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Summary

Time-dependent data, such as longitudinal and time-to-event data, are particularly informative
because they enable both between- and within-subject analyses. Yet analyzing this type of data
introduces new challenges beyond those inherent in cross-sectional data. While numerous methods
exist to model time-dependent data, their application to complex, high-dimensional settings and
their combination with machine learning techniques remain underexplored. This dissertation
presents statistical frameworks for analyzing longitudinal and time-to-event outcomes, specifically
tailored to high-dimensional data and the incorporation of machine learning techniques, with a
focus on their applications in epidemiology and genetics.

The first part of this dissertation presents approaches for modeling longitudinal data in genetics,
where the predictor space is high-dimensional. For many (disease) traits, progression — that is,
trait change — is of primary interest but difficult to investigate based solely on between-subject
comparisons from cross-sectional data. The first contributing article identifies linear mixed models
(LMMs) as a well-calibrated and scalable statistical method with type I error control and high
power for modeling genetic effects on trait change. The article further demonstrates that modeling
genetic effects on trait change as interaction with time or age is advantageous compared to
directly modeling the effect on previously computed trait change outcomes. This is because
trajectories of arbitrary length can be incorporated and effect size estimates are unbiased. LMMs
are subsequently used to identify novel genetic variants associated with kidney function decline
in a large-scale UK Biobank dataset. The second contributing article shows that, under certain
assumptions, genetic-by-age interactions from cross-sectional data can be indicative of genetic
associations with longitudinal trait change and proposes a two-stage approach: genome-wide
pre-screening for genetic-by-age interaction in (abundant) cross-sectional data, followed by testing
identified variants for longitudinal change in (scarce) independent longitudinal data.

The second part of this dissertation focuses on analyzing time-to-event data by integrating
machine and deep learning techniques. The third contributing article provides a comprehensive
overview of deep learning-based methods for survival analysis according to both deep learning- and
survival-specific aspects. The fourth contributing article presents a methodological comparison of
different reduction techniques for time-to-event data, which transform survival tasks into standard
regression or classification tasks. This allows for the use of a broad variety of estimation techniques,
in particular facilitating the use of machine learning algorithms. The fifth contributing article
combines these two topics by developing a concrete time-to-event method based on the piecewise
exponential additive model (PAM), which is both deep learning- and reduction-based.

The third part of this dissertation revisits the task of modeling longitudinal data, but now from
the angle of multi-stage disease histories, which are increasingly being derived from longitudinal
data. One example is chronic kidney disease, whose multiple stages are defined by clinically
meaningful thresholds of a quantitative trait (estimated glomerular filtration rate). While multi-
state models are natural candidates for analyzing such multi-stage disease history data, this type
of analysis comes with new challenges: dependent left-truncation, multiple time scales, index event
bias, and interval-censoring. The final contributing article shows via simulations how a modeling
framework based on multi-state PAMs is capable of addressing most of these challenges. This
framework is then applied to model transition probabilities of and genetic variant associations
with chronic kidney disease onset and progression, using the same UK Biobank dataset as in the
first contributing article.



Zusammenfassung

Zeitabhingige Daten, wie beispielsweise Langsschnitt- und Ereigniszeitdaten, sind besonders
aussagekraftig, da sie Analysen sowohl zwischen als auch innerhalb von Individuen ermoglichen.
Die Analyse dieser Art von Daten bringt jedoch neue Herausforderungen mit sich, die iiber
diejenigen bei Querschnittsdaten hinausgehen. Zwar gibt es zahlreiche Methoden zur Modellierung
zeitabhéngiger Daten, doch ihre Anwendung in komplexen, hochdimensionalen Kontexten
und ihre Kombination mit Techniken des maschinellen Lernens sind noch wenig erforscht.
Diese Dissertation stellt statistische Rahmenwerke fiir die Analyse von Léngsschnitt- und
Ereigniszeit-Zielgroflen vor, die speziell auf hochdimensionale Daten und die Einarbeitung von
Techniken des maschinellen Lernens zugeschnitten sind, wobei der Schwerpunkt auf ihren
Anwendungen in der Epidemiologie und Genetik liegt.

Im ersten Teil dieser Dissertation werden Ansétze zur Modellierung von Léngsschnittdaten in
der Genetik vorgestellt, wobei der Pridiktorraum hochdimensional ist. Bei vielen (Krankheits-
)Merkmalen ist der Verlauf — also die Merkmalsverdnderung — von primérem Interesse, der
allein anhand von Vergleichen zwischen Individuen aus Querschnittsdaten jedoch schwer zu
untersuchen ist. Der erste Beitrag identifiziert lineare gemischte Modelle (linear mixed models;
LMMs) als gut kalibrierte, skalierbare statistische Methode mit Typ-I-Fehlerkontrolle und hoher
Teststérke fiir die Modellierung genetischer Effekte auf Merkmalsverdnderungen. Der Artikel zeigt
aulerdem, dass die Modellierung genetischer Effekte auf Merkmalsverdnderungen als Interaktion
mit Zeit oder Alter, im Vergleich zur direkten Modellierung des Effekts auf zuvor berechnete
Zielgroflen der Merkmalsverdnderung, vorteilhaft ist. Dies liegt daran, dass Trajektorien beliebiger
Léange einbezogen werden kénnen und die Schéatzungen der Effektgrofien unverzerrt sind. LMMs
werden anschlieend verwendet, um neue genetische Varianten zu identifizieren, die mit einer
Abnahme der Nierenfunktion in einem grof§ angelegten Datensatz der UK Biobank assoziiert
sind. Der zweite Beitrag zeigt, dass unter bestimmten Annahmen Genetik-Alter-Interaktionen
aus Querschnittsdaten auf genetische Assoziationen mit longitudinalen Merkmalsveranderungen
hinweisen konnen, und es wird ein zweistufiger Ansatz vorgeschlagen: genomweites Vorab-
Screening auf Genetik-Alter Interaktionen in (reichlich vorhandenen) Querschnittsdaten, gefolgt
von Tests identifizierter Varianten auf longitudinale Veranderungen in (begrenzt vorhandenen)
unabhéingigen Léngsschnittdaten.

Der zweite Teil dieser Dissertation konzentriert sich auf die Analyse von FEreigniszeitdaten
unter Integration von Machine- und Deep-Learning-Techniken. Der dritte Beitrag bietet einen
umfassenden Uberblick iiber Deep-Learning-basierte Methoden fiir die Ereigniszeitanalyse im Hin-
blick auf Deep-Learning- sowie Ereigniszeitanalyse-spezifische Aspekte. Der vierte Beitrag prasen-
tiert einen methodischen Vergleich verschiedener Reduktionstechniken fiir Ereigniszeitdaten, die
Ereigniszeitaufgaben in Standard Regressions- oder Klassifikationsaufgaben umwandeln. Dadurch
wird der Einsatz einer Vielzahl von Schétzverfahren ermoéglicht und insbesondere die Verwendung
von Algorithmen des maschinellen Lernens erleichtert. Der fiinfte Beitrag kombiniert diese
beiden Themen, indem er eine konkrete Ereigniszeitmethode auf der Grundlage des stiickweisen
exponentiellen additiven Modells (PAM) entwickelt, die sowohl auf Deep Learning als auch auf
Reduktion basiert.

Der dritte Teil dieser Dissertation befasst sich erneut mit der Modellierung von Langsschnittdaten,
diesmal jedoch unter dem Gesichtspunkt mehrstufiger Krankheitsgeschichten, die zunehmend aus
Langsschnittdaten abgeleitet werden. Ein Beispiel hierfiir ist die chronische Nierenerkrankung,



deren verschiedene Stadien durch klinisch relevante Schwellenwerte eines quantitativen Merkmals
(geschétzte glomeruldre Filtrationsrate) definiert sind. Mehrstadienmodelle sind natiirliche
Kandidaten fiir die Analyse solcher mehrstufiger Krankheitsgeschichten-Daten, doch diese Art
der Analyse bringt neue Herausforderungen mit sich: abhéngige Linkstrunkierung, mehrere
Zeitskalen, Indexereignis-Bias und Intervallzensierung. Der letzte Beitrag zeigt anhand von Simu-
lationen, wie ein auf Mehrstadien-PAMs basierender Modellierungsrahmen mit den meisten dieser
Herausforderungen umgehen kann. Anschlieend wird dieser Modellierungsrahmen angewendet,
um Ubergangswahrscheinlichkeiten und Assoziationen genetischer Varianten fiir das Einsetzen
und Fortschreiten chronischer Nierenerkrankungen auf demselben UK Biobank Datensatz zu
modellieren, der auch fiir den ersten Beitrag verwendet wurde.
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Part |I.

Introduction and Background



1. Introduction

1.1. Outline

This dissertation addresses the analysis of time-dependent data, in particular longitudinal and
time-to-event data, with motivation from and application to epidemiology and genetics.

It contains six contributing articles: Two contributions focus on modeling trait changes and their
genetic determinants in longitudinal data, specifically in the context of genome-wide association
studies. Three contributions focus on modeling time-to-event data, where one article provides an
overview of deep learning-based survival methods, one article presents a framework of different
reduction techniques for survival analysis, and one article introduces a concrete time-to-event
method based on piecewise-exponential additive models (PAMs), which incorporates both deep
learning and reduction techniques. The last contribution investigates how a PAM-based multi-
state modeling framework can be applied to multi-stage disease histories derived from longitudinal
data and how it tackles the statistical challenges that inevitably come with this type of data.

This dissertation is organized as follows. Chapter I is an introductory chapter. This Section
1 provides an overview and motivation of the topics addressed by this dissertation. Sections
2, 3, and 4 give context and statistical background on these topics: Section 2 discusses the
modeling of longitudinal data, first in general and then specifically in the context of genome-wide
association studies. Section 3 presents key concepts of survival analysis as well as its generalization
to multi-state models, and introduces reduction techniques. Section 4 provides background on
machine learning and deep learning. Chapters II (Sections 5 and 6), III (Sections 7, 8, and 9)
and IV (Section 10) contain the contributing articles along with detailed author contributions and
links to supplementary material.

1.2. Motivation and Scope

The fields of epidemiology and genetics, among others, are currently experiencing a vast expansion
of data availability. This is a consequence of the growing adoption of registry data (Slawomirski
et al., 2023; Rau et al., 2024) and the increasing popularity of biobanks (Sudlow et al., 2015; All of
Us Research Program Investigators, 2019; Greiser et al., 2023) but also of the vast amount of data
collected since the onset of the COVID-19 pandemic (Lammi et al., 2025). Much of this newly
generated data is time-dependent, because interest typically lies in longitudinal outcomes (e.g.,
evolution of biomarkers over time; Gorski et al., 2022; Peterhoff et al., 2023) or in time-to-event
outcomes (e.g., time until disease onset; Hagar et al., 2014; Coens et al., 2024). Analyzing such
data poses new challenges, such as high dimensionality and intra-subject dependency. In addition,
accommodating machine learning techniques — especially in the time-to-event setting — is often
not straightforward. This dissertation is motivated by these challenges.
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Chapter II of this dissertation focuses on genome-wide association studies (GWASs) of trait change
using longitudinal data. This is of high clinical relevance, as the rate of change in biomarkers is
often directly linked to disease progression. Statistical approaches for analyzing longitudinal data,
such as mixed models, are well established (Laird and Ware, 1982; Cheng et al., 2010; Fahrmeir
et al., 2022). Yet, their application in such high-dimensional settings — here due to millions of
genetic variants — necessitates scalability and resource efficiency, owing to the large computational
cost of accounting for intra-subject dependency structures. In addition, the abovementioned
variety of data sources often makes the longitudinal datasets highly unbalanced; in the UK
Biobank (Sudlow et al., 2015), for instance, most subjects only have a single measurement of
a given trait from their study center assessment, while for some (usually less healthy) individuals
trajectories of hundreds of measurements are available after incorporating electronic health records
(see, e.g., Gorski et al., 2025). Statistical methods for the analysis of genetic effects on trait change
must take into account intra-subject correlation, scalability, and the potential unbalancedness of
longitudinal datasets — while also being powerful and well-calibrated and providing type I error
control. These considerations motivate the contributions presented in Chapter II. The article in
Section 5, Wiegrebe et al. (2024a), compares multiple approaches for modeling genetic effects on
trait change via simulations, followed by a GWAS on kidney function decline in UK Biobank data
using linear mixed models. The article in Section 6, Winkler et al. (2024), develops a two-stage
approach combining GWAS in abundant cross-sectional data with validation in sparse longitudinal
data, subsequently applying it to multiple phenotypes in the UK Biobank.

Chapter III of this dissertation investigates how survival analysis methods, which are used to
analyze time-to-event data, can incorporate machine learning and deep learning techniques. The
advancement of machine and deep learning since the beginning of this century have had a profound
impact on almost all scientific fields. The wealth of deep learning-based survival analysis methods
being developed in recent years provides the motivation for the work in Section 7: The article
Wiegrebe et al. (2024b) offers an overview of the rapidly growing field of deep learning-based
survival analysis methods in terms of both deep learning- and survival-related aspects, catering
to researchers and practitioners from deep learning and survival analysis alike. The article in
Section 8, Piller et al. (2025), is motivated by the fact that the idiosyncrasies of survival analysis
tasks — in particular, the presence of censoring — prevent (standard and novel) machine learning
techniques from directly being applied. The article provides a framework of different reduction
techniques which transform (complex) survival tasks into standard regression or classification tasks
via specific data transformations; subsequently, any machine learning algorithm can be employed
on these transformed tasks. Finally, the article in Section 9, Kopper et al. (2022), develops a novel
survival analysis method, which is both reduction- and DL-based, using piecewise exponential
additive models (PAMs).

Chapter IV seeks to combine longitudinal data modeling (Chapter II) and survival analysis
(Chapter IIT) by framing longitudinal data analysis as a multi-state modeling problem. The article
in Section 10, Wiegrebe et al. (2025), is motivated by the increasing availability of multi-stage
disease histories, derived from longitudinal data, as a result of the expansion of registry and
biobank data discussed above. The article discusses statistical challenges that necessarily arise
when analyzing multi-stage disease histories using multi-state models, subsequently demonstrating
how a PAM-based multi-state framework can address most of these challenges on simulated data
and on the UK Biobank kidney function dataset from Section 5.
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Longitudinal datasets, characterized by repeated observations of subjects over time, typically stem
from cohort studies with predetermined assessment times, from registry data with subject-specific
visit histories, or from a mix of both (Diggle, 2002; Cheung et al., 2017; Fitzmaurice et al.,
2012; Hyun et al., 2017; Lokku et al., 2020; Gorski et al., 2025). Such datasets allow not only
for between-subject comparisons but also for the investigation of subject-specific trajectories, for
example in terms of trajectory changes or variability. At the same time, longitudinal data is
more complex due to its additional intra-subject correlation structure. The key focus of statistical
methods for analyzing longitudinal data is modeling this structure.

In the following, we index subjects by i € {1,...,n} and the measurements for subject i by
t € {1,...,n;}, implying that the longitudinal dataset contains n subjects with a total of
m = >.i*; n; measurements. Longitudinal data for subject ¢ thus consists of outcomes y; =
(Yids s Yity - - ,y1-77%.)—r and covariates (Xi1,...,Xit,-..,Xin,), where x;; = (1,241, .. ,:r2-7t4,)—r
is the covariate (column) vector of subject i at time ¢ and p is the number of covariates. Due to
the nature of the outcomes considered in the contributing articles of this dissertation (see Sections
5, 6 and 10), here we explicitly discuss quantitative (i.e., continuous) outcomes y; ;.

Likely the most widely used statistical approach for modeling longitudinal data (and correlated
data more generally) with a quantitative outcome variable is the linear mixed model (LMM;
Laird and Ware, 1982; Cheng et al., 2010; Fahrmeir et al., 2022); for marginal models based on
generalized estimating equations, see, e.g., Liang and Zeger (1986) or Hardin and Hilbe (2002).
LMDMs extend standard linear regression models by incorporating subject-specific deviations from
global parameters (e.g., intercept or slope) via random effects. The combination of global and
random effects allows for modeling both the population mean and the heterogeneity of individual
trajectories around that mean. LMMs can naturally handle unbalanced data, for instance in terms
of varying trajectory lengths and irregular measurement times — a common feature of biobank or
registry data (UK Biobank, 2023; Garrett et al., 2024). Compared to explicitly estimating person-
specific effects as fixed effects, which is highly parameter-intensive, random effects models are
much more parsimonious because random effects are assumed to be independently and identically
distributed (i.i.d.), conventionally according to a normal distribution with mean 0 and unknown
variance Q, which is to be estimated. The model equation for an LMM is

Yit = XitB + Wiy + €ig, (2.1)
where (w;1,...,Ui¢,...,Wp,) are the design vectors for the random effects, with ;¢
(Luiga,... ,ui,t,q)—r and ¢ < p. For example, setting u;; = 1 in Equation (2.1) characterizes a

random intercept model, while u;; = (1,time;+) represents a random slope model with slopes
varying over (covariate) time. -y; is the vector of random effects, which are assumed to be
distributed according to v; ~ N(0,Q), with unknown (¢ + 1) x (¢ + 1)-covariance matrix Q
(Fahrmeir et al., 2022). The errors ¢;; are usually assumed to be i.i.d. N(0,0?). This implies
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a multivariate normal distribution of the subject-specific errors, €; := (€j1,...,€it,. .. ,z?i,ni)—r ~
N(0,R;), Vi, with R; = 02I,,,; inter-subject independence between errors, &; L €, Vi # j; as

well as independence between errors and random effects, €; L v;, Vi, Vj.

The main challenge of estimating LMMSs lies in the estimation of the unknown parameters 1 that
characterize the variance-covariance structures of the random effects ~; and the error terms g;,
that is, Q and R,;. Since maximum likelihood (ML) estimation of ¥ is biased, ¥ is usually
estimated via the less biased (and sometimes even unbiased) restricted maximum likelihood
(REML) estimator. The REML estimator is based on the restricted (or marginal) log-likelihood
Ir(¥) = log([ L(B,¥)dB), which integrates out 8 from the likelihood L(8,9) (Harville, 1977;
Fahrmeir et al., 2022). The REML estimator requires numerical computation through iterative
algorithms, such as Newton-Raphson or Fisher scoring. Once ¥ is estimated, fixed effect estimates
B and concrete predictions of the random effects 4; can be derived as the solution to Henderson’s
mixed model equations (Henderson et al., 1959). B is estimated by weighted least squares
conditional on the variance estimates 19, while 4; is usually estimated as the best linear unbiased
predictor (BLUP), which is the conditional expected value E[vy; | y;] (Fahrmeir et al., 2022).

The concrete specification of the random effects structure is an additional challenge: Too complex
structures often cause singularity issues (e.g., convergence to boundary values or singular fits),
typically reflecting model overparametrization relative to the data (Bates et al., 2015a,b). By
contrast, overly simplistic structures — in particular, omitting random slopes — can lead to type I
error inflation (Barr et al., 2013; Matuschek et al., 2017). As recommended by Barr et al. (2013),
a prudent approach is to start with the most complex random effects structure still justified by the
study design; this structure can subsequently be simplified if necessary (e.g., in case of singularity
issues) via iterative model reduction techniques (Bates et al., 2015a; Matuschek et al., 2017).

LMMs can be extended to linear additive mixed models, which also allow for non-linear effect
estimation. Upon inclusion of K covariates (2i¢1,...,%it k-, %K) With non-linear effects, the
model equation becomes

K

it =XitB+ Y fulzigk) + Wiy + €ig, (2.2)
k=1

where f;() is a smooth function modeling the effect of covariate z;; ;. For estimation, these smooth

functions are parametrized as
My,

F20 =" OmuBmi(Zigk), (2.3)
m=1
with B,, ) being suitable basis functions (e.g., B-splines (Eilers and Marx, 1996) or thin-plate
splines (Wood, 2003)), 6,, % the corresponding basis coefficients, and M), the basis dimension
of the k-th smooth. The basis expansion representation of smooth functions in Equation (2.3)
implies that the model in Equation (2.2) remains linear in the coefficients and can be estimated
accordingly.

In order to address the arbitrariness of the choice of M and to avoid overfitting, smooths
are usually estimated via penalized splines (P-splines). This approach implies choosing Mj
to be relatively large so as to ensure sufficiently flexible modeling of the non-linear effect, but
simultaneously introducing an additional, usually quadratic penalty term to prevent overfitting
(Bender, 2018; Fahrmeir et al., 2022). For each smooth function fx(), the corresponding
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penalty term, which is then added to the log-likelihood, can be written as )\kég—skék, where
0r = (01 ks -+ Omfes - - - 75Mk,k)T and Sg is a suitable penalty matrix which depends on the chosen
type of smoother. A very popular smoother for cubic B-splines is the second-order difference
smoother proposed by Eilers and Marx (1996), AZ6% = (§k — 6m-1k) — (Om—1k — Om—2.k),
which penalizes the difference between neighboring differences of coefficients. g is the smoothing
parameter, a hyperparameter controlling the degree of smoothness of fx(). In the extreme cases,
A — 0 is equivalent to unpenalized estimation of f(), while A, — oo implies parameters will be
estimated so that 5,€TS;€5/€ — 0; for the second-order difference smoother, for example, A\ — oo
means that fi() converges to a straight line. The hyperparameters A; can be optimized via
multiple criteria, such as the UBRE score or (generalized) cross-validation (Wood, 2017). The
recommended approach by Wood (2011), however, is the REML criterion: here, this means viewing
the basis coefficients d,, j as random effects from an assumed prior distribution with mean equal
to zero and a variance that is to be estimated. Using the REML criterion, estimation of non-linear
effects via P-splines in an additive model is thus analogous to random effects estimation in a mixed
model.

2.1. Genome-wide association studies

Genome-wide association studies (GWASs) have established themselves as the standard approach
for identifying associations of genetic variants with trait levels (McCarthy et al., 2008; Visscher
et al., 2017; Abdellaoui et al., 2023) and, more recently, have also been employed to study trait
change (Gorski et al., 2022; Robinson-Cohen et al., 2023; Wiegrebe et al., 2024a) or trait variability
(Ko et al., 2022). Common GWAS traits are, e.g., body mass index (e.g., Speliotes et al., 2010;
Locke et al., 2015), blood pressure (e.g., CKDGen Consortium et al., 2011; Warren et al., 2017),
lipids (e.g., Teslovich et al., 2010; Global Lipids Genetics Consortium, 2013), lung function (e.g.,
Artigas et al., 2011; Wain et al., 2017), or kidney function (e.g., Kottgen et al., 2009; Stanzick
et al., 2021). Genetic variants found to be associated with a trait via GWAS provide immediate
insights into the trait’s underlying biology and heritability (Uffelmann et al., 2021). Beyond that,
GWAS results are also clinically relevant as they contribute to disease risk prediction (Torkamani
et al., 2018; Liu et al., 2019; Tam et al., 2019) and help to identify potential novel drug targets
(Nelson et al., 2015). The establishment of international research consortia and the use of
standardized GWAS evaluation procedures further facilitate the comparison and meta-analysis
of GWAS results — and, as a consequence, contribute to their replicability (NCI-NHGRI Working
Group on Replication in Association Studies, 2007). Moreover, due to generally small genetic
effect sizes of common alleles, meta-analyses are often crucial to obtain the large sample sizes
required for the detection of genetic signals (Evangelou and Ioannidis, 2013).

As suggested by its name, a GWAS aims to study associations between genetic variants (usually
single-nucleotide polymorphisms, SNPs) and a given trait (e.g., biomarker levels) in a genome-wide
manner. Therefore, GWASs do not require strong prior hypotheses regarding potential genes or
regions of interest — as opposed to candidate-gene approaches, which consequently suffer from low
replicability (NCI-NHGRI Working Group on Replication in Association Studies, 2007). SNPs, the
most common type of interhuman genetic variation, are variations of a single nucleotide — adenine
(A), guanine (G), cytosine (C), or thymine (7') — at a specific position of the genome. The
position of a SNP within the genome thus corresponds to a location of genetic differences between
humans. The large majority of SNPs are bi-allelic (Casci, 2010), meaning that each of the two base
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pair nucleotides can be one of two alleles (e.g., A or T'). As standard GWAS workflows typically
focus on bi-allelic SNPs and disregard parent-of-origin effects of heterozygous SNPs (though this is
beginning to change; see, e.g., Hofmeister et al., 2022), SNPs can be considered random variables
that can take on one of three possible allele combinations (e.g., AA, AT, and TT). SNPs are
usually coded numerically, by defining an effect allele (e.g., A) as opposed to the corresponding
other allele (T') and then counting the number of effect alleles (i.e., SNP € {0, 1,2}).

The total number of SNPs in the human genome has been cataloged to be 261.9 million based on
the Genome Aggregation Database (Karczewski et al., 2020). However, as SNPs exhibit regionally
restricted correlation structures (linkage disequilibrium), not all SNPs are independent from each
other. As a consequence, characterizing the human genome does not require directly assaying
every single SNP. Instead, genotyping arrays typically measure between 200.000 and 2 million
SNPs (e.g., ~ 800.000 in the UK Biobank; Bycroft et al., 2018), and linkage disequilibrium—based
imputation from reference panels yields genotypes at millions of unobserved variants (Visscher
et al., 2017). For the purpose of GWASSs, only non-rare variants with sufficient imputation quality
are considered (e.g., minor allele frequency (MAF) > 0.5% and imputation quality score INFO
> 0.6 in Wiegrebe et al. (2024a), yielding 11.3 million SNPs; or MAF > 0.1% and INFO > 0.8
in Winkler et al. (2024), yielding 13.2 million SNPs). For imputed SNPs, the so-called dosage is
continuous, i.e., SNP € [0, 2].

Following imputation and filtering of SNPs, the GWAS performs a genome-wide screening of
associations between all available SNPs and the trait of interest. Since SNPs are screened
independently, multiple testing is corrected for, typically via Bonferroni correction (Dunn, 1961)
which controls the family-wise error rate; a common Bonferroni-corrected significance threshold
for GWAS, assuming a nominal significance level of 0.05 and 1 million independent SNPs, is then
5x10~% (Chen et al., 2021). SNPs are said to be identified if their corresponding P-value is smaller
than this threshold. However, the Bonferroni correction is known to be very conservative and
entail low power (Perneger, 1998; Tam et al., 2019). Several authors have proposed to instead
control the false discovery rate, which can substantially increase power (Benjamini and Hochberg,
1995; Storey and Tibshirani, 2003), yet this is only rarely done in GWAS workflows (Sham and
Purcell, 2014). Therefore, a general limitation of the GWAS approach is that the multiple testing
burden (aggravated by the use of the Bonferroni correction), in combination with small genetic
effect sizes, necessitate very large sample sizes — which is a particular challenge for rare or complex
traits (Tam et al., 2019).

The output of a GWAS is typically a list of SNPs, each with its estimated effect size, standard
error, and P-value. This output can then be directly evaluated, meta-analyzed (Willer et al.,
2010), used to derive polygenic scores (Dudbridge, 2013), or employed for causal inference (e.g.,
via Mendelian randomization; Smith and Ebrahim, 2003; Hemani et al., 2018). The P-values
of all evaluated SNPs are routinely visualized via Manhattan plots and quantile-quantile plots
(see, e.g., Wiegrebe et al., 2024a, Figure 4). Moreover, as SNPs in the same genetic region are
often correlated due to linkage disequilibrium, significant SNP associations with the phenotype of
interest usually form regional clusters, which is visualized by region plots (see, e.g., Wiegrebe et al.,
2024a, Supplementary Figure 12). Therefore, to identify the most likely causal variant(s) among
a set of (genome-wide) significant signals within a genetic region and to subsequently determine
the functional pathway, a multitude of statistical and biological follow-up analyses need to be
conducted, such as statistical fine-mapping and pathway analyses (Gallagher and Chen-Plotkin,
2018; Tam et al., 2019; Uffelmann et al., 2021).
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Subsections 2.1.1 and 2.1.2 below provide details on the statistical methods used for GWASs. This
is directly connected with the choice of the trait of interest, because investigating trait levels (as
done by traditional GWASs) may require a different phenotype or model specification than, e.g.,
a GWAS investigating trait change.

2.1.1. Statistical methods for cross-sectional GWAS

In this subsection, we only consider cross-sectional data (i.e., n;, =1, Vi € {1,...,n}, and m = n),
and assume the phenotype to be a quantitative trait level. Since GWASSs screen the entire genome
one variant at a time, the statistical GWAS model for SNP ¢ is a standard linear regression
model

yi = Bo + By - gi + B ci + e, (2.4)

where c is a vector of further (control) variables.

The vector ¢ can contain known and, importantly, broadly available risk factors, mostly either
demographic (e.g., age or sex) or clinical (e.g., body mass index, BMI, or diabetes status). In
addition, the control variables usually also include a number of principal components due to
population stratification in GWAS data. This arises because SNP distributions tend to differ
across population subgroups and leads to confounder bias in genetic association estimates 3, if the
trait distribution also differs across population subgroups. Accounting for population structure by
including principal components into the GWAS model has been shown to adjust for this potential
source of confounding bias (Price et al., 2006).

In case of a binary trait, the GWAS model is a logistic regression; see, e.g., Balding (2006)
or Uffelmann et al. (2021) for details on binary-trait GWASs. GWASs are usually restricted to
either quantitative or binary phenotypes, because computationally efficient and scalable estimation
algorithms exist for these settings (e.g., Chang et al., 2015; Mbatchou et al., 2021). Interestingly,
while only few specialized GWAS software tools beyond quantitative and binary outcomes exist
(e.g., gwasurvivr (Rizvi et al., 2019) for survival analysis), the reduction techniques presented
in Section 8 offer a practical approach for applying existing GWAS tools, originally designed for
quantitative or binary traits, to time-to-event phenotypes.

The association of g with y can then be tested for via standard statistical tests (e.g., Wald
tests or likelihood ratio tests; Giuinther, 2021). From Equation (2.4) it follows that, whenever
the phenotype is a trait level y, 3, is the marginal genetic effect of SNP g on the trait level,
which is the association of interest. In recent years, however, and building upon the success of
a myriad of standard GWASs (Visscher et al., 2017; Buniello et al., 2019), many recent GWAS
workflows have moved beyond merely estimating marginal SNP effects. An important extension of
the GWAS model is the genome-wide interaction study (GWIS) model (see, e.g., Thomas, 2010),
which investigates the interaction between g and an interaction variable e:

Yi = Bo+ By gi+ Be - ei+ Bywe - gi - i + Ba ci + €. (2.5)

The variable e can, for example, be an environmental or lifestyle factor (e.g., smoking; Bentley
et al., 2019), a demographic factor (e.g., sex; Liu et al., 2012), or a clinical risk factor (e.g., BMI;
Manning et al., 2012). The GWIS model thus contains two genetic effects: a main effect 5, and
an interaction effect 3,x.. Power for GWISs is typically lower than for marginal GWASs, due to
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the inherent difficulty of estimating interaction effects and because genetic interaction effects tend
to be even smaller than marginal effects (McClelland and Judd, 1993; Aschard, 2016).

In the next subsection, we introduce GWAS approaches based on longitudinal data, in particular
for identifying SNP associations with trait change.

2.1.2. Statistical methods for longitudinal GWAS

We now consider longitudinal GWAS (longGWAS) data in combination with a quantitative trait.
In this setting, two additional considerations arise: First, the time scale must be chosen, usually
chronological age or time since the beginning of the study; indeed, the problem of choosing
the most appropriate time scale is not specific to GWASs or mixed models (cf. contributing
article Wiegrebe et al. (2025) in Section 10). Here, we simply refer to the chosen time scale as
time. Second, the linearity of trait trajectories over time must be explored (e.g., via exploratory
additive modeling). In case of substantial non-linearities, transformations of the trait variable
can be applied, as done routinely in many GWAS papers; see, e.g., Robinson-Cohen et al. (2023).

A longGWAS LMM with random intercepts and random slopes for estimating marginal SNP
effects follows directly from Equations (2.1) and (2.4):

Yir = Bo + Brime - timeir + By - gi + Be Cit + Yo, + Y1 - time s + €z (2.6)

Here, ~y denotes the random intercept and ~; the random slope varying over time; furthermore,
the control variables ¢ can now also vary over time. This model can be directly extended to also
include a genetic interaction term (cf. Equation (2.5)):

Yit = Bo + Brime - timeis + By - gi + Byxctime - i - timeit + Be it + Y04 + V1,0 - timei g + €ig. (2.7)

In these two models (Equations (2.6) and (2.7)), the usage of longitudinal data increases power
by increasing the sample size from n to m. However, the random effects structure must be
estimated for every single SNP anew. This makes a genome-wide screening with millions of SNPs
computationally infeasible, even when using efficient mixed model software such as the R packages
1me4 (Bates et al., 2015¢) or mgev (Wood, 2017).

One way to substantially reduce the computational burden of such longGWAS models consists in,
first, estimating a null model, which is identical to Equation (2.6) but excluding the SNP effect:

Yit = Bo + Btime - time; 4 + ,BCTngt + 0, + Y16 timeg s + €5 (2.8)

Subsequently, score vectors are constructed from the null model in Equation (2.8), which are then
used along with matrix projection approaches to approximate test statistics (Chen et al., 2016;
Wang et al., 2020). This approach is implemented in the R packages GMMAT (Chen et al., 2023)
and MAGEE (Wang et al., 2025).

Longitudinal data does not only increase power, but specifically enables the investigation of
trait change. Within the GWAS literature, trait change has been mostly studied via two-stage
approaches: In the first stage, an explicit trait change phenotype Ay is derived. Two common
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approaches to construct Ay are: (i) a direct difference approach, where Ay is the average trait
change during the observation period per unit of time (see, e.g., Gorski et al., 2022); or (ii) an
LMM-based approach, which uses as Ay the random slopes of the null model in Equation (2.8),
estimated via BLUPs (see, e.g., Robinson-Cohen et al., 2023). In the second stage, Ay is used as
the outcome within a standard cross-sectional GWAS model (cf. Equation (2.4)):

Ay; = Bo+ By gi + Be ci +&i (2.9)

Two-stage approaches are computationally very efficient, because the construction of trait change
phenotypes reduces the longitudinal data to cross-sectional data (see Equation (2.9)), for which
specialized GWAS software is readily available (see Section 2.1.1). However, these approaches also
have evident drawbacks, such as their inability to incorporate trajectories of arbitrary lengths or
biased effect size estimates stemming from the inherent Lo-regularization bias of random slopes
(Gelman and Hill, 2007).

To address these drawbacks, the longGWAS LMM with genetic interaction from Equation (2.7) can
be exploited, by using the fact that a SNP-time interaction represents the change in the genetic
effect on the trait level per 1-unit change in time. This way, the SNP effect on trait change
can be directly modeled via a SNP-time interaction within a one-stage LMM-based approach.
The contributing article Wiegrebe et al. (2024a) (Section 5) implements this one-stage LMM-
based approach by employing the abovementioned software GMMAT/MAGEE, which was originally
developed for gene-environment interaction analysis, in order to conduct a longGWAS on kidney
function decline. The contributing article (Winkler et al., 2024) (Section 6) further investigates
the connection and combinability of interaction-based and two-stage modeling of trait change, in
particular when SNP-by-time interactions can be estimated from abundant cross-sectional data
whereas longitudinal data is scarce.

Finally, longitudinal data can also be used to conduct a GWAS on trait wvariability. For
instance, using a generalized additive model for location, scale and shape (GAMLSS; Rigby and
Stasinopoulos, 2005), SNP effects on both trait levels and trait variance can be estimated (Ko
et al., 2022).
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Survival analysis denotes a branch of statistics concerned with (partially) censored and/or
truncated time-to-event outcomes 7T, e.g., death or disease onset. Assuming continuous 7" and
letting f(7) and F(7) := P(T < 1) be density and cumulative distribution function, respectively,
the survival function of T is defined as

S(t):=P(T>1)=1-F(1), (3.1)

which is the probability of surviving beyond some time point 7.

The hazard rate

P(r<T<7+Al>
hr) = i LOSTSTHAIT 27)

.2
ANO A (3.2)

represents the instantaneous risk of observing an event, given the event has not yet occurred at
time 7. Integrating the hazard rate from 0 to 7 yields the cumulative hazard

Hﬁ)::ATMUMu:r—bQSﬁ». (3.3)

The survival function, the hazard rate, and the cumulative hazard all constitute common quantities
of interest in survival analysis.

In the case of discrete time T' € {1,...,4,...,J}, the discrete-time hazard
ha(j) = P(T' =3 |T > j) (34)

is the probability of event occurrence during the j-th interval, conditional on survival until the
beginning of that interval. The discrete-time survival function is

J
Sa(j) = P(T > j) = [[(1 = ha(1)). (3.5)
=1

Discrete-time survival analysis is naturally useful whenever event times are intrinsically discrete
(Tutz et al., 2016), but can also be used to approximate continuous-time distributions after event
time discretization (cf. Section 3.2): In this case, the follow-up time is partitioned into J intervals
(ap = 0,a1],...,(aj—1,a5],...,(aj-1,ay], where I; denotes the j-th interval, i.e., (aj_1,q;], and

P(T € I;) & P(T = j). The remainder of this section mostly deals with continuous-time survival
analysis, which is why event times are referred to by T' (as opposed to T').

The most common survival setting, which also gave the field its name, contains the two states 0
and 1 (e.g., alive and dead), where only the transition 0 — 1 is possible, and only once (i.e., state
1 is absorbing). In this standard survival setting, we denote the right-censoring time of subject

11
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i € {1,...,n} by C;, the observed time by Y; := min(T;, C;) with realization y;, and the right-
censoring status indicator by d; := I(T; < C;). We further assume random censoring conditional
on covariates x; (Vi : T; 1L C; | x;). The resulting right-censored, single-risk, single-event survival
data is typically represented via tuples (y;, d;, x;). However, the field of survival analysis is by no
means restricted to this standard survival settings.

For subject i, let C& and CF denote left- and right-censoring times, and L; and R; censoring
interval endpoints. Interval-censoring implies T; € (L;, R;], as only the event interval is known.
Both right-censoring T; € (L; = Cf 00) and left-censoring T; € (L; = 0, R; = CF) represent
special cases of interval-censoring. Truncation means that some subjects are excluded from the
risk set for a specific event at certain time points (or even from the entire dataset). With T}/ and
TZR denoting left- and right-truncation times, left-truncation implies that subjects with T; < TZ-L
are excluded from the study (while TZR = 00). Analogously, right-truncation occurs when subjects
with T; > TZR are excluded. In general, the objective of survival analysis is to estimate the
distribution of T;, given a p-dimensional covariate vector x; and taking into account relevant
censoring and truncation present in the data.

Expansions of survival analysis techniques beyond single-risk, single-event scenarios include
recurrent-event, competing-risk, and, most generally, multi-state analysis (see Figure 2 of Piller
et al., 2025). Recurrent-event analysis describes a setting where a single, non-terminal event (such
as epilepsy or malaria infections) may be experienced repeatedly over time, inducing intra-person
correlation. Competing-risk analysis, on the other hand, assumes a single event occurrence along
with & € {1,...,q} distinct, mutually exclusive risks (e.g., death in hospital versus hospital

discharge). A common quantity of interest in competing-risk analysis is the cumulative incidence
function (CIF) for risk k,

CIF(r) = P(T < 7,K = k) = /0 " he(w)S(u) du, (3.6)

with cause-specific transition hazard

< < = >
hk(T):iiI\?OP(T_T_T—}—AA,K kT > 7)

(3.7)

and S(u) being the all-cause survival probability derived using Equation (3.1) and the all-cause
hazard h(7) = Y7_; hi(7) (Piller et al., 2025).

Most approaches for estimating the quantities of interest in survival analysis have been developed
for the standard survival setting. Common approaches include the non-parametric Kaplan-Meier
(KM) estimator for the survival function (Kaplan and Meier, 1958); the non-parametric
Nelson-Aalen (NA) estimator for the cumulative hazard (Equation (3.3); Aalen, 1978) along with
the Breslow estimator (Breslow, 1974) to derive the survival function (Equation (3.1)) from the
cumulative hazards; the semi-parametric Cox Proportional Hazards (PH) model (Cox, 1972), the
piecewise exponential model (PEM; Friedman, 1982), and discrete-time models (see, e.g., Tutz
et al., 2016), all of them estimating the hazard (Equations (3.2) or (3.4)); and the fully parametric
accelerated failure time (AFT) models (Kalbfleisch and Prentice, 2002), which estimate the entire
event time distribution (that is, the parameters of, e.g., a Weibull or log-normal distribution).
Recurrent-event data can be modeled by including frailty terms, which are essentially subject-level
random effects (cf. Section 2), into the linear predictor of a survival model and /or by stratifying the
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linear predictor by the event count. For the modeling of competing-risk data, various approaches
have been introduced, such as the Fine-Gray model (Fine and Gray, 1999) for direct estimation of
the CIF (Equation (3.6)) or cause-specific Cox PH models for estimation of cause-specific hazards
(Equation (3.7)). The standard survival setting, recurrent events, and competing risks can all be
viewed as special cases of the multi-state setting. This setting, along with multi-state modeling,
is described in detail below.

3.1. Multi-state modeling

Multi-state settings allow for multiple states, (back- and forth-) transitions between them, as
well as event recurrence via multiple episodes. For instance, a recurrent-event analysis with an
additional terminal event or a competing-risk setting with further progression after transitioning
into some intermediate state can be directly cast as multi-state problems. Multi-state problems
are commonly represented via state diagrams, which visualize all possible transitions o — ¢ (where
o and ¢ are the from- and to-state, respectively), indexed by k = 1,...,¢; see, e.g., Figures 1 and
3 in Wiegrebe et al. (2025). Within a state diagram, transient states (out of which transitions
to other states are possible) are typically indicated by circles, absorbing states (e.g., death) by
squares.

For multi-state modeling, we extend the single-risk, single-event hazard rate from Equation (3.2)
to transition-specific hazards

1
hie(T | Xike) = ii{‘no ZP(T <T<1+A7o0,e|T>7,0,Xike), (3.8)

where x; 1 . is the subject-, transition-, and episode-specific covariate vector. The risk-specific
hazard from the competing-risk setting in Equation (3.7) can be obtained from Equation (3.8)
by dropping episode e (single-event), setting from-state [ = 0 (as all subjects start in the same
initial state 0), and letting k be the transition from 0 to what was denoted as risk (i.e., state) k
in Equation (3.7).

Multi-state data stores transition information via tuples of the form (yfztzy,yf’sz,di7k,€,xi,k,e),

where ny Zy and y{%"L are risk set entry and exit times of subject ¢ for transition k¥ = 1,...,¢ in
episode e = 1,...,m, due to either transitioning or censoring; d; ;. is the subject-, transition-,

and episode-specific binary status indicator. This data structure enables the calculation of the
transition probability matrix (Aalen and Johansen, 1978; Beyersmann et al., 2011), whose (¢, 0)-th
element represents the probability of transition k. The dependence of transitions at time 7 on
past transitions in fact requires the computation of the matrix product across prior transition
probability matrices. Transition probabilities may be time-inhomogeneous, hence we define the
instantaneous probability dPy (7)) = (dPc(7))ro = P(1 < T <7+ A,0,e | T > 1,0),{ # 0. By
defining the probability of staying in state £ as 1 4+ (dP¢(7))re = 1 — > dPy (7), we can denote
the transition probability matrix as

P.(s,r)= J[ (I+dP.(u), (3.9)

u€ls,T)
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with T( o) being the product integral over the interval [s, 7) (Piller et al., 2024, 2025; Wiegrebe
u€[s,
et al., 2025).

Transition probabilities dPj .(7) are commonly derived using the Aalen-Johansen (AJ) estimator
(Aalen and Johansen, 1978), which employs count processes and has also been shown to work in
non-Markov scenarios under the assumption of random censoring (Niefil et al., 2023). Another
approach consists in approximating dPy (1) by Hp (T + A | Xike) — Hie(T | Xi k), that is, by
the incremental of the transition-specific cumulative hazard Hy o(7 | X 5e) = [o hie(u | Xi k) du.
With this approach, it suffices to estimate transition-specific hazards hy (7 | X; %) (Equation
(3.8)) in order to compute the transition probability matrix. This approach further allows flexible
specification of covariate-dependent hazards, so that the resulting transition probabilities depend
on the underlying covariate structure (Piller et al., 2024). As covariates may also be history-
dependent (e.g., multiple time scales or state-entry times), non-Markov scenarios can also be
dealt with by Equation (3.9) (Piller et al., 2025; Wiegrebe et al., 2025). In practice, PEMs can
be used for the purpose of estimating transition-specific hazards, as we show in the contributing
article Piller et al. (2025) (Section 8). The article further shows how discrete-time methods can
be used to estimate competing-risk hazards in a discrete-time setting, and Tutz et al. (2016)
describe the extension to hazard-based discrete-time multi-state modeling. Finally, there are also
deep learning-based approaches that are capable of computing transition probabilities d Py, .(7) of
a multi-state model, in particular the contributing article Kopper et al. (2022) (Section 9) but
also others (e.g., Groha et al., 2020; Cottin et al., 2022). The contributing article Wiegrebe et al.
(2024b) (Section 7) provides an overview of deep learning-based survival methods, considering,
among other things, their capability of handling competing-risk and multi-state problems.

As a result of the expansion of registry data usage and biobanks, multi-stage disease histories
derived from longitudinal data constitute a type of multi-state data that is becoming increasingly
available. Examples include Chronic Kidney Disease (CKD), whose disease stages are defined
by thresholds of the quantitative biomarker estimated glomerular filtration rate (eGFR; Levin
et al., 2013); or age-related macular degeneration (AMD), whose disease stages are characterized
by the accumulation of subretinal drusenoid deposits (early/intermediate AMD) and cell atrophy
(late AMD). When modeling multi-stage disease history data, the focus lies, e.g., on disease onset
and progression (Wiegrebe et al., 2025) or on disease relapse and death (Iacobelli and Carstensen,
2013). Multi-state modeling of such data, while naturally suitable, introduces additional statistical
challenges; in particular, dependent left-truncation, multiple time scales, index event bias, and
interval-censoring. These challenges, and how a flexible PEM-based multi-state approach can
handle most of them, are addressed in the last contributing article, Wiegrebe et al. (2025) (Section
10).

3.2. Reduction techniques

Direct adoption of machine learning techniques to the field of survival analysis is hampered — or,
at the least, delayed — by the fact that most standard machine learning algorithms — e.g., Random
Forests (Breiman, 2001) or XGBoost (Chen and Guestrin, 2016) — are designed for regression or
classification tasks, not for censored and/or truncated time-to-event data. Indeed, maximizing the
Cox partial likelihood is more complex than maximizing the likelihood of a standard generalized
linear model (e.g., with Gaussian, Bernoulli, or Poisson distributional assumption) because the
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former one requires iterative recomputation of risk sets and tie handling is computationally
expensive (Cox, 1972; Breslow, 1974; Efron, 1977). Currently, for the field of survival analysis,
survival-specific adoptions have been developed — e.g., Random Survival Forests (Ishwaran et al.,
2008) or XGBoost for AFT models (Barnwal et al., 2022) — but with delays of multiple years; see
Figure 1 of Piller et al. (2025).

The concept of reduction techniques originally derives from the field of computer science,
describing approaches that transform a problem into a simpler one for which a solution is already
established and then inferring the solution to the original problem from the solution of the reduced
problem (Armoni, 2009). In the context of survival analysis, reduction techniques reduce the
complexity of the underlying estimation problem, as a complicated survival task is transformed
into a standard regression or classification task for which machine learning algorithms are readily
available. We note, however, that these reduction techniques for survival analysis do not reduce
the size of the underlying survival data; in fact, for some reduction techniques (e.g., the PEM
reduction; see below) the dataset size is even substantially increased as part of necessary data
preprocessing.

The PEM (Friedman, 1982) is one of the most popular reduction techniques. It starts from a
general proportional hazards model

h(T | %;) = ho(T) - exp(x] B), (3.10)

with baseline hazard ho(7) and linear predictor n; := x; 8. Whereas the Cox PH model (Cox, 1972)
estimates ho(7) in Equation (3.10) non-parametrically and 8 via partial likelihood maximization,
the PEM is fully parametric in terms of parameter estimation. This is possible due to a partition
of the follow-up into J intervals, identical to the discretization for discrete-time survival analysis
described at the beginning of Section 3. On these intervals, the PEM assumes hazards to be
piecewise constant, h(7 | x;) = exp(Bo;+x, B) = exp(ni;) =: hij, V7 € (aj_1,a;]. Next, the PEM
reduction defines (i) an interval-specific event indicator d; j, which is equal to 1 if y; € I; Ad; =1,
and 0 otherwise; (ii) the time-at-risk y; j, which is equal to a; — aj—1 if a; < y;, and y; — aj—1
if aj_1 < y; < aj; and (iii) an offset 0;; = log(y; ;). This newly defined pseudo-data thus

represents a long-form dataset containing one row per subject and interval-at-risk j € {1,..., J;},
where J; € {1,...,J} is the interval containing y;; see Table 2 of Piller et al. (2025). With this
data transformation, the piecewise constant hazards assumption, and By = (8o.1,...,50,7), the

log-likelihood can be rewritten as

/37:30 :10g<thz|Xz (yz‘xz)>

=1
n Yi

= log (Hh (yi | xi)% exp ( —/ h(s | xi)ds)>
=1 0
n J;

= log < 1T I1 exp (dijmi; — exp(os; + 77m')))
1=1j=1

n J;

=D > (dijmij — exp(oij + nij)),

i=17=1
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. ) Ji 5 _ _ i
using h(y;|x;)% = iy exp(digmi ) and [ h(s|x;)ds = 37521 yijexp(ni;) = 32511 exp(0i,; + i)
(Friedman, 1982; Bender, 2018). The reduction into a standard Poisson regression task then follows

by assuming d; ; i Po(p; ;) with p;; = hs jyi; and density f(d;;) = ,uw . 1_1’] -exp(—pi;) and

observing

n J; n J;
Ipo(B, Bo) = log (H IT 7« j)) = > > (dijlog(piz) — pij)

i=1j=1 i—1j=1
Ji
= Z (dw IOg(hU) + dij log(y”) hijyij)
i—1j=1
n J;
= Z (dmnz] exp(o” + "71]) + dzgom) oc 1(B, Bo),
i=1j=1

since d;;0;; does not depend on the parameters of interest. As a consequence, the parameters 3 of
the linear predictor 7; — and, more generally, the parametrization of any predictor g(7,x;) — can
be obtained via optimization of a standard Poisson likelihood (Bender, 2018; Piller et al., 2025).

The discrete-time reduction employs the exact same follow-up partitioning and data transforma-
tion as the PEM reduction, but subsequently uses discrete hazards (cf. Equation (3.4)) to predict
the binary responses d; ;. The likelihood of a discrete-time hazard model is then equivalent to the
likelihood of the binary responses d;; from a binary response model g(P(d;; =1 | x;)) = f(xi),
where g() is a suitable link function, f() is some prediction function, and d; ; Lig Ber(hq(j | xi))
(Tutz et al., 2016). Therefore, analogously to the PEM reduction, the discrete-time reduction
enables any (statistical or machine learning) binary classification algorithm to be used for survival
analysis (Piller et al., 2025).

While both PEM and discrete-time reductions rely on partitioning the follow-up time and learn the
entire event time distribution, other reductions are designed to predict point estimates of a chosen
quantity of interest. For instance, the pseudo-value reduction routinely uses the KM estimator to
construct continuous pseudo-observations from the underlying survival data, thus enabling their
direct estimation via regression (Andersen et al., 2003). This reduction technique is especially
useful for estimating (covariate effects on) quantities of interest that are not straightforward to
compute using hazard-based approaches — in particular, the increasingly popular restricted mean
survival time (RMST; Irwin, 1949; Royston and Parmar, 2011, 2013; Zhao et al., 2016), defined

as pr = E(min(T, 7)) = [g S(u)du

The contributing article Piller et al. (2025) (Section 8) provides a unified framework for multiple
such reduction techniques, which share the core idea of a dedicated pre-processing step to reshape
the data and redefine the outcome variable to be estimated. The article further categorizes these
reduction techniques and details their respective strengths and weaknesses in terms of various
idiosyncrasies of survival tasks (e.g., supported types of censoring and truncation or applicability
beyond single-risk, single-event settings). In doing so, this unified framework of reduction
techniques offers a practical solution to the abovementioned problem of adopting machine learning
algorithms to survival analysis.
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4. Machine Learning And Deep Learning

This section focuses on machine learning and deep learning in the context of supervised learning,
which refers to learning an unknown functional relationship f : X — RY between the feature
space X C RP and the target space ) C RY (Hastie et al., 2009). Supervised learning algorithms
aim to learn this function f from observed data D = {(x1,%1),---,(Xi,¥i), -+, (Xn,Yn)}. An
observation (x;,v;), ¢ € {1,...,n}, consists of a p-dimensional feature (or covariate) vector x; =
(zi1,--.,7ip)| € X and the target (or response) y; € ). Each observation is assumed to be
drawn i.i.d. from an unknown probability distribution (i.e., data generating process) P, on the
joint space X x Y; that is, (x;,y;) Hid Pry. A learning algorithm thus learns an approximation
(i.e., prediction model) f of f, usually by minimizing the empirical risk Remp(f), that is,

A 1&
f= arggcr‘leiyr{lRemp(f) = arg ?273 - ZZ;L(yi, f(x3)). (4.1)

The hypothesis space H is the the set of all possible candidate functions f available to the learning
algorithm, while the loss function L : Y x RY9 — R measures the discrepancy between predictions
f(x;) and true target values ; (see below). Learning thus means finding a prediction model f
that minimizes the average loss function across all observations in D, that is, solving the above
optimization problem (Casalicchio, 2019). This supervised learning process is called empirical
risk minimization (ERM). The ERM framework provides a unifying principle for machine and
deep learning as well as classical statistical learning algorithms. Indeed, maximum likelihood
estimation, as routinely done in classical statistics (cf. Section 2), is identical to ERM with the
negative log-likelihood as loss function L (Hastie et al., 2009; Murphy, 2012).

The specific learning task is determined by the target space ), with regression tasks (where the
target space is continuous; e.g., ) = R, implying g = 1) and classification tasks (where the target
space consists of discrete categories; e.g., J = {0,1} for binary classification, implying g = 1)
being the two most fundamental types of learning tasks (Casalicchio, 2019). As a consequence,
most machine learning algorithms are designed to handle such tasks (Bishop and Nasrabadi, 2006;
Hastie et al., 2009). Finally, survival tasks are learning problems in which the target variable is
the time-to-event T, subject to potential censoring and/or truncation (see Section 3).

For regression, a popular loss function is the Lo-loss, defined as Lo(y, f(x)) = (y — f(x))?;
minimizing the Lo-loss is equivalent to minimizing the negative Gaussian log-likelihood. Other
regression losses are the Li-loss Li(y, f(x)) = |y — f(x)| and the Poisson loss Lp,(y, f(x)) =
f(x) —y - log(f(x)), which are proportional to the negative Laplace and Poisson log-likelihood,
respectively. For binary classification using probabilistic classifiers (e.g., logistic regression), the
most common loss function is the Bernoulli loss Lpe, (v, f(x)) = —y-log f(x)—(1—y)-log(1— f(x)),
which is equivalent to the negative Bernoulli log-likelihood as well as to the binary cross-entropy
loss (Goodfellow et al., 2016). For survival tasks, owing to the popularity of the Cox PH model,

17



4. Machine Learning And Deep Learning 4.1 Machine learning

the negative Cox partial likelihood — referred to as Cox loss — is a frequently used loss function
among deep learning-based methods (Wiegrebe et al., 2024b). It is defined as

Lom=—sw— Z (F6x) ~Tog 3 exp(7(x,))). (42)

JER:

with y; here being the observed time (see Section 3) and R; := {j : y; > v;} the risk set of subject
i. f(x) is simply the linear predictor x ' B in case of the Cox PH model (cf. Equation (3.10)), but
can also be parametrized, for example, by a neural network, as done in many deep learning-based
survival models (e.g., DeepSurv; Katzman et al., 2018). For discrete-time survival analysis, the
negative log-likelihood loss of a survival model can be written as

n

Lo =—Y (di log(ha(Ji | %)) + d; - log(Sa(Ji — 1 [ x;)) + (1 — d;) - log(Sa(J; | xi))), (4.3)
im1

where hg and Sy are as defined in Equations (3.4) and (3.5), respectively (Zadeh and Schmid,
2020). By contrast, the binary cross-entropy loss in discrete-time survival analysis, as defined by
Ren et al. (2019), is

n

Lee=—)_ (di “log(1 — Sa(J; | x4)) + (1 — d;) - log(Sa(J; | Xi)))~ (4.4)

=1

Subsections 4.1 and 4.2 discuss machine learning and deep learning algorithms, as well as their
application to survival analysis, in more detail. We note that, strictly speaking, deep learning is a
subset of machine learning which uses multi-layered (i.e., deep) neural networks. In the following,
we refer to machine learning as the set of classical, "non-deep” learning techniques, and to deep
learning as the set of neural network-based techniques.

4.1. Machine learning

Classical machine learning refers to supervised learning algorithms that learn prediction models f
from data D via shallow, non-deep model structures; in fact, standard statistical approaches such
as linear and logistic regression models are usually also considered machine learning algorithms
(Hastie et al., 2009). Beyond that, kernel methods (in particular, support vector machines
(SVMs); Cortes and Vapnik, 1995), gradient boosting approaches such as component-wise boosting
(Friedman, 2001; Biithlmann and Yu, 2003; Bithlmann and Hothorn, 2007), tree-based ensemble
methods including decision trees and random forests (Breiman et al., 2017; Breiman, 2001), as
well as lazy learning methods such as k-nearest neighbors (Cover and Hart, 1967) are among
the most widely used types of machine learning algorithms. Many of these algorithms can be
embedded into the ERM framework; for example, SVMs for binary classification can be expressed
as Lo-regularized minimization of the Hinge loss. This is consistent with the fact that machine
learning algorithms are usually designed to tackle regression or classification tasks.

In order to apply them to survival tasks, machine learning algorithms need survival-specific
modifications. The Random Survival Forest (Ishwaran et al., 2008), for instance, uses the log-rank
statistic as splitting criterion, as opposed to the Lo loss or the Bernoulli loss commonly used for
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4. Machine Learning And Deep Learning 4.2 Deep learning

regression or binary classification tasks, respectively; and Barnwal et al. (2022) introduce explicit
loss functions for AFT survival regression in order to apply XGBoost to survival tasks. Wang
et al. (2019) present an overview of machine learning approaches for survival analysis.

However, as illustrated in Figure 1 of Piller et al. (2025), the development of such custom
modifications to make machine learning algorithms applicable to survival tasks usually takes
years. This again underlines the benefit of being able to employ standard loss functions and
off-the-shelf implementations of machine learning algorithms when handling survival tasks — by
previously applying reduction techniques as demonstrated in the contributing article Piller et al.
(2025) (Section 8).

4.2. Deep learning

Deep learning uses multi-layered neural networks to learn a prediction model f from data D
by composing multiple (non-)linear transformations (neurons) of the input features x. Neural
networks are trained by minimizing a loss function; because of their composite structure consisting
of simple building blocks, neural networks are generally compatible with any differentiable loss.
Since overfitting is a common issue in deep learning, caused by the high dimensionality of the
parameter space, deep learning models often also incorporate regularization (or penalization)
terms into their loss functions, such as Ly or Ly weight decay (Bishop, 1995; Ng, 2004; Goodfellow
et al., 2016), dropout (Srivastava et al., 2014), or batch normalization (Ioffe and Szegedy, 2015).
Model optimization is typically performed via stochastic gradient descent or one of its adaptive
variants (e.g., Adam; Kingma and Ba, 2017), where weight updates are efficiently computed using
the backpropagation algorithm (Rumelhart et al., 1986).

The earliest and most fundamental type of neural network architecture is the feed-forward neural
network (FFNN; Rosenblatt, 1958; Ivakhnenko, 1968), where information only flows forward,
from the input layer through a sequence of fully-connected layers towards the output layer. The
hypothesis space of an FFNN can be written as

Y — {f(x) cfx)=T0doc™op™oahDogh-Do...os00 ¢(1)(X)} ’ (4.5)

where h is the number of hidden layers, 0(9 and ¢ are the activation function and the weighted
sum of hidden layer ¢, respectively, with 7 and ¢ being the corresponding components of the
output layer. This network architecture is suitable for tabular data. With no hidden layers and a
single output neuron, an FFNN reduces to a standard linear regression model when the activation
function 7 (cf. Equation (4.5)) is set to the identity function and the Lo-loss is selected. It
corresponds to a logistic regression when 7 is the logistic sigmoid function and the Bernoulli loss
is applied, and to a Cox PH regression model when 7 is the identity function and the Cox loss
(Equation (4.2)) is used. This illustrates how FFNNs can be considered extensions of standard
statistical learning algorithms (Goodfellow et al., 2016). While architecturally simple, FFNNs
are, in theory, capable of approximating any continuous function, as stated by the universal
approximation theorem (Hornik et al., 1989). Other popular neural network architectures are
convolutional neural networks (CNNs), invented in the late 1980s (LeCun et al., 1989), which
are particularly successful in computer vision applications and often leverage transfer learning
approaches based on large pre-trained networks (see, e.g., ResNet18; He et al., 2016); recurrent
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neural networks (RNNs; Rumelhart et al., 1985; Elman, 1990; Jordan, 1997), which are capable
of incorporating memory mechanisms that allow them to retain and process information from
previous inputs, thus making them applicable to sequential data; and transformers (Vaswani
et al., 2017), which employ an attention mechanism to capture contextual representations within
sequential data that are subsequently used to generate context-aware output sequences.

Due to the modular structure of deep learning models and their compatibility with any loss
function, their application to survival tasks is relatively straightforward: it merely requires
parametrizing the desired quantity of interest (often the hazard) by a neural network and choosing
an adequate survival loss. A popular choice for continuous-time deep learning-based survival
methods is the Cox loss. However, from Equation (4.2) it follows that minimizing the Cox loss
requires recomputation of the risk set R; for each uncensored subject, which is computationally
expensive, as noted in Section 3.2. This is why some deep learning-based survival methods instead
use modifications of the Cox loss, such as the restriction of the risk set R; to a (sufficiently large)
risk subset R; (Kvamme et al., 2019). Alternatively, many deep learning-based survival models
discretize time (cf. Section 3.2) and, accordingly, use discrete-time survival losses (Wiegrebe
et al., 2024b), in particular the negative log-likelihood loss L,; (Equation (4.3)) or the binary
cross-entropy loss L. (Equation (4.4)); see, e.g., Gensheimer and Narasimhan (2019) or Ren et al.
(2019). As opposed to binary classification, however, L, is now distinct from L., except for the
extreme case where d; = 0,Vi. In fact, as shown by Zadeh and Schmid (2020), use of L. causes
large prediction error along with biased predictions and poor calibration, because the information
from uncensored individuals is not fully exploited. Nevertheless, the binary cross-entropy loss
remains popular among deep learning-based discrete-time survival methods (cf. Wiegrebe et al.,
2024b). Deep learning-based survival methods sometimes also use combinations of multiple loss
functions, for example by adding a ranking loss to the original survival loss (see, e.g., Lee et al.,
2018; Jing et al., 2019). This is likely inspired by the fact that the C-index, a popular evaluation
metric for survival tasks, is based on pairwise rankings of subjects (Harrell et al., 1982; Harrell Jr
et al., 1996). Other methods (e.g., Huang et al., 2018) directly construct a loss function derived
from survival evaluation metrics.

The contributing article Kopper et al. (2022) (Section 9) uses the PEM reduction technique (cf.
Section 3.2) to develop a deep learning-based survival model with a penalized Poisson loss. Due
to the additive structure of the predictor, combining input from structured (tabular) data and
unstructured data (e.g., images or text), the model preserves its interpretability. The contributing
article Wiegrebe et al. (2024b) (Section 7) provides a comprehensive, structured overview of
the various deep learning-based survival methods that have been developed in recent years as a
consequence of the adoption of deep learning techniques to time-to-event analysis. The article
characterizes all methods according to both deep learning-related attributes (e.g., model class
or network architecture) and survival-related aspects (e.g., supported types of censoring and
truncation or handling of competing risks). This enables practitioners to quickly identify which
methods are adequate for their particular use case, while also helping researchers assess potential
areas for future research.
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