensures that

the original age-gender mortality risks are preserved within each subgroup

while maintaining the intended hazard ratio structure.

We implemented our methodology using the mipfp R package. For multi-

dimensional interactions (e.g., age-gender, gender-smoker), there are two pos-

sible approaches:

1. Separate IPF runs: One option is to run IPF separately for different

subgroups (e.g., separately for males and females) while ensuring that

each subgroup aligns with the corresponding one-dimensional marginal

distributions (e.g., for age, state, and smoker status).

2. Incorporating cross-tabulated constraints: Alternatively, the mipfp

package allows for directly incorporating interactions by using cross-

tabulated marginal distributions (e.g., age-gender bivariate marginals).

This approach provides a more compact implementation, reducing the

degrees of freedom for the algorithm and enabling faster convergence

without compromising accuracy.

The advantage of including cross-tabulated constraints is that it ensures

dependencies between variables are explicitly modeled, which becomes in-
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creasingly relevant as the number of interaction dimensions grows. This

results in a more efficient and scalable implementation, particularly when

dealing with complex dependencies among demographic variables.

In summary, IPF serves as a foundational method for population and

death synthesis, enabling the creation of detailed and accurate demographic

distributions necessary for high-resolution mortality data simulations.

3.2. Monte Carlo Simulation

When analytical solutions are unavailable, Monte Carlo simulations pro-

vide a solid alternative by approximating these expectations through the sim-

ulation of random processes. Using predefined probability distributions, we

generate synthetic mortality scenarios that allow for variability assessment.

By averaging the simulated values, we obtain estimates that often closely

approximate the true expectations. This approach leverages the principle

that sample averages are frequently reliable estimators of their correspond-

ing population expectations (Robert and Casella, 2004):

θ̄n =
1

n

n∑

i=1

Xi → θ = E[X]

This convergence is underpinned by the assumption that the data are

independent and identically distributed (iid) from a distribution with finite

variance. The Central Limit Theorem (CLT) provides the convergence in

distribution of the sample mean to a normal distribution:

√
n(θ̄n − θ′)

d−→ N (0, σ2)

where σ2 = E[X2] − (E[X])2 represents the variance of the underlying

distribution. This theorem is instrumental in constructing approximate con-

fidence intervals for the Monte Carlo error, providing a measure of the relia-

bility of our estimates.

Thus, Monte Carlo simulations are employed in this study to generate

repeated samples from Poisson distributions, which are used to model count

data such as yearly deaths given population size as exposure. This prob-

abilistic approach allows us to quantify the variability and uncertainty of

mortality projections. For a Poisson distribution, the variance is equal to

7
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its expected value, which we utilize to assess the dispersion of our mortality

estimates. This framework is essential for ensuring that simulated distri-

butions align with empirical observations. While the mean mortality rate

remains unchanged, Monte Carlo provides insights into variance, skewness,

and extreme outcomes, helping to better understand the probability of rare

but significant deviations (tail risks).

3.3. Generalized Additive Models

GAMs offer a flexible approach for estimating mortality rates in insured

populations by leveraging population-level mortality data and incorporating

demographic variables such as age, gender and smoker status. The model

assumes that the observed number of insured deaths (Di) follows a Poisson

distribution, a common choice for modeling count data in mortality studies.

The GAM framework is specified with Poisson distributional assump-

tion and log-link. The use of Poisson regression ensures non-negativity of

predicted counts and facilitates interpretability through the log-link func-

tion. Incorporating smooth terms enhances the model’s ability to capture

these patterns while avoiding overfitting. The Poisson framework and GAM

methodology are well-established in demographic and actuarial research.

Studies such as McCullagh and Nelder (1989) and Haberman and Renshaw

(1996) highlight the use of generalized linear models, including Poisson re-

gression, for mortality analysis. Additionally, Currie et al. (2004) demon-

strate the advantages of smoothing techniques for estimating mortality rates

in sparse data settings. The inclusion of the offset term, log(Ei), ensures that

the model predicts mortality rates rather than raw death counts, enabling

meaningful comparisons across demographic groups with varying levels of

exposure.

Di ∼ Poisson(µi · Ei), (4)

Thus, the proposed model for expected insured mortality rates µ̂i is as

follows:

log(µ̂i) = f1(agei) + f2(D
P
i ) · genderi × smokeri + log(Ei) (5)
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To ensure reliable estimates in countries where insured mortality rates

are unavailable, we train the model on data from the most similar country

where insured rates exist. We assume that the ratio between insured and

general population mortality rates remains constant across comparable de-

mographic variables between source and target country. If this assumption

is difficult to justify, existing research on country similarity scores, based on

insurance and mortality characteristics, can provide guidance (Nalmpatian

et al., 2024). These scores help identify the most analogous countries for

model training and adjustment, thereby improving the robustness of mortal-

ity rate predictions.

Overall, the proposed model provides a robust framework for predicting

insured mortality rates by leveraging population-level data and demographic

segmentation. Its foundation in Poisson regression and the incorporation of

GAM smooth terms make it particularly well-suited for handling the com-

plexities of mortality data.

4. Application

To demonstrate the applicability of our methodology in generating gran-

ular mortality data for both insured and general population, we explore three

distinct scenarios for Germany, Italy, and Switzerland. Mortality data typ-

ically consists of exposure (i.e., population) and death counts, and the IPF

method can be applied to both.

Scenario 1 focuses on enhancing demographic precision while assuming

uniform mortality rates across states. Scenarios 2 and 3 incorporate an addi-

tional mortality risk factor (smoker status) with distinct hazard rates, while

Scenario 3 further extends the methodology to general population data by

incorporating an insured population adjustment.

The application begins by selecting relevant demographic variables and

loading distributional assumptions from available general population data

(Table 1), under the assumption that similar patterns apply to insured pop-

ulations. If specific insured population data is available, it can be directly

incorporated to improve accuracy.

9
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Table 1: Overview of data sources for marginal distributions by country
Germany Italy Switzerland

Population and deaths by age and gender HMD (2023) HMD (2023) HMD (2023)

Population by smoker and gender Zeiher et al. (2017) Semyonov et al. (2012) Gmel et al. (2017)

Population by state Destatis (2025) ISTAT (2025) BFS (2025)

Hazard rates smokers vs. non-smokers – Menotti et al. (2014) McEvoy et al. (2012)

Base mortality rates (general population) HMD (2023) HMD (2023) HMD (2023)

Base mortality rates (insured population) DAV (2022) ANIA (2014) –

4.1. Scenario 1: Enhancing population granularity using base insurance mor-

tality tables

We begin with a base mortality table segmented by age, gender, and

smoker status for the insured population in Germany. The objective is to

improve demographic precision by incorporating state-level variations while

assuming uniform mortality rates across states. Using marginal demographic

distributions (age-gender, smoker-gender, and state) along with age-gender-

smoker-specific DAV insurance rates, we disaggregate mortality data to the

state level using IPF and generate Monte Carlo simulations. This approach

enhances granularity without introducing additional mortality risk differ-

entiation and is extendable to other demographic variables. This scenario

exemplifies a minimal input data case, demonstrating what can be achieved

when only marginal population distributions of an additional variable are

available. It highlights the capability of IPF to enhance segmentation by

adding one extra demographic variable (state), even in the absence of direct

state-specific mortality data. Although we do not possess state-specific mor-

tality rates, death counts still vary across states because the mortality rates

are applied to state-segmented population distributions, reflecting differenti-

ated demographic patterns. Simultaneously, Monte Carlo simulations assist

in quantifying uncertainty in mortality rates by generating confidence inter-

vals that incorporate population segmentation effects. This is particularly

crucial for small states, where mortality estimates can be highly uncertain.

The Poisson distribution assumes that the variance equals the mean death

count, resulting in different variances for each state.
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4.2. Scenario 2: Accounting for distinct mortality risks in addition to popu-

lation granularity

Unlike Scenario 1, this scenario introduces an additional dimension of

mortality risk differentiation while refining demographic segmentation. Start-

ing with a base mortality table segmented by age and gender for the insured

population in Italy, we extend mortality data to include smoker status and

state-level variations. We assume that smokers and non-smokers exhibit

distinct hazard ratios, requiring separate mortality rate estimates for each

group. This enables a more realistic and differentiated mortality structure

while preserving demographic precision. In summary, while Scenario 1 uses

IPF to refine population segmentation with fixed mortality rates, in Scenario

2, we extend this by disaggregating death counts while keeping the popula-

tion constant, thereby refining mortality rates segmentation. Of course, if

state-specific mortality data were available, it could be directly incorporated.

However, the goal of Scenario 1 is to illustrate how demographic refinements

alone (without additional mortality data) already add value.

4.3. Scenario 3: Extending granular mortality data to the general population

This scenario builds upon Scenario 2 but begins with a base mortal-

ity table for the general population instead of the insured population. The

objective is to generate an age-gender-smoker-state mortality table for the

entire population, not just insured individuals. Additionally, assuming pro-

portional relationships between insured and general populations in both the

target (Switzerland) and source (Germany) countries, we employ a GAM

with Poisson regression and an offset to infer mortality estimates from the

general to the insured population. This approach demonstrates how base

population mortality rates can be adjusted to reflect insured-specific risk

characteristics.

Beyond pure simulated mortality data, we provide visual analyses to fa-

cilitate comparisons between simulated, population, and insured mortality

rates across multiple countries. These visualizations offer an intuitive means

of evaluating the plausibility and consistency of the simulated rates. Fur-

thermore, the application includes a comprehensive suite of validation tests
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to ensure data integrity and accuracy in rate calculations. These tests verify

the consistency of demographic proportions and hazard ratios, reinforcing

the reliability of the simulated datasets and derived insights.

5. Results

This section details the outcomes of our study, focusing on the disag-

gregation of mortality data using IPF and Monte Carlo simulations across

various countries. The results are accessible for review and download via an

interactive Shiny app dashboard, which includes a 95% confidence interval.

The app, along with the code and datasets, is freely available on GitHub.

For Germany, we disaggregated the population data using known marginal

distributions from open sources, assuming that the insurance population mir-

rors the general population. The distributions for gender-smoker, state, and

age-gender are presented in Tables 2, 3, and 4, respectively.

Table 2: Smoker-gender population distribution

Smoker Gender

Female Male

Yes 20.8 27.0

No 79.2 73.0

Using these distributions, we applied IPF to obtain the joint age-gender-

smoker-state distribution. Table 5 shows a portion of the resulting distribu-

tion.

Assuming a population size of 1 million, we utilized the derived distribu-

tion to estimate expected deaths by applying it to the base mortality table.

This involved drawing samples and calculating expected mortality figures,

which were then used as inputs for Monte Carlo simulations. Through these

simulations, we established 95% confidence intervals by identifying the 2.5th

and 97.5th percentiles of the simulated mortality rates. Figure 1 provides a

detailed visualization of the final mortality rates for Germany, categorized

by state, gender, and smoker status. The figure reveals that smaller states

exhibit wider confidence intervals, indicating greater variability and uncer-

tainty in mortality estimates due to their smaller population sizes. Smokers
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Table 3: State population distribution

State Population

Baden-Württemberg 13.4

Bayern 15.9

Berlin 4.47

Brandenburg 3.05

Bremen 0.817

Hamburg 2.26

Hessen 7.58

Mecklenburg-Vorpommern 1.92

Niedersachsen 9.64

Nordrhein-Westfalen 21.5

Rheinland-Pfalz 4.93

Saarland 1.17

Sachsen 4.83

Sachsen-Anhalt 2.58

Schleswig-Holstein 3.50

Thüringen 2.51

Table 4: Age-gender population distribution

Age Gender

Female Male

20 1.439913 1.5818712

21 1.507098 1.6599224

22 1.503754 1.6463640

23 1.483638 1.6237836

24 1.515971 1.6515359

25 1.573950 1.7035385

26 1.609090 1.7303510

27 1.671727 1.7916157

28 1.823225 1.9605025

29 1.809394 1.9270780

30 1.846709 1.9747674

31 1.812673 1.9276493

32 1.790005 1.8826642

33 1.739514 1.8217951

... ... ...

demonstrate higher mortality rates compared to non-smokers across all de-
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Table 5: Result after IPF: Age-gender-state-smoker population distribution

Age Gender State Smoker Population

20 M Baden-Württemberg Yes 0.02852311

21 M Baden-Württemberg Yes 0.02993047

22 M Baden-Württemberg Yes 0.02968600

23 M Baden-Württemberg Yes 0.02927884

24 M Baden-Württemberg Yes 0.02977925

25 M Baden-Württemberg Yes 0.03071692

26 M Baden-Württemberg Yes 0.03120039

27 M Baden-Württemberg Yes 0.03230506

28 M Baden-Württemberg Yes 0.03535030

29 M Baden-Württemberg Yes 0.03474762

30 M Baden-Württemberg Yes 0.03560752

31 M Baden-Württemberg Yes 0.03475792

32 M Baden-Württemberg Yes 0.03394678

33 M Baden-Württemberg Yes 0.03284924

... ... ... ... ...

mographic groups, highlighting the essential impact of smoking on mortality.

Additionally, males consistently show higher mortality rates than females,

underscoring gender as a critical factor in mortality risk assessment. These

observed trends are consistent across all states, reflecting our model’s abil-

ity to account for the distribution of the population across different states.

While we assume that the mortality rates themselves are consistent across

states, the model adjusts for the proportions of the population within each

state. This means that the model effectively captures demographic patterns

in mortality by considering how populations are distributed across states.

The consistency in trends highlights the ability of our methodology in ap-

plying these demographic distributions accurately.

Aggregating over all states, Figure 2 shows that simulated mortality rates

align with the base table. For smokers, insurance mortality rates exceed

population rates, whereas non-smokers show the opposite trend.

For Italy, since the original base table lacked smoker distinction, we first

disaggregated the base mortality table using IPF, starting with age-gender

specific mortality data (Table 6) from the ANIA insurance population. We

applied a hazard ratio of 1.4 to distinguish between smokers and non-smokers,
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Figure 1: Simulated mortality rates for Germany.

based on the marginal mortality risks (0.014 vs. 0.010). While this ratio was

applied uniformly across all subgroups in our primary scenario, the methodol-

ogy allows for hazard ratios to be specified in a more granular way—varying

across age-gender combinations or even higher-dimensional interactions if

such detailed information is available.

The resulting age-gender-smoker mortality rates are shown in Table 7 and

Figure 3. The curves maintain their shape but shift upwards for smokers and

downwards for non-smokers, according to the predefined hazard ratio.

Figure 4 demonstrates that, unlike Germany, Italy’s population mortality

rates for both smokers and non-smokers are generally lower.

For Switzerland, the base table lacked smoker distinction and was derived

from the general population. Disaggregation into smoker and non-smoker
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Figure 2: Aggregated base (insurance), simulated and population mortality rates for Ger-

many.

Table 6: Age-gender mortality rates for insurance population in Italy

Age Gender Rates

20 M 0.000532

21 M 0.000526

22 M 0.000518

23 M 0.000508

24 M 0.000492

25 M 0.000506

26 M 0.000528

27 M 0.000572

28 M 0.000634

29 M 0.000705

... ... ...

categories resulted in distinct mortality curves. Assuming the insured-to-

general population ratio mirrors that of Germany, we predicted Swiss popula-

tion trends, as shown in Figure 5. This assumption validates the consistency

of our methodology across different national contexts.

Overall, the results demonstrate the effectiveness of our methodology in
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Table 7: Resulting age-gender-smoker mortality rates for insurance population in Italy

Age Gender Smoker Rates

20 M Yes 0.000621

20 M No 0.000444

21 M Yes 0.000614

21 M No 0.000438

22 M Yes 0.000604

22 M No 0.000431

23 M Yes 0.000593

23 M No 0.000424

24 M Yes 0.000574

24 M No 0.000410

Figure 3: Disaggregated base mortality table in Italy with IPF.

disaggregating and analyzing mortality data across different countries, pro-

viding valuable insights into population-specific mortality trends.

6. Limitations

Our framework lays a strong foundation for mortality simulations in both

insured and general populations, howver there are several limitations that
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Figure 4: Aggregated base (insurance), simulated and population mortality rates for Italy

Figure 5: Inferring insurance mortality for Switzerland based on Germany
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present opportunities for future research:

A key limitation in Scenarios 1 and 2 is the potential for selection bias

when general population marginals are used in the absence of insured-specific

data. Our current approach allows for insured-specific marginals to be in-

putted when available, which would directly incorporate these differences

into the model. However, when such data is unavailable, we use general

population marginals as a reasonable approximation. This method acknowl-

edges that some selection effects, such as smoker prevalence, may not be fully

captured. An alternative approach could involve adjusting the IPF method

to explicitly model selection effects, though this would still require assump-

tions about the insured distribution if direct data were unavailable. To ad-

dress the limitations of using general population data, Scenario 3 employs

a GAM with Poisson regression. This approach adjusts insured mortality

estimates based on observed demographic differences, helping to account for

systematic differences between insured and general mortality patterns be-

yond simple demographic matching. This adjustment highlights the need for

more sophisticated modeling techniques when insured-specific marginals are

not available. Future research could integrate additional data sources, like

coverage amounts or policy duration, to better model selection effects.

The current model’s effectiveness is contingent on the availability and

granularity of demographic data. While the methodology allows for exten-

sions to additional demographic variables, the primary challenge remains ob-

taining sufficiently granular data to support these extensions. For Germany

for example, we disaggregate population by state and apply uniform mor-

tality rates, assuming that differences in mortality stem from demographic

composition rather than state-specific factors. This simplification overlooks

regional disparities in healthcare, environment, or socioeconomic conditions

due to the absence of state-level mortality data. Future research could focus

on expanding data sources and improving data collection methods.

While Monte Carlo simulations help quantify uncertainty, our approach

assumes independent mortality realizations across subgroups. In reality,

mortality risks may be correlated across demographic groups, influenced by

shared socioeconomic factors. Future work could explore these dependencies

to offer more elaborated risk assessments.
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Our framework is adaptable to various countries, yet its accuracy hinges

on data availability. We have incorporated data from Germany, Italy, and

Switzerland, but the quality and granularity of inputs differ across regions.

Further validation with additional datasets would be beneficial to assess the

approach’s generalizability to other markets.

7. Summary

In this study, we addressed the challenge of simulating detailed mortal-

ity data for both insured and general populations. By integrating multi-

dimensional distributional constraints, we employed IPF, enabling the han-

dling of complex demographic interactions and the application of Monte

Carlo simulations. Our approach leverages the mipfp R package, facilitating

efficient and scalable modeling of population distributions while maintaining

accuracy.

We disaggregated mortality data, including both population and death

counts, for Germany, Italy, and Switzerland, taking into account demographic

distributions like age, gender, smoker status, and state, along with their

interactions. Our findings show that the simulated mortality rates closely

match the base tables when aggregated at a higher level. They also provide

significant insights into demographic impacts on mortality at a more granular

level, generating synthetic insured and general populations while preserving

realistic distributional assumptions.

As a prototype, this study presents a robust, privacy-compliant method-

ology that advances mortality research and actuarial science. Each scenario

can be further extended to include more countries, additional variables, or

more complex dimensional interactions. The tools and datasets developed are

accessible through an open-source interactive dashboard, promoting trans-

parency and further research opportunities. Additionally, the code is avail-

able for reproducibility and potential extensions. For an overview of insur-

ance mortality tables from other countries, please refer to the OECD (2023)

publication.
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