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Chapter I - Introduction 

 

1 XNA in Therapy 

The emergence of nucleic acids as therapeutics has fundamentally reshaped how we 

understand and treat disease. Targets long considered undruggable are becoming 

tractable, opening mechanism-based options for patients like recent successful treatments 

of β-thalassemia1 and heterozygous familial hypercholesterolemia2 could show. While the 

first promising trials were conducted deoxyribonucleic acid (DNA)-based3,4, the most rapid 

advances in recent years have come from ribonucleic acid (RNA), whose diverse roles in 

gene regulation make it a particularly versatile therapeutic substrate. RNA modalities, 

including messenger RNA (mRNA), small interfering RNA (siRNA), and antisense 

oligonucleotides (ASOs), enable direct, programmable modulation of gene expression with 

tunable duration, driving a broad wave of innovation across indications (Figure I.1).  

During the COVID-19 pandemic, mRNA platforms provided a definitive proof-of-concept for 

the rapid development and deployment of novel vaccines5,6. As a therapeutic modality, 

mRNA enables transient, in vivo expression of defined proteins and is therefore well suited 

to protein-replacement strategies. Ongoing clinical programs are evaluating mRNA for 

monogenic metabolic disorders such as propionic acidemia7, methylmalonic acidemia8, and 

ornithine transcarbamylase deficiency9. 

While mRNA has shown clear success in protein-replacement therapy, gene-silencing 

approaches are suited to diseases driven by toxic, mutant, or dysregulated gene 

expression. Two widely used oligonucleotide modalities are antisense oligonucleotides 

(ASOs) and small interfering RNAs (siRNAs). ASOs are single-stranded, chemically 

modified oligomers that act either by RNase H1-mediated cleavage of the target RNA or by 

steric blocking to modulate pre-mRNA splicing or inhibit translation. These mechanisms 

occur primarily in the nucleus and can also operate in the cytoplasm10. In contrast, siRNAs 

are double stranded RNAs that engage the RNA-induced silencing complex (RISC). After 

guide-strand loading into Argonaute-2, the complex cleaves complementary cytosolic 

mRNA, leading to its degradation and durable gene silencing11. 
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Although nucleic-acid therapeutics are among the most promising drug classes of this 

century, delivery remains the principal hurdle. Ubiquitous endo- and exonucleases, rapid 

renal clearance, and innate immune recognition can degrade or eliminate nucleic acids 

before cellular uptake. Chemically modified ASOs and N-acetylgalactosamine (GalNAc)–

conjugated siRNAs can often be dosed subcutaneously without a vector for hepatocyte 

targets via asialoglycoprotein receptor (ASGPR)12, whereas most other modalities (e.g., 

mRNA, plasmid DNA) and extrahepatic siRNA delivery still require dedicated delivery 

systems. 

Viral vectors leverage evolved entry mechanisms and showed great success by offering the 

vector for the first gene therapy ever approved13, but face constraints related to 

immunogenicity14, manufacturing complexity15, and payload limits16, motivating alternative 

strategies. Non-viral carriers offer modular design, scalable manufacturing, and 

opportunities for targeting while mitigating several safety concerns associated with viral 

delivery.  
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Figure I.1: Therapeutic functionalities for different nucleic acids. mRNA (left) is translated by cytosolic ribosomes 

to produce protein. siRNA (middle) is loaded into Argonaute to form the RNA-induced silencing complex (RISC), 

which directs sequence-specific cleavage and degradation of complementary mRNA. Antisense 

oligonucleotides (ASOs, right) bind target RNA to induce RNase H–mediated degradation or sterically block key 

processes such as translation or splicing. 

2 Nanocarriers 

Early non-viral nucleic-acid delivery in the 1960s used liposomes, simple polycations such 

as poly-L-lysine (PLL) and poly-L-ornithine (PLO)17, and calcium phosphate precipitation18. 

Today the field is dominated by polycationic polymers and lipid assemblies, especially lipid 

nanoparticles (LNPs).  

Polymers are well-studied vehicles for encapsulating and delivering nucleic acids. Their 

chemical tunability, architectural control, and colloidal stability are major advantages and 

have led to a wide variety of polymeric nanocarriers over the years17,19. Polyethylenimine 

(PEI), discovered as carrier 1995, was first used for efficient DNA transfection20 and later 
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adapted for mRNA21 and siRNA22. Its high density of protonatable amines enables strong 

condensation and protection and supports endosomal escape via hypothesized proton-

sponge effect, but this same feature is linked to cytotoxicity23,24 and the lack of 

biodegradability25 further raises safety concerns. Poly(β-amino esters) (PBAEs), which were 

introduced as gene carrier by Lynn and  Langer in 200026, offer a biodegradable alternative. 

Their ester bonds hydrolyze into small by-products, and the chemistry is highly tunable via 

side-chain, backbone, and end-group modifications and through formulation choices. In 

addition, many PBAEs exhibit buffering capacity near endosomal pH, which can aid 

endosomal escape while maintaining a more favourable safety profile27. While promising, 

cytotoxicity concerns and reproducibility issues still limit the application of polymeric 

nanocarriers in clinical trials28. By contrast, lipid-based systems like liposomes and 

especially lipid nanoparticles (LNPs) have achieved the fastest clinical progress, 

exemplified by patisiran (Onpattro)29, approved in 2018 for polyneuropathy in adults with 

hereditary transthyretin-mediated amyloidosis (hATTR), and by the LNP-based mRNA 

COVID-19 vaccines BNT162b26 and mRNA-12735. Lipid nanoparticles (LNPs) typically 

comprise four components: an ionizable lipid that complexes the nucleic acid and promotes 

endosomal escape via pH-triggered protonation, a helper phospholipid, cholesterol (or a 

related sterol) to modulate membrane packing, and a PEG-lipid for steric shielding and 

colloidal stability30. While this platform is highly successful, optimizing four interdependent 

constituents remains non-trivial and remains a challenge especially in optimization. Lipo-

xenopeptides offer a compelling alternative: like polymers they enable one-component 

formulations, yet, thanks to solid-phase synthesis, their molecular weight and composition 

are precisely defined. Thalmayer et al.31 demonstrated stable lipopolyplex formation with 

promising in-vitro and in-vivo performance across multiple cargos. Still, safety metrics have 

not yet reached clinically relevant thresholds, and scaling production while preserving 

sequence fidelity may be challenging. Nanocarriers face multiple, interlocking hurdles: 

maintaining chemical and colloidal stability within a defined window, achieving an 

appropriate pKₐ range for charge switching32, and overcoming poorly understood 

mechanisms like endosomal escape and subsequent cytosolic release ultimately govern 

efficacy33,34. Manufacturing, transport, and storage further shape performance through 

process and logistics variables (e.g., mixing regime, sterile filtration, lyophilization, and cold-

chain requirements)35–37. Consequently, nucleic-acid formulation with nanocarriers is a 

multidimensional, multi-objective optimization problem spanning molecular design, process 
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engineering, and use-context parameters (route of administration, dose, repeat dosing, and 

target tissue), all of which interact to determine required outcomes. 

3 Discovery and Optimization of RNA Formulations 

As described above formulation optimization is a multi-stage problem coupling chemistry, 

mixtures into a single, high-dimensional problem. While performance is driven by the 

properties of the chemical compounds and the cargo, the formulation process itself plays a 

major role as well. The manufacturing of nanoparticles, especially LNPs, is typically carried 

out with microfluidic devices38,39, where chip architecture and process conditions determine 

particle characteristics such as size, polydispersity index (PDI), encapsulation efficiency 

and biodistribution40,41. Whereas manufacturing conditions like flow-rate ratio (FRR) and 

total flow rate (TFR) can usually be treated as continuous variables, molecular identities are 

more complex and clearly multidimensional. Optimization therefore often treats them as 

discrete choices for simplicity, risking a loss of chemically relevant information. 

Compounding this, the ratios of components used in the formulation are crucial and add 

further complexity. 

There are three conventional approaches commonly used for formulation optimization. The 

classical lab-scale route is adjustment of one factor at a time (OFAT). While this enables 

sequential tuning, from chemistry to formulation and subsequent post-processing such as 

drying, OFAT ignores factor interactions and almost invariably misses global optima, which 

is critical in any true optimization. High-throughput screening (HTS) addresses this by 

sampling many potential carriers and, ideally, varying process conditions in parallel27,42,43. 

However, HTS requires equipment that is not available in every laboratory and can be 

material-intensive when the experimental grid is narrow. Moreover, selection of the 

screening grid often relies more on educated guesses than on systematic, quantitative 

design and is therefore prone to bias. Design of Experiments (DoE) reduces the number of 

required experiments by using statistical designs that balance information gain against 

experimental effort while post-analysis then fits response surfaces that provide process 

insight and help identify sweet spots44. Additionally, the opportunity to use different designs 

like full factorial, latin hypercube and mixture design, to just mention a few, increases the 

flexibility when solving different types of problems. Although DoE is frequently considered 

a gold standard in industrial formulation work, it benefits from prior knowledge of the 
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process, and the often complex, high-dimensional response landscape can still demand a 

large number of experiments. In practice, DoE is therefore often applied to individual sub-

tasks only45,46. 

Nevertheless, data-driven decision-making is both relevant and beneficial. Machine learning 

(ML), as a branch of artificial intelligence (AI), offers ways to uncover patterns in complex 

processes and is an attractive tool that can be adapted to the needs of formulation science, 

potentially enabling global optimization as well as explainability (Figure I.2). In the next 

section, ML is briefly introduced, and Section 6 outlines how ML helps treat molecules as 

informative data, an aspect typically lacking in the conventional methods described above. 

 

Figure I.2: Comparing optimization strategies. Classical one-factor-at-a-time (OFAT) varies a single variable 

while holding others constant, often missing interactions and trapping the search near local optima. Design of 

Experiments (DoE) systematically samples the factor space, enabling interpolation and estimation of 

interactions via response surfaces. Data-driven and machine-learning workflows build on these data to iteratively 

propose new experiments, improving efficiency and increasing the likelihood of identifying the global optimum. 

4 Machine Learning  

Machine learning is, strictly speaking, an intersection of software development and data 

science. It designs algorithms that learn from data to forecast outcomes for unseen 

instances. A model learns to predict a target value, often called the label y, based on 

available information represented by known variables or features X. During training the 

model receives a dataset with known y values and attempts to predict them. The error is 

computed with a loss function, and the model is optimized to reduce this loss. In general, 

machine learning can be viewed as a process whose goal is to minimize a loss. This 

description refers to supervised learning, which is one of the largest areas of applied 
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machine learning and the focus of this section. It is also important to distinguish regression, 

where the target is continuous, from classification, where the target consists of discrete 

classes. 

The usual workflow begins with careful data cleaning to remove errors and duplicates, 

followed by a split into training and test sets. This split is essential for assessing 

generalizability beyond the data seen during training and for detecting overfitting. Overfitting 

occurs when a model learns noise in the training set and then performs poorly on new data. 

After the split, the model is trained and its hyperparameters are tuned. Hyperparameters 

are settings that are chosen before training rather than learned during training. A common 

approach is K fold cross validation, where the training data is divided into K folds. Each fold 

is used once for evaluation while the remaining folds are used for training, and this 

procedure is repeated across all candidate hyperparameter settings. The process is 

illustrated in Figure I.3. 

Model choice also matters. The No Free Lunch theorem47 states that no single model is 

universally superior and that the best choice depends on the data. Linear regression fits a 

linear relationship by learning a parameter vector that minimizes a squared loss. For small 

datasets with moderate dimensionality one can solve directly with the normal equation. The 

linear model can be extended by mapping features into polynomial bases. This can improve 

accuracy but also raises the risk of overfitting. For classification, logistic regression applies 

a sigmoid function to produce probabilities and then assigns classes using a threshold. 

Tree based models split data into leaves using a loss such as the Gini impurity for 

classification or the squared error for regression. Individual decision trees are flexible but 

can overfit, which motivates regularization. Strong regularization can then underfit. Two 

ensemble strategies address this tension. Bagging, as in Random Forests48, trains many 

trees on resampled data or feature subsets and averages their predictions. Boosting trains 

trees sequentially, each one focusing on the errors of the previous model. Prominent 

examples for boosting are XGBoost49, LightGBM50 and CatBoost51. 

Kernels provide another elegant route to nonlinearity. A kernel defines a similarity between 

points that corresponds to an inner product in an implicit feature space. This idea enables 

algorithms that depend only on inner products to model complex relationships without 
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explicitly constructing high dimensional features. Examples include the support vector 

machine and kernel ridge regression. 

Artificial neural networks, especially deep and transformer-based models, are the most 

widely used approach for state-of-the-art results in vision, natural language processing 

(NLP), and speech, and they underpin current generative-AI systems deployed across 

industry52. A neural network consists of layers of units connected by weights. Each unit 

aggregates inputs, multiplies them by learnable weights, adds a bias, and applies a 

nonlinear activation function. Training proceeds by computing a loss on a sample or a batch 

of samples, then updating the weights using gradient descent with backpropagation53. Many 

architectures exist for specific data types, including convolutional neural networks for 

images54 and graph neural networks for relational data55. Neural networks in general often 

excel with large datasets56, though they can also be effective with small datasets when 

carefully designed and regularized57–59 . 

The final topic in this section is active learning, which is particularly useful for laboratory 

workflows. Active learning uses model predictions and the estimated uncertainty to select 

new experiments that are expected to be informative. An acquisition function balances 

exploration of uncertain regions and exploitation of promising candidates. This strategy can 

accelerate tasks such as optimizing nanoparticle uptake60 , guiding molecular design for 

material61 discovery or optimizing chemical synthesis reactions62. 

 

Figure I.3: Simplified data workflow. After assembly, records are cleaned by removing errors and duplicates 

and imputing missing values. The curated dataset is split into training and test sets. The training set is used for 

feature engineering, model selection, and hyperparameter tuning via cross-validation, then the final model is fit 

on the full training data. Performance is evaluated once on the hold-out test set and summarized for comparison. 
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5 Machine Learning in Molecular Sciences 

Machine learning can in principle be applied to almost any task if the data are reliable. 

Working with molecules is more demanding because the model needs an input 

representation that exposes chemically meaningful patterns. The act of turning a molecule 

into a machine readable vector is called featurization. A common strategy is to encode 

molecules as binary vectors known as fingerprints. Molecular ACCess System (MACCS) 

keys63 use a fixed dictionary of structural motifs and set a bit to one when the motif is present 

and to zero when it is absent. Pharmacophore fingerprints64 emphasize features that drive 

receptor interactions such as hydrogen bond donors and acceptors, aromatic systems, 

positive or negative centers, and their pairwise distances on the molecular graph. Morgan 

fingerprints65 capture local neighborhoods by enumerating circular subfragments around 

each atom up to a chosen radius and mapping them to a bit vector through a deterministic 

hash. This approach is efficient and expressive, with collisions as the main limitation. Many 

other fingerprints exist, including ones that incorporate three dimensional information or 

encode protein ligand interactions, and the examples here are only illustrative. Molecular 

descriptors provide another route. Instead of presence or absence of patterns they 

summarize properties as numbers. Simple descriptors include molecular weight or formal 

charge. Intermediate ones rely on estimated surfaces and volumes, for example topological 

polar surface area66. More complex families arise from matrices built on the molecular graph 

or on three dimensional coordinates. Examples include descriptors derived from the 

adjacency matrix, BCUT eigenvalue descriptors from Burden matrices67, or WHIM 

descriptors68 that summarize the covariance of atom coordinates possibly weighted by 

charges or masses. 

The rise of neural networks popularized graph based encodings. A molecule can be viewed 

as a graph with atoms as nodes and bonds as edges. Graph neural networks learn atom 

level and bond level representations through message passing69 or attention70 and train end 

to end so that the learned encoding directly supports the prediction task through 

backpropagation. Modern variants can learn from unlabeled data71, incorporate three 

dimensional information in an equivariant way72, or model higher order interactions73. 

Featurizing whole formulations is even more challenging because one usually works with 

mixtures at specific ratios. The representation must capture both the identity of each 

component and its proportion. One can append mixture ratios to the molecular vectors, 
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embed the ratio into each component feature before aggregation, or let the model learn how 

to combine components through a permutation invariant set encoder with ratio based 

weights74. 

 In drug delivery the manufacturing process often matters as well. Process variables such 

as flow rate ratio and total flow rate influence particle size, polydispersity, and surface 

potential, so a practical feature set needs to include both chemistry and process. Designing 

such joint representations remains a central challenge for machine learning in formulation 

science. 

 

Figure I.4: Molecular featurization. Illustrative encodings of molecules: (1) hashed binary fingerprints capturing 

substructures and topology, (2) physicochemical and structural descriptors computed from 2D/3D properties, 

and (3) learned representations from graph neural networks that operate directly on the molecular graph. 
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6 Aim of the Thesis 

 

The aim of this thesis is to explore how machine-learning (ML) workflows can be 

systematically integrated into the formulation and discovery of RNA nanocarriers. While ML 

is highly efficient, it is also data-dependent and requires substantial effort in experimental 

design, data preparation, and iterative refinement. By investigating and critically assessing 

different data-driven approaches across multiple case studies, this work aims to identify 

where and how ML can meaningfully accelerate nanocarrier development. 

 

Chapter II highlights the potential of a classical data-driven approach, Design of 

Experiments (DoE), to control and explain the synthesis and behaviour of PBAEs as 

polymeric carriers for siRNA delivery. In addition, a custom data-driven method is 

established to estimate blend characteristics in step-growth polymerisation. 

Chapter III demonstrates the benefits of applying ML pipelines to the same PBAE dataset, 

leveraging prior data when new labels become available or when the data no longer fit the 

original DoE. ML-based optimisation of synthesis parameters is investigated for its potential 

to improve key in vitro and in vivo readouts. 

Chapter IV describes the integration of historical data into carrier discovery workflows, 

followed by the synthesis and in vitro/in vivo validation of the prioritised candidates, 

illustrating how legacy datasets can guide new formulation efforts. 

Chapter V presents the development of a novel software framework that optimises PBAEs 

in silico by combining delivery-specific molecular dynamics (MD) challenges with 

experimentally calibrated ML optimisation and validates the resulting predictions 

experimentally. 

Chapter VI further explores MD/ML integration by introducing 4D QSTR (quantitative 

structure–transfection relationship), an approach that aggregates dynamic molecular 

information across MD frames and allows the identification of significant events by 

comparing different MD challenges, time windows, and data-splitting strategies. 

Chapter VII investigates meta-learning as a potential solution to batch effects when merging 

heterogeneous, noisy datasets and evaluates its use in active-learning workflows for 
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formulation discovery. Furthermore, novel lipids are synthesised and tested to demonstrate 

the practical relevance of these methods in very low-data regimes. 

Chapter VIII summarizes the findings and provides additional remarks, conclusions and a 

brief outlook on potential future directions. 
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Chapter II - Design of Experiments Grants Mechanistic 

Insights into the Synthesis of Spermine-Containing PBAE 

Copolymers 

 

1 Graphical Abstract  

 

2 Abstract 

Successful therapeutic delivery of siRNA with polymeric nanoparticles seems a promising 

but not vastly understood and complicated goal to achieve. Despite years of research, no 

polymer-based delivery system has been approved for clinical use. Polymers, as a delivery 

system, exhibit considerable complexity and variability, making their consistent production 

a challenging endeavor. However, a better understanding of the polymerization process of 

polymer excipients may improve reproducibility and material quality for more efficient use 

in drug products. Here, we present a combination of Design of Experiment and Python-

scripted data science to establish a prediction model, from which important parameters can 

be extracted that influence the synthesis results of poly-beta-amino esters (PBAEs), a 

common type of polymers used preclinically for nucleic acid delivery. We synthesized a 
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library of 27 polymers, each one at different temperatures, with different reaction times and 

educt ratios using an orthogonal central composite (CCO-) design. This design allowed a 

detailed characterization of factor importances and interactions using a very limited amount 

of experiments. We characterized the polymers by analyzing the resulting composition by 

1H-NMR and the size distribution by GPC measurements. To further understand the 

complex mechanism of block polymerization in a one-pot synthesis, we developed a python 

script that helps to understand possible step-growth steps. We successfully developed and 

validated a predictive response surface and gathered a deeper understanding of the 

synthesis of polyspermine-based amphiphilic PBAEs.   

Keywords: DOE, Python, polymer synthesis, polyplexes, siRNA, drug delivery 

3 Introduction 

Since the SARS-CoV-19 pandemic, the delivery of ribonucleic acid (RNA) by nanoparticles 

has become an ever more rapidly developing field of research. Up to now, the clinically 

approved drug delivery systems for RNA drugs are all based on Lipid Nanoparticles (LNP) 

technology75,76. However, LNPs face problems with regard to storage and stability77 and 

encapsulate only a very low drug load of approximately 4% w/w78. Polymeric delivery 

systems, such as poly(beta)aminoesters (PBAEs), that were initially designed by the group 

of Robert Langer in 200026 represent a reasonable and well-studied alternative. In general, 

this type of polymer is easy to synthesize and in the past, end-capped homopolymers79 and 

co-polymers80 showed promising transfection on DNA81, mRNA82 and siRNA83 in in vitro and 

in vivo models80. However, synthesis of polymers, especially copolymers is hard to control 

84 and often leads to a mixture of different molecular weight and composition species85. This 

is undesirable, since these factors decrease reproducibility on the one hand but govern the 

ability to deliver the cargo to target cells86 and the level of toxicity87,88 on the other hand. 

Furthermore, they complicate a clean correlation between species and activity. Therefore, 

a strategy is needed that helps control and reveal the underlying mechanisms of step-

growth polymerization and help understand the process. To do so, often dozens of 

experiments are needed to interpret and predict all the possible influencing factors. 

For many years the help of Design of Experiment (DoE)89 has been used to decrease the 

number of necessary experiments to address a problem and to help analyze important 

factors as well as define predictive models that can design an accurate response surface 
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that is used to make assumptions about future experiments and helps therefore to reduce 

the waste of resources and to improve sustainability of chemical synthesis.  

In recent years, the combination of data science and high throughput synthesis allowed for 

a significant knowledge gain in the field of nanomedicine90–92. This approach can be 

extremely useful since it allows for optimized decision in situations, where it is rather 

complicated to understand the mechanistic insights of how nanocarrier design influences 

the delivery of cargo93. DoE can also be applied here to guide scientists in designing the 

experiments to achieve optimization and valuable insights into complex processes94,95. In 

our work, we aim to use these tools to face difficult tasks in polymeric delivery such as 

controlling and understanding the synthesis of amphiphilic co-polymers96 and their 

molecular weight distribution85. 

To demonstrate how data science can be used to understand and facilitate complicated 

scientific questions such as the controlled synthesis of block co-polymers for the 

encapsulation of RNA, we synthesized spermine- and oleylamine-modified PBAE-based 

co-polymers using DoE to iterate over a variable space with reasonable ranges for synthesis 

parameters including temperature, reaction time and the ratio of monomers, that influence 

the characteristics of the synthesized materials97 98. Spermine was chosen as a body-own 

polycation to enhance RNA encapsulation efficiency and oleylamine to introduce 

hydrophobicity into the resulting polyplexes to facilitate the endosomal escape, 

demonstrated by previous work from our group99. As readout, we selected the final 

composition of blocks in the resulting polymer and different results from the size 

measurements of the polymer. For analysis we used multiple linear regression to generate 

a Response Surface Model and made use of different estimators that allow insights into the 

variables, which were most important for the prediction. To gather more information about 

possible structures, we designed a Python script that proposes possible polymeric 

compositions for Gel-Permeation-Chromatography (GPC) peak sequences. This approach 

was chosen to help interpret the often quite hard to analyze GPC chromatograms of co-

polymers. Finally, we developed an assay that is able to mimic intracellular unpackaging of 

siRNA from polyplexes. This work presents a method to handle limited data effectively by 

using DoE and open source python libraries to facilitate the understanding and the analysis 

of complex synthesis mechanisms.  

 

https://www.zotero.org/google-docs/?Tmrsow
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4 Methods and Materials 

4.1 Materials 

Di-tert-butyl decarbonate, oleylamine, spermine, dimethylformamide (99,5% pure) and 

SYBR Gold Nucleic Acid Gel Stain were purchased from Fischer Scientific (Hampton, NH, 

USA). Ethyl trifluoroacetate, sodium chloride, heparin sodium salt 180 USP units/mg and 

Triton-X 100% solution were bought from Sigma Aldrich (Taufkirchen, Germany) and 1,4-

butanendiol diacrylate was obtained from TCI Chemical Industry Co., LTD (Tokio, Japan). 

Triflouroacetic acid (99,9%, extra pure) was purchased from Acros Organics (Geel, 

Belgium). Methanol-d6 was obtained from Deutero (Kastellaun, Germany). Dichlormethane, 

methanol, ammonia, potassium permanganate, magnesium sulfate, acetone, pentane and 

formic acid (>99% pure) were purchased from VWR Chemicals (Ismaning, Germany).  

 

4.2 Triboc-spermine synthesis 

Tris(tert-butoxycarbonyl)spermine, abbreviated as tri-Boc-spermine (TBS) was synthesized 

as described elsewhere100. In brief, spermine (1 eq) was dissolved in methanol and stirred 

at -78 °C, ethyl trifluoroacetate (1 eq) was added dropwise subsequently and stirred at - 78 

°C for 1 h, then 0 °C for 1 h. Without isolation, di-tert-butyl dicarbonate (4 eq) was added 

dropwise to the solution and stirred at room temperature for 2 days. Finally, the solution 

was adjusted to a pH above 11 by 25% ammonia and stirred overnight to cleave the 

trifluoroacetamide protecting group. The mixture was then evaporated under vacuum and 

the residue was diluted with dichloromethane (DCM) and washed with distilled water and 

saturated sodium chloride aqueous solution. The DCM phase was finally dried by magnesia 

sulfate and concentrated to give the crude product. The crude product was purified by 

column chromatography (CH2Cl2\MeOH\NH3, aq. 7:1:0.1, SiO2, KMnO4; Rf = 0.413). TBS 

was isolated and characterized by 1H nuclear magnetic resonance spectroscopy (1H-NMR). 

 

4.3 Polymer synthesis and characterization 

Poly-spermine-co-oleylamine beta-aminoesters (P(SpOABAE)) were synthesized based on 

a previously described approach101.  Briefly, TBS as hydrophilic monomer, oleylamine (OA) 

as hydrophobic monomer and 1,4-butanendiol diacrylate (DA) were mixed in different molar 

ratios in dimethylformamide (DMF) resulting in total concentrations of 300 mg/mL. Polymers 

were stirred at different temperatures and for different durations (Compare Table II.1). After 
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the respective reaction time, mixtures were transferred to petri dishes to evaporate the 

solvent. The subsequent deprotection of the polymer was carried out in a mixture of 20 ml 

dichloromethane (DCM) and 1 ml trifluoroacetic acid (TFA) for 100 mg polymer, followed by 

stirring for 2 hours at room temperature. In the following, DCM/TFA was evaporated and 

the dry deprotected product was precipitated 3 times in pentane using acetone to dissolve 

the precipitate (Figure II.1a). Supernatants were discarded and the final precipitate was 

dried for 2 days under vacuum (room temperature, 20 mbar). Final polymers were 

characterized by 1H-NMR (Figure II.S1) and GPC. Measurements were performed with an 

Agilent aqueous GPC using a PSS Novema max Lux 100A followed by two PSS Novema 

max Lux 3000A columns. The chromatographic system and calibration standards were set 

up according to pre-analysis from Agilent Technologies on P(SpOABAE) polymers. 

Measurements were performed at 40°C in 0.1 M sodium chloride solution supplemented 

with 0.3% formic acid. Samples were prepared at 4 g/L and measured at a flow rate of 1 

mL/min. Molar mass distributions were obtained through the Agilent WinGPC software 

against pullulan calibration standards in the range of 180 Da to 1450 kDa. A daisy-chain 

detector setup of an Agilent 1260 VWD was used followed by an Agilent 1260 GPC/SEC 

MDS and ending with an Agilent 1260 RID.  

4.4 Design of Experiment 

A Response Surface Method (RSM)102 was applied using the MODDEⓇ Pro 13.0.2 

(Sartorius Data Analytics, Göttingen, Germany) software. Briefly, four critical process 

parameters (CPP) at three levels were chosen based on their theoretical impact on the 

critical quality attributes (CQA) of molecular weight and final subunit ratio. The four CPPs 

were i) reaction temperature (set to 80°, 100° or 120° Celsius), ii) reaction time (set to 24h, 

48h or 72h), iii) initial molar OA ratio, defined as the molar ratio of primary amines from OA 

to the overall number of primary amines (set to 0.30; 0.55 or 0.80), and iv) the ratio between 

the diacrylate (DA) and the total theoretical number of primary amines (0.80; 1.00 or 1.20). 

A Central Composite Design for maximized Orthogonality (CCO) was chosen using a 

starpoint distance of 1.55103. Three center points were added to evaluate the process 

stability (Figure II.1b+c). Statistical significance was determined by ANOVA and defined by 

p-values below 0.05. Predictions with 95% confidence intervals were generated based on 

fitted, significant RSM model terms.  
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4.5 PeakFinder software 

To gather more insights into the polymerization process, a program was written using 

Python3 programming language (version 3.11.5). Pandas (version 2.0.3) was used for data 

handling. The molecular weights of the monomer units are used as input data in the code 

together with information about the single peak maxima (Mp), the associated component 

ratio (obtained from NMR spectra), an error range, a maximal iteration parameter and a 

boolean expression parameter if endcapping with diacrylate is possible or not. Based on 

this information, possible polymer structures are calculated for each peak and the program 

outputs the sequence of monomer combinations that fits the data best.  

 

4.6 Species isolation via spin columns  

To isolate a single polymer species represented by a GPC peak, polymers were dissolved 

at 4 mg/mL in the mobile phase. 1 mL of solution was transferred to 30 kDa cutoff Vivaspin 

6 centrifugal concentrator columns from Sartorius (Göttingen, Germany). Samples were 

concentrated at 8000 g for 15 min. The concentrated samples were diluted to 1 mL with 

fresh mobile phase. This procedure was repeated three times. Final samples were 

measured using the before mentioned GPC method. 

4.7 Particle formation with siRNA 

Polymers were dissolved in cell culture grade DMSO at a concentration of 25 mg/mL. 

Nanoparticles were prepared at a ratio of protonated amines in the polymer to negatively 

charged phosphates in the siRNA backbone (N/P Ratio) of 10. Polymer stocks and siRNA 

(IDT, Leuven, Belgium) were diluted in 10 mM Hepes Buffer pH 5.4 to equal volumes before 

mixing. Mixing was done using an Integra Voyager 125 µL pipette (Integra Biosciences, 

Zizers, Switzerland), resulting in final concentrations of 500 nM siRNA. After mixing, 

particles were incubated for 90 minutes at room temperature to allow proper particle 

formation. The hydrodynamic diameter (DH) and polydispersity index (PDI) of the obtained 

nanoparticles were determined by dynamic light scattering. Therefore, a Zetasizer Ultra 

series (Malvern Instruments, U.K.) was used running 3 measurements per sample at a 

backscatter angle of 173°. 
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4.8 Stability 

The stability of the resulting nanoparticles was evaluated by a modified polyanion 

competition assay104. Briefly, differently concentrated mixtures of Triton-X and heparin were 

applied to release the siRNA from the nanoparticles. In a black 384-well plate, 10 µL 

nanoparticle suspension was mixed with 20 µL of stress solution with the respective 

concentration level. Seven different concentrations plus a blank were used per nanoparticle 

suspension. After adding the stress solutions, plates were sealed to avoid evaporation and 

incubated at 37°C at 150 rpm for 1h. Afterwards 5 µL of a 4x SYBR Gold dye was added to 

the mixture and incubated for 5 minutes in the dark. Finally, the fluorescence was measured 

using a TECAN Spark plate reader (TECAN, Männedorf, Switzerland) plate reader at 492 

nm excitation and 537 nm emission wavelength. Using the GraphPad Prism5 2007 

Software, a nonlinear fit was performed to calculate the EC50 values of each polymer 

relative to the maximum released siRNA in each sample.  

 

Table II.1: Experimental setup of the CCO-design (left) with reaction time in hours, temperature in °C, initial 

molar OA ratio, defined as the molar ratio of primary amines from OA to the overall number of primary amines, 

and the ratio between the diacrylate and the total theoretical number of primary amines. Results of the CCO-

design (right) with Final OA ratio in percent, Mn and Mw in Da, PDI without a unit and >33 kDa and < 2kDa in 

percent. 

Exp 

No 

Time Tmp OA 

Initial 

DA Final OA Mw Mn PDI > 

33kDa 

< 

2kDa 

1 24 80 30 0.8 0.412591 26878 15106 1.7792 31.3 0 

2 72 80 30 0.8 0.438533 30610 16007 1.9123 38.53 0 

3 24 120 30 0.8 0.391529 20022 10174 1.9681 22.5 0.5 

4 72 120 30 0.8 0.486896 34815 14699 2.3686 50.08 0 

5 24 80 80 0.8 0.827116 49961 25683 1.9453 79.39 0 

6 72 80 80 0.8 0.78296 46782 22113 2.1156 75.4 0 

7 24 120 80 0.8 0.787716 50345 21866 2.3025 80.24 0.26 

8 72 120 80 0.8 0.761166 46650 15674 2.9763 72.58 1.35 

9 24 80 30 1.2 0.417113 30380 15028 2.0215 42.15 0 
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10 72 80 30 1.2 0.360606 30299 14755 2.0535 40.72 0 

11 24 120 30 1.2 0.323504 24760 11493 2.1544 31.97 0.59 

12 72 120 30 1.2 0.274581 23140 10066 2.2987 30.68 1.36 

13 24 80 80 1.2 0.703628 72203 38998 1.8515 91.11 0 

14 72 80 80 1.2 0.728641 94201 45229 2.0828 92.62 0 

15 24 120 80 1.2 0.73199 69166 35215 1.9641 90.32 0.3 

16 72 120 80 1.2 0.691716 61153 26180 2.3359 85.15 0.6 

17 10.88 100 55 1 0.608254 52849 29004 1.8221 81.8 0 

18 85.12 100 55 1 0.631649 48145 22212 2.1675 76.11 0 

19 48 69.07 55 1 0.62282 57537 34471 1.6691 86.7 0 

20 48 130.9 55 1 0.576394 38442 13251 2.901 60.31 1.06 

21 48 100 16.33 1 0.334521 22595 12648 1.7865 21.6 0 

22 48 100 93.66 1 0.915431 171040 68271 2.5053 95.25 0.1 

23 48 100 55 0.690 0.667118 30209 11942 2.5297 48.08 1.06 

24 48 100 55 1.309 0.445172 43643 19900 2.1931 69.81 0 

25 48 100 55 1 0.728655 51106 25095 2.0365 80.19 0 

26 48 100 55 1 0.601359 50364 25522 1.9734 79.52 0 

27 48 100 55 1 0.561223 50238 25043 2.0061 78.6 0 
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5 Results and Discussion 

5.1 Controlling the synthesis via DoE 

The two most important CQAs controlling the nucleic acid delivery performance of a polymer 

are the molecular weight distribution87,88 and the composition of the polymer itself105. In case 

of amphiphilic spermine-modified PBAEs, previous studies showed that the ratio of 

hydrophobic side chains99 plays a major role in the transfection efficiency of PBAE 

copolymers 101. Additionally, it was shown for numerous PBAEs that the molecular weight 

plays vital functions in governing the performance as well as toxicity106. Therefore, the main 

goal of this study was to establish a synthesis route which would allow the precise prediction 

and control over the final constitution of the P(SpOABAE) polymers. By using the CCO, the 

design space, which was investigated, was maximized and by investigating 5 levels for each 

factor (Figure II.1b) the prediction strength was increased (Table II.1).  

 

Figure II.1: a) Overview of the applied synthesis for the used poly(beta aminoesters). Polymerization was 

carried out using different timepoints, temperatures and component ratios. b) Factors used for the CCO design. 

c) the CQAs selected as readout together with the data from ANOVA.  

 

After performing the synthesis and analysis, the responses (Figure II.1c) were fitted using 

multiple linear regression. For the CQA final OA ratio, a strong regression of R2 = 0.968 and 
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a high validity of Q2 = 0.948 were found indicating a strong model (Figures II.2a and II.S2). 

In the next step, the factors, which had been the most relevant for the model fit were 

investigated. By choosing a CCO, the factor strengths for linear as well as quadratic model 

terms, together with interactions between different CPPs was estimated. For the final OA 

ratio, only three model terms showed a p-value below 0.05 and were deemed significant 

(Figure II.S7). Unsurprisingly, the most relevant CPP was the initial OA ratio with a scaled 

and centered coefficient of 18.3%. Also, according to expectations, the temperature and 

reaction time did not impact the final OA ratio significantly. Surprisingly, the two other 

significant CPPs were the linear and quadratic diacrylate ratio with coefficients of -4.8% and 

-2.6% (Figures II.3a and II.S7). Although they were less relevant, it is still unexpected that 

this CPP can influence the final OA ratio. A potential reason for this observation might be 

the calculation approach chosen to determine the final OA ratio (eq.II.1). In this approach, 

the diacrylate backbone is taken into account in the formula and thereby naturally impacts 

the final results. 
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Figure II.2: Observed vs Predicted plot for a) final OA Ratio (R2=0.97), b) Mw (R2=0.85), c) Mn (R2=0.84), d) 

PDI (R2=0.53) and e) >33 kDa (R2=0.88) for the CCO-design generated with 27 polymers. 
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(eq.II.1) 

 

 

In contrast to other polymerization mechanisms, the step-growth Michael-addition did not 

lead to a single polymer species but rather a mixture of several distinctive peaks. This 

finding will be further discussed below. To evaluate the presence of unreacted monomers 

the, numerical percentage of species below 2,000 Da (<2 kDa) was determined (Table II.1). 

Since the DoE can only interpret discrete numerical values, a way to make our library 

“interpretable” for the DoE algorithms had to be found. Therefore, several specific CQAs 

rather than a single molar mass distribution were added. To start, the overall Mn, Mw, PDI 

of the polymer as well as the numerical percentage of the polymer species above 33,000 

Da (>33 kDa) were analyzed and introduced. For each CQA except for the PDI, a model 

with a regression above R2 = 0.84 and a cross-validation value above Q2 = 0.75 were found 

(Figure II.2 b-e, II.3 b-e, II.S8-II.S11). This outcome confirmed that the model was able to 

understand the synthesis and which CPPs govern the polymerization mechanisms. 

Surprisingly, the main factor controlling the three responses of Mn, Mw and >33 kDa was 

the OA ratio. Since the PDI of polymers is calculated by dividing the Mw by the Mn, this 

CQA is susceptible to error propagation. This problem is reflected in higher scatters in the 

observed vs predicted plot (Figure II.2 d) and higher standard deviations in the coefficient 

plot (Figure II.3 d). 

Reaction time was not significant for any of the responses and temperature only played a 

minor role on the Mn.  
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Figure II.3: Model coefficients for a) final OA Ratio (R2=0.97; Q2=0.95), b) Mw (R2=0.85; Q2=0.77), c) Mb 

(R2=0.84; Q2=0.75), d) PDI (R2=0.53; Q2=0.29) and e) >33 kDa (R2=0.88; Q2=0.81) for the CCO-design 

generated with 27 polymers. 
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5.2 Understanding key mechanisms 

The initial hypothesis was that the molecular weight of the polymers would be mainly 

governed by the reaction time and temperature following common consensus107. However, 

the presented data suggest a more complex mechanism. Since the analyses showed that 

the main factor governing the large >33 kDa species was the OA ratio, it was concluded 

that the reaction kinetics of OA was faster than the kinetics of the TBS subunits. A faster 

reaction of hydrophobic subunits was already reported in literature84. However, it was 

observed that the maximum size of the >33 kDa species correlated with the OA ratio as well 

(Figure II.3e). This could not be explained with faster kinetics alone. Analyzing all GPC data 

more extensively showed that all polymers had a characteristic sequence in which the peaks 

occurred (Figure II.4a). This was explained by the mechanism of step-growth 

polymerization.  

 

Table II.4: a) Exemplary GPC peaks and Mp weights of polymer 3 (red) and 22 (black) in an overlay molar mass 

distribution. b) Exemplary decay of different reaction kinetics as a function of already occurred reaction steps. 

c) The PeakIdentifier tries to give the researcher an assumption, starting from the molecular weight distribution 

in GPC data, about peak sequences. On the right a schematic overview illustrates how the PeakIdentifier 

attempts to match individual peaks and the peak sequence using the available data. At the bottom, an example 

sequence proposed by the PeakIdentifier for the molecular weight distribution above is shown. The units and 

the corresponding numbers suggest the peak compositions that matches the data best. 
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In step-growth polymerization, monomers undergo simultaneous parallel reactions to form 

dimers, which subsequently engage in further parallel reactions to produce tetramers and 

subsequent oligomeric species108. Interestingly, in co-polymers the same mechanism 

applies with the difference that three kinetics are occurring in parallel. The kinetics of two 

building blocks of the same type reacting with each other (kA-A, kB-B) and the kinetics of 

two different building blocks reacting with each other (kA-B, kB-A). Additionally, each 

reaction slows down exponentially, with the number of reactions (r) that have already 

occurred. With this behavior, the following relation could be drawn: 

 

kA-A (r=1)  > kA-A (r=2)  >…>   kA-A (r=n)    

(eq.II.2) 

kB-B (r=1)  >  kB-B (r=2) >...>  kB-B (r=n)    

(eq.II.3) 

kA-B (r=1) >  kA-B (r=2)  >...>  kA-B (r=n)     

(eq.II.4) 

kB-A (r=1) >  kB-A (r=2)  >...>  kB-A (r=n)     

(eq.II.5) 

 

Together with the finding that the OA homopolymerization kinetics are faster than TBS 

homopolymerization kinetics, a new hypothesis was established.  

 

It was proposed that the reaction reaches its thermodynamic equilibrium after a certain 

amount of steps after which the reaction kinetics decrease to a level where statistically no 

more reactions occur, for example, where a certain threshold was reached. How many 

reactions it takes, for example, and how long the polymers become before the threshold is 

reached is hence governed by the initially faster kinetics (kA-A). In this case the kinetics 

and initial amount of OA (Figure II.4b).  
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Although the relationship between the >33 kDa species and the initial OA content may be 

explained by this hypothesis, one needs to take into account that in theory only one single 

species of varying size should have arisen from each synthesis. The fact that one can 

simultaneously observe all different stages of the step-growth polymerization underlined the 

reversibility of the Michael-addition (Figure II.4a)109.   

 

(A) + (B) ⇌ (AB)  ⇌ (ABAB) ⇌ (ABABABAB)       

(eq.II.6) 

 

The reversibility indicated that all stages of the step-growth synthesis are in equilibrium with 

each other. The equilibrium that the reactions reaches (eq.II.6) is, according to these 

findings, governed by the ratio between faster reacting OA and slower reacting TBS (Figure 

II.4b). 

 

A deeper investigation of the impact of the diacrylate (Figure II.3b+c and II.5b+c) showed 

that the Carother’s equation110 also held true for these polymers, showcasing that a 

diacrylate ratio of 1.0 leads to the largest polymers.  

 

To incorporate the new hypothesis into the data set, an in-house software package was 

written. 

The software aimed to mimic the block-copolymer step-growth reaction, which was 

expected in this system. Therefore, the absolute Mw of single building blocks was combined 

together with an error term, to allow variance. This step was repeated for every peak in the 

chromatogram, which led to a list of all possible peak sequences. Finally, peak sequences 

were matched with the corresponding peak-weight and the polymer block composition data 

obtained from NMR to match the most suitable peak sequences. The software then outputs 

the peak sequence with the best match. To increase the likelihood that the sequence 

matched the data, the program was constrained to select only sequences that assumed a 
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growth in single building blocks. Additionally, end capping with diacrylate was only possible 

when there was an excess in the amount of diacrylate used for synthesis.  

It was important to note that the function did not apply any further physicochemical steps to 

calculate a matching sequence and the results were calculated from the obtained data. 

Therefore, high data quality was a major assumption of the program. 

 

Figure II.4c shows an example for the PeakIdentifier from sample number 10. The error 

range was set to 15 % to allow for the absolute combined monomers to vary with this value 

from the proposed combination, and the NMR ratio was set to 38.42 [%]. The PeakIdentifier 

suggested a scenario where Oleylamine (OA) and Triboc-spermine (TBS) react with equal 

probability. This assumption was based on the understanding that although OA reacts more 

quickly (due to faster kinetics), TBS is available in greater concentration within the reaction 

mixture, balancing the reaction likelihood between the two. The last peak observed might 

be the result of a subsequent synthesis reaction, where the higher concentration of TBS in 

the sample prompts the oligomers to undergo a reaction. What was shown clearly, is that 

the PeakIdentifier explained possible step-growth reactions in combination with different 

kinetics. It has to be mentioned that the PeakIdentifier provided a range of possibilities, but 

since the program worked with absolute data one had to make sure to precisely select a 

reasonable error range.  

To validate the software (Figure II.S12), two single peak fractions were isolated using spin 

columns. To verify a successful isolation, GPC was measured again (Figure II.S13). The 

NMR results from the isolated fractions were compared to the PeakIdentifier results. From 

the NMR data for polymer 16, an 89.29% OA ratio was observed in the isolated peak at 

67,750 Da and for polymer 17, 62.0% OA monomer was found in the isolated peak at 62,877 

Da. The PeakIdentifier calculated 124 OA units to 9 Spermine units, which corresponds to 

a ratio of 93.2% for peak 16 and 75 OA units to 46 Spermine units, which is precisely 62.0% 

for peak 17. We consider a delta in the estimation and the real ratio of under 5% as 

successful, which was satisfied for both polymers tested (3.91% for 16 and 0 for 17). Based 

on this example it was shown that the PeakIdentifier allows for a quite precise estimation of 

possible polymer fractions within this synthesis.  

Another observation that was made was the presence of a side product appearing around 

8 ppm in the NMR (Figure II.S14). However, a correlation between the intensity of the NMR 
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peaks of this impurity and the temperature could be shown. Furthermore did the DoE 

approach allow us to find the optimal setpoints to avoid the generation of these side 

products in the first place (Figure II.S15). This highlights how DoE did not only improve the 

understanding of the step-growth synthesis process but also how the most robust setpoints 

could be identified to achieve the best results.   

 

Interestingly, within the selected range, reaction time did not show any influence on the 

readout parameters. This result could be caused by the fact that the equilibrium of the 

polymerization process was already in a stable state after a short period of time and was 

not further influenced by longer reactions. Despite the fact that high temperature led to the 

mentioned side products and a possible reversibility in Michael addition reaction, it did 

surprisingly not show any influence on the polymer size parameters. 

 

5.3 Prediction 

After the fitting of the model, a response surface for the entire design space was generated 

(Figure II.5a-e). To validate the model, three different polymers with varying final OA Ratios 

of 40%, 50% and 60% (Table II.S1) were predicted. The reasoning behind these setpoints 

was to spread through the design space as far as possible to validate a wide range. 

Additionally, the predictions for the molecular weights were validated with the same 

polymers. Having gained a deeper understanding of the complexity of our polymerization 

process, it was all the more surprising how well the model did not just fit the already 

generated data but also predicted the validation data (Figure II.6 and Table II.S1). 
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Figure II.5: 3 Dimension plot of the Response Surface of a) the final OA Ratio, b) the Mw, c) the Mn d) the PDI, 

and e) the >33kDa model fitted from the CCO-design of 27 polymers showing the impact of the diacrylate ratio 

(left 0.9, center 1.0 and right 1.2), initial molar OA ratio, and temperature. 
 

The model was capable of accurately predicting the final OA ratio as well as the molecular 

weight of the respective polymers. This dataset confirmed that with DoE even highly 

complex mechanisms such as the showcased co-polymerization mechanism can be 

understood and controlled, allowing a precise manufacturing of new desired polymers. With 

this approach it is possible to synthesize any desired polymer in the design space without 

any further trial and error studies, as it is the common approach in polymer synthesis111. 

  

Figure II.6: Prediction (P, Error Bars) and observed values (dots) for the validation of a) the OA ratios, b) the 

Mw values and c) the Mn values of three validation polymers. 
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5.4 Stability 

As previously shown99, amphiphilic PBAE-based spermine copolymers can mediate highly 

effective gene silencing when they are used for siRNA formulation and delivery. To confirm 

that the entire design space has relevance to subsequent performance tests, it was 

investigated if all polymers formed nanoparticles, encapsulated and finally released siRNA. 

As shown in Figure II.S16 and II.S17, all polymers were able to form stable particles, which 

encapsulated the entire amount of the provided siRNA. Through the new stability assay, 

assumptions about the strength of the intra-particular forces stabilizing the particles were 

additionally made. This allowed the investigation of which polymers would form the most 

and least stable particles. Polymer 5 and 6 formed the most stable particles and polymer 

16 formed the least stable particles. The strongest correlations for the stability of the 

particles were found for the synthesis temperature (Figure II.7b), DA ratio (Figure II.7d), and 

the PDI of the resulting nanoparticles (Figure II.7f). More precisely did a lower DA ratio and 

a lower temperature during the synthesis lead to more stable nanoparticles. For the 

synthesis time (Figure II.7a) and the initial OA ratio (Figure II.7c), no clear trends could be 

found. Similarly, the hydrodynamic diameter of the nanoparticles did not show a clear trend. 

Polymer 14 formed much larger particles than all other polymers but showed comparable 

stability (Figure II.S16+II.S17). Additionally, the difference in deviation of the EC_50 values 

showed a relation to the synthesis parameters (Figure II.7b+II.7d), indicating controllability 

by carefully choosing the proper settings. These parameters can become very important for 

subsequent in vitro and in vivo studies. Further analysis showed that the stability correlated 

with the PDI of the nanoparticles, indicating that less homogenous particles are harder to 

break up (Figure ff).  
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Figure II.7: Stability values (EC_50) derived from the stability assay plotted against the initial CPP from the 

CCO-design being a) the time of reaction, b) the temperature of the reaction, c) the initial OA ratio and d) the 

DA ratio as well as the DLS data with e) the hydrodynamic diameter of the tested particles and f) the PDI of the 

tested particles. 

 

6 Conclusion  

This study highlighted the value of DoE as a tool to gain deeper mechanistic understanding 

of PBAE-based copolymer synthesis. Besides the revelation of key parameters controlling 

the synthesis of P(SpOABAE), a model that accurately predicts the outcome of a synthesis 

approach was established. According to our knowledge, this is the first report of a model 

that is capable of predicting molecular weight as well as building block ratios of copolymers. 

In combination with the PeakIdentifier Software, a detailed picture of any synthesized 

copolymer can be generated. As a deep understanding of the used polymers is the first step 

for any scientific study, we are confident that these findings will prove valuable for other 

scientists in the search of a more controlled material generation. 
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Figure II.S1: Exemplary 1H-NMR of the resulting Poly-spermine-co-oleylamine beta-aminoesters after synthesis 

and purification 

 

Final OA Ratio DF SS MS (variance) F p SD 

Total 26 9.53312 0.366658       

Constant 1 8.75131 8.75131       

              

Total corrected 25 0.781813 0.0312725     0.17684 

Regression 4 0.757067 0.189267 160.615 0.000 0.435048 

Residual 21 0.0247461 0.00117839     0.034327

6 
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Lack of Fit 20 0.0239407 0.00119703 1.48616 0.578 0.034598

2 

(Model error)             

Pure error 1 0.00080545

1 

0.000805451     0.028380

5 

(Replicate 

error) 

            

              

  N = 26 Q2 = 0.948 Cond. no. 

= 

2.832   

  DF = 

21 

R2 = 0.968 RSD = 0.0343

3 

  

    R2 adj. = 0.962       

              

Figure II.S2: ANOVA table of the final OA Ratio from the CCO-design of 27 polymers.  
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II.:  

 

Mwb~ DF SS MS (variance) F p SD 

Total 27 582.11 21.5596       

Constant 1 581.004 581.004       

              

Total corrected 26 1.10613 0.0425434     0.206261 

Regression 4 0.942607 0.235652 31.7042 0.000 0.48544 

Residual 22 0.163522 0.00743283     0.0862139 

              

Lack of Fit 20 0.16349 0.0081745 506.302 0.002 0.0904129 
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(Model error)             

Pure error 2 3.2291e-

05 

1.61455e-05     0.0040181

5 

(Replicate 

error) 

            

              

  N = 27 Q2 = 0.768 Cond. no. 

= 

2.731   

  DF = 

22 

R2 = 0.852 RSD = 0.0862

1 

  

    R2 adj. = 0.825       

              

Figure II.S3: ANOVA table of the Mw from the CCO-design of 27 polymers.  
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Mnb~ DF SS MS (variance) F p SD 

Total 27 503.413 18.6449       

Constant 1 502.278 502.278       

              

Total corrected 26 1.13465 0.0436402     0.208902 

Regression 4 0.948579 0.237145 28.0392 0.000 0.486975 

Residual 22 0.186067 0.0084576     0.0919652 

              

Lack of Fit 20 0.186026 0.00930132 456.658 0.002 0.0964434 

(Model error)             

Pure error 2 4.07365e-

05 

2.03682e-05     0.0045131

2 

(Replicate 

error) 

            

              

  N = 27 Q2 = 0.747 Cond. no. 

= 

2.731   

  DF = 

22 

R2 = 0.836 RSD = 0.0919

7 

  

    R2 adj. = 0.806       

              

Figure II.S4: ANOVA table of the Mn from the CCO-design of 27 polymers.  
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PDI~ DF SS MS (variance) F p SD 

Total 27 2.96082 0.10966       

Constant 1 2.86449 2.86449       

              

Total corrected 26 0.0963304 0.00370502     0.0608688 

Regression 4 0.0515111 0.0128778 6.32118 0.002 0.11348 

Residual 22 0.0448193 0.00203724     0.0451358 

              

Lack of Fit 20 0.0447258 0.00223629 47.8424 0.021 0.0472894 

(Model error)             

Pure error 2 9.34858e-

05 

4.67429e-05     0.0068368

8 

(Replicate 

error) 

            

              

  N = 27 Q2 = 0.288 Cond. no. 

= 

2.731   

  DF = 

22 

R2 = 0.535 RSD = 0.0451

4 

  

    R2 adj. = 0.450       

Figure II.S5: ANOVA table of the PDI from the CCO-design of 27 polymers. 
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>33 kDa DF SS MS (variance) F p SD 

Total 27 126153 4672.33       

Constant 1 111196 111196       

              

Total corrected 26 14957.1 575.273     23.9848 

Regression 4 13108.3 3277.08 38.9963 0.00

0 

57.2458 

Residual 22 1848.78 84.0356     9.16709 

              

Lack of Fit 20 1847.51 92.3754 144.963 0.00

7 

9.61121 

(Model error)             

Pure error 2 1.27447 0.637236     0.79827

1 

(Replicate 

error) 

            

              

  N = 27 Q2 = 0.806 Cond. no. 

= 

2.73

1 

  

  DF = 

22 

R2 = 0.876 RSD = 9.16

7 

  

    R2 adj. 

= 

0.854       
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Figure II.S6: ANOVA table of the >33 kDa fraction from the CCO-design of 27 polymers. 

 

Final OA Ratio Coeff. SC Std. Err. P Conf. int(±) 

Constant 0.600624 0.0107169 2.34777e-24 0.022287 

Tmp -

0.0141401 

0.0075296

2 

0.074348 0.0156587 

OA Initial 0.183216 0.0075296

1 

7.19313e-17 0.0156587 

DAR -

0.0481132 

0.0075296

2 

2.46714e-06 0.0156587 

DAR*DAR -

0.0255963 

0.0104307 0.0229448 0.0216919 

          

          

N = 26 Q2 = 0.948 Cond. no. = 2.832 

DF = 21 R2 = 0.968 RSD = 0.03433 

  R2 adj. = 0.962     

      Confidence 

= 

0.95 

Figure S7. Coefficient table (Scaled and Centered) for final OA-Ratio model from the fitted 
CCO-design.   

 

 

Mwb~ Coeff. SC Std. Err. P Conf. int(±) 

Constant 4.70064 0.025692 1.65088e-36 0.0532832 
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5 

Tem -

0.0362279 

0.018910

6 

0.0684845 0.0392185 

OA Initial 0.196177 0.018910

6 

6.16452e-10 0.0392185 

DAR 0.0447507 0.018910

6 

0.0271844 0.0392185 

DAR*DAR -

0.0802959 

0.025482

8 

0.00463685 0.0528483 

          

          

N = 27 Q2 = 0.768 Cond. no. = 2.731 

DF = 22 R2 = 0.852 RSD = 0.08621 

  R2 adj. = 0.825     

      Confidence 

= 

0.95 

 

Figure II.S8: Coefficient table (Scaled and Centered) for Mw model from the fitted CCO-design.  
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Mnb~ Coeff. SC Std. Err. P Conf. int(±) 

Constant 4.38982 0.027406

4 

3.07204e-35 0.0568377 

Tem -

0.0786417 

0.020172

2 

0.000772216 0.0418347 

OA Initial 0.176359 0.020172

2 

1.31122e-08 0.0418347 

DAR 0.0536849 0.020172

2 

0.0142611 0.0418347 

DAR*DAR -

0.0996573 

0.027182

7 

0.00135652 0.0563738 

          

          

N = 27 Q2 = 0.747 Cond. no. = 2.731 

DF = 22 R2 = 0.836 RSD = 0.09197 

  R2 adj. = 0.806     

      Confidence 

= 

0.95 

Figure II.S9: Coefficient table (Scaled and Centered) for Mn model from the fitted CCO-design.  

 

 

PDI~ Coeff. SC Std. Err. P Conf. int(±) 

Constant 0.310812 0.0134508 6.38448e-17 0.0278955 
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Tem 0.0424165 0.0099003

5 

0.000301253 0.0205322 

OA Initial 0.0198192 0.0099003

5 

0.0577805 0.0205322 

DAR -

0.00893745 

0.0099003

5 

0.376442 0.0205322 

DAR*DAR 0.0193637 0.0133411 0.160772 0.0276678 

          

          

N = 27 Q2 = 0.288 Cond. no. = 2.731 

DF = 22 R2 = 0.535 RSD = 0.04514 

  R2 adj. = 0.450     

      Confidence 

= 

0.95 

Figure II.S10: Coefficient table (Scaled and Centered) for PDI model from the fitted CCO-design.  
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>33 kDa Coeff. 

SC 

Std. Err. P Conf. int(±) 

Constant 70.7029 2.73187 5.74094e-18 5.66558 

Tem -3.29656 2.01076 0.115342 4.17009 

OA Initial 23.7096 2.01076 5.56369e-11 4.17009 

DAR 4.24879 2.01076 0.0461756 4.17009 

DAR*DAR -8.48071 2.70957 0.00487188 5.61934 

          

          

N = 27 Q2 = 0.806 Cond. no. = 2.731 

DF = 22 R2 = 0.876 RSD = 9.167 

  R2 adj. = 0.854     

      Confidence 

= 

0.95 

Figure II.S11: Coefficient table (Scaled and Centered) for >33 kDa model from the fitted CCO-design.  

 

Pseudocode of the function: 

Algorithm PeakIdentifier 

Input: chromatogram_peaks, mw_building_blocks, error_term, peak_weights, 
NMR_data,end-cap bool 

Output: best_matching_sequence 

 

1. Initialize all_sequences as an empty list 

2. For each peak in chromatogram_peaks do: 

    2.1 Calculate adjusted_mw = mw_building_blocks + error_term + end-cap bool 

    2.2 Generate all possible sequences for the peak using adjusted_mw 
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    2.3 Add generated sequences to all_sequences 

3. Initialize best_match_score as negative infinity 

4. Initialize best_matching_sequence as None 

5. For each sequence in all_sequences do: 

    5.1 Calculate match_score for sequence based on peak_weights and NMR_data 

    5.2 If match_score > best_match_score then: 

        5.2.1 Update best_match_score to match_score 

        5.2.2 Update best_matching_sequence to sequence 

6. Return best_matching_sequence 

Figure II.S12: PeakIdentifier Pseudo code explaining the function of the PeakIdentifier. The code is used to 

match GPC and NMR data to the chromatogram and is expected to help identifying peaks and peak sequences 

of step-growth polymerization products.  

 

Figure II.S13: Molar mass distribution of Polymer 16 before (red) and after (blue) 3 purification steps in a 30.000 

Da MWCO spin column.  
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Figure II.S14: 1H-NMR spectrum of temperature dependent side products after 8 ppm.  

 

Figure II.S15: Correlation between side products (NMR species at 8 ppm) and reaction temperature.  
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Table S1: Validation settings and results for three validation polymers. CQA predictions are shown with 95% 

confidence intervals from lower (L) to upper (U) limit and results are shown in observed (O) columns.  
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Figure II.S16: Dynamic light scattering data of hydrodynamic diameter (red circles) and polydispersity index 

(green triangle) of siRNA containing particles used for the stability assay. 
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Figure II.S17: EC_50 values for siRNA containing nanoparticles generated with different polymers and 

determined by Heparin and Triton-X competition assay (n=3)  
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Chapter III - Machine Learning on an Orthogonal Polymer 

Library Reveals Governing Factors and Optimizes 

PBAE Copolymers' Synthesis and Performance 

 

9 Graphical Abstract 

 

10 Abstract 

Pulmonary siRNA delivery is a promising therapeutic approach for future pandemics and 

many non-infectious lung diseases. Polymeric nanocarriers, especially poly-beta 

aminoesters are an easily tunable and versatile delivery system to protect RNA from 

degradation. To maneuver the vast chemical space and generate control and 

understanding, an orthogonal polymer library of amphiphilic-spermine-based poly-beta-

aminoesters was investigated for gene knockdown, toxicity and particle stability. 
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Subsequently, a Nested-Leave-One-Out Cross Validation approach was chosen to screen 

different machine learning models allowing to capture useful information within the limited 

dataset. Analyzing key factors governing the particle performance identified too high intra-

particle stability as a disadvantage for successful gene knockdown. This finding facilitated 

improved model performance through a few-shot learning approach. Leveraging these 

combined and optimized models, a novel polymer candidate was predicted and 

subsequently validated in vitro. A superior knockdown and toxicity profile as well as stability 

trends were confirmed. In vivo experiments, however, highlighted the lack of in-vitro-in-vivo 

correlation after model optimization for in vitro performance. Nonetheless, reduced in vivo 

immunogenicity was achieved through the chosen approach. 

Keywords: PBAE polymers, siRNA Delivery, Machine Learning, Orthogonal Library, in vivo 

– in vitro correlation 

11 Introduction 

RNA-based therapeutics are rapidly transforming modern medicine, demonstrating 

profound impact across diverse therapeutic areas. The global pandemic highlighted the 

critical role of mRNA vaccines as a leading-edge biotechnological solution6,112 for proactive 

disease prevention. While the success of mRNA vaccines is undeniable, the therapeutic 

potential of RNA extends considerably beyond prophylactic applications. Harnessing the 

inherent versatility of RNA's biological functions opens up a wide spectrum of therapeutic 

possibilities, reflecting their fundamental role in cellular processes. One potential 

therapeutic approach is the use of short interfering RNA (siRNA) for target gene silencing. 

This regulatory RNA is built intracellularly by slicing double stranded RNA (dsRNA) 

molecules into 20-25 nucleotide long sections and leading to mRNA degradation via an 

enzyme complex called “RNA induced silencing complex” (RISC). This mechanism could 

unlock a promising pulmonary antiviral therapeutic strategy for future pandemics113. Since 

RNAs are prone to degradation after injection into a patient due to ubiquitously expressed 

RNase enzymes, they need to be protected. For this purpose, various nanocarriers, 

generated from different materials and compositions, are used. Intensively investigated 

carriers for performing successful delivery are polymeric delivery systems such as PEI114, 

PLGA115,116 or PBAEs80,117. Although all are established materials, only the latter provides 

high cargo condensation while being biodegradable at the same time86, making PBAEs well-

suited for RNA delivery.  
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As the tremendous amount of potential chemical structures enables infinitely many 

possibilities of tailoring polymers for each individual use case118, a strategy is needed, for 

researchers to design a carrier system that suits their needs faster than with a classical trial-

and-error approach. One potential way to do so is rational design using human knowledge 

119–121. While promising, this requires a large amount of expertise and may lead to human 

errors due to biases and limited capability of extrapolating beyond experience. Another 

strategy used, is the screening of big libraries81,122. This allows for the discovery of a broad 

chemical space and has already led to the discovery of high-performing carrier systems. 

However, while being promising on the one hand, this method can only be applied if 

abundant resources, time and workforce are available which is not applicable for many labs. 

For this purpose, drug delivery research has started to implement more systematic attempts 

such as design of experiments (DoE), a method where an a-priori design space is set up, 

helping in systematically discovering a huge space without performing unnecessary 

experiments. Even though this method established itself as the gold standard in industry for 

most optimization tasks44, it provides a rigid scaffold limited by the pre-selected design 

region and data points.  

Machine learning (ML) is a powerful method that can overcome this limitation by allowing 

for a nearly infinite flexibility in data analysis, optimization and prediction, which makes it an 

increasingly integral component of modern drug discovery pipelines123,124. In recent years, 

several groups have contributed towards potential applications of ML in designing drug 

delivery systems125,126. However, ML is known to be heavily dependent on both data quantity 

and quality, which is a problem in the field of polymeric drug delivery, where data is often 

sparse or too heterogenous to use. Current contributions in the field predominantly focus 

on either machine learning (ML)-assisted high-throughput screening127 or the utilization of 

existing datasets128. However, these approaches present inherent limitations, particularly 

within academic research settings. High-throughput screening infrastructure is often 

unavailable or impractical for many research questions, while sufficiently large and diverse 

datasets, capable of enabling robust predictive modeling, remain scarce, especially in 

comparison to the data abundance available for small molecules. 

Here a new method is introduced, where ML is used within a previously synthesized small 

dataset of spermine-based amphiphilic poly-beta aminoesters (PBAEs)129. The data 

obtained by using a DoE design allowed for precise synthesis and a deeper understanding 

of the process itself. Subsequently, it is used to optimize PBAE capability for successful 

gene knockdown while maintaining low cytotoxicity. Additionally, an approach is presented 
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to tackle the low-data problem using a nested-leave-one-out cross validation loop to design 

a robust algorithm to predict synthesis conditions that enable the polymerization of a new 

lead candidate that outperformed the current benchmark. Furthermore, it was shown that 

machine learning is the method of choice when incorporating additional information about 

data due to the flexibility in designing few-shot modelFinally, a deeper understanding of 

feature-relations was generated, by performing feature ablation studies and investigating 

SHAPley130 values for the models. To translate the theoretical work into a practical set-up 

and to show the strengths but also the limitations of machine learning in this context, 

subsequently the optimized nanocarrier was initially tested in vitro. Here, the performance 

of the algorithm was validated and key findings about particle stability were confirmed. 

Testing the in-vitro-in-vivo-correlation, gene knockdown and toxicity as well as 

immunogenicity were investigated in mice.  

12 This work lays the ground for researchers to make optimal use of 

limited data and helps in predicting and understanding new delivery 

systems without extensive and ineffective screening. 

13 Materials and Methods 

13.1 Materials  

Dicer substrate double-stranded siRNA targeting enhanced green fluorescent protein 

(eGFP) (siGFP, 25/27mer), and scrambled, negative control siRNA (siNC, 25/27mer) were 

purchased from IDT (Integrated Technologies, Inc., Leuven, Belgium). Sequences and 

additional information are provided in the Supporting Information, Table S1. HEPES (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid), ethyl trifluoroacetate, sodium chloride, Tris-

EDTA buffer solution 100×, RPMI 1640 medium, Triton X-100, heparin sodium salt from 

porcine intestinal mucosa, heat-inactivated fetal bovine serum (FBS), 

penicillin/streptomycin solution (P/S), geneticin (G418), Dulbecco’s phosphate-buffered 

saline (PBS), cOmplete™ Mini EDTA-free protease-inhibitor-cocktail were obtained from 

Sigma-Aldrich (Darmstadt, Germany).  Branched polyethyleneimine (PEI) (5 kDa, Lupasol 

G100) was a kind gift from BASF (Ludwigshafen, Germany). Di-tert-butyl decarbonate, 

oleylamine, spermine, dimethylformamide (99,5% pure), Lipofectamine 2000, OPTI-MEM 

serum reduced medium, 0.05% trypsin-EDTA, Alexa Fluor 647 NHS ester, and a SYBR 

Gold Nucleic Acid Gel Stain 10,000X concentrate in DMSO and siMMP7 were purchased 

from Thermo Fisher Scientific (Schwerte, Germany). 1,4-Butanendiol diacrylate was 
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obtained from TCI Chemical Industry Co., Ltd. (Tokyo, Japan). Trifluoroacetic acid (99,9%, 

extra pure) was purchased from Acros Organics (Geel, Belgium). Methanol-d6 was 

obtained from Deutero (Kastellaun, Germany). Dichloromethane, methanol, ammonia, 

potassium permanganate, magnesium sulfate, acetone, pentane, and formic acid (>99% 

pure) were purchased from VWR Chemicals (Ismaning, Germany). 

13.2 Data Preprocessing 

Experimental data was saved in Excel format and was transformed in a pandas dataframe. 

The features were defined as Time (“Time”), Temperature(“Tem”), initial Oleylamin content 

(“OA”), Diacrylate ratio (“DAR”). As target values we defined Gene Expression, Toxicity and 

Stability. Note that Stability was used as additional feature in a few-shot approach when 

predicting Gene Expression and Stability. Subsequently data was scaled using a 

MinMaxScaler. In this complete dataset, no values were missing.  

13.3 Nested-CV-Loop 

The selection of an appropriate model is a critical step in running a predictive machine-

learning pipeline. Because we are dealing with data scarcity, we used only algorithms that 

are known to perform well with limited data. Each model was placed in a single scikit-learn 

pipeline together with a Min–Max scaler to avoid information leakage. We employed a 

nested cross-validation scheme: first, 15 % of the data was split off as a hold-out set, which 

was evaluated only after hyper-parameter optimization. To ensure that the hold-out set 

represented the distribution of the training data, we discretized the continuous target into 

five equal-frequency (quantile) bins and stratified the train–test split on those bins. In the 

inner loop, 100 randomly chosen hyper-parameter configurations were assessed for each 

model using leave-one-out cross-validation (LOOCV). After ten outer-loop repetitions, the 

model with the lowest mean absolute error (MAE) and its associated optimal hyper-

parameters were selected for subsequent optimization. 

Zero Shot vs Few-Shot Model 

To compare whether certain additional experimental data can help in predicting others, we 

investigated the influence of the experimentally determined colloidal stability of the 

nanoparticle suspension. To do so, we included experimental stability values as additional 

features into the gene expression and toxicity models. Since we experienced a threshold-

like behavior of Gene Expression and stability, the stability data was binarized after 

normalization. 



80 
 

13.4 Feature Ablation 

To investigate the influence of the single features and whether they influence the predictive 

power of the model, feature ablation experiments were executed. For this purpose, we 

iteratively removed features and compared the performance across all LOOCV splits as 

absolute mean error with a base model containing all features. When exceeding the error 

threshold, the feature was assumed to just add noise to the model and was rated irrelevant. 

13.5 Optimized Model Comparison 

13.6 Model evaluation included a comparison of the optimized models against a 

simple mean predictor baseline, providing a straightforward benchmark. This 

dummy model always predicts the average value of the training set's target 

variable. The MAE achieved by the baseline model was contrasted with that of our 

few-shot and zero-shot models. 

13.7 Model Interpretation 

Model interpretation was performed using SHAP (SHapley Additive exPlanations) values to 

quantify each feature's contribution to the difference between the model's prediction and 

the expected value, providing insights into model behavior and enabling identification of 

critical features. To visualize feature importance for the zero-shot and few-shot models, we 

employed beeswarm plots. Furthermore, waterfall plots were used to illustrate the decision-

making process of the models. Finally, feature relationships were investigated using scatter 

plots of SHAP values against their corresponding feature values. 

13.8 Prediction Pipeline 

Parameter prediction was performed using a combinatorial approach. Specifically, we 

generated discrete parameter ranges and combined these ranges to create an exhaustive 

list of possible parameter settings. These settings were then evaluated using the zero-shot 

models. The resulting performance metrics were stored in a data frame and subsequently 

sorted using a hierarchical sorting strategy. This allowed us to identify parameter 

configurations that maximize gene knockdown while minimizing toxicity. 

13.9 Triboc-Spermine Synthesis 

Tritert-butyl carbonyl spermine, abbreviated as tri-Boc-spermine (TBS) was synthesized as 

described elsewhere100. Briefly, spermine (1 equiv) was dissolved in methanol and stirred 

at −78 °C before ethyl trifluoroacetate (1 equiv) was added dropwise. Subsequently, the 

mixture was stirred at −78 °C for 1 h and then at 0 °C for 1 h. Without isolation, ditert-butyl 
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dicarbonate (4 equiv) was added dropwise to the solution and stirred at room temperature 

for 2 days. Finally, the solution was adjusted to a pH above 11 by 25% ammonia and stirred 

overnight to cleave the trifluoroacetamide protecting group. The solvent in the mixture was 

then evaporated under vacuum, and the residue was diluted with dichloromethane (DCM) 

and washed with distilled water and saturated sodium chloride aqueous solution. The DCM 

phase was finally dried by magnesia sulfate and concentrated to give the crude product. 

The crude product was purified by column chromatography (CH2Cl2\MeOH\NH3, aq 7:1:0.1, 

SiO2, KMnO4; Rf = 0.413). TBS was isolated and characterized by 1H nuclear magnetic 

resonance spectroscopy (1H NMR). 

13.10 Polymer Synthesis and Characterization 

Poly spermine-co-oleylamine beta-aminoesters (P(SpOABAE)) were synthesized based on 

a previously described approach114. Briefly, TBS as a hydrophilic monomer, oleylamine 

(OA) as a hydrophobic monomer, and 1,4-butanendiol diacrylate (DA) as backbone were 

mixed in different molar ratios in dimethylformamide (DMF), resulting in total concentrations 

of 300 mg/mL. After the respective reaction time, mixtures were transferred to Petri dishes 

to evaporate the solvent. The subsequent deprotection of the polymer was carried out in a 

mixture of 20 mL of dichloromethane (DCM) and 1 mL of trifluoroacetic acid (TFA) for 100 

mg of polymer, followed by stirring for 2 h at room temperature. In the following, DCM/TFA 

was evaporated and the dry deprotected product was precipitated 3 times in pentane using 

acetone to dissolve the precipitate. Supernatants were discarded, and the final precipitate 

was dried for 2 days under vacuum (room temperature, 20 mbar). The synthesis process is 

depicted in Figure III.1A. Final polymers were characterized by 1H NMR and GPC. 

Measurements were performed with an Agilent aqueous GPC using a PSS Novema Max 

Lux 100A followed by two PSS Novema Max Lux 3000A columns. The chromatographic 

system and calibration standards were set up according to preanalysis from Agilent 

Technologies on P(SpOABAE) polymers. Measurements were performed at 40 °C in a 0.1 

M sodium chloride solution supplemented with 0.3% formic acid. Samples were prepared 

at 4 g/L and measured at a flow rate of 1 mL/min. Molar mass distributions were obtained 

through the Agilent WinGPC software against pullulan calibration standards in the range of 

180 Da to 1450 kDa. A daisy-chain detector setup of an Agilent 1260 VWD was used, 

followed by an Agilent 1260 GPC/SEC MDS and ending with an Agilent 1260 RID. 
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13.11 Gene Knockdown  

H1299 stably expressing eGFP were seeded on 48-well or 24-well plates at a density of 

5,000 or 10,000 cells per well in 1640 RPMI supplemented with 10% FCS and 1% 

Penicilin/Streptomycin, respectively. Nanoparticles were prepared at N/P ratio 10 

encapsulating either siGFP or siNC RNA, and cells were transfected 24h after seeding in 

triplicates with 10 or 20 pmol siRNA per well. After 48 hours, median fluorescence intensity 

(MFI) was recorded using a BD LSR Fortessa using the BD FACSDivaTM Software and 

counting 10,000 events. Gene knockdown was calculated as the ratio between MFI of cells 

treated with siGFP NPs and siNC NPs. 

13.12 Cell Viability 

Cell viability and toxicity were tested simultaneously using a CellTiter Blue (CTB) and 

Lactate dehydrogenase (LDH) assay. In 96-well plates, 5,000 16HBE14o- cells were 

seeded. After 24 hours, the polymer library was tested in triplicates. Each polymer was 

tested at 8 different concentrations between 1 and 500 µg/mL. After 48 hours of incubation, 

50 µL supernatant of each well was transferred to a fresh plate and LDH was quantified 

following the manufacturers protocol. Briefly, to each well 50 µL of freshly resuspended 

reagent mix was added, and the plates were incubated in the dark for 30 min. Afterwards, 

50 µL stop solution was added into each well and absorbance was measured. 

For the CTB assays, the cell containing wells were filled up with 30 µL of fresh media and 

20 µL CTB and incubated for 4h. Afterwards, absorbance was measured at 570 and 600 

nm.  

Using JMP 17 pro, sigmoidal curve fits were generated through all concentrations and 

repetitions of the CTB and LDH assays, and turning points were calculated and defined as 

IC50 values.  

13.13 Determination of attractive forces between siRNA and polymers 

A previously reported stability assay was used to determine the attractive forces between 

siRNA and polymers. The stability values for the input library were reported in the same 

publication129. Following this protocol, nanoparticle stability was investigated using heparin 

and triton-X. Briefly, 10 µL nanoparticle suspension was treated with 20 µL of 8 different 

concentrations of a mixture of heparin and triton-X in a black 384-well plate (Greiner Bio-

One, Frickenhausen, Germany). As reference, siRNA solutions resembling the 

concentrations of NPs were treated with the same concentrations of heparin and triton-X. 
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Plates were sealed and incubated for 1h at 37°C at 250 rpm. Afterwards 5 µL of a 4x SYBR 

Gold solution were added to each well and mixed by pipetting. After 5 minutes of incubation 

fluorescence was measured at 492/20 nm excitation wavelength and 537/20 nm emission 

wavelength. Comparing the fluorescence intensity of the treated nanoparticle solution to the 

respective siRNA solutions’ intensity, a release percentage was calculated. Fitting the 

released percentage against the used concentration of heparin and triton-X, using Prism5 

software, an EC50 value was calculated. This value was defined as the concentration at 

which half of all siRNA is released from the nanoparticle suspension. 

13.14 Animal Treatment Protocol 

Female BALB/c mice, aged 6-8 weeks, were purchased from Charles River Laboratories. 

The mice were housed in a controlled facility for 14 days to acclimatize, with a 12-hour 

light/dark cycle. All animal procedures were approved by the Government of Upper Bavaria 

and conducted in accordance with approved protocols. 

Mice were intratracheally instilled with 1 nmol of siRNA encapsulated at N/P 10 with either 

the previous lead candidate or the new ML-2 polymer, administered through intratracheal 

instillation under ketamine/xylazine anesthesia. As control, equivalent volume of 25kDa 

hyperbranched PEI polyplexes encapsulating the same amount of siRNA was applied as 

well as unencapsulated siRNA or pure formulation buffer. All formulations were tested with 

either siRNA targeted against murine Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) or negative control (NC). Mice were euthanized 24 hours after application mice 

through cardiac blood collection.  

Lungs were flushed twice with 500 µL of PBS buffer containing 2 mM EDTA and one 

cOmplete™, Mini, EDTA-free protease-inhibitor-cocktail tablet per 10 mL to collect the 

bronchoalveolar lavage fluid (BALF). Briefly, solutions were injected into the trachea and 

subsequently recollected. A second 500 µL of the same PBS solution was instilled and 

recollected. The collected BALF was centrifuged for 5 minutes at 500 g. The supernatant 

was frozen at -20°C and stored at -80°C until further analysis. 

Lungs were subsequently perfused with 20 mL of 0.9% sterile sodium chloride. To do so, 

the vena cava inferior was cut and the solution injected into the left ventricle. After sufficient 

perfusion, one lung lobe from each treatment group was dissected, fixed in 4% 

paraformaldehyde (PFA) for at least 24 hours, and then embedded in paraffin for histological 

analysis via H&E staining. 
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The remaining lung lobes and undissected lungs were stored at 1 mL RNAlater™ 

Stabilization Solution, frozen and stored at -20°C until further analysis. 

13.15 In Vivo Gene Knockdown 

GAPDH gene knockdown in mouse lungs was determined through qPCR. RNA was isolated 

from mouse lungs using Lysing Matrix D tubes containing 1.4 mm Zirconium-Silicate 

spheres from MP Biomedicals and a TRIzol/chloroform isolation protocol. Briefly, mouse 

lungs were thawed on ice and transferred to the lysing tubes. After the transfer, 1 mL of 

TRIzol was added to each tube. Using a Tissue Lyzer the samples were homogenized. The 

RNA was isolated through chloroform precipitation. After centrifugation, the aqueous phase 

was washed with molecular grade isopropanol followed by ethanol. The final RNA pellets 

were dissolved in RNase free water and concentrations were determined. Using a high-

capacity cDNA reverse transcription kit (Thermo Fisher Scientific), complementary DNA 

(cDNA) was prepared. Finally, quantitative real-time PCR (qRT-PCR) was performed 

applying an iTaq Universal SYBR Green Supermix (Bio-Rad, Feldkirchen, Germany) on a 

StepOnePlus system (Thermo Fisher Scientific). Beta-Actin was used as the reference 

gene with Mm_GAPDH_3_SG primers (Qiagen) for GAPDH and Mm_ACTB_2_SG 

(Qiagen) primers specific for mouse β-actin. For normalization of GAPDH levels, the ΔΔCt 

method was applied.  

13.16 In Vivo Biodistribution and Cell Uptake 

To investigate the biodistribution and cellular uptake 6–8-week-old BALB/c mice were 

treated with 1 nmol of siRNA fluorescently labeled with a AF647 label as described 

previously. siRNA was either applied unformulated or encapsulated into the previous lead 

candidate or ML-2 polymer. After 24 hours, mice were sacrificed, and bladders, lungs, livers, 

kidneys, spleens, and the hearts were collected. Using an IVIS Lumina III (PerkinElmer, 

Shelton, CT, USA) fluorescence intensity in these organs was measured. 

For further analysis, lungs were dissociated using a gentleMACS tissue Dissociator 

(Miltenyi Biotec, Bergisch Gladbach, Germany) together with gentleMACS C (Miltenyi 

Biotec, Bergisch Gladbach, Germany) tubes following the manufacturers protocol. Cell 

suspensions were incubated with PBS solution containing Zombie UV™ and afterwards 

stained with FITC anti-mouse CD45, BUV395 anti-mouse CD3, Vioblue anti-mouse CD4, 

APC-Cyanine7 anti-mouse CD8, PE-Cyanine7 anti-mouse F4/80, BUV605 anti-mouse 

CD11c, BV785 anti-mouse CD326, PE/Dazzle™594 anti-mouse CD170 and 
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PerCP/Cyanine5.5 anti-mouse CD19 for 30 min at 4°C. The stained cells were measured 

using a Cytek® Aurora (San Diego, California, USA) implemented with autofluorescence 

extraction for the detection of cellular uptake (Figure III.S1). 

13.17 BALF Cytokine Measurements 

Cytokines from collected BALF solutions were quantified using a LEGNEDplexTM Mouse 

Inflammation Panel (Biolegend, San Diego, California, USA) following the manufacturers 

protocol and an Attune NxT flow cytometer (ThermoFisher Scientific, Waltham, MA USA). 

Results are reported as total detected concentration and as relative induction compared to 

the highest induction for each individual cytokine.  
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14 Results and Discussion 

14.1 Library Performance Evaluation 

 

Figure III.1: Workflow of the screening process applied in this study. A) Synthesis approach of the applied PBAE 

polymers B) A previously reported library generated through DoE and varying key synthesis parameters was 

tested for knockdown efficiency, stability and toxicity. C) Gene Knockdown correlated against previously 

reported stability of particles and D) against cell viability determined via CTB. Error bars depict SD for gene 

knockdown and SD of the fit for EC50 and IC50 with n=3.  
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The aim of this work was the investigation and optimization of key parameters governing 

the performance of PBAE polymers as siRNA delivery vehicles in vitro and in vivo for 

pulmonary therapy. We therefore utilized a previously reported library of 27 differently 

synthesized PBAE polymers (Figure III.1A)129. The library was generated through a Central 

Composite Orthogonal design optimizing the synthesis parameters of total synthesis time, 

synthesis temperature, oleyl amine ratio, being the ratio of the two sidechains, and 

diacrylate ratio, being the ratio of the sidechains to the backbone (Figure III.1B). All factors 

were investigated over 5 levels and with all resulting polymers, nanoparticles were 

successfully formulated. Nanoparticle stability was already reported23.  

To complement the previously reported data set, nanoparticles were tested for gene 

knockdown in an H1299 eGFP-expressing lung cell line by encapsulating and delivering 

siRNA against eGFP. The results were plotted against the previously reported stability 

values (Figure III.1C). Interestingly, an apparent division threshold was found within the data 

set. Above this threshold, the particles appeared to lose their functionality in vitro. This was 

unexpected since the common consensus suggests that particles need a certain stability to 

not lose their integrity before reaching the endosome. In contrast, the data presented here 

suggest that the major bottleneck for the investigated PBAE nanoparticles was not 

premature particle disintegration but rather excessively strong intraparticular stabilizing 

forces. Since only below the found threshold a successful gene knockdown above 90% was 

observed, it was hypothesized that at too high EC50 values, particles did not disintegrate 

within the endolysosomal pathway to release their siRNA cargo and mitigate gene 

knockdown. This hypothesis was underscored by the observation that above the identified 

threshold, the highest achieved gene knockdown effects were below 30%. Previous studys 

reported similar observations, implying that polyplexes lose potency if the intraparticular 

stabilizing forces become too strong to release the cargo131. On the other hand, weakening 

the intraparticular forces can increase the nanoparticles performance132. Therefore, a clear 

design criterion for next generation polymers was stated. The criterion was that nanoparticle 

stability needed to be lower than an EC50 value of 1.6, in order to successfully release the 

siRNA within the endosome.  

In the next step, cytotoxicity and cell viability of the polymers from the library were 

investigated in pulmonary epithelial cells by the means of CTB and LDH assays (Figure 

III.S2). A correlation comparison between both IC50 results showed that the tested 

polymers were well tolerated in a range from 25 to 175 mg/mL and the results from CTB 
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and LDH correlated strongly with each other (Figure III.S3+S4). As expected, polymers 

exhibiting higher toxicity also showed a greater negative impact on cell viability, and vice 

versa. Furthermore, this finding enabled a reduction in experimental workload and cost 

since a single assay was sufficient to reliably assess polymer safety. CTB assays resulted 

in a slightly lower IC50 value than LDH assays (Figure III.S3). Moving forward, for these 

reasons CTB was chosen as main readout.  

To finally evaluate the performance of the polymer library, gene knockdown was plotted 

against the IC50 values determined via CTB (Figure III.1D). This showed another surprising 

finding, which was the successful decoupling of toxicity from efficiency of the nanoparticle 

system. One of the biggest challenges for RNA delivery is the “efficiency/safety dilemma”, 

where higher transfection efficiency is often associated with increased cytotoxicity. The root 

cause is most likely associated to the membrane disruptive potential of the carrier system. 

A certain membrane fusogenicity is necessary for endosomal escape, while excessive 

disruption of endolysosomal compartments or cellular membranes can trigger 

immunogenicity, apoptosis and toxicity133–135. It was therefore a remarkable finding that the 

investigated library contained a polymer with exceptional gene knockdown as well as 

superior safety profiles (Figure III.1D, green area).  

14.2 Nested CV Approach 

Building upon the nested cross-validation framework described before136, we implemented 

a similar approach with specific modifications tailored to our low-data context (Figure III.2A). 

First, recognizing the limitations of complex models in data-scarce settings, we opted to 

exclude the neuronal network component present in the referenced methodology. Second, 

to ensure the hold-out set was representative of the training data distribution, we stratified 

the dataset based on the target variable, dividing the data into five bins prior to splitting. 

This stratification ensured that each fold maintained a similar target distribution to the overall 

dataset. Furthermore, within the inner cross-validation loop, we employed LOOCV. LOOCV 

was chosen to maximize the training data available for each inner fold, which is particularly 

advantageous when working with limited datasets. In our experiments, we trained models 

to predict two distinct target variables: Gene Expression post-treatment and Toxicity, 

quantified as IC50 (see Methods section for details). We also investigated the potential 

benefit of incorporating additional nanoparticle characteristics, specifically stability, as input 

features. Consistent with the nomenclature used in31, we refer to the variant that includes 

the additional stability descriptor as the “few‑shot” model, even though only one extra 
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feature is added; this usage follows the prior work’s feature‑augmentation context and 

should not be confused with the standard few‑shot/one‑shot paradigms that describe limited 

numbers of training examples. While we observed improved results for the few-shot 

approach for all Gene Expression models (Figure III.2B), addition of stability did not seem 

to have a big impact on the IC50 value (Figure III.2C). The only model that slightly improved 

was the DecisionTree (DT). However, its performance was still poorer than that of the best 

zero shot-model, which was the RandomForest (RF) with an MAE of 0.3673. For the Gene 

Expression model, XGBoost outperformed other models (MAE of 14.18). However, for the 

few-shot model, the Support Vector Regressor (SVR) was slightly better. Good performance 

of an SVR with low data and non-linear interactions was already seen previously137. Among 

the best performing model class, we picked the best hyperparameter-setting for the most 

robust models (Figure III.S5), which were further optimized in the next steps.  

 

Figure III.2: Nested-Leave-One-Out Cross-Validation Approach A) Machine learning pipeline where data is 

preprocessed and subsequently categorized to allow for stratified splitting of holdout data. The train set is used 

to tune each algorithm with a random hyperparameter search and leave-one-out validation. The process is 

repeated ten times and the mean absolute error is calculated to obtain the most robust model. B) Mean Absolute 

Error of multiple models tested for Gene Expression with the ML pipeline. Few-Shot models (blue) with stability 

measurements of nanoparticles included. The models marked with an asterisk and a bold frame are the most 

robust models selected for optimization. C) Mean Absolute Error of multiple models tested for IC50 with the ML 

pipeline. Few-Shot models (blue) with stability measurements of nanoparticles included. The models marked 

with an asterisk and a bold frame are the most robust models selected for optimization. 
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14.3 Feature Ablation Experiment 

To further optimize model performance and enhance process understanding, we conducted 

a feature ablation experiment (Figure III.S6). In this experiment, we evaluated the 

performance of each model, assessed via Leave-One-Out Cross-Validation (LOOCV), by 

iteratively removing individual features. For the Toxicity model, feature ablation revealed no 

statistically significant performance differences; only a marginal increase in MAE was 

observed when removing Temperature for the zero-shot model and Time for the few-shot 

model. Conversely, for the Gene Expression model, we observed that ablating Time and 

Diacrylate-Ratio (DAR) improved zero-shot model performance. In contrast, DAR remained 

important for the few-shot model. These findings align with our prior work, which indicated 

a limited impact of reaction time on polymer characteristics. 

14.4 SHAP Analysis 

To gain deeper insights into model decision-making, we calculated SHAP (SHapley Additive 

exPlanations) values for all models (see Figure III.3A and III.3B). The SHAP analysis 

generally corroborated the findings from the feature ablation experiment. Furthermore, it 

elucidated feature importance for predicting high knockdown/low gene expression, 

suggesting a requirement for high oleylamine content (OA Initial) and elevated Temperature 

(Tem) in the zero-shot model. In contrast, the few-shot model's SHAP values reflected the 

stability threshold identified previously. For the IC50 prediction, Temperature emerged as a 

significant parameter, with lower temperatures associated with reduced toxicity, while 

higher OA Initial concentrations appeared favorable. This observation may be attributed to 

the potential formation of a side-product at elevated temperatures, as documented in our 

earlier publication129. Stability, however, exhibited no influence on predicted toxicity (Figure 

III.3B). It is important to note that SHAP values represent model interpretations rather than 

ground truth and, given the weaker predictive performance of the IC50 model, these results 

require cautious interpretation. Detailed SHAP plots for all models and features and 

correlation plots between SHAP values and features are provided in the Supplementary 

Information (Figure III.S7 and III.S8). 

14.5 Final Model Performance and Baseline Comparison 

To demonstrate the final model performance, we benchmarked both the zero-shot and few-

shot models against a dummy baseline model (see Methods section). Additionally, we 

visualized the results in predicted-versus-real plots (Figure III.S9). The Gene Expression 

zero-shot model exhibited promising performance, achieving a MAE of 10.59 and a Pearson 
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correlation coefficient (r) of 0.8494 in the predicted-versus-real plot (Figure III.S3A and 

Figure III.9A). The incorporation of stability as a feature further enhanced predictive 

performance (MAE= 7.605, r=0.9078), underscoring the existence of a stability threshold 

above which particle stability is too high to release the cargo into the cytosol, what was 

already observed in earlier work (Figure III.3A and Figure III.S9B). For the Toxicity model, 

performance improvements over the baseline (MAE of 0.2816 versus MAE of 0.3476) were 

observed, and a correlation between predicted and experimental values was evident for the 

zero-shot model (r= 0.3605, Figure III.3B and Figure III.S9C). However, no significant 

difference was found between the zero-shot and few-shot models (Figure III.3B and Figure 

III.S9D), further supporting the conclusion that stability does not substantially influence the 

toxicity of the nanocarrier system. 

 

Figure III.3: Optimized Model Characteristics A) Gene Expression MAE Comparison of optimized Few-Shot and 

Zero-Shot Models with a Dummy-Baseline Model evaluated with LOOCV above: SHAP values of Zero-Shot 
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model and below: few-shot model B) IC50 MAE Comparison of optimized Few-Shot and Zero-Shot Models with 

a Dummy-Baseline Model evaluated with LOOCV upper panel: SHAP values of Zero-Shot model and lower 

panel: few-shot model. 

 

 

14.6 End-to-End Prediction Pipeline and Validation 

To ultimately validate the utility of machine learning with limited data, for predicting novel 

formulations, we constructed an end-to-end prediction pipeline (Figure III.4A). This pipeline 

involved generating all feasible combinations within physically plausible feature ranges and 

employing our zero-shot models as an independent multi-output model to predict Gene 

Expression/Knockdown and Toxicity. Given the superior predictive power of the Gene 

Expression model, we implemented a hierarchical sorting strategy, prioritizing high 

knockdown followed by low toxicity. The model-predicted optimal polymer, termed ML-2 and 

characterized by 95% OA Initial and synthesis at a Temperature of 130°C, was 

subsequently synthesized (see Methods section), analyzed (see Figure III.S10 and Figure 

III.S11), and experimentally validated. To further highlight the model’s decision path, we 

added additional SHAP waterfall plots (see Figure III.S12 and Figure III.S13), confirming 

the results from the full model’s beeswarm plot.  
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14.7 Machine Learning-Derived Polymer Evaluation in vitro 

 

Figure III.4: In vitro performance evaluation and comparison of optimized PBAEs. A) Overview of the prediction 

pipeline for the optimized polymer, B) Histogram and Dot plot of H1299 eGFP cells treated with Lipofectamine 

2000, ML-2 or the previous lead candidate encapsulating siGFP siRNA, and C) percentage of gated cells with 

nearly complete knockdown of eGFP with N=3 (*** depicting a p ≤ 0.001). D) Toxicity of ML-2 and lead candidate 

determined via CTB assay with n=3, and E) stability of ML-2 determined through Heparin and Triton-x 

competition. Dots depict mean of n=3. 

 

To validate the performance of the new ML-2 polymer as pulmonary delivery agent, it was 

compared against a previously reported lead candidate132 derived from classical trial and 

error synthesis optimization. In the following this polymer will be referred to as “Lead” 

candidate. Besides different synthesis settings, these two polymers mainly differ in their OA 

ratio, with the predicted ML-2 having a higher ratio at 93% and the previous Lead polymer 

a lower at 75%. To investigate if the new ML-2 polymer was indeed superior in performance, 

a gene knockdown experiment in H1299 eGFP cells was conducted. As shown in Figure 
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III.4 B) ML-2 did indeed mediate a more potent gene knockdown than the Lead polymer and 

seemingly a more complete downregulation than Lipofectamine 2000 (Figure III.4 B). The 

median fluorescence intensity did not differ significantly between Lipofectamine 2000 and 

ML-2 (Figure III.S14). To get a more detailed view on the differences on the polymers’ 

performances, the dot plots of the cell populations were compared via the gated percentage 

(Figure III.4 B +C). ML-2 was clearly superior to the Lead polymer but showed again no 

statistical difference compared to Lipofectamine 2000. The Lead polymer on the other hand 

showed a large cell population with a non-complete gene knockdown. This indicates that 

the lead polymer does not reach saturation of cytosolic siRNA delivery unlike ML-2. This 

difference of saturation is also depicted in the gated percentage (Figure III.4 C) and clearly 

shows the superior efficiency of ML-2 compared to the Lead polymer. 

A major downside of the previous Lead candidate is the early onset of toxicity as can be 

seen from the CTB curve (Figure III.4 D). Even though the IC50 value of the Lead polymer 

is in an excellent range with 89 µg/mL, the early onset of the curve decline indicates that 

toxicity can already occur at much lower concentrations. ML-2 showed a superior IC50 value, 

although in a comparable range with an IC50 value of 109 µg/mL. However, additionally to 

a higher IC50 value, the curve decline was also much steeper indicating a much later “onset 

of toxicity” at higher concentrations. This finding confirmed the potential of the machine 

learning approach since ML-2 showed to have better efficiency and safety profiles than the 

previous lead candidate.  

Finally, to prove our previous findings, we determined the stability of the ML-2 nanoparticles 

(Figure III.4 E), which was in the expected range, below the above-described threshold 

necessary for successful gene delivery. 



95 
 

14.8 Machine Learning-Derived Polymer Evaluation in vivo 
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Figure III.5: In vivo results of the lead and ML-2 comparison. A) Fold-change of GAPDH against β-actin 

determined by ΔΔCt method with buffer only as reference standard. B) Fluorescence intensity measurements 

of bladder, lungs, liver, kidneys, spleen, and heart (from left to right) 24 hours after intratracheal instillation of 1 

nmol siRNA encapsulated into lead (top three) and ML-2 (bottom two) polymer, or C) 1 nmol of pure siRNA. D) 

Flow cytometric analysis of cell suspension generated from mouse lungs through tissue grinders. E) Cytokine 

expression measured in BALF samples, normalized to the respective maximum value. F) Tissue slices from 

mouse lungs treated with ML-2 (top) encapsulating siGAPDH (left) and siNC (right) and lead polymer (bottom) 

encapsulating siGAPDH (left) and siNC (right). 

 

In order to investigate if the superior properties of ML-2 would translate into an in vivo model 

both polymers were applied to female BALB/c mice intratracheally. Unfortunately, no clear 

gene knockdown for ML-2 was observed as well as just a slight reduction in gene expression 

for the Lead polymer (Figure III.5. A). This could be associated with the GAPDH 

housekeeping gene, which plays a crucial role in cell metabolism. A forced downregulation 

via e.g. siRNA can lead to upregulation of the gene translation as compensation, which is 

reflected by the observation, that PEI did not mediate a gene downregulation either. 

Additionally, the loss of efficacy moving from in vitro to in vivo models is not unprecedented. 

Another reason for this poor in-vitro-in-vivo correlation could be the challenging barriers in 

intratracheal applications such as the presence of respiratory mucus and the 

bronchoalveolar architecture. To investigate this hypothesis, we tested the Lead polymer in 

an air-liquid- interface (ALI) cell culture model of mucus producing CALU-3 cells where a 

similar loss in efficacy was observed (Figure III.S15.). This shows that the bronchial mucus 

forms a major barrier neglected by the machine learning algorithm utilized here. Although 

the mucus hampers the delivery of the nanoparticles to the lung cells, a considerable 

retention within the lungs (Figure III.4 B) was still observed compared to blank siRNA 

(Figure III.4 C), which was rapidly distributed throughout the entire body. A deeper 

investigation of the uptake into lung cells through flow cytometry showed that especially the 

Lead polymer mediates a considerable uptake in most cell types (Figure III.4D and Figure 

III.S16). For a therapeutic effect, uptake into epithelial and type II pneumocytes, the most 

relevant and most prevalent cell types, is commonly aimed for. In both cell types, the Lead 

polymer enabled a superior uptake compared to the ML-2 polymer, but both were increased 

compared to pure siRNA. A negative correlation between polymer hydrophobicity and 

mucus penetration might be the reason for the superior uptake for the Lead compared to 

ML-2 polymer. Since the second optimization task of the algorithm was toxicity, the in vivo 

compatibility was investigated next. To exclude false positive results, polymers were tested 

for endotoxins and confirmed to be endotoxin free (Figure III.S17). BALF Cytokines showed 

partially higher levels after treatment with the Lead polymer than after administration of PEI 
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polyplexes (Figure III.4 E and Figure III.S18). Treatment with the ML-2 polyplexes, on the 

other side, resulted in comparable cytokine levels as measured after administration of free 

siRNA or Buffer alone, indicating high biocompatibility. These findings were complemented 

by the tissue slices prepared from treated lungs, where only for the Lead polymer immune 

cell invasions were observed, whilst ML-2 was comparable to pure siRNA application 

(Figure III.4 F and Figure III.S19). These results show the successful improvement of safety 

and tolerability of the predicted PBAE. One reason could be the more stealth-like properties 

mediated through the higher hydrophobicity. Especially in macrophages and DCs, the 

uptake of ML2 was comparable to pure siRNA indicating an evasion of immune recognition, 

which can also be seen in the low levels of TNF-α, IL-6 and IL-27 (Figure III.4 E and F).  

15 Conclusion  

This study successfully demonstrated the efficiency of machine learning for extracting 

valuable insights from well-structured data, even with limited datasets. Furthermore, the 

successful synthesis of an optimized nanocarrier using predicted conditions validates the 

Nested-Leave-One-Out Cross Validation approach as a valuable tool for developing 

generalizable prediction for the selected feature space. Feature analysis also proved crucial 

for gaining deeper mechanisti However, the model's exclusive reliance on in vitro data 

resulted in predictions that did not fully translate to the complexities of in vivo environments. 

Therefore, future research incorporating in vivo data from the early stages of optimization 

is essential to develop more robust and clinically translatable predictive models, ultimately 

leading to improved therapeutic outcomes. 

16 Data Availability 

All experimental data and the Python code used are available upon request. The data used 

to fit and validate the Machine Learning models are shown in Figure III.S20. 
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19 Supplementary Information 

Table S1: adjusted from Zimmermann et al, doi: 10.1016/j.jconrel.2022.09.021. Sequences of siRNAs used in 

the study. Nt = nucleotides; GFP = green fluorescence protein; NC = negative control; GAPDH = housekeeping 

gene GAPDH; A = Adenine; C = Cytosine; G = Guanine; U = Uracil; T = Thymine; p = phosphate residue; lower 

case bold letters = 2´-deoxyribonucleotides; capital letters = ribonucleotides; underlined capital letters = 2´-O-

methylribonucleotides. 

Name Sense strand (5’-3’) Antisense strand (3’-5’) Length (nt) 

Sense Antisens

e 

siGFP 

 

pACCCUGAAGUUCAUCUG

CACCACcg 

ACUGGGACUUCAAGUAGAC

GUGGUGGC 

25 

 

27 

siNC pCGUUAAUCGCGUAUAAU

ACGCGUat  

 

CAGCAAUUAGCGCAUAUUA

UGCGCAUAp 

25 27 

siGAPDH pGGUCGGAGUCAACGGAU

UUGGUCgt 

UUCCAGCCUCAGUUGCCUA

AACCAGCA 

25 27 

siGAPDH 

(MM) 

pAGCAUCUCCCUCACAAU

UUCCAUcc] 

ACUCGUAGAGGGAGUGUU

AAAGGUAGG 

25 27 

 

Figure III.S1: Gating strategy for flow cytometric analysis of single cell suspensions obtained from mouse lungs. 

  

https://doi.org/10.1016/j.jconrel.2022.09.021
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Figure III.S2: CTB (left) and LDH (right) curve fits for polymer library. X-axes depict logarithmic polymer 

concentration in µg/mL. Each concentration was measured in triplicates. 

 

 

Figure III.S3: Comparison of CTB (blue) and LDH (red) IC50 values for polymer library. 
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Figure III.S4: Correlation between IC50 values determined via LDH and CTB. 
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Figure III.S5: Model and Hyperparameter Settings after evaluation 

 

                   

 

 

GeneExpression ZeroShot: 

XGBRegressor( learning_rate=0.2, max_bin=None, 

 max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=4, 

 max_depth=4, max_leaves=None, min_child_weight=2.0, missing=nan, 

 monotone_constraints=None, n_estimators=100) 

GeneExpression FewShot:  

SVR(C=1, degree=4, epsilon=0.2, kernel='poly', shrinking=False) 

IC50 ZeroShot: 

RandomForestRegressor(ccp_alpha=0.005, criterion='absolute_error', 

min_samples_leaf=4, oob_score=True) 

IC50 FewShot: 

RandomForestRegressor(ccp_alpha=0, criterion='absolute_error', 

min_samples_leaf=4, min_samples_split=8, oob_score=True) 
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Figure III.S6: Feature ablation study for A) Zero-Shot Gene Expression B) Few-Shot Gene Expression C) Zero-

Shot IC50 D) Few-Shot IC50. 

 

Figure III.S7: SHAP results with all features A) Zero-Shot Gene Expression B) Few-Shot Gene Expression C) 

Zero-Shot IC50 D) Few-Shot IC50. 

 

Figure III.S8: Scatter plots of SHAP values and used features after the feature ablation study for the Few-shot 

model for A) the Gene Expression Model and B) the IC50 Model. 
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Figure III.S9: Predicted vs Real Scatter Plots for A) Zero-Shot Gene Expression B) Few-Shot Gene Expression 

C) Zero-Shot IC50 D) Few-Shot IC50. 
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Figure III.S10: 1H-NMR of the ML-optimized polymer ML-2. 
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Figure III.S11: GPC measurement of the ML-optimized polymer ML-2.  

 

 

Figure III.S12: Single Point Prediction of optimized polymer for the Gene Expression Models with A) Zero-Shot 

after feature ablation B) Zero-Shot before feature ablation C) Few-Shot after feature-ablation D) Few-shot before 

feature ablation. 
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Figure III.S13: Single Point Prediction of optimized polymer for the IC50 Models with A) Zero-Shot after feature 

ablation B) Zero-Shot before feature ablation C) Few-Shot after feature-ablation D) Few-shot before feature 

ablation. 
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Figure III.S14: Gene Knockdown calculated from the median fluorescence intensity comparing H1200 eGFP 

cells treated with pure siGFP (for LF) or nanoparticles encapsulating siNC against siGFP with N=3 (*** depicting 

a p ≤ 0.001). 

 

Figure III.S15: GAPDH gene expression determined via qPCR in air-liquid-interface-cultured CALU-3 cells27 

after treatment with Lipofectamine or Lead polymer encapsulating siNC or siGAPDH. No sequence-dependent 

significant difference was found (n=3). 
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Figure III.S16: MFI of all alive cells measured from mouse lung single cell suspensions. 

 

Endotoxin test using a LAL-reaction (S) 

To ensure an endotoxin free synthesis product polymers were investigated using the 

Endosafe® Endochrome-K™ Kinetic Chromogenic (KCA) LAL Endotoxin Detection 

Reagent (Charles River, Sulzfeld, Germany). Briefly, A calibration curve was prepared from 

the kits reference sample in duplicates in a range from 0.05 to 5 IU/mL. Polymer samples 

of the lead candidate and ML-2 were prepared in two concentrations of 0.1 and 0.01 mg/mL 

in duplicates. One sample of each polymer concentration was spiked with endotoxin 

references to a final concentration of 0.5 I.U./mL, while the other sample was used without 

any further modification. To 100 mL of the respective samples, 100 µL of freshly 

resuspended LAL-reagent was added. After 5 minutes of incubation at 37°C, sample 

absorbance was measured with a plate reader at 374 nm (TECAN Spark, TECAN, 

Männedorf, Switzerland. At 37°C all samples were measured every 15 seconds at the same 

seconds for 30 minutes. No increase above an absorbance value of 1 after 30 minutes was 

interpretated as an Endotoxin Concentration below the LoD for the kit and stated as 

“Endotoxin-free”. 
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Figure III.S17: LAL Endotoxin Detection results showing the calibration measurement of pure endotoxin 

standards (left, top), samples spiked with 0.5 IU/mL endotoxin standard (left, bottom) and samples without any 

modification (right). 

 

Figure III.S18: Cytokine quantification from BALF samples using the ELISA Inflammation Panel, reported as 

pg/mL. 
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Figure III.S19: H&E staining of tissue slice obtained from a mouse lung treated with buffer 
containing only siRNA.III.S 
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Chapter IV - Machine Learning-Enabled Polymer 

Discovery for Enhanced Pulmonary siRNA Delivery 

 

1 Graphical Abstract 

 

2 Abstract 

Nucleic acid therapeutics are poised to revolutionize the clinical treatment of diseases once 

considered undruggable. Although these therapeutic approaches hold significant promise, 

delivering the nucleic acid cargo remains challenging due to susceptibility to nuclease 

degradation. Among all carrier systems, polymers stand out for their high tunability and cost-

effectiveness. However, their flexible structure greatly expands the chemical space, making 

experimental exploration both costly and time-consuming. Leveraging published data and 

machine learning methods provides a valuable strategy to address these issues. The 

present study demonstrates a way to merge data from multiple sources and use this 

information to identify a new polyester that effectively delivers siRNA into lung cells. The 

newly discovered polymer was further examined in ex vivo experiments and tested in a 
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mouse model. The results indicate that a polymer capable of silencing specific genes in vivo 

can be discovered through machine learning, circumventing an extensive trial-and-error 

process in the search for novel materials. 

 

Keywords: Machine learning; polymer discovery; siRNA delivery; pulmonary delivery; 

polymeric nanoparticle; polyester; Poly(beta)aminoester 

 

3 Introduction 

Therapeutic nucleic acids (NAs) are one of the most promising innovations in clinical 

research. A huge number of diseases that were previously considered undruggable, such 

as hypercholesterolemia138 or  Huntington’s disease139 can now be treated effectively 

through this groundbreaking approach to therapy. Since the discovery of NAs by Friedrich 

Miescher140 in 1868, extensive research has been conducted aiming to translate this 

technology into actual medicines. It was in 1998, when the first NA-based drug, vitravene®, 

received approval by the FDA for the treatment of cytomegalovirus (CMV) retinitis. However, 

as of 2024, only 20 further applications have been approved141. One reason for the slow 

progress may be that NAs, and particularly ribonucleic acid (RNA) is unstable in the 

bloodstream and rapidly degraded by ubiquitous RNases. To circumvent this limitation, it 

became common practice to encapsulate RNA into carrier systems that protect the cargo 

from enzymatic degradation and help to guide the NAs to the desired tissue. In this context, 

lipid nanoparticles (LNPs) have become increasingly popular. As of today, three LNP-based 

RNA therapeutics have received FDA market approval, namely the SARS-CoV-2 vaccines 

Comirnaty, and Spikevax as well as Onpattro, a therapy for hereditary transthyretin-

mediated (hATTR) amyloidosis. However, LNPs  have been associated with certain 

concerns, including their potential to trigger inflammation142, immunogenicity143 and 

challenges with long-term storage77. Therefore, polymeric carrier systems have been 

proposed as an alternative to circumvent the limitations of lipid-based carriers118. Polymer 

materials are generally very flexible and can be modified with optimized chemical structures. 

This enables simplified adaptation as, in contrast to LNPs, only a single component needs 

to be adapted. To condense polyanionic RNA via electrostatic interactions, polymers need 

to contain protonable groups. In many cases, amines are introduced in the polymer structure 
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to fulfil this role144. However, nanoparticles formulated with polycationic materials may cause 

safety issues if they are unable to be properly excreted, resulting in their accumulation within 

the body. Polycations remaining in the body can interact non-specifically with intracellular 

proteins and peptides, which may affect their functionality, and lead to cytotoxicity. This 

limitation can be addressed by introducing biodegradability into the polymer, which is very 

common in polyester structures. In addition to biodegradability, the inclusion of specific 

structural motifs, such as hydrophobic segments, is essential in enhancing the functional 

properties of the polymer. These hydrophobic motifs145 are usually included in forms of 

amphiphilic block copolymers80,96 to shield excessive electrostatic interactions. Additionally, 

these additions supplement the base polymer with hydrophobic properties for interactions 

with RNA and biological membranes, which support better performance in cellular uptake, 

endosomal escape and many more.  

 

Unfortunately, understanding the exact structure activity relationship between block 

copolymers and successful delivery of cargo is highly complex and far from trivial. This 

complexity is amplified by the thousands of potential variations in polymer architecture, 

composition, and environmental interactions, as well as the fact that synthesizing these 

polymers is both time-intensive and requires significant material resources, adding to the 

challenge of systematic exploration. Yet, it is exactly this understanding that is necessary 

to design new high performing and safe carrier systems. In recent years, the development 

and application of artificial intelligence algorithms have significantly increased. These 

algorithms might help to uncover the underlying patterns differentiating successful from 

unsuccessful block copolymers and facilitate the virtual screening of potential candidates 

before synthesis. Machine learning (ML) models that could be used to make this possible, 

are highly data driven and therefore dependent on available experimental data. While ML 

is already broadly used for polymeric property predictions such as Tg146 or dielectric 

constant147, not much work is published on using ML models for the design of new 

amphiphilic polymeric nanocarriers. Pioneering work in this field was conducted by the 

groups of Green128 and Reineke127. Both used high-throughput synthesis and screening 

methods to collect data and make predictions for unseen combinations. The need for the 

availability of high throughput screening opportunities is however limiting the wider use of 

these approaches. Furthermore, the authors relied solely on machine learning applied to a 
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single type of polymer, which inherently limits the exploration of the broader chemical space 

and restricts the potential to uncover diverse structure-activity relationships.  

 

Here, we show how the discovery of new polymeric nanocarriers can be guided with a 

prediction model trained on literature data for different kinds of polyesters. In this work, we 

emphasize pulmonary siRNA delivery to the lungs as a demonstration of our approach, 

while noting that it could equally be applied to other therapeutic cargo and targets, following 

a similar strategy. We collected >600 different polyester structures used for siRNA delivery 

from previous publications and trained multiple ML models with the corresponding gene 

silencing data. To obtain insights into polymeric siRNA delivery, we investigated key factors 

that drive successful delivery of cargo. Our lead model was then used to synthesize a novel 

amphiphilic polymer, which was subsequently tested for its performance of delivering 

siRNA. Starting with in vitro testing we progressively increased biological complexity by 

evaluating the polymer in an air-liquid-interface model followed by ex vivo human Precision-

Cut-Lung-Slices (hPCLS). These models reflect critical challenges in pulmonary RNA 

delivery, including RNase activity, the mucus barrier and tight junctions in respiratory 

epithelium. Finally, we evaluated the polymer’s safety for pulmonary administration and its 

ability to facilitate gene knockdown in an in vivo murine model. 

 

Our approach offers an easy-to-use method for designing new nanocarriers by utilizing 

historical data. Additionally, we demonstrate how data from a broader chemical space can 

be used to identify polymeric properties essential for successful delivery. To the best of our 

knowledge, we are the first to synthesize an amphiphilic polymer for siRNA delivery using 

ML, thereby contributing to a deeper understanding of RNA delivery via polymeric 

nanocarriers. 

4 Results and Discussion 

4.1 Generalizable Machine Learning Framework 

A primary goal of this study is to empower researchers lacking HTS capabilities to employ 

ML on existing literature data. Our methodology achieves this by systematically integrating 

information from diverse sources into a unified dataset. However, compiling data from 

literature presents an inherent challenge: balancing the scope of chemical diversity. On the 



116 
 

one hand, sufficient diversity is desirable for training models that yield generalizable insights 

into structure-property relationships. On the other hand, literature datasets are often sparse 

compared to HTS data. Including systems with widely divergent chemical structures or 

fundamentally different delivery mechanisms introduces significant noise. With limited data 

points, this can easily overwhelm the underlying patterns related to a specific delivery 

strategy, preventing the ML model from effectively learning the relevant mechanisms. 

Therefore, our approach necessitates carefully constraining the literature search to a 

'comparable chemical space'—focusing on systems sharing core structural similarities and 

presumed mechanisms. This focused scope enhances the signal-to-noise ratio, enabling 

the model to identify meaningful correlations even from limited data. We illustrate this 

methodology using a curated dataset of amphiphilic polyester structures, representing a 

class with comparable underlying chemistry. 

Converting molecular structures into a format readable for a ML algorithm is a prerequisite 

for ML applications in the chemical space, and several methodologies have been 

proposed.65,148,149. Commonly employed fingerprints or SMILES rely on purely structural 

information, limiting their use for a generalization as required here. This limitation can be 

overcome using representation as molecular graphs or molecular descriptors150. 

Unfortunately however, using descriptors alone also does not necessarily lead to a good 

generalization since high dimensional representations are prone to overfitting151. Thus, we 

used a Tree-Based feature reduction to eliminate descriptors that did not contribute to the 

overall prediction of the model. To ensure valid representations of polymeric data, each of 

the polymer building blocks (hydrophilic, hydrophobic, endcapping), was separately 

encoded, and the ratio information was embedded by multiplying each descriptor with this 

ratio factor. The molecular weight and the cell type used in the original dataset were added 

to the sample. The latter was achieved using one-hot encoding, a method that converts 

categorical features into binary vectors, enabling their representation in machine learning 

models. To minimize the noise that is introduced by the experimental data and especially 

by merging datasets of different origin, we decided to use a binary binning approach to turn 

the regression problem, using the reported gene silencing percentages, into a classification 

problem. We selected a gene knockdown efficiency of 50% as threshold to separate the 

formulations into two different classes, reflecting our primary goal of assessing whether 

synthesizing a polymer is worthwhile rather than focusing on exact gene silencing values. 
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Utilizing binary classification generally enhances interpretability, simplifies the analysis and 

effectively addresses data imbalance. 

 

Using the prepared dataset, we first compared different ML algorithms (Figure IV.S1A). To 

address the imbalance in the dataset, balanced accuracy/mean recall was used to handle 

potential model biases towards the major class and a RandomOverSampler was used to 

guarantee balanced training. The data was split into a train/test set at a ratio of 80:20 and 

100 models were trained using each algorithm. The LGBMClassifier50 showed the best 

performance (0.8217 balanced accuracy) and was therefore selected for further 

optimization. We then compared different resampling strategies (Figure IV.S2), with 

SMOTEEN152 showing the best balanced accuracy (0.8309). After tuning using hyperopt 

(Figure IV.S3), additional feature reduction was performed, where eleven features lead to 

the best model performance (Figure IV.1A). This process was visualized using UMAP, 

revealing how feature reduction minimized gaps in the chemical properties space (Figure 

IV.1B). This approach was aimed to reduce the risk of overfitting while limiting the 

physicochemical information required to encode molecular structures. This ultimately 

facilitated the integration of different datasets and the generalization of unseen structures. 

The eleven most important features, using SHAP are shown in Figure IV.S4. The tuned 

LGBMClassifier was finally evaluated using 100 stratified train-test splits of 80/20 and 

showed a mean balanced accuracy of 0.8462 on the validation sets (Figures IV.1C and 

IV.1D). Afterwards, the model was trained on the entire dataset and used for the prediction 

task. The full workflow is also visualized in Figure IV.S5.  
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Figure IV.1: Insights into the ML Process A) Overview of the iterative feature reduction using LightGMBC feature 

reduction. B) Comparison of feature space visualization with UMAP using featurization with MorganFingerprints 

(left), all RDkitDescriptors and self-defined features (middle), reduced feature set of the eleven most important 

features (right). C) Confusion matrix of the fully optimized LightGBMC. Evaluated on the training set of 100 train-

test splits and averaged accordingly. D) Evaluation of Model stability over 100 train-test splits ranging from 0.65 

to 0.95 balanced accuracy. 

 

 

4.2 Experimental Validation  

To experimentally validate the trained classifier, novel polymers were rationally designed 

from available precursors via established synthetic routes. Given our group's significant 

expertise in synthesizing and characterizing poly(beta-amino ester)s (PBAEs), this class of 

polymers was selected as the focus for the validation set. To the best of our knowledge, all 

selected polymers are unpublished structures. The classifier predicted their potential 

knockdown efficiency. Based on these predictions, three polymers expected to exhibit low 

efficiency and three expected to exhibit high efficiency were selected for chemical synthesis 

and subsequent in vitro evaluation. Their schematic structures were shown in Figure IV.S6, 

with specific chemical structures provided in Figures IV.S7-S12. siRNA was formulated with 

these polymers at an N/P ratio of 10, and polyplexes were characterized regarding size, 

polydispersity and zeta potential, as presented in Figure IV.S13. Gene silencing efficiency 
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was assessed in both enhanced green fluorescent protein (eGFP)-stably expressing H1299 

cells (using siRNA targeting eGFP) and A549 cells (using siRNA targeting epidermal growth 

factor receptor (EGFR)). Consistent with the predictions, all three polymers anticipated to 

have low efficiency demonstrated negligible knockdown efficiencies (Figure IV.S14). 

However, the polymer OA-BG, comprising full oleylamine (OA) modification with bisphenol 

A glycerolate (BG) as its backbone, predicted as a high-efficiency candidate, failed to 

achieve the 50% knockdown threshold, reaching only 31.88% eGFP knockdown in H1299-

eGFP cells and 24.62% eGFR knockdown in A549 cells. These results represented 

approximately 30% of the knockdown efficiency achieved by Lipofectamine 2000 and thus 

OA-BG was considered a false positive. In contrast, the other two polymers predicted to be 

high-performing, SP/TDA-BG (spermine/tetradecylamine with the BG backbone) and 

SP/OA-BG (spermine/oleylamine with the BG backbone), successfully demonstrated the 

predicted high knockdown efficiencies (91.82% and 96.17% eGFP knockdown, 

respectively). Overall, five out of six polymers were correctly classified, resulting in an 

experimental validation accuracy of 0.8333, which closely aligns with the classifier's 

estimated performance metric of 0.8462 (Section 2.1). 

 

4.3 Characterization of Polymer and siRNA-loaded Polyplexes 

Following the experimental validation in Section 2.2, among the polymers tested, SP/TDA-

BG demonstrated high transfection efficiency, in agreement with the classifier's prediction. 

Given its promising performance, we selected SP/TDA-BG as a model polymer for further 

systematic investigation into the relationship between its structural characteristics and 

biological activity. Although the machine learning model specifically suggested a 50:50 

SP:TDA ratio as optimal, inspired by the transfection cliffs theory153, we sought to investigate 

how minor deviations from this composition might impact transfection performance, as such 

effects are not necessarily captured by the machine learning model154. Hence, we 

synthesized the corresponding PBAE polymers following the synthetic procedure shown in 

Figure IV.2A, adjusting the molar ratios of cationic monomer spermine and lipophilic 

monomer tetradecylamine from 40% to 60%, which were further confirmed by ¹H NMR 

analysis (Figure IV.S15). In addition, referring to our previous work on efficient siRNA 

delivery via amphiphilic PBAEs incorporating SP and OA with 1,4-butanediol diacrylate as 

the backbone99,155, we also selected PBAE SP0.3/OA0.7 as a benchmark for comparative 

evaluation in our study.  
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The polymers were then complexed with siRNA at different N/P ratios. It is worth noting that, 

in the used dataset, N/P ratios were always set to at least 15 to ensure complete siRNA 

encapsulation and corresponding effectiveness. However, in our experimental work, we 

aimed to minimize polymer use, to particularly improve in vivo tolerability, based on our 

previous studies confirming efficient gene silencing and encapsulation at lower N/P 

ratios100,155. Therefore, we initiated screening from an N/P ratio of 3, increasing up to 10. 

Specifically, we assessed the physicochemical properties of the formed polyplexes, 

including size, size distribution and zeta potential. Most polyplexes formed with diameters 

ranging from 50 to 300 nm and acceptable PDI values around 0.2 (Figure IV.2B). Examining 

the zeta potential, a significant change was observed between N/P ratios of 3 and 5, 

particularly in case of polyplexes prepared with PBAEs SP0.5/TDA0.5 and SP0.4/TDA0.6, 

which displayed noticeable charge reversal (Figure IV.2C). Incomplete or unstable 

encapsulation of siRNA at N/P 3 (Figure IV.S17) could explain this observation. This near-

neutral flipping zeta potential also revealed colloidal instability as evidenced by the 

extremely large size exceeding 2000 nm in case of polyplexes prepared with PBAE 

SP0.3/OA0.7 at N/P 5. When the ratio was increased to N/P 7 and N/P 10, the siRNA was 

completely encapsulated and the polyplexes were more stable in size.   

Although stable formation of polyplexes is important for siRNA delivery, appropriate siRNA 

release is equally critical for successful gene silencing as the final action site will be in the 

cytoplasm, where the released siRNA cargo from polyplexes should bind with the RNA-

induced silencing complex (RISC) to fulfill its function. Therefore, we investigated siRNA 

release from polyplexes in the presence of Triton X and heparin, which will competitively 

interfere hydrophobic and electrostatic interactions, respectively. After a non-linear fitting of 

released siRNA to the added interferents, EC50 values revealed that the release of equal 

amounts of siRNA from the polyplexes required higher concentrations of Triton X and 

heparin (6.2% vs. 5.2%) when the spermine ratio in the polymers increased from 40% to 

60% (Figure IV.2D). The EC50 value for SP0.3/OA0.7 polyplexes was even higher (12.1%), 

demonstrating the tightest binding between siRNA and the polymer in our study. The binding 

strength effectively protected siRNA from degradation by RNase, as all formulations 

retained more than 90% siRNA content after incubation with the enzyme. In contrast, free 

siRNA lost 99% of its integrity when treated with the same amount of RNase (Figure IV.2E).  
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Figure IV.2: Characterization of synthetic polymers and siRNA-loaded polyplexes. (A) Synthesis procedure and 

the structure of SP/TDA-BG PBAE polymers. (B) Hydrodynamic diameter (represented by bar graph), 

polydispersity (represented by symbol), and (C) zeta potential of siRNA-loaded polyplexes prepared at different 

N/P ratios. (D) siRNA release from polyplexes at N/P ratio of 10 in the presence of Triton X and heparin using 

SYBR Gold assay, and EC50 values obtained by non-linear fitting analysis of released siRNA to added 

interfering substances. (E) RNase protection assay of polyplexes prepared at an N/P ratio of 10. Polyplexes 

were firstly treated with RNase at 37°C for 30 min, followed by RNase deactivation by heating to 70°C for 30 

min. After incubation with Triton X and heparin, released siRNA was quantified using SYBR Gold assay. Results 

are presented as mean  SD, n=3. 
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4.4 In Vitro Performances: Cytotoxicity, Cell uptake and Knockdown Effects 

We initially evaluated the safety profile of our polyplexes by assessing the viability of H1299 

cells exposed to increasing polymer concentrations. The cell counting kit (CCK-8) assay 

showed a dose-dependent trend in cell viability. Notably, even at the highest N/P ratio of 

20, cell viability remained above 80%. When the N/P ratio was reduced to 10, the viability 

of H1299 cells consistently reached 90-95% in all groups (Figure IV.3A). Therefore, all 

following experiments were conducted at an N/P ratio of 10 or lower. Next, we performed a 

wider uptake screening of polyplexes formulated from N/P 3 to N/P 10 in H1299 cells. With 

increasing N/P ratio, the uptake of all polyplex formulations was improved (Figure IV.3B). 

Quenching the fluorescent signal on the cell surface with trypan blue, only resulted in a 

negligible decrease in the detected mean fluorescence intensity (MFI), indicating 

internalization of the polyplexes rather than non-specific adsorption on the surface. 

Furthermore, the knockdown effects of enhanced green fluorescent protein (eGFP) in 

H1299 cells stably expressing eGFP were consistently exceeding 94% in all polyplexes 

formulated at N/P ratios > 3 (Figure IV.3C).  

The uptake of polyplexes at N/P 10 in A549 cells mirrored the trends observed in H1299 

cells, with reduced uptake observed when either SP or TDA proportions exceeded 60% 

(Figure IV.3D). This aligns with the mechanism of adsorptive endocytosis which is generally 

associated with polyplex uptake156. For highly hydrophilic cationic polymers such as 

poly(ethyleneimine) (PEI) and poly(L-lysine) (PLL), uptake primarily relies on electrostatic 

interaction with cell membrane157,158. Hydrophobic modifications, however, have been shown 

to enhance uptake through interactions with lipids and membrane proteins159,160. Similarly, 

Rui et al. reported that increasing PBAE hydrophobicity initially boosted uptake before 

declining, regardless of whether delivering siRNA, mRNA or DNA80. In our study, PBAE 

SP0.5/TDA0.5 polyplexes achieved the highest uptake, with an MFI > 80,000. This indicates 

that a balance of electrostatic and hydrophobic interactions is crucial for optimal delivery. 

 

Importantly, improved cellular uptake does not always correlate with stronger transfection. 

Although siRNA-loaded PBAE SP0.3/OA0.7 polyplexes showed superior internalization in 

A549 cells, transfection efficiency was lower than expected and inferior to the performance 

observed in H1299/eGFP cells (Figure IV.3E). This discrepancy may be attributed to the 

differences in siRNA lengths used for targeting eGFP (52 nucleotides) and EGFR (42 
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nucleotides) or differences in cell-type specific intracellular processing. Meanwhile, the 

slower release of siRNA that we observed in SP0.3/OA0.7 polyplexes may be another 

reason (Figure IV.2D). Notably, despite lower uptake of PBAE SP0.4/TDA0.6 polyplexes, 

their knockdown efficiency (53.4%), was comparable to SP0.5/TDA0.5 (51.2%). This 

observation might be explained by the efficient endosomal escape, which we investigated 

utilizing the Galectin-8 (Gal8) assay161. In brief, Gal8 binds glycans exposed upon 

endosomal membrane disruption, enabling quantification of endosomal escape using Gal8-

mRuby-expressing cells31,80. The average number of Gal8-mRuby3 punctate fluorescent 

spots increased from 5.43 to 16.25 per cell as the lipophilic TDA content was increased 

from 40% to 60% (Figure IV.3F). This finding underscored that lipophilic components 

enhanced hydrophobic interactions with membranes, leading to structural instability of the 

membrane and disruption162. As a result of this disruption, polyplexes were able to escape 

the endosome, releasing siRNA into the cytoplasm to bind RISC, cleave target mRNA, and 

achieve effective knockdown of protein translation. 
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Figure IV.3: In Vitro performances of siRNA-loaded polyplexes. (A) Viability of H1299 cells after treatment with 

polyplexes formulated at different N/P ratios. (B) Cellular uptake of polyplexes containing Alexa Fluor 647-

labeled siRNA in H1299 cells, presented as mean fluorescence intensity. (C) EGFP knockdown efficiency of 

polyplexes in H1299/eGFP cells. (D) Cellular uptake of polyplexes containing Alexa Fluor 647-labeled siRNA in 

A549 cells. (Data are presented as mean ± SD, n = 3; ✽✽✽p < 0.001, ✽✽✽✽p < 0.0001, one-way ANOVA) (E) 

EGFR knockdown efficiency of polyplexes in A549 cells. (F) Fluorescent spots of Gal8-mRuby3 in genetically 

modified Hela cells after 4 h of treatment with different polyplexes. Green color represents Gal8-mRuby3, nuclei 

are shown in blue. Scale bar, 25 μm. Quantification of Gal8-mRuby3 dots was performed by the Fuji plug-in of 

Image J, and data are presented as mean ± SD.  

 

4.5 Mucus Penetration on ALI model and Gene Silencing in hPCLS 

 

For pulmonary delivery, the mucus layer on the surface of the respiratory tract poses a 

significant barrier to effective siRNA delivery163,164. If an RNA-carrier interacts excessively 

with mucus, it will not be able to penetrate this barrier during the time of mucus turnover, 

leading to its clearance from the lung before cellular internalization. Additionally, tight 

junctions between respiratory epithelial cells further act as another barrier to paracellular 
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transport of siRNA165,166. To evaluate the ability of our PBAEs-siRNA formulations to 

overcome these lung-specific barriers, we used an air-liquid interface (ALI) culture of Calu-

3 cells. Under ALI conditions, Calu-3 cells differentiate into a pseudostratified epithelium, 

produce mucus and cilia-like microvilli, and thus closely mimic the in vivo respiratory tract 

environment167,168. As shown in Figure IV.4A, we obtained images by laser confocal laser 

scanning microscopy (CLSM), labelling mucus (green), cell nuclei (blue) and siRNA (red). 

Importantly, the mucus was largely distributed above the nuclei in all samples, confirming 

the successful establishment of a cell monolayer with mucus on the air-exposed side. When 

treated with free siRNA, signals from the siRNA were barely detectable. In the 

Lipofectamine 2000 control group, a very weak red signal was observed across the mucus 

layer toward the cell layer. For the ALI cells treated with PBAE SP0.3/OA0.7 polyplexes, 

the red signal was significantly increased but mainly distributed within the mucus layer. In 

contrast, strong red signals were observed in the samples treated with PBAE SP/TDA 

polyplexes, with a wide distribution extending from the mucus layer to the cellular nuclei. 

However, a slight decrease in the red signal was observed across the cell monolayer as the 

lipophilic TDA ratio increased in the PBAE polymers. As previously reported, the long mucin 

proteoglycans chains present in mucus entangle, usually forming hydrophobic domains and 

hydrophilic channels in the network. This periodic hydrophobic domains have been shown 

to interact with hydrophobic particles or particles exhibiting hydrophobic moieties163,169. For 

polyplexes with comparable electrical properties, this hydrophobic affinity may cause 

polyplexes with higher ratio of lipophilic monomers, either OA or TDA, to be restricted in 

diffusion. Overall, CLSM images showed that amphiphilic PBAEs consisting of SP/TDA 

were able to penetrate mucus and mediate sufficient uptake in epithelial cells. 

 

Further increasing the biological complexity, we evaluated the gene silencing effects of our 

polyplexes in human Precision-Cut-Lung-Slices (hPCLS) (Figure IV.4B). hPCLS are widely 

recognized as a powerful tool for investigating drug responses in an environment that 

accurately reflects the complexity of the human lower respiratory tract. hPCLS maintain the 

native lung architecture, which includes the respiratory parenchyma and small airways, as 

well as a variety of lung-resident cells, including type I and II alveolar cells, bronchial 

epithelial cells, endothelial cells, and immune cells170. After 48 h of siGAPDH transfection in 

hPCLS, the gene silencing effects were evaluated by measuring the downregulation of the 

housekeeping gene GAPDH as previously described171. In this proof-of-concept study, 



126 
 

GAPDH was chosen as a target gene only to evaluate the delivery efficiency, and it will be 

replaced with an aberrant gene for treating specific diseases in future applications. In 

addition, the hPCLS used in our study were derived from non-lesional regions and were in 

principle free of abnormal genes. As a result, qPCR analysis of the extracted RNA from the 

slices showed that the average GAPDH/β-Actin ratio was approximately 1.0 in the free 

siGAPDH-treated group, while in the Lipofectamine 2000-treated group, this ratio dropped 

significantly to 0.71 (Figure IV.4C). SP0.6/TDA0.4 and SP0.4/TDA0.6 polyplexes enabled 

a slight decrease of GAPDH gene expression in the hPCLS, with reductions of 16.3% and 

20.1%, respectively. Overall, SP0.5/TDA0.5 polyplexes demonstrated the highest gene 

silencing efficiency, achieving a 43.7% reduction of the GAPDH level, confirming the need 

for balancing cationic and hydrophobic content in the PBAE nanocarriers for efficient 

pulmonary delivery.  
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Figure IV.4: Mucus penetration assay and ex vivo knockdown of house-keeping gene GAPDH. (A) Mucus 

penetration of polyplexes in air-liquid interface (ALI) culture of Calu-3 cells 24 h after transfection. Red color 

represents Alexa Fluor 647 labeled siRNA, nuclei are shown in blue and mucus layer in green. Scale bar, 100 

μm. (B) Schematic diagram of preparation of human precision cut lung slices (hPCLS). (C) GAPDH gene 

knockdown efficiency in hPCLS transfected with different formulations. The experiments were performed in 

technical triplicates and data are presented as mean ± SD, n = 2; ✽p < 0.05, ✽✽✽p < 0.001, one-way ANOVA. 

 

4.6 In Vivo performance: Biodistribution, Biocompatibility and Knockdown Effects 

after Pulmonary Delivery 

 

Based on in vitro and ex vivo results, we selected PBAE SP0.5/TDA0.5 to move further to 

in vivo studies. Alexa Fluor 647-labeled siRNA was loaded into polyplexes and delivered 

via intratracheal instillation (Figure IV.5A). Compared to free siRNA, polyplexes 

demonstrated significantly higher retention and internalization in the lung (Figures IV.5B 
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and IV.S19), with an 82.3-fold increase in fluorescence intensity (Figure IV.5C). As 

observed previously172, when administered as polyplexes, some siRNA entered systemic 

circulation via pulmonary capillaries, accumulating in the liver before metabolism as 

evidenced by the signal detected in the liver and kidneys, respectively. Due to the complex 

architectural structure in the lung, polyplexes may face challenges in reaching the 

respiratory zone, which cannot be accurately evaluated by IVIS imaging. CLSM images 

revealed that polyplexes containing pHrodo red-labeled siRNA, represented in red color, 

have successfully reached not only the lower respiratory tract but also the respiratory zone 

(Figure IV.5D). Furthermore, polyplex uptake was observed in various cell types within the 

lung, and the corresponding flow cytometric gating strategy is shown in Figure IV.S20. The 

higher MFI in polyplex-treated alive lung cells (average 2136) was consistent with IVIS 

imaging results (Figure IV.5E). High MFI detected in dendritic cells (average 4941), 

macrophages (average 7773), and eosinophils (average 1348) highlighted strong 

phagocytosis potential in the lung, which generally poses a challenge for pulmonary siRNA 

delivery. Interestingly, the uptake of polyplexes in both CD4+ and CD8+ T cells remained 

low, being beneficial for avoiding adverse immune activation and in line with the need for 

targeting ligands for efficient T cell transfection173. Importantly, lung epithelial cells, 

particularly type II pneumocytes, are often related to the progression of respiratory diseases, 

such as chronic obstructive pulmonary disease (COPD), lung cancer, lung fibrosis, and 

pneumonia174–176. The uptake of polyplexes in epithelial cells, particularly in type II 

pneumocytes was 9.46-fold and 7.61-fold higher, respectively, when compared to free 

siRNA. These results suggest the potential of siRNA therapy based on our carrier system 

for treating respiratory diseases in the future and underline the need for nanocarriers in 

pulmonary delivery.  

 



129 
 

 

Figure IV.5: In vivo biodistribution in the organs and cellular uptake in the lung. (A) Schematic diagram of in 

vivo distribution investigation after intratracheal instillation of polyplexes containing Alexa Fluor 647-labeled 

siRNA. (B) Representative organ distributions in mice that received free siRNA or siRNA-loaded polyplexes, 

respectively. (C) Quantification of fluorescence intensity of Alexa Fluor 647 labeled siRNA distributed in the 

organs. (D) Distribution of polyplexes containing pHrodo red-labeled siRNA in different lung regions. White 

arrows indicate polyplexes. Scale bar, 200 μm. (E) Mean fluorescence intensity of AF647-labeled siRNA in 

different cell types in the lung. Data are presented as mean ± SD, n=3.  

 

 

Next, we evaluated the siRNA knockdown efficiency in the lung and performed safety 

assessment. PEI25k, as well-established control, presents reliable transfection efficiency in 

gene delivery and has been widely used in previous studies focusing on polymer-based 

carriers177,178. Due to its known cytotoxicity, PEI25k is also used as a positive control in safety 

evaluations and was therefore included in our in vivo test. RNA extracted from the lungs 

treated with different formulations was analyzed via qPCR. In the control group that received 

buffer only, the average GAPDH/β-Actin ratio was 1.03 (Figure. IV.6A). In mice treated with 
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free siGAPDH, the ratio increased to 1.44, with a broader standard deviation of 0.39, 

demonstrating that free siRNA did not achieve GAPDH gene silencing. In contrast, 

siGAPDH-loaded PBAE polyplexes showed a significant 30.4% reduction of the GAPDH/β-

Actin ratio when compared to negative control siRNA-loaded PBAE polyplexes. In the mice 

treated with PEI-siGAPDH, the GAPDH/β-Actin ratio oppositely increased to a broad range 

from 1.21 to 2.69, likely due to severe lung inflammation as hematoxylin and eosin (H&E) 

staining revealed noticeable inflammatory cell infiltration, alveolar wall thickening, and 

disruption of the alveolar architecture in these mice (Figure. IV.6B). Conversely, lung tissue 

structures in PBAE polyplex-treated mice were well-preserved, with clear alveolar spaces 

and negligible alveolar wall thickening as observed in buffer- and free siRNA-treated groups, 

which suggested minimal lung tissue damage or inflammation in these mice. Consistent 

with the H&E staining results, levels of inflammatory cytokines, i.e., IL-6, MCP-1, IFN-β, 

TNF-α in BALF were significantly higher in PEI-siGAPDH and PEI-siNC treated mice when 

compared to other groups (Figure. IV.6C). In particular, IL-6 was detected at the highest 

concentration among all cytokine types, in the PEI-siGAPDH group, with an average value 

of 322 pg/mL, which was 9.4-fold and 64.4-fold higher than PBAE-siGAPDH and free 

siGAPDH groups, respectively. However, PBAE polyplexes treatment did not abnormally 

elevate cytokine levels, which remained comparable to blank and free siRNA-treated mice 

on most indicators.  
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Figure IV.6: In vivo GAPDH gene silencing and safety evaluations. (A) GAPDH gene silencing effects of 

polyplexes in the lung, data are presented as mean ± SD, n=6 for Blank and siGAPDH groups, n=4 for PBAE 

siGAPDH and PEI siGAPDH groups, ✽✽p < 0.01, Student’s t-test. (B) H&E-stained lung sections collected from 

mice treated with different formulations. Scale bar, 100 μm. (C) Inflammatory cytokine levels in the 

bronchoalveolar lavage fluid (BALF) collected from mice treated with different formulations. The experiments 

were performed in technical duplicates and data are presented as mean ± SD, n=6 for Blank and siGAPDH 

groups, n=4 for PBAE siGAPDH and PEI siGAPDH groups, ✽p < 0.05, one-way ANOVA. 

 

 



132 
 

5 Study Limitations and Data Scarcity 

The study presented here demonstrates an elegant, literature-driven strategy for screening 

polymeric gene-delivery candidates and yields promising results on a newly synthesised 

validation set. Nevertheless, several limitations must be acknowledged so that readers can 

appreciate the scope of our conclusions. 

First, although focusing on polyesters is a sensible starting point, essential details like 

copolymerisation patterns, block lengths, architecture, dispersity, and molecular weight 

variation are rarely reported, and even when they are, they are seldom provided in a 

standardized and machine-readable format. As a result, descriptors based on idealised 

repeat units capture only a fraction of the true physicochemical diversity. Ongoing 

standardisation efforts that mandate sharing raw chromatograms and NMR spectra may 

eventually allow direct ingestion of this information into machine-learning pipelines, but such 

data are not yet widely available.  

Second, data sparsity is a major hurdle. Whereas proteins and small molecules benefit from 

extensive databases, experimentally characterised polymeric gene-delivery systems are 

scarce. We therefore limited the chemical space to structurally similar polyesters and used 

a UMAP projection solely as a qualitative coverage check. Predictions outside this region 

must be treated with caution, because extrapolating far from the training manifold typically 

yields unreliable results. A rigorous, quantitative safeguard was not implemented here for 

three practical reasons: (1) no curated set of truly out-of-domain polymers yet exists for 

calibration; (2) distance estimates are highly sensitive to the chosen descriptor space; and 

(3) alternative distance metrics and thresholding schemes can give conflicting signals when 

data are sparse. As larger, standardised data sets emerge, these challenges should 

become tractable, enabling formal applicability-domain filters to accompany future models. 

Third, biological context also matters. One-hot encoding of cell lines allows within-set 

predictions but offers no mechanistic insight and cannot guarantee accuracy for cell types 

absent from the training data. Future work could explore lineage- or transcriptome-derived 

embeddings to improve transferability. 

Finally, although RDKit descriptors efficiently encode molecular structure, they are not 

optimised for human-interpretable structure-function insight. Graph-based neural network 

representations may provide traceable, learnable features and can be backmapped to their 

structure123,179 once larger, standardised data sets become available. 
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6 Conclusions 

This study provides an efficient approach for utilizing literature data to train a ML model for 

predicting suitable polymeric delivery systems. By employing straightforward strategies, we 

successfully merged multiple different datasets with different carrier systems. The trained 

in silico model was validated to be accurate by assessing in vitro gene silencing outcomes 

when siRNA was delivered  using polymers that the ML model predicted to be effective or 

ineffective. Among the tested polymers, one candidate PBAE SP/TDA-BG was selected for 

detailed investigations of its structural characteristics and biological performance. This 

polymer, with its balanced hydrophilic and hydrophobic moieties combined with a 

biodegradable backbone, overcame key biological barriers in pulmonary siRNA delivery. 

Remarkably, it achieved efficient in vivo gene silencing without detectable adverse effects. 

These findings highlight the capability of the ML model to significantly reduce the need for 

extensive experimental screening efforts and associated resource costs and ethical 

considerations. Our study also provides conceptual insights into the complex processes of 

polymeric siRNA delivery, which emphasizes the transformative role of ML in optimizing 

delivery systems. While current limitations include a constrained dataset, which makes it 

difficult to extrapolate to novel polymer types, this challenge could be mitigated as more 

data becomes available. With expanded datasets, data-intensive methods, such as Deep 

Generative Models, could aid the design of entirely new materials for future nanomedicine 

applications. 

7 Experimental Section 

7.1 Data processing and Machine Learning 

Structural data was collected from literature references80,180,181 on 605 polymers that had 

been employed for siRNA delivery before, reflecting a range of different polyester types. 

Chemical structures were created using ChemDraw (version 22.2.0). All data related tasks 

were performed using Python (version 3.11.5). Molecule sanitizing, embedding and MMFF 

force field optimization as well as Molecular Descriptor and Morgan Fingerprint calculation 

were performed using the widely adopted cheminformatics library RDKit (version 

2024.09.1). Each block monomer was encoded separately and the respective component 

ratio was incorporated in the descriptors by multiplying them with the weighted ratio of 

copolymer blocks following Kim et al.182. Gene knockdown (KD) performance was 
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categorized into two groups: KD < 50%, and > 50%. Additional data, including monomer 

ratios, cell types, and molecular weight (Mw), were incorporated. Data was cleaned 

removing multiple entries and columns that contain NaN (Not a number), followed by 

normalization of features using StandardScaler class from sklearn (version 1.6.0). Various 

models (SVM, KNN, RF, XGB, LGBM, NaiveBayes) with weighted sampling due to dataset 

imbalance, were evaluated. The lead model (LGBM) was fine-tuned with hyperopt (version 

0.2.7). Important features were calculated using SHAP values and a TreeExplainer class. 

Irrelevant features were excluded from the dataset, using the integrated feature_importance 

method in LGBM. Data was split into training and test sets, stratified by KD classes (20% 

test set ratio). The trained model was applied to assess new, unpublished polymer formulas, 

identifying one high-performing polymer selected for synthesis. Additionally, waterfall plots 

were calculated for the predicted polymer using SHAP library version (version 0.46.0). The 

following Python libraries were used for data handling and plotting: Sklearn, Imblearn 

(0.13.0), Pandas (2.1.4), Numpy (1.26.4), Seaborn (0.13.2), Matplotlib (3.9.0). 

7.2 Chemicals 

Ethyl trifluoroacetate, tetradecylamine, oleylamine, 4-Amino-1-butanol, 1,4-butanediol 

diacrylate and bisphenol A diglycidyl ether diacrylate were purchased from Sigma Aldrich 

(Taufkirchen, Germany). Di-tert-butyl dicarbonate, spermine and SYBR Gold Nucleic Acid 

Gel Stain were bought from Fisher Scientific (Hampton, NH, USA). 

7.3 Synthesis of Tri-boc-spermine 

Tris(tert-butoxycarbonyl)spermine, abbreviated as tri-Boc-spermine, was synthesized as 

described elsewhere100. In brief, spermine (1 eq) was dissolved in methanol and stirred at -

78 °C, ethyl trifluoroacetate (1 eq) was subsequently added dropwise and stirred at - 78 °C 

for 1 h, then at 0 °C for 1 h. Without isolation, di-tert-butyl dicarbonate (4 eq) was added 

dropwise to the solution and stirred at room temperature (RT) for 2 days. Finally, the solution 

was adjusted to a pH > 11 by 25% ammonia and stirred overnight to cleave the 

trifluoroacetamide protecting group. The mixture was then evaporated under vacuum and 

the residue was diluted with dichloromethane (DCM) and washed with distilled water and 

saturated sodium chloride aqueous solution. The DCM phase was finally dried by magnesia 

sulfate and concentrated to give the crude product. The crude product was purified by 

column chromatography (CH2Cl2\MeOH\NH3, aq. 7:1:0.1, SiO2, KMnO4; Rf = 0.413). Tri-

Boc-spermine was isolated and characterized by 1H nuclear magnetic resonance 

spectroscopy (1H-NMR). 
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7.4 Synthesis of PBAE 

The synthesis involved dissolving hydrophilic amine in dimethylformamide (DMF) and 

adding lipophilic amine and the diacrylate backbone (1.2 eq). The reaction was sealed, 

heated and kept at 90°C for 48 h, then cooled to RT. DMF was evaporated, and the solid 

polymer was solubilized in DCM. Deprotection of the triboc-spermine containing polymers 

was achieved by the dropwise addition of Trifluoroacetic acid (TFA) to a final concentration 

of 5% v/v, cleaving the Boc groups. The reaction was stirred at RT for two h. To obtain the 

deprotected polymer, the solvent was evaporated. For all polymers the solid was purified 

by precipitating it in diethyl ether followed by a centrifugation step (1250 rpm for 2 min). The 

procedure was repeated three times. The final product was dried under vacuum and 

characterized using 1H-NMR. 

7.5 Gel Permeation Chromatography (GPC) 

GPC was performed with an Agilent aqueous GPC using a PSS Novema max Lux 100A 

followed by two PSS Novema max Lux 3000A columns. The chromatographic system and 

calibration standards were set up according to pre-analysis by Agilent Technologies. 

Measurements were performed at 40°C in 0.1 M sodium chloride solution supplemented 

with 0.3% formic acid. Samples were prepared at 4 g/L and measured at a flow of 1 mL/min. 

Molar Mass distributions were obtained through the Agilent WinGPC Software against 

pullulan calibration standards in the range of 180 Da to 1450 kDa. A daisy-chain detector 

setup of an Agilent 1260 VWD was followed by an Agilent 1260 GPC/SEC MDS and ended 

with an Agilent 1260 RID.  

7.6 Preparation of Polyplexes 

To prepare PBAE-siRNA polyplexes, the polymer stock solution was diluted to various 

concentrations with diethyl pyrocarbonate (DEPC) treated water. Next, an equal volume of 

a specific amount of siRNA diluted in 10 mM HEPES buffer (pH 5.4) was added, and the 

mixture was incubated at RT for 30 min to obtain siRNA-loaded polyplexes at different N/P 

ratios. The N/P ratio represents the molar ratio between the polymer amine groups (N) and 

the siRNA phosphate groups (P), and the amount of polymer required for different N/P ratios 

was calculated using the following formula:  

m (polymer in pg) = n siRNA (pmol) x N/P x number of nucleotides siRNA x M protonable 

unit (g/mol)  
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The number of nucleotides for asymmetric 25/27mer siRNA was set to 52, while in EGFR 

siRNA, only 42 nucleotides were present. The protonable units for each polymer were 

calculated by dividing the molar mass of the repeating unit by the number of protonable 

amines within each repeating unit.  

7.7 Characterization of polyplexes 

Particle size, polydispersity index (PDI) and zeta potential of PBAEs-siRNA polyplexes were 

determined using a Zetasizer Ultra (Malvern Instruments, Malvern, UK). All measurements 

were conducted using a 10 mM HEPES buffer as dispersant. Results are expressed as 

mean ± standard deviation (SD) over three measurements. 

 

The encapsulation efficiency of siRNA was determined using SYBR gold assays. In brief, 

15 μL of PBAEs-siRNA polyplexes were added into a 384-well plate, then 5 μL of a 4X 

SYBR Gold solution were added to each well and incubated for 15 min protected from light 

at RT. Fluorescence intensity was measured using a plate reader (Tecan, Männedorf, 

Switzerland) with excitation and emission wavelength set at 492 nm and 555 nm, 

respectively. An equal amount of free siRNA was used as 100% value for calculating the 

unencapsulated siRNA in different polyplex samples.  

7.8 siRNA release assay 

SYBR Gold assay was performed to investigate siRNA release from polyplexes under 

different conditions. First, PBAEs-siRNA polyplexes at an N/P ratio of 10 were prepared as 

described under 4.6. Polyplexes containing 10 pmol of siRNA were incubated with serial 

dilutions of Triton X and heparin in a 384-well plate for 30 min at 37°C. Then, 10 μL of a 4X 

SYBR Gold solution were added to each well and incubated for 15 min. The results were 

measured as described under 5.7. 

7.9 RNase protection assay 

PBAE-siRNA polyplexes at an N/P ratio of 10 were prepared as previously described. A 

total of 50 μL of the respective formulations containing 50 pmol of siRNA, was incubated 

with 1 μg RNase A (Sigma-Aldrich, Taufkirchen, Germany) for 30 min at 37°C. As a control 

group, 50 pmol of free siRNA was included, either treated with 1 μg of RNase, or left 

untreated as a 100% reference value for calculating the degraded siRNA. Subsequently, 

the RNase was deactivated by heating to 70 °C for 30 min. To release the RNA, 1% Triton 
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X and 4 IU heparin was added and incubated for 30 min at 37°C. The released RNA was 

then quantified using SYBR Gold assay, and fluorescence was measured as described 

under 5.7. 

7.10 In vitro cell viability 

H1299 cells seeded in 96-well plates at a density of 6,000 cells per well were used to assess 

cytotoxicity. After incubation with PBAEs-siRNA polyplexes containing 20 pmol scrambled 

siRNA (siRNA negative control, siNC) ranging from N/P 3 to N/P 20 for 48 h, 10 μL of the 

Cell Counting Kit-8 (CCK-8, Sigma) reagent was added to develop color for 3-4 h. The 

optical density (OD) was measured on a Tecan plate reader at 450 nm and cell viability was 

calculated by dividing the values of groups treated with polyplexes by that obtained with the 

untreated group. 

7.11 In vitro cellular uptake 

H1299 cells were seeded in 24-well plates at a density of 15,000 cells per well and 

incubated with PBAEs-siRNA polyplexes containing 50 pmol of siRNA with N/P ratios of 3 

to 10, where 20% of the siRNA was Alexa Fluor 647-labeled. Free siRNA and Lipofectamine 

2000 containing equal amounts of siRNA were used as controls. After 24 h of incubation, 

cells were divided equally. Half of the cells were measured directly with an Attune NxT flow 

cytometer (ThermoFisher Scientific, Waltham, MA USA), and the other half were pre-mixed 

with 0.4% Trypan blue solution and measured comparably. 

A549 cells were seeded in 96-well plates at a density of 6,000 cells per well and incubated 

with the same PBAEs-siRNA polyplexes containing 20 pmol of siRNA with an N/P ratio of 

10. After 24 h of incubation, the cells were assessed on an Attune NxT flow cytometer 

(ThermoFisher Scientific). 

7.12 In vitro endosomal escape 

Hela-Gal8-mRuby3 cells were kindly provided by the lab of Professor Ernst Wagner (LMU 

Munich, Germany). Hela-Gal8-mRuby3 cells were seeded in the 8-well chamber slide (ibidi, 

Gräfelfing, Germany) at a density of 10,000 cells per well, and then incubated for 4 h with 

different PBAEs-siRNA polyplexes containing 40 pmol of siRNA (20% of which was Alexa 

Fluor 647-labeled). After incubation, the supernatant was discarded, and the chambers 

were rinsed with PBS for three times. The cells were first fixed with a 4% PFA solution at 

RT for 20 min and then stained with 0.5 μg/mL of DAPI solution for 8 min. After rinsing the 

chambers with PBS for at least three times, the cells were imaged using a SP8 inverted 
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confocal laser scanning microscope (Leica Camera, Wetzlar, Germany) equipped with a 

63X objective. The fluorescent dots of Gal8-mRuby3 were quantified using the Fuji plug-in 

of Image J. 

7.13 In vitro eGFP knockdown 

Protein knockdown experiments were conducted using H1299 cells stably expressing 

enhanced green fluorescent protein (eGFP). Polyplexes were formulated with siRNA 

targeting eGFP mRNA or scrambled siRNA with the same length. H1299/eGFP cells were 

seeded in 96-well plates at a density of 6,000 cells per well and then incubated with 

polyplexes containing 20 pmol siGFP or 20 pmol siNC for 48 h. Lipofectamine 2000 was 

used as a positive control, while free siRNA served as a negative control. After incubation, 

the cells were collected to perform the FACS analysis (Attune NxT Flow Cytometer, 

ThermoFisher Scientific). The eGFP knockdown efficiency was calculated by dividing the 

Median Fluorescence Intensity (MFI) of siRNA-treated group by that of the respective siNC-

treated group. 

7.14 In vitro EGFR knockdown 

An EGFR knockdown experiment was conducted in A549 cells using polyplexes formulated 

with EGFR siRNA. Per well, 6,000 A549 cells were seeded in 96-well plates and treated 

with polyplexes containing either 20 pmol of EGFR siRNA or 20 pmol of scrambled siRNA 

(siNC) at an N/P ratio of 10 for 48 h. Following incubation, the cells were collected and 

stained with Vio® R667 anti-human EGFR antibody for 10 min. After washing twice using 

PBS, the cells were analyzed using a flow cytometer (Attune NxT) to assess EGFR 

expression. 

7.15 Mucus penetration and uptake study 

Air Liquid Interface (ALI) experiments were conducted utilizing Calu-3 cell culture. 

Specifically, Calu-3 cells were seeded at a density of 250,000 cells per well onto uncoated 

Transwell® polyester cell culture inserts (6.5 mm, 0.4 μm pore size) and were maintained 

in culture for three days until confluent. On day 4, the apical medium was removed to 

establish ALI conditions, and the medium in the basolateral chamber was replaced with 300 

μl of PneumaCult™ ALI medium (STEMcell Technology, Vancouver, Canada). The medium 

was replaced every three days until the transepithelial electrical resistance (TEER) values 

stably reached 300 Ω*cm2 when monitoring with an EVOM epithelial volt/Ω meter (World 

Precision Instruments, Sarasota, USA). Polyplexes and Lipofectamine 2000, each 



139 
 

containing 100 pmol of siRNA, 20% of which was Alexa Fluor 647-labeled, were applied on 

top of Calu-3 monolayers without previous washing and incubated for 24 h. Free siRNA was 

employed as a negative control. Afterwards, the cells were stained with 100 μL of diluted 

Hoechst 33342 (for nuclear staining) and AF488-wheat germ agglutinin (for mucus staining) 

at 37°C for 20 min. Cells were then gently washed twice with PBS and mounted on glass 

slides using FluorSave™ reagent. Fluorescent images were immediately captured using a 

40X objective on the SP8 inverted confocal laser scanning microscope (Leica Camera) and 

were processed using the Fuji plug-in of Image J. 

7.16 Ex vivo activity in human precision-cut lung slices (hPCLS) 

7.16.1 Human tissue, ethics statement and human precision-cut lung slices (hPCLS)  

Human lung tissues were obtained from the University Hospital Großhadern of the Ludwig-

Maximilian University (Munich, Germany) and the Asklepios Biobank of Lung Diseases 

(Gauting Germany). Participants provided written informed consent to participate in this 

study, in accordance with approval by the local ethics committee of the Ludwig Maximilian 

University Munich, Germany (Project 19–630). In brief, hPCLS were prepared from tumor-

free peri-tumor tissue. The lung tissue was inflated with 3% agarose solution and then 

solidified at 4°C. The lung sections with a thickness of 500 μm were cut from the tissue 

blocks using a vibration microtome (HyraxV50) (Karl Zeiss AG, Oberkochen, Germany). 

hPCLS were cultured in DMEM F-12 medium supplemented with 0.1% FBS. Prior to 

experiments, hPCLS were cut into 4 mm diameter circular pieces using a biopsy puncher.  

7.16.2 GAPDH gene silencing in hPCLS 

Each well containing three punches of hPCLS in a 24-well plate was treated with different 

formulations containing either 100 pmol of siGAPDH or 100 pmol of siNC. Lipofectamine 

2000 was included as a positive control and free siGAPDH as a negative control. After 48 

h of incubation, the tissue punches were submerged in 1 mL TRIzol within lysing matrix D 

tubes and homogenized using a FastPrep 24 Tissue Lyzer (M.P. Biomedicals, Irvine, CA, 

USA). Subsequently, 200 μL of chloroform was added to each homogenized sample and 

mixed vigorously. The samples were then centrifuged at 11,000 g for 15 min at 4°C, after 

which the aqueous phase containing RNA was transferred to a new 1.5 mL Eppendorf tube. 

To precipitate the RNA, 500 μL of isopropanol was added and mixed thoroughly. After 10 

min incubation at RT, the samples were centrifuged at 11,000 g for 10 min. The supernatant 

was discarded, and the RNA pellet was washed with 1 mL of ice-cold 75% ethanol, followed 
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by centrifugation at 7,500 g for 5 min at 4°C. The supernatant was discarded again, and the 

RNA pellet was resuspended in 30 μL of RNase-free water. The extracted RNA was then 

processed for cDNA synthesis using a high-capacity cDNA synthesis kit (Applied 

Biosystems). Synthesized cDNA was diluted and subjected to quantitative PCR (qPCR) 

using SYBR™ Green PCR Master Mix (ThermoFisher Scientific), with Hs_GAPDH_2_SG 

primers specific for human GAPDH (Qiagen, Valencia, CA, US). Hs_ACTB_2_SG primers 

for human β-actin (Qiagen) were used as the normalization control. 

7.17 In vivo distribution of polyplexes after pulmonary delivery 

All animal experiments were conducted according to the German law of animal protection 

and approved by the Government of Upper Bavaria (ROB-55.2-2532.Vet_0220-171) and 

the Committee for Animal Experimentation of the Ludwig Maximilian University Munich, 

Germany. 

Eight-week-old female BALB/c mice were intratracheally instilled with polyplexes containing 

1 nmol of Alexa Fluor 647 labeled siRNA under ketamine/xylazine anesthesia. The control 

group received free Alexa Fluor 647-siRNA. After 24 h, mice were sacrificed with an 

overdose of ketamine/xylazine anesthesia, and organs including the heart, lung, liver, 

spleen and kidneys were harvested for imaging. Fluorescence was measured at an 

excitation wavelength of 635 nm and an emission wavelength of 668 nm using an IVIS 

Lumina III (PerkinElmer, Shelton, CT, USA). After imaging, the lungs were homogenized to 

obtain single-cell suspensions, using the Mouse Lung Dissociation Kit (Miltenyi Biotec, 

Germany) according to the manufacturer's protocol. The lung cells were first incubated with 

PBS solution containing Zombie UV™ and later stained with FITC anti-mouse CD45, 

BUV395 anti-mouse CD3, Vioblue anti-mouse CD4, APC-Cyanine7 anti-mouse CD8, PE-

Cyanine7 anti-mouse F4/80, BUV605 anti-mouse CD11c, BV785 anti-mouse CD326, 

PE/Dazzle™594 anti-mouse CD170 and PerCP/Cyanine5.5 anti-mouse CD19 for 30 min at 

4°C. The stained cells were measured using a Cytek® Aurora (San Diego, California, USA) 

implemented with autofluorescence extraction for the detection of cellular uptake. 

7.18 Distribution of polyplexes in the lung 

Eight-week-old female BALB/c mice were intratracheally instilled with polyplexes containing 

1 nmol of pHrodo red-labeled siRNA under ketamine/xylazine anesthesia. After 24 h, the 

mice were sacrificed with an overdose of ketamine/xylazine anesthesia, and the lungs were 

harvested after lung perfusion. The lungs were then immersed in 4% PFA solution 
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overnight. After PFA fixation, the lung tissues were embedded in paraffin and sliced into 

lung sections with thickness of 4 μm. The obtained slices were deparaffinized by incubating 

in xylene, followed by a series of ethanol dilutions. After hydration, the slices were stained 

with 0.5 μg/mL DAPI solution for nuclear visualization and imaged using a 10X objective on 

an SP8 inverted confocal laser scanning microscope (Leica Camera). 

7.19 In vivo transfection evaluation of polyplexes 

7.19.1 Safety evaluation 

Eight-week-old female BALB/c mice were intratracheally instilled with different formulations 

containing 1 nmol of siGAPDH or 1 nmol of siNC, including PBAEs-siRNA and PEI-siRNA 

polyplexes. Control groups received either free siGAPDH or buffer only. After 24 h, the mice 

were sacrificed, and their lungs were first perfused with 10 mL of saline. Bronchoalveolar 

lavage fluid (BALF) was collected in a PBS/2mM EDTA buffer containing protease inhibitor 

cocktail (cOmplete™). The BALF was centrifuged at 500 g for 5 min at 4°C, and the 

supernatant was used to measure the concentration of pro-inflammatory cytokines using 

the LEGENDplex™ Mouse Cytokine Panel 2 kit (Biolegend, San Diego, California, USA). 

The lungs were harvested, with one lobe fixed in 4% PFA overnight and then embedded in 

paraffin for histological analysis via H&E staining, while the remaining tissue was stored in 

1 mL of RNA-later solution for further analysis. 

 

7.19.2 In vivo GAPDH gene silence efficacy of polyplexes 

The lungs stored in RNA-later solution were transferred to lysing matrix D tubes and 

homogenized using a FastPrep 24 Tissue Lyzer (M.P. Biomedicals). RNA extraction was 

performed following the TRIzol-chloroform method as previously described under 5.16.2. 

The extracted RNA was then processed for cDNA synthesis using a high-capacity cDNA 

synthesis kit (Applied Biosystems). The synthesized cDNA was diluted and subjected to 

qPCR using SYBR™ Green PCR Master Mix (ThermoFisher Scientific) with 

Mm_GAPDH_3_SG primers (Qiagen) for GAPDH. Mm_ACTB_2_SG primer sspecific for 

mouse β-actin were used as the normalization control. 

7.20 Statistical analysis 

All data were expressed as means ± standard deviation (SD). All statistical analyses were 

performed using one-way analysis of variance (ANOVA) in GraphPad Prism or Student’s t-
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test when specifically stated.  Levels of significant differences were expressed as follows, 

✽p < 0.05, ✽✽p < 0.01, ✽✽✽p < 0.001, ✽✽✽✽p < 0.0001. 
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10 Supplementary Information 

Figure IV.S1: Selection of Machine Learning Algorithm A) Comparison of different algorithms B) Averaged 

Confusion Matrix for default LightGBMClassifier  
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Figure IV.S2: Comparison of different resampling strategies to handle the unbalanced dataset.  

 

 

 

Hyperparameter tuning using hyperopt: 

100 evaluations were performed using the mean of 10 train test splits with replacement as objective. 

The hyperparameters are the following {'colsample_bytree': 0.9755088786798269, 'learning_rate': 

0.1827587842746705, 'max_depth': 8, 'n_estimators': 465, 'num_leaves': 85, 'reg_lambda': 

0.8324249896997891, 'subsample': 0.9331718683905172} 

Figure IV.S3: Hyperparameter code for LGBMClassifier. 
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Figure IV.S4: SHAP values of the optimized model on the whole dataset (A) and for the predicted polymer as 

single point prediction (B). 
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Figure IV.S5: Overview of the machine learning workflow 

 

 

 

 

 
 

Figure IV.S6: Monomers used to design the Validation Set. SP, spermine; AP, 4-Amino-1-butanol; OA, 

oleylamine; TDA, tetradecylamine; Bu, 1,4-butanediol diacrylate; BG, bisphenol A glycerolate. 
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Figure IV.S7: 1H-NMR measurement of validation polymer AP-BG. 
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Figure IV.S8: 1H-NMR measurement of validation polymer SP-OA-BG 

 

 

Figure IV.S9: 1H-NMR measurement of validation polymer SP-TDA-BG 
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Figure IV.S10: 1H-NMR measurement of validation polymer SP-BG 
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Figure IV.S11: 1H-NMR measurement of validation polymer SP-BU 
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Figure IV.S12: 1H-NMR measurement of validation polymer OA-BG. 
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Figure IV.S13: Characterization of siRNA PBAEs polyplexes (A) Hydrodynamic diameter (represented by bar 

graph), polydispersity (represented by symbol) and (B) Zeta potential of siRNA-loaded polyplexes formulated at 

N/P ratio of 10. (C) siRNA encapsulation efficiency in the polyplexes formulated at N/P 10 with different 

polymers. 
 

 

 

Figure IV.S14: In Vitro gene silencing efficiency. (A) Enhanced green fluorescent protein (eGFP) knockdown 

efficiency of siRNA polyplexes formulated at an N/P ratio of 10 in H1299/eGFP cells. (B) Epidermal growth factor 

receptor (EGFR) knockdown efficiency of siRNA polyplexes in A549 cells. 
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Figure IV.S15: 1H-NMR of the synthesized structures A) SP0.6/0.4TDA B) SP0.5/0.5TDA C) SP0.4/TDA0.6. 

 

 

 

 

Figure IV.S16: GPC measurement of SP0.5/TDA0.5 which was tested in vivo. 
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Figure IV.S17: siRNA encapsulation efficiency in the polyplexes prepared at different N/P ratios. 

 

 

 

 

Figure IV.S18: Mucus penetration assay of siRNA-loaded PEI 25kDa polyplexes and PBAE SP0.5/TDA0.5 

polyplexes in air-liquid interface (ALI) culture of Calu-3 cells. Scale bar, 50 μm. 
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Figure IV.S19: Organ distribution after intratracheal instillation of free Alexa Fluor 647-labeled siRNA or siRNA-

loaded polyplexes. 

 

 

Figure IV.S20: Gating strategy of different cell types in the lung.  
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Chapter V - From Bits to Bonds - High throughput virtual 

screening of RNA nanocarriers using a combinatorial 

approach of Machine Learning and Molecular Dynamics 

 

1 Graphical Abstract 

 

2 Abstract 

The implementation of high throughput methods for fuelling the design of effective 

nanocarriers for RNA delivery remains challenging. Traditional experimental screening is 

resource-intensive, while purely computational approaches face limitations, such as data 

scarcity for machine learning models and the high computational cost of molecular 

dynamics simulations. This work introduces a high-throughput virtual screening platform, 

"Bits2Bonds," integrating coarse-grained Molecular Dynamics (CG-MD) simulations with 

machine learning-driven optimization to design novel poly(β-amino ester) (PBAE) carriers 

for therapeutic siRNA delivery. The platform evaluates virtual polymers using MD-based 

"challenges" that simulate key hurdles in nucleic acid delivery such as membrane- and 

siRNA interaction (association/dissociation). The computational framework was calibrated 
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and validated against experimental data, including synthesis and characterization of four 

distinct PBAEs, logP measurements, siRNA encapsulation assays, and cell culture 

knockdown experiments. This integrated approach provides a powerful tool for the de novo 

design and rapid virtual screening of optimized polymeric siRNA delivery systems.  

Keywords: polyplex, Poly(beta)aminoesters, Martini 3, siRNA, nucleic acid, nanocarrier 

 

3 Introduction 

The field of RNA therapeutics has exploded in recent years, capturing the attention of 

researchers, pharmaceutical companies, capital providers, and the public alike. This surge 

in interest was ignited by milestones such as the 2018 approval of Patisiran, an RNA 

interference (RNAi)-based drug, and further propelled by the rapid deployment of mRNA 

vaccines against SARS-CoV-26,29,112. This success highlights the potential of specific RNA 

modalities including small interfering RNA (siRNA), which holds immense promise for 

silencing disease-causing genes and treating previously "undruggable" targets. As of 2024, 

20 RNA-based drugs are approved for clinical use, with hundreds more in development, 

underscoring the therapeutic potential of this class of molecules141. 

As a compelling alternative to LNPs,118 polymeric cationic carrier systems provide 

advantages in tunability, complexity, and potential scalability. However, the design of 

functional yet safe polymeric nanocarriers remains a persistent challenge, partly due to an 

unclear or high toxicity of established carriers such as polyethylenimine (PEI). Hence, 

poly(β-amino esters) (PBAEs) have become a leading alternative.26,81,183. 

The search for improved polymeric drug delivery systems has traditionally relied on high-

throughput screening (HTS) of polymer libraries80,181. This experimental approach, while 

valuable, is resource-intensive and limited by the chemical diversity of available 

compounds. The rise of computational power and sophisticated algorithms has enabled a 

powerful complementary approach: virtual high-throughput screening (vHTS). In vHTS, vast 

libraries of virtual molecules are rapidly assessed for their target binding, significantly 

accelerating the early stages of drug discovery, which has become standard practice in 

small molecule drug research184–186. 
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However, vHTS has not been widely explored in the design of polymeric nanocarriers for 

RNA delivery, representing a significant gap in the field. While computational methods are 

used to study specific polymer-RNA interactions155,187,188or predict and optimize nanocarrier 

from data43,127,128, a comprehensive, de novo virtual screening approach to identify novel, 

optimized polymeric carriers could be a big step forward. A primary limitation of solely data-

driven methods, such as Machine Learning (ML), in this domain is the scarcity of high-

quality datasets with comparable experimental conditions, annotation standards, and 

sufficient sample sizes, which are essential for building robust and generalizable models. 

Conversely, purely physics-based methods such as MD simulations are computationally 

highly demanding especially when using the established All-Atom approaches, which limits 

their use in high-throughput scenarios. Recent studies have demonstrated that integrating 

data-driven and physics-based approaches can not only accelerate the screening process 

but also provide deeper insights into underlying physical phenomena, facilitating a more 

systematic utilization of data147,189. However, realizing the full potential of these integrated 

approaches presents several challenges, including managing computational complexity190, 

ensuring comparability between in silico and in vitro results155,187, and establishing a virtual 

high-throughput framework for the discovery and  optimization of PBAE based carrier 

systems. 

This work addresses this critical need by developing and implementing a novel 

computational platform for the virtual screening of polyplex-forming polymers for siRNA 

delivery. We propose a novel approach utilizing MD-based virtual challenges to simulate 

the obstacles a molecule must overcome, coupled with an underlying optimization algorithm 

to iteratively identify high-performing structures. To enable high-throughput screening, we 

employed the Martini 3 force field and a simplified surrogate model of the polymers. 

Additionally, the optimization process was warm-started using a biased neural network 

trained via few-step reinforcement learning. Furthermore, we calibrated and validated the 

computational method to bridge the gap between in silico screening and experimental 

validation. To the best of our knowledge, this approach represents the first attempt to 

systematically optimize virtual polymer structures for enhanced formation of stable and 

effective siRNA delivery complexes. 
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4 Materials and Methods 

The overall workflow was carried out by treating molecules as learnable Q Networks, where 

each output node is a probability of sampling a certain molecular fragment. When treating 

the process as a deterministic approach, one can see the neural network as a blueprint to 

build up a molecule. We first initialized the network using a reinforcement learning approach, 

where the model was trained to minimize the distance to a target molecule encoded as 

RDkit Descriptors. Subsequently, we carried out MD simulations to rate the performance of 

the molecules in challenging situations that are key for efficient RNA delivery. To optimize 

the RNA carrier molecules, we used a simple Genetic Algorithm, where random noise was 

added to the network weights to enable the construction of new molecules.  

We ran this loop through multiple epochs, to optimize of performance score coming from 

the MD challenges. The simulations were validated and the calculation of the Performance 

Score was calibrated against wet lab experiments. The whole process is represented in 

Figure V.1A. 
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Figure V.1: Architecture of Bits2Bonds A) General overview of the software, B) Overview of the MD challenges 

applied, C) Overview of the Genetic Algorithm, D) Overview of the MolDesigner. 

 

4.1 Biased Network Generation 

To allow the Main Loop a warm start, a biased Q Network was constructed using a basic 

Reinforcement Learning approach. As a template we used an established PBAE 

structure191The reward function was designed as the cosine similarity (eq.V.1) where A 

represents the state vector and B the template vector based on their top 20 RDkit 

descriptors, which were evaluated in previous work191. The available action space was 

designed to fit common building blocks in polymer design and at the same time match 

available bead types in the Martini 3 force field. State representation of the molecules is 

selected to be a Morgan Fingerprint encoded as 2048 Bits. The network was trained using 

a MlpPolicy and we treated the number of timesteps as well as the number of actions as 

hyperparameters and observed their influence on the predicted molecules later (see 

Results).  

 
 

(eq.V.1) 

 

4.2 MolDesigner 

The key element of the code is the MolDesigner, which takes the Networks as argument. 

Based on the network prediction, a molecule is assembled, taking  the selected backbone 

and the available actions into account. In parallel, a bead information is designed that 

converts the molecular structure into a Martini3 representation. In general, MolDesigner is 

scalable in terms of representations that may run in parallel. The algorithm receives 

information from the Genetic Algorithm later on as well (Figure V.1A and V.1C).  

 

4.3 pKa Predictor  

For the MD Simulation Challenges, the molecules need to be assigned with pH dependent 

charges. To this end, we implemented a Graph Convolutional Network (GCN) approach to 

estimate the pKa values similar to that described in Pan et al.192. We further used the 

STONED Algorithm193 to create 21,000 different possible side chains that were randomly 
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charged to also allow the model to learn how to further treat a charged molecule. For pKa 

labelling, EPIK194 was utilized. To allow separate protonation and deprotonation, we trained 

two separate models. Details about training, model architecture and model weights can be 

found in the Supplementary Information (Table V.S1, Figure V.S1). 

 

4.4 Bead Exchanger 

The BeadExchanger executes the information from the pKa Predictor. Beads are 

exchanged according to their pKa values. The return of the pKa Predictor is a list of pKa 

values for every protonable or deprotonable structure. The algorithm then iterates over the 

list as well as the respective beads and calculates the probability of being protonated using 

the Henderson-Hasselbalch equation: 

 
 

(eq.V.2) 

 

Given a certain threshold. the model exchanges the bead in a deterministic manner. This is 

necessary to allow the Genetic Algorithm a comparable decision making and to stabilize the 

optimization. More detailed information can be found in Figure V.S2. 

 

4.5 Genetic Algorithm 

As an optimization function, we used a simple Genetic Algorithm approach. We would like 

to note that other algorithms could further improve the optimization process using prior 

knowledge from previous simulations. However, the focus of our work was to establish a 

system using a straightforward approach that can be improved and adapted if necessary.  

To further optimize the molecules generated by Reinforcement Learning, using a scoring 

function from the MD challenges, we applied a Genetic Algorithm to Q-networks to 

manipulate the policy so that a slightly new policy was received195. We ranked the policies 

based on their performance in the MD challenges and treated the first molecule as elite, 

which is keeping its structure conserved. In this way, not only can the best current solution 

be retained, but the optimization progress can also be tracked across iterations. The 

mutation is carried out by adding random noise to the network weights (eq.V.3) where w’(i,j) 
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are the updated weights on position i,j and w(i,j) are the original weights. To keep control 

over the mutation process, we implemented a mutation strength parameter as a 

hyperparameter µ. We investigated the influence of µ, which is a scalar to the 

GaussianNoise. We also allowed the parent molecules to switch side chains to allow 

additional variation in modification by introducing another binary hyperparameter. The 

Genetic Algorithm then returns the policies back to the MolDesigner that builds up new 

structures and bead models. 

  (eq.V.3) 

 

4.6 Molecular Dynamics 

The steps described in the next section were performed fully automatically for every polymer 

investigated: 

 

4.7 Creating of topology file 

CG topology (.itp) and coordinate (.gro) files compatible with the Martini 3 force field were 

generated for GROMACS simulations using an automated Python script. This script utilized 

several inputs: a pandas DataFrame containing the CG polymer model definition (including 

residue types for lipophilic/hydrophilic chains at pH 8 and pH 4) generated by the 

MolDesigner module, a template .itp and .gro files representing the polymer backbone, and 

a separate file containing necessary bond parameters. 

 

Topology file generation involved modifying the backbone template. New bead definitions 

were inserted into the [ atoms ] section, specifying atom type, residue number/name, charge 

group, and charge (e.g., +1 for SQ2p beads, 0 otherwise). The [ bonds ] section was 

subsequently populated using bond parameters (lengths and force constants) sourced from 

a parameter file, whose values were obtained according to the Martini 3 molecule 

parameterization guidelines for small molecules. Additionally, specific structural bonds 

linking anchor beads (residue numbers 14 and 28) to the first bead of their respective side 

chains were included with predefined parameters. 
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Coordinate files were generated by building upon the backbone template coordinates via 

algorithmically placing side chain bead coordinates relative to the corresponding backbone 

anchor points. The resulting .itp and .gro files provided the complete CG polymer description 

required for subsequent GROMACS simulations. 

 

4.8 logP Challenge 

The partitioning behaviour of the synthesized polymer between aqueous and hexadecane 

phases was analysed by MD simulations. A biphasic system comprising an aqueous layer 

and an organic layer (3500 hexadecane molecules) was constructed using GROMACS 

(2024.3) patched with PLUMED. The polymer was initially placed in the aqueous phase at 

a predefined position, followed by system solvation, charge neutralization, and energy 

minimization. The system was then equilibrated under NPT conditions, maintaining 298 K 

via the V-rescale thermostat and 1 bar pressure using the Parrinello-Rahman barostat. 

To probe the energetics of transfer, Steered Molecular Dynamics (SMD) simulations were 

employed. Using PLUMED, a moving harmonic restraint of 100 KJ/mol /nm was applied to 

the polymer's centre of mass to guide its translocation across the water-hexadecane 

interface along the x-axis (normal to the interface) with a 10 fs timestep over 125,000 steps. 

The work performed on the polymer during the SMD simulation was calculated by 

numerically integrating the force recorded by PLUMED along the x-coordinate, employing 

the trapezoidal rule. This calculated work profile provides an estimate of the energetic cost 

associated with moving the polymer between the two phases and into the hexadecane 

phase, testing its hydrophobicity. 

 

4.9 siRNA association Challenge 

The interaction between the synthesized polymers and siRNA was investigated using 

Steered SMD simulations performed in GROMACS, utilizing the PLUMED plugin. The initial 

polymer structure was placed within a pre-equilibrated simulation box that already contained 

the siRNA molecule, whose structure was obtained from a previous study13,14. The system 

underwent energy minimization first in vacuum to resolve steric clashes, followed by 
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solvation and subsequent energy minimization in the presence of solvent. Equilibration was 

then carried out under NPT conditions (298 K, 1 bar) using the Berendsen thermostat and 

barostat to achieve a stable starting configuration for the SMD phase. 

 

In the SMD simulations, designed to probe the polymer-siRNA interaction, a moving 

harmonic restraint was applied to the centre of mass of the polymer, analogous to the 

procedure in Section 2.2.1. The polymer was pulled along a defined reaction coordinate, 

oriented relative to the main siRNA axis. The work performed during this steered process 

was calculated by integrating the applied force along the displacement coordinate using 

data output by PLUMED. This yielded a work profile, providing a quantitative assessment 

of the polymer-siRNA interaction strength along the specified pathway. 

 

4.10 Synthetic Accessibility Filtering 

To incorporate synthetic feasibility, we computed the Synthetic Accessibility (SA) Score196 

for each candidate side chain. We integrated SA into the ranking by applying a penalty 

function: candidates with SA > 5 were penalized in the composite performance score, 

ensuring that highly complex substituents are deprioritized. We selected the threshold SA 

≤ 5 to reflect moderate synthetic tractability. 

 

4.11 Polymer Synthesis  

In this study, four distinct PBAEs, considered reference polymers, with varying side chains 

were synthesized. The first polymer, designated AP, was derived from 5-aminopentan-1-ol 

as the sole side chain. The second and third polymers, OA/SP and TDA/SP, were 

synthesized by incorporating a 1:1 molar ratio of spermine (SP) with either oleylamine (OA) 

or tetradecylamine (TDA), respectively. The fourth polymer, SP, contained spermine as its 

only side chain. 

For the synthesis, the respective reagents were dissolved in DMF. The reaction mixtures, 

contained in sealed vials, were stirred at 90 °C for 48 hours. Subsequently, the solvent was 

evaporated from the mixtures in petri dishes at room temperature over 48 hours. Polymers 

OA/SP and TDA/SP were deprotected by dissolving them in dichloromethane (DCM) and 

subsequently adding trifluoroacetic acid (TFA) (using 20 mL of DCM and 1 mL of TFA per 
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100 mg of polymer). These mixtures were stirred for 2 hours at room temperature, after 

which the solutions were evaporated at room temperature for 72 hours. The resulting solids 

were purified by precipitation from diethyl ether three times, followed by centrifugation (1250 

x g, 2 min). Notably, polymer AP did not precipitate in diethyl ether; consequently, pentane 

was employed for its purification. Finally, all purified polymers were air-dried under a fume 

hood and then further dried in a vacuum oven at 40 °C for 48 hours to ensure complete 

removal of residual solvent. Structures and the molar side chain ratios of OA/SP and 

TDA/SP were analysed by 1H-NMR. 

 

4.12 Nanoparticle Formulation 

The preparation of PBAE-siRNA polyplexes involved an initial step of adjusting polymer 

stock solutions to various target concentrations using diethyl pyrocarbonate (DEPC)-treated 

water. Following this step, an equivalent volume of eGFP siRNA, previously brought to a 

specific concentration in 10 mM HEPES buffer (pH 5.4), was combined with the diluted 

polymer. These mixtures were then maintained at RT for a 30-minute period to allow for the 

self-assembly of siRNA-loaded polyplexes, achieving a range of polymer-to-RNA ratios, or 

so-called N/P ratios. 

The N/P ratio, which quantifies the molar relationship between the protonable amine groups 

(N) of the polymer and the phosphate groups (P) of the siRNA, was a key parameter in 

determining the necessary polymer mass. This mass was ascertained using the following 

relationship: 

m (polymer in pg) = n siRNA (pmol) x N/P x number of nucleotides siRNA x M protonable 

unit (g/mol)  

Within this calculation, the number of nucleotides was considered to be 52 for the 

asymmetric 25/27mer siRNA used in this study. The molar mass of the protonable unit for 

each specific polymer was obtained by dividing the molar mass of its fundamental repeating 

unit by the quantity of protonable amines present in that unit. 
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4.13 Size and Zeta Potential Measurement 

Size and zeta potential measurements were performed using a Malvern Zetasizer Ultra 

(Malvern Instruments, U.K.) via DLS and PALS, respectively using a pH 5.4 10 mM HEPES 

buffer as dispersant. 

 

4.14 Modified SYBR Gold Assay 

Determination of encapsulation was measured using a modified SYBR Gold assay. 

Nanoparticle solutions with various N/P ratios (50 pmol siRNA/well) were prepared at pH 

5.4 and 7.4 in 10 mM HEPES buffer. After adding diluted SYBR Gold dye (8X), a 10-minute 

incubation in the dark was carried out. Fluorescence emission was measured using a Tecan 

Spark Plate Reader (TECAN, Männedorf, Switzerland) with 485 nm as excitation 

wavelength and 535 nm as emission wavelength. Encapsulation efficiency (EE) is the ability 

of the polymer to encapsulate RNA and was calculated based on the free siRNA in the 

sample. Note that the percent encapsulation was normalized to the amount of polymer in 

order to allow a fair comparison with the challenge scores, which were determined for a 

single molecule each. A more detailed calculation is provided in the Supplementary 

Information (Calculation S1). Briefly, the measured values at each N/P ratio were 

normalized to the fluorescence signal of 50 pmol free siRNA, multiplied by the siRNA-to-

polymer molar ratio in the respective sample, and averaged across all tested N/P ratios to 

obtain the final EE value. 

 

4.15 logP-experiments 

For the log P assay, a calibration curve for each polymer between 0.05 mg/ml and 1.5 mg/ml 

in octanol was first created. Fluorescence emission was measured using a  Tecan Spark 

Plate Reader (TECAN, Männedorf, Switzerland) at 384 nm excitation and 450 nm emission 

wavelengths. For all samples, a 1 mg/ml octanol solution was prepared and subsequently 

100 µL of filtered 10 mM pH 5.4 HEPES buffer was added. Samples were incubated using 

an orbital shaker (24 hours at 250 rpm). Using the calibration curve, the polymer 

concentrations in the two phases were analysed and logP values were calculated. 
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4.16 In vitro eGFP Knockdown 

Gene Knockdown experiments were conducted using H1299 cells stably expressing 

enhanced green fluorescent protein (eGFP). Nanoparticles were formulated with siRNA 

targeting eGFP mRNA or scrambled siRNA with the same length. H1299/eGFP cells were 

seeded in 96-well plates at a density of 6,000 cells per well and then incubated with 

polyplexes containing 20 pmol siGFP or 20 pmol of a negative control RNA (siNC) for 48 h. 

Lipofectamine 2000 was used as a positive control, while free siRNA served as a negative 

control. After incubation, the cells were collected by trypsinization to perform Flow 

Cytometer analysis of eGFP expression (Attune NxT Flow Cytometer, ThermoFisher 

Scientific). The eGFP knockdown efficiency was calculated by dividing the Median 

Fluorescence Intensity (MFI) of the siRNA-treated groups by that of the respective siNC-

treated group. 

 

5 Results and Discussion 

5.1 Synthesis of Polymers and Nanoparticles 

To validate the applicability of our software in practical experimental workflows, we 

synthesized eight distinct PBAEs. NMR spectroscopy confirmed the expected monomeric 

ratios (Figures V.S3-V.S10). The polymers were selected to represent a broader range of 

amphiphilic properties. AP-BG (Figures V.S3 and V.S11), OA-BU (Figures V.S9 and V.S17) 

and OA-BG (Figures V.S10 and V.S12) were chosen as representatives for hydrophobic 

polymers due to their low amine content, which limits protonation and consequently polarity. 

OA/SP-BG (Figures V.S4 and V.S12), TDA/SP-BG (Figures V.S5 and V.S13) and OA/SP-

BU (Figures V.S8 and V.S16) exhibit a more balanced amphiphilic character that has been 

shown to be favourable for effective gene knockdown both in vitro and in vivo191. SP-BG 

(Figures V.S6 and V.S14) and SP-BU (Figures V.S7 and V.S15) were selected for their 

significant hydrophilicity, a characteristic typically associated with reduced in vitro 

knockdown efficacy9. When formulated with siRNA, all polymers, except the OA polymers, 

formed well suited particles with a hydrodynamic size < 100 nm (Figure V.S19) and a PDI 

< 0.2 (Figure V.S20) at higher N/P ratios.  
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5.2 Validation of the Hydrophobic Interface Challenge with logP data 

Hydrophobicity influences RNA delivery with polymeric nanocarriers197 because the 

nanoparticles must overcome barriers of amphiphilic membranes.  

One example for such a barrier is the endosomal membrane, which the carrier system has 

to overcome, to escape the endosome and successfully deliver the cargo into the cytosol.  

An established hypothesis for the enhanced endosomal escape of amphiphilic nanocarriers, 

is the interaction with phospholipids within the endosomal membrane31. 

To this end, we conducted a simulation that investigates the work required for a carrier 

system to move through a hydrophilic-lipophilic interface at low pH28 and validated the 

results against experimental logP data (Figure V.2A). The hydrophilic SP-BG and SP-BU 

showed  logP values of -1 and -0.6, while the amphiphilic OA/SP-BG, OA/SP-BU and 

TDA/SP-BG were more balanced with logP near zero. The hydrophobic OA polymers 

showed the highest logP of 3, with almost all sample in the octanol phase. (Figure V.2A, 

bars).  Correspondingly, OA polymers required the lowest work to be pulled through the 

hydrophobic part of the biphasic system and SP polymers the highest (Figure V.2A, line). 

Furthermore, the medium logP values determined for OA/SP-BG, OA/SP-BU and TDA/SP-BU 

were consistent with the simulation results. 

 

5.3 Validation of the siRNA Challenges with Encapsulation Efficiency data 

An important criterion for a successful nanoparticulate siRNA delivery is the encapsulation 

and protection of cargo and at the same time cargo release into the cytosol to allow the 

formation of the RISC complex198,199. Correspondingly, we introduced two challenges where 

we measured the interaction of polymer and siRNA at pH 5.4 to mimic the formulation 

conditions, and at pH 7.4 to model neutral environments such as the cytosol200.  

The experimentally determined EE values (Figure V.2, bars) reflected the simulation results 

(Figure V.2, lines), showing the same trends at pH 5.4 (Figure V.2B) and pH 7.4 (Figure 

V.2C). Due to the high amine density, the SP polymers showed high EE at both pH values, 

with 1.24 × 10⁻² and 1.09 × 10⁻² encapsulated siRNA, respectively for SP-BG and a similar 

trend for SP-BU. In contrast, the EE of OA-BG was only 2.93 × 10⁻4 at pH 5.4 and 7.21 × 

10⁻⁴ at neutral pH(). Furthermore, AP and the OA polymers showed a positive work 
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requirement for both challenges, indicating no measurable RNA-polymer interaction in both 

experiment and simulation. 

The three amphiphilic polymers showed balanced EE at both pH values (OA/SP-BG: 6.62 

× 10⁻³ and 6.09 × 10⁻³; TDA/SP-BG: 8.36 × 10⁻³ and 7.04 × 10⁻³; OA/SP-BU: 3.76 x 10⁻³ 

and 3.05 x 10⁻³ ), reflected by challenge values of −36.45 kJ/mol, −45.37 kJ/mol and -59.77 

kJ/mol for OA/SP-BG, TDA/SP-BG and OA/SP-BU, respectively, at pH 4, and 

−47.67 kJ/mol, −30.48 kJ/mol and -41.57 kJ/mol, respectively, at pH 8. 

 

5.4 Calibration and Fitting 

Following the successful synthesis and formulation of distinct polymer-siRNA nanoparticles 

(Section 3.1), their functional efficacy was evaluated through cell culture experiments. 

Distinct performance levels consistent with the polymers' designed characteristics were 

revealed: OA/SP-BG and TDA/SP-BG with balanced amphiphilic character, demonstrated 

high GFP knockdown efficiency while the highly hydrophobic polymers AP-BG, OA-BG, and 

OA-BU as well as the significantly hydrophilic polymers SP-BG and SP-BU showed 

negligible activity, as anticipated. Interestingly, the amphiphilic SP/OA-BU showed only a 

small knockdown of 20.9% (Figure V.S13).  

To convert the raw outputs of our MD simulations into a single quantitative predictor of 

polymer performance, we combined the three challenge outputs into a composite scoring 

function. We then calibrated this scoring function to the siRNA knockdown data, so that 

higher scores correspond to greater knock-down efficiency. This scoring function was 

designed to reward performance that closely matches the ideal target values observed in 

successful polymers (OA/SP-BG, TDA/SP-BG), while penalizing substantial deviations. To 

naturally capture the optimal amphiphilic behaviour of PBAEs, we selected a multi-

dimensional Gaussian distribution as the basis of our scoring function. Specifically, it 

comprises a three-dimensional Gaussian reward component—centred on predetermined 

optimal values for the MD readouts (see eq.V.4). The centres and widths (sigmas) of the 

Gaussian component, which represent the target profile derived from the experimental 

winners, were held constant.  

Calibration was performed using data from eight polymers spanning diverse side-chain 

chemistries and a range of hydrophobicity/cationic density. We estimated the amplitude by 
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non-linear least-squares (scipy.optimize.curve_fit, default settings), minimizing the 

discrepancy between the scoring function output and a target metric defined as the 

Euclidean distance of each polymer’s MD performance vector from an ideal reference 

profile. To improve agreement between simulation and experiment, the pH settings used by 

the BeadExchanger were adjusted to match the experimental buffer conditions, reducing 

systematic bias in predicted protonation states. The resulting fitted performance function 

provides a continuous score based on the three MD readouts. 

𝑆𝑟𝑒𝑤𝑎𝑟𝑑(𝑥,𝑦,𝑧) =  37.3917 ∗  𝑒𝑥𝑝[ − ( (𝑥 +  40)² / 1800 + (𝑦 +  40)² / 1250 

+ (𝑧 −  155)² / 450 ) ] 
(eq. V.4) 

 

Here, x, y, and z are the performance metrics for siRNA association (pH 4), siRNA 

dissociation (pH 8), and membrane interaction and 𝑆𝑟𝑒𝑤𝑎𝑟𝑑(𝑥,𝑦,𝑧) is the performance score. 

The Gaussian reward function uses an amplitude of 37.3917 and is centred at x=-40, y=-

33, and z=159. The spread of the reward is determined by standard deviations of 30 (for x), 

30 (for y), and 30 (for z) in each respective dimension. The fit based on eight polymers 

provides a solid groundwork for mapping MD readouts to experimental knockdown; 

nonetheless, the sample size remains modest. We therefore explicitly acknowledge this 

limitation and plan to expand the calibration set and endpoints in subsequent iterations as 

additional data become available. 
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Figure V.2: Validation of the Model Approach A) Results of logP experiments (bar) together with the logP 

Challenge (line), B) Results of SYBR Gold Experiments at pH 5.4 (bar) together with the Association Challenge 

(line), C) Results of SYBR Gold Experiments at pH 7.4 (bar) together with the Dissociation Challenge (line), 

Each experiment was conducted 3 times and the mean and the standard deviation are reported here. D) 

Location of the  eight  reference polymers in the 3D performance space (siRNA association pH 4 vs. siRNA 

dissociation pH 8 vs. membrane interaction), coloured by their fitted performance score. 1:SP-BG 2:SP-BU  3 

OA/SP-BG 4 TDA/SP-BG 5: OA/SP-BU 6:OA-BG 7:OA-BU  8: AP-BG. E) Components and corresponding 

nomenclature used for the synthesis of validation and calibration polymers.  
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5.5 Assessment of generated structures 

5.5.1 Assessment of Cutoff value impact on generated structures 
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Figure V.3: Predicted polymer performance landscape for cutoff values. (A), (B), and (C) show results for 

Performance Score cutoff 10,17, and 24. Left: 3D performance space (siRNA association at pH 4 vs. siRNA 

dissociation at pH 8 vs. logP Performance) for iteratively generated structures. Right: Computed polymer 

structures and predicted Performance Score. 

 

In our hyperparameter optimization, we first evaluated the impact of the performance score 

cutoff, here 10, 17, and 24, which determines the minimum performance score (calculated 

using the scoring function calibrated in Section 3.4) a generated polymer must achieve for 

the optimization process to potentially terminate or be considered successful. The choice of 

cutoff significantly influences the nature of the polymers generated. A higher cutoff, such as 

24 (Figure V.3C), demands greater performance, potentially driving the optimization 

towards structures with high chemical similarity to the best-performing calibration polymers 

(Figure V.2D). Conversely, cutoff 10 (Figure V.3A) imposes a less stringent requirement, 

allowing the algorithm to accept structures that might be more distinct from the initial high-

performers. To balance rigorous performance criteria with exploration of novel chemistries, 

we used a cutoff of 17 during hyperparameter tuning and 24 for the production run.  
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5.5.2 Assessment of Mutation Strength impact on generated structures 
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Figure V.4: Predicted polymer performance landscape for different mutation strengths. (A), (B), and (C) show 

results for mutation strengths 0.33 , 0.66,and 1 , respectively. Left: 3D performance space (siRNA association 

at pH 4 vs. siRNA dissociation at pH 8 vs. logP Performance) for iteratively generated structures. Right: 

Computed polymer structures and predicted Performance Score. 

 

 

To assess our ML-MD combination effectiveness in exploring the chemical space for optimal 

polymers, we systematically varied the mutation strength parameter, which governs the 

extent of structural modifications during polymer generation, influencing the diversity of 

candidates produced. As expected, the lowest mutation strength (0.33) confined the 

generated polymers to a limited region within the multi-objective performance space 

(defined by pH 4 association, pH 8 dissociation, and membrane interaction metrics), 

clustering results closely together. This lack of dispersion, visualized in the performance 

space plot (Figure V.4A), indicated insufficient exploration beyond initial or similar 

structures. The maximum performance score of structures generated at the lower mutation 

strength (0.33) was only 7.47. Increasing the mutation strength to 0.66 enabled broader 

exploration across the performance space by allowing the generation of more diverse 

chemical motifs, such as those incorporating amine groups and alkyl side chains (Figure 

V.4B). This, in turn, yielded polymers with generally higher performance scores, exemplified 

by one candidate reaching 32.95 after eight episodes. The highest mutation strength tested 

of 1 rendered a polymer surpassing the set performance score threshold of 17 (Figure V.4C) 

in six episodes. This high-performing structure combined two key chemical motifs: a 

hydrophilic amine side chain and a substantial aliphatic hydrophobic side chain, likely 

contributing to its favourable predicted properties. These results demonstrate that a 

sufficiently high mutation strength (1 in this study) is crucial for escaping local optima and 

identifying high-performing candidates within a polymer design challenge.  
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5.5.3 Assessment of Mol Designer Stepsize Impact on generated Structures 
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Figure V.5: Predicted polymer performance landscape for different MolDesigner Steps. (A), (B), and (C) show 

results from Stepsize 5 (A), 10 (B), and 15 (C), respectively. Left: 3D performance space (siRNA association at 

pH 4 vs. siRNA dissociation at pH 8 vs. logP Performance) for iteratively generated structures Right: Computed 

polymer structures and predicted Performance Score. 

 

Following the optimization of mutation strength, the influence of side chain complexity was 

assessed by varying the 'Mol Designer steps' parameter. This parameter governs the 

iterative process of side chain construction within the polymer generation algorithm by 

determining the maximum number of monomer additions allowed per side chain. Keeping 

the cutoff and the mutation strength fixed at the optimal values of 17 and 1, respectively, 

simulations were conducted using Mol Designer step values of 5, 10, and 15. These settings 

correspond roughly to maximum side chain lengths of approximately 10-15, 20-30, and 30-

40 heavy atoms. 

 

The results indicated that simulations employing 5, 10 or 15 Mol Designer steps successfully 

identified polymers surpassing the performance score threshold of 17 (Figure V.5A-C). This 

indicates that the number of MolDesigner steps can be flexibly adjusted to achieve the 

desired polymer size. However, to remain consistent with typical side chain lengths reported 

in the literature81,86 (10–15 heavy atoms), we fixed the number of MolDesigner steps to five 

for the production runs.  

 

Based on these findings, hyperparameters of performance score cutoff = 24, mutation 

strength = 1 and Mol Designer steps = 5 were selected for subsequent polymer generation 

efforts. This combination should allow to effectively explore the chemical space for high-

performing candidates while imposing constraints on side chain length, aiming to enhance 

the synthetic feasibility of predicted top-performing polymers. 

 

5.5.4 Production Runs of New Structures  

To assess both optimizer choice and practical robustness, we benchmarked the GA against 

a random-design baseline under a matched evaluation budget, keeping the evaluation 

pipeline identical (MD challenges, SA filtering, pH-dependent bead mapping) to isolate the 

optimizer’s effect. Random sampling was markedly less efficient, requiring 23 ± 11 episodes 

on average to reach a performance score of 24 versus 5.5 ± 2.5 episodes for the GA (Figure 
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V.S23). Complementing this baseline, we executed three independent production runs in 

parallel using the RL warm start. The number of episodes to identify the first high-performing 

candidate varied by run – 3, 13, and 8 episodes, respectively (Figure V.6A–C) – indicating 

some sensitivity to the initial seed. Yet all runs converged within a modest number of 

iterations. The discovered candidates consistently contained amine functionalities, often 

short diaminals rather than the long polyamine chains typical of PBAEs, and their secondary 

chains included aliphatic alcohols and a polyunsaturated alkene chain. Together, these 

results show that while optimization time is stochastic and influenced by the warm start, the 

workflow reliably discovers diverse, novel polymers while the GA provides clear 

sample-efficiency advantages over random search under the same budget. 
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Figure V.6: Predicted polymer performance landscape in production. (A), (B), and (C) show triplicate runs of 

the software. Left: 3D scatter plots mapping siRNA association. Right: Computed polymer structures and 

predicted Performance Score. 
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6 Conclusion and Outlook 

In this study, we have demonstrated, for the first time, the efficacy of a well-designed in 

silico pipeline approach based on a combination of ML and MD for identifying novel 

polymeric delivery systems. To this end, we introduced physico-chemical challenges as an 

innovative way for mimicking real-world hurdles of carrier systems. This pipeline effectively 

integrates MD simulations with an underlying optimization algorithm. We emphasize that 

this framework is broadly applicable to diverse delivery challenges, with PBAEs and siRNA 

serving as a representative model in our study. Furthermore, the developed software 

package possesses significant modularity. Key components, such as the polymer backbone 

scaffold, could be exchanged to represent different PBAEs and also other types of 

polymers. Additionally, constraints can be applied to restrict mutations to specific chemical 

moieties, and parameters governing side chain complexity (e.g., 'Mol Designer steps') can 

be adjusted, allowing for flexible adaptation to diverse polymer design challenges 

We acknowledge that further optimizations beyond the scope of this initial version of 

Bits2Bonds are possible and necessary. Specifically, while we have considered the impact 

of individual monomers, factors such as molecular weight and monomer ratio, which also 

influence polymer properties, were deferred to future investigations. This decision was 

driven by the increased computational complexity associated with these parameters, which 

would compromise our objective of acceptable computational effort. However, since we 

observed, that the polymerization is kinetically trapped129, we assume that using small 

compositional surrogates is an effective approximation and enables high-throughput 

exploration201. Furthermore, the synthesizability of the proposed polymers is not 

guaranteed. While automated synthesizability assessments are an active area of 

research196,202 with some progress for small molecules203, they remain a significant challenge 

for novel carrier systems like those explored here. Incorporating the SA score as a filtering 

criterion enabled the exclusion of synthetically inaccessible structures. The synthesis and 

subsequent computational as well as experimental optimization of the identified lead 

candidates are currently underway. 
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10 Supplementary Information 

Table S1: Architecture of the CGNN and the selected hyperparameters for training. 

Node Features AtomType, hydrogen_donors, hydrogen_acceptors, Hybridization, Valence, 

Aromaticity, Ringsize, Charge 

Layer1 Conv(30, 1024) + ReLU + BatchNorm 

Layer2 Conv(1024. 512) + ReLU + BatchNorm 

Layer3 Conv(512, 256) + ReLU +  BatchNorm 

Layer4 Conv(256, 512) + ReLU +  BatchNorm 

Layer5 Conv(512, 1024) + ReLU +  BatchNorm 

Layer6 Linear(1024, 128) + ReLU 

Layer7 Linear(128, 16) + ReLU 

Layer8 Linear(16, 1) + ReLU 

optimizer Adam 

Initial lr 0.01 

scheduler ReduceLROnPlateau(mode =”min”,factor=0.7,patience=10,min_lr=0.001) 

epochs 150 

 

Figure V.S1: PkaPred Model A) Overview about the structure prediction process training B) Inference of 

pkaPred within the bead exchanger module. 
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Figure V.S2: BeadExchanger. After setting the pH to a certain value, the BeadExchanger is queried and iterates 

over the beads as long as the probability of protonation is over a selected threshold. 
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Figure V.S3: 1H-NMR of AP-BG Polymer. 
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Figure V.S4: 1H-NMR of OA/SP-BG Polymer. 
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Figure V.S5: 1H-NMR of TDA/SP-BG Polymer. 
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Figure V.S6: 1H-NMR of SP-BG Polymer. 
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Figure V.S7: 1H-NMR of SP-BU Polymer. 
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Figure V.S8: 1H-NMR of OA/SP-BU Polymer. 
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Figure V.S9: 1H-NMR of OA-BU Polymer. 
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Figure V.S10: 1H-NMR of OA-BG Polymer. 

 

 

 

Figure V.S11: Synthesis route of AP-BG Polymer. 
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Figure V.S12: Synthesis route of OA/SP-BG Polymer. 

 

Figure V.S13: Synthesis route of TDA/SP-BG Polymer. 

 

Figure V.S14: Synthesis route of SP-BG Polymer. 
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Figure V.S15: Synthesis route of SP-BU Polymer. 

 

Figure V.S16: Synthesis route of OA/SP-BU Polymer. 

 

Figure V.S17: Synthesis route of OA -BU Polymer. 
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Figure V.S18: Synthesis route of OA -BG Polymer. 
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Figure V.S19: Size and Zeta potential of nanoparticles at different N/P ratios. A) AP-BG B) SP-OA-BG C) SP-

TDA-BG D) SP-BG E) SP-BU F) OA-BG G) OA-BU H) OA-SP-BU 
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Figure V.S20: PDI of nanoparticles formulated with different polymers. 

 

Figure V.S21: Knockdown results for the different calibration polymers on H1299 eGFP cells. 
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Figure V.S22: GPC-Traces of Calibration Polymers.  Measurements were performed at 40°C in 0.1 M sodium 

chloride solution supplemented with 0.3% formic acid. A) OA/SP-BU B) OA-HP-BG C) OA/SP-BG D) SP-BU E) 

OA-HP-BU  F) AP-BG G) SP-BD  H) OA/SP-BG 
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Figure V.S23: Comparison of Genetic Algorithm optimization vs. Random Sampling of Beads. '# Episodes' 

denotes the number of episodes required to reach a performance score >24. 

 

Table V.S2: adjusted from Zimmermann et al, doi: 10.1016/j.jconrel.2022.09.021. Sequences of siRNAs used 

in the study. Nt = nucleotides; GFP = green fluorescence protein; NC = negative control; GAPDH = 

housekeeping gene GAPDH; A = Adenine; C = Cytosine; G = Guanine; U = Uracil; T = Thymine; p = phosphate 

residue; lower case bold letters = 2´-deoxyribonucleotides; capital letters = ribonucleotides; underlined capital 

letters = 2´-O-methylribonucleotides. 

Name Sense strand (5’-3’) Antisense strand (3’-5’) Length (nt) 
Sense Antisens

e 
siGFP 

 
pACCCUGAAGUUCAUCUGCA

CCACcg 
ACUGGGACUUCAAGUAGACGU

GGUGGC 
25 

 
27 

siNC pCGUUAAUCGCGUAUAAUAC
GCGUat  

 

CAGCAAUUAGCGCAUAUUAUG
CGCAUAp 

25 27 

 

 

https://doi.org/10.1016/j.jconrel.2022.09.021
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Table V.S3: Computational performance overview of the Bits2Bonds pipeline 

Parameter Description Value 

Hardware GPU used for all production runs 
NVIDIA 

RTX 3080 Ti 

Parallelization Number of simultaneous software instances 3 

Mean wall-clock time per 

polymer evaluation 

Full pipeline: MolDesigner → pKa / 

BeadExchanger → MD “challenges” → scoring 

22 min 6 s ± 4 

min 32 s 

Throughput (polymer 

evaluations) 
Completed full evaluations per hour 7.69 

Throughput (side-chain 

screens) 

Approximate rate based on parallelized side-

chain sampling 
15.38 

 

 

Supplementary Calculation: Encapsulation-Efficiency (EE) Determination. 

The encapsulation efficiency was determined for each polymer over a series of N/P ratios 

using 50 pmol siRNA per formulation. To compare the experimental results with 

molecular‑dynamics simulations, we calculated an EE value that is not normalised to the 

amount of nitrogen per mole. The procedure is outlined below and illustrated with polymer 

SP as an example. 

1. Definitions 

Symbol Meaning 

EEN/P Encapsulated siRNA (pmol) measured at a 

given N/P ratio 

Amount of P Total phosphate amount in the formulation 

(pmol) 

N per RU Nitrogen atoms per stochastic repeating 

unit (SRU) 

Amount of SRU Total SRUs present in the formulation 

(pmol) 

EEN/P‑value Normalised encapsulation efficiency at a 

specific N/P ratio 
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EE‑value Overall polymer-specific encapsulation 

efficiency 

2. Step‑by‑Step Calculation 

1. Phosphate amount: Amount of P = Amount of siRNA × 52 

2. Total SRUs: Amount of SRU = (N/P × Amount of P) / (N per RU) 

3. EE(N/P) ‑value: EEN/P‑value = (Amount of siRNA / Amount of SRU) × EE(N/P) 

4. Overall EE‑value: EE‑value = (1 / |Z|) Σ EE(N/P),   Z = {1, 3, 5, 7, 9, 12} 

3. Worked Example (Polymer SP) 

Input / Step Value 

N/P 1 

EEN/P 2.989 × 10⁻¹ 

N per RU 4 

Amount of P 50 pmol × 52 = 2.600 × 10³ pmol 

Amount of SRU (1 × 2.600 × 10³) / 4 = 6.50 × 10² pmol 

EEN/P‑value (50 / 650) × 2.989 × 10⁻¹ = 2.299 × 10⁻² 

The above calculation is repeated for each N/P ratio in Z. The six resulting EEN/P‑values 

are then averaged: EE‑value_SP = (1 / 6) Σ EE(N/P) = 1.244 × 10⁻². 
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Chapter VI - Capturing Molecular Motion by Integrating 

MD-Derived Descriptors into Predictive Machine Learning 

Models for RNA delivery 

 

1 Graphical Abstract 

 

2 Abstract  

Drug-delivery vehicle performance is notoriously difficult to predict because successful 

transfection emerges from a multistep, tightly coupled process. Consequently, structure-

transfection models built on static 2D/3D descriptors often generalize poorly, particularly in 

the presence of transfection cliffs and when extrapolating to chemically distinct carriers. 

Here, we use lipo-xenopeptides (LAX), sequence-defined, single-component amphiphiles 

with tunable pH responsiveness, as a representative case study to develop and benchmark 

a dynamics-aware prediction strategy for nucleic-acid delivery materials. We introduce a 

physics-informed machine-learning framework that integrates atomistic molecular dynamics 

(MD) with frame-resolved molecular descriptors to model transfection efficiency, termed 4D 

quantitative structure-transfection relationships (4D-QSTR). We performed all-atom MD 
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simulations for a diverse library of 52 LAX carriers under physiologically relevant protonation 

ensembles at pH 5.0 and 7.4, across three environments representing key delivery 

challenges: behavior in a water-octanol interface as well as RNA- and membrane 

interactions. From each trajectory, we computed 3D RDKit descriptors per frame, 

summarized dynamics using time-windowed means and variances, and then applied 

probability-weighted aggregation across the three most populated charge microstates. 

Across multiple ML models and evaluation settings, 4D-QSTR features derived from 

equilibrated and full-trajectory windows improved rank-based prediction in challenging 

regimes, including chemically diverse splits and transfection-cliff scenarios and in several 

conditions outperformed static 2D/3D baselines. Beyond prediction, frame-wise analysis 

with rolling mean aggregation identified time-localized trajectory segments that maximized 

model performance, enabling mechanistic interrogation of carrier transitions at interfaces, 

within membranes, and near RNA. Together, our results indicate that dynamic, ensemble-

aware descriptors capture delivery-relevant molecular behavior missed by static 

representations and establish a generalizable MD-ML workflow to support more 

explainable, closed-loop discovery and optimization of sequence-defined nucleic-acid 

delivery materials. 

Keywords: 4D-QSTR, molecular dynamics, nucleic acid delivery, machine learning 

3 Introduction 

mRNA therapeutics have gained significant traction in recent years, with multiple approved 

mRNA vaccines5,6,204 on the market. These advances enable prevention and, increasingly, 

treatment of diseases that were difficult to address before. Naked mRNA is rapidly degraded 

and shows limited cellular uptake, which is why efficient delivery systems are essential. 

Lipid nanoparticles (LNPs) are the current clinical standard and have transformed the field, 

yet they also pose challenges such as strict cold-chain storage205, complications with 

repeated dosing206, and notable manufacturing variability.41 

Lipo-xenopeptides (LAX) offer a promising single-component alternative.207 They offer 

strong nucleic-acid condensation, strong membrane interactions required for cellular entry, 

and endosomal escape in just one carrier molecule, uniting the key advantages of which 

commonly only one or another are described for polyplex or lipid systems, respectively.31,208 

Their defined sequence-based structure can be built with precise control via solid-phase 

synthesis, which supports rapid design-make-test-learn cycles and reproducible quality. 
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One of their specific advantages is a pronounced shift in logD between neutral and acidic 

conditions, which confers pH-responsive behavior that promotes extracellular stability and 

endosomal release.31 Molecular properties are readily tunable through precise control of 

molecular weight and the use of exchangeable building blocks. Early studies demonstrated 

efficient RNA delivery across multiple cell lines in vitro and in vivo, positioning these 

materials as a promising carrier class.209 Yet molecular carriers often exhibit complex 

structure-activity relationships, where improving one step of the delivery pathway can 

compromise another.153,210 Achieving the right balance across condensation, protection, 

cellular uptake, endosomal escape, and cargo release remains difficult. 

Machine learning (ML) has a long record of predicting structure-activity relationships for 

small molecules211,212 and is now accelerating drug delivery research through mixture 

optimization60, process optimization213, and carrier discovery191.   

Currently, machine learning models in molecular design are frequently combined with 2D 

or 3D molecular descriptors214,215 that capture structural or physicochemical properties. 

While these approaches offer the advantage of fast computation and are therefore widely 

used in material discovery216, they often lack detailed information about the underlying 

molecular system. As a result, such descriptor-based models tend to identify molecules with 

similar performance profiles, but may underfit more complex structure-function 

relationships, particularly when the patterns in the training data differ from those in the test 

set.154,217 

Molecular dynamics (MD) provide an ideal strategy for generating structured data suitable 

for machine learning frameworks, as they offer highly controlled environments for 

comparing molecular behavior. In the context of nucleic-acid delivery, simulations have 

primarily been employed to elucidate structural organization within lipid nanoparticles218, 

characterize lipid/polymer RNA interactions219–222, and to investigate endosomal escape 

mechanisms223–226. These studies typically rely on extensive and computationally 

demanding all-atom (AA)-, or coarse-grained simulations, the latter of which trade atomistic 

resolution for computational efficiency and may thereby obscure structure activity 

relationships. In small molecule discovery, integrated MD-ML approaches have been 

successfully applied to predict physicochemical properties using simulations227,189 and 

docking data228. Riniker et al introduced a compact AA based framework employing 

integrated MD fingerprints to encode molecular descriptors for predicting free energy 
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differences.227 MD readouts were used by Chew et al as label for comparing different 

formulation encoding methods229, while another work focused on the use of physics-

informed descriptors from MD simulations.230 

A promising different approach is the use of 4D-QSAR, originally proposed by Hopfinger et 

al.231 and subsequently refined by several groups.232–234 Particularly interesting is the work 

of Ash and Fourches235, who computed WHIM68 descriptors, a family of 3D molecular 

descriptors, across molecular-dynamics frames to test whether frame-wise fluctuations 

capture mechanistic signals underlying activity differences. They reported encouraging 

performance in low-data regimes and evidence that incorporating dynamics can mitigate 

activity-cliff effects. 

We posit that extending this frame-aware descriptor strategy to drug-delivery materials 

discovery, especially for nucleic-acid carriers, could be especially impactful for three 

reasons: 

first, the problem is intrinsically data-limited and 4D QSAR is especially powerful in solving 

low-data problems. Second, molecule-efficacy relationships often lack simple, interpretable 

SAR, complicating purely rational design. Therefore, encoding dynamic behavior may 

outperform static encodings, particularly when extrapolating to chemically distinct materials. 

And third, cliff-like transfection efficacy behavior has also been reported for nanocarrier 

material153,210, and the fine-grained temporal/ensemble information from frame-resolved 

descriptors may help attenuate such effects. Systematic evaluation of dynamic, frame-

aware descriptor strategies for nucleic-acid delivery remains unexplored, highlighting the 

need for rigorous benchmarking.   

By expanding computational frameworks originally developed for small-molecule design, 

we advanced this direction toward nucleic-acid delivery by performing AA-MD simulations 

of a diverse library of lipo-xenopeptides (52) as a case study under physiologically relevant 

conditions, pH 5.0 (endosomal) and pH 7.4 (blood or cytosol). Each pH state was explored 

in three different environments relevant for RNA delivery efficiency: at the water-octanol 

(WO-) interface, in proximity to RNA and within a 1-palmitoyl-2-oleoxl-phosphatidylcholin 

(POPC) bilayer membrane. From the resulting trajectories, we extracted representative 

frames to calculate molecular descriptors, which were subsequently evaluated through a 

machine learning framework to assess their predictive power for transfection efficiency. We 

introduce an approach that integrates time-aware dynamic descriptors into drug-delivery 
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prediction to test whether data-driven models can better capture the delivery process. We 

refer to this framework as 4D QSTR (quantitative structure–transfection relationship). 

Beyond LAXs, this integrative workflow establishes a potentially generalizable strategy for 

data-driven optimization of not only peptide-lipid hybrids but also other nucleic acid delivery 

systems. 

 

4 Results and Discussion 

4.1 Molecular Dynamics Simulation for 4D-Descriptor generation. 

A case study comprised of 52 structures, known as LAX31,210 (Scheme VI.1A, B and Table 

VI.S1), was chosen to evaluate the integration of MD-derived descriptors into a machine 

learning framework for predicting transfection efficiency. Leveraging the versatility of MD-

simulations, two physiologically relevant pH conditions representative of RNA delivery 

conditions were examined: pH 5, representing the endosomal milieu and pH 7.4, mimicking 

neutral conditions within the body such as in the blood stream or cytosolic environment. 

Because ionizable lipids, polymers or LAXs can reversibly be protonated depending on pH, 

their charge states vary depending on the environment. To assign accurate protonation 

states at both pH levels, micro pKa values for all protonable groups and population 

distributions were calculated using Schrödinger’s Epik suite236 (Scheme VI.1B). In contrast 

to DFT calculations using Schrödinger’s Jaguar,237 , which were not feasible here due to the 

large molecular size (the smallest LAX contains >235 atoms), we employed Epik for micro-

pKa estimation. Epik, which supports molecules up to 200 atoms accommodates most 

ionizable lipids but not the large LAXs molecules. To address this shortcoming, the carriers 

were fragmented before pKa prediction (Scheme VI.S1). Based on these distributions, the 

three most populated states at each pH were recombined while preserving stereochemistry 

and charge assignments and then subsequently used for MD simulations, yielding 156 

structures (three per carrier) for each pH condition.The pH-dependent simulations were 

performed in different environments representative of those encountered by RNA carrier 

systems during their lifetime (Scheme VI.1C). These included WO-interfaces to probe 

carrier behavior at an interface and during early stages of self-assembly, as well as lipid 

bilayer systems (POPC model membrane) mimicking cell or endosomal membranes. In 

addition, carrier-RNA complexes were simulated to assess carrier behavior during 

formulation and stability in the presence of RNA. Resulting in 3 different environments, that 
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pose as challenge for the carriers. Each system was simulated for 100 ns, a duration chosen 

based on preliminary 150 ns runs of carrier 1611 (state_2_1), which confirmed no change 

in structural stability after 100 ns (Figure VI.S1). This justified reducing simulation time to 

minimize cost across the 936 total simulations performed. To capture dynamic behavior, 3D 

structural states of the carrier molecules (referred to as frames) were extracted from the 

trajectories at defined time intervals using GROMACS tools (Scheme VI.1D). Frames were 

collected in different time windows: initially between 0-40 ns to capture initial 

rearrangements (referred to as start of simulation), at 60-100 ns to represent the 

equilibrated state, and over the full 100 ns trajectory (referred to as whole simulation), to 

generate time resolved data for the calculation of molecular descriptors used to construct 

the 4D descriptor set for the machine learning model. To encode molecular trajectories, we 

computed an extensive set of descriptors for every simulation frame. Unlike prior work235 

that targets a narrow subset of features, we deliberately broadened the descriptor panel to 

capture richer dynamical information. For each descriptor, we summarized temporal 

behavior by the frame-wise mean, reflecting the central tendency of atomic or molecular 

properties across the trajectory, and the frame-wise variance, quantifying the magnitude of 

temporal fluctuations (Scheme VI.1D).To ensure a physically meaningful representation 

across protonation/charge microstates, we further applied an ensemble-weighted 

aggregation over the three most probable charged conformers. Specifically, descriptor 

means were combined using the conformer occurrence probabilities as weights, thereby 

aligning the final representation with the underlying Boltzmann-like population and reducing 

bias from rare or non-representative states. This encoding integrates both time-averaged 

dynamics (mean/variance across frames) and chemical realism (probability-weighted 

conformer ensemble), providing a compact yet expressive feature set for downstream 

modeling 

Scheme VI.1: Schematic illustration of the computational workflow used for integrating molecular dynamics-

derived descriptors in a machine learning model. A) Generation of 52 three-dimensional (.mol) structures from 

two-dimensional (2D) inputs. B) Fragmentation of molecules at defined structural points to generate 3D .mol 

files for suitable pKa predictions using Schrödingers Epik, followed by calculation of micro pKa values for all 

protonable groups at pH 5.0 and 7.4. Carriers were subsequently recombined, while preserving calculated 

charge and protonation assignment, and stereochemistry. C) Molecular dynamics simulation of structures in 

three distinct environments, illustrated by snapshots taken after 100ns from the three different setups of carrier 

1621 D) Extraction of trajectory frames as .mol files representing different stages of the 100 ns simulation. 

Consecutive calculation of RDkit descriptors for each dropped frame, followed by computation of weighted mean 

and standard deviation. Resulting in a 4D QSTR descriptor set for different simulations stages and weighted 

mean 4D QSTR descriptors per frame. E) Comparing 4-QSTR descriptors across simulation stages with 2D and 

3D RDkit baselines using different machine learning models F) Identification of significant events using frame 

wise weighted 4D descriptors during the simulation. 
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4.2 Deterministic vs Weighted Approach in 4D-QSAR Calculations. 

To demonstrate that our approach to compute weighted molecular descriptors outperforms 

the conventional deterministic method using only the top state, we performed a simple 

experiment where descriptor vectors for the top state were compared to a weighted vector 

over the top three states. This analysis was conducted across all simulations, now called 

challenges, and pH conditions. We quantified agreement using Spearman’s correlation 

coefficient between experimental values and predictions from an ExtraTrees model, which 

is recognized for strong out-of-the-box performance on small datasets with high-

dimensional features. The results showed that all weighted vectors had higher Spearman 

values than the deterministic calculation (Figure VI.1). Therefore, for further experiments, 

we choose to use the weighted calculation of our MD derived descriptors. 

 

Figure VI.1: Comparison of the performance of a weighted vs. a deterministically calculated 4D descriptor set 

with Spearman´s p. Means were calculated from frame-wise performance (mean ± SD). 

 

 

4.3 Comparison of 4D-QSAR Descriptors from Different Simulation Segments with 2D 

and 3D Benchmarks 

Following the calculation of the descriptor matrices, they were evaluated within a 

standardized ML pipeline, screening multiple algorithms and selecting the best-performing 

model per feature set. As baselines, we included 2D RDKit descriptors (conventional 

benchmark) and 3D RDKit descriptors (less information-rich 3D reference) to contextualize 

potential gains from our MD-derived representations (Scheme VI.1E). Model comparison 

used 5-fold cross-validation. Because molecular discovery frequently requires extrapolation 
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to chemically distinct structures, we added a chemically diverse split that maximizes train–

test dissimilarity in chemical space. 

A persistent challenge in molecular ML is the presence of cliffs, where, in this specific case, 

minor structural changes lead to large differences in transfection outcomes. We 

hypothesized that a 4D-QSTR-style encoding of dynamics would outperform conventional 

baselines, particularly in extrapolation and cliff scenarios, consistent with prior observations 

in the literature.4,5 

The 2D RDKit baseline achieved higher Spearman correlations (Figure VI.2) than any of 

the more information-rich feature sets, including the 3D baseline, under standard cross-

validation (CV). This aligns with the well-known strength of 2D encoding when train–test 

similarity is high. 239,240 Simpler representations can resist overfitting and avoid incorporating 

simulation noise. Moreover, most datasets, like this one, were historically generated through 

iterative optimization of closely related 2D scaffolds, which inherently favors descriptors that 

capture 2D structural variation. This design bias likely contributes to the consistently strong 

performance of 2D-derived features. However, in more challenging settings, performance 

dropped: for the similarity-constrained split (Chem div) the 2D baseline reached 0.418, and 

for cliff prediction it reached 0.450. The 3D baseline performed similarly in these settings, 

achieving 0.394 and 0.452, respectively. Overall, the early stages of the simulations 

generally showed limited predictive power, whereas descriptors derived from equilibrium 

and full-trajectory windows yielded substantially better results for cliff prediction. For 

example, for the membrane system at pH 5.0, the equilibrium window achieved a Spearman 

correlation above 0.6, and for the WO interface combining both pH conditions, the 

equilibrium Spearman correlation reached 0.667. Interestingly, while the membrane 

performed well at pH 5.0 but not at pH 7.4, the WO interface simulation showed the 

opposite, namely that performance is strong at neutral pH but not at acidic pH. 

For the chemical diversity split, WO pH 7.4 and membrane pH 5.0 again outperformed the 

baselines over the full simulation, with Spearman correlations of 0.576 and 0.540, 

respectively. The strongest performance in the chemical diversity setting was obtained 

when concatenating all descriptor vectors and both pH conditions into a single 

representation, where the full-trajectory model reached a Spearman correlation of 0.636. In 

contrast, combining only the start-window descriptors provided essentially no ranking ability 

(Spearman = 0.006), further underscoring how poorly informed the initial simulation frames 
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are. The consistently strong performance of descriptors aggregated over all vectors and the 

entire simulation suggests that capturing the full temporal and contextual information may 

be critical for achieving robust extrapolation in complex processes such as drug delivery.  

 

Figure VI.2:  Performance of 4D-QSTR descriptors compared with 2D RDKit and 3D RDKit descriptors as 

baselines for different simulations and pH levels, evaluated at different parts of the simulation—start (0–40 ns), 

equilibrium (60–100 ns), and whole (0–100 ns)—as well as a combination of the pH levels per simulation and a 

combination of the pH levels across all simulations. Three different tests: cross-validation (CV), cliffs, and 

chemical diversity (chem_div). 
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We note that the comparatively poor performance observed for the RNA and membrane 

simulations at pH 7.4 may stem from a modeling choice made to keep the simulations 

lightweight where we omitted intermolecular (molecule–molecule) interactions. This 

simplification is defensible because the resulting, unbiased single-molecule representations 

are subsequently mapped to experimental biological data, which can reintroduce contextual 

information during model training. Nonetheless, excluding collective effects can remove 

relevant complexity and thereby obscure aspects of molecular behavior. 

In particular, microenvironment-dependent protonation may differ between isolated 

molecules (as estimated by our EPIK-based calculations) and molecules embedded in 

micellar or nanoparticulate assemblies, where local dielectric properties, ionic strength, and 

neighbor interactions can shift apparent pKa and may result in different molecular behavior. 

31,241 These aggregate-level effects, absent in single-molecule trajectories, could plausibly 

contribute to the lowered predictive performance at pH 7.4 when looking at RNA and 

membrane challenges. 

For the restricted (most diverse) splits, robust analyses (e.g., multiple randomizations of the 

same constraint) were not feasible due to strict splitting conditions. Results should therefore 

be interpreted as single point estimates of achievable performance under the chosen split. 

We consistently observed that full-trajectory setups capture substantially more information, 

which in turn leads to markedly stronger predictive performance. 

Motivated by these findings, we wondered if our approach can be used to spot significant 

events that mainly drive performance and therefore potentially derive findings for the 

mechanisms of nucleic acid delivery. 

 

4.4 Frame-wise 4D-QSTR Descriptor calculation for Identifying Key Time Points in 

MD-Simulations. 

Since the frame-wise means computed for different simulation segments exhibited distinct 

predictive performance (Figure VI.2), we asked whether per-frame ML performance could 

help identify salient molecular behaviors in the simulated environment (Scheme VI.1F). This 

is nontrivial, as meaningful events need not occur at the same absolute timepoint for every 

molecule. To accommodate temporal misalignment, we also computed a rolling mean over 

11 frames, assuming a broad enough timeframe to aggregate information without losing too 
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much individual information and used the trajectory-wide mean as a baseline. Deviations of 

the rolling mean from this baseline were then used to flag significant events, enabling 

detection of transient behaviors that may drive model performance without requiring strict 

synchronization across molecules. 

 

Figure VI.3: Performance of 4D-QSTR descriptors over the 100 ns simulation time. (A) pH 5.0; (B) pH 7.4. 

Shown are the 11-frame rolling mean and the overall mean of the prediction across all frames. One frame 

corresponds to 0.19125 ns. 523 frames were used for descriptor calculation. 

 

Figure VI.3 shows that significant events were detected across all challenges. In 

concordance with low performance for RNA at pH 7.4 in the descriptor screening (Figure 

VI.2), we observed the lowest overall mean Spearman correlation and even excursions 

below zero for this condition. This suggests that the corresponding trajectories carry limited 

information about downstream transfection efficiency. Mechanistically, this is plausible: 

RNA–carrier interactions are typically most pronounced under acidic conditions, whereas 

neutral pH favors disassembly with relatively modest, less informative variation across 

carriers. An additional factor may be the absence of explicit intermolecular (material–

material) interactions in our simulations, as discussed above, which could further attenuate 

the signal at pH 7.4. 
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To probe the link between dynamics and predictivity, we further examined individual 

molecules at the timepoint of peak Spearman correlation (Table VI.1) to assess whether 

distinctive conformational or interaction patterns emerged at these peaks.  This molecule-

level inspection provides qualitative context for the model’s most informative windows and 

guides hypotheses for follow-up simulations.  

 

Table VI.1: Overview of frames and timepoints per simulation environment with the highest Spearman value 

and the carriers that showed the lowest error over the whole trajectory for each simulation 

Environment pH frame time (ns) 

Carrier 

with 

lowest 

error 

Carrier with 

second 

lowest 

error 

Carrier with 

third 

lowest 

error 

WO-Interface 5 202 38.6325 1762 1867 1868 

RNA 5 64 12.2400 1862 1869 1613 

Membrane 5 329 62.9213 1868 1762 1869 

WO-Interface 7 356 68.0850 1762 1858 1755 

RNA 7 298 56.9925 1862 1613 1869 

Membrane 7 210 40.1625 1755 1862 1762 

Subsequently, the three carriers with the lowest overall prediction error were extracted, 

selecting carriers that correlate well with overall predictions and allow potential explainability 

(Table VI.1). To investigate possible key events at the distinct timepoints (Table VI.1), the 

trajectories of carrier 1762 were analyzed at both pH levels (Figure VI.4). Carrier 1762 was 

selected as representative system for WO-interface and membrane simulations, as it 

consistently appeared among the top three performers in the interfacial simulations (Table 

VI.1). Mean square displacement (MSD) was evaluated and plotted (Figure VI.4A, E). 

Because MSD reflects the spatial movement of the carrier during the simulation, it provides 

a noise-reduced measure for interpreting dynamic transitions identified with the frame-wise 

prediction analysis (Figure VI.3, Table VI.1). 

Figure VI.4A shows the MSD of 1762 at the WO-interface for pH 5.0 and pH 7.4. At both 

pH values, the carrier reached a plateau in displacement, indicating that reduced mobility 
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(interfacial pinning) at the interface occurs for both carriers. This plateau appeared earlier 

at pH 5.0, suggesting that the carrier becomes immobilized sooner due to higher 

electrostatic interactions with water. This observation agrees with the time of the highest 

Spearman value occurring sooner for this pH. At pH 7.4, the event occurred later in time but 

followed the same trend. These differences align with the expected interplay of electrostatic 

interactions with the aqueous phase and lipophilic interactions with octanol, which are 

characteristic of the LAX carriers Although the difference between the two pH values is 

modest, the smaller MSD at pH 5.0 indicates slightly stronger interfacial confinement under 

acidic conditions. 

To further visualize this interfacial pinning, density distributions were analyzed at the frame 

of maximum model performance and ±one frame (Δt = 0.191 ns) for both interfacial 

environments (Figure VI.4B, D). A small but distinct shift of the carrier toward the interface 

was evident at the key frame, where the distribution also showed the sharpest and highest 

peak at both pH levels. After this frame, the carrier remained in closer vicinity to the aqueous 

phase for both pH values, suggesting stabilization at the interface. At pH 7.4 this shift 

occurred later and was less pronounced, yet the peak sharpened similarly. These 

observations suggest the possibility of conformers with more information for the model than 

at other timepoints. 

This behavior was supported by the calculation of the area under the curve (AUC) for each 

frame between 4.2 nm and 6.2 nm (roughly the water-octanol interface area) and for the 

whole box (Figure VI.4C), revealing the proportion of the carrier residing in this interface. 

This value increased notably for both pH values, followed by a subsequent incline. The 

carrier with the higher total charge (pH 5.0) was almost residing to 100% in the interfacial 

area. 

Another factor contributing to the carrier’s interaction with the aqueous phase is hydrogen 

bonding. The number of hydrogen bonds (H-bonds) between 1762 and water (Figure VI.4D) 

showed a local minimum preceding the key frame, followed by an increase above the 

simulation average. This pattern could indicate a structural transition, in which carrier 1762 

adopts a conformation with enhanced interfacial interactions, likely one of the configurations 

carrying the highest predictive relevance within the dataset.  
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Figure VI.4: MD trajectory analysis of carrier 1762, one of the systems with the lowest overall prediction errors 

in interfacial simulations, shown for pH 5.0 (red) and pH 7.4 (blue). (A) Mean-square displacement (MSD) of 

carrier 1762 at the water–octanol (WO) interface. (B) Mass-density profiles at the WO-interface at the key frame 

of maximal model performance and at times ±0.191 ns relative to that frame. (C) Percentage of the area under 

the curve (AUC) between 4.2 and 6.2 nm representing carrier enrichment at the WO-interface. (D) Number of 

hydrogen bonds (H-bonds) between carrier 1762 and water over time, including the overall simulation mean. 

(E) MSD of carrier 1762 embedded in a POPC membrane at both pH values. (F) Membrane-spanning density 

profiles of carrier 1762 at the key frame and at times ±0.191 ns relative to that frame. (G) AUC between 5 and 

7 nm quantifying carrier distribution within the membrane leaflet interior. 

(H) AUC at the membrane–water interface (0 nm – 5 nm), indicating transient changes in interfacial localization. 

MSD, H-bonds depict the weighted mean of analysis outputs across simulation time, and weighted mean density 

profiles were computed from coordinate snapshots (.gro) at the indicated frames for carrier 1762 (n = 1). (I) 

Number of hydrogen bonds (H-bonds) between carrier 1762 and water over time, including the overall simulation 

mean. 

 

Carriers embedded in a POPC membrane naturally exhibit more restricted motion than in 

water or octanol; consequently, the MSD values are smaller (Figure VI.4E). At pH 7.4, 

carrier movement increases initially and then reaches a plateau around the key frame, 

suggesting that the carrier has reached a membrane region where it gets trapped. Possibly 

due to interactions with both lipid headgroups of POPC and the aqueous phase. The overall 

MSD is larger than for the pH 5.0 simulation, likely reflecting weaker interactions for the less 

charged carrier. At pH 5.0 a similar confinement event is observed but occurs later in the 

trajectory. 

The corresponding mass density distribution of the carrier 1762 reveals a noticeable shift 

toward the center of the membrane at pH 5.0, indicating potential local perturbation of the 

membrane. (Figure VI.4F). In Contrast, during the pH 7 simulation, the carrier gradually 

migrates toward the membrane–water contact area after the key frame it moves back. 

(Figure VI.4F) As in the WO-interface simulations, the AUC analysis of the mass density 

distribution further highlights these changes. When evaluating the area spanning from 

bilayer midplane (7nm) to the midpoint of a single leaflet (5nm) (Figure VI.4G), a marginal 

increase in carrier density is observed at pH 5.0, which diminishes after 0.191 ns. 

Conversely, for the membrane-water region (Figure VI.4H), the AUC decreases over the 

same interval, suggesting reduced carrier occupancy at the boundary. At pH 7.4, the 

opposite trend is observed. The carrier density decreases within the leaflet interior and 

increases at the interface, consistent with enhanced interfacial location. After the key frame 

the carrier moves back towards the “starting” frame (frame before the key frame) suggesting 

that this movement provides us, like for the WO-interface with conformers with the highest 
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predictive information. This behavior aligns with the notion that increased lipophilic 

interactions at neutral pH strengthens the carrier’s association with the membrane.  

Hydrogen-bond analysis revealed fewer overall H-bonds between carrier 1762 and the 

POPC membrane at pH 7.4 compared to pH 5.0. At the lower pH, the number of H-bonds 

decreased after the key frame, consistent with structural rearrangements occurring in the 

membrane under these conditions. At neutral pH, the number of H-bonds increased after 

the point of maximal model performance and then reached a plateau. 

 

Figure VI.5: MD trajectory analysis of RNA simulations for the 1862 the carrier with the lowest error over the 

whole simulation. (A+B) Weighted mean distance between carrier and RNA. (C) Weighted rolling mean (11-

frame window) of the number of hydrogen bonds (H-bonds) between carrier and RNA. All means are weighted 

by the relative state occurrence within the population at the respective pH. 

 

In both pH conditions for Carrier-RNA interactions, the MSD for 1862, the carrier with the 

lowest overall error for this environment, shows pronounced motion that is not attributable 

to free diffusion; after binding to RNA (Figure VI.5A), a decrease in MSD is visible in both 

curves (Figure VI.4E), followed by a plateau. For both pH values, the frames with the highest 

Spearman’s coefficient occur close to the onset of this plateau phase. Carriers in the vicinity 

of RNA, especially when simulated as single molecules, initially rely mostly on electrostatic 

interactions242 with the negatively charged phosphate groups of RNA. 
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The observed differences are evident in the simulation analyses for 1862 (Figure VI.5B). At 

pH 7.4, carriers required significantly longer to approach RNA compared to pH 5.0. This 

trend is further supported by the hydrogen bond analysis (Figure VI.5C): while the overall 

mean number of hydrogen bonds differs only marginally between the two conditions, a 

distinct increase occurs earlier at pH 5.0 (before 25 ns) than at pH 7.4 (after 50 ns) in 

concordance with the timepoints of the highest Spearman value. These temporal 

differences likely account for the shift in time points of highest Spearman correlation. It could 

also provide a potential explanation for the marked disparity in predicted performance 

between the two pH levels. As noted above, EPIK-predicted protonation states were used 

for pH 7.4 and pH 5.0; however, lipophilic microenvironments can alter effective charge 

states31, and particularly at pH 7.4, the predicted states may not accurately capture the true 

speciation relevant for RNA binding. In contrast, carrier–membrane and WO-interface 

simulations at pH 7.4 yielded comparable performance. Notably, the simple phase model 

(WO-interface) performed remarkably well, in line with experimental data31, highlighting the 

predictive value of simplified models for assessing carrier transfection efficiency. 

Across all three simulation environments, the frames with the highest Spearman 

correlations consistently aligned with major structural transitions in the MD trajectories, 

highlighting the ability of the learned representations to capture physically meaningful 

states.  

 

5 Conclusions 

In our study on integrating MD simulations into a ML framework for predicting the 

transfection efficiency of LAX, we show that MD-derived descriptors can meaningfully 

predict performance, especially in settings where conventional featurization struggles. We 

further demonstrate how MD and ML can be combined to enhance explainability by 

proposing a workflow that highlights time-localized, mechanistically relevant events along 

the delivery pathway.  

As this is, to our knowledge, the first demonstration of such observations in this context, 

several limitations warrant attention. First, the absence of explicit molecule-molecule 

interactions may discard information that could improve predictive power, for example 

influence on the micro pKa values, or phase-behavior. Future work needs to carefully 
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balance computational cost and information gain. Second, broader data coverage is 

essential. Expanding beyond a single case study to additional carriers, cell lines and cargo 

and incorporate additional simulations that further reflect the delivery process. 

Looking ahead, we envision a closed-loop platform that integrates MD-informed descriptors 

with multi-objective ML optimization coupled to automated synthesis and formulation. Such 

a system could prioritize informative experiments via active learning, map structure–activity 

with time-resolved attributions and iterate rapidly toward candidates with improved 

performance and tolerability. Together, these advances would move the field toward self-

driving discovery for nanocarriers and accelerate the development of lipo-xenopeptide-

based delivery systems for new applications. 

6 Materials and Methods  

6.1 Micro pKa determination with EPIK 

Starting from two-dimensional structures of lipid tails and headgroups (PCD) (Scheme VI.S1 

for division convention), these were embedded as 3D-mol files and converted into 

Schrödinger input files for micro-pKa calculations using Schrödinger’s (version 2025-1) Epik 

software (version 7.1).236 pKa values were determined using a pH threshold of 1, upper and 

lower charge level windows of + 10 and – 10, and a maximum of 10 population states per 

molecule at the pH. A report for each structure was generated. Afterwards 3D mol files with 

correct stereochemistry of the different protonated populations were built with RDkit243 and 

an inhouse script. The top three states per pH value and carrier, i.e. the carrier population 

with the highest percentages at this pH, were selected. This resulted in 153 structures per 

pH value, which were subsequently used for parametrization and molecular dynamics 

simulation as described below. 

6.2 Parametrization 

3D Mol files from the previous step were changed with Open Babel to mol2 files. The 

molecules were then parametrized with AmberTools23.244 Partial charges were calculated 

via the Gasteiger method, to reduce computational cost, GAFF2 was used as a forcefield 

for the carriers, as well as for octanol. Since molecules were compared to each other, the 

minor loss in accuracy associated with the Gasteiger charge model was considered 

negligible. These parameters were then processed with Parmchk2 and topologies and PDB 

files were obtained using the tleap program. Finally, the PDB and topology files were 
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converted into GROMACS input files using the Python library ParmEd and an in-house 

script. 

6.3 Molecular Dynamics Simulation (MDS) 

All molecular dynamics (MD) simulations were performed with GROMACS 2022.3245–247 at 

298.15 K and 1 atm. Temperature and pressure control were applied using combinations of 

the Nose–Hoover, V-rescale, C-rescale, Berendsen, and Parrinello–Rahman algorithms as 

specified for each system. Energy minimization was conducted stepwise for 50,000 steps, 

followed by short NVT and NPT equilibrations and 100 ns production runs. Electrostatics 

were treated with the Particle Mesh Ewald (PME) method and cutoff distances of 1.2 nm (or 

0.9 nm for membrane systems). Lennard–Jones interactions used a force-switch scheme 

between 1.0 – 1.2 nm (or 0.9 nm cutoff for membrane systems). Dispersion corrections for 

energy and pressure were disabled unless stated otherwise. LINCS constraints were 

applied to all bonds involving hydrogen atoms, center-of-mass motion removal was 

disabled, and all integrations used the leap-frog algorithm. To minimize storage demands, 

water-molecules were excluded from the trajectory (xtc) output file for the Carrier-RNA and 

Carrier-Membrane simulations. 

6.3.1 Carrier in vacuum 

To assess carrier behavior in the absence of solvent, additional vacuum simulations were 

performed under NVT conditions. The same electrostatics and non-bonded settings were 

applied as in solvated systems, while center-of-mass motion was removed every 2 ps. Each 

system was equilibrated before a 5 ns production run (dt = 2 fs). 

6.3.2 Carrier in Water–Octanol Interface 

The water–octanol interface was prepared following the GROMACS tutorial248 for biphasic 

systems. Carriers were placed in a 5 × 5 × 10 nm box, solvated with a pre-equilibrated 10 

ns octanol layer, and subsequently with TIP3P water. Systems were neutralized according 

to their total charge. Equilibration consisted of 0.2 ns NVT (Nose–Hoover thermostat) during 

which carriers were pulled into the octanol layer with constant force, followed by 1.5 ns NPT 

(C-rescale barostat) with positional restraints on the carriers. Production simulations of 100 

ns NPT (V-rescale thermostat, Parrinello–Rahman barostat) were then performed. 

6.3.3 Carrier-RNA Systems 

Model mRNA was built using Schrödinger’s Maestro Suite, and a short fragment (40 bp, 

Table VI.S3) was parametrized with AmberTools23 using the Amber nucleic acid force field. 
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Files were converted to GROMACS input with ParmEd. RNA was positioned in the center 

of a 10 nm cubic box and restrained throughout the simulation. Carriers were placed at (2.5, 

2.5, 7.5 nm) to ensure identical starting conditions. After solvation and neutralization, 

systems underwent energy minimization, 0.2 ns NVT, and NPT equilibration (with 

restraints), followed by 100 ns NPT production using the same parameters as for the water–

octanol systems, but with restraints on the RNA for equal conditions. 

6.3.4 Carrier– POPC Membrane Systems 

A POPC bilayer containing 100 lipids per leaflet was built using CHARMM-GUI membrane 

Builder249 and parametrized with the Lipid21 force field. The membrane was pre-equilibrated 

for 100 ns before carrier insertion. Systems were assembled in an 8.2 × 8.2 × 14 nm box, 

solvated, neutralized, and adjusted to 0.15 M NaCl. After energy minimization, a 125 ps 

NVT equilibration (V-rescale thermostat) was followed by a 125 ps NVT run in which carriers 

were pulled into the membrane center (Nose–Hoover thermostat). Subsequent 1.25 ns NPT 

(Berendsen barostat, grouped V-rescale thermostats) and 10 ns NPT (C-rescale barostat) 

equilibration phases allowed membrane relaxation. Production runs of 100 ns NPT followed 

with PME electrostatics and dispersion correction enabled. 

6.3.5 Analysis 

All simulations were run for 100 ns. After completion, carriers were centered and three 

segments from the trajectories were selected for frame extraction: the initial phase (0–40 

ns, frames), the equilibrated phase (60–100 ns, frames), and the entire simulation (0–100 

ns, frames). For each segment, .gro files were saved at defined time intervals. The resulting 

.gro files were converted to mol format using Open Babel, and molecular descriptors were 

calculated with RDKit via an in-house Python script. To conserve disk space, water 

molecules were excluded from trajectory outputs in RNA and membrane simulations. All 

simulations were performed once per system; subsequent statistical analysis was based on 

frame sampling as described above. For visualization of trajectory snapshots VMD 2250 was 

used. Mean Square Displacement (MSD) was calculated via GROMACS, then weighed, 

based on the percentage of occurrence at this pH and the mean calculated via an inhouse 

Python script. Density distributions were calculated per frame and state via GROMACs and 

then the weighted mean was calculated as well. GraphPad Prism (GraphPad Software, La 

Jolla, USA, v. 10.6.1) was used to calculate overall mean of hydrogen bonds and area under 

the curve for density distributions. Affinity Designer 218.2 (version 2.5.7, Serif Ltd., West 

Bridgford, UK), and GraphPad Prism were used for visualization.  
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6.4 Carrier Encoding and Feature Generation 

To featurize the molecular dynamics (MD) trajectories, each carrier was represented using 

a comprehensive set of molecular descriptors. To ensure that spatial and geometric 

information was preserved, we employed descriptor families that explicitly encode 3D 

molecular structure, including WHIM, GETAWAY, and related geometrical indices. 

Descriptor computation was performed using the RDKit cheminformatics library (version 

2024.9.1). 

For each frame of every trajectory, a total of molecular 984 descriptors were calculated. 

Subsequently, the mean and standard deviation across all frames were determined, yielding 

1968 aggregated features per molecule. Descriptor calculation was performed 

independently for all simulation types (WO-Interface, RNA, membrane) and at two pH 

values (5 and 7.4). 

To account for conformational variability and protonation effects, the three most probable 

protonation states were extracted for each pH condition. Descriptors of these states were 

weighted according to their relative population probabilities, resulting in a weighted 

descriptor vector per pH value. For benchmarking, a deterministic encoding using only the 

most likely state was also evaluated. 

To capture both environment- and pH-dependent behavior, combined descriptor vectors 

were constructed: pH-combined vectors, concatenating pH 5.0 and 7.4 features. 

Simulation-combined vectors, merging descriptors across all simulation types to evaluate 

whether integrated environmental information improves model performance. 

As a computationally lighter baseline, 2D molecular descriptors were also generated for 

each carrier. Furthermore, to benchmark trajectory-derived features against static molecular 

representations, 3D descriptors of the unprotonated, energy-minimized vacuum structure 

were computed using RDKit (see Section Molecular Dynamics Simulation (MDS)). 

Descriptor sets were prepared for three temporal segments of each trajectory: start phase, 

Equilibrium phase, whole simulation. 

This multi-scale encoding strategy was designed to capture both transient and equilibrium 

structural features relevant to carrier performance. 
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6.5 Model Selection and Feature Comparison 

A model zoo comprising 13 different regression algorithms (Table S2) was used to 

systematically benchmark predictive performance across descriptor types. Prior to training, 

all feature sets were standardized using a StandardScaler (scikit-learn v.1.6.1). 

Transfection efficiency labels were log-transformed to normalize their distribution. Models 

were evaluated under three complementary data-splitting strategies: 5-fold cross-validation 

(CV) for generalization performance, chemical diversity splits to test extrapolation to novel 

chemotypes, and transfection-cliff splits to probe model sensitivity to steep response 

changes. Given that relative performance trends are often more informative than absolute 

numeric agreement, spearman rank correlation between predicted and experimental values 

was used as the primary evaluation metric. 

6.6 Single-Frame Descriptor Analysis 

To investigate temporal patterns within the trajectories, frame-wise descriptor sets were 

generated for every simulation frame and protonation state. For each frame, both weighted 

and deterministic protonation encodings were computed, and models were evaluated using 

5-fold CV. For every simulation type, pH value, and frame index, the Spearman correlation 

coefficient between predicted and experimental activities was calculated. To smoothen 

short-term fluctuations, a rolling mean over 11 consecutive frames was applied. Local 

maxima in these smoothened correlation profiles were interpreted as potential dynamically 

relevant events.  

7 Conflicts of interest 

O.M. is a consultant for PARI Pharma GmbH, Boehringer-Ingelheim International, and 

AbbVie Deutschland GmbH on unrelated projects. O.M. is advisory board member for 

Coriolis Pharma GmbH, Corden Pharma GmbH, and AMW GmbH. O.M., and B.W., have 

equity interests in RNhale GmbH.  

8 Acknowledgments 

O.M. gratefully acknowledges funding from the DFG (Project 516634310) and ERC (ERC-

2022-COG-101088587).  

This work was supported through the Leibniz Supercomputing Centre in the framework of 

the project AVOCADO2 to B.W. 



225 
 

9 Statement for the use of LLMs  

During the preparation of this manuscript the authors used ChatGPT to improve readability 

and language. The text was reviewed afterwards, and the authors take full responsibility for 

the content of the publication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



226 
 

10 Supplementary Information 

Materials. CleanCap FLuc mRNA (5moU) was obtained from TriLink BioTechnologies, San 

Diego, CA, USA. Murine neuroblastoma cell line Neuro2a (N2a) was purchased from the 

American Type Culture Collection, ATCC, Manassas, VA, USA. The human cervix 

carcinoma cell line (HeLa) was obtained from the German Collection of Microorganisms and 

Cell Cultures GmbH, DSMZ, Braunschweig, Germany. The human embryonic kidney cells 

(HEK-293T)…. Dulbecco’s Modified Eagle’s Medium (DMEM) low glucose with sodium 

bicarbonate, sodium pyruvate and L-glutamine, and fetal bovine serum (FBS) were 

purchased from Sigma-Aldrich, St. Louis, MO, USA. Penicillin-streptomycin (10,000 U/mL; 

10 mg/mL) and trypsin/EDTA 10× were purchased from PAN-Biotech GmbH, Aidenbach, 

Germany. Luciferase Cell Culture Lysis 5× reagent and beetle luciferin sodium salt were 

obtained from Promega, Madison, WI, USA, and ATP from Roche Diagnostics, Mannheim, 

Germany. Coenzyme A trilithium salt, DL-dithiothreitol, and glycylglycine were purchased 

from Sigma-Aldrich, St. Louis, MO, USA. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-

tetrazolium bromide (MTT) was purchased from Carl Roth, Karlsruhe, Germany. Dimethyl 

sulfoxide (DMSO) was obtained from Fisherscientific, Loughborough, UK. D(+)-Glucose 1-

hydrate was purchased from Applichem, Darmstadt, Germany. Ethylenediaminetetraacetic 

acid (EDTA) disodium salt dihydrate was purchased from Merck, Darmstadt, Germany. 4-

(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) was purchased from BIOMOL 

GmbH, Hamburg, Germany. 

Particle formation. The FLuc-mRNA was diluted in HBG (20 mmol/L of HEPES, 5% (w/v) 

glucose, pH 7.4) to a concentration of 25 μg/mL. LAF-XP carriers were diluted in purified 

water to appropriate concentrations for calculated N/P (nitrogen/phosphate) ratios under 

consideration of all primary, secondary, and tertiary amines except the tertiary amine within 

the N-(trifluoroethyl)iminodiacetyl (TFE-IDA). (Table VI.S1) Particles were formed by mixing 

equal volumes of mRNA dilution and LAF dilution via rapid pipetting, followed by 40 min 

incubation at RT yielding a final mRNA concentration of 12.5 μg/mL. 

Cell culture. The murine neuroblastoma cell line Neuro2A (N2a), the human cervix 

carcinoma cell line (HeLa) and the human embryonic kidney cells (HEK-293T) were cultured 

in Dulbecco’s Modified Eagle’s Medium (DMEM)-low glucose (1 g/L glucose) containing L-

glutamine, sodium bicarbonate and sodium pyruvate supplemented with 10% FBS, 
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100 U/mL of penicillin, and 100 μg/mL of streptomycin. Cells were cultured at 37 °C and 5% 

CO2 at a relative humidity of 95%. 

Luciferase expression assay. One day prior to transfection, 10,000 cell/well in case of 

N2a and HEK-293T cells and 5000 cells/well in case of HeLa cells were seeded in 96-well 

plates. Shortly before the transfection, cell culture medium was replaced by 99 µL fresh 

medium supplemented with 10% FBS. LAF-XP polyplexes were formed as described above 

(12.5 µg/mL mRNA-FLuc) and transfected at a dose of 12.5 ng mRNA-FLuc per well. HBG 

buffer (1 µL) was used as negative control. After incubation at 37 °C for 24 h, the medium 

was removed, cells were lysed with 100 μL of cell culture 0.5× lysis buffer, and frozen at 

−80 °C overnight. Prior to measurement, plates were thawed (1 h, RT, 25 rpm) on a rocking 

shaker. Cell lysates were 1:100 diluted in PBS and mixed thoroughly. Luciferase activity in 

35 µL of diluted lysate was measured with a Centro LB 960 microplate luminometer 

(Berthold Technologies, Bad Wildbad, Germany) after addition of 100 μL LAR buffer 

(20 mmol/L glycylglycine, 1 mmol/L MgCl2, 0.1 mmol/L EDTA, 3.3 mmol/L dithiothreitol, 

0.55 mmol/L adenosine 5′-triphosphate, 0.27 mmol/L coenzyme A, pH 8.0 - 8.5) 

supplemented with 5% (v/v) of a mixture of 10 mmol/L luciferin-sodium and 29 mmol/L 

glycylglycine with a measurement duration of 10 s. Transfection efficiency was calculated 

as relative light units (RLU) per seeded number of cells per well after background 

subtraction (i.e., RLU values of HBG-treated cells). Experiments were carried out in 

triplicates. 
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Table VI.S1: Amines in lipo-xenopeptides. As well as used N/P, molecular weight  

ID-number 
MW  

free base 

MW HCl salt  

(36,5 g/mol per HCl) 
N/P 

counted amines/ 

oligomer 

1611 1501.42 1720.42 18 6 

1613 2585.29 2840.79 24 7 

1621 2136.44 2391.94 24 7 

1719 2984.89 3386.39 12 11 

1730 2407.85 2772.85 12 10 

1745 2536.03 2937.53 12 11 

1746 1277.02 1496.02 18 6 

1752 2360.92 2616.42 24 7 

1753 2809.79 3065.29 24 7 

1754 2473.15 2728.65 24 7 

1755 2697.57 2953.07 24 7 

1758 2760.46 3161.96 12 11 

1759 3209.33 3610.83 12 11 

1760 2872.68 3274.18 12 11 

1761 3097.11 3498.61 12 11 

1762 2360.92 2616.42 24 7 

1763 1389.24 1608.24 18 6 

1764 1613.67 1832.67 18 6 

1765 1445.35 1664.35 18 6 

1766 1557.56 1776.56 18 6 

1791 2369.01 2624.51 24 7 

1792 2603.06 2858.56 24 7 

1793 2333.1 2588.60 24 7 

1794 2531.23 2786.73 24 7 

1813 2094.41 2349.91 24 7 

1814 2318.84 2574.34 24 7 

1816 2928.79 3330.29 12 11 

1821 1968.48 2187.48 18 6 

1822 1896.66 2115.66 18 6 
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1823 2640.21 3005.21 12 10 

1824 2874.26 3239.26 12 10 

1825 2604.03 2969.03 12 10 

1826 2802.43 3167.43 12 10 

1827 1473.4 1692.40 18 6 

1840 1543.54 1762.54 18 6 

1841 1583.6 1802.60 18 6 

1842 1517.45 1736.45 18 6 

1843 1555.55 1774.55 18 6 

1844 1458.39 1640.89 18 5 

1845 1500.47 1682.97 18 5 

1858 3069.06 3470.56 12 11 

1859 3149.19 3550.69 12 11 

1860 3016.89 3418.39 12 11 

1861 3093.08 3494.58 12 11 

1862 2898.76 3227.26 12 9 

1863 2982.92 3311.42 12 9 

1864 2403 2658.50 24 7 

1865 2443.07 2698.57 24 7 

1867 2415.01 2670.51 24 7 

1868 2317.85 2536.85 24 6 

1869 2359.93 2578.93 24 6 

1888 1598.49 1817.49 18 6 

1909 2457.96 2713.46 24 7 

 

 

 

 

 

 

 

Scheme VI.S1: Carrier structure and fragmentation for pKa calculation. A) Building blocks for all carriers 

simulated. B) Different topologies found in the dataset build out of the building blocks. C) Fragmentation for pKa 

calculation shown on 1621. 
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Figure VI.S1: Root Mean Square displacement (RMSD) of 1611 at pH 5 in different simulation setups over 

150ns. (A) Shows RMSD over time for the three simulation environments while also showing the different parts 

of interest of the simulation (B) Standard deviation of the RMSD in the different time intervals. (n = 1) 

 

 

Table VI.S2: Models used in the model zoo with respective hyperparameter and the python library they were 

imported from 

Model Name Key Hyperparameters Library 

DummyMean strategy = "mean" scikit-learn 

(sklearn.dummy) 

Linear default parameters scikit-learn 

(sklearn.linear_model) 

Ridge alpha = 1.0, random_state 

= 42 

scikit-learn 

(sklearn.linear_model) 
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Lasso alpha = 1e-3, max_iter = 

5000, random_state = 42 

scikit-learn 

(sklearn.linear_model) 

ElasticNet alpha = 1e-3, l1_ratio = 0.5, 

max_iter = 50000, 

random_state = 42 

scikit-learn 

(sklearn.linear_model) 

KNN n_neighbors = 7 scikit-learn 

(sklearn.neighbors) 

SVR C = 10.0, gamma = "scale", 

epsilon = 0.1 

scikit-learn (sklearn.svm) 

RandomForest n_estimators = 300, n_jobs 

= -1, random_state = 42 

scikit-learn 

(sklearn.ensemble) 

ExtraTrees n_estimators = 400, n_jobs 

= -1, random_state = 42 

scikit-learn 

(sklearn.ensemble) 

GradientBoosting default parameters, 

random_state = 42 

scikit-learn 

(sklearn.ensemble) 

MLP hidden_layer_sizes = 

(256,128), activation = 

'relu', alpha = 1e-4, 

learning_rate_init = 1e-3, 

max_iter = 500 

scikit-learn 

(sklearn.neural_network) 

XGB n_estimators = 600, 

max_depth = 6, 

learning_rate = 0.05, 

subsample = 0.8, 

colsample_bytree = 0.8, 

reg_lambda = 1.0, 

tree_method = 'hist', 

random_state = 42 

xgboost 
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LGBM n_estimators = 1000, 

num_leaves = 63, 

learning_rate = 0.05, 

subsample = 0.8, 

colsample_bytree = 0.8, 

reg_lambda = 1.0, 

random_state = 42 

lightgbm 

 

Table VI.S3.- Sequenz of the mRNA part containing 40 Bases 

5´GACGGCAACAUCCUGGGGCACAAGCUGGAGUACAACUACA3´ 
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Chapter VII - Meta-Learning as a Promising Strategy for 

Lipid Nanoparticle Optimization and Ionizable Lipid 

Discovery 

 

1 Abstract 

The rapid expansion of LNP based RNA therapeutics has created an urgent need for 

predictive tools that can accelerate the design of formulations and novel lipid compounds. 

However, formulation development remains challenging due to complex, multistep delivery 

mechanisms and the scarcity of high-quality experimental data. Conventional machine-

learning approaches often struggle to extrapolate to new chemical scaffolds, cargos, and 

cell types. Here, we explore few-shot meta learning (FSL) as a strategy to overcome data 

scarcity in early-stage LNP development. Using a recently published dataset on lipid-based 

delivery systems, we created chemically, and contextually coherent meta-learning tasks 

based on data provenance and formulation conditions. Several FSL algorithms were 

benchmarked against supervised baselines using both Morgan fingerprints and graph-

based encodings. To emulate challenging extrapolation, all siRNA-related data were 

withheld during meta-training and used solely for testing. Model-agnostic meta-learning 

(MAML) substantially outperformed conventional supervised and transfer-learning 

baselines, achieving an average R² of 0.38 ± 0.049 for siRNA delivery, compared with near-

zero performance for non-meta models. In a retrospective active-learning simulation, meta-

trained models identified high-performing candidates within the first acquisition rounds, 

achieving markedly higher hit rates and enrichment factors than random forest and random 

selection baselines. To validate these findings experimentally, we synthesized 15 new 

ionizable lipids and generated in vitro transfection data across multiple cell lines and RNA 

cargos. Despite the very small dataset, MAML achieved superior predictive performance to 

RF across all settings, including Pearson correlations up to 0.63 for siRNA delivery. 

Together, these results demonstrate that FSL provides a powerful and generalizable 

framework for guiding formulation design in data-limited environments, enabling faster and 

more informed exploration of the RNA delivery design space. 

Keywords: Lipids, Meta Learning, Few-Shot Learning, Machine Learning, Lipid 

Nanoparticle 
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2 Main 

The field of RNA therapeutics has expanded rapidly in recent years, transforming from a 

niche research area into a cornerstone of modern drug development. Pioneering approvals 

such as the mRNA vaccines Comirnaty (Pfizer-BioNTech) and Spikevax (Moderna), and 

siRNA drugs including Onpattro, Givlaari, and Oxlumo (Alnylam Pharmaceuticals), have 

demonstrated the therapeutic potential of RNA across infectious, genetic, and metabolic 

diseases251,252. 

A major contributor to this progress is the advancement of lipid nanoparticle (LNP) 

technology, which protects fragile RNA from degradation and enables efficient delivery to 

target tissues. Building on the clinical success of LNP mRNA vaccines during the COVID-

19 pandemic5,6, LNPs have become the leading non-viral platform for mRNA delivery, with 

ongoing expansion to other RNA modalities. Compared with viral vectors, whose translation 

can be limited by immunogenicity, toxicity, manufacturing complexity, and payload 

constraints14,253, LNPs offer synthetic tunability, favorable biocompatibility, and scalable 

production via microfluidic-mixing methods254,255. An LNP typically comprises four to five 

lipid components: an ionizable lipid, phospholipid, cholesterol, and PEG-lipid, occasionally 

supplemented by a targeting lipid30. Each component serves a distinct physicochemical 

function, but the ionizable lipid plays the dominant role in RNA encapsulation, endosomal 

escape, and delivery efficiency33. Over the past decade, thousands of ionizable lipid 

structures have been synthesized and screened, and high-throughput (HT) formulation and 

testing platforms have been developed to accelerate discovery256–258. Nevertheless, LNP 

optimization remains a high-dimensional, multi-parameter problem, where optimal 

performance depends not only on chemical composition but also on RNA type259, target 

tissue42 and mixing conditions255. 

The wide spread use of artificial intelligence (AI) and machine learning (ML) provides 

powerful strategies to navigate this complex formulation landscape. ML models have 

successfully been applied to predict encapsulation efficiency260, particle size261, cell 

selectivity262, and in vitro transfection performance from experimental data128,263. Existing 

approaches generally fall into two categories: (i) high-throughput screening (HTS) + ML 

integration, where large, well-controlled datasets are used for model training92,256,264. 

Although robust, these approaches are often resource- and material-intensive. Or (ii) data 
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aggregation from literature, where information from multiple studies is merged to expand 

the accessible chemical space. While inexpensive, this strategy introduces heterogeneous 

data quality, experimental bias, and domain noise, which can compromise 

generalizability265,266. 

 

Moreover, most conventional ML models are limited by their inability to extrapolate to new 

chemical scaffolds, tissue types, or RNA cargo scenarios that inherently suffer from data 

scarcity154,240,267. 

Transfer learning (TL) has been proposed to reuse prior knowledge from related tasks, e.g., 

leveraging models trained on large molecular datasets to fine-tune predictions for specific 

targets71,72. However, in molecular ML applications, TL frequently faces complex case-to-

case differences, making its implementation quite cumbersome268.  

An alternative paradigm, few-shot learning (FSL), directly addresses data scarcity by 

teaching models to learn new tasks from only a few labeled examples269. Rather than 

focusing on single prediction tasks, FSL trains on distributions of tasks, enabling rapid 

adaptation to novel conditions. FSL has already demonstrated promise in drug discovery, 

where it has improved small-molecule activity prediction270, drug-target interaction 

modeling271, and ADMET property estimation272. Despite these advances, no studies to date 

have explored FSL for drug-delivery optimization, even though formulation research often 

faces the same low-data challenges. 

In this proof-of-concept study, we explore the feasibility of few-shot learning for the early-

stage development of novel ionizable lipids. Specifically, we: (i) benchmark multiple FSL 

algorithms and molecular featurization strategies to simulate extrapolation to unseen 

cargos; (ii) investigate a meta-trained model within a retrospective active-learning 

framework, assessing whether it can guide formulation decisions for a held-out RNA cargo; 

and (iii) validate experimentally by synthesizing a library of 15 ionizable lipids and testing 

their performance across multiple cell types and RNA cargos.  

We hypothesize that few-shot learning can leverage shared latent representations of 

molecular and formulation descriptors to generalize across different LNP compositions and 

biological contexts, thereby accelerating the design-make-test-learn cycle for RNA 
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therapeutics. Here, we provide a reproducible framework for AI-guided formulation design 

in data-scarce regimes. 

We employed a recently published dataset on lipid-based delivery systems for model 

development and evaluation264. In the corresponding study, the authors used historical data 

to design novel lipids and reported promising outcomes. However, we argue that the design 

of entirely new formulations for previously unseen cargo types or cell lines is difficult when 

relying on datasets that do not include such variations. Nevertheless, such datasets can still 

be valuable for enabling a model to meta-learn transferable knowledge, allowing it to rapidly 

extract useful information from related challenges even when only limited new data is 

available. 

 

To demonstrate this concept, we divided the datasets into tasks in two steps. First, the data 

were split according to their source to ensure that each task contained data originating from 

the same source, thereby avoiding potential biases introduced by merging data from 

different origins. Second, the data were partitioned by a defined criterion to ensure that each 

task comprised only comparable data within itself. Additionally, a label-based binning-

splitting approach was used to ensure the same label distribution in support and query set 

(Figure VII.1A). Subsequently, we compared several few-shot learning (FSL) algorithms 

with classical supervised learning models (Figure VII.1B). Because molecular featurization 

has a major influence on model performance in both conventional and meta-learning 

settings, we evaluated two different molecular encodings: a bit-vector representation based 

on Morgan fingerprints, and a learnable graph-based embedding similar to the one used in 

the original dataset’s publication. To emulate a challenging extrapolation task, all siRNA-

related data were excluded from the training set and reserved as a holdout test set. Model 

robustness was further assessed using a random seed strategy that redistributed the data 

into different support-query splits. 
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Figure VII.1: A) Schematic overview of data preparation. Full data was grouped into source-related subsets and 

further grouped into tasks suitable for meta-learning. Tasks were discretized for proper support-query splits. B) 

Overview over the experiments used to test the potential of cargo holdout by 1) model screening and 2) active 

learning.  
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As expected, the supervised baseline models trained only on the meta-training data without 

further fine-tuning showed no meaningful generalization for the unseen cargo, resulting in 

R² values close to zero (Figure VII.2A). After fine-tuning on the support set, the performance 

improved slightly, reaching mean R² values of 0.046 ± 0.028 for the fingerprint 

representation and 0.078 ± 0.021 for the graph-based encoding. In contrast, all few-shot 

models achieved substantially higher performance. The model based on model-agnostic 

meta-learning (MAML) performed best, yielding an average R² of 0.38 ± 0.049 for the 

fingerprint features. Interestingly, the graph-based version performed slightly worse, with R² 

values of 0.28 ± 0.16 for MAML and 0.29 ± 0.15 for first-order MAML (FoMAML). This result 

was unexpected, as graph-based encodings are generally assumed to be more 

expressive273. A plausible explanation is that the higher parameterization and complexity of 

the graph models led to reduced robustness in this low-data regime, which is also reflected 

in the larger performance variance. 

 

In molecular discovery workflows, algorithms are often used to prioritize new candidates for 

experimental testing. This strategy, known as active learning (AL), leverages model 

predictions to guide data acquisition60,274–276. To investigate whether few-shot learning could 

also be beneficial in this context, we applied the meta-trained MAML model from the 

previous experiment in an AL-like simulation. The holdout siRNA dataset was again used 

but restricted to samples matching the criterion 

“Whitehead_siRNA_whitehead_lipidoid_generic_cell_nan_in_vitro” to simulate realistic 

laboratory conditions, where data typically originate from one research group and one cell 

line. To keep the setup straightforward, the top 5 % of samples were defined as hits, and a 

greedy acquisition strategy was applied, where the model iteratively selected the candidate 

with the highest predicted performance. Although batch selection is common in practice, we 

opted for batch-1 acquisition here to control for batch effects and to evaluate the intrinsic 

ranking ability of each method on identical, incremental updates. For benchmarking, we 

compared the results to random selection and to a random forest (RF) model, which is often 

used in small-data and active learning settings277,278. All molecules were encoded as 

Morgan fingerprints, as this representation had shown superior stability in our previous 
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experiments. The initial training set was constructed using a centroid-based sampling 

approach to ensure broad coverage of the feature space. 

 

Across 100 simulated acquisition iterations, the MAML model consistently demonstrated 

strong early hit detection, identifying four of the top five hits within the first few iterations 

(Figure VII.2B). The RF model also detected one hit early on but failed to discover additional 

high-performing candidates, while random selection eventually surpassed RF performance. 

This suggests that the RF model struggled to capture the biological context underlying the 

structure-activity relationships. Overall, the MAML-based strategy identified 36 out of 59 

possible hits, compared with only 3 hits for RF and 5 hits for random selection. To further 

assess the ability of meta-learned models to guide early formulation optimization, we 

compared the performance of the MAML model to the RF baseline across several active-

learning-related metrics sampled at iteration 5 to monitor early discovery (Figure VII.2C). 

Overall, MAML clearly outperformed the RF baseline in all evaluated criteria. The hit rate 

(Hit@k) and enrichment factor (EF@k) of MAML were four times higher than those of RF, 

indicating a substantially improved capability to identify high-performing formulations among 

the top-ranked candidates. Similarly, the best-so-far@k score was higher for MAML (4.18 

vs. 2.91), confirming that the meta-learned model more consistently selected top-yielding 

formulations during the iterative search. In addition, MAML achieved a markedly lower 

simple regret (0.36 vs. 1.63), demonstrating faster convergence towards optimal 

formulations. The corresponding yield@k further supports this trend, with MAML producing 

roughly an order-of-magnitude higher mean yield compared to the RF baseline (3.17 vs. 

0.18). These results highlight the advantage of few-shot meta-learning in guiding candidate 

selection under limited-data conditions, especially in the early stages. 
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Figure VII.2: Results of the siRNA holdout experiments A) Model comparison of different few-shot algorithms 

(FoMAML, MAML, mSGD), supervised ANN (supervised_noFT) and a transfer learning ANN (supervised_FT) 

ranked by R2 value. B) Active Learning of the MAML meta model compared to RandomForrest (RF) and 

Random Picking baselines. C) Active Learning comparison of MAML and RF at round 5.  
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To validate our meta-learning approach, we synthesized a small library of 15 new ionizable 

lipids (Supplementary Table VII.1) and formulated corresponding LNPs for siRNA and 

mRNA delivery. Acrylates were first obtained by esterification of the respective alcohols with 

acryloyl chloride and subsequently reacted with polyamine head groups via a solvent-free 

aza-Michael reaction (Figure VII.3). Conversion rates were characterized via 1H NMR 

(Figure VII.S4 – VII.S24) and final lipid structures were confirmed via MS ESI 

(Supplementary Table VII.1). The resulting crude lipids were formulated with cholesterol, 

1,2-distearoyl-sn-glycero-3-phosphocholine, and DMG-PEG2000 in ethanol and mixed with 

siRNA or mRNA using a high-throughput microfluidic device. The resulting particles were 

dialyzed against PBS and characterized for size and polydispersity index (PDI) (Figure 

VII.S25). 

 

 
Figure VII.3: Synthesis route and lipid design of ionizable lipids. (A) Starting from either the carboxylic acid 

(reduced to the corresponding alcohol) or directly from the alcohol, the alcohol was esterified with acryloyl 

chloride; subsequent solvent-free aza-Michael addition furnished the final ionizable lipids. (B) Amine head 

groups and (C) alkyl tails employed in this study. Combination of various alkyl tails and amine head groups led 

to 15 chemical diverse ionizable lipids. 
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LNP transfection efficiency was evaluated in epithelial (H1299, A549, MDA-MB-231) and 

dendritic (DC2.4) cell lines, quantifying either Firefly luciferase knockdown (siRNA) (Figure 

VII.4A) or mRNA-mediated luciferase expression (Figure VII.4B). This dataset of labeled in-

vitro data served as the basis to test and validate our model on own data. We note that for 

some treatments, the remaining expression exceeded 100%. For siRNA knockdown 

experiments, stable reporter cell lines are required, but their physiological state can 

influence apparent knockdown. Upon LNP treatment, some cells reduce proliferation and 

redirect metabolic resources toward processing the particles via the endo-lysosomal 

pathway, particularly in cases with high uptake but limited endosomal escape. We observed 

a similar trend where untreated cells proliferated freely and entered partial quiescence, 

while LNP-treated H1299-Luc cells showed enhanced endo-lysosomal trafficking and 

stress, which resulted in slower proliferation and failure to reach quiescence. Consequently, 

these cells displayed higher apparent luciferase “remaining expression” compared to the 

untreated reference. 
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Figure VII.4: Transfection efficiency of LNPs formulated with ionizable lipids 1–15. (A) H1299 and MDA-MB-

231 firefly-luciferase reporter cells were treated with LNPs loaded with luciferase-specific siRNA (50 pmol) for 

48 h; knockdown is reported as remaining expression (%) relative to untreated controls (UTR, set to 100%). (B) 

H1299, A549, MDA-MB-231 and DC2.4 cells were treated with LNPs encapsulating firefly-luciferase mRNA (150 

ng) for 24 h; luciferase activity (RLU/10,000 cells) is shown on a log10 scale, with UTR indicating untreated 

controls. Data are mean ± SD from technical replicates (n=3).  
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A five-fold cross-validation (5-CV) setup was used, with nine lipids serving as the support 

set, three as validation data for checkpoint selection, and three as test data (Figure VII.5A). 

This experiment aimed to assess whether few-shot learning provides an advantage over 

traditional models such as random forests in very low-data scenarios. Model performance 

was evaluated for mRNA transfection in A549, DC2.4, H1299, and MDA-MB-231 cells, and 

for siRNA transfection in H1299-FLuc and MDA-MB-231-FLuc cells. 

 

Despite the small dataset, the MAML model achieved notable predictive power for siRNA 

delivery, with Pearson correlation coefficients of 0.63 for H1299 and 0.61 for MDA-MB-231 

(Figure VII.5), clearly outperforming the RF baseline, which reached 0.27 and 0.45, 

respectively. For mRNA transfection, moderate correlations were obtained for DC2.4 (r = 

0.35), H1299 (r = 0.37), and MDA-MB-231 (r = 0.36), while no positive correlation was 

observed for A549. Nonetheless, the MAML models consistently outperformed the RF 

baselines across all settings. These findings indicate that few-shot meta-learning can 

provide valuable predictive insights even in very-low-data environments, supporting its 

potential as a practical tool for early-stage lipid formulation design, where experimental data 

generation remains costly and time-consuming.  
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Figure VII.5: A) Split strategy to novel lipids using the meta trained model. B) Pearson r values of MAML vs RF 

for different cell lines and cargo.  

 

Overall, our findings demonstrate the potential of meta-trained models as a promising 

strategy for early-stage formulation development. Guiding the discovery process in the right 

direction from the outset, can help researchers and institutions reduce costly late-stage 

failures while effectively leveraging historical data that are often difficult to integrate into 

conventional data-driven approaches. 

Looking ahead, to extend the applicability of these models to clinically more relevant 

systems, in vivo validation will be necessary. The promise of meta-learning in formulation 

development lies in its ability to integrate information that would otherwise be difficult to 

combine, thereby substantially reducing development time and costs. Future work will 

expand the training corpus across additional datasets and refine the meta-learning strategy 

beyond MAML and MetaSGD, and by jointly optimizing formulation composition together 

with lipid-component discovery within a single framework. 
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3  Supplementary Information 

 

3.1 Materials and Methods 

3.1.1 Materials 

3-Phenyl-2-propin-1-ol, oleic acid, spermidine, spermine, 4-(2-Aminoethyl)-morpholin, N,N-

Dimethylethylendiamin, N,N-Dimethyldipropylenetriamine, lithium aluminium hydrid in 

hexanes (1M), citric acid monohydrate, sodium citrate dihydrate, sodium acetate, RPMI-

1640 Medium, Dulbecco’s Phosphate Buffered Saline (PBS), 2-mercaptoethanol, heat-

inactivated Fetal Bovine Serum (FBS) and cholesterol were purchased from Sigma-Aldrich 

(Taufkirchen, Germany). Acryloylchlorid, 1,3-Diamino-propan, triethylamine, PBS 10X and 

all solvents were purchased from fisher scientific. Linoleic acid, 3,3'-Diamino-N-

methyldipropylamine, 1-Dodecanol were purchased from TCI Chemicals (Germany). 1,6-

Diaminohexane was purchased from Thermo Fisher Scientific. DMG-PEG 2000, 1,2-

Distearoyl-sn-glycero-3-phosphocholine (DSPC) was purchased from Avanti. Fluc mRNA 

was purchased from Ribopro,. Silencer™ Firefly Luciferase (GL2 + GL3) siRNA and its 

scrambled negative control siRNA were purchased from Thermofisher (Waltham, 

Massachusetts, USA). If not otherwise specified, highly purified water (Arium® Pro Ultrapure 

Water System, Sartorius AG, Göttingen, Germany) was used for all the experiments.  

 

3.1.2 Data Preparation 

All computational work was carried out using python v3.11. The full dataset from Ref 16 

was used. The data was initially grouped into subgroups by using the 

“split_name_for_normalization” column. The subgroups were split into 20 molecules large 

tasks by grouping by the one hot encoded criterion: "Delivery_target_dendritic”, 

"Delivery_target_generic_cell","Delivery_target_liver",  "Delivery_target_lung", 

"Delivery_target_lung_epithelium",   "Delivery_target_macrophage",  

"Delivery_target_muscle",  "Delivery_target_spleen",  "Helper_lipid_ID_DOPE", 

"Helper_lipid_ID_DOTAP", "Helper_lipid_ID_DSPC", "Helper_lipid_ID_MDOA", 

"Helper_lipid_ID_None",  "Route_of_administration_in_vitro", 

"Route_of_administration_intramuscular",  "Route_of_administration_intratracheal", 

"Route_of_administration_intravenous","Batch_or_individual_or_barcoded_Barcoded", 

"Batch_or_individual_or_barcoded_Individual",  "Cargo_type_mRNA",  
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"Cargo_type_pDNA",  "Cargo_type_siRNA",  "Model_type_A549","Model_type_BDMC",  

"Model_type_BMDM","Model_type_HBEC_ALI",                    

"Model_type_HEK293T","Model_type_HeLa","Model_type_IGROV1","Model_type_Mouse

","Model_type_RAW264p7" 

 

To add ratio information, the lipid composition columns were transformed into floating 

numbers and added to the data. As target information, the “quantified_delivery” column was 

used, since it already represents a standard scaled label. Zero-variance tasks as well as 

duplicated were removed from the dataset. To allow a later graph encoding of the respective 

molecules, the SMILES code was added for each formulation point. The data was 

subsequently split into support and query (10/10). To ensure a comparable training, the 

label distribution was discretized, and the support-query split was stratified. A training set 

was created by removing all tasks that contain siRNA as cargo from the full set. The 

removed data was used for the holdout set (64 tasks) and the validation set (8 tasks).  

3.1.3 Model Comparison 

The Model Comparison experiment was performed by comparing different meta learning 

models (FoMAML, MAML, MetaSGD- all from learn2learn v 0.2.0) to basic supervised 

models (no finetuning and finetuning from torch v2.6.0). Featurization into fingerprints was 

performed using Morgan Fingerprints with r=4 and 2048 bits (using RDkit v2024.9.5). Graph 

encoding for the graph neural network featurization as well as the base GNN were used 

from chemprop v2.2.1. Message Passing and Mean Aggregation were applied prior to one 

hidden ReLU layer and one linear regression head. As fingerprint base model a basic 

pytorch model was used with two hidden ReLu layers and one regression head. As loss 

function MSE was selected. Data was subsequently loaded into a specialized DataLoader 

class (8 tasks per batch) and was tested over 10 different random seeds and the mean, and 

the standard deviation were calculated. All variables and hyperparameters were selected 

based on prior optimization and testing. 

3.1.4 Active Learning 

For the active learning experiment a greedy-active learning strategy was used where the 

datapoint with the highest predicted value was picked after every round. As retrospective 

dataset, the siRNA holdout set from the model comparison was used as well as the best 

model. As baseline a Random Forrest Model was selected and both models were compared 
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against a random picking algorithm. To mimic the initial few-shot data available, 10 

datapoints from the dataset were selected as starting points. The points were sampled 

based on a high-diversity sampling, that selected points that had high distances in Euclidean 

space spanned by fingerprints and ratio information. To obtain a realistic learning curve, 

100 iterations with one sample pick were performed. Based on the obtained curve, several 

metrices were calculated: yield@k, simple_regret@k, best_so_far@k, EF@k and Hits@k 

with k being the number of iterations (here fixed at 5). Calculations and explanations of the 

metrices: 

Let X denote the finite candidate set with size N and let f(x) be the objective measured 

experimentally, for example a transfection readout. During an active-learning run, the 

algorithm selects a sequence x_t for t = 1..k and yields observations y_t = f(x_t). Define the 

incumbent after t queries as b_t = max_{i ≤ t} y_i. All metrics are computed with respect to 

the same candidate pool X. 

1) Hits@k 

Let T be the set of top items, for example the highest-scoring fraction of X according to f. 

Hits@k is the count of selected items that belong to T across the first k iterations: Hits@k = 

Σ_{t=1..k} 1[x_t ∈ T]. 

2) Enrichment Factor (EF@k) 

EF@k measures enrichment over random selection: EF@k = (Hits@k / k) / (|T| / N). EF@k 

greater than 1 indicates better-than-random retrieval of top candidates. 

3) Best-so-far@k 

The best outcome encountered up to iteration k: best_so_far@k = b_k = max_{t ≤ k} y_t. 

4) Simple regret@k 

Simple regret quantifies the gap to the global best available in the pool: simple_regret@k = 

y* − b_k, where y* = max_{x ∈ X} f(x). 

 

 

5) Yield@k (cumulative normalized yield) 
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To make results comparable across datasets, we report the cumulative sum of min-max 

normalized outcomes. Define y_min = min_{x ∈ X} f(x) and y_max = max_{x ∈ X} f(x). For 

each iteration t, compute the normalized value ỹ_t = (y_t − y_min) / (y_max − y_min). Then 

yield@k = Σ_{t=1..k} ỹ_t. 

 

3.1.5 Own Lipids Test 

The test on the synthesized novel lipids was performed using a 5-fold CV approach where 

the lipids were split (9 train/3 val/3 test) for the MAML model and (12 train/3 test) for the RF 

baseline. The lipids were tested and the mean Pearson value was calculated based on the 

predicted values for the test points vs the experimental labels. The data was standardized 

using a StandardScaler. Featurization for the MAML model was performed using the GNN 

featurization method described in Section Model Comparison. RF featurization was 

performed using Morgan Fingerprints described in Section Model Comparison.  

 

For detailed information about the experiments, we would like to refer the reader to 

https://github.com/felixsie19/FewShotLNPs. 
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3.1.6 Chemical synthesis 

 

Figure VII.S1: Synthesis Scheme of Lipids. 

 

Synthesis of oleyl alcohol and linoleyl alcohol 

 

Figure VII.S2: Synthesis of oleyl alcohol and linoleyl alcohol. 

 

Oleic acid or linoleic acid (8 mmo, 1 eq) were dissolved in 100 ml of anhydrous THF. 

Solution was cooled to 0°C and 1 M LiAlH4 (12 mmol, 1,5 eq) was added dropwise. After 

30 min the ice bath was removed, and reaction was carried out at RT overnight. The reaction 

was quenched with water and 1 M NaOH and filtered through celite 545.  
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Synthesis of alkyl acrylates 

 

Figure VII.S3: Synthesis of alkyl acrylates. 

 

Oleyl alcohol, linoleyl alcohol, dodecanol or 3-phenyl-2-propin-1-ol (1 mmol, 1 equiv.) were 

dissolved in 10 ml of anhydrous dichloromethane together with triethylamine (1,5 mmol, 1,5 

equiv.). Acryloyl chloride (1.2 mmol, 1.2 equiv.) was dissolved in 20 ml of anhydrous CDCl2 

and added dropwise to the reaction at 0 °C for 30 min. Afterwards the ice bath was removed 

and kept stirring at RT overnight. The mixture was diluted with CH2Cl2 and washed with 

brine twice and sat. H2CO3. The organic layer was dried over MgSO4, filtered, and 

concentrated in vacuo. The residue was purified by a CombiFlash PuriFlash Rf200i 

chromatography system (Teledyne ISCO) with gradient elution from cyclohexane/ 

ethylacetate to 100:0 to 0:100 cyclohexane/ethyl acetate.  

Synthesis of ionizable lipids 

Final lipids were synthesized through a solvent free aza-michael reaction of respective 

amines and acrylates. Acrylates and amines were added into vials and placed on a shaker 

at 250 rpm for > 120 h at RT. Lipids were used without further purification. Acrylates were 

added in excess: equivalents of acrylates were calculated by x = 2 eq for every primary 

amine + 1 eq for every secondary amine + 2 eq excess (x = 1 * for every N-H bond + 2).  

Conversion was monitored via 1H NMR and final mass was confirmed by MS-ESI. 

3.1.7 LNP formulation 

For siRNA LNPs, Fluc siRNA was dissolved in 10 mM Citrate buffer pH = 4. Lipid were 

dissolved at 1 mM in EtOH with a molar ratio of (ionizable lipid/cholesterol/DSPC/DMG-

PEG2000 50/38.5/10/1.5). LNPs were formulated with a high throughput microfluidics 

device (Sunscreen, Unchained Labs). Flow rate ratios were 3:1 (aqueous phase:organic 

phase), and total flow rate was 10,000 µl/min on the Sunny 100 X chip.  

For mRNA LNPs, Fluc mRNA was dissolved in 10 mM Citrate buffer pH = 4. Lipids were 

dissolved at 3 mM in EtOH with a molar ratio of (ionizable lipid/cholesterol/DSPC/DMG-

PEG2000 50/38.5/10/1.5). LNPs were formulated with a high throughput microfluidics 
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device (Sunscreen, Unchained Labs). Flow rate ratios were 3:1 (aqueous phase:organic 

phase), and total flow rate was 10,000 µl/min on the Sunny 190 T chip.  

After formulations obtained via microfluidics were dialyzed overnight against 1X PBS. 

Particle size and Polydispersity Index were measured by Dynamic Light Scattering (DLS) 

with a Wyatt DynaPro Plate Reader II.  

3.1.8 Luciferase expression assay (mRNA) 

To assess mRNA expression efficiency in submerged cell culture, A549, H1299, DC2.4, 

and MDA-MB-231 cells were seeded at a density of 10,000 cells per well in 200 µL medium 

in 96-well plates. A549 and H1299 were cultured in RPMI 1640 + 10% FBS; DC2.4 in RPMI 

1640 + 10% FBS + 1% 2-β-mercaptoethanol; MDA-MB-231 in DMEM High Glucose + 10% 

FBS. After 24 h, medium was replaced with fresh medium, and cells were transfected with 

150 ng mLuc-encapsulating LNPs. D-Lin-MC3-DMA served as a positive control and 

untreated cells served as blank. Following 24 h incubation at 37 °C and 5 % CO2, medium 

was removed, and cells were lysed with 0.5× lysis buffer (100 µL per well) and incubated 

for 30 min at room temperature. Luciferase activity was measured on a Tecan Spark plate 

reader (TECAN, Männedorf, Switzerland). A 35 µL aliquot of cell lysate was read for 10 s 

after automatic addition of 100 µL LAR buffer (20 mM glycylglycine; 1 mM MgCl₂; 0.1 mM 

EDTA; 3.3 mM DTT; 0.55 mM ATP; 0.27 mM coenzyme A; pH 8–8.5) supplemented with 

10% (v/v) of a mixture of 10 mM luciferin and 29 mM glycylglycine. Transfection efficiency 

was calculated and reported as relative light units (RLU) per well. 

3.1.9 Luciferase knockdown assay (siRNA) 

siRNA-mediated knockdown of firefly luciferase (Fluc) mRNA was assessed in H1299-PGK-

eGFP-Luc and MDA-MB-231-Luc reporter cell lines. H1299-PGK-eGFP-Luc cells were 

seeded at 2,500 cells per well in 200 µL RPMI 1640 + 10% FBS; MDA-MB-231-Luc cells 

were seeded at 6,000 cells per well in 200 µL DMEM High Glucose + 10% FBS. After 24 h, 

medium was replaced with fresh medium, and cells were transfected with Fluc siRNA 

containing LNPs. Following 48 h incubation at 37 °C and 5 % CO2, luciferase activity was 

measured on a Tecan Spark plate reader (TECAN, Männedorf, Switzerland). A 35 µL 

aliquot of cell lysate was read for 10 s after automatic addition of 100 µL LAR buffer (20 mM 

glycylglycine; 1 mM MgCl₂; 0.1 mM EDTA; 3.3 mM DTT; 0.55 mM ATP; 0.27 mM coenzyme 

A; pH 8–8.5) supplemented with 10% (v/v) of a mixture of 10 mM luciferin and 29 mM 
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glycylglycine. Untreated cells were set to 100 % firefly luciferase expression, and 

knockdown efficiency was calculated as the remaining expression.  

Table VII.S1: Overview over components mixed for synthesis, the respective theoretical and actual masses as 

well as the lipid name. 

Lipid No. 

Full Lipid 

Code Amine No. 

Alkyltail 

No. 

Calculated 

mass 

Found Lipid 

Lipid 1 A1T1 A1 T1 1127,04 1127,03 L11 

Lipid 2 A1T2 A1 T2 1120,99 1120,99 L10 

Lipid 3 A1T3 A1 T3 880,80 880,80 L13 

Lipid 4 A1T4 A1 T4 718,38 718,38 L40 

Lipid 5 A2T1 A2 T1 1435,31 1435,31 L7 

Lipid 6 A2T2 A2 T2 1427,24 1427,25 L6 

Lipid 7 A2T3 A2 T3 1106,99 1106,99 L15 

Lipid 8 A2T4 A2 T4 890,43 890,43 L34 

Lipid 9 A3T2 A3 T2 729,64 729,64 L21 

Lipid 10 A3T3 A3 T3 569,52 569,52 L18 

Lipid 11 A4T2 A4 T2 2123,84 2123,84 L44 

Lipid 12 A5T2 A5 T2 1398,22 1398,22 L45 

Lipid 13 A6T2 A6 T2 771,65 771,65 L46 

Lipid 14 A7T2 A7 T2 1356,17 1356,17 L47 

Lipid 15 A8T2 A8 T2 1747,51 1747,51 L48 
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1H NMR (400 MHz, CDCl3) δ 6.39 (dd, J = 17.3, 1.5 Hz, 2H), 6.12 (dd, J = 17.3, 10.4 Hz, 

2H), 5.81 (dd, J = 10.4, 1.5 Hz, 2H), 5.41 – 5.28 (m, 10H), 4.15 (t, J = 6.7 Hz, 4H), 4.06 (q, 

J = 7.2 Hz, 6H), 2.86 (t, J = 6.6 Hz, 1H), 2.76 (dd, J = 7.8, 6.3 Hz, 6H), 2.67 – 2.52 (m, 1H), 

2.54 – 2.35 (m, 12H), 2.21 (s, 8H), 2.01 (q, J = 6.6 Hz, 20H), 1.63 (ddt, J = 18.0, 11.1, 4.9 

Hz, 18H), 1.28 (dd, J = 12.8, 5.0 Hz, 109H), 0.93 – 0.84 (m, 15H). 

 

Figure VII.S4: 1H NMR of final Lipid1 crude 
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1H NMR (400 MHz, CDCl3) δ 5.37 – 5.20 (m, 4H), 3.99 (dt, J = 8.3, 6.8 Hz, 2H), 2.80 (t, J = 

6.6 Hz, 1H), 2.70 (q, J = 5.4 Hz, 3H), 2.57 (t, J = 7.1 Hz, 1H), 2.44 (t, J = 6.6 Hz, 1H), 2.33 

(dt, J = 25.7, 7.4 Hz, 3H), 2.12 (d, J = 3.7 Hz, 1H), 1.98 (q, J = 6.9 Hz, 4H), 1.56 (tt, J = 

13.9, 7.1 Hz, 5H), 1.38 – 1.15 (m, 18H), 1.00 – 0.65 (m, 3H). 

 

Figure VII.S5: 1H NMR of final Lipid2 crude 
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1H NMR (400 MHz, CDCl3) δ 6.39 (dd, J = 17.3, 1.5 Hz, 2H), 6.11 (dd, J = 17.3, 10.4 Hz, 

2H), 5.80 (dd, J = 10.4, 1.5 Hz, 2H), 4.14 (t, J = 6.7 Hz, 4H), 4.10 – 4.00 (m, 6H), 2.85 (s, 

0H), 2.76 (td, J = 7.4, 1.8 Hz, 6H), 2.54 – 2.36 (m, 12H), 2.35 – 2.17 (m, 10H), 1.72 – 1.49 

(m, 16H), 1.38 – 1.18 (m, 102H), 0.91 – 0.83 (m, 15H). 

 

Figure VII.S6: 1H NMR of final Lipid3 crude 
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1H NMR (400 MHz, CDCl3) δ 7.49 – 7.42 (m, 8H), 7.35 – 7.28 (m, 12H), 6.55 – 6.43 (m, 

0H), 6.19 (dd, J = 17.3, 10.5 Hz, 0H), 5.90 (dd, J = 10.5, 1.4 Hz, 0H), 4.90 (s, 7H), 2.84 – 

2.74 (m, 7H), 2.56 – 2.47 (m, 7H), 2.46 – 2.37 (m, 7H), 2.20 (s, 8H). 

 

Figure VII.S7: 1H NMR of final Lipid4 crude 
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1H NMR (400 MHz, CDCl3) δ 6.39 (dd, J = 17.3, 1.5 Hz, 3H), 6.12 (dd, J = 17.3, 10.4 Hz, 

3H), 5.81 (dd, J = 10.4, 1.5 Hz, 3H), 5.41 – 5.29 (m, 11H), 4.15 (t, J = 6.7 Hz, 5H), 4.05 (t, 

J = 7.0 Hz, 7H), 2.87 (t, J = 6.6 Hz, 2H), 2.76 (t, J = 7.4 Hz, 5H), 2.64 (t, J = 7.1 Hz, 2H), 

2.54 – 2.31 (m, 12H), 2.22 – 2.15 (m, 3H), 1.72 – 1.56 (m, 19H), 1.29 (dd, J = 17.5, 7.2 Hz, 

142H), 0.93 – 0.84 (m, 18H). 

 

Figure VII.S8: 1H NMR of final Lipid5 crude 
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1H NMR (400 MHz, CDCl3) δ 5.44 – 5.27 (m, 4H), 4.06 (dt, J = 8.1, 6.8 Hz, 2H), 2.87 (q, J 

= 6.3 Hz, 1H), 2.77 (s, 1H), 2.73 – 2.56 (m, 1H), 2.54 – 2.39 (m, 3H), 2.27 – 2.15 (m, 4H), 

2.05 (q, J = 6.9 Hz, 4H), 1.64 (dt, J = 25.1, 7.6 Hz, 8H), 1.45 – 1.21 (m, 19H), 0.93 – 0.85 

(m, 3H). 

 

Figure VII.S9: 1H NMR of final Lipid6 crude 
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1H NMR (400 MHz, CDCl3) δ 6.39 (dd, J = 17.3, 1.5 Hz, 2H), 6.12 (dd, J = 17.3, 10.4 Hz, 

2H), 5.81 (dd, J = 10.4, 1.5 Hz, 2H), 4.15 (t, J = 6.7 Hz, 4H), 4.06 (dt, J = 8.1, 6.7 Hz, 4H), 

2.87 (s, 1H), 2.81 – 2.72 (m, 2H), 2.64 (s, 1H), 2.54 – 2.41 (m, 4H), 2.39 – 2.23 (m, 3H), 

2.19 (d, J = 3.7 Hz, 2H), 1.72 – 1.52 (m, 11H), 1.39 – 1.25 (m, 77H), 0.92 – 0.83 (m, 12H). 

 

 

Figure VII.S10: 1H NMR of final Lipid7 crude 
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1H NMR (400 MHz, CDCl3) δ 7.48 – 7.41 (m, 8H), 7.36 – 7.27 (m, 12H), 4.92 – 4.88 (m, 

8H), 2.84 – 2.76 (m, 8H), 2.61 – 2.38 (m, 12H), 2.27 (t, J = 7.3 Hz, 3H), 2.15 (d, J = 9.2 Hz, 

3H). 

 

Figure VII.S11: 1H NMR of final Lipid8 crude 
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1H NMR (400 MHz, CDCl3) δ 5.44 – 5.27 (m, 4H), 4.06 (td, J = 6.8, 1.0 Hz, 2H), 2.81 – 2.61 

(m, 5H), 2.54 – 2.42 (m, 5H), 2.24 (d, J = 6.7 Hz, 3H), 1.73 – 1.52 (m, 4H), 1.48 – 1.24 (m, 

18H), 1.01 – 0.74 (m, 3H). 

 

Figure VII.S12: 1H NMR of final Lipid9 crude 
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1H NMR (400 MHz, CDCl3) δ 6.39 (dd, J = 17.3, 1.5 Hz, 2H), 6.12 (dd, J = 17.3, 10.4 Hz, 

2H), 5.81 (dd, J = 10.4, 1.5 Hz, 2H), 4.15 (s, 2H), 4.06 (s, 2H), 2.72 (t, J = 7.3 Hz, 4H), 2.51 

– 2.43 (m, 8H), 2.25 (s, 6H), 1.72 – 1.55 (m, 9H), 1.34 – 1.25 (m, 79H), 0.92 – 0.84 (m, 

12H). 

 

Figure VII.S13: 1H NMR of final Lipid10 crude 
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1H NMR (400 MHz, CDCl3) δ 5.44 – 5.27 (m, 4H), 4.06 (dt, J = 8.0, 6.8 Hz, 2H), 2.86 (t, J = 

6.2 Hz, 1H), 2.77 (t, J = 6.3 Hz, 4H), 2.63 (dd, J = 25.6, 7.9 Hz, 2H), 2.45 (ddd, J = 29.4, 

12.9, 6.1 Hz, 4H), 2.05 (q, J = 6.8 Hz, 4H), 1.60 (d, J = 7.7 Hz, 5H), 1.47 – 1.21 (m, 21H), 

0.93 – 0.85 (m, 4H). 

 

Figure VII.S14: 1H NMR of final Lipid11 crude 
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1H NMR (400 MHz, CDCl3) δ 6.40 (dd, J = 17.3, 1.5 Hz, 0H), 6.12 (dd, J = 17.3, 10.4 Hz, 

0H), 5.81 (dd, J = 10.4, 1.5 Hz, 0H), 5.44 – 5.27 (m, 4H), 4.15 (t, J = 6.8 Hz, 1H), 4.06 (d, J 

= 8.7 Hz, 1H), 2.87 (t, J = 6.5 Hz, 1H), 2.76 (q, J = 6.0 Hz, 3H), 2.64 – 2.56 (m, 1H), 2.51 (t, 

J = 6.5 Hz, 1H), 2.46 – 2.35 (m, 1H), 2.05 (q, J = 6.9 Hz, 5H), 1.76 – 1.16 (m, 29H), 0.93 – 

0.85 (m, 4H). 

 

Figure VII.S15: 1H NMR of final Lipid12 crude 
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1H NMR (400 MHz, CDCl3) δ 6.39 (dd, J = 17.3, 1.5 Hz, 0H), 6.12 (dd, J = 17.3, 10.4 Hz, 

0H), 5.81 (dd, J = 10.4, 1.5 Hz, 0H), 5.44 – 5.27 (m, 4H), 4.14 (t, J = 6.7 Hz, 0H), 4.06 (dt, 

J = 9.0, 6.8 Hz, 2H), 3.73 – 3.66 (m, 2H), 2.89 (t, J = 6.6 Hz, 1H), 2.84 – 2.68 (m, 3H), 2.05 

(q, J = 6.9 Hz, 4H), 1.72 – 1.56 (m, 3H), 1.45 – 1.21 (m, 17H), 0.93 – 0.84 (m, 3H). 

 

Figure VII.S16: 1H NMR of final Lipid13 crude 
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1H NMR (400 MHz, CDCl3) δ 5.37 – 5.20 (m, 4H), 3.99 (dt, J = 8.1, 6.8 Hz, 2H), 2.85 – 2.49 

(m, 5H), 2.48 – 2.32 (m, 2H), 1.98 (q, J = 6.8 Hz, 4H), 1.65 – 1.49 (m, 3H), 1.39 – 1.14 (m, 

17H), 0.86 – 0.78 (m, 3H). 

 

Figure VII.S17: 1H NMR of final Lipid14 crude   
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1H NMR (400 MHz, CDCl3) δ 5.37 – 5.20 (m, 4H), 3.99 (dt, J = 8.3, 6.8 Hz, 2H), 2.79 (dd, J 

= 5.9, 2.6 Hz, 1H), 2.75 – 2.65 (m, 4H), 2.60 – 2.48 (m, 0H), 2.48 – 2.27 (m, 3H), 1.98 (q, J 

= 6.9 Hz, 4H), 1.54 (p, J = 6.8 Hz, 3H), 1.50 – 1.14 (m, 19H), 0.89 – 0.77 (m, 3H). 

 

Figure VII.S18: 1H NMR of final Lipid15 crude   
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1H NMR (400 MHz, CDCl3) δ 5.40 – 5.27 (m, 2H), 3.61 (t, J = 6.7 Hz, 2H), 2.09 – 1.95 (m, 

4H), 1.61 – 1.48 (m, 2H), 1.29 (ddt, J = 17.9, 14.5, 4.9 Hz, 22H), 0.96 – 0.81 (m, 3H). 

 

Figure VII.S19: 1H NMR of linoleyl alcohol 
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1H NMR (400 MHz, CDCl3) δ 6.32 (dd, J = 17.3, 1.5 Hz, 1H), 6.04 (dd, J = 17.4, 10.4 Hz, 
1H), 5.73 (dd, J = 10.4, 1.5 Hz, 1H), 5.37 – 5.20 (m, 4H), 4.08 (t, J = 6.7 Hz, 2H), 2.75 – 
2.64 (m, 2H), 1.98 (q, J = 6.9 Hz, 4H), 1.65 – 1.53 (m, 2H), 1.35 – 1.14 (m, 16H), 0.88 – 
0.77 (m, 3H). 

 

Figure VII.S20: 1H NMR of oleyl alcohol 
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1H NMR (400 MHz, CDCl3) δ 6.38 (dd, J = 17.3, 1.6 Hz, 1H), 6.11 (dd, J = 17.3, 10.4 Hz, 
1H), 5.79 (dd, J = 10.5, 1.6 Hz, 1H), 5.47 – 5.17 (m, 2H), 4.14 (t, J = 6.7 Hz, 2H), 2.00 (q, J 
= 6.6 Hz, 4H), 1.71 – 1.60 (m, 2H), 1.41 – 1.20 (m, 23H), 0.92 – 0.81 (m, 3H). 

 

 

Figure VII.S21: 1H NMR of Oleyl acrylate 
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1H NMR (400 MHz, CDCl3) δ 7.52 – 7.41 (m, 2H), 7.36 – 7.27 (m, 3H), 6.49 (dd, J = 17.3, 
1.4 Hz, 1H), 6.18 (dd, J = 17.4, 10.4 Hz, 1H), 5.88 (dd, J = 10.4, 1.4 Hz, 1H), 5.00 (s, 2H). 

 

Figure VII.S22: 1H NMR of 3-phenylprop-2-yn-1-yl acrylate 
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1H NMR (400 MHz, CDCl3) δ 6.38 (dd, J = 17.3, 1.5 Hz, 1H), 6.11 (dd, J = 17.3, 10.4 Hz, 
1H), 5.84 – 5.75 (m, 1H), 4.14 (t, J = 6.8 Hz, 2H), 1.65 (dq, J = 8.0, 6.6 Hz, 2H), 1.33 – 1.20 
(m, 18H), 0.94 – 0.81 (m, 3H). 

 

 

Figure VII.S23: 1H NMR of dodecyl acrylate   
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1H NMR (400 MHz, CDCl3) δ 5.44 – 5.27 (m, 4H), 3.64 (t, J = 6.6 Hz, 2H), 2.81 – 2.73 (m, 
2H), 2.05 (q, J = 6.8 Hz, 4H), 1.62 – 1.51 (m, 2H), 1.42 – 1.22 (m, 16H), 0.93 – 0.84 (m, 
3H). 

 

 

Figure VII.S24: 1H NMR of Linoleyl alcohol 
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Figure VII.S25: Size and Polydispersity Index of siRNA LNPs (A) and mRNA LNPs (B) after dialysis and sterile 

filtration. Data is shown as mean + SD, n=3 technical replicates. 
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Chapter VIII - Summary and Perspective 

The complexity and multidimensionality of drug delivery processes make them particularly 

amenable to data-driven approaches. Although the integration of such methods into drug 

delivery is still in its infancy, this thesis shows that different computational strategies can 

already address distinct problems along the modern formulation pipeline. 

Chapter II demonstrated how the properties of polymeric nanocarriers can be optimized at 

the level of synthesis using Design of Experiments (DoE). This work underlined that 

experimental evidence should be generated through a structured experimental plan and 

subsequent statistical analysis, and that meaningful structure-property relationships can be 

established even for complex polymer systems. In addition, we showed that integrating 

Python-based workflows into the experimental process offers flexible ways to handle and 

analyse data more efficiently. This idea was further advanced in Chapter III, where we 

incorporated machine learning (ML) as a flexible extension once DoE became limiting. 

There, we showed how robust models can be applied to small, orthogonally designed 

datasets and used to identify synthesis parameters that optimize nanocarriers for in vitro 

transfection efficiency. 

As outlined in the introduction, the quantity and quality of available data remain critical 

bottlenecks. Cheminformatics is considerably more mature in its use of ML than drug 

delivery, primarily because large, standardised and easily accessible datasets exist, which 

allows researchers to focus on model development rather than basic data assembly. In drug 

delivery, the situation is more complex. Multi-component formulations, multi-scale readouts, 

high experimental noise, fragmented datasets and the lack of standardised protocols all 

contribute to the challenge. In this thesis, literature-derived data were used to illustrate how 

such fragmented information can be merged into a more informative system that can guide 

the discovery of new polymeric carrier materials (Chapter IV). In this setting, ML enabled 

the prediction of carrier performance in five out of six cases in vitro, and the lead candidate 

also showed promising results in vivo. 

For lipid nanoparticle (LNP) development, substantially more data and research are 

available, driven by the success of recently approved LNP-based products. However, when 
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LNP formulation design is cast as an ML problem, the optimisation space becomes highly 

complex, because multi-component systems result in a formulation space with effectively 

thousands of dimensions. In Chapter VII, we therefore investigated whether meta-learning 

approaches can help to avoid strong biases toward specific historical datasets and improve 

generalisation. The results showed that such methods can serve as powerful base models 

for active learning. In simulated optimisation tasks on an unseen cargo, meta-learning 

based models were able to identify early hits up to 17 times faster than a conventional 

baseline, effectively supporting both the discovery and optimisation of new formulations. 

In the absence of large, standardised datasets, physics-informed systems offer an attractive 

alternative, since they provide more detailed mechanistic insight into molecular behaviour 

and can build robust datasets from scratch. This was demonstrated in Chapter V, where we 

developed a program that samples molecules, labels them in a high-throughput manner 

using molecular dynamics (MD) simulations, and optimises candidates in silico by 

combining simulation with AI-based optimisation and molecule preparation. The complete 

simulation workflow was validated and calibrated against wet-lab experiments to ensure 

sufficient realism. We identified several interesting and structurally novel candidates with 

limited similarity to previously known high-performing structures, which indicates that such 

approaches can promote true novelty in carrier design. Although this workflow still involves 

trade-offs between physical realism and computational speed, ongoing advances in 

hardware, for example massively parallel GPU execution, are likely to reduce simulation 

and optimisation times and will make such approaches increasingly practical. 

A similar rationale applies to 4D-QSTR, introduced in Chapter VI. This framework 

aggregates time-resolved dynamic information from MD simulations into ML-usable 

descriptors and provides complementary signal on molecular behaviour, particularly for 

extrapolation and cliff-like tasks that are central challenges in early material discovery. 

Across several benchmarks, we observed that incorporating dynamic information improved 

predictive performance precisely in those regimes where conventional 2D and 3D 

descriptors tend to struggle. For some simulations, performance gains of up to 20 % relative 

to 2D/3D baselines were observed. At the same time, 2D descriptor baselines remained 

stronger for standard, random-split tasks. This led us to hypothesise that datasets 

generated by expert structure optimisation carry an implicit 2D human bias, which still 

favours simple fingerprints in familiar regions of chemical space. Overall, these findings 
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suggest that the complexity of the prediction task must be reflected in the complexity of the 

information that is provided to the model, especially when the goal is to discover genuinely 

new carrier structures. 

Taken together, the results presented in this thesis can be viewed as one of the early, 

systematic attempts to integrate data-driven approaches into drug-delivery workflows. We 

provide new insights into the synthesis of PBAEs, how their polymeric properties relate to 

their performance as nanoparticle systems, and how this knowledge can be used for rational 

design and optimisation. Furthermore, by demonstrating how literature-based data can be 

repurposed for carrier discovery and optimisation, we outline a path that is accessible to 

research groups worldwide that may not have access to high-throughput experimentation 

but can still benefit from data-driven guidance to save time and material. The physics-based 

approaches introduced here provide a starting point for other researchers to extend, adapt 

and improve such systems for different delivery challenges. All code used in this thesis is 

openly available on GitHub (https://github.com/felixsie19), which supports transparency and 

reuse. 

Looking ahead, it is reasonable to expect that artificial intelligence will continue to develop 

rapidly and will be progressively integrated into drug delivery. Recent studies already report 

strong performance on difficult design problems and indicate a trend toward increasingly 

automated workflows for synthesis, formulation and testing. While such automation is 

essential for building robust models, it is equally important to remember that data-driven 

approaches are only as reliable as the underlying data. The rapid pace of technological 

development therefore needs to be accompanied by community-wide standards for 

manufacturing, characterisation and biological testing in order to ensure that data are 

comparable across laboratories. As shown in Chapter VII, certain methods can mitigate lab-

to-lab variability and batch effects, but high-performing AI methods still rely predominantly 

on large, well-curated datasets. 

Recent research in AI increasingly focuses on the concept of “world models” as a next step 

in model development. The underlying idea is to move beyond purely data-driven, static 

learning toward trial-and-error learning in explicitly modelled or simulated environments. 

Chapter V already illustrated how such ideas could look in the context of drug delivery by 

coupling MD simulations with ML-based optimisation. Future work may explore different 

strategies to use such models to accelerate the path from early discovery to clinical studies. 

https://github.com/felixsie19


280 
 

It will be essential that expertise in simulations, ML and their integration into experimental 

workflows is established early in scientific training, so that future generations of researchers 

develop an intuitive understanding of data-driven methods and can exploit them to address 

unresolved therapeutic challenges. 
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