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Chapter | - Introduction

1 XNA in Therapy

The emergence of nucleic acids as therapeutics has fundamentally reshaped how we
understand and treat disease. Targets long considered undruggable are becoming
tractable, opening mechanism-based options for patients like recent successful treatments
of B-thalassemia’ and heterozygous familial hypercholesterolemia? could show. While the
first promising trials were conducted deoxyribonucleic acid (DNA)-based?#, the most rapid
advances in recent years have come from ribonucleic acid (RNA), whose diverse roles in
gene regulation make it a particularly versatile therapeutic substrate. RNA modalities,
including messenger RNA (mRNA), small interfering RNA (siRNA), and antisense
oligonucleotides (ASOs), enable direct, programmable modulation of gene expression with

tunable duration, driving a broad wave of innovation across indications (Figure 1.1).

During the COVID-19 pandemic, mRNA platforms provided a definitive proof-of-concept for
the rapid development and deployment of novel vaccines®®. As a therapeutic modality,
MRNA enables transient, in vivo expression of defined proteins and is therefore well suited
to protein-replacement strategies. Ongoing clinical programs are evaluating mRNA for
monogenic metabolic disorders such as propionic acidemia’, methylmalonic acidemia®, and

ornithine transcarbamylase deficiency®.

While mRNA has shown clear success in protein-replacement therapy, gene-silencing
approaches are suited to diseases driven by toxic, mutant, or dysregulated gene
expression. Two widely used oligonucleotide modalities are antisense oligonucleotides
(ASOs) and small interfering RNAs (siRNAs). ASOs are single-stranded, chemically
modified oligomers that act either by RNase H1-mediated cleavage of the target RNA or by
steric blocking to modulate pre-mRNA splicing or inhibit translation. These mechanisms
occur primarily in the nucleus and can also operate in the cytoplasm™. In contrast, siRNAs
are double stranded RNAs that engage the RNA-induced silencing complex (RISC). After
guide-strand loading into Argonaute-2, the complex cleaves complementary cytosolic

mRNA, leading to its degradation and durable gene silencing™'.
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Although nucleic-acid therapeutics are among the most promising drug classes of this
century, delivery remains the principal hurdle. Ubiquitous endo- and exonucleases, rapid
renal clearance, and innate immune recognition can degrade or eliminate nucleic acids
before cellular uptake. Chemically modified ASOs and N-acetylgalactosamine (GalNAc)—
conjugated siRNAs can often be dosed subcutaneously without a vector for hepatocyte
targets via asialoglycoprotein receptor (ASGPR)'?, whereas most other modalities (e.g.,
mRNA, plasmid DNA) and extrahepatic siRNA delivery still require dedicated delivery

systems.

Viral vectors leverage evolved entry mechanisms and showed great success by offering the
vector for the first gene therapy ever approved', but face constraints related to
immunogenicity'#, manufacturing complexity'®, and payload limits'®, motivating alternative
strategies. Non-viral carriers offer modular design, scalable manufacturing, and
opportunities for targeting while mitigating several safety concerns associated with viral

delivery.
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Figure 1.1: Therapeutic functionalities for different nucleic acids. mRNA (left) is translated by cytosolic ribosomes
to produce protein. siRNA (middle) is loaded into Argonaute to form the RNA-induced silencing complex (RISC),
which directs sequence-specific cleavage and degradation of complementary mRNA. Antisense
oligonucleotides (ASOs, right) bind target RNA to induce RNase H-mediated degradation or sterically block key
processes such as translation or splicing.

2 Nanocarriers

Early non-viral nucleic-acid delivery in the 1960s used liposomes, simple polycations such
as poly-L-lysine (PLL) and poly-L-ornithine (PLO)", and calcium phosphate precipitation’®.
Today the field is dominated by polycationic polymers and lipid assemblies, especially lipid

nanoparticles (LNPs).

Polymers are well-studied vehicles for encapsulating and delivering nucleic acids. Their
chemical tunability, architectural control, and colloidal stability are major advantages and
have led to a wide variety of polymeric nanocarriers over the years''°. Polyethylenimine
(PEI), discovered as carrier 1995, was first used for efficient DNA transfection?® and later
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adapted for mRNA?' and siRNA?2. Its high density of protonatable amines enables strong
condensation and protection and supports endosomal escape via hypothesized proton-
sponge effect, but this same feature is linked to cytotoxicity?®*?* and the lack of
biodegradability?® further raises safety concerns. Poly(B-amino esters) (PBAEs), which were
introduced as gene carrier by Lynn and Langer in 2000%, offer a biodegradable alternative.
Their ester bonds hydrolyze into small by-products, and the chemistry is highly tunable via
side-chain, backbone, and end-group modifications and through formulation choices. In
addition, many PBAEs exhibit buffering capacity near endosomal pH, which can aid
endosomal escape while maintaining a more favourable safety profile?’. While promising,
cytotoxicity concerns and reproducibility issues still limit the application of polymeric
nanocarriers in clinical trials?®. By contrast, lipid-based systems like liposomes and
especially lipid nanoparticles (LNPs) have achieved the fastest clinical progress,
exemplified by patisiran (Onpattro)?®, approved in 2018 for polyneuropathy in adults with
hereditary transthyretin-mediated amyloidosis (hATTR), and by the LNP-based mRNA
COVID-19 vaccines BNT162b2° and mRNA-1273%. Lipid nanoparticles (LNPs) typically
comprise four components: an ionizable lipid that complexes the nucleic acid and promotes
endosomal escape via pH-triggered protonation, a helper phospholipid, cholesterol (or a
related sterol) to modulate membrane packing, and a PEG-lipid for steric shielding and
colloidal stability®®. While this platform is highly successful, optimizing four interdependent
constituents remains non-trivial and remains a challenge especially in optimization. Lipo-
xenopeptides offer a compelling alternative: like polymers they enable one-component
formulations, yet, thanks to solid-phase synthesis, their molecular weight and composition
are precisely defined. Thalmayer et al.3" demonstrated stable lipopolyplex formation with
promising in-vitro and in-vivo performance across multiple cargos. Still, safety metrics have
not yet reached clinically relevant thresholds, and scaling production while preserving
sequence fidelity may be challenging. Nanocarriers face multiple, interlocking hurdles:
maintaining chemical and colloidal stability within a defined window, achieving an
appropriate pKa range for charge switching®?, and overcoming poorly understood
mechanisms like endosomal escape and subsequent cytosolic release ultimately govern
efficacy®3*. Manufacturing, transport, and storage further shape performance through
process and logistics variables (e.g., mixing regime, sterile filtration, lyophilization, and cold-
chain requirements)®*-%’. Consequently, nucleic-acid formulation with nanocarriers is a

multidimensional, multi-objective optimization problem spanning molecular design, process
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engineering, and use-context parameters (route of administration, dose, repeat dosing, and

target tissue), all of which interact to determine required outcomes.
3 Discovery and Optimization of RNA Formulations

As described above formulation optimization is a multi-stage problem coupling chemistry,
mixtures into a single, high-dimensional problem. While performance is driven by the
properties of the chemical compounds and the cargo, the formulation process itself plays a
major role as well. The manufacturing of nanopatrticles, especially LNPs, is typically carried
out with microfluidic devices®3°, where chip architecture and process conditions determine
particle characteristics such as size, polydispersity index (PDI), encapsulation efficiency
and biodistribution*®4!. Whereas manufacturing conditions like flow-rate ratio (FRR) and
total flow rate (TFR) can usually be treated as continuous variables, molecular identities are
more complex and clearly multidimensional. Optimization therefore often treats them as
discrete choices for simplicity, risking a loss of chemically relevant information.
Compounding this, the ratios of components used in the formulation are crucial and add

further complexity.

There are three conventional approaches commonly used for formulation optimization. The
classical lab-scale route is adjustment of one factor at a time (OFAT). While this enables
sequential tuning, from chemistry to formulation and subsequent post-processing such as
drying, OFAT ignores factor interactions and almost invariably misses global optima, which
is critical in any true optimization. High-throughput screening (HTS) addresses this by
sampling many potential carriers and, ideally, varying process conditions in parallel?”4243,
However, HTS requires equipment that is not available in every laboratory and can be
material-intensive when the experimental grid is narrow. Moreover, selection of the
screening grid often relies more on educated guesses than on systematic, quantitative
design and is therefore prone to bias. Design of Experiments (DoE) reduces the number of
required experiments by using statistical designs that balance information gain against
experimental effort while post-analysis then fits response surfaces that provide process
insight and help identify sweet spots*4. Additionally, the opportunity to use different designs
like full factorial, latin hypercube and mixture design, to just mention a few, increases the
flexibility when solving different types of problems. Although DoE is frequently considered

a gold standard in industrial formulation work, it benefits from prior knowledge of the
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process, and the often complex, high-dimensional response landscape can still demand a
large number of experiments. In practice, DoE is therefore often applied to individual sub-

tasks only#54¢,

Nevertheless, data-driven decision-making is both relevant and beneficial. Machine learning
(ML), as a branch of artificial intelligence (Al), offers ways to uncover patterns in complex
processes and is an attractive tool that can be adapted to the needs of formulation science,
potentially enabling global optimization as well as explainability (Figure 1.2). In the next
section, ML is briefly introduced, and Section 6 outlines how ML helps treat molecules as

informative data, an aspect typically lacking in the conventional methods described above.

OFAT DoE ML

FactorA
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| 4
@,
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Figure 1.2: Comparing optimization strategies. Classical one-factor-at-a-time (OFAT) varies a single variable
while holding others constant, often missing interactions and trapping the search near local optima. Design of
Experiments (DoE) systematically samples the factor space, enabling interpolation and estimation of
interactions via response surfaces. Data-driven and machine-learning workflows build on these data to iteratively
propose new experiments, improving efficiency and increasing the likelihood of identifying the global optimum.

4 Machine Learning

Machine learning is, strictly speaking, an intersection of software development and data
science. It designs algorithms that learn from data to forecast outcomes for unseen
instances. A model learns to predict a target value, often called the label y, based on
available information represented by known variables or features X. During training the
model receives a dataset with known y values and attempts to predict them. The error is
computed with a loss function, and the model is optimized to reduce this loss. In general,
machine learning can be viewed as a process whose goal is to minimize a loss. This

description refers to supervised learning, which is one of the largest areas of applied
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machine learning and the focus of this section. It is also important to distinguish regression,
where the target is continuous, from classification, where the target consists of discrete

classes.

The usual workflow begins with careful data cleaning to remove errors and duplicates,
followed by a split into training and test sets. This split is essential for assessing
generalizability beyond the data seen during training and for detecting overfitting. Overfitting
occurs when a model learns noise in the training set and then performs poorly on new data.
After the split, the model is trained and its hyperparameters are tuned. Hyperparameters
are settings that are chosen before training rather than learned during training. A common
approach is K fold cross validation, where the training data is divided into K folds. Each fold
is used once for evaluation while the remaining folds are used for training, and this
procedure is repeated across all candidate hyperparameter settings. The process is

illustrated in Figure 1.3.

Model choice also matters. The No Free Lunch theorem?*’ states that no single model is
universally superior and that the best choice depends on the data. Linear regression fits a
linear relationship by learning a parameter vector that minimizes a squared loss. For small
datasets with moderate dimensionality one can solve directly with the normal equation. The
linear model can be extended by mapping features into polynomial bases. This can improve
accuracy but also raises the risk of overfitting. For classification, logistic regression applies

a sigmoid function to produce probabilities and then assigns classes using a threshold.

Tree based models split data into leaves using a loss such as the Gini impurity for
classification or the squared error for regression. Individual decision trees are flexible but
can overfit, which motivates regularization. Strong regularization can then underfit. Two
ensemble strategies address this tension. Bagging, as in Random Forests*, trains many
trees on resampled data or feature subsets and averages their predictions. Boosting trains
trees sequentially, each one focusing on the errors of the previous model. Prominent

examples for boosting are XGBoost*°, LightGBM®® and CatBoost®".

Kernels provide another elegant route to nonlinearity. A kernel defines a similarity between
points that corresponds to an inner product in an implicit feature space. This idea enables

algorithms that depend only on inner products to model complex relationships without
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explicitly constructing high dimensional features. Examples include the support vector

machine and kernel ridge regression.

Artificial neural networks, especially deep and transformer-based models, are the most
widely used approach for state-of-the-art results in vision, natural language processing
(NLP), and speech, and they underpin current generative-Al systems deployed across
industry®2. A neural network consists of layers of units connected by weights. Each unit
aggregates inputs, multiplies them by learnable weights, adds a bias, and applies a
nonlinear activation function. Training proceeds by computing a loss on a sample or a batch
of samples, then updating the weights using gradient descent with backpropagation®3. Many
architectures exist for specific data types, including convolutional neural networks for
images® and graph neural networks for relational data®. Neural networks in general often
excel with large datasets®®, though they can also be effective with small datasets when

carefully designed and regularized® - .

The final topic in this section is active learning, which is particularly useful for laboratory
workflows. Active learning uses model predictions and the estimated uncertainty to select
new experiments that are expected to be informative. An acquisition function balances
exploration of uncertain regions and exploitation of promising candidates. This strategy can
accelerate tasks such as optimizing nanoparticle uptake® , guiding molecular design for
material®' discovery or optimizing chemical synthesis reactions®.

@ Data Cleaning @ Data Splitting @ Testing

Remove errors « Trainset
* Remove + Testset .
duplicates Hyperparametertuning .
« Impute with CV Compare Metrics
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Figure 1.3: Simplified data workflow. After assembly, records are cleaned by removing errors and duplicates
and imputing missing values. The curated dataset is split into training and test sets. The training set is used for
feature engineering, model selection, and hyperparameter tuning via cross-validation, then the final model is fit
on the full training data. Performance is evaluated once on the hold-out test set and summarized for comparison.
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5 Machine Learning in Molecular Sciences

Machine learning can in principle be applied to almost any task if the data are reliable.
Working with molecules is more demanding because the model needs an input
representation that exposes chemically meaningful patterns. The act of turning a molecule
into a machine readable vector is called featurization. A common strategy is to encode
molecules as binary vectors known as fingerprints. Molecular ACCess System (MACCS)
keys® use a fixed dictionary of structural motifs and set a bit to one when the motif is present
and to zero when it is absent. Pharmacophore fingerprints® emphasize features that drive
receptor interactions such as hydrogen bond donors and acceptors, aromatic systems,
positive or negative centers, and their pairwise distances on the molecular graph. Morgan
fingerprints® capture local neighborhoods by enumerating circular subfragments around
each atom up to a chosen radius and mapping them to a bit vector through a deterministic
hash. This approach is efficient and expressive, with collisions as the main limitation. Many
other fingerprints exist, including ones that incorporate three dimensional information or
encode protein ligand interactions, and the examples here are only illustrative. Molecular
descriptors provide another route. Instead of presence or absence of patterns they
summarize properties as numbers. Simple descriptors include molecular weight or formal
charge. Intermediate ones rely on estimated surfaces and volumes, for example topological
polar surface area®®. More complex families arise from matrices built on the molecular graph
or on three dimensional coordinates. Examples include descriptors derived from the
adjacency matrix, BCUT eigenvalue descriptors from Burden matrices®”, or WHIM
descriptors® that summarize the covariance of atom coordinates possibly weighted by

charges Oor masses.

The rise of neural networks popularized graph based encodings. A molecule can be viewed
as a graph with atoms as nodes and bonds as edges. Graph neural networks learn atom
level and bond level representations through message passing®® or attention” and train end
to end so that the learned encoding directly supports the prediction task through
backpropagation. Modern variants can learn from unlabeled data’’, incorporate three

dimensional information in an equivariant way’2, or model higher order interactions”.

Featurizing whole formulations is even more challenging because one usually works with
mixtures at specific ratios. The representation must capture both the identity of each

component and its proportion. One can append mixture ratios to the molecular vectors,
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embed the ratio into each component feature before aggregation, or let the model learn how
to combine components through a permutation invariant set encoder with ratio based

weights’.

In drug delivery the manufacturing process often matters as well. Process variables such
as flow rate ratio and total flow rate influence particle size, polydispersity, and surface
potential, so a practical feature set needs to include both chemistry and process. Designing

such joint representations remains a central challenge for machine learning in formulation
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Figure 1.4: Molecular featurization. lllustrative encodings of molecules: (1) hashed binary fingerprints capturing
substructures and topology, (2) physicochemical and structural descriptors computed from 2D/3D properties,
and (3) learned representations from graph neural networks that operate directly on the molecular graph.
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6 Aim of the Thesis

The aim of this thesis is to explore how machine-learning (ML) workflows can be
systematically integrated into the formulation and discovery of RNA nanocarriers. While ML
is highly efficient, it is also data-dependent and requires substantial effort in experimental
design, data preparation, and iterative refinement. By investigating and critically assessing
different data-driven approaches across multiple case studies, this work aims to identify

where and how ML can meaningfully accelerate nanocarrier development.

Chapter Il highlights the potential of a classical data-driven approach, Design of
Experiments (DoE), to control and explain the synthesis and behaviour of PBAEs as
polymeric carriers for siRNA delivery. In addition, a custom data-driven method is

established to estimate blend characteristics in step-growth polymerisation.

Chapter lll demonstrates the benefits of applying ML pipelines to the same PBAE dataset,
leveraging prior data when new labels become available or when the data no longer fit the
original DoE. ML-based optimisation of synthesis parameters is investigated for its potential

to improve key in vitro and in vivo readouts.

Chapter IV describes the integration of historical data into carrier discovery workflows,
followed by the synthesis and in vitro/in vivo validation of the prioritised candidates,

illustrating how legacy datasets can guide new formulation efforts.

Chapter V presents the development of a novel software framework that optimises PBAEs
in silico by combining delivery-specific molecular dynamics (MD) challenges with
experimentally calibrated ML optimisation and validates the resulting predictions

experimentally.

Chapter VI further explores MD/ML integration by introducing 4D QSTR (quantitative
structure—transfection relationship), an approach that aggregates dynamic molecular
information across MD frames and allows the identification of significant events by

comparing different MD challenges, time windows, and data-splitting strategies.

Chapter VIl investigates meta-learning as a potential solution to batch effects when merging

heterogeneous, noisy datasets and evaluates its use in active-learning workflows for
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formulation discovery. Furthermore, novel lipids are synthesised and tested to demonstrate
the practical relevance of these methods in very low-data regimes.

Chapter VIIIl summarizes the findings and provides additional remarks, conclusions and a
brief outlook on potential future directions.

36



Chapter Il - Design of Experiments Grants Mechanistic
Insights into the Synthesis of Spermine-Containing PBAE

Copolymers
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2 Abstract
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Successful therapeutic delivery of siRNA with polymeric nanoparticles seems a promising
but not vastly understood and complicated goal to achieve. Despite years of research, no
polymer-based delivery system has been approved for clinical use. Polymers, as a delivery
system, exhibit considerable complexity and variability, making their consistent production
a challenging endeavor. However, a better understanding of the polymerization process of
polymer excipients may improve reproducibility and material quality for more efficient use
in drug products. Here, we present a combination of Design of Experiment and Python-
scripted data science to establish a prediction model, from which important parameters can
be extracted that influence the synthesis results of poly-beta-amino esters (PBAEs), a
common type of polymers used preclinically for nucleic acid delivery. We synthesized a
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library of 27 polymers, each one at different temperatures, with different reaction times and
educt ratios using an orthogonal central composite (CCO-) design. This design allowed a
detailed characterization of factor importances and interactions using a very limited amount
of experiments. We characterized the polymers by analyzing the resulting composition by
1H-NMR and the size distribution by GPC measurements. To further understand the
complex mechanism of block polymerization in a one-pot synthesis, we developed a python
script that helps to understand possible step-growth steps. We successfully developed and
validated a predictive response surface and gathered a deeper understanding of the

synthesis of polyspermine-based amphiphilic PBAEs.

Keywords: DOE, Python, polymer synthesis, polyplexes, siRNA, drug delivery

3 Introduction

Since the SARS-CoV-19 pandemic, the delivery of ribonucleic acid (RNA) by nanoparticles
has become an ever more rapidly developing field of research. Up to now, the clinically
approved drug delivery systems for RNA drugs are all based on Lipid Nanoparticles (LNP)
technology’®’¢. However, LNPs face problems with regard to storage and stability’”” and
encapsulate only a very low drug load of approximately 4% w/w’8. Polymeric delivery
systems, such as poly(beta)aminoesters (PBAEs), that were initially designed by the group
of Robert Langer in 20002 represent a reasonable and well-studied alternative. In general,
this type of polymer is easy to synthesize and in the past, end-capped homopolymers’ and
co-polymers®® showed promising transfection on DNA®', mRNA?®? and siRNA® in in vitro and
in vivo models®’. However, synthesis of polymers, especially copolymers is hard to control
8 and often leads to a mixture of different molecular weight and composition species®. This
is undesirable, since these factors decrease reproducibility on the one hand but govern the
ability to deliver the cargo to target cells® and the level of toxicity?”® on the other hand.
Furthermore, they complicate a clean correlation between species and activity. Therefore,
a strategy is needed that helps control and reveal the underlying mechanisms of step-
growth polymerization and help understand the process. To do so, often dozens of

experiments are needed to interpret and predict all the possible influencing factors.

For many years the help of Design of Experiment (DoE)?® has been used to decrease the
number of necessary experiments to address a problem and to help analyze important

factors as well as define predictive models that can design an accurate response surface
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that is used to make assumptions about future experiments and helps therefore to reduce

the waste of resources and to improve sustainability of chemical synthesis.

In recent years, the combination of data science and high throughput synthesis allowed for
a significant knowledge gain in the field of nanomedicine®*®2. This approach can be
extremely useful since it allows for optimized decision in situations, where it is rather
complicated to understand the mechanistic insights of how nanocarrier design influences
the delivery of cargo®. DoE can also be applied here to guide scientists in designing the
experiments to achieve optimization and valuable insights into complex processes®*. In
our work, we aim to use these tools to face difficult tasks in polymeric delivery such as
controlling and understanding the synthesis of amphiphilic co-polymers® and their

molecular weight distribution®®.

To demonstrate how data science can be used to understand and facilitate complicated
scientific questions such as the controlled synthesis of block co-polymers for the
encapsulation of RNA, we synthesized spermine- and oleylamine-modified PBAE-based
co-polymers using DoE to iterate over a variable space with reasonable ranges for synthesis
parameters including temperature, reaction time and the ratio of monomers, that influence
the characteristics of the synthesized materials®” *. Spermine was chosen as a body-own
polycation to enhance RNA encapsulation efficiency and oleylamine to introduce
hydrophobicity into the resulting polyplexes to facilitate the endosomal escape,
demonstrated by previous work from our group®. As readout, we selected the final
composition of blocks in the resulting polymer and different results from the size
measurements of the polymer. For analysis we used multiple linear regression to generate
a Response Surface Model and made use of different estimators that allow insights into the
variables, which were most important for the prediction. To gather more information about
possible structures, we designed a Python script that proposes possible polymeric
compositions for Gel-Permeation-Chromatography (GPC) peak sequences. This approach
was chosen to help interpret the often quite hard to analyze GPC chromatograms of co-
polymers. Finally, we developed an assay that is able to mimic intracellular unpackaging of
siRNA from polyplexes. This work presents a method to handle limited data effectively by
using DoE and open source python libraries to facilitate the understanding and the analysis

of complex synthesis mechanisms.
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4 Methods and Materials

4.1 Materials

Di-tert-butyl decarbonate, oleylamine, spermine, dimethylformamide (99,5% pure) and
SYBR Gold Nucleic Acid Gel Stain were purchased from Fischer Scientific (Hampton, NH,
USA). Ethyl trifluoroacetate, sodium chloride, heparin sodium salt 180 USP units/mg and
Triton-X 100% solution were bought from Sigma Aldrich (Taufkirchen, Germany) and 1,4-
butanendiol diacrylate was obtained from TCl Chemical Industry Co., LTD (Tokio, Japan).
Triflouroacetic acid (99,9%, extra pure) was purchased from Acros Organics (Geel,
Belgium). Methanol-d6 was obtained from Deutero (Kastellaun, Germany). Dichlormethane,
methanol, ammonia, potassium permanganate, magnesium sulfate, acetone, pentane and

formic acid (>99% pure) were purchased from VWR Chemicals (Ismaning, Germany).

4.2 Triboc-spermine synthesis

Tris(tert-butoxycarbonyl)spermine, abbreviated as tri-Boc-spermine (TBS) was synthesized
as described elsewhere'. In brief, spermine (1 eq) was dissolved in methanol and stirred
at -78 °C, ethyl trifluoroacetate (1 eq) was added dropwise subsequently and stirred at - 78
°C for 1 h, then 0 °C for 1 h. Without isolation, di-tert-butyl dicarbonate (4 eq) was added
dropwise to the solution and stirred at room temperature for 2 days. Finally, the solution
was adjusted to a pH above 11 by 25% ammonia and stirred overnight to cleave the
trifluoroacetamide protecting group. The mixture was then evaporated under vacuum and
the residue was diluted with dichloromethane (DCM) and washed with distilled water and
saturated sodium chloride aqueous solution. The DCM phase was finally dried by magnesia
sulfate and concentrated to give the crude product. The crude product was purified by
column chromatography (CH2CI2\MeOH\NH3, aq. 7:1:0.1, SiO2, KMnO4; Rf = 0.413). TBS

was isolated and characterized by 1H nuclear magnetic resonance spectroscopy ("H-NMR).

4.3 Polymer synthesis and characterization

Poly-spermine-co-oleylamine beta-aminoesters (P(SpOABAE)) were synthesized based on
a previously described approach™'. Briefly, TBS as hydrophilic monomer, oleylamine (OA)
as hydrophobic monomer and 1,4-butanendiol diacrylate (DA) were mixed in different molar
ratios in dimethylformamide (DMF) resulting in total concentrations of 300 mg/mL. Polymers

were stirred at different temperatures and for different durations (Compare Table 11.1). After
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the respective reaction time, mixtures were transferred to petri dishes to evaporate the
solvent. The subsequent deprotection of the polymer was carried out in a mixture of 20 ml
dichloromethane (DCM) and 1 ml trifluoroacetic acid (TFA) for 100 mg polymer, followed by
stirring for 2 hours at room temperature. In the following, DCM/TFA was evaporated and
the dry deprotected product was precipitated 3 times in pentane using acetone to dissolve
the precipitate (Figure Il.1a). Supernatants were discarded and the final precipitate was
dried for 2 days under vacuum (room temperature, 20 mbar). Final polymers were
characterized by "H-NMR (Figure 11.S1) and GPC. Measurements were performed with an
Agilent aqueous GPC using a PSS Novema max Lux 100A followed by two PSS Novema
max Lux 3000A columns. The chromatographic system and calibration standards were set
up according to pre-analysis from Agilent Technologies on P(SpOABAE) polymers.
Measurements were performed at 40°C in 0.1 M sodium chloride solution supplemented
with 0.3% formic acid. Samples were prepared at 4 g/L and measured at a flow rate of 1
mL/min. Molar mass distributions were obtained through the Agilent WinGPC software
against pullulan calibration standards in the range of 180 Da to 1450 kDa. A daisy-chain
detector setup of an Agilent 1260 VWD was used followed by an Agilent 1260 GPC/SEC
MDS and ending with an Agilent 1260 RID.

4.4 Design of Experiment
A Response Surface Method (RSM)'** was applied using the MODDE® Pro 13.0.2

(Sartorius Data Analytics, Goéttingen, Germany) software. Briefly, four critical process
parameters (CPP) at three levels were chosen based on their theoretical impact on the
critical quality attributes (CQA) of molecular weight and final subunit ratio. The four CPPs
were i) reaction temperature (set to 80°, 100° or 120° Celsius), ii) reaction time (set to 24h,
48h or 72h), iii) initial molar OA ratio, defined as the molar ratio of primary amines from OA
to the overall number of primary amines (set to 0.30; 0.55 or 0.80), and iv) the ratio between
the diacrylate (DA) and the total theoretical number of primary amines (0.80; 1.00 or 1.20).
A Central Composite Design for maximized Orthogonality (CCO) was chosen using a
starpoint distance of 1.55'. Three center points were added to evaluate the process
stability (Figure Il.1b+c). Statistical significance was determined by ANOVA and defined by
p-values below 0.05. Predictions with 95% confidence intervals were generated based on

fitted, significant RSM model terms.
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4.5 PeakFinder software

To gather more insights into the polymerization process, a program was written using
Python3 programming language (version 3.11.5). Pandas (version 2.0.3) was used for data
handling. The molecular weights of the monomer units are used as input data in the code
together with information about the single peak maxima (Mp), the associated component
ratio (obtained from NMR spectra), an error range, a maximal iteration parameter and a
boolean expression parameter if endcapping with diacrylate is possible or not. Based on
this information, possible polymer structures are calculated for each peak and the program

outputs the sequence of monomer combinations that fits the data best.

4.6 Species isolation via spin columns

To isolate a single polymer species represented by a GPC peak, polymers were dissolved
at 4 mg/mL in the mobile phase. 1 mL of solution was transferred to 30 kDa cutoff Vivaspin
6 centrifugal concentrator columns from Sartorius (Goéttingen, Germany). Samples were
concentrated at 8000 g for 15 min. The concentrated samples were diluted to 1 mL with
fresh mobile phase. This procedure was repeated three times. Final samples were

measured using the before mentioned GPC method.

4.7 Particle formation with siRNA

Polymers were dissolved in cell culture grade DMSO at a concentration of 25 mg/mL.
Nanoparticles were prepared at a ratio of protonated amines in the polymer to negatively
charged phosphates in the siRNA backbone (N/P Ratio) of 10. Polymer stocks and siRNA
(IDT, Leuven, Belgium) were diluted in 10 mM Hepes Buffer pH 5.4 to equal volumes before
mixing. Mixing was done using an Integra Voyager 125 uL pipette (Integra Biosciences,
Zizers, Switzerland), resulting in final concentrations of 500 nM siRNA. After mixing,
particles were incubated for 90 minutes at room temperature to allow proper particle
formation. The hydrodynamic diameter (DH) and polydispersity index (PDI) of the obtained
nanoparticles were determined by dynamic light scattering. Therefore, a Zetasizer Ultra
series (Malvern Instruments, U.K.) was used running 3 measurements per sample at a

backscatter angle of 173°.
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4.8 Stability

The stability of the resulting nanoparticles was evaluated by a modified polyanion
competition assay'®. Briefly, differently concentrated mixtures of Triton-X and heparin were
applied to release the siRNA from the nanoparticles. In a black 384-well plate, 10 uL
nanoparticle suspension was mixed with 20 pyL of stress solution with the respective
concentration level. Seven different concentrations plus a blank were used per nanoparticle
suspension. After adding the stress solutions, plates were sealed to avoid evaporation and
incubated at 37°C at 150 rpm for 1h. Afterwards 5 pL of a 4x SYBR Gold dye was added to
the mixture and incubated for 5 minutes in the dark. Finally, the fluorescence was measured
using a TECAN Spark plate reader (TECAN, Mannedorf, Switzerland) plate reader at 492
nm excitation and 537 nm emission wavelength. Using the GraphPad Prism5 2007
Software, a nonlinear fit was performed to calculate the EC50 values of each polymer

relative to the maximum released siRNA in each sample.

Table I1.1: Experimental setup of the CCO-design (left) with reaction time in hours, temperature in °C, initial
molar OA ratio, defined as the molar ratio of primary amines from OA to the overall number of primary amines,
and the ratio between the diacrylate and the total theoretical number of primary amines. Results of the CCO-
design (right) with Final OA ratio in percent, Mn and Mw in Da, PDI without a unit and >33 kDa and < 2kDa in
percent.

Exp | Time Tmp OA DA | Final OA Mw Mn  PDI > <
No Initial 33kDa 2kDa

1 24 80 30 0.8]0.412591 26878 151061.7792  31.3 0

2 72 80 30 0.810.438533 30610 16007 1.9123 38.53 0

3 24 120 30 0.8]0.391529 20022 101741.9681 225 0.5

4 72 120 30 0.8]0.486896 34815 14699 2.3686 50.08 0

5 24 80 80 0.810.827116 49961 25683 1.9453 79.39 0

6 72 80 80 0.8| 0.78296 46782 2211321156 75.4 0

7 24 120 80 0.8]0.787716 50345 21866 2.3025 80.24 0.26

8 72 120 80 0.8]0.761166 46650 15674 2.9763 72.58 1.35

9 24 80 30 1210417113 30380 15028 2.0215 42.15 0
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5 Results and Discussion

5.1 Controlling the synthesis via DoE

The two most important CQAs controlling the nucleic acid delivery performance of a polymer

are the molecular weight distribution®”#¢ and the composition of the polymer itself'®. In case

of amphiphilic spermine-modified PBAEs, previous studies showed that the ratio of

hydrophobic side chains® plays a major role in the transfection efficiency of PBAE

copolymers ', Additionally, it was shown for numerous PBAEs that the molecular weight

plays vital functions in governing the performance as well as toxicity'*. Therefore, the main

goal of this study was to establish a synthesis route which would allow the precise prediction

and control over the final constitution of the P(SpOABAE) polymers. By using the CCO, the

design space, which was investigated, was maximized and by investigating 5 levels for each

factor (Figure 11.1b) the prediction strength was increased (Table II.1).

a) Polymerization
2 . NH (DMF.24h—72h,80°—120°)‘
N N _—
H,N N
. L ’
Tribocspermine (TBS) Oleylamine (OA) 1,4-Butanedioldiacrylate
— = . - R -
N In N N
[ L
o l )
o 1 Deprotection Ha r
| (DCM/TFA,2h,RT) f :
L —_— f 1
NH. F Y
N NH ¥ :, \
l y L
1 l
| l
m _ — m — —_n
C
b) )
Factors Number | Units Factor levels studied CQA Sum of Degrees of Mean square | F p-value
of levels squares freedom (Variance)
Initial OA |5 % 16,3 30 55 80 93,7 Final OA 0,757067 1 0,189267 160,615 <1x10°
Ratio Ratio
5 X 72 5,
::n‘:"on . 102 24 48 851 Mw 0,942607 4 0,235652 31,7042 <1x10?
3
Temperature | 5 °C 69 30 100 120 31 Mn 0,948579 4 0,237145 28,0392 <1x10
Diacrylate | 5 0.69 08 1 12 131 PDI 0,0515111 4 0,0128778 6,32118 0,002
ratio +33kDa 13108,3 4 13108,3 38,9963 <1x10?

Figure 1l.1: a) Overview of the applied synthesis for the used poly(beta aminoesters). Polymerization was
carried out using different timepoints, temperatures and component ratios. b) Factors used for the CCO design.
c) the CQAs selected as readout together with the data from ANOVA.

After performing the synthesis and analysis, the responses (Figure Il.1c) were fitted using

multiple linear regression. For the CQA final OA ratio, a strong regression of R, = 0.968 and
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a high validity of Q2 = 0.948 were found indicating a strong model (Figures Il.2a and 11.S2).
In the next step, the factors, which had been the most relevant for the model fit were
investigated. By choosing a CCO, the factor strengths for linear as well as quadratic model
terms, together with interactions between different CPPs was estimated. For the final OA
ratio, only three model terms showed a p-value below 0.05 and were deemed significant
(Figure 11.S7). Unsurprisingly, the most relevant CPP was the initial OA ratio with a scaled
and centered coefficient of 18.3%. Also, according to expectations, the temperature and
reaction time did not impact the final OA ratio significantly. Surprisingly, the two other
significant CPPs were the linear and quadratic diacrylate ratio with coefficients of -4.8% and
-2.6% (Figures 11.3a and 11.S7). Although they were less relevant, it is still unexpected that
this CPP can influence the final OA ratio. A potential reason for this observation might be
the calculation approach chosen to determine the final OA ratio (eq.ll.1). In this approach,
the diacrylate backbone is taken into account in the formula and thereby naturally impacts

the final results.
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Figure I1.2: Observed vs Predicted plot for a) final OA Ratio (R2=0.97), b) Mw (R2=0.85), ¢) Mn (R2=0.84), d)
PDI (R2=0.53) and e) >33 kDa (R2=0.88) for the CCO-design generated with 27 polymers.
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I 0.9ppm) Ny (backbone,4.2ppm)
OA Ratio = (0-9p1 x (bac i

nH(rPrminnl group,0.9 ppm) I
b (4.2ppm)

I(U,UUL: m)

- (nll(tcfrminal group,0.9 pplll))x Ny (terminat group,0.9 ppm)

(eq.ll.1)

In contrast to other polymerization mechanisms, the step-growth Michael-addition did not
lead to a single polymer species but rather a mixture of several distinctive peaks. This
finding will be further discussed below. To evaluate the presence of unreacted monomers
the, numerical percentage of species below 2,000 Da (<2 kDa) was determined (Table 11.1).
Since the DoE can only interpret discrete numerical values, a way to make our library
“interpretable” for the DoE algorithms had to be found. Therefore, several specific CQAs
rather than a single molar mass distribution were added. To start, the overall Mn, Mw, PDI
of the polymer as well as the numerical percentage of the polymer species above 33,000
Da (>33 kDa) were analyzed and introduced. For each CQA except for the PDI, a model
with a regression above Rz = 0.84 and a cross-validation value above Q2 = 0.75 were found
(Figure 11.2 b-e, 1.3 b-e, 11.S8-11.S11). This outcome confirmed that the model was able to
understand the synthesis and which CPPs govern the polymerization mechanisms.
Surprisingly, the main factor controlling the three responses of Mn, Mw and >33 kDa was
the OA ratio. Since the PDI of polymers is calculated by dividing the Mw by the Mn, this
CQA is susceptible to error propagation. This problem is reflected in higher scatters in the
observed vs predicted plot (Figure 1.2 d) and higher standard deviations in the coefficient
plot (Figure 11.3 d).

Reaction time was not significant for any of the responses and temperature only played a

minor role on the Mn.
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Figure 11.3: Model coefficients for a) final OA Ratio (R2=0.97; Q2=0.95), b) Mw (R2=0.85; Q2=0.77), c) Mb
(R2=0.84; Q2=0.75), d) PDI (R2=0.53; Q2=0.29) and e) >33 kDa (R2=0.88; Q2=0.81) for the CCO-design

generated with 27 polymers.
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5.2 Understanding key mechanisms

The initial hypothesis was that the molecular weight of the polymers would be mainly
governed by the reaction time and temperature following common consensus'’. However,
the presented data suggest a more complex mechanism. Since the analyses showed that
the main factor governing the large >33 kDa species was the OA ratio, it was concluded
that the reaction kinetics of OA was faster than the kinetics of the TBS subunits. A faster
reaction of hydrophobic subunits was already reported in literature®’. However, it was
observed that the maximum size of the >33 kDa species correlated with the OA ratio as well
(Figure 11.3e). This could not be explained with faster kinetics alone. Analyzing all GPC data
more extensively showed that all polymers had a characteristic sequence in which the peaks
occurred (Figure Il.4a). This was explained by the mechanism of step-growth

polymerization.

a) b)

Exemplary decay of reaction Kinetics

— k(A-A)
-~ Kk(B-B)

Wilog M)

- b H - 2 : 25 Reaction steps

110 110 1*10

Molar Mass [Da]

<)
Peak
Weight

Allowed NMR
Error ~ Fitting

ST tstwithaall
possible
combinations
= L T —rrr
s V\_} 0 Peak Sequence
olar Mass [Da]

[ 'SP'; 9, 'OA: 6 |n[ 'SP 13, 'OA'; 12, 'END" 1 |~| 'SP': 18, "0A': 17, 'START" 1, 'END': 1 |-‘ 'SP': 107, 'OA': 30, 'START": 1, 'END": 1 |

Wilog M)

[PPPITTOPPL YT PR TYITY YT PPPP) POVY PO

Table 11.4: a) Exemplary GPC peaks and Mp weights of polymer 3 (red) and 22 (black) in an overlay molar mass
distribution. b) Exemplary decay of different reaction kinetics as a function of already occurred reaction steps.
¢) The Peakldentifier tries to give the researcher an assumption, starting from the molecular weight distribution
in GPC data, about peak sequences. On the right a schematic overview illustrates how the Peakldentifier
attempts to match individual peaks and the peak sequence using the available data. At the bottom, an example
sequence proposed by the Peakldentifier for the molecular weight distribution above is shown. The units and
the corresponding numbers suggest the peak compositions that matches the data best.
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In step-growth polymerization, monomers undergo simultaneous parallel reactions to form
dimers, which subsequently engage in further parallel reactions to produce tetramers and
subsequent oligomeric species'®. Interestingly, in co-polymers the same mechanism
applies with the difference that three kinetics are occurring in parallel. The kinetics of two
building blocks of the same type reacting with each other (kA-A, kB-B) and the kinetics of
two different building blocks reacting with each other (kA-B, kB-A). Additionally, each
reaction slows down exponentially, with the number of reactions (r) that have already

occurred. With this behavior, the following relation could be drawn:

KA-A (r=1) > KA-A (r=2)  >..> KA-A (r=n)
(eq.ll.2)
kB-B (r=1) > kB-B (r=2)  >..> kB-B (r=n)
(eq.IL.3)
KA-B (r=1) > KA-B (r=2)  >..> KA-B (r=n)
(eq.IL4)
kB-A (r=1) > KB-A (r=2)  >..> KB-A (r=n)
(eq.IL.5)

Together with the finding that the OA homopolymerization kinetics are faster than TBS

homopolymerization kinetics, a new hypothesis was established.

It was proposed that the reaction reaches its thermodynamic equilibrium after a certain
amount of steps after which the reaction kinetics decrease to a level where statistically no
more reactions occur, for example, where a certain threshold was reached. How many
reactions it takes, for example, and how long the polymers become before the threshold is
reached is hence governed by the initially faster kinetics (kA-A). In this case the kinetics

and initial amount of OA (Figure 11.4b).
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Although the relationship between the >33 kDa species and the initial OA content may be
explained by this hypothesis, one needs to take into account that in theory only one single
species of varying size should have arisen from each synthesis. The fact that one can
simultaneously observe all different stages of the step-growth polymerization underlined the

reversibility of the Michael-addition (Figure Il.4a)'.

(A) + (B) = (AB) = (ABAB) = (ABABABAB)

(eq.l1.6)

The reversibility indicated that all stages of the step-growth synthesis are in equilibrium with
each other. The equilibrium that the reactions reaches (eq.ll.6) is, according to these
findings, governed by the ratio between faster reacting OA and slower reacting TBS (Figure
I1.4b).

A deeper investigation of the impact of the diacrylate (Figure 11.3b+c and Il.5b+c) showed
that the Carother’s equation'® also held true for these polymers, showcasing that a

diacrylate ratio of 1.0 leads to the largest polymers.

To incorporate the new hypothesis into the data set, an in-house software package was

written.

The software aimed to mimic the block-copolymer step-growth reaction, which was
expected in this system. Therefore, the absolute Mw of single building blocks was combined
together with an error term, to allow variance. This step was repeated for every peak in the
chromatogram, which led to a list of all possible peak sequences. Finally, peak sequences
were matched with the corresponding peak-weight and the polymer block composition data
obtained from NMR to match the most suitable peak sequences. The software then outputs
the peak sequence with the best match. To increase the likelihood that the sequence

matched the data, the program was constrained to select only sequences that assumed a
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growth in single building blocks. Additionally, end capping with diacrylate was only possible

when there was an excess in the amount of diacrylate used for synthesis.

It was important to note that the function did not apply any further physicochemical steps to
calculate a matching sequence and the results were calculated from the obtained data.

Therefore, high data quality was a major assumption of the program.

Figure Il.4c shows an example for the Peakldentifier from sample number 10. The error
range was set to 15 % to allow for the absolute combined monomers to vary with this value
from the proposed combination, and the NMR ratio was set to 38.42 [%]. The Peakldentifier
suggested a scenario where Oleylamine (OA) and Triboc-spermine (TBS) react with equal
probability. This assumption was based on the understanding that although OA reacts more
quickly (due to faster kinetics), TBS is available in greater concentration within the reaction
mixture, balancing the reaction likelihood between the two. The last peak observed might
be the result of a subsequent synthesis reaction, where the higher concentration of TBS in
the sample prompts the oligomers to undergo a reaction. What was shown clearly, is that
the Peakldentifier explained possible step-growth reactions in combination with different
kinetics. It has to be mentioned that the Peakldentifier provided a range of possibilities, but
since the program worked with absolute data one had to make sure to precisely select a

reasonable error range.

To validate the software (Figure 11.512), two single peak fractions were isolated using spin
columns. To verify a successful isolation, GPC was measured again (Figure 11.513). The
NMR results from the isolated fractions were compared to the Peakldentifier results. From
the NMR data for polymer 16, an 89.29% OA ratio was observed in the isolated peak at
67,750 Da and for polymer 17, 62.0% OA monomer was found in the isolated peak at 62,877
Da. The Peakldentifier calculated 124 OA units to 9 Spermine units, which corresponds to
a ratio of 93.2% for peak 16 and 75 OA units to 46 Spermine units, which is precisely 62.0%
for peak 17. We consider a delta in the estimation and the real ratio of under 5% as
successful, which was satisfied for both polymers tested (3.91% for 16 and 0 for 17). Based
on this example it was shown that the Peakldentifier allows for a quite precise estimation of

possible polymer fractions within this synthesis.

Another observation that was made was the presence of a side product appearing around

8 ppm in the NMR (Figure 11.514). However, a correlation between the intensity of the NMR
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peaks of this impurity and the temperature could be shown. Furthermore did the DoE
approach allow us to find the optimal setpoints to avoid the generation of these side
products in the first place (Figure 11.515). This highlights how DoE did not only improve the
understanding of the step-growth synthesis process but also how the most robust setpoints

could be identified to achieve the best results.

Interestingly, within the selected range, reaction time did not show any influence on the
readout parameters. This result could be caused by the fact that the equilibrium of the
polymerization process was already in a stable state after a short period of time and was
not further influenced by longer reactions. Despite the fact that high temperature led to the
mentioned side products and a possible reversibility in Michael addition reaction, it did

surprisingly not show any influence on the polymer size parameters.

5.3 Prediction

After the fitting of the model, a response surface for the entire design space was generated
(Figure 1l.5a-e). To validate the model, three different polymers with varying final OA Ratios
of 40%, 50% and 60% (Table 11.S1) were predicted. The reasoning behind these setpoints
was to spread through the design space as far as possible to validate a wide range.
Additionally, the predictions for the molecular weights were validated with the same
polymers. Having gained a deeper understanding of the complexity of our polymerization
process, it was all the more surprising how well the model did not just fit the already

generated data but also predicted the validation data (Figure 11.6 and Table 11.S1).
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Figure 11.5: 3 Dimension plot of the Response Surface of a) the final OA Ratio, b) the Mw, c) the Mn d) the PDI,
and e) the >33kDa model fitted from the CCO-design of 27 polymers showing the impact of the diacrylate ratio
(left 0.9, center 1.0 and right 1.2), initial molar OA ratio, and temperature.

The model was capable of accurately predicting the final OA ratio as well as the molecular

weight of the respective polymers. This dataset confirmed that with DoE even highly

complex mechanisms such as the showcased co-polymerization mechanism can be

understood and controlled, allowing a precise manufacturing of new desired polymers. With

this approach it is possible to synthesize any desired polymer in the design space without

any further trial and error studies, as it is the common approach in polymer synthesis'"".
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Figure I11.6: Prediction (P, Error Bars) and observed values (dots) for the validation of a) the OA ratios, b) the

Mw values and c) the Mn values of three validation polymers.
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5.4 Stability

As previously shown®®, amphiphilic PBAE-based spermine copolymers can mediate highly
effective gene silencing when they are used for siRNA formulation and delivery. To confirm
that the entire design space has relevance to subsequent performance tests, it was
investigated if all polymers formed nanoparticles, encapsulated and finally released siRNA.
As shown in Figure 11.516 and 11.517, all polymers were able to form stable particles, which
encapsulated the entire amount of the provided siRNA. Through the new stability assay,
assumptions about the strength of the intra-particular forces stabilizing the particles were
additionally made. This allowed the investigation of which polymers would form the most
and least stable particles. Polymer 5 and 6 formed the most stable particles and polymer
16 formed the least stable particles. The strongest correlations for the stability of the
particles were found for the synthesis temperature (Figure 11.7b), DA ratio (Figure 11.7d), and
the PDI of the resulting nanoparticles (Figure 11.7f). More precisely did a lower DA ratio and
a lower temperature during the synthesis lead to more stable nanoparticles. For the
synthesis time (Figure 11.7a) and the initial OA ratio (Figure Il.7c), no clear trends could be
found. Similarly, the hydrodynamic diameter of the nanoparticles did not show a clear trend.
Polymer 14 formed much larger particles than all other polymers but showed comparable
stability (Figure 11.S16+11.S17). Additionally, the difference in deviation of the EC_50 values
showed a relation to the synthesis parameters (Figure 11.7b+I1.7d), indicating controllability
by carefully choosing the proper settings. These parameters can become very important for
subsequent in vitro and in vivo studies. Further analysis showed that the stability correlated
with the PDI of the nanoparticles, indicating that less homogenous particles are harder to

break up (Figure ff).
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Figure 11.7: Stability values (EC_50) derived from the stability assay plotted against the initial CPP from the
CCO-design being a) the time of reaction, b) the temperature of the reaction, c) the initial OA ratio and d) the
DA ratio as well as the DLS data with e) the hydrodynamic diameter of the tested particles and f) the PDI of the
tested particles.

6 Conclusion

This study highlighted the value of DoE as a tool to gain deeper mechanistic understanding
of PBAE-based copolymer synthesis. Besides the revelation of key parameters controlling
the synthesis of P(SpOABAE), a model that accurately predicts the outcome of a synthesis
approach was established. According to our knowledge, this is the first report of a model
that is capable of predicting molecular weight as well as building block ratios of copolymers.
In combination with the Peakldentifier Software, a detailed picture of any synthesized
copolymer can be generated. As a deep understanding of the used polymers is the first step
for any scientific study, we are confident that these findings will prove valuable for other

scientists in the search of a more controlled material generation.
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Final OA Ratio
Total

Constant

Total corrected
Regression

Residual

DF

26

25

21

SS

9.53312

8.75131

0.781813

0.757067

0.0247461

MS (variance) F
0.366658

8.75131

0.0312725
0.189267

0.00117839

SD

0.17684

160.6175 0.000 0.435048

0.034327

6
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Lack of Fit 20 0.0239407 0.00119703

(Model error)
Pure error 1 0.00080545 0.000805451
1

(Replicate

error)

N=26 Q2=0.948

DF = R2 =0.968
21

R2 adj. =0.962

1.48616 0.578 0.034598

Cond. no. 2.832

RSD =0.0343
3

Figure 11.52: ANOVA table of the final OA Ratio from the CCO-design of 27 polymers.

60

2

0.028380
5



Total

Constant

Total corrected

Regression

Residual

Lack of Fit

MS (variance)

0.0425434
0.000 0.48544
0.163522 0.00743283 0.0862139

0.0081745  506.302 0.002 0.0904129

61



(Model error)

Pure error 2 3.2291e- 1.61455e-05
05
(Replicate
error)
N=27 Q2=0.768 Cond. no. 2.731
DF = R2 =0.852 RSD =0.0862
22 1
R2 adj. =0.825

Figure 11.83: ANOVA table of the Mw from the CCO-design of 27 polymers.
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Mnb~
Total

Constant

Total corrected
Regression

Residual

Lack of Fit
(Model error)

Pure error

(Replicate

error)

=
I

DF

27

26

22

20

27

DF =
22

SS MS (variance)
503.413 18.6449
502.278 502.278
1.13465 0.0436402

0.948579 0.237145
0.186067  0.0084576
0.186026 0.00930132
4.07365e- 2.03682e-05

05

Q2=0.747
R2 =0.836
R2 adj. =0.806

F p

28.0392

456.658

Cond. no. 2.731

RSD =0.0919

7

Figure 11.S4: ANOVA table of the Mn from the CCO-design of 27 polymers.

SD

0.208902

0.000 0.486975

0.0919652

0.002 0.0964434

0.0045131
2
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PDI~ DF
Total 27
Constant 1
Total corrected 26
Regression 4
Residual 22
Lack of Fit 20
(Model error)
Pure error 2
(Replicate
error)
N=27
DF =
22

SS MS (variance)
2.96082 0.10966
2.86449 2.86449

0.0963304 0.00370502
0.0515111  0.0128778

0.0448193 0.00203724
0.0447258 0.00223629
9.34858e- 4.67429e-05

05

Q2=0.288
R2 =0.535
R2 adj. =0.450

F p
6.32118  0.002
47.8424 0.021

Cond. no. 2.731

RSD =0.0451

4

Figure 11.85: ANOVA table of the PDI from the CCO-design of 27 polymers.
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SD

0.0608688

0.11348

0.0451358

0.0472894

0.0068368
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>33 kDa DF SS MS (variance) F P SD

Total 27 126153 4672.33
Constant 1 111196 111196
Total corrected 26 14957.1 575.273 23.9848

Regression 4 13108.3  3277.08 38.9963 0.00 57.2458
0

Residual 22 1848.78  84.0356 9.16709

Lack of Fit 20 1847.51 92.3754 144.963 0.00 9.61121

7
(Model error)
Pure error 2 1.27447 0.637236 0.79827
1
(Replicate
error)
N=27 Q2 =0.806 Cond. no. 2.73
=1
DF = R2=0.876 RSD =9.16
22 7

R2 adj. 0.854
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Figure 11.S6: ANOVA table of the >33 kDa fraction from the CCO-design of 27 polymers.

- Coeff. SC Std. Err. P Conf. int(%)

Constant 0.600624 0.0107169 2.34777e-24 0.022287

- 0.0075296 0.074348 0.0156587
0.0141401 2

0.183216 0.0075296 7.19313e-17 0.0156587
1

- 0.0075296 2.46714e-06 0.0156587
0.0481132 2

- 0.0104307 0.0229448 0.0216919
0.0255963

N =26 Q2=0.948 Cond. no. =2.832
DF =21 R2 =0.968 RSD =0.03433
R2 adj. =0.962
Confidence 0.95

Figure S7. Coefficient table (Scaled and Centered) for final OA-Ratio model from the fitted
CCO-design.

- Coeff. SC Std. Err. P Conf. int(%)

Constant 4.70064 0.025692 1.65088e-36 0.0532832
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5

- 0.018910 0.0684845 0.0392185
0.0362279 6

0.196177 0.018910 6.16452e-10 0.0392185
6

0.0447507 0.018910 0.0271844 0.0392185
6

- 0.025482 0.00463685 0.0528483
0.0802959 8

N =27 Q2=0.768 Cond. no. =2.731
DF = 22 R2 =0.852 RSD =0.08621
R2 adj. =0.825
Confidence 0.95

Figure 11.88: Coefficient table (Scaled and Centered) for Mw model from the fitted CCO-design.

67



- Coeff. SC Std. Err. P Conf. int(%)

Constant 4.38982 0.027406 3.07204e-35 0.0568377
4

- 0.020172 0.000772216 0.0418347
0.0786417 2

0.176359 0.020172 1.31122e-08 0.0418347
2

0.0536849 0.020172 0.0142611 0.0418347
2

- 0.027182 0.00135652 0.0563738
0.0996573 7

N =27 Q2=0.747 Cond. no. =2.731
DF = 22 R2=0.836 RSD =0.09197
R2 adj. =0.806
Confidence 0.95

Figure 11.89: Coefficient table (Scaled and Centered) for Mn model from the fitted CCO-design.

- Coeff. SC  Std. Err. P Conf. int(%)

Constant 0.310812 0.0134508 6.38448e-17 0.0278955
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0.0424165 0.0099003 0.000301253 0.0205322
5

0.0198192 0.0099003 0.0577805 0.0205322
5

- 0.0099003 0.376442 0.0205322
0.00893745 5

0.0193637 0.0133411 0.160772 0.0276678

N =27 Q2=0.288 Cond. no. =2.731
DF = 22 R2=0.535 RSD =0.04514
R2 adj. =0.450
Confidence 0.95

Figure 11.810: Coefficient table (Scaled and Centered) for PDI model from the fitted CCO-design.
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>33 kDa Coeff. Std. Err. P Conf. int(%)
SC

Constant 70.7029 2.73187 5.74094e-18 5.66558
Tem -3.29656 2.01076 0.115342  4.17009
OA Initial | 23.7096 2.01076 5.56369e-11 4.17009
DAR 4.24879 2.01076 0.0461756  4.17009

DAR*DAR -8.48071 2.70957 0.00487188 5.61934

N =27 Q2 =0.806 Cond. no. =2.731
DF = 22 R2=0.876 RSD =9.167
R2 adj. =0.854

Confidence 0.95

Figure 11.811: Coefficient table (Scaled and Centered) for >33 kDa model from the fitted CCO-design.

Pseudocode of the function:
Algorithm Peakldentifie

mw_building blocks, error_term, peak weights,

Output: best matching sequence

1. Initialize all sequences as an empty list

2. For each peak in chromatogram peaks do:

2.1 Calculate adjusted mw = mw_building blocks + error term + end-cap bool

2.2 Generate all possible sequences for the peak using adjusted mw



2.3 Add generated sequences to all sequences
3. Initialize best match score as negative infinityj

5. For each sequence in all sequences do:

5.1 Calculate match score for sequence based on peak weights and NMR data

5.2 If match score > best match score then:
5.2.1 Update best match score to match score
5.2.2 Update best matching sequence to sequence

. Return best matching sequence|

4. Initialize best matching sequence as None

»

Figure 11.812: Peakldentifier Pseudo code explaining the function of the Peakldentifier. The code is used to
match GPC and NMR data to the chromatogram and is expected to help identifying peaks and peak sequences

of step-growth polymerization products.
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Figure 11.813: Molar mass distribution of Polymer 16 before (red) and after (blue) 3 purification steps in a 30.000

Da MWCO spin column.



'H§125

2ROTON_Imu MeOD-d4 {C:\Bruker\TopSpin3.2\current\akMerkel} nmrsu 7

NEmni A

AT M
L e i e 'fw.vhw Vi’ g m‘wwwmwwwmmw

T T T T T T T T T
8.28 8.26 824 8,22 820 818 816 814 812 810 808 8.06 8.04 802 800 708 796 794 792 790

f1 (ppm)
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Figure 11.515: Correlation between side products (NMR species at 8 ppm) and reaction temperature.
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Table S1: Validation settings and results for three validation polymers. CQA predictions are shown with 95%
confidence intervals from lower (L) to upper (U) limit and results are shown in observed (O) columns.

Poly 0 M Mn P P P +33k
mer Ti TeO]z g g A 1:3 1:3 W MnMn(O)DIDIDI+l:;:;k+]3)1k Da
me m A 0 0) (L) (U L (U (O 0
V1 4o 103 03 04 03 296 390 312 144 193 144 1. 2. 2. 439 567 46.2
0 8 ' 78 26 80 38 42 35 57 98 72 891816 9 1 8
V2 4o 10 4 0.4 05 0.4 341 445 404 169 225 183 1. 2. 2. 513 63.5 61.8
0 1 © 742275 31 05 04 66 19 42 861420 0 5 0
V3 4o 105 (o 0.5 0.6 0.6 314403 402 143 187 183 2. 2. 2. 494 60.8 61.7
0 27"%80 23 03 97 49 95 8 36 38 043220 1 5 1
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Figure 11.816: Dynamic light scattering data of hydrodynamic diameter (red circles) and polydispersity index
(green triangle) of siRNA containing particles used for the stability assay.
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Figure 11.817: EC_50 values for siRNA containing nanoparticles generated with different polymers and
determined by Heparin and Triton-X competition assay (n=3)
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chapter Il - Machine Learning on an Orthogonal Polymer
Library Reveals Governing Factors and Optimizes

PBAE Copolymers' Synthesis and Performance
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10 Abstract

Pulmonary siRNA delivery is a promising therapeutic approach for future pandemics and
many non-infectious lung diseases. Polymeric nanocarriers, especially poly-beta
aminoesters are an easily tunable and versatile delivery system to protect RNA from
degradation. To maneuver the vast chemical space and generate control and
understanding, an orthogonal polymer library of amphiphilic-spermine-based poly-beta-

aminoesters was investigated for gene knockdown, toxicity and particle stability.
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Subsequently, a Nested-Leave-One-Out Cross Validation approach was chosen to screen
different machine learning models allowing to capture useful information within the limited
dataset. Analyzing key factors governing the particle performance identified too high intra-
particle stability as a disadvantage for successful gene knockdown. This finding facilitated
improved model performance through a few-shot learning approach. Leveraging these
combined and optimized models, a novel polymer candidate was predicted and
subsequently validated in vitro. A superior knockdown and toxicity profile as well as stability
trends were confirmed. In vivo experiments, however, highlighted the lack of in-vitro-in-vivo
correlation after model optimization for in vitro performance. Nonetheless, reduced in vivo

immunogenicity was achieved through the chosen approach.

Keywords: PBAE polymers, siRNA Delivery, Machine Learning, Orthogonal Library, in vivo

— in vitro correlation

11 Introduction

RNA-based therapeutics are rapidly transforming modern medicine, demonstrating
profound impact across diverse therapeutic areas. The global pandemic highlighted the
critical role of mMRNA vaccines as a leading-edge biotechnological solution®''2 for proactive
disease prevention. While the success of mMRNA vaccines is undeniable, the therapeutic
potential of RNA extends considerably beyond prophylactic applications. Harnessing the
inherent versatility of RNA's biological functions opens up a wide spectrum of therapeutic
possibilities, reflecting their fundamental role in cellular processes. One potential
therapeutic approach is the use of short interfering RNA (siRNA) for target gene silencing.
This regulatory RNA is built intracellularly by slicing double stranded RNA (dsRNA)
molecules into 20-25 nucleotide long sections and leading to mMRNA degradation via an
enzyme complex called “RNA induced silencing complex” (RISC). This mechanism could
unlock a promising pulmonary antiviral therapeutic strategy for future pandemics''®. Since
RNAs are prone to degradation after injection into a patient due to ubiquitously expressed
RNase enzymes, they need to be protected. For this purpose, various nanocarriers,
generated from different materials and compositions, are used. Intensively investigated
carriers for performing successful delivery are polymeric delivery systems such as PEI'™*,
PLGA'>116 or PBAEs®*'"7, Although all are established materials, only the latter provides
high cargo condensation while being biodegradable at the same time®, making PBAEs well-

suited for RNA delivery.
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As the tremendous amount of potential chemical structures enables infinitely many
possibilities of tailoring polymers for each individual use case''8, a strategy is needed, for
researchers to design a carrier system that suits their needs faster than with a classical trial-
and-error approach. One potential way to do so is rational design using human knowledge
119-121 While promising, this requires a large amount of expertise and may lead to human
errors due to biases and limited capability of extrapolating beyond experience. Another
strategy used, is the screening of big libraries®" 22, This allows for the discovery of a broad
chemical space and has already led to the discovery of high-performing carrier systems.
However, while being promising on the one hand, this method can only be applied if
abundant resources, time and workforce are available which is not applicable for many labs.
For this purpose, drug delivery research has started to implement more systematic attempts
such as design of experiments (DoE), a method where an a-priori design space is set up,
helping in systematically discovering a huge space without performing unnecessary
experiments. Even though this method established itself as the gold standard in industry for
most optimization tasks*, it provides a rigid scaffold limited by the pre-selected design
region and data points.

Machine learning (ML) is a powerful method that can overcome this limitation by allowing
for a nearly infinite flexibility in data analysis, optimization and prediction, which makes it an
increasingly integral component of modern drug discovery pipelines'?>'?4 In recent years,
several groups have contributed towards potential applications of ML in designing drug
delivery systems'?>126, However, ML is known to be heavily dependent on both data quantity
and quality, which is a problem in the field of polymeric drug delivery, where data is often
sparse or too heterogenous to use. Current contributions in the field predominantly focus
on either machine learning (ML)-assisted high-throughput screening'?” or the utilization of
existing datasets'?®. However, these approaches present inherent limitations, particularly
within academic research settings. High-throughput screening infrastructure is often
unavailable or impractical for many research questions, while sufficiently large and diverse
datasets, capable of enabling robust predictive modeling, remain scarce, especially in
comparison to the data abundance available for small molecules.

Here a new method is introduced, where ML is used within a previously synthesized small
dataset of spermine-based amphiphilic poly-beta aminoesters (PBAEs)'?. The data
obtained by using a DoE design allowed for precise synthesis and a deeper understanding
of the process itself. Subsequently, it is used to optimize PBAE capability for successful

gene knockdown while maintaining low cytotoxicity. Additionally, an approach is presented
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to tackle the low-data problem using a nested-leave-one-out cross validation loop to design
a robust algorithm to predict synthesis conditions that enable the polymerization of a new
lead candidate that outperformed the current benchmark. Furthermore, it was shown that
machine learning is the method of choice when incorporating additional information about
data due to the flexibility in designing few-shot modelFinally, a deeper understanding of
feature-relations was generated, by performing feature ablation studies and investigating
SHAPIley'° values for the models. To translate the theoretical work into a practical set-up
and to show the strengths but also the limitations of machine learning in this context,
subsequently the optimized nanocarrier was initially tested in vitro. Here, the performance
of the algorithm was validated and key findings about particle stability were confirmed.
Testing the in-vitro-in-vivo-correlation, gene knockdown and toxicity as well as

immunogenicity were investigated in mice.

12 This work lays the ground for researchers to make optimal use of
limited data and helps in predicting and understanding new delivery

systems without extensive and ineffective screening.

13 Materials and Methods

13.1 Materials

Dicer substrate double-stranded siRNA targeting enhanced green fluorescent protein
(eGFP) (siGFP, 25/27mer), and scrambled, negative control siRNA (siNC, 25/27mer) were
purchased from IDT (Integrated Technologies, Inc., Leuven, Belgium). Sequences and
additional information are provided in the Supporting Information, Table S1. HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid), ethyl trifluoroacetate, sodium chloride, Tris-
EDTA buffer solution 100%x, RPMI 1640 medium, Triton X-100, heparin sodium salt from
porcine intestinal mucosa, heat-inactivated fetal bovine serum (FBS),
penicillin/streptomycin solution (P/S), geneticin (G418), Dulbecco’s phosphate-buffered
saline (PBS), cOmplete™ Mini EDTA-free protease-inhibitor-cocktail were obtained from
Sigma-Aldrich (Darmstadt, Germany). Branched polyethyleneimine (PEI) (5 kDa, Lupasol
G100) was a kind gift from BASF (Ludwigshafen, Germany). Di-tert-butyl decarbonate,
oleylamine, spermine, dimethylformamide (99,5% pure), Lipofectamine 2000, OPTI-MEM
serum reduced medium, 0.05% trypsin-EDTA, Alexa Fluor 647 NHS ester, and a SYBR
Gold Nucleic Acid Gel Stain 10,000X concentrate in DMSO and siMMP7 were purchased

from Thermo Fisher Scientific (Schwerte, Germany). 1,4-Butanendiol diacrylate was
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obtained from TCI Chemical Industry Co., Ltd. (Tokyo, Japan). Trifluoroacetic acid (99,9%,
extra pure) was purchased from Acros Organics (Geel, Belgium). Methanol-d6 was
obtained from Deutero (Kastellaun, Germany). Dichloromethane, methanol, ammonia,
potassium permanganate, magnesium sulfate, acetone, pentane, and formic acid (>99%

pure) were purchased from VWR Chemicals (Ismaning, Germany).

13.2 Data Preprocessing

Experimental data was saved in Excel format and was transformed in a pandas dataframe.
The features were defined as Time (“Time”), Temperature(“Tem”), initial Oleylamin content
(“OA”), Diacrylate ratio (“DAR”). As target values we defined Gene Expression, Toxicity and
Stability. Note that Stability was used as additional feature in a few-shot approach when
predicting Gene Expression and Stability. Subsequently data was scaled using a

MinMaxScaler. In this complete dataset, no values were missing.

13.3 Nested-CV-Loop

The selection of an appropriate model is a critical step in running a predictive machine-
learning pipeline. Because we are dealing with data scarcity, we used only algorithms that
are known to perform well with limited data. Each model was placed in a single scikit-learn
pipeline together with a Min—Max scaler to avoid information leakage. We employed a
nested cross-validation scheme: first, 15 % of the data was split off as a hold-out set, which
was evaluated only after hyper-parameter optimization. To ensure that the hold-out set
represented the distribution of the training data, we discretized the continuous target into
five equal-frequency (quantile) bins and stratified the train—test split on those bins. In the
inner loop, 100 randomly chosen hyper-parameter configurations were assessed for each
model using leave-one-out cross-validation (LOOCV). After ten outer-loop repetitions, the
model with the lowest mean absolute error (MAE) and its associated optimal hyper-

parameters were selected for subsequent optimization.
Zero Shot vs Few-Shot Model

To compare whether certain additional experimental data can help in predicting others, we
investigated the influence of the experimentally determined colloidal stability of the
nanoparticle suspension. To do so, we included experimental stability values as additional
features into the gene expression and toxicity models. Since we experienced a threshold-
like behavior of Gene Expression and stability, the stability data was binarized after

normalization.
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13.4 Feature Ablation

To investigate the influence of the single features and whether they influence the predictive
power of the model, feature ablation experiments were executed. For this purpose, we
iteratively removed features and compared the performance across all LOOCV splits as
absolute mean error with a base model containing all features. When exceeding the error

threshold, the feature was assumed to just add noise to the model and was rated irrelevant.

13.5 Optimized Model Comparison

13.6 Model evaluation included a comparison of the optimized models against a
simple mean predictor baseline, providing a straightforward benchmark. This
dummy model always predicts the average value of the training set's target
variable. The MAE achieved by the baseline model was contrasted with that of our

few-shot and zero-shot models.

13.7 Model Interpretation

Model interpretation was performed using SHAP (SHapley Additive exPlanations) values to
quantify each feature's contribution to the difference between the model's prediction and
the expected value, providing insights into model behavior and enabling identification of
critical features. To visualize feature importance for the zero-shot and few-shot models, we
employed beeswarm plots. Furthermore, waterfall plots were used to illustrate the decision-
making process of the models. Finally, feature relationships were investigated using scatter

plots of SHAP values against their corresponding feature values.

13.8 Prediction Pipeline

Parameter prediction was performed using a combinatorial approach. Specifically, we
generated discrete parameter ranges and combined these ranges to create an exhaustive
list of possible parameter settings. These settings were then evaluated using the zero-shot
models. The resulting performance metrics were stored in a data frame and subsequently
sorted using a hierarchical sorting strategy. This allowed us to identify parameter

configurations that maximize gene knockdown while minimizing toxicity.

13.9 Triboc-Spermine Synthesis

Tritert-butyl carbonyl spermine, abbreviated as tri-Boc-spermine (TBS) was synthesized as
described elsewhere'®. Briefly, spermine (1 equiv) was dissolved in methanol and stirred
at =78 °C before ethyl trifluoroacetate (1 equiv) was added dropwise. Subsequently, the
mixture was stirred at =78 °C for 1 h and then at 0 °C for 1 h. Without isolation, ditert-butyl
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dicarbonate (4 equiv) was added dropwise to the solution and stirred at room temperature
for 2 days. Finally, the solution was adjusted to a pH above 11 by 25% ammonia and stirred
overnight to cleave the trifluoroacetamide protecting group. The solvent in the mixture was
then evaporated under vacuum, and the residue was diluted with dichloromethane (DCM)
and washed with distilled water and saturated sodium chloride aqueous solution. The DCM
phase was finally dried by magnesia sulfate and concentrated to give the crude product.
The crude product was purified by column chromatography (CH>Cl.\MeOH\NH3, aq 7:1:0.1,
SiO2, KMnO4; Rr= 0.413). TBS was isolated and characterized by 'H nuclear magnetic

resonance spectroscopy ('H NMR).

13.10 Polymer Synthesis and Characterization

Poly spermine-co-oleylamine beta-aminoesters (P(SpOABAE)) were synthesized based on
a previously described approach''4. Briefly, TBS as a hydrophilic monomer, oleylamine
(OA) as a hydrophobic monomer, and 1,4-butanendiol diacrylate (DA) as backbone were
mixed in different molar ratios in dimethylformamide (DMF), resulting in total concentrations
of 300 mg/mL. After the respective reaction time, mixtures were transferred to Petri dishes
to evaporate the solvent. The subsequent deprotection of the polymer was carried out in a
mixture of 20 mL of dichloromethane (DCM) and 1 mL of trifluoroacetic acid (TFA) for 100
mg of polymer, followed by stirring for 2 h at room temperature. In the following, DCM/TFA
was evaporated and the dry deprotected product was precipitated 3 times in pentane using
acetone to dissolve the precipitate. Supernatants were discarded, and the final precipitate
was dried for 2 days under vacuum (room temperature, 20 mbar). The synthesis process is
depicted in Figure IlIl.1A. Final polymers were characterized by '"H NMR and GPC.
Measurements were performed with an Agilent aqueous GPC using a PSS Novema Max
Lux 100A followed by two PSS Novema Max Lux 3000A columns. The chromatographic
system and calibration standards were set up according to preanalysis from Agilent
Technologies on P(SpOABAE) polymers. Measurements were performed at 40 °C in a 0.1
M sodium chloride solution supplemented with 0.3% formic acid. Samples were prepared
at 4 g/L and measured at a flow rate of 1 mL/min. Molar mass distributions were obtained
through the Agilent WinGPC software against pullulan calibration standards in the range of
180 Da to 1450 kDa. A daisy-chain detector setup of an Agilent 1260 VWD was used,
followed by an Agilent 1260 GPC/SEC MDS and ending with an Agilent 1260 RID.
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13.11 Gene Knockdown

H1299 stably expressing eGFP were seeded on 48-well or 24-well plates at a density of
5,000 or 10,000 cells per well in 1640 RPMI supplemented with 10% FCS and 1%
Penicilin/Streptomycin, respectively. Nanoparticles were prepared at N/P ratio 10
encapsulating either siGFP or siNC RNA, and cells were transfected 24h after seeding in
triplicates with 10 or 20 pmol siRNA per well. After 48 hours, median fluorescence intensity
(MFI1) was recorded using a BD LSR Fortessa using the BD FACSDivaTM Software and
counting 10,000 events. Gene knockdown was calculated as the ratio between MFI of cells
treated with siGFP NPs and siNC NPs.

13.12 Cell Viability

Cell viability and toxicity were tested simultaneously using a CellTiter Blue (CTB) and
Lactate dehydrogenase (LDH) assay. In 96-well plates, 5,000 16HBE140- cells were
seeded. After 24 hours, the polymer library was tested in triplicates. Each polymer was
tested at 8 different concentrations between 1 and 500 ug/mL. After 48 hours of incubation,
50 uL supernatant of each well was transferred to a fresh plate and LDH was quantified
following the manufacturers protocol. Briefly, to each well 50 uL of freshly resuspended
reagent mix was added, and the plates were incubated in the dark for 30 min. Afterwards,

50 uL stop solution was added into each well and absorbance was measured.

For the CTB assays, the cell containing wells were filled up with 30 pL of fresh media and
20 uL CTB and incubated for 4h. Afterwards, absorbance was measured at 570 and 600

nm.

Using JMP 17 pro, sigmoidal curve fits were generated through all concentrations and
repetitions of the CTB and LDH assays, and turning points were calculated and defined as
IC50 values.

13.13 Determination of attractive forces between siRNA and polymers

A previously reported stability assay was used to determine the attractive forces between
siRNA and polymers. The stability values for the input library were reported in the same
publication?®. Following this protocol, nanoparticle stability was investigated using heparin
and triton-X. Briefly, 10 yL nanoparticle suspension was treated with 20 yL of 8 different
concentrations of a mixture of heparin and triton-X in a black 384-well plate (Greiner Bio-
One, Frickenhausen, Germany). As reference, siRNA solutions resembling the

concentrations of NPs were treated with the same concentrations of heparin and triton-X.
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Plates were sealed and incubated for 1h at 37°C at 250 rpm. Afterwards 5 pL of a 4x SYBR
Gold solution were added to each well and mixed by pipetting. After 5 minutes of incubation
fluorescence was measured at 492/20 nm excitation wavelength and 537/20 nm emission
wavelength. Comparing the fluorescence intensity of the treated nanoparticle solution to the
respective siRNA solutions’ intensity, a release percentage was calculated. Fitting the
released percentage against the used concentration of heparin and triton-X, using Prism5
software, an EC50 value was calculated. This value was defined as the concentration at

which half of all siRNA is released from the nanoparticle suspension.

13.14 Animal Treatment Protocol

Female BALB/c mice, aged 6-8 weeks, were purchased from Charles River Laboratories.
The mice were housed in a controlled facility for 14 days to acclimatize, with a 12-hour
light/dark cycle. All animal procedures were approved by the Government of Upper Bavaria

and conducted in accordance with approved protocols.

Mice were intratracheally instilled with 1 nmol of siRNA encapsulated at N/P 10 with either
the previous lead candidate or the new ML-2 polymer, administered through intratracheal
instillation under ketamine/xylazine anesthesia. As control, equivalent volume of 25kDa
hyperbranched PEI polyplexes encapsulating the same amount of siRNA was applied as
well as unencapsulated siRNA or pure formulation buffer. All formulations were tested with
either siRNA targeted against murine Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) or negative control (NC). Mice were euthanized 24 hours after application mice

through cardiac blood collection.

Lungs were flushed twice with 500 uyL of PBS buffer containing 2 mM EDTA and one
cOmplete™, Mini, EDTA-free protease-inhibitor-cocktail tablet per 10 mL to collect the
bronchoalveolar lavage fluid (BALF). Briefly, solutions were injected into the trachea and
subsequently recollected. A second 500 uL of the same PBS solution was instilled and
recollected. The collected BALF was centrifuged for 5 minutes at 500 g. The supernatant

was frozen at -20°C and stored at -80°C until further analysis.

Lungs were subsequently perfused with 20 mL of 0.9% sterile sodium chloride. To do so,
the vena cava inferior was cut and the solution injected into the left ventricle. After sufficient
perfusion, one lung lobe from each treatment group was dissected, fixed in 4%
paraformaldehyde (PFA) for at least 24 hours, and then embedded in paraffin for histological

analysis via H&E staining.
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The remaining lung lobes and undissected lungs were stored at 1 mL RNAlater™

Stabilization Solution, frozen and stored at -20°C until further analysis.

13.15 In Vivo Gene Knockdown

GAPDH gene knockdown in mouse lungs was determined through gPCR. RNA was isolated
from mouse lungs using Lysing Matrix D tubes containing 1.4 mm Zirconium-Silicate
spheres from MP Biomedicals and a TRIzol/chloroform isolation protocol. Briefly, mouse
lungs were thawed on ice and transferred to the lysing tubes. After the transfer, 1 mL of
TRIzol was added to each tube. Using a Tissue Lyzer the samples were homogenized. The
RNA was isolated through chloroform precipitation. After centrifugation, the aqueous phase
was washed with molecular grade isopropanol followed by ethanol. The final RNA pellets
were dissolved in RNase free water and concentrations were determined. Using a high-
capacity cDNA reverse transcription kit (Thermo Fisher Scientific), complementary DNA
(cDNA) was prepared. Finally, quantitative real-time PCR (qRT-PCR) was performed
applying an iTaqg Universal SYBR Green Supermix (Bio-Rad, Feldkirchen, Germany) on a
StepOnePlus system (Thermo Fisher Scientific). Beta-Actin was used as the reference
gene with Mm_GAPDH_3_SG primers (Qiagen) for GAPDH and Mm_ACTB_2_ SG
(Qiagen) primers specific for mouse B-actin. For normalization of GAPDH levels, the AACt

method was applied.

13.16 In Vivo Biodistribution and Cell Uptake

To investigate the biodistribution and cellular uptake 6—8-week-old BALB/c mice were
treated with 1 nmol of siRNA fluorescently labeled with a AF647 label as described
previously. siRNA was either applied unformulated or encapsulated into the previous lead
candidate or ML-2 polymer. After 24 hours, mice were sacrificed, and bladders, lungs, livers,
kidneys, spleens, and the hearts were collected. Using an IVIS Lumina Ill (PerkinElmer,

Shelton, CT, USA) fluorescence intensity in these organs was measured.

For further analysis, lungs were dissociated using a gentleMACS tissue Dissociator
(Miltenyi Biotec, Bergisch Gladbach, Germany) together with gentleMACS C (Miltenyi
Biotec, Bergisch Gladbach, Germany) tubes following the manufacturers protocol. Cell
suspensions were incubated with PBS solution containing Zombie UV™ and afterwards
stained with FITC anti-mouse CD45, BUV395 anti-mouse CD3, Vioblue anti-mouse CD4,
APC-Cyanine7 anti-mouse CD8, PE-Cyanine7 anti-mouse F4/80, BUV605 anti-mouse
CD11c, BV785 anti-mouse CD326, PE/Dazzle™594 anti-mouse CD170 and
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PerCP/Cyanine5.5 anti-mouse CD19 for 30 min at 4°C. The stained cells were measured
using a Cytek® Aurora (San Diego, California, USA) implemented with autofluorescence

extraction for the detection of cellular uptake (Figure 111.S1).

13.17 BALF Cytokine Measurements

Cytokines from collected BALF solutions were quantified using a LEGNEDplex™ Mouse
Inflammation Panel (Biolegend, San Diego, California, USA) following the manufacturers
protocol and an Attune NxT flow cytometer (ThermoFisher Scientific, Waltham, MA USA).
Results are reported as total detected concentration and as relative induction compared to

the highest induction for each individual cytokine.
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14 Results and Discussion

141 Library Performance Evaluation
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The aim of this work was the investigation and optimization of key parameters governing
the performance of PBAE polymers as siRNA delivery vehicles in vitro and in vivo for
pulmonary therapy. We therefore utilized a previously reported library of 27 differently
synthesized PBAE polymers (Figure I1.1A)'?°. The library was generated through a Central
Composite Orthogonal design optimizing the synthesis parameters of total synthesis time,
synthesis temperature, oleyl amine ratio, being the ratio of the two sidechains, and
diacrylate ratio, being the ratio of the sidechains to the backbone (Figure Ill.1B). All factors
were investigated over 5 levels and with all resulting polymers, nanoparticles were

successfully formulated. Nanoparticle stability was already reported?®.

To complement the previously reported data set, nanoparticles were tested for gene
knockdown in an H1299 eGFP-expressing lung cell line by encapsulating and delivering
siRNA against eGFP. The results were plotted against the previously reported stability
values (Figure II1.1C). Interestingly, an apparent division threshold was found within the data
set. Above this threshold, the particles appeared to lose their functionality in vitro. This was
unexpected since the common consensus suggests that particles need a certain stability to
not lose their integrity before reaching the endosome. In contrast, the data presented here
suggest that the major bottleneck for the investigated PBAE nanoparticles was not
premature particle disintegration but rather excessively strong intraparticular stabilizing
forces. Since only below the found threshold a successful gene knockdown above 90% was
observed, it was hypothesized that at too high EC50 values, particles did not disintegrate
within the endolysosomal pathway to release their siRNA cargo and mitigate gene
knockdown. This hypothesis was underscored by the observation that above the identified
threshold, the highest achieved gene knockdown effects were below 30%. Previous studys
reported similar observations, implying that polyplexes lose potency if the intraparticular
stabilizing forces become too strong to release the cargo''. On the other hand, weakening
the intraparticular forces can increase the nanoparticles performance’2. Therefore, a clear
design criterion for next generation polymers was stated. The criterion was that nanoparticle
stability needed to be lower than an ECsp value of 1.6, in order to successfully release the

siRNA within the endosome.

In the next step, cytotoxicity and cell viability of the polymers from the library were
investigated in pulmonary epithelial cells by the means of CTB and LDH assays (Figure
[11.S2). A correlation comparison between both IC50 results showed that the tested

polymers were well tolerated in a range from 25 to 175 mg/mL and the results from CTB
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and LDH correlated strongly with each other (Figure [11.S3+S4). As expected, polymers
exhibiting higher toxicity also showed a greater negative impact on cell viability, and vice
versa. Furthermore, this finding enabled a reduction in experimental workload and cost
since a single assay was sufficient to reliably assess polymer safety. CTB assays resulted
in a slightly lower IC50 value than LDH assays (Figure 111.S3). Moving forward, for these

reasons CTB was chosen as main readout.

To finally evaluate the performance of the polymer library, gene knockdown was plotted
against the IC50 values determined via CTB (Figure 111.1D). This showed another surprising
finding, which was the successful decoupling of toxicity from efficiency of the nanoparticle
system. One of the biggest challenges for RNA delivery is the “efficiency/safety dilemma’,
where higher transfection efficiency is often associated with increased cytotoxicity. The root
cause is most likely associated to the membrane disruptive potential of the carrier system.
A certain membrane fusogenicity is necessary for endosomal escape, while excessive
disruption of endolysosomal compartments or cellular membranes can trigger
immunogenicity, apoptosis and toxicity'33-135, It was therefore a remarkable finding that the
investigated library contained a polymer with exceptional gene knockdown as well as

superior safety profiles (Figure 111.1D, green area).

14.2 Nested CV Approach

Building upon the nested cross-validation framework described before'¢, we implemented
a similar approach with specific modifications tailored to our low-data context (Figure 111.2A).
First, recognizing the limitations of complex models in data-scarce settings, we opted to
exclude the neuronal network component present in the referenced methodology. Second,
to ensure the hold-out set was representative of the training data distribution, we stratified
the dataset based on the target variable, dividing the data into five bins prior to splitting.
This stratification ensured that each fold maintained a similar target distribution to the overall
dataset. Furthermore, within the inner cross-validation loop, we employed LOOCV. LOOCV
was chosen to maximize the training data available for each inner fold, which is particularly
advantageous when working with limited datasets. In our experiments, we trained models
to predict two distinct target variables: Gene Expression post-treatment and Toxicity,
quantified as IC50 (see Methods section for details). We also investigated the potential
benefit of incorporating additional nanoparticle characteristics, specifically stability, as input
features. Consistent with the nomenclature used in3', we refer to the variant that includes

the additional stability descriptor as the “few-shot” model, even though only one extra
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feature is added; this usage follows the prior work’s feature-augmentation context and

should not be confused with the standard few-shot/one-shot paradigms that describe limited

numbers of training examples. While we observed improved results for the few-shot

approach for all Gene Expression models (Figure 111.2B), addition of stability did not seem

to have a big impact on the IC50 value (Figure 111.2C). The only model that slightly improved

was the DecisionTree (DT). However, its performance was still poorer than that of the best
zero shot-model, which was the RandomForest (RF) with an MAE of 0.3673. For the Gene

Expression model, XGBoost outperformed other models (MAE of 14.18). However, for the

few-shot model, the Support Vector Regressor (SVR) was slightly better. Good performance

of an SVR with low data and non-linear interactions was already seen previously'’. Among

the best performing model class, we picked the best hyperparameter-setting for the most

robust models (Figure 111.S5), which were further optimized in the next steps.
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Figure Il.2: Nested-Leave-One-Out Cross-Validation Approach A) Machine learning pipeline where data is
preprocessed and subsequently categorized to allow for stratified splitting of holdout data. The train set is used
to tune each algorithm with a random hyperparameter search and leave-one-out validation. The process is
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measurements of nanoparticles included. The models marked with an asterisk and a bold frame are the most
robust models selected for optimization. C) Mean Absolute Error of multiple models tested for IC50 with the ML
pipeline. Few-Shot models (blue) with stability measurements of nanoparticles included. The models marked
with an asterisk and a bold frame are the most robust models selected for optimization.
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14.3 Feature Ablation Experiment

To further optimize model performance and enhance process understanding, we conducted
a feature ablation experiment (Figure 111.S6). In this experiment, we evaluated the
performance of each model, assessed via Leave-One-Out Cross-Validation (LOOCV), by
iteratively removing individual features. For the Toxicity model, feature ablation revealed no
statistically significant performance differences; only a marginal increase in MAE was
observed when removing Temperature for the zero-shot model and Time for the few-shot
model. Conversely, for the Gene Expression model, we observed that ablating Time and
Diacrylate-Ratio (DAR) improved zero-shot model performance. In contrast, DAR remained
important for the few-shot model. These findings align with our prior work, which indicated

a limited impact of reaction time on polymer characteristics.

14.4 SHAP Analysis

To gain deeper insights into model decision-making, we calculated SHAP (SHapley Additive
exPlanations) values for all models (see Figure IlIl.3A and 111.3B). The SHAP analysis
generally corroborated the findings from the feature ablation experiment. Furthermore, it
elucidated feature importance for predicting high knockdown/low gene expression,
suggesting a requirement for high oleylamine content (OA Initial) and elevated Temperature
(Tem) in the zero-shot model. In contrast, the few-shot model's SHAP values reflected the
stability threshold identified previously. For the IC50 prediction, Temperature emerged as a
significant parameter, with lower temperatures associated with reduced toxicity, while
higher OA Initial concentrations appeared favorable. This observation may be attributed to
the potential formation of a side-product at elevated temperatures, as documented in our
earlier publication'?®. Stability, however, exhibited no influence on predicted toxicity (Figure
111.3B). It is important to note that SHAP values represent model interpretations rather than
ground truth and, given the weaker predictive performance of the IC50 model, these results
require cautious interpretation. Detailed SHAP plots for all models and features and
correlation plots between SHAP values and features are provided in the Supplementary
Information (Figure 111.S7 and [11.S8).

14.5 Final Model Performance and Baseline Comparison

To demonstrate the final model performance, we benchmarked both the zero-shot and few-
shot models against a dummy baseline model (see Methods section). Additionally, we
visualized the results in predicted-versus-real plots (Figure I11.S9). The Gene Expression

zero-shot model exhibited promising performance, achieving a MAE of 10.59 and a Pearson
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correlation coefficient (r) of 0.8494 in the predicted-versus-real plot (Figure IIl.S3A and

Figure IlII.9A). The incorporation of stability as a feature further enhanced predictive

performance (MAE= 7.605, r=0.9078), underscoring the existence of a stability threshold

above which particle stability is too high to release the cargo into the cytosol, what was

already observed in earlier work (Figure Ill.3A and Figure 111.S9B). For the Toxicity model,

performance improvements over the baseline (MAE of 0.2816 versus MAE of 0.3476) were

observed, and a correlation between predicted and experimental values was evident for the

zero-shot model (r= 0.3605, Figure III.3B and Figure [Il.S9C). However, no significant

difference was found between the zero-shot and few-shot models (Figure 111.3B and Figure

[11.S9D), further supporting the conclusion that stability does not substantially influence the

toxicity of the nanocarrier system.

Gene Expression

A) 25

20 1
15 A

10

Mean Absolute Error

Few-Shot Model  Zero-Shot Model Dummy Model

B) 0.400

0.375 1

0.350 4

0.275

Mean Absolute Error

0.250

0.225

IC50

0.325 4

0.300 -

00 l I I

Few-Shot Model  Zero-Shot Model Dummy Model

OA Initial

Tem

OA Initial
Tem

Stability

Tem

OA Initial

Tem
OA Initial

Stability

High

E
i i J1 i 3
g
i IR i £
&
- - - - - - Low
-30 -20 -10 0 10 20
SHAP value (impact on model output)
High
H t 3 ..i +f H F
g
i 1-pd 1" @
3
w
' &
Low
-60 -40 =20 0 20
SHAP value (impact on model output)
High
[
n¢ { E
£
i} B £
&
~0.050 ~0.025 0.000 0.025 0.050 0.075 0.100 0.125
SHAP value (impact on model output)
High
nt ¥ g
s
# Is
t e
©
i

~0.075 -0.050-0.025 0.000 0.025 0.050 0.075 0.100 0.125

SHAP value (impact on model output)

Figure Il.3: Optimized Model Characteristics A) Gene Expression MAE Comparison of optimized Few-Shot and
Zero-Shot Models with a Dummy-Baseline Model evaluated with LOOCV above: SHAP values of Zero-Shot

91



model and below: few-shot model B) IC50 MAE Comparison of optimized Few-Shot and Zero-Shot Models with
a Dummy-Baseline Model evaluated with LOOCV upper panel: SHAP values of Zero-Shot model and lower
panel: few-shot model.

14.6 End-to-End Prediction Pipeline and Validation

To ultimately validate the utility of machine learning with limited data, for predicting novel
formulations, we constructed an end-to-end prediction pipeline (Figure I11.4A). This pipeline
involved generating all feasible combinations within physically plausible feature ranges and
employing our zero-shot models as an independent multi-output model to predict Gene
Expression/Knockdown and Toxicity. Given the superior predictive power of the Gene
Expression model, we implemented a hierarchical sorting strategy, prioritizing high
knockdown followed by low toxicity. The model-predicted optimal polymer, termed ML-2 and
characterized by 95% OA Initial and synthesis at a Temperature of 130°C, was
subsequently synthesized (see Methods section), analyzed (see Figure 111.510 and Figure
111.511), and experimentally validated. To further highlight the model’s decision path, we
added additional SHAP waterfall plots (see Figure 111.S12 and Figure 111.513), confirming

the results from the full model’s beeswarm plot.
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To validate the performance of the new ML-2 polymer as pulmonary delivery agent, it was
compared against a previously reported lead candidate'®? derived from classical trial and
error synthesis optimization. In the following this polymer will be referred to as “Lead”
candidate. Besides different synthesis settings, these two polymers mainly differ in their OA
ratio, with the predicted ML-2 having a higher ratio at 93% and the previous Lead polymer
alower at 75%. To investigate if the new ML-2 polymer was indeed superior in performance,

a gene knockdown experiment in H1299 eGFP cells was conducted. As shown in Figure

93



111.4 B) ML-2 did indeed mediate a more potent gene knockdown than the Lead polymer and
seemingly a more complete downregulation than Lipofectamine 2000 (Figure 11.4 B). The
median fluorescence intensity did not differ significantly between Lipofectamine 2000 and
ML-2 (Figure 111.514). To get a more detailed view on the differences on the polymers’
performances, the dot plots of the cell populations were compared via the gated percentage
(Figure 111.4 B +C). ML-2 was clearly superior to the Lead polymer but showed again no
statistical difference compared to Lipofectamine 2000. The Lead polymer on the other hand
showed a large cell population with a non-complete gene knockdown. This indicates that
the lead polymer does not reach saturation of cytosolic siRNA delivery unlike ML-2. This
difference of saturation is also depicted in the gated percentage (Figure 111.4 C) and clearly

shows the superior efficiency of ML-2 compared to the Lead polymer.

A major downside of the previous Lead candidate is the early onset of toxicity as can be
seen from the CTB curve (Figure lll.4 D). Even though the ICs value of the Lead polymer
is in an excellent range with 89 ug/mL, the early onset of the curve decline indicates that
toxicity can already occur at much lower concentrations. ML-2 showed a superior ICso value,
although in a comparable range with an ICsy value of 109 ug/mL. However, additionally to
a higher ICso value, the curve decline was also much steeper indicating a much later “onset
of toxicity” at higher concentrations. This finding confirmed the potential of the machine
learning approach since ML-2 showed to have better efficiency and safety profiles than the

previous lead candidate.

Finally, to prove our previous findings, we determined the stability of the ML-2 nanoparticles
(Figure lll.4 E), which was in the expected range, below the above-described threshold

necessary for successful gene delivery.
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14.8 Machine Learning-Derived Polymer Evaluation in vivo
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Figure lIL.5: In vivo results of the lead and ML-2 comparison. A) Fold-change of GAPDH against (3-actin
determined by AACt method with buffer only as reference standard. B) Fluorescence intensity measurements
of bladder, lungs, liver, kidneys, spleen, and heart (from left to right) 24 hours after intratracheal instillation of 1
nmol siRNA encapsulated into lead (top three) and ML-2 (bottom two) polymer, or C) 1 nmol of pure siRNA. D)
Flow cytometric analysis of cell suspension generated from mouse lungs through tissue grinders. E) Cytokine
expression measured in BALF samples, normalized to the respective maximum value. F) Tissue slices from
mouse lungs treated with ML-2 (top) encapsulating siGAPDH (left) and siNC (right) and lead polymer (bottom)
encapsulating siGAPDH (left) and siNC (right).

In order to investigate if the superior properties of ML-2 would translate into an in vivo model
both polymers were applied to female BALB/c mice intratracheally. Unfortunately, no clear
gene knockdown for ML-2 was observed as well as just a slight reduction in gene expression
for the Lead polymer (Figure IIl.5. A). This could be associated with the GAPDH
housekeeping gene, which plays a crucial role in cell metabolism. A forced downregulation
via e.g. siRNA can lead to upregulation of the gene translation as compensation, which is
reflected by the observation, that PEIl did not mediate a gene downregulation either.
Additionally, the loss of efficacy moving from in vitro to in vivo models is not unprecedented.
Another reason for this poor in-vitro-in-vivo correlation could be the challenging barriers in
intratracheal applications such as the presence of respiratory mucus and the
bronchoalveolar architecture. To investigate this hypothesis, we tested the Lead polymer in
an air-liquid- interface (ALI) cell culture model of mucus producing CALU-3 cells where a
similar loss in efficacy was observed (Figure [11.S15.). This shows that the bronchial mucus
forms a major barrier neglected by the machine learning algorithm utilized here. Although
the mucus hampers the delivery of the nanoparticles to the lung cells, a considerable
retention within the lungs (Figure 1ll.4 B) was still observed compared to blank siRNA
(Figure Ill.4 C), which was rapidly distributed throughout the entire body. A deeper
investigation of the uptake into lung cells through flow cytometry showed that especially the
Lead polymer mediates a considerable uptake in most cell types (Figure 111.4D and Figure
[11.S16). For a therapeutic effect, uptake into epithelial and type Il pneumocytes, the most
relevant and most prevalent cell types, is commonly aimed for. In both cell types, the Lead
polymer enabled a superior uptake compared to the ML-2 polymer, but both were increased
compared to pure siRNA. A negative correlation between polymer hydrophobicity and
mucus penetration might be the reason for the superior uptake for the Lead compared to
ML-2 polymer. Since the second optimization task of the algorithm was toxicity, the in vivo
compatibility was investigated next. To exclude false positive results, polymers were tested
for endotoxins and confirmed to be endotoxin free (Figure 111.517). BALF Cytokines showed

partially higher levels after treatment with the Lead polymer than after administration of PEI
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polyplexes (Figure 1ll.4 E and Figure 111.518). Treatment with the ML-2 polyplexes, on the
other side, resulted in comparable cytokine levels as measured after administration of free
siRNA or Buffer alone, indicating high biocompatibility. These findings were complemented
by the tissue slices prepared from treated lungs, where only for the Lead polymer immune
cell invasions were observed, whilst ML-2 was comparable to pure siRNA application
(Figure 111.4 F and Figure 111.S19). These results show the successful improvement of safety
and tolerability of the predicted PBAE. One reason could be the more stealth-like properties
mediated through the higher hydrophobicity. Especially in macrophages and DCs, the
uptake of ML2 was comparable to pure siRNA indicating an evasion of immune recognition,

which can also be seen in the low levels of TNF-a, IL-6 and IL-27 (Figure 1ll.4 E and F).

15 Conclusion

This study successfully demonstrated the efficiency of machine learning for extracting
valuable insights from well-structured data, even with limited datasets. Furthermore, the
successful synthesis of an optimized nanocarrier using predicted conditions validates the
Nested-Leave-One-Out Cross Validation approach as a valuable tool for developing
generalizable prediction for the selected feature space. Feature analysis also proved crucial
for gaining deeper mechanisti However, the model's exclusive reliance on in vitro data
resulted in predictions that did not fully translate to the complexities of in vivo environments.
Therefore, future research incorporating in vivo data from the early stages of optimization
is essential to develop more robust and clinically translatable predictive models, ultimately

leading to improved therapeutic outcomes.

16 Data Availability

All experimental data and the Python code used are available upon request. The data used

to fit and validate the Machine Learning models are shown in Figure 111.S20.
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19 Supplementary Information

Table S1: adjusted from Zimmermann et al, doi: 10.1016/j.jconrel.2022.09.021. Sequences of siRNAs used in
the study. Nt = nucleotides; GFP = green fluorescence protein; NC = negative control; GAPDH = housekeeping
gene GAPDH; A = Adenine; C = Cytosine; G = Guanine; U = Uracil; T = Thymine; p = phosphate residue; lower
case bold letters = 2’-deoxyribonucleotides; capital letters = ribonucleotides; underlined capital letters = 2"-O-
methylribonucleotides.

Name Sense strand (5’-3’) Antisense strand (3’-5%) Length (nt)
Sense  Antisens

e

siGFP pACCCUGAAGUUCAUCUG ACUGGGACUUCAAGUAGAC 25 27
CACCACcg GUGGUGGC

siNC pCGUUAAUCGCGUAUAAU CAGCAAUUAGCGCAUAUUA 25 27
ACGCGUat UGCGCAUAp

siGAPDH pGGUCGGAGUCAACGGAU UUCCAGCCUCAGUUGCCUA 25 27
UuUGGUCgt AACCAGCA

siGAPDH pAGCAUCUCCCUCACAAU ACUCGUAGAGGGAGUGUU 25 27
(MM) UUCCAUCcc] AAAGGUAGG

E

Figure IlI1.S1: Gating strategy for flow cytometric analysis of single cell suspensions obtained from mouse lungs.
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GeneExpression ZeroShot:

XGBRegressor( learning_rate=0.2, max_bin=None,

monotone_constraints=None, n_estimators=100)

GeneExpression FewShot:

IC50 ZeroShot:

min_samples_leaf=4, oob_score=True)

IC50 FewShot:

max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=4,

max_depth=4, max_leaves=None, min_child_weight=2.0, missing=nan,

SVR(C=1, degree=4, epsilon=0.2, kernel="poly', shrinking=False)

RandomForestRegressor(ccp_alpha=0.005, criterion="absolute_error',

RandomForestRegressor(ccp_alpha=0, criterion="absolute_error’,

min_samples_leaf=4, min_samples_split=8, oob_score=True)

Figure lI.S5: Model and Hyperparameter Settings after evaluation
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Figure IIl.S6: Feature ablation study for A) Zero-Shot Gene Expression B) Few-Shot Gene Expression C) Zero-
Shot IC50 D) Few-Shot IC50.
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Figure 111.S8: Scatter plots of SHAP values and used features after the feature ablation study for the Few-shot
model for A) the Gene Expression Model and B) the IC50 Model.
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Figure 111.S16: MFI of all alive cells measured from mouse lung single cell suspensions.

Endotoxin test using a LAL-reaction (S)

To ensure an endotoxin free synthesis product polymers were investigated using the
Endosafe® Endochrome-K™ Kinetic Chromogenic (KCA) LAL Endotoxin Detection
Reagent (Charles River, Sulzfeld, Germany). Briefly, A calibration curve was prepared from
the kits reference sample in duplicates in a range from 0.05 to 5 IU/mL. Polymer samples
of the lead candidate and ML-2 were prepared in two concentrations of 0.1 and 0.01 mg/mL
in duplicates. One sample of each polymer concentration was spiked with endotoxin
references to a final concentration of 0.5 I.U./mL, while the other sample was used without
any further modification. To 100 mL of the respective samples, 100 pL of freshly
resuspended LAL-reagent was added. After 5 minutes of incubation at 37°C, sample
absorbance was measured with a plate reader at 374 nm (TECAN Spark, TECAN,
Mannedorf, Switzerland. At 37°C all samples were measured every 15 seconds at the same
seconds for 30 minutes. No increase above an absorbance value of 1 after 30 minutes was
interpretated as an Endotoxin Concentration below the LoD for the kit and stated as

“Endotoxin-free”.
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Figure I11.S17: LAL Endotoxin Detection results showing the calibration measurement of pure endotoxin
standards (left, top), samples spiked with 0.5 IlU/mL endotoxin standard (left, bottom) and samples without any
modification (right).
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Figure 111.S18: Cytokine quantification from BALF samples using the ELISA Inflammation Panel, reported as
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Chapter IV - Machine Learning-Enabled Polymer
Discovery for Enhanced Pulmonary siRNA Delivery

1 Graphical Abstract
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2 Abstract

Nucleic acid therapeutics are poised to revolutionize the clinical treatment of diseases once
considered undruggable. Although these therapeutic approaches hold significant promise,
delivering the nucleic acid cargo remains challenging due to susceptibility to nuclease
degradation. Among all carrier systems, polymers stand out for their high tunability and cost-
effectiveness. However, their flexible structure greatly expands the chemical space, making
experimental exploration both costly and time-consuming. Leveraging published data and
machine learning methods provides a valuable strategy to address these issues. The
present study demonstrates a way to merge data from multiple sources and use this
information to identify a new polyester that effectively delivers siRNA into lung cells. The

newly discovered polymer was further examined in ex vivo experiments and tested in a
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mouse model. The results indicate that a polymer capable of silencing specific genes in vivo
can be discovered through machine learning, circumventing an extensive trial-and-error

process in the search for novel materials.

Keywords: Machine learning; polymer discovery; siRNA delivery; pulmonary delivery;

polymeric nanoparticle; polyester; Poly(beta)aminoester

3 Introduction

Therapeutic nucleic acids (NAs) are one of the most promising innovations in clinical
research. A huge number of diseases that were previously considered undruggable, such
as hypercholesterolemia™® or Huntington’s disease'® can now be treated effectively
through this groundbreaking approach to therapy. Since the discovery of NAs by Friedrich
Miescher'® in 1868, extensive research has been conducted aiming to translate this
technology into actual medicines. It was in 1998, when the first NA-based drug, vitravene®,
received approval by the FDA for the treatment of cytomegalovirus (CMV) retinitis. However,
as of 2024, only 20 further applications have been approved’'. One reason for the slow
progress may be that NAs, and particularly ribonucleic acid (RNA) is unstable in the
bloodstream and rapidly degraded by ubiquitous RNases. To circumvent this limitation, it
became common practice to encapsulate RNA into carrier systems that protect the cargo
from enzymatic degradation and help to guide the NAs to the desired tissue. In this context,
lipid nanoparticles (LNPs) have become increasingly popular. As of today, three LNP-based
RNA therapeutics have received FDA market approval, namely the SARS-CoV-2 vaccines
Comirnaty, and Spikevax as well as Onpattro, a therapy for hereditary transthyretin-
mediated (hATTR) amyloidosis. However, LNPs have been associated with certain
concerns, including their potential to trigger inflammation™?, immunogenicity’*® and
challenges with long-term storage’’. Therefore, polymeric carrier systems have been
proposed as an alternative to circumvent the limitations of lipid-based carriers™®. Polymer
materials are generally very flexible and can be modified with optimized chemical structures.
This enables simplified adaptation as, in contrast to LNPs, only a single component needs
to be adapted. To condense polyanionic RNA via electrostatic interactions, polymers need

to contain protonable groups. In many cases, amines are introduced in the polymer structure
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to fulfil this role™**. However, nanoparticles formulated with polycationic materials may cause
safety issues if they are unable to be properly excreted, resulting in their accumulation within
the body. Polycations remaining in the body can interact non-specifically with intracellular
proteins and peptides, which may affect their functionality, and lead to cytotoxicity. This
limitation can be addressed by introducing biodegradability into the polymer, which is very
common in polyester structures. In addition to biodegradability, the inclusion of specific
structural motifs, such as hydrophobic segments, is essential in enhancing the functional
properties of the polymer. These hydrophobic motifs'* are usually included in forms of
amphiphilic block copolymers®-¢ to shield excessive electrostatic interactions. Additionally,
these additions supplement the base polymer with hydrophobic properties for interactions
with RNA and biological membranes, which support better performance in cellular uptake,

endosomal escape and many more.

Unfortunately, understanding the exact structure activity relationship between block
copolymers and successful delivery of cargo is highly complex and far from trivial. This
complexity is amplified by the thousands of potential variations in polymer architecture,
composition, and environmental interactions, as well as the fact that synthesizing these
polymers is both time-intensive and requires significant material resources, adding to the
challenge of systematic exploration. Yet, it is exactly this understanding that is necessary
to design new high performing and safe carrier systems. In recent years, the development
and application of artificial intelligence algorithms have significantly increased. These
algorithms might help to uncover the underlying patterns differentiating successful from
unsuccessful block copolymers and facilitate the virtual screening of potential candidates
before synthesis. Machine learning (ML) models that could be used to make this possible,
are highly data driven and therefore dependent on available experimental data. While ML
is already broadly used for polymeric property predictions such as Tg' or dielectric
constant™’, not much work is published on using ML models for the design of new
amphiphilic polymeric nanocarriers. Pioneering work in this field was conducted by the
groups of Green'® and Reineke'”’. Both used high-throughput synthesis and screening
methods to collect data and make predictions for unseen combinations. The need for the
availability of high throughput screening opportunities is however limiting the wider use of

these approaches. Furthermore, the authors relied solely on machine learning applied to a
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single type of polymer, which inherently limits the exploration of the broader chemical space

and restricts the potential to uncover diverse structure-activity relationships.

Here, we show how the discovery of new polymeric nanocarriers can be guided with a
prediction model trained on literature data for different kinds of polyesters. In this work, we
emphasize pulmonary siRNA delivery to the lungs as a demonstration of our approach,
while noting that it could equally be applied to other therapeutic cargo and targets, following
a similar strategy. We collected >600 different polyester structures used for siRNA delivery
from previous publications and trained multiple ML models with the corresponding gene
silencing data. To obtain insights into polymeric siRNA delivery, we investigated key factors
that drive successful delivery of cargo. Our lead model was then used to synthesize a novel
amphiphilic polymer, which was subsequently tested for its performance of delivering
siRNA. Starting with in vitro testing we progressively increased biological complexity by
evaluating the polymer in an air-liquid-interface model followed by ex vivo human Precision-
Cut-Lung-Slices (hPCLS). These models reflect critical challenges in pulmonary RNA
delivery, including RNase activity, the mucus barrier and tight junctions in respiratory
epithelium. Finally, we evaluated the polymer’s safety for pulmonary administration and its

ability to facilitate gene knockdown in an in vivo murine model.

Our approach offers an easy-to-use method for designing new nanocarriers by utilizing
historical data. Additionally, we demonstrate how data from a broader chemical space can
be used to identify polymeric properties essential for successful delivery. To the best of our
knowledge, we are the first to synthesize an amphiphilic polymer for siRNA delivery using
ML, thereby contributing to a deeper understanding of RNA delivery via polymeric

nanocarriers.

4 Results and Discussion

4.1 Generalizable Machine Learning Framework

A primary goal of this study is to empower researchers lacking HTS capabilities to employ
ML on existing literature data. Our methodology achieves this by systematically integrating
information from diverse sources into a unified dataset. However, compiling data from

literature presents an inherent challenge: balancing the scope of chemical diversity. On the
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one hand, sufficient diversity is desirable for training models that yield generalizable insights
into structure-property relationships. On the other hand, literature datasets are often sparse
compared to HTS data. Including systems with widely divergent chemical structures or
fundamentally different delivery mechanisms introduces significant noise. With limited data
points, this can easily overwhelm the underlying patterns related to a specific delivery
strategy, preventing the ML model from effectively learning the relevant mechanisms.
Therefore, our approach necessitates carefully constraining the literature search to a
‘comparable chemical space'—focusing on systems sharing core structural similarities and
presumed mechanisms. This focused scope enhances the signal-to-noise ratio, enabling
the model to identify meaningful correlations even from limited data. We illustrate this
methodology using a curated dataset of amphiphilic polyester structures, representing a

class with comparable underlying chemistry.

Converting molecular structures into a format readable for a ML algorithm is a prerequisite
for ML applications in the chemical space, and several methodologies have been
proposed.®>'#8149  Commonly employed fingerprints or SMILES rely on purely structural
information, limiting their use for a generalization as required here. This limitation can be
overcome using representation as molecular graphs or molecular descriptors™°.
Unfortunately however, using descriptors alone also does not necessarily lead to a good
generalization since high dimensional representations are prone to overfitting''. Thus, we
used a Tree-Based feature reduction to eliminate descriptors that did not contribute to the
overall prediction of the model. To ensure valid representations of polymeric data, each of
the polymer building blocks (hydrophilic, hydrophobic, endcapping), was separately
encoded, and the ratio information was embedded by multiplying each descriptor with this
ratio factor. The molecular weight and the cell type used in the original dataset were added
to the sample. The latter was achieved using one-hot encoding, a method that converts
categorical features into binary vectors, enabling their representation in machine learning
models. To minimize the noise that is introduced by the experimental data and especially
by merging datasets of different origin, we decided to use a binary binning approach to turn
the regression problem, using the reported gene silencing percentages, into a classification
problem. We selected a gene knockdown efficiency of 50% as threshold to separate the
formulations into two different classes, reflecting our primary goal of assessing whether

synthesizing a polymer is worthwhile rather than focusing on exact gene silencing values.
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Utilizing binary classification generally enhances interpretability, simplifies the analysis and

effectively addresses data imbalance.

Using the prepared dataset, we first compared different ML algorithms (Figure IV.S1A). To
address the imbalance in the dataset, balanced accuracy/mean recall was used to handle
potential model biases towards the major class and a RandomOverSampler was used to
guarantee balanced training. The data was split into a train/test set at a ratio of 80:20 and
100 models were trained using each algorithm. The LGBMCIassifier®® showed the best
performance (0.8217 balanced accuracy) and was therefore selected for further
optimization. We then compared different resampling strategies (Figure IV.S2), with
SMOTEEN'™? showing the best balanced accuracy (0.8309). After tuning using hyperopt
(Figure 1IV.S3), additional feature reduction was performed, where eleven features lead to
the best model performance (Figure IV.1A). This process was visualized using UMAP,
revealing how feature reduction minimized gaps in the chemical properties space (Figure
IV.1B). This approach was aimed to reduce the risk of overfitting while limiting the
physicochemical information required to encode molecular structures. This ultimately
facilitated the integration of different datasets and the generalization of unseen structures.
The eleven most important features, using SHAP are shown in Figure IV.S4. The tuned
LGBMClassifier was finally evaluated using 100 stratified train-test splits of 80/20 and
showed a mean balanced accuracy of 0.8462 on the validation sets (Figures 1V.1C and
IV.1D). Afterwards, the model was trained on the entire dataset and used for the prediction

task. The full workflow is also visualized in Figure 1V.S5.
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4.2 Experimental Validation

To experimentally validate the trained classifier, novel polymers were rationally designed
from available precursors via established synthetic routes. Given our group's significant
expertise in synthesizing and characterizing poly(beta-amino ester)s (PBAESs), this class of
polymers was selected as the focus for the validation set. To the best of our knowledge, all
selected polymers are unpublished structures. The classifier predicted their potential
knockdown efficiency. Based on these predictions, three polymers expected to exhibit low
efficiency and three expected to exhibit high efficiency were selected for chemical synthesis
and subsequent in vitro evaluation. Their schematic structures were shown in Figure 1V.S6,
with specific chemical structures provided in Figures IV.S7-S12. siRNA was formulated with
these polymers at an N/P ratio of 10, and polyplexes were characterized regarding size,

polydispersity and zeta potential, as presented in Figure IV.S13. Gene silencing efficiency
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was assessed in both enhanced green fluorescent protein (eGFP)-stably expressing H1299
cells (using siRNA targeting eGFP) and A549 cells (using siRNA targeting epidermal growth
factor receptor (EGFR)). Consistent with the predictions, all three polymers anticipated to
have low efficiency demonstrated negligible knockdown efficiencies (Figure 1V.S14).
However, the polymer OA-BG, comprising full oleylamine (OA) modification with bisphenol
A glycerolate (BG) as its backbone, predicted as a high-efficiency candidate, failed to
achieve the 50% knockdown threshold, reaching only 31.88% eGFP knockdown in H1299-
eGFP cells and 24.62% eGFR knockdown in A549 cells. These results represented
approximately 30% of the knockdown efficiency achieved by Lipofectamine 2000 and thus
OA-BG was considered a false positive. In contrast, the other two polymers predicted to be
high-performing, SP/TDA-BG (spermine/tetradecylamine with the BG backbone) and
SP/OA-BG (spermine/oleylamine with the BG backbone), successfully demonstrated the
predicted high knockdown efficiencies (91.82% and 96.17% eGFP knockdown,
respectively). Overall, five out of six polymers were correctly classified, resulting in an
experimental validation accuracy of 0.8333, which closely aligns with the classifier's

estimated performance metric of 0.8462 (Section 2.1).

4.3 Characterization of Polymer and siRNA-loaded Polyplexes

Following the experimental validation in Section 2.2, among the polymers tested, SP/TDA-
BG demonstrated high transfection efficiency, in agreement with the classifier's prediction.
Given its promising performance, we selected SP/TDA-BG as a model polymer for further
systematic investigation into the relationship between its structural characteristics and
biological activity. Although the machine learning model specifically suggested a 50:50
SP:TDA ratio as optimal, inspired by the transfection cliffs theory's®, we sought to investigate
how minor deviations from this composition might impact transfection performance, as such
effects are not necessarily captured by the machine learning model'®*. Hence, we
synthesized the corresponding PBAE polymers following the synthetic procedure shown in
Figure IV.2A, adjusting the molar ratios of cationic monomer spermine and lipophilic
monomer tetradecylamine from 40% to 60%, which were further confirmed by 'H NMR
analysis (Figure 1V.S15). In addition, referring to our previous work on efficient siRNA
delivery via amphiphilic PBAEs incorporating SP and OA with 1,4-butanediol diacrylate as
the backbone® %5, we also selected PBAE SP0.3/OA0.7 as a benchmark for comparative

evaluation in our study.
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The polymers were then complexed with siRNA at different N/P ratios. It is worth noting that,
in the used dataset, N/P ratios were always set to at least 15 to ensure complete siRNA
encapsulation and corresponding effectiveness. However, in our experimental work, we
aimed to minimize polymer use, to particularly improve in vivo tolerability, based on our
previous studies confirming efficient gene silencing and encapsulation at lower N/P
ratios'®'%°, Therefore, we initiated screening from an N/P ratio of 3, increasing up to 10.
Specifically, we assessed the physicochemical properties of the formed polyplexes,
including size, size distribution and zeta potential. Most polyplexes formed with diameters
ranging from 50 to 300 nm and acceptable PDI values around 0.2 (Figure IV.2B). Examining
the zeta potential, a significant change was observed between N/P ratios of 3 and 5,
particularly in case of polyplexes prepared with PBAEs SP0.5/TDA0.5 and SP0.4/TDAO.6,
which displayed noticeable charge reversal (Figure IV.2C). Incomplete or unstable
encapsulation of siRNA at N/P 3 (Figure IV.S17) could explain this observation. This near-
neutral flipping zeta potential also revealed colloidal instability as evidenced by the
extremely large size exceeding 2000 nm in case of polyplexes prepared with PBAE
SP0.3/0OA0.7 at N/P 5. When the ratio was increased to N/P 7 and N/P 10, the siRNA was

completely encapsulated and the polyplexes were more stable in size.

Although stable formation of polyplexes is important for siRNA delivery, appropriate siRNA
release is equally critical for successful gene silencing as the final action site will be in the
cytoplasm, where the released siRNA cargo from polyplexes should bind with the RNA-
induced silencing complex (RISC) to fulfill its function. Therefore, we investigated siRNA
release from polyplexes in the presence of Triton X and heparin, which will competitively
interfere hydrophobic and electrostatic interactions, respectively. After a non-linear fitting of
released siRNA to the added interferents, EC50 values revealed that the release of equal
amounts of siRNA from the polyplexes required higher concentrations of Triton X and
heparin (6.2% vs. 5.2%) when the spermine ratio in the polymers increased from 40% to
60% (Figure 1V.2D). The EC50 value for SP0.3/OA0.7 polyplexes was even higher (12.1%),
demonstrating the tightest binding between siRNA and the polymer in our study. The binding
strength effectively protected siRNA from degradation by RNase, as all formulations
retained more than 90% siRNA content after incubation with the enzyme. In contrast, free

siRNA lost 99% of its integrity when treated with the same amount of RNase (Figure IV.2E).
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Figure IV.2: Characterization of synthetic polymers and siRNA-loaded polyplexes. (A) Synthesis procedure and
the structure of SP/TDA-BG PBAE polymers. (B) Hydrodynamic diameter (represented by bar graph),
polydispersity (represented by symbol), and (C) zeta potential of siRNA-loaded polyplexes prepared at different
N/P ratios. (D) siRNA release from polyplexes at N/P ratio of 10 in the presence of Triton X and heparin using
SYBR Gold assay, and EC50 values obtained by non-linear fitting analysis of released siRNA to added
interfering substances. (E) RNase protection assay of polyplexes prepared at an N/P ratio of 10. Polyplexes
were firstly treated with RNase at 37°C for 30 min, followed by RNase deactivation by heating to 70°C for 30
min. After incubation with Triton X and heparin, released siRNA was quantified using SYBR Gold assay. Results
are presented as mean + SD, n=3.

121



4.4 In Vitro Performances: Cytotoxicity, Cell uptake and Knockdown Effects

We initially evaluated the safety profile of our polyplexes by assessing the viability of H1299
cells exposed to increasing polymer concentrations. The cell counting kit (CCK-8) assay
showed a dose-dependent trend in cell viability. Notably, even at the highest N/P ratio of
20, cell viability remained above 80%. When the N/P ratio was reduced to 10, the viability
of H1299 cells consistently reached 90-95% in all groups (Figure 1V.3A). Therefore, all
following experiments were conducted at an N/P ratio of 10 or lower. Next, we performed a
wider uptake screening of polyplexes formulated from N/P 3 to N/P 10 in H1299 cells. With
increasing N/P ratio, the uptake of all polyplex formulations was improved (Figure 1V.3B).
Quenching the fluorescent signal on the cell surface with trypan blue, only resulted in a
negligible decrease in the detected mean fluorescence intensity (MFI), indicating
internalization of the polyplexes rather than non-specific adsorption on the surface.
Furthermore, the knockdown effects of enhanced green fluorescent protein (eGFP) in
H1299 cells stably expressing eGFP were consistently exceeding 94% in all polyplexes
formulated at N/P ratios > 3 (Figure IV.3C).

The uptake of polyplexes at N/P 10 in A549 cells mirrored the trends observed in H1299
cells, with reduced uptake observed when either SP or TDA proportions exceeded 60%
(Figure 1V.3D). This aligns with the mechanism of adsorptive endocytosis which is generally
associated with polyplex uptake™®. For highly hydrophilic cationic polymers such as
poly(ethyleneimine) (PEI) and poly(L-lysine) (PLL), uptake primarily relies on electrostatic
interaction with cell membrane™”'%8, Hydrophobic modifications, however, have been shown
to enhance uptake through interactions with lipids and membrane proteins™®'¢°. Similarly,
Rui et al. reported that increasing PBAE hydrophobicity initially boosted uptake before
declining, regardless of whether delivering siRNA, mRNA or DNA®. In our study, PBAE
SPO0.5/TDAO.5 polyplexes achieved the highest uptake, with an MFI > 80,000. This indicates

that a balance of electrostatic and hydrophobic interactions is crucial for optimal delivery.

Importantly, improved cellular uptake does not always correlate with stronger transfection.
Although siRNA-loaded PBAE SP0.3/OA0.7 polyplexes showed superior internalization in
A549 cells, transfection efficiency was lower than expected and inferior to the performance
observed in H1299/eGFP cells (Figure IV.3E). This discrepancy may be attributed to the
differences in siRNA lengths used for targeting eGFP (52 nucleotides) and EGFR (42
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nucleotides) or differences in cell-type specific intracellular processing. Meanwhile, the
slower release of siRNA that we observed in SP0.3/OA0.7 polyplexes may be another
reason (Figure IV.2D). Notably, despite lower uptake of PBAE SP0.4/TDAO0.6 polyplexes,
their knockdown efficiency (53.4%), was comparable to SP0.5/TDA0.5 (51.2%). This
observation might be explained by the efficient endosomal escape, which we investigated
utilizing the Galectin-8 (Gal8) assay''. In brief, Gal8 binds glycans exposed upon
endosomal membrane disruption, enabling quantification of endosomal escape using Gal8-
mRuby-expressing cells®*®°. The average number of Gal8-mRuby3 punctate fluorescent
spots increased from 5.43 to 16.25 per cell as the lipophilic TDA content was increased
from 40% to 60% (Figure IV.3F). This finding underscored that lipophilic components
enhanced hydrophobic interactions with membranes, leading to structural instability of the
membrane and disruption?. As a result of this disruption, polyplexes were able to escape
the endosome, releasing siRNA into the cytoplasm to bind RISC, cleave target mRNA, and

achieve effective knockdown of protein translation.
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Figure IV.3: In Vitro performances of siRNA-loaded polyplexes. (A) Viability of H1299 cells after treatment with
polyplexes formulated at different N/P ratios. (B) Cellular uptake of polyplexes containing Alexa Fluor 647-
labeled siRNA in H1299 cells, presented as mean fluorescence intensity. (C) EGFP knockdown efficiency of
polyplexes in H1299/eGFP cells. (D) Cellular uptake of polyplexes containing Alexa Fluor 647-labeled siRNA in
A549 cells. (Data are presented as mean = SD, n = 3; ***p < 0.001, ****p < 0.0001, one-way ANOVA) (E)
EGFR knockdown efficiency of polyplexes in A549 cells. (F) Fluorescent spots of Gal8-mRuby3 in genetically
modified Hela cells after 4 h of treatment with different polyplexes. Green color represents Gal8-mRuby3, nuclei
are shown in blue. Scale bar, 25 ym. Quantification of Gal8-mRuby3 dots was performed by the Fuiji plug-in of
Image J, and data are presented as mean + SD.

4.5 Mucus Penetration on ALI model and Gene Silencing in hPCLS

For pulmonary delivery, the mucus layer on the surface of the respiratory tract poses a
significant barrier to effective siRNA delivery™*'®. If an RNA-carrier interacts excessively
with mucus, it will not be able to penetrate this barrier during the time of mucus turnover,
leading to its clearance from the lung before cellular internalization. Additionally, tight

junctions between respiratory epithelial cells further act as another barrier to paracellular
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transport of siRNA''%¢, To evaluate the ability of our PBAEs-siRNA formulations to
overcome these lung-specific barriers, we used an air-liquid interface (ALI) culture of Calu-
3 cells. Under ALI conditions, Calu-3 cells differentiate into a pseudostratified epithelium,
produce mucus and cilia-like microvilli, and thus closely mimic the in vivo respiratory tract
environment'”'%8, As shown in Figure IV.4A, we obtained images by laser confocal laser
scanning microscopy (CLSM), labelling mucus (green), cell nuclei (blue) and siRNA (red).
Importantly, the mucus was largely distributed above the nuclei in all samples, confirming
the successful establishment of a cell monolayer with mucus on the air-exposed side. When
treated with free siRNA, signals from the siRNA were barely detectable. In the
Lipofectamine 2000 control group, a very weak red signal was observed across the mucus
layer toward the cell layer. For the ALI cells treated with PBAE SP0.3/OA0.7 polyplexes,
the red signal was significantly increased but mainly distributed within the mucus layer. In
contrast, strong red signals were observed in the samples treated with PBAE SP/TDA
polyplexes, with a wide distribution extending from the mucus layer to the cellular nuclei.
However, a slight decrease in the red signal was observed across the cell monolayer as the
lipophilic TDA ratio increased in the PBAE polymers. As previously reported, the long mucin
proteoglycans chains present in mucus entangle, usually forming hydrophobic domains and
hydrophilic channels in the network. This periodic hydrophobic domains have been shown
to interact with hydrophobic particles or particles exhibiting hydrophobic moieties™*'%. For
polyplexes with comparable electrical properties, this hydrophobic affinity may cause
polyplexes with higher ratio of lipophilic monomers, either OA or TDA, to be restricted in
diffusion. Overall, CLSM images showed that amphiphilic PBAEs consisting of SP/TDA

were able to penetrate mucus and mediate sufficient uptake in epithelial cells.

Further increasing the biological complexity, we evaluated the gene silencing effects of our
polyplexes in human Precision-Cut-Lung-Slices (hPCLS) (Figure IV.4B). hPCLS are widely
recognized as a powerful tool for investigating drug responses in an environment that
accurately reflects the complexity of the human lower respiratory tract. hPCLS maintain the
native lung architecture, which includes the respiratory parenchyma and small airways, as
well as a variety of lung-resident cells, including type | and Il alveolar cells, bronchial
epithelial cells, endothelial cells, and immune cells'’°. After 48 h of siGAPDH transfection in
hPCLS, the gene silencing effects were evaluated by measuring the downregulation of the

housekeeping gene GAPDH as previously described'’. In this proof-of-concept study,
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GAPDH was chosen as a target gene only to evaluate the delivery efficiency, and it will be
replaced with an aberrant gene for treating specific diseases in future applications. In
addition, the hPCLS used in our study were derived from non-lesional regions and were in
principle free of abnormal genes. As a result, gPCR analysis of the extracted RNA from the
slices showed that the average GAPDH/B-Actin ratio was approximately 1.0 in the free
siGAPDH-treated group, while in the Lipofectamine 2000-treated group, this ratio dropped
significantly to 0.71 (Figure IV.4C). SP0.6/TDA0.4 and SP0.4/TDAO0.6 polyplexes enabled
a slight decrease of GAPDH gene expression in the hPCLS, with reductions of 16.3% and
20.1%, respectively. Overall, SP0.5/TDAO0.5 polyplexes demonstrated the highest gene
silencing efficiency, achieving a 43.7% reduction of the GAPDH level, confirming the need
for balancing cationic and hydrophobic content in the PBAE nanocarriers for efficient

pulmonary delivery.
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Figure IV.4: Mucus penetration assay and ex vivo knockdown of house-keeping gene GAPDH. (A) Mucus
penetration of polyplexes in air-liquid interface (ALI) culture of Calu-3 cells 24 h after transfection. Red color
represents Alexa Fluor 647 labeled siRNA, nuclei are shown in blue and mucus layer in green. Scale bar, 100
pm. (B) Schematic diagram of preparation of human precision cut lung slices (hPCLS). (C) GAPDH gene
knockdown efficiency in hPCLS transfected with different formulations. The experiments were performed in
technical triplicates and data are presented as mean + SD, n = 2; *p < 0.05, ***p < 0.001, one-way ANOVA.

4.6 In Vivo performance: Biodistribution, Biocompatibility and Knockdown Effects

after Pulmonary Delivery

Based on in vitro and ex vivo results, we selected PBAE SP0.5/TDAO0.5 to move further to
in vivo studies. Alexa Fluor 647-labeled siRNA was loaded into polyplexes and delivered
via intratracheal instillation (Figure IV.5A). Compared to free siRNA, polyplexes

demonstrated significantly higher retention and internalization in the lung (Figures IV.5B
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and IV.S19), with an 82.3-fold increase in fluorescence intensity (Figure IV.5C). As
observed previously'’?, when administered as polyplexes, some siRNA entered systemic
circulation via pulmonary capillaries, accumulating in the liver before metabolism as
evidenced by the signal detected in the liver and kidneys, respectively. Due to the complex
architectural structure in the lung, polyplexes may face challenges in reaching the
respiratory zone, which cannot be accurately evaluated by /VIS imaging. CLSM images
revealed that polyplexes containing pHrodo red-labeled siRNA, represented in red color,
have successfully reached not only the lower respiratory tract but also the respiratory zone
(Figure 1V.5D). Furthermore, polyplex uptake was observed in various cell types within the
lung, and the corresponding flow cytometric gating strategy is shown in Figure IV.S20. The
higher MFI in polyplex-treated alive lung cells (average 2136) was consistent with /VIS
imaging results (Figure IV.5E). High MFI detected in dendritic cells (average 4941),
macrophages (average 7773), and eosinophils (average 1348) highlighted strong
phagocytosis potential in the lung, which generally poses a challenge for pulmonary siRNA
delivery. Interestingly, the uptake of polyplexes in both CD4* and CD8"* T cells remained
low, being beneficial for avoiding adverse immune activation and in line with the need for
targeting ligands for efficient T cell transfection'®. Importantly, lung epithelial cells,
particularly type Il pneumocytes, are often related to the progression of respiratory diseases,
such as chronic obstructive pulmonary disease (COPD), lung cancer, lung fibrosis, and
pneumonia'’*'’¢, The uptake of polyplexes in epithelial cells, particularly in type Il
pneumocytes was 9.46-fold and 7.61-fold higher, respectively, when compared to free
siRNA. These results suggest the potential of siRNA therapy based on our carrier system
for treating respiratory diseases in the future and underline the need for nanocarriers in

pulmonary delivery.
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Figure IV.5: In vivo biodistribution in the organs and cellular uptake in the lung. (A) Schematic diagram of in
vivo distribution investigation after intratracheal instillation of polyplexes containing Alexa Fluor 647-labeled
siRNA. (B) Representative organ distributions in mice that received free siRNA or siRNA-loaded polyplexes,
respectively. (C) Quantification of fluorescence intensity of Alexa Fluor 647 labeled siRNA distributed in the
organs. (D) Distribution of polyplexes containing pHrodo red-labeled siRNA in different lung regions. White
arrows indicate polyplexes. Scale bar, 200 um. (E) Mean fluorescence intensity of AF647-labeled siRNA in
different cell types in the lung. Data are presented as mean + SD, n=3.

Next, we evaluated the siRNA knockdown efficiency in the lung and performed safety
assessment. PEI25k, as well-established control, presents reliable transfection efficiency in
gene delivery and has been widely used in previous studies focusing on polymer-based
carriers'”'78, Due to its known cytotoxicity, PEI25k is also used as a positive control in safety
evaluations and was therefore included in our in vivo test. RNA extracted from the lungs
treated with different formulations was analyzed via gPCR. In the control group that received
buffer only, the average GAPDH/B-Actin ratio was 1.03 (Figure. IV.6A). In mice treated with
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free siGAPDH, the ratio increased to 1.44, with a broader standard deviation of 0.39,
demonstrating that free siRNA did not achieve GAPDH gene silencing. In contrast,
siGAPDH-loaded PBAE polyplexes showed a significant 30.4% reduction of the GAPDH/[3-
Actin ratio when compared to negative control siRNA-loaded PBAE polyplexes. In the mice
treated with PEI-siGAPDH, the GAPDH/B-Actin ratio oppositely increased to a broad range
from 1.21 to 2.69, likely due to severe lung inflammation as hematoxylin and eosin (H&E)
staining revealed noticeable inflammatory cell infiltration, alveolar wall thickening, and
disruption of the alveolar architecture in these mice (Figure. IV.6B). Conversely, lung tissue
structures in PBAE polyplex-treated mice were well-preserved, with clear alveolar spaces
and negligible alveolar wall thickening as observed in buffer- and free siRNA-treated groups,
which suggested minimal lung tissue damage or inflammation in these mice. Consistent
with the H&E staining results, levels of inflammatory cytokines, i.e., IL-6, MCP-1, IFN-{,
TNF-a in BALF were significantly higher in PEI-siGAPDH and PEI-siNC treated mice when
compared to other groups (Figure. IV.6C). In particular, IL-6 was detected at the highest
concentration among all cytokine types, in the PEI-siGAPDH group, with an average value
of 322 pg/mL, which was 9.4-fold and 64.4-fold higher than PBAE-siGAPDH and free
siGAPDH groups, respectively. However, PBAE polyplexes treatment did not abnormally
elevate cytokine levels, which remained comparable to blank and free siRNA-treated mice

on most indicators.
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Figure IV.6: In vivo GAPDH gene silencing and safety evaluations. (A) GAPDH gene silencing effects of
polyplexes in the lung, data are presented as mean + SD, n=6 for Blank and siGAPDH groups, n=4 for PBAE
siGAPDH and PEI siGAPDH groups, **p < 0.01, Student’s t-test. (B) H&E-stained lung sections collected from
mice treated with different formulations. Scale bar, 100 pm. (C) Inflammatory cytokine levels in the
bronchoalveolar lavage fluid (BALF) collected from mice treated with different formulations. The experiments
were performed in technical duplicates and data are presented as mean + SD, n=6 for Blank and siGAPDH
groups, n=4 for PBAE siGAPDH and PEI siGAPDH groups, *p < 0.05, one-way ANOVA.

131




5 Study Limitations and Data Scarcity

The study presented here demonstrates an elegant, literature-driven strategy for screening
polymeric gene-delivery candidates and yields promising results on a newly synthesised
validation set. Nevertheless, several limitations must be acknowledged so that readers can

appreciate the scope of our conclusions.

First, although focusing on polyesters is a sensible starting point, essential details like
copolymerisation patterns, block lengths, architecture, dispersity, and molecular weight
variation are rarely reported, and even when they are, they are seldom provided in a
standardized and machine-readable format. As a result, descriptors based on idealised
repeat units capture only a fraction of the true physicochemical diversity. Ongoing
standardisation efforts that mandate sharing raw chromatograms and NMR spectra may
eventually allow direct ingestion of this information into machine-learning pipelines, but such

data are not yet widely available.

Second, data sparsity is a major hurdle. Whereas proteins and small molecules benefit from
extensive databases, experimentally characterised polymeric gene-delivery systems are
scarce. We therefore limited the chemical space to structurally similar polyesters and used
a UMAP projection solely as a qualitative coverage check. Predictions outside this region
must be treated with caution, because extrapolating far from the training manifold typically
yields unreliable results. A rigorous, quantitative safeguard was not implemented here for
three practical reasons: (1) no curated set of truly out-of-domain polymers yet exists for
calibration; (2) distance estimates are highly sensitive to the chosen descriptor space; and
(3) alternative distance metrics and thresholding schemes can give conflicting signals when
data are sparse. As larger, standardised data sets emerge, these challenges should

become tractable, enabling formal applicability-domain filters to accompany future models.

Third, biological context also matters. One-hot encoding of cell lines allows within-set
predictions but offers no mechanistic insight and cannot guarantee accuracy for cell types
absent from the training data. Future work could explore lineage- or transcriptome-derived

embeddings to improve transferability.

Finally, although RDKit descriptors efficiently encode molecular structure, they are not
optimised for human-interpretable structure-function insight. Graph-based neural network
representations may provide traceable, learnable features and can be backmapped to their

structure™®'”° once larger, standardised data sets become available.
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6 Conclusions

This study provides an efficient approach for utilizing literature data to train a ML model for
predicting suitable polymeric delivery systems. By employing straightforward strategies, we
successfully merged multiple different datasets with different carrier systems. The trained
in silico model was validated to be accurate by assessing in vitro gene silencing outcomes
when siRNA was delivered using polymers that the ML model predicted to be effective or
ineffective. Among the tested polymers, one candidate PBAE SP/TDA-BG was selected for
detailed investigations of its structural characteristics and biological performance. This
polymer, with its balanced hydrophilic and hydrophobic moieties combined with a
biodegradable backbone, overcame key biological barriers in pulmonary siRNA delivery.
Remarkably, it achieved efficient in vivo gene silencing without detectable adverse effects.
These findings highlight the capability of the ML model to significantly reduce the need for
extensive experimental screening efforts and associated resource costs and ethical
considerations. Our study also provides conceptual insights into the complex processes of
polymeric siRNA delivery, which emphasizes the transformative role of ML in optimizing
delivery systems. While current limitations include a constrained dataset, which makes it
difficult to extrapolate to novel polymer types, this challenge could be mitigated as more
data becomes available. With expanded datasets, data-intensive methods, such as Deep
Generative Models, could aid the design of entirely new materials for future nanomedicine

applications.

7 Experimental Section

7.1 Data processing and Machine Learning

Structural data was collected from literature references®>'%*'®" on 605 polymers that had
been employed for siRNA delivery before, reflecting a range of different polyester types.
Chemical structures were created using ChemDraw (version 22.2.0). All data related tasks
were performed using Python (version 3.11.5). Molecule sanitizing, embedding and MMFF
force field optimization as well as Molecular Descriptor and Morgan Fingerprint calculation
were performed using the widely adopted cheminformatics library RDKit (version
2024.09.1). Each block monomer was encoded separately and the respective component
ratio was incorporated in the descriptors by multiplying them with the weighted ratio of

copolymer blocks following Kim et al.’®. Gene knockdown (KD) performance was
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categorized into two groups: KD < 50%, and > 50%. Additional data, including monomer
ratios, cell types, and molecular weight (Mw), were incorporated. Data was cleaned
removing multiple entries and columns that contain NaN (Not a number), followed by
normalization of features using StandardScaler class from sklearn (version 1.6.0). Various
models (SVM, KNN, RF, XGB, LGBM, NaiveBayes) with weighted sampling due to dataset
imbalance, were evaluated. The lead model (LGBM) was fine-tuned with hyperopt (version
0.2.7). Important features were calculated using SHAP values and a TreeExplainer class.
Irrelevant features were excluded from the dataset, using the integrated feature_importance
method in LGBM. Data was split into training and test sets, stratified by KD classes (20%
test set ratio). The trained model was applied to assess new, unpublished polymer formulas,
identifying one high-performing polymer selected for synthesis. Additionally, waterfall plots
were calculated for the predicted polymer using SHAP library version (version 0.46.0). The
following Python libraries were used for data handling and plotting: Sklearn, Imblearn
(0.13.0), Pandas (2.1.4), Numpy (1.26.4), Seaborn (0.13.2), Matplotlib (3.9.0).

7.2 Chemicals

Ethyl trifluoroacetate, tetradecylamine, oleylamine, 4-Amino-1-butanol, 1,4-butanediol
diacrylate and bisphenol A diglycidyl ether diacrylate were purchased from Sigma Aldrich
(Taufkirchen, Germany). Di-tert-butyl dicarbonate, spermine and SYBR Gold Nucleic Acid
Gel Stain were bought from Fisher Scientific (Hampton, NH, USA).

7.3 Synthesis of Tri-boc-spermine

Tris(tert-butoxycarbonyl)spermine, abbreviated as tri-Boc-spermine, was synthesized as
described elsewhere'®. In brief, spermine (1 eq) was dissolved in methanol and stirred at -
78 °C, ethyl trifluoroacetate (1 eq) was subsequently added dropwise and stirred at - 78 °C
for 1 h, then at 0 °C for 1 h. Without isolation, di-tert-butyl dicarbonate (4 eq) was added
dropwise to the solution and stirred at room temperature (RT) for 2 days. Finally, the solution
was adjusted to a pH > 11 by 25% ammonia and stirred overnight to cleave the
trifluoroacetamide protecting group. The mixture was then evaporated under vacuum and
the residue was diluted with dichloromethane (DCM) and washed with distilled water and
saturated sodium chloride aqueous solution. The DCM phase was finally dried by magnesia
sulfate and concentrated to give the crude product. The crude product was purified by
column chromatography (CH2Cl,\MeOH\NH3, aq. 7:1:0.1, SiO2, KMnOg4; Rf = 0.413). Tri-
Boc-spermine was isolated and characterized by 1H nuclear magnetic resonance

spectroscopy (1H-NMR).
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7.4 Synthesis of PBAE

The synthesis involved dissolving hydrophilic amine in dimethylformamide (DMF) and
adding lipophilic amine and the diacrylate backbone (1.2 eq). The reaction was sealed,
heated and kept at 90°C for 48 h, then cooled to RT. DMF was evaporated, and the solid
polymer was solubilized in DCM. Deprotection of the triboc-spermine containing polymers
was achieved by the dropwise addition of Trifluoroacetic acid (TFA) to a final concentration
of 5% v/v, cleaving the Boc groups. The reaction was stirred at RT for two h. To obtain the
deprotected polymer, the solvent was evaporated. For all polymers the solid was purified
by precipitating it in diethyl ether followed by a centrifugation step (1250 rpm for 2 min). The
procedure was repeated three times. The final product was dried under vacuum and

characterized using 1TH-NMR.

7.5 Gel Permeation Chromatography (GPC)

GPC was performed with an Agilent aqueous GPC using a PSS Novema max Lux 100A
followed by two PSS Novema max Lux 3000A columns. The chromatographic system and
calibration standards were set up according to pre-analysis by Agilent Technologies.
Measurements were performed at 40°C in 0.1 M sodium chloride solution supplemented
with 0.3% formic acid. Samples were prepared at 4 g/L and measured at a flow of 1 mL/min.
Molar Mass distributions were obtained through the Agilent WinGPC Software against
pullulan calibration standards in the range of 180 Da to 1450 kDa. A daisy-chain detector
setup of an Agilent 1260 VWD was followed by an Agilent 1260 GPC/SEC MDS and ended
with an Agilent 1260 RID.

7.6 Preparation of Polyplexes

To prepare PBAE-siRNA polyplexes, the polymer stock solution was diluted to various
concentrations with diethyl pyrocarbonate (DEPC) treated water. Next, an equal volume of
a specific amount of siRNA diluted in 10 mM HEPES buffer (pH 5.4) was added, and the
mixture was incubated at RT for 30 min to obtain siRNA-loaded polyplexes at different N/P
ratios. The N/P ratio represents the molar ratio between the polymer amine groups (N) and
the siRNA phosphate groups (P), and the amount of polymer required for different N/P ratios

was calculated using the following formula:

m (polymer in pg) = n siRNA (pmol) x N/P x number of nucleotides siRNA x M protonable
unit (g/mol)
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The number of nucleotides for asymmetric 25/27mer siRNA was set to 52, while in EGFR
siRNA, only 42 nucleotides were present. The protonable units for each polymer were
calculated by dividing the molar mass of the repeating unit by the number of protonable

amines within each repeating unit.

7.7 Characterization of polyplexes

Particle size, polydispersity index (PDI) and zeta potential of PBAEs-siRNA polyplexes were
determined using a Zetasizer Ultra (Malvern Instruments, Malvern, UK). All measurements
were conducted using a 10 mM HEPES buffer as dispersant. Results are expressed as

mean + standard deviation (SD) over three measurements.

The encapsulation efficiency of siRNA was determined using SYBR gold assays. In brief,
15 uL of PBAEs-siRNA polyplexes were added into a 384-well plate, then 5 uL of a 4X
SYBR Gold solution were added to each well and incubated for 15 min protected from light
at RT. Fluorescence intensity was measured using a plate reader (Tecan, Mannedorf,
Switzerland) with excitation and emission wavelength set at 492 nm and 555 nm,
respectively. An equal amount of free siRNA was used as 100% value for calculating the

unencapsulated siRNA in different polyplex samples.

7.8 siRNA release assay

SYBR Gold assay was performed to investigate siRNA release from polyplexes under
different conditions. First, PBAEs-siRNA polyplexes at an N/P ratio of 10 were prepared as
described under 4.6. Polyplexes containing 10 pmol of siRNA were incubated with serial
dilutions of Triton X and heparin in a 384-well plate for 30 min at 37°C. Then, 10 yL of a 4X
SYBR Gold solution were added to each well and incubated for 15 min. The results were

measured as described under 5.7.

7.9 RNase protection assay

PBAE-siRNA polyplexes at an N/P ratio of 10 were prepared as previously described. A
total of 50 uL of the respective formulations containing 50 pmol of siRNA, was incubated
with 1 ug RNase A (Sigma-Aldrich, Taufkirchen, Germany) for 30 min at 37°C. As a control
group, 50 pmol of free siRNA was included, either treated with 1 ug of RNase, or left
untreated as a 100% reference value for calculating the degraded siRNA. Subsequently,
the RNase was deactivated by heating to 70 °C for 30 min. To release the RNA, 1% Triton
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X and 4 IU heparin was added and incubated for 30 min at 37°C. The released RNA was
then quantified using SYBR Gold assay, and fluorescence was measured as described
under 5.7.

7.10 In vitro cell viability

H1299 cells seeded in 96-well plates at a density of 6,000 cells per well were used to assess
cytotoxicity. After incubation with PBAEs-siRNA polyplexes containing 20 pmol scrambled
siRNA (siRNA negative control, siNC) ranging from N/P 3 to N/P 20 for 48 h, 10 pL of the
Cell Counting Kit-8 (CCK-8, Sigma) reagent was added to develop color for 3-4 h. The
optical density (OD) was measured on a Tecan plate reader at 450 nm and cell viability was
calculated by dividing the values of groups treated with polyplexes by that obtained with the

untreated group.

7.11 In vitro cellular uptake

H1299 cells were seeded in 24-well plates at a density of 15,000 cells per well and
incubated with PBAEs-siRNA polyplexes containing 50 pmol of siRNA with N/P ratios of 3
to 10, where 20% of the siRNA was Alexa Fluor 647-labeled. Free siRNA and Lipofectamine
2000 containing equal amounts of siRNA were used as controls. After 24 h of incubation,
cells were divided equally. Half of the cells were measured directly with an Attune NxT flow
cytometer (ThermoFisher Scientific, Waltham, MA USA), and the other half were pre-mixed

with 0.4% Trypan blue solution and measured comparably.

A549 cells were seeded in 96-well plates at a density of 6,000 cells per well and incubated
with the same PBAEs-siRNA polyplexes containing 20 pmol of siRNA with an N/P ratio of
10. After 24 h of incubation, the cells were assessed on an Attune NxT flow cytometer

(ThermoFisher Scientific).

7.12 In vitro endosomal escape

Hela-Gal8-mRuby3 cells were kindly provided by the lab of Professor Ernst Wagner (LMU
Munich, Germany). Hela-Gal8-mRuby3 cells were seeded in the 8-well chamber slide (ibidi,
Grafelfing, Germany) at a density of 10,000 cells per well, and then incubated for 4 h with
different PBAEs-siRNA polyplexes containing 40 pmol of siRNA (20% of which was Alexa
Fluor 647-labeled). After incubation, the supernatant was discarded, and the chambers
were rinsed with PBS for three times. The cells were first fixed with a 4% PFA solution at
RT for 20 min and then stained with 0.5 pg/mL of DAPI solution for 8 min. After rinsing the

chambers with PBS for at least three times, the cells were imaged using a SP8 inverted
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confocal laser scanning microscope (Leica Camera, Wetzlar, Germany) equipped with a
63X objective. The fluorescent dots of Gal8-mRuby3 were quantified using the Fuji plug-in

of Image J.

713 In vitro eGFP knockdown

Protein knockdown experiments were conducted using H1299 cells stably expressing
enhanced green fluorescent protein (eGFP). Polyplexes were formulated with siRNA
targeting eGFP mRNA or scrambled siRNA with the same length. H1299/eGFP cells were
seeded in 96-well plates at a density of 6,000 cells per well and then incubated with
polyplexes containing 20 pmol siGFP or 20 pmol siNC for 48 h. Lipofectamine 2000 was
used as a positive control, while free siRNA served as a negative control. After incubation,
the cells were collected to perform the FACS analysis (Attune NxT Flow Cytometer,
ThermoFisher Scientific). The eGFP knockdown efficiency was calculated by dividing the
Median Fluorescence Intensity (MFI) of siRNA-treated group by that of the respective siNC-

treated group.

7.14 In vitro EGFR knockdown

An EGFR knockdown experiment was conducted in A549 cells using polyplexes formulated
with EGFR siRNA. Per well, 6,000 A549 cells were seeded in 96-well plates and treated
with polyplexes containing either 20 pmol of EGFR siRNA or 20 pmol of scrambled siRNA
(siNC) at an N/P ratio of 10 for 48 h. Following incubation, the cells were collected and
stained with Vio® R667 anti-human EGFR antibody for 10 min. After washing twice using
PBS, the cells were analyzed using a flow cytometer (Attune NxT) to assess EGFR

expression.

7.15 Mucus penetration and uptake study

Air Liquid Interface (ALI) experiments were conducted utilizing Calu-3 cell culture.
Specifically, Calu-3 cells were seeded at a density of 250,000 cells per well onto uncoated
Transwell® polyester cell culture inserts (6.5 mm, 0.4 ym pore size) and were maintained
in culture for three days until confluent. On day 4, the apical medium was removed to
establish ALI conditions, and the medium in the basolateral chamber was replaced with 300
Ml of PneumaCult™ ALI medium (STEMcell Technology, Vancouver, Canada). The medium
was replaced every three days until the transepithelial electrical resistance (TEER) values
stably reached 300 Q*cm? when monitoring with an EVOM epithelial volt/Q meter (World

Precision Instruments, Sarasota, USA). Polyplexes and Lipofectamine 2000, each
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containing 100 pmol of siRNA, 20% of which was Alexa Fluor 647-labeled, were applied on
top of Calu-3 monolayers without previous washing and incubated for 24 h. Free siRNA was
employed as a negative control. Afterwards, the cells were stained with 100 uL of diluted
Hoechst 33342 (for nuclear staining) and AF488-wheat germ agglutinin (for mucus staining)
at 37°C for 20 min. Cells were then gently washed twice with PBS and mounted on glass
slides using FluorSave™ reagent. Fluorescent images were immediately captured using a
40X objective on the SP8 inverted confocal laser scanning microscope (Leica Camera) and

were processed using the Fuji plug-in of Image J.

7.16 Ex vivo activity in human precision-cut lung slices (hPCLS)

7.16.1 Human tissue, ethics statement and human precision-cut lung slices (hPCLS)

Human lung tissues were obtained from the University Hospital GroBhadern of the Ludwig-
Maximilian University (Munich, Germany) and the Asklepios Biobank of Lung Diseases
(Gauting Germany). Participants provided written informed consent to participate in this
study, in accordance with approval by the local ethics committee of the Ludwig Maximilian
University Munich, Germany (Project 19—630). In brief, hPCLS were prepared from tumor-
free peri-tumor tissue. The lung tissue was inflated with 3% agarose solution and then
solidified at 4°C. The lung sections with a thickness of 500 um were cut from the tissue
blocks using a vibration microtome (HyraxV50) (Karl Zeiss AG, Oberkochen, Germany).
hPCLS were cultured in DMEM F-12 medium supplemented with 0.1% FBS. Prior to

experiments, hPCLS were cut into 4 mm diameter circular pieces using a biopsy puncher.

7.16.2 GAPDH gene silencing in hPCLS

Each well containing three punches of hPCLS in a 24-well plate was treated with different
formulations containing either 100 pmol of siGAPDH or 100 pmol of siNC. Lipofectamine
2000 was included as a positive control and free siGAPDH as a negative control. After 48
h of incubation, the tissue punches were submerged in 1 mL TRIzol within lysing matrix D
tubes and homogenized using a FastPrep 24 Tissue Lyzer (M.P. Biomedicals, Irvine, CA,
USA). Subsequently, 200 uL of chloroform was added to each homogenized sample and
mixed vigorously. The samples were then centrifuged at 11,000 g for 15 min at 4°C, after
which the aqueous phase containing RNA was transferred to a new 1.5 mL Eppendorf tube.
To precipitate the RNA, 500 pL of isopropanol was added and mixed thoroughly. After 10
min incubation at RT, the samples were centrifuged at 11,000 g for 10 min. The supernatant

was discarded, and the RNA pellet was washed with 1 mL of ice-cold 75% ethanol, followed
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by centrifugation at 7,500 g for 5 min at 4°C. The supernatant was discarded again, and the
RNA pellet was resuspended in 30 uL of RNase-free water. The extracted RNA was then
processed for cDNA synthesis using a high-capacity cDNA synthesis kit (Applied
Biosystems). Synthesized cDNA was diluted and subjected to quantitative PCR (qPCR)
using SYBR™ Green PCR Master Mix (ThermoFisher Scientific), with Hs_ GAPDH_2_ SG
primers specific for human GAPDH (Qiagen, Valencia, CA, US). Hs_ACTB_2_SG primers

for human B-actin (Qiagen) were used as the normalization control.

717 Invivo distribution of polyplexes after pulmonary delivery

All animal experiments were conducted according to the German law of animal protection
and approved by the Government of Upper Bavaria (ROB-55.2-2532.Vet_0220-171) and
the Committee for Animal Experimentation of the Ludwig Maximilian University Munich,

Germany.

Eight-week-old female BALB/c mice were intratracheally instilled with polyplexes containing
1 nmol of Alexa Fluor 647 labeled siRNA under ketamine/xylazine anesthesia. The control
group received free Alexa Fluor 647-siRNA. After 24 h, mice were sacrificed with an
overdose of ketamine/xylazine anesthesia, and organs including the heart, lung, liver,
spleen and kidneys were harvested for imaging. Fluorescence was measured at an
excitation wavelength of 635 nm and an emission wavelength of 668 nm using an IVIS
Lumina Il (PerkinElmer, Shelton, CT, USA). After imaging, the lungs were homogenized to
obtain single-cell suspensions, using the Mouse Lung Dissociation Kit (Miltenyi Biotec,
Germany) according to the manufacturer's protocol. The lung cells were first incubated with
PBS solution containing Zombie UV™ and later stained with FITC anti-mouse CDA45,
BUV395 anti-mouse CD3, Vioblue anti-mouse CD4, APC-Cyanine7 anti-mouse CD8, PE-
Cyanine7 anti-mouse F4/80, BUV605 anti-mouse CD11c, BV785 anti-mouse CD326,
PE/Dazzle ™594 anti-mouse CD170 and PerCP/Cyanine5.5 anti-mouse CD19 for 30 min at
4°C. The stained cells were measured using a Cytek® Aurora (San Diego, California, USA)

implemented with autofluorescence extraction for the detection of cellular uptake.

7.18 Distribution of polyplexes in the lung

Eight-week-old female BALB/c mice were intratracheally instilled with polyplexes containing
1 nmol of pHrodo red-labeled siRNA under ketamine/xylazine anesthesia. After 24 h, the
mice were sacrificed with an overdose of ketamine/xylazine anesthesia, and the lungs were

harvested after lung perfusion. The lungs were then immersed in 4% PFA solution
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overnight. After PFA fixation, the lung tissues were embedded in paraffin and sliced into
lung sections with thickness of 4 um. The obtained slices were deparaffinized by incubating
in xylene, followed by a series of ethanol dilutions. After hydration, the slices were stained
with 0.5 ug/mL DAPI solution for nuclear visualization and imaged using a 10X objective on

an SP8 inverted confocal laser scanning microscope (Leica Camera).

7.19 Invivo transfection evaluation of polyplexes

7.19.1 Safety evaluation

Eight-week-old female BALB/c mice were intratracheally instilled with different formulations
containing 1 nmol of sSiGAPDH or 1 nmol of siNC, including PBAEs-siRNA and PEI-siRNA
polyplexes. Control groups received either free sSiGAPDH or buffer only. After 24 h, the mice
were sacrificed, and their lungs were first perfused with 10 mL of saline. Bronchoalveolar
lavage fluid (BALF) was collected in a PBS/2mM EDTA buffer containing protease inhibitor
cocktail (cOmplete™). The BALF was centrifuged at 500 g for 5 min at 4°C, and the
supernatant was used to measure the concentration of pro-inflammatory cytokines using
the LEGENDplex™ Mouse Cytokine Panel 2 kit (Biolegend, San Diego, California, USA).
The lungs were harvested, with one lobe fixed in 4% PFA overnight and then embedded in
paraffin for histological analysis via H&E staining, while the remaining tissue was stored in

1 mL of RNA-later solution for further analysis.

7.19.2 In vivo GAPDH gene silence efficacy of polyplexes

The lungs stored in RNA-later solution were transferred to lysing matrix D tubes and
homogenized using a FastPrep 24 Tissue Lyzer (M.P. Biomedicals). RNA extraction was
performed following the TRIzol-chloroform method as previously described under 5.16.2.
The extracted RNA was then processed for cDNA synthesis using a high-capacity cDNA
synthesis kit (Applied Biosystems). The synthesized cDNA was diluted and subjected to
gPCR using SYBR™ Green PCR Master Mix (ThermoFisher Scientific) with
Mm_GAPDH_3_SG primers (Qiagen) for GAPDH. Mm_ACTB_2_SG primer sspecific for

mouse [3-actin were used as the normalization control.

7.20 Statistical analysis
All data were expressed as means * standard deviation (SD). All statistical analyses were

performed using one-way analysis of variance (ANOVA) in GraphPad Prism or Student’s t-
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test when specifically stated. Levels of significant differences were expressed as follows,

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure IV.S2: Comparison of different resampling strategies to handle the unbalanced dataset.

Hyperparameter tuning using hyperopt:

100 evaluations were performed using the mean of 10 train test splits with replacement as objective.
The hyperparameters are the following {'colsample_bytree": 0.9755088786798269, 'learning_rate":
0.1827587842746705, 'max_depth: 8, 'n_estimators: 465, 'num_leaves: 85, 'reg lambda"
0.8324249896997891, 'subsample”: 0.9331718683905172}

Figure IV.S3: Hyperparameter code for LGBMClassifier.
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Figure IV.S7: 1H-NMR measurement of validation polymer AP-BG.

147



luh C L AL

f-2000

1900

1800

1700

{1600

1500

- 1400

{1300

1200

1100

- 1000

{900

800

{700

(600

(500

400

{300

{200

\ f-100

T T T T T T T T T T T T

7.5 7.0 6.5 6.0 5.5 50 4.5 4.0 3.5
f1 (ppm}

Figure IV.S8: 1H-NMR measurement of validation polymer SP-OA-BG

8 h

- U \ \\___J’\J\-NWU\J ﬂﬂw»\_f‘ J l‘uJ \___," [

m

|

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0
1 (ppm)

Figure IV.S9: 1H-NMR measurement of validation polymer SP-TDA-BG
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Figure IV.S11: 1H-NMR measurement of validation polymer SP-BU
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Figure IV.S12: 1H-NMR measurement of validation polymer OA-BG.
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Figure IV.S14: In Vitro gene silencing efficiency. (A) Enhanced green fluorescent protein (eGFP) knockdown
efficiency of siRNA polyplexes formulated at an N/P ratio of 10 in H1299/eGFP cells. (B) Epidermal growth factor
receptor (EGFR) knockdown efficiency of siRNA polyplexes in A549 cells.
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Figure IV.816: GPC measurement of SP0.5/TDA0.5 which was tested in vivo.
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Figure IV.S17: siRNA encapsulation efficiency in the polyplexes prepared at different N/P ratios.
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Figure IV.818: Mucus penetration assay of siRNA-loaded PEI 25kDa polyplexes and PBAE SP0.5/TDA0.5
polyplexes in air-liquid interface (ALI) culture of Calu-3 cells. Scale bar, 50 um.
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Chapter V - From Bits to Bonds - High throughput virtual
screening of RNA nanocarriers using a combinatorial

approach of Machine Learning and Molecular Dynamics

1 Graphical Abstract
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2 Abstract

The implementation of high throughput methods for fuelling the design of effective
nanocarriers for RNA delivery remains challenging. Traditional experimental screening is
resource-intensive, while purely computational approaches face limitations, such as data
scarcity for machine learning models and the high computational cost of molecular
dynamics simulations. This work introduces a high-throughput virtual screening platform,
"Bits2Bonds," integrating coarse-grained Molecular Dynamics (CG-MD) simulations with
machine learning-driven optimization to design novel poly(B-amino ester) (PBAE) carriers
for therapeutic siRNA delivery. The platform evaluates virtual polymers using MD-based
"challenges” that simulate key hurdles in nucleic acid delivery such as membrane- and

siRNA interaction (association/dissociation). The computational framework was calibrated
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and validated against experimental data, including synthesis and characterization of four
distinct PBAEs, logP measurements, siRNA encapsulation assays, and cell culture
knockdown experiments. This integrated approach provides a powerful tool for the de novo

design and rapid virtual screening of optimized polymeric siRNA delivery systems.

Keywords: polyplex, Poly(beta)aminoesters, Martini 3, siRNA, nucleic acid, nanocarrier

3 Introduction

The field of RNA therapeutics has exploded in recent years, capturing the attention of
researchers, pharmaceutical companies, capital providers, and the public alike. This surge
in interest was ignited by milestones such as the 2018 approval of Patisiran, an RNA
interference (RNAi)-based drug, and further propelled by the rapid deployment of mRNA
vaccines against SARS-CoV-2%2*""2, This success highlights the potential of specific RNA
modalities including small interfering RNA (siRNA), which holds immense promise for
silencing disease-causing genes and treating previously "undruggable" targets. As of 2024,
20 RNA-based drugs are approved for clinical use, with hundreds more in development,

underscoring the therapeutic potential of this class of molecules™".

As a compelling alternative to LNPs,"® polymeric cationic carrier systems provide
advantages in tunability, complexity, and potential scalability. However, the design of
functional yet safe polymeric nanocarriers remains a persistent challenge, partly due to an
unclear or high toxicity of established carriers such as polyethylenimine (PEI). Hence,

poly(B-amino esters) (PBAEs) have become a leading alternative.?%8"183,

The search for improved polymeric drug delivery systems has traditionally relied on high-
throughput screening (HTS) of polymer libraries®®'®'. This experimental approach, while
valuable, is resource-intensive and limited by the chemical diversity of available
compounds. The rise of computational power and sophisticated algorithms has enabled a
powerful complementary approach: virtual high-throughput screening (VHTS). In vHTS, vast
libraries of virtual molecules are rapidly assessed for their target binding, significantly
accelerating the early stages of drug discovery, which has become standard practice in

small molecule drug research®'%¢
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However, vHTS has not been widely explored in the design of polymeric nanocarriers for
RNA delivery, representing a significant gap in the field. While computational methods are
used to study specific polymer-RNA interactions™>'®”-"88or predict and optimize nanocarrier
from data**'¥'# a comprehensive, de novo virtual screening approach to identify novel,
optimized polymeric carriers could be a big step forward. A primary limitation of solely data-
driven methods, such as Machine Learning (ML), in this domain is the scarcity of high-
quality datasets with comparable experimental conditions, annotation standards, and
sufficient sample sizes, which are essential for building robust and generalizable models.
Conversely, purely physics-based methods such as MD simulations are computationally
highly demanding especially when using the established All-Atom approaches, which limits
their use in high-throughput scenarios. Recent studies have demonstrated that integrating
data-driven and physics-based approaches can not only accelerate the screening process
but also provide deeper insights into underlying physical phenomena, facilitating a more
systematic utilization of data'”'®°. However, realizing the full potential of these integrated
approaches presents several challenges, including managing computational complexity ',
ensuring comparability between in silico and in vitro results™>'®’, and establishing a virtual
high-throughput framework for the discovery and optimization of PBAE based carrier

systems.

This work addresses this critical need by developing and implementing a novel
computational platform for the virtual screening of polyplex-forming polymers for siRNA
delivery. We propose a novel approach utilizing MD-based virtual challenges to simulate
the obstacles a molecule must overcome, coupled with an underlying optimization algorithm
to iteratively identify high-performing structures. To enable high-throughput screening, we
employed the Martini 3 force field and a simplified surrogate model of the polymers.
Additionally, the optimization process was warm-started using a biased neural network
trained via few-step reinforcement learning. Furthermore, we calibrated and validated the
computational method to bridge the gap between in silico screening and experimental
validation. To the best of our knowledge, this approach represents the first attempt to
systematically optimize virtual polymer structures for enhanced formation of stable and

effective siRNA delivery complexes.
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4 Materials and Methods

The overall workflow was carried out by treating molecules as learnable Q Networks, where
each output node is a probability of sampling a certain molecular fragment. When treating
the process as a deterministic approach, one can see the neural network as a blueprint to
build up a molecule. We first initialized the network using a reinforcement learning approach,
where the model was trained to minimize the distance to a target molecule encoded as
RDkit Descriptors. Subsequently, we carried out MD simulations to rate the performance of
the molecules in challenging situations that are key for efficient RNA delivery. To optimize
the RNA carrier molecules, we used a simple Genetic Algorithm, where random noise was

added to the network weights to enable the construction of new molecules.

We ran this loop through multiple epochs, to optimize of performance score coming from
the MD challenges. The simulations were validated and the calculation of the Performance
Score was calibrated against wet lab experiments. The whole process is represented in
Figure V.1A.
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Figure V.1: Architecture of Bits2Bonds A) General overview of the software, B) Overview of the MD challenges
applied, C) Overview of the Genetic Algorithm, D) Overview of the MolDesigner.

4.1 Biased Network Generation

To allow the Main Loop a warm start, a biased Q Network was constructed using a basic
Reinforcement Learning approach. As a template we used an established PBAE
structure™'The reward function was designed as the cosine similarity (eq.V.1) where A
represents the state vector and B the template vector based on their top 20 RDkit
descriptors, which were evaluated in previous work™'. The available action space was
designed to fit common building blocks in polymer design and at the same time match
available bead types in the Martini 3 force field. State representation of the molecules is
selected to be a Morgan Fingerprint encoded as 2048 Bits. The network was trained using
a MIpPolicy and we treated the number of timesteps as well as the number of actions as
hyperparameters and observed their influence on the predicted molecules later (see

Results).

A-B

f) = > 2
os®) = Ta71BI

(eq.V.1)

4.2 MolDesigner

The key element of the code is the MolDesigner, which takes the Networks as argument.
Based on the network prediction, a molecule is assembled, taking the selected backbone
and the available actions into account. In parallel, a bead information is designed that
converts the molecular structure into a Martini3 representation. In general, MolDesigner is
scalable in terms of representations that may run in parallel. The algorithm receives

information from the Genetic Algorithm later on as well (Figure V.1A and V.1C).

4.3 pKa Predictor
For the MD Simulation Challenges, the molecules need to be assigned with pH dependent
charges. To this end, we implemented a Graph Convolutional Network (GCN) approach to

estimate the pKa values similar to that described in Pan et al.'®2. We further used the

STONED Algorithm™2 to create 21,000 different possible side chains that were randomly
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charged to also allow the model to learn how to further treat a charged molecule. For pKa
labelling, EPIK"* was utilized. To allow separate protonation and deprotonation, we trained
two separate models. Details about training, model architecture and model weights can be

found in the Supplementary Information (Table V.S1, Figure V.S1).

4.4 Bead Exchanger

The BeadExchanger executes the information from the pKa Predictor. Beads are
exchanged according to their pKa values. The return of the pKa Predictor is a list of pKa
values for every protonable or deprotonable structure. The algorithm then iterates over the
list as well as the respective beads and calculates the probability of being protonated using

the Henderson-Hasselbalch equation:

[A7]
[HA]

pH = pK, +log (eq.V.2)

Given a certain threshold. the model exchanges the bead in a deterministic manner. This is
necessary to allow the Genetic Algorithm a comparable decision making and to stabilize the

optimization. More detailed information can be found in Figure V.S2.

4.5 Genetic Algorithm

As an optimization function, we used a simple Genetic Algorithm approach. We would like
to note that other algorithms could further improve the optimization process using prior
knowledge from previous simulations. However, the focus of our work was to establish a

system using a straightforward approach that can be improved and adapted if necessary.

To further optimize the molecules generated by Reinforcement Learning, using a scoring
function from the MD challenges, we applied a Genetic Algorithm to Q-networks to
manipulate the policy so that a slightly new policy was received'®®. We ranked the policies
based on their performance in the MD challenges and treated the first molecule as elite,
which is keeping its structure conserved. In this way, not only can the best current solution
be retained, but the optimization progress can also be tracked across iterations. The

mutation is carried out by adding random noise to the network weights (eq.V.3) where w'(i,j)
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are the updated weights on position i,j and w(i,j) are the original weights. To keep control
over the mutation process, we implemented a mutation strength parameter as a
hyperparameter p. We investigated the influence of p, which is a scalar to the
GaussianNoise. We also allowed the parent molecules to switch side chains to allow
additional variation in modification by introducing another binary hyperparameter. The
Genetic Algorithm then returns the policies back to the MolDesigner that builds up new

structures and bead models.

'w;,j = w; ; + - N(0,1) (eq.V.3)

4.6 Molecular Dynamics
The steps described in the next section were performed fully automatically for every polymer

investigated:

4.7 Creating of topology file

CG topology (.itp) and coordinate (.gro) files compatible with the Martini 3 force field were
generated for GROMACS simulations using an automated Python script. This script utilized
several inputs: a pandas DataFrame containing the CG polymer model definition (including
residue types for lipophilic/hydrophilic chains at pH 8 and pH 4) generated by the
MolDesigner module, a template .itp and .gro files representing the polymer backbone, and

a separate file containing necessary bond parameters.

Topology file generation involved modifying the backbone template. New bead definitions
were inserted into the [ atoms ] section, specifying atom type, residue number/name, charge
group, and charge (e.g., +1 for SQ2p beads, 0 otherwise). The [ bonds ] section was
subsequently populated using bond parameters (lengths and force constants) sourced from
a parameter file, whose values were obtained according to the Martini 3 molecule
parameterization guidelines for small molecules. Additionally, specific structural bonds
linking anchor beads (residue numbers 14 and 28) to the first bead of their respective side

chains were included with predefined parameters.
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Coordinate files were generated by building upon the backbone template coordinates via
algorithmically placing side chain bead coordinates relative to the corresponding backbone
anchor points. The resulting .itp and .gro files provided the complete CG polymer description

required for subsequent GROMACS simulations.

4.8 logP Challenge

The partitioning behaviour of the synthesized polymer between aqueous and hexadecane
phases was analysed by MD simulations. A biphasic system comprising an aqueous layer
and an organic layer (3500 hexadecane molecules) was constructed using GROMACS
(2024.3) patched with PLUMED. The polymer was initially placed in the aqueous phase at
a predefined position, followed by system solvation, charge neutralization, and energy
minimization. The system was then equilibrated under NPT conditions, maintaining 298 K

via the V-rescale thermostat and 1 bar pressure using the Parrinello-Rahman barostat.

To probe the energetics of transfer, Steered Molecular Dynamics (SMD) simulations were
employed. Using PLUMED, a moving harmonic restraint of 100 KJ/mol /nm was applied to
the polymer's centre of mass to guide its translocation across the water-hexadecane

interface along the x-axis (normal to the interface) with a 10 fs timestep over 125,000 steps.

The work performed on the polymer during the SMD simulation was calculated by
numerically integrating the force recorded by PLUMED along the x-coordinate, employing
the trapezoidal rule. This calculated work profile provides an estimate of the energetic cost
associated with moving the polymer between the two phases and into the hexadecane

phase, testing its hydrophobicity.

4.9 siRNA association Challenge

The interaction between the synthesized polymers and siRNA was investigated using
Steered SMD simulations performed in GROMACS, utilizing the PLUMED plugin. The initial
polymer structure was placed within a pre-equilibrated simulation box that already contained
the siRNA molecule, whose structure was obtained from a previous study'®'4. The system

underwent energy minimization first in vacuum to resolve steric clashes, followed by
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solvation and subsequent energy minimization in the presence of solvent. Equilibration was
then carried out under NPT conditions (298 K, 1 bar) using the Berendsen thermostat and

barostat to achieve a stable starting configuration for the SMD phase.

In the SMD simulations, designed to probe the polymer-siRNA interaction, a moving
harmonic restraint was applied to the centre of mass of the polymer, analogous to the
procedure in Section 2.2.1. The polymer was pulled along a defined reaction coordinate,
oriented relative to the main siRNA axis. The work performed during this steered process
was calculated by integrating the applied force along the displacement coordinate using
data output by PLUMED. This yielded a work profile, providing a quantitative assessment

of the polymer-siRNA interaction strength along the specified pathway.

410 Synthetic Accessibility Filtering

To incorporate synthetic feasibility, we computed the Synthetic Accessibility (SA) Score™®
for each candidate side chain. We integrated SA into the ranking by applying a penalty
function: candidates with SA > 5 were penalized in the composite performance score,
ensuring that highly complex substituents are deprioritized. We selected the threshold SA

< 5 to reflect moderate synthetic tractability.

411 Polymer Synthesis

In this study, four distinct PBAEs, considered reference polymers, with varying side chains
were synthesized. The first polymer, designated AP, was derived from 5-aminopentan-1-ol
as the sole side chain. The second and third polymers, OA/SP and TDA/SP, were
synthesized by incorporating a 1:1 molar ratio of spermine (SP) with either oleylamine (OA)
or tetradecylamine (TDA), respectively. The fourth polymer, SP, contained spermine as its

only side chain.

For the synthesis, the respective reagents were dissolved in DMF. The reaction mixtures,
contained in sealed vials, were stirred at 90 °C for 48 hours. Subsequently, the solvent was
evaporated from the mixtures in petri dishes at room temperature over 48 hours. Polymers
OA/SP and TDA/SP were deprotected by dissolving them in dichloromethane (DCM) and
subsequently adding trifluoroacetic acid (TFA) (using 20 mL of DCM and 1 mL of TFA per
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100 mg of polymer). These mixtures were stirred for 2 hours at room temperature, after
which the solutions were evaporated at room temperature for 72 hours. The resulting solids
were purified by precipitation from diethyl ether three times, followed by centrifugation (1250
X g, 2 min). Notably, polymer AP did not precipitate in diethyl ether; consequently, pentane
was employed for its purification. Finally, all purified polymers were air-dried under a fume
hood and then further dried in a vacuum oven at 40 °C for 48 hours to ensure complete
removal of residual solvent. Structures and the molar side chain ratios of OA/SP and
TDA/SP were analysed by 1H-NMR.

4.12 Nanoparticle Formulation

The preparation of PBAE-siRNA polyplexes involved an initial step of adjusting polymer
stock solutions to various target concentrations using diethyl pyrocarbonate (DEPC)-treated
water. Following this step, an equivalent volume of eGFP siRNA, previously brought to a
specific concentration in 10 mM HEPES buffer (pH 5.4), was combined with the diluted
polymer. These mixtures were then maintained at RT for a 30-minute period to allow for the
self-assembly of siRNA-loaded polyplexes, achieving a range of polymer-to-RNA ratios, or

so-called N/P ratios.

The N/P ratio, which quantifies the molar relationship between the protonable amine groups
(N) of the polymer and the phosphate groups (P) of the siRNA, was a key parameter in
determining the necessary polymer mass. This mass was ascertained using the following
relationship:

m (polymer in pg) = n siRNA (pmol) x N/P x number of nucleotides siRNA x M protonable
unit (g/mol)

Within this calculation, the number of nucleotides was considered to be 52 for the
asymmetric 25/27mer siRNA used in this study. The molar mass of the protonable unit for
each specific polymer was obtained by dividing the molar mass of its fundamental repeating

unit by the quantity of protonable amines present in that unit.
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413 Size and Zeta Potential Measurement
Size and zeta potential measurements were performed using a Malvern Zetasizer Ultra
(Malvern Instruments, U.K.) via DLS and PALS, respectively using a pH 5.4 10 mM HEPES

buffer as dispersant.

414 Modified SYBR Gold Assay

Determination of encapsulation was measured using a modified SYBR Gold assay.
Nanoparticle solutions with various N/P ratios (50 pmol siRNA/well) were prepared at pH
5.4 and 7.4 in 10 mM HEPES buffer. After adding diluted SYBR Gold dye (8X), a 10-minute
incubation in the dark was carried out. Fluorescence emission was measured using a Tecan
Spark Plate Reader (TECAN, Mannedorf, Switzerland) with 485 nm as excitation
wavelength and 535 nm as emission wavelength. Encapsulation efficiency (EE) is the ability
of the polymer to encapsulate RNA and was calculated based on the free siRNA in the
sample. Note that the percent encapsulation was normalized to the amount of polymer in
order to allow a fair comparison with the challenge scores, which were determined for a
single molecule each. A more detailed calculation is provided in the Supplementary
Information (Calculation S1). Briefly, the measured values at each N/P ratio were
normalized to the fluorescence signal of 50 pmol free siRNA, multiplied by the siRNA-to-
polymer molar ratio in the respective sample, and averaged across all tested N/P ratios to

obtain the final EE value.

415 logP-experiments

For the log P assay, a calibration curve for each polymer between 0.05 mg/ml and 1.5 mg/ml
in octanol was first created. Fluorescence emission was measured using a Tecan Spark
Plate Reader (TECAN, Mannedorf, Switzerland) at 384 nm excitation and 450 nm emission
wavelengths. For all samples, a 1 mg/ml octanol solution was prepared and subsequently
100 pL of filtered 10 mM pH 5.4 HEPES buffer was added. Samples were incubated using
an orbital shaker (24 hours at 250 rpm). Using the calibration curve, the polymer

concentrations in the two phases were analysed and logP values were calculated.
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416 In vitro eGFP Knockdown

Gene Knockdown experiments were conducted using H1299 cells stably expressing
enhanced green fluorescent protein (eGFP). Nanoparticles were formulated with siRNA
targeting eGFP mRNA or scrambled siRNA with the same length. H1299/eGFP cells were
seeded in 96-well plates at a density of 6,000 cells per well and then incubated with
polyplexes containing 20 pmol siGFP or 20 pmol of a negative control RNA (siNC) for 48 h.
Lipofectamine 2000 was used as a positive control, while free siRNA served as a negative
control. After incubation, the cells were collected by trypsinization to perform Flow
Cytometer analysis of eGFP expression (Attune NxT Flow Cytometer, ThermoFisher
Scientific). The eGFP knockdown efficiency was calculated by dividing the Median
Fluorescence Intensity (MFI) of the siRNA-treated groups by that of the respective siNC-

treated group.

5 Results and Discussion

5.1 Synthesis of Polymers and Nanoparticles

To validate the applicability of our software in practical experimental workflows, we
synthesized eight distinct PBAEs. NMR spectroscopy confirmed the expected monomeric
ratios (Figures V.S3-V.S10). The polymers were selected to represent a broader range of
amphiphilic properties. AP-BG (Figures V.S3 and V.S11), OA-BU (Figures V.S9 and V.S17)
and OA-BG (Figures V.S10 and V.S12) were chosen as representatives for hydrophobic
polymers due to their low amine content, which limits protonation and consequently polarity.
OA/SP-BG (Figures V.S4 and V.S12), TDA/SP-BG (Figures V.S5 and V.S13) and OA/SP-
BU (Figures V.S8 and V.S16) exhibit a more balanced amphiphilic character that has been
shown to be favourable for effective gene knockdown both in vitro and in vivo™'. SP-BG
(Figures V.S6 and V.S14) and SP-BU (Figures V.S7 and V.S15) were selected for their
significant hydrophilicity, a characteristic typically associated with reduced in vitro
knockdown efficacy®. When formulated with siRNA, all polymers, except the OA polymers,
formed well suited particles with a hydrodynamic size < 100 nm (Figure V.S19) and a PDI
< 0.2 (Figure V.S20) at higher N/P ratios.
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5.2 Validation of the Hydrophobic Interface Challenge with logP data

Hydrophobicity influences RNA delivery with polymeric nanocarriers'®” because the

nanoparticles must overcome barriers of amphiphilic membranes.

One example for such a barrier is the endosomal membrane, which the carrier system has

to overcome, to escape the endosome and successfully deliver the cargo into the cytosol.

An established hypothesis for the enhanced endosomal escape of amphiphilic nanocarriers,

is the interaction with phospholipids within the endosomal membrane?®'.

To this end, we conducted a simulation that investigates the work required for a carrier
system to move through a hydrophilic-lipophilic interface at low pH?® and validated the
results against experimental logP data (Figure V.2A). The hydrophilic SP-BG and SP-BU
showed logP values of -1 and -0.6, while the amphiphilic OA/SP-BG, OA/SP-BU and
TDA/SP-BG were more balanced with logP near zero. The hydrophobic OA polymers
showed the highest logP of 3, with almost all sample in the octanol phase. (Figure V.2A,
bars). Correspondingly, OA polymers required the lowest work to be pulled through the
hydrophobic part of the biphasic system and SP polymers the highest (Figure V.2A, line).
Furthermore, the medium logP values determined for OA/SP-BG, OA/SP-BU and TDA/SP-BU

were consistent with the simulation results.

5.3 Validation of the siRNA Challenges with Encapsulation Efficiency data

An important criterion for a successful nanoparticulate siRNA delivery is the encapsulation
and protection of cargo and at the same time cargo release into the cytosol to allow the
formation of the RISC complex'®®'%°. Correspondingly, we introduced two challenges where
we measured the interaction of polymer and siRNA at pH 5.4 to mimic the formulation

conditions, and at pH 7.4 to model neutral environments such as the cytosol®.

The experimentally determined EE values (Figure V.2, bars) reflected the simulation results
(Figure V.2, lines), showing the same trends at pH 5.4 (Figure V.2B) and pH 7.4 (Figure
V.2C). Due to the high amine density, the SP polymers showed high EE at both pH values,
with 1.24 x 1072 and 1.09 x 1072 encapsulated siRNA, respectively for SP-BG and a similar
trend for SP-BU. In contrast, the EE of OA-BG was only 2.93 x 107 at pH 5.4 and 7.21 x

10™ at neutral pH(). Furthermore, AP and the OA polymers showed a positive work
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requirement for both challenges, indicating no measurable RNA-polymer interaction in both

experiment and simulation.

The three amphiphilic polymers showed balanced EE at both pH values (OA/SP-BG: 6.62
x 1072 and 6.09 x 1073 TDA/SP-BG: 8.36 x 107 and 7.04 x 1073%; OA/SP-BU: 3.76 x 1073
and 3.05 x 1072), reflected by challenge values of -36.45 kJ/mol, —45.37 kJ/mol and -59.77
kd/mol for OA/SP-BG, TDA/SP-BG and OA/SP-BU, respectively, at pH4, and
-47.67 kd/mol, —30.48 kd/mol and -41.57 kJ/mol, respectively, at pH 8.

5.4 Calibration and Fitting

Following the successful synthesis and formulation of distinct polymer-siRNA nanoparticles
(Section 3.1), their functional efficacy was evaluated through cell culture experiments.
Distinct performance levels consistent with the polymers' designed characteristics were
revealed: OA/SP-BG and TDA/SP-BG with balanced amphiphilic character, demonstrated
high GFP knockdown efficiency while the highly hydrophobic polymers AP-BG, OA-BG, and
OA-BU as well as the significantly hydrophilic polymers SP-BG and SP-BU showed
negligible activity, as anticipated. Interestingly, the amphiphilic SP/OA-BU showed only a
small knockdown of 20.9% (Figure V.S13).

To convert the raw outputs of our MD simulations into a single quantitative predictor of
polymer performance, we combined the three challenge outputs into a composite scoring
function. We then calibrated this scoring function to the siRNA knockdown data, so that
higher scores correspond to greater knock-down efficiency. This scoring function was
designed to reward performance that closely matches the ideal target values observed in
successful polymers (OA/SP-BG, TDA/SP-BG), while penalizing substantial deviations. To
naturally capture the optimal amphiphilic behaviour of PBAEs, we selected a multi-
dimensional Gaussian distribution as the basis of our scoring function. Specifically, it
comprises a three-dimensional Gaussian reward component—centred on predetermined
optimal values for the MD readouts (see eq.V.4). The centres and widths (sigmas) of the
Gaussian component, which represent the target profile derived from the experimental

winners, were held constant.

Calibration was performed using data from eight polymers spanning diverse side-chain

chemistries and a range of hydrophobicity/cationic density. We estimated the amplitude by
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non-linear least-squares (scipy.optimize.curve fit, default settings), minimizing the
discrepancy between the scoring function output and a target metric defined as the
Euclidean distance of each polymer's MD performance vector from an ideal reference
profile. To improve agreement between simulation and experiment, the pH settings used by
the BeadExchanger were adjusted to match the experimental buffer conditions, reducing
systematic bias in predicted protonation states. The resulting fitted performance function

provides a continuous score based on the three MD readouts.

Sreward(xyz) = 373917 * exp[ — ((x + 40)? /1800 + (y + 40)? /1250

V.4
+(z— 155)?/450) ] (eq. V.4)

Here, x, y, and z are the performance metrics for siRNA association (pH 4), siRNA
dissociation (pH 8), and membrane interaction and S,.,qra(x,y.2) iS the performance score.
The Gaussian reward function uses an amplitude of 37.3917 and is centred at x=-40, y=-
33, and z=159. The spread of the reward is determined by standard deviations of 30 (for x),
30 (for y), and 30 (for z) in each respective dimension. The fit based on eight polymers
provides a solid groundwork for mapping MD readouts to experimental knockdown;
nonetheless, the sample size remains modest. We therefore explicitly acknowledge this
limitation and plan to expand the calibration set and endpoints in subsequent iterations as

additional data become available.
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Figure V.2: Validation of the Model Approach A) Results of logP experiments (bar) together with the logP
Challenge (line), B) Results of SYBR Gold Experiments at pH 5.4 (bar) together with the Association Challenge
(line), C) Results of SYBR Gold Experiments at pH 7.4 (bar) together with the Dissociation Challenge (line),
Each experiment was conducted 3 times and the mean and the standard deviation are reported here. D)
Location of the eight reference polymers in the 3D performance space (siRNA association pH 4 vs. siRNA
dissociation pH 8 vs. membrane interaction), coloured by their fitted performance score. 1:SP-BG 2:SP-BU 3
OA/SP-BG 4 TDA/SP-BG 5: OA/SP-BU 6:0A-BG 7:0A-BU 8: AP-BG. E) Components and corresponding
nomenclature used for the synthesis of validation and calibration polymers.
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5.5 Assessment of generated structures

5.5.1 Assessment of Cutoff value impact on generated structures
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Figure V.3: Predicted polymer performance landscape for cutoff values. (A), (B), and (C) show results for
Performance Score cutoff 10,17, and 24. Left: 3D performance space (siRNA association at pH 4 vs. siRNA
dissociation at pH 8 vs. logP Performance) for iteratively generated structures. Right: Computed polymer
structures and predicted Performance Score.

In our hyperparameter optimization, we first evaluated the impact of the performance score
cutoff, here 10, 17, and 24, which determines the minimum performance score (calculated
using the scoring function calibrated in Section 3.4) a generated polymer must achieve for
the optimization process to potentially terminate or be considered successful. The choice of
cutoff significantly influences the nature of the polymers generated. A higher cutoff, such as
24 (Figure V.3C), demands greater performance, potentially driving the optimization
towards structures with high chemical similarity to the best-performing calibration polymers
(Figure V.2D). Conversely, cutoff 10 (Figure V.3A) imposes a less stringent requirement,
allowing the algorithm to accept structures that might be more distinct from the initial high-
performers. To balance rigorous performance criteria with exploration of novel chemistries,

we used a cutoff of 17 during hyperparameter tuning and 24 for the production run.
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5.5.2 Assessment of Mutation Strength impact on generated structures
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Figure V.4: Predicted polymer performance landscape for different mutation strengths. (A), (B), and (C) show
results for mutation strengths 0.33 , 0.66,and 1, respectively. Left: 3D performance space (siRNA association
at pH 4 vs. siRNA dissociation at pH 8 vs. logP Performance) for iteratively generated structures. Right:
Computed polymer structures and predicted Performance Score.

To assess our ML-MD combination effectiveness in exploring the chemical space for optimal
polymers, we systematically varied the mutation strength parameter, which governs the
extent of structural modifications during polymer generation, influencing the diversity of
candidates produced. As expected, the lowest mutation strength (0.33) confined the
generated polymers to a limited region within the multi-objective performance space
(defined by pH 4 association, pH 8 dissociation, and membrane interaction metrics),
clustering results closely together. This lack of dispersion, visualized in the performance
space plot (Figure V.4A), indicated insufficient exploration beyond initial or similar
structures. The maximum performance score of structures generated at the lower mutation
strength (0.33) was only 7.47. Increasing the mutation strength to 0.66 enabled broader
exploration across the performance space by allowing the generation of more diverse
chemical motifs, such as those incorporating amine groups and alkyl side chains (Figure
V.4B). This, in turn, yielded polymers with generally higher performance scores, exemplified
by one candidate reaching 32.95 after eight episodes. The highest mutation strength tested
of 1 rendered a polymer surpassing the set performance score threshold of 17 (Figure V.4C)
in six episodes. This high-performing structure combined two key chemical motifs: a
hydrophilic amine side chain and a substantial aliphatic hydrophobic side chain, likely
contributing to its favourable predicted properties. These results demonstrate that a
sufficiently high mutation strength (1 in this study) is crucial for escaping local optima and

identifying high-performing candidates within a polymer design challenge.
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5.5.3 Assessment of Mol Designer Stepsize Impact on generated Structures
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Figure V.5: Predicted polymer performance landscape for different MolDesigner Steps. (A), (B), and (C) show
results from Stepsize 5 (A), 10 (B), and 15 (C), respectively. Left: 3D performance space (siRNA association at
pH 4 vs. siRNA dissociation at pH 8 vs. logP Performance) for iteratively generated structures Right: Computed
polymer structures and predicted Performance Score.

Following the optimization of mutation strength, the influence of side chain complexity was
assessed by varying the 'Mol Designer steps' parameter. This parameter governs the
iterative process of side chain construction within the polymer generation algorithm by
determining the maximum number of monomer additions allowed per side chain. Keeping
the cutoff and the mutation strength fixed at the optimal values of 17 and 1, respectively,
simulations were conducted using Mol Designer step values of 5, 10, and 15. These settings
correspond roughly to maximum side chain lengths of approximately 10-15, 20-30, and 30-

40 heavy atoms.

The results indicated that simulations employing 5, 10 or 15 Mol Designer steps successfully
identified polymers surpassing the performance score threshold of 17 (Figure V.5A-C). This
indicates that the number of MolDesigner steps can be flexibly adjusted to achieve the
desired polymer size. However, to remain consistent with typical side chain lengths reported
in the literature®'® (10-15 heavy atoms), we fixed the number of MolDesigner steps to five

for the production runs.

Based on these findings, hyperparameters of performance score cutoff = 24, mutation
strength = 1 and Mol Designer steps = 5 were selected for subsequent polymer generation
efforts. This combination should allow to effectively explore the chemical space for high-
performing candidates while imposing constraints on side chain length, aiming to enhance

the synthetic feasibility of predicted top-performing polymers.

5.5.4 Production Runs of New Structures

To assess both optimizer choice and practical robustness, we benchmarked the GA against
a random-design baseline under a matched evaluation budget, keeping the evaluation
pipeline identical (MD challenges, SA filtering, pH-dependent bead mapping) to isolate the
optimizer’s effect. Random sampling was markedly less efficient, requiring 23 + 11 episodes

on average to reach a performance score of 24 versus 5.5 + 2.5 episodes for the GA (Figure
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V.523). Complementing this baseline, we executed three independent production runs in
parallel using the RL warm start. The number of episodes to identify the first high-performing
candidate varied by run — 3, 13, and 8 episodes, respectively (Figure V.6A-C) — indicating
some sensitivity to the initial seed. Yet all runs converged within a modest number of
iterations. The discovered candidates consistently contained amine functionalities, often
short diaminals rather than the long polyamine chains typical of PBAEs, and their secondary
chains included aliphatic alcohols and a polyunsaturated alkene chain. Together, these
results show that while optimization time is stochastic and influenced by the warm start, the
workflow reliably discovers diverse, novel polymers while the GA provides clear

sample-efficiency advantages over random search under the same budget.
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Figure V.6: Predicted polymer performance landscape in production. (A), (B), and (C) show triplicate runs of
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6 Conclusion and Outlook

In this study, we have demonstrated, for the first time, the efficacy of a well-designed in
silico pipeline approach based on a combination of ML and MD for identifying novel
polymeric delivery systems. To this end, we introduced physico-chemical challenges as an
innovative way for mimicking real-world hurdles of carrier systems. This pipeline effectively
integrates MD simulations with an underlying optimization algorithm. We emphasize that
this framework is broadly applicable to diverse delivery challenges, with PBAEs and siRNA
serving as a representative model in our study. Furthermore, the developed software
package possesses significant modularity. Key components, such as the polymer backbone
scaffold, could be exchanged to represent different PBAEs and also other types of
polymers. Additionally, constraints can be applied to restrict mutations to specific chemical
moieties, and parameters governing side chain complexity (e.g., 'Mol Designer steps') can

be adjusted, allowing for flexible adaptation to diverse polymer design challenges

We acknowledge that further optimizations beyond the scope of this initial version of
Bits2Bonds are possible and necessary. Specifically, while we have considered the impact
of individual monomers, factors such as molecular weight and monomer ratio, which also
influence polymer properties, were deferred to future investigations. This decision was
driven by the increased computational complexity associated with these parameters, which
would compromise our objective of acceptable computational effort. However, since we
observed, that the polymerization is kinetically trapped'®, we assume that using small
compositional surrogates is an effective approximation and enables high-throughput
exploration®'. Furthermore, the synthesizability of the proposed polymers is not
guaranteed. While automated synthesizability assessments are an active area of
research'2°2 with some progress for small molecules?®, they remain a significant challenge
for novel carrier systems like those explored here. Incorporating the SA score as a filtering
criterion enabled the exclusion of synthetically inaccessible structures. The synthesis and
subsequent computational as well as experimental optimization of the identified lead

candidates are currently underway.
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10 Supplementary Information

Table S1: Architecture of the CGNN and the selected hyperparameters for training.

Node Features | AtomType, hydrogen_donors, hydrogen_acceptors, Hybridization, Valence,
Aromaticity, Ringsize, Charge
Layer1 Conv(30, 1024) + ReLU + BatchNorm
Layer2 Conv(1024. 512) + ReLU + BatchNorm
Layer3 Conv(512, 256) + ReLU + BatchNorm
Layerd Conv(256, 512) + ReLU + BatchNorm
Layer5 Conv(512, 1024) + ReLU + BatchNorm
Layer6 Linear(1024, 128) + ReLU
Layer7 Linear(128, 16) + ReLU
Layer8 Linear(16, 1) + ReLU
optimizer Adam
Initial Ir 0.01
scheduler ReducelLROnPlateau(mode ="min”,factor=0.7,patience=10,min_Ir=0.001)
epochs 150
A
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as Seed

Suggested Side Chain
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Figure V.S1: PkaPred Model A) Overview about the structure prediction process training B) Inference of
pkaPred within the bead exchanger module.
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Figure V.S2: BeadExchanger. After setting the pH to a certain value, the BeadExchanger is queried and iterates
over the beads as long as the probability of protonation is over a selected threshold.
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Figure V.S22: GPC-Traces of Calibration Polymers. Measurements were performed at 40°C in 0.1 M sodium
chloride solution supplemented with 0.3% formic acid. A) OA/SP-BU B) OA-HP-BG C) OA/SP-BG D) SP-BU E)
OA-HP-BU F) AP-BG G) SP-BD H) OA/SP-BG
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401

# Episodes

Figure V.S23: Comparison of Genetic Algorithm optimization vs. Random Sampling of Beads. '# Episodes'
denotes the number of episodes required to reach a performance score >24.

Table V.S2: adjusted from Zimmermann et al, doi: 10.1016/j.jconrel.2022.09.021. Sequences of siRNAs used
in the study. Nt = nucleotides; GFP = green fluorescence protein; NC = negative control; GAPDH =
housekeeping gene GAPDH; A = Adenine; C = Cytosine; G = Guanine; U = Uracil; T = Thymine; p = phosphate
residue; lower case bold letters = 2"-deoxyribonucleotides; capital letters = ribonucleotides; underlined capital
letters = 2°-O-methylribonucleotides.

Name Sense strand (5’-3’) Antisense strand (3’-5’) Length (nt)

Sense Antisens

e
siGFP pACCCUGAAGUUCAUCUGCA ACUGGGACUUCAAGUAGACGU 25 27
CCACcg GGUGGC
siNC pCGUUAAUCGCGUAUAAUAC CAGCAAUUAGCGCAUAUUAUG 25 27
GCGUat CGCAUAp
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Table V.S3: Computational performance overview of the Bits2Bonds pipeline

‘ Parameter H Description H Value ‘
. NVIDIA
Hardware GPU used for all production runs RTX 3080 Ti
‘Parallelization HNumber of simultaneous software instances H3 |
Mean wall-clock time per|Full pipeline: MolDesigner — pKa /|22min6s+4
polymer evaluation BeadExchanger — MD “challenges” — scoring|{min 32 s
Throug.h put (polymer Completed full evaluations per hour 7.69
evaluations)
Throughput (side-chain||Approximate rate based on parallelized side- 15.38
screens) chain sampling '

Supplementary Calculation: Encapsulation-Efficiency (EE) Determination.

The encapsulation efficiency was determined for each polymer over a series of N/P ratios
using 50 pmol siRNA per formulation. To compare the experimental results with
molecular-dynamics simulations, we calculated an EE value that is not normalised to the

amount of nitrogen per mole. The procedure is outlined below and illustrated with polymer
SP as an example.

1. Definitions

Symbol Meaning

EEN/P Encapsulated siRNA (pmol) measured at a
given N/P ratio

Amount of P Total phosphate amount in the formulation
(pmol)

N per RU Nitrogen atoms per stochastic repeating
unit (SRU)

Amount of SRU Total SRUs present in the formulation
(pmol)

EEN/P-value Normalised encapsulation efficiency at a
specific N/P ratio
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EE-value

Overall polymer-specific encapsulation

efficiency

N

. Step-by-Step Calculation

1. Phosphate amount: Amount of P = Amount of sSiRNA x 52
2. Total SRUs: Amount of SRU = (N/P x Amount of P) / (N per RU)
3. EE(N/P) -value: EEN/P-value = (Amount of siRNA / Amount of SRU) x EE(N/P)
4. Overall EE-value: EE-value = (1/|Z]|) X EE(N/P), Z2={1,3,5,7,9, 12}
3. Worked Example (Polymer SP)
Input / Step Value
N/P 1
EEN/P 2.989 x 10™
N per RU 4
Amount of P 50 pmol x 52 = 2.600 % 10° pmol
Amount of SRU (1 x2.600 x 10%) /4 =6.50 x 102 pmol
EEN/P-value (50/650) x 2.989 x 107" = 2.299 x 1072

The above calculation is repeated for each N/P ratio in Z. The six resulting EEN/P-values
are then averaged: EE-value_SP = (1/6) Z EE(N/P) = 1.244 x 1072
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Chapter VI - Capturing Molecular Motion by Integrating
MD-Derived Descriptors into Predictive Machine Learning
Models for RNA delivery

1 Graphical Abstract
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2 Abstract

Drug-delivery vehicle performance is notoriously difficult to predict because successful
transfection emerges from a multistep, tightly coupled process. Consequently, structure-
transfection models built on static 2D/3D descriptors often generalize poorly, particularly in
the presence of transfection cliffs and when extrapolating to chemically distinct carriers.
Here, we use lipo-xenopeptides (LAX), sequence-defined, single-component amphiphiles
with tunable pH responsiveness, as a representative case study to develop and benchmark
a dynamics-aware prediction strategy for nucleic-acid delivery materials. We introduce a
physics-informed machine-learning framework that integrates atomistic molecular dynamics
(MD) with frame-resolved molecular descriptors to model transfection efficiency, termed 4D

quantitative structure-transfection relationships (4D-QSTR). We performed all-atom MD
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simulations for a diverse library of 52 LAX carriers under physiologically relevant protonation
ensembles at pH 5.0 and 7.4, across three environments representing key delivery
challenges: behavior in a water-octanol interface as well as RNA- and membrane
interactions. From each trajectory, we computed 3D RDKit descriptors per frame,
summarized dynamics using time-windowed means and variances, and then applied
probability-weighted aggregation across the three most populated charge microstates.
Across multiple ML models and evaluation settings, 4D-QSTR features derived from
equilibrated and full-trajectory windows improved rank-based prediction in challenging
regimes, including chemically diverse splits and transfection-cliff scenarios and in several
conditions outperformed static 2D/3D baselines. Beyond prediction, frame-wise analysis
with rolling mean aggregation identified time-localized trajectory segments that maximized
model performance, enabling mechanistic interrogation of carrier transitions at interfaces,
within membranes, and near RNA. Together, our results indicate that dynamic, ensemble-
aware descriptors capture delivery-relevant molecular behavior missed by static
representations and establish a generalizable MD-ML workflow to support more
explainable, closed-loop discovery and optimization of sequence-defined nucleic-acid

delivery materials.

Keywords: 4D-QSTR, molecular dynamics, nucleic acid delivery, machine learning

3 Introduction

MRNA therapeutics have gained significant traction in recent years, with multiple approved
mRNA vaccines®%2% on the market. These advances enable prevention and, increasingly,
treatment of diseases that were difficult to address before. Naked mRNA is rapidly degraded
and shows limited cellular uptake, which is why efficient delivery systems are essential.
Lipid nanoparticles (LNPs) are the current clinical standard and have transformed the field,
yet they also pose challenges such as strict cold-chain storage®®®, complications with

repeated dosing?®, and notable manufacturing variability.*!

Lipo-xenopeptides (LAX) offer a promising single-component alternative.?’” They offer
strong nucleic-acid condensation, strong membrane interactions required for cellular entry,
and endosomal escape in just one carrier molecule, uniting the key advantages of which
commonly only one or another are described for polyplex or lipid systems, respectively.3"208
Their defined sequence-based structure can be built with precise control via solid-phase

synthesis, which supports rapid design-make-test-learn cycles and reproducible quality.
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One of their specific advantages is a pronounced shift in logD between neutral and acidic
conditions, which confers pH-responsive behavior that promotes extracellular stability and
endosomal release.?’ Molecular properties are readily tunable through precise control of
molecular weight and the use of exchangeable building blocks. Early studies demonstrated
efficient RNA delivery across multiple cell lines in vitro and in vivo, positioning these
materials as a promising carrier class.?®® Yet molecular carriers often exhibit complex
structure-activity relationships, where improving one step of the delivery pathway can
compromise another.'321% Achieving the right balance across condensation, protection,

cellular uptake, endosomal escape, and cargo release remains difficult.

Machine learning (ML) has a long record of predicting structure-activity relationships for
small molecules?''?'?> and is now accelerating drug delivery research through mixture

optimization®, process optimization?'3, and carrier discovery''.

Currently, machine learning models in molecular design are frequently combined with 2D
or 3D molecular descriptors?'42'S that capture structural or physicochemical properties.
While these approaches offer the advantage of fast computation and are therefore widely
used in material discovery?'®, they often lack detailed information about the underlying
molecular system. As a result, such descriptor-based models tend to identify molecules with
similar performance profiles, but may underfit more complex structure-function

relationships, particularly when the patterns in the training data differ from those in the test

set 154,217

Molecular dynamics (MD) provide an ideal strategy for generating structured data suitable
for machine learning frameworks, as they offer highly controlled environments for
comparing molecular behavior. In the context of nucleic-acid delivery, simulations have
primarily been employed to elucidate structural organization within lipid nanoparticles?'®,
characterize lipid/polymer RNA interactions?'%??2, and to investigate endosomal escape
mechanisms??>226, These studies typically rely on extensive and computationally
demanding all-atom (AA)-, or coarse-grained simulations, the latter of which trade atomistic
resolution for computational efficiency and may thereby obscure structure activity
relationships. In small molecule discovery, integrated MD-ML approaches have been
successfully applied to predict physicochemical properties using simulations??”'®° and
docking data??®. Riniker et al introduced a compact AA based framework employing

integrated MD fingerprints to encode molecular descriptors for predicting free energy
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differences.?”” MD readouts were used by Chew et al as label for comparing different
formulation encoding methods??®, while another work focused on the use of physics-

informed descriptors from MD simulations.?*°

A promising different approach is the use of 4D-QSAR, originally proposed by Hopfinger et
al.?®' and subsequently refined by several groups.??-2* Particularly interesting is the work
of Ash and Fourches?®, who computed WHIM® descriptors, a family of 3D molecular
descriptors, across molecular-dynamics frames to test whether frame-wise fluctuations
capture mechanistic signals underlying activity differences. They reported encouraging
performance in low-data regimes and evidence that incorporating dynamics can mitigate

activity-cliff effects.

We posit that extending this frame-aware descriptor strategy to drug-delivery materials
discovery, especially for nucleic-acid carriers, could be especially impactful for three
reasons:

first, the problem is intrinsically data-limited and 4D QSAR is especially powerful in solving
low-data problems. Second, molecule-efficacy relationships often lack simple, interpretable
SAR, complicating purely rational design. Therefore, encoding dynamic behavior may
outperform static encodings, particularly when extrapolating to chemically distinct materials.
And third, cliff-like transfection efficacy behavior has also been reported for nanocarrier
material’®*2°, and the fine-grained temporal/ensemble information from frame-resolved
descriptors may help attenuate such effects. Systematic evaluation of dynamic, frame-
aware descriptor strategies for nucleic-acid delivery remains unexplored, highlighting the

need for rigorous benchmarking.

By expanding computational frameworks originally developed for small-molecule design,
we advanced this direction toward nucleic-acid delivery by performing AA-MD simulations
of a diverse library of lipo-xenopeptides (52) as a case study under physiologically relevant
conditions, pH 5.0 (endosomal) and pH 7.4 (blood or cytosol). Each pH state was explored
in three different environments relevant for RNA delivery efficiency: at the water-octanol
(WO-) interface, in proximity to RNA and within a 1-palmitoyl-2-oleoxI-phosphatidylcholin
(POPC) bilayer membrane. From the resulting trajectories, we extracted representative
frames to calculate molecular descriptors, which were subsequently evaluated through a
machine learning framework to assess their predictive power for transfection efficiency. We

introduce an approach that integrates time-aware dynamic descriptors into drug-delivery

205



prediction to test whether data-driven models can better capture the delivery process. We
refer to this framework as 4D QSTR (quantitative structure—transfection relationship).
Beyond LAXs, this integrative workflow establishes a potentially generalizable strategy for
data-driven optimization of not only peptide-lipid hybrids but also other nucleic acid delivery

systems.

4 Results and Discussion

4.1 Molecular Dynamics Simulation for 4D-Descriptor generation.

A case study comprised of 52 structures, known as LAX3"21% (Scheme VI.1A, B and Table
VI.S1), was chosen to evaluate the integration of MD-derived descriptors into a machine
learning framework for predicting transfection efficiency. Leveraging the versatility of MD-
simulations, two physiologically relevant pH conditions representative of RNA delivery
conditions were examined: pH 5, representing the endosomal milieu and pH 7.4, mimicking
neutral conditions within the body such as in the blood stream or cytosolic environment.
Because ionizable lipids, polymers or LAXs can reversibly be protonated depending on pH,
their charge states vary depending on the environment. To assign accurate protonation
states at both pH levels, micro pKa values for all protonable groups and population
distributions were calculated using Schrédinger’s Epik suite?® (Scheme VI.1B). In contrast
to DFT calculations using Schrodinger’s Jaguar,?®” , which were not feasible here due to the
large molecular size (the smallest LAX contains >235 atoms), we employed Epik for micro-
pKa estimation. Epik, which supports molecules up to 200 atoms accommodates most
ionizable lipids but not the large LAXs molecules. To address this shortcoming, the carriers
were fragmented before pKa prediction (Scheme VI.S1). Based on these distributions, the
three most populated states at each pH were recombined while preserving stereochemistry
and charge assignments and then subsequently used for MD simulations, yielding 156
structures (three per carrier) for each pH condition.The pH-dependent simulations were
performed in different environments representative of those encountered by RNA carrier
systems during their lifetime (Scheme VI.1C). These included WO-interfaces to probe
carrier behavior at an interface and during early stages of self-assembly, as well as lipid
bilayer systems (POPC model membrane) mimicking cell or endosomal membranes. In
addition, carrier-RNA complexes were simulated to assess carrier behavior during

formulation and stability in the presence of RNA. Resulting in 3 different environments, that
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pose as challenge for the carriers. Each system was simulated for 100 ns, a duration chosen
based on preliminary 150 ns runs of carrier 1611 (state_2_ 1), which confirmed no change
in structural stability after 100 ns (Figure VI.S1). This justified reducing simulation time to
minimize cost across the 936 total simulations performed. To capture dynamic behavior, 3D
structural states of the carrier molecules (referred to as frames) were extracted from the
trajectories at defined time intervals using GROMACS tools (Scheme VI.1D). Frames were
collected in different time windows: initially between 0-40 ns to capture initial
rearrangements (referred to as start of simulation), at 60-100 ns to represent the
equilibrated state, and over the full 100 ns trajectory (referred to as whole simulation), to
generate time resolved data for the calculation of molecular descriptors used to construct
the 4D descriptor set for the machine learning model. To encode molecular trajectories, we
computed an extensive set of descriptors for every simulation frame. Unlike prior work?*
that targets a narrow subset of features, we deliberately broadened the descriptor panel to
capture richer dynamical information. For each descriptor, we summarized temporal
behavior by the frame-wise mean, reflecting the central tendency of atomic or molecular
properties across the trajectory, and the frame-wise variance, quantifying the magnitude of
temporal fluctuations (Scheme VI.1D).To ensure a physically meaningful representation
across protonation/charge microstates, we further applied an ensemble-weighted
aggregation over the three most probable charged conformers. Specifically, descriptor
means were combined using the conformer occurrence probabilities as weights, thereby
aligning the final representation with the underlying Boltzmann-like population and reducing
bias from rare or non-representative states. This encoding integrates both time-averaged
dynamics (mean/variance across frames) and chemical realism (probability-weighted
conformer ensemble), providing a compact yet expressive feature set for downstream
modeling

Scheme VI.1: Schematic illustration of the computational workflow used for integrating molecular dynamics-
derived descriptors in a machine learning model. A) Generation of 52 three-dimensional (.mol) structures from
two-dimensional (2D) inputs. B) Fragmentation of molecules at defined structural points to generate 3D .mol
files for suitable pKa predictions using Schrédingers Epik, followed by calculation of micro pKa values for all
protonable groups at pH 5.0 and 7.4. Carriers were subsequently recombined, while preserving calculated
charge and protonation assignment, and stereochemistry. C) Molecular dynamics simulation of structures in
three distinct environments, illustrated by snapshots taken after 100ns from the three different setups of carrier
1621 D) Extraction of trajectory frames as .mol files representing different stages of the 100 ns simulation.
Consecutive calculation of RDkit descriptors for each dropped frame, followed by computation of weighted mean
and standard deviation. Resulting in a 4D QSTR descriptor set for different simulations stages and weighted
mean 4D QSTR descriptors per frame. E) Comparing 4-QSTR descriptors across simulation stages with 2D and

3D RDkit baselines using different machine learning models F) Identification of significant events using frame
wise weighted 4D descriptors during the simulation.
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4.2 Deterministic vs Weighted Approach in 4D-QSAR Calculations.

To demonstrate that our approach to compute weighted molecular descriptors outperforms
the conventional deterministic method using only the top state, we performed a simple
experiment where descriptor vectors for the top state were compared to a weighted vector
over the top three states. This analysis was conducted across all simulations, now called
challenges, and pH conditions. We quantified agreement using Spearman’s correlation
coefficient between experimental values and predictions from an ExtraTrees model, which
is recognized for strong out-of-the-box performance on small datasets with high-
dimensional features. The results showed that all weighted vectors had higher Spearman
values than the deterministic calculation (Figure VI.1). Therefore, for further experiments,

we choose to use the weighted calculation of our MD derived descriptors.

06 I weighted calculation

== deterministic calculation

0.4

Spearman
——
—
F—
—_—
e

0.2
0.0- T T T
pH50 pH74 pH50 pH74 pH50 pH7.4
Carrier Carrier Carrier-RNA
WO-Interface Membrane

Figure VI.1: Comparison of the performance of a weighted vs. a deterministically calculated 4D descriptor set
with Spearman’s p. Means were calculated from frame-wise performance (mean + SD).

4.3 Comparison of 4D-QSAR Descriptors from Different Simulation Segments with 2D
and 3D Benchmarks

Following the calculation of the descriptor matrices, they were evaluated within a

standardized ML pipeline, screening multiple algorithms and selecting the best-performing

model per feature set. As baselines, we included 2D RDKit descriptors (conventional

benchmark) and 3D RDKit descriptors (less information-rich 3D reference) to contextualize

potential gains from our MD-derived representations (Scheme VI.1E). Model comparison

used 5-fold cross-validation. Because molecular discovery frequently requires extrapolation
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to chemically distinct structures, we added a chemically diverse split that maximizes train-

test dissimilarity in chemical space.

A persistent challenge in molecular ML is the presence of cliffs, where, in this specific case,
minor structural changes lead to large differences in transfection outcomes. We
hypothesized that a 4D-QSTR-style encoding of dynamics would outperform conventional
baselines, particularly in extrapolation and cliff scenarios, consistent with prior observations

in the literature.*®

The 2D RDKit baseline achieved higher Spearman correlations (Figure VI.2) than any of
the more information-rich feature sets, including the 3D baseline, under standard cross-
validation (CV). This aligns with the well-known strength of 2D encoding when train-test
similarity is high. 239240 Simpler representations can resist overfitting and avoid incorporating
simulation noise. Moreover, most datasets, like this one, were historically generated through
iterative optimization of closely related 2D scaffolds, which inherently favors descriptors that
capture 2D structural variation. This design bias likely contributes to the consistently strong
performance of 2D-derived features. However, in more challenging settings, performance
dropped: for the similarity-constrained split (Chem div) the 2D baseline reached 0.418, and
for cliff prediction it reached 0.450. The 3D baseline performed similarly in these settings,
achieving 0.394 and 0.452, respectively. Overall, the early stages of the simulations
generally showed limited predictive power, whereas descriptors derived from equilibrium
and full-trajectory windows yielded substantially better results for cliff prediction. For
example, for the membrane system at pH 5.0, the equilibrium window achieved a Spearman
correlation above 0.6, and for the WO interface combining both pH conditions, the
equilibrium Spearman correlation reached 0.667. Interestingly, while the membrane
performed well at pH 5.0 but not at pH 7.4, the WO interface simulation showed the

opposite, namely that performance is strong at neutral pH but not at acidic pH.

For the chemical diversity split, WO pH 7.4 and membrane pH 5.0 again outperformed the
baselines over the full simulation, with Spearman correlations of 0.576 and 0.540,
respectively. The strongest performance in the chemical diversity setting was obtained
when concatenating all descriptor vectors and both pH conditions into a single
representation, where the full-trajectory model reached a Spearman correlation of 0.636. In
contrast, combining only the start-window descriptors provided essentially no ranking ability

(Spearman = 0.006), further underscoring how poorly informed the initial simulation frames
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are. The consistently strong performance of descriptors aggregated over all vectors and the

entire simulation suggests that capturing the full temporal and contextual information may

be critical for achieving robust extrapolation in complex processes such as drug delivery.
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Figure VI.2: Performance of 4D-QSTR descriptors compared with 2D RDKit and 3D RDKIit descriptors as
baselines for different simulations and pH levels, evaluated at different parts of the simulation—start (0—40 ns),
equilibrium (60—-100 ns), and whole (0—100 ns)—as well as a combination of the pH levels per simulation and a
combination of the pH levels across all simulations. Three different tests: cross-validation (CV), cliffs, and

chemical diversity (chem_div).
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We note that the comparatively poor performance observed for the RNA and membrane
simulations at pH 7.4 may stem from a modeling choice made to keep the simulations
lightweight where we omitted intermolecular (molecule-molecule) interactions. This
simplification is defensible because the resulting, unbiased single-molecule representations
are subsequently mapped to experimental biological data, which can reintroduce contextual
information during model training. Nonetheless, excluding collective effects can remove

relevant complexity and thereby obscure aspects of molecular behavior.

In particular, microenvironment-dependent protonation may differ between isolated
molecules (as estimated by our EPIK-based calculations) and molecules embedded in
micellar or nanoparticulate assemblies, where local dielectric properties, ionic strength, and
neighbor interactions can shift apparent pKa and may result in different molecular behavior.
31241 These aggregate-level effects, absent in single-molecule trajectories, could plausibly
contribute to the lowered predictive performance at pH 7.4 when looking at RNA and

membrane challenges.

For the restricted (most diverse) splits, robust analyses (e.g., multiple randomizations of the
same constraint) were not feasible due to strict splitting conditions. Results should therefore
be interpreted as single point estimates of achievable performance under the chosen split.
We consistently observed that full-trajectory setups capture substantially more information,

which in turn leads to markedly stronger predictive performance.

Motivated by these findings, we wondered if our approach can be used to spot significant
events that mainly drive performance and therefore potentially derive findings for the

mechanisms of nucleic acid delivery.

4.4 Frame-wise 4D-QSTR Descriptor calculation for Identifying Key Time Points in
MD-Simulations.

Since the frame-wise means computed for different simulation segments exhibited distinct

predictive performance (Figure VI.2), we asked whether per-frame ML performance could

help identify salient molecular behaviors in the simulated environment (Scheme VI.1F). This

is nontrivial, as meaningful events need not occur at the same absolute timepoint for every

molecule. To accommodate temporal misalignment, we also computed a rolling mean over

11 frames, assuming a broad enough timeframe to aggregate information without losing too
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much individual information and used the trajectory-wide mean as a baseline. Deviations of
the rolling mean from this baseline were then used to flag significant events, enabling
detection of transient behaviors that may drive model performance without requiring strict

synchronization across molecules.

A Carrier-WO-Interface Carrier-Membrane Carrier-RNA
1.0 1.09 1.0 = rolling mean
value
0.8+ 0.8 0.8+ === gverall mean
&
£ 0.6+ 0.6
< 3 - - - -
2 0.4 0.4+
& La L A NIRRT
0.2 0.2+
0.0 —r—7——T1——— 0.0 — T — 71— 71— 00 — T T T
0 25 50 75 100 0 25 50 75 100 0 25 50 75
time (ns) time (ns) time (ns)
B Carrier-WO-Interface Carrier-Membrane Carrier-RNA
1.0 1.0 1.0 ~ rolling mean
value
0.8 0.8+ 0.8+ === overall mean
[ 0.6
€ 0.6 0.6 v
© 0.4+
@ 0.44VAN7 TYy @ 0.4 [T VICA b WY RV,
% £l W ¥y 0.2
0.2 0.2 (151 1o (REETAR L Oes, FRioreepions Tl fal, i abirerionysn
0.0 A T T T ¥ T o 1 0.0 T T T T ¥ T ¥ 1 0.2 v T T T v T
0 25 50 75 100 0 25 50 75 100 25 50 75
time (ns) time (ns) time (ns)

Figure VI.3: Performance of 4D-QSTR descriptors over the 100 ns simulation time. (A) pH 5.0; (B) pH 7.4.
Shown are the 11-frame rolling mean and the overall mean of the prediction across all frames. One frame
corresponds to 0.19125 ns. 523 frames were used for descriptor calculation.

Figure V1.3 shows that significant events were detected across all challenges. In
concordance with low performance for RNA at pH 7.4 in the descriptor screening (Figure
VI.2), we observed the lowest overall mean Spearman correlation and even excursions
below zero for this condition. This suggests that the corresponding trajectories carry limited
information about downstream transfection efficiency. Mechanistically, this is plausible:
RNA-carrier interactions are typically most pronounced under acidic conditions, whereas
neutral pH favors disassembly with relatively modest, less informative variation across
carriers. An additional factor may be the absence of explicit intermolecular (material-
material) interactions in our simulations, as discussed above, which could further attenuate

the signal at pH 7.4.
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To probe the link between dynamics and predictivity, we further examined individual
molecules at the timepoint of peak Spearman correlation (Table VI.1) to assess whether
distinctive conformational or interaction patterns emerged at these peaks. This molecule-
level inspection provides qualitative context for the model’s most informative windows and

guides hypotheses for follow-up simulations.

Table VI.1: Overview of frames and timepoints per simulation environment with the highest Spearman value
and the carriers that showed the lowest error over the whole trajectory for each simulation

) Carrier with | Carrier with

Carrier

with second third
Environment pH | frame | time (ns)

lowest lowest lowest

error

error error

WO-Interface 5 202 38.6325 | 1762 1867 1868
RNA 5 64 12.2400 | 1862 1869 1613
Membrane 5 329 62.9213 | 1868 1762 1869
WO-Interface 7 356 68.0850 | 1762 1858 1755
RNA 7 298 56.9925 | 1862 1613 1869
Membrane 7 210 40.1625 | 1755 1862 1762

Subsequently, the three carriers with the lowest overall prediction error were extracted,
selecting carriers that correlate well with overall predictions and allow potential explainability
(Table VI.1). To investigate possible key events at the distinct timepoints (Table VI.1), the
trajectories of carrier 1762 were analyzed at both pH levels (Figure VI.4). Carrier 1762 was
selected as representative system for WO-interface and membrane simulations, as it
consistently appeared among the top three performers in the interfacial simulations (Table
VI.1). Mean square displacement (MSD) was evaluated and plotted (Figure VI.4A, E).
Because MSD reflects the spatial movement of the carrier during the simulation, it provides
a noise-reduced measure for interpreting dynamic transitions identified with the frame-wise

prediction analysis (Figure V1.3, Table VI.1).

Figure VI.4A shows the MSD of 1762 at the WO-interface for pH 5.0 and pH 7.4. At both

pH values, the carrier reached a plateau in displacement, indicating that reduced mobility
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(interfacial pinning) at the interface occurs for both carriers. This plateau appeared earlier
at pH 5.0, suggesting that the carrier becomes immobilized sooner due to higher
electrostatic interactions with water. This observation agrees with the time of the highest
Spearman value occurring sooner for this pH. At pH 7.4, the event occurred later in time but
followed the same trend. These differences align with the expected interplay of electrostatic
interactions with the aqueous phase and lipophilic interactions with octanol, which are
characteristic of the LAX carriers Although the difference between the two pH values is
modest, the smaller MSD at pH 5.0 indicates slightly stronger interfacial confinement under

acidic conditions.

To further visualize this interfacial pinning, density distributions were analyzed at the frame
of maximum model performance and *one frame (At = 0.191 ns) for both interfacial
environments (Figure VI.4B, D). A small but distinct shift of the carrier toward the interface
was evident at the key frame, where the distribution also showed the sharpest and highest
peak at both pH levels. After this frame, the carrier remained in closer vicinity to the aqueous
phase for both pH values, suggesting stabilization at the interface. At pH 7.4 this shift
occurred later and was less pronounced, yet the peak sharpened similarly. These
observations suggest the possibility of conformers with more information for the model than

at other timepoints.

This behavior was supported by the calculation of the area under the curve (AUC) for each
frame between 4.2 nm and 6.2 nm (roughly the water-octanol interface area) and for the
whole box (Figure VI.4C), revealing the proportion of the carrier residing in this interface.
This value increased notably for both pH values, followed by a subsequent incline. The
carrier with the higher total charge (pH 5.0) was almost residing to 100% in the interfacial

area.

Another factor contributing to the carrier’s interaction with the aqueous phase is hydrogen
bonding. The number of hydrogen bonds (H-bonds) between 1762 and water (Figure VI1.4D)
showed a local minimum preceding the key frame, followed by an increase above the
simulation average. This pattern could indicate a structural transition, in which carrier 1762
adopts a conformation with enhanced interfacial interactions, likely one of the configurations

carrying the highest predictive relevance within the dataset.
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Figure VI.4: MD trajectory analysis of carrier 1762, one of the systems with the lowest overall prediction errors
in interfacial simulations, shown for pH 5.0 (red) and pH 7.4 (blue). (A) Mean-square displacement (MSD) of
carrier 1762 at the water—octanol (WO) interface. (B) Mass-density profiles at the WO-interface at the key frame
of maximal model performance and at times £0.191 ns relative to that frame. (C) Percentage of the area under
the curve (AUC) between 4.2 and 6.2 nm representing carrier enrichment at the WO-interface. (D) Number of
hydrogen bonds (H-bonds) between carrier 1762 and water over time, including the overall simulation mean.
(E) MSD of carrier 1762 embedded in a POPC membrane at both pH values. (F) Membrane-spanning density
profiles of carrier 1762 at the key frame and at times +0.191 ns relative to that frame. (G) AUC between 5 and
7 nm quantifying carrier distribution within the membrane leaflet interior.
(H) AUC at the membrane—water interface (0 nm — 5 nm), indicating transient changes in interfacial localization.
MSD, H-bonds depict the weighted mean of analysis outputs across simulation time, and weighted mean density
profiles were computed from coordinate snapshots (.gro) at the indicated frames for carrier 1762 (n = 1). (1)
Number of hydrogen bonds (H-bonds) between carrier 1762 and water over time, including the overall simulation
mean.

Carriers embedded in a POPC membrane naturally exhibit more restricted motion than in
water or octanol; consequently, the MSD values are smaller (Figure VI.4E). At pH 7.4,
carrier movement increases initially and then reaches a plateau around the key frame,
suggesting that the carrier has reached a membrane region where it gets trapped. Possibly
due to interactions with both lipid headgroups of POPC and the aqueous phase. The overall
MSD is larger than for the pH 5.0 simulation, likely reflecting weaker interactions for the less
charged carrier. At pH 5.0 a similar confinement event is observed but occurs later in the

trajectory.

The corresponding mass density distribution of the carrier 1762 reveals a noticeable shift
toward the center of the membrane at pH 5.0, indicating potential local perturbation of the
membrane. (Figure VI.4F). In Contrast, during the pH 7 simulation, the carrier gradually
migrates toward the membrane-water contact area after the key frame it moves back.
(Figure VI.4F) As in the WO-interface simulations, the AUC analysis of the mass density
distribution further highlights these changes. When evaluating the area spanning from
bilayer midplane (7nm) to the midpoint of a single leaflet (5nm) (Figure VI1.4G), a marginal
increase in carrier density is observed at pH 5.0, which diminishes after 0.191 ns.
Conversely, for the membrane-water region (Figure VI.4H), the AUC decreases over the
same interval, suggesting reduced carrier occupancy at the boundary. At pH 7.4, the
opposite trend is observed. The carrier density decreases within the leaflet interior and
increases at the interface, consistent with enhanced interfacial location. After the key frame
the carrier moves back towards the “starting” frame (frame before the key frame) suggesting

that this movement provides us, like for the WO-interface with conformers with the highest
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predictive information. This behavior aligns with the notion that increased lipophilic

interactions at neutral pH strengthens the carrier’s association with the membrane.

Hydrogen-bond analysis revealed fewer overall H-bonds between carrier 1762 and the
POPC membrane at pH 7.4 compared to pH 5.0. At the lower pH, the number of H-bonds
decreased after the key frame, consistent with structural rearrangements occurring in the
membrane under these conditions. At neutral pH, the number of H-bonds increased after

the point of maximal model performance and then reached a plateau.
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Figure VI.5: MD trajectory analysis of RNA simulations for the 1862 the carrier with the lowest error over the
whole simulation. (A+B) Weighted mean distance between carrier and RNA. (C) Weighted rolling mean (11-
frame window) of the number of hydrogen bonds (H-bonds) between carrier and RNA. All means are weighted
by the relative state occurrence within the population at the respective pH.

In both pH conditions for Carrier-RNA interactions, the MSD for 1862, the carrier with the
lowest overall error for this environment, shows pronounced motion that is not attributable
to free diffusion; after binding to RNA (Figure VI.5A), a decrease in MSD is visible in both
curves (Figure VI.4E), followed by a plateau. For both pH values, the frames with the highest
Spearman'’s coefficient occur close to the onset of this plateau phase. Carriers in the vicinity
of RNA, especially when simulated as single molecules, initially rely mostly on electrostatic

interactions?*? with the negatively charged phosphate groups of RNA.

218



The observed differences are evident in the simulation analyses for 1862 (Figure VI.5B). At
pH 7.4, carriers required significantly longer to approach RNA compared to pH 5.0. This
trend is further supported by the hydrogen bond analysis (Figure VI.5C): while the overall
mean number of hydrogen bonds differs only marginally between the two conditions, a
distinct increase occurs earlier at pH 5.0 (before 25 ns) than at pH 7.4 (after 50 ns) in
concordance with the timepoints of the highest Spearman value. These temporal
differences likely account for the shift in time points of highest Spearman correlation. It could
also provide a potential explanation for the marked disparity in predicted performance
between the two pH levels. As noted above, EPIK-predicted protonation states were used
for pH 7.4 and pH 5.0; however, lipophilic microenvironments can alter effective charge
states®', and particularly at pH 7.4, the predicted states may not accurately capture the true
speciation relevant for RNA binding. In contrast, carrier-membrane and WO-interface
simulations at pH 7.4 yielded comparable performance. Notably, the simple phase model
(WO-interface) performed remarkably well, in line with experimental data®', highlighting the

predictive value of simplified models for assessing carrier transfection efficiency.

Across all three simulation environments, the frames with the highest Spearman
correlations consistently aligned with major structural transitions in the MD trajectories,
highlighting the ability of the learned representations to capture physically meaningful

states.

5 Conclusions

In our study on integrating MD simulations into a ML framework for predicting the
transfection efficiency of LAX, we show that MD-derived descriptors can meaningfully
predict performance, especially in settings where conventional featurization struggles. We
further demonstrate how MD and ML can be combined to enhance explainability by
proposing a workflow that highlights time-localized, mechanistically relevant events along

the delivery pathway.

As this is, to our knowledge, the first demonstration of such observations in this context,
several limitations warrant attention. First, the absence of explicit molecule-molecule
interactions may discard information that could improve predictive power, for example

influence on the micro pKa values, or phase-behavior. Future work needs to carefully
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balance computational cost and information gain. Second, broader data coverage is
essential. Expanding beyond a single case study to additional carriers, cell lines and cargo

and incorporate additional simulations that further reflect the delivery process.

Looking ahead, we envision a closed-loop platform that integrates MD-informed descriptors
with multi-objective ML optimization coupled to automated synthesis and formulation. Such
a system could prioritize informative experiments via active learning, map structure—activity
with time-resolved attributions and iterate rapidly toward candidates with improved
performance and tolerability. Together, these advances would move the field toward self-
driving discovery for nanocarriers and accelerate the development of lipo-xenopeptide-

based delivery systems for new applications.

6 Materials and Methods

6.1 Micro pKa determination with EPIK

Starting from two-dimensional structures of lipid tails and headgroups (PCD) (Scheme VI.S1
for division convention), these were embedded as 3D-mol files and converted into
Schradinger input files for micro-pKa calculations using Schrodinger’s (version 2025-1) Epik
software (version 7.1).2%¢ pKa values were determined using a pH threshold of 1, upper and
lower charge level windows of + 10 and — 10, and a maximum of 10 population states per
molecule at the pH. A report for each structure was generated. Afterwards 3D mol files with
correct stereochemistry of the different protonated populations were built with RDkit?** and
an inhouse script. The top three states per pH value and carrier, i.e. the carrier population
with the highest percentages at this pH, were selected. This resulted in 153 structures per
pH value, which were subsequently used for parametrization and molecular dynamics

simulation as described below.

6.2 Parametrization

3D Mol files from the previous step were changed with Open Babel to mol2 files. The
molecules were then parametrized with AmberTools23.24 Partial charges were calculated
via the Gasteiger method, to reduce computational cost, GAFF2 was used as a forcefield
for the carriers, as well as for octanol. Since molecules were compared to each other, the
minor loss in accuracy associated with the Gasteiger charge model was considered
negligible. These parameters were then processed with Parmchk2 and topologies and PDB

files were obtained using the tleap program. Finally, the PDB and topology files were
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converted into GROMACS input files using the Python library ParmEd and an in-house

script.

6.3 Molecular Dynamics Simulation (MDS)

All molecular dynamics (MD) simulations were performed with GROMACS 2022.3245-247 gt
298.15 Kand 1 atm. Temperature and pressure control were applied using combinations of
the Nose—Hoover, V-rescale, C-rescale, Berendsen, and Parrinello-Rahman algorithms as
specified for each system. Energy minimization was conducted stepwise for 50,000 steps,
followed by short NVT and NPT equilibrations and 100 ns production runs. Electrostatics
were treated with the Particle Mesh Ewald (PME) method and cutoff distances of 1.2 nm (or
0.9 nm for membrane systems). Lennard—Jones interactions used a force-switch scheme
between 1.0 — 1.2 nm (or 0.9 nm cutoff for membrane systems). Dispersion corrections for
energy and pressure were disabled unless stated otherwise. LINCS constraints were
applied to all bonds involving hydrogen atoms, center-of-mass motion removal was
disabled, and all integrations used the leap-frog algorithm. To minimize storage demands,
water-molecules were excluded from the trajectory (xtc) output file for the Carrier-RNA and

Carrier-Membrane simulations.

6.3.1 Carrier in vacuum

To assess carrier behavior in the absence of solvent, additional vacuum simulations were
performed under NVT conditions. The same electrostatics and non-bonded settings were
applied as in solvated systems, while center-of-mass motion was removed every 2 ps. Each

system was equilibrated before a 5 ns production run (dt = 2 fs).

6.3.2 Carrier in Water—Octanol Interface

The water—octanol interface was prepared following the GROMACS tutorial?*® for biphasic
systems. Carriers were placed in a 5 x 5 x 10 nm box, solvated with a pre-equilibrated 10
ns octanol layer, and subsequently with TIP3P water. Systems were neutralized according
to their total charge. Equilibration consisted of 0.2 ns NVT (Nose—Hoover thermostat) during
which carriers were pulled into the octanol layer with constant force, followed by 1.5 ns NPT
(C-rescale barostat) with positional restraints on the carriers. Production simulations of 100

ns NPT (V-rescale thermostat, Parrinello-Rahman barostat) were then performed.

6.3.3 Carrier-RNA Systems
Model mRNA was built using Schrdédinger’s Maestro Suite, and a short fragment (40 bp,

Table VI.S3) was parametrized with AmberTools23 using the Amber nucleic acid force field.
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Files were converted to GROMACS input with ParmEd. RNA was positioned in the center
of a 10 nm cubic box and restrained throughout the simulation. Carriers were placed at (2.5,
2.5, 7.5 nm) to ensure identical starting conditions. After solvation and neutralization,
systems underwent energy minimization, 0.2 ns NVT, and NPT equilibration (with
restraints), followed by 100 ns NPT production using the same parameters as for the water—

octanol systems, but with restraints on the RNA for equal conditions.

6.3.4 Carrier— POPC Membrane Systems
A POPC bilayer containing 100 lipids per leaflet was built using CHARMM-GUI membrane

Builder?*® and parametrized with the Lipid21 force field. The membrane was pre-equilibrated
for 100 ns before carrier insertion. Systems were assembled in an 8.2 x 8.2 x 14 nm box,
solvated, neutralized, and adjusted to 0.15 M NaCl. After energy minimization, a 125 ps
NVT equilibration (V-rescale thermostat) was followed by a 125 ps NVT run in which carriers
were pulled into the membrane center (Nose—Hoover thermostat). Subsequent 1.25 ns NPT
(Berendsen barostat, grouped V-rescale thermostats) and 10 ns NPT (C-rescale barostat)
equilibration phases allowed membrane relaxation. Production runs of 100 ns NPT followed

with PME electrostatics and dispersion correction enabled.

6.3.5 Analysis

All simulations were run for 100 ns. After completion, carriers were centered and three
segments from the trajectories were selected for frame extraction: the initial phase (0—40
ns, frames), the equilibrated phase (60—100 ns, frames), and the entire simulation (0—100
ns, frames). For each segment, .gro files were saved at defined time intervals. The resulting
.gro files were converted to mol format using Open Babel, and molecular descriptors were
calculated with RDKit via an in-house Python script. To conserve disk space, water
molecules were excluded from trajectory outputs in RNA and membrane simulations. All
simulations were performed once per system; subsequent statistical analysis was based on
frame sampling as described above. For visualization of trajectory snapshots VMD 22°° was
used. Mean Square Displacement (MSD) was calculated via GROMACS, then weighed,
based on the percentage of occurrence at this pH and the mean calculated via an inhouse
Python script. Density distributions were calculated per frame and state via GROMACs and
then the weighted mean was calculated as well. GraphPad Prism (GraphPad Software, La
Jolla, USA, v. 10.6.1) was used to calculate overall mean of hydrogen bonds and area under
the curve for density distributions. Affinity Designer 218.2 (version 2.5.7, Serif Ltd., West

Bridgford, UK), and GraphPad Prism were used for visualization.
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6.4 Carrier Encoding and Feature Generation

To featurize the molecular dynamics (MD) trajectories, each carrier was represented using
a comprehensive set of molecular descriptors. To ensure that spatial and geometric
information was preserved, we employed descriptor families that explicitly encode 3D
molecular structure, including WHIM, GETAWAY, and related geometrical indices.
Descriptor computation was performed using the RDKit cheminformatics library (version
2024.9.1).

For each frame of every trajectory, a total of molecular 984 descriptors were calculated.
Subsequently, the mean and standard deviation across all frames were determined, yielding
1968 aggregated features per molecule. Descriptor calculation was performed
independently for all simulation types (WO-Interface, RNA, membrane) and at two pH
values (5 and 7.4).

To account for conformational variability and protonation effects, the three most probable
protonation states were extracted for each pH condition. Descriptors of these states were
weighted according to their relative population probabilities, resulting in a weighted
descriptor vector per pH value. For benchmarking, a deterministic encoding using only the

most likely state was also evaluated.

To capture both environment- and pH-dependent behavior, combined descriptor vectors
were constructed: pH-combined vectors, concatenating pH 5.0 and 7.4 features.
Simulation-combined vectors, merging descriptors across all simulation types to evaluate

whether integrated environmental information improves model performance.

As a computationally lighter baseline, 2D molecular descriptors were also generated for
each carrier. Furthermore, to benchmark trajectory-derived features against static molecular
representations, 3D descriptors of the unprotonated, energy-minimized vacuum structure

were computed using RDKit (see Section Molecular Dynamics Simulation (MDS)).

Descriptor sets were prepared for three temporal segments of each trajectory: start phase,

Equilibrium phase, whole simulation.

This multi-scale encoding strategy was designed to capture both transient and equilibrium

structural features relevant to carrier performance.
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6.5 Model Selection and Feature Comparison

A model zoo comprising 13 different regression algorithms (Table S2) was used to
systematically benchmark predictive performance across descriptor types. Prior to training,
all feature sets were standardized using a StandardScaler (scikit-learn v.1.6.1).
Transfection efficiency labels were log-transformed to normalize their distribution. Models
were evaluated under three complementary data-splitting strategies: 5-fold cross-validation
(CV) for generalization performance, chemical diversity splits to test extrapolation to novel
chemotypes, and transfection-cliff splits to probe model sensitivity to steep response
changes. Given that relative performance trends are often more informative than absolute
numeric agreement, spearman rank correlation between predicted and experimental values

was used as the primary evaluation metric.

6.6 Single-Frame Descriptor Analysis

To investigate temporal patterns within the trajectories, frame-wise descriptor sets were
generated for every simulation frame and protonation state. For each frame, both weighted
and deterministic protonation encodings were computed, and models were evaluated using
5-fold CV. For every simulation type, pH value, and frame index, the Spearman correlation
coefficient between predicted and experimental activities was calculated. To smoothen
short-term fluctuations, a rolling mean over 11 consecutive frames was applied. Local
maxima in these smoothened correlation profiles were interpreted as potential dynamically

relevant events.
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10 Supplementary Information

Materials. CleanCap FLuc mRNA (5moU) was obtained from TriLink BioTechnologies, San
Diego, CA, USA. Murine neuroblastoma cell line Neuro2a (N2a) was purchased from the
American Type Culture Collection, ATCC, Manassas, VA, USA. The human cervix
carcinoma cell line (HeLa) was obtained from the German Collection of Microorganisms and
Cell Cultures GmbH, DSMZ, Braunschweig, Germany. The human embryonic kidney cells
(HEK-293T).... Dulbecco’s Modified Eagle’s Medium (DMEM) low glucose with sodium
bicarbonate, sodium pyruvate and L-glutamine, and fetal bovine serum (FBS) were
purchased from Sigma-Aldrich, St. Louis, MO, USA. Penicillin-streptomycin (10,000 U/mL;
10 mg/mL) and trypsin/EDTA 10x were purchased from PAN-Biotech GmbH, Aidenbach,
Germany. Luciferase Cell Culture Lysis 5% reagent and beetle luciferin sodium salt were
obtained from Promega, Madison, WI, USA, and ATP from Roche Diagnostics, Mannheim,
Germany. Coenzyme A trilithium salt, DL-dithiothreitol, and glycylglycine were purchased
from Sigma-Aldrich, St. Louis, MO, USA. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) was purchased from Carl Roth, Karlsruhe, Germany. Dimethyl
sulfoxide (DMSO) was obtained from Fisherscientific, Loughborough, UK. D(+)-Glucose 1-
hydrate was purchased from Applichem, Darmstadt, Germany. Ethylenediaminetetraacetic
acid (EDTA) disodium salt dihydrate was purchased from Merck, Darmstadt, Germany. 4-
(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) was purchased from BIOMOL
GmbH, Hamburg, Germany.

Particle formation. The FLuc-mRNA was diluted in HBG (20 mmol/L of HEPES, 5% (w/v)
glucose, pH 7.4) to a concentration of 25 ug/mL. LAF-XP carriers were diluted in purified
water to appropriate concentrations for calculated N/P (nitrogen/phosphate) ratios under
consideration of all primary, secondary, and tertiary amines except the tertiary amine within
the N-(trifluoroethyl)iminodiacetyl (TFE-IDA). (Table VI.S1) Particles were formed by mixing
equal volumes of mRNA dilution and LAF dilution via rapid pipetting, followed by 40 min
incubation at RT yielding a final MRNA concentration of 12.5 pyg/mL.

Cell culture. The murine neuroblastoma cell line Neuro2A (N2a), the human cervix
carcinoma cell line (HeLa) and the human embryonic kidney cells (HEK-293T) were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM)-low glucose (1 g/L glucose) containing L-

glutamine, sodium bicarbonate and sodium pyruvate supplemented with 10% FBS,
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100 U/mL of penicillin, and 100 pg/mL of streptomycin. Cells were cultured at 37 °C and 5%
CO; at a relative humidity of 95%.

Luciferase expression assay. One day prior to transfection, 10,000 cell/well in case of
N2a and HEK-293T cells and 5000 cells/well in case of HelLa cells were seeded in 96-well
plates. Shortly before the transfection, cell culture medium was replaced by 99 pL fresh
medium supplemented with 10% FBS. LAF-XP polyplexes were formed as described above
(12.5 pg/mL mRNA-FLuc) and transfected at a dose of 12.5 ng mRNA-FLuc per well. HBG
buffer (1 uL) was used as negative control. After incubation at 37 °C for 24 h, the medium
was removed, cells were lysed with 100 pL of cell culture 0.5x lysis buffer, and frozen at
-80 °C overnight. Prior to measurement, plates were thawed (1 h, RT, 25 rpm) on a rocking
shaker. Cell lysates were 1:100 diluted in PBS and mixed thoroughly. Luciferase activity in
35 uL of diluted lysate was measured with a Centro LB 960 microplate luminometer
(Berthold Technologies, Bad Wildbad, Germany) after addition of 100 uL LAR buffer
(20 mmol/L glycylglycine, 1 mmol/L MgClz, 0.1 mmol/L EDTA, 3.3 mmol/L dithiothreitol,
0.55 mmol/L adenosine 5'-triphosphate, 0.27 mmol/L coenzyme A, pH8.0-8.5)
supplemented with 5% (v/v) of a mixture of 10 mmol/L luciferin-sodium and 29 mmol/L
glycylglycine with a measurement duration of 10 s. Transfection efficiency was calculated
as relative light units (RLU) per seeded number of cells per well after background
subtraction (i.e., RLU values of HBG-treated cells). Experiments were carried out in

triplicates.
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Table VI.S1: Amines in lipo-xenopeptides. As well as used N/P, molecular weight

TSt Mw MW HCI salt i counted amines/
free base |(36,5 g/mol per HCI) oligomer

1611 1501.42 1720.42 18 6
1613 2585.29 2840.79 24 7
1621 2136.44 2391.94 24 7
1719 2984.89 3386.39 12 11
1730 2407.85 2772.85 12 10
1745 2536.03 2937.53 12 11
1746 1277.02 1496.02 18 6
1752 2360.92 2616.42 24 7
1753 2809.79 3065.29 24 7
1754 2473.15 2728.65 24 7
1755 2697.57 2953.07 24 7
1758 2760.46 3161.96 12 11
1759 3209.33 3610.83 12 11
1760 2872.68 3274.18 12 11
1761 3097.11 3498.61 12 11
1762 2360.92 2616.42 24 7
1763 1389.24 1608.24 18 6
1764 1613.67 1832.67 18 6
1765 1445.35 1664.35 18 6
1766 1557.56 1776.56 18 6
1791 2369.01 2624.51 24 7
1792 2603.06 2858.56 24 7
1793 2333.1 2588.60 24 7
1794 2531.23 2786.73 24 7
1813 2094.41 2349.91 24 7
1814 2318.84 2574.34 24 7
1816 2928.79 3330.29 12 11
1821 1968.48 2187.48 18 6
1822 1896.66 2115.66 18 6
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1823 2640.21 3005.21 12 10
1824 2874.26 3239.26 12 10
1825 2604.03 2969.03 12 10
1826 2802.43 3167.43 12 10
1827 1473.4 1692.40 18 6
1840 1543.54 1762.54 18 6
1841 1583.6 1802.60 18 6
1842 1517.45 1736.45 18 6
1843 1555.55 1774.55 18 6
1844 1458.39 1640.89 18 5
1845 1500.47 1682.97 18 5
1858 3069.06 3470.56 12 11
1859 3149.19 3550.69 12 11
1860 3016.89 3418.39 12 11
1861 3093.08 3494.58 12 11
1862 2898.76 3227.26 12 9
1863 2982.92 3311.42 12 9
1864 2403 2658.50 24 7
1865 2443.07 2698.57 24 7
1867 2415.01 2670.51 24 7
1868 2317.85 2536.85 24 6
1869 2359.93 2578.93 24 6
1888 1598.49 1817.49 18 6
1909 2457.96 2713.46 24 7

Scheme VI.81: Carrier structure and fragmentation for pKa calculation. A) Building blocks for all carriers
simulated. B) Different topologies found in the dataset build out of the building blocks. C) Fragmentation for pKa
calculation shown on 1621.
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Figure VI.81: Root Mean Square displacement (RMSD) of 1611 at pH 5 in different simulation setups over
150ns. (A) Shows RMSD over time for the three simulation environments while also showing the different parts
of interest of the simulation (B) Standard deviation of the RMSD in the different time intervals. (n = 1)

Table VI.S2: Models used in the model zoo with respective hyperparameter and the python library they were
imported from

Model Name Key Hyperparameters Library
DummyMean strategy = "mean” scikit-learn
(sklearn.dummy)
Linear default parameters scikit-learn
(sklearn.linear_model)
Ridge alpha = 1.0, random_state | scikit-learn
=42 (sklearn.linear_model)




Lasso

alpha = 1e-3, max_iter =
5000, random_state = 42

scikit-learn

(sklearn.linear_model)

= -1, random_state = 42

ElasticNet alpha = 1e-3, [1_ratio = 0.5, | scikit-learn
max_iter = 50000, | (sklearn.linear_model)
random_state = 42
KNN n_neighbors =7 scikit-learn
(sklearn.neighbors)
SVR C =10.0, gamma = "scale", | scikit-learn (sklearn.svm)
epsilon = 0.1
RandomForest n_estimators = 300, n_jobs | scikit-learn
= -1, random_state = 42 (sklearn.ensemble)
ExtraTrees n_estimators = 400, n_jobs | scikit-learn

(sklearn.ensemble)

GradientBoosting

default parameters,

random_state = 42

scikit-learn

(sklearn.ensemble)

random_state = 42

MLP hidden_layer_sizes = | scikit-learn
(256,128), activation = | (sklearn.neural_network)
rel’, alpha = 1e-4,
learning_rate_init = 1e-3,
max_iter = 500

XGB n_estimators = 600, | xgboost
max_depth = 6,
learning_rate = 0.05,
subsample = 0.8,
colsample_bytree = 0.8,
reg_lambda = 1.0,
tree_method = 'hist’,
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LGBM n_estimators = 1000, | lightgbm
num_leaves = 63,
learning_rate =  0.05,
subsample = 0.8,
colsample_bytree = 0.8,
reg_lambda = 1.0,
random_state = 42

Table VI.S3.- Sequenz of the mRNA part containing 40 Bases

5" GACGGCAACAUCCUGGGGCACAAGCUGGAGUACAACUACASZ’
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Chapter VIl - Meta-Learning as a Promising Strategy for
Lipid Nanoparticle Optimization and lonizable Lipid

Discovery

1 Abstract

The rapid expansion of LNP based RNA therapeutics has created an urgent need for
predictive tools that can accelerate the design of formulations and novel lipid compounds.
However, formulation development remains challenging due to complex, multistep delivery
mechanisms and the scarcity of high-quality experimental data. Conventional machine-
learning approaches often struggle to extrapolate to new chemical scaffolds, cargos, and
cell types. Here, we explore few-shot meta learning (FSL) as a strategy to overcome data
scarcity in early-stage LNP development. Using a recently published dataset on lipid-based
delivery systems, we created chemically, and contextually coherent meta-learning tasks
based on data provenance and formulation conditions. Several FSL algorithms were
benchmarked against supervised baselines using both Morgan fingerprints and graph-
based encodings. To emulate challenging extrapolation, all siRNA-related data were
withheld during meta-training and used solely for testing. Model-agnostic meta-learning
(MAML) substantially outperformed conventional supervised and transfer-learning
baselines, achieving an average R? of 0.38 + 0.049 for siRNA delivery, compared with near-
zero performance for non-meta models. In a retrospective active-learning simulation, meta-
trained models identified high-performing candidates within the first acquisition rounds,
achieving markedly higher hit rates and enrichment factors than random forest and random
selection baselines. To validate these findings experimentally, we synthesized 15 new
ionizable lipids and generated in vitro transfection data across multiple cell lines and RNA
cargos. Despite the very small dataset, MAML achieved superior predictive performance to
RF across all settings, including Pearson correlations up to 0.63 for siRNA delivery.
Together, these results demonstrate that FSL provides a powerful and generalizable
framework for guiding formulation design in data-limited environments, enabling faster and

more informed exploration of the RNA delivery design space.

Keywords: Lipids, Meta Learning, Few-Shot Learning, Machine Learning, Lipid
Nanoparticle
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2 Main

The field of RNA therapeutics has expanded rapidly in recent years, transforming from a
niche research area into a cornerstone of modern drug development. Pioneering approvals
such as the mRNA vaccines Comirnaty (Pfizer-BioNTech) and Spikevax (Moderna), and
siRNA drugs including Onpattro, Givlaari, and Oxlumo (Alnylam Pharmaceuticals), have
demonstrated the therapeutic potential of RNA across infectious, genetic, and metabolic

diseases?'252,

A major contributor to this progress is the advancement of lipid nanoparticle (LNP)
technology, which protects fragile RNA from degradation and enables efficient delivery to
target tissues. Building on the clinical success of LNP mRNA vaccines during the COVID-
19 pandemic®®, LNPs have become the leading non-viral platform for mRNA delivery, with
ongoing expansion to other RNA modalities. Compared with viral vectors, whose translation
can be limited by immunogenicity, toxicity, manufacturing complexity, and payload
constraints'#2%3, LNPs offer synthetic tunability, favorable biocompatibility, and scalable
production via microfluidic-mixing methods?%42%5, An LNP typically comprises four to five
lipid components: an ionizable lipid, phospholipid, cholesterol, and PEG-lipid, occasionally
supplemented by a targeting lipid®®. Each component serves a distinct physicochemical
function, but the ionizable lipid plays the dominant role in RNA encapsulation, endosomal
escape, and delivery efficiency®. Over the past decade, thousands of ionizable lipid
structures have been synthesized and screened, and high-throughput (HT) formulation and
testing platforms have been developed to accelerate discovery?®6-2°8, Nevertheless, LNP
optimization remains a high-dimensional, multi-parameter problem, where optimal
performance depends not only on chemical composition but also on RNA type?®, target

tissue*? and mixing conditions?%°.

The wide spread use of artificial intelligence (Al) and machine learning (ML) provides
powerful strategies to navigate this complex formulation landscape. ML models have
successfully been applied to predict encapsulation efficiency?®, particle size?®’, cell
selectivity?®?, and in vitro transfection performance from experimental data'?®263, Existing
approaches generally fall into two categories: (i) high-throughput screening (HTS) + ML
integration, where large, well-controlled datasets are used for model training®2°6:264,

Although robust, these approaches are often resource- and material-intensive. Or (ii) data
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aggregation from literature, where information from multiple studies is merged to expand
the accessible chemical space. While inexpensive, this strategy introduces heterogeneous
data quality, experimental bias, and domain noise, which can compromise

generalizability?5°-26¢,

Moreover, most conventional ML models are limited by their inability to extrapolate to new
chemical scaffolds, tissue types, or RNA cargo scenarios that inherently suffer from data

ScarCity154’24o’267.

Transfer learning (TL) has been proposed to reuse prior knowledge from related tasks, e.g.,
leveraging models trained on large molecular datasets to fine-tune predictions for specific
targets”""2. However, in molecular ML applications, TL frequently faces complex case-to-

case differences, making its implementation quite cumbersome?68,

An alternative paradigm, few-shot learning (FSL), directly addresses data scarcity by
teaching models to learn new tasks from only a few labeled examples?®. Rather than
focusing on single prediction tasks, FSL trains on distributions of tasks, enabling rapid
adaptation to novel conditions. FSL has already demonstrated promise in drug discovery,
where it has improved small-molecule activity prediction?, drug-target interaction
modeling?”", and ADMET property estimation?’2. Despite these advances, no studies to date
have explored FSL for drug-delivery optimization, even though formulation research often

faces the same low-data challenges.

In this proof-of-concept study, we explore the feasibility of few-shot learning for the early-
stage development of novel ionizable lipids. Specifically, we: (i) benchmark multiple FSL
algorithms and molecular featurization strategies to simulate extrapolation to unseen
cargos; (ii) investigate a meta-trained model within a retrospective active-learning
framework, assessing whether it can guide formulation decisions for a held-out RNA cargo;
and (iii) validate experimentally by synthesizing a library of 15 ionizable lipids and testing

their performance across multiple cell types and RNA cargos.

We hypothesize that few-shot learning can leverage shared latent representations of
molecular and formulation descriptors to generalize across different LNP compositions and

biological contexts, thereby accelerating the design-make-test-learn cycle for RNA
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therapeutics. Here, we provide a reproducible framework for Al-guided formulation design

in data-scarce regimes.

We employed a recently published dataset on lipid-based delivery systems for model
development and evaluation?®“. In the corresponding study, the authors used historical data
to design novel lipids and reported promising outcomes. However, we argue that the design
of entirely new formulations for previously unseen cargo types or cell lines is difficult when
relying on datasets that do not include such variations. Nevertheless, such datasets can still
be valuable for enabling a model to meta-learn transferable knowledge, allowing it to rapidly
extract useful information from related challenges even when only limited new data is

available.

To demonstrate this concept, we divided the datasets into tasks in two steps. First, the data
were split according to their source to ensure that each task contained data originating from
the same source, thereby avoiding potential biases introduced by merging data from
different origins. Second, the data were partitioned by a defined criterion to ensure that each
task comprised only comparable data within itself. Additionally, a label-based binning-
splitting approach was used to ensure the same label distribution in support and query set
(Figure VII.1A). Subsequently, we compared several few-shot learning (FSL) algorithms
with classical supervised learning models (Figure VII.1B). Because molecular featurization
has a major influence on model performance in both conventional and meta-learning
settings, we evaluated two different molecular encodings: a bit-vector representation based
on Morgan fingerprints, and a learnable graph-based embedding similar to the one used in
the original dataset’s publication. To emulate a challenging extrapolation task, all siRNA-
related data were excluded from the training set and reserved as a holdout test set. Model
robustness was further assessed using a random seed strategy that redistributed the data

into different support-query splits.
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As expected, the supervised baseline models trained only on the meta-training data without
further fine-tuning showed no meaningful generalization for the unseen cargo, resulting in
R? values close to zero (Figure VII.2A). After fine-tuning on the support set, the performance
improved slightly, reaching mean R? values of 0.046 + 0.028 for the fingerprint
representation and 0.078 + 0.021 for the graph-based encoding. In contrast, all few-shot
models achieved substantially higher performance. The model based on model-agnostic
meta-learning (MAML) performed best, yielding an average R? of 0.38 + 0.049 for the
fingerprint features. Interestingly, the graph-based version performed slightly worse, with R?
values of 0.28 + 0.16 for MAML and 0.29 £ 0.15 for first-order MAML (FOMAML). This result
was unexpected, as graph-based encodings are generally assumed to be more
expressive?”®. A plausible explanation is that the higher parameterization and complexity of
the graph models led to reduced robustness in this low-data regime, which is also reflected

in the larger performance variance.

In molecular discovery workflows, algorithms are often used to prioritize new candidates for
experimental testing. This strategy, known as active learning (AL), leverages model
predictions to guide data acquisition®274-276_ To investigate whether few-shot learning could
also be beneficial in this context, we applied the meta-trained MAML model from the
previous experiment in an AL-like simulation. The holdout siRNA dataset was again used
but restricted to samples matching the criterion
“Whitehead_siRNA_whitehead_lipidoid_generic_cell_nan_in_vitro” to simulate realistic
laboratory conditions, where data typically originate from one research group and one cell
line. To keep the setup straightforward, the top 5 % of samples were defined as hits, and a
greedy acquisition strategy was applied, where the model iteratively selected the candidate
with the highest predicted performance. Although batch selection is common in practice, we
opted for batch-1 acquisition here to control for batch effects and to evaluate the intrinsic
ranking ability of each method on identical, incremental updates. For benchmarking, we
compared the results to random selection and to a random forest (RF) model, which is often
used in small-data and active learning settings?’/?’¢. All molecules were encoded as

Morgan fingerprints, as this representation had shown superior stability in our previous
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experiments. The initial training set was constructed using a centroid-based sampling

approach to ensure broad coverage of the feature space.

Across 100 simulated acquisition iterations, the MAML model consistently demonstrated
strong early hit detection, identifying four of the top five hits within the first few iterations
(Figure VI1.2B). The RF model also detected one hit early on but failed to discover additional
high-performing candidates, while random selection eventually surpassed RF performance.
This suggests that the RF model struggled to capture the biological context underlying the
structure-activity relationships. Overall, the MAML-based strategy identified 36 out of 59
possible hits, compared with only 3 hits for RF and 5 hits for random selection. To further
assess the ability of meta-learned models to guide early formulation optimization, we
compared the performance of the MAML model to the RF baseline across several active-
learning-related metrics sampled at iteration 5 to monitor early discovery (Figure VII.2C).
Overall, MAML clearly outperformed the RF baseline in all evaluated criteria. The hit rate
(Hit@k) and enrichment factor (EF@k) of MAML were four times higher than those of RF,
indicating a substantially improved capability to identify high-performing formulations among
the top-ranked candidates. Similarly, the best-so-far@k score was higher for MAML (4.18
vs. 2.91), confirming that the meta-learned model more consistently selected top-yielding
formulations during the iterative search. In addition, MAML achieved a markedly lower
simple regret (0.36 vs. 1.63), demonstrating faster convergence towards optimal
formulations. The corresponding yield@k further supports this trend, with MAML producing
roughly an order-of-magnitude higher mean yield compared to the RF baseline (3.17 vs.
0.18). These results highlight the advantage of few-shot meta-learning in guiding candidate

selection under limited-data conditions, especially in the early stages.
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Figure VII.2: Results of the siRNA holdout experiments A) Model comparison of different few-shot algorithms
(FOMAML, MAML, mSGD), supervised ANN (supervised_noFT) and a transfer learning ANN (supervised_FT)
ranked by R2 value. B) Active Learning of the MAML meta model compared to RandomForrest (RF) and
Random Picking baselines. C) Active Learning comparison of MAML and RF at round 5.

241



To validate our meta-learning approach, we synthesized a small library of 15 new ionizable
lipids (Supplementary Table VII.1) and formulated corresponding LNPs for siRNA and
mRNA delivery. Acrylates were first obtained by esterification of the respective alcohols with
acryloyl chloride and subsequently reacted with polyamine head groups via a solvent-free
aza-Michael reaction (Figure VII.3). Conversion rates were characterized via '"H NMR
(Figure VII.S4 — VII.S24) and final lipid structures were confirmed via MS ESI
(Supplementary Table VII.1). The resulting crude lipids were formulated with cholesterol,
1,2-distearoyl-sn-glycero-3-phosphocholine, and DMG-PEG2000 in ethanol and mixed with
siRNA or mRNA using a high-throughput microfluidic device. The resulting particles were
dialyzed against PBS and characterized for size and polydispersity index (PDI) (Figure
VI1.S25).
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Figure VII.3: Synthesis route and lipid design of ionizable lipids. (A) Starting from either the carboxylic acid
(reduced to the corresponding alcohol) or directly from the alcohol, the alcohol was esterified with acryloyl
chloride; subsequent solvent-free aza-Michael addition furnished the final ionizable lipids. (B) Amine head
groups and (C) alkyl tails employed in this study. Combination of various alkyl tails and amine head groups led
to 15 chemical diverse ionizable lipids.
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LNP transfection efficiency was evaluated in epithelial (H1299, A549, MDA-MB-231) and
dendritic (DC2.4) cell lines, quantifying either Firefly luciferase knockdown (siRNA) (Figure
VII.4A) or mMRNA-mediated luciferase expression (Figure VII.4B). This dataset of labeled in-
vitro data served as the basis to test and validate our model on own data. We note that for
some treatments, the remaining expression exceeded 100%. For siRNA knockdown
experiments, stable reporter cell lines are required, but their physiological state can
influence apparent knockdown. Upon LNP treatment, some cells reduce proliferation and
redirect metabolic resources toward processing the particles via the endo-lysosomal
pathway, particularly in cases with high uptake but limited endosomal escape. We observed
a similar trend where untreated cells proliferated freely and entered partial quiescence,
while LNP-treated H1299-Luc cells showed enhanced endo-lysosomal trafficking and
stress, which resulted in slower proliferation and failure to reach quiescence. Consequently,
these cells displayed higher apparent luciferase “remaining expression” compared to the

untreated reference.
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A five-fold cross-validation (5-CV) setup was used, with nine lipids serving as the support
set, three as validation data for checkpoint selection, and three as test data (Figure VII.5A).
This experiment aimed to assess whether few-shot learning provides an advantage over
traditional models such as random forests in very low-data scenarios. Model performance
was evaluated for mRNA transfection in A549, DC2.4, H1299, and MDA-MB-231 cells, and
for siRNA transfection in H1299-FLuc and MDA-MB-231-FLuc cells.

Despite the small dataset, the MAML model achieved notable predictive power for siRNA
delivery, with Pearson correlation coefficients of 0.63 for H1299 and 0.61 for MDA-MB-231
(Figure VII.5), clearly outperforming the RF baseline, which reached 0.27 and 0.45,
respectively. For mRNA transfection, moderate correlations were obtained for DC2.4 (r =
0.35), H1299 (r = 0.37), and MDA-MB-231 (r = 0.36), while no positive correlation was
observed for A549. Nonetheless, the MAML models consistently outperformed the RF
baselines across all settings. These findings indicate that few-shot meta-learning can
provide valuable predictive insights even in very-low-data environments, supporting its
potential as a practical tool for early-stage lipid formulation design, where experimental data

generation remains costly and time-consuming.
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Overall, our findings demonstrate the potential of meta-trained models as a promising
strategy for early-stage formulation development. Guiding the discovery process in the right
direction from the outset, can help researchers and institutions reduce costly late-stage
failures while effectively leveraging historical data that are often difficult to integrate into

conventional data-driven approaches.

Looking ahead, to extend the applicability of these models to clinically more relevant
systems, in vivo validation will be necessary. The promise of meta-learning in formulation
development lies in its ability to integrate information that would otherwise be difficult to
combine, thereby substantially reducing development time and costs. Future work will
expand the training corpus across additional datasets and refine the meta-learning strategy
beyond MAML and MetaSGD, and by jointly optimizing formulation composition together
with lipid-component discovery within a single framework.
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3 Supplementary Information

3.1 Materials and Methods
3.1.1 Materials

3-Phenyl-2-propin-1-ol, oleic acid, spermidine, spermine, 4-(2-Aminoethyl)-morpholin, N,N-
Dimethylethylendiamin, N,N-Dimethyldipropylenetriamine, lithium aluminium hydrid in
hexanes (1M), citric acid monohydrate, sodium citrate dihydrate, sodium acetate, RPMI-
1640 Medium, Dulbecco’s Phosphate Buffered Saline (PBS), 2-mercaptoethanol, heat-
inactivated Fetal Bovine Serum (FBS) and cholesterol were purchased from Sigma-Aldrich
(Taufkirchen, Germany). Acryloylchlorid, 1,3-Diamino-propan, triethylamine, PBS 10X and
all solvents were purchased from fisher scientific. Linoleic acid, 3,3'-Diamino-N-
methyldipropylamine, 1-Dodecanol were purchased from TCI Chemicals (Germany). 1,6-
Diaminohexane was purchased from Thermo Fisher Scientific. DMG-PEG 2000, 1,2-
Distearoyl-sn-glycero-3-phosphocholine (DSPC) was purchased from Avanti. Fluc mRNA
was purchased from Ribopro,. Silencer™ Firefly Luciferase (GL2 + GL3) siRNA and its
scrambled negative control siRNA were purchased from Thermofisher (Waltham,
Massachusetts, USA). If not otherwise specified, highly purified water (Arium® Pro Ultrapure

Water System, Sartorius AG, Géttingen, Germany) was used for all the experiments.

3.1.2 Data Preparation

All computational work was carried out using python v3.11. The full dataset from Ref 16
was used. The data was initially grouped into subgroups by using the
“split_name_for_normalization” column. The subgroups were split into 20 molecules large

tasks by grouping by the one hot encoded criterion: "Delivery_target_dendritic”,

"Delivery_target_generic_cell","Delivery_target_liver", "Delivery_target_lung",
"Delivery_target_lung_epithelium", "Delivery_target_macrophage”,
"Delivery_target_muscle", "Delivery_target_spleen", "Helper_lipid_ID_DOPE",
"Helper_lipid_ID_DOTAP", "Helper_lipid_ID_DSPC", "Helper_lipid_ID_MDOA",
"Helper_lipid_ID_None", "Route_of administration_in_vitro",
"Route_of administration_intramuscular", "Route_of administration_intratracheal",

"Route_of administration_intravenous","Batch_or_individual_or_barcoded Barcoded",

"Batch_or_individual_or_barcoded_Individual®, "Cargo_type_mRNA",
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"Cargo_type pDNA", "Cargo_type siRNA", "Model type A549""Model type BDMC",
"Model_type BMDM","Model_type_ HBEC_ALI",

"Model_type HEK293T","Model_type HelLa","Model type IGROV1","Model type Mouse
" "Model_type RAW264p7"

To add ratio information, the lipid composition columns were transformed into floating
numbers and added to the data. As target information, the “quantified_delivery” column was
used, since it already represents a standard scaled label. Zero-variance tasks as well as
duplicated were removed from the dataset. To allow a later graph encoding of the respective
molecules, the SMILES code was added for each formulation point. The data was
subsequently split into support and query (10/10). To ensure a comparable training, the
label distribution was discretized, and the support-query split was stratified. A training set
was created by removing all tasks that contain siRNA as cargo from the full set. The

removed data was used for the holdout set (64 tasks) and the validation set (8 tasks).

3.1.3 Model Comparison

The Model Comparison experiment was performed by comparing different meta learning
models (FOMAML, MAML, MetaSGD- all from learn2learn v 0.2.0) to basic supervised
models (no finetuning and finetuning from torch v2.6.0). Featurization into fingerprints was
performed using Morgan Fingerprints with r=4 and 2048 bits (using RDkit v2024.9.5). Graph
encoding for the graph neural network featurization as well as the base GNN were used
from chemprop v2.2.1. Message Passing and Mean Aggregation were applied prior to one
hidden ReLU layer and one linear regression head. As fingerprint base model a basic
pytorch model was used with two hidden RelLu layers and one regression head. As loss
function MSE was selected. Data was subsequently loaded into a specialized DatalLoader
class (8 tasks per batch) and was tested over 10 different random seeds and the mean, and
the standard deviation were calculated. All variables and hyperparameters were selected

based on prior optimization and testing.

3.1.4 Active Learning

For the active learning experiment a greedy-active learning strategy was used where the
datapoint with the highest predicted value was picked after every round. As retrospective
dataset, the siRNA holdout set from the model comparison was used as well as the best

model. As baseline a Random Forrest Model was selected and both models were compared
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against a random picking algorithm. To mimic the initial few-shot data available, 10
datapoints from the dataset were selected as starting points. The points were sampled
based on a high-diversity sampling, that selected points that had high distances in Euclidean
space spanned by fingerprints and ratio information. To obtain a realistic learning curve,
100 iterations with one sample pick were performed. Based on the obtained curve, several
metrices were calculated: yield@k, simple_regret@k, best _so_far@k, EF@k and Hits@k
with k being the number of iterations (here fixed at 5). Calculations and explanations of the

metrices:

Let X denote the finite candidate set with size N and let f(x) be the objective measured
experimentally, for example a transfection readout. During an active-learning run, the
algorithm selects a sequence x_t for t = 1..k and yields observations y_t = f(x_t). Define the
incumbent after t queries as b_t = max_{i <t} y_i. All metrics are computed with respect to

the same candidate pool X.
1) Hits@k

Let T be the set of top items, for example the highest-scoring fraction of X according to f.
Hits@k is the count of selected items that belong to T across the first k iterations: Hits@k =
2 {t=1.k}1[x_teT].

2) Enrichment Factor (EF@k)

EF@k measures enrichment over random selection: EF@k = (Hits@k / k) / (|T| / N). EF@k

greater than 1 indicates better-than-random retrieval of top candidates.

3) Best-so-far@k

The best outcome encountered up to iteration k: best_so_far@k=b_k=max_{t<k}y t.
4) Simple regret@k

Simple regret quantifies the gap to the global best available in the pool: simple_regret@k =

y* — b_k, where y* = max_{x € X} f(x).

5) Yield@k (cumulative normalized yield)
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To make results comparable across datasets, we report the cumulative sum of min-max
normalized outcomes. Define y_min = min_{x € X} f(x) and y_max = max_{x € X} f(x). For
each iteration t, compute the normalized value y_t=(y_t —y_min)/(y_max — y_min). Then
yield@k = Z_{t=1..k} y_t.

3.1.5 Own Lipids Test

The test on the synthesized novel lipids was performed using a 5-fold CV approach where
the lipids were split (9 train/3 val/3 test) for the MAML model and (12 train/3 test) for the RF
baseline. The lipids were tested and the mean Pearson value was calculated based on the
predicted values for the test points vs the experimental labels. The data was standardized
using a StandardScaler. Featurization for the MAML model was performed using the GNN
featurization method described in Section Model Comparison. RF featurization was

performed using Morgan Fingerprints described in Section Model Comparison.

For detailed information about the experiments, we would like to refer the reader to
https://github.com/felixsie19/FewShotLNPs.
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3.1.6 Chemical synthesis
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Figure VII.81: Synthesis Scheme of Lipids.

Synthesis of oleyl alcohol and linoleyl alcohol
o LiAlH,

)]\ > R” NoH

R OH

Figure VII.S2: Synthesis of oleyl alcohol and linoleyl alcohol.

Oleic acid or linoleic acid (8 mmo, 1 eq) were dissolved in 100 ml of anhydrous THF.
Solution was cooled to 0°C and 1 M LiAIH4 (12 mmol, 1,5 eq) was added dropwise. After
30 min the ice bath was removed, and reaction was carried out at RT overnight. The reaction

was quenched with water and 1 M NaOH and filtered through celite 545.
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Synthesis of alkyl acrylates
o

N .
R” oH L R/\OJ]\%

Figure VII.S3: Synthesis of alkyl acrylates.

Oleyl alcohol, linoleyl alcohol, dodecanol or 3-phenyl-2-propin-1-ol (1 mmol, 1 equiv.) were
dissolved in 10 ml of anhydrous dichloromethane together with triethylamine (1,5 mmol, 1,5
equiv.). Acryloyl chloride (1.2 mmol, 1.2 equiv.) was dissolved in 20 ml of anhydrous CDCI2
and added dropwise to the reaction at 0 °C for 30 min. Afterwards the ice bath was removed
and kept stirring at RT overnight. The mixture was diluted with CH2CI2 and washed with
brine twice and sat. H2CO3. The organic layer was dried over MgSO4, filtered, and
concentrated in vacuo. The residue was purified by a CombiFlash PuriFlash Rf200i
chromatography system (Teledyne ISCO) with gradient elution from cyclohexane/

ethylacetate to 100:0 to 0:100 cyclohexane/ethyl acetate.

Synthesis of ionizable lipids

Final lipids were synthesized through a solvent free aza-michael reaction of respective
amines and acrylates. Acrylates and amines were added into vials and placed on a shaker
at 250 rpm for > 120 h at RT. Lipids were used without further purification. Acrylates were
added in excess: equivalents of acrylates were calculated by x = 2 eq for every primary
amine + 1 eq for every secondary amine + 2 eq excess (x = 1 * for every N-H bond + 2).

Conversion was monitored via '"H NMR and final mass was confirmed by MS-ESI.

3.1.7 LNP formulation

For siRNA LNPs, Fluc siRNA was dissolved in 10 mM Citrate buffer pH = 4. Lipid were
dissolved at 1 mM in EtOH with a molar ratio of (ionizable lipid/cholesterol/DSPC/DMG-
PEG2000 50/38.5/10/1.5). LNPs were formulated with a high throughput microfluidics
device (Sunscreen, Unchained Labs). Flow rate ratios were 3:1 (aqueous phase:organic

phase), and total flow rate was 10,000 pl/min on the Sunny 100 X chip.

For mRNA LNPs, Fluc mRNA was dissolved in 10 mM Citrate buffer pH = 4. Lipids were
dissolved at 3 mM in EtOH with a molar ratio of (ionizable lipid/cholesterol/DSPC/DMG-
PEG2000 50/38.5/10/1.5). LNPs were formulated with a high throughput microfluidics
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device (Sunscreen, Unchained Labs). Flow rate ratios were 3:1 (aqueous phase:organic

phase), and total flow rate was 10,000 pl/min on the Sunny 190 T chip.

After formulations obtained via microfluidics were dialyzed overnight against 1X PBS.
Particle size and Polydispersity Index were measured by Dynamic Light Scattering (DLS)

with a Wyatt DynaPro Plate Reader II.

3.1.8 Luciferase expression assay (mRNA)

To assess MRNA expression efficiency in submerged cell culture, A549, H1299, DC2.4,
and MDA-MB-231 cells were seeded at a density of 10,000 cells per well in 200 uL medium
in 96-well plates. A549 and H1299 were cultured in RPMI 1640 + 10% FBS; DC2.4 in RPMI
1640 + 10% FBS + 1% 2-B-mercaptoethanol; MDA-MB-231 in DMEM High Glucose + 10%
FBS. After 24 h, medium was replaced with fresh medium, and cells were transfected with
150 ng mLuc-encapsulating LNPs. D-Lin-MC3-DMA served as a positive control and
untreated cells served as blank. Following 24 h incubation at 37 °C and 5 % CO», medium
was removed, and cells were lysed with 0.5x lysis buffer (100 uL per well) and incubated
for 30 min at room temperature. Luciferase activity was measured on a Tecan Spark plate
reader (TECAN, Mannedorf, Switzerland). A 35 L aliquot of cell lysate was read for 10 s
after automatic addition of 100 yL LAR buffer (20 mM glycylglycine; 1 mM MgCl,; 0.1 mM
EDTA; 3.3 mM DTT; 0.55 mM ATP; 0.27 mM coenzyme A; pH 8-8.5) supplemented with
10% (v/v) of a mixture of 10 mM luciferin and 29 mM glycylglycine. Transfection efficiency

was calculated and reported as relative light units (RLU) per well.

3.1.9 Luciferase knockdown assay (siRNA)

siRNA-mediated knockdown of firefly luciferase (Fluc) mRNA was assessed in H1299-PGK-
eGFP-Luc and MDA-MB-231-Luc reporter cell lines. H1299-PGK-eGFP-Luc cells were
seeded at 2,500 cells per well in 200 uyL RPMI 1640 + 10% FBS; MDA-MB-231-Luc cells
were seeded at 6,000 cells per well in 200 uL DMEM High Glucose + 10% FBS. After 24 h,
medium was replaced with fresh medium, and cells were transfected with Fluc siRNA
containing LNPs. Following 48 h incubation at 37 °C and 5 % CO2, luciferase activity was
measured on a Tecan Spark plate reader (TECAN, Mannedorf, Switzerland). A 35 L
aliquot of cell lysate was read for 10 s after automatic addition of 100 yL LAR buffer (20 mM
glycylglycine; 1 mM MgCl,; 0.1 mM EDTA; 3.3 mM DTT; 0.55 mM ATP; 0.27 mM coenzyme
A; pH 8-8.5) supplemented with 10% (v/v) of a mixture of 10 mM luciferin and 29 mM

253



glycylglycine. Untreated cells were set to 100 % firefly luciferase expression, and

knockdown efficiency was calculated as the remaining expression.

Table VII.S1: Overview over components mixed for synthesis, the respective theoretical and actual masses as
well as the lipid name.

Full  Lipid Alkyltail Calculated | Found Lipid

Lipid No. Code Amine No. | No. mass

Lipid 1 Al1T1 Al T1 1127,04 1127,03 L11
Lipid 2 Al1T2 Al T2 1120,99 1120,99 L10
Lipid 3 A1T3 Al T3 880,80 880,80 L13
Lipid 4 AlT4 Al T4 718,38 718,38 L40
Lipid 5 A2T1 A2 T1 1435,31 1435,31 L7
Lipid 6 A2T2 A2 T2 1427,24 1427,25 L6
Lipid 7 A2T3 A2 T3 1106,99 1106,99 L15
Lipid 8 A2T4 A2 T4 890,43 890,43 L34
Lipid 9 A3T2 A3 T2 729,64 729,64 L21
Lipid 10 A3T3 A3 T3 569,52 569,52 L18
Lipid 11 AAT2 A4 T2 2123,84 2123,84 L44
Lipid 12 A5T2 A5 T2 1398,22 1398,22 L45
Lipid 13 A6T2 A6 T2 771,65 771,65 L46
Lipid 14 A7T2 A7 T2 1356,17 1356,17 L47
Lipid 15 A8T2 A8 T2 1747,51 1747,51 L48
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"H NMR (400 MHz, CDCls) & 6.39 (dd, J = 17.3, 1.5 Hz, 2H), 6.12 (dd, J = 17.3, 10.4 Hz,
2H), 5.81 (dd, J = 10.4, 1.5 Hz, 2H), 5.41 — 5.28 (m, 10H), 4.15 (t, J = 6.7 Hz, 4H), 4.06 (q,
J=7.2 Hz, 6H), 2.86 (t, J = 6.6 Hz, 1H), 2.76 (dd, J = 7.8, 6.3 Hz, 6H), 2.67 — 2.52 (m, 1H),
2.54 —2.35 (m, 12H), 2.21 (s, 8H), 2.01 (q, J = 6.6 Hz, 20H), 1.63 (ddt, J = 18.0, 11.1, 4.9

Hz, 18H), 1.28 (dd, J = 12.8, 5.0 Hz, 109H), 0.93 — 0.84 (m, 15H).

N (dd) 0 (dd) K (t) G (dd) C (ddt)

6.39 5.81 4.15 2.76 1.63
3(17.34, 1.53)] | 3(10.41, 1.53) 3(6.74) 3(7.85, 6.28)) 3(18.00, 11.14, 4.94
M (dd) L (m) J(@ I(t) F (m) D (a) B|fifid) Alm
6.12 5.35 4.06 2.86 2.44 2.01 8 o
3(17.33, 10.41)| - 3(7.22) 1(6.59) . 1(6.63) J(12.7H, 5.04)|
H (m) E)s)
2.60 2p1

®S

LI | J{t wriEviae

R n e e b g e e
1.89 1.83 1.96 9.91 3.835.91 0.71 5.74 0.88 11.53 8.24 19.99 18.37 108.83 15.00

T T T T T T T T T T T T T

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

chemical shift (ppm)

Figure VII.S4: 1H NMR of final Lipid1 crude
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"H NMR (400 MHz, CDCls) 8 5.37 — 5.20 (m, 4H), 3.99 (dt, J = 8.3, 6.8 Hz, 2H), 2.80 (t, J =
6.6 Hz, 1H), 2.70 (q, J = 5.4 Hz, 3H), 2.57 (t, J = 7.1 Hz, 1H), 2.44 (t, J = 6.6 Hz, 1H), 2.33
(dt, J = 25.7, 7.4 Hz, 3H), 2.12 (d, J = 3.7 Hz, 1H), 1.98 (q, J = 6.9 Hz, 4H), 1.56 (tt, J =

13.9, 7.1 Hz, 5H), 1.38 — 1.15 (m, 18H), 1.00 — 0.65 (m, 3H).

K (a)
2.70
3(5.42)
J(t) G (d)
2.57 212
3(7.12) 33.73)
B (dt) L) I(t) C(q) D (tt)
AS(ng) 3.99 2.80 2.44 1.98 . FO(;“Z)
- 3(8.26, 6.76) 3(6.58)| | 3(6.60) 3(6.88)| | 13.92, 7.12)
E (M)
H (dt)
233 L5
3(25.68, 7.36)
o o e L e e e
4.00 2.20 1.37 3.01 1.33 1.31 2.72 1.30 4.12 4.51 18.30 3.18
T T T T T T T T T T T T
7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0

4.0
chemical shift (ppm)

Figure VII.S5: 1TH NMR of final Lipid2 crude
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'H NMR (400 MHz, CDCls)  6.39 (dd, J = 17.3, 1.5 Hz, 2H), 6.11 (dd, J = 17.3, 10.4 Hz,
2H), 5.80 (dd, J = 10.4, 1.5 Hz, 2H), 4.14 (t, J = 6.7 Hz, 4H), 4.10 — 4.00 (m, 6H), 2.85 (s,
OH), 2.76 (td, J = 7.4, 1.8 Hz, 6H), 2.54 — 2.36 (m, 12H), 2.35 — 2.17 (m, 10H), 1.72 — 1.49

(m, 16H), 1.38 — 1.18 (m, 102H), 0.91 — 0.83 (m, 15H).

C (dd) B (dd)
5.80

3(17.35, 1.52) | 3(10.40, 1.53),

oy 214 % 1(m) E] Lm)
3(17.34, 10.41) 36.74) 3735, 1.83) 2.23 1.61 1.3 0.88

E (m) G (s) H (m)
4.05 2.85 2.43

L ﬂt ) L

I Sy S e R e R
1.97 2.00 2.02 4.34 6.36 0.41 5.64 12.43 10.00 16.47 102.29 15.00

T T T T T T T T T T T T T

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

chemical shift (ppm)

Figure VII.S6: 1H NMR of final Lipid3 crude
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'H NMR (400 MHz, CDCls) & 7.49 — 7.42 (m, 8H), 7.35 — 7.28 (m, 12H), 6.55 — 6.43 (m,
OH), 6.19 (dd, J = 17.3, 10.5 Hz, OH), 5.90 (dd, J = 10.5, 1.4 Hz, OH), 4.90 (s, 7H), 2.84 —

2.74 (m, TH), 2.56 — 2.47 (m, 7H), 2.46 — 2.37 (m, 7H), 2.20 (s, 8H).

H (dd)
6.19
F ("ﬂ 3(17.33, 10.45) 3 (m)

2.42
E (m) I(m) Gs(gg)

i w
7.45 6.49 1(10.46, 1.36), 4.90 2.79 2.50 2.20

U A

ey S R o e
8.00 12.09 0.150.20 0.21 7.08 7.17 6.98 6.58 8.15
T T T T T T T T T T T T T T
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

chemical shift (ppm)

Figure VII.S7: 1TH NMR of final Lipid4 crude
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"H NMR (400 MHz, CDCls) & 6.39 (dd, J = 17.3, 1.5 Hz, 3H), 6.12 (dd, J = 17.3, 10.4 Hz,
3H), 5.81 (dd, J = 10.4, 1.5 Hz, 3H), 5.41 — 5.29 (m, 11H), 4.15 (t, J = 6.7 Hz, 5H), 4.05 (t,
J=7.0Hz, 7H), 2.87 (t, J = 6.6 Hz, 2H), 2.76 (t, J = 7.4 Hz, 5H), 2.64 (t, J = 7.1 Hz, 2H),
2.54 — 2.31 (m, 12H), 2.22 — 2.15 (m, 3H), 1.72 — 1.56 (m, 19H), 1.29 (dd, J = 17.5, 7.2 Hz,

142H), 0.93 — 0.84 (m, 18H).

C (dd) D (dd) F () H ()
6.39 5.81 4.05 2.87
3(17.33, 1.53)| | 3(10.41, 1.53)| 3(7.04) 1(6.57)
B (dd) E(t)
6.12 AS(;;) 4.15 B r;)
3(17.33, 10.42) : 3(6.75)
. ” m “ Jw o~ U L
= i A —EEp e e A
2.53 2.61 2.56 11.35 5.29 6.57 1.70 5.32 1.86 11.72 3.08 19.00 141.59 18.00
T T T T T T T T T T T T T
7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

chemical shift (ppm)

Figure VII.S8: 1H NMR of final Lipid5 crude
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H NMR (400 MHz, CDCls) & 5.44 — 5.27 (m, 4H), 4.06 (dt, J = 8.1, 6.8 Hz, 2H), 2.87 (q, J

= 6.3 Hz, 1H), 2.77 (s, 1H), 2.73 — 2.56 (m, 1H), 2.54 — 2.39 (m, 3H), 2.27 — 2.15 (m, 4H),

2.05 (g, J = 6.9 Hz, 4H), 1.64 (dt, J = 25.1, 7.6 Hz, 8H), 1.45 — 1.21 (m, 19H), 0.93 — 0.85

(m, 3H).
D (a)
2.05
F (m)
P 3(6.87)
5.36 3(8.06, 6.80) 2.77 246 | 2.22 325.15, 7.61) 0.89
3(m)
G (a)
2.87 133
36.27)
- — e L s
4.00 2.13 0.67 1.44 1.49 3.45 3.93 4.16 7.76  19.50 3.08
T T T T T T T T T T T T T T
7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.f

chemical shift (ppm)

Figure VII.S9: 1H NMR of final Lipid6 crude
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"H NMR (400 MHz, CDCl3) & 6.39 (dd, J = 17.3, 1.5 Hz, 2H), 6.12 (dd, J = 17.3, 10.4 Hz,
2H), 5.81 (dd, J = 10.4, 1.5 Hz, 2H), 4.15 (t, J = 6.7 Hz, 4H), 4.06 (dt, J = 8.1, 6.7 Hz, 4H),
2.87 (s, 1H), 2.81 — 2.72 (m, 2H), 2.64 (s, 1H), 2.54 — 2.41 (m, 4H), 2.39 — 2.23 (m, 3H),

219(d, J=3.7Hz, 2H), 1.72 - 1.52 (m, 11H), 1.39 — 1.25 (m, 77H), 0.92 — 0.83 (m, 12H).

3 (dd) H (dt)
6.12 4.06
3(17.34, 10.41) 3(8.14, 6.74) ';g)
30 & e s 59 D(ﬂ cm
3(17.33, 1.54)] | 3(10.43, 1.54) 3(6.75) 276 | | 296 || y3.74) 62| | LP 0.88

N (m)
2.34

Ld | J@ s

b e i i, e H
2.07 2.03 2.17 4.18 3.83 0.83 2.24 0.92 4.11 2.81 2.16 11.44 76.53 12.00

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
74 72 7.0 6.8 6.6 64 62 60 58 56 54 52 50 48 46 44 42 40 38 3.6 34 32 3.0 28 26 24 22 20 1.8 1.6 1.4 1.2 1.0 08 0.
chemical shift (ppm)

Figure VII.S10: 1H NMR of final Lipid7 crude
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'H NMR (400 MHz, CDCls) & 7.48 — 7.41 (m, 8H), 7.36 — 7.27 (m, 12H), 4.92 — 4.88 (m,
8H), 2.84 — 2.76 (m, 8H), 2.61 — 2.38 (m, 12H), 2.27 (t, J = 7.3 Hz, 3H), 2.15 (d, J = 9.2 Hz,

3H).

G(t)
2.27

B ()

7.31] 3(7.29)

A (m) cm Fom| [em] | 549
7.45 4.91 2.80 2.49 J(9..15)

Jd_ . I VI

Y i B e
8.39 12.00 8.11 7.76 12.20 3.07 3.45
T T T T T T T T T T T T T T
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

chemical shift (ppm)

Figure VII.S11: 1H NMR of final Lipid8 crude
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"H NMR (400 MHz, CDCls) & 5.44 — 5.27 (m, 4H), 4.06 (td, J = 6.8, 1.0 Hz, 2H), 2.81 — 2.61

(m, 5H), 2.54 — 2.42 (m, 5H), 2.24 (d, J = 6.7 Hz, 3H), 1.73 — 1.52 (m, 4H), 1.48 — 1.24 (m,

18H), 1.01 — 0.74 (m, 3H).

H|(d)
224
1(4.70)
A (m) 54.(;‘;) C (m)| D|(m) G (m)
5.36 3(6.83, 1.03) 2.71| 2}47 0.89
J\ ML -
— A —— = —r
4.00 1.97 4.58 4.77 2.88 2.82
T T T T T T T T T T T T
7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.0

chemical shift (ppm)

Figure VII.S12: 1TH NMR of final Lipid9 crude
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'H NMR (400 MHz, CDCls) & 6.39 (dd, J = 17.3, 1.5 Hz, 2H), 6.12 (dd, J = 17.3, 10.4 Hz,
2H), 5.81 (dd, J = 10.4, 1.5 Hz, 2H), 4.15 (s, 2H), 4.06 (s, 2H), 2.72 (t, J = 7.3 Hz, 4H), 2.51

— 2.43 (m, 8H), 2.25 (s, 6H), 1.72 — 1.55 (m, 9H), 1.34 — 1.25 (m, 79H), 0.92 — 0.84 (m,

B (dd)
6.12
3(17.34, 10.42) E.(Us;
5 Ay D) b Hs) | [1d]  [xom
y - 4.15 - 2.25 1.64 1.18 0.88
3(17.34, 1.53)| | 3(10.42, 1.52) 1(7.34)
G (m)
2.47
SIS R e e = e
2.13 2.16 2.15 2.11 2.03 3.947.63 5.92 9.47 78.99 12.00
T T T T T T T T T T T T T T
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
chemical shift (ppm)

Figure VII.S13: 1H NMR of final Lipid10 crude
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"H NMR (400 MHz, CDCls) & 5.44 — 5.27 (m, 4H), 4.06 (dt, J = 8.0, 6.8 Hz, 2H), 2.86 (t, J =

6.2 Hz, 1H), 2.77 (t, J = 6.3 Hz, 4H), 2.63 (dd, J = 25.6, 7.9 Hz, 2H), 2.45 (ddd, J = 29.4,

12.9, 6.1 Hz, 4H), 2.05 (q, J = 6.8 Hz, 4H), 1.60 (d, J = 7.7 Hz, 5H), 1.47 — 1.21 (m, 21H),

0.93 — 0.85 (m, 4H).

T 5 () c(m)

1.34 0.89

3(7.66)

3 (dd)
2.63
3(25.63, 7.89)
G(t)
2.86
3(6.19)
B (dt) F (1) E(a)
AS(;;) 4.06 2.77 2.05
- 3(8.04, 6.78)| 3(6.31) 3(6.84)
H (ddd)

3(29.38, 12.87, 6.14)

o e
2.28 0.67 3.90 2.18 4.01 4.43

] S
—

——t au
5.18 21.14 3.66

T T T T T T T T T T T
7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0
chemical shift (ppm)

Figure VII.S14: 1H NMR of final Lipid11 crude

T T
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'"H NMR (400 MHz, CDCls) d 6.40 (dd, J = 17.3, 1.5 Hz, OH), 6.12 (dd, J = 17.3, 10.4 Hz,

OH), 5.81 (dd, J = 10.4, 1.5 Hz, OH), 5.44 — 5.27 (m, 4H), 4.15 (t, J = 6.8 Hz, 1H), 4.06 (d, J

= 8.7 Hz, 1H), 2.87 (t, J = 6.5 Hz, 1H), 2.76 (q, J = 6.0 Hz, 3H), 2.64 — 2.56 (m, 1H), 2.51 (t,

J=6.5Hz, 1H), 2.46 — 2.35 (m, 1H), 2.05 (q, J = 6.9 Hz, 5H), 1.76 — 1.16 (m, 29H), 0.93 —

0.85 (m, 4H).

M (dd)
6.12
3(17.33, 10.43)

N (dd) L (dd)
6.40 5.81 AS(;‘))
3(17.34,1.52)| | 3(10.43, 1.54) -

lJlllJll)ku

c(d) E(q)
4.06 2.76 T
3(8.68) as.00)| |55
B (t) D (t) I(a)
4.15 2.87 Fz(g(‘)) 2.05 Jl(;“g) 'f)(;‘;)
36.75) 36.55)| %" 3(6.86) : -
G (t)
2.51

3(6.52)

I

[

W e e B U I e e I
0.27 0.26 0.28 4.00 0.55 0.94 0.91 3.45 0.83 0.88 1.43 4.58 28.69 3.55
T T T T T T T T T T T T T
7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

Figure VII.S15: 1H NMR of final Lipid12 crude
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'"H NMR (400 MHz, CDCls) 8 6.39 (dd, J = 17.3, 1.5 Hz, OH), 6.12 (dd, J = 17.3, 10.4 Hz,

OH), 5.81 (dd, J = 10.4, 1.5 Hz, OH), 5.44 — 5.27 (m, 4H), 4.14 (t, J = 6.7 Hz, OH), 4.06 (d,

J=9.0, 6.8 Hz, 2H), 3.73 — 3.66 (m, 2H), 2.89 (t, J = 6.6 Hz, 1H), 2.84 — 2.68 (m, 3H), 2.05

(g, J = 6.9 Hz, 4H), 1.72 — 1.56 (m, 3H), 1.45 — 1.21 (m, 17H), 0.93 — 0.84 (m, 3H).
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Figure VII.S16: 1H NMR of final Lipid13 crude
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"H NMR (400 MHz, CDCls) 5 5.37 — 5.20 (m, 4H), 3.99 (dt, J = 8.1, 6.8 Hz, 2H), 2.85 - 2.49

(m, 5H), 2.48 — 2.32 (m, 2H), 1.98 (q, J = 6.8 Hz, 4H), 1.65 — 1.49 (m, 3H), 1.39 — 1.14 (m,

17H), 0.86 — 0.78 (m, 3H).

Figure VII.S17: 1H NMR of final Lipid14 crude
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"H NMR (400 MHz, CDCls) 8 5.37 — 5.20 (m, 4H), 3.99 (dt, J = 8.3, 6.8 Hz, 2H), 2.79 (dd, J
= 5.9, 2.6 Hz, 1H), 2.75 — 2.65 (m, 4H), 2.60 — 2.48 (m, OH), 2.48 — 2.27 (m, 3H), 1.98 (q, J

= 6.9 Hz, 4H), 1.54 (p, J = 6.8 Hz, 3H), 1.50 — 1.14 (m, 19H), 0.89 — 0.77 (m, 3H).
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Figure VII.S18: 1H NMR of final Lipid15 crude
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"H NMR (400 MHz, CDCls) & 5.40 — 5.27 (m, 2H), 3.61 (t, J = 6.7 Hz, 2H), 2.09 — 1.95 (m,
4H), 1.61 — 1.48 (m, 2H), 1.29 (ddt, J = 17.9, 14.5, 4.9 Hz, 22H), 0.96 — 0.81 (m, 3H).
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Figure VII.S19: 1H NMR of linoleyl alcohol
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'H NMR (400 MHz, CDCls) & 6.32 (dd, J = 17.3, 1.5 Hz, 1H), 6.04 (dd, J = 17.4, 10.4 Hz,
1H), 5.73 (dd, J = 10.4, 1.5 Hz, 1H), 5.37 — 5.20 (m, 4H), 4.08 (t, J = 6.7 Hz, 2H), 2.75 —
2.64 (m, 2H), 1.98 (q, J = 6.9 Hz, 4H), 1.65 — 1.53 (m, 2H), 1.35 — 1.14 (m, 16H), 0.88 —
0.77 (m, 3H).
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Figure VII.S20: 1H NMR of oleyl alcohol
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"H NMR (400 MHz, CDCl3) & 6.38 (dd, J = 17.3, 1.6 Hz, 1H), 6.11 (dd, J = 17.3, 10.4 Hz,
1H), 5.79 (dd, J = 10.5, 1.6 Hz, 1H), 5.47 — 5.17 (m, 2H), 4.14 (t, J = 6.7 Hz, 2H), 2.00 (q, J
= 6.6 Hz, 4H), 1.71 - 1.60 (m, 2H), 1.41 — 1.20 (m, 23H), 0.92 — 0.81 (m, 3H).
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Figure VII.S21: 1H NMR of Oleyl acrylate
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'H NMR (400 MHz, CDCl3) & 7.52 — 7.41 (m, 2H), 7.36 — 7.27 (m, 3H), 6.49 (dd, J = 17.3,
1.4 Hz, 1H), 6.18 (dd, J = 17.4, 10.4 Hz, 1H), 5.88 (dd, J = 10.4, 1.4 Hz, 1H), 5.00 (s, 2H).
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Figure VII.S22: 1H NMR of 3-phenylprop-2-yn-1-yl acrylate
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"H NMR (400 MHz, CDCls) & 6.38 (dd, J = 17.3, 1.5 Hz, 1H), 6.11 (dd, J = 17.3, 10.4 Hz,
1H), 5.84 — 5.75 (m, 1H), 4.14 (t, J = 6.8 Hz, 2H), 1.65 (dq, J = 8.0, 6.6 Hz, 2H), 1.33 — 1.20
(m, 18H), 0.94 — 0.81 (m, 3H).
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Figure VII.S23: 1H NMR of dodecyl acrylate
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"H NMR (400 MHz, CDCl3) & 5.44 — 5.27 (m, 4H), 3.64 (t, J = 6.6 Hz, 2H), 2.81 — 2.73 (m,

2H), 2.05 (g, J = 6.8 Hz, 4H), 1.62 — 1.51 (m, 2H), 1.42 — 1.22 (m, 16H), 0.93 — 0.84 (m,
3H).
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Figure VII.S24: 1H NMR of Linoleyl alcohol
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filtration. Data is shown as mean + SD, n=3 technical replicates.
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Chapter VIl - Summary and Perspective

The complexity and multidimensionality of drug delivery processes make them particularly
amenable to data-driven approaches. Although the integration of such methods into drug
delivery is still in its infancy, this thesis shows that different computational strategies can

already address distinct problems along the modern formulation pipeline.

Chapter Il demonstrated how the properties of polymeric nanocarriers can be optimized at
the level of synthesis using Design of Experiments (DoE). This work underlined that
experimental evidence should be generated through a structured experimental plan and
subsequent statistical analysis, and that meaningful structure-property relationships can be
established even for complex polymer systems. In addition, we showed that integrating
Python-based workflows into the experimental process offers flexible ways to handle and
analyse data more efficiently. This idea was further advanced in Chapter Ill, where we
incorporated machine learning (ML) as a flexible extension once DoE became limiting.
There, we showed how robust models can be applied to small, orthogonally designed
datasets and used to identify synthesis parameters that optimize nanocarriers for in vitro

transfection efficiency.

As outlined in the introduction, the quantity and quality of available data remain critical
bottlenecks. Cheminformatics is considerably more mature in its use of ML than drug
delivery, primarily because large, standardised and easily accessible datasets exist, which
allows researchers to focus on model development rather than basic data assembly. In drug
delivery, the situation is more complex. Multi-component formulations, multi-scale readouts,
high experimental noise, fragmented datasets and the lack of standardised protocols all
contribute to the challenge. In this thesis, literature-derived data were used to illustrate how
such fragmented information can be merged into a more informative system that can guide
the discovery of new polymeric carrier materials (Chapter V). In this setting, ML enabled
the prediction of carrier performance in five out of six cases in vitro, and the lead candidate

also showed promising results in vivo.

For lipid nanoparticle (LNP) development, substantially more data and research are

available, driven by the success of recently approved LNP-based products. However, when
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LNP formulation design is cast as an ML problem, the optimisation space becomes highly
complex, because multi-component systems result in a formulation space with effectively
thousands of dimensions. In Chapter VII, we therefore investigated whether meta-learning
approaches can help to avoid strong biases toward specific historical datasets and improve
generalisation. The results showed that such methods can serve as powerful base models
for active learning. In simulated optimisation tasks on an unseen cargo, meta-learning
based models were able to identify early hits up to 17 times faster than a conventional

baseline, effectively supporting both the discovery and optimisation of new formulations.

In the absence of large, standardised datasets, physics-informed systems offer an attractive
alternative, since they provide more detailed mechanistic insight into molecular behaviour
and can build robust datasets from scratch. This was demonstrated in Chapter V, where we
developed a program that samples molecules, labels them in a high-throughput manner
using molecular dynamics (MD) simulations, and optimises candidates in silico by
combining simulation with Al-based optimisation and molecule preparation. The complete
simulation workflow was validated and calibrated against wet-lab experiments to ensure
sufficient realism. We identified several interesting and structurally novel candidates with
limited similarity to previously known high-performing structures, which indicates that such
approaches can promote true novelty in carrier design. Although this workflow still involves
trade-offs between physical realism and computational speed, ongoing advances in
hardware, for example massively parallel GPU execution, are likely to reduce simulation

and optimisation times and will make such approaches increasingly practical.

A similar rationale applies to 4D-QSTR, introduced in Chapter VI. This framework
aggregates time-resolved dynamic information from MD simulations into ML-usable
descriptors and provides complementary signal on molecular behaviour, particularly for
extrapolation and cliff-like tasks that are central challenges in early material discovery.
Across several benchmarks, we observed that incorporating dynamic information improved
predictive performance precisely in those regimes where conventional 2D and 3D
descriptors tend to struggle. For some simulations, performance gains of up to 20 % relative
to 2D/3D baselines were observed. At the same time, 2D descriptor baselines remained
stronger for standard, random-split tasks. This led us to hypothesise that datasets
generated by expert structure optimisation carry an implicit 2D human bias, which still

favours simple fingerprints in familiar regions of chemical space. Overall, these findings
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suggest that the complexity of the prediction task must be reflected in the complexity of the
information that is provided to the model, especially when the goal is to discover genuinely

new carrier structures.

Taken together, the results presented in this thesis can be viewed as one of the early,
systematic attempts to integrate data-driven approaches into drug-delivery workflows. We
provide new insights into the synthesis of PBAEs, how their polymeric properties relate to
their performance as nanoparticle systems, and how this knowledge can be used for rational
design and optimisation. Furthermore, by demonstrating how literature-based data can be
repurposed for carrier discovery and optimisation, we outline a path that is accessible to
research groups worldwide that may not have access to high-throughput experimentation
but can still benefit from data-driven guidance to save time and material. The physics-based
approaches introduced here provide a starting point for other researchers to extend, adapt
and improve such systems for different delivery challenges. All code used in this thesis is

openly available on GitHub (https://github.com/felixsie19), which supports transparency and

reuse.

Looking ahead, it is reasonable to expect that artificial intelligence will continue to develop
rapidly and will be progressively integrated into drug delivery. Recent studies already report
strong performance on difficult design problems and indicate a trend toward increasingly
automated workflows for synthesis, formulation and testing. While such automation is
essential for building robust models, it is equally important to remember that data-driven
approaches are only as reliable as the underlying data. The rapid pace of technological
development therefore needs to be accompanied by community-wide standards for
manufacturing, characterisation and biological testing in order to ensure that data are
comparable across laboratories. As shown in Chapter VII, certain methods can mitigate lab-
to-lab variability and batch effects, but high-performing Al methods still rely predominantly

on large, well-curated datasets.

Recent research in Al increasingly focuses on the concept of “world models” as a next step
in model development. The underlying idea is to move beyond purely data-driven, static
learning toward trial-and-error learning in explicitly modelled or simulated environments.
Chapter V already illustrated how such ideas could look in the context of drug delivery by
coupling MD simulations with ML-based optimisation. Future work may explore different

strategies to use such models to accelerate the path from early discovery to clinical studies.

279


https://github.com/felixsie19

It will be essential that expertise in simulations, ML and their integration into experimental
workflows is established early in scientific training, so that future generations of researchers
develop an intuitive understanding of data-driven methods and can exploit them to address

unresolved therapeutic challenges.
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