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Zusammenfassung

Supernovae (SNe) gehören zu den energetischsten Ereignissen im Universum. Sie injizieren enorme
Mengen an Energie und angereichertem Material in das interstellare Medium (ISM). Supernova
Überreste (SNRs), die Asche der SN Explosionen, prägen die Multiphasen-Struktur des ISM, den
Antrieb von Turbulenz, die Regulierung der Sternentstehung und die Entstehung galaktischer
Ausflüsse. Trotz ihrer enormen Bedeutung für das ISM sind viele Aspekte ihrer langfristigen
Entwicklung und ihrer Wechselwirkung mit der galaktischen Umgebung, insbesondere in einem
strukturierten ISM, noch unklar.

Diese Arbeit ist der detaillierten Untersuchung der Dynamik von SNRs in komplexen Umgebungen
gewidmet. Zunächst stelle ich ein ein neues analytisches Modell basierend auf den Dünnschalen-
und Sektoren-Näherungen vor, das die Expansion von SNRs in nicht-uniformen, zeitabhängigen
Umgebungen beschreibt. Es berücksichtigt Gravitation, differentielle Rotation sowie Kühlung,
reproduziert bekannte Grenzfälle und dient als Grundlage für komplexere Szenarien.

Anhand dieses Modells untersuche ich, wie Stratifizierung, Rotation und galaktische Substrukturen
die Dynamik von SNRs beeinflussen. Die Ergebnisse zeigen, dass Gravitation die Fähigkeit von
SNe, Ausflüsse zu erzeugen, stark einschränkt, sofern keine ausreichende Energieinjektion erfolgt.
Galaktische Scherung und Substruktur deformieren große SNRs und führen zu einer asymptotis-
chen Expansionsgeschwindigkeit von vergleichbarer Größenordung zur Geschwindigkeitsdispersion.
Diese Erkenntnisse ermöglichen eine physikalisch fundierte Interpretation der Dynamik von SNRs
und galaktischer Winde.

Ergänzend führe ich numerische Simulationen isolierter SNRs in einer homogenen Umgebung
durch, mit Fokus auf die wenig verstandene Verschmelzungsphase. Ich charakterisiere den Zu-
stand unmittelbar vor und während dieser Phase, der die Entstehung einer stark kühlenden,
rücklaufenden Implosionswelle begünstigt. Diese füllt das zuvor evakuierte Innere auf und führt
zur Kondensation einer zentralen Wolke. Ich untersuche, ob solche SN-Implosionswolken Sterne
bilden können, und bestimme ihre Sternentstehungseffizienz. Diese Ergebnisse schließen die En-
twicklungssequenz von SNRs ab und suggerieren einen neuen Entstehungsmechanismus für beson-
ders metallreiche Sterne.

Den Höhepunkt bildet das SISSI-Projekt (Supernovae In a Stratified, Shearing Interstellar
medium), in dem ich SNRs innerhalb des stratifizierten, gescherten und strukturierten ISM einer
simulierten, isolierten Galaxie untersuche. Die Simulationen zeigen, wie stark Dynamik und Ge-
ometrie von SNRs vom Zusammenspiel mit der galaktischen Umgebung geprägt sind. Abschließend
wende ich diese Ergebnisse auf die Lokale Blase an und ermittle ein signifikant jüngeres Alter als
bisher angenommen wurde.

Diese Arbeit vertieft unser Verständnis darüber, wie SNe das ISM strukturieren. Durch die
Verbindung analytischer Theorie, numerischer Modellierung und astrophysikalischer Beobachtun-
gen liefert sie einen umfassenden Rahmen zur Interpretation von SNRs in komplexen galaktischen
Umgebungen.
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Abstract

Supernovae (SNe) are among the most energetic events in the Universe, injecting vast amounts
of energy and enriched material into the interstellar medium (ISM). Their ashes, usually referred
to as supernova remnants (SNRs) or superbubbles (SBs) in the case SNRs powered by the clus-
tered explosions of many stars, play a central role in shaping the multiphase structure of the
ISM, driving turbulence, regulating star formation, and contributing to galactic outflows. Despite
their importance, many aspects of their long-term evolution and interaction with their galactic
environment remain poorly understood, particularly in the context of a realistic, structured ISM.

In this thesis, I explore the dynamical evolution of SNRs across a range of scales and physical
conditions. I begin by developing a novel one-zone blastwave model, based on the thin-shell and
sector approximations, that is designed to capture the expansion of SNRs in non-uniform, time-
dependent environments, including the effects of gravity, shear induced by differential rotation,
and cooling. This model reproduces known analytic limits and serves as a foundation for exploring
more complex configurations.

I apply the model to stratified, rotating, and structured galactic environments, quantifying how
these factors alter the dynamics of SNRs. The results demonstrate how gravity limits the ability
of SNe to drive outflows unless a sufficient level of energy injection is sustained. Galactic shear and
substructure deform large-scale bubbles and asymptotically set a characteristic expansion velocity
tied to the ambient velocity dispersion. These insights provide a physically motivated framework
to interpret and constrain SB growth and outflow conditions in realistic galactic settings.

Complementing the analytic work, I perform a suite of numerical simulations of isolated SNRs
in uniform media, focusing on the poorly understood merging phase. I characterize the physical
conditions within SNRs shortly before and during the merging phase, which favor the formation
of an implosion wave, a rapidly-cooling, reverse shock-wave that refills the previously evacuated
interior and leads to the condensation of a central cloud. Based on these results, I propose
that such a SN-implosion driven cloud may form stars and predict the associated star-formation
efficiency. These results offer closure to the overall story of SN evolution and provide a new
attractive pathway for the formation of the most metal-rich stars.

My thesis reaches its climax with the introduction of the SISSI (Supernovae In a Stratified,
Shearing Interstellar medium) project, in which I simulate the evolution of SNRs embedded within
the stratified, shearing, and structured ISM of a simulated, isolated galaxy. SISSI reveals how the
dynamics and geometry of SNRs are affected by their complex interplay with a realistic galactic
environment. Finally, I apply these findings to the Local Bubble, reevaluating its formation history,
with the surprising result that it should be significantly younger than previously believed.

Together, these studies advance our understanding of how SNe structure the ISM. By bridging
analytic theory, numerical modeling, and astronomical observations, this work provides a compre-
hensive framework for the interpretation of SNRs in complex galactic environments.
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Chapter 1

Supernova Remnants

The galactic, multi-phase interstellar medium (ISM) is the dynamic stage shaped by the complex
interplay of (magnetohydrodynamical) turbulence, stellar feedback, and gravity, where the stories
told in this thesis take place. It consists of cold, molecular clouds surrounded by warm, diffuse
gas, which are embedded in a hot, tenuous network of bubbles whose expansion is driven by the
moody whims of massive stars (e.g. McKee & Ostriker, 1977; Cox & Reynolds, 1987; Cox, 2005).
While locally these structures are in an ever changing, chaotic competition of the various driving
forces, such as gravitational collapse and fragmentation, turbulence and stellar feedback, the ISM
reveals its underlying structure when we average over larger scales, both spatial and temporal (e.g.
de Avillez & Breitschwerdt, 2005; Kim et al., 2023a; Rathjen et al., 2025).

In this statistical sense, the ISM has been characterized and various defining properties, such
as the volume filling factors of the different gas phases (de Avillez & Breitschwerdt, 2004; Bieri
et al., 2023), the pressure contributions of various sources of pressure (e.g. thermal, turbulent,
magnetic, cosmic rays Ostriker & Kim, 2022) and the nature of the turbulence (e.g. solenoidal vs.
compressive; sonic vs. subsonic Federrath, 2013; Klessen & Glover, 2016) have been determined
(Klessen & Glover, 2016), and are being determined in increasing detail (McComas et al., 2015;
Saintonge & Catinella, 2022; McCallum et al., 2025).

Many different processes are being discussed which are hypothesized to contribute to the formation
of such a medium (e.g. Burkert & Lin, 2000; Behrendt et al., 2015; Walch et al., 2015), but numer-
ical challenges (de Avillez & Breitschwerdt, 2005; Groth et al., 2025), as well as conceptual issues
with the interpretation of the analysis (Groth et al., 2025), and most importantly the incredible
dimensions of the modeling space (Walch et al., 2015; Kim et al., 2023a) make it challenging to
faithfully assess which processes dominate the dynamics of the ISM.

Among these driving forces of the ISM, supernovae (SNe), explosions of stars at the end of their
lives, play a central role (Walch et al., 2015; Gent et al., 2020). While there is a wide variety of
different explosion mechanisms, most notably thermonuclear explosions of white dwarfs (type-Ia,
Fe-rich ejecta Blondin, 2024) and core-collapse SNe (type-II, O-rich ejecta Janka, 2025) driven
by various dynamical instabilities in the core of massive stars (≳ 8M⊙), the result is similar
to someone like me, who is predominantly interested in the immediate effects on the ISM: an
essentially instantaneous release of large amounts of energy (∼ 1051 erg) and mass (≳ 1M⊙),
highly enriched with heavy nuclei – a.k.a. metals – that is powerful enough to meaningfully
perturb the large-scale ISM (Fichtner et al., 2024). Thus in the context of my thesis, SNe are
treated as idealized energy and mass sources, abstracted from their stellar origins and considered
as discrete, localized events within a galactic setting.
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1.1 The Effects of SNe on the ISM

The ashes of these big astrophysical explosions, form a structure, known as a supernova remnant
(SNR). The expansion of SNRs can affect the ISM in many important ways, playing an integral
role in the physics of star-formation and galaxy evolution (de Avillez & Mac Low, 2002; Walch
et al., 2015).

SNe kickstart chemical evolution in the universe by blowing out metals formed in the interior of
stars through nuclear fusion (Saitoh, 2017; Goswami et al., 2024; Janka, 2025), and their remnants
can redistribute and mix them throughout the ISM and into the halo (Ibrahim & Kobayashi,
2024), on timescales on the order of 100 Myr (de Avillez & Mac Low, 2002). Among these metals,
notably are the short-lived radionuclides (SLRs) 26Al and 60Fe (Kretschmer et al., 2013; Parker
et al., 2023), which have long been recognized to play an important role for the formation of rocky
planets and ultimately for the ORIGINS of life (Urey, 1955) and a still lively debated fraction of
these metals (≲ 0.1−10%) can condense to form dust grains (e.g. Nozawa et al., 2007; Zhukovska
et al., 2008; Matsuura et al., 2011), which trace the gas distribution (Leike et al., 2020; Edenhofer
et al., 2024), and play an integral role in many galactic process (Wolfire et al., 2003; McKee et al.,
2015), such as molecular gas cooling (Hollenbach & Salpeter, 1971) and radiative transfer (Mathis
et al., 1977), and again, the formation of rocky planets and life as we know it (Ercolano & Clarke,
2010; Birnstiel, 2024). On the other hand, the environment created by SNe is quite hostile to
the survival of dust grains and different models of SNRs expanding into dusty media suggest that
they may destroy anywhere from 0− 100% of the dust they encounter during the early expansion
phases (e.g. Nozawa et al., 2007; Bianchi & Schneider, 2007; Kirchschlager et al., 2024). It remains
to be shown whether SNRs are net dust sources or sinks.

By heating up and disrupting their environment SNRs can act to regulate star-formation on galac-
tic scales, much like a thermostat (Gatto et al., 2017; Kim et al., 2023a). If a region is excessively
forming stars, the overabundance of massive stars will lead to many SNe in the near future, which
can temporarily prevent star formation in that region. Meanwhile, in a region with previously
little star formation, few SNe are expected to explode, allowing for ongoing accumulation of gas,
that may eventually collapse and form stars. While it is generally agreed upon that the net effect
that SNe have on star-formation is its suppression, under certain circumstances SNe may actually
trigger it (Elmegreen & Lada, 1977; Elmegreen, 1998).

The key insight behind the idea of triggered star-formation is that shocks compress gas and denser
gas collapses on a shorter timescale (Elmegreen & Lada, 1977). This is particular true in the case
of radiative shocks (Hunter et al., 1986), i.e. after shell formation, where the shocked gas can
easily be compressed by a factor of 100 or more (Diesing et al., 2024; Diesing & Gupta, 2025).
As a result the shells of radiative shocks, which are subject to a wide range of instabilities can
fragment, and form particularly dense overdensities, which grow by further instabilities until they
eventually reach a critical mass and become gravitationally unstable and collapse. Besides this
traditional mechanism, compressed rings and shells can also collapse globally, though on much
longer timescales (Elmegreen, 1998). Small droplets of dense gas can also be engulfed by the
hot, overpressurized interior of blastwaves and if they manage to survive the hostile, turbulent
environment, they are compressed, and – if the pressure in the SNR is high enough – they may
even become gravitationally unstable and form stars (Krause et al., 2018). While these processes
certainly do not seem to be very efficient on large scales, due to the extremely short free-fall
timescales in the compressed gas, locally they might contribute significantly to the budget of newly
formed stars. Indeed, many observations of young star-forming regions in the solar neighborhood
find evidence for sequential star-formation (Miret-Roig et al., 2022), which exhibits many of the
classical features predicted by the classical models for triggered star-formation, such as radial
age-gradients (Posch et al., 2023; Ratzenböck et al., 2023; Swiggum et al., 2024). Yet the role
of the various different feedback mechanisms, such as stellar winds, ionizing EUV radiation and
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especially that of SNe remains to be unambiguously determined.

SNRs structure the ISM, filling it with a network of hot, voluming-filling bubbles (Cox & Smith,
1974), and banish the cold, molecular and warm, atomic gas onto their surfaces. This network
of bubbles and clouds interacts in complex ways, driving turbulence on ∼ 100 pc scales, which
cascades down to increasingly smaller scales and provides kinetic, and hypothetically – by means
of a turbulent dynamo – magnetic pressure support to the ISM (Ostriker & Kim, 2022; Gent et al.,
2023, 2024). Through interactions with the intergalactic magnetic field in a processes known as
diffusive shock acceleration, SNRs are hypothesized to accelerate cosmic rays (Cristofari et al.,
2021; Diesing et al., 2024; Diesing & Gupta, 2025) and even dust grains (Epstein, 1980; Ellison
et al., 1997; Cristofari et al., 2025), converting up to ∼ 10% of the injected energy into cosmic
ray energy, with the most energetic CRs reaching up to ∼ 1TeV (Cristofari et al., 2020).

1.2 The Life of a Supernova Remnant

SNR evolution proceeds through various stages, probing a wide window of different spatial and
temporal scales as outlined in Fig. 1.1 and emitting light in a wide frequency range, characteristic
of each stage.

1.2.1 Young SNRs – The Free-Expansion Phase

Initially, the ejecta are only loosely coupled to their surrounding gas, allowing them to expand
freely at a speed oftentimes exceeding ≳ 1, 000 km s−1, as determined by the explosion energy
and the ejecta mass. During this stage, SNRs can reach sizes of a few parsec. After a few 100
to 1000 years, once the expanding blastwave has swept up its ejecta mass in ambient medium,
the pressure in the expanding shell starts to dominate over the adiabatically cooling interior and
drives a reverse shock that thermalizes the ejecta (Truelove & McKee, 1999).

Young SNRs such as Cassiopeia A are routinely observed in a wide variety of wavelength bands,
from the radio (e.g. Anderson & Rudnick, 1995; Arias et al., 2018) and infrared (e.g. Milisavljevic
et al., 2024; De Looze et al., 2024; Rho et al., 2024) at long wavelengths to optical (e.g. Reed et al.,
1995; Fesen et al., 2025), all the way up to X-ray (e.g. Grefenstette et al., 2017; Vink et al., 2024;
Suzuki et al., 2025; Bamba et al., 2025) and even gamma ray emission (e.g. Saha et al., 2014; Li
et al., 2025) at short wavelengths. This wealth of multi-wavelength data and the time variability
of these systems on human timescales allows us to study the dynamics of these systems in great
detail (Orlando et al., 2025).

1.2.2 The Adiabatic / Sedov-Taylor Phase

Once the ejecta are fully thermalized, the SNR enters the so-called Sedov-Taylor (Taylor, 1950;
Sedov, 1959) or adiabatic phase during which the dynamics are determined by the adiabatic ex-
pansion of the shock, which is characterized by energy conservation. Most of the radial momentum
that is generated during SNR expansion comes from this stage (Kim & Ostriker, 2015). Adiabatic
SNRs can reach sizes of several 10s of parsecs before they start to lose their energy to radiative
cooling, which starts to dominate after several 1000 to 10s of thousands of years (Cioffi et al.,
1988).

Adiabatic SNRs can be observed mostly in the X-ray (e.g. Khabibullin et al., 2023; Reynolds &
Borkowski, 2024; Okada et al., 2025), however observations from other bands such as radio (Jing
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Free-Expansion Phase
● Small (~ pc)
● Numerous (~ 1000)
● Young (≲ 1 kyr)
● Rapid expansion (103 km/s)
● Very bright (optical, UV, IR, X-ray, radio)

Sedov-Taylor Phase
● Moderatly small (≲ 20 pc)
● Quite numerous (≲ 1000)
● Moderately young (≲ 50 kyr)
● Fast expansion (≳ 200 km/s)
● Bright (especially in X-ray)

Superbubbles
● Large size (≳ 100 pc)
● Small numbers (≳ 10)
● Old ages(≳ 1 Myr)
● Expansion speed ≲ 100 km/s
● Faint (Radio and IR)

Radiative Phase
● Intermediate size (≲ 100 pc)
● Moderately numerous (≳ 100)
● Intermediate ages(≲ 1 Myr)
● Expansion speed ≲ 100 km/s
● Quite Faint (Radio and IR)

Galactic Wind
● Large size (≳ 1-10 kpc)
● Rare (≲ 1 per Galaxy)
● Old ages (≳ 10-100 Myr)
● Rapid expansion (≳ 100 km/s)
● Diverse optical properties

Figure 1.1: Observations of Supernova Remnants on various different scales. From bottom to top
(small to large scales): Multi-wavelength image of Cassiopeia A (Schmidt & Arcand, 2024), An
X-ray image of G121.1-1.9 (Khabibullin et al., 2023), A radio image (943 MHz) of G278.94+1.35
(Filipović et al., 2024, a.k.a. Diprotodon), Multi-wavelength image of a SB candidate in the NGC
628 (Watkins et al., 2023), and a multi-wavelength image of the galactic outflow in the Cigar
Galaxy, M82 (NASA & the Hubble Heritage Team , STScI/AURA).
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et al., 2025; Filipović et al., 2025), gamma- and cosmic-rays (Mitchell, 2024), and near infrared
(Deng et al., 2023) emission, end even from optical and UV absorption features (Ritchey, 2023)
exist. Compared to their younger counterparts, adiabatic SNRs are much fainter and the available
data is much sparser. Nonetheless, adiabatic SNRs are an important probe of galactic physics
and particularly their potential role in the acceleration of high energy cosmic rays makes them an
attractive target for both observational surveys and theoretical investigations.

1.2.3 The Radiative Phases

Once cooling begins to dominate, the high pressure in the interior of the SNR pushes the hot gas
in the interior outwards, where it condenses into a thin, dense shell(Chevalier, 1974; Straka, 1974),
leaving behind an evacuated low density, low pressure cavity. The pressure-driven evacuation
phase is often referred to as the pressure-driven snowplow phase, while the post-evacuation phase
is dubbed momentum-driven snowplow phase (Cioffi et al., 1988; Thornton et al., 1998; Fierlinger
et al., 2016, e.g.), since the dynamics at this point are dictated by the conserved momentum of
the shell.

Due to the rapid radiative cooling and the strong compression of the shell, which greatly enhances
emission, the luminosity of radiative SNRs flares up compared to the previous adiabatic phase.
Radiative SNRs are commonly observed in radio (e.g. Filipović et al., 2024; Bakış et al., 2025),
(sub-) millimeter (e.g. Sofue, 2024; Nonhebel et al., 2024; Shen et al., 2025) (far-) infrared (e.g.
Reach et al., 2024), optical (Paylı et al., 2024) and even gamma ray (e.g. Tu et al., 2024; Araya,
2024) emission.

While I have focused here mostly on observations of Galactic SNRs of which only about 300 are
known with high accuracy (Green, 2025), extragalactic surveys such as PHANGS allow us to
discover large numbers of SNRs in nearby galaxies (Li et al., 2024; Zangrandi et al., 2024). Yet,
due to the great distance from these objects and the diverse samples, extragalactic SNRs can often
be only studied quite superficially and oftentimes it is even hard to tell apart SNRs from bubbles
that have formed by other processes, such as HII regions (Winkler et al., 2023; Caldwell et al.,
2025).

1.2.4 The Merging Phase

As the blast-wave front, driven by its momentum expands it keeps slowing down eventually reach-
ing the propagation speed of small-scale fluctuations at which point it will start to broaden sub-
stantially and merge with the ISM. This so-called merging usually happens after about a million
years of expansion at which point SNRs can reach sizes on the order of 100 pc. While the term
merging might suggest, that SNRs fade into the ISM, leaving behind an environment resembling
the previously unperturbed ISM, i.e. by fragmentation of the expanding shell and subsequent
mixing with the evacuated bubble, prior to my thesis, the details of this process have received
surprisingly little attention (however, see Slavin & Cox, 1992).

Since fully-merged SNRs would by definition look identical to the ISM it is very challenging to
observe them and to my knowledge, there are no observations of SNRs that are confirmed to have
merged with the ISM. However, it is important to keep in mind that the basic setup of an evacuated
shell surrounded by a dense, but broadening shell overlaps with the definition of radiative SNRs,
so it is quite likely that a fraction of the observed radiative SNRs could be reclassified as merging.
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1.2.5 Superbubbles – Clusters of SNRs

With merging, the evolution of a single SN would be concluded. However, more often than not,
stars form in clusters, groups and associations and as a consequence SNe explode in a spatially
and temporally correlated way (Leitherer et al., 1999; Ratzenböck et al., 2023; Swiggum et al.,
2024). Thus, a fading SNR may be rejuvenated by subsequent SN explosions happening in its
vicinity, or even within the bubble itself.

Typical timescales for the time between SNe in a star cluster are on the order of 100 kyr to a few
Myr depending on the mass of the cluster, which determines the number of massive stars (Leitherer
et al., 1999; Kim et al., 2017). This suggests that in many cases SNRs may indeed coalesce to
form larger associations of SNRs, known as superbubbles (SBs), which can grow much larger than
individual SNRs and their hot interior is much more long-lived, due to the steady energy injection
from the subsequent SNe and their relatively slow expansion, which leads to inefficient adiabatic
cooling (Kim & Ostriker, 2015; Gentry et al., 2017; El-Badry et al., 2019).

Extragalactic SBs can be observed through the infrared emission of their shells (e.g. Watkins
et al., 2023), while Galactic SBs can be observed in various ways, e.g. through features in optical
emission maps (Alsulami et al., 2024), infrared emission maps (Verma et al., 2023), diffuse X-ray
emission (Heiles, 1998; Yeung et al., 2024) and through topological analysis of 3D dust-extinction
maps (Zucker et al., 2022; O’Neill et al., 2024; Gao et al., 2025).

In extreme cases, SBs can break out of the galactic disk and drive a galactic outflow; a spectacular
(Bolatto et al., 2024; Lopez et al., 2025) way for a galaxy to vent its excess energy and simulta-
neously regulate its star-formation activity (Carr et al., 2023). Galactic outflows can reach over
several kpc in size and typically develop over the course of 10s to 100s of Myr (e.g. Jacob et al.,
2018; Girichidis et al., 2024).

Stellar-feedback-driven galactic winds are routinely observed in the rest-frame UV (e.g. Heckman
et al., 2015; Sugahara et al., 2019; Xu et al., 2022) and optical (e.g. McQuinn et al., 2019; Marasco
et al., 2023; Xu et al., 2023b) to trace ionized gas and far-infrared (Romano et al., 2023) to trace
the neutral, atomic gas, preferentially in low-mass galaxies (Mh ≲ 1012 M⊙), since outflows in
higher-mass systems are oftentimes attributed to active galactic nuclei (AGN). Recent observations
of infrared (Bolatto et al., 2024) and radio (Krieger et al., 2019; Heyer et al., 2025) emission
associated with galactic winds, even confirmed the presence of molecular and dusty structures,
raising questions about how they could possibly survive in such an inherently hostile environment
(e.g. Micelotta et al., 2010; Richie et al., 2024; Richie & Schneider, 2026).

1.3 Are SNRs “solved”?

While this picture captures a wide range of different SNRs over more than six orders of magnitude
in spatial scale, the devil lies in the detail and there are many additional complications that were
neglected in this broad overview. In the research presented in this thesis, my goal was to address
some of these complications, with a strong focus on the role of a realistic galactic environment.
Throughout this journey, I learned that the physical effects of the galactic environment are inti-
mately coupled to the merging of SNRs with their surroundings. While for sufficiently small and
young SNRs the microscopic (compared to the scale of a galaxy) shock physics, outlined above
provide a rather accurate description, old and large SNRs and SBs are mesoscopic objects whose
dynamics are dictated by the complex interplay of their small-scale shock dynamics and the effects
of their larger-scale galactic environment.

The remainder of this thesis is dedicated to a thorough investigation of the question how SNRs
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and SBs evolve in a complex galactic environment. In Chapter 2, I present an analytical one-zone
model that aims to describe the dynamics of SNRs and SBs in complex environments. In Chapter
3, I apply this model to SBs in a vertically stratified medium, to study the conditions under
which a galactic wind may form and investigate the role of cosmic rays. In Chapter 4, I present
the results of numerical simulations of SNRs in a uniform stationary medium to characterize the
merging phase under such idealized conditions. In Chapter 5, I utilize the findings of the previous
chapter to make predictions for the star-formation from clouds that might form from merging
SNRs. In Chapter 6, I present a suite of numerical simulations of SNRs and SBs exploding in the
ISM of a simulated, isolated galaxy and characterize, how the galactic environment might affect
various aspects of their dynamics and geometry. In Chapter 7 I apply some of these findings to
the Local Bubble, our local SB, to derive new constraints on its formation history. Finally, in
Chapter 8 I summarize my findings and conclude by pointing out possible future directions.
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Chapter 2

Modelling the Expansion of
Supernova Remnants

Software used in this chapter:
Julia v1.10.0 (Bezanson et al., 2017), Matplotlib v3.5.1 (Hunter, 2007), and Healpix
v2.3.0 (Tomasi & Li, 2021)

An extended, more detailed version of this work is to be submitted to Astronomy & Astrophysics
after the submission of this thesis. As recommended by the members of the thesis committee, I
have revised and extended this chapter after my defense. The published version is the final version
completed on Jan. 27 2026. The derivation and conceptualization of the model presented in this
chapter, as well as the derivation of the results and plots were original work done by myself. My
supervisors Andi and Manuel were involved by asking the right questions that guided me in the
right direction.

The environment in which supernovae (SNe) explode is far from stationary and uniform. Observa-
tions of Galactic SN remnants (SNRs) exhibit many complex features that are usually associated
with interactions with their complex, structured surroundings in the circumstellar (e.g. Kobashi
et al., 2024; De Looze et al., 2024) or interstellar medium (e.g. Arias et al., 2018; Deng et al., 2023;
Paylı et al., 2024). Moreover, extragalactic observations suggest that large scale flows and gravity
may also affect the dynamics of SNRs (Watkins et al., 2023).

While significant efforts have been made trying to reproduce these features in the case of specific
SNRs such as G1.9+0.3 (Zhang et al., 2023), G332.5-5.6 and G290.1-0.8 (Velázquez et al., 2023),
Pa 30 (Duffell et al., 2024) and prominently, the Local Bubble (LB) (Breitschwerdt & de Avillez,
2006; Breitschwerdt et al., 2016), theoretical studies investigating the dynamics of SNRs are usually
limited to (near) uniform, stationary environments (e.g. Ostriker & McKee, 1988; Truelove &
McKee, 1999; El-Badry et al., 2019), with the role of the complex environment usually being an
afterthought (though notable exceptions exist, e.g. Laumbach & Probstein, 1969; Haid et al., 2016;
Jiménez et al., 2024; Lau & Bonnell, 2025).

These theoretical investigations have painted a coherent picture of SNR evolution, in which SNRs
evolve through various distinct evolutionary stages (e.g. Kim & Ostriker, 2015; Oku et al., 2022).
Young SNRs start out with a free-expansion phase (Truelove & McKee, 1999), which is concluded
once the reverse-shock has thermalized the ejecta and they transition into the adiabatic so-called
Sedov-Taylor phase (Taylor, 1950; Sedov, 1959), which eventually ends once radiative cooling
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starts to dominate, leading to shell-formation and the onset of various so-called snowplow phases
(Cioffi et al., 1988; Kim & Ostriker, 2015; Fierlinger et al., 2016). SNR evolution is concluded
by the merging of SNRs with their environment (Slavin & Cox, 1992; Romano et al., 2024a) or
the formation of a superbubble (SB) through the coalescence of many clustered SNRs (El-Badry
et al., 2019; Oku et al., 2022). While this picture describes the dynamics of SNRs in idealised,
uniform environments with great accuracy, it remains unclear how applicable it is to the actually
observed case of SNRs exploding in a highly structured medium affected by turbulence, galactic
shear and gravitational tides.

The theoretical studies that focused on these effects usually investigated the role of one or few of
these effects in isolation. Laumbach & Probstein (1969) and several others (e.g. Kompaneets, 1960;
Moellenhoff, 1976; Koo & McKee, 1990) have investigated the effect of vertical stratification. These
authors find, that adiabatic blastwaves expanding into a medium with finite mass are reaccelerated
after atmospheric breakout, reaching an infinite speed within finite time. Energy-conservation
considerations show that the leading shock, which is moving increasingly small amounts of mass,
indeed does follow this behavior, while the bulk of the mass is limited to an asymptotic finite
speed (Koo & McKee, 1990). However, it is important to note, that these considerations generally
neglect the effects of radiative cooling and gravity, on timescales where they would most certainly
be relevant.

Tenorio-Tagle & Palous (1987) and a number of other authors (e.g. Bisnovatyi-Kogan & Silich,
1995; Palouš et al., 2020; Jiménez et al., 2024) study the role of shear induced by differential
rotation. They find that SNRs expanding into differentially rotating media may be stretched out
substantially in the direction of the rotation, within a fraction of the orbital timescale. Jiménez
et al. (2024) fit such a model to the southeast superbubble in NGC628 and find that deformation
by shear indeed serves as a plausible explanation for its elongated geometry.

Haid et al. (2016) estimate the effects of a turbulent ISM on the radial momentum of SNRs, by av-
eraging over many cones with random density, sampled from a density probability density function
with a dispersion dictated by the theory of turbulent compression. They find that in moderately
turbulent environments, the average momentum is only marginally affected by turbulence.

Lau & Bonnell (2025) develop an analytic model to study the escape of a SN energy through a
low-density channel that connects an H ii region embedded within a dense molecular cloud with
the ambient ISM, by following the energy flux along a streamline. They characterize how the
presence of dense substructures and low density channels on small scales can affect the efficiency
of momentum- and energy injection into the larger-scale ISM and show how this may affect sub-
grid models that couple the unresolved small-scale energy-input to the resolved larger scales in
numerical simulations as well as SN-driven turbulence.

In a recent paper (Romano et al., 2025a) we introduced the SISSI (Supernovae In a Stratified,
Shearing ISM) simulations, in which we study the evolution of SNRs in a realistic galactic environ-
ment. There we have found that, while the dynamics of young and small SNRs are well described
by the simple analytic models based on SNe exploding in a uniform, stationary ISM, once they
reach a certain age (≳ 1Myr) and size (≳ 100 pc) SNRs start being affected by all of the external
processes mentioned above. Thus, in order to better understand the dynamics of such large and
old SNRs, a comprehensive model that takes all of these effects into account is needed.

In this paper we develop a simple analytic model for the dynamics of SNRs in complex environ-
ments, taking into account the lessons learned from the SISSI simulations (Romano et al., 2025a).
The model aims to lay out the theoretical foundations for the study of SNRs in complex geometries
and serve as a simple tool for exploring the effects of previously unexplored phenomena on SNR
dynamics, without the need of computationally challenging and expensive numerical simulations.
To achieve this goal we aimed to formulate the model in a modular way, that easily allows for the
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Table 2.1: Constants in Eq. 2.5 as function of the adiabatic index γ.
c0 c1 c2

Value γ−1
2(2γ−1)

3
2 (γ + 1)

2
3 + 4γ

γ+1

Value (γ = 5/3) 1/7 32/3 11/2

inclusion of new phenomena.

The remainder of this paper is organized as follows. In Sec. 2.1 we describe our model and evaluate
how well it reproduces a number of well established results in Sec. 2.2. In Sec. 2.3 we apply the
model to a number of complex settings, in order to investigate their individual effects on SNR
evolution. We close in Sec. 2.4 by discussing how these individual effects might conspire to affect
the dynamics of SNRs in a realistic galactic setting. In the Appendix we provide some additional
background to some aspects of our model.

2.1 Blastwave model

We develop a model for the expansion of a blastwave powered by central energy- and mass-
injection. The blastwave is expanding into a medium described by arbitrary density-, velocity-
and (gravitational) acceleration fields, denoted by ρ0 (r⃗, t) v⃗ext (r⃗, t) and g⃗ (r⃗, t), respectively. Our
model solves the blastwave equation of motion (Ostriker & McKee, 1988) using the thin-shell and
sector approximations (Laumbach & Probstein, 1969), which follows the one-zone dynamics of a
shell-segment per unit angle, i.e. along a single streamline, by assuming that all of the swept-up
mass along the streamline is incorporated into an infinitesimally thin shell. Similarly to other
models using the thin-shell approximation (e.g. Bisnovatyi-Kogan & Silich, 1995; Palouš et al.,
2020; Jiménez et al., 2024) we model the curving of streamlines due to normal accelerations, but
instead of requiring to evolve the whole shock-surface simultaneously, we opt for an exclusively
local approach.

The expanding shell segment originates from the explosion center r⃗expl and is associated with its
initial expansion direction ê = (sin θ cos ϕ, sin θ sin ϕ, cos θ). We use a Healpix tesselation of the
unit sphere (Górski et al., 2005) to uniformly sample all directions.

The dynamics of the shell-segments traced by their position r⃗s (t), expansion velocity v⃗s (t), mass
M (t) and energy E (t) are described by the following set of equations

Ṁ ≡ Ṁin + Ṁsw = Ṁin + ρ0 Σ⃗ · v⃗s , (2.1)

d

dt
(Mv⃗s) = ∆P Σ⃗ +M

(
g⃗ − ˙⃗vext

)
+ ṗinn⃗ , (2.2)

Ė = Ėin − Ėcool +Mg⃗ · v⃗s , (2.3)

˙⃗rs = v⃗s + v⃗ext , (2.4)

where Ṁin, Ėin and ṗin are the central mass-, energy- and momentum-injection rates, Ṁsw is the
incorporation rate of swept-up mass, Ėcool is the energy dissipation rate due to radiative cooling

Σ⃗ = dA⃗/dΩ is the (outward-) oriented surface area and n⃗ = Σ⃗/
∥∥∥Σ⃗∥∥∥ is the outward-pointing

normal vector of the shell-surface.

We note that in the sector approximation volumetric quantities such as energy, mass and momen-
tum are to be understood per unit solid-angle, i.e. E = dE/dΩ. For brevity of notation we will
omit this distinction, except where it could lead to confusion.
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The pressure gradient force F⃗∆P = ∆P Σ⃗ is evaluated using the formalism of Laumbach & Prob-
stein (1969) which leads to the expression

∆P = c0

[
c1

E

3δV
+ 3ρ0v

2
s + (kρ − c2)

M v2s
3δV

]
, (2.5)

where the constants ci are listed in Tab. 2.1,

kρ = −dlog ρ0
dlog rs

, (2.6)

and we made the substitution r3s → 3 δV to account for more general geometry. Due to the gauge
freedom of δV described below this expression is ill-defined, but since the shock surface is usually
spherical in the situations where it is relevant and thus δV ∼ r3s /3 this is only a minor concern.
The derivation of Eq. 2.5 is quite tedious and somewhat technical, so we direct the interested
reader to the App. A.1 for more details. Radiative blastwaves are usually modeled by setting the
adiabatic index γ = 1, which leads to ∆P ∝ (γ − 1) = 0, which justifies simply setting ∆P = 0
once radiative cooling becomes dominant.

The central mass-, energy- and momentum-injection rates are linked

ṗin = αp

√
2ṀinĖin , (2.7)

where αp is a boost-factor that accounts for the coupling of the interior of the SNR to the shell.
For adiabatic blastwaves, this coupling is explicitly accounted for with the pressure gradient force
Eq. 2.5 and we can set αp = 1, however Lancaster et al. (2024) have shown that radiative,
continuously powered blastwaves approach a so-called rapidly-cooling wind solution, where the
momentum injected into the shell is mediated by the hot interior, leading to slightly boosted
momentum-injection with αp ∼ 4.

The energy dissipation rate due to radiative cooling is

Ėcool = χ
Λ

µ2
ρ0M , (2.8)

where χ = (γ + 1) / (γ − 1) is the shock-compression ratio in the case of a strong shock and
µ = 1.4mH is the mean atomic weight. In adiabatic SNRs the post-shock temperature generally
exceeds 106 K, so we can approximate the cooling rate as Λ = 10−22 Λ6,−22 T

−0.7
s, 6 erg s−1 cm3

(Oku et al., 2022), where Ts = 106 Ts, 6 K = τµv2s /kB is the post-shock temperature, with τ =

2 (γ − 1) (γ + 1)
−2

.

For our models with cooling, we transition to the radiative stage by switching off cooling and
pressure gradient forces and setting αp = 4 once ≳ 10% of the injected energy have been radiated
away.

We note that in contrast to previous work (e.g. Palouš et al., 2020), we do not modify the dynamics
once the shock velocity falls below the velocity dispersion of the ambient medium or the internal
pressure falls below the ambient pressure, since simulations do not show any signs of modified
dynamics past this point (Romano et al., 2024a, 2025a).

The surface area and its direction depend on the instantaneous geometry of the shock-surface,
which either requires evolving the whole surface or a local parameterization of it in a neighborhood
of each point – here we opt for the latter. The surface area can be computed from the local tangent
vectors

∂⃗θ =
∂r⃗s
∂θ

∂⃗ϕ =
1

sin (θ)

∂r⃗s
∂ϕ

, (2.9)
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which are known at t = 0 and where we divide out the constant sin (θ) for regularity near the
poles1. The surface element can be obtained by taking their vector product

Σ⃗ (t) = ∂⃗θ × ∂⃗ϕ. (2.10)

We evolve the tangent vectors by switching the order of differentiation

˙⃗
∂i = ∂i ˙⃗rs = ∂iv⃗s + ∇⃗v⃗ext · ∂⃗i, (2.11)

where the external velocity gradient ∇⃗v⃗ext is known a priori, and ∂iv⃗s is evolved along the flow
making use of

d

dt
∂iv⃗s = ∂i ˙⃗vs (r⃗s, v⃗s) , (2.12)

evaluated by approximating the local on-surface acceleration gradient using finite differences. In
particular we evaluate the acceleration from eq. 2.2 by shifting the position, velocity and surface
are element by the tiny increments

r⃗s → r⃗s ± ϵ∂⃗i v⃗s → v⃗s ± ϵ∂iv⃗s Σ⃗ → Σ⃗± ϵ
∥∥∥Σ⃗∥∥∥ êi, (2.13)

where êi = ∂⃗i/
∥∥∥∂⃗i∥∥∥, and we approximated the local curvature radius with the length of the

tangential vector for closure. We assume that all other quantities (M , E, etc.) remain unchanged
by a small shift along the surface and we choose ϵ ∼ 10−8 for it to be sufficiently small but not so
small as to be dominated by numerical noise.

Finally, we define2 the local volume-element as

δV =
1

3
(r⃗s − r⃗expl) · Σ⃗ , (2.14)

where we allow the explosion center r⃗expl (t) to move as a function of time to model cases where
it is not stationary, such as a star cluster following a circular orbit in a galactic disk.

2.1.1 Initial Conditions

Our model is general enough to describe a variety of different types of blastwaves, such as SNe,
stellar winds and active galactic nuclei, which may require different initial conditions as well as
models for their environment. Here we focus on SN-driven SBs, which begin to expand following
a central point-explosion that deposits a large amount of energy E0 and mass M0 at t = 0. Due
to the spherical symmetry Σ⃗ = r2s ê, where rs is the shock radius. Regularity of the solution
at rs = 0 requires the terms in ∆P r2s that are ∝ r−1

s to cancel as rs → 0, which leads to
(rs, v,M,E) = (0,

√
cE0/M0,M0, E0), where c = c1/ (c2 − kρ).

Despite this cancellation, we avoid numerical problems due to division by zero, by starting our
calculation from a slightly advanced state with rs ≳ 0.

2.1.2 Breakdown of the model

While the model is applicable under a wide range of conditions, there are regimes in which it
ceases to yield physically meaningful results. Below we summarize common causes of breakdown
and their physical interpretation.

1This factor only enters in surface-integrals where now ∆Ω = sin (θ)∆θ∆ϕ.
2There is some freedom in the definition of the local volume element. For instance, by applying the divergence

theorem the dot-product of any function F⃗ with div F⃗ = 1 with Σ⃗ defines a viable volume-element. The equivalence
class of volume-elements corresponds to such functions differing only by a total derivative on the surface.
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In models including gravity, the shock expansion may reverse and lead to collapse. In this situation,
where v⃗s · Σ⃗ < 0, physically we expect the shock to stop sweeping up mass. To prevent a formal
breakdown of the model, we set Ṁsw = 0. If the shock subsequently re-expands, care must be
taken to avoid double-counting material that may have been swept up previously.

Provided the surface normal initially points outward, its topological properties ensure that it
remains outward-facing unless it undergoes a continuous transition to an inward orientation, which

requires passing through a singular point with
∥∥∥Σ⃗∥∥∥ = 0. Using Eq. 2.11, the time evolution of the

surface normal is given by
d

dt
Σ⃗ =

(
∇⃗ · ˙⃗rs −

(
∇⃗ ˙⃗rs

)T)
Σ⃗ , (2.15)

which shows that converging flows within the tangent plane of the shock can drive Σ⃗ to zero. We
interpret this as the crossing of neighboring streamlines. Beyond this point the local description
is no longer valid. Physically, such behavior may correspond to strong compression, or even
collapse, of swept-up material and it may therefore be of astrophysical interest to identify where
this behavior occurs.

Finally, in certain setups – such as an adiabatic shock expanding into a medium of finite mass –
the shock velocity can diverge in finite time (Laumbach & Probstein, 1969; Koo & McKee, 1990).
The appearance of divergent or otherwise unphysical quantities typically signals the breakdown of
one or more underlying assumptions, such as neglected physics (e.g., radiative cooling or gravity)
or an idealized environment, and must be evaluated on a case-by-case basis.

2.2 Notable limits

Here, we analytically confirm that our model reproduces the behavior predicted by many previ-
ous studies in the appropriate limits. We first take various analytic limits in Sec. 2.2.1 before
comparing them to the results of a numerical integration of Eq. 2.2 in Sec. 2.2.2.

2.2.1 Analytic Considerations

Ejecta-dominated phase

Shortly after the central point-explosion, the SNR expands with an almost constant speed until
the swept-up mass becomes comparable to the mass of the ejecta (Truelove & McKee, 1999).

In our model this behavior is recovered since for small radii rs ≪ (M/ρ0)
1/3

the acceleration is
dominated by terms in ∆P r2s that are ∝ r−1

s , i.e.

v̇s ∼
c0
rs

[
c1

E

M
+ (kρ − c2) v

2
s

]
, (2.16)

which rapidly drives vs towards the constant speed vED =
√
cE/M , where c = c1/ (c2 − kρ).

Adiabatic phase

Once rs ≳ (M/ρ0)
1/3

the contribution of the ram-pressure-terms in Eq. 2.2 can no longer be
neglected. After a short transitionary period the solution approaches a powerlaw solution resem-

bling the Sedov-Taylor-solution rs = ξST
(
Et2/ρ0

)1/5
(Sedov, 1959) for a single explosion, or an
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energy-driven wind solution rs = ξW

(
Ėt3/ρ0

)1/5
(Weaver et al., 1977) for continuous energy

injection. We note that for a better comparison with the spherically symmetrical models of Sedov
(1959) and Weaver et al. (1977) in these expressions E refers to the total energy deposited over
the whole sky, i.e. E =

∫
(dE/dΩ) dΩ.

By plugging the respective expressions for rs (t) into Eq. 2.2 and solving for ξ we can find the
asymptotic solution in the respective regime. For the Sedov blastwave (E = const.) we find

ξST =

{
25c0c1

8π [1− 2c0 (3− (c2 − kρ)/3)]

}1/5

, (2.17)

which for γ = 5/3 and kρ = 0 differs from the analytical solution only by ≲ 2.34%. For the
continuously driven wind we obtain

ξW =

{
25c0c1

4π [7− 9c0 (3− (c2 − kρ)/3)]

}1/5

, (2.18)

which matches the solution found by Weaver et al. (1977) for γ = 5/3 and kρ = 0 with 1%
accuracy.

Radiative phase

In the absence of the pressure-gradient force and any external forces, the combined momentum of
the blastwave and the ejecta is conserved as can be seen by integrating the EoM once:

p⃗ = Mv⃗s = p⃗sf + ˙⃗pint , (2.19)

where psf is the momentum at the beginning of the radiative stage, also known as shell formation
(see e.g. Kim & Ostriker, 2015; Oku et al., 2022; Romano et al., 2024a).

For a single explosion ( ˙⃗pin = 0) the solution approaches the well-known momentum-conserving
snowplow solution (Cioffi et al., 1988)

rs →
(
3psf t

πρ0

)1/4

, (2.20)

while for continuously driven superbubbles ( ˙⃗pin > 0) the solution approaches that of a momentum-
driven wind (Oku et al., 2022; Lancaster et al., 2024)

rs →
(
3ṗin t

2

2πρ0

)1/4

. (2.21)

As for the adiabatic case, these results are stated in terms of the total momentum (injection-rate)
over the whole sky, for a better comparison with the literature.

Radiative SNRs are said to merge with the ISM once they have slowed down to the velocity
dispersion of the ISM. The merging phase hosts rich phenomenology, such as SNR implosion
(Slavin & Cox, 1992; Romano et al., 2024a), which requires a combined treatment of the bubble
and the shell and is therefore outside of the model presented here. The merging timescale is

tmerge =

(
3 psf

256πρ0σ4

)1/3

, (2.22)
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Figure 2.1: Time evolution of shock radius (a), shock speed (b), swept-up mass (c), momentum
per SN (d), and energy efficiency (e) in the case of expansion into a stationary, uniform ambient
medium for four different explosion models.

for a single explosion and

tmerge =

(
3 ṗin

32πρ0σ4

)1/2

, (2.23)

for a continuously driven SB. For a single SN in solar neighborhood conditions, this timescale is
≳ 1Myr (Romano et al., 2024a).

The thin-shell approximation is a one-zone representation of SNR evolution and therefore by
definition is unsuited for describing the interplay of the cold shell and the hot bubble. In order
to describe e.g. the pressure-driven snowplow phase, the emergence of the reverse shock or SN
implosion after merging, a multi-zone extension to this model would be required, which explicitly
models the coupled dynamics of the bubble-shell system. Such multi-zone calculations are outside
the scope of this current work.

2.2.2 Numerical solutions

In order to verify that our model works as intended, we numerically integrate Eqs. 2.1 - 2.4 for
a spherically-symmetric blastwave expanding into a stationary, uniform ambient medium. We
consider four different cases:

1. A single SN at t = 0, without radiative cooling.

2. A single SN at t = 0, with radiative cooling.

3. A single SN at t = 0, followed by continuous injection of energy and mass at a fixed rate,
without radiative cooling.

4. A single SN at t = 0, followed by continuous injection of energy and mass at a fixed rate,
with radiative cooling (αp = 4).
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Figure 2.1 shows the temporal evolution of the shock-radius, shock-velocity, swept-up mass, mo-
mentum per SN, and the kinetic energy efficiency fkin = Ekin/Einj (t). We recover all the limiting
cases highlighted in Sec. 2.2. Also highlighted are various characteristic timescales, such as the
timescale for the transition from the ejecta-dominated to the adiabatic phase tED→ST (Truelove
& McKee, 1999) and the shell-formation timescale tsf (Cioffi et al., 1988; Kim & Ostriker, 2015),
which match the times at which the dynamics transition in our model quite well. The relatively
high kinetic energy efficiencies (> 0.22− 0.27 (Sedov, 1959; Weaver et al., 1977)) in the adiabatic
cases are a well-known shortcoming of the thin-shell approximation (e.g. Koo & McKee, 1990).

We note that in many cases, by changing the variable of integration from time to the radius,
Eqs. 2.1 - 2.4 admit analytical solutions in terms of special functions. The resulting solutions
are so-called unified solutions (Truelove & McKee, 1999), which naturally interpolate between the
limiting cases.

2.3 Application: SNRs in SISSI

We apply our model to quantify how a realistic galactic environment can affect the properties
of SNRs. We particularly focus on ages ≳ 1Myr, where our numerical simulations have begun
to deviate from previous analytical models (Romano et al., 2025a). We consider three different
explosion models:

1. A single SN explosion (SN).

2. An SB powered by 1 SN every ∆tSN = 1Myr (SB).

3. A starburst powered by 1 SN every ∆tSN = 100 yr (StB).

Each SN injects a total energy of E = 1051 E51 erg and a mass of Mej = Mej, 0 M⊙, corresponding
to a momentum of pSN ∼ 104 p4 M⊙ km s−1 across the whole sky. For convenience we introduce
∆t6 = ∆tSN/Myr and ṗin = 104 ṗ4 M⊙ km s−1 Myr−1. All models include radiative cooling.

For the environmental effects that might affect SNR evolution we consider vertical stratification,
galactic rotation and the effect of dense substructures. To obtain an intuition for each, we first
consider each effect separately, before discussing their combined effect in concert.

2.3.1 Vertical stratification

Analytic considerations

The case of an adiabatic blastwave expanding into a vertically stratified atmosphere has been
studied extensively using very similar methods as ours (e.g. Kompaneets, 1960; Laumbach &
Probstein, 1969; Sakashita & Morita, 1977; Koo & McKee, 1990). These studies find that after
the shock has reached a height exceeding a few scale heights, it is re-accelerated and approaches
an infinite speed in finite time. This seemingly unphysical behavior has been attributed to a
separation of the bulk of the swept-up mass from the shock, which is moving decreasing amounts
of material, leaving most of the swept-up mass behind. Indeed, Koo & McKee (1990) have shown
that a careful treatment of the dynamics of the swept-up mass reveals that it asymptotically
approaches a finite speed in line with the expectation from energy-conservation.

While these considerations accurately describe the dynamics of adiabatic blastwaves, most astro-
physical blastwaves are expected to cool long before they can be affected by vertical stratification.
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Figure 2.2: Same as Fig. 2.1 for different models in a vertically stratified atmosphere. For
comparison, dotted lines corresponding to the same models expanding into a uniform medium are
shown. Dash-dotted lines depict various characteristic scales. Both the single SN and the SB stall
without breaking out of the galactic disk within about a free-fall timescale, due to the effect of
gravity. Only the starburst can resist the gravitational field of the disk and drive a galactic wind.

Moreover, blastwaves breaking out of the galactic disk are subject to the galaxy’s gravitational
pull, which can keep shocks from leaving the galactic ecosystem (Romano et al., 2025b). However,
so far these effects have received only little attention (Bisnovatyi-Kogan & Silich, 1995; Orr et al.,
2022; Jiménez et al., 2024).

To address this gap, we consider the vertical expansion of a blastwave from the midplane of an
isothermal slab in vertical hydrostatic-equilibrium. The density profile and gravitational acceler-
ation are given by

ρ0 (z) = ρmp cosh
−2

(
z

Hs

)
, (2.24)

gz (z) = −2
σ2

Hs
tanh

(
z

Hs

)
, (2.25)

where
Hs =

σ√
2πGρmp

∼ 338σ1n
−0.5
0 pc (2.26)

is the vertical scale height, σ = 10σ1 km s−1 is the velocity disperion of the ISM and ρmp =
µn0 cm

−3 is the midplane gas density.

The mass that is swept up by a blastwave expanding into such a stratified atmosphere asymptot-
ically approaches a finite value

M∞ =

∫ ∞

0

ρ0 (z) z
2dz

=
π2

12
ρmpH

3
s ∼ 106 σ3

1 n
−1/2
0 M⊙ . (2.27)

Effects due to the vertical stratification are expected to become noticeable once the blastwave
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radius becomes comparable to the scale height at

ts ∼ 1.4σ4
1 n

−0.87
0 E−0.93

51 Gyr (∆tSN → ∞) , (2.28)

ts ∼ 294σ2
1 n

−0.5
0 ṗ−0.5

4 Myr (∆tSN ≪ ts) , (2.29)

which already indicates that for SNRs powered by a small number of SNe, vertical stratification
rarely plays a big role.

However, gravity becomes relevant much earlier. For rs ≪ Hs the gravitational acceleration is
∝ rs/Hs, while the acceleration due to inertia is ∝ v2s/rs, which indicates that the expanding
blastwaves will stall without reaching the scale-height within a free-fall timescale

tff =

√
3π

32Gρ
∼ 44.9n−0.5

0 Myr , (2.30)

unless they are powerful enough to break out on a much shorter timescale ts ≪ tff. Yet, even if
the shock manages to break out, unless the blastwave is continuously powered by a sufficiently
powerful source, it will stall and fall back onto the galactic disk within ∼ tff once it has slowed
down sufficiently, i.e. vs ≲ σ.

These considerations imply that shocks can only break out if

E51 ≫ 40σ4.3
1 n−0.4

0 (∆tSN → ∞) , (2.31)
p4
∆t6

≫ 43σ4
1 (∆tSN ≪ ts) , (2.32)

i.e. if ≳ 40 SNe explode within ∼ 1Myr. Moreover, as Romano et al. (2025b) have shown,
these shocks cannot escape the gravitational potential of the disk unless the SN-rate exceeds
∼ 1 SN per 100 yr. Such SNRs that break out, but do not drive outflows might be interpreted as
driving fountain flows.

This result has immediate consequences for the interpretation of numerical simulations with in-
sufficient resolution to resolve individual SNe. In such simulations, one might resort to feedback
models, that consider the combined effect of many SNe. In these models, if the number of SNe
injected per feedback event exceeds these thresholds, the majority of feedback events are expected
to break out of the disk, leading to unphysical outflows. We caution simulators that the feedback
energy injections should be sufficiently spaced out in time to reduce the impact of such numerical
artifacts.

We note that at large distances from the midplane z ≫ 10− 100Hs the isothermal slab model be-
comes increasingly unrealistic, once the mass-contributions of the circumgalactic medium become
important and the gravitational field starts to drop off due to the finite size of the galaxy.

These considerations suggest that for the SNRs in the SISSI simulations (Romano et al., 2025a),
vertical stratification might be negligible, since the simulated time span of tSISSI = 10Myr is
shorter than the free-fall timescale for typical densities of n0 ≲ 10.

Numerical validation

Figure 2.2 shows the dynamical evolution of the shock radius, the shock speed, the swept-up mass,
the momentum per SN and the kinetic- and potential energy efficiencies per unit injected energy
for the part of different blastwave models expanding vertically into a stratified medium with finite
mass.

The single SN and the SB model do not manage to break out from the midplane, due its strong
gravitational pull, which starts to significantly affect the expansion momentum and speed after
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∼ 1/4 tff. The blastwaves stall after ∼ 1/2 tff and ∼ tff, in the SN and the SB cases, respectively,
at which point their expansion velocity becomes negative and they begin to fall back onto the
disk. These timescales are short enough to potentially influence the dynamics and geometry of
SNRs in the SISSI simulations.

The starburst model is powerful enough to overcome the gravitational potential and drive a galactic
wind. After breaking out of the disk, the mass encountered by the shock is negligible, while the
momentum keeps growing at a constant rate, leading to a constant acceleration. However, after
∼ 200Myr the mass injected at the source, becomes comparable to the swept-up mass, and the
gravitational force ∝ M begins to grow and overpower the constant force of the central starburst.
We note however, that the assumptions of our model cease to be valid on these vast spatial and
temporal scales.

The results shown in Fig. 2.2 confirm our analytical considerations and highlight the importance
of the effects of radiative cooling and gravity for the dynamics of blastwaves in stratified media.
While we have neglected the change in the surface area element in our analytical derivation, we

confirm that the deviations from
∥∥∥Σ⃗∥∥∥ = r2s are negligible before the onset of collapse. Moreover,

these results support the finding in Romano et al. (2025a) that the minor axis of the simulated
blastwaves tends to be aligned with the galactic polar / vertical direction, especially for the SNRs
in the densest regions, where the free-fall timescale is more comparable to the simulated 10Myr.

We note however, that the picture of a uniform galactic midplane in vertical hydrostatic equi-
librium is a very simplified picture. Notwithstanding, e.g. low-density channels carved out by
turbulence and previous generations of feedback, can create pathways through which weak SBs
and even single SNe might be able to break out of the disk and contribute to the galactic fountain
flow or galactic winds.

2.3.2 Galactic rotation

Analytic considerations

Observational evidence (Watkins et al., 2023) and theoretical studies (Bisnovatyi-Kogan & Silich,
1995; Jiménez et al., 2024) suggest that large SBs may be subject to galactic shear, which can
stretch out their geometry along the rotation direction (Palouš et al., 2020). In the appendix of
Romano et al. (2025a) we have presented a simple model for the deformation by galactic shear
for the case of a structure of fixed size. According to this model, the volume of the structure is
unaffected by the deformation, which becomes significant after ∼ 5−6% of an orbit, corresponding
to a time of

tdeform ∼ 0.065 torb ∼ 4R3 V
−1
rot, 2 Myr , (2.33)

that is similar to the typical timescale on which SNRs evolve. Here, R = R3 kpc is the galacto-
centric radius, Vrot = 100Vrot, 2 km s−1 is the galactic rotation speed and torb = 2πR/Vrot is the
orbital timescale.

However, in contrast to the deformation of a structure of fixed size, in the case of SNRs, the
expanding motion may couple to the galactic rotation and affect the dynamics in non-trivial ways,
that we explore in this section.

The velocity- and gravitational field corresponding to galactic rotation are

v⃗ext = Vrot
ˆ⃗eφ (φ) , (2.34)

g⃗ = −V 2
rot

R
ˆ⃗eR (φ) , (2.35)
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Figure 2.3: Time evolution of the momentum components of blastwaves expanding into a uniform
medium subject to galactic rotation. Different panels correspond to the different explosion models.
Solid (dashed, dotted) lines correspond to the magnitude (radial-, azimuthal component) of the
momentum vector. In the first panel, thin lines depict the expectation the analytical considerations
matching well with the numerical results. Horizontal lines correspond to integer multiples of the
radial momentum pinj and pinj/

√
2 of a model without shear.

where ˆ⃗eφ and ˆ⃗eR are the local unit vectors pointing in the (galactic) azimuthal, and radial direction,
respectively, and φ is the azimuthal angle.

As the shell expands, its azimuthal angle changes, leading to an implicit time-dependence of v⃗ext
that enters into the equation-of-motion Eq. 2.2 through

˙⃗vext =
dv⃗ext
dφ

φ̇ = −Vrot (Vrot + vs, φ)

R
ˆ⃗eR (φ) , (2.36)

where vs, φ is the azimuthal component of the expansion velocity.

Since the timescale for shear to affect the dynamics of an SNR is usually much longer than the shell-
formation timescale, here we consider the dynamics of a radiative blastwave under the influence
of galactic shear. The equation of motions for the azimuthal and radial momentum components
can be written as

v̇s, φ = −Ṁ

M
vs, φ − Vrot

R
vs, R − vs, φvs, R

R
+

ṗin, φ
M

, (2.37)

v̇s, R = −Ṁ

M
vs, R + 2

Vrot

R
vs, φ +

v2s, φ
R

+
ṗin, R
M

, (2.38)

where subscripts R and φ correspond to the (galactic) radial and azimuthal components, respec-
tively.

Since the inertial term ∝ Ṁ/M is ∝ v2s /rs it decays faster than the terms ∝ Vrotvs/R as the
expansion slows down. Thus, we expect galactic rotation to become dynamically important when
the two terms become comparable, i.e. once vs/rs ∼ Vrot/R at

tshear ∼ (8π)
−1

torb (∆tSN → ∞) , (2.39)

tshear ∼ (4π)
−1

torb (∆tSN ≪ tshear) , (2.40)

which are both comparable to the deformation timescale of the structure with fixed size.

The acceleration term ∝ v2s /R is always subdominant since rs ≪ R. Asymptotically, we can
discard all terms except the term linear in vs. The resulting set of ordinary differential equations
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Figure 2.4: Slices through the xy-plane of the shock-surface of different blastwave models expand-
ing in a uniform density medium (n0 = 1) subject to galactic rotation (R3 = 8, Vrot, 2 = 2).
The velocity vectors on the surface are shown as arrows with arbitrary scaling. Top panels show
the single SN and SB models; bottom panels show the starburst. Left, center and right panels
show slices after 0.1%, 1/4 and 1/2 of an orbit, respectively. Each panel has a compass pointing
towards the galactic center (blue) and the direction of rotation (red). While the SNRs are initially
spherically symmetric, after torb/4 they are significantly stretched out with a pitch angle ∼ 30 ◦.
The velocity vectors clearly show signs of the epicyclic motion described by Eqs. 2.42 - 2.43. After
∼ torb/2 they cease to be star-shaped making it difficult to measure their geometric properties
with our methods.

can be solved approximately, by assuming R ∼ const. and dropping the term ∝ v2s /R and leads
to a coupled harmonic oscillation (epicycles) of the momenta, with an oscillation frequency of

κ = 2
√
2π t−1

orb . (2.41)

Due to the factor of 2 in the radial equation of motion the ratio of the amplitudes of the radial
and the azimuthal momentum-oscillations is pmax

s, R/pmax
s, φ =

√
2.

We can estimate the functional shape of the oscillatory part of the motion by

ps,R (t, ϕ) ≈
√
2 pmax

s,φ (t, ϕ) cos (κt− ϕ) , (2.42)

ps,φ (t, ϕ) ≈ −pmax
s,φ (t, ϕ) sin (κt− ϕ) , (2.43)

where ϕ is the initial angle between the motion and the galactocentric radial direction and we
assume, that at the onset of the oscillation, the direction of the motion in the co-rotating frame
has hardly changed.

Thus in the case of a single explosion, we expect

pmax
s,φ (t, ϕ) ≈ psf√

1 + cos2 (ϕ)
, (2.44)
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Figure 2.5: Same as Fig. 2.1 for different blastwave models expanding in a uniform density
medium (n0 = 1) subject to galactic rotation (R3 = 8, Vrot, 2 = 2). For comparison, dotted lines
corresponding to the same models expanding into a uniform medium without shear are shown.
Dash-dotted lines depict various characteristic scales. In all models the net expansion falls below
that of the models without shear from ∼ 2 tκ,1 ∼ 87Myr, despite the epicyclic boost received in
certain directions. Instead, a significant amount of the expansion momentum is converted into
tangential motion.

which ensures momentum conservation, in particular p (t = 0, ϕ) =
√

p2s,R + p2s,φ = psf.

The case of continuous momentum injection is significantly more complicated due to the deforma-
tion of the shock-surface. The complex time-dependence in the outward normal vector leads to a
non-trivial coupling of the momentum-injection rate. Nonetheless, näıvely one might expect

pmax
s,φ (t, ϕ) ∝ ṗint . (2.45)

For the velocities this implies an oscillation around the expansion speed of an SNR expanding in a
medium without shear. However, during the episodes where v⃗s is tangential to the surface or even
pointing inwards Ṁsw ∼ 0 and the oscillation can assume an approximately constant velocity-
amplitude for significant fractions of an orbit in the case of a single SN, while in the case of
continuous injection the behavior depends on the relative contribution of the injected momentum,
in particular the frequency of SN explosion ∆tSN.

The first such episode starts after around a quarter of an epicycle after tκ,1 ∼ π/2κ ∼ torb/4
√
2.

The average speed during this first oscillation oscillates can be approximated by the velocity at
tκ,1, yielding

vκ,1 ∼ 4R
−3/4
3 V

3/4
rot, 2 E

0.23
51 n−0.28

0 km s−1 , (2.46)

in the case of a single SN and

vκ,1 ∼ 4R
−1/2
3 V

1/2
rot, 2 (αpp4/∆t6)

0.25
n−0.25
0 km s−1 , (2.47)

for continuous driving, leading to oscillations amplitudes ∼ 1 km/s for typical ISM conditions in
the solar neighborhood.
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In practice, due to the slightly different coupling of radial and azimuthal motions to the galactic
shear, different parts of the shock surface will enter this oscillation at a different phase, leading to
a phase-gradient. Due to the complex interplay of the shock-surface being deformed by galactic
shear and the phase-gradient of the oscillation the velocity amplitude eqs. 2.46 and 2.47 do not,
in general, correspond to the average expansion speed of the SNR.

Numerical validation

The dynamical evolution of the blastwave momentum over two epicycles in a uniform-density,
shearing medium with a constant galactic rotation speed of 200 km/s at a distance of 8 kpc from
the center of rotation is shown in Fig. 2.3. For each blastwave model, we track two representative
points on the shock surface: one initially moving radially outward and one moving parallel to the
galactic rotation.

For a single supernova, Eqs. 2.42 - 2.43 accurately capture the momentum evolution. The neglected
term ∝ v2/R introduces only a small phase shift that accumulates over multiple epicycles. Galactic
shear slightly enhances the momentum in initially azimuthal directions, while it slightly reduces the
total momentum in initially radial directions. In contrast, models with continuous energy injection
only briefly exhibit oscillatory behavior before the momentum decays. After two epicycles, these
models retain only ∼ 25% of the injected momentum, indicating that the epicyclic response and the
outward-directed injection counteract each other and reduce the overall efficiency of momentum
coupling.

We illustrate the SNRs’ morphological evolution through slices in the xy-plane shown in Fig. 2.4.
All SNRs evolve from an initially spherical shape at 10−3 torb to increasingly elongated geometries,
reaching pitch angles on the order of ∼ 30◦ by torb/4. At this stage, the velocity field clearly
exhibits the epicyclic motion predicted in Eqs. 2.42 - 2.43. In the single SN and SB models the
geometry is quite similar suggesting that shear-induced epicyclic motion dominates their evolution.
By contrast, the starburst develops a more strongly curved geometry. After ∼ torb/2 the SNRs
cease to be star-shaped, at which point the ellipsoidal approximation used to characterize their
geometry no longer applies.

We summarize the evolution of the different blastwave models in Fig. 2.5. Despite transient
momentum enhancement in azimuthal directions, we find that galactic rotation suppresses the
overall expansion. From ∼ 2 tκ,1 onward, the remnant size falls below that of an equivalent model
without shear, coinciding with a decline–and eventual reversal–of the net expansion speed and
radial momentum. At the same time, the tangential momentum grows to values comparable to the
initial blastwave momentum, leading to significant tangential motion, comparable to the expansion.
This conversion might play an important role for blastwave-driven turbulence generation.

We characterize the blastwaves’ geometric response to galactic shear in Figs. 2.6 and 2.7, showing
their trajectories in shape phase-space and the time evolution of the pitch angle, respectively. The
shape phase-space tracks the minor-to-major (a/c) and intermediate-to-major (b/c) axis ratios,
while the pitch angle measures the orientation of the shock surface relative to the galactic rotation
vector, with 90◦ pointing toward the galactic center and−90◦ toward the anticenter. All blastwaves
begin as perfect spheres (a/c = b/c = 1). For reference, we show the evolution of a shearing sphere
(Appendix D.3) in black.

Across all models, the blastwaves closely follow the shearing-sphere trajectory, confirming that
shear largely governs their geometric evolution. More energetic explosions systematically evolve
toward larger a/b ratios and retain larger pitch angles, reflecting their stronger resistance to
shear-induced deformation. The deformation timescales predicted by Eqs. 2.39 - 2.40, indicated
by star symbols, accurately capture the onset of deformation only for the starburst model. For



2.3 Application: SNRs in SISSI 25

0.0 0.2 0.4 0.6 0.8 1.0
Semi-Major-to-Major-Ratio b/c

0.0

0.2

0.4

0.6

0.8

1.0

M
in

or
-to

-M
aj

or
-R

at
io

 a
/c

P

S

O

OS

 Shearing Sphere (80 pc)
 Single SN
 Superbubble ( tSN = 1 Myr)
 Starburst ( tSN = 100 yr)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ti
m

e
[t o

rb
]

Figure 2.6: Evolutionary tracks in the shape phase-space of the different blastwave models ex-
panding in a uniform density medium (n0 = 1) subject to galactic rotation (R3 = 8, Vrot, 2 = 2).
In different parts of the phase space the SNRs are either spherical (S), oblate spheroids (OS),
prolate (P) or oblate (O). The track of a shearing sphere with a constant radius of 80 pc is shown
in black. The time at which the blastwaves are expected to cross the a/c = 2/3-line is shown as
star markers. We also plot circle-markers color-coded with the time to provide a reference how
long it takes to reach a given degree of deformation. The blastwaves starts out as perfect spheres
and becomes increasingly prolate over time. The blastwave models roughly follow the track of
the shearing sphere (no expansion), with a slight tendency of more powerful blastwaves towards
larger a/b. After torb/2 the measured lengths become increasingly unreliable and are thus shown
as transparent, dotted lines.
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Figure 2.7: Time evolution of the pitch angle of the major axis of the different blastwave models
expanding in a uniform density medium (n0 = 1) subject to galactic rotation (R3 = 8, Vrot, 2 = 2).
For reference the pitch-angle of a shearing sphere with a constant radius of 80 pc is shown in black.
The time at which the blastwaves are expected to cross the a/c = 2/3-line is shown as star markers.
During the spherical phase (a/c > 2/3) the pitch angle is not very meaningful and is thus shown as
transparent dashed lines. After torb/2 the measured angles become increasingly unreliable and are
thus shown as transparent, dotted lines. The pitch angle starts off near 45 ◦ and decays over time.
The blastwaves roughly follow the pitch-angle evolution of the shearing sphere with a tendency
towards larger pitch angles for more rapidly expanding models.
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Figure 2.8: Same as Fig. 2.1 for different blastwave models approaching an overdense filament in a
background medium (nfil, 0 = 10, Tfil, 2 = 6, d = 8 rfil, n0 = 1). An additional panel (f) shows the
average density to account for the environment’s multi-phase nature. For comparison, dotted lines
corresponding to the same models expanding into a uniform medium are shown. Dash-dotted lines
depict various characteristic scales. Both the single SN and the SB are trapped in the filament’s
gravitational potential, while the starburst can overrun it. In all cases the average density increases
towrds the filament’s central density upon approach.

weaker explosions, they either under- or overestimate the deformation time, whereas the shearing-
sphere model provides a more reliable reference. This behavior aligns with the expectation that
sufficiently slow expansions should approach the shearing-sphere limit. Because Eqs. 2.39 - 2.40 do
not depend on explosion parameters, their predictive power for realistic remnants remains limited.

At late times, t ≳ torb/2, deviations from the shearing-sphere behavior become more pronounced.
The weaker models fall below the shearing-sphere pitch-angle evolution, likely due to epicyclic
contraction, while the shock surfaces themselves cease to be star-shaped. As a result, the ellipsoidal
approximation breaks down, rendering both the inferred axis ratios and pitch angles increasingly
unreliable, as reflected by the kinks in the shape phase-space trajectories.

2.3.3 Density structures

Analytic considerations

Many SNRs are observed to interact with dense structures in their environment (Hewitt & Yusef-
Zadeh, 2009; Mayker Chen et al., 2023; Watkins et al., 2023). Models and simulations have ad-
dressed such interactions of SNRs with their immediate surroundings (Haid et al., 2016; Makarenko
et al., 2023; Lau & Bonnell, 2025). Yet, models addressing the interaction of large SNRs with
galactic scale structures, such as molecular filaments, spiral arms and massive clumps remain
scarce.

We expect the sizes and separations of such structures to be on the order of the Jeans- and
Toomre-lengths (Jeans, 1902; Toomre, 1964), which are approximately equal in a marginally stable
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Figure 2.9: Slices through the shock-surface of different blastwave models expanding into the gap
(ngap, 0 = 0.1) between two filaments (nfil, 0 = 10, Tfil, 2 = 2.65, dfil = 200 pc). The velocity
vectors on the surface are shown as arrows with arbitrary scaling. Top (bottom) panels show
slices through the xy- (yz-) plane. Left, center and right panels show slices after 1, 5 and 10 Myr,
respectively. Already at 1 Myr, the SNRs are quite deformed by the geometry of the ISM. The
ratio between the SNRs’ extent parallel to the filaments and towards them grows in time reaching
axis ratios ∼ 1/2 by 5-10 Myr.

disk (Toomre, 1964),

λJ =

(
15σ2

4πGρ

)1/2

∼ 926σ1 n
−1/2
0 pc . (2.48)

On scales comparable to λJ, the gravitational acceleration towards such a structure is of order

gJ ∼ σ2

λJ
∼ σ

tff
. (2.49)

Slowly moving objects, with speeds v ≲ σ – located within about a Jeans-length of the overdensity
– experience free-fall onto it, reaching an asymptotic velocity of order σ.

In what follows, we first consider the purely hydrodynamic interaction of a radiative blastwave
with an overdensity, neglecting gravity. We then refine these estimates by including gravitational
effects where necessary.

We consider a background medium of density n0 containing an overdensity of the form δ, n0, f(r⃗),
where δ ≫ 1 sets the overdensity contrast and f(r⃗) specifies its geometry. We describe the
blastwave as momentum-driven, with total momentum

p⃗(t) ∼ p⃗sf + ˙⃗pin t. (2.50)

As the blastwave approaches the overdensity, it sweeps up an excess mass

Mδ ∼ δ n0 ∥Σ⃗∥λJ,δ , (2.51)
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Figure 2.10: Same as Fig. 2.8 for different blastwave models expanding into the gap (ngap, 0 = 0.1)
between two filaments (nfil, 0 = 10, Tfil, 2 = 2.65, dfil = 200 pc). For comparison, dotted lines
corresponding to the same models expanding into a uniform medium with an ambient density
matching the average density of the corresponding inhomogeneous model at each point in time.
Dash-dotted lines depict various characteristic scales. At the same average density, the blastwaves
in inhomogeneous media grow larger than those in homogeneous media as indicated both by the
radius panel (a) and the mass panel (c).

where λJ,δ denotes the characteristic size of the overdense structure. This contribution dominates
over the background for distances

d ≲ δ λJ,δ . (2.52)

In this regime, the additional mass contributions slow the blastwave in directions facing the over-
density relative to unperturbed directions, with a characteristic velocity ratio

vδ
v0

∼ M0

Mδ
∼ d

δ λJ,δ
. (2.53)

We estimate the time required for the overdensity to significantly decelerate the blastwave by
comparing this effect to the approach time

td ∼ β
d

v0
, (2.54)

where β = 1/4 (1/2) for a single explosion (continuous momentum injection). We estimate the
corresponding slowdown timescale to be comparable to the crossing time

tδ ∼ λJ,δ

vδ
∼ 1

δ

(
δ λJ,δ

d

)2

td. (2.55)

Blastwaves originating far from the overdensity (d ≳ δ λJ,δ) therefore expand nearly isotropically,

while those closer than ∼
√
δ λJ,δ experience noticeable deformation.

This anisotropic mass loading also biases density estimates inferred from swept-up mass and
volume. Averaging over solid angle yields

⟨n⟩ ∼ n0 dΩ0 + (Mδ/Vδ) dΩδ

dΩ
∼ dΩ0 + (δ λJ, δ/d) dΩδ

dΩ
n0 , (2.56)
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showing that even a localized interaction with an overdensity can substantially boost the inferred
mean density.

The above estimates neglect gravity and therefore break down once the blastwave slows to velocities
comparable to the overdensity’s velocity dispersion σδ, which sets the depth of its gravitational
well. In this regime, the gravitational field dominates the dynamics, particularly near the bottom
of the potential well, where self-gravity and collapse may become important on timescales of order
the overdensity’s free-fall time tff,δ.

A sufficiently strong blastwave can nonetheless overrun the overdensity if its velocity remains
larger than the σδ. This condition translates into a momentum requirement

psf +

(
d

λJ, δ

)
ṗin tff, δ ≳

(
d

λJ, δ

)2

pδ , (2.57)

where
pδ ∼ MJ, δ σδ ∼ δ ρ0 λ

3
J, δ σδ , (2.58)

is a characteristic momentum scale of the overdensity.

By assuming the usual form Eqs. 2.30 and 2.48 for the free-fall timescale and Jeans length, this
condition yields

E51 ≫ 700

(
d

λJ, δ

)2.15

σ4.3
δ,1 n

−0.4
0 δ−0.54

2 (∆tSN → ∞) , (2.59)

p4
∆t6

≫ 2.4× 103
(

d

λJ, δ

)
σ4
δ,1 (∆tSN ≪ tff, δ) , (2.60)

These constraints are quite restrictive for warm structures but indicate that cold (molecular)
clouds (σδ,1 ≲ 0.1) are readily overrun by nearby SN feedback.

Conversely, weak radiative blastwaves eventually become gravitationally trapped. In the gravity-
dominated regime, where M ∼ Mδ and gδ ∼ σ2

δ/λJ,δ, the velocity evolves according to

v̇ ∼ σ2
δ − v2

λJ, δ
+

˙⃗pin
Mδ

, (2.61)

driving the flow toward v → σδ within ∼ tff,δ.

For small SNRs (rSNR ≲ λJ, δ) exploding close to an overdensity d ≲ λJ, δ, all parts of the
SNR are expanding into approximately the same medium and the gravitational pull is comparable
throughout the SNR. In such situations the overdensity can be treated as the background medium.
Evidently, Eqs. 2.59 - 2.60 indicate that such a blastwave centered on the overdensity at d = 0
would “overrun” it in any case. Nonetheless, it might not be able to escape from its gravitational
potential with break-out conditions resembling those of the vertically stratified plane (conditions
2.31 and 2.32). The SNR showcased in Romano et al. (2025a) highlights this scenario of expansion
from within a (collapsing) filament and confirms, that the preferred direction of expansion is along
the filament, where the gravitational potential is constant, despite the relatively higher density,
which slows down the expansion of SNRs. This example also highlights the potential role of
ongoing collapse, i.e. the sweeping-up of material with negative radial momentum, which further
opposes the expansion out of the overdensity.

Numerical validation

In this section we consider various setups involving isothermal “Ostriker” filaments (Ostriker,
1964), which describe the solutions of the equations of hydrostatic equilibrium for an isothermal
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Figure 2.11: Time evolution of the expansion velocity components of blastwaves expanding into
the gap (ngap, 0 = 0.1) between two filaments (nfil, 0 = 10, Tfil, 2 = 2.65, dfil = 200 pc). Solid and
dashed lines correspond to the mass-weighted expansion speed and the effective expansion speed
obtained by computing the rate of change of the effective radius, respectively For comparison,
dotted lines corresponding to the same models expanding into a uniform medium with an ambient
density matching the average density of the corresponding inhomogeneous model at each point in
time. The mass-weighted expansion speed is strongly suppressed due to the stalled expansion in
the directions of the filaments, which contribute significantly to the total mass, but little to the
total volume. The effective expansion speed roughly matches that of the uniform medium at the
time-dependent average density.
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gas in an axisymmetric configuration. The density profile has the form

ρfil =
ρfil, 0(

1 + (r/rfil)
2
)2 , (2.62)

the gravitational potential

Φfil = 2σ2
fil log

(
1 + (r/rfil)

2
)

, (2.63)

and the gravitational acceleration

g⃗fil = −4
σ2
fil

rfil

r⃗/rfil

1 + (r/rfil)
2 , (2.64)

where r⃗ is the distance vector from the filament, r its length and

rfil = 50T 0.5
fil, 2 n

−0.5
fil, 0 pc (2.65)

is the filaments scale length, depending on its central density ρfil, 0 = µnfil, 0 cm
−3 and its temper-

ature Tfil = 100Tfil, 2 K. The density profile of the Ostriker filament has a constant density core
of size ∼ rfil outside of which the density steeply falls off ∝ r−4. The gravitational acceleration
linearly grows outwards, peaking at ∼ rfil before it falls off ∝ r−1.

We test our predictions for blastwaves approaching filaments in Fig. 2.8 which shows the blast-
waves’ evolution for a filament with a central density and temperature of nfil, 0 = 10 and Tfil, 2 = 6
embedded in a constant density background with density n0 = 1. The explosions occur at a dis-
tance of d = 8 rfil ∼ 332 pc away from the filament, where its contribution to the density amounts
to only ∼ 0.1%. We stopped the calculation once the blastwave reaches the filament’s center.

As expected the starburst overruns the filament. While its speed drops considerably upon reaching
the overdensity, it remains well above the escape speed. By contrast, both the SB and the single
SN get trapped in the gravitational potential and begin to free-fall approaching the asymptotic
free-fall velocity of ∼ 2σfil. Compared to models without a filament, these models reach higher
momentum and kinetic energy due to the filament’s gravitational acceleration.

In all three models, the average density at the position of the filament exceeds that of the back-
ground medium. However, the final density differs between the models. The filament’s gravi-
tational field converges neighboring streamlines, leading to a contracting surface area element.
While this in turn leads to a slower mass accretion it also shrinks the volume element, ultimately
leading to a higher average density. In the case of the single SN the convergence of streamlines is
so advanced that the density exceeds the filament’s central density.

In order to study the net effect of galactic substructure on the geometry of blastwaves, we next
consider blastwaves expanding in the gap between two parallel filaments. The filaments located
200 pc from each other have a central density of nfil,0 = 10 and a temperature of Tfil,2 = 2.65,
chosen such that the density in the gap is n0 ∼ 0.1. The filaments are embedded in a uniform
background medium with a density of n0 = 0.1. We omit the starburst as it overruns the filaments
before 1 Myr.

We illustrate the filaments’ effect on the blastwaves’ geometry by showing slices through the
xy- and yz-planes in Fig. 2.9 after 1, 5 and 10 Myr of expansion. At a background density of
n0 ∼ 0.1 the blastwaves are expected to reach the filaments after ∼ 1Myr and be significantly
deformed after a few Myr. For the single-SN (SB) model, the minor-to-major axis ratio decreases
to ≲ 2/3 (∼ 1/2) after 5,Myr and evolves to ≳ 1/2 (∼ 0.45) after 10,Myr. The portions of the
shock surface expanding out of the midplane facing either filament are expanding in a low-density
medium, but are pulled toward them, while the midplane region is stalled by the steep density
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Figure 2.12: Same as Fig. 2.6 for the different blastwave models expanding into the gap (ngap, 0 =
0.1) between two filaments (nfil, 0 = 10, Tfil, 2 = 2.65, dfil = 200 pc). The blastwaves starts out as
perfect spheres and becomes increasingly deformed over time.
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gradient. This combination produces an increasingly concave, rectangular morphology, illustrating
how filamentary structure can strongly shape the late-time geometry of SNRs and SBs.

We summarize the evolution of the different blastwave models in Fig. 2.10. As expected the
presence of the filaments increases the average density encountered by the SNRs. Despite the
higher average density, the SNRs grow larger than they would in a uniform medium of the same
average density. Curiously however, the mass-weighted expansion speed, obtained by dividing the
momentum–which is only slightly affected by the presence of the filaments–by the mass is lower
than the expansion speed in a uniform density medium. Moreover, the free-fall-driven acceleration
that we found for the regions approaching the filaments in Fig. 2.8 is washed out, when considering
the entire SNR. The presence of the filaments drives tangential motion, decaying from initially
∼ 10 km/s down to ≲ σfil after ∼ 10Myr which significantly contributes to the SNRs’ momentum-
and energy budget in the case of a single explosion, but is rather negligible for the SB.

In order to make sense of the lower expansion speed despite the larger size, in Fig. 2.11 we compare
the mass-weighted expansion speed vM = pexp/M to the effective expansion speed, defined as the
rate of change of the effective radius vvol = ṙvol. We find that the effective expansion speed roughly
matches the expansion speed of a blastwave expanding in a uniform medium with ambient density
matching the average density of the blastwave in an inhomogeneous medium. This motivates us
to approximate the effective radius as

rvol (t) ∼
∫ t

0

vhom (t′, ⟨ρ (t′)⟩) dt′ , (2.66)

as opposed to the usually applied

robs (t) ∼
∫ t

0

vhom (t′, ⟨ρ (t)⟩) dt′ , (2.67)

where the difference lies only in the subtle fact, that the former expression requires information
about the history of the average ambient density, while the latter depends only on the current
“observable” density (⟨ρ (t′)⟩ vs. ⟨ρ (t)⟩). Since in our setup the density increases with time
and a higher density implies a lower speed, this suggests that the “memory” of a previously
encountered lower density medium automatically leads to a larger size compared to a model that
expanded throughout with the higher average density at later times. Even for the slight overdensity
considered here these effects become substantial after a few Myr, providing a plausible explanation
for the systematically larger radii at fixed average density seen by Romano et al. (2025a).

Finally, we characterize the blastwaves’ geometric response to the presence of filaments in Fig. 2.12,
showing their trajectories in shape phase-space. We find that the blastwaves are significantly
deformed within ≳ 1Myr. Since their expansion is mostly stalled in the direction of the filaments,
but largely uninhibited in all other directions the SNRs grow increasingly oblate. Nonetheless, for
the first ≳ 10Myr they retain an minor-to-semi-major axis ratio a/b ≳ 2/3. Eventually, due to
the increasingly concave geometry, the ellipsoidal description of the geometry breaks down and in
the case of the single SN develops a kink in the shape phase-space trajectory, while in the case of
the SB it smoothly transitions towards greater values of b/c ∼ 1.

In the SISSI simulations most SNRs populate regions of even lower a/c and b/c, with the majority
of SNRs assuming a prolate geometry. This is likely due to the disky geometry of the gas and
notably the presence of a stellar disk, which lead to an additional potential well that can further
inhibit vertical expansion and thus preferential expansion in the disk plane. In the turbulent
multiphase ISM, the density varies over several orders of magnitude allowing SNRs to rapidly
travel through large volumes of low-density gas before being stalled by higher-density structures.
If these structures are filamentary and preferentially aligned parallel to each other–as would be
expected in a differentially rotating disk–we expect SNRs to become preferentially prolate, aligned
parallel to the filaments within a few Myr to 10s of Myr, depending on the typical density contrast.
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2.4 Galactic environment in concert

In Sections 2.3.1 - 2.3.3 we have explored–in isolation–the various ways in which ubiquitous galactic
scale processes can affect SNR evolution. We have found that these processes usually affect SNRs
once they reach a certain size or age, provided that they have slowed down sufficiently for these
effects to become dominant.

In a marginally stable disk, many of these characteristic time- and length-scales are linked by
the Toomre QT -parameter (Toomre, 1964). For instance, in Section 2.3.2 we find that galactic
rotation dominates the dynamics after half the epicycle timescale, which in a marginally stable
disk is comparable to the free-fall timescale tff, governing the collapse of weak blastwaves failing to
drive outflows. Similarly, the typical separation and size of dense structures is similar to the disk
scale-height λJ ∼ λT ∼ Hs (Jeans, 1902; Toomre, 1964; Ostriker, 1964; Behrendt et al., 2015).

We thus expect a variety of these processes to affect the dynamics of old and large SNRs simulta-
neously. Explicitly modeling these effects in concert turns out to be quite intractable, as it requires
the time-dependent modeling of the density and gravitational field of galactic substructure sub-
ject to shear, which quickly becomes nearly as complex as the numerical simulations presented in
Romano et al. (2025a).

However, the above discussion allows us to draw some general conclusions about SNRs embedded in
complex galactic environments The SNRs appear to be most strongly affected by their environment
after reaching a characteristic velocity on the order of the velocity dispersion

venv ∼ σ , (2.68)

and sizes on the order of λJ. The time it takes for these mechanisms to take effect reaches from
a few Myr for the interaction with overdensities to a few 10s of Myr for galactic rotation and
vertical stratification, depending on various factors such as the typical distance between dense
substructures, the orbital timescale and the depth of the disk’s gravitational potential.

In the vertical direction, stratification can affect the dynamics of SNRs if they are powerful enough
to break-out (Eqs. 2.31 and 2.32). However, only the most powerful starbursts are expected to be
able to break away from the galactic disk (Romano et al., 2025b) and drive winds, which become
prolate and aligned vertically. Instead, most weaker SNRs become increasingly oblate due to the
gravitational pull of the galactic disk, within about a free-fall timescale. For sufficiently powerful
SBs this may take the form of a brief break-out from the galactic disk, followed by stalling and
eventual falling back onto the disk, a process that is also known as fountain flow.

Along with their dynamics, SNRs’ geometry is affected by their galactic environment as well.
Deformation by galactic shear and substructure tend to be synergetic, since the substructure itself
is stretched out by galactic shear, leading to departures from spherical symmetry that align with
pre-existing substructure. Large SNRs, which are sandwiched between galactic filaments as well
as SNRs within filaments are expected to be parallel to them, with pitch angles matching those
of the filaments on the order of 28− 45◦ (Xie et al., 2024).

While we focused here mainly on the role of the gas, which contributes both to the swept-up mass
and the gravitational potential, it is worth noting that the stars’ and dark matters’ contributions
to the gravitational potential cannot be neglected likely leading to more pronounced differences
from the dynamics in a uniform density medium possibly on even shorter time-scales. Moreover,
we only considered stationary or co-rotating media, however anisotropic or turbulent flow-patterns
can further affect SNRs’ dynamics and deform their geometry in complicated ways once the SNRs’
slow down to reach comparable speeds – for turbulence on the order of the velocity dispersion.
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Chapter 3

Starburst-Driven Galactic
Outflows
Unveiling the Suppressive Role of Cosmic Ray Halos

Software used in this chapter:
Julia v1.10.0 (Bezanson et al., 2017), and Matplotlib v3.5.1 (Hunter, 2007)

This work has been accepted for publication in Astronomy & Astrophysics Letters on August
24 2025 and appeared in Volume 701, September 2025, id. L5 (Romano et al., 2025b). It is a
truly collaborative effort that I initiated during my visit in Osaka in November 2024. Ellis Owen,
a leading expert on Cosmic Ray physics, was responsible for writing most of the introduction,
producing Figs. 3.1 and B.1, and for most of the cosmic ray physics, while I was responsible for
the physical setup and the blastwave modeling. I wrote the first draft for most of the discussion,
results and conclusions sections, which we later collaboratively restructured and rewrote. Kentaro
Nagamine, my host in Osaka and an expert in large scale structure, provided useful comments
and suggestions that went into the interpretation and he has been very actively contributing to
the revision of the paper.

Galaxies with high star-formation surface densities often host large-scale outflow winds. Such
winds have been observed in local starbursts, such as Arp 220, M82, and NGC 253 (e.g., Bolatto
et al., 2013; Leroy et al., 2015; Walter et al., 2017; Barcos-Muñoz et al., 2018) and are widespread
at high-redshifts, where galaxies are typically more compact and have higher star-formation rates
relative to their stellar mass (see, e.g. Sugahara et al., 2019; Nianias et al., 2024; Thompson &
Heckman, 2024). Outflow winds play an important role in redistributing energy, momentum,
and baryons between the interstellar medium (ISM) and halos of galaxies. This makes them
a key feedback component that regulates the evolution of galaxy ecosystems. Yet, despite their
importance, a complete picture of the role they play remains unsettled (see Zhang, 2018; Thompson
& Heckman, 2024, for reviews).

Detailed multi-wavelength observations of nearby starburst galaxies with outflows have revealed
certain common features, including a bi-conical shape aligned along the minor axis of their host
galaxy (Veilleux et al., 2005), extensions reaching 10s of kpc into the halo (Veilleux et al., 2005;
Zhang, 2018), a terminal “cap” at a few kpc, e.g., at ∼ 12 kpc in M82 (see Lehnert et al. 1999;
Tsuru et al. 2007), and the presence of entrained magnetic fields (e.g. Jones et al., 2019; Lopez-
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Figure 3.1: Schematic of the structure of a starburst-driven outflow embedded in a galactic halo,
propelled by thermal gas pressure and/or non-thermal CR pressure. The scale height of the
warm ISM is indicated. All galaxies are embedded in a gravitational potential, g, which opposes
the outflow. Superscripts + and - on quantities indicate whether each term contributes to or
opposes the outflow, respectively. Left: In the absence of a substantial gas halo, outflowing gas is
unconfined, allowing it to escape beyond the galaxy ecosystem against the galaxy’s gravitational
potential. Center: As the galaxy builds up its stellar mass, feedback processes form a hot gas halo
that suppresses the outflow, promoting baryonic recycling and enriching the CGM (see Ferrara
et al., 2005; Shin et al., 2021). Right: When CRs are supplied to the halo, they accumulate
over time, introducing a non-thermal halo component. Since non-thermal CR pressure gradients
operate over larger length scales than thermal pressure gradients, an outflow erupting into the
galaxy halo encounters distinct layers where thermally dominated and CR-dominated pressure
gradients hinder its development.
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Rodriguez et al., 2021) and high-energy CR particles (for an overview, see Irwin et al., 2024).

Despite these apparent similarities, the physical configuration of individual galactic outflows can
vary substantially. For instance, flow velocities ranging up to ∼1,000 km s−1 have been reported
(e.g. Bradshaw et al., 2013; Heckman et al., 2015; Cicone et al., 2016; Cazzoli et al., 2016; Xu
et al., 2022; Taylor et al., 2024), while densities and mass-loading factors span over 1.5 orders
of magnitude (e.g. Xu et al., 2023a; Heckman et al., 2015). This diversity can be attributed to
differences in the energy, matter, and momentum being supplied to an outflow by its host galaxy
(Zhang, 2018; Thompson & Heckman, 2024), the underlying driving microphysics (Yu et al., 2020),
and environmental factors — particularly the conditions of the surrounding halo.

Hot halo gas exerts inward pressure. This can oppose the development of a galactic outflow by
reducing its velocity and limiting its extension compared to systems without a halo (e.g. Shin
et al., 2021). By confining metal-enriched outflows and restricting the dispersal of ejecta, halo
gas ram pressure has been considered to be instrumental in regulating baryonic recycling flows
and enabling the enrichment of galaxies’ CGM (Ferrara et al., 2005). In addition to this thermal
pressure from the hot gas, galaxy halos may also host a reservoir of CRs. These CRs may originate
as a relic population that could be transported by advection, bubbles associated with outflows, or
the activity of a central supermassive black hole (see e.g. Owen et al., 2019; Recchia et al., 2021;
Shimoda & Inutsuka, 2022).

Halo CRs can modify the structure of the circumgalactic medium (CGM) and alter baryonic
flows within galaxy halos (for reviews, see Ruszkowski & Pfrommer, 2023; Owen et al., 2023).
Simulations of Milky-Way-mass galaxies suggest that CRs provide additional pressure support to
sustain a multi-phase halo gas structure at low temperatures and can propel cool gas out to 100s of
kpc (Butsky & Quinn, 2018; Ji et al., 2020). CR-driven winds can even push gas beyond the virial
radius (Quataert & Hopkins, 2025). Due to the long CR survival time in halos, these feedback
effects can continue to manifest long after the end of the mechanical processes that originally
generated the CRs (Quataert & Hopkins, 2025). Halo CRs can also operate alongside hot halo gas
to provide an inward non-thermal pressure that counteracts developing outflows. This is illustrated
in Fig. 3.1, which compares the suppressive effect of galaxy halos and the implications for baryonic
recycling.

In this study, we assess the role of an extended CR halo in modifying the development of galactic
winds driven by CR and thermal gas pressure, and derive the criteria for the breakout of an outflow
from a galaxy with a CR halo.

3.1 Starburst-driven Outflows in Galaxy Halos

The collective feedback from a central galactic starburst can initiate a blastwave, which may
develop into a sustained galactic wind if the starburst activity is continuous. Typically, about
one SN explodes per ∼100 M⊙ of star formation, with the exact rate dependent on the choice of
the stellar initial mass function (e.g. Leitherer et al., 1999). We can therefore link the supernova
event rate RSN = R−3 kyr

−1 to the SFR of a galaxy by RSF ∼ 100M⊙ RSN. Observationally, star
formation activity is typically quantified using the SFR surface density, ΣSFR. This can be related
to RSF by considering that most star formation contributing to the blastwave occurs within a
cylindrical region with a radius comparable to the disk scale height, ∼ Hs, of a galaxy (defined by
eq. B.2), i.e. ΣSFR = RSF /

(
πH2

s

)
= ΣSFR, 0 M⊙ yr−1 kpc−2.

The injection rates of mass (ṀSB = MejRSN, for Mej = Mej, 0 M⊙ as the typical supernova ejecta

mass) and energy (ĖSB = ESNRSN, for ESN = 1051 E51 erg as the typical mechanical energy
supplied by a supernova) supplied to an expanding blastwave from a galactic starburst can be
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linked to the SFR through the mass- and energy-loading factors ηm ≡ ṀSB/RSF = 0.01Mej, 0

and ηe ≡ εwĖSB/ (ESNRSN) = εw, respectively, where εw is a thermalization efficiency factor
accounting for energy dissipation in the system (see e.g. Thompson et al., 2016; Kim et al., 2017;
Steinwandel et al., 2024). For convenience, we introduce the scaling parameters ηm, -2 = ηm/0.01,
ηe, -2 = ηe/0.01 and εw, -2 = εw/0.01. The supply of CRs to the wind is parametrized by fCR,
representing the CR energy fraction at the galactic mid-plane. In our model, these parameters
are treated as constants, remaining fixed throughout the evolution of the outflow, and the flow is
considered to be driven by the combination of central thermal and kinetic energy-injection, and
CR pressure gradients.

3.1.1 CR halos and their effects on outflows

Several observational studies have suggested the presence of extended CR reservoirs in galactic
halos. These include a γ-ray halo around M31 reaching to 100s of kpc, which likely traces an
interacting population of hadronic CRs (Recchia et al., 2021), γ-ray emission originating from
halo clouds at kpc heights around the Milky Way (Tibaldo et al., 2015), and kpc-scale syn-
chrotron emission from edge-on galaxies (e.g. Mulcahy et al., 2018; Mora-Partiarroyo et al., 2019).
It has also been proposed that diffuse X-ray emission from the halos of Milky Way, M31, and
lower-mass galaxies could originate from inverse Compton scattering, driven by a leptonic CR
population (Hopkins et al., 2025).

The formation of CR halos is a consequence of CR production during galaxy evolution. The long
energy loss times of hadronic CRs in these environments (see Appendix B.1.1) ensure that most of
the CR energy density supplied to a galaxy halo during its development can survive to the present
day. Galaxies with significant historical stellar mass buildup are expected to host rich CR halos,
even if their current star formation activity is low. Observations in γ-rays tentatively support this
distinction, with CR halos primarily identified around massive late-type galaxies, while lower-mass
galaxies show no indications of hosting such structures (Pshirkov & Nizamov, 2024).

To assess whether a CR halo can influence a developing outflow, the CR pressure contributions
from both the halo and the outflow can be compared at a given altitude, z (see Appendix B.1;
eqs. B.3 and B.7). For CRs to drive an outflow, the outward CR pressure must exceed the inward
pressure from the halo CRs. When external and internal CR pressures become comparable, the
driving effect of CR pressure gradients diminishes.

As illustrated in Fig. 3.1, the presence of a CR halo is expected to frustrate slow outflows if its
scale height significantly exceeds the altitude where external and internal CR pressures are equal,
zCR. In units of the disk scale height, Hs, this CR pressure equilibrium height is given by:

zCR ∼ 1.5 ε
1/2
w, -2 E

1/2
51 R1/2

−3 σ
−2
1 v

−1/2
∞,2 Hs , (3.1)

where σ = 10σ1 km/s is the gas velocity dispersion, and v∞,2 is the rescaled terminal flow velocity
defined as v∞ = 100 v∞,2 km/s at large distances from the galactic plane. Equation 3.1 indicates
that zCR is typically located at low altitudes for most galaxies. This suggests that CR-driven
outflows are easily suppressed by the presence of an extended CR halo, if the halo has a scale-
height ≫ Hs. Galactic winds in systems with a well-developed CR halo are therefore expected
to experience suppression, with their driving primarily dependent on thermal and kinetic energy-
injection rather than CR pressure.
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Figure 3.2: Terminal outflow velocities as a function of star formation rate surface density for
different choices of CR energy fractions, fCR, and energy loading factors, ηe. The model predictions
are compared with data from Heckman et al. (2015), which show measured outflow velocities for a
sample of nearby starburst galaxies with stellar masses in the range log10 (M∗/M⊙) ∈ [7.1− 10.9].
Typical uncertainties are indicated in the top-left corner. The model with ηe ∼ 0.01 and fCR ∼ 0.1
provides a good match with the observed data. Models with higher energy loading values (ηe)
generally predict outflow velocities in excess of the observations. The transition from slow outflows
in weak starbursts to fast outflows in strong starbursts is best captured by models with fCR > 0.
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3.1.2 Outflow breakout criterion and terminal velocity

For an outflow to break out from a galaxy, a minimum critical SFR surface density can be defined
in the absence of a CR halo (see Appendix B.1.2). This is given by:

ΣSFR, c ≳ 2.14n0 σ
2
1 η

−1/2
e, -2 η

−1/2
m, -2 M⊙ yr−1 kpc−2, (3.2)

where nH, mp = n0 cm
−3 is introduced as the mid-plane gas number density. In a strong star-

starburst (i.e. when ΣSFR ≫ ΣSFR, c), the maximum flow speed that can develop tends towards
an asymptotic limit (see eq. B.10).

CR-driven outflows can always be launched without a specific breakout criterion. However, in weak
star formation scenarios (i.e. ΣSFR ≪ ΣSFR, c), only very slow flow velocities can be achieved:

vweak
∞ → 237 fCRηe, -2 ΣSFR, 0 σ

−2
1 n−1

0 km s−1 . (3.3)

In this regime, the CR pressure equilibrium height reduces to:

zweak
CR → 1.85f

−1/2
CR Hs (3.4)

which decreases as the CR supply to the system increases. This indicates that a CR halo strongly
suppresses weak outflows that rely on CR driving (c.f. the right panel of Fig. 3.1).

In the strong starburst limit (when ΣSFR ≫ ΣSFR, c), much faster terminal velocities are expected:

vstrong∞ → 103 η
1/2
e, -2 η

−1/2
m, -2

√
1 + fCR +

√
1− fCR

2
km s−1. (3.5)

The CR pressure equilibrium height in this regime is then

zstrongCR → 0.47 ε
1/4
w, -2 E

1/4
51 M

1/4
ej, 0 R

1/2
−3 σ

−2
1 Hs . (3.6)

Although the inward halo CR pressure overtakes the outward flow-driving CR pressure near the
disk scale height, the independence of zstrongCR from fCR suggests that outflows in this regime are
momentum-dominated. Such outflows are unlikely to be significantly influenced by the presence of
a CR halo, with thermal gas pressure likely playing a more critical role in regulating flow dynamics
(see the central panel of Fig. 3.1).

The terminal velocities predicted by our model allow for comparison with observations. Figure 3.2
shows terminal outflow velocities as a function of SFR surface density for a fiducial model with
(dimensionless) parameters n0 = 1, σ1 = 1, ηm, -2 = 5, and varying values of fCR and ηe, -2
as indicated in the legend. These calculations assume that all galaxies in the sample share a
similar dynamical equilibrium pressure, PDE ∼ ρmpσ

2 ∼ GΣ2 (Ostriker & Kim, 2022) for ρmp as
the galactic mid-plane gas volume density and Σ as the corresponding surface density that sets
ΣSFR, c. For comparison, observed outflow velocities for a sample of nearby starburst galaxies
with stellar masses in the range log10(M∗/M⊙) ∈ [7.1 − 10.9] are also shown (Heckman et al.,
2015). Our model captures the general trend of observed flow velocities with parameter choices
of εw,-2 ∼ ηe,-2 ∼ 1 and ηm, -2 ∼ Mej, 0 ∼ 5. These choices align well with the energy and mass
loading factors reported in numerical simulations of galactic outflows at altitudes of a few kpc
(e.g. Kim & Ostriker, 2018; Rathjen et al., 2021; Steinwandel et al., 2024; Kjellgren et al., 2025).

3.2 Discussion and Implications

The structure of galactic winds has been extensively studied through theoretical approaches (e.g.
Chevalier & Clegg, 1985; Fielding & Bryan, 2022; Modak et al., 2023), detailed numerical simu-
lations (e.g. Kim & Ostriker, 2018; Vasiliev et al., 2023; Kjellgren et al., 2025) and observational
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studies (e.g. Krieger et al., 2019; Xu et al., 2023b; Bolatto et al., 2024). These studies have shown
that galactic winds are ubiquitous, particularly among star-forming galaxies, and that galaxies
with high SFRs tend to drive faster and hotter winds. However, not all galaxies show clear signa-
tures of outflows. Some systems show that gas launched from the ISM is recycled within a galaxy
ecosystem rather than expelled (Marasco et al., 2023). While the qualitative framework for wind
launching is well established (see Thompson & Heckman, 2024, for a review), few studies quantify
outflow launching conditions (e.g. Heckman et al., 2015; Orr et al., 2022).

Heckman et al. (2015) examined outflow speeds of galactic winds in a sample of nearby starbursts,
and reported a sharp drop in flow velocities when the central SFR surface density fell below a
critical threshold of ΣSFR, c ∼ 1M⊙ yr−1 kpc−2. Our model shows that this critical SFR sur-
face density arises due to the depth of the gravitational potential, which can only be overcome
by sufficiently strong starbursts. The predicted value aligns with observations when considering
typical dynamical equilibrium pressures set by the weight of the ISM, together with wind-loading
parameters that are consistent with recent numerical studies of galactic winds in dwarf (Stein-
wandel et al., 2024) and spiral galaxies in the local Universe (Kjellgren et al., 2025). However,
we note that other studies find significantly higher mass and energy loading, depending on the
methodology used (e.g. Muratov et al., 2015; Smith et al., 2024).

Orr et al. (2022) investigated the feedback from star formation in a marginally Toomre-stable
disk. They proposed that a young star cluster could launch an outflow if the starburst-driven
shock reaches the disk scale height before its speed drops below the ISM’s velocity dispersion. By
assuming the formation of one star cluster per orbital timescale, they derived an expression for the
critical SFR surface density, which is in rough agreement with the threshold found observationally
by Heckman et al. (2015). However, their study does not account for the effects of gravity, which
would alter the wind-launching criterion.

Most numerical simulations of starburst-driven galactic winds show that the inclusion of CRs
improves their ability to drive warm outflows with high mass-loading factors (e.g. Girichidis et al.,
2016; Rathjen et al., 2021; Chan et al., 2022; Armillotta et al., 2024). This is in agreement with
our results, which indicate that outflow speed in the CR-dominated regime is independent of
the mass-loading factor, and suggest that CR-driven winds can sustain substantial mass-loading
before being significantly slowed. However, current numerical models do not typically include a
pre-existing CR halo in their initial conditions. Instead, they only model the accumulation of CRs
within a galaxy ecosystem over time, usually as a consequence of stellar feedback. The widespread
findings of substantial feedback impacts from CR-driven outflows in the literature may reflect
this limitation — a situation that would have certain parallels with earlier numerical studies that
lacked CGM thermal pressure, leading to unrealistically strong outflows in simulations of isolated
galaxies (Shin et al., 2021).

At high redshift, several studies have reported high outflow velocities up to 1,000 km s−1 (Sugahara
et al., 2019; Xu et al., 2022). In general, higher outflow speeds require higher energy loading
factors and lower mass loading factors. Observations suggest that high-redshift galaxies tend to
be compact and turbulent (Genzel et al., 2023), with high gas fractions and surface densities (e.g.
Genzel et al., 2011), as well as low metallicities (Maiolino et al., 2008). Since the critical SFR
surface density scales with the dynamical equilibrium pressure as Σ̇SFR, c ∝ PDE ∝ Σ2, thermally-
driven outflows become ineffective in a highly turbulent, high surface-density environment. On the
other hand, lower metallicities result in longer cooling times, leading to higher momentum-loading
(Oku et al., 2022). If mass-loading factors in high-redshift galaxies are comparable to those in
low-redshift galaxies, then lower metallicities could explain the high observed outflow velocities in
high-redshift galaxies, provided that the increased ISM weight does not suppress outflows.

Curiously, the critical SFR surface density exhibits a stronger dependence on gas surface density
than on the SFR surface density itself, which follows Σ̇SFR ∝ Σ1.4 (Kennicutt, 1989). This suggests
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that, counterintuitively, fast thermally-powered galactic outflows are expected to be more common
at low surface densities, such as in dwarf galaxies, while being suppressed in extreme star-forming
environments - including massive clumps in high-redshift galaxies (Genzel et al., 2011) and the
proposed feedback-free starburst galaxies at z ∼ 10 (Finkelstein et al., 2023; Dekel et al., 2023). At
high redshifts, CR-driven slow outflows may be more prevalent in these systems, as there would not
have been sufficient time for them to establish a CR halo capable of suppressing outflows. Indeed,
highly mass-loaded outflows are essential for regulating star formation and explaining observed
metallicity trends at high redshift (Toyouchi et al., 2025), which could naturally be accounted for
by CR-driven outflows.

3.3 Conclusions

In this study, we constructed a galactic outflow model driven by a continuous central feedback
source, including the effects of CR pressure in the outflow and surrounding galaxy halo. We
applied this model to a starburst galaxy to assess how the presence of a CR halo may influence
outflow development. We found:

1. In the absence of CRs, galactic outflows are only launched if the SFR surface density exceeds
a critical threshold proportional to the dynamic equilibrium pressure. At high SFR surface
densities, these momentum-driven outflows approach the ejecta speed, reaching up to 1,000s
of km s−1.

2. CRs can always drive slow outflows. We identified two different regimes: slow, CR-dominated
outflows at SFR surface densities below the critical threshold, and fast, momentum-driven
outflows at high SFR surface densities.

3. In the presence of an extended CR halo, CRs become ineffective in sustaining outflows
beyond the galactic scale height, leading to the suppression of CR-driven winds.

While our simplified approach is subject to substantial limitations (see Appendix B.2), it provides
useful insights into the qualitative behavior of starburst-driven outflows and the influence of a
CR halo. However, more detailed studies - including numerical simulations with CR halos as an
initial condition - are needed to properly explore the physical impacts of CRs on the dynamical
processes within galaxy halos.



Chapter 4

Cloud Formation by Supernova
Implosion

Software used in this chapter:
Julia v1.6.5 (Bezanson et al., 2017), Matplotlib v3.5.1 (Hunter, 2007), Mera v1.4.0
(Behrendt, 2023a), Paraview v5.11.1 (Henderson, 2007), and Ramses v19.10 (Teyssier,
2002)

This work has been published in the Astrophysical Journal, Volume 965, Issue 2, April 2024,
id. 168, pp. 15 (Romano et al., 2024a). The set-up, implementation and the execution of the
simulations presented in this chapter as well as the analysis were done by me. Some of the
RAMSES-patches, particular those related to radiative cooling were implemented by Manuel.
Andi pointed out, that the implosion was interesting physics, which I initially dismissed as a
numerical artifact. However, afterwards the interpretation was done by myself, guided by useful
questions and comments by my collaborators Andi and Manuel. The manuscript was written by
myself, but I received many useful comments from Andi, Manuel and the anonymous referee.

It has long been recognized that supernovae (SNe) play an important role in maintaining the
balance and structure of the interstellar medium (ISM). Even though there is only about one
supernova per 100 M⊙ of formed stars, due to their enormous energy output, these destructive
events can have an enormous impact on their surroundings.

Many aspects of galaxy formation and evolution, like star formation and the modeling of galactic
outflows (e.g. Fielding et al., 2017; Orr et al., 2022), are tightly linked to the evolution of supernova
remnants (SNRs). SNe are believed to maintain the hot phase (e.g. de Avillez & Breitschwerdt,
2004; Bieri et al., 2023), drive turbulence and outflows (e.g. Rosen & Bregman, 1995; Krumholz
et al., 2018; Fielding et al., 2018; Oku et al., 2022), regulate the star formation rate in disk
galaxies (e.g. Shetty & Ostriker, 2012; Shimizu et al., 2019; Herrington et al., 2023) and enrich
their surroundings with heavy elements and dust (e.g. Kozasa et al., 1989; Bianchi & Schneider,
2007; Nozawa et al., 2007).

Of particular interest is the concept of positive SN feedback or triggered star formation, where a
strong shock wave compresses the gas, leading to further collapse, fragmentation and eventually
the formation of new stars. This processes has been predicted in numerous theoretical works
(e.g. Dwarkadas et al., 2017; Krause et al., 2018; Herrington et al., 2023) and has recently been
confirmed with observations from the Gaia mission (e.g. Zucker et al., 2022; Miret-Roig et al.,
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2022; Ratzenböck et al., 2023).

SNR evolution in a uniform medium has been studied at great length using analytical models
(e.g. Woltjer, 1972; Gaffet, 1978; Ostriker & McKee, 1988), and numerical simulations in one (e.g.
Chevalier, 1974; Cioffi et al., 1988; Fierlinger et al., 2016), two (e.g. Blondin et al., 1998; Ntormousi
et al., 2011; Meyer et al., 2023) and three dimensions (e.g. Kim & Ostriker, 2015; Makarenko
et al., 2023), which have lead to a comprehensive picture comprised of a series of different stages,
characterized by different deceleration parameters q = −d2R/dt2 and conserved quantities. In the
first stage, known as the free expansion phase the SNR expands with constant velocity until the
reverse shock has fully thermalized the ejecta (Truelove & McKee, 1999). In the next so-called
Sedov-Taylor (ST) phase (Sedov, 1959; Taylor, 1950), the SNR expands adiabatically as cooling
losses are still negligible and thus energy is conserved. The ST phase ends, when radiative cooling
losses become important and a thin, cold shell forms at the shock front. After the shell has formed,
the SNR keeps expanding in what is known as the pressure-driven snowplow (PDS) phase (Cox &
Anderson, 1982; Ostriker & McKee, 1988). During the PDS, the hot bubble is rapidly evacuated
as hot material is pushed into the shell (Gaffet, 1983; Cioffi et al., 1988; Kim & Ostriker, 2015).
Once the bubble pressure has dropped below that of the shell, the PDS ends and transitions into
a momentum conserving snowplow (MCS) phase (Cioffi et al., 1988; Thornton et al., 1998). It
has been claimed that the SNR evolution ends, when the shock velocity becomes comparable to
the typical velocity dispersion of the ambient medium (Cioffi et al., 1988; Draine, 2011; Faucher-
Giguère et al., 2013; Krumholz et al., 2018) and the shock merges with the ISM. However, the
details of the merging have only received little attention and it remains unclear how the evacuated
bubble carved out by the blast wave is refilled.

In order to address this gap, in this work, we utilize three-dimensional, hydrodynamical simulations
with cooling to study the late radiative stage of SNR evolution and the onset of fade out. We thus
provide a more complete picture for the later stages of SNR evolution. We show that as the SNR
shell pressure approaches the ISM pressure, the SNR implodes, filling the central cavity. This
implosion leads to the formation of a dense compact, cloud in its center, which has the potential
to form new stars and thus provides a novel pathway for triggered star formation.

The remainder of this paper is organized as follows. In section 4.1 we describe the numerical
scheme and the setup of our simulation suite. In section 4.2 we present the results of our numerical
simulations. We discuss the limitations and implications of our results in section 4.3. Finally, we
summarize our findings and conclude in section 4.4. In the appendix we present a number of tests,
related to the question of numerical convergence and the adopted treatment for radiative cooling.

4.1 Methods

4.1.1 Numerical Methods

We utilize the adaptive mesh refinement (AMR) code ramses (Teyssier, 2002) to simulate the
hydrodynamic evolution of blast waves in a uniform density medium, including radiative cooling.
ramses is solving the system of hydrodynamic equations utilizing a second-order unsplit Godunov
method (MUSCL scheme) on a finite volume, cartesian grid. Variables at the cell interfaces are
reconstructed from the cell-centered values using the HLLC Riemann solver (Toro et al., 1994)
with MinMod total variation diminishing scheme. Cooling is solved for the default courty cooling
function implemented in ramses, which provides a basic treatment of primordial chemistry, metal
line cooling and heating due to ultraviolet background (UVB) radiation.

In our fiducial simulation suite we consider a cubic computational domain with a side length of
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Table 4.1: Overview of the simulation suite
Model NSN nH ∆xmin ⌊Rsf /∆xmin⌋a Comment[

cm−3
]

[pc]
N1 n-1 L11 1 0.1 0.5 118
N1 n0 L11 1 1 0.5 45
N1 n0 L11 HC 1 1 0.5 45 L = 256 pc, ∆xmax = 2pc, tend = 1.5Myr
N1 n1 L11 1 10 0.5 17
N1 n1 L11 HC 1 10 0.5 17 L = 64 pc, ∆xmax = 0.5 pc, tend = 1.5Myr
N1 n2 L12 1 100 0.25 13
N1 n2 L13 1 100 0.125 26
N1 n2 L13 noAMR 1 100 0.125 26 L = 128 pc, ∆xmax = 0.125 pc
N1 n2 L13 HC 1 100 0.125 26 L = 64 pc, ∆xmax = 0.5 pc, tend = 1.5Myr
N1 n2 L14 1 100 0.0625 52
N5 n-1 L11 5 0.1 0.5 189
N5 n0 L11 5 1 0.5 72
N5 n1 L11 5 10 0.5 27
N5 n2 L11 5 100 0.5 10
N14 n-1 L11 14 0.1 0.5 255
N14 n0 L11 14 1 0.5 97
N14 n1 L11 14 10 0.5 36
N14 n2 L11 14 100 0.5 14
N1 n1 L11 Dust 1 10 0.5 17 Dust only cooling model of Ploeckinger & Schaye (2020).
N1 n1 L11 PS20 1 10 0.5 17 Fiducial cooling model of Ploeckinger & Schaye (2020).

(a) Equation 4.3

L = 1024 pc and periodic boundaries, which we refine with lmin = 7 to lmax = 11 refinement levels,
corresponding to a spatial resolution of ∆xmax = 8pc and ∆xmin = 0.5 pc, respectively. However,
we ensure that the resolution criterion of Kim & Ostriker (2015) is fulfilled and accordingly increase
the resolution in runs, where the expected radius at shell formation would not be resolved with at
least 10 grid cells.

Initially, the simulation domain is filled with uniform density gas with log nH

[
cm−3

]
∈ {−1, 0, 1, 2}

at solar metallicity and an initial temperature set to be close to cooling equilibrium. In the
domain center, we initialize the explosive ejecta uniformly within a spherical region of radius
Rinj ∼ 5∆xmin. We inject ESN = 1051 erg and Mej = 5M⊙ per SN, corresponding to an initial
ejecta temperature of TSN ∼ 109 K. We ensure that the injection region is maximally refined, by
statically refining the central Rref = 50∆xmin with the maximum resolution.

In order to ensure that the shock and the bubble are maximally refined, while only as little
as possible of the surrounding medium is refined, we advect a passive scalar variable Zej with
the injected mass and maximally refine all cells where Zej > 10−15. The criterion might fail, if
numerical errors in the advection of pristine cells trigger the criterion or if cells just behind the
shock are not polluted enough to trigger refinement. However, we have checked that both of these
cases do not occur frequently enough to cause any serious problems. In the Appendix C.1 we
discuss the role of the AMR in more detail.

Besides different densities we also consider different explosion strengths, mimicking the feedback
from a single stellar population with NSN ∈ {1, 5, 14} massive stars exploding all at once, by
simply injecting NSN times as much mass and energy. We thus label a model with NSN = x,
log nH = y and lmax = z as Nx ny Lz. While this simplistic approach can capture some aspects of
clustered feedback, it is worth noting that studies that take into account the time delay between
explosions find some qualitative differences, such as an increased momentum per SN (Walch &
Naab, 2015; Gentry et al., 2019) and a longer lived hot bubble (Kim et al., 2017).

All models are run until t = 14Myr at which point the largest bubbles are reaching the domain
limits. We reran some of the models in a smaller domain for a shorter time span, but with a much
higher frequency of snapshots. For these models we add the suffix HC to the name and the part
of the name referring to the resolution refers to the equivalent refinement level for the fiducial
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domain, i.e. L11 refers to ∆xmin = 0.5 pc in both the fiducial and the HC runs.

In appendix C.3 we will discuss the effect that different cooling functions could have on our results.
To this end, we rerun a few of the models with different cooling tables taken from Ploeckinger &
Schaye (2020) and label the models with suffices corresponding to the respective alternate cooling
model.

Finally, in section C.2 we are discussing the results obtained for the N1 n2 model at different
resolutions.

A list of all the different models and their properties is given in table 4.1.

4.1.2 Data Analysis

In order to quantify the global evolution of the gas, we distinguish between bubble and shell gas
and further within these components, differentiate between gas which is moving radially outward
(vr > 0) and inward (vr < 0). We distinguish between the SNR and the ISM using the passive
scalar, i.e. gas with Zej > 10−10 is considered part of the SNR. The bubble is defined as SNR gas
that is either hot (T > 2× 104 K) or diffuse (nH < 10−2 cm−3), while the shell is all SNR gas that
is not part of the bubble. A summary of the classification is given in Figure 4.1.

Kim & Ostriker (2015) use a similar criterion for the bubble gas, considering only the temperature
of the gas. The addition of the density criterion only becomes important at late times, when
the bubble has cooled below 104 K at which point the temperature criterion alone would fail to
differentiate between the bubble and the shell.

The partition of the SNR into a bubble and shell, allows us to measure the shell formation timescale
tsf, which denotes the time when the cold shell at the shock front forms. We follow Kim & Ostriker
(2015), who define the numerically measured shell formation timescale tnsf as the time at which the
mass of the hot bubble reaches its maximum.

4.2 Results

In this section we describe a mechanism for the formation of a cloud through the implosion of a
radiative SNR. In section 4.2.1 we give a brief overview of the physical mechanism. We provide
a detailed description of our simulation results for a single SN in a high density ISM in section
4.2.3. In section 4.2.4 we extend our analysis to the whole simulation suite and investigate the
dependence of the relevant timescales on the explosion parameters in section 4.2.4. We describe
the properties of the implosion clouds in section 4.2.5. Finally, in section 4.2.2 we describe a model
for the launching of the implosion.

4.2.1 Schematic Overview

Figure 4.2 gives a schematic description of the evolution of the SNR after shell formation, which
is separated into four stages.

In the first stage, shortly after shell formation the interior of the SNR is still hot and overpressurized
relative to the isothermal shell, which is kept at about T ∼ 104 K. During this stage the rarefied
bubble material tries to expand and as a result is pressed into the shell. This phase corresponds
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Figure 4.1: Schematic overview of the different gas components, described in section 4.1.2. The
classification differentiates between the ISM (gray) and the SNR (color), consisting of a bubble
(shades of red) and a shell (shades of blue), which itself might be out- or inflowing. To reduce
the amount of colored area the background color of this figure was modified with respect to the
original in the journal article.
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a) Pressure-Driven Snowplow
(t < 3 - 5 tsf)

PBubble ≫ Pshell ≫ PISM
ṀBubble < 0

b) Momentum-Conserving Snowplow 
(t ≲ 20 - 100 tsf)

Pshell ≫ PISM, PBubble
MBubble ~ 0

c) Implosion 
(t ≲ few Myr)
Pshell ~ PISM

Ṁin > 0

d) Cloud formation 
(t ≳ few Myr)

Mcloud ~ 103 – 104 M
☉

Figure 4.2: Schematic overview of our proposed cloud formation mechanism. We show volume
renderings of the radial mass flux in the model N1 n2 L14, during different phases of SNR late
stage evolution. The physical scale differs between the frames. Opacity alpha is scaled with the
logarithm of the density and is set to zero for densities in the range nH ∈ (95, 105) cm−3 in order
to remove the foreground. The octant facing the observer has been made transparent. To reduce
the amount of colored area the background color of this figure was modified with respect to the
original in the journal article.
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to the modified PDS phase described by Cioffi et al. (1988) and Kim & Ostriker (2015). After
about 3 − 5 shell formation timescales the bubble has been evacuated and its pressure has dropped
below that of the shell.

At this point, the expansion of the SNR is entirely inertia driven, corresponding to the MCS.
The mass of the evacuated bubble is negligibly small and its density is many orders of magnitude
below the ambient density. The shell which is now overpressurized relative to both the ISM and the
bubble, begins to broaden, leading to a gradual reduction in the shell pressure and an accelerated
weakening of the shock. Meanwhile, the shell begins to get deformed and fragmented due to
thin-shell overstability and nonlinear thin-shell instability (Vishniac, 1983; Blondin et al., 1998).

Once the shell pressure reaches pressure equilibrium with the ISM a reflected version of the out-
going shock wave is launched driving cooling material from the shell back into the center, refilling
the warm, evacuated cavity. We refer to this reflected wave as Implosion or Backflow. The im-
plosion is very similar to the so-called ”negative phase” in the context of terrestrial blast waves
(see e.g. Glasstone & Dolan, 1977) and appears to be a purely hydrodynamic realization of the
hydromagnetic Rayleigh-Taylor instability (RTI) described by Breitschwerdt et al. (2000).

After a few Myr, the backflow reaches the center of the SNR and collides with the backflowing
gas from all directions. The colliding gas piles up in the center and is reflected, forming a slowly
expanding cloud. The cloud keeps accreting material from the backflowing gas reaching a mass of
103 − 104 M⊙ within ∼ 10Myr. As the cloud is directly formed from the SN ejecta, it is highly
chemically enriched.

4.2.2 Model for the Launching of the Backflow

In the previous subsection we have given an overview of the different phases of the radiative stage.
Here we describe a model for estimating the relevant timescales.

Right after shell formation, we assume that the bubble is following the modified PDS described
by Kim & Ostriker (2015). In their description the thermal energy of the bubble evolves as

Eth, PDS = 0.8Eth, ST

(
Rsf

R

)2
tsf
t
, (4.1)

where tsf and Rsf are given by (Kim & Ostriker, 2015)

tsf ∼ 0.044E0.22
51 n−0.55

0 Myr, (4.2)

Rsf ∼ 22.6E0.29
51 n−0.42

0 pc, (4.3)

Eth, ST = 0.72ESN and

R = Rsf

(
t

tsf

)2/7

. (4.4)

Here E51 = ESN/
(
1051 erg

)
. The average bubble pressure is then given by

PBubble, PDS = (γ − 1)
Eth, PDS

4π/3R3
. (4.5)

Meanwhile, the temperature of the shell remains roughly constant at Tshell ∼ 104 K and the com-
pression ratio of the shell is χ ∼ 10, leading to a shell pressure of Pshell, PDS ∼ 105 n0 kB Kcm−3.
The PDS phase ends, when the pressure in the shell and bubble is equal, at

tPDS ∼ 3.4E0.05
51 n0.11

0 tsf ∼ 0.15E0.27
51 n−0.44

0 Myr. (4.6)
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The radius of the SNR at this time is

RPDS ∼ 32.1E0.3
51 n−0.39

0 pc. (4.7)

After the PDS phase has ended, the momentum of the shell remains constant and the MCS phase
begins. During this phase the radius of the SNR evolves ∝ t1/4 and correspondingly the shock
velocity evolves ∝ t−3/4. If one assumes a constant compression ratio and that the temperature
of the shell is proportional to the square of the velocity, as one would expect for a strong shock,
one finds for the pressure during the MCS phase

PShell, MCS = Pshell, PDS

(
t

tPDS

)−3/2

. (4.8)

The SNR implodes, when the pressure of the shell approaches the pressure of the ISM. In the
standard RAMSES cooling prescription at solar metallicity, which assumes collisional ionization
equilibrium the pressure on the cooling-equilibrium curve for a given density is approximately (see
e.g. Figure 17 of Kim et al. (2023b))

PISM, eq ∼ 6× 103 n
1/2
0 kB Kcm−3. (4.9)

Thus, the launching timescale can be inferred as

tlaunch ∼ 0.98E0.27
51 n−0.11

0 Myr, (4.10)

and the radius of the SNR at this time is

Rlaunch ∼ 51.3E0.3
51 n−0.27

0 pc. (4.11)

Finally, cloud formation happens once the imploding shell has reached the center. The cloud
formation timescale is thus the combination of the launching and the crossing timescale

tcf ∼ tlaunch +
Rlaunch

Vin
, (4.12)

where Vin is a characteristic inflow velocity. The results in section 4.2.4 indicate that this velocity
is independent of the explosion energy, but depends on the ambient density in a complicated way.

4.2.3 Single Supernova in a High Density Medium

In this subsection we describe the time evolution of the SNR formed by a single SN in a stationary,
uniform, high density medium in cooling equilibrium.

We first give a qualitative overview of our ultra high resolution model N1 n2 L14 with a maximum
grid resolution of ∆x = 0.0625 pc. In Figure 4.3 the density (top panels) and radial mass flux
(bottom panels) is shown in slices through the xy-plane at four different points in time corre-
sponding to the four different stages of SNR evolution after shell formation. In order to provide a
quantitative reference, radial profiles of various physical quantities at the same points in time are
shown in Figure 4.4.

During the first stage, right after shell formation, the shell reaches a maximum compression ratio
of χ ∼ 10. Its width is comparable to the resolution limit ∆R ∼ ∆x = 0.0625 pc. The pressure of
the hot interior is about an order of magnitude higher than that of the rapidly cooling shell, and
as a result bubble material is condensing onto the shell.
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Figure 4.3: Slices through the XY-plane of the model N1 n2 L14. The left and right columns
display density and radial mass flux at different stages during the radiative phase of SNR evolution,
respectively. The panels from top to bottom correspond to t = 0.006, 0.1, 1 and 10 Myr. Each
panel showing density has a different color scale due to the large changes in dynamic range. The
color scale for the density slices is logarithmic and asymmetrically centered around the ambient
density nH, ISM = 100 cm−3. The color scale for the radial mass flux is the same in all panels.
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Figure 4.4: Radial profiles of (a) number density, (b) pressure, (c) mass flux, and (d) enrichment
of model N1 n2 L14. The differently shaded curves correspond to t = 0.006, 0.1, 1 and 10 Myr,
respectively. In panel (c) solid (dashed) lines correspond to outward (inward) mass flux.
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Figure 4.5: Time evolution of various quantities for model N1 n2 L13: (a) mass, (b) momentum,
(c) energy, (d) pressure, (e) volume, (f) ejecta. Differently colored lines correspond to different gas
components as described in Figure 4.1. The vertical dashed line marks the theoretical estimate
of the shell formation time (Equation 4.2). In panel (c) the thermal (solid) and kinetic (dashed)
energy is shown. The horizontal green dashed line in panel (d) marks the equilibrium pressure of
the ISM. The bubble pressure is initially very high (≳ 109 Kcm−3) and thus outside of the axis
limits.

After 0.1 Myr, the bubble has been mostly evacuated (nH, Bubble/nH, ISM < 10−4) and the shell
has thickened considerably (∆R ∼ 3 pc), leading to an overall reduction in the compression ratio
(χ ∼ 2.5) of the shell. The pressure in the bubble has dropped significantly to about 10% of
the ISM pressure, while the pressure of the shell is still overpressurized with respect to the ISM.
During this stage the mass flux is concentrated within the shell, with only little outward mass
flux from inside the bubble. The shell is subject to thin-shell overstability and nonlinear thin-shell
instability (Vishniac, 1983, 1994; Blondin et al., 1998), resulting in ripples on the shell’s surface.

We note that we do not explicitly seed perturbations that would drive these instabilities. Instead,
they arise from grid scale perturbations due to the mapping of the sphere onto a Cartesian grid and
numerical instabilities such as the carbuncle instability (see e.g. appendix C of Stone et al., 2008).
We refer the interested reader to appendix C.2, where we discuss in more detail the dependence
of these artifacts on the resolution and how they might affect our results.

After 1 Myr the flow just behind the shell has reversed and is now flowing inward, starting to
slowly fill up and cool the bubble with material from the backside of the shell. Meanwhile, the
pressure of the shell has dropped to a level comparable to the ISM pressure. The shell continues
to broaden (∆R ∼ 7 pc) and the compression ratio (χ ∼ 1.5) continues to drop, approaching unity.
During these first three stages, most of the mass of the bubble gas is composed of ejecta material.

Finally, after 10 Myr the inward flow has reached the center and is compressed into a compact,
dense, expanding cloud with a constant density of about 3 times the ISM density and a size of
about 5 pc. The mass fraction of the ejecta in the cloud is up to an order of magnitude larger
than in the rest of the SNR. The outer radius of the cloud is bounded by more inflowing material,
which is slightly underdense relative to the ISM. Meanwhile, the shell has broadened to about
∆R ∼ 20 pc and the compression ratio is only slightly above unity. The shell instabilities have
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lead to complex substructure within the shell. The shell is composed of many ∼ pc size blisters,
which are bounded by outflowing, overdense shells and filled with inflowing, underdense gas.

In order to describe the launching mechanism of the implosion in more detail, in Figure 4.5 we
show the time evolution of various globally computed quantities for the model N1 n2 L13 HC with
a maximum grid resolution of ∆x = 0.125 pc. Here we use the L13 model, because due to storage
limitations it was not feasible to run an L14 model with high output cadence. The different panels
show the time evolution of mass, momentum, kinetic & thermal energy, pressure, volume and
ejecta mass, calculated for the different gas components described in Figure 4.1.

Extensive quantities are computed by summing up the contributions from each cell belonging
to the respective gas components. The volume averaged pressure of each gas component i is
calculated as

pi = (γ − 1)
Eth,i

Vi
, (4.13)

where γ = 5/3 is the adiabatic index, Eth,i is the thermal energy and Vi is the volume.

After an initial relaxation period the solution approaches the energy-conserving ST phase, during
which the entire SNR is hot and ∼ 70% of the energy is thermal, in agreement with analytical
calculations (Taylor, 1950; Sedov, 1959).

Shortly before shell formation, after t ∼ 10−3 Myr, a reverse pulse emerges, is reflected in the
center and merges with the shock again.

At shell formation tsf ∼ 3×10−3 Myr the bubble mass reaches a maximum and the shell mass begins
to increase. Similarly the momentum of the bubble gas reaches a maximum as the momentum
of the shell starts to increase. The total thermal energy begins to drop steeply, while the kinetic
energy remains constant. The thermal energy is dominated by the bubble while the shell carries
negligible amounts of thermal energy. On the contrary the kinetic energy of the bubble drops
rapidly and is taken over by that of the shell. The pressure of the shell after its formation is
initially roughly constant and much lower than that of the bubble, which however drops rapidly.
The volume of the SNR is dominated by the hot bubble, which after shell formation initially
decreases until it reaches a fixed volume filling factor of about ∼ 2/3, with a corresponding
volume filling factor of the shell of about ∼ 1/3. Most of the ejecta stay within the bubble and
only slowly get incorporated into the shell. This behavior is in line with the modified version of
the PDS phase described in 1D by Cioffi et al. (1988) and in 3D by Kim & Ostriker (2015).

After about 10−2 Myr most of the SNRs mass, momentum and kinetic energy is carried by the
still entirely outward moving shell. Until this point the momentum has still been increasing, but
at this point the increase stops, marking the beginning of MCS phase. The kinetic energy starts
to decrease as t ∝ t−0.75, consistent with the analytical expectation. The pressure of the shell
begins to decrease due to the effect of radiative cooling, while the pressure of the bubble keeps
decreasing rapidly. About 10% of the ejecta are now in the shell.

After 2 × 10−2 Myr the pressure of the bubble falls below that of the shell. At this point the
volume filling factor of the bubble begins to decrease and that of the shell correspondingly has
to increase, corresponding to a relative broadening of the shell. At this point the majority of the
ejecta mass is in the shell.

The backflow emerges after tlaunch ∼ 0.3Myr at the same time as the pressure of the shell ap-
proaches the ambient pressure. This inward flow is quite different from the series of reflected sound
waves described by Cioffi et al. (1988). While the sound waves are associated with the bubble and
carry negligible amounts of mass, the implosion is associated with the shell and carries relatively
large amounts of mass, which are growing. The pressure of the outward moving shell levels off at
the ISM pressure, while that of the inward moving component increases. The emergence of the
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Figure 4.6: Rescaled version of Figure 4.5 for various models in media with different density. Solid,
dashed and dotted lines correspond to the hot bubble, outflowing, and inflowing shell, respectively.
The time is normalized by tnsf (see text). Quantities with subscript ’sf’ correspond to the value of
the whole SNR at t = tnsf. In panel (c) the thermal and kinetic energy are plotted with an opacity
alpha of 1 and 0.5, respectively.

backflow leads to a slight decrease in total radial momentum.

After 1.5 Myr, about 1% of the shell mass is moving inward, carrying about 1% of the ejecta back
to the center. At this point, the bubble has disappeared entirely.

4.2.4 Universality of the Mechanism

In Figure 4.6 we show a rescaled version of Figure 4.5 for the models N1 n0 L11 HC, N1 n1 L11 HC
and N1 n2 L11 HC. Time is measured in units of the shell formation timescale tnsf. Mass, momen-
tum and volume are normalized to their value at tnsf and pressure is normalized to the ISM value
in cooling equilibrium.

As expected from the self-similarity during the ST phase (Sedov, 1959), all models exhibit a very
similar time evolution before shell formation. In the models N1 n0 L11 HC and N1 n1 L11 HC
there is already some small amount of cold gas during this phase. This is due to the method used
to extract SNR gas, which might include a negligible number of unshocked cells.

After shell formation, the time evolution in all models is qualitatively the same as for N1 n2 L13 HC,
though timescales in units of the shell formation timescale may differ. In the models N1 n0 L11 HC
and N1 n1 L11 HC the pressure of the outward moving shell starts to decrease after the bubble
pressure falls below it after 3 – 4 tnsf, while in N1 n2 L13 HC it already starts to decrease already
slightly before that.

We interpret this difference as follows: The pressure can either decrease by radiative cooling
or adiabatic expansion. When the pressure of the bubble drops below the shell pressure before
radiative cooling becomes important, the shell will cool adiabatically. On the other hand, if the



58 4. Cloud Formation by Supernova Implosion

cooling timescale is shorter than the timescale to reach pressure equilibrium between the shell and
the bubble, the shell will start to cool radiatively before the bubble pressure has dropped. In both
cases the shell pressure will start to decrease, albeit with a slightly different scaling. It is therefore
no surprise that in the run with a higher density and therefore a shorter cooling timescale, the
pressure starts to drop slightly earlier.

In all models, once the pressure of the shell approaches that of the ISM, a steadily growing backflow
is launched.

Timescales

Having established the universal emergence of backflows, once the shell pressure approaches that
of the ambient medium, we may investigate next, how the timescales for launching the backflow
tlaunch and subsequently forming a central overdensity tcf depend on the explosion parameters.

We define the launching timescale as the earliest time, when the inflowing shell mass exceeds
0.1M⊙. We choose this threshold, because especially in the runs, where the shell is resolved
with many cells, instability of the shell itself can lead to eddies within the shell, which lead to a
small amount of inflowing shell gas that is not associated to the implosion. The cloud formation
timescale is defined as the earliest time after launching, when the density in the innermost radial
bin exceeds the ambient density.

Due to the limited temporal resolution of the snapshots, the events actually occur somewhere
between the first snapshot when the above conditions are met and the previous snapshot. We
therefore report the arithmetic mean of the two time points and indicate the time interval between
the two snapshots with error bars.

In Figure 4.7 the timescales are shown as functions of the ambient density (left panels) and the
explosion energy (right panels). The markers are colored by the respective other variable.

We find launching timescales between a few hundred kyr and few Myr. There is a negative
trend with density and a positive trend with energy. The scaling and normalization are in rough
agreement with Equation 4.10, with factor of ∼ 2 differences.

At high densities differences might arise, because in the derivation of Equation 4.10 we have
neglected the role of radiative cooling below T ∼ 104 K for the shell gas (see also discussion of
Figure 4.6), which would lead to a shallower scaling of tPDS (Eq. 4.6) with density, which in turn
manifests as a steeper scaling of tlaunch.

At the low density end, the differences might arise, because here Pshell, PDS is already quite similar
to PISM, eq and therefore the assumed scaling might not apply since the shock is already quite
weak at tPDS.

The cloud formation timescale is on the order of several Myr to over 10 Myr for our simulations
with the highest explosion energies and lowest densities. At nH = 0.1 cm−3 no overdense clouds
have formed by the end of our simulations. There is no clear trend with density. The cloud
formation timescale becomes shorter for SNRs in higher density environments, though for high
explosion energies the timescale appears to level off and it even slightly increases for the highest
densities. The timescale generally increases with energy, roughly scaling like tcf ∝ E0.3

51 .

The scaling with the explosion energy appears to be the same as the scaling of the radius of the
SNR at launching Rlaunch (E51, nH), as predicted by Equation 4.11. Equation 4.12 then implies
that the implosion velocity Vin is independent of explosion energy and depends only on density.
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Figure 4.7: Launching timescale (top panels, a & b) and cloud formation timescale (bottom panels,
c & d) as a function of explosion parameters. Left panels (a & c) show the timescales as a function
of ISM density and right panels (b & d) as a function of explosion energy. Solid lines correspond
to the model described in section 4.2.2. Data points are colored by the respective other explosion
parameter. We added a small displacement (≤ 5%) to the x-values in order to reduce the overlap
of the markers.
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4.2.5 Cloud Properties

In the previous section we have shown that for a wide range of explosion parameters, the SNRs
implode and form a cloud in their center. Here we summarize the properties and evolution of
these clouds and discuss how they depend on the explosion parameters.

To this end, we utilize radial profiles of density, kinetic and thermal energy density to compute the
size, mass and virial parameter of the clouds. We note that our simulations are strictly without
self-gravity. The timescale for self-gravity to have a qualitative effect on the evolution of the SNR
is much longer than the simulation time. Nonetheless, it might have an effect on the evolution of
the dense cloud, and in order to estimate the importance of self-gravity for the cloud and predict
whether or not it might become self-gravitating and eventually form stars it is useful to look at
the virial parameter.

We define the size of the cloud as the radius of the interface between the innermost radial bin,
where the density falls below the ambient density. The cloud mass is defined as the integral of
the density profile up to that radius and the virial parameter is defined as the ratio of the sum of
kinetic and thermal energy and the modulus of the potential energy of the cloud. The kinetic and
thermal energy are computed by integrating over the respective radial profiles and the potential
energy is defined as

|Epot| =
3

5

GM2
cloud

Rcloud
. (4.14)

Here we assume that the density profile within the cloud is flat and that all motion within the
cloud is opposing the gravitational pull. Both of these assumptions approximately hold true (see
e.g. Figure 4.4).

In Figure 4.8 we present the time evolution of the cloud’s size, mass and virial parameter for the
different models.

In panel a) the cloud radius is shown as a function of time. The cloud grows to a size of several to
few tens of parsecs within 10 Myr. In lower density environments clouds grow larger, with little
dependence on the explosion energy.

Panel b) shows the cloud’s mass as a function of time. At the end of the simulation, the mass of
the central cloud has reached a value of several thousand to about 2× 104 solar masses, with only
a small dependence on the density of the ambient medium. Clouds in high density environments
become somewhat more massive. There is only little dependence on the explosion energy.

Panel c) shows the cloud’s virial parameter as a function of time. The initial virial parameter
scales with the ambient density roughly as

αvir,0 ∼ 104 n−1
0 , (4.15)

where n0 = nH/cm
−3, and decreases steadily approaching and dropping below αvir ∼ 1 for the

high density runs, suggesting that indeed the clouds would become self-gravitating. There is little
variation due to the explosion energy.

The masses and radii of the clouds formed by SN implosion are comparable to the values used in
the initial conditions for the clouds in the STARFORGE (Grudić et al., 2022; Grudic et al., 2023;
Farias et al., 2024) simulation suite, which studies the star formation from the collapse of a single
giant molecular cloud. This suggests, that the thus formed clouds might indeed trigger another
generation of star formation.
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Figure 4.8: Time evolution of the central cloud’s radius (a), mass(b) and virial parameter (c)
for the different models. Solid, dashed and dotted lines correspond to an explosion energy of
E51 = 1.0, E51 = 5.0 and E51 = 14.0, respectively. Lines are colored by the ISM density.
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4.3 Discussion

In the previous section we have described a new mechanism by which a cloud can form inside
a radiative SNR due to its implosion as the shell pressure approaches that of the ISM. In the
following, we will discuss some of the limitations of our model, the role of some of our model
ingredients and the implications of our findings in the context of galaxy evolution.

4.3.1 Limitations

In this work, we have shown the existence of SN implosions and subsequent cloud formation in
the center of the SNR, using a suite of hydrodynamic simulations of SN explosions in a uniform
and stationary medium. Of course, a uniform and stationary ISM is a great simplification of the
complexity of a realistic ISM.

In a more realistic model for the ISM, like the kind of turbulent, stratified box used in state-
of-the-art ISM simulations (see e.g. Walch et al., 2015; Kim & Ostriker, 2017), the existence of
backflows as described in our work is a priori not guaranteed. Continuous or sufficiently frequent
energy injection can keep the SNR overpressurized and prevent an implosion (Kim et al., 2017).
Indeed, stellar populations are expected to explode SNe in regular intervals before they run out
of fuel (see e.g. Leitherer et al., 1999). However, in the cases of runaway stars or populations
hosting a sufficiently small number of massive stars this limitation does not apply and even in the
case of stellar populations that remain active for a long time, eventually the bubbles are going to
evacuate and cool off enough to make an implosion feasible.

Besides the importance of continuous driving, the role of the ambient medium cannot be ignored.
In a more realistic description of the ISM, the ambient medium is highly structured due to the
combined effect of turbulence, shear and stratification. SNe exploding in such an environment
will follow the geometry of the ISM (Makarenko et al., 2023), as the shock wave can only slowly
penetrate into dense structures, but will quickly fill out the volume filling low density medium,
leading to highly amorphous SNR shapes (Kim & Ostriker, 2015; Lancaster et al., 2021). In such
a configuration, the SNR will reach pressure equilibrium at different times in different directions,
leading to a displacement and deformation of the clouds formed in this way. If the momentum
carried by the backflowing gas from different directions is not equal and opposite, the cloud
would further end up with a net momentum leading to a drift. Similar asymmetries can follow
from the interaction of the SNR with neighboring shocks, e.g. due to neighboring superbubbles
(Breitschwerdt et al., 2000) or small-scale turbulence, which can locally contribute to the pressure
opposing the shock expansion. In Appendix C.4 we show, that asymmetries in the ambient pressure
can indeed trigger an implosion locally.

Besides the limitations due to the environment, more complete physics might also qualitatively
modify our conclusions.

As mentioned in section 4.2.5 the virial parameter of the clouds drops below unity a few Myr after
their formation. While it seems plausible that self-gravity is too weak to have an important effect
on the implosion mechanism and the crossing of the inflowing gas, once the cloud has formed, it
might collapse and fragment due to its self-gravity.

Kim & Ostriker (2015) have demonstrated that magnetic fields play only a subdominant role in
SNR evolution. On the contrary, Gentry et al. (2019) show that magnetic fields suppress the growth
of instabilities at the bubble-shell interface, which reduces mixing and delays radiative cooling in
the case of multiple consecutive SNe. However, it is important to note that Kim & Ostriker
(2015) used a mesh code, while Gentry et al. (2019) used a Lagrangian method. While both
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methods achieve comparable resolution in the shell, the mass resolution in the bubble is several
orders of magnitude higher in mesh codes, which are thus likely less affected by spurious cooling of
bubble gas. Nonetheless, contributions to the pressure from a magnetic field and cosmic rays can
potentially alter the timescales for implosion and cloud formation or even prevent these processes,
if they can maintain a high enough bubble pressure. Indeed, in the case of the hydromagnetic
RTI Breitschwerdt et al. (2000) have shown, that the magnetic field has a stabilizing effect, that
implies a characteristic length scale at which the instability can act. In this case the backflowing
gas fragments into blobs of size similar to the fastest growing wavelength.

Sharma et al. (2014) conducted 1D spherically symmetric simulations of SNe. They note that most
of the heat losses occur in the unresolved layer between the bubble and the shell. The physical
width of this layer is much too small to resolve, even with their 1D method, but they show that
nonetheless the cooling losses are converged, even for moderate resolution.

Similarly, as discussed by Fierlinger et al. (2016), while the length scale associated with thermal
conduction is much too small to be resolvable with current techniques, its effect is negligible.
However, recent results by El-Badry et al. (2019) in the context of continuously driven superbubbles
suggest that heat conduction does in fact play an important role for the transport of energy
and mass across the bubble-shell interface. However, it is worth nothing that El-Badry et al.
(2019) artificially enhanced the conduction rate to model turbulent mixing due to 3D instabilities,
which makes a direct comparison difficult. Lancaster et al. (2021) simulate the expansion of
a continuously driven wind bubble in a turbulent medium confirming that turbulence indeed
enhances the mixing across the bubble-shell interface leading to catastrophic cooling losses in
ideal hydrodynamics. Yet, the importance of these effects remains unclear in a picture where
magnetic fields suppress the growth of the instabilities responsible for the mixing. Further studies
of individual SNe with resolved heat conduction, magnetic fields and turbulence are required in
order to settle this ongoing debate.

4.3.2 Role of the cooling model

In section 4.2.2 we have presented a model for the launching of the backflow. There are two
ingredients of our model that are sensitive to assumed cooling physics. First, we have assumed
that the temperature of the shell right after shell formation remains stable at 104 K, as the time it
takes to cool beyond this temperature is much longer than the dynamical timescale. Second, we
assume that the ISM is in cooling equilibrium, when we equate the shell pressure with the ISM
pressure. Both of these assumptions invoke the assumed cooling physics, which may affect the
resulting timescales and cloud properties.

Kim et al. (2023b) compare their detailed radiative transfer model to a range of commonly used
cooling functions (see their Figure 17). They find that in these functions the equilibrium pressure
at a given density may differ by up to three orders of magnitude between the models. In the
Ramses cooling model utilized in this work the equilibrium pressure is indeed relatively high. As
a consequence the SNR is expected to implode 100 times earlier with our cooling model, than
e.g. with the model by Ploeckinger & Schaye (2020), which has an exceptionally low equilibrium
pressure. Further complications like thermal instability and non-equilibrium effects (Katsuragawa
et al., 2022), might also qualitatively alter our conclusions.

For a more detailed discussion, we refer the interested reader to appendix C.3, where we compare
the results of simulations with different cooling models. The comparison indicates, that indeed a
lower ambient pressure will delay the implosion and that the details of the cooling physics, may
have a slight effect on the details of cloud formation, even at a comparable ambient pressure.



64 4. Cloud Formation by Supernova Implosion

4.3.3 SN Implosion in the Literature

Despite the fact that the evolution of SNRs in a uniform medium has been studied in great detail
for more than 40 years, to our knowledge there has been no mention of SN implosion. Here we
discuss the various reasons for why this process might have remained unnoticed for so long.

Many authors (e.g. Chevalier, 1974; Straka, 1974; Thornton et al., 1998; Kim & Ostriker, 2015) only
focus on the transition to the radiative phase and would therefore not advance their simulations
far enough to reach the implosion stage.

Cioffi et al. (1988) set the pressure of the ambient medium to an artificially low value in order to
maintain a strong shock, which in turn delays the implosion.

Fierlinger et al. (2016) use one-dimensional hydrodynamic simulations to study the energy input
from SNe in a uniform and stationary media with a range of densities and an initial temperature
of 1000 K. They advance their models until the shock velocity approaches the sound speed of
the ISM and thus in principle should have been able to see an implosion. However, the internal
structure of the SNRs was out of their scope and thus they did not report any backflow.

Gent et al. (2020) utilize three-dimensional hydrodynamic simulations of radiative SNRs to validate
the PENCIL code. Even though they advance their models until the shock becomes sonic, as they
mostly focus on benchmarking their code with previous work, they do not report any backflow.

Breitschwerdt et al. (2000) use linear perturbation theory to describe a type of hydromagnetic
RTI that, in the limit of vanishing magnetic field, is very similar in nature to the SN implosion
described here. They show, that the interaction of two SNRs can lead to an inward flow of clouds
originating from the interaction region. Our results, which appear to correspond to the same kind
of instability, seem to confirm the linear prediction of Breitschwerdt et al. (2000).

To our knowledge there are no instances of SN implosions reported in observations. This might
however simply attest to the fact, that radiative SNRs, in particular those close to merging with
the ISM, are very dim and thus are often difficult to observe (Green, 2019; Koo et al., 2020; Zhou
et al., 2023). Moreover, the fact that the morphology of imploding SNRs differs qualitatively from
traditional SNRs might have lead to a misclassification of imploding SNRs as something other
than a SNR.
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4.3.4 Implications for Galaxy Evolution

We have shown that under quite general conditions, old SNRs will implode and form a compact,
massive, and potentially self-gravitating cloud in its center. Such a cloud could collapse and
fragment under its own self-gravity to form stars, suggesting a novel mode of positive feedback.

Furthermore, given that such clouds would be highly enriched with the SN ejecta, and therefore
with short-lived radionuclides (SLRs) like 26Al, this provides an attractive pathway to the forma-
tion of planetary systems, where the heating due to SLRs plays an important role (Urey, 1955).
Indeed, it has been concluded by Forbes et al. (2021) that the enrichment with SLRs would have
to occur prior to core formation, a condition that at face value is readily fulfilled by our proposed
mechanism. However, further studies are necessary to investigate to what extent mixing due to
small-scale turbulence might further dilute the imploding gas.

Besides the importance for star and planet formation we make a clear prediction for the lifetime of
hot cavities in the ISM, which are filled shortly after the implosion is launched. This number is an
important parameter in models for the multiphase structure of the ISM (McKee & Ostriker, 1977;
Wolfire et al., 2003; Draine, 2011), which are used to estimate a wide variety of ISM properties.

4.4 Concluding Remarks

We have performed 3D hydrodynamic simulations of SNRs in a uniform, stationary medium
with non-negligible thermal pressure in order to study their evolution after shell formation. Our
simulations reveal that radiative SNRs implode after the shell reaches pressure equilibrium with
the ISM. The implosion leads to the formation of a compact, massive cloud that might soon become
self-gravitating and that is highly enriched with SN ejecta. As we discuss, this novel mechanism
of cloud formation provides attractive initial conditions for star and planet formation and might
have some important implications for the theory of the ISM.

While the idealized setup is useful for understanding the underlying physical mechanism, under-
standing the role of SN implosion and subsequent cloud formation in a more realistic setup deserves
further investigation.

We conclude that the dispersal and merging of SNRs with the ISM offers a wealth of hidden
complexities, which deserve further study as they can help understand the physics of the ISM.
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Chapter 5

Star Formation by Supernova
Implosion

Software used in this chapter:
Julia v1.6.5 (Bezanson et al., 2017), and Matplotlib v3.5.1 (Hunter, 2007)

This work has been published in the Astrophysical Journal Letters, Volume 971, Number 2, August
2024, L44 (Romano et al., 2024b). After we submitted the paper presented in the previous chapter,
Andi requested, I come up with a way to estimate the star-formation rate from the implosion
clouds. During February 2024, I suffered from pneumonia, and was gone from work for about a
month. During this time, in fever-delirium the solution to the problem came to me in a dream.
After I got back to work I worked out the details of the model in no time and after receiving useful
feedback from Andi and Manuel as well as many people at the MIAPbP ADONIS workshop held
from March 25 – April 19 2014, we finalized the paper in no time.

Star formation is easy. Giant Molecular Clouds (GMCs) with masses ∼ 104 − 107 M⊙ (Williams
& McKee, 1997; Miville-Deschênes et al., 2017) fragment, producing gravitationally unstable cores
that collapse (e.g. Jeans, 1902; McKee & Ostriker, 2007; Rosen et al., 2020) and form stars. Yet,
a closer look reveals that our understanding of the processes linking these stages of star formation
and even the formation of the GMCs themselves is far from being predictive (see e.g. Lada et al.,
2013; Chevance et al., 2020). Indeed, the processes underlying star formation remain to be one of
the biggest puzzles in the current framework of galaxy formation and evolution.

One of these processes, which could explain the formation of star-forming GMCs is so-called
triggered star-formation(Elmegreen, 1998, 2011). The underlying idea being that shocks, e.g. due
to Supernovae (SNe) or other feedback processes, could compress the ambient gas and drive it
towards gravitational instability (GI).

Observational evidence suggests that stars form spatially and temporally correlated (Gaczkowski
et al., 2015, 2017; Krause et al., 2018; Zucker et al., 2022; Ratzenböck et al., 2023; Verma et al.,
2023), pointing towards triggered star-formation scenarios. Meanwhile, many of the proposed
triggers have been confirmed in numerical simulations (Dobbs et al., 2022; Herrington et al., 2023;
Horie et al., 2024).

Recently, Romano et al. (2024a) have found that besides the classical triggering by shock-compression,
SNe will eventually implode due to the pressure of the interstellar medium (ISM) and form a dense,
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highly chemically enriched cloud in their center, which might collapse and form stars. In this let-
ter, we leverage their results to give an estimate of the amount of star formation that can be
expected from this process.

5.1 Methods

A common way to quantify the star-formation efficiency is the so-called star-formation efficiency
per free-fall time ϵff. It is defined as the ratio of the star-formation timescale and the free-fall
timescale (see e.g. Schinnerer & Leroy, 2024, for a review):

ϵff =
tff
tsf

. (5.1)

The average free-fall timescale in the ISM prior to the explosion

tff =

√
3π

32Gρ
∼ 44.9n−0.5

0 Myr , (5.2)

where n0 is in units of cm−3. tff depends only on the density ρ = µmH n0 of the ambient medium,
where µ = 1.4 is the mean atomic weight and mH is the mass of a hydrogen atom. On the other
hand, the star-formation timescale

tsf =

(
1

ρ

dρ

dt

∣∣∣∣
sf

)−1

, (5.3)

depends on the details of the processes that convert gas into stars.

Here we derive an expression for the timescale of SN-implosion-triggered star-formation. We
consider two cases. In both cases a central stellar population drives a shock which will implode
due to the pressure of the ISM, leading to the formation of a central cloud (Romano et al.,
2024a). Once the cloud becomes gravitationally unstable it collapses and forms new stars. In
the first, cyclic case, we consider the long term average of stellar populations that can produce
enough massive stars to keep maintaining a continuous cycle. In the second, single-burst case we
consider a stellar population or a single star driving a single iteration of SN-implosion-triggered
star-formation, which may then either continue on indefinitely as in the cyclic case, or cease due
to the lack of newly formed massive stars. The main difference between the two scenarios is that
in the former, the number of SN explosions per cycle is fixed by the expected stellar mass that is
formed by each cycle, while in the latter it is kept as a free parameter. A schematic overview of
such a cycle is shown in Figure 5.1.

We utilize the results of recent simulations by Romano et al. (2024a). Their results include
timescales for various stages of SN Remnant (SNR) evolution and cloud formation as well as
information about various cloud properties as a function of time after its formation (see e.g. their
figures 7 and 8).

Besides these results, we need to make the following simplifying assumptions:

1. Stellar populations follow the canonical Initial Mass Function (IMF) ξstar (m) from Kroupa
& Jerabkova (2021).

2. Implosion-triggered star-formation can only be sustained if it leads to the formation of at
least one massive (m⋆ > 8M⊙) star, which can trigger another SN implosion.

3. The ambient medium is initially at rest, with a uniform density of nH = n0 and returns to
this state by the end of each cycle.
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Figure 5.1: A schematic overview of SN-implosion-triggered star-formation. In this process, an
explosion from a central source drives a shock (I), which eventually implodes (II) and leads to the
formation of a central cloud (III). The central cloud grows and eventually becomes gravitationally
unstable, leading to star formation (IV). Depending on whether there are newly-formed, massive
stars, this cycle can repeat. The arrows connecting the different stages are decorated with the
corresponding transition timescales defined in equations 5.5, 5.7, 5.10 and 5.12. The cloud forma-
tion time tcf is measured from the time of the explosion so the time between implosion and cloud
formation is tcf − tlaunch.
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4. We neglect the role of early feedback (i.e. stellar winds and ionizing stellar radiation) and
assume that all stars in the stellar population explode simultaneously in a common location,
injecting a total energy of ESN = 1051 erg per SN into the ambient medium.

5. We neglect all other sources of star formation and stellar feedback.

The star-formation-rate per unit volume for this process can be written as

dρ

dt

∣∣∣∣
sf

=
M⋆, formed

tcycleVexp
, (5.4)

where the stellar mass formed per cycle M⋆, formed = ϵ⋆ Mcloud is parameterized as a fraction ϵ⋆
of the mass of the central cloud prior to collapse, Vexp = 4π/3R3

exp is the volume traced by the
shock during its expansion, and

tcycle = tdelay + tcf + tGI + tff, cloud , (5.5)

is the time it takes to complete one cycle.

The fraction of cloud mass that is converted into stars ϵ⋆ has been constrained both from obser-
vations (Lee et al., 2016; Chevance et al., 2020) and simulations (Grudić et al., 2022; Farias et al.,
2024). It shows large variation with a typical value of ϵ⋆ ∼ 10%. Due to its large uncertainties,
we treat this number as a model parameter, with a fiducial value of ϵfid⋆ = 10%.

In summary the resulting free-fall efficiency, associated with SN-implosion-triggered star-formation
can be compactly written as

ϵff = ϵ⋆
Mcloud

Mexp

tff
tcycle

(5.6)

where Mexp = µmHn0Vexp is the total mass swept up by the SNR during it’s expansion, and tff,
tcycle and Mcloud are given by eqs. 5.2, 5.5 and 5.11, respectively.

There is some delay before the massive stars in a newly formed population explode. This time
delay has been computed by Saitoh (2017) under the single stellar population approximation and is
typically in the range of tdelay ∼ 2.2 − 4.6Myr. We treat this timescale as a model parameter with
a fiducial value of tfiddelay ∼ 3Myr. However, we note that for stellar populations with exclusively
long-lived massive stars, the time delay can be over an order of magnitude longer.

For n0 ≳ 1 the cloud-formation timescale (Romano et al., 2024a)

tcf ∼ 4n−0.15
0 N0.3

SN Myr , (5.7)

where NSN is the number of SNe exploding simultaneously.

After its formation the central cloud evolves and its mass grows roughly like

Mcloud ∼ 20

(
t

1Myr

)2.6

M⊙ , (5.8)

and its virial parameter drops

αvir ∼ 6000n−1
0

(
t

1Myr

)−1.75

M⊙ . (5.9)

The cloud collapses when it becomes gravitationally unstable, i.e. αvir (tGI) ∼ 1, which leads to

tGI ∼ 144n−0.57
0 Myr , (5.10)

Mcloud (tGI) ∼ 8× 106 n−1.49
0 M⊙ . (5.11)
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After the onset of collapse, the cloud is expected to collapse on a free-fall timescale, which depends
on the density of the cloud at tGI.

We find that the overdensity of the cloud relative to the ambient medium does not follow a simple
pattern, but its overall magnitude oscillates in time, with typical values in the range of χ ∼ 2− 4
and no clear correlation with the simulation parameters. We thus treat the overdensity as a model
parameter with a fiducial value of χfid = 3, which is justified by our results in section 5.2 that
show that the value of χ only has a marginal effect on the star-formation efficiency. The collapse
timescale of the cloud is thus

tff, cloud = χ−0.5 tff ∼ 44.9χ−0.5 n−0.5
0 Myr . (5.12)

In the meantime the blastwave expansion has affected a spherical region of radius Rexp. Assuming
that the blastwave expands as a momentum-conserving snowplow, i.e. R ∝ t1/4, we estimate the
size of the affected region as

Rexp ∼ Rlaunch

(
tcf + tGI + tff, cloud

tlaunch

)1/4

, (5.13)

where Rlaunch ∼ 51.3n−0.27
0 N0.3

SN pc and tlaunch ∼ 0.98n−0.11
0 N0.27

SN Myr (Romano et al., 2024a).

The scaling of the cloud mass eq. 5.11 implies that above a certain density nmax, the cloud mass
becomes so low that it becomes unlikely to form massive stars, which could trigger the next cycle
of star formation.

By normalizing the IMF to the stellar mass formed from the collapsing cloud, we find that the
number of massive stars is

NSN =

∫ ∞

8M⊙

ξstar (m) dm ∼ 1.08
ϵ⋆Mcloud

100M⊙
, (5.14)

which in combination with eq. 5.11 implies that the maximum density at which one can expect
the formation of at least one massive star is

nmax ∼ 1070 ϵ0.67⋆ cm−3 . (5.15)

A further constraint can be imposed by considering that the dynamics may be dramatically altered
due to vertical stratification if the shock breaks out of the galactic ISM before the implosion is
launched (see e.g. Koo & McKee, 1990). Indeed, for the lowest density considered here the SNR
would have expanded to a radius of Rlaunch ∼ 780 pc before imploding and thus if located in an
ISM resembling the solar neighborhood with a scale height of 150 pc (McKee et al., 2015) would
have broken out before it could have imploded.

For an isothermal, single-component disk in vertical hydrostatic equilibrium the vertical density
profile is ∝ sech2 (z/z0) with scale height (Behrendt et al., 2015)

z0 =
σ√

2πGρmp

∼ 338σ10n
−0.5
0 pc , (5.16)

with velocity dispersion σ = 10σ10 km/s and midplane density ρmp. By assuming that the SNe
explode in the midplane and requiring that the implosion should be launched before shock break-
out, one obtains the constraint

nH < 3.6× 103 σ4.35
10 N−1.3

SN cm−3 . (5.17)
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Figure 5.2: Star-formation efficiency per free-fall time as a function of density for various models
in the cyclic scenario. In panels (a), (b) and (c) the star-formation efficiency ϵ⋆, cloud overdensity
χ and stellar-population lifetime tdelay are respectively varied, while the remaining two parameters

are kept at their respective fiducial values of
(
ϵfid⋆ , χfid, tfiddelay

)
= (0.1, 3, 3Myr). Below the solid

black line in panel (a) not enough stars are formed to reliably maintain cyclic star-formation (eq.
5.15). The dashed, dot-dashed and dotted black lines correspond to the lower limit for the density
below which shock break-out is expected to affect the dynamics for various values of the ISM
velocity dispersion σ10 (eq. 5.18). The blue line and shaded area correspond to the value of ϵff
and its uncertainty derived from observations on scales of ∼ 100 pc (Schinnerer & Leroy, 2024).

For the cyclic case NSN is given by eq. 5.14 and thus this translates into a lower limit for the
density

nmin = 1.1× 103 σ−4.6
10 ϵ1.38⋆ cm3 , (5.18)

while in the single burst case eq. 5.17 provides an upper limit for the density, due to the different
scaling with density of Rlaunch and z0.

In summary the density in the cyclic case is constrained to be in the range

max
(
1.1× 103 σ−4.6

10 ϵ1.38⋆ , 1
)
< n0 < 1070 ϵ0.67⋆ , (5.19)

and for a single burst
1 < n0 < 3.6× 103 σ4.35

10 N−1.3
SN . (5.20)

Comparing the upper and lower limits for the density, we find that the cyclic case requires

ϵ⋆ < 0.93σ6.5
10 , (5.21)

and a single burst only triggers star formation if

NSN < 550σ3.35
10 . (5.22)

Both requirements are readily fulfilled for typical values of the parameters.

5.2 Results

In the previous section we have described a model to estimate the star-formation efficiency per free-
fall time ϵff for SN-implosion-triggered star-formation. Here we explore how our model compares
to observational estimates of ϵff and its dependency on the model parameters.
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5.2.1 Cyclic Star-Formation

In the cyclic scenario, the number of SNe per cycle is determined by eqs. 5.14 and 5.11. In the
limit of tGI/tcycle ∼ 1, we thus find

ϵff ∝ ϵ0.3⋆ n−0.22
0 . (5.23)

In Figure 5.2 we show how ϵff varies with respect to the model parameters ϵ⋆, χ and tdelay and
compare it to the most recent observational estimate of ϵff as reported by Schinnerer & Leroy
(2024).

Panel (a) shows the variation of ϵff with respect to ϵ⋆. The range of densities where cyclic star-
formation can be maintained becomes increasingly narrow as ϵ⋆ is reduced, as expected from
eq. 5.15. In media with σ < 45 km/s and thus sufficiently small scale-height, shock break-
out constrains the range of densities where our model for cyclic star-formation can be applied.
Furthermore, it becomes clear that for fixed density, ϵff scales as expected from eq. 5.23, since
tcf ≪ tGI + tff, cloud for n0 ≥ 1.

Panel (b) shows the variation of ϵff with respect to χ. Higher χ generally implies higher ϵff, with
a diminishing effect as χ ≳ 4. The effect diminishes because tGI ∼ 3 tff and both timescales scale
similarly with density. Thus, reducing tff, cloud ∝ tff will reduce the importance of tff, cloud relative
to the much longer tGI, but hardly affect ϵff.

Panel (c) shows the variation of ϵff with respect to tdelay. For tdelay ≪ 10Myr only a slight
reduction in ϵff is noticeable at high ambient densities. For longer delay times, comparable to tff,
the effect is stronger. Since the details of cloud formation are independent of tdelay and only tcycle
depends on it affine-linearly, ϵff ∝ t−1

delay in the limit where tdelay ≫ texp, i.e. high densities or
high tdelay. However, we do not expect this limit to play a big role, as extremely high values of
tdelay ≳ 40Myr are unexpected and even at the maximum density eq. 5.15 tdelay < texp indicating
that the role of tdelay is almost negligible for SN-implosion-triggered star-formation.

The range of values of ϵff obtained with the fiducial set of parameters is about two orders of
magnitude below that derived from observations ϵobsff = 0.5+0.7

−0.3 % with a relatively weak scaling

with density ϵff ∝ n−0.22
0 . The fact that we cannot explain ϵff ∼ 0.5% is however not a problem and

rather a feature as we expect several other processes such as classical triggered star-formation (see
e.g. Elmegreen, 1998) or spontaneous gravitational collapse (Kennicutt, 1989; McKee & Ostriker,
2007) to contribute to the star formation as well.

Given that the mass of the central cloud is significantly smaller than the total swept up mass, it is
not surprising that the contribution to the star formation is minor. However, it should be noted,
that the stars formed in the implosion cloud are expected to be more chemically enriched than the
bulk of the stars formed by other processes (Romano et al., 2024a). Moreover, we note that the
process is self-regulated, i.e. the cloud makes up a larger fraction of the swept up mass for fewer
SNe, which motivates us to study the single-burst scenario, which we explore below.

5.2.2 Single-Burst Star-Formation

In the single-burst scenario, we consider ϵff for a single iteration of SN-implosion-triggered star-
formation. Such an iteration could be triggered by the collective feedback of an entire stellar
population or the explosion of a single star, which includes both type-Ia and type-II SNe. It
is thus reasonable to measure tcycle from the time of the explosion, as the delay time bears no
meaning in this case, i.e. setting tdelay = 0.
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Figure 5.3: Same as Figure 5.2, but in the case of the single-burst scenario. Panel (c) shows
the dependency of ϵff with respect to NSN, with a fiducial value of Nfid

SN = 1. Here the dashed,
dot-dashed and dotted black lines correspond to the upper limit of the density above which shock
break-out is expected to affect the dynamics for various values of the ISM velocity dispersion σ10

(eq. 5.17).

As opposed to the cyclic case, in the single-burst scenario NSN is not determined by eq. 5.14, but
instead is treated as a free parameter. This implies, that now in the limit of tcycle ∼ tGI,

ϵff ∝ ϵ⋆ N
−0.7
SN n−1.26

0 . (5.24)

These scalings are reflected by panels (a) and (c) in Figure 5.3. Panel (b) shows, that as for the
cyclic case, the effect of χ is small, since tcycle is dominated by tGI.

Due to the strong scaling with density, the range of values of ϵff obtained with the fiducial set
of parameters spans four orders of magnitude. At low densities, star formation is very efficient
with ϵff ∼ 10% exceeding the observational mean by over an order of magnitude, while at higher
densities it becomes increasingly inefficient.

The fact that ϵff can significantly exceed the global average derived from observations does, how-
ever, not cause any conceptual problems, as the single-burst case should only occur occasionally.
Thus, while the single-burst scenario might contribute to the scatter, it is not expected to dominate
the global average.

5.3 Discussion

In the previous section we have shown the efficiency of SN-implosion-triggered star-formation in
two different scenarios. Here, we discuss some of the limitations of our model, and the implications
of our findings in the broader context of galaxy evolution.

5.3.1 Limitations

The model considered in this letter is a detailed analysis of the implications of the results of
Romano et al. (2024a). As such, the limitations applying to their results also apply to this model.

Neglecting the turbulent nature of the ISM likely affects both the timescales involved as well as the
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properties of the central cloud. Similarly, as discussed by Romano et al. (2024a) including more
complete physics models for processes, such as magnetic fields, cosmic rays, and heat conduction,
could qualitatively modify the cloud-formation process. Finally, the inclusion of early stellar
feedback and realistic time delays between SNe can further delay the implosion and thus cloud
formation (see e.g. Fichtner et al., 2024), leading to a lower star-formation efficiency.

A model is only as good as its assumptions. It is thus worthwhile to consider the role of our model
assumptions.

For sufficiently massive clouds, assuming an IMF seems to be justified by the observed statistics of
stellar populations (Kroupa & Jerabkova, 2021). However, for clouds with small masses, the IMF
is not well sampled in the high-mass end and the number of massive stars that are formed per
cycle will be dominated by stochasticity (see e.g. Grudic et al., 2023). Nonetheless, since our cyclic
model considers a long-term average, populations with NSN > 1 should – over a larger number of
iterations – sample the high-mass end of the IMF well enough to justify our treatment. We have
checked eq. 5.14 for different shapes of the IMF commonly used in the literature (e.g. the list of
IMFs in Saitoh, 2017) and have found only minor differences; The result that there is about 1 SN
per 100M⊙ of newly formed stars is on strong footing.

Clearly it is unreasonable to expect the ambient medium to return exactly to its initial state of a
uniform medium with constant density at rest. Nonetheless, in the context of the simulations of
Romano et al. (2024a) it is revealed that after cloud formation the density in the region between the
shock and the cloud indeed approaches the initial density of the ISM as the cavity is refilled with
backflowing material from the ever broadening front of the blastwave, while the remaining kinetic
energy is dissipated through small-scale shocks, leaving a nearly static, and slightly turbulent
medium.

Likewise, we expect the density in the cloud to be locally enhanced after its collapse. However,
as long as the SNR can break out of the cloud before shell formation the dynamics are not
expected to be strongly influenced. Furthermore, in a more complete picture early feedback might
counteract this density enhancement and with more realistic delays between the SNe the central
mass distribution is expected to have only a small effect compared to the potentially large time
delay before the last SN of the population explodes.

In a more realistic galactic environment, however, these considerations are confounded by several
factors. The complex interplay of neighboring shocks, gravitational torques, shear, and stratifica-
tion effects is expected to lead to significant inhomogeneities in the density and velocity distribu-
tion.

We expect the analysis of the single-burst case to be less affected, since the ISM in the immediate
vicinity of the SNR is not expected to change dramatically during one cycle.

On the other hand, in the cyclic case, we consider the long-term average, which means that
necessarily all of these effects will have enough time to affect the dynamics. As long as these
effects do not prevent cloud formation or disrupt the central clouds before they can collapse, we
expect the effect to be small. Nonetheless, in order to be certain a more thorough analysis is
required.

We expect that the effects of vertical stratification can be neglected if the SNR is contained within
a scale height of the galactic ISM. By assuming vertical hydrostatic equilibrium in an isothermal,
single-component disk we find that this constrains the range of densities for which our model can
be applied. These constraints however scale very strongly with the velocity dispersion and are
likely negligible at high redshift, where the velocity dispersion often exceeds 100 km/s (Krumholz
& Burkhart, 2016).
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Moreover, in the regime where the effective turbulent pressure dominates the ambient pressure, we
expect the implosion to be launched even earlier due to the increased ambient pressure, reducing
the importance of the stratification constraint. On the other hand, in this turbulent regime we
expect larger density fluctuations and more overall anisotropy which would affect our conclusions
in a way that is out of the scope of the simple model presented in this work.

Finally, we have neglected the role of other sources of star formation and feedback. While the-
oretical considerations suggest that individual SN shocks are an unlikely candidate for triggered
star-formation (Elmegreen, 2011), we anyway consider the potential contribution, given the un-
certainty of the subject.

Classical, triggered star-formation has been estimated to be delayed by about a free-fall timescale
(Elmegreen, 1998). For low ambient densities, we thus do not expect it to strongly affect the
mass budget for cloud- and subsequent star-formation by SN implosion, while at sufficiently high
densities, the onset of triggered star-formation might be before the onset of cloud formation and
thus reduce the mass budget for cloud formation.

On the other hand, we expect feedback from massive stars formed by classical, triggered star-
formation to interfere with the process in several ways. Feedback that is sourced sufficiently far
away from the explosion center might heat the ambient medium and increase its pressure, leading
to an earlier implosion and thus accelerate the star-formation process. However, if the source of
the feedback is too close, it might disrupt the cloud before it can form stars and delay or even
prevent further star formation, leading to a reduction of the free-fall efficiency.

5.3.2 Implications for Galaxy Evolution

We have shown that SN-implosion-triggered star-formation can contribute ≲ 5% of the globally
averaged star formation. While this might not seem like a large contribution, it should be noted
that a bulk fraction (≳ 10%) of the highly enriched SN ejecta are expected to be locked up in the
central, star-forming cloud. Indeed, if would be problematic if ϵff were much higher, as this would
potentially indicate that our model predicts too much metal-rich star-formation, the implications
for which we are discussing in the following.

The increment in metallicity per cycle can be expressed in terms of the fraction of ejecta material
locked up in the cloud Mej, cl/Mcl, the metallicity of the ejecta Zej and the metallicity of the
ambient medium Z0:

δZ =
Mej, cl

Mcl
(Zej − Z0) . (5.25)

The simulations of Romano et al. (2024a) suggest that ≳ 10 − 50% of the ejecta end up in the
cloud before it collapses. Indeed, in the absence of numerical diffusion, for a spherically symmetric
explosion, one expects 100% of the ejecta to be locked up in the central cloud, since radial shells
cannot cross in ideal hydrodynamics.

Shimizu et al. (2019) have computed the yields from various feedback processes for a Chabrier
IMF with mass range 0.1 to 120 M⊙ (Chabrier, 2003) using celib (Saitoh, 2017). They find that
for metallicities Z ≳ 10−6, stellar populations eject ∼ 10% of their mass in type-II SNe, with
Zej ∼ 15− 20%. In the more uncertain case of primordial metallicity the stellar populations eject
≲ 90% of their mass in type-II SNe, with Zej ∼ 33%. While their IMF differs slightly from the
one we have adopted here, we expect the results to only change slightly.

Combining these results and relating the mass of the stellar population to the cloud mass through
ϵ⋆ we find that for sufficiently high metallicity δZ ≳ 10−3 ϵ⋆ and for primordial metallicity δZ ≳
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3× 10−2 ϵ⋆.

A single cycle takes about tcycle ≲ 107 −108 yr, so over the lifetime of the universe there could have
been ≲ 100− 1000 cycles, during most of which the metallicity would have been non-primordial.
Neglecting physical dilution effects (but implictly accounting for numerical dilution, which may
account for a similar degree of dilution), we thus expect a maximum enrichment of ∆Zmax =
Ncycle × δZ ∼ (0.1− 1) ϵ⋆, slightly higher than the metallicities of the most metal-rich stars that
have been observed (see e.g. Do et al., 2015; Sextl et al., 2024; Rix et al., 2024).

We note that while the enrichment per generation might seem small, it still represents a massive
enhancement compared to the expected enrichment one would obtain if the ejecta were instead
fully mixed. Typically Mcl/Mexp ∼ 10−2 − 10−3, so without confining the ejecta into the central
cloud, it would take 104 − 105 cycles to reach solar level metallicities and beyond. Of course,
since globally star-formation is ∼ 100 times more efficient this difference can be overcome and on
average solar level metallicities are commonly reached by today.

As the chemical enrichment in this scenario is primarily due to type-II SNe, we expect an elevated
level of α-elements in the resulting stellar populations.

However, we note that we have neglected other enrichment mechanisms such as type-Ia SNe and
stellar winds from asymptotic giant branch and massive stars (Kobulnicky, 1999; Saitoh, 2017),
which would lead to even higher metallicities and less extreme α-abundances. On the other hand,
dynamical effect such as turbulence and galactic shear could counteract the local self-enrichment
by mixing the enriched gas with lower metallicity, ambient gas and limiting the maximum number
of cycles during which the system remains coherent. A detailed study of these limitations is out
of the scope of our simple model.

In summary, implosion triggered star formation can locally accelerate chemical evolution. If left
alone, the thus formed stellar populations can reach super-solar metallicities long before it would
be possible for populations that are formed in clouds that were mainly enriched by external sources.
Ultimately, the maximum metallicities and the number of highly enriched stars that can be reached
through implosion triggered star formation depend on the timespan during which the system can
coherently undergo this process.

5.4 Concluding Remarks

We have analyzed the efficiency of SN-implosion-triggered star-formation and its contribution to
the global star formation. Our analysis reveals that if maintained, star-formation from SN implo-
sion is quite inefficient, contributing only about ≲ 5% of the observed star-formation efficiency per
free-fall time ϵff. Nonetheless, because of the projected high metal enrichment of the thus formed
stars, we expect this process to contribute significantly to the formation of metal-rich stars.

While our idealized model is useful for obtaining a rough estimate of the contribution from SN-
implosion-triggered star-formation, more detailed models are required to explore the role of the
galactic environment and external sources of feedback.

We conclude that SN-implosion-triggered star-formation offers a compelling, well-motivated path-
way to the formation of metal-rich stars.
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Chapter 6

SISSI: Supernovae in a stratified,
shearing interstellar medium
I. The geometry of supernova remnants

Software used in this chapter:
Julia v1.10.0 (Bezanson et al., 2017), Matplotlib v3.5.1 (Hunter, 2007), Mera v1.4.4
(Behrendt, 2023b), Ramses v19.10 (Teyssier, 2002), and Healpix v2.3.0 (Tomasi & Li,
2021)

This work has been accepted for publication in Astronomy & Astrophysics on August 6 2025 and
appeared in Volume 702, October 2025, id. A12 (Romano et al., 2025a). The work builds heavily
on ongoing work by my collaborator Manuel, who provided the setup of the isolated galaxy and the
cooling and ISM models. Manuel provided useful guidance throughout the whole project. I worked
out the details turning the idea into a finished paper, presented in this work, by implementing
the various zoom-in refinement models, the resolution-scaling of the star-formation model and the
modifications to the SN-injection model, running and analyzing the simulations, and creating all
the figures and results presented in this chapter.

Advances in observational techniques over the last decades have made it possible to study the three-
dimensional (3D) geometry of structures in the nearby galactic interstellar medium (hereafter ISM,
e.g. Arenou et al., 1992; Lallement et al., 2019; Edenhofer et al., 2024). Of particular interest is
the Local Bubble (hereafter LB Cox & Reynolds, 1987; Linsky & Redfield, 2021), a diffuse, X-ray
emitting cavity, with a diameter of several hundred parsec, which curiously we are observing right
from the center (Zucker et al., 2022; Yeung et al., 2024). The LB is believed to be a superbubble
(SB) evacuated due to the collective feedback from massive stars, such as ionizing radiation (Linsky
& Redfield, 2021), stellar winds (Heiles, 1998) and supernovae (hereafter SNe Breitschwerdt & de
Avillez, 2006; Wallner et al., 2021).

The geometry of SBs and supernova remnants (SNRs) provides a valuable tool for understanding
phenomena such as galactic outflows, chemical enrichment and star-formation, with both obser-
vations and theory. Moreover, while the LB is to date the only SB whose 3D geometry has been
studied in great detail, novel techniques and a wealth of data will enable the study of many more
Galactic SBs (Leike et al., 2020; Edenhofer et al., 2024). Despite the lack of 3D information, ex-
tragalactic observations also provide hints to the geometry of SBs (Watkins et al., 2023; Jiménez
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et al., 2024). In order to be able to interpret this wealth of data, predictions from numerical
simulations and analytical models for the geometry of SNRs and SBs are required.

Over the last five decades, the evolution of spherical SBs expanding into a uniform ISM has been
studied in great detail (e.g. Chevalier, 1974; Cioffi et al., 1988; Truelove & McKee, 1999). While
these efforts have provided useful intuition for the different processes dominating the dynamics
of expanding SBs and shaped the theoretical methods used to describe their evolution (Kim &
Ostriker, 2015; Romano et al., 2024a), they lack the complexity needed to explore the physical
processes governing the departure from spherical symmetry.

The processes that might deform SNRs are manifold. It has been recognized early on that blast-
waves expanding into a vertically stratified atmosphere are stretched out along the density gradient
(Kompaneets, 1960; Laumbach & Probstein, 1969). SNRs have been found to preferentially ex-
pand into low density channels, following the density structure of the ambient ISM, shaped by
gravity and turbulence (Kim & Ostriker, 2015; Ohlin et al., 2019; Makarenko et al., 2023; Lau &
Bonnell, 2025). Moreover, galactic shear might stretch out a SB along the direction of rotation
(Tenorio-Tagle & Palous, 1987; Bisnovatyi-Kogan & Silich, 1995).

Observations of starburst galaxies reveal that many galaxies host galactic outflows (Xu et al.,
2022), suggesting that vertical stratification plays an important role in shaping the geometry of
SBs, provided they are powered by a sufficiently strong source. Studies of SBs in nearby star-
forming galaxies report ellipsoidal geometries, aligned with the galactic rotation (Watkins et al.,
2023), suggesting that galactic shear might be at play. However, from the same observations it
becomes clear that density structures, such as low density channels and high-density filaments
align themselves in the same way (Xie et al., 2024), making it difficult to disentangle the role of
shear and density structure in shaping the geometry of SNRs.

While these studies, have shown the effectiveness of these various physical processes in deforming
SNRs in isolation, there is only little work, addressing how they affect the geometry in concert (e.g.
Jiménez et al., 2024, who however neglect radiative cooling). Indeed, most studies investigating
the effect of stellar feedback in turbulent, stratified, and occasionally shearing media, focus on the
collective effect stellar feedback has on the average properties of the multi-phase ISM and galactic
outflows (e.g. de Avillez & Breitschwerdt, 2005; Walch et al., 2015; Fielding et al., 2018; Kim &
Ostriker, 2017). However, a clear picture of how the different processes affecting SNR geometry
compete remains unavailable.

In this paper, we present the SISSI (Supernovae In a Stratified, Shearing ISM) simulation suite,
which aims to address this gap and enable a more comprehensive study of the phenomenology of
SNRs. The SISSI project, which aims to evolve well resolved SNRs in a realistic, but controlled
environment, will enhance our theoretical understanding of the complex interaction of SNRs with
their environment and provide future observational studies with new tools for disentangling the
complex physics of SNRs in the galactic ISM.

The remainder of this paper is organized as follows. In Sects. 6.1 and 6.2 we describe the numerical
and analysis methods and give a description of the SISSI simulation suite. In Sects. 6.3 and 6.4
we give an overview of the time evolution of our simulated sample of SNRs as well as an analysis of
the geometry. We discuss our results in Sec. 6.5. Finally, we summarize our findings and conclude
in Sec. 6.6. In the Appendix we present the properties of the ISM of our simulated galaxy, and
provide some additional background to some of models and data used in our analysis.
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6.1 Numerical methods

We model the evolution of SNRs embedded in an isolated disk galaxy, using the adaptive mesh
refinement (AMR) code ramses (Teyssier, 2002), which solves the system of hydrodynamic equa-
tions on a finite volume, cartesian grid using a second-order unsplit Godunov method (MUSCL
scheme). The code reconstructs variables at the cell interfaces from the cell-centered values uti-
lizing the HLLC Riemann solver with MinMod total variation diminishing scheme (Toro et al.,
1994). ramses employs a conjugate gradient method and cloud-in-cell interpolation of particle
contributions to solve the Poisson equation.

We relate the gas pressure and internal energy using an adiabatic index of γ = 5/3. We implement
radiative cooling and heating based on the HEIKOU integration scheme (M. Behrendt et al.
2025, in prep.), which is based on the exact integration scheme (Townsend, 2009; Zhu et al.,
2017), utilizing the UVB dust1 CR0 G0 shield0 cooling table from Ploeckinger & Schaye (2020)
at solar metallicity. We model star-formation by allowing gas with densities nH > 100 cm−3 and
temperatures T < 150K to form star particles with m⋆ = 103 M⊙ at a rate given by a local
Schmidt-law (see e.g. Katz, 1992; Springel & Hernquist, 2003; Shimizu et al., 2019; Oku et al.,
2022), with ϵff = 1%.

The simulation is separated into two stages. In the first stage, we relax an isolated disk galaxy
into a quasi-steady state where gravitational collapse and cooling are balanced by stellar-feedback-
driven turbulence and heating. In the second stage, we turn off the feedback and zoom into the
ISM in various locations where we inject energy and mass to model the evolution of SNRs in a
self-consistently generated galactic ISM.

6.1.1 Setup: Isolated disk galaxy

The SISSI galaxy is part of the AVALON galaxy formation and evolution project (M. Behrendt
et al. 2025, in prep.), which utilizes the galaxy composer package (M. Behrendt et al. 2025,
in prep.) to generate the initial conditions of an isolated Milky-Way-like galaxy with galaxy
parameters taken from Bland-Hawthorn & Gerhard (2016). The simulation domain is a cubical
box with side length L = 48 kpc and outflow boundaries, subdivided into a coarse grid of 256
cubic cells, corresponding to a maximum cell size of ∆xmax = 187.5 pc. Cells are refined up to
an effective resolution of 212 (lmax, ISM = 12) or ∆xmin, ISM ≈ 11.7 pc if they are larger than
NJeans = 8 local Jeans lengths or if they contain a mass exceeding 20 (star) particle masses, which
ensures that star-forming cells are Jeans-unstable. We model the influence of the stellar disk,
bulge and dark matter halo as a static, axisymmetric background-potential. The gas is initially
set up as a combination of a warm, isothermal disk in vertical hydrostatic equilibrium and a hot,
diffuse uniform background.

During the initial relaxation stage, we model stellar feedback by injecting a thermal energy of
2×1052 erg and a mass of 200M⊙ into a single cell hosting a star particle 8 Myr after its formation.
We avoid overcooling by flagging cells affected by stellar feedback with a passive scalar that disables
cooling for the first ∼ 500 kyr after the feedback event.

We evolve the isolated disk galaxy for ≲ 500Myr until it has settled into a quasi-steady state
where gravitational collapse and cooling are balanced by feedback-driven heating and turbulence.
We show a projection of the surface density of the ISM after the initial relaxation in Fig. 6.1.
Shown here is only a small cut-out of the simulation domain focusing on the galactic ISM. While
the large box size is required to ensure a realistic galactic eco-system (galactic outflows and large-
scale fountain-flows) and reduce numerical effects due to the domain boundaries, for this study
the details of the circumgalactic medium can be ignored, as our focus lies mainly on the central



82 6. The geometry of supernova remnants

5.0 kpc
100

101

102

ga
s

[M
pc

2 ]

Figure 6.1: Face-on (top) and edge-on (bottom) projection of the simulated galaxy at t = 0. We
mark the explosion sites of the SNRs with star markers. Different marker colors correspond to the
different passive scalars associated with the SN ejecta. The ISM in the inner ∼ 10 kpc is highly
structured with filamentary outflows that reach several kpc above the midplane, while the ISM in
the outskirts is rather smooth without any prominent vertical features.
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Figure 6.2: Initial vertical height of the explosion sites, grouped by galactocentric radius (star
markers). Black dots denote the local galactic midplane; error bars the vertical scale height
defined in the App. D.1. Radial coordinates, corresponding to R = 2, 4.5 and 8 kpc, were shifted
for visibility. Even though the explosion sites were chosen to be close to z = 0, due to the warping
of the disk, some of the SNRs are located outside the midplane.

∼ 8 kpc.

6.1.2 Zoom-in: Treatment of supernova remnants

We flag 30 star particles at three galactocentric radii R ∈ {2, 4.5, 8} kpc and z ∼ 0, spaced
equidistantly in polar direction as SNR particles (see markers in Figs. 6.1 and 6.2). An overview
of the local ISM properties in the selected regions is given in the App. D.1.

We refine all cells within rzoom,l = Nzoom∆xl of an SNR particle up to a maximum zoom-in
resolution of lmax = 18, corresponding to ∆xmin ≈ 0.18 pc, where Nzoom = 15. We further relax
the system for ≲ 50 kyr to avoid numerical artifacts due to the sudden refinement. Unless specified
otherwise, we measure time from the time of the snapshot at the end of this final relaxation step
(t = 0).

Starting from t = 0, each SNR particle injects NSN SNe per injection. SN injections may happen
every ∆tSN. Models differ only by the choice of NSN and ∆tSN.

Per SN, each SNR particle distributes ESN = 1051 erg of thermal energy and Mej = 5M⊙ of ejecta
mass evenly within a sphere of radius Rinj = 5∆xmin ≈ 0.92 pc centered at the SNR particle’s
position. In addition each SNR particle injects one of two passive scalars Zej, i, corresponding to
red and blue markers in Fig. 6.1, used to label the mass fraction of SN ejecta and distinguish
between the ejecta of neighboring SNRs. We note that our method of injecting the SN energy in
a purely thermal fashion can lead to numerical artifacts that can affect the early expansion period
(private communication). However, in Romano et al. (2024a) we have demonstrated that the later
evolution from the ST phase onward is correctly reproduced, in agreement with the results of
Walch & Naab (2015), who find that different injection methods reproduce the ST phase equally
well, provided short enough time steps are used.

We refine polluted cells with Zej, i > 10−15 to at least lmin, zoom and even further up to at most
lmax, zoom if

∆x > 0.1RKO15
sf (nH) = 2.3

( nH

cm−3

)−0.42

pc, (6.1)

which roughly resembles the convergence criterion proposed by Kim & Ostriker (2015). We show an
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Figure 6.3: Refinement map produced with the refinement method outlined in Sec. 6.1.2 for the
idealized situation of a diffuse bubble with a dense shell, designed to roughly resemble an SNR after
shell formation. The solid-black, dashed-blue and dotted-green lines show the radial profiles of the
refinement level, gas density and ejecta fraction (scalar tracer field), respectively. The resolution
is decreasing radially outward, levels off at lmin, zoom = 14 and increases again to lmax, zoom = 18
inside the shell.
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Figure 6.4: The resolution in the zoom-in region as a function of time. Gray, red and blue lines
correspond to the three different runs, while different linestyles correspond to different refinement
parameters. The resolution was decreased between restarts of the simulation when the memory
requirements became too large. The maximum resolution in the refinement regions around the
central SNR particles was left untouched.



6.2 Analysis 85

idealized refinement map in Fig. 6.3. We initially set the zoom-in resolutions to lmin, zoom = 14 and
lmax, zoom = 18, corresponding to ∆xmax, zoom ≈ 2.9 pc and ∆xmin, zoom ≈ 0.18 pc, respectively,
and reduce the resolution as the SNRs grow in order keep the numerical cost at a manageable level
as shown in Fig. 6.4. With this refinement prescription, we are thus able to resolve the momentum
generation during the Sedov-Taylor phase and the transition to the radiative phase for a single
SN up to densities of nH, max ∼ 430 (∆x/∆xmin, zoom)

−2.4
cm−3 (see e.g. Kim & Ostriker, 2015;

Romano et al., 2024a).

With our implementation of star-formation, the mass of star particles formed at higher resolution
needs to be adjusted in order to ensure that stars are forming if and only if cells are Jeans-unstable
and fully refined. This condition is satisfied by scaling m⋆,l ∝ ∆xl.

6.1.3 Simulation suite: An overview

Our simulation suite consists of four different runs: A baseline simulation without SNe (N0)
and three simulations with SNe labeled N1, N10 and N1x10, corresponding to (NSN, ∆tSN) =
(1, ∞), (10, ∞) and (1, 1 Myr), respectively. In particular, the models N1 and N10 feature a
single explosion event at t = 0, while only in N1x10 there are subsequent explosion events every
∆tN1x10 = 1Myr.

In N0 no zoom-in is applied. In order to estimate the effect the refinement might have, we have
run a 5th simulation labeled N0 zoom without SNe, but with Nzoom = 85.

6.2 Analysis

6.2.1 Classification of ISM components

In order to be able to meaningfully analyze the SNRs’ properties we need to reliably differentiate
between SNRs and the unperturbed ISM. Moreover, we classify different components of the SNRs,
similarly to the approach of Romano et al. (2024a) for a single SNR in a uniform ISM.

We adopt the same method of using the passive scalars to flag cells belonging to an SNR. Neigh-
boring SNRs inject different passive scalars, which enables us to resolve ambiguities if the SNRs
approach or even overlap. Näıvely, each SNR corresponds to the set of cells polluted with the
respective scalar that are closest to its center (e.g. the corresponding SNR particle). However, in
practice since some SNRs get significantly larger than others, we find that this simple prescrip-
tion would lead to a large number of cells being grouped incorrectly once the SNRs become too
large. We avoid this problem by creating a weighted Voronoi-tesselation in face-on projection with
cells centered at the position of the SNR particles and assigning weights, such that all polluted
cells belonging to an SNR lie within the corresponding cell. We assign these weights by visual
inspection.

As opposed to the case studied in Romano et al. (2024a), here, the ISM into which the SNRs are
expanding is undergoing constant change. Thus, in order to study how the properties of the SNRs
depend on the that of the ISM, we need to find an appropriate definition of the local ISM. Here, we
define the local ISM as the contents of the smallest rectangular box, containing the entire SNR at
all times. The unperturbed, local ISM, then corresponds to the contents of the local ISM without
the SNRs, which necessarily shrinks as the SNRs grow. This leads to the slight bias, that once a
region is swept up by the SNR, it ceases to contribute to the description of the unperturbed ISM.
Nonetheless, the instantaneous state of the immediate surroundings of the SNRs describes the
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unperturbed ISM much more accurately than its state at a single point in time (i.e. at t = 0 or at
the time of observation). We note that while in this study, we do not make use of this definition,
future analyses using the SISSI simulations will (L. Romano et al., in prep).

We further classify different components of the unperturbed ISM and the SNRs.

For the SNRs we follow the classification of Romano et al. (2024a). We distinguish between radially
inflowing and outflowing shell and bubble components. The bubble corresponds to polluted, hot
(T > 2 × 104 K) or diffuse (nH < 10−2 cm−3) gas, while the shell corresponds to cold and dense,
polluted gas. We decide whether the gas is in- or outflowing by measuring the radial velocity,
measured from the center of mass of the SNR in the co-rotating, center-of-mass frame of each
SNR.

For the unperturbed ISM we distinguish between cold (T < 7 × 103 K), warm (7 × 103 K < T <
105 K) and hot (105 K < T ) gas phases, which are expected to coexist co-spatially in a turbulent
medium with inhomogeneities driven by SN explosions and differential cooling (see e.g. McKee &
Ostriker, 1977; Cox, 2005). The choice of 7× 103 K for the threshold between warm and cold gas,
slightly less than the commonly used ∼ 104 K, arises from the adopted cooling function, which
produces persistent gas at this temperature as is shown in the App. D.1.

We also classify the stars within the ISM boxes based on whether they are old, i.e. formed before
t = 0 or young. For the young stars we further distinguish between stars that are formed from
polluted or pristine gas.

6.2.2 Definition of polluted cells

We define a cell to be polluted if its passive scalar concentration exceeds some threshold value
Zej, thr. The choice of this threshold value is arbitrary and can systematically bias our results. If
we choose a value of Zej, thr that is too low, we risk including gas that is only (slightly) polluted
due to numerical noise, but that physically is not associated with the SNRs. On the other hand
if we choose a value that is too high, we risk missing parts of the SNRs.

In practice it seems impossible to entirely prevent both effects from happening, so we aim for a
compromise and state our results in terms of range of plausible values based on a slightly high and a
slightly low threshold value. We first perform our analysis for a slightly low value Zthr, low = 10−12,
comparable to the value used in Romano et al. (2024a). After defining the local ISM boxes, based
on the SNRs defined by the choice of Zthr, low, we define Zi

thr, high (t) for each SNR and snapshot,

by requiring that the total ejecta mass of cells with Zej, i > Zi
thr, high (t) just exceeds 99.99 per

cent of the total gas-phase ejecta-mass in the ISM box.

6.2.3 SNR geometry

We study the dynamical evolution of the SNRs’ geometry, by analyzing how their shape tensors
evolve over time. We define the shape tensor as

Sij = V −1
SNR

∫
SNR

(
∥x∥2 δij − xixj

)
d3x , (6.2)

which is the volume weighted inertia tensor, assuming a constant density of unity. By assuming
an approximately ellipsoidal shape, we can define the three ellipsoidal radii, defined as

ri =
√
2.5 (tr (S)− 2Si) , (6.3)
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Figure 6.5: Density-slices through the central plane of the SNR #22 at various points in time
for each model. Arrows are depicting the velocity field in the co-rotating center-of-mass frame
of the local ISM. The various timescales correspond to different points in time for the different
models. Red and blue arrows in the top-right corner of each panel indicate the directions of the
galactic rotation and the galactic center, respectively. The dashed orange contour corresponds to
the surface where Zej = Zthr, low, while the solid contour corresponds to Zej = Zthr, high. Since the
various timescales are undefined for the model no expl, we are using the same times as model N10.
The SNe explode into a fairly homogeneous ISM, with a slowly collapsing, slight overdensity right
where the SNe explode. At similar evolutionary stages the SNR is about twice as large in N10
compared to N1, with very similar geometry; Spheroidal with a slight elongation in the direction
of rotation. On the other hand the geometry in the model N1x10 qualitatively differs from the
other models, with an elongated cavity normal to the rotational direction, due to the elliptical
orbit (vR ∼ 20 km/s) of the explosion site. Only in the model N1, after 10 Myr a dense cloud,
aligned with the SNR is forming in the center as predicted by Romano et al. (2024a).
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where Si are the eigenvalues of Sij and tr (S) the trace. We refer to the smallest, intermediate
and largest eigenvalue as the minor a, semi-major b and major c axis, respectively. We define the
effective size of an SNR as the geometric mean of the three eigenvalues

reff = (abc)
1/3

. (6.4)

To determine the alignment of the SNRs within the galaxy, we measure their pitch angle α and
polar direction cos (θ) for both the major and minor axes. The pitch angle is defined relative to
the direction of galactic rotation, with α = 90◦ and α = −90◦ corresponding to the galactic center
and anti-center, respectively. The magnitude of the polar direction is 0 (1) for directions parallel
(perpendicular) to the galactic plane.

6.3 Time evolution of SNRs

6.3.1 Showcase: Supernovae in relatively uniform medium

The case of stellar feedback in an ambient medium with solar metallicity and an ambient density
of nH ∼ 1 cm−3 has been widely studied (e.g. Kim & Ostriker, 2015; Fierlinger et al., 2016; Oku
et al., 2022; Romano et al., 2024a). In this section we showcase the results of SNR #22, which
happens to explode in a relatively uniform medium with an ambient density close to 1 cm−3 and
compare its time evolution to that found in previous studies.

In Fig. 6.5 we show slices of the density field through the center of SNR #22 parallel to the
xy-plane at various characteristic times for the different models. In each panel, the outline of
the SNR is shown by orange lines, depicting contours of constant Zej, corresponding to Zthr, low

(dashed line) and Zthr, high (solid line).

As can be seen in the bottom row, corresponding to the N0 model, the density field is indeed
rather uniform, but some collapse into a filamentary structure over several Myr is visible.

At shell formation (first column) the SNRs are spherical with a slightly underdense central region
and a thin, overdense shell. The time of shell formation and the SNRs’ sizes are in agreement with
previous work (e.g. Kim & Ostriker, 2015).

After shell formation, SNRs enter the so-called pressure-driven snowplow (PDS) phase, which ends
once the pressure in the cavity drops below that of the shell (second column). At this time, the
SNRs are spherical, with an increasingly underdense central region and a thin, overdense shell. The
time at which the PDS phase ends and the SNRs’ sizes are in agreement with previous estimates
(Romano et al., 2024a).

Romano et al. (2024a) have shown that SNRs implode as they merge with their ambient medium.
In their simulations, a SNR in an ambient medium with nH ∼ 1 cm−3, such as the one considered
here, began to implode after ∼ 1Myr. In the third column we show the SNRs right after the onset
of implosion. By this time the SNRs are slightly elongated, parallel to the collapsing filament,
which is at a slight angle to the direction of galactic rotation. In all cases, the implosion occurs
significantly later than our expectation based on previous work. In the model N1x10, the implosion
seems to be coincident with the explosion happening at t ∼ 9Myr and is no longer visible by
t = 10Myr. We rule out this “implosion” as a false positive and caution that with our definition
of the implosion timescale we cannot distinguish between brief moments of radially “inflowing”
ejecta in N1x10 due to a displacement of the explosion sites and sustained inflows of cold gas from
the shell.
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Figure 6.6: Various properties (Mass, momentum, kinetic and thermal energy, pressure and vol-
ume) of the SNR #22 as a function of time for the various models using the classification introduced
in Sec. 6.2.1. Shaded regions correspond to the margin of uncertainty introduced by the choice of
Zej, thr, while the lines correspond to the geometric average of the values obtained with high and
low values of Zej, thr. For comparison we show the time evolution of an isolated SNR at a similar
ambient density (nH = 1 cm−3) taken from Romano et al. (2024a). As expected, the models N1
and N10 exhibit similar behavior and the model N1 also agrees quantitatively quite well with the
isolated SNR. In the model N1x10, the SNR initially follows the model N1 and then after the
onset of the consecutive SNe diverges reaching a comparable mass, momentum and size as the
model N10 after 10 Myr. However, the fraction of thermal energy in the bubble is higher in N1x10
compared to N10, indicating more efficient hot phase generation. Difference due to the choice of
Zej, thr are largest before shell formation and are most pronounced in the mass and momentum of
the bubble, indicating that ejecta are initially lagging behind the shock, but catch up once a cold
shell forms.

After 10 Myr (fourth column), the SNRs in models N1 and N10 have been stretched out consid-
erably in the direction of the collapsing filament. The implosion in N1 has reached the center and
condensed into a growing, filamentary implosion cloud, as predicted by Romano et al. (2024a,b),
which is stabilized by the rapid radiative dissipation of the energy carried by the implosion shocks
colliding in a central region. In N10 the center of the SNR is still underdense indicating that
the implosion has not yet reached the center. Meanwhile, in N1x10 the SNR is stretched out
predominantly in radial direction following the wake of the explosion center, which happens to be
drifting radially outward. The interior of the superbubble remains strongly underdense.

One can see, that the volume traced by the dashed line corresponding to Zthr, low tends to be
slightly larger than the SNRs, particularly along the directions aligned with the Cartesian grid at
early times, and at late times the direction of galactic rotation.

In Fig. 6.6 we show various global properties of the SNRs as a function of time and compare them
to those of a single SN exploding into a uniform medium with an ambient density of nH = 1 cm−3

taken from Romano et al. (2024a). We note that they used a different cooling function, leading
to a slightly lower equilibrium pressure (see panel (d)).



90 6. The geometry of supernova remnants

10 2

10 1

100

Ti
m

es
ca

le
[M

yr
]

Shell Formation

 Model

End of PDS

10 2 10 1 100 101 102

Hydrogen Density [cm 3]

10 1

100

101

Ti
m

es
ca

le
[M

yr
]

Implosion

N1
N10
N1x10

10 2 10 1 100 101 102

Hydrogen Density [cm 3]

Star Formation

Figure 6.7: Various timescales as a function of ambient density for our simulated sample of SNRs.
Uncertainties arise due to the finite spacing of the snapshots and due to the choice of Zej, thr. The
timescales of shell formation, the end of the PDS phase and SNR implosion agree well with the
predictions from models based on simulations of isolated SNRs (Kim & Ostriker, 2015; Romano
et al., 2024a). The timescale measuring the onset of star formation within the SNRs is within a
factor of five of 10 per cent of the free-fall timescale of the star-forming SNRs.
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All quantities are defined in essentially the same way as in Romano et al. (2024a), i.e. extensive
quantities are computed by summing up the contributions from all cells belonging to the respective
gas phases and the pressure is calculated as a volume weighted average. However, due to the
differential movement of the ambient medium, differences might arise in the momentum and kinetic
energy due to the choice of inertial system, which we here have chosen to be the center-of-mass
system after subtracting the galactic rotation, azimuthally averaged in linearly spaced, radial bins
with spacing ∆R ≈ 47 pc.

In the model N1, all quantities except the pressure and the thermal energy agree with the isolated
SNR for the first ∼ 2Myr within uncertainties. At late times the radial momentum and kinetic
energy drop more rapidly. The kinetic energy, eventually recovers and levels off at ∼ 1% of the
injected explosion energy. However, these small differences might well be explained by the choice
of the inertial system.

Model N10 appears to be a rescaled version of N1, in line with the idea, that SNRs undergo a
series of self-similar evolutionary stages.

After 1 Myr, model N1x10 starts to diverge from N1. The amount of swept up mass, the total
radial momentum, and kinetic as well as thermal energy of the SB grow to be quite similar to
those of N10, at t = 10Myr; though with large temporal variations in the distribution between
the bubble and the shell. This indicates that these quantities are mostly sensitive to the total
amount of injected energy, regardless of the exact interval between injections, in stark contrast to
the geometry and mass distribution within the SNR, as shown in Fig. 6.5. Nonetheless, in model
N1x10 the SNR is retaining more radial momentum, and sustaining a higher pressure, indicating
that the subsequent radiative losses are determined by the multi-phase structure of the ISM at
the injection site.

6.3.2 The full SISSI sample

We have shown, that SNR #22 adheres well to the expectations from isolated SNRs in uniform
ambient media. However, this might just have been a special case that cannot be applied to the
whole sample. Thus, in this section we evaluate to what extent our full sample of SNRs follows
the expectations from previous work.

In Fig. 6.7 we show various characteristic timescales as a function of ambient density, defined here
as the ratio of the swept-up mass and the volume covered by each SNR at each point in time, for
the different models and compare them with analytical results from previous work, described in
the App. D.2, shown as red and gray lines in the different panels.

We find that the shell-formation timescale of the simulated SNRs matches the theoretical estimate
Eq. D.3, in line with the expectation that SNRs are hardly affected by the galactic environment
during the early adiabatic expansion phase. The same holds true for the timescale for the end of
the PDS (Eq. D.6), with some exceptions at very low densities.

Differences to the purely analytic picture become more apparent when comparing the timescale
of implosion Eq. D.8, where we assume σ1 = 0.8 corresponding to an ambient pressure of PISM ∼
104 kB K cm−3, matching the pressure of the isobaric phase of the ISM (Fig. D.1). Here we define
tlaunch slightly differently from Romano et al. (2024a), who defined tlaunch as the time of the first
snapshot when at least 0.1M⊙ are in the form of backflowing shell gas. In SISSI, this condition
would be met at almost all times, due to the uncertainties in the selection of the SNR gas and
the turbulent motion of the background medium. We thus restrict the criterion to the ejecta, and
define tlaunch as the earliest time when the backflowing part of the shell contains at least 2% of
the ejecta, tagged by the respective scalar tracer. We find, that while the bulk of SNRs is not
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Figure 6.8: SNR size at various characteristic points in time as a function of ambient density
for our simulated sample of SNRs. Uncertainties arise due to the finite spacing of the snapshots
and due to the choice of Zej, thr. An orange and blue square depicts the effective radius of the LB
derived from the 3D dust maps of Edenhofer et al. (2024) in the panel corresponding to t = 10Myr.
Error bars are smaller than the marker and thus not shown. The radii at shell formation, the end
of the PDS phase and at SNR implosion agree well with the predictions from models based on
simulations of isolated SNRs (Kim & Ostriker, 2015; Romano et al., 2024a) for sufficiently large
ambient densities. At low densities the sizes tend to exceed the model predictions. After 10 Myr
the SNRs are about twice the expected size.
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Figure 6.9: Outward, radial momentum per SN at the end of the PDS phase as a function of
ambient density. Uncertainties arise due to the finite spacing of the snapshots and due to the
choice of Zej, thr. At sufficiently high density nH ≳ 0.1 cm−3 the momentum input matches well
the the prediction of simulations of isolated SNRs (Kim & Ostriker, 2015; Romano et al., 2024a).
On the other hand, at lower densities the momentum per SN is often lower than expected, with
large error bars.

too far from the analytical model, there is considerable scatter and a number of extreme outliers.
Moreover, as we note in the discussion of Fig. 6.5, the interpretation of SNR implosion in the
context of model N1x10 is somewhat unclear, as the interior pressure of the SBs tends to remain
high.

We also show the time after which stars start to form from material polluted by SNe. There is no
star-formation from polluted gas for the first 1 Myr, but within about a factor of 5 of 0.1 tff stars
begin to form within the SNRs, where

tff =

√
3π

32Gρ
∼ 44.9n−0.5

0 Myr , (6.5)

is the free-fall timescale. Importantly, in many cases this star formation does not appear to be
triggered within the SNRs, but rather is the continued star-formation in pre-existing star-forming
regions, that are swept up and enriched by the SNRs. A more detailed analysis of the potential
triggering of star-formation in SISSI is out of the scope of this work and will be the focus of future
publications (L. Romano et al. 2025, in prep.).

In Fig. 6.8 we show the effective size, as defined in Sec. 6.2.3, as a function of ambient density
for the different models at various characteristic points in time. Red, gray and blue lines depict
the expected sizes, building on the theoretical models described in the App. D.2. In the panel
corresponding to the last snapshot at 10 Myr, the orange and blue square corresponds to the
effective size of the LB derived from the data products of Edenhofer et al. (2024) as described in
a companion paper (L. Romano et al. 2025).

We find, that overall SNR sizes are in line with theoretical expectations during the stages of SNR
evolution before merging with the ISM, i.e. before t = tlaunch, but start growing larger than
expected at later times. SNRs in low density environments nH ≲ 0.1 cm−3 start to diverge from
the theoretical expectation by timp ≳ 1Myr.



94 6. The geometry of supernova remnants

After 10 Myr all SNRs are about twice the expected size, indicating the need for better models of
old SNRs in a shearing, stratified ISM. Interestingly, the LB is on the smaller end of the sizes for
simulated SNRs in similar density media, even though it is expected to be older, i.e. tLB ∼ 14Myr
(Zucker et al., 2022; Breitschwerdt & de Avillez, 2006). We further discuss this point and its
implications in a companion paper (L. Romano et al. 2025).

In Fig. 6.9 we show the momentum input per SN at the end of the PDS stage and compare it
to the theoretically expected value, assuming a momentum enhancement after shell-formation of
∼ 20%, slightly lower than the ∼ 50% reported by Kim & Ostriker (2015). The momentum input
in the denser regions nH ≳ 0.1 cm−3 roughly follows the theoretical expectation, with little scatter.
In contrast to lower density regions, where the momentum per SN drops off with large scatter.
This behavior is likely due to the large size (≳ 100 pc) of these SNRs, leading to more frequent
energy dissipation due to interactions with high density structures.

6.4 Geometry of simulated SNRs

In the previous section we have shown that while young SNRs are well described by the theory
based on models in a uniform, stationary medium, the models start to fail, on longer timescales
≳ 1Myr. In order to obtain some clues as to what may be causing these differences, here we study
their geometry, which reveals a preferential alignment that may point us towards the governing
physical processes.

6.4.1 The shape phase-space

In Fig. 6.10, we show the trajectories of the SNR #22 for the different explosion models in
the shape phase space, defined by the minor-to-major and semi-major-to-major axis ratio. By
definition, at t = 0 the SNR starts as a perfect sphere (a/c = b/c = 1) and by deformation through
various processes may evolve to become increasingly prolate (b/c < 2/3) or oblate (a/c → 0 and
b/c > 2/3). In purple, we also show the trajectory of a shearing sphere as described in the App.
D.3. The sphere of radius r0 = 100 pc is initially located at a galactocentric radius of R0 = 8kpc
and is rotating at a constant rotation velocity, matching that measured in the simulation.

In the models N1 and N10, the trajectory in the shape phase-space is smooth, with almost constant
minor-to-semi-major axis-ratio a/b > 2/3 and ever decreasing a/c, i.e. the SNRs are becoming
increasingly prolate. In model N1, a/b is slightly larger than in N10, i.e. the SNR is slightly more
prolate. The simulated SNRs are significantly more deformed than the shearing sphere, which
after 10 Myr is still quite spherical (a/c ∼ 0.75, b/c ∼ 0.85).

The trajectory in the model N1x10 has a kink, corresponding to the onset of further explosions,
which deform the SNR in chaotic ways, ultimately leading to a more spherical shape. The final
shape is similar to that of the shearing sphere.

In Fig. 6.11 we show the locations of our sample of SNRs in the shape phase-space at various char-
acteristic points in time. Markers are colored by the ambient density. In the panel corresponding
to the last snapshot at 10 Myr, we compare the shape of the LB derived from the data products
of Edenhofer et al. (2024), shown as an orange and blue square, to our simulated sample.

The three panels corresponding to shell-formation, the end of the PDS phase and the onset of the
implosion reveal that most SNRs remain close to spherical throughout the main stages of SNR
evolution, with a/b ≳ 2/3 and b/c ≳ 2/3. In contrast, SNRs in very low density ambient media
nH ≲ 10−2 cm−3 already begin to deviate from spherical symmetry before shell formation, likely
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Figure 6.10: Evolutionary tracks of the SNR #22 in the shape phase-space for the various explosion
models. Uncertainties due to the choice of Zej, thr are shown as shaded regions. In different parts
of the phase space the SNRs are either spherical (S), oblate spheroids (OS), prolate (P) or oblate
(O). The SNR starts out as a perfect sphere and becomes increasingly prolate over time. The
ratio of the two minor axes remains close to one and never falls below 2/3. In the model N10 the
SNR remains spherical for longer compared to N1. Similarly the consecutive SN explosions in the
model N1x10 restore spherical symmetry.
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Figure 6.11: Distribution of SNR shapes at various characteristic points in time for the different
explosion models. Uncertainties due to the choice of Zej, thr are represented by error bars. Different
regions are labeled as in Fig. 6.10. An orange and blue square depicts the shape of the LB derived
from the 3D dust maps of Edenhofer et al. (2024) in the panel corresponding to t = 10Myr. Error
bars are smaller than the marker and thus not shown. At shell formation the SNRs tend to be
spherical, with SNRs in lower-density environments being somewhat less spherical. At the end of
the PDS stage and the onset of the implosion, most SNRs are still spherical or oblate spheroids
with a/b ≳ 0.5 − 0.67. However, some of the lower-density SNRs are already quite asymmetric
falling into the prolate and oblate category. The SNRs in the N10 model tend to be somewhat
more spherical. At 10 Myr, the majority of SNRs are asymmetric. In dense environments SNRs
tend to be quite asymmetric with low a/c ∼ 0.2. The model N1 tends to have lower a/b ∼ 0.5
compared to the other explosion models which tend to have a/b ≳ 2/3.
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due to their older age and larger size at the the same evolutionary stage, indicating that they are
likely tracing a more anisotropic environment than their high-density counterparts.

After 10 Myr the trend is reversed. The SNRs with the highest ambient densities are deformed the
most, exhibiting highly anisotropic shapes a/c ∼ 0.2 with a wide range of geometries 1/3 ≲ b/c ≲ 1.
Only 4 SNRs remain spherical, with most SNRs being slightly prolate and some oblates. The LB
has a usual shape for an SNR with its ambient density, being slightly prolate with a/b ∼ 0.8 and
a/c ∼ 0.5.

6.4.2 Alignment of SNRs within the galaxy

In the previous subsection we have shown that the simulated SNRs evolve towards increasingly
anisotropic geometries, suggesting that they may expand more in certain directions than others.
In order to check, whether there are any preferential directions, in Fig. 6.12 we show the time-span
weighted distribution of the pitch angles and the magnitude of the polar directions as defined in
Sec. 6.2.3 of the minor axis (oblates, orange) and major axis (prolates, purple). We also show the
alignment of the minor- and major-axes of the LB derived from the data products of Edenhofer
et al. (2024), shown as an orange and a purple square, respectively. The 1σ-confidence intervals
are shown as shaded regions in the one-dimensional histograms.

We find that for most of the time, the minor axis of the oblate SNRs is pointing perpendicular to the
disk plane, with a broad distribution of negative pitch angles, centered around αoblate ∼ −60◦. In
contrast, in the case of prolate SNRs, the polar direction of the major axis is broadly distributed,
with most of the weight lying below |cos (θ)| ≲ 0.5, corresponding to the directions within the
galactic plane. The distribution of pitch angles has three peaks around αmajor ∼ 15◦, 25◦ and 50◦,
in line with the expectations for structures deformed by shear (App. D.3, see also the alignment
of underdense substructure in Fig. 6.1).

While the LB is slightly prolate, its minor axis points in a direction in agreement with that of
oblate SNRs. On the other hand, its major axis is pointing slightly towards the galactic outskirts
and is slightly more perpendicular than the bulk of our sample of SNRs.
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Figure 6.12: Time-span-weighted-histograms showing the distribution of SNR directions for asym-
metric SNRs. Distributions of oblate (prolate) SNRs are colored orange (violet). For oblate
(prolate) SNRs we show the direction of the minor (major) axis. We show the polar direction
normal to the disk plane and the pitch angle relative to the direction of galactic rotation. We do
not differentiate between directions above or below the disk. Positive pitch angles point between
the galactic center and negative angles point towards the galactic outskirts. Orange and purple
squares depict the directions of the minor and major axes of the LB, respectively, derived from the
3D dust maps of Edenhofer et al. (2024). The 1σ-ranges for the LB are also indicated as shaded
areas in the one-dimensional histograms. Oblate SNRs tend to point vertically out of the disk
and towards the galactic outskirts with a typical pitch angle of αminor ≲ −50 deg. On the other
hand, prolate SNRs tend to lie within the disk plane |cos (θ)| ≲ 0.5 pointing slightly towards the
galactic center αmajor ∼ 10− 60 deg.
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Figure 6.13: Deformation timescale as a function of galactocentric radius. Uncertainties arise due
to the finite spacing of the snapshots and due to the choice of Zej, thr. For visibility, markers are
slightly shifted around their respective radii Rgal = 2, 4.5 and 8 kpc, with the same shift used for
the same SNR, but different explosion model. Typical deformation timescales are on the order of
a few percent of the orbital timescale at each radius, slightly shorter than what is expected from
deformation by galactic shear alone.

6.4.3 Deformation timescale

In the previous subsections we have found, that our sample of simulated SNRs evolving into the
shearing, stratified ISM of the SISSI galaxy grow increasingly anisotropic, assuming a geometry
that aligns with the sheared structure of the galaxy. The time it takes for an initially spherically
symmetric structure such as SNR to become deformed hints at the processes governing the defor-
mation. To this end, we define the deformation timescale as the time at which the minor-to-major
ratio drops below a/c = 2/3.

The shearing-sphere model (App. D.3) indicates that shear can deform a spherical structure
within a few percent of an orbital timescale. To test, whether shear alone is enough to explain the
deformation of the SNRs we show the deformation timescale as a function of galactocentric radius
in Fig. 6.13. Markers are colored based on the shape classification of the SNRs.

The majority of the SNRs is deformed within ≲ 1% of the orbital timescale, with several SNRs
being deformed much before even a thousandth of an orbit. More spherical SNRs, i.e. SNRs
that are classified neither as prolate or oblate, tend to have longer deformation timescales, more
plausibly explicable by shear alone. There are relatively more oblate SNRs at larger galactocentric
radius. Overall, the deformation of the SNRs is too rapid to be explained by shear alone.

Another likely relevant source of deformation are preexisting density anisotropies in the ambient
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Figure 6.14: Deformation timescale as a function of density dispersion. Uncertainties arise due to
the finite spacing of the snapshots and due to the choice of Zej, thr. The deformation timescale is
roughly ∝ (δρ/ρ)−3 with significant scatter, qualitatively in line with the expectation that SNRs
are deformed earlier in more anisotropic media.

ISM, which imprint onto the geometry of the SNRs as they expand into them (Makarenko et al.,
2023). We quantify the degree of spatial variation in the density field, by measuring its relative
variation at t = 0 across spatial scales, by averaging over nested ISM patches of side-lengths
ℓ = 0.2, 0.5, 1, 1.5 and 2 kpc, corresponding to the scatter in Fig. D.2.

In Fig. 6.14 we show the deformation timescale as a function of the thus defined density dispersion.
We find a steep decline in the deformation timescale with increasing density dispersion ∝ (δρ/ρ)−3,
in qualitative agreement with the expectation that indeed anisotropies in the density distribution
might be dictating the geometry of SNRs in a turbulent ISM. Since the dense structures in the
ISM themselves are subject to differential rotation, they can be stretched out considerably by
galactic shear over timescales that are much longer than the age of the SNR and thus imprint a
relatively larger degree of anisotropy than the expansion of an SNR subject to shear alone.

6.5 Discussion

In the previous sections we have described the evolution of the geometry of SNRs expanding into
an ISM structured by the complex interplay of gravity, galactic rotation and turbulence. In the
following, we will discuss some of the limitations of our simulations, how our results compare to
observations of SNRs as well as implications of our findings to the study of galaxy evolution and
the structure of the ISM.
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6.5.1 Limitations

The SISSI simulation suite aims to simulate the evolution of SNRs in a realistic galactic environ-
ment. Of course, simulating a realistic galactic ISM is challenging and the numerical prescriptions
and sub-grid physics involved can greatly influence the phase structure and the morphology of the
galaxy as a whole. A discussion of the quality of the simulated ISM of the SISSI galaxy, which
is part of the AVALON simulation suite, focusing on the modeling of various aspects of galaxy
evolution related to the structure of the ISM is out of the scope of this work, and will be presented
elsewhere (M. Behrendt et al. 2025, in prep.).

Highly resolved simulations of SNRs, alongside an entire galaxy are computationally challenging
and the computational resources to resolve large patches of the ISM with our maximum zoom-in
resolution, are out of reach for currently available computing hardware. Therefore, we had to
resort to the refinement strategy outlined in Sec. 6.1.2, which may itself introduce numerical
artifacts. In the case of a uniform medium and without gravity, Romano et al. (2024a) have
shown that our method of a co-evolving refinement region does not greatly affect the evolution
of SNRs. However, we do find some differences in the star-formation activity and the partition
of energy between the models N0 and N0 zoom, suggesting that the properties of the background
ISM might differ substantially, based on the resolution. We account for this fact, by relaxing the
initial conditions for 50 kyr, however it remains unclear, whether there is an optimal relaxation
duration, given that the differences between the high- and low-resolution ISM do not seem to
reach an asymptotic state and instead may be attributed to chaos, due to unresolved gravitational
collapse coupled to stochastic star-formation.

More detailed modelling of physical processes, such as cosmic rays, magnetic fields, thermal con-
ductivity, non-equilibrium radiation chemistry as well as more detailed stellar models, that include
sources of early stellar feedback can influence the dynamics as well as the geometry of SNRs (e.g.
Gentry et al., 2019; Makarenko et al., 2023; Diesing et al., 2024; Guo et al., 2025). In the present
work we opted for a lightweight physics model, to lower the computational cost, allowing for
higher resolution. However, future efforts involving more detailed physics models may certainly
be worthwhile.

6.5.2 Observations of SNR geometry

As SNRs evolve, so do the wavelengths of light in which they can be observed. Young SNRs are
usually observed in the optical, infrared and X-ray (e.g. Fesen et al., 2023; Kobashi et al., 2024;
De Looze et al., 2024) and their geometry is dictated by the explosion mechanism as well as their
immediate surroundings. These SNRs are usually fairly close to spherical symmetry, justifying
our spherically symmetric injection of energy and ejecta mass.

Once SNRs enter the ST phase, they are extremely hot and bright in X-rays with diffuse X-ray
emission coming from their center (Khabibullin et al., 2023; Reynolds & Borkowski, 2024). In this
evolutionary stage, most SNRs are very close to spherically symmetric, though interactions with
nearby clouds can lead to asymmetric features (Chi et al., 2024) in agreement with our sample
of simulated SNRs, where the majority of SNRs remain close to spherically symmetric, with the
exception of those exploding in low-density conditions, which are likely affected by interactions
with clouds and low-density channels.

Galactic SNRs are usually only observed until shortly after they enter the radiative stage, as they
quickly become too faint to be observed. Observed radiative SNRs, tend to be quite spherically
symmetric (Paylı et al., 2024), with few exceptions due to interactions with nearby density struc-
tures (Arias et al., 2024), in agreement with our simulations, which indicate that most SNRs
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remain spherically symmetric between shell-formation and the end of the PDS phase.

Older SNRs are usually too faint to be observed directly. However, once they become large enough,
they may be indirectly observed by looking for large cavities in the dust distribution. Such large
cavities are routinely observed both in the Galaxy (Pelgrims et al., 2020; Zucker et al., 2022; Li
et al., 2022; Verma et al., 2023) as well as in nearby galaxies (Watkins et al., 2023; Sánchez-Cruces
& Rosado, 2023; Li et al., 2024). At first glance, observed SBs exhibit a wide variety of shapes
and orientations, however due to the scarcity of detailed analyses of their shapes and orientation
with respect to galactic structure, it is difficult to say to what degree, the observed sample agrees
or disagrees with our simulated sample.

Fortunately, due to the recent 3D dust map made available by Edenhofer et al. (2024), we are in a
position to study the geometry of the LB, a SB believed to be excavated by the SN explosions of
∼ O (10) massive stars within the last ∼ O (10) Myr (Breitschwerdt & de Avillez, 2006; Wallner
et al., 2021; Zucker et al., 2022). We find that, while the orientation of the LB is slightly unusual
for an SB its age, its shape fits right into the range of shapes that we report for our sample of
simulated SNRs after 10 Myr. Moreover, we find that its effective size of Reff ∼ 212.3 ± 1.0pc is
on the lower end of sizes obtained after 10 Myr. In a companion paper focusing on this aspect
(L. Romano et al. 2025) we further discuss the implications, in particularly regarding current age
estimates of the LB.

6.5.3 Implications and future directions

Our numerical simulations show, that the geometry of evolved SNRs is changed due to the complex
interplay of the expanding shell and a variety of environmental factors. Since different processes
affect the geometry of the SNR on different timescales, it might be possible to disentangle their
contributions and deepen our understanding of the underlying physical processes shaping the
internal structure of galaxies.

By leveraging novel analysis techniques (Edenhofer et al., 2024), and increasingly detailed obser-
vations (Gaia Collaboration et al., 2023) it will soon be possible to study the geometry of an ever
growing sample of galactic SNRs. Already, the data products of Edenhofer et al. (2024) can be
used to study the neighboring known SBs, such as the Per-Tau SB (Bialy et al., 2021) and GSH
238+00+09 (Heiles, 1998), which could provide additional hints to the assembly of structures in
the solar neighborhood.

While we have focused on SNR geometry in this work, there are many more aspects of SNR
phenomenology that can be addressed by the SISSI simulations. In future studies we aim to
investigate the role of SNRs in driving interstellar turbulence, their coupling to and potential
driving of galactic outflows as well as triggered star-formation.

6.6 Concluding Remarks

We have introduced the SISSI simulation suite, featuring 3D hydrodynamic zoom-in simulations
of SNRs embedded in the realistic, self-consistently generated ISM of an isolated, Milky-Way-like
galaxy, in order to deepen our understanding of various aspects of SNR physics. In this work, we
focus on the geometry of the SNRs and show how it can be used as a useful observational diagnostic
for understanding the various environmental effects, affecting the evolution of the system. Here
we summarize our most important findings:
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1. The dynamics of young SNRs (≲ 1Myr) are well described by standard analytical models.
However, these models become less accurate for SNRs exploding in low-density (≲ 0.1 cm−3)
environments, likely due to the large size of the SNRs, which increases the likelihood of
interactions with both high- and low-density structures, such as clouds and channels.

2. SNRs tend to be deformed greatly on a timescale shorter than a few times the orbital
timescale, with SNRs in environments with larger density fluctuations being deformed earlier,
as they tend to follow the geometry of dense structures, which are deformed by shear and
aligned with the galactic rotation.

3. The deformation of SNRs has preferred directions. The minor axis of oblate SNRs tends to
be aligned with the galactic poles, with a slight tilt towards the galactic outskirts, suggesting
that the vertical expansion of these SNRs is stalled by the graviational pull of the galactic
disk. The polar angle of the major directions is broadly distributed, slightly favoring di-
rections in the galactic plane, with pitch angles peaked between ∼ 20◦ and ∼ 50◦ slightly
pointing towards the galactic center, in agreement with the expectation from alignment due
to galactic shear.

4. The LB has a typical geometry for a SB of its age and size, however it appears slightly
small compared to the size of the SNRs in the SISSI sample at 10 Myr. This suggests, that
previous estimates of the age, based on idealized, one-dimensional models of SB expansion
might need to be revised. The LB might be just old – and large – enough to be affected by
its galactic environment, which makes it a unique laboratory to study the expansion of SBs
at the interface between local ISM physics and galactic dynamics.

We conclude that SNR geometry offers a novel observational tool for understanding the complex
physics of galaxies and their impact on galactic substructure, leveraging the full potential of recent
high quality observations.
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Chapter 7

SISSI: Supernovae in a stratified,
shearing interstellar medium
II. Star formation near the Sun is quenched by expansion of the Local

Bubble

Software used in this chapter:
Julia v1.10.0 (Bezanson et al., 2017), Matplotlib v3.5.1 (Hunter, 2007), Healpix v2.3.0
(Tomasi & Li, 2021), and Galpy v.1.10.2 (Bovy, 2015)

A slightly revised version of this chapter is to be submitted to Astronomy & Astrophysics Letters
after the submission of this thesis (Romano & Burkert, 2025, Accepted for publication on Jan.
1st 2026). This work builds heavily on the results from the previous chapter, but is very closely
related to Andi’s initial proposal that initiated this project. As with the previous chapter, I worked
out the details turning the proposal into a finished paper, presented in this work, by analyzing
and combining the diverse data sets and interpreting guided by physical intuition obtained from
the cumulative work presented in the previous chapters. Throughout the processes of writing
this paper Manuel and Andi provided useful comments, pointing out potential shortcomings and
flaws in the reasoning that I incrementally addressed. Unfortunately there was not yet sufficient
time for me to receive all of these comments, which is the reason why this work has not yet been
submitted.

Recent advances in observational methods allow us to map out the structure in the nearby galactic
interstellar medium (ISM) in three spatial dimensions (3D) (3D, e.g. Arenou et al., 1992; Lallement
et al., 2019; Edenhofer et al., 2024). One of the most prominent structures, mapped by these
techniques is the Local Bubble (hereafter LB Cox & Reynolds, 1987; Linsky & Redfield, 2021), a
large cavity, several hundred parsec across, centered around the solar system (Zucker et al., 2022),
which has been linked to diffuse soft X-ray emission (e.g. Snowden et al., 2000; Yeung et al., 2024).
Superbubbles (SB) such as the LB are believed to be carved out by the various feedback channels
of massive stars, such as stellar winds (Tenorio-Tagle et al., 1990), ionizing radiation (Linsky &
Redfield, 2021) and supernovae (hereafter SNe Tenorio-Tagle et al., 1990; Breitschwerdt & de
Avillez, 2006; Wallner et al., 2021).

Over the past few decades, many studies have tried to constrain the origin of the LB. Studies using
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Table 7.1: Properties of the Local Bubble
Property This work Zucker et al. (2022) O’Neill et al. (2024) Unit
Effective Radius 212.3± 1.0 165± 6 170a pc
Mass 6.24± 0.07 14+6.5

−6.2 6.0± 0.7b 105 M⊙
Hydrogen number density 0.494± 0.006 2.71+1.57

−1.02 0.61c cm−3

Momentum (2.96± 0.05)d × (Myr / tage) 1.0+0.4
−0.4 – 107 M⊙ km s−1

Minor-to-major-ratio 0.469± 0.007 – – –
Semi-major-to-major-ratio 0.562± 0.011 – – –
Pitch angle (major axis) −19.0± 1.0 – – ◦

Polar direction (major axis) 0.665± 0.011 – – –
Pitch angle (minor axis) −66.1± 2.7 – – ◦

Polar direction (minor axis) 0.607± 0.022 – – –
(a) Median peak distance (b) Mass enclosed within shell (c) Median peak density (d) Bias corrected
(see App. E.1.4)

astrometry, tracing back the positions of nearby star-clusters suggest that∼ 10−20 SNe originating
from the Scorpius-Centaurus OB association (Sco-Cen) might have contributed to the expansion
of the LB ∼ 10Myr ago (Máız-Apellániz, 2001; Zucker et al., 2022). Numerical simulations of
SNe expanding into a turbulent, stratified ISM, confirm that ∼ 20 SNe exploding sequentially
throughout the last ∼ 14Myr could explain, the observed size of the LB, the observed column
densities of Ovi in the interior as well as the deposition of sedimentary 60Fe (Breitschwerdt & de
Avillez, 2006; Breitschwerdt et al., 2016). Fossil records show that the incorporation rate of 60Fe
and 244Pu on earth has peaked ≲ 4Myr and ≲ 7Myr ago (Wallner et al., 2016, 2021). Combining
this with the work of Zucker et al. (2022), who find that the solar system would have entered
into the LB ∼ 5Myr ago, suggests that at least the more recent peak might coincide with SNe
associated with the LB (see also Breitschwerdt et al., 2016).

In (Romano et al., 2025a), we introduce the SISSI (Supernovae In a Stratified, Shearing ISM)
zoom-in simulation project, focusing on the properties of highly-resolved, simulated supernova-
remnants (SNRs) expanding into the self-consistently generated ISM of an isolated, Milky-Way-like
disk-galaxy. There, we find that SNRs in a realistic environment, expand faster than previously
expected at later times t ≳ 1Myr, due to galactic shear, the gravitational influence of nearby
substructures and the presence of low-density channels. A comparison of our simulated sample of
SNRs at t = 10Myr with the LB, suggested that it would be too small for a SB of its age, powered
by SNe exploding at the rate suggested by previous studies.

In this work, we follow up on this curiosity, by presenting a new analysis of the LB, derived from
the 3D dust maps of Edenhofer et al. (2024) using a method similar to that of O’Neill et al.
(2024). As opposed to Zucker et al. (2022), who assume that the stellar kinematics trace the
dynamics of the gas through triggered star-formation, we directly estimate the size, momentum
and ambient density of the LB from the 3D dust maps of Edenhofer et al. (2024) and by utilizing
the dynamical evolution of the SNRs in the SISSI simulation we constrain its age and the number
of SNe powering its evolution.

7.1 Geometry of the Local Bubble

We recover the properties of the LB by applying a similar analysis as O’Neill et al. (2024), based on
the 3D dust maps of Edenhofer et al. (2024), to obtain estimates for the LB’s geometry, through
the means of the shape tensor, defined in Romano et al. (2025a) (See also App. E.1.6 for the
definition). Some steps of our analysis require the original data products of Edenhofer et al.
(2024), so we opted for an independent analysis, instead of directly using the data products of
O’Neill et al. (2024).
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We follow the same basic steps of smoothing, peak finding and finally an analysis of the mass
distribution enclosed by the peaks, used by O’Neill et al. (2024), with only minor differences.
In contrast to O’Neill et al. (2024) we directly work with the logarithmically spaced grid of the
12 sample dust maps rather than sampling the 3D dust maps on a linearly spaced grid of the
mean of the sample maps. Moreover, we weight the smoothing kernel to explicitly account for the
non-uniform volume-elements dV ∝ r2 dr (App. E.1.1) and we linearly extrapolate the density
field beyond the grid boundaries to better capture the profile-shape in their vicinity (App. E.1.2).
In the App. E.1.3 we show that our results largely agree with those of O’Neill et al. (2024),
demonstrating the robustness of the method.

Our peak identification and conversion between differential extinction and hydrogen number den-
sity are identical to O’Neill et al. (2024).

We apply the definition from Romano et al. (2025a) to compute the shape tensor from the coor-
dinates of the shell-surface.

We obtain the average density of the LB, by dividing the total mass, obtained by performing a
volume integral of the density from r = 0 to the outer edge of the shell, defined as the first point
past the peak with half the peak’s prominence, by the volume, including the mass contained within
the central ∼ 69 pc, for which we assume a constant hydrogen number density along each line-of-
sight, proportional to the integrated extinction at ∼ 69 pc, to account for the missing differential
extinction in this region of the dust map.

We also estimate the momentum as a function of age, by assuming a rapidly-cooling wind ex-
pansion, i.e. R ∝ t1/2 (Oku et al., 2022; Lancaster et al., 2024) as well as homologous expansion
v ∝ r, which leads to

pLB (tage) =

∫
LB

v dM ≈ 1

2 tage

∫ ∫ Rout(Ω)

0

µnH (r,Ω) r3dr dΩ , (7.1)

where radial integrals are performed by summing contributions from all radial bins of the un-
smoothed profile within the outer shell radius of the LB along a line-of-sight, the angular integrals
are performed by summing all such contributions for all Healpix lines-of-sight, which have con-
stant dΩ ≈ 1.6× 10−5 rad2 and we substitute v ≈ r/ (2tage) for the velocity, where tage is the age
of the LB. In the App. E.1.4 we show that Eq. 7.1 tends to overestimate the momentum by a
factor of ∼ 2. We correct for this, by dividing the momentum by said factor.

Eq. 7.1 describes the momentum as a function of time for a fixed (observed) size R, consistent with
the expansion of a SB given a constant momentum injection rate ṗSN, such that the momentum
pLB ∝ R4/t ∝ ṗSN t.

The thus obtained properties of the LB are summarized in Tab. 7.1. For comparison, we also
show the values obtained by Zucker et al. (2022) and O’Neill et al. (2024) where available. Overall
our results are similar to the more recent investigation of O’Neill et al. (2024), however we also
calculated the momentum, which we can use to estimate the age of the LB.

7.2 The age of the LB

The properties of a SB are determined by the strength of its energy source, the density of the
environment and its age. Previous studies suggest that the radial momentum imparted per SN
onto an expanding radiative shell only depends weakly on the density and is independent of the
age of the SB (Walch & Naab, 2015; Oku et al., 2022), i.e. by knowing the momentum, we can
precisely determine the number of SNe responsible for the expansion of the SB. In Romano et al.
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Figure 7.1: Time evolution of effective size of the simulated sample of SNRs of the SISSI sample
between 2 and 10 Myr, for SNRs with ambient densities within 0.3 dex of the LB (Tab. 7.1).
Gray, red and blue lines correspond to different explosion models. Solid lines correspond to the
median size of the simulated bubbles, with shaded areas corresponding to the range between the
30th and 70th percentiles. Dotted lines and the hatched blue contour correspond to theoretical
models based on radiative blastwaves in uniform media (App. E.2). For model N10, the size of
the LB corresponds to an age of ∼ 4.5Myr, while for N1x10 it corresponds to ∼ 6− 7Myr.
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Table 7.2: Expansion parameters of the LB.

Property This work Zucker et al. (2022) Unit

Age ∼ 3.5− 5.5 14.39+0.78
−0.74 Myr

Number of SNe ∼ 19− 30 15+11
−7 –

Time between SNe ∼ 0.1− 0.3 1.06+0.63
−0.39 Myr

Star cluster mass ∼ 1.4− 3.4 ∼ 0.4 104 M⊙
Star-Formation Efficiency ∼ 2− 5 ∼ 0.3 %
Expansion speed ∼ 38− 59 6.7+0.5

−0.4 km s−1

(2025a) we have found that the momentum imparted per SN is approximately

p̂SN ∼ 2.6× 105 n−0.13
0 M⊙ km s−1 , (7.2)

where nH = n0 cm
−3 is the ambient number density of hydrogen.

For the LB, using the newly derived density estimate in Tab. 7.1 this corresponds to a momentum
input per SN of p̂SN, LB ∼ (2.854± 0.005)× 105 M⊙ km s−1. Using the age-dependent momentum
estimate, we can relate the number of SNe to its age

NSN, LB (tage) = pLB/p̂SN, LB ∼ (104± 2)× (tage/Myr)
−1

. (7.3)

We validate the applicability of this estimate in App. E.1.5.

In contrast to the momentum, the size of a SB depends only weakly on the energy input, and in
turn depends most strongly on its age. In Fig. 7.1 we show the time evolution of the effective size
of our simulated sample of SNRs, introduced in Romano et al. (2025a), for SNRs with ambient
densities within 0.3 dex of that of the LB. It can be seen that the SB evolving in a realistic galactic
environment (solid lines) grow significantly faster, than what would be expected from blastwave
models in uniform environments (see App. E.2 El-Badry et al., 2019; Oku et al., 2022). The size
of the SB driven by subsequent SNe (N1x10) closely matches that of the SNR of a single SN (N1)
for t ≲ 3Myr, while it approaches that of the SNR of 10 SNe exploding all at once (N10) after
∼ 10Myr. For the models with multiple SNe, the size of the LB is reached after ∼ 4.5Myr (N10)
and after 6− 7Myr (N1x10).

At the age at which the simulated SNRs (N1x10) reach the size of the LB, 15-17 SNe are required
to explain the momentum of the LB (Eq. 7.3), in contrast to the 6-7 SNe that exploded in the
simulation. A SB powered by such a high number of SNe would have reached the same size earlier
(e.g. N10), significantly younger than previous age estimates (Máız-Apellániz, 2001; Breitschwerdt
& de Avillez, 2006; Zucker et al., 2022). While our simulations do not match an explosion scenario
that can explain both the momentum and size of the LB, we can extrapolate, using theoretical
considerations, to find a reasonable estimate.

Previous models of radiative blastwaves in uniform ambient media (El-Badry et al., 2019; Oku
et al., 2022; Lancaster et al., 2024) suggest that the effective size is roughly ∝ Ṅ0.15−0.25

SN . A
blastwave powered by more frequent SNe, would thus only lead to a mild increase in the size, and
would be largely consistent with an age ≲ 6Myr. In Fig. 7.2 we show that for R ∝ Ṅα

SN with
α ≲ 0.225 the size matches that of the LB for tage ∼ 3.5 − 5.5Myr, while for α > 0.225, there
are no solutions that can simultaneously explain the size and the momentum of the LB. A more
detailed evaluation is out of the scope of this work and will be subject to future investigation (L.
Romano et al., in prep.).

By invoking standard assumptions about the stellar initial mass function, the average time between
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Figure 7.2: Effective size as a function of age or number of SNe, respectively, extrapolated from
the model N1x10 and the mean of the momentum constraint Eq. 7.3 for various values of α;

namely, Rα = RN1x10 (t = tage)×
[
ṄSN, LB (tage) / 1Myr−1

]α
, where ṄSN, LB = NSN, LB/tage. For

α ≲ 0.225, the extrapolated sizes match the LB for ages in the range 3.5 − 5.5Myr, while for
α ≳ 0.225 the two constraints on the size and momentum cannot be satisfied simultaneously.
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SNe in a star cluster can be linked to its mass (Kim et al., 2017)

∆tSN ∼ 0.4

(
Mcl

104 M⊙

)−1

Myr , (7.4)

which for the range of ages found above would correspond to a mass ofMcl, LB ∼ 1.4−3.4×104 M⊙
for the progenitor cluster of the LB.

We can compare this number to the swept-up mass, and assuming that the swept up mass roughly
corresponds to the mass of the birth-cloud of the cluster driving the expansion of the LB, obtain
the cloud-scale star-formation efficiency

ϵ⋆ =
Mcl, LB

Msw, LB
∼ 2− 5% , (7.5)

in agreement with the range of values found in observational (Lee et al., 2016; Chevance et al.,
2020) and numerical studies (Grudić et al., 2022; Farias et al., 2024).

We summarize our results and compare them to those of Zucker et al. (2022) in Tab. 7.2.

The obtained cluster mass is somewhat higher than the stellar mass of Sco-Cen (Krause et al.,
2018), which is oftentimes assumed to be progenitor cluster of the LB (Máız-Apellániz, 2001;
Zucker et al., 2022). Similarly, our result that the LB should be younger than previously believed
is in slight tension with the older age (∼ 15− 17Myr) of the stars in Sco-Cen.

An important constraint for the SN origin of the LB comes from the fossil records of sedimentary
radionuclides (Wallner et al., 2021; Ertel et al., 2023; Ertel & Fields, 2024). Both the scenario
proposed in this work (App. E.3), and that of Zucker et al. (2022) satisfy this constraint. A more
detailed analysis of the dynamical incorporation of the dusty, radioactive material may provide
additional evidence in favor of either scenario.

According to Swiggum et al. (2024), Sco-Cen is part of a larger family of stars known as the α-Persei
family (αPer), which reportedly had an average time between SNe of ∆tαPer = 0.32+0.50

−0.23 Myr.
Moreover, the star-formation history (SFH) of αPer indicates episodic star-formation over the
past ≳ 60Myr with peaks every ≳ 12.5Myr and the latest peak within the last ∼ 12.5Myr.

Our results are in agreement with the SFH in αPer if we assume that the LB was powered by the
latest peak of star-formation rather than the trough associated with the formation of Sco-Cen. In
Appendix E.4 we construct a more detailed star-formation and SN-rate history over the past 40
Myr to substantiate this claim.

The high expansion speed vLB > 30 km s−1 suggests that the LB might be only mildly affected
by its Galactic environment, which typically dominates as v ≲ σturb ∼ 10 km s−1. Thus, models
for SBs expanding into a uniform medium (App. E.2) might provide a reasonable age-estimate
after all. For the slowly-cooling-wind model used by Zucker et al. (2022) with updated ambient
density and the SN rate following Swiggum et al. (2024) we obtain tSCW

age ∼ 6.6+2.4
−2.3 Myr, while for

a rapidly-cooling-wind model (Oku et al., 2022) we obtain tRCW
age ∼ 9+5

−4 Myr.

The LB appears to be at the tipping point between microscopic SNRs, whose dynamics are
dominated by local shock physics and mescoscopic SBs that are strongly affected by galactic-scale
processes. More detailed models of such large SBs as well as more precise stellar ages (e.g. Miret-
Roig et al., 2022; Ratzenböck et al., 2023; Swiggum et al., 2024) are needed to shed more light on
the progenitor cluster and expansion history of the LB.
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7.3 Concluding Remarks

We compare the momentum and the effective size of the LB, derived from publicly available, high-
quality 3D dust maps to our sample of simulated SNRs expanding into the shearing, stratified
ISM of the isolated Milky-Way-like SISSI galaxy.

We find that in order to match both constraints on the radial momentum, and the effective size,
the LB would have to be driven by a larger number of SNe and be significantly younger than
previously reported. In particular, a rough agreement requires an age of tage, LB ∼ 3.5 − 5.5Myr
for NSN, LB ∼ 19 − 30, in agreement with estimates of the average time between SNe in αPer
(Swiggum et al., 2024). While our analysis focuses on SNe only, a fraction of the energy could
have also been derived from other sources of stellar feedback, such as stellar winds and H ii
regions. Such a young age puts to question the claim of feedback-induced star-formation in the
solar neighborhood (Zucker et al., 2022) and the star-formation history (Fig. E.6) even suggests
that the expansion of the LB might have quenched the star-formation in the solar neighborhood.

While our results are in tension with previous estimates, which assumed that the LB was exclu-
sively powered by SNe in Sco-Cen, they are in better agreement with more recent observational
data on the star formation in the solar neighborhood. We note, however, that the high frequency
of SNe lies outside of the parameter space covered by our simulations, which adds substantial
uncertainties to our extrapolations. Better models for old (t ≳ 1Myr) SBs expanding into a re-
alistic galactic ISM as well as additional observational constraints are required to resolve these
uncertainties and obtain a clearer picture for the origin and history of the LB.



Chapter 8

Conclusions and Outlook

8.1 Modelling SNRs in their Natural Habitat

The dynamical evolution of SNRs and SBs has been studied for over 50 years (Chevalier, 1974),
taking into account increasing levels of complexity. While observational studies by default are
faced with the complexities of the turbulent, multi-phase ISM (Watkins et al., 2023; O’Neill et al.,
2024), most theoretical studies aimed at interpreting these observations, have relied on simplifying
assumptions, such as a stationary, uniform (Thornton et al., 1998), sometimes even pressure-less
(Cioffi et al., 1988) ambient medium, neglected potentially relevant physical processes such as (self-
) gravity and are oftentimes limited to short SNR ages (e.g. Tenorio-Tagle et al., 1990; Fierlinger
et al., 2016; Kim & Ostriker, 2015). In this work, for the first time, I have studied the detailed
evolution of SNRs in a realistic galactic environment using the simulations presented in chapter
6 and developed a simple analytical model, presented in chapter 2, that allows to study the
impact of various potentially relevant physical processes without the need of expensive numerical
simulations.

8.2 The Local Bubble

I have proceeded to use these simulations to interpret recent observational data of the Local Bubble
in chapter 7, providing a new age estimate of the system in slight tension with previous estimates
(Máız-Apellániz, 2001; Zucker et al., 2022), but in agreement with complementary constraints
from recent data (Edenhofer et al., 2024; Swiggum et al., 2024). While the tension is rather
weak, resolving these inconsistencies is a great opportunity to improve our understanding of the
physics of SNRs in a dynamical galactic environment, triggered star formation and the dynamical
evolution of the stars and gas in the solar neighborhood.

8.3 Modelling of Superbubbles and Galactic Winds

In Chapter 2 I have developed a versatile semi-analytical model that is designed to follow the
dynamical evolution of blastwaves in complex environments. Besides basic shock-physics and
radiative cooling, the model can account for external flow fields, gravity and even cosmic rays (See
Chapter 3). I have confirmed, that the model reproduces known limits from a number of previous



114 8. Conclusions and Outlook

studies (e.g. Weaver et al., 1977; Koo & McKee, 1990; Truelove & McKee, 1999), and by applying
it to more complex environments have demonstrated what kind of behavior is expected in more
complex settings, such as a differentially rotating disk and SNe exploding in the vicinity of dense,
galactic substructures (Jeans, 1902; Toomre, 1964).

In the paper showcased in Chapter 3, I have applied the model, to provide insights into the physics
of galactic outflows, the most extreme manifestation of SNRs. In particular, while there has been a
lot of work on the structure and properties of galactic winds (e.g. Chevalier & Clegg, 1985; Fielding
& Bryan, 2022), the question of which environments are conducive to the formation of such a wind,
driven by star-formation potentially assisted by a cosmic-ray pressure-gradient has received only
little attention. In the work presented in the paper, I have collaborated with Dr. Ellis Owen, an
expert in cosmic-ray physics to address this gap. I have derived a condition for how much stellar
feedback is required in order to drive a galactic outflow – a condition that is mainly determined
by the balance of the driving forces (pressure gradients and cosmic rays) and gravity. Moreover,
while we have found that in the absence of a cosmic-ray halo surrounding a galaxy, cosmic rays
are able to drive arbitrarily mass-loaded, slow galactic winds regardless of the star-formation rate,
the presence of a cosmic-ray halo can suppress their formation, rendering cosmic-rays ineffective
in such systems. We discuss that such halos are expected to form in massive, old galaxies, such
as the Milky Way or its immediate neighbor the Andromeda Galaxy (Recchia et al., 2021).

8.4 Characterization of the Merging-stage

By studying the dynamics of old SNRs at ages much beyond what has been reported in most stud-
ies, I inadvertently entered the previously unexplored regime of SNR evolution past the merging
stage, which has been neglected due to the expectation that nothing interesting would happen
past this point (But see Slavin & Cox, 1992). Yet, much to our surprise, in the study presented in
chapter 4, I showed that when the SNR shock merges with the ISM it accelerates a reflected, radia-
tive shock-wave towards its interior, much resembling the reverse shock in the free-expansion stage
(e.g. Truelove & McKee, 1999); a process which we dubbed Supernova Implosion. The implosion
wave refills the extremely underpressurized, evacuated interior driving a mixture of swept-up and
ejected material into the center of the SNR, where it condenses due to rapid cooling, forming a
massive, overdense and highly enriched cloud.

Moreover, in the study presented in Chapter 6, where I used simulations of SNRs expanding
into a realistic galactic environment at unprecedented resolution, I discovered that SNRs in the
merging phase are strongly affected by galactic physics, such as differential rotation, the interplay
of vertical stratification and the vertical gravitational field and galactic substructure. While they
may still implode and form central clouds (see Fig. 8.1 for a 3D-rendering of the SNR highlighted
in Chapter 6), their dynamics and in particular their geometry is greatly affected, exhibiting signs
of stretching due to shear and interactions with galactic substructure, as well as flattening due to
gravity and gravity-driven external flows.

8.5 Triggered Star-Formation

In the study presented in chapter 5, I discuss that clouds formed by SN implosion might plausibly
form stars, and estimate the star-formation efficiency associated with this processes. While I find
that star formation triggered by SN implosion is relatively inefficient, in line with the general
expectation that SNe reduce the star-formation rate, I speculate that since the stars produced in
this process form from highly enriched gas, the proposed mechanism might provide an attractive
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Figure 8.1: 3D rendering of the simulated SB # 22 (Chapter 6) at an age of 10 Myr. The density
on the shell (iso-surface of the tracer variable) is shown in shades of blue. The density-iso-surface
with a density of 0.5 cm−3, roughly corresponding to the disk-halo-boundary is shown in faint-blue.
The central overdensity formed by SN implosion is shown in red. Velocity-streamlines penetrating
through the overdensity are also shown, colored by the local flow speed.

pathway to the formation of metal-rich stars.

In this study, I made the simplifying assumption that only core-collapse SNe contribute. However,
over the long timescales considered other sources of chemical enrichment such as thermonuclear
SNe and the winds of asymptotic giant-branch stars are expected to be relevant as well (Saitoh,
2017). The ejecta of core-collapse SNe are generally considered to be rich in α-elements, such
as oxygen or nitrogen (Janka, 2025). By neglecting these other processes the metal-rich stars
predicted by this study are generally also highly enriched with α-elements, in stark contrast to
the observational result that metal-rich stars tend to have relatively low α-element abundances,
more aligned with the other enrichment processes (Nieuwmunster et al., 2023).

Thus, in order to obtain a more robust prediction, a refined calculation, including the effects of
thermonuclear SNe and asymptotic giant-branch stars is a crucial next step.

8.6 The SISSI Simulations: A Treasure Trove

There is no doubt that besides the applications of the SISSI project, presented in Chapters 6 and
7, these simulations contain much more than could be presented within their scope and that of
this thesis. I designed these simulations to be able to tackle a wealth of questions related to the
complex interplay of SNRs with their galactic environment, yet due to the time-limitations of my
studies, here, I had to restrict myself to the most accessible of these questions.

Here, I want to give a strictly non-exhaustive list of physical processes that can and hopefully will
be thoroughly investigated using the wealth of data provided by this simulation suite:

1. Triggered star-formation. SNe are generally expected to clear their environment of po-
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tentially star-forming material, providing physical conditions that are unfavorable for further
star formation (Tacconi et al., 2020; Freundlich, 2024), yet under certain circumstances they
have been proposed to actively trigger star-formation, by compressing gas, pushing it past
the tipping point of gravitational (in-)stability (Elmegreen & Lada, 1977; Zucker et al., 2022).
Yet, a well-established, in-depth theoretical understanding of this process in the context of
SN-driven triggered star-formation remains elusive. In SISSI, I capture the star-formation
following the SN explosions and, using the passive tracer variables, I am able to distinguish
stars that have formed from pristine or polluted gas. Moreover, using the runs without SNe,
I can directly pin-point when the SN-Feedback was preventative and when it has triggered
star formation.

2. SN-driven turbulence. SNe are expected to drive turbulence in the ISM (e.g. Mac Low &
Klessen, 2004; Klessen & Glover, 2016; Krumholz & Burkhart, 2016). Models of SN-driven
turbulence usually assume that SNe inject a fixed momentum per formed unit stellar mass
(Krumholz & Burkhart, 2016), or assume that a fixed fraction of the injected energy is
available to drive turbulence (Fierlinger et al., 2016), yet how and at what stage during SNR
evolution exactly this conversion occurs remains unclear. In SISSI I simulate the dynamical
evolution of SNRs long past the onset of the merging phase, at which point one might expect
at least some degree of turbulence driving to occur. Thanks to the high spatial resolution
of the SISSI simulations, and the availability of highly resolved baseline ISM simulations, it
is possible to study the residual impact of SN Feedback on the turbulent properties of the
ISM and capture SN-induced turbulence driving in the act.

8.7 Future Directions

In recent years, observational surveys have made tremendous progress in advancing our knowledge
of interstellar physics. Gaia has brought us detailed information about billions of stars and will
keep delivering with the upcoming fourth data release. In its first few years, JWST has revolu-
tionized our understanding of high-redshift galaxies and has provided stunning data sets of the
ISM of nearby galaxies. In the coming years this trend is only going to continue at an ever in-
creasing pace, with the recently launched Vera Rubin observatory and upcoming facilities such as
the Roman space telescope, SKAO, NewAthena and many more. To keep up with this inflation
of ever increasing detail in observational data sets, and provide a timely theoretical basis for their
adequate interpretation, theoretical studies are required to overcome various challenges, related
to the staggering hierarchy of scales, that one encounters when trying to adequately model the
ISM. In general, there are three (complementary) directions in which the work in this thesis can
be advanced in:

1. More complete physics. In my work I focused on ideal hydrodynamics coupled to self-
gravity. I have thereby neglected a number of physical processes that might be dynamically
important.

2. More realistic environments. In my simulations, I have used an isolated simulated
galaxy, which was generated using fairly simplistic prescriptions for Feedback, cooling and
star-formation. A more detailed ISM model that better captures the hierarchical structure
of the turbulent, multi-phase ISM will allow for a more robust understanding of the complex
interplay of SNRs with their environment.

3. Better tools for comparisons with observations. Radiative cooling is intimately cou-
pled to the emissivity of gas. Yet, in my current simulations it is currently not possible
to self-consistently derive the emissivities of various important gas tracers. Future models
might benefit from approaches that allow for self-consistently generated emissivities, and
radiative transfer modeling, which would allow direct comparisons with observations.
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8.7.1 Towards a Comprehensive Picture of SNR dynamics

SNRs are multi-scale, multi-phase objects, whose dynamics are affected by a number of processes
that can act on different scales.

It has been shown that magnetic fields modify the dynamics, and importantly, the geometry
of SNRs, by providing additional pressure and affecting the growth of instabilities in the shell
(Kim & Ostriker, 2015; Gentry et al., 2019). Moreover, they can couple to cosmic rays, which
are hypothesized to be accelerated in SNRs, depositing part of the SNRs energy in a slowly
cooling non-thermal component (Cristofari et al., 2021; Diesing et al., 2024), which can modify
the dynamics and at the very least act as an observational signature.

The dynamics of SNRs are determined by the amount of energy that is radiated away in the
unresolved thin layer, between the cold shell and the hot interior. While current three-dimensional
simulations are still far away from resolving this interface (Sharma et al., 2014), the cooling across
this interface seems to be regulated by the enthalpy flux through this layer, which is well resolved
even at fairly coarse resolution (Marin-Gilabert et al., 2025). In this case, however, it is still
relevant to consider all the physical processes that might affect the enthalpy flux through this
layer. These processes include magnetic fields, non-ideal hydrodynamic effects suchs as thermal
conduction (Guo et al., 2025) and viscosity (Marin-Gilabert et al., 2025) and even detailed non-
equilibrium (photo-)chemistry (Kim et al., 2023b; Makarenko et al., 2023), which is expected to
set the thermodynamic state in the cold shell.

A systematic investigation of how all of these effects affect SN dynamics will provide the foun-
dation of future theoretical studies of SNRs in realistic environments. Importantly, in a realistic
environment, all of these processes work in concert to shape the environment that the SNRs ex-
pand into, defining what is “realistic” in the first place. While including all of these effects in
numerical simulations of SNRs is challenging, models such as the one presented in Section 2 might
be useful to explore the vast model space. In order to address these questions, the model would
need to be extended from a one-zone model (thin-shell approximation) to a multi-zone model,
which covers at least two zones for the cold shell and the hot bubble, where the balance of cooling
and enthalpy flux is dictating the mass-, energy- and momentum fluxes between the two zones. In
the context of reverse-shock formation such models are already under construction (D. Bulckaen,
N. Sartorio, L. Romano, et al. in prep.).

8.7.2 Predictions for Multi-Wavelength Observations of SNRs on All
Scales

In observations information is incomplete. All we know about observed astrophysical objects has
to be inferred from what little information is contained in the observations. Thus, a robust pipeline
from observational data, usually comprising of either photometric data, taken by filters collecting
most of the incoming light in specific wavelength windows, spectroscopic data, comprised of the
little incoming light at specific wavelengths, or a combination of both, to the physical quantities
of interest is required.

On the contrary, in simulations the full information on the physical quantities is available, but
it is generally quite difficult to model the actually observable light emission (Matsumoto et al.,
2023). With the incoming wealth of observational data, self-consistently modeling the emission
and transport of light to an observer such as ourselves is a crucial step towards sustainably making
use of the overwhelming amounts of data.

To this end, models that actively model the radiative transfer coupled to the non-equilibrium
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photochemistry of SNRs throughout the various stages in their life need to be implemented. Since
both radiative transfer and chemistry are strongly dependent on the presence of dust (Romano
et al., 2022; Matsumoto et al., 2024), cosmic rays and magnetic fields (Kim et al., 2023b), such
models would need to be coupled to the detailed modeling of these processes as well.

8.7.3 Numerical Road-Map for Future Simulations

Eventually a future SISSI-like simulation suite capable of all of these things might emerge. Yet,
in order for this to become truly feasible, several algorithmic improvements need to be made,
to offset the significant added computational cost that goes hand-in-hand with modeling these
processes. Moreover, existing numerical artifacts should be addressed to improve the robustness
of the results of future simulations.

One of the weak points of SISSI is the global time-stepping hierarchy in RAMSES, which depends
on the highest speed in the simulation box and can drastically slow down the advancement of
numerical simulations with deep scale hierarchies. Many modern codes such as AREPO(Springel,
2010; Weinberger et al., 2020), GIZMO (Hopkins, 2015), GADGET-4 (Springel et al., 2021) and
OPENGADGET3 (Groth et al., 2023) tend to use local time-stepping approaches that only apply
restrictively short time steps where it is urgently needed, significantly reducing the computational
cost. There appears to exist a numerically stable implementation in RAMSES that, however, has
not yet been shared with the broad community (private comm.).

One of the most widely used numerical solvers in RAMSES is the so-called Harten-Lax-van Leer-
Contact (HLLC) Riemann solver (Toro et al., 1994), which is optimized to correctly deal with
contact discontinuities. In contrast, the HLLC solver struggles with shocks, introducing the so-
called carbuncle instability. Fortunately, a simple fix – the so-called h-correction (Stone et al.,
2008) – has been suggested, which can resolve this issue for good, essentially by detecting shocks
and applying a different solver that does not exhibit this numerical artifact. Unfortunately, in
RAMSES this correction has so far only been implemented in two dimensions. It should be
relatively straightforward – though likely somewhat tedious – to extend this implementation to
three dimensions.

Many aspects of numerical simulations can be accelerated through efficient use of GPUs, which
generally come at the cost of significant, time-consuming modifications of the algorithms and data-
structures used. The GPU-ready next-generation of the RAMSES code, called Mini-RAMSES
is expected to be released soon (private comm.). While a speed-up due to GPU capabilities would
be a welcome change, it remains to be shown to what extent the next-generation of SISSI can
benefit from Mini-RAMSES.

Besides RAMSES there are already existing codes that unify many of these aspects and could
in principle be readily used for a next-generation SISSI project. While it might be challenging
to replace the flexible AMR capabilities of RAMSES, which lie at the heart of SISSI, in another
code base, modern codes such as AREPO (Mayer et al., 2025) and GIZMO (Hopkins et al., 2024)
offer well-tested hyper-refinement capabilities that might offer suitable alternatives.
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Modelling the Expansion of
Supernova Remnants

A.1 Derivation of the Pressure-Gradient Force

Here we show how to derive the expression for the pressure-gradient force Eq. 2.5 following
the formalism of Laumbach & Probstein (1969). By following the steps outlined in their paper,
the expression for the pressure gradient can be read off from their final results, by noting that
they consider an adiabatic blastwave, without central forcing, expanding vertically upwards into a
stratified atmosphere, neglecting the effects of gravity. Under these assumptions the equation of
motion Eq. 2.2 simplifies to

d

dt
(Mvs) = ∆Pr2s . (A.1)

The starting point of the derivation is the Taylor-expansion of the Eulerian radial coordinate r in
terms of the Lagrangian radial coordinate r0 at t = 0, near the radial location of the shock front
rs to second order
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In order to derive the equation of motion, we make use of the thin-shell approximation, in which
r → rs is independent of r0. In this approximation we can approximate the integral of the Euler-
equation for the momentum evolution

∂2r

∂t2
= − r2

ρr20

∂P

∂r0
, (A.3)

using the value of the acceleration at the shock
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and similarly we can approximate the energy integral using the value of the kinetic energy density
at the shock
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By combining Eqs. A.4 and A.5 we can eliminate P (0, t), which leaves us with the problem of
deriving expressions for the various remaining quantities at the shock rs.

A.1.1 Derivation of the Acceleration at the Shock

To leading order(s) the first two time-derivatives of Eq: A.2 are(
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where ṙs = vs is the shock speed.

The Eulerian and Lagrangian radial coordinates are related by the continuity equation

ρ0 r
2
0dr0 = ρr2dr , (A.8)

where ρ0 (r0) is the unperturbed density profile at r0 and ρ (r, t) is the density at r and time t.
We can use this relation in combination with the Rankine-Hugoniot jump-conditions for strong
shocks (e.g. Ostriker & McKee, 1988) to evaluate
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which is constant in time and determines the velocity at the shock
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By making use of the momentum equation A.3 and the Rankine-Hugoniot jump-condition for the
pressure at the shock
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2
s (A.11)

we can evaluate Eq. A.7 at the shock to obtain
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The pressure-gradient term can be further evaluated by utilizing the adiabatic condition
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The first term can be evaluated from Eq. A.11 yielding(
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ṙ2s

, (A.15)



A.1 Derivation of the Pressure-Gradient Force 121

since by the chain-rule (
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The second term can be evaluated using the continuity equation A.8 yielding(
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We thus obtain for the pressure gradient(
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which we can plug into Eq. A.12 and solve for
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Finally, we can use this to obtain the acceleration at the shock(
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ṙ2s
rs

. (A.20)

A.1.2 Obtaining the Equation of Motion

We have now all the pieces in place to derive the equation of motion. We combine Eqs. A.4 and
A.5 to eliminate P (0, t), plug in Eqs. A.11, A.10 and A.20 and solve for Mv̇s to obtain
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which by adding Ṁvs = ρ0 r
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from which the expression for the pressure gradient Eq. 2.5 can be read off.

While this derivation assumes an adiabatic blastwave in a stationary medium, it might be possible
to lift this assumption and derive the pressure-gradient force in more complex cases, such as
a radiatively cooling isothermal shock. In this case the compression-ratio at the shock and the
shock-pressure would need to be updated to those of an isothermal shock. Moreover, the adiabatic
condition would need to be replaced with an appropriate equivalent condition, which might be
challenging, and which is mainly the reason why we instead approximate the pressure-gradient
force to become negligible once cooling becomes dominant. Future studies that do deal with this
complication might be able to incorporate the role of cooling in this derivation and possible recover
the pressure-driven snowplow, and justify our assumption of the vanishing pressure-gradient force.
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Appendix B

Starburst-Driven Galactic
Outflows
Unveiling the Suppressive Role of Cosmic Ray Halos

B.1 Halo and Outflow model

B.1.1 Halo model and CR timescales

In our model, the galaxy halo consists of a thermal gas component and a non-thermal CR com-
ponent. The gas is treated as an infinite slab in vertical hydrostatic equilibrium, with a density
profile given by:

ρ (z) = ρmp cosh
−2

(
z

Hs

)
, (B.1)

and velocity dispersion σ = 10σ1 km s−1, where ρmp = µmH nH, mp is the mid-plane gas density,
µ = 1.4 is the mean atomic weight, nH, mp = n0 cm

−3 is the number density of the gas, and where
the scale height of the is given by:

Hs =
σ√

2πGρmp

∼ 338σ1n
−0.5
0 pc (B.2)

(Behrendt et al., 2015). The expected profile of the CR component in the halo is uncertain and
depends on the underlying CR transport physics, which remain unsettled. It has been suggested
that buoyant bubbles may redistribute CRs in the halo (Recchia et al., 2021). Such bubbles, blown
by SN-powered winds in starburst regions of a galaxy (e.g. Herenz et al., 2025), may be associated
with outflows when they begin to fragment (e.g., above a cap similar to that seen in M82; Devine
& Bally 1999), or could even be attributed to buoyant structures inflated by intensive energetic
outbursts akin to the Galactic Fermi bubbles (e.g. Su et al., 2010; Zubovas & Nayakshin, 2012;
Recchia et al., 2021) analagous to AGN-inflated bubbles in Galaxy clusters (e.g. Yang et al., 2019).
Observations of M31 do not yet strongly favor a particular CR distribution profile (Karwin et al.,
2019), and detailed physical modeling of the CR halo is beyond the scope of the current work.
We therefore adopt a simple spatially uniform CR distribution in the halo, effectively treating
it as a CR bath in which an outflow develops. This approach is sufficient to obtain qualitative
insights into the effects of a CR halo on outflow development, with more detailed modeling of CR
transport mechanisms in galaxy halos left to future work.
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Figure B.1: Characteristic timescales for a CR proton to undergo a hadronic interaction with
ambient gas (pp interactions) or radiation (pγ interactions) shown for typical conditions in the
galaxy interior (red lines) and halo (black lines). For the galaxy interior, we adopt a gas density
of 1 cm−3 and stellar radiation fields consisting of a stellar component with T = 7100 K and an
energy density of ∼ 0.7 eV cm−3, with a dust component at T = 60 K and an energy density
of ∼ 0.3 eV cm−3. For halo conditions, we consider a reduced gas density of 10−3 cm−3, with
radiation energy densities scaled down by a factor of 100. pγ losses with cosmological microwave
background radiation at z = 0 are included for both galaxy interior and halo conditions, with
photo-pair and photo-pion interactions occurring at the same rate in both environments. The
Hubble timescale is shown in gray. Interaction timescales exceeding this (i.e. within the shaded
pink region) practically do not occur. For an overview of these hadronic CR interaction processes
and timescale calculations, see Owen et al. (2018).

To achieve a sensible normalization at low altitudes where CR pressure most strongly influences
outflow development, the CR content of the halo is set to match the CR energy fraction at the
galactic mid-plane. The halo CR pressure can then be expressed as:

PCR, ext =
γCR − 1

γ − 1
fCRρmpσ

2, (B.3)

where the thermal gas adiabatic index is γ = 5/3, and the CR fluid adiabatic index is γCR = 4/3.
This configuration creates a layered halo structure, with thermal gas pressure dominating at low
altitudes and CR pressure becoming more important at higher altitudes (see the right panel of
Fig. 3.1).

The CRs in the galaxy halo are likely primarily hadronic. This is because fast electron cooling in
typical galactic conditions limits the electron population. Once deposited in the halo, CR hadrons
experience few interaction or energy loss channels, allowing them to survive over Gyr timescales
(see Fig. B.1). Adiabatic losses, streaming losses, and diffusive energy gains in micro-turbulence
have only modest effects on the overall CR spectrum. Detailed simulations show that these
processes rarely impact CR energies significantly in galaxy halos, typically contributing no more
than 10 percent level corrections (Chan et al., 2019; Hopkins et al., 2022). We therefore neglect
these effects in our model. Without significant cooling or absorption channels, CR hadrons are
expected to accumulate in the galaxy halo, forming a fossil record of the host galaxy’s CR power
generation history.
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B.1.2 Outflow model

We consider that an outflow is driven by a continuous injection of energy, momentum, CRs, and
thermal gas, forming an expanding super-bubble that launches a galactic wind. This approach
allows us to establish a criterion for wind launching and derive an analytical expression for the
outflow velocity. To do this, we start from the blastwave equation of motion (Ostriker & McKee,
1988) under the thin-shell and sector approximations (e.g. Laumbach & Probstein, 1969; Koo
& McKee, 1990), to derive an analytically tractable equation of motion suitable for modeling
CR-driven outflows:

Mz̈ =
(
∆P +∆PCR − ρż2

)
z2 +M g +

ṀSB

4π
(vej − ż) (B.4)

Here z = z (t) is the shock radius at time t after the onset of shock expansion, ż and z̈ are
the instantaneous expansion velocity and acceleration of a thin shell following the expanding
shock, M =

∫
ρz2dz is the swept-up mass, and ∆P and ∆PCR are the thermal and non-thermal

pressure differences between the shocked and the un-shocked gas, respectively. The gravitational
acceleration, g, for a single-component, isothermal slab in vertical hydrostatic equilibrium is given
by:
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)
. (B.5)

The speed of the ejecta, vej, is:

vej =
√
2εw (1− fCR)ESN/Mej . (B.6)

Other terms retain the definitions provided in the main text (see section 3.1).

We set ∆P = 0 to account for the fact that the SBs generally become radiative, and quickly enter
a rapidly-cooling wind phase (e.g. Kim & Ostriker, 2015; Oku et al., 2022). While the expansion
of such rapidly cooling winds is still formally energy-driven, the coupling between the hot interior
and the shell leads to dynamics that are equivalent to those of a momentum-driven wind, but with
a slightly boosted momentum injection rate in comparison to that at the source (Lancaster et al.,
2024). We account for this boost by means of the energy efficiency factor εw.

We model the CRs as a non-thermal fluid with an adiabatic index of γCR = 4/3, assuming a
uniform pressure distribution immediately behind the shock. The CR pressure then evolves as:

PCR, in = 3 (γCR − 1)
fCRεw

(
ĖSB/4π

)
t

z3
. (B.7)

As the outflow reaches a steady state (i.e., over a timescale when the flow reaches its asymptotic
limit at high altitudes), the mass it has swept up is given by:

M∞ =

∫ ∞

0

ρ (z) z2dz (B.8)

=
π2

12
ρmpH

3
s ∼ 106 σ3

1 n
−1/2
0 M⊙ .

To analyze the properties of the outflow, we consider steady-state solutions with ż → v∞ =
100 v∞,2 km s−1 in the limit where z = v∞t ≫ Hs, and where the mass of the shell is dominated

by the swept-up mass, i.e.,
(
ṀSB/4π

)
t ≪ M∞. In this limit, we can rewrite eq. B.4 as:

0 = ∆PCRz
2 − 2M∞

σ2

Hs
+

ṀSB

4π
(vej − v∞) . (B.9)
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When external CR pressure is absent (∆PCR = PCR, in), this reduces to a quadratic form with a
single positive solution:

v∞ =
vej

2
√
1− fCR

(
δ +

√
δ2 + 2fCR

)
, (B.10)

where

δ =
√
1− fCR − Rc

RSN
(B.11)

and

R−1
c ∼ 0.13 ε

1/2
w,-2 E

1/2
51 M

1/2
ej,0 σ

−4
1 kyr . (B.12)

In the absence of CRs, there are no outflow solutions when RSN ≤ Rc. On the other hand, when
CRs are present, outflow solutions are always possible. For weak sources with RSN ≪ Rc, the
outflow reaches very slow asymptotic speeds:

vweak
∞ → 66 fCRεw, -2 E51 R−3 σ

−4
1 km s−1 . (B.13)

However, in the strong source limit where RSN ≫ Rc, the outflow velocities are much higher,
approaching:

vstrong∞ → 103 ε
1/2
w,−2 E

1/2
51 M

−1/2
ej, 0

√
1 + fCR +

√
1− fCR

2
km s−1 . (B.14)

B.2 Model Limitations and Assumptions

Our model invokes a number of approximations and assumptions. While we consider our results
to be qualitatively robust, future developments that relax these assumptions may provide more
refined insights. Here, we assess the validity of our assumptions and approximations and discuss
their potential impact on our results.

Density Profile and Gravitational Field. The density profile in eq. (B.1) represents an isother-
mal, single-component atmosphere in vertical hydrostatic equilibrium, providing a reasonably ac-
curate description near the mid-plane. However, the presence of molecular gas and a young stellar
disk could create a deeper potential well, leading to a more compact density profile that may affect
the early stages of shock breakout. Moreover, explicitly modeling the gravitational potential of
different galaxy components (e.g. the bulge, disk and dark-matter halo) could modify flow prop-
erties (see Shimoda & Inutsuka, 2022), and this can be affected by the detailed gas distribution
throughout the galaxy and inner halo. However, the outflow properties at high altitudes (above
∼ 100 kpc) are unlikely to be significantly impacted if the overall gas surface density and wind
loading remain unchanged.

Halo Gas Properties. In the halo, the multi-phase CGM contributes a diffuse gas background
that exerts additional (ram) pressure, which can counteract outflow expansion (Shin et al., 2021).
While the CGM is diffuse, it is expected to follow a shallow density profile that would slow the
outflow’s expansion once the swept-up CGM mass becomes comparable to M∞. This occurs at

a height of zCGM ∼ 5σ1 n
−1/6
0 n

−1/3
CGM, -3 kpc, where nH, CGM = 10−3 nCGM, -3 cm

−3 is the number
density of hydrogen in the CGM.

Ejecta Mass. For the asymptotic steady-state solution, we consider a limit where the outflow
has traveled sufficiently far above the disk, yet is not old enough for its mass to be dominated by
the ejecta. The timescale for the outflow to become ejecta-dominated is tED ∼ 4πM∞/ṀSB ∼
12.6σ3

1 n
−1/2
0 M−1

ej, 0 R−1
−3 Gyr, which is considerably longer than the lifetime of the starburst driving

the outflow. We therefore consider our results to be robust against this approximation.
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Thin-Shell and Sector Approximation. While the thin-shell approximation is well-suited
for radiative blastwaves or those propagating through media with positive density gradients, it
becomes increasingly crude in environments with steep negative density gradients. This is because
the mass, energy, and momentum distributions behind the shock broaden significantly (see e.g.
Laumbach & Probstein, 1969; Koo & McKee, 1990). Despite the steep density gradient considered
in this work, our model focuses on a radiative, momentum-driven wind, where the thin-shell
approximation is expected to remain reasonably accurate. The sector approximation, on the other
hand, is most reliable when the local shock surface remains relatively flat. This approximation can
break down if adjacent streamlines begin to diverge significantly, e.g. due to sudden deflections.
However, since observed outflows generally exhibit large opening angles, this approximation is
likely to have only a negligible impact on our findings.

Treatment of CRs. Our treatment of CRs involves a number of simplifications. While we
do not explicitly account for CR cooling or interactions within the flow, this is well justified
given the relevant timescales (see Appendix B.1.1). However, future studies with more detailed
CR propagation modeling may yield different quantitative results, particularly if a detailed CR
transport model within the halo is included. Such models could alter the distribution of halo
CRs (Recchia et al., 2021), and reveal the microphysical impacts of CRs on outflows, including re-
acceleration processes and interactions with complex magnetic field structures at the outflow–halo
interface (see, e.g. Hopkins et al., 2023). Additionally, our study does not consider the spectral
evolution of CR particles, which could influence the coupling between CRs and the outflowing wind
fluid, potentially modifying their driving efficiency and altering observable CR emission signatures.
Future work incorporating these effects could provide a clearer understanding of how CRs shape
the development of outflows in CR-rich galaxy halos.
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Appendix C

Cloud Formation by Supernova
Implosion

C.1 Adaptive Mesh Refinement

In our fiducial simulation suite presented in the main body of the paper we have used AMR to
reduce the numerical cost of the simulations. In our prescription we only refine cells, which have
been sufficiently enriched by SN ejecta. We thus create a central refinement region that should
expand at roughly the same rate as the shock. However, as the ejecta are physically confined
behind the contact discontinuity, the refinement region might lag behind the shock and thus one
might expect the shock to be slightly less refined than the rarefied gas behind it.

In SNRs the contact discontinuity and the shock are essentially at the same location and thus we
expect this lag to be negligible, especially considering the presence of numerical diffusion, which
acts to smear out the contact discontinuity.

In order to test whether the use of AMR can qualitatively modify our results in Figure C.1 we
compare the results of the models N1 n2 L13 and N1 n2 L13 noAMR. The two models are almost
identical, but while in N1 n2 L13 we use our AMR prescription in N1 n2 L13 noAMR we use a
static mesh with a grid spacing equal to the finest spacing in N1 n2 L13.

Figure C.1 shows that the two models are essentially identical. Negligibly small differences arise
due to small differences in the time when snapshots are written, since they are only written when
the entire grid is synchronized.

We thus conclude that the adopted AMR technique does not affect our results in any meaningful
way.

C.2 Convergence

In order to test, whether our results are converged, we ran the N1 n2 model at three different
resolutions, denoted by N1 n2 L12, N1 n2 L13 and N1 n2 L14. The results are shown in Figure
C.2. Shown are the mass, momentum, energy, pressure, volume and ejecta content of the different
gas components as a function of time.
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Figure C.1: Similar to Figure 4.5 for model N1 n2 L13 with and without AMR. Solid, dashed and
dotted lines correspond to the hot bubble, outflowing and inflowing shell, respectively. In panel
(c) the thermal and kinetic energy are plotted with an opacity alpha of 1 and 0.5, respectively.
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Figure C.2: Similar to Figure 4.5 for models with different resolution. Solid, dashed and dotted
lines correspond to the hot bubble, outflowing and inflowing shell, respectively. In panel (c) the
thermal and kinetic energy are plotted with an opacity alpha of 1 and 0.5, respectively.
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Figure C.3: Equilibrium pressure as a function of density for different cooling models. The brown
curve corresponds to the default Ramses cooling, and the red and blue curves correspond to
different models taken from Ploeckinger & Schaye (2020).

Before shell formation, there are only minor differences between the models, which seem to stem
from slightly different snapshot times and the analysis procedure. There is a slight dip in the
mass, momentum and energy of the hot phase, in the lowest resolution run, which likely might
have arisen from the SNR selection criterion (Figure 4.1).

The shell formation timescale, as well as the properties of the SNR at shell formation appear
converged in line with the convergence criteria by Kim & Ostriker (2015).

Slight differences appear after shell formation. The pressure of the cold phase, during the PDS
increases with resolution. Since the temperature of the shell during this phase is roughly fixed to
about 104 K, the pressure is determined by the density of the shell, which depends on the width
of the shell. In all runs, the shell during the PDS is resolved with only few resolution elements
and thus indeed is not converged, as already noted by Sharma et al. (2014) who estimate that
the width of the shell should be ∼ 0.001Rsf ∼ 10−3 − 10−2 pc. Despite the different PDS shell
pressure, the PDS ends at a similar time in all runs and the shell pressure approaches a very
similar evolution during the MCS and following phases.

In the lower resolution runs more of the ejecta tend to be incorporated in the shell right after shell
formation. However, these differences are negligible by t = 0.1Myr.

During the MCS, prior to implosion, there is already a small non-growing fraction of backflowing
cold gas in the highest resolution run. This component is in pressure equilibrium with the ISM
suggesting that it arises from small blisters in the shell’s outer edge, which form, when the shell
fragments due to thin shell shell instabilities which are unresolved in the lower resolution runs.

The implosion is launched at roughly the same time after ∼ 300 − 500Myr and forms a central
cloud (Vhot → 0) after 1 Myr in all runs, indicating that these timescales are converged.

The mass, momentum, thermal energy and volume of the cold components diverge at late times.
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Figure C.4: Rescaled version of Figure 4.5 for models with different cooling functions. Solid,
dashed and dotted lines correspond to the hot bubble, outflowing and inflowing shell, respectively.
In panel (c) the thermal and kinetic energy are plotted with an opacity alpha of 1 and 0.5,
respectively.

Despite this non-convergence all SNRs exhibit the same qualitative features, and thus it does not
affect our conclusions in any meaningful way.

C.3 Cooling Models

In order to investigate the role of the cooling function, we have rerun the model N1 n1 L11 with
two different cooling models taken from Ploeckinger & Schaye (2020) integrated using an exact
integration scheme (Townsend, 2009; Zhu et al., 2017). For details of the implementation we refer
the reader to Behrendt et al. (in prep.). The cooling functions in the models N1 n1 L11 Dust
(Dust) and N1 n1 L11 PS20 (PS20) correspond to their models UVB dust1 CR0 G0 shield0 and
UVB dust1 CR1 G1 shield1, respectively. The models’ cooling-equilibrium curves in the P − nH-
plane are shown in Figure C.3.

Dust differs from the Ramses cooling model in that the equilibrium curve has a pronounced kink
at around nH ∼ 1 cm−3, while PS20 has a steep drop in pressure at around nH ∼ 0.01 cm−3 above
which the pressure is 2-3 orders of magnitude below the pressure in the Ramses model.

In Figure C.4 we show a comparison of the results for the different models. As expected the SNR
evolution before shell formation is not affected by the cooling. The length of the PDS phase and
the momentum boost during this phase are slightly increased for the Dust and PS20 models.

Despite these differences, the timescales for implosion and cloud formation hardly differ between
the Ramses and Dust models. On the contrary, for the PS20 model, since the equilibrium ISM
pressure is several orders of magnitude lower, implosion is delayed by ≳ 3Myr and does not lead
to cloud formation within the simulated time.
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Figure C.5: Slices through the XY-plane of the radial mass flux 1.5 Myr after the explosion for
models with and without a cold, dense cloud placed near the explosion center.

These results indicate that it is indeed the ISM pressure, which controls the implosion, since all
other quantities that might have an effect do not differ very much between the runs.

C.4 Locally Triggered Implosions

In order to investigate, whether or not the implosion can be triggered by local pressure en-
hancements, we have rerun the model N1 n-1 L11 for 1.5 Myr with a cold (T ∼ 800K), dense
(nH ∼ 10 cm−3) cloud of Radius Rcl = 15pc centered at a distance of dcl = 100 pc from the
explosion center. The pressure in the cloud is about an order of magnitude higher than that of
the ambient medium.

As shown in Figure 4.7, N1 n-1 L11 does not implode until t = 1.75 ± 0.25Myr and thus there
should be no global implosion within the simulated time. However, if the implosion is indeed a
local effect, the increased pressure within the cloud, should trigger a local implosion shortly after
impact.

In Figure C.5 we show slices of the radial mass flux, 1.5 Myr years after the explosion for the
runs with and without a cloud. In the run without a cloud there is no implosion, while in the run
with the cloud, there is a significant backflowing component behind the shock coming from the
direction of the cloud. This confirms that the implosion can indeed be triggered locally.

We note, that the cloud is slowly expanding due to the pressure gradient relative to the ambient
medium, leading to a radially inflowing component downstream of the shock. This flow is unrelated
to the implosion, which is necessarily upstream.
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Appendix D

SISSI: Supernovae in a stratified,
shearing interstellar medium
I. The geometry of supernova remnants

D.1 The ISM of the SISSI galaxy

The SNRs of the SISSI simulations expand into a complex environment which differs between
different regions of the ISM. In order to help interpreting the role of the ISM, here we describe
the properties of this environment.

Figure D.1 shows the T − nH phase diagram of the gas in the SISSI galaxy at t = 0. In the ISM
most of the gas is concentrated in two distinct gas phases: Warm neutral gas at T ∼ 7 × 103 K
for densities in the range ∼ 10−2 − 102 cm−3, and colder gas at a constant pressure of P ∼
104 kB Kcm−3 for denser gas above nH ∼ 1 cm−3. For gas above nH ∼ 1 cm−3 the warm phase is
unstable and cools after ∼ 1Myr.

Cold (T ≲ 102 K) and dense (nH ≳ 102 cm−3) gas is star-forming and thus steadily being con-
sumed.

The galactic ISM is surrounded by a hot, diffuse circumgalactic medium (CGM), corresponding

to a roughly adiabatic phase with TCGM ∼ 107
(
nH/

(
10−3 cm−3

))γ−1
, with a maximum density

of ∼ 10−3 cm−3 at a temperature of ∼ 107 K, in pressure balance with the cold ISM.

Of course, locally the ISM properties may not adhere to this simple picture. In Fig. D.2 we
show the initial properties of the local ISM at the various explosion sites. All quantities are
derived from density, and vertical velocity profiles averaged over ISM patches of side lengths
ℓ = 0.2, 0.5, 1, 1.5 and 2 kpc parallel to the galactic plane centered around the explosion site. The
error bars indicate how much a quantity varies with scale.

We define the vertical scale height as half the distance between the ∼ 12% and the ∼ 88% mass
percentiles of the density profile, roughly matching the definition of a sech2 (z/zscale)-profile, as
would be appropriate for a single-component, isothermal disk. While the simulated galaxy, is
neither consisting of only a single component, nor is it isothermal, our definition still yields a
reasonable definition for an effective gas scale-height. Correspondingly, we define the midplane
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Figure D.1: Temperature-density phase-diagram of the global ISM. The galactic ISM features a
stable phase at P/kB ∼ 104 K cm−3 for nH ∼ 1− 100 cm−3, and an unstable phase at T ≲ 104 K,
which becomes stable below nH ∼ 1 cm−3.

density as

nH, mp =
1

2 tanh (1) zscale

∫ z0+zscale

z0−zscale

nH (z) dz , (D.1)

where z0 is the midplane, lying right in between the ∼ 12% and the ∼ 88% mass percentiles of
the density profile.

The velocity dispersion is defined as the average of the three components of the velocity dispersion

vector, i.e. σ2 =
(∑

i∈{x,y,z} σ
2
i

)
/3, within all vertical bins within the midplane, i.e. within

z0 ± zscale.

We find a diverse range of midplane densities spanning over two orders of magnitude. The densities
roughly follow the radial trend of the initial conditions, albeit with considerable scatter and a
steepening towards Rgal = 2kpc. We thus expect SNRs at larger galactic radii to grow bigger,
with more variation between regions.

The velocity dispersion is roughly constant throughout the sample of regions with a typical value
of σ ∼ 10 km s−1, though with larger spatial variations in some regions. SNRs should therefore
merge with the ISM at around the same time in all regions.

The measured scale heights indicate that, while the overall trend follows the expected scaling from
dynamical equilibrium considerations in a single-component disk, it is more compact due to the
dominant gravitational potential of the stellar disk. SNRs will start to be affected by vertical
stratification once their size grows similar to this scale height, indicating that these effects might
become important earlier for SNRs in higher-density regions.

In some regions we find that the mean vertical velocity is increasing (decreasing) linearly as a
function of height with a midplane vertical velocity gradient on the order of σ/zscale. These motions
appear to be strongest around nH, mp ∼ 1cm−3, indicating that gas at this density can be thermally
unstable and is driven towards lower (higher) densities (∂zvz > 0 (< 0)). We interpret these
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Figure D.2: Corner plot showing the distribution of ISM properties (Galactocentric radius R,
midplane density nH, mid, velocity dispersion σ, vertical scale height zscale and vertical velocity
gradient ∂zvz) at the SNR locations averaged over various length scales. We average over quadratic
apertures with side lengths L = 0.2, 0.5, 1.0, 1.5 and 2.0 kpc. As expected the mean of nH, mid

decreases with R, with large scatter at R > 2 kpc. Compared to the ICs, the mean density profile
has steepened. The velocity dispersion is roughly constant σ ∼ 10 km/s throughout the disk
with considerable scatter. The disk scale height follows the scaling behavior predicted by vertical
hydrostatic equilibrium of the gas zscale ∝ σ/n0.5

H , but with a slightly lower normalization, likely
due to the presence of stars. The vertical velocity gradient on average is zero with increasing
scatter towards larger R. The maximum values reveal a preferred scale of |∂zvz| ∼ σ/zscale ∼ t−1

ff

indicating that these expansion and contraction motions correspond to gravitational breathing
modes of the disk. The velocity gradients peak around nH, mid ∼ 1 cm−3, i.e. the breathing of the
disk coincides with the presence of multi-phase gas (see fig:D.1).
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motions as disk breathing-modes around the dynamical equilibrium, with an expected period of
about a free-fall timescale, much longer than the dynamical timescale of an expanding SNR. Thus
we expect the velocity gradients to be frozen-in during the lifetime of an SNR. SNRs expanding
into a positive velocity gradient will grow faster as they sweep-up co-expanding material, while
SNRs expanding into a collapsing region will be slowed down.

D.2 Analytic theory of SNR evolution in a uniform medium

In this section we briefly review the analytic theory for the dynamics of radiative SNRs and SBs
(see e.g. Kim & Ostriker, 2015; Oku et al., 2022; Romano et al., 2024a). We consider the case
of spherical expansion driven by point-explosions with explosion energy ESN = 1051 E51 erg into
a uniform medium with hydrogen number density nH = n0 cm

−3, solar metallicity and pressure
P = µnH σ2, where µ = 1.4 is the mean atomic weight and σ = 10σ1 km s−1 is the sound speed,
which in a supersonically turbulent medium such as the ISM, may be replaced with the turbulent
velocity dispersion.

Since here we are mostly interested in the dynamics of old radiative SNRs we skip the dynamics
of the initial ejecta dominated expansion and start directly with that of adiabatic expansion;
the so-called Sedov-Taylor (ST) phase (Sedov, 1959). The internal structure of the Sedov-Taylor

blastwave is described by a similarity solution with similarity parameter ξ = r/
(
ESNt

3/ρ
)1/5

,
with ξ0 ≈ 1.15167 at the position of shock radius. During the ST phase, the radially outward
momentum increases as a function of time and is given by (Kim & Ostriker, 2015)

pST = 2.21× 104 E
4/5
51 n

1/5
0 t

3/5
3 M⊙ km s−1 , (D.2)

where t = t3 kyr = t6 Myr.

The ST phase ends, once radiative cooling becomes dominant and a thin shell forms right behind
the shock front, after (Kim & Ostriker, 2015)

tsf ∼ 44E0.22
51 n−0.55

0 kyr , (D.3)

at which point the SNR has a size of

Rsf = 22.6E0.29
51 n−0.42

0 pc , (D.4)

and a momentum of
psf = 2.17× 105 E0.93

51 n−0.13
0 M⊙ km s−1 . (D.5)

Right after shell formation, the interior of the SNR is still hot and at a higher pressure than the
shell, which has a temperature of about Tshell ∼ 104 K and is highly compressed relative to the
ambient medium χ ∼ 10. During this so-called pressure-driven snowplow (PDS) stage, the SNR
expands R ∝ t2/7, leading to a slight enhancement of the radial momentum ∝ t1/7. The PDS ends
when the pressure in the bubble becomes comparable to the pressure in the shell (Romano et al.,
2024a) after

tPDS ∼ 0.15E0.27
51 n−0.44

0 Myr , (D.6)

corresponding to a size of
RPDS ∼ 32.1E0.3

51 n−0.39
0 pc . (D.7)

Depending on the details of radiative cooling and incorporation of mass from the bubble into the
shell, the radially outward momentum of the SNR is boosted by up to about ∼ 50% during the
PDS.
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Once the pressure in the interior of the bubble has dropped, the SNR expands solely due to its
inertia R ∝ t1/4. During this so-called momentum-conserving snowplow (MCS) phase, the pressure
of the shell is proportional to the shock velocity Pshell ∝ t−3/2. During this stage, the back of
the shell is unstable and a reflected shockwave or implosion is driven into the interior of the SNR
once the pressure of the shell becomes comparable to that of the ambient medium (Romano et al.,
2024a) after

tlaunch ∼ 0.5E0.27
51 n−0.44

0 σ
−4/3
1 Myr , (D.8)

at which point the SNR has a size of

Rlaunch ∼ 43.6E0.3
51 n−0.39

0 σ
−1/3
1 pc . (D.9)

These expressions differ from those derived by Romano et al. (2024a), due to the differences in
our model for the ambient pressure.

There are various different models for the case of an SB, driven by subsequent SN explosions (e.g.
El-Badry et al., 2019; Oku et al., 2022). The basic assumption in these models is that, if the
age of the SB is greater than the average time between SN explosions t ≫ ∆tSN = ∆t6 Myr, the
expansion can be approximately described by that of a wind with a constant mechanical luminosity
L = ESN/∆tSN = 1045 L45 erg yr−1. The dynamics of a radiative SB depend on the efficiency of
energy dissipiation, e.g. due to radiative cooling, facilitated by thermal conduction and turbulent
mixing of the hot interior and the cold shell. When energy injection dominates over dissipation,
the expansion can be described by that of an energy-driven wind (Weaver et al., 1977; El-Badry
et al., 2019). In contrast, if cooling losses dominate, the expansion is effectively momentum-driven
(Lancaster et al., 2021; Oku et al., 2022; Lancaster et al., 2024).

In the model N1x10, ∆tSN = 1Myr ≫ tcool, corresponding to the momentum-driven regime. The
size of a momentum-driven SB is given by Eq. 26 of Oku et al. (2022)

R = 40 t
1/2
6 L0.23

45 n−0.28
0 pc . (D.10)

D.3 Shearing-sphere model

In order to model the deformation by shear, here we derive the simplest possible model: starting
from t = 0, a sphere of radius r0, centered in the galactic midplane at a galactocentric radius R0, is
subjected to differential rotation with a constant rotation speed Vrot, corresponding to an angular
frequency of Ω (R) = Vrot/R. Correspondingly, the orbital timescale is torb (R) = 2πΩ−1 (R).

We parameterize the surface of the sphere using the polar angles θ and φ at t = 0

Φt (θ, ϕ; r0) =

R cos (ϕ0 +Ωt)
R sin (ϕ0 +Ωt)

r0 cos (θ)

 , (D.11)

where
R2 = R2

0 + 2R0r0 cos (φ) sin (θ) + r20 sin
2 (θ) (D.12)

is the galactocentric radius of the point on the surface of the sphere and the initial azimuthal angle
ϕ0 is defined by

R cos (ϕ0) = R0 + r0 sin (θ) cos (φ) (D.13)

R sin (ϕ0) = r0 sin (θ) sin (φ) . (D.14)

Due to the differential rotation, parts of the sphere that are at a larger galactocentric radius lag
behind and the parts that are at a smaller R advance ahead, leading to deformation. It can be
shown that in spite of the deformation, the volume remains constant.
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Figure D.3: Same as Fig. 6.10 for the shearing sphere model for spheres with different sizes,
evolved for 0.5 torb (R0 − r9). The phase-space trajectories of the spheres with different sizes are
almost identical.
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Figure D.4: Time evolution of the pitch angle of the major axis of the shearing sphere for spheres
with different sizes. The pitch angle starts off near 45 ◦ and decays over time. Larger spheres tend
to have slightly larger pitch angles.
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Figure D.5: Deformation timescale as a function of size. Spheres are deformed greatly after ∼ 6.5
per cent of torb

(
R̄
)
, where R̄ = pR0 + (1 − p) (R0 − r0) is a characteristic radius lying between

R0 − r0 and R0. Our linear fit yields p ∼ 0.65.

We measure the geometry as defined, in Sec. 6.2.3, i.e. by computing the shape tensor

Sij = V −1

∫
V

(
∥∆Φt∥2 δij −∆Φt,i∆Φt,j

)
dV , (D.15)

where ∆Φt = Φt (θ, ϕ; r) − Φc (t) is the coordinate vector of a point within the shearing ball,
relative to the volume-weighted center

Φc (t) = V −1

∫
V

Φt (θ, ϕ; r) dV . (D.16)

Since the polar points are always co-rotating with the center, the semi-major axis êsemi-major = êz
and b = r0. The major axis evolves from αmajor, 0 ∼ 45◦ towards αmajor, ∞ ∼ 0◦, and necessarily
αminor = αmajor + 90◦.

For the sake of a better intuition of the model, in Figs. D.3 and D.4 we show the shape phase-
space trajectories as well as the time evolution of the pitch angle for various shearing spheres
with different r0/R0. We show the time evolution over half an orbit. The trajectories in shape
phase-space differ only marginally between different sized spheres for r0 ≲ 0.1R0. However, at
later times larger spheres tend to have slightly larger pitch angles and minor-to-major axis ratios.

In Fig. D.5 we show the dependence of the deformation timescale on the size of the sphere for
r0 < 0.1R0. We find a weak linear dependence on the size, which is approximately fit by

tdeform ≈ 0.065 torb
(
R̄
)
, (D.17)

where R̄ = pR0 + (1− p) (R0 − r0) is a characteristic radius lying between R0 − r0 and R0. Our
linear fit yields p ∼ 0.65.

We do not show any results for r0 > 0.1R0 due to the large difference in orbital timescales, which
leads to rapid deformation and even winding of the part of the sphere with R ≪ R0, while the
rest has hardly moved.
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Appendix E

SISSI: Supernovae in a stratified,
shearing interstellar medium
II. Star formation near the Sun is quenched by expansion of the Local

Bubble

E.1 Evaluation of analysis methods

E.1.1 Modified smoothing Kernel

O’Neill et al. (2024) use a Gaussian smoothing-kernel W to obtain smooth density profiles before
applying their peak-finding algorithm. This procedure is not manifestly mass-conserving and
might lead to numerical artifacts that can bias the results.

In order to account for this potential bias, we use an explicitly mass-conserving approach, by
introducing weights that account for the non-uniformity of the volume elements dV = r2 dr dΩ.
In particular, the condition that the mass is identical between the unsmoothed and smoothed
profiles can be written as

M =
∑
i

dViρi =
∑
i,j

dViWijρj , (E.1)

where the smoothed density

ρ̄i =
∑
j

Wijρj . (E.2)

Condition E.1, leads to the normalization condition for the smoothing matrix W

dVj =
∑
i

dViWij . (E.3)

We find that with these modifications a smoothing length of σsmth = 9pc, slightly above the value
used by O’Neill et al. (2024) yields robust results. However, we find that unless one uses the
smoothed density profile for integrals – which like O’Neill et al. (2024), we do not – the differences
due to the mass-conserving Gaussian kernel are only minor.
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E.1.2 The role of the boundary treatment

The choice of the boundary conditions can qualitatively affect the results, by introducing spurious
peaks or erasing physical peaks near the boundary.

While O’Neill et al. (2024) do not explicitly mention how they treat boundaries, the shape of the
profiles displayed in their Fig. 1, suggests that they might have used scipy’s “gaussian filter”
function, which by default uses reflective boundaries.

The simplest way to deal with the boundaries is not to deal with them at all. In particular,
consider the smoothing matrix W and assume that it is properly normalized, i.e.∑

i

wiWij = wj , (E.4)

where wi are some weights (e.g. volume, a constant, etc.), then weights of the points near the
boundary are systematically boosted. This results in smoothed data that will systematically lie
below (above) the original data values, if they exhibit a negative (positive) gradient near the
boundary. On the other hand, if proper normalization is omitted, points near the boundaries lose
weight and the smoothed profile is always systematically lower than the data.

A similar way to deal with boundaries are so-called reflective boundary conditions, where the values
of the data as well as their positions are mirrored beyond the boundary, i.e. x−i = x0 − (xi − x0)
and y−i = yi. This method increases the weight of points near the boundary, but in a more
controlled way.

Another common method is to set the data outside of the boundary region to a constant value,
e.g. the value of the data at the boundary. This leads to a slight over- (under-) estimation near
the boundary, in the case of a positive (negative) slope in the original data.

Finally, linear extrapolation of the data beyond the boundary promises to capture steep gradients
near the boundaries well. In particular, here we consider a linear extrapolation centered around
the boundary point, i.e.

y−i = y0 +
yi − y0
xi − x0

(x−i − x0) . (E.5)

Since all of these methods are linear, they can be directly incorporated into the smoothing kernel
matrix W , which can be precomputed.

In Fig. E.1 we show how these various methods compare for two directions, exhibiting some of the
features where differences between the methods are likely to arise, i.e. a peak near the boundary,
and a steep negative gradient.

In the case of the peak near the boundary it is critical, that the smoother does not remove the
peak. However, we find that this is the case for reflective boundary conditions. In the other cases
with extrapolation, a shallow peak remains, indicating that in certain cases the peak might still
disappear. Only in the case without extrapolation, we recover a strong peak.

On the other hand, in the case of a steep negative gradient, it is important that no spurious peaks
emerge, a condition that is not satisfied for the smoother without extrapolation alone.

In summary, reflective boundary conditions as well as no extrapolation are not well suited for
the task at hand, while linear extrapolation and constant boundaries appear to capture the most
important features. Due to the slightly better performance at capturing peaks near the boundary,
we opt for linear extrapolation.
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Figure E.1: Smoothed density profiles using different boundary treatments for two characteristic
lines-of-sight. The boundary is indicated by the dashed vertical line. The original data is shown
as a gray line, and the extrapolations beyond the boundary are shown at decreased opacity. The
top panel shows a line-of-sight with a peak near the inner boundary, while the bottom panel shows
a line of sight with a steep decline near the boundary. With reflective boundary conditions, the
peak is missed entirely, while simple normalization adds a spurious peak even in the case of the
steep decline.
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Table E.1: Comparison of LB properties derived using different methods.

Property This work Repr. O’Neill+ (2024) Unit

Inner Edge 151+177
−71 151+179

−69 150+172
−70 pc

Peak Distance 172+191
−80 169+192

−77 170+192
−79 pc

Outer Edge 194+206
−89 190+201

−89 191+204
−90 pc

Shell Thickness 38+87
−24 34+80

−22 35+88
−22 pc

Shell Mass 6.5 5.8 6.0± 0.7 105 M⊙

E.1.3 Comparison to previous work

In order to ensure that our results are robust, we try to reproduce the shell properties reported
by O’Neill et al. (2024) using the method described in their paper as well as the method described
in Sec. 7.1, both applied to the sample mean 3D dust map.

In particular, we sample the dust map between 69 and 1244 pc at uniform 1 pc intervals and
smooth it with a Gaussian kernel with a smoothing length of σsmth = 7pc with reflective boundary
conditions.

Peak finding and the location of the inner and outer peak boundaries are done identically between
the two methods.

In Tab. E.1 we compare the thus obtained results. For the distances to the peak (boundaries)
and the width of the shell we show the median, including ±2σ uncertainties, corresponding to the
2.28th and 97.72th percentiles, while for the shell mass, i.e. the mass between the inner and outer
edge of the shell, we simply show the value obtained from the analysis of the sample mean 3D
dust map.

While we could not reproduce the results of O’Neill et al. (2024) exactly, our results are reasonably
close and small differences are likely due to minor details omitted in their description of their
analysis.

E.1.4 Momentum estimate

In order to assess the accuracy of the momentum estimate in Eq. 7.1, we compute such geo-
metrical momentum estimates for the SISSI sample of simulated SNRs at different points in time
and compare them to the true momentum obtained from the velocity field. The result of this
comparison is shown in Fig. E.2, which shows that the geometrical momentum estimate is slightly
biased towards greater values, by a factor of ∼ 2.

E.1.5 Number of SN explosions

We assess the accuracy of the SN count estimate in Eq. 5.14, using our sample of simulated SBs,
by comparing the thus estimated SN count with the actual number of injected SNe.

The result of the comparison is shown in Fig. E.3 which shows that for moderate densities
comparable to that of the LB, the estimate is fairly accurate, while for higher and lower densities
it increasingly overestimates the number of SNe as time passes.
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Figure E.2: Comparison of the geometric momentum estimate Eq. 7.1 to the true momentum
for the simulated sample of SBs from the SISSI simulation at different points in time, as indicated
by the color scheme. Error bars correspond to uncertainties due to different ways of defining
the center (geometric center vs. center of mass) of the SBs and their volume (threshold value
for passive-scalar tracer-variable). Points with gray arrows exhibit negative radial momenta (net-
inflows) for some of the definitions. The geometrical momentum estimate is slightly biased towards
larger values, by a factor of ∼ 2.
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Figure E.3: Time-evolution of the SN count estimate Eq. 5.14 for the simulated sample of SBs
in different density ranges. The true SN count is shown as a black dashed line. At extremely
high and low ambient densities the estimate appears to overestimate the number of SNe, while
for moderate densities, around the density of the LB, the estimate is quite accurate, within about
≲ 50%.
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We argue that this overestimate might be driven by mergers of the simulated, controlled SBs with
preexisting SBs in their environment, for which we have no handle to accurately count the number
of SNe that they would contribute. At low densities, SBs grow much larger and are thus more
likely to merge with other large SBs, while at high densities, the star-formation rate is elevated,
leading to a more active environment, with a high density of SNRs.

E.1.6 Shape Tensor

Romano et al. (2025a) define the shape tensor as

Sij = V −1
SNR

∫
SNR

(
∥x∥2 δij − xixj

)
d3x . (E.6)

By assuming an approximately ellipsoidal shape, the three ellipsoidal radii, are defined by

ri =
√
2.5 (tr (S)− 2Si) , (E.7)

where Si are the eigenvalues of Sij and tr (S) is the trace. The smallest, intermediate and largest
eigenvalues correspond the minor a, semi-major b and major c axis, respectively. The effective
size of an SNR is the geometric mean of the three eigenvalues

reff = (abc)
1/3

. (E.8)

To determine the alignment of the LB within the Galaxy, we measure the pitch angle α and polar
direction cos (θ) for both the major and minor axes. The pitch angle is defined relative to the
direction of Galactic rotation, with α = 90◦ and α = −90◦ corresponding to the Galactic center
and anti-center, respectively. The magnitude of the polar direction is 0 (1) for directions parallel
(perpendicular) to the Galactic plane.

E.2 Models for radiative blastwaves in uniform media

We distinguish between blastwave models driven by a single explosion at t = 0 and blastwaves
that are driven by continuous energy- and momentum-injection.

The dynamics of a radiative blastwave driven by a single explosion are determined the conservation
of the radial momentum that was acquired before the onset of radiative cooling. This phase is also
known as the momentum-conserving snowplow phase (e.g. Oku et al., 2022). The shock radius of
the momentum-conserving snowplow as a function of expansion time t is given by (e.g. Oku et al.,
2022)

RMCS =

(
3NSN p̂SN t

π ρISM

)1/4

, (E.9)

where NSN is the number of SNe exploding at t = 0, p̂SN is the momentum injected per SN, given
by Eq. 7.2 and ρISM is the ambient density.

The dynamics of continuously driven blastwaves are more uncertain and seem to depend on the
detailed balance of cooling and energy injection (El-Badry et al., 2019; Oku et al., 2022; Lancaster
et al., 2024). If the cooling is relatively gentle and a large fraction of the injected energy can reach
the radiative shell, the dynamics of the blastwave match those of an energy-driven wind with a
scaled down energy injection rate (El-Badry et al., 2019), i.e.

REDW = ξEDW

(
(1− θ) ESN t3

∆tSN ρISM

)1/5

, (E.10)
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where ξW ∼ 0.88 is determined by considering the internal structure of the blastwave, ESN =
1051 erg is the total injected per SN, (1− θ) ∼ 0.3 (Zucker et al., 2022) is a reduction factor,
accounting for the effect of radiative cooling and ∆tSN is the average time between SN explosions.
On the other hand, if cooling is sufficiently rapid each SN contributes the same momentum p̂SN
and the dynamics are determined by the conservation of the momentum, which is imparted onto
the radiative shell at a constant rate (Oku et al., 2022; Lancaster et al., 2024)

RMDW =

(
3p̂SN t2

2π∆tSN ρISM

)1/4

, (E.11)

which may be compared to Eq. E.9 upon substituting NSN (t) = t /∆tSN. This model is often
referred to as momentum-driven or rapidly-cooling wind (Lancaster et al., 2024).

E.3 Passage of the solar system

Fossil records of sedimentary 60Fe and 244Pu on earth suggest an enrichment with SN ejecta over
the past 4Myr (Wallner et al., 2021). If this enrichment was due to the SNe powering the LB,
the solar system must have entered the LB shortly before the enrichment started (Breitschwerdt
et al., 2016; Ertel et al., 2023). Making use of this insight, Zucker et al. (2022) estimate that the
solar system has entered the LB ∼ 5Myr ago.

For a given expansion model for the LB’s shell, we estimate when the solar system entered the
LB, by comparing the trace-back distance of the solar system from the center of the LB to the
radius of the expanding shell. We adopt the same magnitude of v⊙ ∼ 20 km s−1 for the speed
of the solar system as Zucker et al. (2022) and assume that it moves radially, with a present-day
distance from the center of d⊙ (tage) = 0.

Under these assumptions, the distance of the solar system from the center of the LB is

d⊙ ∼ v⊙ (tage − t) . (E.12)

In Fig. E.4 we show the passage of the solar system through the LB’s shell. For values of
tage ≳ 4Myr, the solar system would have crossed the LB’s shell during the first ≲ 1Myr of
its expansion. Incorporation of sediments into earth’s crust over the past ∼ 4Myr could have
commenced shortly after the passage (Ertel et al., 2023; Ertel & Fields, 2024) and is therefore in
agreement with the value tage ≳ 4Myr obtained above.

E.4 Recent star formation and SNe in the solar neighbor-
hood

Swiggum et al. (2024) have used the star cluster catalogue of (Hunt & Reffert, 2023) to group
the clusters in the solar neighborhood into three distinct families of star clusters that likely share
a common origin. One of these cluster families, named αPer, after its prominent member Alpha
Persei can be both spatially and temporally associated with the LB.

Previous analyses of the origin of the LB usually focused on the role of Sco-Cen in driving its
expansion (Máız-Apellániz, 2001; Breitschwerdt et al., 2016; Zucker et al., 2022). While the
findings of Swiggum et al. (2024) agree with these studies if only the SNe in Sco-Cen are considered,
the potential contribution from other members of αPer remains unclear. Swiggum et al. (2024)
report the SFH in αPer which suggests the existence of a peak in the star-formation activity
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Figure E.4: Crossing of the expanding LB’s shell and the solar system. Gray, red, blue and purple
lines are the same as in Fig. 7.1. Black dashed lines correspond to the distance of the solar system
from the center of the LB (Eq. E.12) for different ages of the LB. The solar system passes earlier
through the LB’s shell for more powerful explosions, but even for a single SN explosion it would
have crossed the shell within the first ∼ 1Myr of its expansion.
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associated with young clusters in Sco-Cen ∼ 10Myr ago, which might be linked to a more recent
burst in SN activity than previous studies considered. Unfortunately, the low time resolution of
the reported SFH does not allow to draw any further conclusions.

In order to investigate the role of this recent increase in star-formation, we use the data products
of Swiggum et al. (2024) to compute the recent SFH at higher temporal resolution and use it to
estimate the SN-rate history for αPer. To this end, we use the 16%, 50% and 84% quantiles of the
cluster ages, masses and the number of SNe that exploded since their formation for all clusters
associated with αPer.

The SFH is the mass-weighted sum of the age distributions of each cluster, convolved with a
window function W (t; ∆t):

SFH (t) =

∫ ∞

−∞
W (t− tage; ∆t)

∑
i∈family

mi Pi (tage) dtage . (E.13)

Here mi is the mass of each cluster, which we sample from its posterior distribution.

We can reproduce the SFH reported by Swiggum et al. (2024) if we use a top-hat filter with
∆t = 12.5Myr as the window function, use the median cluster mass for mi and use delta-peaks,
peaked at the median age for the age distributions of the clusters. We note however, that this
treatment does not necessarily capture the sizeable uncertainties in the cluster ages and masses,
encoded in their 16% and 84% quantiles.

To account for the uncertainty in the age and simultaneously push the time resolution of the
SFH to the limit, we reconstruct plausible age distributions from the available data and set W =
δ (t− tage), i.e. we take the SFH as the mass-weighted sum of the age distributions of the clusters.
We account for the uncertainty in the mass by sampling from the posterior distribution, leaving
us with a number of sample SFHs.

We estimate the SN-rate history, by assuming that the SN rate of each cluster remains at an
approximately constant value between the onset of SN explosions tdelay after the clusters formation
and the life-time tactive of the least massive stars undergoing type-II SN explosions (Leitherer et al.,
1999; Kim et al., 2017) and is zero otherwise, i.e.

RSN, i (t) =
NSN, i

min (tage, i, tactive)− tdelay
1(tdelay, tactive) (tage, i − t) , (E.14)

where 1X (x) is the indicator function, which evaluates to unity if x ∈ X and zero otherwise and
NSN, i is the number of SNe that exploded since the formation of the cluster. We sample both
NSN, i and tage, i from their respective posterior distributions.

E.4.1 Probability Distributions

Given only a number of quantiles x0 ≤ ... ≤ xi ≤ ... ≤ xn corresponding to percentiles 0 = p0 <
... < pi < ... < pn = 1 and a prior probability density function (pdf) q (x), the most plausible
posterior pdf is a locally reweighted version of the prior, where the weights are chosen such that
the cumulative probabilities match those of the quantile constraints, i.e. (Jaynes, 1957)

P
(
x
∣∣∣q, (xi)i=0,...,n , (pi)i=0,...,n

)
= q (x)

n∑
i=1

wi 1(xi−1, xi) (x) , (E.15)

where the weights

wi =
pi − pi−1

P (xi−1 < x < xi|q)
. (E.16)
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Figure E.5: Reconstructed posterior age-pdf for the cluster ADS 16795 for various values of β and
γ. Dotted, blue lines correspond to the 16%, 50% and 84% quantiles. For smaller values of β the
mode of the distribution is closest to the 16% quantile, while for β ∼ 1 it is closer to the median.
For β ≥ 1 the pdf approaches a constant non-zero value for x → 0. While the choice of γ has
little influence on the shape of the pdf, for γ ≳ 1.1 the pdf is not longer positive-definite. The pdf
corresponding to our fiducial choice of parameters is depicted as a solid, black line.

With most smooth priors, the posterior distribution will exhibit large jumps, a feature that might
be undesirable for our reconstruction of the SFH.

Generating smooth pdfs from quantile constraints is a common data-science application to which
a number of creative approaches exist. One particularly simple and flexible method that makes
inverse-sampling trivial are so-called quantile-parametrized distributions (Keelin & Powley, 2011).

The method uses a parameterization of the the quantile function that is linear in the quantile
data constraints, using a number of arbitrary basis functions. The corresponding pdf can then
be simply derived using the inverse function rule of calculus, since the quantile function is the
inverse of the cumulative distribution function. However, care needs to be taken to ensure that
the resulting pdf is positive definite.

We adopt this method to reconstruct the mass- and age posterior-pdfs using the following param-
eterization

x (p) =
pβ

(1− p)
γ (a1 + a2 p+ a3 sin (π p)) , (E.17)

where β > 0, γ > 0, p ∈ [0, 1] is the cumulative probability, and ai are the parameters determined
by the quantile constraints x (pi) = xi. For β < 1, the pdf tends towards zero for y → 0, while for
β > 1 it tends toward a constant value > 0. We adopt γ = 1 and β = 0.7 for which we confirm
that all pdfs are positive definite. In Fig. E.5 we show how the pdf depends on the values of β
and γ for one of the clusters in αPer.

Since the number of SNe is limited to positive integers we do not need to worry about smoothness.
However, there are other complications. The data provided by Swiggum et al. (2024) correspond to
the quantiles of the marginal distribution. Yet, it is clear that the number of SNe has to correlated
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with the age of the cluster, at the very least, because it can only be non-zero for clusters older
than tdelay.

To account for this correlation, we set the probability of NSN > 0 SNe to zero for tage < tdelay,
but otherwise keep the pdf for NSN > 0 unchanged with respect to the marginal distribution. The
marginal and joint probabilities of NSN = 0 SNe are then linked by the condition

P (NSN = 0) = p0 + (1− p0) P (NSN = 0 |tage > tdelay ) , (E.18)

where p0 = P (tage < tdelay).

To define a sensible marginal pdf for the number of SNe, we assume a constant prior for NSN <
NSN, 84%, an exponential tail for NSN > NSN, 84% and we set

P (NSN = 0) = max

(
p0, max

{i |Qi=0}
pi, min

{i |Qi>0}
pi − pi−1

1 +Qi

)
, (E.19)

where Qi are the quantiles of the marginal distribution. The joint pdf of tage and NSN is then
fully specified by applying Eqs. E.15 and E.18.

E.4.2 SFH and SN-rate in αPer

For each cluster in αPer we draw a million samples of the cluster mass, age and number of SNe
from their respective pdfs and use them to derive a million realizations of the SFH (Eq. E.13)
and the SN-rates (Eq. E.14). For each realization, we sum up the SN-rates of the clusters to
obtain the SN-rate history of αPer. We also derive the average time between SNe, by taking the
reciprocal.

In Fig. E.6 we show the 16%, 50% and 84% quantile histories, obtained by drawing computing the
quantiles at each point in time. We mark the onset of the expansion of the LB according to our
model and that of Zucker et al. (2022) as well as the SN rates, required by the respective models.

We find that there is a broad peak in the SFH ∼ 4−10Myr ago, which according to Swiggum et al.
(2024) is associated with the formation of Upper Scorpius, Corona Australis, ρ Ophiuchus, which
are all part of Sco-Cen, and various other clusters in Taurus. The SFH in the region coincident
with the LB is quite low ≲ 100M⊙ Myr−1 before the onset of the peak ∼ 10Myr. Moreover, the
range of ages for the LB found by our analysis above, coincides with the downturn in the peak of
star-formation activity, which is consistent with a scenario where the birth of the LB, powered by
the delayed feedback from first stars formed in the peak, is quenching any further star-formation in
the region, which would be in stark contrast to the positive-feedback scenario proposed by Zucker
et al. (2022).

This can be compared with the SN rate, which has been steadily increasing from ∼ 1 SN / Myr
20 Myr ago to ≲ 10 SNe / Myr at the present day. These values grow increasingly larger than the
value of ∆t−1

SN ∼ 1Myr−1 required by the model of Zucker et al. (2022), while they are well within
the range of values required by our analysis above.

To verify, whether this SN activity is actually spatially associated with the LB, in Fig. E.7 we show
the trajectories of the clusters in αPer in the vicinity of the LB, colored by their instantaneous
SN Rate, over the past 5, 5 − 10, 10 − 15, and 15 − 20 Myr. Trajectories are calculated using
the galactic dynamics package galpy (Bovy, 2015), following the parameter choices outlined in
Swiggum et al. (2024). We find that the majority of the clusters has been co-spatial with the
current extent of the LB over the past few Myr, with just over 10 of the 66 cluster members being
too distant to have contributed.
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Figure E.6: Top panel: Star-formation History of αPer over the past 40 Myr. The SFR is peaked
around 8 Myr ago. The peak is associated with recent star formation in Sco-Cen Swiggum et al.
(2024). However, the dominant peak corresponds to the formation of the ∼ 1000M⊙ cluster
Theia 38, at a distance of ∼ 500 pc from the solar system. Middle and bottom panel: SN rate
and average time between SNe in αPer over the past 40 Myr for different values of tdelay. The
SN rate continuously grows (the time between SNe shortens) as the stellar mass of the αPer is
built up, with a sharp increase in SN activity in the last few Myr, associated with the peak in
the SFR, 8 Myr ago. The steepness of the increase slightly depends on the choice of tdelay, with a
more gradual increase for tdelay = 0 and a steeper increase for 0 < tdelay < 8Myr. The SFH, SN
Rate and average time between SNe of the clusters spatially associated with the LB are shown in
purple, where we assume a fiducial value of tdelay = 3Myr. Also shown as shaded regions are the
age of the LB as well as the average time between SNe found by Zucker et al. (2022) (orange) and
this work (blue).
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Figure E.7: Trajectories of the member clusters of αPer in the local standard of rest, within the
vicinity of the LB, from left to right, over the past 5, 5−10, 10−15 and 15−20 Myr. Trajectories
are plotted as lines of increasing width, where increasingly wider lines correspond to later times.
Trajectories are colored based on the clusters’ instantaneous SN Rate and the opacity is set to the
instantaneous probability that the cluster is between tdelay and tactive after its formation, i.e. is
potentially contributing SNe at a given time. While it is unlikely that a particular cluster colored
black has contributed a SN, due to the large stochasticity in low mass clusters, the numerous black
clusters might still collectively contribute a significant number of SNe. The projected gas density
as well as a projection of the LB’s shell at the present time are also shown to provide context.
We also show the number of SNe contributed within each time frame by the clusters, that are
co-spatial with the current extent of the LB, using the purple dashed line to decide whether a
cluster belongs to the LB or not. With the exception of about 10 clusters in the top right (a few
outside the frame) the majority of the clusters has been co-spatial with the current extent of the
LB (in projection) for the past few Myr and therefore could have contributed SNe. The number
of SNe contributed by nearby clusters in the past 5 Myr is consistent with our estimate in Tab.
7.2.

In order to separate out the contributions from these distant clusters, we perform a simple spatial
cut, indicated by the purple-dashed line in Fig. E.7. The SN Rate of the remaining clusters is
shown as a purple line in Fig. E.6, which shows that the SN Rate of the clusters co-spatial with
the LB is still consistent with our findings, highlighted in Tab. 7.2.

In Fig. E.7 we also show the number of SNe contributed by the clusters associated with the LB
during each time frame. Even though there were on average 9 SNe in the time window from 10-20
Myr ago, the fact that most of the contributing clusters have low SN rates suggests, that these
SNe merged with the ISM in isolation before they could have combined to form a coherent SB.
On the other hand, the more frequent SNe in the past 10 Myr might be more clustered, especially
towards the Sco-Cen region, where 4-5 exceptionally active clusters reside. These clustered SNe
likely overlapped, forming the coherent LB that suppressed further star formation in the local ISM
and reached a large enough size to be coherently powered by most subsequent SNe in the solar
neighborhood.
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