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Abstract

High-dimensional datasets often exhibit complex group structures and interactions, posing
challenges to traditional variable selection methods. This dissertation addresses these chal-
lenges through five interrelated papers, each advancing statistical boosting for complex data.

The first paper introduces methodological extensions for boosting to enable sparse-group
variable selection, called sparse-group boosting. The method is inspired by the sparse-
group lasso and utilizes component-wise and group-componentwise ridge regression com-
bined through a mixing parameter. Theoretical properties of the group/variable selection
process are studied.

Building on this theoretical development, the second paper operationalizes the sparse-group
boosting method by introducing the R package ’sgboost’, which implements sparse-group
boosting and associated model interpretability tools. These include sparse group-variable
importance and coefficient paths. Practical guidelines, including R code for using sparse-
group boosting, are provided. In addition, a new method for reducing group selection bias
for boosting is presented. The aim is to prevent the group size and structure from distorting
the selection chances of specific groups.

The third paper illustrates the applicability of sparse-group boosting in economic and envi-
ronmental data analysis. Here, the importance of groups and individual variables is analyzed
to explain their contribution to the financial well-being of farmers in Chile and Tunisia.

The fourth paper deals with the problem of identifying interactions in high-dimensional
data while preserving a stable selection of the main effects using a two-step boosting ap-
proach. The method uses componentwise boosting, only considering the main effects. After
the first model is stopped, the base-learners are changed such that only interaction effects
are boosted, starting with the negative gradient of the first model in the first iteration. The
method is used to predict farmers’ vulnerability to five different climate hazards.

The fifth paper also deals with the problem of stable selection of interaction effects via boost-
ing through a 2-step approach. Instead of fitting a boosted additive model to the observed
outcome, the same model is fitted to the predictions of a random forest. The idea is tested
in a case study predicting zoo visitors.






Zusammenfassung

Hochdimensionale Datensétze weisen oft komplexe Gruppenstrukturen und Interaktionen
auf, was herkdmmliche Methoden zur Variablenauswahl vor Herausforderungen stellt. Durch
fiinf miteinander verbundene Arbeiten, befasst sich diese Dissertation sich mit den jewiligen
Herausforderungen, um das statistische Boosting fiir komplexe Daten weiterentwickeln.

Die erste Arbeit prasentiert methodische Erweiterungen des Boostings zur sparsamen Aus-
wahl von Gruppenvariablen, das sogenannte Sparse-Group Boosting. Die Methode ist vom
Sparse-Group Lasso inspiriert und kombiniert komponentenweise sowie gruppenweise ridge
regression durch einen Mischparameter. Die theoretischen Eigenschaften des Selektionspro-
zesses von Gruppen und Variablen werden untersucht.

Im zweiten Beitrag wird das R-Paket ,,sgboost “ vorgestellt, welches das Sparse-Group Boos-
ting und damit verbundene Werkzeuge zur Modellinterpretation implementiert. Dazu gehoren
Metriken und Visualisierungen zur Gruppenvariablen-Wichtigkeit und Koeflizientenpfade.
Zusatzlich werden praktische Leitlinien einschliefllich R-Code fiir die Verwendung von Sparse-
Group Boosting bereitgestellt. Zudem wird eine neue Methode zur Reduktion von Gruppen-
Selektionsbias fiir boosting vorgestellt. Dabei soll verhindert werden, dass die Gruppengrofie
und Struktur die Auswahlchance einzelner Gruppen verzerrt.

Die dritte Arbeit zeigt die Anwendbarkeit von Sparse-Group Boosting bei der Analyse 6ko-
nomischer und 6kologischer Daten. Dabei wird untersucht, welchen Beitrag Gruppen- und
Einzelvariablen zum finanziellen Wohlbefinden von Landwirt:innen in Chile und Tunesien
leisten.

Die vierte Arbeit widmet sich dem Problem, Interaktionen in hochdimensionalen Daten
zu identifizieren, ohne dabei die stabile Auswahl der Haupteffekte zu verlieren. Hierzu wird
ein zweistufiger Boosting-Ansatz entwickelt: In der ersten Phase erfolgt komponentenweises
Boosting der Haupteffekte. Nach dem Stopp des ersten Modells werden nur noch Interak-
tionen beriicksichtigt, wobei das Modell mit dem negativen Gradienten aus der ersten Phase
startet. Die Methode wird fiir die Vorhersage der Vulnerabilitdt von Landwirten gegeniiber
fiinf verschiedenen Klimarisiken verwendet.

Die fiinfte Arbeit befasst sich ebenfalls mit dem Problem der stabilen Auswahl von Inter-
aktionseffekten mittels Boosting durch einen zweistufigen Ansatz. Anstatt ein geboostetes
additives Modell an die beobachtete Zielgrofle anzupassen, wird das gleiche Modell an die
Vorhersagen eines Random Forest angepasst. Die Methode wird in einer Fallstudie zur
Prognose von Zoobesuchern getestet.
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Summary and Discussion



Chapter 1

Structured Variable Selection
with Boosting: An Overview of
Contributions

Group-structured variable selection lies at the heart of many scientific and engineering chal-
lenges, from genomics to climate modeling, economics, and medicine. In an age of data
abundance, researchers increasingly face the task of identifying a small, meaningful subset
of predictors from thousands of potential candidates, often embedded in complex structures
such as functional groups or interactions. This problem, known as variable selection, is cen-
tral not only to statistical modeling but also to ensuring interpretability, reproducibility, and
scientific insight. While machine learning approaches often prioritize predictive performance,
statistical methods such as regularized regression and boosting remain highly competitive in
high-dimensional scenarios due to their ability to enforce sparsity and structure, leading to
more stable and interpretable models [George, 2000, Biihlmann and Hothorn, 2007, Heinze
et al., 2018].

This thesis contributes to this ongoing effort by enhancing boosting algorithms for struc-
tured, interpretable variable selection in high-dimensional data.

Applications of variable selection methods - such as the lasso or stepwise regression - can be
found across disciplines: from the social sciences [Hindman, 2015, Haehner et al., 2024, Ofori
et al., 2024], physical sciences [Gholami et al., 2023, Geng et al., 2023, Robbins et al., 2024],
and life sciences [Fei et al., 2023, Wu and Zeng, 2024,Guo et al., 2024], to technology and engi-
neering [Wang et al., 2023,Zhou et al., 2024, Yan et al., 2024], and even the humanities [Greb
et al., 2018, Yaworsky et al., 2020, Anglisano et al., 2022]. Beyond regression, sparsity plays
a central role in many branches of statistical learning, including sparse covariance estima-
tion [Bien and Tibshirani, 2011], sparse principal component analysis (PCA) [Zou et al.,
2006], and sparse representations in neural networks [Gripon and Berrou, 2011].

Achieving a sparse model in high-dimensional spaces is inherently complex due to the com-
binatorial explosion of potential predictor subsets, often complicated by multicollinearity
and structured covariates [Heinze et al., 2018]. These challenges are exacerbated by the so-
called “curse of dimensionality” [Heinze and Dunkler, 2017, Smith, 2018]. Model instability
can undermine the reliability of clinical predictions [Efthimiou et al., 2024], while in climate
research, unstable variable selection impacts predictions of environmental phenomena such
as droughts or wind speeds, with potential policy consequences [Rekha Sankar and Pancha-
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pakesan, 2024].

High-dimensional data frequently exhibit a grouped structure, either intrinsically - as in gene
pathways or psychometric constructs - or induced by the covariance structure or through
encoding categorical variables [Agarwal, 2011, Gogol et al., 2014]. For instance, in genomics,
gene expressions are grouped into pathways representing biological processes [Caspi et al.,
2012]. Methods like the group lasso [Yuan and Lin, 2006] and group-wise boosting [Kneib
et al., 2009] have been proposed to address these structures through group-level selection.

However, modeling interactions introduces an additional layer of complexity. Consider-
ing all possible interactions vastly increases the dimensionality of the design matrix and
complicates the distinction between main and interaction effects [Zhou et al., 2021]. This
dissertation focuses on addressing these challenges within the flexible framework of boosting
to advance variable selection in high-dimensional settings.

Boosting-based methods offer unique advantages for structured, high-dimensional data. Un-
like traditional regression approaches, boosting fits models sequentially to residuals, incre-
mentally capturing complex structures in the data [Biithlmann and Hothorn, 2007]. This
iterative nature allows for adaptive and flexible modeling of grouped predictors and inter-
actions, while maintaining a balance between interpretability and predictive performance.
These properties make boosting especially attractive for applications that require sparse
and explainable models. Examples include biomedical research, environmental modeling, or
social sciences, where inference and interpretability are crucial.

1.1 Research themes and objectives

High-dimensional data are omnipresent across modern scientific disciplines, from genomics
and climate science to economics and behavioral research. Discovering meaningful patterns
in such data often depends on effective variable selection methods. This dissertation con-
tributes to this challenge through five papers centered on boosting algorithms tailored to
structure, interpretability, and robustness. The following points can summarize the common
broader themes connecting all papers:

e Variable Selection in High-Dimensional Data: Papers focus on identifying relevant
predictors and interactions, addressing sparsity challenges.

e Methodological Advancements: Introduction of novel frameworks like sparse-group
boosting and k-step boosting.

e Application-Focused: Real-world examples in climate science, agriculture, and tourism
demonstrate practical utility.

e Explainability and Interpretability: Emphasis on explainable Al techniques and inter-
pretable boosting models.

e Interdisciplinary Approach: Combining machine learning with domain-specific chal-
lenges.

Building upon the themes, the research objectives pursued by this thesis can be summarized
into two branches:

e Sparse-group variable selection in boosting:

— Simultaneous sparsity within and between groups (similar to sparse-group lasso)
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— Theoretical bounds for group vs. individual variable selection

Robust applicability to real-world datasets

Adjustment mechanisms for unequal group sizes

Algorithms to satisfy group balancing conditions
e Boosting Interactions

— Stable main effect selection under high-dimensionality
— Enforcement of strong or weak heredity constraints

— Reliable detection and estimation of (nonlinear) interaction effects

Table 1.1 contrasts core variable selection strategies by their ability to handle the intertcon-
nected challenges of sparsity, hierarchy, balance, and nonlinearity. The comparison motivates
the development of hybrid approaches that unite their respective strengths. Penalized Re-
gression encompasses many methods, depending on multiple variations of penalty terms.
Each penalty variation has its preferences in the selection process, and comes with unique
advantages and disadvantages. The Group bridge, for example, is very flexible because of its
complex loss function and hyperparameters, but is harder to fit because the loss function is
non-convex. Classical statistical boosting and stepwise regression, on the other hand, encom-
pass relatively fewer variations, exposing them to more modeling restrictions. By combining
the different modeling strategies of penalized regression, stepwise regression, and Machine
Learning and integrating them into the boosting framework, these persisting ”modeling
blind spots” imposed by the complexities of high-dimensional data shall be covered.

. Predictive  Sparse-Group Hierarchical Group Model Nonlinear
Method Class Power Selection Interactions Balance Stability Effects
Penalized Regression v (limited) (limited) X (limited)  (limited)
Stepwise Selection X X v v X (limited)
Classical Boosting v X X X (limited) v
k-step + sgboost v v v v v v

Table 1.1: Simplified comparison of major selection approaches regarding key challenges.
Group Balance refers to a fair selection across differently sized groups. (limited) indicates,
the method addresses the issue under specific assumptions or requires tuning of specific
parameters for optimal performance. k-step + sgboost are the two main methods developed
in this thesis.
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Problem 1: Problem 2:
1.1 Sparse-group variable selection 2.1 Stable identification of interactions
1.2 Group variables selection bias 2.2 Hierarchical interactions
4 v
Research Gap: Research Gap:
Lack of balanced within- and Instability of interaction detection
between-group sparsity Lack of hierarchical structure enforcement
7 Y
Solution: Solution:
Paper 1 + Paper 2 + Paper 3 Paper 4 .+ Paper 5 .
Sparse-group boosting, sgboost package K—step boosting for stability
Group selection bias reduction algorithm Boosting + Random Forest

Real-world application

Y Y

Modeling Strategy: Modeling Strategy:
Boosting + penalized regression Boosting + stepwise regression
Boosting + simulation Boosting + machine learning

Figure 1.1: Overview of research problems, gaps, solutions, and modeling strategies ad-
dressed in this thesis.

Figure 1.1 provides an overview of the key contributions and how they relate to one
another, structured according to a problem—solution—strategy framework that is elaborated
in the next section.

1.2 Outline

This dissertation consists of two main parts, each addressing distinct but complementary
challenges in high-dimensional statistical learning with structured data. The first part fo-
cuses on the development and application of sparse-group boosting, which enables simultane-
ous selection of relevant groups and individual predictors. It also introduces an algorithm to
correct for group selection bias, thereby ensuring more interpretable and equitable modeling.
The second part develops novel strategies to detect and stabilize interaction effects in struc-
tured data, especially in the presence of nonlinearity and hierarchical constraints, through
the proposal of k-step boosting and hybrid modeling strategies. Collectively, the methods
enhance interpretability, fairness, and predictive robustness across applied domains.

1.2.1 Thesis Structure and Contributions

The thesis is organized into five papers, each contributing to a distinct methodological or
applied objective. Figure 1.1 provides a high-level mapping of papers to research goals.
Below, the content and contributions of each paper is summarized in detail.
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Paper 1: Sparse-group boosting methodology [Obster and Heumann, 2024] lays the
theoretical and algorithmic foundation for sparse-group boosting. By integrating compo-
nentwise and group-componentwise base-learners within a unified boosting framework, the
method achieves both within-group and between-group sparsity. The formulation includes
a sparsity-controlling mixing parameter «, analogous to the sparse-group lasso, allowing
fine-tuned trade-offs between individual and group-level variable selection. This paper es-
tablishes theoretical selection properties and defines bounds on when and how a group or
individual variable is selected during model fitting.

Paper 2: Software implementation via the sgboost R package and group bal-
ancing algorithm [Obster and Heumann, 2025] presents the R package sgboost [Obster,
2024], which operationalizes the sparse-group boosting methodology for broader accessibility.
In addition to tools for estimating sparse group-variable importance, visualizing group-aware
coefficient paths, and controlling hyperparameters, the package implements the novel group
balancing algorithm to mitigate (group-) variable selection bias and accounts for group size
imbalances. By enhancing usability, reproducibility, and methodological fairness, this work
enables the wider adoption of advanced boosting techniques in interdisciplinary data science.

Paper 3: Interdisciplinary application to climate-agriculture data [Obster et al.,
2024a] applies sparse-group boosting to a dataset of 801 farmers from Chile and Tunisia
[Pechan et al., 2023a, Pechan et al., 2023b], aiming to model financial well-being under cli-
mate stress. The analysis reveals complex relationships between socioeconomic, environmen-
tal, and behavioral factors. This paper demonstrates the practical relevance of sparse-group
boosting in policy-driven research.

Paper 4: Boosting of pairwise interaction effects via k-step boosting This pa-
per proposes k-step boosting, a two-phase procedure for identifying interaction effects while
preserving stable main effect estimation. In the first phase, only main effects are selected
using standard componentwise boosting. In the second phase, interaction effects are fitted
starting from the negative gradient of the stopped first model. The method is applied to
environmental vulnerability data and demonstrates reliable interaction discovery without
overfitting.

Paper 5: Boosted GAM-RF hybrid for nonlinear interactions [Obster et al.,
2023a] addresses the risk of overfitting when modeling nonlinear interactions. It introduces a
two-step strategy that fits a boosted generalized additive model (GAM) not to the observed
outcome, but to the predictions of a random forest. This ”response shifting” enables a sparse
and interpretable surrogate model. A case study on zoo visitor forecasting illustrates the
potential of this method for smart systems and explainable Al applications.

1.2.2 Summary

Together, these five papers advance state-of-the-art interpretable statistical modeling through
boosting. The first part develops methods for structured sparsity in grouped predictors,
addresses group-related bias, and demonstrates real-world applicability through interdisci-
plinary collaboration. The second part introduces novel approaches to interaction detection
and model stabilization, combining the strengths of statistical learning and machine learning.
These contributions underscore how modern statistical methods can uncover interpretable
and policy-relevant insights in complex, high-dimensional data.
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Chapter 2

Background

2.1 Methodological setting

This section introduces the methodological foundations by outlining a progression from
linear regression to its extensions: generalized linear models, generalized additive models,
and ridge regression. Each progression adds flexibility or regularization to better handle
complex, high-dimensional data.

2.1.1 Linear models

Consider a response variable, outcome variable, or dependent variable Y = (Y1, ...,Y,)T € R"
with its n > 0 realizations y1, ..., y, and corresponding design matrix X € R"*P, consisting
of the p > 1 independent variables or predictor variables X; = Xo; = (X1, ...,an)T e R™.
The n rows of the design matrix are X;o = (Xj1,..., Xjp). The i-th observation is (z;,¥;),
using z; = X;e. Regression analysis aims to explain Y in terms of X through a functional
relationship p; = E[Y; | z;] = f(z:), f:RP — R,. Classical linear regression assumes a
linear relationship ; = ;3 and a full rank of X : rank(X) = p, so that X7 X is invertible.

Yi=Xnpf1+ ...+ XipBp + €.

The regression parameter is denoted as B = (B1,...,8,)7. Furthermore, the errors ¢ =
(€1, -y €n) € R™ are modeled as independent and identically distributed (iid) Gaussian ran-
dom variables € ~ N,,(0,021,) = Y ~ N,,(X3,02%I,), with I,, being the identity matrix and
o? the error variance. This means that X is assumed fixed and the errors ¢; are indepen-
dently and identically distributed, with

2

o =1
covle;, €] = {0 oy

so that the ¢; are iid N(0,02). The ordinary least squares (OLS) estimator is the functional

iy o o . - T 2: . o 2
Pors =T(Y) = arg min _71(Yz z; b)” = arg min [|Y’ — Xb|[3.

On observing Y = y, the realized estimate is

Bors(y) = T(y) = (XTX)1xTy.



Chapter 2 — Background

One can also include (diagonal) weights W € R™*" leading to the weighted-least-squares
(WLS) estimator and its estimate

Bwrs(y) = (XTWX)" 1 XTWy,

as used in the IRLS Algorithm 1. The Gaussian negative log-likelihood ¢(3,02;Y) for Y ~
N, (XB,0%1,) is

n 1
(B,0%Y) = —logp(Y | X,5,0%) = Zlog(2m0%) + = ||V - X33

Because the Gaussian likelihood is minimized by the same solution that minimizes squared
error, the OLS estimator coincides with the maximum likelihood estimator. Therfore, both

satisfy the normal equation R
XTXB(y) = X"V}

It is common practice to refer to estimates and estimators as 37 which is also the case
throughout this thesis. Predictions of y denoted as § can be derived by replacing the
parameters with estimates based on the data and the residual sum of squares (RSS) are
defined by comparing the realizations of Y with the predictions as RSS = Y"1, (y;—:)? =
ly — 9l|3.. Using the hat matriz H, y can be linked with 7

7=Hy=XXTX)"1xTy.

The hat matrix is a projection matrix because it is symmetric H? = H and idempotent,
satisfying H = H?,

H> = X(XTX)"'XTx(XTXx)"'xT = x(XTXx)"'x7,

implying that the residuals € can be seen as a projection of Y onto the orthogonal complement
of the column space of X:

e=y-XX"X)"'xTy= (- H)y.

More information, results, and examples of linear regression can be found in textbooks
e.g. [Draper and Smith, 1998, Ruppert et al., 2003, Fahrmeir et al., 2013, Wood, 2017].

2.1.2 Additive models

Additive models extend linear regression by replacing each linear term with a smooth
function. They overcome the limitation of a linear relationship between covariates and
the response, as assumed in the linear regression setting. As in the previous section, let
Y = (Y1,...,Y,)7T be the random response with realization y = (y1,...,y,)T. We model

p
}/i:ﬂO“i’ij(zij)“i’eia i:l,...,n, ENNn(0,0'2In).

j=1

The p covariates X; € R™ are modeled through smooth functions f; for j < p, approximated
and represented through basis functions allowing for estimation similar to linear models. To
ensure identifiability, each f; is constrained to have zero mean Y. , f;(z;;) = 0 for each
J, and a global intercept By is included. In practice, one represents f;(X;) ~ Bja; via a
spline basis Bj € R"*KXi «; € R¥J, such that (Bja;); ~ fj(z;;). All a; are estimated by
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penalized least squares:

min
Bo€R, a;eRXi

p 2 p
y_BO]-_ZBjaj 2+ija?Djaj,
j=1 j=1

n
s.t. Z(Bj()tj)i = 0.
=1

Here, D; € RE3*K; is the positive semi-definite penalty matrix with null-space correspond-
ing to low-order polynomials to penalize roughness, and \; controls smoothness. Penaliza-
tion is also covered in Section 2.1.4. A backfitting algorithm cycles through the p terms until
convergence [Wood, 2017]. More information on basis representation and the estimation of
additive models can also be found in [Wood, 2017].

2.1.3 Generalized linear models

Another limiting assumption in classical linear regression is normality, which can be extended
through generalized linear models (GLM). GLMs consist of multiple components:

e Linear predictor: Let x; € RP be the ith row of X. Then the linear predictor is

e Random component: For Y; | z; ~ EF(0;, ¢), the density is

. _ yithi — b(0;)
p(yi; b5, d) eXp( e
Here b(-) is the cumulant function, a(¢) the dispersion parameter, and ¢(+,-) the base
measure. This parametrization is also refered to as canonical form [McCullagh and
Nelder, 1993], but also other parametrizations exist, e.g. fexp(yi,0;) = exp[y;b(6; +
c(6;) + d(y;)] [Dobson and Barnett, 2008]. By properties of the exponential family,
pi = E[Y; | 2] = b'(6;) and Var(Y; | z;) = ¢ 0" (6;) = ¢ o).

+ clyir6))-

e Link function: g(u;) = n;, invertible to u; = g=1(n;).

e Variance: Var(Y; | z;) = ¢v(p;), where v(-) is the variance function derived from

b (0).

Generalized linear models can be estimated via Fisher scoring [Jennrich and Sampson, 1976],
which is a second-order optimization method, or iteratively reweighted least squares (IRLS),
which is the practical implementation of Fisher scoring when using the canonical link. IRLS
is presented below to illustrate the similarities to statistical boosting in Section 2.2. The
goal is to update the linear predictor n iteratively

10
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Algorithm 1 iteratively reweighted least squares

1: Initialize m < 0 and 7, = 0 or some other starting point

2:
pl™ = (™)
3: while m < M or until convergence do
4: Compute the working response
o) _ ), Y [m] mly s ¢, [ml
g =" e =™ (= ™) o (™)
dp/dn (™)

The derivative is evaluated at 7.

5: Regress the covariates on zlm] using the weights
il _ 1 _ g™
Var(Y; | @) [dn/du(ul™)2 ¢o(pl™)

6: Retrieve the estimates Bm
7:
8: m++ m-+1
9: Update

Bl 1) = argmyn [

(=0 = Xb)|3,
n[nz+1] — Xﬁ["H_l],
plm ) = g~ (plmily,

10: end while

The algorithm can be stopped either after a fixed number of iterations M, or until the
parameter changes are smaller than some tolerance.

2.1.4 Ridge regression

More information on ridge regression can be found in [Wieringen, 2023]. Ridge regression
was originally proposed to address multicollinearity, meaning the covariates are strongly
linearly dependent [Hoerl and Kennard, 1970a, Hoerl and Kennard, 1970b]. In such cases,
XTX is ill-conditioned or singular [Lesaffre and Marx, 1993]. This problem is especially
present in high-dimensional data and has affected Machine Learning in general [Chan et al.,
2022].

Definition 2.1.1. For a given A > 0, design matrix X and outcome y the ridge regression
estimator S(\) is given by
BN = (XTX +2I,) ' XTy.

The set {B(/\) : A € [0,00)} is called the regularization path or solution path of coefficients
and can be plotted as a function of .

The ridge estimator can also be derived by minimizing the regularized minimization
problem

B(N) = in [ly — X 3|3 + X812
B(A) = arg min [ly — X5l + AllBl3

11
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Typically, one uses centered X and y or even standardization. If \ is strictly positive, the
ridge regression estimator is well-defined also for high-dimensional and multicollinear design
matrices. Practically, larger values of A lead to stronger regularization, meaning smaller
coefficients in absolute value.
Similarly to linear regression, the ridge hat matrix Hy = X(XTX + A,,)"*XT can be
defined.

7=XXTX+A,) ' X"y = Hyy

An important observation is that H is not a projection matrix as the hat matrix in classical
linear regression being Hjy. This can be seen using the full singular value decomposition
of X = UDVT, where U € R™" V € RP*P are (column) unitary matrices and D =
diag(dy, ..., d,,0,...,0) is a diagonal rectangular matrix containing the singular values of the
design matrix X € R"*P of rank r < p. Then, using VIV =vvT = I, and UTU =1,:

Hy = X(XTX +A,) ' x7
=UDVT(vDUTUDVT + \I,)"{(UDVT)T
=UDVT(VD*VT + AI,)"'vDUT
=UDVT(V(D* + AL, )VT)~'vDU"
=UD(D? + \I,)"'DU”
= UDUT,

2

with D = diag[cil, ...,JT,O...O} and Jj = (djij_)\),j < r. Hence,
H? =UDUTUDUT
=UD*U".

Positive A in the diagonal elements prevent Hy from being idempotent, meaning H # H.
Even though the ridge hat matrix is symmetric, it is not idempotent and therefore not a
projection matrix. The same holds for I — Hy. However, it also makes the ridge estimator
well-defined even if the rank of X is not full. A shrinks the eigenvalues of the hat matrix
and makes (X7 X + AI) invertible and improves the condition number through the choice
of A. Using the same decomposition as for the hat matrix, the ridge estimator B)\ can be
rewritten as

Br=(XTX +AL,) 'XTy
= (VD*VT + AI1,)"'vDUT
=V(D? + \I,) ' DUy,

also shrinking the coefficients through ,j < r. This formulation also shows the limits

@
(d24+X)
depending on A:

3 0 dj=0
lim ———— ! = /
MO (dF + A) 1 d; #0,
meaning that the estimator converges to the Moore-Penrose minimum-norm solution, which
coincides with the MLE in the classical setting when all d; > 0: limyjo S\ = Bur, = X Ty.
X7 is the Moore-Penrose pseudoinverse. Increasing A shrinks the estimator to zero in the

~ d? d?
limit: limy o0 By = (0,...,0)7, as fi h j < pr limy e el = 0. While —4— i
imit: limy_eo Ba ( )*, as for each j < p: limy_, @ ile @ is

strictly decreasing in A, the behaviour of each component of B\A may not necessarily be so.

12
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The effective degrees of freedom can be defined as the trace of the hat matrix ((5.16) and
(3.50) in elements of stat learning [Hastie et al., 2009]) and can be expressed in terms of the
singular values of the design matrix.

Other definitions for the degrees of freedom exist, such as tr(2H, — H%) [Hofner et al., 2011]
or the Satterthwaite-Welch approximation [Satterthwaite, 1946] leading to

tr(HT H)?
tr(HTHHTH)’

as described in [Adluru et al., 2012]. In linear regression, the hat matrix is a projection, so
all definitions coincide.

More information on the bias of ridge regression and two ways to de-bias it can be found
in [Biithlmann, 2013, Zhang and Politis, 2022, Zhang and Politis, 2023].

2.2 Statistical boosting

Building on the previous models, the core modeling framework of boosting is introduced in
this section. The goal of boosting in general is to find a real-valued function that minimizes
a typically differentiable and convex loss function I(-,-). Throughout the thesis, we will
consider the negative log-likelihood as a loss function to estimate f* as

§() =arg min_ Eypcli(Y. FCX)

As in previous sections, X is assumed fixed, aligning with classical statistical modeling.
However, in predictive machine learning contexts, X is often considered random, and one
minimizes the expected loss over the joint distribution of (X,Y), leading to:

f*() = arg ffl@?igR E(X,Y) [Z(Ya f(X))]

Contrary to having one ”strong” learner, which has high predictive performance on its
own, boosting achieves predictive performance by aggregating ”weak” learners, having a
low predictive performance by themselves [Freund, 1995]. However, through the aggregation,
predictive performance is increased iteratively, as outlined in Algorithm 2.

13
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Algorithm 2 General Functional Gradient Descent Algorithm [Friedman, 2001]

1: Define a space of candidate functions F, which is spanned by base learners h of the form
h:RP — R.

2. Initialize m < 0 and f% =0 or fI% = ¢, ¢ € R as a constant function.
3: while m < M do
4: m<+—m+1
5: Compute the negative gradient a%l(y, f) and evaluate it at ﬁmfl], yielding pseudo-
residuals uq, ..., upy:
m_ 0 .
u£ ]:7l(yi’f) fori=1,...,n
of F=Fm=1(z;)
6: Fit the base-learner h with response (u[lm], e ,u[ﬁn])T to the data, yielding ﬁ[m], an
approximation of the negative gradient.
7 Update:
f[m] - J?[mfl] + v pm
8:  where v is the learning rate, v € (0, 1).

9: end while

The functional derivative in step 5 is computed with respect to f and evaluated point-wise
using the data. The algorithm is sequential and flexible. It starts with a simple model and
iteratively fits functions to the data, gradually increasing the model’s complexity. The base
learners, or weak learners, are usually simple functions like small trees or regression models
[Schapire, 1990]. The model ﬂm} continues to improve until it reaches the maximum iteration
M. Early stopping helps balance predictive performance and model complexity by halting
training before overfitting occurs [Adam J. Grove, 1998, Jiang, 2004, Zhang and Yu, 2005].
This aligns with the principle of sparsity, akin to Occam’s razor, by trimming non-predictive
components. The optimal stopping point is typically determined by comparing out-of-sample
predictive performance across iterations, stopping when no further improvement is observed.
Boosting has primarily been used in the context of machine learning as a predictive black-box
model using regression/classification trees.

2.2.1 Adaptive Boosting

The first prominent example was Adaptive Boosting (AdaBoost) [Freund and Schapire,
1996], which was first utilized for binary classification and minimized the exponential loss
function [Ridgeway, 1999]. The exponential loss function heavily penalizes misclassified ob-
servations. This motivates the reweighting mechanism and ensures focus on difficult /misclassified
examples.

14



Chapter 2 — Background

Algorithm 3 Adaptive Boosting (AdaBoost)
1 _

H =

1: Initialize weights for each observation: w % fori=1,...,n
2: for m=1to M do
3: Fit a base-learner hl™ : R? — {—1,1} to the data using the weights {wl[m] S

4: Compute the weighted classification error:

n [m]
elml = 2im1 Wi Ly, 2niml (2,))

5: Compute the model weight:

6: Update observation weights:

wz[mH] = w™ . exp (—a[m]yih[m] (%)) ;o i=1....n

i
7. Normalize weights so that > ., wmt =1
8: end for

9: Final model:
M

f(x) = sign (Z almlpkml (x))

m=1

First, the weights are initialized, while the observations have equal weight. At each iter-

ation, a weak learner hl™ is trained using the weighted data, and the misclassification error
el™ is computed. Misclassification is used as the error. The weight a!” reflects the base
learner’s contribution to the ensemble, down-weighting poor classifiers. Misclassified obser-
vations are assigned higher weights for the next iteration to focus on previously misclassified
observations. The final prediction of the model output aggregates the weak learners via
a weighted majority vote, which corresponds to the empirical risk minimization using the
exponential loss.
Fast implementations like "XGboost’ [Chen and Guestrin, 2016] of gradient boosting com-
bined with their high predictive performance compared to other Machine Learning algo-
rithms contribute to the popularity of boosting algorithms. Later, the concept of the algo-
rithm was adapted to the field of statistical modeling [Ridgeway, 2000].

2.2.2 Boosting ridge regression

One important boosting algorithm is L? Boosting applying boosting algorithms to linear
models optimized for squared error loss in high-dimensional settings [Biithlmann and Yu,
2003]. Using component-wise linear least squares base learners, it updates only one variable
per iteration, offering computational efficiency. Asymptotic consistency in high dimensions
has been shown [Bithlmann, 2006], establishing it as a reliable tool for variable selection and
prediction in statistical modeling.

The success of boosting algorithms in the statistical sciences can be attributed to three
factors [Mayr et al., 2014]:

e Automated variable selection and model choice through the fitting process [Li and
Luan, 2005]
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o flexibility regarding the predictor variables e.g random effects, nonparametric effects
[Binder et al., 2013]

e Stability for the analysis of high-dimensional data [Mayr and Schmid, 2014]

One important boosting algorithm for this dissertation is boosting ridge regression, which
combines boosting and regularization and is therefore described separately.

Let h : R — R be the strictly increasing and invertible response function (inverse link func-
tion) of a generalized linear model, where E[y|X] = u = h(n). Note that in this case h is the
response function and not the whole base-learner h : RP — R as in the functional gradient
descent algorithm. Here, y | « follows the simple exponential family in its canonical form,
with the linear predictor n = X . Let p(y|z,n) be the conditional density of the exponen-
tial family. For L base-learners, define the [-th candidate sets consisting of p; columns as
Vi={(v)ys - (W), } € {1,....p}. Contrary to [Tutz and Binder, 2007], the candidate sets
do not have to be disjoint. Therefore, the groups can overlap, which will be utilized for
the sparse-group boosting. More information on group variables and other methods dealing
with groups can be found in Sections 2.3 and 2.4
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Algorithm 4 Boosting ridge regression

1: Tnitialize m = 0, 1% = 0,71 = X3, and % = h(5)
2: while m < M do
3: Setm=m+1

for For each candidate set V}, I < L do
Fit the model:

= h@H™ Y + Xy, By),

by minimizing the penalized negative log-likelihood:
£ (Bv) = =3 10gp (i | @i+ (XviBu)i ) + MBul3.
i=1

with offset i1 = X E[m*” derived from the previous iteration. p is the conditional
density. This can be done by Fisher scoring or iterative weighted least squares. For

the [-th base-learner denote the estimate of 3y, as BVz and the estimate of the negative
log-likelihood as £]™).

6: end for

7 Select the candidate set which evaluates the lowest negative log-likelihood I* =
arg min;<y, ljgm].

8: Update for all [ < L

B[m] o {B&n—l] + VBVZ | = l*,
Vi 7 ) 3lm—-1 *
l bl 1 #1
and:
aml = xglml,
alm = p(xptmy.

Here v can be seen as learning rate with v €]0, 1[.
9: end while N
10: Output: Retrieve 3IM as the global estimate.

Instead of solving the ridge regression optimization problem directly, the algorithm em-

ploys functional gradient descent, as outlined in Algorithms 2 to build the model iteratively.
Large coefficients are penalized, preventing overfitting additionally to the learning rate. This
is especially useful in high-dimensional settings, where the design matrix of one candidate
set has a large number of predictors.
Therefore, boosting ridge regression combines the strengths of regularization through the
penalty term A\373 and iterative model building, handling multicollinearity and preventing
overfitting, especially in high-dimensional settings. Its iterative nature provides flexibility
and interpretability, with extensions possible for generalized linear models, as outlined in
Algorithm 4. However, careful hyperparameter tuning is required, which can be computa-
tionally intensive, especially for large datasets. It may also lack the sparsity of methods
like lasso regression, as the coeflicients within the candidate set are not shrunken to exactly
zero. Contrary to classical ridge regression, boosting ridge regression utilizes candidate sets
allowing grouped covariates, which are discussed in the next section.
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2.2.3 Boosting and interpretability

While boosting can be used as a black-box model, the intrinsically interpretable variants
can balance interpretability and predictive performance well, compared to other Machine
Learning algorithms [Obster et al., 2024b].

One can interpret the model coefficients in L? boosting as in linear regression. This is also
the case using non-linear effects or boosting ridge regression. However, the ability to perform
inference after variable selection is limited and needs adjustments [Riigamer and Greven,
2020, Kueck et al., 2023, Rasines and Young, 2023].

Because of the sequential nature of boosting, one can also look at the evolution of the
coefficients by looking at the coefficients at each boosting iteration, which is called the
coefficient path. This path can be visualized by plotting the iteration versus the values of
the regression parameters on the other axis. Connecting the coefficients of each base-learner
with a line yields the path which also exists for Lasso regression, but not depending on the
iteration but on the regularization parameter A [Rosset et al., 2004].

The variable importance is a metric to quickly understand what are the main contributors
to the model and can be visualized using bar plots [Obster et al., 2024a]. It summarizes how
much each variable contributes to the model’s overall fit improvement across all boosting
iterations. Unlike in traditional variable importance metrics, such as coefficients or p-values,
both the frequency and the impact of a variable being selected contribute to the variable’s
importance. In cases such as sparse-group boosting, which depends on grouped variable
selection, the importance can be aggregated across groups or individual variables, depending
on the model structure. Let Aﬁg:’:} = Lim=1 _ EAETZ] be the reduction of log-likelihood in
boosting iteration m and predictor j < p be the base-learner which was selected in this step.
Then the reduction can be attributed to this predictor. Hence, we can compute the relative
contribution of this individual variable, call it j to the global model

M Alm]
Em:l A‘C{lm:lm=j}

M Alm
St ALY

While variable importance indicates influential variables, it should also be noted that the
metric is less stable if predictor variables are correlated. In such cases, importance scores can
be spread across correlated variables, potentially underestimating the influence of individual
predictors. However, in grouped settings, this effect is less pronounced, as variables within
the same group typically exhibit stronger correlations with each other than with variables
from different groups (i.e., within-group correlation exceeds between-group correlation).

2.3 Grouped variables

Most regression problems, or supervised learning algorithms in general, are of the form
E[Y|X] = h(X,B). Typically there is a known design matrix X € R™ P, an assumed
conditional distribution of y, and some function h : RP — R, linking the observed input X
with the observed output y. The goal is the estimation of the parameter vector 5 € RP?,
such that the function h describes the relationship between X and y in a "good” way.
Depending on the distributional assumptions for Y | X, the choice of response function
h(-), and the method used to estimate the parameters /3, different statistical models - and
even entire subfields of statistics and machine learning - can arise. However, one aspect
is shared across almost all disciplines of statistics, deep learning, and even unsupervised
learning like image representation: The design matrix X. Design matrices are not created
in the same way, nor do they always represent the same type of instances. A lot of research
has been attributed to the observations of the design matrix, especially in the form of
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detecting and correcting sample selection bias [Berk, 1983], [Cortes et al., 2008], [Yang
et al., 2023]. Sample selection bias occurs when the observed data are not representative of
the population of interest, potentially resulting in biased parameter estimates and reduced
generalizability of the model. The other dimension - the space of independent variables -
may also contain structural information reflecting underlying phenomena, such as natural
groupings of variables. This secondary information can take many forms, and one way of
storing the similarities and differences of variables is a group structure, indicating which
variables belong together.

2.3.1 Variations of grouped variables

An intuitive and probably the easiest case of a group is a categorical variable. They are
often referred to as one variable, yet in the design matrix, in most cases, multiple columns
are used to store the information. Example 2.3.1 shows how one categorical variable and
one numerical variable are represented as a group design matrix.

Example 2.3.1. Transformation of categorical and numeric data into a grouped design
matrix using reference coding with intercept (gray), with color indicating the group. One
level per categorical variable (reference category) is omitted to avoid multicollinearity with
the intercept. The reference category in this case is 'a’.

QO S Q Q
U W N~
$
= ==
(el N = )
_ o O O O
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Similarly, an interaction can be represented as one group in a grouped design matrix

as illustrated in Example 2.3.2. While categorical variables are represented in column-
orthogonal groups in balanced schemes, such as in effect coding, meaning the inner product
of different dummy-coded variables within a group equals zero, interaction terms usually
introduce non-orthogonal groups.
Here, a categorical variable with three levels and a numeric variable is transformed into a
grouped design matrix using reference (baseline) coding with intercept. The main effects of
the categorical variable are encoded using k — 1 dummies, and interaction terms are defined
only for the non-reference levels. This ensures consistency between the number of columns
used for main and interaction effects.

Example 2.3.2. Transformation of categorical and numeric data into a grouped design
matrix representing main effects and an interaction effect using reference (baseline) coding
with intercept (gray). Color indicates group membership. The reference category is ’a’.
Violet group: interaction terms between the non-reference levels of the categorical variable
and the numeric variable.
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Notation 2.3.1. A design matrix X € R"*? with G groups, each of the size py,g €
{1,...,G} with a collection of index sets V' = (Vy)4<q, as Vg = {(vg){, ---, (vg)pg} c{1,..,p}
representing the columns belonging to each group is called a grouped design matrix. The
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submatrix of group g is denoted as Xy,. In grouped regression settings, the corresponding

coefficient parameter vector corresponding to group g will be referred to as 59 such that
ngﬁ(g) is well defined.

Different versions of grouped variables exist. There are non-overlapping groups, repre-
sented by (Vg)4<c being a partition. In the definition, such a constraint is not imposed,
yet some methods assume non-overlapping groups, as the optimization may be compli-
cated through the imposed regularization pattern. Also, the concept of partial grouping
exists, where only a subset of variables is grouped and the other subset is not grouped. In
this case, one could still view this as a grouped dataset, where some groups have a group
size of one. While categorical variables lead to orthogonal design matrix groups, meaning
Xg;g Xy, = I,,, groups of numerical variables are often designed or defined in a way such that
there is within-group collinearity. This could be the case of constructs in a psychological
survey, where the items are designed to have high correlations with each other, indicating
high internal consistency [Tavakol and Dennick, 2011]. There are also many other examples
of datasets that have natural group structures like gene expression data representing gene
pathways [Li et al., 2018] or structural breaks in time series data [Chan et al., 2014]. Also,
many nonlinear effects can be represented through a group design matrix [Varah, 1982].

2.4 Methods for grouped variable selection

The most straightforward way of selecting groups of variables is by manually selecting which
groups to include in the modeling by the analyst or data collector. This selection happens
implicitly in all data analysis, is subjective, and is not of interest to this thesis. Statistical
methods performing group selection can be classified into two categories. One deals with
knowledge-driven group structures and the other is data-driven, based on the dependence
structure observed in the data without known group labels [Huang et al., 2012]. The as-
sumption behind the latter is that ”similar” variables are likely to represent the same or
similar information and therefore belong to the same group [Zeng, 2009]. These data-driven
models can be further divided into two approaches. One approach is to do the group clas-
sification and selection in one algorithm, and the second approach consists of two separate
algorithms, where the first defines the groups and the second then performs group variable
selection in the same way as the knowledge-based group selection.

2.4.1 The sparse-group lasso

The sparse-group lasso is a statistical method designed for high-dimensional data settings,

such as when the number of predictors exceeds the number of observations It performs

variable selection at both the individual and group levels by combining two penalties: the

group lasso penalty ( [Yuan and Lin, 2006]), which encourages sparsity at the group level,
and the lasso penalty ( [Tibshirani, 1996]), which encourages sparsity within groups.

The optimization objective for the sparse-group lasso is:
1
arg mﬁln ™

2
+(1- a)Aim|]ﬁ<g>|]2 +arlgll,
2 g=1

G
y— Z ngﬂ(g)
g=1

where « € [0, 1] is the mixing parameter, and A > 0 controls the overall penalty strength.

The idea was first proposed in [Wu and Lange, 2008] and then refined [Simon et al., 2013].
This formulation balances group-wise sparsity (the number of active groups) and within-
group sparsity (the number of active variables within a group) by tuning «. There are two

20



Chapter 2 — Background

special cases, including the lasso a = 1:

1
argmﬂln%

2
+)\HB“17
2

G
y— ) Xy, B
g=1

and group lasso for o = 0:

2 G
o O
2 g=1

arg min —
& B

G
y—D Xy,
g=1

In the group lasso penalty, there is a group size adjustment ,/py. For practical implementa-
tion, hyperparameter tuning such as cross-validation or bootstrapping can be used to select
optimal values for the hyperparameters o and A. Tuning both parameters simultaneously
through grid search can introduce computational overhead. Therefore, fast implementations
such as [Ida et al., 2019, Liang et al., 2023] are useful compared to the original optimization
method [Simon et al., 2019].

The sparse-group lasso can also be used in the setting of generalized linear models by re-
placing the least-squares loss with the empirical average negative log-likelihoods

(8) =~ S log Ly | 25 ),
i=1

where L(y; | x;; 5) denotes the likelihood of the response given the predictors and model
parameters of observation i. The generalized sparse-group lasso estimator then solves:

G
argmin £(8) + (1= )2 Y vy 8], +ar (],
g=1

The dual-level sparsity makes the sparse-group lasso a flexible tool for high-dimensional
grouped data analysis.

This method is foundational for developing the sparse-group boosting framework explored
in this dissertation. By balancing sparsity levels, the sparse-group lasso provides a criti-
cal theoretical and practical basis for addressing challenges in complex, high-dimensional
datasets.

2.4.2 Other (sparse-)group variable selection methods

This dissertation explores how boosting frameworks can be extended to deal with grouped
variables, allowing simultaneous selection of relevant groups and important variables within
groups. By integrating these concepts directly into the boosting process, the methods devel-
oped here offer a flexible and interpretable approach, especially suited for high-dimensional
structured complex data. To complement the concepts of sparse group variable selection
in boosting, alternative concepts of (sparse-)group variable selection methods are explained
in this section. Group bridge (G-bridge) [Huang et al., 2009] was one of the first methods
enabling dual-level sparsity, extending the bridge estimator to groups [Frank and Friedman,
1993]. Instead of using a convex combination of group and individual variable penalties, the
mixing parameter is found in modifying the L; norm ||-||] defined as [|z||] = Y-7_, |2;|” for
x e R™

G
arg mﬁinﬂ(ﬁ) + )\;CQ Hﬁ(g) :
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cg, the penalty weights, allow for scaling group penalties, incorporating prior knowledge
about group importance or size. There are also special cases, where v = 0 yields ordinary
least squares, v = 1 the group lasso, and v = 2 group ridge regression. Typically, one chooses
v €]0, 1], as values greater than one generally do not yield sparse solutions. 0.5 is a common
choice, yielding the square root [Zhou and Zhu, 2010,Huang et al., 2009]. Compared to other
methods like the SGL, one advantage of the G-bridge is that it has the oracle property for
group selection, meaning it can select important groups with probability converging to one
with increasing sample size [Huang et al., 2009]. However, the loss function is not convex for
~v < 1. Therefore, the optimization is more challenging, leading to greater computation time
and the necessity of a careful choice of v and initialization in the optimization. Another
disadvantage of the G-bridge is that the threshold for group vs individual variable selection
cannot be set directly as with « in the sparse-group lasso or sparse-group boosting [Obster
and Heumann, 2024].

The group exponential lasso (GEL) [Breheny, 2015] also allows this using the exponential
lasso penalty with a support of [0, col:

SERS vt (R R )

The hyperparameter 7 € [0, 1] describes the coupling, meaning parameters within one group
are updated together rather than individually. For 7 — 0 the penalty converges to the
lasso [Belhechmi et al., 2020]. Small values indicate relatively more individual variable se-
lection, and greater values indicate more group variable selection. More information on the
penalty can be found in [Breheny, 2015].

The composite minimaz concave penalty (cMCP) [Breheny and Huang, 2009] addresses
the issue of lasso penalties to not shrink coefficients relative to the size and promises less
bias [Zhang, 2007]. This can lead to over-penalization of large coefficients. Therefore, one
can adaptively weigh the penalties [Belhechmi et al., 2020], which the minimax concave
penalty (MCP) does with a support of [0, ocol:

A6 0 <~A
Ira(0) = {Qw 6> Y\

The cMCP [Breheny and Huang, 2009] minimizes

argmlnf +Zf>\71<2f>\,'yz |Bgrl) )

Here By is the k—th parameter in group g. The MCP is applied as outer and inner pe-
nalization, working on both the group level and individual variable level. The first penalty
term v is typically set as a function of the group size. The second parameter v, has to be
tuned, where a small 5 increases the region of constant penalization, while larger values
yield penalization close to the LASSO [Buch et al., 2023]. Recommended parameters are
v2 = 3, if the covariates are standardized [Zhang, 2007]. The MPC also has the oracle
property [Fan and Li, 2001, Fan and Peng, 2004]. Unlike the other methods, the cMCP does
not have a bounded parameter such as a € [0, 1] in the sparse-group lasso, or 7 € [0,1] in
the GEL, making the model less intuitive to tune.

Bi-level stagewise estimation equation (BiSEE) and hierarchical stagewise estimation equa-
tion (HiSEE) use stagewise regression [Hocking, 1976] while considering group structures in
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a generalized estimation equation framework [Tibshirani, 2015, Vaughan et al., 2017]. Sim-
ilar to (group)-componentwise boosting, one starts with a zero model, where no covariates
are included, and then iteratively adds variables based on some selection criterion, such as
statistical test, AIC [Akaike, 1974] or BIC [Schwarz, 1978]. BiSEE uses the sparse-group
lasso penalty within each step for the variable selection, and HiSEE uses a hierarchical ap-
proach, by first selecting the relevant group with the group lasso penalty and then selecting
the relevant individual variable with the lasso penalty [Buch et al., 2023].

2.5 Interaction-aware and nonlinear variable selection

While variable selection in high-dimensional settings has been well-studied, as the previous
sections show, interactions and also non-linear effects are less understood [Radchenko and
James, 2010]. Approaches to consider the specialty of interaction effects include enforcing
ideas like the heredity constraint [Hamada and Wu, 1992, Chipman, 1996], which is often
assumed [Chipman et al., 1997], meaning that interaction effects are only allowed if all main
effects are selected, called strong heredity interaction model (SHIM) [Choi et al., 2010].
The heredity constraint ensures that if an interaction term is selected, both main effects
of that interaction must be selected as well. This concept is also referred to as strong
hierarchy [Nelder, 1977], or marginality [McCullagh, 2002,Chen et al., 2020] whereas in weak
hierarchy or weak heredity only one variable of an interaction effect has to be included as main
effect [Nelder, 1998]. However, there can also be "non-hierarchical” interactions where only
the interaction terms are associated with the outcome [Hallgrimsdéttir and Yuster, 2008]
[Obster et al., 2024a]. Two types of interaction selection strategies exist [Hao and Zhang,
2017], one-step and two-step approaches. One-step approaches select main and interaction
effects simultaneously while imposing the hierarchical constraint. Two-step methods, such
as the two-stage least angle regression (LARS) [Efron et al., 2004], first, select main effects
and then only consider interactions of the selected main effects, which can also have strong
heredity [Yuan et al., 2007].

2.5.1 Strong heredity interaction model

This approach uses the parametrization of the standard two-way interaction model:

g(x) =PBo+ 161+ ... + TpBp + 71,2@11;2)4_

’71,3($1353) + .+ 'Yp—lyp(xp—lmp)

together with the lasso-type penalty

argmin 3 (v = 9(2))* + Aa (1Bl + 182l + o+ 18p]) + Ay (1.2l + sl o+ v
7=l

Note that no quadratic terms of main effects are used here, such as in [Hao and Zhang,
2014]. z1,...,xp are the columns of X and not the observations z;,i < n, as sometimes
used in previous sections. Through Ag the main effects are regularized and through A, the
interaction effects. If a main effect is zero, its sparsity is inherited by the interaction effect
including this main effect. Additional predefined weights for each parameter can be added
as in [Breiman, 1995, Zou, 2006, Zou and Zhang, 2009]. As with many other regularized
linear regression models, SHIM can also be used for other regularized likelihoods and is
based on non-convex optimization, which strongly limits the number of variables (p) to be
used [Radchenko and James, 2010]. However, more recent implementations and extensions
such as [Chen et al., 2020] improve upon the original method.

23



Chapter 2 — Background

2.5.2 Group lasso for interactions

Other methods include the Variable selection using Adaptive Nonlinear Interaction Struc-
tures in High dimensions VANISH and the group lasso for interactions (glinter) which uses
a hierarchical group lasso penalty [Lim and Hastie, 2015]. In glinter the parameters of the
main effects are regularized with the group lasso penalty, and the interaction effects are reg-
ularized through the parameters of the group-design matrix combined with the individual
variable design matrix. This leads to overlapping groups in which each main effect coeffi-
cient appears both in its own group and in the interaction group. Each variable can have
different associated coefficients in main and interaction terms [Lim and Hastie, 2015]. The
glinternet penalty can be viewed as a hybrid of the group lasso for main effects and a group
ridge penalty over interactions, with overlapping group structure enforcing strong hierarchy.
Consider two categorical variables with L; and Lo categories, represented through the group
design matrices X; and Xs and the interaction group design matrix denoted as Xj.o. Then,
glinter is given by

- o2
63}
argmin ||ly; — X161 — Xof2 — [X1 X2 Xi2] | B
p Bia] |l

~ 112 ~ 112
+A<||ﬁ1||2+||ﬂz||2+\/L2H/31H2+L1H/32HZ+ﬂmné),

subject to
Ly Lo L1 R Lo 3
Sgi=0, Y gi=0 S g=0 > @=o0
i=1 i=1 i=1 i=1
and
Ll ;5 L2 ..
Z Bl = 0 for fixed j, Z By = 0 for fixed i.
=1 j=1
The sum constraints, such as on the first part of the main effect 8; = (31, ..., 1Ll)T as de-

noted in [Lim and Hastie, 2015] are imposed to avoid over-parametrization and no intercept is

2 T2 5
) + L H52H2 + ||B1:2]l5

in the penalty term. That is because either all interactions are zero Bl = By = fB1.2 = 0,
or all interactions are nonzero, meaning interactions are always selected together with both
main effects. Actually, the name ”group lasso for interactions” can be slightly misleading
because the method is more of a hybrid between the group lasso and group ridge regres-
sion, as the group lasso is used for main effects and group ridge for the interaction terms
using the same hyperparameter A\. This means there is shrinkage of the interaction effects
without forcing some of them to zero, leading to shrinkage of the entire interaction block
rather than selection of individual interactions. This means all interactions between a pair
of variables are either jointly included, when the main effects are included, or excluded. The
overlap group lasso can be solved using a simple group lasso [Lim and Hastie, 2015] and
can be fitted using the R package ”glinternet” [Lim and Hastie, 2021], which explains why
the name glinter persists beyond historical reasons. Other penalized regression models for
interactions amongst others include lasso for hierarchical interactions (hierNet) [Bien et al.,
2013], framework for modeling interactions with a convex penalty (FAMILY) [Haris et al.,
2016] and hierarchical integrative group least absolute shrinkage [Boss et al., 2021]

Another strategy for finding interactions is based on stepwise regression

included. Strong hierarchy is endorsed because of the part \/ Lo HBl
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2.5.3 Stepwise interaction models

The heredity constraint can also be satisfied using stepwise regression [Hamada and Wu,
1992], using significance testing to assess which variables are selected, which is also criti-
cized [Smith, 2018]. The heredity constraint is enforced by performing stepwise selection
twice. First, using stepwise regression, considering only main effects, and then selecting pair-
wise interaction effects only of previously selected main effects. One can also continue by then
looking at interactions of a higher order of the previously selected lower-order interaction
effects. This approach can also be applied to ”ultrahigh-dimensional” data, using the iFORT
algorithm [Hao and Zhang, 2014], which is scalable to larger data sets because of its effi-
ciency. Compared to models with complex penalties, leading to computationally expensive
optimization algorithms, the stepwise approach is feasible for high-dimensional settings [Wu
et al., 2009, Wu et al., 2010]. However, there are shortcomings, especially in high-dimensional
settings where small changes in predictor variables can lead to strong changes in the selected
variables [James and McCulloch, 1990, Derksen and Keselman, 1992, Austin and Tu, 2004].
This lack of robustness and multiple testing problem limits the practicality of stepwise re-
gression.

Boosting can also be used to fit interactions in a high-dimensional setting, eg. using com-
ponentwise boosting. The strong or weak heredity constraint is typically not enforced in
statistical boosting but can be enforced through k-step boosting [Obster et al., 2023b].
One way to enforce strong or weak heredity for any given variable selection process is by
refitting a nonpenalized regression model based on the predictors selected by the variable
selection model and removing all interactions violating the heredity constraint. Such a
strategy is employed in [Wolf et al., 2020].

2.6 Advancements introduced by this work beyond boost-
ing
As fairness and interpretability become central concerns in statistical modeling, attention
must also be paid to structural biases that arise from modeling assumptions, particularly in
grouped variable selection. A central observation underlying this thesis is a persistent bias
in many group selection methods - namely, the implicit and often unaddressed influence of
group size on selection probability. In applications where group structures are assumed to
reflect meaningful units (e.g., gene pathways, categorical variables, interaction terms), it is
often desirable that, under a null model with no true signal (all coefficients equal to zero),
all groups have equal probability of being selected. This fairness assumption is violated in
many popular regularized regression approaches, including group boosting and the sparse-
group lasso [Obster, 2024].
Methods such as the sparse-group lasso incorporate group-size adjustments, e.g., through
the use of a ,/py scaling in the outer penalty [Simon et al., 2013], but these are typically
heuristic. Empirical studies demonstrating the effectiveness of such corrections in ensuring
unbiased group selection are rare, and no general theory specifies what “balance” truly
entails in finite samples. This motivates the following formalization of a condition that a
model should ideally satisfy when aiming for unbiased group selection.

Definition 2.6.1 (Group balancing condition). Let fy be a parametrization of a statistical
model (S,P) performing group selection given a group design matrix X € R"*P with the
group structure V = (Vy)g<q, as Vg = {(vg)ys .- (Ug)pg} C {1,...,p}. Denote the indicator
set for active groups, indicating which groups are active, meaning a group has at least one
nonzero coefficient, as A = {0,1}“. Then the group-balancing condition for X is satisfied

25



Chapter 2 — Background

under the global null hypothesis g = 0, if
Vik<a i P(A; =1) = P(4; = 1).

We refer to models satisfying this condition as group-balanced. This property is relevant
both in variable selection theory and in practice, particularly for model interpretability.
While some methods partially address imbalance through penalty scaling, these adjustments
are typically not derived from first principles, lack tuning guidelines, and do not account for
other sources of selection bias, such as collinearity or differences in group-level scaling and
variability.

Models that select all or no groups trivially satisfy the balancing condition, as do certain
stepwise approaches using F-statistics. Also, (sparse-) group boosting models, when cor-
rected with the group balancing algorithm, satisfy the group balancing condition [Obster,
2024]. However, in regularized models, especially those with unknown or intractable se-
lection distributions, satisfying this condition is non-trivial. For example, the degrees of
freedom in group boosting, used for shrinkage control, can implicitly affect the selection
bias and hence the group-balancing behavior [Hofner et al., 2011].

This motivates viewing group balance as a finite-sample analogue to variable selection con-
sistency. Under the global null hypothesis, a consistent model (e.g., one satisfying the oracle
property) will asymptotically select no groups, thus satisfying the group balancing condition
in the limit. In this sense, variable selection consistency implies group balance asymptot-
ically. A model can be group-balanced in finite samples without being variable selection
consistent and vice versa. Recognizing this opens new directions for evaluating and improv-
ing variable selection methods beyond asymptotic theory.

Although the group balancing condition is defined under the null assumption, it could the-
oretically be extended to account for non-zero signals by comparing group-wise selection
probabilities conditional on similar signal strength. However, such an extension would re-
quire redefining the notion of fairness to account for informativeness, rather than strict
neutrality, and would raise new theoretical and practical questions.

The methodological developments presented in this thesis - particularly sparse-group boost-
ing, k-step selection strategies, and the group balancing condition - offer clear practical
advantages. They also establish conceptual links to broader statistical and machine learning
literature.. The following discussion outlines these connections and highlights open avenues
for theoretical and empirical research that emerge from this work.
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Discussion and open research

Many ideas introduced in this thesis build on and extend core concepts in regularized regres-
sion. For instance, k-step boosting bridges the conceptual gap between boosting and classical
stepwise regression by combining the flexibility of iterative fitting with the interpretability
of staged inclusion. Similarly, sparse-group boosting establishes a principled connection to
the sparse-group lasso, replacing the mixed-norm penalty structure with componentwise
base-learner updates, where the degrees of freedom serve as an interpretable analogue to the
mixing parameter.

A particularly fruitful direction lies in the treatment of grouped variables and interactions.
Prior work such as glinternet [Lim and Hastie, 2021], uses group lasso regularization to en-
force strong heredity constraints when selecting interaction terms. The boosting framework
developed in this thesis provides an alternative, but similar path: by defining interactions
as groups - following, for example, a similar structure as in [Lim and Hastie, 2015] - it be-
comes possible to implement group-aware interaction modeling using sparse-group boosting.
Furthermore, combining k-step and sparse-group boosting enables a hierarchical fitting pro-
cedure, in which heredity is imposed across steps while retaining control over group structure
and model complexity.

The group balancing condition, introduced in this thesis as a finite-sample fairness criterion
for group selection, has a range of potential applications. It is particularly relevant in high-
dimensional biological data (e.g., gene expression), categorical variable modeling (e.g., factor
encoding in ANOVA), or functional regression settings, where group size and structure can
strongly affect selection bias. In the context of orthogonal designs, recent work suggests that
the mixing parameter in sparse-group boosting governs the relative selection probabilities
of groups versus individual variables [Obster and Heumann, 2024]. This relationship hints
at a deeper connection between penalty design and fairness in variable selection.
Importantly, the group balancing condition is not universally desirable. In structured model-
ing contexts such as interaction heredity, group imbalance may be intentional, for instance,
by enforcing a selection probability of one for main effects when their corresponding in-
teractions are selected. Here, k-step boosting offers a promising approach to enforce such
hierarchical constraints, while still allowing within-step group balancing to avoid selection
artifacts due to group size or correlation structures.

The proposed group balancing algorithm is not limited to boosting but can be generalized
to other regularized models. One extension would be to use it for tuning the outer penalty
in sparse-group lasso or cMCP. Alternatively, one could define group-wise variance scaling
factors, which modify the effective influence of each group prior to model fitting. By it-
eratively tuning these scaling factors, the balancing algorithm could be applied to ensure
approximately equal selection probabilities under the null across a broad range of model
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classes.
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Chapter 4

Sparse-group boosting:
Unbiased group and variable
selection

This chapter introduces methodological extensions for boosting to enable sparse-group vari-
able selection. The method was inspired by the sparse-group lasso and utilizes component-
wise and group-component-wise ridge regression combined through a mixing parameter.
Theoretical properties of the group/variable selection properties depending on the singular
values of the design matrix are studied. Furthermore, the presented method is investigated
in simulation studies and real datasets.
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ABSTRACT

For grouped covariates, we propose a framework for boosting that allows for sparsity within and between
groups. By using component-wise and group-wise gradient ridge boosting simultaneously with adjusted
degrees of freedom or penalty parameters, a model with similar properties as the sparse-group lasso can
be fitted through boosting. We show that within-group and between-group sparsity can be controlled by a
mixing parameter, and discuss similarities and differences to the mixing parameter in the sparse-group lasso.
Furthermore, we show under which conditions variable selection on a group or individual variable basis
happens and provide selection bounds for the regularization parameters depending solely on the singular
values of the design matrix in a boosting iteration of linear Ridge penalized boosting. In special cases, we
characterize the selection chance of an individual variable versus a group of variables through a generalized
beta prime distribution. With simulations as well as two real datasets from ecological and organizational
research data, we show the effectiveness and predictive competitiveness of this novel estimator. The
results suggest that in the presence of grouped variables, sparse-group boosting is associated with less
biased variable selection and higher predictability compared to component-wise or group-component-wise
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1. Introduction

A key task in empirical science involves the presence of high-
dimensional data and the need to perform variable selection,
especially if the number of variables is relatively high compared
to the number of observations. In biostatistics, this is a com-
mon setting, for example, in gene sequencing (Johnstone and
Titterington 2009). Two common variable selection strategies
are the use of a lasso penalty (Tibshirani 1996) or component-
wise boosting (Breiman 1998; Friedman, Hastie, and Tibshirani
2000). Many strategies exist to find a subset of data, including
forward selection, backward elimination, or even all-possible
subset selection (Chowdhury and Turin 2020), where all possible
combinations of variables are considered. Methods differ not
only by the selection strategy but also by the metric deter-
mining the resulting subset of variables. Some include second-
generation p-values (Zuo, Stewart, and Blume 2022) while others
use modified loss functions leading to sparsity through shrink-
age like the lasso. Often, the variables in the data can be clustered
into groups. These could be pathways of genes or items of a
construct in a questionnaire, used, for example, in the social
sciences or psychology (Agarwal 2011; Gogol et al. 2014). In
these cases, it can be of interest to perform variable selection in
such a way that this group structure is accounted for. Through
the group lasso penalty (Yuan and Lin 2006; Meier, Van De Geer,
and Bithlmann 2008) and group-wise boosting (Kneib, Hothorn,
and Tutz 2009) this can be achieved. A solution where variable

selection is based on groups, as well as variables, can be of inter-
est if one wants to identify important groups as well as important
variables within a group or in addition to a group. This can be
achieved by the sparse-group lasso (Simon et al. 2013). Most
applications of datasets with sparse-group structures rely on the
utilization of the sparse-group lasso penalty in some form, like
sparse-group quantile regression (Mendez-Civieta, Aguilera-
Morillo, and Lillo 2021), sparse-group neural networks (Yoon
and Hwang 2017) and support vector machines (Tang, Adam,
and Si 2018). One exception is sparse-group Bayesian regression
(Chen et al. 2016). However, to our knowledge, an in-depth
analysis of such sparse-group variable selection in the context of
boosting has not been conducted. Since boosting is a widely used
machine learning algorithm, a boosting variation that can deal
with sparse-group structures can offer an alternative modeling
approach beyond the sparse-group lasso. Having an alternative
to the sparse-group lasso is especially important since many
Machine Learning systems use (sparse-group variable) selection
methods prior to (Farokhmanesh and Sadeghi 2019) or after
(Zhao, Hu, and Wang 2015) fitting another machine learning
algorithm, leaving the sparse-group variable selection algorithm
a potential bottleneck for predictive power and interpretabil-
ity. In this article, we show the issues and potential biases, as
well as their correction, occurring in the presence of variable
selection between and within groups in the context of boost-
ing. In Section 2, we will discuss results from boosting Ridge
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regression, which will be useful for understanding the sparse-
group boosting algorithm stated and discussed in Section 3.
We also discuss its advantages over alternative definitions. Dif-
ferences and similarities between the sparse-group lasso and
the sparse-group boosting are described with special attention
to sparsity. In Section 4, we apply sparse-group boosting to
an agricultural dataset and compare its results to component-
wise, group component-wise boosting, and sparse-group lasso
to showcase its efficacy. The same comparison will be conducted
with extensive simulations in Section 5, followed by a discussion
and conclusion in Section 6. The code used for the analysis and
figure creation and the raw data is available at GitHub (https://
github.com/FabianObster/sgb).

1.1. Notation and General Setup

Throughout this article, we consider a (generalized) linear
regression framework with outcome y € R” and design matrix
X consisting of n observations and p variables. The p variables
are grouped in G nonoverlapping groups, where each group
g € {1,..., G} consists of pg variables. We refer to the jth variable
as x; and the sub-matrix containing only the columns belonging
to group g is denoted as Xv, where Vy = {(vg)},.. (vg)pg} -
{1,...,p} is the set containing the indices of group g. If groups
are not considered, the group index g is omitted. The same
notation also applies to the parameter vector 8 € RP and
regularization parameters.

1.2. The Sparse-Group Lasso

In a possibly high-dimensional setting, for example p > n,
the sparse-group lasso can fit a model that not only performs
variable selection on a variable basis but also on a group basis
(Simon et al. 2013). The sparse-group lasso achieves this by
combining the group lasso penalty Zgzl JPg ”,B(g) H2 (Yuan
and Lin 2006) and the lasso penalty || 8||; (Tibshirani 1996) with
a mixing parameter o € [0, 1],

mmﬁ2 ZXV ,B(g)
2
+(I_Q)AZ\/EH’B®H2+(X}L 181 - ey
g=1

There are two tuning parameters: & and A > 0. The mixing
parameter @ determines how much we want to penalize the
individual variables (increase «) versus how much we want
to penalize groups (decrease o). The special case of « = 1
yields the lasso fit, and @ = 0 yields the group-lasso fit. As
in (Simon et al. 2013), we differentiate between the two types
of sparsity: “within-group sparsity” refers to the number of
nonzero coefficients within each nonzero group, and “group-
wise sparsity” refers to the number of groups with at least one
nonzero coeflicient. Depending on «, both types of sparsity can
be balanced. This gives the data scientist the flexibility to include
secondary knowledge regarding the two types of sparsity. If «
is not known beforehand, it has to be estimated, for example,
by using cross-validation on a two-dimensional grid for A and

a. This has the downside that two hyperparameters have to be
tuned.

The sparse-group lasso can also be extended to more general
loss functions by replacing the least squares loss with other
loss functions. This way, generalized linear models can be fitted
by using the negative log-likelihood I(8), with group-wise and
within-group sparsity

mingl(B) + (1 — a)kiﬁ H,B(g) Hz +ar Bl -
g=1

1.3. Model-based Boosting

Another way of fitting sparse regression models is through
the method of boosting. The fitting strategy is to continuously
improve a given model by adding a base-learner to it. Through-
out this article, we refer to a base-learner as a subset of columns
of the design matrix associated with a real-valued function.
To enforce sparsity, each base-learner only considers a subset
of the variables at each step (Bithlmann and Hothorn 2007).
In the case of component-wise £2 boosting, each variable will
be a base-learner with a linear link function. In the case of a
one-dimensional B-Spline, a base-learner is the design matrix
representing the basis functions of the B-Spline with a linear
link function. The goal of boosting in general is to find a real-
valued function that minimizes a typically differentiable and
convex loss function I(:, -). Here, we will consider the negative
log-likelihood as a loss function to estimate f* as

() = argmin E[I(y,)].
fe

General functional gradient descent Algorithm (Friedman
2001)

1. Define base-learners of the structure h : R"*? — R
2. Initialize m = 0 andf(o) =0 orf(o) =y

3. Setm = m + 1 and compute the negative gradient %l(y 1)

and evaluate it at f 1. Doing this yields the pseudo-

residuals u1, . . ., u, with

[m]

0
up = ?l(yi:f)U:/f\[m—lJ)

foralli=1,...,n

4. Fit the base-learner h with the response (u[lm], . uLm]) to
the data. This yields 1™, which is an approximation of the
negative gradient

5. Update

/f\[m] :?[mfl] +v ~/I’\l[m]

here v can be seen as learning rate with v €]0, 1[
6. Repeat Steps 2, 3,and 4 untilm = M

An important case of the general functional gradient descent
algorithm is boosting ridge regression which we will use as the
framework for defining the sparse-group boosting in a modified
form. For L base-learners, denote the I/th candidate sets consist-
ing of p; columns as V; = {(v)1,. .. vDp} € {L,....p}. We
do not require the candidate sets to be disjoint as in Tutz and
Binder (2007) leading to possibly overlapping groups, which we
will later use for the sparse-group boosting.



Boosting Ridge Regression

1. Initialize m = 0, B1% = 0, Al = X1,

2. Setm=m+1
For each candidate set V;, I < L, fit Ridge regression to the
residuals

’Z;[m—l] =y— ﬁ[m—lj’
yielding

=~[m]
By, = ((Xv) Xy, + 1)~ T @™ 1),

3. Select the candidate set which evaluates the lowest residual
sum of squares

I* = argmin(@™ 1 — Xv,EVI)T@[m_H - XVIEVI).

I<L

4. Update foralll <L

l§[m] EVT_lj + VBV; 1 =1*
Vi E[m 1] i # I*

and

= XB‘[m]_

Here v can be seen as learning rate with v €]0, 1[.
5. Repeat Steps 3, 4, and 5 until m = M and retrieve BMI a5
global estimate.

Through early-stopping, or setting M relatively smaller com-
pared to the number of variables in the dataset, and considering
the learning rate v, a sparse overall model can be fitted. The
algorithm for boosting generalized linear models can be found
in Appendix A.

In the case of component-wise boosting the base procedure
is fitted to each variable in the dataset individually by setting the
candidate sets V; = {j}. For group component-wise boosting,
we can set V] to the indices of the nonoverlapping groups. For
the sparse-group boosting, which we will define in Section 3.1,
we will combine both candidate sets, leading to overlapping
groups. This introduces perfect multicollinearity for each vari-
able in the dataset and a non-identifiable model. To understand
variable selection in such cases, and to ensure that both types
of base-learners can be selected within the same procedure, we
need some results from boosting ridge regression. These include
linking the selection criteria, the residual sum of squares/log-
likelihood, with the structure of the base-learners, which we will
do in the following section.

2. Boosting Ridge Regression and Preliminary Results

The sparse-group boosting as we define it here is based on £2
regularized regression. Therefore, we first discuss some results
for linear Ridge Regression which minimizes (y — X,B)T(y -
XpB) with the constraint ||B]|> < ¢, for a positive constant c.
Using the Lagrangian form this has an explicit solution 8, =
XTX+AD~'XTy. We will now discuss results for boosting ridge
regression regarding the residual sum of squares (RSS) and the
degrees of freedom that will be relevant for the sparse-group
boosting. Lemma 1 allows us to characterize the hat matrix in
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Ridge Regression using the singular values. The ridge hat matrix
will be important to understand the RSS and degrees of freedom,
which we need to later define the sparse-group boosting and
then understand the variable selection mechanism.

Lemma 1 (Hat matrix in £? Ridge Boosting). Consider a design
matrix X € R"*P of rank r < p with singular value decompo-
sition X = UDVT, where U € R"™P,V € RP*P are unitary
matrices and D = diag(dy, .. .,d,0,...,0) is a diagonal matrix
containing the singular values Let y € R” be the outcome
variable and B, = (XTX 4 AI)~ 1XTy be the Ridge estimate for
A > 0. Then the hat matrix H* (m) after m boosting steps using
alearning rate of v = 1 is given by

r
~ +1 ~
H*(m) =1, — (I, — UuDUN)"" =31 - - )" yujuf,
j=1
I P
with D = dlag(dl,.. 1,0, .0 = dlag(ﬁ, ,
d2
00,

A derivation can be found in Tutz and Binder (2007). Note
that the RSS does not depend on the orthogonal matrix V.
Considering the case of only one boosting step, the hat matrix
becomes

2
r d- r
Z d2 )Lu]u]' :

]_

H* = H*(0) = UDUT =

For the residual sum of squares, this means

RSS(B) = (v — XB) (v — XB) = yT (I — HMYy
=yly—yTer* — HYy
=yly —yTeubuT — ubD*ut)y
r 42 d*
J

:yTy_yT(];[zdfix _

@+ Ju
@

Now, we can introduce the degrees of freedom df(), which are
either defined as the trace of the hat matrix d~f(;§;\) = tr(H") or
as df(A\) = tr(2H* — (H*)TH*). As discussed by Hofner et al.
(2011) and apparent in (2), df has the advantage over df of being
tailored to the RSS. It is worth pointing out that regularizing
based on df leads to a greater shrinkage compared to df for the
same base-learner, because for the same base-learner

r d2 d4
dfo) = df) & ) 2—
() = dit) JXI: E+r (d e+

>

r d-z
D S B
= G

This can be seen by contraposition. Assume, that . < A. For
2

d:
some j, we substitute x = dzi-i and use 2x—x? > xforx € [0, 1].
i d; & & /!
Then < e — 1 <21 — 1 - Th n
en dz-M SPEA T @y S @ T @ e d

inequahty follows from the assumption A < X and the fact that
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2x — x2 is strictly increasing for x € [0, 1]. Since all summands
of one sum are strictly smaller, the sums cannot be equal, and
the claim follows.

They conclude that the degrees of freedom should be set
equal for all base-learner to avoid selection bias, because for two
base-learners with design matrices X, and X and correspond-
ing Ridge estimates By and 7, Y, we have

E[RSS(By) — RSS(7)] = 0 & df(3) = df(p)

if the normally distributed outcome random variables
y ~ N(0,0I) are not dependent of the design matrices
X, and Xg in an ordinary linear regression model. However,
we do want to point out that having the same expectation of
RSS does not mean, that there is no variable selection bias. The
RSS of B, can still have a different variance, shape or different
higher order moments than the RSS of 7,,. In the same setting,
the RSS is a quadratic form and can be written as y”Q;y and
yTQ2 y with symmetric and positive definite matrices Q; and Q,
for two base-learners. Such quadratic forms are generally not
independent of each other unless Q;Q, = 0 (Craig’s theorem).
We will later return to the issue of selection bias in the context
of sparse-group boosting. We will now look at component-wise
Ridge Boosting

Corollary 1. Consider a design matrix vector x € R"*! of rank
one with singular value decomposition x = ud, where u = —2

VxTx
is the left singular vector and d = v/xTx € R* is the smgular
value. Let y € R”" be the outcome variable and ﬂA = (xTx 4+
AD” ley be the Ridge estimate for A > 0. Then,

. § d*
df(n) = df(By) = (Zdz A (@t )L)Z)’

RSS(By) = y"y — yTdf(Byuu"y,

and the Ridge parameter A in terms of df(f, ) is given by

— (=4 (60 — 1) + P(afx) — 1))

df(x)

A=

This follows directly from Lemma 1 and then solving for
A by finding the zeros and the fact that df(X) is greater than
zero. This corollary seems straightforward but has some useful
implications. Generally, in model-based boosting, grid search
over A has to be performed to set the degrees of freedom to a
fixed value. For individual base-learners one can now compute A
directly with a simple formula without having to try a lot of reg-
ularization parameters, which increases speed and accuracy. In
addition, one does not have to compute the singular value of the
Demmler-Reinsch orthogonalization (App. B.1.Carroll, Rup-
pert,and Wand (2003)), because the singular values of the design
matrix are sufficient in this case. We also see that controlling the
variance of a covariate can achieve the same effect as regulariza-
tion in component-wise boosting. Hence, equalizing the degrees
of freedom can be seen as a form of standardization. We will now
turn to ridge regression with orthogonal design matrices. In this
case, the Ridge estlmate is equal to a scaled ordinaryleast squares
estimate ﬂk = 3 +k ﬂOLs Orthogonal designs also allow us to
characterize the difference between the RSS of Ridge regression
and the RSS of the OLS estimate as a Gamma distribution.

Theorem 1 (Distribution of the difference of RSS in orthogonal
Ridge regression). Let X € R"*? be a design matrix with
orthonormal columns such that X'X = I,. Let y € R" be
the outcome variable, y = €,¢ ~ N(0,02) not dependent
on the design matrix. Further, assume that the least squares
estimate ﬂ XTy exists and ﬂ;t is the Ridge estimate for some
A > 0. Define the difference of residual sums of squares as
A= RSS(ﬁA) RSS(ﬂ) - 1+AXﬂ)T()’ 1+)LX/3) (y—
XB)T(y — XB). Then if (1 - df(}‘)) A follows a gamma
distribution with the following shape—scale parameterization

~r( - —2 oy )
o2 X p(1+2) m1+mﬂ'

3. Sparse-Group Boosting

The goal of this article is to adapt the concept of the sparse-
group lasso to the boosting such that it is tailored to the boosting
framework. One straightforward idea is to use the whole dataset
as base-learner equipped with the sparse-group lasso penalty
in (1) and update the global model with each boosting step.
However, it is not within the scope of this article to fit a sparse-
group lasso model through the utilization of boosting. We rather
want to build upon the results from boosting Ridge regression
within the framework of group-component-wise boosting. With
this approach, no Lasso penalty is needed. As proposed by
Hofner, Mayr, and Schmid (2014), one can define one base-
learner as a group of variables, as well as an individual variable.
We define sparse-group boosting using a similar idea as in the
sparse-group lasso.

3.1. Definition and Properties of the Sparse-Group
Boosting

For the sparse-group boosting we define p+ G candidate sets. Of
which the first p refer to individual base-learners | < p : V; =
{1}, and the remaining G to the group base-learners of group size

Pl >p:Vi={Dp.. . vy} S {L..p}

1. Initialize m = 0, 1% = Op,ﬁ[o] = XA,

2. Setm=m+1
For each candidate set V}, I < p + G, fit Ridge regression to
the residuals

a[m—l] =y-— ﬁ[m—l]’
yielding

=[m] _ _

By, = (Xv) Xy, + M)~ Xy T @™ ).
Regularization parameters A; are defined using the Ridge hat
matrix H%‘/l = XV,((XV,)TXV, + AII)*I(XV,)T of each base-
learner as defined in the previous section, such that

— (Hy)?) =«
—Hp)H)=1-«

A df(y) = tr(2H
A df(Ay) = tr(2H

I<p
I>p.
(3)



3. Select the candidate set which evaluates the lowest residual
sum of squares

I* = argmin(@™ 1 — Xv,EVI)T@[m_H - XV,EVI).
I<L

4. Updateforalll <p+ G

Blm — A1+ VBVI* I=r,
Vi E[m—l] l;ﬁ I*

and

= XB‘[m]_

Here v can be seen as learning rate with v €]0, 1[.
5. Repeat Steps 2, 3, and 4 until m = M and retrieve BIMI as
global estimate.

From the derivation in (2) and applying the expectation one can
see that in some boosting iteration m,

E[RSS(8)] = E[@" )Tl — tr2Hy, — (Hy)?)
— E[(ﬁ[mfl])Ta{mfl]] _ df()\l)

Therefore, the degrees of freedom and the selection criteria in
boosting are directly linked, making the degrees of freedom
an excellent choice for changing the chance of a specific base-
learner being selected. This means that we can directly change
the chance of an individual base-learner being selected over a
group base-learner by the choice of «. This is done in step 2
in (3). Since individual base-learners Xy, € R < p have
degrees of freedom equal to o we will set A; such that

df(A) = o, (4)
and for group base-learners Xy, € R"*?., 1 > p
df(h) = (1 — a). ®)

a €]0, 1] is the mixing parameter. Since df(A) = 0 means A —
00, ¢ = 1 yields component-wise boosting, and « = 0 yields
group boosting. This is a similar result as in the sparse-group
lasso. With the R package “sgboost” (Obster and Heumann 2024)
one can create such a sparse-group boosting formula depending
on a given group structure and fit the corresponding model. An
alternative definition that looks more like the sparse-group lasso
would be to directly regularize the penalty term instead of the
degrees of freedom. In this case, the estimate for individual base-
learners I < p becomes

=[m] _ _
By, = (Xv) Xy, +arl) ' Xy @)

and for group base-learners [ > p with group size p;

=[m] - ~
By, = ((XVI)TXVI + (1 — a)/piridy) 1(XVI)T(Q{’” 1y
For generalized linear models, the modified loss function £ for

individual base-learners I < p becomes

L3 = =3B+ By + @k (By) By, (©)

i=1
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and for group base-learners [ > p with group size p;

n
L = =>4 + vy

i=1
+ (1 —a)pir(Bv) B, 7)

The sparse-group boosting algorithms for generalized linear
models can be found in Appendix A. However, using this def-
inition does not yield either group boosting or component-
wise boosting for @« € {0,1}. This is the case because if we
compare the loss function of the regularized base-learner with
an unregularized base-learner, it is not guaranteed that the
unregularized base-learner has a lower loss. We will see this
later in Theorem 2. Still, both definitions have their advantages
and disadvantages. Using the degrees of freedom allows us to
directly control the expectation of the RSS given normal error
terms. In this case, @ has a natural interpretation and one can
set o a priori based on how one wants the RSS of individual
base-learners to be compared to the group base-learner. The
other advantage of using the degrees of freedom is that one only
has to decide on one hyper-parameter, namely «. Based on that
choice, all other penalty parameters are already determined. Of
course, the optimal stopping parameter and the learning rate
have to be set in both definitions. There are also advantages of
mixing the penalty term. While more tuning is required, there
is a greater flexibility of being able to control two parameters
independently of each other which may lead to greater predic-
tive power. Controlling the penalty term directly also has the
advantage of seeing which combination of & and X leads to either
only group or individual variables based on the smallest and
biggest nonzero singular value of the design matrix and makes
the search more efficient, see Theorem 2. In this article, we will
mainly focus on the first definition, because of its simplicity,
interpretation, and the fact that in boosting the regularization
is mainly achieved through the small learning rate and early
stopping than finding the optimal regularization parameter as
in the sparse-group lasso.

Figure 1 displays a two-variable group example of the evo-
lution of the estimates throughout the sparse-group boosting
process for different mixing parameters based on the degrees
of freedom. One group base-learner and two individual base-
learners were used. All models move toward the least squares
estimate indicated with the point at « = 1. However, the path
they take depends on the mixing parameter. So, in the case
of early stopping, different parameter estimates are obtained
depending on «. One can see that sometimes only the group
base-learner is selected, and in some cases, only the individual
base-learners are selected, whenever the path moves only either
up or to the right. In some cases, there is an alteration between
individual base-learners and the group base-learner. It becomes
clear that o has a strong impact on the parameter estimate
in the sparse-group boosting even if there is no within-group
sparsity or between-group sparsity, as there is only one group
and all variables are active in this example. This is especially
the case in the early parts of the boosting process. We also
see that varying the S-value of one of the variables leaving
the other constant does lead to similar jet stretched parameter
estimate paths. In this example, the Multi-collinearity of the two
predictors seems to only slightly affect the selection process, as
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beta = (1,2) beta = (1,6) beta = (1,10)
10.0 1
7.54
8
5.01 &
o
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N
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)
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=
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Estimate V1

Figure 1. Example: sparse-group boosting parameter estimate paths. Paths throughout 100 boosting iterations for a learning rate of 0.3, depending on the mixing
parameter (line-thickness) in an ordinary linear regression model with a normally distributed error term.Independent variables are one group, formed using two variables,
where the S-value of the first variable was always set to one, and the S-value of the second variable varied among 1, 6, and 10. The sparse-group boosting model consists
of one group base-learner and two individual base-learners. The horizontal axis depicts the estimate for the first variable and the vertical axis the estimate for the second
variable within the group. The point at @ = 1 indicates the least squares estimate. In the case of « = 0 group boosting and @ = 1 component-wise boosting was used.

the upper and lower paths look similar. For the sparse-group
boosting to be a useful method for a general design matrix
compared to component-wise boosting and group boosting as
separate methods, we show that it is more flexible than just using
either of the two.

Theorem 2 (Selection intervals of the sparse-group boosting).
Consider a design matrix X € R"*P of rank r < p with singular
value decomposition X = UDVT, where U € R"™*?,V € RP*P
are unitary matrices and D = diag(d,...,d;,0,...,0) is a
diagonal Matrix containing the singular values. Let y € R" be
the outcome variable and B, = (X" X + uI) "' X"y be the Ridge
estimate for > 0. Forj < plet ,/31]. = (ijxj + Aj)_lx].Ty be the
estimate for the jth individual base-learner, and Ej be the singu-
lar value of x;. Denote d = minj<p EJ-Z andd = maxj<p a
as well as d* = maxj<, dj2 and d~ = minj<, dj2 accordingly.
Then, there are always two mixing parameters o;, s €]0, 1[
such that

(VjSP Lo = df()»]) Al —a)) = df(,u))
= min RSS(%;) < RSS(u),and
J=p
(Yj<p 1 o2 = df(3)) A (1 — o) = df(w))
= RSS(1) < min RSS(2;).
J=p

Furthermore, the following conditions assure the selection of an
individual variable or the whole design matrix

—2
(d +2p) _ (d +21) ] [ df(r)d~ D
Vi< < v | df <
<[ SHa T r(@d + Ap)? W==
= minRSS(A;) < RSS(w), ®)
j=p

(@ +2p) _ dfth)
Vie
([ T F ]

[ @ +2p) _ (d + ZM)D

A% 1<k > —

= (dt 4+ p)? (dlz 1 A2

= RSS(pn) < miII)lRSS(Aj). (9)
Jj=<

Theorem 2 is useful for both definitions of the sparse-group
boosting, as one can either use the bounds by setting A; =
ak, i = (1 — o)X and further bound (8) and (9) by replacing
dl2 with either d' or d , respectively. Note that in (9) it is not
possible to use the degrees of freedom of the group design matrix
as a bound as in (8), because the smallest sum member cannot
be expressed in terms of the sum.

We see that there are bounds for the regularization, that
always either favor an individual or group base-learner only
knowing the largest and smallest nonzero singular values of the
group matrix and the column vectors as well as the group size.
Especially no assumptions regarding the association between
predictors, grouped or individual, and the error term were made.
Also, the number of boosting iterations performed and the
learning rate play no role in the selection bounds. By restricting
the design matrix one can find even tighter bounds in which
both individual and group selection can happen for a given c.

Corollary 2. Consider the same setting as in Theorem 2. Setting
X = UD meaning V = I, yields the following bound

(Vj<p : df(w) < df(%j)) = minRSS(Aj) < RSS(11),
jsp

and in the case of X = UdVT withd € RT
1
(¥zp £ dfl) 2 - df(3) = minRSS() = RSS().
J=p



Follows directly from the proof of Theorem 2. These bounds
have strong implication for setting the mixing parameter «,
because set too high or too low one only gets either individual
or group base-learners for every design matrix. One example
of using Corollary 2 is a categorical variable that is treated as a
group base-learners and each dummy variable as an individual
base-learner. In this case, « > 0.5 should be set. This is also an
example where the condition of Hofner et al. (2011) of setting
the degrees of freedom equal across all base-learners fails, as in
this case only individual base-learners can be selected, which
is a clear case of variable selection bias. If the design matrix
of one group is a scaled orthogonal matrix then o € [ﬁ, %]

should be set. One example of this would be a categorical
base-learner with equal number of observations per category.
The following Theorem allows us to characterize the pairwise
selection probability in one boosting step of two base-learners
where one is a sub-matrix of the other for scaled orthogonal
matrices.

Theorem 3. Let X € R"*P be a scaled orthogonal design matrix
such that X = dU for d € R* and U"*? orthogonal. Define
the sub-matrix X! € R™P1,0 < p; < p.Lety € R" be the
outcome variable, y = €, ~ N(0,0?) not being dependent on
the design matrix. Let B). be the Ridge estimate using the design
matrix X for some penalty A > 0 and ,E” the Ridge using
X as design matrix for penalty > 0. Let df(A) and df(u) be

the corresponding degrees of freedom. If &l)‘) > 4w

we can
characterize the selection probability based on the residual sum

of squares for the two base-learners as

P(RSS(By) = RSS(B,)) = F./ () ppy | it ),
(RSS(B) = RSSB)) = Fy (1 1y o))
where Fg is the distribution function of the beta prime

distribution.

Theorem 3 allows us to know the selection probability of a
group base-learner versus one individual base-learner for an
orthogonal group design matrix. While this is interesting, one
would assume that groups are rather defined such that there are
dependency structures within a group. However, it is plausible
to assume that an individual base-learner from another group
is orthogonal to the group design matrix. In that case it is
straightforward to see that the selection probability of the
individual base-learner versus the group base-learner follows

a generalized beta prime distribution ﬁ/(%,f%l, ,%),
which in  the  sparse-group  boosting  becomes

(1 p-1
B (i’T’

ap
> l-a )

3.2. Within-Group and Between-Group Selection

When defining group and individual base-learners at the same
time there are two types of variable selection happening at the
same time. There is selection between groups: Which group
base-learner will be selected? This selection can only be unbi-
ased if there is an equal selection chance for all group base-
learners. The sparse-group boosting assures them all to have the
same degree of freedom, hence the expected RSS is the same
for all base-learners. The same is the case for all individual
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base-learners compared to each other as they also have the
same degree of freedom. However, in the presence of individual
variables, there will always be a challenge at the group level. To
illustrate, consider a categorical variable, one containing 3 cate-
gories and a linear base-learner, together building an orthogonal
system, not being associated with the outcome variable. Then, if
one wants the selection chance of any categorical variable versus
the linear variable to be equal their degrees of freedom have
to be equal, meaning @ = 0.5 in the sparse-group boosting.
But doing this leads to the group base-learner of the categorical
variable to be never selected based on Corollary 2. Further-
more, the individual categorical base-learners will have a greater
selection chance compared to the linear base-learner, because of
the greater group size. To counter this, one could penalize the
individual base-learners in bigger groups more than the ones in
smaller groups. Doing this could give the categorical variable
versus linear variable equal selection chances. But then on the
individual variable basis, there would be a bias toward selecting
an individual base-learner just because the group it belongs
to has a smaller group size. Using the sparse-group boosting,
one can decide if one rather want a balance between groups
or between individual base-learners. However one should keep
in mind, that a perfect balance in the case of unequal group
sizes may not be easy to achieve. On which level one wants
equal selection chances depends on the research question and
interpretation of the data. Generally, varying group sizes impose
challenges. If a group contains only one variable then the group
and individual base-learner are the same and therefore the
greater value of either o or 1 — « is used for both, preferring
either the group base-learner or the individual base-learner.
From Theorem 2 we see that the group size affects the selection
bounds. This can also be seen in Figure 2 which compares
the selection frequency of the group base-learner in the first
boosting iteration for group sizes two and three and different
dependency structures. Staying again with the example of two
categorical variables of equal number of observations within
each category from Corollary 2 we know that the selection
interval of the smaller categorical variable is a subset of the
selection interval of the bigger categorical variable. This means
that for a small enough o one can either have the group or
individual variable selected depending on the dataset and for the
smaller group only group base-learners regardless of the dataset.
One could use a group adjustment by the group size to align the
lower bound but then the upper bound would also be affected
imposing the same issue.

3.3. Extensions

The here presented results like the selection bounds were mainly
focused on £? boosting. However, the definition of the sparse-
group boosting can be applied to many cases of grouped
datasets. Whenever the degrees of freedom can be computed
and modified by a regularization parameter, one can use sgb
df as defined in (4), and whenever Ridge regularized regression
can be used sgb lambda as defined in (6) can be used. This
includes generalized linear and additive models but also regu-
larized regression trees. We also want to highlight that semi-
grouped datasets can be analyzed using the sparse-group boost-
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Figure 2. Group selection probability versus individual variables depending on the mixing parameter (alpha) in the sparse-group boosting. The two variables within the

group are either orthogonal, independent of each other or correlated.

ing by including additional base-learners which are not split
up into groups and individual variables. Examples of this could
be random effects, treatment effects, or smoothing splines. The
degrees of freedom or regularization parameters of these vari-
ables could then either be set to o, 1 —« or even zero yielding an
unregularized base-learner. An extension to generalized additive
models for location scale and shape (gamlss) Stasinopoulos
and Rigby (2008) and their boosting variant ‘gamboostLSS in
Hofner et al. (2011) is also possible. This would allow the data
analyst to also apply sparse-group penalization to the linear
predictor for other moments of the conditional distribution of
the outcome given covariates. We believe that (group)—sparsity
is especially important for higher-order moments due to the
overall model complexity and the number of variables to be
interpreted.

4. Empirical Data: Agricultural Dataset

The analysis was performed with R (R Core Team 2022). For
visualizations, the R package ggplot was used (Wickham 2016).
All computations were conducted on a 3600 MHz Windows
machine. Biomedical data are prominent examples of where
sparse-group selection can be used. To show the variety of
possible applications we analyze an agricultural dataset. Climate
change impacts on the agricultural sector are well documented.
The type and level of impacts are crop and region-specific. Not
surprisingly, exposure to climate change makes many orchard
farming communities in Chile and Tunisia vulnerable to cli-
mate change impacts. Many susceptibility-related factors may
affect farm vulnerability to climatic impacts. Several adaptation
resources (measures/tools) are available to directly reduce the
impact on farm operations or reduce the number or sensitivity
of susceptibility-related factors. The final objective is to increase
the resilience of the farming communities.

The dataset (Pechan, Bohle, and Obster 2023) contains 12
binary outcome variables of interest that are related to adaptive
measures against climate change impacts. The 147 independent
variables can be grouped into 23 groups depending on the
construct the variable belongs to. Two group examples are social
variables as well as past adaptive measures. 801 farmers have

been included in the study. Further analysis of group variable
selection for other outcomes in the dataset can be found in
Obster, Bohle, and Pechan (2024) and Obster et al. (2023).

We again use 11 equally spaced o values from zero to one as
mixing parameters for sgl, sgb df and sgb lamda. The dataset was
split into two, each only containing farmers of one Country. We
randomly split 70% of the data into the training data and 30%
into the test data. The remaining test data was used for the model
evaluation. As in the previous section we used the area under
the curve (auc) as an evaluation criterion, since all outcome
variables are binary. For the training data, we used a 3-fold cross-
validation to estimate the optimal stopping parameter for the
boosting models and the optimal A value for the sgl models. We
used 6 values of A for the sgl and 3000 boosting iterations with a
learning rate v = 0.05 for both sparse-group boosting models.
In sgb lambda we used A = 100.

Referring to Figure 3 which averages across all 12 outcome
variables for each dataset and « value, it becomes apparent, that
overall the models performed similarly regarding predictability.
In Chile and Tunisia, sgb df had the highest AUC, obtained
at o 0.4 in Chile and o 0.2 in Tunisia. At the same
« values also the sgl achieved its highest auc. Stronger differ-
ences between the models can be found regarding sparsity. For
smaller o values all models selected more variables on aver-
age, where sgb df and sgb lambda selected more variables for
smaller o values than sgl. Component-wise boosting and the
lasso yielded roughly the same number of selected variables.
The number of partially selected groups, meaning at least one
variable within a group gets selected, does on average increase
with a. Whereas the number of fully selected groups decreases
on average with increasing o values for sgb df and sgl. This
effect is less pronounced for sgb lambda. This opens up an
interesting discussion on what “between group sparsity” means.
If one defines it through the number of fully selected groups,
meaning all variables within the group have to be selected,
then compared to defining it through the number of partially
selected groups one gets an opposing effect of «. The aver-
age percentage of selected variables within groups decreases
on average with o, corresponding to increasing “within-group-
sparsity”
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Figure 3. Results of the agricultural dataset. Line-type and point-shape indicate the type model depending on alpha.

The computation time was somewhat volatile, and we had
to rerun the models a few times, as the sparse-group lasso
cross-validation estimation with the sgl package crashed mul-
tiple times. We did not fully optimize for computational speed
and there are efforts to improve both the computation time of
sgl (Ida, Fujiwara, and Kashima 2019; Zhang et al. 2020) and
boosting (Staerk and Mayr 2021). Theoretically, the computa-
tion time of the sparse-group boosting should be the sum of
the time it takes to fit component-wise boosting and group-
component-wise boosting. However, through fitting group base-
learners parallel to individual learners, the computation time
should be close to either group boosting or component-wise
boosting depending on which of the two is slower. Therefore,
the speed of the sparse-group boosting depends mostly on the
implementation of boosting.

After evaluating the models on the training data, we refit
one of the models for the outcome indicating the willingness
to invest more than 60% of income in adaptive measures in the
future with « = 0.3. We can look at the relative variable impor-
tance adapted to sparse-group boosting. Let EA}mJ be the reduc-
tion of log-likelihood in boosting iteration  and predictor I €
{0,...,p,p+1,...,p+G} be the base-learner which was selected
in this step. The first p predictors are individual variables and
the remaining G are the groups. Then the reduction can be
attributed to this predictor. Hence, we can compute the relative

contribution of each group or individual variable to the global
T Ly

T £
Figure 4(a) and (b) show the variable importance for Chile and
Tunisia for each predictor/base-learner contributing at least one
percent to the model. The legend shows the relative contribution
of groups, indicating that individual variables contribute rela-
tively more to the model than groups. Below in (c) and (d) we see
the aggregated coefficient paths for each variable in the dataset
by summing up the coefficients from individual selection and
group selection. The color indicates whether an update in a par-
ticular coefficient came from individual or group variable selec-
tion. We can see the alteration between individual and group
variable selection depending on the boosting iteration giving
us insights into the selection process. The figures were created
with the R package “sgboost” (Obster 2024), which implements
the sparse-group boosting and contains interpretability tools,
explained in Obster and Heumann (2024).

model or the relative contribution of all groups

5. Simulated Data

In this section, we will compare the two versions of the sparse-
group boosting with the lasso, to see how similar the predictive
power and sparsity properties are. Therefore, we consider 11
equally spaced mixing parameters « between zero and one for
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the sparse-group lasso and sparse-group boosting. This way the
lasso/boosting and group lasso/group boosting are also covered.

The covariate matrix X was simulated with different numbers
of covariates, groups, observations, and covariance structures.
The response, y was set to

G
ZXVgﬂ(g) +oe.
g=1

Here, ¢ ~ N(0,I). The signal-to-noise ratio between the
nonzero entries of 8 and o€ was set to 4 through the value of
o. Note that the effective signal-to-noise ratio is additionally
altered by setting some elements of 8 to zero, which additionally
increases the noise. In the case of no variables being associated
with the outcome, no additional error term € was used.

The tuning of the models was performed with a 3-fold cross-
validation performed on the whole simulated data. We used 11
equally spaced mixing parameters « ranging from zero to one.
For the sparse-group boosting based on A and the sparse-group
lasso, we chose 10 values for A. Since no proven method of
selecting a good set of A values in the sparse-group boosting
exists yet, we chose A = 50 - i for i € {1,...,10}, as in boosting
ridge regression in general bigger values for A are generally
preferable Tutz and Binder (2007). For the boosting models,
we used a learning rate of 0.05 and 2500 boosting iterations to

fit the models with early stopping derived from a 3-fold cross-
validation. Since the sparse-group boosting using the degrees of
freedom has no comparable tuning parameter for X in the other
two models, we used a finer grid of « values. For a given alpha
value « in the sparse-group lasso, whenever the model is fitted
for A;, the sparse-group boosting with the degrees of freedom is
fitted with & + 0.01 - (i — 1). This way, for each «, 10 versions
of each of the three models are being fitted. Afterward, we
compare the estimates with the actual parameter vector 8. The
parameters used for each scenario are summarized in Table 1.
For each scenario, 15 iterations of the data were simulated. As
the main evaluation criterion, we used the root mean squared
error (RMSE), defined as

G Pg

Z Z (('Bj(g) - B;g))z’

g=1j=1

1
RMSE = —

p

where X;. is the ith row of the design matrix.

To make the simulation results comparable across the con-
sidered scenarios, we consider the standardized RMSE within
each scenario for all iterations r € {1,...,R} defined as

% using the sample mean (RMSE) and standard devi-

ation (sd(RMSE)). We also computed the proportion of “correct




Table 1. Table with aligned units.
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Scenario

full gr. half gr. empty gr. full vars half vars empty vars cor n
1 5 5 5 15 15 15 0 50
2 5 5 5 5 5 15 0 50
3 5 5 5 5 15 5 0 50
4 5 5 5 15 5 5 0 50
5 2 2 5 15 15 15 0 50
6 5 2 2 15 15 15 0 50
7 2 5 2 15 15 15 0 50
8 0 0 5 0 0 15 0 50
9 5 0 0 15 0 0 0 50
10 5 5 5 15 15 15 0 500
1 5 5 5 15 15 15 0.5 50
12 5 5 5 15 15 15 0.95 50

NOTE: Full gr. refers to the number of groups where each variable inside it has an effect. Half gr. refers to the number of groups that contain exactly five effects and the
remaining ones are zero. Empty gr. refers to the number of groups that contain no effects. The number of variables within these groups is described by full vars, half vars,
and empty vars. Cor refers to the degree of multicollinearity of the design matrix, measured by the pairwise correlation between the variables in the design matrix.
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Figure 5. Simulation results for the 12 simulated scenarios averaged across the 15 iterations and 10 hyper-parameter setting for each alpha. Line-type and point-shape
indicates the type of model. All metrics compare the model estimates with the true parameter vector.
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and the proportion of “correct zeros” and the overall “correct
classified” elements of 8. In Figure 5, the results of the sim-
ulation are displayed. For each model type and o value, out
of the 10 hyperparameters, the model with the lowest RMSE
was chosen. For each metric considered the values were then

averaged across the 15 iterations. Since sgb df had a finer grid
of « values, we removed the second digit of «, for exam-
ple 0.47 becomes 0.4. The only exceptions were the values
between 0.01 and 0.10, which we rounded up to 0.1. This
is because o 0 is group boosting and we did not want
to mix it with the sparse-group boosting. The results of sgb
df on the full scale of o without summarizing are shown in
Figure 6.

Generally, in most scenarios and models, sparse-group vari-
able selection improves the fit. For « € {0,1} (group lasso,
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group boosting, lasso and component-wise boosting), sgb df
and sgl yield similar estimates, except scenarios 8 and 10, as
the RMSE and also the detection rates are close together. This
is in line with Hepp et al. (2016). However, the effect of & on
the evaluated metrics differs. This is in line with the results
from Theorem 2 and Corollary 2, as for & > 0.5, sgb df will
be close to component-wise boosting with varying degrees of
freedom. This is a difference to sgl, in which the resulting model
changes through the whole range of «. Generally, there is a
tradeoff between the correct detection of effects and zeros, which
is affected by « through the selection of either groups or single
variables. This is the case for all covered models. The range
of the correct detection of zeros and effects is greater for sgb
df than all other models, which can partly be explained by a
finer grid of o values. In this regard, it is important to note
again, that sgb lambda is not guaranteed to yield only group-wise
selection as seen in Figure 2. In scenario 10 sgl outperformed
both variations of the sparse-group boosting. However, in this
scenario, sgb df was almost always stopped out meaning the
number of boosting iterations was set too small for this dataset.
A similar issue happens with the models fitted with the “SGL”
package, as the vector of lambda values contained too small
values leading to severe over-fitting (compare with Figure 1 in
Appendix C). Therefore, we used the ’sparsegl’ package for the
simulations, which chooses more sensible values for lambda in
the cross-validation.

As in many cases, there is no “the best model’; only the best
model for a given metric and dataset, especially if one looks
at opposing metrics. For sgb df and sgl, whenever there are
more full groups or the number of variables in the full groups
is greater compared to the half and empty groups (Scenarios
4,6, and 9), o decreases the correct detection of B elements
and increases RMSE, meaning group-wise selection is more

important than individual variable selection. The opposite is
true when the number of half groups and the group size of the
half groups is greater (Scenarios 3 and 7). We observe that the
correct classification rate of active variables is higher for sgb
lambda than for sgb df, especially for higher values of «. In
Scenario 2, however, this is not the case, as the group size of
empty groups is greater than that of non-empty groups. On the
other hand, the correct classification of non-active variables is
higher for sgb df. This observation is in line with the results from
the agricultural data, where within-group sparsity and overall
sparsity are higher for sgb df compared to sgb lambda. Hence,
sgb lambda may be more prone to over-selection (overfitting)
and sgb df to under-selection. Over the whole range of « the
range of all considered metrics is greater for sgb df than for the
other methods in most scenarios. This makes it more likely to
find a good tradeoff between the correct detection of active and
inactive variables/groups by tuning o using sgb df. This was also
observed in the agricultural data. In the case of Multicollinear-
ity (Scenario 1 vs. Scenarios 11 vs. 12), the correct detection
rates are similar for the lasso and component-wise boosting.
It seems to affect the models for smaller values of « more. As
also apparent in Figures 2 and 6, the bounds of the interval in
which group selection and individual variable selection happen
together in the sgb df is shifted to the right in the case of
multicollinearity.

6. Conclusion, Limitations, Future Work, and
Discussion

In this article, we presented a framework for adapting sparse-
group variable selection to boosting. Combining group and
individual base-learners in the same model, by weighting the



degrees of freedom as mixing parameter «, one can fit a model
with similar characteristics as the sparse-group lasso. However,
the effect of « is different in the sparse-group lasso compared
to « in the sparse-group boosting. Even though both models
yield only group selection for « = 0 and only individual
variable selection for « = 1, there is a greater range where
the sparse-group boosting only selects individual variables or
groups. We found theoretical bounds for this range depending
on the singular values of the group design matrix in £2 boosting.
This implies that for model tuning one should focus on the
«a values within the theoretical bounds. A good proxy without
computing the singular values a prioriis to use o € [ Pma1x+l ,0.6].
This interval is the one from Corollary 2 and gives some room
for multicollinearity and strongly varying singular values of a
group design matrix. In the simulations as well as the two real
datasets this range was sufficient. While finding the right value
for o in the sparse-group boosting, it has a natural interpretation
in addition to just being a mixing parameter, as it corresponds
to the degrees of freedom.

Mixing the ridge regularization parameter directly (sgb
lambda) one can also fit a sparse-group boosting. However, the
fitting becomes harder as one has an additional hyper-parameter
which has a strong effect on the selection bounds and one loses
the interpretability of . Further research would be required to
make this formulation a useful competitor.

We want to note that there are also other possible ways to
fit a similar model through boosting. One idea is boosting the
sparse-group lasso, or using group boosting with an elastic net
penalty within each group-base-learner. The main difference
between the sparse-group boosting and the sparse-group lasso
is the fitting philosophy. When thinking about the sparse-group
lasso one thinks of shrinking effects and making them van-
ish either on a group level or on an individual variable level.
When thinking about boosting, one rather think about adding
individual variables or groups of variables to the global model.
Boosting the sparse-group lasso or group boosting the elastic
net would combine both approaches iteratively while adding and
shrinking at the same time. This could have an interesting and
different selection behavior over the here proposed sparse-group
boosting, as one does not have to update full groups if a group
base-learner is selected. A distinct advantage of the philosophy
of adding rather than shrinking of the sparse-group boosting is
that one can have a group being selected, updating all variables
equally and also additional individual variables on top of the
group, which are more important than the other variables within
the group. This way one can compare the variable importance of
individual variables versus group variables through the propor-
tion of explained variance/loss function which cannot be done
by the sparse-group lasso and boosted variants of it. An example
of this can be found in Obster, Bohle, and Pechan (2024). This
way, sparse-group boosting can facilitate new research questions
and provide additional insights and interpretability. The group
variable importance as defined in Section 4 can also be used
for construct validation or an exploratory identification of latent
variables, as often performed in the social sciences and psychol-
ogy. Suppose variables are selected through a group rather than
through individual variables. In that case, the group construct is
likely responsible for explaining the outcome, rather than some
specific aspects of it, underpinning construct validity.
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Supplementary Materials

The supplemental material file contains the algorithm for generalizing
Sparse-Group Boosting to generalized linear models, Proofs of Theorems
provided in the manuscript, and further simulation/real data results.
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A Generalizations

Let h : R"*P +— R™ be the invertible strictly increasing response function of a generalized linear
model, with E[y|X] = u = h(n). Where y|z is a member of the simple exponential family in
canonical form depending on the linear predictor n = X 3. For L base-learners, denote the [-th
candidate sets consisting of p; columns as V; = {(v;),, ..., (v1),,} € {1, ...,p}. We do not require the
candidate sets to be disjoint as in Tutz and Binder 2007 leading to possibly overlapping groups,
which we will later utilize for the sparse-group boosting.

Generalized Ridge Boosting
1. Initialize m = 0, 1% = 0,, 5 = X0, and 2% = (7))

2. Set m=m+1
For each candidate set V}, [ < L., fit the model

= h(H™ Y + Xy By;),

by minimizing the penalized negative log-likelihood
LM = = 3T 6B 1 By) + A(Buy) T By,
i=1

with offset X B\ [m=1 derived from the previous iteration. This can be done by Fisher scoring
or iterative weighted least squares. For the [-th base-learner denote the estimate of Sy, as BVz

and the estimate of the negative log-likelihood as ,S%[m].
3. Select the candidate set which evaluates the lowest negative log-likelihood [* = arg min,, Z[m].

4. Update for all [ < L
B 4B, =1
Al Vi Vi )
5\/1 = )
Ci LA

and

= xp,
A = h(X B,

Here v can be seen as learning rate with v €]0, 1].
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5. Repeat steps 3,4 and 5 until m = M and retrieve B (M as global estimate.

Generalized Sparse-group Boosting
For the sparse-group boosting we define p+G candidate sets. Of which the first p refer to individual

base-learners [ < p : V; = V; = {l}, and the remaining G to the group base-learners | > p : V; =

{(W)y, - (), } S {1, ... p}-
L. Tnitialize m = 0, 5 = 0, 7% = X3, and i = h(7).

2. Set m=m+1
For each candidate set V, | < G + p, fit the model

= h(H™ Y + Xy, By;),

by minimizing the penalized negative log-likelihood
A = =T 0(E" T 4 By + MBw) T B,
i=1
with offset X E[m*” derived from the previous iteration. Regularization parameters are de-
fined using the Ridge hat matrix H} = WY2Xy,((Xy,)" WXy, + NI) 7 (Xy,) "W of each
base-learner as defined in the previous section. W is the weighting matrix from generalized

linear models (Tutz and Binder 2007).

Az df(N) = tr(2HY — (HY)?) = I <p
A= (1)
)\l : df()\l) = tr(ZH‘A,l — (H‘é‘l)2) =l—-a [> p.

This can be done by Fischer scoring or iterative weighted least squares. For the [-th base-
learner denote the estimate of [y, as BV; and the estimate of the negative log-likelihood as

"??l[m]'
3. Select the candidate set which evaluates the lowest negative log-likelihood [* = arg ming .,y .,?l[m}.

PEED L Ann

Vi ) ~
5[171—1] l#l*



and

= Xp,

= p(x B,
Here v can be seen as learning rate with v €]0, 1].

4. Repeat steps 2, 3, and 4 until m = M and retrieve B\[M] as global estimate.

B Theorms with proofs

Theorem 1 (Distribution of the difference of RSS in orthogonal Ridge regression). Let X € R"*?
be a design matriz with orthonormal columns such that XTX = I,. Let y € R" be the outcome
variable, y = €, ~ N(0,0%) not dependent on the design matriz. Further, assume that the
least squares estimate B\ = X1y exists and BA 1s the Ridge estimate for some A > 0. Define the
difference of residual sums of squares as A = RSS(B\,\) — RSS(@) = (y — HL/\XB\)T(y — HL/\XB) —
(y — XB\)T(y — XB\) Then if (1 — @) > 0, 0% follows a gamma distribution with the following
shape-scale parametrization

A D 2 1
= ~or(Eea- _
7~ TG 20 Sy )
Proof.
T 1 7\ T T
A=y (IP_H—AXX ) y—y (L, —XX")y
2
=y - —=XX" XXT+ xx7T
(-1 oyt T )y
2 1
=(1—= ) TXXT
( [ S FRVEY Y
f
= <1 — —d (A)>yTXXTy.
p
Since 1 — % > 0 and yT);—ny ~ x*(p) we end up with 5 ~ F(%, 2(1 — @)). O

Theorem 2 (Selection intervals of the sparse-group boosting). Consider a design matriz X € R"*?
of rank r < p with singular value decomposition X = UDVT, where U € R™P,V € RP*P are unitary

matrices and D = diag(dy, ...,d,,0,...,0) is a diagonal Matriz containing the singular values. Let
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y € R™ be the outcome variable and Bﬂ (XTX + pul)~1XTy be the Ridge estimate for u > 0. For
j<plet ﬁ,\ (m x4+ A)7! y be the estimate for the j-th individual base-learner, and d]- be the

singular value of z;. Denote d = mlnj<pd and d' = maxj<pd as well as and d* = max;<, d;
and d~ = minj<, d? accordingly. Then, there are always two mizing parameters oy, as €]0, 1] such
that

(Vi<p i aq = dfiN) AN (1 — o) = dfip) = mlnRSS( ;) < RSS(u), and
(Vs + 00 = dfiA) A (1~ 02) = df) = RSS(y) < min RSS(,).

Furthermore, the following conditions assure the selection of an individual variable or the whole

design matriz

({\m (d=+2) _ @Q“Al)} v [df(u) < df(Al)d_D = min RSS(\,) < RSS(u),  (2)

(AT +p)? T 7"(312 + \i)? rd" Jsp

dt+2u) _ dfin dt +2 4 +2)

({vlgk( A fle)] v [vl§k< — 1) 5 it ’)]) = RSS(1) < min RSS(\). (3)
(dt +p) d; (dF +p)* = (@ + )2 is<p

Proof. First, choose a base-learner with a design matrix vector denoted as x;. By using the singular

value decomposition of z; = wd; and X = UDVT, we can rewrite RSS()\;) and RSS(u) as

N d
RSS(n) =y'y —yT<; [2d§ T G Jju)g}%u;)y

and
d d
RSS(N) =y'y — yT<[2_2 - ]ﬂlﬂ?)y =y'y —y dN)um'y.
dl + )\l (dl + )\1)2
Denote the diagonal elements d; = 2 dj—iu % of D and note that 33 € [d~,d"], because z; is
a sub-matrix of X.
Then for some [ < p
RSS() — RSS(\) = 4"y —y (Z ul )y = (y"y - y" At y)

- S dyugu? + d(\)aa; |y
j=1

~ df(\
:yT(—UDUT+ ( l)

—2
l

d()

UD(VT),(VT)," DUT)y

—y"U(- D+ DT,V D)UTy. (4)

l



Here we have used the fact that ; is the left singular value of x; = UD(VT),.

We will now consider the first claim (2).

Using the norm inequality Vz € R : ||z]|%, > - L 12|I5 we get
RSS(p) — min RSS(\) = max y "U(-D+ df;l)D(VT)l(VT)lTD)UTy
l
>y u(-D+ T paygry, 5
rd,
Here we have also used that dfl(’l’) is minimal for I*: dp = d , because d — = ( dg‘f/\ %) is

a decreasing function which can be seen by taking the derivative with respect to d. In the case of
df(p) < dff%# all diagonal elements in (5) are greater zero because df(u) > d;. To see the other
part of (2) we continue with (5), look at diagonal element j and observe that

2&? 4

2 4 = =
de dj < dl +A (dz +X1)? d2

di+p  (df+p?l~ rdl
(4 +20) _ (4 +2\)
(d3 + 1> = r(d + \)?

Therefore, all diagonal elements are greater zero if (2) holds and d? = d~, since d — (fg ++2)’§) is a

decreasing function, which can be easily seen by taking the derivative with respect to d.

For the second claim in (3), we return to(4), which can be bounded by

RSS(1) — RSS(N)

df()\l)

=y"U(~D + DV, (VD) D)UYy

l
242 (d2)

J

- [a@(dg 4 2@} [(dl +2)) )
(d°+2p)

2
dy
(d5 + 1) (d + \)? }

(0" +2p) d, + 2)\1 )

In the last step we have used that d — ()2 is a decreasing function.
The first part follows from (2) and (3) O

<y"'U diag(dg){
L (dT 4 p)? (dl + )2




Theorem 3. Let X € R™ P be a scaled orthogonal design matriz such that X = dU for d € R*
and U™ P orthogonal. Define the sub-matric XV € R™P1 0 < p; < p. Let y € R"™ be the outcome
variable, y = €,¢e ~ N(0,0%) not being dependent on the design matriz. Let B\)\ be the Ridge estimate
using the design matriz X for some penalty X > 0 and Eu the Ridge using X as design matriz for
penalty > 0. Let dfiX) and df(p) be the corresponding degrees of freedom. If % > @ we can
characterize the selection probability based on the residual sum of squares for the two base-learners

as

P(RSS(By) > RSS(B,)) = F, (

g (2 p=ry g 4p _1) (1)7

27 2 7df(p)py

where Fg is the distribution function of the beta prime distribution.

Proof.

RSS(B\) — RSS(5,) > 0 &

1 T 2 1 2

T xWxO ) - T(l——XXT> >0

Y ( PT 11 y-vy 1+ 4 v=
_dfO‘) yTU(l)U(l)Ty 4 df(:u)yTUUTy >0

y4! p

df(A df(p T

df(u)y Upi+1,..ppUipi1,..., p}Ty - (% - %)?JTU(I)U(I) y=>0
iy i)\, T T
(22 - s o,
df(p)

p YV Uttt Utpittest Y

In the 8-th line % — %f‘) was used. From the derivations in Lemma 1 we know that

ity dfw) \, Trr) )T pL oo dfN) _ df(w)
< I ) )y URUty F<21’2< p1 p )) (b p—p1 . d(N)p
~ ~ 8 (_, 1, - 1).

a0 27 2 df(p)pr

P yTU{mH,..‘,p}U{p1+1»~~~7P}Ty F(%a %@)

For the last step, the independence of the two gammas was used which follows from the orthogo-
nality of X and therefore the independence of the two quadratic forms. m

C Organisational research data

As a second application, we use a dataset in the field of innovation research in the public sector

conducted in 2020 (https://github.com/FabianObster/sgb). A number of 208 soldiers have been



interviewed with a focus on organizational empowerment and its determining factors within the
German armed forces. We use 10 groups of variables each containing 4 variables associated with the
individual innovation potential (Schiefil 2015) and one group containing 20 variables describing the
organizational innovation (Intrapreneurship) potential (Moghaddas, Tajafari, and Nowkarizi 2020)
to explain the numeric outcome variable ”the organizational empowerment scale” (Matthews, Diaz,
and Cole 2003). A common way to analyze these types of datasets in the social sciences is to average
the variables (items) belonging to a group (construct), as the number of items is relatively high
and they are in many cases correlated within a group. However, with this approach, within-group
comparisons and sparsity are not obtainable. Models performing sparse-group variable selection
allow for more flexibility. We compare the sparse-group lasso with the here proposed versions of the
sparse-group boosting. We are interested in two properties, the predictive performance on held-out
data and the sparsity property depending on the mixing parameter . To do this, we fit the three
models to half of the data and compare the predictive performance measured by the mean squared
error (MSE) on the other half of the data. We also compare the total number of selected variables
as a sparsity measure. All variables were standardized. For all models, we used 11 equally spaced
mixing parameters « ranging from zero to one. For the sparse-group boosting based on A and the
sparse-group lasso, we chose 10 values for A. For the sparse-group lasso, we used a 5-fold cross-
validation with the function 'cvSGL’ from the R package 'SGL’ which determines its own values
for A. Since no proven method of selecting a good set of A values in the sparse-group boosting
exists yet, we chose A = 50 - for ¢ € {1,...,10}, as in boosting ridge regression in general bigger
values for A are generally preferable Tutz and Binder 2007. For the boosting models, we used a
learning rate of 0.01 and 2000 boosting iterations to fit the models with early stopping derived
from a 5-fold cross-validation. Since the sparse-group boosting using the degrees of freedom has no
comparable tuning parameter for A in the other two models, we used a finer grid of « values. For a
given alpha value « in the sparse-group lasso, whenever the model is fitted for \;, the sparse-group
boosting with the degrees of freedom is fitted with a + 0.01 - (¢ — 1). This way, for each a, 10
versions of each of the three models are being fitted. We always chose the model with the lowest
MSE for each « evaluated on the training data and plotted the results in Figure 1. We see that
for all a values both versions of the sparse-group boosting are competitive comparing the MSE

and yield a sparser set of selected variables at the same time. However, in this dataset, it looks



like the utilization of group structure decreases the predictive power. the lasso outperformed the
group lasso and sparse-group lasso, and the MSE of both sparse-group boosting versions is lower

for a > 0.6 compared to smaller values.

-o- sgbdf -4 sgblambda -=- sgl -o- sgbdf -4 sgblambda -=- sgl

0.8 604 mo__

0.74

N
=}

0.64

MSE
Number of selected variables
N
S

0.5 0+

00 02 04 06 08 10 00 02 04 06 08 10
alpha alpha

Figure 1: Out of sample MSE (left) and the number of selected variables out of the 60 variables in
the dataset (right) for various mixing parameters alpha on the x-axis. Line-type and point-shape
indicate the model sparse-group boosting mixing the degrees of freedom (sgh df), sparse-group

boosting mixing the ridge regularization parameter (sgh lambda), and the sparse-group lasso (sgl).

D Further simulation results
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Figure 2: Simulation results for the 12 simulated scenarios averaged across the 15 iterations and 10
hyperparameter setting for each alpha. Colour indicates the type of model. All metrics compare

the model estimates with the true parameter vector. Sparse-group lasso fitted via the R-package

'SGL’
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Chapter 5

Sparse-Group Boosting with
Balanced Selection Frequencies:
A Simulation-Based Approach
and R Implementation

This chapter introduces the CRAN package 'sgboost’, which implements sparse-group boost-
ing alongside tools for model interpretation. Key features include group-wise coefficient path
visualization and a sparse group-variable importance measure. The package also provides
practical guidance and R code for applying sparse-group boosting in real-world settings. Ad-
ditionally, it presents and implements the group balancing algorithm, designed to ensure fair
group selection in scenarios with unequal group sizes and structures. This method enhances
interpretability and reduces bias in grouped variable selection
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ABSTRACT

This paper introduces a novel framework for reducing variable selection bias by bal-
ancing selection frequencies of base-learners in boosting and introduces the sgboost
package in R, which implements this framework combined with sparse-group boost-
ing. The group bias reduction algorithm employs a simulation-based approach to it-
eratively adjust the degrees of freedom for both individual and group base-learners,
ensuring balanced selection probabilities and mitigating the tendency to over-select
more complex groups. The efficacy of the group balancing algorithm is demonstrated
through simulations. Sparse-group boosting offers a flexible approach for both group
and individual variable selection, reducing overfitting and enhancing model inter-
pretability for modeling high-dimensional data with natural groupings in covariates.
The package uses regularization techniques based on the degrees of freedom of in-
dividual and group base-learners. Through comparisons with existing methods and
demonstration of its unique functionalities, this paper provides a practical guide on
utilizing sparse-group boosting in R, accompanied by code examples to facilitate its
application in various research domains.

KEYWORDS
sparse-group boosting; variable selection bias; R package; group-balance;
within-group sparsity

1. Introduction

Regularized regression is used to model high-dimensional data to reduce the risk of
overfitting and to perform variable selection. In many cases, covariates have natural
groupings, such as with gene data or categorical data often found in survey data.
In such cases, one may want to select whole groups of variables or just individual
parts. Sparse-group boosting is a powerful statistical method that extends classical
boosting methods through the incorporation of structured sparsity. This structure
is particularly useful in high-dimensional settings where predictors exhibit natural
groupings. ‘sgboost’ implements the sparse-group boosting in R and other useful
functions for sparse group model interpretation unique to boosting, and visualization
for group and individual variable selection. The package is available on CRAN [13].

Despite their utility and predictive performance, existing variable selection techniques

CONTACT Fabian Obster Email: fabian.obster@unibw.de



often lack explicit mechanisms to balance sparsity within and between groups, making
sghoost as an implementation of sparse-group boosting a valuable contribution to the
field of variable selection.

To address a well-known limitation in boosting methods—namely, the tendency to
favor larger or more flexible groups due to inherent selection bias - we introduce a
group balancing algorithm. This algorithm employs a simulation-based approach to
iteratively adjust the degrees of freedom assigned to each group, thereby equalizing
the selection probabilities under the null hypothesis of no association. By using the
shrinkage of the RSS through the degrees of freedom in ridge regression, the algorithm
ensures that groups of differing sizes are penalized appropriately. This adjustment
mitigates over-selection of complex groups and enhances the overall interpretability and
fairness of the model. The resulting group balancing can be combined with sparse-group
boosting and is integrated into sgboost via the balance() function, representing a
significant methodological advancement in achieving balanced variable selection across
heterogeneous groups.

The increasing availability of high-dimensional datasets such as in economics, climate
research, and bioinformatics, where variable selection plays a crucial role and group
structures are relevant, motivates the implementation of sgboost. Many real-world
datasets contain naturally predefined groups, such as geographical regions in climate
modeling, questionnaire sections in survey-based research or gene data. Traditional
boosting methods struggle with these structures, either selecting too many irrelevant
variables or failing to capture group-level effects. By explicitly incorporating the group
structure through two-level sparsity, sgboost addresses these challenges while also
enhancing predictive accuracy and model interpretability.

Sparse-group boosting [15] is an alternative method to sparse-group lasso [19],
employing boosted Ridge regression. Although there are many methods of variable
selection, most focus on group selection only, e.g. [12], [9] and [23], or individual
variable selection e.g. [1], [22] and [6]. However, it should be noted, that in some
cases of group variable selection with overlapping groups, one could also end up
with sparse-group variable selection. There are not many R packages implementing
sparse-group variable selection methods. There is 'SGL’ [18] implementing [19],
'sparsegl’ [10] with a faster implementation of the sparse-group lasso as well as "grpreg"
[4] implementing the group exponential least absolute shrinkage and selection operator
(GEL) [2], the Composite minimax concave penalty (cMCP) [3] and the group bridge [9].

The goal of this paper is to provide a practical guide including the code on
how to use sparse-group boosting in R and get the most out of the method. The
code is presented within this manuscript and can also be found also on GitHub to-
gether with the used dataset (https://github.com/FabianObster/sgboost-introduction).

While the mboost package [8] already allows for structured regularization, sghoost
is specifically designed for structural sparsity and simplifies the application of sparse-
group boosting through a dedicated formula constructor, enhanced visualization, and
interpretability tools.

To demonstrate the relevance of sgboost, we focus on two types of datasets: simu-
lated data designed to reflect real-world sparsity structures and real-world data where
sparse-group boosting provides clear advantages. In climate economics, the willingness
of farmers to take adaptive measures against climate change is affected by multiple inter-
dependent factors such as climatic/weather patterns, market conditions, and agronomic
factors. These independent variables can be sorted into natural groups (e.g., climatic



variables, economic indicators, and agronomic environment), making such data ideal for
sparse-group boosting. This paper explores how sghoost can be applied and performs
in these settings, highlighting its practical benefits.

2. Methods

Throughout this paper, we consider a grouped dataset X € R™*P with G groups and
each group g contains p, variables. We also consider a generalized linear regression set-
ting, such as explained in [21] and [11] and their extended variations for ridge regression
with a similar notation as in [20]. For simplicity, we primarily illustrate the method us-
ing linear ridge regression; however, the approach can be readily extended to generalized
linear models. We refer to the parameter vector as 5 and to its estimate as 3. The linear
predictor with the response function g~1(-) together form the conditional expectation
of the response variable E[y|X] = u = ¢ '(X3). As we can subset the design matrix,
we can estimate a model using a subset of the design matrix, which we denote as ng.

Note that with this notation ng is not the same as the subset of B using the index set
Vg, but rather separate estimates. We will also use the notion of a Ridge hat matrix as
defined in [20] using the penalty term A > 0: H* = X(XTX)"1X7T and the degrees of
freedom for which we use the definition of df(\) = tr(2H* — (H’\)Z).

2.1. Sparse-Group Boosting Framework

sgboost extends traditional boosting by incorporating structured sparsity, combining
component-wise and group-wise selection. This approach is particularly beneficial in
high-dimensional settings such as correlated independent variables. Unlike standard
boosting, which selects individual variables in isolation, sgboost allows the selection of
groups or individual variables. This way, entire groups of predictors can be included
or excluded, improving interpretability and predictive performance. The same holds for
individual variables.

We define p + G candidate sets denoted as (V; C {1, ...,p})i<p+c. Each candidate set
describes the indices of the variables to be considered as one group. This yields p + G
submatrices of the design matrix Xy, only containing the columns corresponding to the
index set.

e The first p are individual base-learners only containing one variable:
Vi ={l} for | <p,
e and the remaining G are group base-learners with group size p;:

Vi={()y, - (), } €{1,...,p}, for Il >p:

Through V;, [ > p, the group structure is defined using no overlapping groups. Through
this bi-level structure, within-group sparsity and between-group sparsity can be bal-
anced. By using Ridge Regression, regularization is controlled through the degrees of
freedom constraint, regulating sparsity levels. The optimal base-learner is selected based
on the residual sum of squares (RSS), yielding the most informative structure either via
a group or individual variable at each step.



Algorithm 1 Sparse-Group L? Boosting Algorithm

1 Initialize: m + 0, 5% « 0, 7% « x30
2: while m < M do
3: m<+—m-+1

4:  for each candidate set V;, | < p+ G do
5: Compute residuals: al™=1 « y — glm=1l
6: Fit Ridge regression:
=lm] T ~1 T (~[m—1]
By = (Xv)" Xy + Audp) ™ (Xvp) " (@™ )
7: Set regularization parameter A;:

> <>
=
Il
L
AN
i)

Az df(N) = tr(2HY), — (HY), <
A= A 2

end for
Select candidate set:

I = argmin(a™ ! — Xy BT @Y - XyBy)

100 foralll<p+Gdo
11: Update coefficients:

g _ [B N vBy, 1=t
e, L# 1

12:  end for
13:  Update estimate:

alml = x jim)

14: end while
15: Output: M




The same algorithm can be used to fit (generalized) linear models by replacing the L?
loss function with the modified loss function £. This yields for individual base-learners
I<p

£ = =36 4 By) + an(Bu) By
i=1
and for group base-learners [ > p

£ = 3 4B 4 By) + (1 a)\(Bu) By
=1

2.2. Group adjustment

Variable selection bias can occur in the presence of grouped variables, such as cate-
gorical or functional data, making the definition of the degrees of freedom df(\) =
tr(2H* — (H*)?) preferable [7]. However, group selection bias can still occur because
of the group size. The same issue occurs in the sparse group lasso of the group bridge,
which is met by using group standardization depending on the type of regularization,
such as ,/py [19] [3]. Many algorithms use such an adjustment, which is also referred to
as outer adjustment [5]. This is to prevent an over-selection of groups with larger group
sizes. Unlike traditional methods that use fixed penalties or shrinkage parameters, this
algorithm dynamically adjusts selection probabilities through repeated sampling, en-
abling data-driven balancing. To overcome this issue, we introduce a simulation-based
algorithm that balances the selection chance of one group over another by using the
degrees of freedom.

Assume we have GG groups, described by the index sets Vi, ..., Vg, with group sizes
D1, ..., g- Denote the scaling vector for the degrees of freedom as d = (dq, ..., d¢), where
each group g has its own value for the degrees of freedom d, for g < G.



Algorithm 2 Group balancing algorithm

Initialize: Set r = 0 and d = d[gl] = ¢ with constant ¢ €]0,1[ for all ¢ < G. A
reasonable starting value is ¢ = 0.5.
2: for r < R do
r—r+1
4 Simulate K versions of the outcome variable y*), e.g., y*) ~ N0y, I,) for k < K.

for £ < K do

6: Fit the learning algorithm f : X — y®) with the degrees of freedom d* to

obtain the fitted model f*).

end for R

8:  Retrieve the activation vector (sgk), ...,s(éf)) € {0,1}¢ for each f® indicating
selected groups. If a group is selected, the value one is assigned; if not, then the
value zero.
Compute the average selection frequency vector:

5= (51r50) = (L0, L3 o)
K3 Lt
10:  Compute the error vector:
1 1
C[T} = (E, .. 7E)T — S
for ¢ < G do
12: Update:
if 0 (ch)? < 328, (¢)? then
14:
i =dr
4 = & 1 vl
else
16:
v=n"v
d = (1 = p)d + n(dr = + ey,
g g g
end if
18:  end for
end for

20: Return: d* as the degrees of freedom scaling vector.




Note that it is sufficient to run the boosting algorithm for only one step instead of
fitting the whole algorithm, to achieve the balance, as the algorithm does not depend
on the actual outcome variable. This allows for a highly efficient estimation of group
preference without fully fitting the model. This compensates for simulating many rep-
etitions of the outcome variable and refitting for each sample
The general idea is to decrease the degrees of freedom for over-selected groups and in-
crease the degrees of freedom for under-selected groups. The step size is proportional
to the imbalance, meaning strongly imbalanced groups are adjusted more than slightly
imbalanced groups, and is multiplied by the learning rate v, which impacts how far the
update goes away from the current estimate d*. A larger v leads to larger corrections,
hence fewer necessary iterations, but may cause oscillations or overshooting, especially
in small-sample or highly collinear settings. Choosing an appropriate learning rate is
therefore a trade-off between speed of convergence and stability. Also, K, the number of
samples of the outcome variable, increases stability and should also affect the choice of
the learning rate. If the algorithm overshoots and the overall imbalance increases, a con-
vex combination between the current best estimate and the updated parameter is used,
where 7 is the mixing parameter. Also, the learning rate is reduced by v €]0, 1], e.g.
0.9 to avoid overshooting in future steps. This approach incorporates new information
while preserving the information from the previous best estimate, balancing exploration
and robustness. The algorithm can be stopped after a fixed number of iterations R or if

chzl(c[gr])2 is smaller than some predefined value. The algorithm does not yield a unique
solution, which depends strongly on the initialization of c¢. The existence of a solution
that balances the selection frequencies is guaranteed by the mean-value theorem and
the law of large numbers if X' — co. One can verify that df(\;) — 0 implies 5, — 0 and
df(Ag) — 1 implies 5, — z > 0. Furthermore, the residual sum of squares is monotonous
and continuous in df (\). Therefore, = S5, sék) = P(RSS(\g) = maz;<g(RSS(N)) is
also monotonous and continuous in df(\y). A unique solution could be achieved by fixing
the degrees of freedom for one base-learner and only updating the others. Another vari-
ation of the algorithm is to perform the algorithm by updating the ridge regularization
parameter A for each group instead of the degrees of freedom. The algorithm can be used
for group boosting, but also for sparse-group boosting by expanding the group index
set to include also V =1, ..., p, V4, ...V, leading to overlapping groups. In this case, one
could also update the error vector to ¢/l = (pjiLG, Z. ,pJ%G, ;;—g, N Z%)T -3,
instead of mixing the degrees of freedom. In this case, & would have a natural inter-
pretation, though the odds of an individual base-learner being selected over a group
base-learner as 1~. This would make the choice of a much easier. Then, a = 0 would
still correspond to group boosting, a = 1 to componentwise boosting. The case of
a = 0.5, would lead to equal selection frequencies of each base-learner, regardless of the

group size and type of base-learner.

3. Results

We first simulate the sample data and corresponding group structure with 40 equal-sized
groups to show the sparse-group boosting workflow. Based on a linear regression model
we simulate the response variable y as part of the data.frame with n = 100 observations
and p = 200 predictor variables (each group is formed by 5 predictors).

beta <— ¢
rep(5, 5), ¢(b, =5, 2, 0, 0), rep(—=5, 5),



c(2, =3, 8, 0, 0), rep(0, (200 — 20))
)
X <— matrix(data = rnorm (20000, mean = 0, sd = 1), 100, 200)
df <— data.frame(X) %%
mutate (y = X %% betatrnorm (100, mean = 0
mutate all(function(x){as.numeric(scale(x
group_df <— data.frame(
group_name = rep(1:40, each = 5),
variable__name = colnames(df)[1:200]
)

N}

3.1. Defining the model

Now we use the group structure to describe the sparse group boosting formula with
the function create_formula(). We only need the data.frame() describing the group
structure. It should contain two variables, one indicating the name of the variable in the
modeling data (var_name), and one indicating the group it belongs to (group_name).
Additionally, we need to pass the mixing parameter alpha and the name of the outcome
variable.

sgb_formula <— create_formula(
alpha = 0.4, group_df = group_df, outcome name = "y'
group_name = "group_ name', var_ name = "variable name")

)

This function returns an R-formula consisting of p model terms defining the individual
base-learners and G group base-learners.

labels (terms (sgbh_formula))[[1]]

## bols (X1, df = 0.4, intercept = FALSE)

labels (terms (sgbh formula))[[201]]

## bols (X1, X2, X3, X4, X5, df = 0.6, intercept = FALSE)

3.2. Fitting and tuning the model

sgboost is to be used in conjunction with the mboost package, which provides many
useful functions and methods that can also be used for sparse-group boosting models.
Now we pass the formula to mboost() and use the arguments as seems appropriate.
The main hyperparameters are nu and mstop. For model tuning, the function cvrisk
can be used and plotted. Running the cross-validation/bootstrap in parallel can speed
up the process.

sgb_model <— mboost (

formula = sgb_ formula, data = df,

control = boost_control(nu = 1, mstop = 600)
)

cv_sgb_model <— cvrisk (sgb_model)
mstop (cv_sgh__model)

#H# 204
plot (cv_sgb_model
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Figure 1. Out of sample error depending on the boosting iteration

In this example, the lowest out-of-sample risk is obtained at 204 boosting iterations,
so we only use the first 204 updates for the final model.

3.3. Interpreting and plotting a sparse-group boosting model

sgboost has useful functions to understand sparse-group boosting models, and reflects
that the final model estimates of a specific variable in the dataset can be attributed
to group base-learners as well as individual base-learners depending on the boosting
iteration.

3.3.1. Variable importance

A good starting point for understanding a sparse-group boosting model is the vari-
able importance. In the context of boosting, the variable importance can be defined as
the relative contribution of each predictor to the overall reduction of the loss function
(negative log-likelihood). get_varimp() returns the variable importance of each base-
learner /predictor selected throughout the boosting process. In the case of the selection
of an individual variable - call it x1 - as well as the group it belongs to -z, z2,...7) -,
both base-learners (predictors) will have an associated variable importance as defined
before. This allows us to differentiate between the individual contribution of z; as its
own variable and the contribution of the group x; belongs to. It is impossible to compute
the aggregated variable importance of x1 as it is unclear how much z; contributes to the
group. However, the aggregated coeflicients can be computed using get_coef (), which
also returns the aggregated importance of all groups vs. all individual variables in a
separate data.frame. With plot_varimp() one can visualize the variable importance as
a barplot. Since group sizes can be large, the function allows for cutting of the name of
a predictor after max_char_ length characters. One can indicate the maximum number
of predictors to be printed through n_predictors or through the minimal variable im-
portance a predictor has to have through prop. Through both parameters, the number
of printed entries can be reduced. Note, that in this case, the relative importance of
groups in the legend is based only on the plotted variables and not the ones removed.
Adding information about the direction of effect sizes, one could add arrows behind the
bars [14]. For groups, one can use the aggregated coefficients from get_coef ().



slice (get_varimp (sgb_model =sgb_model linear)$varimp,1:5)

# A tibble: 5 6

reduction blearner predictor selfreq type relative_
importance
<dbl> <chr> <chr> <dbl> <chr> <dbl>
1 0.297 bols(X1, X2,... X1, X2, ... 0.206 group 0.301
2 0.288 bols(X18, in... X138 0.0196 indi... 0.292
3 0.230 bols(X11, X1... X11, X12... 0.25 group 0.233
4 0.0414 bols(X7, int... X7 0.0784 indi... 0.0419
5 0.0392 bols(X6, int... X6 0.0833 indi... 0.0397
get_varimp (sgb_model = sgb_model_linear)$group_importance
# A tibble: 2 x 2
type importance
<chr> <dbl>
1 group 0.534
2 individual 0.466

plot_varimp (sgb_model = sgb_model linear, n_ predictors = 15)

x1,x2,x3, x4, |
x18 [
x11,x12,x13, 1 |
x74
x64 [
g x144 N
8 x171 i [ group (0.53)
5 x164 i I individual (0.46)
£ x1494 |
PEEN |
ER|
x99 |
X269 |
X131 |
X151 |
0.0 0.1 0.2 03

Relative importance

Figure 2. Variable importance of the sparse-group boosting model for simulated data. The variable labels in
the groups are cut off after 15 characters by defalut.

In this example, we see that both individual variables and groups were selected and
contributed to the reduction of the loss function. The most important predictor is the
first group, followed by variable 18, and then by group three. This is in line with what
was simulated, as variable 18 has the biggest beta value, and groups one and three are full
groups, meaning all variables within the groups have a non-zero beta coefficient. Groups
two and four have within-group sparsity, therefore, they were selected as individual
variables rather than groups.
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3.8.2. Model coefficients

The resulting coefficients can be retrieved through get_coef () In sparse-group boosting
models, a variable in a dataset can be selected as an individual variable or through a
group. Therefore, there can be two associated effect sizes for the same variable. This
function aggregates both and returns them in a data.frame sorted by the effect size
’effect’.

slice (get_coef(sgb_model = sgb_model)$raw, 1:5)

# A tibble: 5 x 5

variable effect blearner predictor type
<chr> <dbl> <chr> <chr> <chr>
1 X18 0.364 bols(X18, int... X18 individual
2 X5 0.250 bols(X1, X2, ... X1, X2, X3, X4, X5 group
3 X15 -0.249 bols(X11, X12... X11, X12, X13, X14, X15 group
4 X4 0.234 bols(X1, X2, ... X1, X2, X3, X4, X5 group
5 X11 -0.228 bols(X11, X12... X11, X12, X13, X14, X15 group

slice (get_coef(sgb_model = sgb_model)$aggregate ,1:5)

# A tibble: 5 x 4

variable effect learner predictor
<chr> <dbl> <chr> <chr>
1 X18 0.364 bols(X18, inte... X18
2 X156 -0.272 bols(X11, X12,...; X11, X12, X13, X14, X15; X15
bols(X15, inte...
3 X5 0.250 bols(X1, X2,... X1, X2, X3, X4, X5
4 X4 0.234 bols(X1, X2,... X1, X2, X3, X4, X5
5 X13 -0.230 bols(X11, X12,...; X11, X12, X13, X14, X15; X13

bols(X13, inte...

We see that the effect sizes differ between the two perspectives. The variable X15, for
example, has a more extreme model coefficient of -0.272 in the aggregated case compared
to the coefficient of -0.249 derived only from the group base-learner. Consequently, the
ordering also differs. X11 has a greater absolute model coefficient from the group than
X13, but in the aggregated version, the absolute model coefficient of X13 exceeds the
one of X11.

3.8.3. Plotting model coefficients and importance

With plot_effects() we can plot the effect sizes of the sparse-group boosting model in
relation to the relative importance to get an overall picture of the model. Through the
parameter ’plot_type’ one can choose the type of visualization. >radar’ refers to a
radar plot using polar coordinates. Here, the angle is relative to the cumulative relative
importance of predictors, and the radius is proportional to the effect size. >clock’ does
the same as ’radar’ but uses clock coordinates instead of polar coordinates. ’scatter’
uses the effect size as the y-coordinate and the cumulative relative importance as the
x-axis in a classical Scatter plot.

plot_effects(sghb_model = sgb_model, n_predictors = 5,
base size = 10)
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plot_effects(sgb_model = sgb_model, n_predictors = 5,
plot_type = "clock", base_size = 10)
plot_effects(sgb_model = sgb_model, n_predictors = 5,
plot_type = "scatter', base_ size = 10)
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Figure 3. Three visualizations of Effect size vs. relative importance of individual and group base-learners

3.8.4. Coefficient path

plot_path calls get_coef _path() to retrieve the aggregated coefficients from a mboost

object for each boosting iteration and plots it, indicating if a coefficient was updated
by an individual variable or group.

plot__path(sgbh_model = sgb_model)
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Figure 4. Coefficient path of a sparse-group boosting model with simulated data

In the coefficient path shown in Figure 4, we see the change in model coefficients. Since
the path shows the aggregated model coefficients, the path of one variable in the dataset
may have both colors. This is the case with variable X1 which was first updated through
the group and then also as an individual variable or with variable X15 in reverse order.

3.4. Real data

In this section, we will fit a sparse-group boosting model with sgboost to a real dataset.
We will use behavioral ecological data and an associated group structure [16] to explain
whether farmers in Chile and Tunisia are planning to take adaptive measures against
climate change in the following years. We will use a logistic regression model for this
binary decision. The data consists of 14 groups and 84 variables for the 801 farmers.
Groups include vulnerability to climate change [17], social, biophysical, and economic
assets, as well as perceptions of the farmers. After loading the data and group structure,
we create the formula with mixing parameter a = 0.3. Then, we pass the formula to
mboost() with 1000 boosting iterations and a learning rate of 0.3.

model df <— readRDS(’model df.RDS’) %%
mutate_at(index_df$col names, factor)
index_df <— readRDS(’index_df.RDS’")
sgb_formula <— create_formula(
group_df = index_df, var name = ’col names’,

)

group_name = ’index’, outcome_ name = ’S5.4’
)
model <— mboost (
sgb_ formula , data = model df,
family = Binomial(link = ’'logit ’),
control = boost_control(mstop = 1000, nu = 0.3)
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)

cv_model <— cvrisk (model)
model <— model [mstop(cv_model)]

The model is stopped early after 466 boosting iterations. We examine the coefficient
path and see that in the early stage, individual base-learners were dominantly selected
like the variable 'S1.8b or ’S8.11 river’ which indicates whether river irrigation is used.
Many of the variables were first included as individual variables and later also through
group base-learners like 'S8.1b’ or ’S2.5¢ proximity’ (Proximity to extreme weather
events), which we also saw in the simulated data.

plot__path (model)
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Figure 5. Coefficient path using the ecological dataset

In figure 6, we look at the variable importance with the default values, plotting all 27
selected predictors of which 8 are groups, the latter having a relative variable impor-
tance of 22 percent. The most important base-learner is the individual variable ’S1.8b’,
indicating whether farming journals are being used and the most important group is
the social asset group, followed by the group consisting of the four considered regions.

plot__varimp (model)
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Figure 6. Variable importance using the ecological dataset

Plotting the effect sizes of all predictors having a relative importance of greater than
1.5 percent shows the tendency for more important variables to have greater absolute
effect sizes. For readability, we set the number of printed characters per variable to 6
and use the ’scatter’ version of the plot.

plot__effects(
model, plot_type = ’scatter ',
prop = 0.015, max_char length = 6
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Figure 7. Coefficient plot using the ecological dataset

3.5. Group selection bias and balance

The function balance() returns the optimal degrees of freedom for each baselearner,
such that all groups have equal selection chances if the outcome is not associated with
any group. This is especially important in genetic research as group sizes based on genes
may vary strongly. Not controlling for group sizes may lead to strong false detection
because of a bias towards more complex groups eg. genes. To illustrate this problem,
four scenarios are considered. The first three scenarios have three groups, where the first
group is a categorical predictor with three categories, the second group is a categorical
predictor with two categories, and the third group is a numerical variable simulated
with a standard normal distribution. The fourth scenario consists of two groups, the
first having 46 members and the second having 4. In the first scenario, the sample size
is 50; in the second and third scenarios, the sample size is 500; in the fourth scenario,
the sample size is 30, leading to p > n. In scenario 3 the outcome variable is i.i.d
gamma distributed with shape one and rate 1, Scenarios one, two, and four have stan-
dard normal outcomes. Table 1 shows the selection frequencies in these scenarios for
each group, for group boosting with three versions of group boosting: one with equal
penalties (A = 0.1), one with equal degrees of freedom df(\) = 0.5, and one with the
degrees of freedom based on the balance() function which implements Algorithm 2.
The default settings of 3000 repetitions of i.i.d standard normal outcomes, 20 iterations,
a learning rate of 0.5, and a reduction factor of 0.9.

The results suggest, that generally ridge regression with equal penalties leads to the
greatest group imbalance, and equal degrees of freedom lead to relatively lower im-
balances, especially when two categorical predictors are compared, and the only group
adjustment-based group boosting balances the the selection frequencies in all scenarios.
In scenario 4, equal lambda only selects the larger group, and in equal degrees of free-
dom, the chance of the larger group being selected is 2.9 times higher than the smaller
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one. equal lambda is better at balancing a binary variable with a numerical variable
compared to equal df, where equal df is better at balancing group sizes compared to
equal lambda. The distribution of the outcome variable seems to not play a great role as
the results in scenarios two and three are quite comparable for all three models, which
makes the balancing algorithm robust, even if the distribution of the error is not known.
Comparing scenario one with two, the balancing algorithm works better with a greater
sample size.

Table 1. Selection frequencies in group boosting with degrees of freedom adjustment (group adjustment)
compared to ridge regression with equal degrees of freedom (equal df) and equal penalty term (equal lambda).

The degrees of freedom used as group adjustment are shown in brackets.

Scenario \ group equal lambda equal df group adjustment

1 1 0.699 0453 0.345 (df=0.377)
1 2 0.157 0.364  0.341 (df=0.406)
1 3 0.144 0.183  0.314 (df=0.717)
2 1 0.701 0.407  0.337 (df=0.397)
2 2 0.15 0.419  0.339 (df=0.352)
2 3 0.149 0.174  0.324 (df=0.751)
3 1 0.695 0.417  0.338 (df=0.397)
3 2 0.155 0.408  0.326 (df=0.352)
3 3 0.15 0.175  0.336 (df=0.751)
4 1 1 0.744  0.518 (df=0.394)
1 2 0 0.256  0.482 (df=0.606)

4. Discussion

4.1. Sparse-group boosting

'sgboost” when applied to high-dimensional grouped data such as ecological data on
climate adaptation, reveals meaningful patterns, such as socio-economic and biophysical
variables, thereby providing actionable insights for policy and practice. Moreover, the
integration of comprehensive visualization tools—such as variable importance plots,
coefficient paths, and effect size charts—enhances the interpretability of the models,
making it easier for practitioners to understand the contributions of different predictors.

4.2. Group bias

Attempts to reduce selection bias in boosting have been made through equal degrees
of freedom using the definition df(\) = tr(2H* — (H*)?) [7] The results of our sim-
ulations highlight a fundamental issue in group boosting: a systematic selection bias
towards more complex base-learners. This phenomenon follows the principle that "who-
ever shouts the loudest is rarely right," meaning that larger or more flexible groups are
favored in the selection process. The proposed group balancing function balance() in
sgboost implementing the group balancing algorithm effectively eliminating this bias
by using a simulation-based approach to equalize selection probabilities across different
groups.

While this issue is particularly evident in group boosting, it is not limited to this setting.
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A similar bias can arise in standard boosting when base-learners differ significantly in
scale or distribution. This occurs, for example, when comparing binary and numerical
variables or in the context of functional regression. The proposed adjustment method
provides a systematic way to address these imbalances across various modeling settings
and is robust against small sample sizes and varying outcome variable distributions.
Even if one assumes a wrong error distribution in the simulation e.g. standard normal,
the group adjustment seems to still balance the group selection frequencies if the actual
error distribution differs, e.g. gamma errors.

4.3. Limitations of the group balancing algorithm

Despite its benefits, the balancing approach has several challenges: The resampling and
iterative adjustments make the method time-intensive. Different combinations of degrees
of freedom can yield similar selection frequencies. One way to address this is by fixing
the degrees of freedom of a reference base-learner and adjusting only the others. If the
learning rate is too high or the number of resamples is too low, the algorithm may fail
to converge. To mitigate this, a reduction factor is applied. The method can overshoot
adjustments, leading to situations where the ridge regression problem becomes ill-posed
(e.g., degrees of freedom approaching zero or leading to negative. This is controlled via
predefined bounds (max_df and min_df) which can be used instead of the too-extreme
solution.

While the algorithm increases computational cost, it is important to compare this to
alternative approaches. Standard group boosting with equal penalties often requires ex-
tensive tuning, including thousands of boosting iterations and 25-fold cross-validation to
determine optimal stopping. In contrast, the balancing approach achieves the same com-
putational efficiency when considering this tuning overhead. Furthermore, paralleliza-
tion can significantly reduce runtime. Additionally, equal degrees of freedom approaches
also require multiple A values to equalize the selection behavior, making the balancing
method computationally more efficient in comparison if the A values are optimized and
not the degrees of freedom.
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Chapter 6

The financial well-being of fruit
farmers in Chile and Tunisia
depends more on social and
geographical factors than on
climate change

This chapter illustrates the applicability of sparse-group boosting in economic and environ-
mental data analysis. The predictive power of the method is compared to other Machine
Learning algorithms and the group variable analysis unique to the sparse-group boosting is
utilized to answer novel research questions relevant to the applied research field.
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The financial well-being of fruit farmers in Chile
and Tunisia depends more on social and
geographical factors than on climate change
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Climate change has significant implications for economically important crops, yet under-
standing its specific impact on farm financial wellbeing remains a challenging task. In this
study we present self-reported perceptions of fruit farmers about their financial well-being
when confronted with different climate change factors. We employed a combination of
supervised machine learning and statistical modelling methods to analyze the data. The data
collection was conducted through face-to-face interviews with 801 randomly selected cherry
and peach farmers in Tunisia and Chile. Specific climate change factors, namely increases in
temperature and reductions in precipitation, can have a regionally discernible effect on the
self-perceived financial wellbeing of fruit farmers. This effect is less pronounced in Tunisia
than in Chile. However, climate change is of lessor importance in predicting farm financial
wellbeing, particularly for farms already doing well financially. Social assets, which include
reliance on and trust in information sources, community and science, play an important role
in increasing the probability of fruit farm financial wellbeing in both Tunisia and Chile.
However, the most influential predictive factors differ between the two countries. In Chile, the
location of the farm is the primary determinant of financial wellbeing, while in Tunisia it was
the presence of social assets.
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Climate change impact on fruit tree yields and farm economic
wellbeing. Climate change can impact crops, with yields of many
important crops projected to decline in the futurel>2. Increases in
temperature, in particular, can reduce yields of major crops
worldwide3. Such climatic impacts can and will have a detri-
mental effect on food availability and its nutritional value.
Because of its nature, much of climate change agricultural
research is crop, region or country-specific. While there have
been numerous investigations into the effects of climate change
on various crops, the studies have tended to focus on wheat, rice,
corn, and soybean, primarily grown in Asia, Europe and North
America®. Unfortunately, there has been a lack of assessments
regarding the vulnerabilities of fruit crops in the regions that we
are interested in, namely North Africa and South America. In
particular, no information is available on the extent climate
change factors impact not only the fruit yields but also the overall
financial wellbeing of farms.

In this paper we focus on the effects of climate change on crops
that have an important nutritional and monetary value in Chile
and Tunisia: cherry and peach fruit tree>®. Both crops are
sensitive to climate change damage, with reproductive organs
being particularly vulnerable to climatic impacts, leading to a
reduction in the quantity and quality of harvestable fruit’~°.
Increases in winter temperatures can affect fruit tree chill
requirements resulting in changes of bud, flower and fruit
set!0-14 Similarly, elevated temperatures during fruit set and
development can lead to changes in fruit growth and
maturation®!>16. Combined with reduced water availability, high
temperatures can affect both fruit yield and quality”-17-18. These
effects can vary between fruit tree cultivars and species.
Additionally, extreme events (hail, wind, frost) have also been
observed to impact the physical environment and cause fruit crop
damage”-19-21, These climate events are region-specific, affecting
food production the crops to varying extents. While climate
change impacts on fruit crop quality and yield can be estimated,
evaluating climate change impacts on farm financial wellbeing is
much more difficult and uncertain?2. Yet the ability to predict the
impacts of factors on the farm financial well-being is crucial for
the development of appropriate policy measures that target
factors with the highest monetary impacts.

Use of a hybrid approach to predict farm financial wellbeing.
In this paper, we introduce a novel hybrid approach that com-
bines machine learning and generalized linear models to address
this challenge of predicting farm financial well-being. Traditional
economic climate change impact models typically estimate effects
of climate change on crop yields using climate and crop simu-
lation models, and then translate this information into likely farm
financial performance. However, these analyses are based on a
number of assumptions that seldom take a combination of
adaptive measures, socio-economic and other factors, such as
regional differences, into consideration?3. One of the most often
used economic models measuring impacts of climate change on
agriculture is the Ricardian approach that focuses on the land
value and agricultural revenue?*2°, with cross-sectional and panel
regression analysis as the analytical tools of choice?6. Whatever
the approach and type of analysis performed, the omission of
variables that may directly or indirectly affect crop/farm incomes/
revenue makes climate change financial impact assessments
highly uncertain. In classical statistics, regression analysis can
have predictive powers. But there are situations where regression
analysis is not sufficient to handle the generated datasets or the
specific questions to be answered or where the assumption of the
existence of a linear function between independent and depen-
dent variables doesn’t hold. This is especially the case when
complex variable interactions are present in the dataset. And this

is where machine learning becomes a useful tool that complement
traditional statistical analysis2’~2,

Machine learning offers the ability to analyse large datasets and
many variables simultaneously, reducing the chance that
important variables are left out of the data analysis process. It
comes thus as no surprise that machine learning has vast
potential to analyse big data in agriculture39-37, especially when
considered in combination with other research domains, such as
climate change38-41. However, tackling agricultural problems is
complex. For example, whether a new crop variety actually
provides better yield and farm income under certain climatic
conditions is potentially dependent not only on its genetic traits
but also on many other factors, such as those related to
biophysical and farm management issues*’. This means that
complex and deep interactions could exist in the datasets. Such
data can become quickly difficult to properly analyze using
classical statistical approaches. The resulting datasets, just for one
farm, could encompass millions of data point combinations.
Importantly, analysis of such data can provide answers as to
which variables, from the millions of possible combinations, are
associated and important for the outcome variable - in our case
financial well-being of a farm. This is where the power of machine
learning can be explored to its full potential343, By including not
only biophysical variables such as microclimate effects, soil
structure and quality, but also socio-economic variables, such as
land use, urban-farm water accessibility, farm size, demographic
data and access to markets, machine learning enables analysis at
every step of the agricultural value chain32444> Thus the
usefulness of machine learning is evident not only when
considering ultimate outcome variables, such as the financial
well-being of a farm, but also to assess whether adaptive measures
were effective in maintaining or increasing crop yield under
certain climatic conditions, provide information on the relative
importance of an intervention for a desired outcome and
generally help with future predictions and strategies38:40:46-48,
However, the interpretability of machine learning models,
especially complex algorithms like

support vector machines, deep neural networks, and random
forest or boosted trees, can be limited. Although there are post
hoc interpretability methods to approximate the functioning of
such black box models, there is no straightforward way of
understanding and interpreting the exact processes leading to the
outcome. This is potentially a major drawback for research
questions that aim to deepen the understanding of the processes
or factors associated with the desired outcome.

To overcome this problem, we introduce herein a hybrid
method that combines analysis of datasets based on generalized
linear models combined with strategies from machine learning,
such as cross-validation and boosting and group-variable
selection. The output of this approach preserves interpretability,
respects the group structure of the data and is still competitive
with state-of-the-art machine learning algorithms. Detail infor-
mation about this strategy can be found in the data analysis
section of this paper. Use of this hybrid model has allowed us to
effectively address our research objectives.

Research objectives. The primary objective of this paper is to
assess the potential impact of climate change on the financial
well-being of fruit farms. To achieve this, we relied on farmer self-
reporting about the past experiences with climate change and
examined whether these experiences had any bearing on the
financial performance of their farms. The information was col-
lected through face-to-face interviews. It is important to note that
because it was the farmers who provided the information for
subsequent data analysis, we are in effect, reporting herein on
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Fig. 1 Effect of experiences with climate change and crop financial damage on financial wellbeing of a farm in Chile and Tunisia. Confidence intervals of
the Odds-ratios (OR), based on logistic regression (see Supplementary Tables 4 and 5 for more data).

farmer s perceived financial well-being. Perception in the context
of this paper refers to how individual farmers interpret, assess and
experience climate change information. Their perceptions may be
influenced by sensory observations as well as their previous
memories, knowledge and expectations of climate change.

To address the complex nature of the datasets, which includes
many grouped and single independent variables, we employed a
combination of classical statistical analysis and machine learning
techniques. This approach allowed us to consider the high
dimensionality of the data and determine the relative importance
and predictive power of both individual and grouped indepen-
dent variables in relation to the outcome variable.

In this paper, we aim to answer three basic research questions
based on farmer self-reporting. First, we investigate whether
climate change has a discernible impact on how well fruit farmers
are doing financially. Second, in cases where climate change is not
important for the farm financial well-being, we explore what
other factors may influence this outcome variable. And third, we
examine the potential effects of factor interactions on farm
financial well-being. By addressing these questions, we seek to
enhance our understanding of the relationship between climate
change and farm financial well-being.

Results

Climate change effects on farm financial well-being. First, we
evaluated whether experiencing climate change had any impact
on farm financial wellbeing. Decreasing rainfall and increasing
temperatures were associated with reduced farm financial well-
being (Fig. 1). Combined, farmers in Chile and Tunisia, who have
experienced reduced rainfalls, were significantly less likely to do
financially well than farmers who did not experience reduced
rainfalls (0.635, p =0.020). To a lesser extent, increases in tem-
perature in the two countries also resulted in the likelihood farms

to do financially well (0.751, p=0.11). Increasing drought fre-
quencies and extreme weather experiences had no significant
impact on farm financial well-being in any of the regions studied.
The effects of increasing temperatures or decreasing rainfall were
more discernible in Chile than Tunisia. Thus negative experiences
with certain climatic factors lowered in some cases farm financial
well-being, with the provision that the effects of the negative
experiences may be country-specific.

Second, we investigated to what extent financial damage to
crops, caused by specific climate change impacts, is associated
with overall financial farm well-being. The results indicate that
farms that performed financially well, the odds were that only
decreasing rainfall-associated income impacts were significantly
associated with farm-high well-being (0.568, p = 0.002 for Chile
and Tunisia combined, 0.434, p <0.001 for Chile). Farms that
were not doing financially well, the odds were that higher
temperature-associated income impacts were significantly asso-
ciated with farms low wellbeing (2.119, p = 0.021 for Chile) and
more frequent drought (2.457, p <0.001 for Chile and Tunisia
combined, 2.623, p=0.003 for Chile and 2.385, p=0.006 for
Tunisia). Decreasing rainfall, especially in Chile, seemed to be
somewhat relevant for explaining low well-being farms. It is
noteworthy that although experiencing drought was not sig-
nificantly associated with low or high financial well-being, the
financial impacts of drought tended to be significantly associated
with farm financial well-being.

Variables important for farm financial wellbeing. The sparse
group boosting (sgb) algorism allowed the model to choose
between individual and grouped independent variables for the
predictive modeling (Fig. 2). Arrow directions indicate the added
effect size (log odds) of all variables within one group on the farm
financial wellbeing, resulting in a latent variable. For high
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Fig. 2 Most important variables contributing to farm financial well-being. Sparse group boosting model for Chile and Tunisia and high and low financially
performing farms separately. Central Chile was associated with higher financial wellbeing compared Southern Chile and Northern Tunisia slightly higher

than Central Tunisia.

financial well-being, upward pointing arrows indicate that an
overall increase of group variable values lead to an increased
probability for high financial well-being, while downward
pointing arrows indicate a decreased probability of high well-
being. Similarly, for low financial well-being, an arrow pointing
upward means that increases in the group variable values increase
the probability of low well-being. Thus higher/increasing social
assets will increase the probability of farm high well-being. Note
that no arrows were added for nonordinal variables or groups of
variables.

Generally, variables not related to the climate change factors
were comparatively more important for predicting farm financial
well-being. Thus the most important predictors of farm high
financial well-being, common both to Chile and Tunisia, are
social (reliance on/use of information, trust in information
sources, community, science or religion) and biophysical (farm
size, water management systems used on the farm, diversity of
crops used) assets, as well as one individual variable, years of
owning the farm (Fig. 2). The latter two tend to have a negative
effect on farm financial wellbeing. Natural assets (regional
differences) are important predictors almost exclusively only for
Chile, where farms in Central Chile tend to exhibit higher
financial well-being. Prior farm ownership and the human asset
group (including education, age, gender, and knowledge) are
important factors specific for Tunisia only. The most important
predictors of farm low financial well-being, common both to
Chile and Tunisia, are regional differences, income impact and
economic asset groups, where for example increasing farm debt
and reliance on orchard income increase the likelihood of farm
low well-being. A number of factors are associated with the
likelihood of farm low well-being in Tunisia only: these are the
length of farm ownership, drought, social and biophysical assets
groups, and varieties grown. The latter three are associated with
increased likelihood of reducing low financial well-being. For
Chile only, the important individual factors are use of a well and
years of farm management. The more farms use wells, the less
likely will they exhibit low financial well-being, whereas longer
the farmer is managing the farm, higher the likelihood of low

financial well-being. Factors unique to Chile are not very
important variables.

Note that some factors are important predictors of both high
and low financial well-being, just with oposing effect. For
example, increased well usage in Chile increases the likelihood
of high well-being while decreasing the likelihood of low well-
being. In Tunisia, prior family ownership decreases the likelihood
of high well-being while increasing the likelihood of low well-
being. The exception are biophysical assets, that decrease the odds
for high wellbeing and also decrease the odds for low wellbeing,
indicating using biophysical assets, like adaptive measures, are
only useful to help farmers with low financial wellbeing.

Variable interactions affecting farm financial wellbeing. We
have examined whether interactions between independent vari-
ables may change the model outcomes vis a vie financial well-
being of a farm (Fig. 3). Even though the model that included
variable interactions was not as predictive as the model including
only additive effects (Table 1), the importance of each interaction
still showcases interesting and important inter-dependencies in
the datasets. One outcome is that the region variable seems to be
less important when other interactions are considered. Interac-
tions within and between social and human assets seem to be
relevant for the farm’s financial well-being, especially those
related to use of information and trust. Interactions that involve
adaptive measures, current assessment of climate change as well
as education are also of relative importance. Such interactions
point to inter-dependencies between variables and to likely con-
founding and mediating effects of certain variables.

Figure 4 provides information about some noteworthy
interactions that can affect farm financial well-being. Without
the use of newspapers as a source on information the probability
of high well-being drops in Chile and Tunisia when temperature
increases or precipitation decreases (Fig. 4, top left). However,
when farmers used newspapers, financial well-being in Chile and
Tunisia is not markedly reduced by increasing temperatures or
decreasing precipitation (Fig. 4, bottom left). Indeed, use of
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Fig. 3 The most important interacting variables for farm financial wellbeing. Component-wise boosting model for Chile and Tunisia combined.

Table 1 Predictive power for farm financial high and low well-being.

Accuracy wellbeing Sgb mb Mb int glm rf nn gbm
Chile High 0.65 0.675 0.642 0.733 0.575 0.683
Chile Low 0.833 0.833 0.833 0.842 0.833 0.817
Chile & Tunisia High 0.71 0.693 0.685 0.618 0.734 0.556 0.705
Chile & Tunisia Low 0.809 0.809 0.822 0.817 0.822 0.793
Tunisia High 0.595 0.579 0.545 0.645 0.529 0.57
Tunisia Low 0.76 0.744 0.736 0.769 0.529 0.727
AUC wellbeing Sgb mb Mb int glm rf nn gbm
Chile High 0.655 0.717 0.687 0.757 0.603 0.727
Chile Low 0.830 0.802 0.676 0.837 0.642 0.773
Chile & Tunisia High 0.733 0.723 0.731 0.627 0.796 0.619 0.758
Chile & Tunisia Low 0.763 0.733 0.637 0.746 0.721 0.735
Tunisia High 0.663 0.661 0.537 0.710 0.616 0.658
Tunisia Low 0.596 0.562 0.579 0.614 0.492 0.579
The accuracy and Area Under the Curve (AUC) of all fitted models was evaluated on the test data from Chile and Tunisia. For corresponding receiver operator curves (see Supplementary Fig. 2). For
abbreviation explanation, see Methods - Choice of predictive models for data analysis.

newspapers increased the probability of farm financial well-being
irrespective whether or not temperature increases or precipitation
decreases: the use of newspapers eliminated any negative effect of
reduction in precipitation or increases in temperature on doing
financially well. A similar effect was observed for trust in industry
(Fig. 4, top right and bottom right). Farmers, especially in
Tunisia, who trusted industry as a source of information, were
more likely to do financially well than farmers who did not trust
industry, regardless whether or not they experienced a reduction
of precipitation. However, the effect of increasing temperatures
on high wellbeing seems to be unchanged by trust in industry in
Tunisia while in Chile, trust in industry, compared to no trust in
industry, intensified the negative effect of temperature increases
on financial farm wellbeing.

Trust in media, use of industry information and farm financial
well-being indicate that farmers, regardless of their country of
origin, who did not trust media and did not use information from
industry had the lowest probability of doing financially well
(Fig. 5, top left). Farmers who did trust media sources but still did
not use industry information, performed financially substantially
better. Farmers with the highest probability of doing financially

well were those that trusted the media and used industry
information, where the trust factor acted synergistically with the
use of information. The importance of trust for financial well-
being can be illustrated with the effect

of trust in industry, experts and government. Thus, trust in
industry acted synergistically with trust in experts (Fig. 5, top
right) as did trust in government and trust in industry (Fig. 5,
bottom left).

In all cases, farmers that trusted industry, experts or the
government were more likely to be financial well off than farmers
who had no trust in their information sources. Other interactions,
for example, education and use of media also have a positive
modifying effect on farm financial well-being in Chile but not in
Tunisia: educated farmers who used media tended to be more
likely to do well financially than farmers with low education
(Fig. 5, bottom right).

Discussion

Previous studies have highlighted the detrimental effect of indi-
vidual climate change factors on crop vyields and farm
income34749-53 Our research contributes to these findings by
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Fig. 4 Probability for high financial well-being of the farm. Comparisons based on an interaction between country, climate change factors, use of

newspapers and trust in industry.

showing that climate change factors, when analyzed concurrently,
impact fruit farm financial well-being to different extents.
Whereas odds are that increasing drought and reduction in the
amount of rain will negatively affect fruit farm financial well-
being, especially in Chile, extreme climatic events do not seem to
play such a role. Thus, while farmers have discussed possible fruit
damage due to frost or hail events4, such events do not appear to
affect the mid to long-term farm income prospects. Indeed, fruit
farmers are more likely to be concerned about drought issues
(and consequently future water availability)®4, reflecting findings
herein showing that the increasing frequency of droughts had a
negative effect on farm income and farm financial wellbeing.

Contrary to expectations, our analysis reveals that climate
change is, compared to other factors we investigated, not the most
important factor for predicting fruit farm financial wellbeing. In
Chile, farm location emerged as the strongest indicator of farm
financial well-being, with farms in central Chile doing better than
farms in Southern Chile. In Tunisia, farms that have been in
family possession for multiple generations, did worse financially.
Chile and Tunisia also shared a number of important predictors.
In both Chile and Tunisia, access to information and trust of
information sources are more important than climate change in
predicting farm financial well-being. These shared factors are
useful to predict both financially high and low-performing farms:
better the information access and more trust there is in infor-
mation sources, better the farm financial performance and vice
versa. On the other hand, climate change-related factors do play a
more important role for farms not doing financially well.

As predictive factors differ between farms doing financially well
and those experiencing financial hardship, policymakers or
farmers need to employ different strategies depending whether
they wish to focus on maintaining or improving fruit farm
financial performance. An argument can be made to focus on
factors important for improving farm financial well-being as
financially healthier farms are more likely to be resilient against
climatic impacts*®>>. Furthermore, synergistic effects and inter-
actions between factors can affect their individual or combined
importance for farm financial wellbeing. It is important to note
that inter-dependencies between factors can motivate farmers to
respond to climate change®®. In this respect, the specificity of
some factors implicated in fruit farm financial wellbeing advo-
cates for collecting extensive regional rather than country-wide
datasets.

Although our findings presented herein indicate that climate
change currently is not important for predicting fruit farm
financial wellbeing, the situation may change in the future. This is
evident from climate change trends analyzed in this paper: the
odds are that with higher temperatures and less precipitation fruit
farm financial performance may decrease. Temperature predic-
tions indicate continuing increases of winter night temperatures
in Tunisia and Chile in the future!4>7. This will lead to winter
chill deficits and potential problems with fruit tree phenology
necessitating changes in the types of fruit trees grown. Similarly,
reduced precipitation and water availability in Tunisia has serious
implications for the future of fruit trees in that country®S. Much
of the irrigation water for fruit trees comes from underground
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Fig. 5 Probability for high financial wellbeing of the farm. Comparisons based on an interaction between country, trust, use of information sources and

education.

aqua ducts. If they are depleted or become saline, farmers in
Tunisia may face major crop yield loses. In Chile, reduced water
flow from the Andes, increasing urbanization and inappropriate
crop use could create water distribution bottlenecks?%0. These
latter predictions are in agreement with farmer climate predic-
tions for the future: most worry about the effects of drought and
water availability (63 >54). Ensuring general access to water,
beyond relying solely on rainfall, is critical for adequate irrigation
and reducing drought exposure. Resolution of these problems will
require the implementation of specific adaptive measures that will
reduce the future vulnerability of fruit farms to climate change,
measures that farmers and governments need to be willing to
pay>>°l. Policymakers must enact regulations to guarantee fair
and sufficient access, distribution, and use of limited water
resources among all stakeholders. Furthermore, policymakers
should provide fruit farmers with effective, affordable, and
accessible resources and tools to enhance farm adaptive capacity
and reduce vulnerability to drought, such as sustainable irrigation
systems, insurance schemes, crop alternatives, and farm man-
agement training®*. When it comes to communication efforts to
convince stakeholders to adapt the necessary protective measures,
policy makes must keep in mind that climatic impacts may not be
a primary risk to farm financial wellbeing. Indeed, due to the
current conflict in the Ukraine and Covid aftermath, costs asso-
ciated with adaptive measures are likely to become a dominant
concern of many farmers around the world. It is also worthwhile
to remember that more media coverage does not necessarily

influence farmer perception of climate change: we found no
substantial association between use or trust in media and farmer
perceptions of climate change. Similarly, if farmers trust or use
media as their source of news, they don’t necessarily think that
precipitation decline is bad for farm financial well-being.

To our knowledge, this is the first instance of using a hybrid
modeling approach combining statistical models with machine
learning techniques to analyze data in a much more complex and
integrated manner. Using this approach, our aim was to improve
predictability while maintaining interpretability. We found that
statistical models, utilizing limited datasets that reflect the
requirements of relevant theories, can be used to make adequate
predictions about the relationships between climate change,
intervening variables, and the outcome variable. However, we
have also shown that by combining statistical models with specific
machine learning methods, such as boosting and cross-validation,
we were able to substantially improve the predictability of the
(generalized linear) statistical model. This hybrid model can still
be interpreted through variable importance and odds ratios, but
classical inference based on F and t statistics is not valid for
variables selected through a data-driven process®2. Predictive
modeling provided new insights into data relationships that can
serve to generate and test new hypotheses by classical statistical
means. Even though the random forest (a typical black box
model) outperformed the sparse group boosting model, we
believe that this improvement generally does not compensate for
the loss of interpretability. With a similar analysis methodology,
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neural networks marginally outperformed logistic regression®3.
The predictive sparse group boosting and component-wise
boosting models were ultimately chosen for the current data
analysis. The former model provided evidence of regional or
supra-regional variables that are important for predicting whether
fruit farms will perform financially well. The latter model revealed
that the interaction between various variables and farm financial
well-being, as the outcome variable, is not a simple one-to-one
relationship. Rather, certain variables, such as trust and use of
specific information sources, appear to have a modulating effect
on variables that may directly affect the outcome variable.

Conclusions and future considerations. Our research underlines
the usefulness of the hybrid analytical approach and highlights
specific climate change factors that impact fruit farm financial
wellbeing while emphasizing the significance of other influential
variables. Policymakers, stakeholders, and researchers can utilize
these findings to develop targeted strategies and adaptive mea-
sures to support fruit farmers, reduce their vulnerability to cli-
mate change while enhancing the financial stability.

Our experience with the hybrid model indicates that, especially
when it is necessary to balance predictive improvements (usually
requiring larger datasets) with loss of model interpretability, the
research questions and the modeling tools available will dictate
the extent and complexity of the data to be collected, whether the
focus should be on regional or supra-regional datasets and the
type and depth of analysis that can be performed. Machine
learning provided the opportunity to include a broader range of
independent variables with substantially better predictability of
farm’s financial well-being and clarity of data presentation than
offered by traditional regression analysis. We believe that,
through group-component-wise boosting of generalized linear
models, our hybrid approach can generate useful predictions in
high dimensional settings, while still preserving basic interpret-
ability, like variable importance and odds ratios. This way, new
hypotheses and models can be generated, left to be validated or
rejected by future research. The key challenge for future studies
will be to find the correct balance between a theory-based
approach, where a limited number of likely relevant variables are
included in the survey design and resulting datasets, and a black-
box approach that relies on deep mining of the largest possible
number of data points.

Our results indicate that self-reporting of changes in
temperatures and precipitation within the last ten years generally
reflect the meteorological observations over the past 30 years.
Farmer’s perceptions and self-assessment are thus a valid tool to
investigate the linkage between climate change and other factors,
such as farmers’ perception of financial well-being as an outcome
variable and ultimately allows investigation into the influence of
perceived financial well-being on farmer behavior. It is, however,
important to note that the perception of farm well-being is not
the same as using actual financial performance data from farms
or regions to assess its impact on farmer behaviour. Future
research should consider collecting actual farm financial data and
conducting comparative studies with self-assessment data col-
lected from face-to-face interviews with farmers. The relatively
small size of the resulting dataset, based on face-to-face interviews
with 800 farmers, restricted subnational comparisons and
increased the possibility of false selections due to the large
number of influencing variables. However, the project size, the
complexity of the survey and the length of the interview (ca. one
hour), precluded a larger sample size and the number of variables
and items to be investigated.

Fruit farming is an important sector for the economy,
particularly due to high export potential. It is essential to develop

policies that support fruit farmers in improving their financial
well-being and achieving financial stability as the climate changes.
Farmer experiences with climate change is reflected in perception
of their financial well-being but it is factors other than climate
change that are deemed to be more important for farm financial
well-being. Policymakers should thus prioritize supporting and
strengthening farmers’ financial well-being beyond climate
change considerations. Addressing issues such as trust, informa-
tion sharing and targeted communications can contribute to
these goals.

Methods

General agricultural attributes of the study areas. According to
FAO statistical yearbook for 2022, the world value of primary
agricultural production reached USD 2.7 trillion, of which fruits
represented 17%%. World Food and Agriculture- Statistical
yearbook 2022. Rome. doi.org/10.4060/cc2211en). More specifi-
cally, the agriculture and related sectors in Chile represent 24.4%
of total exports, 9% of total GDP, and employs around 10% of
Chile’s labor force®. In Tunisia, agriculture represents 12% of the
country’s GDP, employing 16% of the country’s workforce®®. It
is, however, very difficult to obtain up-to-date and reliable
information on the importance of cherry and peach crops for the
economies of Chile and Tunisia. Chile 2022 cherry production
was estimated at 255 711 metric tons, ranking number 6 in the
world®”. Majority of the production is exported to China, valued
at over USD 2 billion®. Tunisia 2022 peach production was
estimated at 123 000 metric tons, ranking number 20 in the
world®®. Majority of the exported production is destined for the
Gulf states’0.

Environmental attributes of the study areas. Four contrasting
geographical and climatic regions were selected for the study, two
regions in Tunisia and two in Chile. In Tunisia, these were the
Mornag and Reueb peach-growing regions. In Chile, these were
the Rengo and Chillan cherry-growing regions.

Tunisia. Mornag, Tunisia, hereafter referred to as Northern
Tunisia, has an elevation of 110 meters and is located approxi-
mately 20 km east of the capital Tunis. The region has a Medi-
terranean climate. Precipitation in Mornag is characterized by a
rainy fall-winter season spanning October and March (ca.
400 mm) and a relatively dry spring and summer (ca. 130 mm).
The coldest month is February with minimum and maximum
average temperatures of 55°C and 16°C, respectively. The
warmest month is August with average minimum and maximum
temperatures of 22 °C and 34 °C respectively.

Regueb, Tunisia, hereafter referred to as Central Tunisia, has
an elevation of 160 meters and is located approximately 230 km
south of Tunis. It is a semi-arid region characterized by low
rainfall and high temperatures. Most of the rainfall is between
October and the end of March (ca. 210 mm). Spring and summer
are dry (ca.80 mm). The coldest month is January with minimum
and maximum average temperatures of 5°C and 15°C,
respectively. The warmest month is July with minimum and
maximum average temperatures of 21.5 °C and 36°C respectively.

Chile. Rengo, Chile, hereafter referred to as Central Chile, has an
elevation of 570 m and is located approximately 110 km south of
Santiago de Chile. The Mediterranean climate in this region is
characterized by rainy, cool, wet winters and hot, dry summers.
Rainfall is concentrated in the winter months between May and
September (ca. 500 mm). Spring and summer tend to be dry (ca.
60 mm). The coldest month is July with minimum and maximum
average temperatures of 0°C and 10°C, respectively. The
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warmest month is January with minimum and maximum average
temperatures of 10 °C and 24 °C, respectively.

Chillan, Chile, hereafter referred to as Southern Chile, has an
elevation of 120 to 150 meters and is located approximately
380 km south of Santiago de Chile. The climate of the region is
Mediterranean, with the rainy season occurring primarily during
the winter months. Summers are relatively dry. Most of the
rainfall occurs in the winter between May and September
(ca.700 mm). Rainfall in the spring and summer is ca. 200 mm.
July is the coldest month with minimum and maximum average
temperatures of 0.5 °C and 11 °C. The warmest month is January
with minimum and maximum average temperatures of 10.5°C
and 25 °C, respectively.

In order to place farmer perceptions in the context of climate
change, we analysed regional Chile and Tunisia climatic data for
the last 30 years (see Supplementary Fig. 1). Changes in
temperatures and precipitation within the last 10 years generally
reflect the meteorological observations over the past 30 years.
Farmer’s perceptions are thus a valid tool to investigate the
linkage between climate change and other factors, such as farmer
’s perception of financial wellbeing.

Data collection: survey methodology and sampling. The data
collection instrument used in this study was a face-to-face survey
with cherry farmers in Chile and peach farmers in Tunisia. A
total of 801 farmers were interviewed, 401 in Tunisia and 400 in
Chile in the fall of 2018 and spring 2019, respectively.

Survey methodology. The questionnaire for the survey was
prepared in English and translated into Tunisian Arabic and
Chilean Spanish. The translated documents were back-translated
into English to check for inconsistencies. The survey was pre-
tested with 12 farmers in consultation with Qualitas Agro-
Consultores in Chile and Elka Consulting in Tunisia. Based on
their feedback, and that of our research colleagues in Tunisia and
Chile, some questions were removed while others were refor-
mulated. The same consultants carried out the face-to-face
interviews. Farmers were asked to answer a combination of
multiple-choice, open, Likert Scale and Yes / No questions related
to climate change and climate impacts on their farms between the
years 2009 and 2018 and to their past, present and planned
adaptive measures. The relevant survey questions and analysed
variables are presented in the Supplementary Tables 1 and 2.

We analysed threat to fruit farms from four different climate
change factors: temperature, precipitation, extreme weather and
drought. Farmers were asked whether any of the factors over the
past 10 years were increasing, decreasing, staying the same or
became unpredictable.

In addition to climate change, there may be groups or
individual farm-related variables that may, by themselves or in
interaction with climate threat, affect farm financial well-being.

e Groups of variables. We have focused our analysis on
groups of farm variables (assets) that may be important for
farm financial well-being. These were:

Natural (geographical regions)

human (education, age, gender, knowledge)

social (reliance on/use of information, trust in information
sources, community, science or religion)
biophysical/manufactured (farm size, water management
systems used on the farm, diversity of crops used, adaptive
measures)

economic (farm debt, farm performance, reliance on
orchard income)

climate experience
income damage

The choice of the above variables was made on the basis of
the five resource/capital sustainability model that addresses
the concept of sustainable wealth creation”!72,

e Individual variables. Above listed grouped variables were
also assessed individually. In addition, other variables were
examined that may, by themselves or in interaction with
climate threat, affect farm financial wellbeing.

e Dependent variable. The question given to farmers that
defines the dependent variable was: “When it comes to
financial matters of your farm operation, how well is your
farm doing?” The variable consists of three categories.
Doing well and very well, neither doing or not doing well
(“neutral”), and not doing well or not well at all
Throughout the analysis, the financial well-being variable
is coded as two separate variables. We refer to the first
variable as “high well-being” comparing farmers who are
doing well and very well financially with farmers who are
doing neutral or not well (reference category) and the
second one as “low well-being” differentiating between
farmers who are not doing well financially with farmers
who are doing neutral, well or very well (reference
category). This enabled us to differentiate between the
process leading to farmers not doing well and the process
leading to farmers doing well, as the farmers who are
neither doing or not doing well are always part of the
reference category.

Sampling. A list of individual fruit farms in regions of interest
were obtained from respective Ministries of Agriculture. Farms
from these lists were randomly selected for the survey if they
fulfilled the following criteria: farmers had to own the farm,
manage and work on the farm and derive over 70% of their
income from their farming activities. A total of 801 face-to-face
interviews were subsequently conducted with farmers who ful-
filled the preselection criteria — 401 peach farmers in Tunisia (201
in Mornag and 200 in Regueb regions) and 400 cherry farmers in
Chile (200 in Rengo and 200 in Chillan regions). The approxi-
mately one-hour-long interviews were carried out with farmers
directly on their farms. The interviews were carried out after
harvest completion in the fall of 2018 by Elka Consulting in
Tunisia and in the spring 2019 by Qualitas AgroConsultores in
Chile. Guidance was sought from the Department of Commu-
nication and Media Research, University of Munich about the
participation of human subjects in the survey research and sub-
sequent data use. The farm data was collected according to data
collection procedures applicable in each country. Informed con-
sent for the data collection was provided by the survey partici-
pants. No personal identifiable data was collected, assuring full
anonymity. After compiling the data from farmer interviews, the
resultant datasets were checked for errors and integrated into
excel formats for further data analysis.

Data analysis strategy

Research question one: does climate change have an effect on how
well the farm is doing financially?. We used a statistical approach
to determine the effect of independent variables on the farm
financial well-being. As the two outcome variable “high well-
being” and “low well-being “ are binary, we used logistic regres-
sion and analysed the odds ratios as well as associated p-values
and confidence intervals of adaptive measures and past experi-
ence for the outcome.
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Research question two: what factors, other than climate change,
may be important for the financial well-being of a farm?. This
research question imposes a major challenge. There are many
possible influencing variables in the dataset. Some may be rele-
vant for the outcome variable, but others may not. Variables not
related to the outcome variable create unnecessary background
“noise” because generalized linear models tend to over-adapt to
the data (the so-called overfitting) in high-dimensional cases. In
the extreme case, where the number of independent variables is
higher than the number of observations, linear models cannot be
fitted. The solution to this problem is to perform variable selec-
tion, and then include only these variables in the model. The
current practice is to perform this selection based on literature
and expert knowledge. In fact, there is always an implicit variable
selection process based on which such data is collected. However,
one may still end up with a large number of possible influencing
variables. In this situation, the combination of statistics and
machine learning can be used to perform the variable selection.
We used model-based boosting’3, but other strategies, such as the
Lasso’4 can be utilized. The model-based boosting strategy is to
improve a given model by only adding variables that improve the
overall model the most. The process of adding variables is stop-
ped if a further update would not result in a “better” model.
Importantly, in some instances, grouped variables may be more
important for the model than individual variables. We used sparse
group boosting for this purpose’”. In sparse group boosting, the
model can decide between individual variables and groups of
variables. New hypotheses can be generated about the association
of selected variables or groups of variables and the farm’s financial
well-being. Being able to differentiate between the importance of
groups and individual variables may help in designing ques-
tionnaires because if individual variables are more important than
the group, only the important individual variables need to be
included in the questionnaire. This may greatly shorten the
questionnaire without loss of information. Conversely, variable
groups may provide information about variable interactions.

Research question three: Are observed effects on the financial well-
being of a farm the result of moderating effects and/or more
complex relationships between variable?. We analysed (pairwise)
interaction effects of all variables on the financial well-being of the
farm. Interactions of variables were evaluated with the help of
model-based boosting, allowing comparisons of their relative
importance for the outcome variable. Note that if there are p vari-
ables in the dataset, then there are 0.5* p*(p-1) possible interactions
in the dataset, leading to an even higher dimensional noise problem.
However, this brute force method has the potential to identify
important moderation or additive variable effects, and thus increase
our understanding of the processes leading up to the outcome.

Depending on the research question being asked, the complex-
ity of data analysis, as described above, may still not be sufficient.
In such situations, noninterpretable black-box machine learning
models should be used. Comparing the predictive performance of
these machine learning models with the interpretable hybrid and
statistical models gives an indication of the necessary analytical
complexity. If the hybrid model outperforms the black-box model
regarding the predictive power (i.e. delivers better AUC), then
further complexities are not necessary. If the converse is true, the
goal of future research should be to understand how these
complexities can be explained, for example, by using highly
nonlinear relationships or higher-order interactions.

Models used for data evaluation
Statistical models. We used generalized linear models’® to answer
whether interventions had an impact on the outcome of interest.

As the outcome variables were binary, logistic regression was used
to provide odds ratios, the corresponding p-values, and con-
fidence intervals.

Machine learning. We have compared different popular machine
learning models to ensure that the models used for our analysis
were competitive in their predictability. A list of all models used is
given in Supplementary Table 3. In contrast to the model-based
boosting models and the logistic regression, these machine-
learning models do not allow insight into the data.

Hybrid statistical - machine learning-based predictive models. We
decided to use model-based boosting as means to select variables
for the predictive models. The number of boosting iterations was
controlled by 25-fold cross-validation using the training data.
This hyper-parameter controls effect penalization (smoothness)
and regularization (variable selection)’3. Variable selection was
completed in under 4000 iterations. The effect sizes, in our cases
the odds ratios, were shrunken to zero through ridge regular-
ization. This makes it easier to interpret the results since only the
most important variables for the outcome must be analyzed and
irrelevant variables are not considered by the model. Since the
influencing variables can be clustered into groups, as described in
the contextual definitions, we used sparse group boosting”> as an
extension of model-based boosting. The chosen approach allows
the resulting model and variables to be interpreted similarly to
generalized linear models’’. A possible alternative for this
approach is to use the lasso and the sparse group lasso’8.

Model evaluation. 70 percent of the observations in the data were
randomly assigned to the training dataset and the remaining 30
percent were assigned to the test data set for the final evaluation.

Model evaluation was based on the area under the receiver
operator curve, as evaluated on the test data. For the binary
outcome variables, two major performance metrics were
evaluated at every threshold of probability. First, the rate of
correctly identified farms doing well financially, and second, the
rate of correctly identified farms not doing well financially
yielding the receiver operator curve (ROC). The area under the
ROC (AUC) takes both rates into account by considering all
possible thresholds of probabilities computed by a prediction
model. We also computed the Accuracy as additional metric,
which is the percentage of all correctly identified/predicted
farmers in the test data set by a classification model. Even though
this metric does not balance the true positive and true negative
rate in unbalanced data like the AUC, it is used because of its
intuitive interpretation property.

All data analyses were performed using the statistical
programming environment R, visualizations were created with

the R package ggplot27°.

Choice of predictive models for data evaluation. We compared
different predictive models to ascertain which model has the best
predictive power and should therefore be used for the data ana-
lysis (Table 1). Except for Chile and Tunisia combined low
financial wellness, the random forest (rf) tended to outperform all
other models for Chile and Tunisia combined as well as for Chile
and Tunisia separately. The overview of ROC curves for selected
models can be found in Extended Data Fig. 2 Boosted decision
trees (gbm) performed similarly to sparse group boosting (sqb)
and model-based boosting (mb). In all cases, neural networks
(nn) performed worse than sgb and mb. Generalized linear model
(glm), which consisted only of experiences with climate change
and its financial impact, had lower predictive properties than sgb
and mb. However, when the glm was fitted with boosting (model-
based boosting-mb), which included more variables related to the
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farm vulnerability to climate change and geographical location,
the accuracy and AUC tended to improve compared to the glm-
only. Including interactions between all independent variables
(mb-int) did not improve the predictive outcomes of model-based
boosting. The results imply that only considering experiences
with climate change and its financial impact as in the glm is not
enough to explain both financial well-being variables. Thus,
additional variables had to be considered. When compared to the
interpretable models, accounting for deep

interactions and complex relationships like the random forest
could, in some cases, result in marginal improvements in
accuracy and AUC predicting high well-being, but for predicting
low well-being the simpler models seem to suffice. Since our
investigation necessitated data interpretation, sgb was chosen for
subsequent data analysis.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data for conducting the analysis can be found in the supplement or on github
(https://github.com/FabianObster/pasit_financial_wellbeing).

Code availability
Code for conducting the analysis can be found in the supplement or on github (https://
github.com/FabianObster/pasit_financial_wellbeing).
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Supplementary Figure 1. Yearly average daily precipitation and temperature in the four study areas over a 30 year period until
2019. Local smoothing lines were computed using the LOESS estimator from the R package ggplot2.

Supplementary Figure 1 presents yearly average precipitation and temperature within each of the
four covered regions over a 30 year period (World Bank, 2022). Calculations were based on the
annual observed data for the two countries. Overall in Tunisia, the precipitation remained relatively
constant compared to both regions in Chile where the variability is much larger. The largest
decrease in precipitation within the covered 10-year period was witnessed in Southern Chile,
where 97% of farmers reported decreasing rainfall. A similar but reverse trend can be found
regarding temperature changes, with the largest increase in Southern Chile within the covered 10

year period, where 94% of farmers reported increasing temperatures.



Variable name Category* n Group Original Questionnaire scale

Agronomic measures yes (no) 647 biophysical asset Dichotomous
Economic measures yes (no) 464 biophysical asset dichotomous
Technological measures Yes (no) 721 biophysical asset dichotomous
Use of well as water source Yes (no) 231 biophysical asset dichotomous
Farm size >7ha (<7ha) 283 biophysical asset Interval
Orchard size >2ha (<2ha) 318 biophysical asset Interval
More than one variety grown Yes (no) 508 biophysical asset dichotomous
Other products Yes (no) 571 biophysical asset dichotomous
Regions CentralChile 200 natural asset Nominal
Regions CentralTunisia 200 natural asset Nominal
Regions NorthernTunisia 201 natural asset Nominal
Regions SouthernChile 200 natural asset Nominal
Percentage of income invested >80% (<80%) 137 economic asset Dichotomous
Farm debt load Heavy in debt (rest) 96 economic asset Dichotomous
Family members dependent on farm >2(<2) 528 economic asset Count
Family farm engagement >2(<2) 203 economic asset Count
Climate change acceptance Yes (no) 676 human asset dichotomous
Human cause climate change Yes (no) 685 human asset dichotomous
Climate change causes extremes Yes (no) 755 human asset dichotomous
Age of farmer >50 (<50) 438 human asset Count
Gender of farmer M (F) 680 human asset dichotomous
Education of farmer > primary (no primary) 632 human asset dichotomous
Generations of farm ownership >3 (0) 218 human asset Count
Generations of farm ownership 2(0) 130 human asset Count
Generations of farm ownership 1(0) 229 human asset Count

Prior ownership Family (other) 399 human asset dichotomous
Years of farm management >10 (<10) 437 human asset Count

Use of newspapers and magazines 4,5(1,2,3) 95 social asset Likert 5 point
Use of farming journals 4,5(1,2,3) 161 social asset Likert 5 point
Use of television 4,5(1,2,3) 415 social asset Likert 5 point
Use of radio 4,5(1,2,3) 219 social asset Likert 5 point
Use of internet 4,5(1,2,3) 319 social asset Likert 5 point
Use of extension experts 4,5(1,2,3) 346 social asset Likert 5 point
Use of government experts 4,5(1,2,3) 166 social asset Likert 5 point
Use of neighbours 4,5(1,2,3) 313 social asset Likert 5 point
Use of industry information 4,5(1,2,3) 192 social asset Likert 5 point
Use of farm associations 4,5(1,2,3) 97 social asset Likert 5 point
Trust in newspapers and magazines 4,5(1,2,3) 174 social asset Likert 5 point
Trust in farming journals 4,5(1,2,3) 291 social asset Likert 5 point
Trust in television 4,5 (1,2,3) 329 social asset Likert 5 point
Trust in radio 4,5(1,2,3) 241 social asset Likert 5 point
Trust in internet 4,5(1,2,3) 319 social asset Likert 5 point
Trust in extension experts 4,5(1,2,3) 433 social asset Likert 5 point
Trust in government workers 4,5(1,2,3) 268 social asset Likert 5 point
Trust in neighbours 4,5(1,2,3) 319 social asset Likert 5 point
Trust in industry 4,5(1,2,3) 215 social asset Likert 5 point
Trust in farm associations 4,5(1,2,3) 184 social asset Likert 5 point
Trust in government institutions 4,5(1,2,3) 213 social asset Likert 5 point
Trust in other farmers 4,5(1,2,3) 168 social asset Likert 5 point
Trust in my religion 4,5(1,2,3) 236 social asset Likert 5 point
Trust in fate 4,5(1,2,3) 268 social asset Likert 5 point
Temperature increase Yes (no) 629 climate experience Dichotomous
Rainfall decrease Yes (no) 659 climate experience Dichotomous
Drought increase Yes (no) 671 climate experience Dichotomous
Extreme weather increase Yes (no) 542 climate experience Dichotomous
Temperature income damage 4,5(1,2,3) 294 income damage Likert 5 point
Precipitation income damage 4,5(1,2,3) 219 income damage Likert 5 point
Drought income damage 4,5(1,2,3) 161 income damage Likert 5 point
Extreme weather income damage 4,5(1,2,3) 187 income damage Likert 5 point

*numbers in bracket indicate the reference category

Supplementary Table 1. Overview of all independent variables and corresponding groups used in the analysis



Variable name

Question

Agronomic measures

Technologic measures

Economic measures

Use of well as water source
Farm size

Orchard size

More than one variety grown
Other products

Regions

Regions

Regions

Regions

Percentage of income
invested

Farm debt load

Family members dependent
on farm

Family farm engagement
Climate change acceptance
Human cause climate
change

Climate change causes
extremes

Age of farmer

Gender of farmer

Education of farmer
Generations of farm
ownership

Prior ownership

Years of farm management
Use of newspapers and
magazines

Use of farming journals
Use of television

Use of radio

Use of internet

Use of extension experts
Use of government experts
Use of neighbours

Use of industry information
Use of farm associations
Trust in newspapers and
magazines

Trust in farming journals
Trust in television

Trust in radio

Trust in internet

Trust in extension experts
Trust in government workers
Trust in neighbours

Trust in industry

Trust in farm associations
Trust in government
institutions

Trust in other farmers

Trust in my religion
Trust in fate
Temperature increase
Rainfall decrease

Drought increase

Extreme weather increase
Temperature income
damage

Winter temperature income
damage

Precipitation income damage
Drought income damage

Extreme weather income
damage

From the following list, please select the adaptive measures you have already undertaken in the past 10 years to reduce the impact of climatic changes on
your farming operations. More than one answer is possible.

a.Changed tree thinning and pruning practices to reduce hail and rain damage b. Used chemical treatments for bud breaking and control flowering time

c. Planted/re-grafted new varieties that have low chilling requirements d. Planted/re-grafted drought tolerant varieties

e. Planted/re-grafted early or late maturing varieties

From the following list, please select the adaptive measures you have already undertaken in the past 10 years to reduce the impact of climatic changes on
your farming operations. More than one answer is possible.

b. Used chemical treatments for bud breaking and control flowering time f. Installed canopy (nets) against hail, sun and heat damage

g. Installed water irrigation systems (for example tree drip irrigation) h. Improved the efficiency of irrigation systems to reduce water use and energy costs
From the following list, please select the adaptive measures you have already undertaken in the past 10 years to reduce the impact of climatic changes on
your farming operations. More than one answer is possible.

i. Took land out of production j. Sold or rented part or all of the farm property

k. Purchased crop damage insurance |. Got an off-farm job to supplement farm income (you and/or your spouse)

Which water sources are used on your farm for agriculture (for example well, river water)

Farm size (ha)

Size of your peach/cherry orchard (ha)

Varieties grown

Other farm products

Central Chile

Southern Chile

Northern Tunisia

Central Tunisia

What percentage of your annual farm brutto income have you invested into adaptive measures in recent years to reduce the impact of climate change on
your farm operations? 5 point Likert scale from 0-20% to 80-100%

How much in debt is your farm business? No debt, lightly in debt, moderately in debt, heavily in debt

Number of family members dependent on the farm activities

Number of family members working on your farm

Global climate is not changing Correct, incorrect.

Human activities, such as burning of fossil fuels, are an important cause of climate change

Correct, incorrect

Climatic changes can lead to an increased intensity and frequency of extreme weather events, such as hail, floods, frost and high winds
Correct, incorrect

Age

Gender Male, Female

Education 1.None, 2. Incomplete primary, 3. Primary, 4. Incomplete secondary, 5. Complete secondary, 6. Technical education, (specify subject area), 7.
University (specify subject area), 8. University postgraduate (specify subject area), 9. Other

How many generations does your family own this farm?

Who owned the farm before you?

How many years have you been managing this farm?

How often do you use the following information sources on how to deal with climate change impacts on agricultural production?

National newspapers or magazines 5 point Likert scale from not at all to very often

Farming journals 5 point Likert scale from not at all to very often

TV 5 point Likert scale from not at all to very often

Radio 5 point Likert scale from not at all to very often

Internet 5 point Likert scale from not at all to very often

Farm extension workers 5 point Likert scale from not at all to very often

Government workers/experts 5 point Likert scale from not at all to very often

Neighbours/communities 5 point Likert scale from not at all to very often

Agriculture industry/export industry 5 point Likert scale from not at all to very often

Farmer associations/cooperatives 5 point Likert scale from not at all to very often

How much do you trust the following information sources to provide you with reliable information on how protect your farm against possible climate change
impacts? National newspapers or magazines 5 point Likert scale from not at all to very often

Farming journals 5 point Likert scale from not at all to very often

TV 5 point Likert scale from not at all to very often

Radio 5 point Likert scale from not at all to very often

Internet 5 point Likert scale from not at all to very often

Farm extension workers 5 point Likert scale from not at all to very often

Government workers/experts 5 point Likert scale from not at all to very often

Neighbours/communities 5 point Likert scale from not at all to very often

Agriculture industry/export industry 5 point Likert scale from not at all to very often

Farmer associations/cooperatives 5 point Likert scale from not at all to very often

| trust government institutions to help me to protect my farm against future impacts of climate change

5 point Likert scale from strongly disagree to strongly agree

| trust other farmers to advise me on what adaptive measures | should select to reduce future impacts of climate change on my farm

5 point Likert scale from strongly disagree to strongly agree

I trust my religion more than science to guide me how to protect my farm against future impacts of climate change

5 point Likert scale from strongly disagree to strongly agree

| trust in fate to guide me how to protect my farm against future impacts of climate change 5 point Likert scale from strongly disagree to strongly agree

In recent years, | have observed that the temperature on my farm 1.has increased, 2. has not changed, 3. has decreased, 4. has become unpredictable
In recent years, | have observed that the rainfall on my farm 1.has increased, 2. has not changed, 3. has decreased, 4. has become unpredictable

In recent years, | have observed that the dry periods and drought on my farm

1.has increased, 2. has not changed, 3. has decreased, 4. has become unpredictable

In recent years, | have observed that the extreme weather events on my farm

1.has increased, 2. has not changed, 3. has decreased, 4. has become unpredictable

If you deal with damage to peaches/cherries on your farm in recent years due to changes in temperature during the fruit growing season, how serious would
you rate the impact of the crop damage on your farm income that year(s)? 5 point Likert scale from not at all serious to very serious

If you deal with damage to peaches/cherries on your farm in recent years due to changes in temperature during the winter tree dormancy period, how serious
would you rate the impact of the crop damage on your farm income that year(s)? 5 point Likert scale from not at all serious to very serious

If you deal with damage to peaches/cherries on your farm in recent years due to changes in rainfall during the fruit growing season, how serious would you
rate the impact of the crop damage on your farm income that year(s)? 5 point Likert scale from not at all serious to very serious

If you deal with damage to peaches/cherries on your farm in recent years due to changes in dry periods and droughts during the fruit growing season, how
serious would you rate the impact of the crop damage on your farm income that year(s)? 5 point Likert scale from not at all serious to very serious

If you deal with damage to peaches/cherries on your farm in recent years due to changes in extreme weather events during the fruit growing season, how
serious would you rate the impact of the crop damage on your farm income that year(s)? 5 point Likert scale from not at all serious to very serious




Variable name

Question

Agronomic measures

Technologic measures

Economic measures

Use of well as water source
Farm size

Orchard size

More than one variety grown
Other products

Regions

Regions

Regions

Regions

Percentage of income
invested

Farm debt load

Family members dependent
on farm

Family farm engagement
Climate change acceptance
Human cause climate
change

Climate change causes
extremes

Age of farmer

Gender of farmer

Education of farmer
Generations of farm
ownership

Prior ownership

Years of farm management
Use of newspapers and
magazines

Use of farming journals
Use of television

Use of radio

Use of internet

Use of extension experts
Use of government experts
Use of neighbours

Use of industry information
Use of farm associations
Trust in newspapers and
magazines

Trust in farming journals
Trust in television

Trust in radio

Trust in internet

Trust in extension experts
Trust in government workers
Trust in neighbours

Trust in industry

Trust in farm associations
Trust in government
institutions

Trust in other farmers

Trust in my religion
Trust in fate
Temperature increase
Rainfall decrease

Drought increase

Extreme weather increase
Temperature income
damage

Winter temperature income
damage

Precipitation income damage
Drought income damage

Extreme weather income
damage

From the following list, please select the adaptive measures you have already undertaken in the past 10 years to reduce the impact of climatic changes on
your farming operations. More than one answer is possible.

a.Changed tree thinning and pruning practices to reduce hail and rain damage b. Used chemical treatments for bud breaking and control flowering time

c. Planted/re-grafted new varieties that have low chilling requirements d. Planted/re-grafted drought tolerant varieties

e. Planted/re-grafted early or late maturing varieties

From the following list, please select the adaptive measures you have already undertaken in the past 10 years to reduce the impact of climatic changes on
your farming operations. More than one answer is possible.

b. Used chemical treatments for bud breaking and control flowering time f. Installed canopy (nets) against hail, sun and heat damage

g. Installed water irrigation systems (for example tree drip irrigation) h. Improved the efficiency of irrigation systems to reduce water use and energy costs
From the following list, please select the adaptive measures you have already undertaken in the past 10 years to reduce the impact of climatic changes on
your farming operations. More than one answer is possible.

i. Took land out of production j. Sold or rented part or all of the farm property

k. Purchased crop damage insurance |. Got an off-farm job to supplement farm income (you and/or your spouse)

Which water sources are used on your farm for agriculture (for example well, river water)

Farm size (ha)

Size of your peach/cherry orchard (ha)

Varieties grown

Other farm products

Central Chile

Southern Chile

Northern Tunisia

Central Tunisia

What percentage of your annual farm brutto income have you invested into adaptive measures in recent years to reduce the impact of climate change on
your farm operations? 5 point Likert scale from 0-20% to 80-100%

How much in debt is your farm business? No debt, lightly in debt, moderately in debt, heavily in debt

Number of family members dependent on the farm activities

Number of family members working on your farm

Global climate is not changing Correct, incorrect.

Human activities, such as burning of fossil fuels, are an important cause of climate change

Correct, incorrect

Climatic changes can lead to an increased intensity and frequency of extreme weather events, such as hail, floods, frost and high winds
Correct, incorrect

Age

Gender Male, Female

Education 1.None, 2. Incomplete primary, 3. Primary, 4. Incomplete secondary, 5. Complete secondary, 6. Technical education, (specify subject area), 7.
University (specify subject area), 8. University postgraduate (specify subject area), 9. Other

How many generations does your family own this farm?

Who owned the farm before you?

How many years have you been managing this farm?

How often do you use the following information sources on how to deal with climate change impacts on agricultural production?

National newspapers or magazines 5 point Likert scale from not at all to very often

Farming journals 5 point Likert scale from not at all to very often

TV 5 point Likert scale from not at all to very often

Radio 5 point Likert scale from not at all to very often

Internet 5 point Likert scale from not at all to very often

Farm extension workers 5 point Likert scale from not at all to very often

Government workers/experts 5 point Likert scale from not at all to very often

Neighbours/communities 5 point Likert scale from not at all to very often

Agriculture industry/export industry 5 point Likert scale from not at all to very often

Farmer associations/cooperatives 5 point Likert scale from not at all to very often

How much do you trust the following information sources to provide you with reliable information on how protect your farm against possible climate change
impacts? National newspapers or magazines 5 point Likert scale from not at all to very often

Farming journals 5 point Likert scale from not at all to very often

TV 5 point Likert scale from not at all to very often

Radio 5 point Likert scale from not at all to very often

Internet 5 point Likert scale from not at all to very often

Farm extension workers 5 point Likert scale from not at all to very often

Government workers/experts 5 point Likert scale from not at all to very often

Neighbours/communities 5 point Likert scale from not at all to very often

Agriculture industry/export industry 5 point Likert scale from not at all to very often

Farmer associations/cooperatives 5 point Likert scale from not at all to very often

| trust government institutions to help me to protect my farm against future impacts of climate change

5 point Likert scale from strongly disagree to strongly agree

I trust other farmers to advise me on what adaptive measures | should select to reduce future impacts of climate change on my farm

5 point Likert scale from strongly disagree to strongly agree

| trust my religion more than science to guide me how to protect my farm against future impacts of climate change

5 point Likert scale from strongly disagree to strongly agree

| trust in fate to guide me how to protect my farm against future impacts of climate change 5 point Likert scale from strongly disagree to strongly agree

In recent years, | have observed that the temperature on my farm 1.has increased, 2. has not changed, 3. has decreased, 4. has become unpredictable
In recent years, | have observed that the rainfall on my farm 1.has increased, 2. has not changed, 3. has decreased, 4. has become unpredictable

In recent years, | have observed that the dry periods and drought on my farm

1.has increased, 2. has not changed, 3. has decreased, 4. has become unpredictable

In recent years, | have observed that the extreme weather events on my farm

1.has increased, 2. has not changed, 3. has decreased, 4. has become unpredictable

If you deal with damage to peaches/cherries on your farm in recent years due to changes in temperature during the fruit growing season, how serious would
you rate the impact of the crop damage on your farm income that year(s)? 5 point Likert scale from not at all serious to very serious

If you deal with damage to peaches/cherries on your farm in recent years due to changes in temperature during the winter tree dormancy period, how serious
would you rate the impact of the crop damage on your farm income that year(s)? 5 point Likert scale from not at all serious to very serious

If you deal with damage to peaches/cherries on your farm in recent years due to changes in rainfall during the fruit growing season, how serious would you
rate the impact of the crop damage on your farm income that year(s)? 5 point Likert scale from not at all serious to very serious

If you deal with damage to peaches/cherries on your farm in recent years due to changes in dry periods and droughts during the fruit growing season, how
serious would you rate the impact of the crop damage on your farm income that year(s)? 5 point Likert scale from not at all serious to very serious

If you deal with damage to peaches/cherries on your farm in recent years due to changes in extreme weather events during the fruit growing season, how
serious would you rate the impact of the crop damage on your farm income that year(s)? 5 point Likert scale from not at all serious to very serious

Supplementary Table 2. Relevant survey questions utilized for this manuscript



Model Short name package Main hyperparameters Interpretability

Logistic regression glm base - interpretable
Model-based boosting mb mboost Nu=0.3, mstop = 3000 interpretable
without interactions

Sparse group boosting sgb mboost Nu=0.3, alpha = 0.5, mstop = 3000 Interpretable
Model-based boosting mb int mboost Nu= 0.3, mstop = 3000 Interpretable
with interactions

Random forest Rf randomForest Ntree=500, mtry=7 Not interpretable
Gradient boosting gbm gbm Trees=100, interaction.depth=3 Not interpretable
machines

Neural Network nn neuralnet hidden layers: 1, logistic activation Not interpretable

Supplementary Table 3. Overview of the models used in the data analysis
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Supplementary Figure 2. Overview of ROC curves for selected models using the Chile and Tunisia datasets
Chile & Tunisia Chile & Tunisia Chile Chile Tunisia Tunisia
Odds ratio Odds ratio Odds ratio Odds ratio Odds ratio Odds ratio
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
Climate Change experience High wellbeing Low wellbeing High wellbeing Low wellbeing High wellbeing Low wellbeing
Increasing temperatures 0.751 1.238 0.644 2.428 0.739 1.237
g temp! (0.12) (0.400) (0.150) (0.167) (0.201) (0.466)
Decreasing rainfall 0.635 1.650 0.437 2.950 0.860 1.384
9 (0.020) (0.089) (0.004) (0.086) (0.577) (0.353)
Increasing drought frequenc 1.29 0.906 0.766 1.052 1.257 1.099
g droughtirequency —o,394) (0.715) (0.523) (0.949) (0.353) (0.749)
Increasing extreme weather 1.18 0.709 1.170 0.569 1.068 1.022
frequency (0.302) (0.086) (0.584) (0.146) (0.751) (0.930)
Income impact
Increasing temperatures 1.092 1.234 1.131 2.119 1.113 0.741
9 P (0.592) (0.305) (0.606) (0.021) (0.652) (0.299)
Decreasing rainfall 0.568 1.254 0.434 2.064 0.789 1.481
9 (0.002) (0.297) (<0.001) (0.028) (0.489) (0.289)
Increasing drought frequenc 0.647 2.457 0.664 2.623 0.656 2.385
g droughtirequency (g,031) (<0.001) (0.143) (0.003) (0.158) (0.006)
Increasing extreme weather 1.08 0.871 1.019 1.074 1.009 0.926
frequncy (0.699) (0.565) (0.940) (0.837) (0.976) (0.838)

Supplementary Table 4. Effect of climate change on the financial wellbeing of a farm in Chile and Tunisia. Odds ratios and
corresponding p-values based on logistic regression



Central Central Southern Southern Northern Northern Central Central

Chile Chile Chile Chile Tunisia Tunisia Tunisia Tunisia
Odds ratio QOdds ratio QOdds ratio Odds ratio Odds ratio Odds ratio Odds ratio QOdds ratio
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
Climate Change experience High Low High Low High Low High Low
wellbeing wellbeing wellbeing wellbeing wellbeing wellbeing wellbeing wellbeing
Increasing temperatures 0.993 1.606 0.588 1.682 1.545 0.833 0.368 2.073
(0.986) (0.676) (0.436) (0.537) (0.221) (0.643) (0.004) (0.139)
Decreasing rainfall 0.480 1.338 0.704 3.006 0.579 1.984 1.072 0.992
(0.059) (0.796) (0.549) (0.176) (0.171) (0.169) (0.863) (0.987)
Increasing drought frequency 0.856 0.658 0.511 1.400 0.912 1.003 1.364
(0.738) (0.717) * (0.617) (0.357) (0.822) (0.994) (0.497)
Increasing extreme weather 0.907 0.793 0.617 1.187 1.117 0.998 1.005
frequency (0.848) -* (0.568) (0.272) (0.566) (0.745) (0.996) (0.990)
Income impact
. 1.316 0.686 0.790 3.083 1.219 0.903 0.869 0.757
Increasing temperatures (0.455) (0.715) (0.528) (0.002) (0.590) (0.803) (0.677) (0.511)

. . 0.896 1.343 0.415 1.487 0.896 1.543 0.831 0.877
Decreasing rainfall 0.775) (0.762) (0.014) (0.307) (0.812) (0.362) (0.745) (0.842)
Increasing drought frequency 2.102 1.499 0.622 1.924 0.923 1.955 0.308 3.305

(0.191) (0.745) (0.229) (0.076) (0.837) (0.103) (0.044) (0.033)
Increasing extreme weather 0.742 2.037 1.271 1.186 0.710 1.452 1.459 0.657
frequncy (0.389) (0.445) (0.554) (0.670) (0.537) (0.496) (0.385) (0.455)

Supplementary Table 5. Effects of climate change on the financial wellbeing of a farm in the subregions of Chile and Tunisia. Odds
ratios and corresponding p-values based on logistic regression. *Only 3 farmers did not experience extreme weather in central Chile
and 17 did not experience drought in southern Chile. In these cases, no odds ratios were computed.

Supplementary Table 5 provides additional information about the effects of climate change
experience and income damage on region-specific basis. Notable differences are found in Chile,
where in Central Chile the effect of experiencing decreasing temperatures on high wellbeing is
more pronounced than in Southern Chile and the effect of the income damage associated with
decreasing rainfall is more pronounced in Southern Chile. For low wellbeing there is a strong
negative effect (high odds ratios) of the financial damage associated with increasing temperatures
which is not the case in Central Chile. In Central Tunisia, the effect of income damage associated
with increasing drought frequency is stronger compared to Northern Tunisia for both high-
wellbeing and low-wellbeing. There is also a strong negative effect of experiencing increasing

temperatures on high wellbeing in Central Tunisia which is not the case in Northern Tunisia.

Supplementary references

1. World Bank 2022 “Climate change knowledge portal for development practitioners and
policy makers". https://climateknowledgeportal.worldbank.org/download-data.
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Chapter 7

Using interpretable boosting
algorithms for modeling
environmental and agricultural
data

This chapter deals with the problem of identifying interactions in high-dimensional data
while preserving a stable selection of the main effects using a two-step boosting approach.
The method uses componentwise boosting, only considering the main effects. After the
first model is stopped, the base-learners are changed such that only interaction effects are
boosted starting with the negative gradient of the first model in the first iteration. The
method is compared to parallel estimation of the main effects, and interaction effects for the
prediction of the vulnerability of farmers against five climate hazards.

Contributing article:

Obster, F., Heumann, C., Bohle, H. & Pechan, P.M. (2024). ”Using interpretable boosting
algorithms for modeling environmental and agricultural data”. Scientific Reports, 13, 12767.
https: //dot. org/10. 1038/ s41598-023-39918-5

Author contributions:

The manuscript was written by Fabian Obster. Heidi Bohle, Christian Heumann, and Paul
Pechan added valuable input and proofread the manuscript.
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Using interpretable boosting
algorithms for modeling
environmental and agricultural
data

Fabian Obster'?*, Christian Heumann?, Heidi Bohle? & Paul Pechan3**

We describe how interpretable boosting algorithms based on ridge-regularized generalized linear
models can be used to analyze high-dimensional environmental data. We illustrate this by using
environmental, social, human and biophysical data to predict the financial vulnerability of farmers in
Chile and Tunisia against climate hazards. We show how group structures can be considered and how
interactions can be found in high-dimensional datasets using a novel 2-step boosting approach. The
advantages and efficacy of the proposed method are shown and discussed. Results indicate that the
presence of interaction effects only improves predictive power when included in two-step boosting.
The most important variable in predicting all types of vulnerabilities are natural assets. Other
important variables are the type of irrigation, economic assets and the presence of crop damage of
near farms.

In this work, we show how interpretable boosting algorithms can be used to predict financial vulnerabilities
against multiple hazards based on environmental factors but also based on human, social, and biophysical factors
as well as their interactions. For finding interactions we propose a new method based on two-step boosting,
which is still interpretable and blends together with component-wise boosting. Interpretability tools like variable
importance, effect sizes, and partial effects are utilized to better understand the underlying factors that may cause
these vulnerabilities against climatic changes.

Model-based boosting algorithms have been used in environmental sciences for multiple purposes. For
example for quantifying several soil parameters based on soil samples', predicting the financial wellbeing of
farmers based on environmental factors?, and predicting the number of zoo visitors based on climatic variables®.
Also non-interpretable boosting algorithms based on classification or regression trees like Adaboost* have
been used for environmental predictions based on environmental data because of their high predictive power.
Applications include landslide susceptibility® and predicting the presence of juvenile sea-trouts based on
environmental factors®.

Through the proposed boosting models we want to achieve the following goals:

e Predictive Power The model should not only have a good fit for the analyzed data but also for unseen data
from the same domain assuming a similar distribution of the variables.

o Interpretability We are interested in the question of which variables are associated with the outcome. But we
also want to know how the associations look like. In the agronomic case, we want to derive actions to reduce
vulnerability against adverse environmental changes. This is only possible if the effect of adaptive measures is
known. Only if the associations are known, one can state causal hypotheses and test them with new specific
experiments. We also want the effects to be modeled as simply as possible while retaining the power of the
model. Linear effects should be prioritized over nonlinear effects and over interaction effects. Black-Boxes
should be avoided in this case.

®  Sparsity We consider high dimensional data sets where the number of variables p is relatively large compared
to the number of observations # or even possibly higher if we consider the case with interactions. Out of the
many possible variables, we want to know which ones are actually associated with the outcome and which
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ones are not. Therefore, the model should perform variable selection to enforce sparsity. The goal is to find
the smallest subset of variables that still has high predictive power. Sparsity also increases interpretability
because the scientist and stakeholders only have to look at the truly relevant variables and can disregard the
unimportant ones. In the vulnerability setting this could mean that farmers focus on selected variables like
the type of irrigation systems rather than not selected variables like financial adaptive measures.

® Complexity The model should be as complex as necessary and as simple as possible. Complexity is the
characteristic that balances all previously stated points. Out of two explanations with the same predictive
power the model should pick the one that is simpler. By simpler, we mean sparser, more interpretable, and
without interactions. On the other hand, we do not want to neglect important complexities like non-linearity
and interactions. It is important to identify if some variables are modified by others. There could also be
non-hierarchical interactions, where a variable has by itself no effect on the outcome, but may have a positive
effect in one subset of the data and a negative one in the other. One example could be, that in one region a
high variety of crops has a positive effect on vulnerability and in another region a negative effect.

®  Group structure The variables in the data can be clustered into groups. “Climate change experience” is one
example and contains the binary variables “increasing temperature’, “increasing drought”, “increasing extreme
weather” and “decreasing rain”. The question is whether the outcome is influenced by each or only by some
of the individual variables or if they act as a group due to the similarity. Group structures also increase
interpretability, because it is often easier for humans to comprehend the overall effect of an abstract concept
than to look at all its facets.

There are many approaches to deal with each of the above specifications. For example, sparsity can be achieved
through Lasso Regression’ or boosted Lasso®, predictiveness can be achieved through a big variety of models
and group structures can be incorporated with the sparse group lasso’.

In this work we focus on how these goals can be met using boosting algorithms, namely componentwise
boosting (mb), componentwise boosting with interactions (mb int), sparse group boosting (sgb), and two-step
boosting for interactions (2-boost). We compare their predictive power, effect sizes, and the relative importance
of variables/groups. In the following, we describe the used methods for the analysis and discuss how they help
to achieve the stated goals using modifications of the generic boosting algorithm.

Methods

Introduction of the data. Randomly selected cherry and peach farmers in the selected regions of Tunisia
and Chile. In order to be selected for the survey, farmers had to own the farm, manage and work on the farm
and derive the majority of their income from their farming activities. A total of 801 face-to-face interviews were
subsequently conducted with farmers who fulfilled the selection criteria—401 peach farmers in Tunisia (201 in
Mornag and 200 in Regueb regions) and 400 cherry farmers in Chile (200 in Rengo and 200 in Chillan regions).
Mornag, Tunisia (longitude: 10.28805, latitude: 36.68529, altitude: 110 m), hereafter referred to as Northern
Tunisia, is located approximately 20 km east of the capital Tunis. Regueb (longitude: 9.78654, latitude: 34.85932;
altitude: 230 m), Tunisia, hereafter referred to as Central Tunisia, is located approximately 230 km south of
Tunis. Rengo (longitude: —70.86744, latitude: —34.40237, altitude: 570 m), Chile, hereafter referred to as Central
Chile, is located approximately 110 km south of Santiago de Chile. Chillan (longitude: —72.10233, latitude:
—36.60626, altitude: 120-150 m), Chile, hereafter referred to as Southern Chile, is located approximately 380 km
south of Santiago de Chile. The approximately one-hour-long interviews were carried out with farmers directly
on their farms. The interviews were carried out after harvest completion in the fall of 2018 by Elka Consulting
in Tunisia and in the spring 2019 by Qualitas AgroConsultores in Chile. All methods were carried out in
accordance with relevant guidelines and regulations. Informed consent for the data collection was provided by
the survey participants. No personality-identifiable data was collected, assuring full anonymity. Department
of Communication and Media Research, University of Munich had been consulted about the participation of
human subjects in the survey research. Guidance was sought from our institute about the survey implementation
and data use that included participation of human subjects. Experimental protocol was approved by University
of Munich. A descriptive description of the data'” and further mixed methods analysis on vulnerability’! with
similar data was performed.

Code availability. The R code of the analysis can be found at https://github.com/FabianObster/boostingEc
ology.

Independent variables. 'The analyzed variables can be clustered into groups, including

¢ Climate experience group (Increasing temperature, decreasing rain, increasing drought, increasing extreme
weather)

e Natural asset group (geographical regions)

e Social asset group (reliance on/use of information, trust in information sources, community, science or
religion)

e Human asset group (age, gender, education)

® Biophysical asset group (farm size, water management systems used on the farm, diversity of crops used,
adaptive measures)

® Economic asset group (farm debt, farm performance, reliance on orchard income)

® Goals group (Keep tradition alive, work independently)
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e Harm group (Climate threatens farm, Optimism)
e Spatial group (Crop damage near farms, Crop damage of farms in Country)

An overview of all variables and the belonging groups can be found in Tables 4 and 5. There, also the number of
farmers in each category can be found (Tables 1, 2).

Outcome variables. The outcome variables measure financial vulnerability against the 5 climate hazards,
increasing winter temperatures, increasing summer temperatures, decreasing rainfall, increasing drought, and
increasing extreme weather based on self-assessment of the farmers. For each of the hazards, a binary variable
indicating if a farmer is vulnerable to the hazard is defined as the outcome variable. The main category includes
farmers, who are not financially vulnerable and the reference category includes farmers who are financially
vulnerable. The number of farmers in each category can be found in Table 3.

Interaction variables. 22 variables were used as variables that may have an interaction effect with the
other variables on the outcome. The interaction variables include regions as well as socio-demografic variables
amongst others and are indicated in bold in Tables 4 and 5. Together with all other variables, this yields 1366
interaction terms and over 4000 possible model parameters to estimate. Since there are 801 farmers in the data,

AUC sgb AUC mb AUC 2-boost AUC mb int Outcome vulnerability
0.656 0.619 0.608 0.587 Summer temperature
0.707 0.708 0.713 0.705 Winter temperature
0.852 0.852 0.852 0.500 Decreasing rainfall
0.768 0.768 0.768 0.500 Drought

0.776 0.778 0.783 0.773 Extreme weather

Table 1. AUC values for the sparse group boosting (sgb), component-wise boosting (mb), parallel boosting
with interaction (mb int) and two-step boosting with interactions (2-boost) for all vulnerability outcomes
evaluated on the test data.

Model Number selected interaction terms | 1-Sparsity in percent | Outcome vulnerability
mb int 13 0.95 Summer temperature
2-boost 0 0 Summer temperature
mb int 38 2.78 Winter temperature
2-boost 12 0.88 Winter temperature
mb int 48 3.51 Decreasing rainfall
2-boost 1 0.07 Decreasing rainfall
mb int 27 1.98 Drought

2-boost | 16 1.17 Drought

mb int 32 2.34 Extreme weather
2-boost | 10 0.73 Extreme weather

Table 2. Comparison of the number of selected interaction terms based on two-step estimation (2-boost) and
the parallel estimation (mb int) and the percentage of selected interactions (1-Sparsity) of the 1366 interaction
terms.

Variable Category n

No summer temperature vulnerability Yes 358
No winter temperature vulnerability Yes 579
No decreasing rainfall vulnerability Yes 451
No drought vulnerability Yes 492
No extreme weather vulnerability Yes 453

Table 3. Overview over outcome variables. Financial vulnerability against climate hazards. The “n” column
gives the number of farmers who are not financially vulnerable to each of the hazards.
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Variable name Category n Group name
Agronomic measures Yes 647 | Biophysical asset group
Economic measures Yes 464 | Biophysical asset group
Use of river irrigation Yes 138 | Biophysical asset group
Use of well irrigation Yes 231 | Biophysical asset group
Farm size Yes 283 | Biophysical asset group
Orchard size Yes 318 | Biophysical asset group
More than one variety grown Yes 508 | Biophysical asset group
Other products Yes 571 | Biophysical asset group
Technological measures Yes 721 | Biophysical asset group
Increasing temperature Yes 629 | Climate experience group
Decreasing rainfall Yes 659 | Climate experience group
Increasing drought Yes 671 | Climate experience group
Increasing extreme weather Yes 542 | Climate experience group
Income invested > 80 Percent Yes 137 | Economic asset group
Income invested <40 percent Yes 358 | Economic asset group
High financial wellbeing Yes 346 | Economic asset group
Low financial wellbeing Yes 148 | Economic asset group
Farm debt load High 96 | Economic asset group
Dependent on farm Yes 528 | Economic asset group
Family farm engagement Yes 203 | Economic asset group
Adaptive measures efficacy High 490 | Efficacy group

Work independent Yes 635 | Goals group

Keep tradition alive Yes 460 | Goals group

Provide good living environment | Yes 466 | Goals group

Be in profitable business Yes 320 | Goals group

Climate change is harmful Yes 258 | Harm group

High optimism Yes 446 | Harm group

High certainty Yes 470 | Harm group

Climate threatens farm Yes 629 | Harm group

Climate risks > benefits Yes 648 | Harm group

Climate change acceptance Yes 676 | Human asset group
Human cause climate change Yes 685 | Human asset group
Climate extremes Yes 755 | Human asset group
Age > 50 Yes 438 | Human asset group
Gender F 121 | Human asset group
Gender M 680 | Human asset group
Education Yes 459 | Human asset group
Years of farm possession Yes 577 | Human asset group
Prior ownership (family) Yes 399 | Human asset group
Years of farm managing Yes 437 | Human asset group
Natural assets CentralChile 200 | Natural asset group
Natural assets Central Tunisia 200 | Natural asset group
Natural assets NorthernTunisia | 201 | Natural asset group
Natural assets SouthernChile 200 | Natural asset group
Adapive measures near farms 1 424 | Norms group

Adapive measures near farms 2 151 | Norms group

Adapive measures near farms 3 226 | Norms group

High optimism Yes 446 | Perception group

Table 4. Overview over variables and groups. The 22 variables used as interaction variables (potential
moderators) are bold. The number of observations within each category of each variable is in the n column.
For binary variables, only one category is presented and the remaining category is “no” if the shown category is
“yes” and “low” if the shown category is “high”

finding interactions results in a “p > n” problem, where the number of variables in the design matrix is greater
than the number of observations.
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Variable Category | n Group

Use of newspapers Yes 95 Social asset group
Use of farming journals Yes 161 | Social asset group
Use of TV Yes 415 | Social asset group
Use of radio Yes 219 | Social asset group
Use of internet Yes 319 | Social asset group
Use of extension workers Yes 346 | Social asset group
Use of government workers Yes 166 | Social asset group
Use of neighbours Yes 313 | Social asset group
Use of industry Yes 192 | Social asset group
Use of farm associations Yes 97 | Social asset group
Trust in newspapers Yes 174 | Social asset group
Trust in farming journals Yes 291 | Social asset group
Trust in TV Yes 329 | Social asset group
Trust in radio Yes 241 | Social asset group
Trust in internet Yes 319 | Social asset group
Trust in extension workers Yes 433 | Social asset group
Trust in government workers Yes 268 | Social asset group
Trust in neighbours Yes 319 | Social asset group
Trust in industry Yes 215 | Social asset group
Trust in farm associations Yes 184 | Social asset group
Trust in government institutions | Yes 312 | Social asset group
Trust in other farmers Yes 351 | Social asset group
Trust in religion Yes 317 | Social asset group
Trust in fate Yes 360 | Social asset group
Crop damage near farms Yes 643 | Spatial group
Crop damage farms in Country Yes 673 | Spatial group
Climate change occurs Yes 592 | Spatial group

Table 5. Overview over variables and groups continued. The 22 variables used as interaction variables
(potential moderators) are bold. The number of observations within each category of each variable is in the n
column. For binary variables, only one category is presented and the remaining category is “no” if the shown
category is “yes” and “low” if the shown category is “high”.

General setup, model formulation and evaluation. All analyses were performed with R'? and the
boosting models were fitted with the package “mboost™.

Since all outcome variables are binary, we use the Ridge penalized negative log-likelihood of the binomial
distribution as a loss function and a logit link, which yields

1
h(B,X;) = Pi==1) = m,
1) = =D yilog (h(B, X)) + (1 — yi) log (1 — h(B, X)) | + ZIBI3.

i=1

Before performing any analysis the data was split into 70 percent training data and 30 percent test data, which
was only used for the final evaluation. Variable importance and partial effects were computed using the whole
data after the predictive analysis. Model evaluation was based on the area under the receiver operator curve
(ROC) and computed using the test data. The area under the ROC (AUC) takes both the true positive and the
false positive rate into account by considering all possible thresholds of predicted probabilities computed by a
prediction model. While the AUC is often used for discriminatory performance, it is also limited by not assessing
calibration and in the presence of strong class imbalances.

In the analysis, we use multiple boosting models for multiple purposes. All boosting models were fitted
with the R package “mboost”'. For early stopping, the stopping parameter was determined using a 10-fold
cross-validation performed at every boosting step. The first and most simple one is component-wise model-
based boosting (mb) with ridge-regularized linear effects of all variables, such that the degrees of freedom are
all equal to one. This model allows us to perform variable selection and allows for a comparison between all
variables regarding their relative importance. For the second model, we used sparse group boosting with a mixing
parameter o = 0.5, which balances group selection and individual variable selection. This way it is possible to
see if variables are important on their own for the outcome, or if they rather act as groups of variables.
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To find interactions in the data we use two approaches. The first one is the standard approach by defining
linear effects and interaction effects at the same time in each iteration. Then the model can decide weather it
selects the main effects or the interaction effects. In the second approach we use a two-stage boosting model.
As the first step we use the already fitted mb model, which only uses individual linear base-learners. The second
step uses solely interactions. This way linear base-learners are prioritized over interaction base-learners since
they are fitted first.

This remaining part of the methods section is more technical and may be skipped by the application-oriented
reader.

Generic boosting algorithm.  We will start with the general formulation of the boosting algorithm which
can also be described as a functional gradient descent algorithm. The goal is to find a function f* that minimizes
some Loss function I(y, f). Here, we only consider differentiable convex loss functions. The loss function has two
arguments. The first argument y € {1,...,, n} is the outcome variable with #n observations. The second argument f
is a real-valued function f : R"*P — R, which is a function of the data X € R"*P.

Another way of fitting sparse regression models is through the method of boosting. The fitting strategy is
to consecutively improve a given model by adding a base-learner to it. Throughout this article, we refer to a
base-learner as a subset of columns of the design matrix associated with a real-valued function. To enforce
sparsity, each base-learner only considers a subset of the variables at each step'®. In the case of component-wise
L2 boosting, each variable will be a base-learner. In the case of a one-dimensional B-Spline, a base-learner is the
design matrix representing the basis functions of the B-Spline. The goal of boosting in general is to find a real
valued function that minimizes a typically differentiable and convex loss function I(:, -). Here we will consider
the negative log-likelihood as a loss function to estimate f*as

() = argmin E[I(y,1)].
fe

General functional gradient descent Algorithm?®.

1. Define base-learners of the structure 4 : R"*? — R
. Initializem = 0and f© =00r fO =7 , N
3. Setm = m + 1 and compute the negative gradient %l(y, f) and evaluate it at 1”11, Doing this yields the
pseudo-residuals uy, ..., 4, with

A

a
gl(yi)f)lf:f[m—l])

foralli=1,..,n

4. Fit the base-learner h with the response (u
of the negative gradient

5. Update

Em], - u,[["]) to the data. This yields E[m], which is an approximation

]Ar[m} :]?[mfll +1 . plm]

here 1 can be seen as learning rate with n €]0, 1|
6. Repeatsteps 3,4 and 5 untilm = M

Boosted ridge regression. The loss function I(-, -) can be set to any function. In the case of interpretable
boosting, the negative log-likelihood is a reasonable choice. The log-likelihood can also be modified using a
Ridge penalty. By introducing the hyperparameter 4 > 0, one can modify the loss function I. Let & be a function
of a parameter vector 8 € R? and the design matrix X € R"*?, then

Inige (t, 1) = I(u, h) + Al|BII3

is the Ridge penalized loss function. By increasing 4, the parameter vector B can be shrunken towards zero.
Closely related to 4 are the degrees of freedom. Let S be the approximated generalized ridge hat matrix as
in Proposition 3 in'”. We remark that in the special case of ordinary least squares ridge regression we have
S =X(XTX + iI)7'XT. Generally, the degrees of freedom can be defined as

df(7)) = tr(2S — (5)TS)).

It is recommended to set the regularization parameter for each base-learner, such that the degrees of freedom
are equal for all base-learners. Thus, the regularization parameter enables using complex base-learners like
polynomial effects and simple effects like linear effects at the same time. Since the more complex base-learners
are regularized more than the simpler ones it is possible to prioritize simple and more interpretable base-learners
over complex ones, introducing an inductive bias towards interpretability, as we demanded in the problem
statement.

Component-wise and group component-wise boosting. In step 4 of the general functional gradient
descent algorithm, the function 4 is applied. Instead of just one function, one can also use a set of R functions
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{(hy)r<r}. Then the update in step 5 is only performed with the function that has the lowest loss function applied
to the data, meaning r* = argmin ,_zE[I(1, h,)]. In the case of component-wise boosting, for each variable
in the dataset, a function is used that is only a function of this variable and not the others. This way in each
step only one variable is selected. Then through early-stopping, or setting M relatively smaller compared to the
number of variables in the dataset, a sparse overall model can be fitted. This addresses the sparsity requirement
in the problem statement section. In the case of grouped variables, one can also define base-learners as groups
of variables, which are a function of only the variables belonging to one group. These could be all item variables
that belong to a specific construct like in sociological data'® or all climate change-related variables in agricultural
and environmental data?. This allows group variable selection, where only a subset of groups is selected, yielding
a group/construct-centric analysis rather than on an individual-variable basis. This way, the group structure can
be taken into account.

Sparse group boosting. It is also possible to use individual and group-based base-learners at the same
time. Then at each step, either an individual variable or a group of variables is selected. Using a similar idea as in
the sparse group lasso’, the sparse group boosting can be defined'. We do this again by modifying the degrees
of freedom. Each variable will get its own base-learner, and each group of variables will get one base-learner,
containing all variables of the group. Let G be the number of groups and p, the number of variables in group g.

Then, for the degrees of freedom of an individual base-learner X € R™*'we will use

df(/lj@) - pi .
g

For the group base-learner we use

df (7@ = pi “(1—a).
4

The mixing parameter o € [0, 1] allows to change the prioritization of groups versus individual variables in the
selection process. If df(4) = 0 means 4 — oo, o = 1yields component-wise boosting, and o = 0 yields group
boosting.

Two-step boosting. In the generic boosting algorithm, a single set of functions is applied sequentially to
the data. While there is variable selection within the set of functions, the set itself does not change during the
boosting procedure. We describe a modification of the general that allows more flexibility, namely a two-step
version of boosting. A similar idea of two-step boosting, called hierarchical boosting has been used in genetic
research? in transfer learning®', and also deep learning applications®. In most cases, hierarchical boosting is
used, if the outcome variable consists of a hierarchical class structure”. In contrast to the data analyzed in
the literature, the data we analyze here does not contain hierarchical class structures. Hence, we do not use
hierarchical boosting as in most cases presented in the literature, but for hierarchical and non-hierarchical
interaction detection.

We formulate and generalize the two-step boosting. Let K be the number of steps and for every step k < K
let Hy, be the set of base-learners.

K-step boosting algorithm.

1. Set K as the number of steps

2. For every step k < K define the set of base-learners H to be used and set My to the number of boosting
iterations R N

3. [Initialize mp = 0and f©@ = 0or f©

4. Fork < K repeat:

5. Formy < My perform steps 2-6 of the )%Ieneral boosting algorithm

6. Set Initialization my = 0 and ul% = M1

One may ask why it is necessary to run multiple boosting algorithms after each other if it is possible to just use
more base-learners in parallel in the original method. Previous research has shown high predictive powers
in some combinations of steps. However, as described in the problem statement for us predictive power is
only one part of the requirements and not necessarily desirable if it comes at the cost of interpretability and
understanding of the data. Also, the sequential nature of the algorithm reduces computational improvements
through parallelization, as not all base-learners can be fitted in the same boosting iteration in parallel. The k-step
boosting algorithm can also be seen as a special case of the general boosting algorithm, where the base-learners
themselves are boosting algorithms.

Variable importance. For each of the previously described boosting methods, it is possible to compute a
variable importance measure. In each step, the log-likelihood is computed, which means that one can compute
the reduction of log-likelihood attributed to the base-learner being selected in the step. After the fitting for each
base-learner the total reduction of likelihood can be computed. This way, one can compute the percentage of
reduction in the negative log-likelihood attributed to each base-learner, regardless of the type of base-learner.
The variable importance allows us to compare the relative importance of variables compared to each other and
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is distinct from the concept of significance or p values which tests a hypothesis of a parameter not being zero
based on a set of assumptions. Hence a variable can be important in boosting while not being significant base on
classical regression and vice versa.

Partial effect and effect sizes. For boosted generalized linear models, partial effects can be computed'.
Similar to classical logistic regression, odds ratios for all base-learners can be computed by first summing up
all linear predictors for one base-learner. These odds ratios can then be interpreted similarly to effect sizes in
logistic regression. Based on the linear predictor one can also compute predicted probabilities for categories
of variables if all other base-learners are set to average values. This way partial effects can be plotted, both for
individual variable base-learners and for interaction-base-learners. Thus model-based boosting models are by
themselves interpretable compared to other machine learning models where only post-hoc explanations can be
derived. One can also track which variable was selected in each boosting iteration and thus understand how the
model works internally.

Applications

Predictability. Referring to Table 1 and Fig. 1 we can see that the AUC values are comparable between the
boosting models except for the interaction model with parallel estimation. Averaging the AUC values across
the five vulnerabilities, sgb yields 0.752, mb and 2-boost yield 0.745, and mb int 0.613. For precipitation and
drought vulnerability, the parallel estimation of interactions resulted in no variables being selected and therefore
the AUC takes a value of 0.5. In 2-boost, also no variables were selected in the second estimation resulting in
the same model as mb, which had the highest AUC for these outcome vulnerabilities. For summer temperature
vulnerability, sgb had the highest AUC, and for winter temperature and extreme weather 2-boost had the highest
AUC. Comparing the predictability of the individual vulnerabilities with each other, we see, that vulnerability
against decreasing rainfall can be predicted better with the given variables, followed by vulnerability against
increasing extreme weather, decreasing drought, increasing winter temperature, and summer temperature.

Importance of individual variables and groups. Comparing the variable importance of the sparse
group boosting (sgb) and componentwise boosting (mb) in Fig. 2, it becomes apparent, that while there is
some overlap, also some variables differ. The single most important variable for all outcomes is “Natural assets”
indicating the four regions of the farm. However, the relative importance of the natural assets is higher for sgb
than for mb for all five vulnerabilities. Groups seem to be more important in explaining increasing temperature
vulnerability than the other vulnerabilities, as the economic asset group is the second most important variable
for summer temperature vulnerability and the goals group is the second most important variable for winter
temperature vulnerability. The spatial group is the third most important variable for decreasing rainfall
vulnerability but the relative importance is minor compared to the most important variable.

Summer temperature Winter temperature Decreasing rainfall Drought Extreme weather

— mb
- mbhint
—=- sgb

- - mbint

000 025 050 075 100000 025 050 075 100000 025 050 0.5 1.000.00 025 050 075 1.000.00 025 050 075 1.00
False positive fraction

Figure 1. ROC-curves for the sparse group boosting (sgb), component-wise boosting (mb), parallel boosting
with interaction (mb int) and two-step boosting with interactions (2-boost) for all vulnerability outcomes
evaluated on the test data.
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Figure 2. Comparison of variable importance based on component-wise boosting (mb) and sparse group
boosting (sgb) for each vulnerability. The ordering of variables is based on the sum of relative importance for
both models. only variables with a relative contribution of at least one percent and at most 15 variables per
model are shown.

Importance of interactions. In the predictability section, we have already seen some differences between
the two-step and the parallel estimation for interaction effects. For predictions, only models trained on the
training data were used for model evaluation on the test data. For the variable importance in Fig. 3 and Sparsity
in Table 2 the whole data was used. The parallel estimation selected only interaction effects and no main effects
(individual variables), whereas the two-step estimation selected both.

Referring to Table 2 it becomes apparent that the selection of variables differs substantially. Overall, the
two-step estimation in 2-boost yields much fewer interactions. For summer temperature vulnerability, no
interaction term was selected, whereas for the parallel estimation, 13 interaction effects were selected. For
decreasing rainfall vulnerability the differences are also substantial. The two-step estimation selected only one
interaction, namely the one between Agronomic measures and trust in TV was selected and mb int selected
48. For drought vulnerability, the difference was the smallest with 27 interactions for the parallel and 16 for the
two-step estimation. The percentage of selected interactions was four out of five times below one percent for
2-boost and for mb int it was above one percent four out of five times.

Not only does the sparsity differ, but also the selected interactions themselves. Referring to Fig. 3, for winter
temperature vulnerability the two interactions “Natural assets”-“Be profitable business” and “Country”-“Farm
debt load” have high relative importance based on both models. But apart from those two, there is almost no
overlap. For example for decreasing rainfall vulnerability, the only selected interaction between “Agronomic
measures -“Trust in TV” has a relative importance of 1 based on 2-boost and is not selected based on mb int,
which in turn selected 48 other interactions.

In Figs. 4, 5, 6, 7 and 8 we plotted the four most important interaction effects for each of the vulnerabilities
found in mb int and 2-boost based on a classical logistic regression only using one interaction term at a time.
There, the probability of no vulnerability is plotted based on the joint categories of the interaction. This is done
once for the data in Chile, Tunisia, and the whole data. Exemplary, we interpret the two common interaction
effects “Natural assets”-“Be profitable business” and “Country”-“Farm debt load” for winter temperature
vulnerability, which was selected by both models. In the northern region of Chile, having compared to not
having the goal of being a profitable business is associated with a higher probability of not being vulnerable to
increasing winter temperatures. In the southern Region of Chile, the association is reversed, meaning that having
compared to not having the goal of being a profitable business is associated with a lower probability of not being
vulnerable against increasing winter temperatures. In Tunisia, in both regions, the association of having the goal
of being a profitable business is negative but more negative in the Southern region compared to the Northern
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Figure 3. Variable importance of interaction terms in two-step estimation (2-boost) and parallel estimation
(2-boost) for each vulnerabilities. The ordering of variables is based on the sum of relative importance for both
models Only variables with a relative contribution of at least two percent and at most 15 variables per model are
shown.

» o«

region. Based on the interaction term “Country”-“Farm debt load”, high farm debt load has a positive association
with the probability of not being vulnerable to increasing winter temperature, where the association is negative
in Tunisia. The positive association in Chile is stronger in the northern region and the negative association in
Tunisia is stronger in the southern region.

Discussion

The results indicate that the vulnerability of farmers in Chile and Tunisia against climate hazards can be predicted
with the interpretable boosting algorithms and their variations by the variables and groups of variables used
in the analysis. All models performed variable selection. The highest predictive power measured in AUC
was achieved for vulnerability against decreasing rainfall and the lowest for summer temperature increases
regardless of the type of boosting approach. For predicting summer temperature vulnerability the sparse group
boosting outperformed all other models indicating that there may be underlying latent variables that cause
the effects rather than the individual variables. The group variable importance mainly points to economic and
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Figure 4. Probability of not being vulnerable against increasing summer temperature based on the categories
of the four most important interaction effects found in mb int and 2-boost. Probabilities are based on classical
logistic regression only using one interaction term at a time. The results are once stratified by country (Chile,
Tunisia) and once estimated on the whole data.

biophysical assets including adaptive measures which may be an underlying determinant for summer temperature
vulnerability. The variable importance strongly points to Natural assets consisting of the four different regions
in Chile and Tunisia, which are a main determinant of all types of vulnerability. This indicates strong within
and between country differences. The interaction analyses also confirm the importance of regionality, as some
effects are strongly modulated by Country and North-South comparisons. The modulated effect of debt load by
region may be an indication of economic differences between regions and closeness to bigger cities or could be
a result of the different climatic zones.

Even though there are strong interaction effects present in the data as seen in the univariate interaction
analysis, it is not a simple task to transfer their presence into higher predictive power in a high-dimensional
setting. This becomes apparent since the model including interactions base-learners additionally to the main
effects performed worse than the same model without interactions in all cases. One of the reasons is probably
overfitting, as the number of parameters to estimate exceeds the number of variables by a factor of over four.
The result was that the interaction model did not include any main effects and only interactions. We believe that
this issue of overfitting becomes more systematic in high-dimensional data than purely random because there
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Figure 5. Probability of not being vulnerable against increasing winter temperature based on the categories
of the four most important interaction effects found in mb int and 2-boost. Probabilities are based on classical
logistic regression only using one interaction term at a time. The results are once stratified by country (Chile,
Tunisia) and once estimated on the whole data.

if there are p variables in the dataset, then there are O(p?) possible interaction terms. So, with increasing p, the
chance of selecting an interaction term over a main effect increases with regardless of the actual effect sizes. This
implicit interaction selection bias could be addressed successfully by the proposed two-step boosting approach.

The two-step boosting yielded higher predictive power and a higher degree of sparsity with fewer interactions

being present in the resulting model. This leads us to believe that this approach is superior to the “classical”

parallel estimation by including interaction terms in the main model formula in boosting. The only drawback
we see is, that one has to estimate two models instead of just one which slightly increased the programming

effort and reduces the potential for further parallelization as the models are fitted sequentially and not in parallel.

However, it is common practice and in line with the principle of sparsity to always fit one model that contains

only individual variables if one wants to do an interaction analysis*. In this case, the two-step boosting is also

computationally more efficient because one can build upon the first model and avoid having to refit the main

effect.
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Figure 6. Probability of not being vulnerable against decreasing rainfall based on the categories of the four
most important interaction effects found in mb int and 2-boost. Probabilities are based on classical logistic
regression only using one interaction term at a time. The results are once stratified by country (Chile, Tunisia)
and once estimated on the whole data.

In environmental research, consistently finding associations in high-dimensional datasets requires new
methods to advance knowledge. These new methods allow more flexibility but often come at the cost of classical
statistical inference, including p values and estimations of standard errors as in the case of boosting®.
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Figure 7. Probability of not being vulnerable against drought based on the categories of the four most
important interaction effects found in mb int and 2-boost. Probabilities are based on classical logistic regression
only using one interaction term at a time. The results are once stratified by country (Chile, Tunisia) and once
estimated on the whole data.

Often, there are multiple plausible explanations for a phenomenon. The here proposed methods can enable
direct comparison of a large number of explanations, estimating their explanatory importance for the outcome.
This approach can accelerate understanding, particularly for newer phenomena like climate change, by gathering
all variables that may be associated with the outcome and sampling observations for them. Starting with a
relatively small sample size, one can estimate the relative importance of hypotheses and prioritize future research
based on the results.

Using an apriori interpretable method, such as those previously described, provides the great advantage
of being able to assess the predictability of a given set of explanations for an outcome. In contrast, post-hoc
interpretability tools applied to a black box provide only a simplified explanation of how black-box predictions
may be derived, without being able to assess how good the explanations themselves are at predicting the outcome.
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Chapter 8

Improving Boosted Generalized

Additive Models with Random
Forests: A Zoo Visitor Case
Study for Smart Tourism

In Chapter 7, a more complex model is used to improve the predictions of a simpler model.
This chapter uses the somewhat counterintuitive idea of utilizing a complex model to improve
the simpler model. Generalized additive models (GAMs) can be sensitive to outliers or
unstable in sparse areas of the feature space. Instead of fitting a boosted GAM to the
observed outcome, the same model is fitted to the predictions of a random forest. In a case
study of predicting zoo visitors, the idea is tested. Both versions of the boosted GAMs are
compared in terms of predictive performance, sparsity, and variable importance.
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Abstract

Smart Tourism for the Industry 4.0 and post Covid-19 challenge needs explainable Al Algorithms adapted for the Volatility,
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regularization properties, such as model sparsity of the boosted GAMs. In addition, the current state of the art is provided and a
detailed description with descriptive analysis of a case study for zoo visitors. The procedure with integrated XAl techniques, like
variable importance measures and partial effects, is explained. In the future, the proposed concept can be implemented also for
other industries or as a general method of XAI
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1. Introduction

Explainable Al Although COVID-19 has changed the way many people work and interact, people are still at the
center of business - and they need digitized processes to operate in today's environment. For example, sensors/RFID
tags were used to determine whether employees wash their hands regularly. Computer Vision determined whether
employees were adhering to mask protocol, and loudspeakers were used to alert people to protocol violations. In
addition, these behavioral data were collected and analyzed by the organizations to influence employee behavior on
the job. The collection and use of such data to drive behavior is referred to as the Internet of Behavior (IoB). As
organizations improve not only the amount of data they collect but also the way they combine and use data from
multiple sources, [oB will continue to influence the way organizations to interact with people [1].

The past decade has seen rapid advancements and increasing use of Artificial Intelligence (Al) in all industry
sectors. However, this leap in performance has often been achieved through high model complexity with "black-box"
approaches. These, in turn, lead to uncertainty about how they operate and how they arrive at decisions. This is highly
problematic, especially in sensitive and critical areas such as autonomous driving or healthcare. As a result, scientific
interest in the field of explainable artificial intelligence (XAI) has grown tremendously. This, in contrast to established
methods, is a field concerned with the development of new methods that explain and interpret machine learning
models. An overview of the development of XAl methods offers inter alias Linardatos et al [2] and Confalonieri et al.
[4]. Figure 1 illustrates the major milestones of Al (left) and XAI (right). For example, local explanation methods are
used in XAl Here, the individual predictions of a black-box model can be approximated by generating local surrogate
models as well as interpreted intrinsically. This method is implemented, for example, in the LIME (Local Interpretable
Model-agnostic Explanations) algorithm by Ribeiro et al. [3]. Here, the LIME approach exploits the fact that the
trained black-box model can be queried multiple times for the predictions of specific instances. By changing the data
used for training, LIME generates a new data set. After the black-box model is fed the modified data, it creates a new
interpretable model from the predictions generated over the new data set. When the XAl method provides an
explanation for only a particular instance, it is called a local approach, and when the method explains the entire model,
it is called global. In contrast to LIME as a local approach, methods like PDPbox or Shapley Additive Explanations
(SHAP) are global XAl approaches that try to explain the whole black-box model [2].
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Fig. 1.: Major milestones of Al (left) and XAl (right).

The US Defense Advanced Research Project Agency (DARPA) is working on the Explainable Artificial
Intelligence project: an open-source framework that makes procedures and methods available for the explainability
and comprehensibility of Al-based recommendations for action [31]. The Harvard project Visual Analysis for
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Recurrent Neural Networks (LSTMVis) focuses on the explainability of neural sequence models that can be generated
by so-called recurrent neural networks, for example for text translation, generation, or interpretation. The aim of this
article is to investigate the differences between an interpretable machine learning model, that are fit to the data,
compared to the same model fit to the same data with the predictions of a black-box machine learning model as an
outcome. We will specifically analyze the differences regarding predictability, quantified by the mean squared error
using independent data, variable importance, and partial effects. Here we define the variable importance as the
reduction of the loss function, that can be contributed to each individual variable. As black-box model, we use a
random forest (rf) and as the interpretable model we use boosted generalized additive models (GAM). A comparison
of post hoc interpretability methods explaining random forests, is given in [30], where also GAMs as interpretable
surrogate model are discussed. We want to shed light on two important questions. First, can the GAM fit to the
predictions of the black-box model to identify bias of the black-box predictions? The comparison might reveal biases
of the machine learning model and help to understand the relationship of variables and the prediction of the black-box
model compared to the actual relationship of the variables with the outcome estimated by the GAM. As a result, we
do not only try to understand the behavior of the black-box but also detect any biases of the black-box. This might
help the modeler to decide between two black-box models, based on which yields the most accurate interpretation.
Further, it could help to adjust the modeling, based on the detected bias. Second, can the black-box model help to
reduce the variance or bias of the interpretable model? Generally, GAMs are prone to overfitting if the raw data set is
used.

2. Industrial Application

The tourism industry has been growing for years and continues to be considered an increasingly important sector
of the economy [5, 6, 7]. However, the growth has led to increased competition and the industry must face additional
challenges, such as the Covid-19 pandemic or climate change. Due to these developments, it is more important than
ever for each individual company to optimize and analyze its business activities, resources, and planning. [8] For
efficient forward planning, it is important for tourism companies to be able to predict future visitor numbers as
accurately as possible [8]. Two of the factors that influence visitor numbers are climate and weather. The climate
describes the weather pattern of a place. The period of the weather data must be sufficient to provide significant mean
values. Weather, on the other hand, reflects the state of the atmosphere at a given location within a brief time span.
[9] Consequently, climate influences the decision of global tourists who prefer a certain weather pattern for their
vacation. Weather, on the other hand, has an impact on spontaneous decisions of domestic tourists and thus outbound
and domestic tourism, as weather depicts a brief moment of climate [5, 7]. To date, research has mostly focused on
the effects of weather and the resulting behavior of tourists in non-urban destinations [10]. For example, Ploner and
Brandenburg [11] modeled visitor volume as a function of weather and days of the week in an Australian national
park. Alvarez-Diaz and Rossello-Nadal [12] focused on improving forecasts of British tourist arrivals to the Balearic
Islands. Becken [13] measured the effect of different weather variables on the number of flights and visits from a tour
operator and visitor center in the community of Franz Josef in Westland, Australia. Other research addresses the
monitoring of the Castelldefels urban beach in Barcelona, Spain, to provide the best possible service for the
corresponding demand [14] and the analysis of climate sensitivity and the impact of climate change on outdoor
recreational activities of two beach resorts in the city of Zurich [15]. Furthermore, literature exists on the influence of
weather on the Coachella Valley in California [16] and visitor forecasts for the Museum of New Zealand "Te papa
tongarewa" [10]. With the topic of forecasting attendance at zoological parks, Aylen, Albertson, and Cavan [17],
Perkins and Debbage [18], Perkins [19], and Alvarez and Barquin [20] have already written research papers in
different destinations such as Spain, England, and the United States. Aylen, Albertson, and Cavan [17] and Alvarez
and Barquin [20] conclude that visitor numbers are influenced by the weather but are also very dependent on seasonal
rhythms, such as school vacations and public holidays. This is because the weather did not seem to be the determining
variable in summer [20]. Perkins and Debbage [18] and Perkins [19] noted that it is equally important to consider in
which climate zone the zoo is located, as locals consider different weather conditions to be comfortable. Zoo visitors
are predominantly day visitors and thus highly dependent on the weather, as they often make their travel decisions on
short notice and adjust their plans to the short-term weather forecast [17]. In addition, short-term weather forecasts
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have improved in recent years and are now considered to be very accurate. Therefore, it can be assumed that the actual
weather data can be used as a good substitute for the originally predicted weather. For the prediction of visitor numbers
based on weather data, the following different methods have been used and partially compared so far. Table 1 shows
which methods have been used in the literature to predict visitor numbers.

Table 1. Methods used in the existing literature.

Authors\ Methods Time series ~ Decision  Bayesian  Gradient Generalized Neuronal Random
model tree model boosting linear model network forest

Lise & Tol (2002) X

Ploner & Brandenburg (2003) X X

Alvarez-Diaz & Rossello-Nadal X

(2010)

Bergmeir & Benitez (2011) X

Finger & Lehmann (2012) X

Akin (2014) X

Aylen, Albertson & Cavan %

(2014)

Clark et al. (2019) X

Yap et al. (2020) X X X X

Domingo (2021) X X

Lionetti et al. (2021) X X X X

3. Data & descriptive analysis

According to Porter & Heppelmann [21] smart products have three elements: physical components, smart
components, and connectivity components. The analysis used the daily data from the Helsinki Zoo visitor count as a
dependent variable (physical component). The dataset includes the data from the 1% of January in 2010 until the 31
of December in 2021. As independent variables, the weather data of the weather station Kaisaniemi in Helsinki and
the public holidays were collected (physical components). The weather data consists of precipitation, snow, average
air temperature, minimum temperature, and maximum temperature. Table 2 gives an overview of the sources for the
Korkeasaari Zoo visitor numbers, weather data, and public holidays. The zoo visitor prediction through machine
learning algorithms (smart components) can be used for smart tourism applications (connectivity components) like
visitor management or resource planning.
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Table 2. Overview of the sources for the data.

Sources

Visitor Numbers of

Korkeasaari Zoo

Weather
data

Corona cases

Public holidays

Helsinki,
Finland

https://hri.fi/data/en

https://cdn.f

https://sampo.th

https://www.feiertagskalender.ch/ferien.php?geo=3295

_GB/dataset/korkeas

mi.fi/fmiod

L.fi/pivot/prod/e

&jahr=2010&klasse=0&hl=en

aaren-kavijamaarat

https://www.feiertagskalender.ch/ferien.php?geo=3295

https://www.feiertagskalender.ch/ferien.php?ge0=3295

https://www.feiertagskalender.ch/ferien.php?geo=3295

https://www.feiertagskalender.ch/ferien.php?ge0=3295

ata-convert-  n/epirapo/covid

api/preview  19case/summar &jahr=2011&klasse=0&hl=en
/5d7eal7c- y_tsheddaily?al

52c¢4-4c8e- ue 0=445222& &jahr=2012&klasse=0&hl=en
9045- alue _1=445193

4770ec434e &jahr=2013&klasse=0&hl=en
57/Nocale=

en &jahr=2014&klasse=0&hl=en

https://www.feiertagskalender.ch/ferien.php?geo=3295
&jahr=2015&klasse=0&hl=en

https://www.feiertagskalender.ch/ferien.php?geo=3295
&jahr=2016&klasse=0&hl=en
https://www.feiertagskalender.ch/ferien.php?geo=3295
&jahr=2017&klasse=0&hl=en
https://www.feiertagskalender.ch/ferien.php?geo=3295
&jahr=2018&klasse=0&hl=en
https://www.feiertagskalender.ch/ferien.php?geo=3295
&jahr=2019&klasse=0&hl=en
https://www.feiertagskalender.ch/ferien.php?geo=3295
&jahr=2020&klasse=0&hl=en

https://www.feiertagskalender.ch/ferien.php?geo=3295
&jahr=2021&klasse=0&hl=en

191

The outcome of interest is number of daily zoo visitors. Figure 2 shows that this count variable is right skewed.
However, on a logarithmic scale this is not the case anymore, but there are two modes. Referring to Figure 3, for
instance the univariate relationship between the air temperature and the number of visitors is nonlinearly increasing
and there is a degree of rising heteroscedasticity. That means that the number of visitors scatters more for lower air
temperatures than for higher air temperatures. In contrast, logarithmic transformation of the number of visitors, yields
a “more linear” relationship and less heteroscedasticity. This relationship could also be found in other numeric

variables in the dataset.
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Fig. 2.: Histogram showing the distribution of the number of zoo visitors (left) and the number of zoo visitors on a logarithmic scale (right).
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Fig. 3.: Scatterplot showing the relationship between the air temperature (AirT) and the number of zoo visitors (left) as well as the number of zoo

visitors on a logarithmic scale (right).
4. Methods & Setup

For our analysis we use stratified sampling by year, with a 70 percent training and a 30 percent test sample. For all
models the loss function is the negative sum of least squares. We start by first modelling the training data with
generalized additive models (GAM) that were fitted through model-based boosting [22], as well as the random forest
(rf). Rf is an ensemble of regression trees through the method of bagging. For the random forest we used 1000 trees
and three randomly selected variables at each split. GAMs are a generalization of generalized linear models, that also
incorporate (penalized) splines for smooth effects. We consider two versions of GAMs. The first model takes each
variable in the dataset as a smooth effect and the second one additionally incorporates interactions. All interactions of
variables are considered. If two variables for an interaction are numerical, two-dimensional penalized splines are
fitted. The difference to one-dimensional P Splines is that the knots are two-dimensional and span the space of the
cartesian product of two variables. If one variable is numerical and the other one is categorical, then for each level of
the categorical variable a P Spline is being fitted for the numerical variable. Since interpretability is of interest, we
want the GAM to enforce sparsity. This is especially important, since we consider many interactions. To achieve that,
we use model-based boosting, where the final model is fitted iteratively, by only updating it by one base learner in
each step, selected on the basis of reduction of the loss function. The model is then stopped early using a 25-fold cross-
validation, which leads not only to a sparse solution, but also to one where the effect sizes are slightly shrunk towards
zero. All boosted GAM models were stopped early before the maximum number of boosting iterations of 2000 and
the learning rate was set to 0.1. Next, we apply the resulting models to the training data set to obtain predicted values
(e.g., prediction of the random forest and predictions of the GAM). Furthermore, we fit the GAM to the rf predictions
using the same covariates as used in the models obtained from the training data. The following steps illustrate how
the GAM — rf model is being fitted:

1. Fit the random forest regression model with the k features 2@, .., x® to the outcome vector y=
01y s y"

2. Use the model form step 1 to generate the predictions py, ..., Py

3.  Fit the GAM with the same features x(, ..., x(® to the new outcome vector consisting of the predictions
of the random forest p = (py, ..., p,)7

From that we compute the variable importance for the GAM as well as GAM interpreting the random forest.
Further, we plot the partial effects of both methods for comparison. For the partial effects, all other variables are held
constant. Now, the random forest, the GAM and the GAM based on the random forest model are applied to the test
data. To evaluate the performance of the different models, mean squared errors (MSE) are calculated and plots of
predicted versus true outcomes of the independent variable for all models are plotted.
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For the analysis we used the statistical software R [23]. All visualizations were created with the R package
“ggplot2” [24]. The random forest was fitted using the package “randomForest” [25] and the GAM was fitted using
the package “mboost” [26].

5. Results

Figure 4, Tables 4 and 5 show the importance of the variables for modelling the dependent variable of the relevant
models. The plot indicates that the importance ranking of the different variables is the same for the GAM and the
GAM explaining the random forest. This means that both GAMs yield basically the same interpretation regarding the
variable importance. Figure 5 on the left shows the partial effect of the maximum temperature, the most important
variable for the outcome. We see that both curves look the same with only small differences at the boundary knots of
the curve. The only variable that showed substantial differences between the GAM and the GAM explaining the
random forest is the air temperature, the least important variable. The GAM explaining the outcome yields a much
more regularized effect for this variable than the one explaining the random forest. But since this variable reduces the
MSE less than the most important variable by the factor of less than 0.001, the effect of this difference for the whole
model is only very marginal. However, the plot on the right in Figure 5 shows the results for the GAM and GAM
explaining the random forest when variable interactions are included. Here we get a different result as the order of
importance is not the same anymore (e.g. the interaction between air temperature and maximum temperature) and also
the size of the variable importance show differences. It is important to note that interactions of two-dimensional P-
Splines are not identifiable, if one variable is used in two distinct of such P-Splines. This means that the effect of one
individual variable can be captured by one of the interactions and not by the other. Regardless of this issue, there are
still substantial differences. For example, all interactions containing the variable workdays are more important in the
GAM than in the GAM explaining the random forest. Also, there are interactions that were selected by the GAM and
not selected by the GAM explaining the random forest, namely the interaction between Precipitation and Snow, as
well as the interaction between Precipitation and MinT. This makes the GAM explaining the random forest sparser
than the GAM, since fewer variables are selected, leading to an easier interpretation of the overall model. Next, Table
3 shows the mean squared error for the different models evaluated using the test data. The comparison of all GAM
models - including the ones with interaction - with the random forest points to the black-box model being superior in
predicting the outcome variable. Overall, both GAM with interactions were associated with a lower MSE than the
corresponding GAM without interactions. However, the GAM explaining the random forest sows the same MSE as
the GAM explaining the outcome and the GAM with interactions explaining the random forest even outperformed the
GAM with interaction explaining the outcome. In Figure 6 we also displayed the global fitted/predicted values against
the actual values of the outcome, for all models, including the models explaining the random forest. But instead of
plotting all points (over 15000 points) on the scatterplot, we only plotted a smoothed line using the LOESS estimator
provided by the “ggplot” package. We did this to showcase if there is any bias in the prediction. Between the range of
4 and 8 on the x-axis all smoothing curves lie on the bisector, which indicates no structural bias in that area. However,
at the boundary deviations can be detected. There are also differences regarding the degree of deviation depending on
the type of model. The largest deviation can be seen in the GAM with interactions, indicating the severest misfit for
very low or very high numbers of visitors. In contrast to this, the GAM with interactions explaining the random forest
does not show such a misfit for these high and low visitor numbers. The same tendency for a low number of visitors
can be seen in the comparison of the GAM explaining the random forest with the GAM, even though the differences
are not as apparent as with the GAM including interactions.
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Table 3. Mean squared error (MSE) of the models.
RF GAM rf GAM GAM interaction RF GAM interaction

0,651 0,819 0,819 0,771 0,760

Table 4. Variable importance of the fitted to the outcome (GAM) and the one fitted to the predictions of the random forest (GAM rf), as absolute
reduction of loss function attributed to each variable corresponding to Figure 4.

Variable GAM RF GAM
MaxT 1,4013 1,4022
Workdays 0,3752 0,3752
CoronaCases 0,1173 0,1183
Precipitation 0,0344 0,0346
Snow 0,0190 0,0198
MinT 0,0083 0,0093
AirT <0,0001 0,0006

Table 5. Variable importance of the GAM fitted to the outcome (GAM) and the one fitted to the predictions of the random forest (GAM rf), as
absolute reduction of loss function attributed to each variable corresponding to Figure 5.

Variable GAM RF GAM
CoronaCases, MaxT 0,5758 0,8167
AirT, MaxT 0,5132 0,3246
Workdays 0,3645 0,3571
MaxT, Precipitation 0,3635 0,3046
CoronaCases, Snow 0,0878 0,0791
CoronaCases 0,0629 0,0543
CoronaCases, MinT 0,0263 0,0229
CoronaCases, Workdays 0,0187 0,0168

CoronaCases, Precipitation 0,0067 0,0090
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MinT, Workdays 0,0050 0,0046
Precipitation 0,0034 0,0031
AirT, CoronaCases 0,0027 0,0021
MaxT, Workdays 0,0018 0,0057
Precipitation, Workdays 0,0015 0,0009
AirT, MinT 0,0013 0,0013
Snow, Workdays 0,0013 0,0011
MaxT, Snow 0,0010 0,0010
MinT, Snow 0,0008 0,0005
AirT, Snow 0,0001 <0,0001
Precipitation, Snow 0,0001
MaxT, MinT <0,0001 <0,0001
MinT, Precipitation <0,0001
T 0.050
1
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Fig. 5.: Partial effect of the maximum temperature (MaxT) on the expected number of visitors on a logarithmic scale (Effect). The color indicates,

if the model was fitted to the outcome (gam) or the random forest (gam rf).
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Fig. 6.: Global prediction plot showing a smooth line using the LOESS estimator for the predicted values on the x-axis against the actual values

on the y-axis for all fitted models.
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6. Discussion

A popular modeling approach for complex data is to fit several models to the same data. Then the best performing
models or ensemble of models are used for prediction and the interpretable models are used to gain insight into the
data. For this approach random forest and GAMs are common choices, as in Arnold [27]. The unsatisfying aspect of
this approach is that it is unclear whether the interpretation of the data provided by the interpretable model matches
with how the black-box model derives predictions. Therefore, the field of XAl has mainly focused on explaining the
behavior of well predicting but complex models by simple models that are interpretable but not as predictive. This
way the interpretation matches the black-box model to a certain degree. But it remains unclear how the explanation
of the data matches the interpretation of the black-box. Our findings suggest that for modeling the number of zoo
visitors, the interpretation of the GAM itself matches the interpretation of the GAM explaining the random forest.
This is a strong statement, as there is a high degree of multicollinearity present in the data. For example, the minimum
and maximum temperature were strongly correlated with a Pearson correlation coefficient of 0.95. Still, both GAMs
captured similar effects and yielded similar variable importance. As this holds true for the simpler case, the
interpretation of the GAM with interactions differs from the GAM with interactions explaining the random forest.
Interestingly, not only the variable importance of both models differ but also the sparsity and predictability differed
in favor of the model explaining the random forest. GAMs are known to be prone to overfitting [28]. Even though we
used boosting to fit the GAM, which imposes further regularization compared to the standard maximum likelihood
estimation, we still believe that a certain degree of overfitting is present. Other regularization techniques like bagging
or random subspace methods have been proposed to combat this problem [29]. We believe that the pre-processing of
the data by the random forest poses further regularization on the outcome and filters out noise, as the random forest
itself utilizes bagging as regularization. This regularization led to fewer predictors being selected by the GAM with
interactions, and therefore a higher degree of sparsity. This not only reduces the variance but also simplifies the
interpretation of the model. The reduction of variance was most apparent at the bounds of the fitted values in the
global prediction plot. In the case of zoo visitors, predictions are especially important for very high and low numbers
of visitors as the demand has to be planned in advance. So, instead of only trying to make black-box models more
interpretable through statistical models, we should also think about improving the predictability of statistical models
through the black-box, while retaining the interpretability. The improvement of the GAM through the random forest
should be investigated with more data and experiments. Understanding the change of interpretable models, such as
GAMs, before and after fitting a black-box algorithm as the random forest, may help to both improve the interpretable
model as well as the interpretability of the black-box. This may lead to a more refined scale of finding a good trade-
off between interpretability and predictability or, as in this analysis, to a solution that improves both at the same time.
Using GAMs or boosted GAMs as a surrogate model to explain another model imposes some limitations. Apart from
well-known limitations of GAMs, such as the tendency for overfitting [28], the most limiting factor of using GAMs
as in this analysis is probably its lack of capturing deep interactions, especially if the black-box model captures these
interactions. In this case, the explanation provided by the GAM may be too simplistic. This may lead to wrong
conclusions about the functioning of the black-box model.
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