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Summary

In the wake of COVID-19, the world faced the mammoth task of understanding how this new
disease functioned, its impact on humans, and, in particular, its implications for public health.
The contributions of this thesis are part of the broader collaborative effort of understanding the
COVID-19 pandemic by analysing the intensive care unit (ICU) dynamics in Germany. Since
only data on ICU occupancy are publicly available at district level, and not on ICU admission
or patient length of stay, ICU patient flow dynamics can not directly be analysed. This thus
poses a missing data problem. The contributions of this thesis analyse the ICU occupancy and
subsequently employ statistical methods in order to disentangle the unobserved patient inflow,
length of stay and outflow from the observed occupancy data.

Part I of this thesis introduces metrics commonly employed to gain a comprehensive understanding
of the impact of an infectious disease on public health, in the context of COVID-19. It also
discusses the data available for public health surveillance in Germany and highlights the contextual
motivation for the contributions of this thesis, namely the absence of district-level data on ICU
patient flow dynamics. Chapter 3 introduces statistical modelling, with a particular focus on
parametric models. It lays out the assumptions required for consistent estimation and discusses
approaches to quantifying estimator uncertainty. Chapter 4 then links the statistical methodology
to the previously introduced data, motivating the contributions of this thesis.

Part II analyses the ICU occupancy. The distribution of ICU beds among patients infected with
COVID-19, patients not infected with COVID-19, and unoccupied status is modelled using a multi-
nomial model. This approach allows estimation of associations between ICU bed distribution and
infection rates in the previous week, spatial correlation (captured through a two-dimensional thin-
plate spline), and district-level heterogeneity (modelled via a random intercept). The multinomial
assumption is particularly valuable for prediction, as it reflects the mutually exclusive nature of
ICU bed allocation.

Part III builds on the analysis of Part II by inferring patient inflow and outflow from ICU occu-
pancy. Chapter 6 employs the stochastic Expectation-Maximisation (sEM) algorithm to iteratively
simulate from a truncated Skellam distribution with incoming and outgoing intensity parameters,
which are estimated using two independent Poisson models. The inflow model incorporates age-
specific infection rates from the previous week, spatial correlation via a two-dimensional thin-plate
spline, temporal correlation via a penalised B-spline over time, and categorical weekday effects.
The outflow model is specified analogously, with an additional offset defined as the sum of previ-
ously incoming patients, weighted by the exit rate, which is taken to be fixed. Chapter 7 extends
this methodology by treating exit rate, also referred to as length of stay, as a random parameter
rather than a fixed input. Thus, the outflow model of the M-Step of the sEM is altered, such
that the outflow is now solely a linear combination of inflow. This introduces a sum-to-one and
non-negativity constraint. Thus, the parameters are estimated via constrained maximum likeli-
hood, which introduces bias. This bias is corrected employing an additional simulation step in
the sEM.






Zusammenfassung

Im Anfang COVID-19s stand die Welt vor der gewaltigen Aufgabe zu verstehen, wie diese neue
Erkrankung funktioniert, welche Auswirkungen sie auf den Menschen hat und insbesondere, welche
Implikationen sich fiir die 6ffentliche Gesundheit ergeben. Die Beitrdge dieser Dissertation sind
Teil des breiteren kooperativen Bemiihens, die COVID-19-Pandemie durch die Analyse der Dy-
namik der Intensivstationen (Intensive Care Units, ICU) in Deutschland zu verstehen. Da auf
Kreisebene lediglich Daten zur Auslastung der Intensivstationen offentlich verfiighar sind, nicht
jedoch zu Aufnahmen oder Verweildauern, kénnen die Patientenflussdynamiken auf Intensivsta-
tionen nicht unmittelbar analysiert werden. Dies stellt somit ein Problem fehlender Daten dar.
Die Beitriage dieser Arbeit analysieren die ICU-Auslastung und setzen anschlieffend statistische
Methoden ein, um aus den beobachteten Auslastungsdaten die unbeobachteten Grofien Zufluss,
Verweildauer und Abfluss zu identifizieren.

Teil T dieser Arbeit fithrt einige der im Kontext von COVID-19 gebrauchlichen Metriken ein, mit
denen die Auswirkungen einer Infektionskrankheit auf die 6ffentliche Gesundheit umfassend be-
wertet werden. Zudem werden die in Deutschland fiir die Gesundheitsiiberwachung verfiigharen
Daten diskutiert und die kontextuelle Motivation fir die Beitrdge dieser Arbeit herausgearbeitet,
namentlich das Fehlen Daten zu Intensivpatientenflussdynamiken auf Kreisebene. Kapitel 3 fiithrt
in die statistische Modellierung ein, mit besonderem Fokus auf parametrische Modelle. Es legt
die fiir konsistente Schétzung erforderlichen Annahmen dar und diskutiert Ansétze zur Quan-
tifizierung der Schétzunsicherheit. Kapitel 4 verkniipft sodann die statistische Methodik mit den
zuvor eingefiihrten Daten und motiviert die Beitridge dieser Dissertation.

Teil IT analysiert die Auslastung der Intensivstationen. Die Verteilung der Intensivbetten auf
COVID-19-infizierte Patientinnen und Patienten, nicht infizierte Patientinnen und Patienten sowie
unbesetzte Betten wird durch ein multinomiales Modell beschrieben. Dieser Ansatz ermdoglicht
die Schéitzung von Assoziationen zwischen der Bettenverteilung und den Infektionsraten der Vor-
woche, réaumlicher Korrelation (abgebildet durch einen zweidimensionalen Diinnplattenspline)
sowie Heterogenitét auf Kreisebene (modelliert iiber einen Random Intercept). Die Multino-
mialannahme ist fiir Prognosen besonders wertvoll, da sie die wechselseitig ausschliefende Natur
der Bettenallokation aufgegriffen wird.

Teil III baut auf der Analyse aus Teil IT auf, indem aus der ICU-Auslastung auf Zu- und Abfliisse
geschlossen wird. Kapitel 6 verwendet den stochastischen Expectation-Maximisation-Algorithmus
(sEM), um iterativ aus einer trunkierten Skellam-Verteilung mit Zu- und Abfluss-Intensitatspa-
rametern zu simulieren, die mithilfe zweier unabhéngiger Poisson-Modelle geschétzt werden. Das
Zuflussmodell umfasst alterspezifische Infektionsraten der Vorwoche, rdumliche Korrelation iiber
einen zweidimensionalen Thin-plate spline, sowie eine temporale Korrelation durch eine penal-
isierte B-spline, und einen kategorialen Wochentagseffekt. Das Abflussmodell wird analog spez-
ifiziert, mit einem zusétzlichen Offset, definiert als Summe der zuvor eingestrémten Patientin-
nen und Patienten, gewichtet mit der als fix angenommenen Austrittsrate. Kapitel 7 erweitert
diese Methodik, indem die Austrittsrate bzw. Verweildauer als zufilliger Parameter statt als
fixe Eingabe behandelt wird. Der M-Schritt des sEM wird entsprechend so angepasst, dass der
Abfluss nun ausschliellich als lineare Kombination des Zuflusses modelliert wird. Dies erfolgt unter
Nebenbedingungen, da alle aufgenommenen Patientinnen und Patienten die Intensivstation auch
wieder verlassen miissen und kein Zufluss einen negativen Effekt auf den Abfluss haben darf. Die



Parameterschitzung erfolgt daher mittels einer Constrained Maximum-Likelihood, was zu Verz-
errungen fithrt. Diese Verzerrung wird mittels eines iterativen zusétzlichen Simulationsschritt
korrigiert.
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Introduction and background






1. Introduction

“A judicious man looks at statistics not to get knowledge, but to save himself from
having ignorance foisted upon him.”
— Thomas Carlyle, 1840

The fields of statistics and epidemiology have long shared a symbiotic relationship. Statistics
has gained much of its public relevance through applications in epidemiology, while epidemio-
logical challenges have in turn motivated advances in statistical methodology. Although many
contemporary epidemiologists, such as Frérot et al. (2018), argue that the field of epidemiology
extends well beyond the realm of statistical analysis, it remains the case that, historical pioneers
of epidemiology are equally regarded as pioneers of statistics.

For example, the systematic work of John Graunt, who recorded mortality data in seventeenth-
century London (Stigler, 1986) and John Snow, who traced the 1854 cholera outbreak in Soho,
London, back to a contaminated well (Anderson, 2018) are fundamental contributions both to
epidemiology and statistics, and exemplifies the value of data in understanding public health.
Despite the immense medical and technological progress achieved since, the outbreak of COVID-
19 in late 2019 revealed how the core challenges which Graunt and Snow faced continue to persist,
i.e. to describe and predict the spread of a disease, and to evaluate its impact on public health.

First reports of a novel pneumonia-like disease in Wuhan, China, were soon attributed to a
new coronavirus strain, later named ‘SARS-CoV-2’ (Li et al., 2020). A notable characteristic of
COVID-19, the disease caused by SARS-CoV-2, is its infectiousness (Peiris et al., 2004). Though
first cases were only recorded in late 2019, COVID-19 had already been classified a global pan-
demic in early 2020 (Gallagher, 2020). In March, 2020, particularly affected regions, such as the
Lombardy region in Italy, faced an extreme strain on their health care system which resulted in
some hospitals having to resort to triage (Fagoni et al., 2020). Evidently, the impact of COVID-
19 on public health and the health care system has been extremely severe. More than five years
later, the World Health Organization reports over 777 million confirmed cases and approximately
7 million deaths attributed to COVID-19 worldwide (World Health Organization, 2025).

In an early response to the COVID-19 outbreak, health organisations, medical professionals, and
researchers from a wide range of disciplines mobilised globally to provide some data-driven in-
sight into the COVID-19 pandemic. One such initiative was the Covid-19 Data Analysis Group
(CoDAG) at the Ludwig-Maximilians-Universitdt Miinchen (2020), which sought to deepen the
understanding of COVID-19’s impact on public health in Germany. CoDAG’s work focused par-
ticularly on infection dynamics, hospitalisations, intensive care and mortality, and discussed the
information needed to gain a holistic picture of COVID-19’s impact on Germany’s public health.
For example, Fritz et al. (2023) give some commentary on the learnings from the COVID-19
pandemic by CoDAG. Where necessary, CoODAG would strive to develop statistical methodology
to bridge the gap between the information needed to gain a complete picture of COVID-19 and



1. Introduction

the data available. Additionally, Jahn et al. (2022) and a subsequent discussion by Berger et al.
(2022), or Spiegelhalter and Masters (2021) elaborate on the statistical modelling and reporting
of COVID-19 beyond CoDAG.

The contributions of this thesis are part of CoDAG’s collaborative effort. Specifically, this thesis is
concerned with intensive care unit (ICU) occupancy and dynamics during the COVID-19 pandemic
in Germany. The ICU occupancy is recorded and the number of ICU beds occupied by patients
infected with COVID-19, the number of beds occupied by patients not infected with COVID-19
and number of unoccupied beds are published daily, aggregated over each district (‘Landkreis’
in German) in Germany. Though data on the occupancy are publicly available on district level,
data on ICU patient inflow and outflow are not. Thus, as ICU patient dynamics are important to
better understand the severity of COVID-19, statistical methodology is employed to disentangle
inflow and outflow of ICU patients from the data available, i.e. ICU occupancy data. This thesis
includes both analyses on the ICU occupancy and introduces methodology to disentangle the
occupancy into inflow, length of stay and outflow. The thesis is structured as follows.

In Part I, Chapter 2 introduces commonly employed key metrics for comprehensively monitoring
COVID-19, and discusses the publicly available data on COVID-19 in Germany. This Chapter
aims to provide a holistic overview of public health surveillance with respect to COVID-19, with
discussions on data available on infection, mortality, hospitalisation and intensive care in Germany.
Chapter 3 presents the introduction into the statistical methodology underlying particularly the
contributions of this thesis. It commences with an overview of parametric statistical models
(Section 3.1), followed by approaches to parameter estimation (Section 3.2), and concluding with
methods for quantifying uncertainty (Section 3.3). Chapter 4 then specifies methodology employed
in the contributions of this thesis, tying in Chapter 2 and 3 to motivate the contributions and an
outlook on directions for future research.

Part II comprises the first contribution, in Chapter 5, and focuses on the association between
COVID-19 infection rates and the distribution of ICU occupancy in Germany. A central feature
of this analysis is the assumption of a multinomial distribution when modelling the allocation
of ICU beds to patients with COVID-19, patients without COVID-19, or unoccupied beds. This
reflects the mutually exclusive nature of bed allocation. Specifically, the distribution of ICU beds is
estimated in association with the infection rates of the 35-59, 60-79, and 80+ year-old age groups,
as well as the previous week’s occupancy, incorporated as an autoregressive covariate. Spatial
correlation is modelled via a two-dimensional thin-plate spline across district centroids, and a
random intercept is included to capture heterogeneous district effects. To account for dependencies
in the data—specifically the incomplete reallocation of beds between observations—the sandwich
estimator is employed to estimate variance.

In Part III, the ICU occupancy is taken to be a function of patient inflow, the length of stay,
and outflow. Analysing occupancy alone may omit important information on COVID-19’s patho-
genesis. Yet, in Germany, data are not available on COVID-19 patient inflow, lengths of stay, or
outflow on district level. If, for example, a constant number of beds are observed to be occupied
by COVID-19 patients in a given district on two subsequent days, then between each observation
either no patient may have been admitted and none have been discharged, or one may have been
admitted and one discharged, and so forth. Thus, the difference in occupancy between two ob-
servations is equivalent to the difference in the number of incoming patients and the number of
outgoing patients.



The second contribution, in Chapter 6, employs therefore the stochastic EM (sEM) algorithm to
iteratively simulate ICU patient inflow and outflow from a truncated Skellam distribution in the
E-step and to estimate the corresponding intensity parameters through two independent Poisson
models in the M-step. The inflow model incorporates infection rates, spatial correlation via a two-
dimensional thin-plate spline, temporal correlation through a penalised B-spline, and a weekday
dummy effect. The outflow model is defined analogously and additionally includes an offset equal
to the weighted sum of previously estimated inflow, weighted by the average probability of length
of stay, taken from Tolksdorf et al. (2020). The variance is calculated using Rubin’s rule.

Chapter 7 further extends this approach by treating the length of stay as a random parameter
rather than fixed. This transforms the outflow model of the M-step from a standard Poisson
model into a Poisson model where the length-of-stay parameters are contextually constrained to
be non-negative and to sum to one, as all incoming patients must eventually leave the ICU and
no inflow can have a negative effect on the outflow. Likelihood maximisation in this constrained
parameter space produces biased results, which are corrected through an additional simulation
step. The resulting methodology thus enables estimation in settings where only total net counts
are observed, but where researchers are interested in the underlying inflow, outflow, and length-
of-stay dynamics and is thus applicable to a plethora of data situations in which a total net count
is periodically observed and the underlying flow dynamics are of interest.






2. Public health surveillance and COVID-19

Comprehensive reporting on the impact of an infectious disease on public health, such as by
Spiegelhalter and Masters (2021) in the case of COVID-19, are typically comprised of both analyses
on spread and severity. Assessing both aspects of an infectious disease through appropriate metrics
is essential to allow for a holistic understanding of the disease. This chapter discusses some key
metrics commonly employed in epidemiology to quantify both the spread and the severity of an
infectious disease, such as COVID-19.

This chapter additionally elaborates on the publicly available data on COVID-19 in Germany
and discusses the information necessary to calculate some of the introduced metrics necessary
for measuring infection, mortality, hospitalisation and intensive care. This discussion provides
the contextual motivation for the contributions of this thesis, which focuses on ICU occupancy
and develop methodology to bridge the gap between available data and the metrics needed to
understand COVID-19.

While the quantification of spread, or infectiousness, is arguably straight forward, usually being
some function of either the number of new infections or viral load, the quantification of severity
is a little more nuanced. Kelley and Bollens-Lund (2018) define a severe illness as a disease that
poses a high risk of mortality or significantly impairs a patients’ ability to manage daily life as
they could prior to contracting the illness. By this definition, the severity of COVID-19 may be
evaluated through several complementary factors. In a meta-analysis of clinical studies, Yuan
et al. (2023) categorise the severity according to several outcome measures, which can broadly be
summarised to metrics on mortality, hospitalisation, and intensive care. The Centers for Disease
Control and Prevention (2025) also include the need for mechanical ventilation as an additional
category of severity, which in most treatment centres is administered in the ICU. In addition,
infection-associated chronic conditions such as long-COVID have emerged as an important di-
mension of severity Ely et al. (2024). Nonetheless, for the context of this thesis, metrics on
mortality, hospitalisation, and intensive care are introduced, solely.

The validity of the aforementioned metrics naturally rely on high quality, transparent and available
data. Systems for collection, storage, and publication of COVID-19 vary considerably between
and even within countries. In Germany, the Robert Koch-Institut (2025e) (RKI) is responsi-
ble for centrally gathering, cleaning, processing, and publishing data on COVID-19 infections,
mortality due to COVID-19, and hospitalisations of patients infected with COVID-19. Locally,
the data collection of COVID-19 infections, hospitalisations and mortality is conducted by local
health authorities. Local health authorities coincide with districts in Germany and collect the
data from testing stations, doctors and hospitals. By calendar week 45 2020, 200 laboratories
tested and reported test results on COVID-19 to doctors or patients and to the responsible local
health authorities, (Willrich et al., 2021; Gross, 2024). The health authorities pass the number
of recorded infections onto the RKI, as per the Infection Protection Act (IfSG) (Robert Koch-
Institut, 2025c¢).
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Data on ICU occupancy is also published by the RKI but collected by the Deutsche Interdiszi-
plindre Vereinigung fiir Intensiv- und Notfallmedizin (2025) (DIVI), as an extension to a reporting
system already established pre-pandemic by the German ‘ARDS-Netzwerk’, the German network
for acute respiratory distress syndrome care (Deutsche Interdisziplindre Vereinigung fir Intensiv-
und Notfallmedizin, 2025). Treatment centres (usually hospitals), are liable to send on their
ICU occupancy distribution to the DIVI by 12:00 (UTC+1:00) every day (Robert Koch-Institut,
2025d). The DIVI then publishes data on three levels of varying granularity, namely on district
level, on county level (‘Bundesland’ in German) and on country level.

2.1. Infection

On its most rudimentary level, the number of new infections is a simple indicator on a diseases
spread. However, arguably regions with a larger population, would likely exhibit a larger number
of infections. Thus, the number of infections are commonly relativised by the size of the corre-
sponding population. Though, if the number of infections are relatively low, compared to the
population size, it is more conceptually intuitive to inspect the incidence, i.e. the infection rate
per 100,000 inhabitants, defined by

_ Total number of new COVID-19 cases

100,000. 2.1
Total population St (2.1)

L

In Germany, non-pharmaceutical interventions, such as lockdowns and curfews, were directly tied
to the 7-day incidence rate (Wunderlich, 2020), which is a common extension to (2.1) in which the
total number of new COVID-19 cases is summed over seven days, mitigating daily fluctuation.

Naturally, the recording and registration of infections is subject to delay for systemic and ran-
dom reasons. However, in an ongoing global pandemic, it is necessary having reliable real-time
data. Therefore, nowcasting methods were employed. Giinther et al. (2021), for example, develop
nowcasting methods for COVID-19 infections in Bavaria, using previously observed dynamics in
reporting delay, they estimate the number of infections which have not yet been reported at the
given time point. De Nicola et al. (2022) give an intuitive elaboration on the delay of data regis-
tration of COVID-19 infections. Wolffram et al. (2023) compare different nowcasting methods in
assessing hospitalised individuals infected with COVID-19. Schneble et al. (2021) further extend
the nowcasting to reporting delay in fatalities due to COVID-19. In the first contribution of this
thesis, Chapter 5, Maximilian Weigert applies nowcasting to the hospitalisations in Bavaria and
shows its improved performance in forecasting the development of a COVID-19 pandemic.

A further shortcoming in all diagnostic data which relies on tests, is that the total infection counts
are not only a function of prevalence of the disease but also of testing strategy, sensitivity and
specificity of the respective tests used. As a simplified example, Figure 2.1, is presented. For fixed
20% of the population being tested, the probability of being unobserved and sick is plotted in
dashed-turquoise over different values of prevalence. The probability of being falsely detected by
being tested positive but healthy is plotted in solid blue. For low prevalence, we observe a higher
probability of being falsely recorded than falsely unobserved, resulting in a higher probability
of over-counting. For larger prevalence, the probability of being unobserved and sick increases,
while the probability of being falsely recorded as sick decreases, eventually leading to a probable
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False Positives and Missed Positives (Testing 20% of Population)
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Figure 2.1.: Unobserved infected and falsely recorded cases over prevalence.

under-counting of cases. A similar result was shown empirically by Healy et al. (2021). In this
simple example, this point is reached at a prevalence of 6%.

This further evokes the topic of systematically unreported cases. It may be that there has been
a non-negligible number of undetected cases. Fiedler et al. (2021), for example, investigate the
undetected spread of infection in a comparison between Italy and Germany through mathematical
models.

Another key metric is the basic reproduction number, Ry, defined as the expected number of
secondary infections caused by a single infected individual in a wholly susceptible population
(Diekmann et al., 1990). A meta-analysis conducted in March 2020 estimated the mean Ry of
COVID-19 at 3.38, with a 95% confidence interval of (2.81, 3.82) (Alimohamadi et al., 2020).
Over time, however, the proportion of susceptible individuals in a population changes due to
interventions or immunity (acquired through infection or vaccination). Consequently, the effective
reproduction number, R;, became the more relevant measure, as it incorporates the proportion of
immune individuals at a given time (Spiegelhalter and Masters, 2021).

A further perspective on infectiousness is provided by the viral load of infected individuals.
Meyerowitz et al. (2021) estimated in 2021 that viral load peaks one to two days prior to symptom
onset. This is of particular concern, since individuals are presumed to be more infectious when
viral load is high, but may transmit the virus unknowingly while presymptomatic. Puhach et al.
(2023) later find that the timing and magnitude of viral load vary depending on the variant with
which an individual is infected.

2.2. Mortality

A key measure for assessing the mortality due to an infectious disease, such as COVID-19, the
standardised mortality ratio (SMR), defined by

Total number of observed events
MR = . 2.2
SMR Expected number of events (2:2)
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Age-Specific COVID-19 Mortality in Germany
Deaths per 100,000 population by age group
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Figure 2.2.: Mortality rate per 100.000 inhabitants by age group in Germany from March 2020 to August
2022.

Farr (1852) introduced the SMR, which has since been widely accepted as a key metric for assessing
incidences attributed to an adverse event (Armstrong, 1995). In terms of mortality, it is the
number of deaths observed during an adverse event relative to the number of deaths expected in
its absence.

However, the estimation of the counterfactual baseline, i.e. the expected number of deaths, is
inherently uncertain and methodologically debated, particularly in outbreaks of novel diseases. In
the COVID-19 pandemic, most analyses stress the importance of differentiating by age groups,
while De Nicola et al. (2022) further argue in favour of accounting for demographic changes in
order to produce appropriate baseline estimates. They thereby obtain more moderate estimates
than earlier studies, such as Vestergaard et al. (2020).

Alternative measures include years of life lost, which quantify the difference between age at death
and expected remaining life years, introduced conceptually by Gardner and Sanborn (1990). This
measure has been used to place the severity of COVID-19 in comparative perspective with other
causes of death, such as influenza or cardiovascular disease (Pifarré i Arolas et al., 2021).

For context, Figure 2.2 shows the recorded number of deceased infected with COVID-19 at time of
death per 100.000 inhabitants given their recorded age group, calculated analogously to (2.1), as
reported by the Robert Koch-Institut (2025b). In Germany, there are two data bases which com-
prise data on deaths due to COVID-19. The first being the Robert Koch-Institut (2025f) (RKI)
and the other being collected and published by the Statistisches Bundesamt (2025) (Destatis).
The RKI data set includes both patients who died ‘with’ and ‘due to’ COVID-19, without dif-
ferentiating them, while the Destatis dataset includes only data on the people who died due to
COVID-19. Additionally, the Destatis dataset differentiate between deaths which are proven to be
COVID-19 cases and deaths which are suspected COVID-19 cases. In any case, Wollschléger et al.
(2024) argues that assessing the number of deaths registered due to COVID-19 can be susceptible
to bias, due to likely systematic differences in recording the cause of death across Germany. The

10



2.3 Hospitalisations

discussion on the causality of adverse health events in patients during the COVID-19 pandemic
also extends to data on hospitalisation and intensive care.

2.3. Hospitalisations

The key measure for hospitalisations is the hospitalisation rate per 100,000 inhabitants, analo-
gously calculated to (2.1). This measure is more straightforward than the SMR but not without
limitations, when assessing severity. For instance, some hospitalised patients tested positive for
COVID-19 despite being admitted for unrelated reasons. Some studies account for comorbidities
in assessing hospitalisation risk Mattey-Mora et al. (2022), though such adjustments are usually
undertaken in clinical-level research or meta-analyses.

The previous discussion on fatality being ‘due to’ a COVID-19 infection or ‘with’ a COVID-19
infection also extends to the data on hospitalisations. In Germany, there are no publicly available
health surveillance data which clearly differentiate between patients who are admitted due to
COVID-19, directly or indirectly, or due to another cause and happened to be infected with
COVID-19. While it is important to understand the strain on the health care system which
infected individuals impose, regardless of the cause of their hospital admittance, it is equally
important to understand the severity of COVID-19. Thus, one should ideally differentiate between
hospitalisations due to COVID-19 and hospitalisations due to other causes.

In the beginning of the COVID-19 pandemic the conjectural belief of the physicians consulting
CoDAG, was that the department to which the patient was admitted would inform on the cause of
admission. For example, patients admitted to the ICU were thought to have been admitted ‘due
to’ COVID-19. However, contrary to this initial intuition, Strobl et al. (2024) show that there is no
significant difference in the patients admitted to the ICU or another hospital department, in terms
of whether patients are admitted ‘due to’ or ‘with’ COVID-19. In this regard, the only significant
difference was estimated between the ICU admittance and the surgical ward. Taking into account
the testing strategy for non urgent surgical procedures, this finding is intuitive. However, this
analysis comprises clinical level data, not publicly available.

Figure 2.3 shows the total hospitalisations of 7-day-averages across Germany of patients which were
hospitalized and infected with COVID-19. The data are provided by the Robert Koch-Institut
(2025a).

11
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Figure 2.3.: Total 7-day-average hospitalisations.

2.4. Intensive care

Admission to intensive care represents an additional dimension of severity of COVID-19’s patho-
genesis. COVID-19 commonly impairs respiratory function (Hosey and Needham, 2020) and the
degree of respiratory support required can range from non-invasive assistance to highly invasive
mechanical ventilation, and is usually administered in intensive care.

The most widely used public health metric, globally, on assessing the intensive care during the
COVID-19 pandemic, is the ICU admission rate, defined analogously to (2.1) as the number of
COVID-19 patients admitted to ICUs per 100,000 inhabitants.

The data on the ICU occupancy on district level are recorded and published daily and encompass
information on the number of unoccupied beds, beds occupied by patients infected with COVID-
19 and beds occupied by patients not infected with COVID-19. The data also contain the number
of patients on respiratory aid and distinguish between adult and child care facility occupancy.
Interestingly, on county and country level, there is more information comprised in the data.
Namely, the county level data includes data on ICU admissions, while on country level, data on
patient age groups are included (Robert Koch-Institut, 2025d). Thus, the ICU admission rate
can only be provided on county level, or higher. Chapter 7 includes further illustration on county
level ICU admission.

Figure 2.4 shows the maximal number of treatment centres, i.e. ICUs, reporting to the DIVI
by district, between the 15! of March, 2020, and 1% of August, 2022. The ICU data during
the COVID-19 pandemic are recorded for the purpose of understanding the strain on the ICU
facilities. As such, solely the occupancy is recorded daily on district level. Data on the admittance,
however, is only published on county level. Thus, while it is possible to analyse the ICU occupancy
on district level, the ICU-admittance cannot be directly analysed by the publicly provided data.

Figure 2.5 shows the total occupancy in the intensive care units in Germany, as well as the ICU
admittance which has been made available on county level from the 29" of July 2021. The figure
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Figure 2.4.: Maximal number of treatment centres reporting to the DIVI by district, between the 15t of
March, 2020, and 1%¢ of August, 2022.

shows that occupancy numbers much higher and increase more drastically than the number of
ICU patients admitted and infected with COVID-19. This evidences that the occupancy is not
a direct function of admittance but also a function of length of stay. One should therefore also
investigate the number of patients admitted to the ICU and infected with COVID-19, as well as
the average length of stay of patients on the ICU.

The contributions of this thesis solely pertain to this aspect of the COVID-19 pandemic. In the
first contribution the distribution of ICU occupancy is analysed, as seen in Chapter 5. In Chapter
6, the number of admitted and released patients are disentangled from the occupancy, thereby
allowing for the analysis of an ICU admittance rate. In Chapter 7, this is further extended to
allow for estimation on the average length of stay in the ICU.

To the best of our knowledge this has previously not been attempted. Karagiannidis et al. (2020)
and Keller et al. (2023) explore the ICU admission, but do so by collecting further clinical level
data. Karagiannidis et al. (2021) report the ICU admission on country level, rather than district
level, which is the granularity in the contributions of this thesis.
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Figure 2.5.: ICU admittance and ICU occupancy. Data taken by Robert Koch-Institut (2025d).



3. Statistical Modelling

Following McCullagh (2002), statistical modelling is broadly understood as the methodology for
reformulating real-world problems within a mathematical framework. In particular, parametric
statistical modelling is defined by a parameter set © and a function P that assigns each § € © to a
probability distribution P on the sample space S, such that P : © — P(S), where P(S) denotes
the set of all probability distributions on §. Statistical modelling, and parametric modelling in
particular, therefore form the cornerstone of empirical analysis.

The origins of statistical modelling lie in what has come to be known as regression, a concept
introduced by Sir Francis Galton (1822-1911) in 1885. Galton analysed hereditary associations
using the least squares method, which had been introduced by Gauss and Legendre approximately
80 years earlier (Stigler, 1986). These foundational ideas have since evolved into a comprehensive
framework that underpins many of the parametric statistical models in widespread use today.

Following Fahrmeir et al. (2013) and Wood (2017), and Hastie et al. (2009), a distinction is
commonly drawn between Normal Linear Models (LMs), Generalised Linear Models (GLMs), and
Generalised Additive Models (GAMs), which reflects the historical chronology of their theoretical
development. Moving from LMs to GLMs, the generalisation from the Gaussian distributional
assumption to a broader class of distributions is credited to Nelder and Wedderburn (1972), who
introduced GLMs for distributions within the exponential family, a concept initially attributed
to Pitman (1936). Hastie and Tibshirani (1987) subsequently extended the linear predictor by
allowing the linear combination of explanatory covariates to be substituted by smooth functions,
thus extending GLMs to GAMs and moving from parametric to non-parametric statistical models.
These models were later refined by Eilers and Marx (1996) and Wood (2015), among others, with
further extensions outlined by Fahrmeir et al. (2013).

Fundamentally, these models are governed by three key assumptions: the distributional assump-
tion, the structural assumption and assumption of independence. All three are necessary to
quantify the relationship between explanatory covariates and the response, as outlined in Sec-
tion 3.1.

In practical terms, statistical models aim to quantify the association between a response (or mul-
tiple responses) and explanatory variables assumed to contain relevant information. By assigning
each observation in the data, X;, a probability according to the assumed distribution, one can
calculate the joint probability of the data given the distributional parameters. This forms the
likelihood function, which can then be maximised with respect to the parameters . Estimation
methods for GAMs are discussed in Section 3.2, while approaches to quantifying the uncertainty
of these estimates are outlined in Section 3.3.
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3.1. Model

To relate the response quantitatively to the explanatory variables, parametric statistical models
rely on three fundamental assumptions: a distributional assumption, a structural assumption, and
an independence assumption. The restrictiveness of these assumptions varies by context, but each
must be specified to obtain a coherent framework for estimation. The independence assumption
forms the foundation for likelihood based parametric modelling, where the distributional and
structural assumption are further specified by the researcher. The distributional assumption
supplies the general probabilistic form of the response; determining location, scale, and shape,
while the distributional parameters are linked to explanatory variables. The structural assumption
prescribes the functional form of this link between parameters and covariates. The following
subsections introduce the general form of both assumptions.

3.1.1. Distributional assumptions

Following introductory treatments (e.g. Kauermann et al., 2021), let the response be a real-valued
random variable Y,
Y:Q—-R, (3.1)

where () denotes the sample space and R the set of real numbers. Realisations are denoted
Yy = [y1,-..,yn]. The probability law Py assigns probabilities to events involving Y in accordance
with Kolmogorov’s axioms (Kolmogorov, 1933). Writing Fy (y | ) and fy (y | €) for the cumulative
distribution function (cdf) and probability density function (pdf), respectively,

Y ~ FY( : ‘ 0)7
Y
Py <) =Frly|6) = [ (5l 6)dy (32)
For discrete responses the density is replaced by a probability mass function (pmf), and the integral

by a sum.

The distribution depends on both the response and the parameter vector 8 that encodes location,
scale and (where relevant) shape. A central task is to specify which parameters are to be estimated
and to choose an appropriate distributional family. While most simply one-parameter models (e.g.
estimating a mean) are encountered, many applications require multi-parameter families in which
variance, skewness and kurtosis (or analogous characteristics) are also parameterised (Fahrmeir
et al., 2013). Multivariate response models are, of course, inherently multi-parameter. A widely
used class is the multi-parameter exponential family,

fr(y18) = b(y) exp{(8) "T(y) — AB)}, (33)

where T'(y), b(y), ¥(0), and A(@) are known functions of the data and parameters. For an
intuitive overview, see DasGupta (2011). The choice of 1(6) and parameterisation determines
the link between covariates and parameters, and will interact with the structural assumption.

Extending (3.1), consider p real-valued responses on a common probability space,

Y;:Q—-R Vie{l,...,p}. (3.4)
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3.1 Model

The Multinomial distribution, Poisson distribution, and the Skellam distribution, which are rel-
evant to this thesis, are outlined below. Thereafter, introduced models may be referred to as
‘Multinomial model’ or ‘Poisson model’, referring to regression models in which the response is
assumed to follow the respectively titled distribution.

Multinomial distribution

Suppose an experiment with ¢ categorical outcomes is repeated n times independently, with cat-
egory probabilities p = (p1,...,pc), such that >5 ;p; = 1. Let Y = (Y1,...,Y.) denote the
category counts; the sample space consists of vectors y satisfying

Zyi =n, y; € NO. (3.5)
i=1

Then Y is Multinomially distributed, denoted by

Y ~ Mult(n,p), (3.6)
n! .
PY =y) = Ciy' Hpiyl. (3.7)
=19 ;=1

Marginally, Y; ~ Bin(n, p;), but the components are dependent (they sum to n) (Rudas, 2018).

Poisson distribution

Let the variable L follow a Poisson distribution, with pmf

L ~ Pois(N), (3.8)
)\lefx\
P(L=1) = . (3.9)

where -! is the factorial function (Poisson, 1837).

Skellam distribution

Let X ~ Pois(A;) and L ~ Pois(A2) be independent. Then their difference Z = X — L follows
the Skellam distribution, with pmf

7 ~ Skellam(Ay, Ag), (3.10)

P(Z =z2) = exp(— (M1 + \2)) (2)2/2 I (2\/ )\1)\2) ) (3.11)

where I,,(-) is the modified Bessel function of the first kind, with Z € Z (Skellam, 1948).
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3.1.2. Structural assumptions

Given a distributional assumption, the structural assumption specifies how each distributional
parameter depends on covariates. Parameters may be fixed (known) or modelled as functions
of explanatory variables. Let @ = (6;,...,6,) denote the g-dimensional parameter vector. Each
parameter is assumed to be a function of a set of covariates, thus the i** observation of the j**
parameter is assumed to take the form

0ij = hj(nij), (3.12)

where h;(-) is the response function (its inverse g;(-) = hj_l(-) is the link function) and 7, ; is
referred to as the (linear) predictor. The response function is usually chosen so that its codomain
matches the parameter’s support and, where possible, to simplify estimation (e.g. using a canonical
link for exponential-family models (Fahrmeir et al., 2013)). For readability, n; ; is going to be
written as 7; hereafter.

Linear combination

The simplest specification is a linear predictor,

n = Bo+z B (3.13)

The linear combination of covariates may be restrictive for certain data situations. Transforma-
tions of the included covariates render the structural assumption of a linear combination a little
less restrictive.

A common transformation of covariates is applied when the realisations of the a covariate, x.,
are non-numerical, e.g. categorical. If the support of x. are categories, the variable needs to be
transformed, such that likelihood can then be calculated. A common transformation is ‘dummy’
or ‘reference’ coding. On a high level, the variable is transformed into a binary matrix, X, in
which the j** entry of the k" column takes the value of 1, if the j*" observation of the variable
x. takes the value of the k" category, and 0 otherwise. To preserve identifiability a reference
category is chosen, whose corresponding column is set to 0. For more detail see (Fahrmeir et al.,
2013, p. 94).

Further, if prior knowledge suggests a specific functional form for a covariate’s effect, the covariate
may be transformed according to the functional form. For example, a quadratic term may be
included as

mi = Bo+ @ _kBok + BriTik + BraTik, (3.14)
with x; _j indicating the ith observation of the included covariates, omitting the k" covariate.
Splines and smooth functions

However, if the functional form of a given covariate is not known and cannot be represented by
commonly well-known covariate transformations, effects may be modelled by regression splines,
i.e. linear combinations of basis functions spanning the observed covariate range. Popular choices
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include truncated polynomial splines and B-splines (Fahrmeir et al., 2013; Green and Silverman,
1993).

In practice, the number, location and span of basis functions strongly influence the fit and are
at the discretion of the analyst. Increasing the basis dimension can interpolate the data, risking
numerical instability and overfitting (Wood, 2003).

Smooth splines address this by penalising roughness, balancing fit and smoothness. P-splines (Fil-
ers and Marx, 1996; Eilers et al., 2015) combine a B-spline basis with a difference-penalty (typically
on second differences or derivatives). Extending (3.13)—(3.14), a smooth effect of covariate x; j is
written

ni = Bo+m Bk + f(Tik), (3.15)
with f(z; ;) = Zg}:l YwBw(2i ) built from d = m +1 — 1 B-spline basis functions on [k1_;, K1)
with knots {k1_;, ..., Kmyi} and Zizl By (zix) = 1. For a B-spline basis of degree [,

BW (z,4) = L= Fw-1 ng)(xi’k) 4 St 7T BUD (z;.4). (3.16)
Ky — Kw—1 Ruw+l — Rw

For multi-dimensional smoothing, thin-plate splines (a special case within the Duchon family of
isotropic smoothers (Duchon, 2006)) are attractive because they avoid manual knot placement
(Wood, 2017). A generic representation is

n M
fl@) = > 6R(lx—zil) + Y a;¢;(x), (3.17)
i=1 j=1

with coefficients § and a subject to the constraint T8 = 0, where T}; = ¢;(z;) and {qﬁj}jj\il are

linearly independent polynomials in R? of degree less than m (with M = (m"'j_l)). Additionally,
x; denotes the i*" observation of the covariates over which the smooth spline is calculated, . The
radial basis R(r) is

(_1)m+1+d/2 o d
— r“" %logr, d even,
R(r) = Nmalr) = 2211(;7;6(%* d/2)! (3.18)
p2m=d d odd,
22mad/2(m — 1)!

and computational burden can be reduced via an eigendecomposition of the associated kernel
matrix (Wood, 2003).

Random effects and other extensions can be incorporated using the same penalised-spline approach
(Eilers et al., 2015), e.g.

n = Bo+m B+ u, (3.19)
u; ~ N(0,02), (3.20)

with u; represented through an appropriate (penalised) basis.
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3.2. Estimation

Once the distributional and structural assumptions have been defined, a probability measure
can be assigned to each observation given a set of distributional parameters. Together with
the independence assumption, this permits the calculation of the joint conditional probability
distribution corresponding to the likelihood, £(€;y). The likelihood and its logarithm, the log-
likelihood, are given by

) = [[ (i 6. (3.21)
=1
(6:y) = log L(O:y) = > log fy (3 | 6,). (3.22)
=1

The likelihood is a function of the parameter vector @ and the data y, and can thus be used to
identify plausible values for 8. Maximising £(0 | y) with respect to 6 yields estimates for which
the observed data are most probable, given the assumed model.

Under regularity conditions (Cramér, 1946), a maximum of the likelihood exists within the pa-
rameter space, denoted é, which is called the maximum likelihood estimate (MLE). When a
model belongs to the exponential family but its variance assumption is overly restrictive, the
quasi-likelihood provides a relaxation; see Fahrmeir et al. (2013, p. 309) for details.

In the frequentist framework, the objective is to approximate the true (but unknown) parameter
vector, Oyue. By contrast, in Bayesian statistics 6 is treated as a random variable with posterior
distribution .
p(0|y) o< [] fr(vil 0)£(0), (3.23)
i=1
where f(0) denotes the prior distribution. Although the two paradigms differ philosophically, they
coincide mathematically in some settings (e.g. with certain non-informative priors). This thesis
focuses on methods rooted primarily in the frequentist framework, and the following discussion
emphasises likelihood maximisation.

For computational reasons, the log-likelihood is typically used. Estimates are obtained by solving
the score equations, i.e. the system of first-order partial derivatives with respect to the parameters
(Fahrmeir et al., 2013, pp. 653-659).

To ensure identifiability or to impose desirable properties, such as smoothness, which is previously
referred to in Section 3.1, the maximisation of the likelihood can be penalised. The penalised
maximum likelihood estimate is defined as

A

0 = arg max {€(0;y) — Apen(0)} . (3.24)

The penalty term depends on the choice of model. For smooth functions, it is determined both
by the choice of basis and by the properties one wishes to enforce. In P-splines (Eilers and Marx,
1996), the penalty takes the form

d

pen(y) = 3 (AT)? = / (F"(2ix))* dei g, (3.25)

w=r+1

20



3.2 Estimation

where A" denotes the r'! order difference and f”(z; ) the second derivative of f(w; ).

For thin-plate splines, (3.17), the penalty is given by

2
m! omf
pen(f) = / 2 T <8mlf1'--6:nzd) o (326)

v1+--trvg=m

with d indicating the number of covariates over which f is smoothed (Wood, 2003).

In some cases the MLE can be derived analytically, but this is rarely feasible in practice, so
numerical approximations are used. A common class of iterative methods is based on Newton’s
method (Wood, 2017, p. 76). Newton—-Raphson and Fisher scoring are widely applied variants
(Fahrmeir et al., 2013, p. 660). These rely on successive quadratic approximations to the log-
likelihood via second-order Taylor expansion around the current estimate. If the Hessian matrix is
indefinite, modified Newton methods may be used, substituting a positive-definite approximation.
Fisher scoring replaces the Hessian with the Fisher information matrix (Wood, 2017, pp. 76-77);
see also Kauermann et al. (2021, p. 77) for an intuitive explanation. Quasi-Newton methods
provide further flexibility by updating approximations to the Hessian iteratively (McLachlan and
Krishnan, 2008, pp. 3-8).

The Expectation-Maximisation (EM) algorithm (Dempster et al., 1977) is another iterative esti-
mation procedure, particularly valuable when data are incomplete. Let & € X denote covariates
and y € Y the response. If part of y is unobserved, i.e. y = [y,, Y-o|, the likelihood must inte-
grate over the missing data. This is often analytically intractable. The EM algorithm provides a
practical solution and converges under mild conditions (Vaida, 2005). At iteration k, it alternates
between:

1. Expectation step (E-step):

Q(0,0%1) Z/logf 00:0) F (9o | 920, 04 dyi (3.27)
=Egu-[€(0;y) | yol- (3.28)

2. Maximisation step (M-step):
(k) _ (k—1)
0\ = arg Gme%zxe Q6,0 ). (3.29)

Starting from initial values 0 these steps are repeated until convergence (McLachlan and Kr-
ishnan, 2008, p. 18). Cince its development, numerous variants of the EM algorithm have been
proposed.

A relevant variant for this thesis is the stochastic EM (sEM) algorithm (Broniatowski et al., 1983;
Celeux, 1985; Celeux and Diebolt, 1986b,a), a special case of the Monte Carlo EM (MCEM)
algorithm (Wei and Tanner, 1990a,b). In MCEM, the intractable expectation in the E-step is
approximated by Monte Carlo integration using simulated missing data. Specifically,

Q6,0 V) Ze 0; Yo, v’,), (3.30)
] 1

where y/, are samples from f(y-o | Yo, 9(’“*1)). The sEM algorithm corresponds to the special
case m = 1. At each iteration it:
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1. Simulates ygf)) from fy (v; | éz(k—l))’

2. Updates ) via MLE (or similar),

until convergence to a stationary distribution. For example, Haggstrom (2002, p. 28), give an
intuitive introduction to- and definition of the stationary distribution of a stochastic process. Al-
though convergence of SEM to a stationary distribution is guaranteed, the relationship to the true
likelihood maximum is not always straightforward; see McLachlan and Krishnan (2008, p. 226).

Finally, depending on the likelihood, parameter space, or estimation method, estimates may be
biased. Bias properties are critical for (weak) consistency (Wakefield et al., 2013, p. 39). The bias
of an estimator 6 is

bias(@, ) = E(8) — 6. (3.31)

If bias(é,B) = 0 for all @ € Qp, then 6 is unbiased (Kauermann et al., 2021, p. 41). A wide
range of bias-correction methods have been proposed; see Cordeiro and Cribari-Neto (2014) for
an overview.

3.3. Uncertainty

Hiillermeier and Waegeman (2021) discuss uncertainty and its quantification in the context of su-
pervised learning, to which regression and maximum likelihood estimation naturally belong. They
distinguish between two forms of uncertainty: epistemic and aleatoric. Epistemic (or systematic)
uncertainty arises from a lack of knowledge, for example about the correct model specification,
while aleatoric uncertainty reflects inherent randomness in outcomes, i.e. variability in the data-
generating process. Along similar lines, Begg et al. (2014) highlight the distinction between
uncertainty and variability.

To reiterate, the likelihood (3.21) is maximised to obtain the MLE . According to Hiillermeier
and Waegeman (2021), the ‘peakedness’ of the likelihood function around 0 reflects the certainty of
the estimator. Thus, confidence regions and, by extension, the variance of the estimator provides a
frequentist means of quantifying uncertainty—though not an infallible one. Namely, this approach
does not allow the researcher to disentangle aleatoric and epistemic uncertainty. Nonetheless, in
the context of this thesis, attention is restricted to variance-based measures.

In parametric modelling, as the number of independent observations n tends to infinity, the
maximum likelihood estimator 6 is asymptotically normal. More specifically,

V(6 —6) 2 Mo, 1(6)7Y), (3.32)
where ,
1(6) = —Eg [MZ(G;ZI) (3.33)
v 1<i,j<n

is the Fisher information matrix (the negative expected Hessian of the log-likelihood at ).

From this, approximate confidence regions for 6 around 0 can be derived. A commonly used
large-sample (1 — «) confidence region is

Cloa = {09 : 0-0)T10)(0-0) < X1}, (3.34)
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3.3 Uncertainty

where p = dim(0) and XI%, 1—q 18 the (1 —a) quantile of the Chi-squared distribution with p degrees
of freedom.

It follows from (3.32) that the Fisher information provides a lower bound—known as the
Cramér—Rao bound—for the variance of an unbiased estimator é, under regularity conditions
(Nielsen, 2013). Asymptotically, the variance estimate approaches this bound (Cordeiro and
Cribari-Neto, 2014, p. 4). However, if assumptions, such as independence are violated, or if the
variance specification is too restrictive, and one may under or overestimate the certainty of the
estimators. Thus, adjustments are required. A common adjustment is the sandwich estimator
(Wakefield et al., 2013, p. 33), which estimates the variance as

V() = A71(6) B(6) A71(9), (3.35)

where, in the context of likelihood estimation,

A(0) = E ((feagTz(e; y)) , (3.36)

B(6) =F [({faae; 0) (5510 yﬂ . (3.37)

In the context of missing data problems, the variance of estimates obtained by the stochastic EM
(sEM) algorithm must be adjusted to account for imputation during the E-step. Rubin’s rule
provides an appropriate correction (Kauermann et al., 2021, p. 301). Suppose the sEM runs for
K iterations after convergence. At each iteration k € {1,..., K}, both %) and V®#) = 1-1(§(*))
are calculated, with I(-) denoting the Fisher information matrix of the complete data. The pooled
parameter estimate is

. 1 K.
0 = —> 6w, (3.38)

6% — 6% (6™ — )", (3.39)
which simplifies to
V(6) = 3" (0" — 6% (6™ — 64", (3.40)

in the case where all data are imputed in the E-step.
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4. Concluding Remarks

During the outbreak and spread of COVID-19, the world faced a multitude of unforeseen chal-
lenges, one of which was assessing the extent of its impact on public health. The contributions of
this thesis form part of the effort to understand the impact of COVID-19 on ICUs in Germany.
The methodology developed herein is not limited to COVID-19 but is applicable to a wide range
of contexts. In essence, the contributions concern the estimation of the association between ICU
bed occupancy and COVID-19 infection rates, the inference of patient inflow and outflow from
occupancy data, and the extension of this analysis to estimate the average length of stay.

The following sections provide an overview of the key findings of the thesis’ contributions, together
with an outlook on possible applications and extensions of the developed methodology.

4.1. Contributions

Part II analyses the distribution of the ICU occupancy. The Multinomial distribution is assumed
when analysing the ICU occupancy with respect to beds either being occupied by patients infected
with COVID-19, patients not infected with COVID-19, or unoccupied. This approach allows
estimation of associations between the ICU bed distribution and lagged infection rates by age
group, the bed distribution of the previous week, spatial correlation (captured through a two-
dimensional thin-plate spline), and district-level heterogeneity (modelled via a random intercept).
The multinomial assumption is particularly valuable for prediction, as it reflects the mutually
exclusive nature of ICU bed allocation.

Part III extends the analysis of Part II by inferring patient inflow and outflow from ICU occu-
pancy. Chapter 6 employs the stochastic Expectation-Maximisation (sSEM) algorithm to iteratively
simulate from a truncated Skellam distribution with incoming and outgoing intensity parameters,
which are estimated using two independent Poisson models. The covariates included in the inflow
model extend analogously from Part II, further to temporal correlation via a thin-plate spline
over time, and a categorical weekday effect. The outflow model is specified analogously, with an
additional offset defined as the weighted sum of previously estimated incoming patients. While
Chapter 6 takes the weight of previously incoming patients as fixed input, Chapter 7 extends this
by treating length of stay as a random parameter. These parameters are estimated via constrained
maximum likelihood, which introduces bias. This bias is corrected employing an additional sim-
ulation step, rendering a non-standard application of the sEM.

4.2. QOutlook

In the contributions of this thesis, intensive care has been analysed from two main perspectives.
The first contribution examines ICU occupancy, providing insight into the distribution of ICU beds
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4. Concluding Remarks

and their association with infection rates. This model preserves interpretability and explainability
while offering predictions that can support facility planning. Building on this, the methodology
is extended to disentangle the previously unobserved patient inflow, length of stay, and outflow
from occupancy data. In this particular use case, it provides valuable insight into a pandemic for
which publicly available data are limited, thereby enabling a more complete understanding of the
pandemic than would otherwise have been possible.

As noted above, the methodology developed in this thesis, particularly in Chapter 7, has potential
applications well beyond the context of ICU occupancy of COVID-19 patients. It can be applied in
any setting where underlying inflows and outflows are of interest but only net counts are observed,
such as herd dynamics, for example.

Nonetheless, a number of limitations remain.

A limitation arising from the specific context is that there should ideally be a distinction between
patients who are discharged to intermediate care units (or similar) and those who die. These
are evidently two very different outcomes, which may systematically affect the length of stay.
Extending the model to capture such distinctions—similar in spirit to multi-state models such as
those of Johnston and Hay (2006)—could enhance the framework, though possibly at the cost of
reduced interpretability.

Particularly in Chapter 7, the identifiability of the model poses a considerable challenge. The
longer the estimated length of stay, the more parameters the model must estimate, which can
quickly render the model non-identifiable and necessitate larger data sets. Similarly, the more
complex the model in the M-step, the less likely it is to be identifiable.

Further, the bias correction applied in Chapter 7 does not necessarily eliminate all bias, and refin-
ing this approach could yield deeper insights into the consistency of the estimators. Finally, while
the extension of the SEM algorithm in Chapter 7 is conceptually straightforward, its computational
efficiency could be improved, offering another avenue for future research. Its stochastic nature
prohibits parallelisation; however, Lu and Li (2024), for example, suggest methods to improve the
runtime of the MCEM, which may represent a promising extension to the algorithm.
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Abstract: Over the course of the COVID-19 pandemic, Generalized Additive Models (GAMs) have been
successfully employed on numerous occasions to obtain vital data-driven insights. In this article we fur-
ther substantiate the success story of GAMs, demonstrating their flexibility by focusing on three relevant
pandemic-related issues. First, we examine the interdepency among infections in different age groups, con-
centrating on school children. In this context, we derive the setting under which parameter estimates are
independent of the (unknown) case-detection ratio, which plays an important role in COVID-19 surveil-
lance data. Second, we model the incidence of hospitalizations, for which data is only available with a
temporal delay. We illustrate how correcting for this reporting delay through a nowcasting procedure can
be naturally incorporated into the GAM framework as an offset term. Third, we propose a multinomial
model for the weekly occupancy of intensive care units (ICU), where we distinguish between the number
of COVID-19 patients, other patients and vacant beds. With these three examples, we aim to showcase
the practical and ‘off-the-shelf” applicability of GAMs to gain new insights from real-world data.

Key words: Case-detection ratio, COVID-19, generalized additive models, modelling icu occupancy, now-
casting
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1 Introduction

From the early stages of the COVID-19 crisis, it became clear that looking at the raw data would
only provide an incomplete picture of the situation, and that the application of principled statistical
knowledge would be necessary to understand the manifold facets of the disease and its implications
(Panovska-Griffiths, 2020; Pearce et al., 2020). Statistical modelling has played an important role in
providing decision-makers with robust, data-driven insights in this context. In this article, we specif-
ically highlight the versatility and practicality of Generalized Additive Models (GAMs). GAMs
constitute a well-known model class, dating back to Hastie and Tibshirani (1987), who extended
classical Generalized Linear Models (Nelder and Wedderburn, 1972) to include non-parametric
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smooth components. This framework allows the practitioner to model arbitrary target variables
that follow a distribution from the exponential family to depend on covariates in a flexible man-
ner. Due to the duality between spline smoothing and normal random effects, mixed models with
Gaussian random effects are also encompassed in this model class (Kimeldorf and Wahba, 1970).
One can justifiably claim that the model class is one of the main work-horses in statistical modelling
(see Wood, 2017 and Wood, 2020 for a comprehensive overview of the most recent advances) and
numerous authors have already used this model class for COVID-19-related data analyses. As re-
search on topics related to COVID-19 is still developing rapidly, a complete survey of applications
is impossible; hence, we here only highlight selected applications, sorted according to the topic they
investigate. Many applications analyse the possibly non-linear and delayed effect of meteorological
factors (including, e.g., temperature, humidity, and rainfall) on COVID-19 cases and deaths (see
Goswami et al., 2020; Prata et al., 2020; Ward et al., 2020; Xie and Zhu, 2020). While the results
for cold temperatures are consistent across publications in that the risk of dying of or being infected
with COVID-19 increases, the findings for high temperatures diverge between studies from no effects
(Xie and Zhu, 2020) to U-shaped effects (Ma et al., 2020). Logistic regression with a smooth tempo-
ral effect, on the other hand, was used to identify adequate risk factors for severe COVID-19 cases
in a matched case-control study in Scotland (McKeigue et al., 2020). In the field of demographic
research, Basellini and Camarda (2021) investigate regional differences in mortality during the first
infection wave in Italy through a Poisson GAM with Gaussian random effects that account for re-
gional heterogeneities. With fine-grained district-level data, Fritz and Kauermann (2022) present an
analysis confirming that mobility and social connectivity affect the spread of COVID-19 in Ger-
many. Wood (2021) shows that UK data strongly suggest that the decline in infections began before
the first full lockdown, implying that the measures preceding the lockdown may have been suffi-
cient to bring the epidemic under control. This list of applications illustrates how GAMs have been
successfully employed to obtain data-driven insights into the societal and healthcare-related impli-
cations of the crisis.

We contribute to this success story by focusing on three applications to demonstrate the ‘off-
the-shelf” usability of GAMs. First, we investigate how infections of children influence the infection
dynamics in other age groups. In this context, we detail in which setting the unknown case-detection
ratio does not affect the (multiplicative) parameter estimates of interest. Second, we show how cor-
recting for a reporting delay through a nowcasting procedure akin to that proposed by Lawless
(1994) can be naturally incorporated in a GAM as an offset term. Here, the application case fo-
cuses on the reporting delay of hospitalizations. Third, we propose a prediction model for the occu-
pancy of Intensive Care Units (ICU) in hospitals with COVID-19 and non-COVID-19 patients. We
thereby provide authorities with interpretable, reliable and robust tools to better manage healthcare
resources.

The remainder of the article is organized as follows: Section 2 shortly describes the available data
on infections, hospitalizations and ICU capacities that we use in the subsequent analyses, which are
presented in Sections 3, 4 and 5, respectively. We conclude the article in Section 6.

2 Data

For our analyses, we use data from official sources, which we describe below. Note that our applica-
tions are limited to Germany although all of our analyses could be extended to other countries given
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data availability. We pursue all subsequent analyses on the spatial level of German federal districts,
which we henceforth refer to as ‘districts’. This spatial unit corresponds to NUTS 3, the third and
most fine-grained category of the NUTS European standard (Nomenclature of Territorial Units for
Statistics). We refer to Annex A for a graphical depiction of the spatial resolution of the data.

Infections and hospitalizations For investigating infection dynamics across different age groups,
we use data provided by the Bavarian Health and Food Safety Authority (Landesamt fiir Gesund-
heit und Lebensmittelsicherheit, LGL). This statewide register includes, the registration date for all
COVID-19 infections reported in Bavaria, as well as information on the patient’s age and gender.
Infection data for Germany is also published daily by the RKI (Robert Koch Institute, 2021), the
German federal government agency and scientific institute responsible for health reporting and dis-
ease control. Due to privacy protection, the RKI groups patients in broad age categories, which
inhibits the analysis of the group of school children. As this is necessary for our first application in
Section 3.3, we restrict the analysis to Bavarian data and use LGL data where not stated otherwise.

In addition, the LGL dataset includes information on the hospitalization status of each patient,
which is not included in the RKI data, that is, whether or not a case has been hospitalized and the
date of hospitalization, if this had occurred. We determine the date on which a hospitalized case is
reported to the health authorities by matching the cases across the downloads available on different
dates. This is necessary in order to derive the reporting delay for each hospitalization, which is of
interest in Section 4.

Intensive care unit occupancy Data on the daily occupancy of ICU beds in Germany, on the other
hand, is made publicly available by the German Interdisciplinary Association for ICU Medicine
and Emergency Medicine (Deutsche interdisziplindre Vereinigung fiir Intensiv und Notfallmedizin,
DIVI, 2021). Using this dataset we obtain information on the number of high and low care ICU-
beds occupied by patients infected with COVID-19 and patients not infected with COVID-19. As
a third category, there are also the vacant beds. In contrast to the infection data, no information is
available on the age or gender composition of the occupied beds.

Population data In conjunction with the data sources described above, we use demographic data
on the German population at the administrative district level, provided by the German Federal Sta-
tistical Office (DESTATIS). Since the raw numbers on infections and hospitalizations are strongly
influenced by the number of people living in a particular district, we use this population data to
transform the absolute infection and hospitalizations to incidence rates. In general, we use the term
incidence rates to refer to infection incidence rates, and hospitalization incidence rates when writing
about hospitalizations. While we effectively model the incidence rate in Section 3 and the hospital-
ization incidence rate in Section 4, we incorporate the incidence rate per 100.000 inhabitants as a
regressor in Section 5.

3 Analysing associations between infections from different age groups

A central focus during the COVID-19 pandemic is to identify the main transmission patterns of the
infection dynamics and their driving factors. In this context, the role of children in schools for the
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general incidence poses an important question with many socio-economic and psychological impli-
cations to it (see Andrew et al., 2020; Luijten et al., 2021). Since findings from previous influenza
epidemics have tended to identify the younger population, children aged between 5 and 17, as the
key ‘drivers’ of the disease (Worby et al., 2015), the German government ordered school closures
throughout the course of the pandemic between spring 2020 and 2021 to contain the pandemic.
However, whether these measures were necessary or effective in the case of COVID-19 is still subject
to current research (e.g., Perra, 2021). In particular, several studies investigated the global effect of
infections among school children, but a general conclusion could not be drawn (see Flasche and
Edmunds, 2021; Hippich et al., 2021; Hoch et al., 2021; Im Kampe et al., 2020). In general, we
would like to remark that in many studies the main goal was to arrive at conclusions about the sus-
ceptibility, severity, and transmissibility of COVID-19 for children (Gaythorpe et al., 2021). On the
other hand, we are here primarily interested in quantifying how the incidences of children are asso-
ciated with the incidences in other age groups. Therefore, we want to assess whether children are key
‘drivers’ of the pandemic. Our analysis is based on aggregated data on the macro level, as opposed
to the data on the individual level, which is needed to answer hypotheses, for example, about the
susceptibility of a particular child.

3.1 Autoregressive model for incidences

To tackle this problem from a statistical point of view, we propose to analyse the infection data us-
ing a time-series approach (Fokianos and Kedem, 2004). Let therefore Y, . , denote the number of
infections in week w in district » and age group «. For simplicity, we assume independent develop-
ments among the districts and let Y, , , depend on the incidences in all age groups from the previous
week w — 1. Put differently, we include ¥,,_;, = (Y,—1.+1, ..., Yu—1., 4) ascovariates, where 1, ..., 4
indexes all A considered age groups. Among the components of Y, ., we then postulate indepen-
dence conditional on ¥,,_;,. For illustration, Figure 1 depicts the assumed dependence structure.
As for the distributional assumption, we make use of a negative binomial distribution with mean
structure

E(Yw,r,al Ku—l,r) = exp{nw,r,a + Or,a} (31)

where o, , serves as offset and 5 gives the linear predictor. To be specific, we set 0, , = 10g(Xpop.r.a)s
where Xpop, .4 18 the time-constant population size in district » and age group a. Note that we implic-
itly model the incidences by incorporating this offset term, since the incidences 1,, ,, relate to the
counts through Y, ;4 = Ly r.aXpop.r.«. The linear predictor is now defined as

A

Nw,r,a = Ow + Z 10g( Yw—l.r,k + 5)9a,k, (32)
k=1

where 6,, serves as week-specific intercept, 6, is the coefficient weighting the influence of lagged
infections of age group k on the infections in age group « and 8 is a small constant, which is included
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Figure 1 Assumed temporal dependence structure visualized as a directed acyclic graph (DAG)

for numerical stability to cope with zero infections, . We set § to 1 in the calculation but omit the
term subsequently for a less cluttered notation.

3.2 Robustness under time-varying case-detection ratio

Model (3.1) has the important methodological advantage of being able to cope with an unknown
case-detection ratio, which is inevitable if there are under-reported cases. This is a key problem in
COVID-19 surveillance as not all infections are reported (Li et al., 2020); hence the case-detection
ratio (CDR) is typically less than one. Various approaches have been pursued to quantify the number
of unreported cases, for example, by estimating the proportion of current infections which are not
detected by PCR tests (Schneble et al., 2021a). For demonstration, assume that YDM are the detected
infections in week w in district r for age group a, while Y, ,, are the true infections. Apparently
YUM < Y, ..., holds if we assume under-reporting. We assume multiplicative under-reporting and
denote with 0 < R, ,, < 1 the multiplicative CDR in district r in age group « and set with R, , =
(Ry.r1s---s Ryr 4)the joint CDRs for all A available age groups. In this setting, we observe

~Ylvu,r,a = Rw,r,a Kv.r,a (33)

infections in the corresponding week w, district r, and age group a from the Y, , , true infections.
Apparently, integrity for Y, ., is not guaranteed with (3.3), which we could, however, impose by
rounding. We further assume that R, , , and Y, , , are independent of each other, conditional on the
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previous week’s data. We further assume that R, , , are independent random draws for the different
districts, thus the case-detection ratio may vary between the districts. Assuming further an i.i.d.
setting such that E(R, ) = 7, 4 yields for model (3.1) under (3.3):

E (Kv,r,a| K}—l,r) = IERW,RW_I (EY,,L (Rw,r,a Ku,r,a| Yu—l,r’ Rw,r,as Rw—l,r))

=By (Rora By Yol Yo 1))

= Tlw,a ERw,l (exp{rlw,r,a}) exp{or,a} (34)

where for clarity we include the random variable as an index in the notation of the expectation. Note
that

A
ERr,, (eXp{an,r,a}) =Eg,, (em {Z log(R,L 1, Yo 1.r)0ak + O })

k=1

A
= CXp {;}w,r,a} Er,., (exp {Z IOg(Rl;£1’r,k)9a,k + 6y })

k=1
= &Xp {ﬁw,r,a + éw} s (35)
where
A
Flw,r,a = Z 10g( Ku—l,r,k)ea,k
k=1
and

A
0, = 6, + log <IEJRqu (exp {Zlog(R;l_l,r_k)Qa,k})> .

k=1

Hence, combining (3.4) and (3.5) shows that if we fit the model (3.2) to the observed data, which are
affected by unreported cases, we obtain the same autoregressive coefficients 6, . for k =1, ..., 4 as
for the model trained with the true (unknown) infection numbers. All effects related to undetected
cases accumulate in the intercept, which is of no particular interest in this context. In summary, if we
assume that the CDR does not depend on the number of infections but might be different between
age groups and different weeks, we obtain valid estimates for the autoregressive coefficients even if
(multiplicative) under-reporting is present. While the independence assumptions made are generally
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questionable, it is reasonable to assume these for a short time interval. Note that a similar argument
holds for an additive CDR under epidemiological models proposed by Meyer and Held (2017) and
Held et al. (2005).

3.3 Infection dynamics for school children

We can now investigate the infection dynamics between different age groups to answer the question
brought up at the beginning of Section 3.1. Since the age groups provided by the RKI are too coarse
for this purpose, we rely on the data provided by the LGL for Bavaria. For this dataset, we have
the age for each recorded case, which, in turn, enables us to define customized age groups. To be
specific, we define the age groups of the younger population in line with the proposal of the WHO
and UNICEF (2020): 0-4, 5-11, 12-20, 21-39, 40-65, +65. For this analysis, we estimate model
(3.1) with data on infections which were registered between 1 and 27 March 2021. The data was
downloaded in May 2021; hence reporting delays should have no relevant impact on the analysis.
We employ model (3.1) separately for all five analysed age groups to assess how all age groups affect
each other. The fitted autoregressive coefficients 6, ; are visualized in Figure 2 including their 95%
confidence intervals. The partition of the x-axis refers to index a, while index k, the influence of the
other age groups, is indicated by the different colours and drawn from left (5-11) to right (65+).
For instance, the label ‘Model 5-11° shows all interpretable effects where the target variable is the
incidence of people aged between 5 and 11. Note that the only interpretative results of our model
concern the effects between the age groups. Thus we omit the weekly intercept estimates from
(3.2) in Figure 2, which lose all interpretative power in the context of under-reporting as argued in
Section 3.2.

In general, we observe that the autoregressive effects for the own age group, thatis, ¢ = k (drawn
as triangles in Figure 2) are among the essential predictors in all age-group-specific models. Re-
garding the effects between age groups, the association of 5-11-year-olds (yellow, most left coeffi-
cient) with all other age groups is relatively small and, in most cases, not significant. In contrast,
the age groups of working people aged between 21-39 (blue, middle) and 40-65 years (green, sec-
ond right) have the highest relative effect on the incidences for all age groups (except for the au-
toregressive coefficients). For instance, we see that the effects of the children and adolescents (5-11
and 12-20 years) on the incidences of 21-39 and 40-65-year-olds, albeit sometimes being signif-
icantly different from 0, affect the prediction far less than the incidences of the working popula-
tion. In this respect, the results confirm previous analyses concluding that increasing incidences
in children and adolescents are weakly associated with the incidences of other age groups. Vice
versa, we find empirical evidence that people between 21 and 65 are the main drivers of infection
dynamics.

The results do not come without limitations. First of all, note that the data is observational, not
experimental. Hence, we can only draw associative and not causal conclusions from the data without
additional assumptions. Moreover, we rely on the given assumptions on the under-reporting. Still,
rerunning the analyses for other weeks, shown in the Supplementary Material, yielded similar results,
supporting the robustness of our approach and findings. Further, by the beginning of March 2021
around 2.2 million people predominantly from the 65+ age group were already fully vaccinated
against COVID-19, which may have an effect on the estimates.
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Figure 2 Association of previous week’s incidences in different age groups (colour-coded) with the
current-week incidences for calendar weeks 9-12 in 2021 stratified by age group (5 age groups correspond to 5
distinct Models)

4 Modelling hospitalizations accounting for reporting delay

A relevant number of COVID-19 infections lead to hospitalizations, and the incidence of patients
hospitalized in relation to COVID-19 is of paramount importance to policymakers for several
reasons. First, hospitalized cases are most likely to result in very severe illnesses and deaths, the
minimization of which is generally the primary aim of healthcare management efforts. In addition,
knowing the number of hospitalized patients is crucial to adequately assess the current state of the
healthcare system. Finally, while the number of detected infections depends considerably on testing
strategy and capacity, the number of hospitalizations provides a more precise picture of the current
situation. For these reasons, hospitalization incidence has been deemed increasingly more relevant
by scientists and decisionmakers over the course of the pandemic, and finally became the central in-
dicator for pandemic management in Germany from September 2021, complementing the incidence
of reported infections.

The central problem in calculating the hospitalization incidence with current data is that hos-
pitalizations are often reported with a delay. Such late registrations occur along reporting chains
(from local authorities to central registers), but also due to data validity checking at different levels.
Visual proof of the degree of this phenomenon is given in Figure 3, which depicts the empirical dis-
tribution function of the time (in days) between the date on which a patient is admitted into a Bavar-
ian hospital and the date on which the hospitalization is included in the central Bavarian register.

Statistical Modelling 2024; 24(4): 344-367



352  Cornelius Fritz et al.

Age group —— 0-59 —— 60+

L
> E
c 0.75 A i
(] 1
> 1
i i
fn—_’ 0.50 - !
) i
u> 1
® 0.25 - 5
() 1
< i
0.00- T T T T :
0 10 20 30 40

Time delay [days]

Figure 3 Cumulative distribution function of the time delay (in days) between hospitalization and its
reporting, calculated with data from 1 January to 18 November of 2021, shown separately for the age groups
0-59 and 60+. The curves for both age groups are truncated at a delay of 40 days, when approximately 94.6%
of all hospitalizations have been reported

In 2021, only 12.3% of hospitalized cases in Bavaria are known the day after admission, and about
two thirds of them (67.2%) are reported within seven days. Moreover, the duration tends to be slightly
shorter for patients younger than 60 than older patients.

Modelling and interpreting current data with only partially observed hospitalization incidences
can lead to biased estimates and misleading conclusions, especially if one is interested in the
temporal dynamics. To correct for such reporting delays, we utilize ‘nowcasting’ techniques, loosely
defined as ‘[t]he problem of predicting the present, the very near future, and the very recent past’ (p.
193, Banbura et al., 2012). Related methods have been extensively treated in the statistical literature
(see, e.g., Hohle and An Der Heiden, 2014; Lawless, 1994) and successfully applied to infections and
fatalities data during the current health crisis (De Nicola et al., 2022; Giinther et al., 2020; Schneble
et al., 2021b). In contrast to these approaches, we here focus on modelling the hospitalization in-
cidences, correcting for delayed reporting through a nowcasting procedure based on the work of
Schneble et al. (2021b).

We denote by R, the hospitalization incidence on day ¢ for district » and age/gender group g,
while the absolute count of hospitalizations in the same cohort is defined by H, , ,. Naturally, those
two quantities related to one another through

rg = ———. 4.1)

To account for the delayed registration of hospitalizations in H, , , when modelling R, , ;, we pursue
a two-step approach, consisting of a nowcasting and a modelling step. In the former step, we nowcast
the hospitalizations that are expected but not yet reported, while in the latter step we model R, , 4
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Figure 4 lllustration of the data setting for dnax = 6. N\ 4 indicates hospitalizations reported with a specific
delay d, while Ct 4 denotes all those reported with delay up to d. H; denotes the final number of hospitalized
cases regardless of the delay with which they were reported, that is with a delay up to the maximum possible,

Onax

as a function of several covariates, which will allow us to gain insights into the geographic and
sociodemographic drivers of the pandemic. We describe the two steps below.

4.1 Nowcasting model

In this first step, we estimate the final number of hospitalized patients on day ¢, denoted by H;,
factoring in the expected reporting delay. Note that, while we do have data available at the district
level, at this stage we aggregate hospitalizations across Bavaria due to the sparsity of the data. If
we are performing the analysis on day 7', we can compute the cumulative hospitalization counts
Cu= Z;‘;l N,;, where N, ;4 is the number of hospitalizations on day ¢ reported with delay d, for
every t € {l,..., T} and d € {1, ..., T — t}. Assuming a maximal reporting delay of dn.x days, we
denote the complete distribution of delayed registrations of cases with hospitalization on day ¢ by
N =(N1, oy Nia, ) € Némax with ZZ‘Q‘; N, 4 = H,. We graphically demonstrate how N, 4, C; 4, and

max

H, relate to one another in Figure 4. By design, N, follows a multinomial distribution:
N; ~ Multinomial( H;, 7;), 4.2)

where 7, = (P(D, = 1;1), ..., P(D; = dpax; t)) are the proportions of hospitalizations on day ¢ with a
specific delay, and D, is a random variable describing the reporting delay of a single hospitalization
which occurred at time ¢. For this application, we do not directly model those probabilities but
instead opt for a variant of the sequential multinomial model proposed by Tutz (1991). In particular,
we define the conditional probabilities through

pd|x) :==P(D; =d|D; < d;x), (4.3)
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conditional on covariates x;. It follows that the cumulative distribution function of D can be written
as:

F(d|x;) = P(D; < d; xi,0)
=P(D; <d|D; <d+ 1;x)P(D; <d +1;x,)

Anax—1
= [] PO kD, < k+1:x)
k=d
a1
= ]‘[ (1 =P(D; =k+1|D; <k+1;x,))
k=d
da
= 1_[ (I =P(D, = k|D; < k;x;))
k=d+1

dmax

= [T = puklx)). “4)

k=d+1

Combining (4.2) and (4.3) allows us to model the delay distribution with incomplete data. We
do this separately for two age groups, which we denote by an additional index a. This leads to the
model

Niaa ~ Binomial (Cy.a, pr.a(d]X1,a,4)) (4.5)
with the structural assumption

og (M) = 0y + 51() + 52(d) + s3(d) - [(60+) + x6,
1 - pt,a(d|xt,a,d) ’

where 6 is the intercept, s;(¢) = 01t + Z,L: Lo - (t — 281)4 is the piece-wise linear time effect, s>(d)
the smooth duration effect, s3(d) a varying smooth duration effect for the age group 60+, and x; 4
are additional covariates depending on ¢ and the delay d, that is, a weekday effect for # and 7 + d.

From Figure 4, one can also derive that the proportion of H, , included in C; , 4 can be compre-
hended as the probability that a hospitalization on day 7 in age group « has a reporting delay smaller
than or equal to d, that is, F, ,(d|x; ,). Assuming independence of H, , from D, , then yields:

E(I—It,a)E,a(dlxt,a) - ]E(Ct,a,d)a (46)

meaning that the expected number of patients from age group a hospitalized on day ¢ can finally be
obtained as

E(Ct,a,d)

E(H ,) = ———.
(Ha) = 3 i)

4.7)
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This equation holds for any delay d < T — ¢ which is already observed at the date of analysis. Thus,
it is possible to express the expected numbers of hospitalized patients through the ratio between the
number of already reported patients up to delay d and the cumulative distribution function F.

In summary, we can fit the logistic regression model given by (4.5) with the available data on
hospitalizations. Based on this model, we exploit (4.7) to obtain an estimate for the expected number
of hospitalizations from age group a on day ¢. Uncertainty intervals for the estimated nowcasts
can then be obtained, for example, through a parametric bootstrapping approach relying on the
asymptotic multivariate normal distribution of the estimated model coefficients.

4.2 Hospitalization model

In the second step, we propose a model for the expected value of R, , ¢, the hospitalization incidence
on day ¢ in district » and age/gender group g, conditional on covariates x; . .. To be specific we set

E(Rt,r,glxt,r,g) = CXP{90 + eagexage,g + Qgendcrxgender,g + Qgendcr:agexage,gxgender,g+
Qweekdayxweekday,t + Sl(t) + SZ(xLon,rv xLat,r) + ul‘}

= exp{nirgl (4.8)

where the linear predictor 7, , . includes, in addition to the intercept 6y, effects for the age/gender
groups through the main and interaction effects 6age, Ogender ANd Ogender-age- Additionally, we include
dummy effects Oyeekday for each day of the week to account for potentially different hospitalization
rates over the course of the week. Furthermore, the hospitalization incidences are allowed to vary
over time through the smooth term s;(¢). Finally to account for spatial heterogeneity, we add a
smooth spatial effect of each district’s average longitude and latitude s,(r) and a Gaussian random
effect to capture random deviations from this smooth effect, that is, u, ~ N(0, t?) with 7> € R*.

Note that, on any given day ¢ > T — dpax, We do not yet observe the final hospitalization counts
H, ., but only the ones already reported at this time, that is G, 4 7—;, indicating the cumulative
observations on day ¢ in district  reported with a delay of up to d = T — ¢ days for age/gender
group g. The age/gender group indexed by g extends the coarse (binary) age categorization a used
in Section 4.1, which only differentiates between cases younger and older than 60 years. Exploiting
(4.7) and the definition (4.1) of the incidence leads to the final model

IE(Cvt,r,g,T—tlxt,r,g)
Xpop.r.g Fr.g(T — t|xi.g)’

IE(R{,r,g |xr,r,g) = (49)

where we set C; o 17— = H; ;g if T —t > dmax. Rearranging (4.9) shows that modelling the count
variable C; . ¢ 7—q With the offset term log(xXpop,r.¢ F1,¢(T — f|X¢)) is equivalent to modelling R; . ¢ as
in (4.8), since

IE(Ct,r,g, T—t|xt,r,g) = &Xp {nt,r,g + lOg(xpop,r,g Ft,g(T - t|xt,g))} = Mt,r.g (410)

holds. In practice we thereby replace the unknown quantities in the oftset with their estimates derived
in the previous section. In other words, the delayed reporting is accommodated through an offset in
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the model using only the reported data C; , 4 7—,. We can then complete the model by making use of
a negative binomial model to account for possible overdispersion:

2
CI,r,g,T—tlxt,r,g ~ NB(M[,r,g’ o )7

with 1, , . parametrized as in (4.10) and (4.8), and the dispersion parameter o is estimated from
the data.

As an additional note, we point out that accounting for late registrations works analogously
for any model within the endemic—epidemic framework originating in Held et al. (2005). The only
difference to the approach presented here is that the exact functional form of the expected value must
be adequately accounted for. For instance, if i, ., consists of the sum of non-negative endemic and
epidemic terms, one should incorporate the offset in both terms.

4.3 Application to the fourth COVID-19 wave in Bavaria

For the application, we focus on the first two months of the fourth wave of the pandemic in Bavaria,
which began towards the end of September 2021. In particular, we consider hospitalizations between
24 September and 18 November, using data reported as of 18 November 2021. We set dpax = 40
days to be the maximum possible duration between hospitalization and its reporting in the central
Bavarian register. We derive this choice from the empirical delay distribution in Figure 3, proving
that since the beginning of 2021, around 94% of the hospitalizations have been reported within 40
days of their occurrence. We have no information on the date of hospital admission for about 9.6%
of all hospitalizations related to COVID infections that were reported between 24 September and
19 November. For those cases, we replace the date of hospitalization with the respective COVID-19
infection date as reported by the local health authorities. For brevity, we only present a comparison
of the nowcasted and raw hospitalization counts for the nowcasting model and the age/gender group-
specific and spatial effects of the hospitalization model. We refer to the Supplementary Material for
additional results.

Figure 5 maps the raw and corrected rolling weekly sums of hospitalization counts accompanied
by the 95% confidence intervals for the whole population as well as separately for the two age groups
under consideration. While reported numbers indicate a relatively stable or even slightly decreasing
development over the last two weeks of observed data, the nowcast reveals a continuous upward
trend since the beginning of October. Comparing both age-stratified populations, the increase for
those over 60 years (the more vulnerable) is steeper. The figure also plots the realized hospitalization
counts observed after 40 days have passed since 19 November 2021. The comparison of our nowcast
with those realized figures observed a posteriori shows that our model tends to slightly overestimate
the reported cases for the younger population. This might be due to the beginning of the Delta
curve with rapidly increasing hospitalizations since October 2021 after a phase with rather low
hospitalization numbers. Nevertheless, our nowcast estimates show a clear improvement in terms
of reflecting the true dynamics of hospitalized cases compared to the curve of the reported values.
These results emphasize the need to adjust reported hospitalization counts, as they tend to systemat-
ically underestimate the number of recently occurred hospitalizations, which can lead to inaccurate
conclusions about the current state of the pandemic.
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Figure 5 Comparison of nowcasted (red) and reported (blue) rolling weekly sums of hospitalization counts
between 24 September and 18 November 2021, based on data reported as of 19 November 2021. Note: 95%
confidence intervals of the nowcast estimates are indicated by the shaded areas. The dashed black lines show
the realized weekly sums of hospitalization after 40 days, that is, the maximum delay assumed in our
nowecasting model. Results are displayed for the overall population (a) as well as separately for age groups
0-59 (b) and 60+ (c)

Turning to the results of the hospitalization model proposed in Section 4.2, the estimated coeffi-
cients for all age and gender combinations can be seen in Figure 6. Those estimates reveal consider-
ably lower hospitalization rates for people younger than 35 than all other age groups. We generally
observe a positive correlation between age and risk of hospitalization for both genders, that is, older
people are more likely to be hospitalized. The only exception to this intuitive finding is seen for
men over 80 years, whose expected hospitalization rates are slightly lower than men aged 60 to 79.
Statistically significant differences between men and women are visible across all age groups. While
women in the youngest and oldest age group tend to have a (slightly) higher hospitalization rate
than men, the opposite holds for the other groups.

Figure 7 depicts the random and smooth spatial effects (on the log-scale). The smooth effect in
Figure 7 (a) paints a clear spatial pattern, with generally higher hospitalization rates in the eastern
parts of Bavaria and lower rates in the north-western districts. This structure reflects the pandemic
situation in Bavaria during autumn 2021, where we observed the most severe dynamics in those
eastern districts. Districts with unexpectedly high or low hospitalization rates (when compared to
their neighbouring areas) can be located on the map of the district-specific random intercepts in
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Reference
Male
category
0.263
Female
(0.078)
15-34 35-59 60-79 80+

0.0 04 08 1.2

Figure 6 Estimated linear effects for different age and gender groups in the hospitalization model, where
males aged 15-34 are the reference category. Note: Estimated standard deviations are written in brackets

(a) Spatial effect (b) Random effect

-02 00 02 04

Figure 7 Estimated smooth spatial effect (a) and district-specific random effect (b) in the hospitalization model
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Figure 7 (b). Contrary to its role as a hotspot during the second wave in autumn 2020, the district
with the lowest random effect is Berchtesgadener Land. We estimate an overall variance of 72 =
0.274 for the district-specific random effects.

5 Modelling ICU occupancy

The primary aims of healthcare management efforts during a pandemic include minimizing very
severe and fatal cases, as well as preventing the overload and collapse of the healthcare system.
Information on these very severe cases, among other quantities of interest, can be captured by the
ICU occupancy, which is the focus of our third application case.

5.1 Multinomial model

We consider the occupancy of ICUs where, as described in Section 2, beds are categorized into the
number of vacant beds (Z, 1), number of beds occupied by patients not infected with COVID-
19 (Z,.,2), and number of beds occupied by patients infected with COVID-19 (Z, ,3). Further,
we denote by Z,, = (Zy.r.1, Zw.r2, Zw.r.3) the vector of length three expressing the average number
of ICU-bed occupancy in week w and district . The canonical GAM for this type of data is a
multinomial model; hence the distributional assumption is:

Z,» ~ Multinomial( Ny, 7y, ). (5.1)

where N, , = Zizl Z,.r,;j 1s the known number of available beds in district r and week w and 7, , =
(Tw.r1> Tw.r.2s Tw.r.3) defines the proportion of occupied beds in the respective categories.

One advantage of this multinomial approach is that we implicitly account for displacement ef-
fects commonly observed for ICU occupancy data. Over time, as the number of beds occupied
by patients infected with COVID-19 rise, both free beds and beds occupied by patients not in-
fected with COVID-19 decrease almost simultaneously. In particular, the ‘displacement’ may be
caused by practices such as rescheduling non-urgent operations or other treatments which would
have required an ICU stay, which were already common during the first wave of COVID-19 (Sto63
et al., 2020). These effects lead to negative correlations between the entries in Z,, ,, which is nat-
urally accounted for in model (5.1) as the covariance between arbitrary counts Z, ,x and Z, ,; is
— WNw, dTCw,r kTCw,r,l v k7 le {17 27 3}v k 7é .

Taking the number of beds occupied by patients infected with COVID-19 as the reference cate-
gory, we effectively parametrize pairwise comparisons via

log <M> = Ny ¥ =12, (5.2)

TTw,r,3
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where the linear predictors 7, ; are functions of covariates labeled as x,, , and defined by:

Nwrj =00 + 0 sty j(Zw-101s Zuw-1,2)" + 0] ;log(Yy 1. + 8)+
8j(XLon,rs XLatr) +ur iV j=1,2, (5.3)

where 6y ; is the intercept term. Further, we incorporate an autoregressive component in
(5.3) by including the relative ICU occupancy observed in the previous week as a regres-
sor. We denote the distribution of the different occupancies of the previous week as Zw—l,d =
(Zw—1.1.1 Zw—1%2)/(23‘:1 Zw-1,,j), and the respective effect is denoted by 6 4r1),; for the jth lin-
ear predictor. We also let (5.3) depend on the previous week’s district and age-specific infec-
tions per 100.000 inhabitants (incidences) denoted by Y,,_; ., that are weighted by the coefficient
01, VY j =1, 2. To control for district-specific heterogeneity, we include Gaussian random effects,
that is, u, ; ~ N(O, )Vre{l,..., R Y j =1,2. For smooth spatial deviations from these ran-
dom effects, we add a bivariate function s;(-, -) Vj = 1, 2 parametrized by thin-plate splines that
take the longitude and latitude of each district as arguments (see Wood, 2003, for more details). For
notational brevity, let 6 denote the joint parameter vector of (5.3)V j =1, 2.

5.2 Quantification of uncertainty

As stated, the multinomial model has the beneficial property of automatically accounting for dis-
placement effects. Note, however, that patients’ expected length of stay in intensive care may exceed
our time unit of one week, as the average stay of COVID-19 patents is about 13 days (see Vekaria
etal., 2021). This means that not all beds are completely redistributed at every time point of observa-
tion. However, apart from including the previous week’s occupancy in the covariates, our proposed
model does not adequately account for this stochastic variability.

We therefore pursue a Bayesian view and let N, , be the number of ICU beds in district r in week
w. This number is known, and we assume that each week only a fixed but unknown proportion «
of beds in the three categories become disposable, where 0 < o < 1. That is to say that « N, , beds
are redistributed among the three categories, where integrity is assumed but not explicitly included
in the notation for simplicity. We assume that this new allocation is independent of the previous
status of the beds and denote the newly allocated beds with the three-dimensional vector 4,,, =
(Aw 1, Aw.r2, Ay r3). This setting translates to:

Zw,r = (1 - OZ)Zw—l,r + Aw,r-
For the newly allocated beds we still assume a multinomial model:
Ay, ~ Multinomial (o Ny, w1 ). (5.4)

with 7, , specified in (5.3). Note, however, that we do not know « and that no information is pro-
vided in the data concerning the length of stay or the number of beds changing their status. To
account for that data deficiency, we impose a Dirichlet distribution on the vector 7, ,, where the
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prior information is determined by the available beds, that is,

3
re(rwg) o [ [ gy o (5.5)

j=1

Combining the prior (5.5) with the likelihood from (5.4), leads to the posterior
3 1 3 '
Fetu sl Awa) o [Tty 0% = Tl (5.6)
j=1 j=1

This, in turn, equals the likelihood resulting from the multinomial model and justifies the use of
model (5.2) even though not all beds are allocated weekly. Nevertheless, the central assumption of
independent observations in standard uncertainty quantification in GAMs (Wood, 2006) is violated.
To correct for this bias, we substitute the canonical covariance of the estimators with the robust
sandwich estimator based on M-estimators defined by:

V(6) = A@0)"'B(O)A®)", (5.7)

where we set A(0) = E (—55254(0)), B(6) = Var (££(6)), and £(9) is the logarithmic likelihood re-
sulting from (5.1) or equivalently the logarithm of the posterior of (5.3). See also Stefanski and Boos

(2002) and Zeileis (2006).

5.3 Application to the third wave

We now employ the multinomial logistic regression (5.1) to ICU data recorded during the third
wave between March and June 2021. For the incidence data used in the covariates, we employ the
RKI data; hence we set 4 = 4 and the age groups are: 15-34, 35-59, 60-79 and 80+. Further, we
normalize all non-binary covariates:

- n

Xi — . -
X = with x =

. B
Vo 2 = %2 "

This way, we facilitate the interpretation of associations and guarantee a meaningful comparison
between the covariates. Due to space restrictions, we here only present the linear effects from (5.3)
and refer to the Supplementary Material for the random and smooth estimates.

In Figure 8, we visualize the estimated coefficients, including their confidence intervals. The ref-
erence category in both pairwise comparisons is COVID-beds; thus, we refer to the two models as
free vs COVID beds and non-COVID vs COVID beds. In particular, the coefficients relate to the
association between the covariates and the logarithmic odds of a bed not being occupied compared
to being occupied by a patient with COVID-19, shown with blue dots in Figure 8. Analogously, the
orange triangles in Figure § illustrate the estimated association between the covariates and the log-
arithmic odds of a bed being occupied by a patient not infected with COVID-19 in comparison to a

(5.8)
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® Free vs COVID beds 4 Non-COVID vs COVID beds
——e—
Lagged non-COVID beds A
—e—+
Lagged free beds =
Lagged log incidences | b - -
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Lagged log incidences | {: s L)
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Lagged log incidences | | — |
of 60 to 79 year olds ' '
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-0.5 0.0 0.5
Estimated coefficients with 95% confidence interval

Figure 8 Estimated coefficients with confidence interval of the associations between normalized linear
covariates included in the multinomial model and the logarithmic odds of a bed being free vs occupied by a
patient infected with COVID-19 (blue dots) and the logarithmic odds of a bed being occupied by a patient not
infected with COVID-19 vs a patient infected with COVID-19 (orange triangles)

bed being occupied by a patient infected with COVID-19. To demonstrate the uncertainty of each
estimate, a 95% confidence interval is added. Keeping the other variables constant, the normalized
lagged log-incidences of all age groups generally have a negative effect on the logarithmic odds of
both pairwise comparisons. This translates to the finding that an increase in the incidences leads to
a decrease in the proportion of non-COVID and free-beds in when compared to COVID beds. The
lagged normalized proportion of free and non-COVID beds is estimated to have a stronger, positive
association with the logarithmic odds of both pairwise comparisons. We, therefore, expect a higher
number of non-COVID beds in the previous week to be followed by a higher number of non-COVID
beds in the next week.

The model can be extended to a forecasting model, as shown in the supplementary material.
In particular, we demonstrate how forecasting performance changes over the different waves of the
pandemic. In principle, we could also incorporate further covariates like district-specific proportions
of vaccinated people. Unfortunately, these numbers are not very reliable and require sophisticated
cleaning, so we prefer not to present results in this direction here.

6 Discussion

The COVID-19 pandemic poses numerous complex challenges to scientists from different disci-
plines. Statisticians and epidemiologists, in particular, face the problem of extracting meaningful in-
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formation from imperfect, incomplete and rapidly changing data. Generalized additive models are
a powerful tool that, if used correctly, can help solving some of these challenges. In this work, we
have addressed three such challenges where the utilization of GAMs provided meaningful insight.

1. We investigated whether children are the main drivers of the pandemic under a time-varying
case-detection ratio.

2. We modelled hospitalization incidences controlling for delayed registrations, thereby provid-
ing both up to dates estimates of current hospitalization numbers as well as insight on the
demographic and spatio-temporal drivers of COVID-19.

3. We developed an interpretable predictive tool for ICU bed occupancy that is actively used by
the Bavarian government.

We achieved all of those results by using GAMs with different methodological extensions. Never-
theless, the use of our proposed models to extract novel information from the data provided is still
subject to both data-related and methodological limitations. In general, our data sources are subject
to exogenous shocks (e.g., policy changes) that lead to sudden changes in population behaviour
and pose a danger to the validity of our results. Regarding the study of infection dynamics of
school kids, revised testing policies hinder the long-range comparability of our findings. In the
hospitalization data, the exact date of hospitalization is missing for about 10% of the hospitalized
cases, which we impute by the given registration date of the infection. Furthermore, the records
on the ICU-bed occupancy do not include intrinsic constraints, as the capacity of beds available
to COVID-19 patients does not equate to the capacity of beds available to patients not infected
with COVID-19. There are also methodological limitations. First of all, note that the data is
observational, not experimental. Additionally, the set of covariates in our model can easily be
extended to control for other factors, such as meteorological and socioeconomic ones.

We close this work by emphasizing that the nowcasting model can also be used as a stand-alone
model. In the German COVID-19 Nowcast Hub (KIT), the described model is used among other
nowcasting methods, including the work of Giinther et al. (2020) and van de Kassteele et al. (2019),
to estimate hospitalization counts on the national and federal state level in Germany. Apart from a
systematic evaluation of the different approaches, one of the main goals of this project is to combine
individual nowcasts to an ensemble nowcast, which may lead to more accurate estimates.

Supplementary materials

Supplementary materials for this article are available online, including additional information
on the three application cases. The replication code is available in the following repository:
https://github.com/corneliusfritz/Statistical-modelling-of-COVID-19-data.
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(a) Germany, NUTS 1 and 2 (b) Bavaria, NUTS 3
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Figure A.1 (a): Map of Germany, where the NUTS 1 regions are indicated by the black borders and the
different colours. The NUTS 2 regions, on the other hand, are drawn in grey. Note that all NUTS 1 region
borders are also NUTS 2 region borders. (b): Map of Bavaria where also the NUTS 3 regions are marked. In
the legend, we state the names of each NUTS 1 region
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We carried out most modelling endeavours presented in this article on the NUTS 3 level, which is
shown on the right side of Figure A.1. The only exception is the Nowcasting model from Section
4.1, where we aggregate all data onto the NUTS 1 level in Bavaria. Moreover, NUTS 1 regions,
depicted on the left side of Figure A.1, are the federal states in Germany and Bavaria is one of them.
In Section 3 and 4, we are only analysing data from Bavaria, while we employ data from complete

Germany in Section 5.
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Abstract: With the beginning of the COVID-19 pandemic, we became aware of the need for comprehen-
sive data collection and its provision to scientists and experts for proper data analyses. In Germany, the
Robert Koch Institute (RKI) has tried to keep up with this demand for data on COVID-19, but there
were (and still are) relevant data missing that are needed to understand the whole picture of the pan-
demic. In this article, we take a closer look at the severity of the course of COVID-19 in Germany, for
which ideal information would be the number of incoming patients to ICU units. This information was
(and still is) not available. Instead, the current occupancy of ICU units on the district level was reported
daily. We demonstrate how this information can be used to predict the number of incoming as well as re-
leased COVID-19 patients using a stochastic version of the Expectation Maximization algorithm (SEM).
This, in turn, allows for estimating the influence of district-specific and age-specific infection rates as well
as further covariates, including spatial effects, on the number of incoming patients. The article demon-
strates that even if relevant data are not recorded or provided officially, statistical modelling allows for
reconstructing them. This also includes the quantification of uncertainty which naturally results from the
application of the SEM algorithm.

Key words: EM, Skellam distribution, stochastic EM, imputation, COVID-19, ICU patients
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1 Introduction

Albeit its atrocity, in its aftermath, the COVID-19 pandemic has taught Germany, among many
other countries, the shortcomings of inadequate data availability in its healthcare system. In fact,
in Germany, while intensive care unit (ICU) occupancy was provided by the DIVI e.V. (2021), the
numbers of newly hospitalized patients (incoming) and released patients (outgoing), either cured or
deceased, has (until now) not been included in the database. This can be criticized since a relevant
number, which measures the pressure of the disease on the healthcare system—the number of incom-
ing patients—is not available to the public. We show, in this article, how to disentangle incoming and
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outgoing patients from pure occupancy data using statistical models. This, in particular, allows us
to investigate how hospitalizations depend on time, age, and spatial factors.

We assume that admission to- and release of the ICU units follow Poisson distributions with
inhomogeneous intensities. Consequently, the changes in ICU occupancy result from the difference
between incoming and outgoing patients. This in turn gives the framework of the Skellam distri-
bution, originally introduced by Skellam (1948). The distribution is described as resulting from the
difference of two independent Poisson distributed random variables. This distributional approach
has been used in different settings. For instance, in sports statistics Karlis and Ntzoufras (2009) ap-
ply the distribution for modelling the goal difference in football games. In network analysis, Gan
and Kolaczyk (2018) and Schneble and Kauermann (2022) look at network flows while Koopman
et al. (2014) utilize the idea to model financial trades. Further application areas include image anal-
ysis when comparing intensity differences of pixels, see for example, Hwang et al. (2007), Hwang
et al. (2011) or Hirakawa et al. (2009). Extensions towards bivariate Skellam processes are provided
for example, in Genest and Mesfioui (2014), see also Aissaoui et al. (2017). A general discussion on
the Skellam distribution and its application fields is provided in Tomy and Veena (2022). In this arti-
cle, we provide an application of the Skellam distribution for disentangling incoming and outgoing
patients in ICUs.

The occupancy of ICU units was a central component of the COVID-19 pandemic. Numerous
tools have been developed for forecasting the number of patients who require ICU admission, see for
example, Grasselli et al. (2020), Goic et al. (2021), Murray (2020) or Farcomeni et al. (2021) to just
mention a few. Our focus in this article is not primarily on prediction but on investigating the risk
of admission and how this depends on the infection rates and further covariates, including spatial
components. To do so we assume that the number of incoming and released patients comes from an
inhomogeneous Poisson process, but we only observe the difference between incoming and released
patients, leading to a Skellam distribution. Treating incoming and released patients as missing data,
allows us to simulate the patient flows (stochastic E step) and refit the model (M step). Parameter
estimation in the Skellam distribution is cumbersome due to its numerically complex form of the like-
lihood function, which requires the use of the Bessel function. Even though these are implemented
in standard software packages, we refer to Schneble and Kauermann (2022), who report some nu-
merical instabilities in the case of parameters at the boundary of the parameter space. We also refer
to Lewis et al. (2016) or Aissaoui et al. (2017) who pursue moment-based estimation. In this article,
we aim to use implemented routines to achieve stability. In fact, the data can be rewritten as a miss-
ing data constellation, which itself suggests the use of an EM algorithm. We here use the Stochastic
Expectation Maximization (SEM) algorithm and present it as a suitable and numerically stable al-
ternative to available estimation routines. Originally proposed by Celeux et al. (1996), the stochastic
version of the EM algorithm gained interest in recent years, in particular in mixture models, see for
example, Noghrehchi et al. (2021). We also refer to Nielsen (2000) for asymptotic results on the algo-
rithm. The EM algorithm relates the estimation to a missing data problem, which is easily described.
We assume that instead of the complete data with incoming and outgoing patients, we only observe
the changes in occupancy of ICUs. In other words, the exact number of incoming and outgoing is
missing. Replacing these missing numbers iteratively with simulated numbers, based on the current
estimates of the model, provides the stochastic version of the ‘E’-step. This, in turn, leads to full data,
which allows for standard maximum likelihood estimation of two Poisson processes—the M step.
The algorithm is easily implemented, and Rubin’s rule, Rubin (1976), provides inference statements.
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A particularly interesting attribute that this approach provides is the simplification of the initial
complexity of the problem. We are able to break our problem down from a fairly complex distri-
butional assumption, with respect to deriving an association between the infection rates and the
number of incoming and outgoing patients, to land at essentially two iteratively updated general-
ized additive models (GAMs) with simulated responses, each response simultaneously sampled from
a joint distribution, comprised of the product of two Poisson distributions. This allows us to not only
circumvent rather cumbersome calculations and modifications of the first and second derivative of
the Skellam distribution, as, for example, shown by Schneble and Kauermann (2022) but also almost
effortlessly interpret the association between the number of incoming and outgoing patients and the
infection rate.

The article is structured as follows; in Section 2, we give a detailed data description. In Section 3,
we elaborate on the model approach to our problem, while in Section 4, we will provide the results of
our model approach. A simple simulation exercise to validate our findings can be found in Section
5, and in Section 6, we conclude our article which also includes a discussion of the shortcomings of
our approach.

2 Data description

The database for our analyses consists of two main components; data on COVID-19 infections and
data on the ICU occupancy of COVID-19 patients. The infections and the ICU occupancy are col-
lected by the German health care departments, recorded by the Robert Koch Institute (2021) (RKI),
the German federal government agency and scientific institute responsible for health reporting and
disease control, and published by the RKI and DIVI e.V. (2021), respectively. We here focus on
data during the fourth infection wave in Germany, that is, from the 2nd October 2021 until the 17th
November 2021, though the method is readily extendable to other time frames, so long that the
data included are subject to homogeneous testing or lock down strategies. We visualize the average
infection rates over all districts in Figure 1 (left-hand side).

The RKI collects and publishes data on infections on a daily basis. Due to privacy protection,
the RKI aggregates the number of COVID-19 patients, ICU occupancy and general hospital ad-
mission of patients infected with COVID-19 over NUTS3 districts, European Commission (2021),
but separates by demographic groups. These namely are the age categories; ‘0-4" year-olds, ‘5-14’
year-olds, ‘15-34’ year-olds, ‘35-59’ year-olds, ‘60-79’ year-olds and ‘80+’ year-olds and the sex;
‘male’, ‘female’” and ‘not disclosed’. For the purpose of this analysis, the infections are aggregated
over the age groups. The data were directly downloaded through the ArcGIS website, Robert Koch
Institute (2021). The infection rates per 100.000 inhabitants are then calculated as a weekly average
for each age group. For each district, the infection rate is averaged over the seven days immediately
preceding the respective observed day change in ICU occupancy.

The data on ICU occupancy is also collected by the RKI and published by DIVI. These data
are also on a district level, however, the occupancy can only be differentiated by the number of
beds occupied by patients infected with COVID-19, by the number of beds occupied by patients
not infected with COVID-19 and the number of empty beds, the sum of which is the overall ICU
capacity in a given district on a given date. We solely take the COVID-19 ICU-patients into account
and visualize the ICU data for one day in Figure 1 (right-hand side).

Statistical Modelling 2025; 25(3): 270-288
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Figure 1 A: Summary over all districts of the infection rate per 100.000 inhabitants by age group, ‘45-59’
year-olds, ‘60-79' year-olds and ‘80+' year-olds displayed by date, from the 1 October 2021 until the 18
November 2021, B: The maximum capacity of ICU beds per given district over the time span from the 1
October 2021 until the 18 November 2021 by district.

Conveniently, both data sets can also be found in the daily updated GitHub repository main-
tained by the RKI, Robert Koch Institute (2023). We take a closer look at the infection rates by age
group in the Supplemental Material.

3 Model

3.1 Assumption

Let Y ) be the number of COVID-19 ICU patients in a given district d at day ¢. This is the official
number issued by DIVI, described above and freely accessible from the given sources. We define with
I1,4) the number of incoming patients in district 4 at day ¢, which is the number of newly admitted
COVID-19 patients in the ICUs located in district d. Accordingly, we denote with R 4) the number
of released patients, meaning that they are discharged, deceased or transferred to a non-ICU. We
assume both to come from an inhomogeneous Poisson process such that

It.a) ~ Poisson ()\(I,’d)) (3.1)
R4y ~ Poisson ()L(’f’d)> . (3.2)

Statistical Modelling 2025; 25(3): 270-288

67



6. The Skellam distribution revisited: Estimating the unobserved incoming and outgoing ICU
COVID-19 patients on a regional level in Germany

274 Martje Rave and Goran Kauermann

The explicit modelling of the intensities A{, , and A ;) is of primary interest and discussed in depth
later in this section. For now, note that Equation (3.2) is an approximation, and formally we have
a right censored Poisson distribution with R, 4) < ¥;_i 4 since no more patients can be released
than are currently in the ICU. We can omit this point, though, since, based on the disease, we know
that not all patients are discharged at a time, so the formal censoring does not play any practical
relevance due to a generally small discharge intensity A 4).

With these definitions, we can now define the difference A 4) in occupancy of COVID-19 ICU
patients per district d and day 7 to the previous day ¢ — 1.

Avay = Yoa) — Yi-1,0) = L) — Rua)- (3.3)

Assuming independence for the number of incoming and outgoing ICU COVID-19 patients to-
gether with (3.1) and (3.2) leads to a Skellam distribution Skellam (1948).

Before we derive how to estimate the two intensities in (3.4) we want to discuss the suitability of
the distributional assumptions. Note that the approach relies on independence of 1; 4 and R q4).
This would be violated if discharges of the ICU in ¢ depend on the number of incoming patients in
t. A conceivable scenario where ;4 and Ry q) are dependent results if the ICUs get to their limit
capacity and triage of patients is inevitable. This situation has not been observed in Germany—over
the entire course of the pandemic—so we can argue that assuming independence between incoming
and outgoing patients is reasonable.

There was, however, relocation of patients if local hospitals reached the edge of capacity. This
followed a national plan, called ‘Kleeblattkonzept’, literally translated as clover-leaf-concept, see
Pfenninger et al. (2022). This also implies that some ICU patients are not local.

We also want to add a comment given by the referee, in that a Skellam distribution also results
in a more general setup. Assume that we have noisy data in that incoming and released patients
have an additive shift. That is instead of I, 4 we have 7(,,51) = I.a) + Z,q4) and analogously Ry g
becomes P(t,d) = Ry.a) + Z1,a) Where Z; 4 is some discrete noise. Apparently, now 7(,,61) and k([,d)
are not any longer independent, but their difference like in (3.3) is again Skellam distributed. Hence,
we can slightly weaken the independence assumption if we assume additive noise on incoming and
released patient counts.

Finally, the intensities X(II’ & and )\(If’d) are modelled to depend on a set of covariates denoted by
X(1,4) as well as previous data. To be specific, we set

g =exp (r,{,, o + () + h' (longitude,, latituded)) : (3.5)
t
)L(If’d) = exp (n&d) + s®(t) + h®(longitude,, latitude,) + log( Z wj }(j»d))>’ (3.6)
j=t—56
= offset

Statistical Modelling 2025; 25(3): 270-288
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where ’7(11, 4 and ”(lf, 4 are the linear combinations of the covariates included in the models. Namely,
the logged infection rates of the age groups 35-59” year-olds, ‘60-79’ year-olds and ‘80+’ year-olds,
as well as the weekday, included as a categorical variable, with Friday as its reference category. s’(¢)
and s&(¢) are smooth functions in time, and 4/ (longitude,, latitude,) and 4 %(longitude,,, latitude,)
are two-dimensional thin-plate smooth functions over the coordinates of the centroids of the re-
spective districts, Wood (2003). Note that 7(_/.d) is not observed, and we, therefore, replace it with its
simulated value from the ‘E’-step. Moreover, the weights w; are fixed and not estimated but instead
obtained from duration time models for COVID-19 patients in ICU units. We make use of the epi-
demiological bulletin published by the RKI in 2020, Tolksdorf et al. (2020), see Figure Al in the
Appendix. The maximum length of stay is set to 56 days, which explains the number in the formula
above.

Finally, we impose the standard identifiability constraints, that s, that both s7(¢) and s ®(¢) as well
as the spatial effects 4/ (longitude,, latitude,) and 4 ®(longitude,, latitude,) integrate out to zero. We
refer to Wood (2017) for more details.

3.2 SEM algorithm

Instead of maximizing the Skellam likelihood, as done for instance in Schneble and Kauermann
(2022), we pursue an EM algorithm, with the E-step replaced by a simulation step, leading to the
stochastic EM algorithm, as discussed in Celeux et al. (1996). The approach has the advantage, that
estimation can be carried out iteratively using implemented procedures and, even more importantly,
we directly obtain predicted values for the incoming and released patients, which are the quantities
of interest. Note that we observe A(; 4 from which we can ‘calculate’ 1; 4) and R, 4y . Given the data
we have

Iiay = Ay + Rea (3.7)

with the additional constraints that both, /; 4y > 0 and R; 4) > 0. Hence, based on the data, we have
the joint probability model for incoming and released ICU patients:

P(l;a) =k, Ria)y = JjIAwa) = 96)

P(Iy.ay=k) x P(Ry,qy=k—36) for j=k—4 and k> max(é, 0)
x ’ : . (3.9)
0 otherwise

with P({;,q4) = k)and P(R; 4 = k — §) resulting from the Poisson model (3.5) and (3.6), respectively.
While model (3.8) is a clumsy convolution model which does not simplify to an analytic form. Sim-
ulation from the model is simple by just replacing the infinite pairs k for /; 4) and k — 6 for R 4) by
a set of finite pairs, such that the resulting cumulative probabilities are approximately equal to one.
To be specific, we have

P(Iy.ay =k, Reay = jlAgay =8, A1, 1%)
— lim Pyi(Lya) = k) Pir(Rya) = k — 9)
K—o0 S8 Pu(Iya) = i) Por(Rya) = i — 9)

(3.9)
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69



6. The Skellam distribution revisited: Estimating the unobserved incoming and outgoing ICU
COVID-19 patients on a regional level in Germany

276  Martje Rave and Goran Kauermann

We approximate this numerically by assuming that either P,:(({1.4)) = k), or Pir(R;q) =k — ) is
sufficiently close to zero at k£ > 1000 making the product of the two distributions sufficiently close
to zero, such that the sum of probabilities for events £ > 1000 may be negligible. This results in the
finite approximation

P(Iia) =k, Reay = jlAqay = 8,21, 05)
PA’(I(t,d) = k)PAR(R(I,d) = k - 8)
S0 Pulay = 1) Por(Ryay = i — 8)

(3.10)

Numerically this is easily carried out and allows to simulate data pairs (L 4y R0y based on the
current estimates of the intensities using (3.10) as an approximate version of (3.8). This provides a
stochastic ‘E’-step and leads to a full data set with (simulated) incoming and (simulated) released
patients for all districts and all time points. With the resulting (simulated) full data set, we can now
directly estimate the intensities in models (3.5) and (3.6), which in turn is conducted in the ‘M’ step.
The ‘M’ step can be carried out by fitting two generalized additive Poisson models using standard
software, see Wood (2017).

Iterating between the two steps gives a stochastic version of the EM algorithm. Each simulation
step provides an estimate, and following the classical EM algorithm, we can easily see that on aver-
age, we increase the (marginal) likelihood in each step. The outline of which is sketched in Figure
A4, in the Appendix.

The results of the model which simulates from the joint probability distribution with K = 2.000,
instead of K = 1.000, are shown in the Supplemental Material.

3.3 Inference based on SEM

Unlike the EM algorithm, where calculating the variance of the estimates is not straightforward,
and one typically relies on Louis’ formula Louis (1982), the stochastic version allows to take the
uncertainty due to the missing data into account. The derivation shows similarities to Rubin’s for-

mula for imputation, see Rubin (1976). Let the parameter vector of linear and smooth functions,
~(k ~I(k)T  ~ RU)T . . . .
/3( ) = (ﬂl( ) B RO )7, be the resulting estimate in the k" step of the SEM algorithm. We assume

k > ko, where ky refers to the step when convergence seems to be achieved. The final estimate results
through

N 1 £ A~ (k)
B = > B (3.11)

The variance is estimated via

1

LS. 14+ (K—k)™' & a0 soa 4
e Y Tt TS S @ pt-pT e

Var(B) =
k=ho+1 (K —ko)—1 J=ko+1
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where I7a\r(ﬁ(k)) is the variance estimate in the & iteration step, based on the imputed data set. The
latter directly results through the applied fitting algorithm.

4 Results

A great advantage of our approach is that we can directly interpret the estimated association between
the included covariates and the incoming patients and outgoing patients separately. To do so, we
look at covariates containing information on the infection rates for each of the three age groups and
the weekday effects. The estimated coefficients and their standard deviation, calculated based on
Rubin’s formula, see Equation (3.12), are provided in Table 1. We use the last 300 runs to determine
the coefficient estimates through their median, as well as their variance through the Equation (3.12).
The estimates over the last 300 runs are shown through line plots in Figures A2 and A3 in the
Appendix for the incoming and outgoing patients, respectively. We include extensions to the runs
included in the analysis in the Supplemental Material. We find, however, that the inclusion of more
runs will not result in a change in the estimated coefficients.

First, we look at the association between our covariates and the number of incoming and out-
going patients, as seen in the middle and right column of the output table, Table 1. Recall that the
weekday effect is included in the model through a categorical variable, with Friday as its reference
category. For the model estimating the number of incoming patients, keeping respectively all other
variables constant, we can observe that there is an increased number of incoming patients on other
weekdays, compared to Friday, whereas on the weekend, there is a decreased number of patients,
compared to Friday. For outgoing patients, the behaviour is slightly different. On Monday, Thurs-
day, Saturday, and especially Sunday, fewer patients are released compared to Friday. Conversely,
Tuesday and Wednesday seem slightly increased.

The number of incoming and outgoing patients is positively associated with the infection rates of
all age groups. Notably, the strongest effect exists for the infection rate of ‘35-59’ year-olds. This is
interesting, bearing in mind that ‘60-79’ year-olds are the predominant age group DIV. We should,

Table 1 Estimated coefficients and standard deviations presented on the level of incoming and outgoing
patients. The estimates are the exponential of the median of the coefficient estimates from the 200" run to
the 500" run of the EM algorithm.

Incoming Outgoing
Estimates Std. Err. Estimates Std. Err.
Intercept —2.28 0.10 —6.41 0.12
Monday effect 0.12 0.05 -0.21 0.06
Tuesday effect 0.14 0.05 0.03 0.06
Wednesday effect 0.13 0.05 0.02 0.06
Thursday effect 0.14 0.05 —-0.10 0.06
Saturday effect —0.02 0.05 —0.09 0.06
Sunday effect -0.14 0.05 —0.39 0.06
Infection 35-59 yo 0.24 0.05 0.28 0.06
Infection 60-79 yo 0.07 0.05 0.07 0.05
Infection 80+ yo 0.11 0.02 0.10 0.02
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Figure 2 Estimated smooth functions of all runs, over time, rendered by the GAMs estimating the number of
incoming patients (left hand side) and outgoing patients (right hand side) over the last 300 runs.

however, not omit that there is strong collinearity between the infection rates themselves which could
affect our interpretability of the coefficients. More on the change of coefficients, when we look at
different time frames over which the data is observed is discussed in the Supplemental Material.

Recall further, that we included smooth functions to estimate both the spatial-, and the temporal
effects. They are included to pick up on additional spatial and temporal structural dependencies.
Let us first look at the smooth effects over time, as seen in Figure 2. The averaged smooth function
over time for incoming patients (left-hand side) is generally increasing. Evidently, we can see some
fluctuation and there seems to be a fortnightly rhythm within the overall trend. Here we observe an
increase in the number of incoming patients for the first seven days, then a decrease in the following
seven days, followed by a subsequent increase, and so forth. In contrast, as shown on the right-hand
side of Figure 2, we see a general decrease in the number of outgoing patients without a biweekly
rhythm.

Finally, we look at the spatial effects for the incoming patients, see the left-hand side of Figure
3, and for the outgoing patients, shown with the right-hand side of Figure 3. There seems to be
an increased level of incoming patients in Saxony (east Germany) and North Rhine-Westphalia
(west Germany) and a slight increase around the larger cities of Germany (Frankfurt, Stuttgart, and
Munich, south and southwest of Germany). We observe a similar structure in the spatial smooth
function in the model estimating the outgoing patients, except for the strong increase around Saxony.
Overall, we see clear spatial heterogeneity.

At last, we visualize in Figure 4 the estimated number of incoming and outgoing patients,
summed up over the entirety of Germany, for the observed time frame. The left-hand axis scales
the number of incoming and outgoing patients, whereas the right-hand axis scales the number of
overall ICU patients with COVID-19. We see that the model picks up the somewhat constant occu-
pancy, from the 1 October 2021, until the 17 October 2021, in Germany’s ICUs rather well, where
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Smoothing over space Smoothing over space
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Figure 3 Estimated median smooth functions of the 200" until the 500" run over space rendered by the
generalized additive models, estimating the number of incoming patients (left-hand side) and outgoing
patients (right-hand side).

the number of incoming and outgoing patients are estimated to be similar, if not equal. Thereafter,
the number of ICU patients in the ICU increases, around this time, we also observe a higher esti-
mated number of incoming patients than outgoing patients. It is not unusual for patients, especially
the critically ill, to stay in the ICU for more than four weeks, making the divergence in estimation
for the number of incoming patients and outgoing patients entirely plausible.

With respect to model validation, we provide some additional analyses in the Supplemental
Material of the article. In particular, we look at serial correlation and show that due to the au-
toregressive component in the model, the Pearson residuals show no autocorrelated structure.

5 Simulation

This section is aimed to investigate the goodness of fit of the modelling approach we chose a simple
version to emulate the data used above. We use one covariate, randomly drawn from a normal dis-
tribution, whose mean and variance are taken from the observed mean and variance of the logged
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Incoming and outgoing patients (left hand y-axis)

and total occupancy of ICU beds over time

(right hand y—-axis) in Germany
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Figure 4 Estimated number of incoming and outgoing patients by date from the 1 October 2021 until the 18
November 2021, as well as the total number of COVID-19 patients in the ICUs of Germany.

infection rates of ‘60-79” year-olds. We choose this age group, as ‘60-79’ year-olds are the predom-
inant group in the German ICUs during the fourth wave, see Robert Koch-Institut (2023). The
coefficients for the simulation are chosen in a way such that the difference in the simulated incoming
and outgoing patients is somewhat similar to the range of the difference in the observed incoming
and outgoing patients, namely (—24, 20) in the observed data. The incoming and outgoing number
of patients are then simulated, outlined in Equation 5.1.

I; ~ Poi(exp(By' + BBY" Xi). (5.1)
R, ~ Poi(exp(B3"' + BB{" Xi + log(Li-1))), (5.2)
X; ~ N(1.978,1.397), (5.3)
Vi € (1,...,1000). (5.4)

Here, ﬁé” is taken to be —2.340, ,3{” is 0.800, Bg*" is 0.001 and B{*" is taken to be 0.100. Here,
N(u, o) refers to the Gaussian distribution with mean u and standard deviation o, and Poi(}),
refers to the Poisson distribution with intensity parameter A. . The simulation algorithm is sketched
out in Figure A5 and the resulting estimated coefficients of twenty independent runs are shown in
Figure 5, where we see that the confidence intervals of each of the coefficient estimates of each of
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Figure 5 The estimated coefficients for twenty simulated data sets.

the twenty runs include the real coefficient, except for the ‘Incoming Intercept’ coefficient in the 127
simulated data set.

Overall, the simulation confirms that we are able to uncover incoming and outgoing patients
from pure hospitalizations.

6 Conclusion

Overall, in this application of the SEM, we are not only able to simulate unobserved data but also
estimate the association between the weekday effect and the infection rates and the number of
incoming and outgoing patients in a simple and intuitive manner. We achieve some insight into
the estimated association between the infection rates and the number of incoming and outgoing
patients. Namely, the driving force of the estimated number of incoming and outgoing patients
seems to be the infection rates of ‘35-59° year-olds. Although we are not able to validate the
predictions against the actual number of incoming and outgoing ICU patients, our findings seem
to be mostly reasonable. Additionally, the SEM estimates the association of the simulated number
of incoming and outgoing ICU patients and the simulated covariate well. In this situation, the
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SEM seems to be an appropriate application and allows us to gain a more complete picture of the
COVID-19 pandemic, even when dealing with incomplete information.
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Appendix

1 Maximum length of stay in the ICU

Figure Al illustrates the information provided by the RKI on how long COVID-19-infected patients
stayed in the ICU in Germany in 2020, see Tolksdorf et al. (2020). The maximum number of days
is here 56.

Outgoing out of the ICU

100

80

60

Percentage of patients (%)

40

20

Day

Figure A1 Percentage of outgoing ICU patients after the day of admission.

Statistical Modelling 2025; 25(3): 270-288



2 Convergence of the algorithm

The Skellam distribution revisited 283

Figure A2 and Figure A3 show the estimated coefficients in the ‘M -Step of the SEM, at each of the

500 total iterations. We see that convergence seems to have been achieved at around fifty runs and

then oscillates around respective constants, just as we expect the SEM to perform.
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Figure A2 Coefficients estimated by the generalized additive models of the last three hundred runs of the EM

algorithm of the incoming patients.
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Figure A3 Coefficients estimated by the generalized additive models of the last three hundred runs of the EM
algorithm of the outgoing patients.
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3 Pseudoalgorithms

Algorithm 1 Pseudo algorithm of the SEM
Require: 9 — & is the observed difference.

Sl 10} M0 E €0 20} — Randomly chosen starting values

for the Poisson parameters.

(I = k, R” = k= 8|A7,, A%,) = Poiy (k)Poiys (k—9) — Calculate
the probability density function for k = [1,. .., 1000]. *
y [ L] =~ IR, ') — Simulate IY,,, and RY, from the joint

probability distribution.

for i € {1,...,500} do

‘M’-Step Estimate /‘\:.” and ;\:)u, by using two generalized additive
models.

‘E’-step Simulate the number of incoming and outgoing patients from
[Lins Bin) ~ P(I = k, R = k — 8|A},,, Ap,,) = Poiys (k)Poiy: (k —9).
end for
Return — A list of estimated parameters (M-Step) and simulated number

of incoming and outgoing patients (‘E’-step) for each iteration.

Figure A4 The algorithm describes the SEM which simulates the number of incoming and outgoing patients
and their association with the infection rates of COVID-19 and other covariates. * 1000 is a semi-arbitrary
value, but during the time span analysed the maximum number of beds per district in the data set is 1300, so
reasonable.
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Algorithm 2 Pseudo algorithm for data simulation

Require: Sect seed.
Require: n 1000 + 1 + Data set has 1000 entries (+1 because we will

include a lag).

»ax ~ N,(1.978,1.397) y Draw n draws from a Normal distribution.
- X =[1,2] » Design matrix
. B’ = (-2.340,0.8), 82 = (0.001,0.1) ¥ Set parameter vector association

between responses and covariate.

. I ~ Poi(exp(XB™)) ¥ Draw the number of incoming patients from a
Poisson distribution.

« I =" z 1)

= — Iem13(n)]

. RTm f’ui{t'.rp{,\'.H”"" i J’U;,:{I'}f,','_,: +0.1))) ¥ Draw the number of outgoing
patients from a Poisson distribution.

O R » Calculate the difference.

l{.(‘-t.tlrll ‘.()_.,-,i”r [1.\'!"]‘. I‘prm' I.\nn T. 5.-uml

Lag**

Figure A5 The algorithm describes the data simulation process of the number of incoming and outgoing

patients. Here we use 1000 observations, one covariate for both incoming and outgoing patients, while for the

outgoing patients, we additionally take the logged lag of incoming patients of the previous ‘day".
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This paper focuses on drawing information on underlying processes, which are not directly observed in the
data. In particular, we work with data in which only the total count of units in a system at a given time
point is observed, but the underlying process of inflows, length of stay and outflows is not. The particular
data example looked at in this paper is the occupancy of intensive care units (ICU) during the COVID-19
pandemic, where the aggregated numbers of occupied beds in ICUs on the district level (‘Landkreis’) are
recorded, but not the number of incoming and outgoing patients. The Skellam distribution allows us to
infer the number of incoming and outgoing patients from the occupancy in the ICUs. This paper goes a
step beyond and approaches the question of whether we can also estimate the average length of stay of ICU
patients. Hence, the task is to derive not only the number of incoming and outgoing units from a total net
count but also to gain information on the duration time of patients on ICUs. We make use of a stochastic
Expectation-Maximisation algorithm and additionally include exogenous information which are assumed to
explain the intensity of inflow.

Key words: Stochastic EM Algorithm, Skellam distribution, Survival, COVID-19, ICU-patients
The GitHub repository accompanying this paper can be found under
https://github.com/Mart jeRave/OccupancyDuration.git

1 Introduction

In this paper, we introduce a method which enables one to estimate an underlying, unobserved inflow,
length of stay, and consequent outflow of units, using only sporadically observed net count data of said
units. While we look at intensive care units (ICU) in the paper, we want to make clear right at the start
that the approach is transferable to similar data constellations. Consider, for instance, the research of
an ornithologist who is investigating the hatches and deaths in a given penguin colony. The scientist
sporadically observes the number of penguins at given time points. Between each observation, some
penguins will have hatched and some will have died. The methodology developed in this paper allows us
to estimate the number of incoming units (hatched penguins), the length of stay (average life span) and the
number of outgoing units (penguins which have died). The same question is posed on our data example.
We observe data on the occupancy of ICUs during the COVID-19 pandemic, but the real focus of interest
is on obtaining information of incoming and outgoing patients as well as on the (average) length of stay in
the ICU.

Throughout the COVID-19 pandemic, there were arguably a good amount of data published in Germany,
foremost by the Robert Koch Institute (RKI), on COVID-19 infections, and the Deutsche Interdisziplinire
Vereinigung fiir Intensiv- und Notfallmedizin (DIVI), on hospital and ICU occupancy. However, in the
beginning of the pandemic there were no data published on the number of incoming and outgoing ICU
patients infected with COVID-19, only the ICU occupancy. While these data were made available on the
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state level (‘Bundeslandebene’) from 2021 onwards, data on district level- which is what we consider in
this paper- have not been published.

Data on ICU admissions for the whole of Germany were analysed by, for example, [Karagiannidis et al.,
2021] to evidence the difference in the initial pandemic waves. Others, particularly medical practitioners,
conducted studies on individual treatment centre level, to assess the treatment strategy and the success
thereof, see e.g. [Rieg et al., 2020].

In our earlier work, [Fritz et al., 2024], we analyse the occupancy in relation to the infection rates in
order to understand the strain on the healthcare system. Clearly, the occupancy is a function of admission
and length of stay. This is the core assumption in our subsequent work [Rave and Kauermann, 2024], in
which we take the length of stay as fixed, relying on results of [Tolksdorf et al., 2020]. Here, we extend our
previous work and demonstrate, that the length of stay can also be estimated from occupancy data, besides
obtaining information on incoming and outgoing patients. By doing so, our approach allows us to gain
more understanding of the epidemiological dynamics of the disease.

The key component of our statistical model looks at the difference in two independent counting pro-
cesses, each assumed to be Poisson distributed. This leads to a Skellam distribution [Skellam, 1948] with
parameters equivalent to the intensity parameters of the respective underlying in- and outgoing Poisson
processes. We model the unobserved number of incoming and outgoing units to depend on a set of covari-
ates, as well as spatio-temporal information. The required independence of the two Poisson processes is
achieved by conditioning on the history of the process, i.e., we assume some Markov structure.

Fitting is pursued by applying the stochastic Expectation-Maximisation (SEM) algorithm as introduced
by [Celeux et al., 1996] and further discussed among others in [Chen et al., 2018] concerning running
time or [Figueroa-Zuiiiga et al., 2023] for estimation of complex or uncommon distributions; see also
[Yang et al., 2016] for latent variable estimation in survival models. In our application, we iteratively
and sequentially simulate the number of incoming and outgoing units, using the Skellam distribution.
This replaces the unobserved values by simulated values (stochastic E step), and the sequential simulation
allows us to condition on the past, so that we can utilise the Markov structure in the simulations. The E-
step provides a complete data set which is used to estimate the incoming and outgoing intensity parameter
(M-Step) employing two independent Generalised Additive Models (GAMs), [Wood, 2017]. The outgoing
intensity is modelled to depend on the (unobserved) number of incoming patients, which allows to model
the average length of stay of COVID-19 patients on ICUs. This part of the model is non-standard and
requires specially tailored estimation routines. In simulations, we demonstrate the usability of our estimates
and apply the routine to real data, as described above.

The paper is organised as follows. In Section 2, we describe the COVID-19 ICU data in more detail.
In Section 3, we go into further detail of our estimation process, by describing the sEM algorithm, first
through our initial approach, then by our extension thereof. We then show the application to simulated data
in Section 4 and the application to COVID-19 ICU data in Section 5. We discuss the method in Section 6.

2 COVID-19 ICU Data

We define with Y{; 4y the observed COVID-19-related occupancy of the ICUs at time point ¢ in the admin-
istrative district d. For time, we take the interval 15 of August 2021 to the 315¢ of December 2021 with
t = 1,2,... denoting the days. For the districts, we have a total of 400 different administrative regions,
districts, in Germany. Data on the ICU occupancy are provided by DIVI' [Robert Koch-Institut, 2025a],
and additionally, we take the daily infection rates as provided by the RKI> [Robert Koch-Institut, 2025b].
To the best of our knowledge, there are no data on the incoming, length of stay or mortality of ICU
patients infected with COVID-19, publicly available in Germany. So in order to later link the inflow and
outflow of patients to data, which are observed, we take the ICU occupancy and we can calculate its

1 https://robert-koch-institut.github.io/Intensivkapazitacten_und_COVID-19-Intensivbettenbelegung_in_Deutschland/
2 https://robert-koch-institut.github.io/COVID-19_7-Tage-Inzidenz_in_Deutschland/
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Figure 1 Introduction to COVID-19 Data with; a) maximum ICU occupancy, as a percentage of the total
ICU beds, per district (‘Landkreis’) and b) average of the logged 7-day-average infection rate per 100.000
inhabitants, per age group from the 15 of August until the 31°¢ of December, 2021.

difference
A,y = Yie,a) — Yie-1,9)- (D

The infection rates are provided for each district, day and age group, namely ‘35-59’ year olds, ‘60-79’
year olds and ‘80+’ year olds. We calculate the 7-day-average of the infection rate per 100.000 inhabitants
and take the natural logarithm thereof.

For data exploration, we plot the maximum ICU occupancy in Figure 1 a). We show the percentage
COVID-19 occupation of the total ICU beds, per district. The logged 7-day-average infection rates per
100.000 inhabitants of the three age groups included in the analysis, plotted over time and averaged for all
districts in Germany are visualised in Figure 1 b).

Figure 1 a) shows a somewhat constant maximum occupancy rate over space, with some rural districts
exhibiting a larger occupancy rate than cities. One might add that some districts report to have as little
as 6 ICU beds available for patients. We would therefore expect to see these filled up more quickly than
others. The cities Hamburg and Berlin are observed to have a maximum occupancy of COVID-19 patients
of around 12.6% and 8.2%, respectively. Dresden, Miinchen and Stuttgart are observed to have a maximum
occupancy of around 22% to 26%. Dortmund’s maximum occupancy is observed at around 38%. More
information on the ICU dynamics in Germany are published by the [Bundesministerium fiir Gesundheit,
2025]. The centroids of the given districts are marked by the respective white dots seen in Figure 1 a).

Figure 1 b) shows two spikes in the average of the logged infection rate per 100.000 inhabitants, per
age group; one in mid September and another, larger spike, at the end of November, 2021. While there
were non-pharmaceutical interventions in place, such as curfews and testing strategies, some readers might
remember a dramatic infection wave towards the end of the second half of 2021. We also observe this in
Figure 1 b).
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4 Martje Rave and Goran Kauermann: DurationTimeOccupancyData

3 Modelling Incoming and Outgoing
3.1 Skellam Modell

We are interested in the underlying process of incoming, length of stay and outgoing units, which is not
observed. We therefore define with I(; 4) the incoming and with R, 4 the outgoing (released) units of the
ICUs in district d at time point ¢. We use the equivalence between A, 4), as given in (1), and the difference
between the incoming units and outgoing units, i.e.

Away = Yea) — Yie—1,0) = Lit,0) — Rieya)- 2)

As I(y,q) and R(; gy are both counting processes, it is reasonable to assume that the two random variables
follow Poisson dlStI'lbuthIlS with intensity parameters A/ (t.d) and /\( respectively, i.e.

t,d)
I (4,4 ~ Poisson (A{t,d)) 3)
R,q) ~ Poisson (Ag’d» . (@)

We define with H, 4 the history of the incoming process, that is H; 4 = {I; : £ < t}. Given the history of
the incoming, we assume that I; 4 and R; 4 are conditionally independent, so that the difference of the two
Poisson distributions follows the Skellam distribution, [Skellam, 1948],

Aty Hea ~ Skellam(/\ft’d), A{;d)), 5)

For the incoming intensity we set

)\(It#i) = exp (U(Iz,d)) (6)

where the linear predictor 7](t ) is modelled to depend on explanatory variables denoted by !, td)
The linear predictor in estimating the number of incoming ICU patients with COVID-19 is defined as

M (1,a) = exp(Bo + Bilnfecss 59, 4y + B2Infeceo—79(, 4yt )
Bslnfecso(;,ay + SaMonday , 4+
BsTuesday , 4 + (s Wednesday , 4+
BrThursday, 4 + BsSaturday, 4 + SoSunday, 4+
fi(long g, lat(a)) + fa(t)).

The variables included are the logged 7-day-average infection rate of the week prior to ¢ for the age groups,
35-59° year olds, ‘60-79’ year olds and ‘80+’ year olds. We further include a weekday effect through
a dummy-coded categorical variable, with ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Saturday’,
‘Sunday’ denoting dummy indicator variables for respective weekdays and ‘Friday’ being the reference
category. Information on space is included by f; (long(d), lat(gy), a thin plate spline over the longitude
and latitude of the districts” centroids. The function f5(t) denotes a thin plate spline across the date of
observation, t.

For the outgoing units, R(; 4y, we come to the understanding that this number depends on the count of
incoming patients. This is modelled multiplicative as follows. Let [ denote the time delay, i.e. the time
between admission to the ICU and the current day ¢t. We define with parameters w; forl = 1,..., L the
exit rates, comparable to the hazard of leaving the ICU, where L is the maximum length of stay which is
taken sufficiently large. One may also take the intensity of the number of outgoing units to be a function of
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external information, defined by a linear predictor 7](1} d) which can depend on covariates a:( ) This leads
to the model

L

Mty = exp{nfi o + 108> wil—1.0)}- @®)
=1

In our example we will simplify the setup and set nﬁg 4 = 0. Moreover, as argued before, /\ﬁ ) is assumed
to be a function of the incoming units and the length of stay. We thus need to postulate constraints on the
parameters w;, namely

L
D w=1withw >0V €{1,...,L}. ©)
=1

for a sufficiently large L.

Assuming I(; qy and R(; gy to be known, the estimation of the parameters of A t.d) and /\(z ) would be
conceptionally simple. Following the distributional assumption of (3), we would be able to maximise the
likelihood, given the incoming intensity parameter using a Generalized Linear Model [Wood, 2017]. The
maximization of the likelihood of the outgoing number of units is, however, a little more intricate. We
again assume a Poisson distribution leading to the (partial) log-likelihood

T D L L
= Z Z (R(t,d) 10g(z wil(i—1,ay) — Zwll(tl,d)> : (10)
=1

t=1d=1 =1

Maximization of the log-likelihood in (10) needs to be done under linear constraints (9). This can be done
iteratively through quadratic optimisation, see e.g. [Goldfarb and Idnani, 1983]. Second-order approxima-
tion yields

B (w) ~ B@®) 4 5T (0®) (w — o) — %(w — 6MNTZ(®)(w — o™ (11)

~ [sT(@™) + oW TZ(W)]w — %(wTI(dz(k))w) + K,

with & denoting the estimate for the length of stay at the k** iteration. Quadratic optimization allows to
maximize (11) with respect to the linear constraints given above. More details are provided in Appendix
A.

3.2 Estimation Approach

Since the number of incoming units and outgoing units are not observed (or observable), we can not
directly estimate both, the incoming intensity (6) and outgoing intensity (8), respectively. We therefore
pursue a SEM-algorithm, where the E-step is replaced by a simulation step to iteratively obtain simulations

of incoming, I ) and outgoing, R™ _ at the k-th iteration. We then use the procedures outlined in the

. . . <I(k+1 k+1) . . . . . .
previous subsection to estimate A () and A ( ), given the simulated incoming and outgoing units.

To be more specific, we set the parameters to some (reasonable) starting values and then simulate incoming
and outgoing patients, which builds the stochastic E-step (see Celeux et al., 1996). This leads to a complete
dataset, which easily allows for (re-) estimating the parameters following the results from above. This, in
turn, gives the M-step. Formally, the algorithm proceeds as follows.

1. Simulation E-Step

Naturally, the first observation for all districts d = 1,..., D is at £ = 1. However, since we assume
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5\5:(?(1) = EzL:1 d)l(k)l((guil ) forallw = {1,..., L} we need the number of incoming patients
(k)

before the first day of the observation period. We thus simulate [ (E.d)
in’, forf = {—L + 1,...,0}. These ‘burn-in’ values are utilised in the E-Step simulations but not
used for estimation of the incoming intensity. For ¢ = 1, ..., T we proceed to simulate both incoming
and outgoing units conditional on the observed values Ay 4y. To be specific, we assume

~ Poisson(;\gtfl)ﬁd)) as ‘burn-

Iét’f)d) ~ Poisson(j\{tf;))) (12)
L
k . k) r(k
REL*L) ~ Pmsson(cxp(log(z wl( )[ét)l d)))) (13)
=1
subject to

(k) (k) _ —
](t,d) - R(Ld) =Yia) = Yi-1.0) = Aty

Note that [ <t)d and R< ) are dependent and can be simulated as shown in [Rave and Kauermann,

2024]. We reiterate the general idea, ignoring for the moment the iteration index k. First, we de-
fine a reasonable range [0, I;;,q,] of probable income values [ (t,d)- Then we calculate the truncated
conditional probability
Pty =i, Rieay = i — Dyl I it.a) < Tmawi M.ays Ahay) = (14)
exp(=Afp.a) Mgy exP(AG ) A0 200 (016 = Aa)) ™!
Tmas N YT T
I lexp(— MLy g N o) exD(=AR )R T2 (GG — Agra)) ]

The derivation is given in the Appendix B. We then sample from this normalised truncated joint
probability mass function to obtain ((t d) and REf)d
2. M-step

With the simulated values, we can now update the estimates for the linear predictor of the incoming
I(k+1) iR (k+1)

intensity, A (t.d)

, as well as the outgoing intensity )\

3.3 Bias Correction

By defining the constraints in (9) in the estimation of the outgoing intensity (8), we obtain a prior structure
on the coefficient vector w, which induces a systematic bias. Namely, we find a pull towards a discrete uni-
form distribution. To accentuate this, suppose Y(; g is constant over time Y(; ) = Y(;_1,4) = Y(1-2,q) =

+ = Y(4—n,a), which may occur, for instance, when we encounter an utterly closed system with no in-
coming nor outgoing units. In this case the vector w consists of zero entries, which violates the assumption
Eszl w; = 1. The likelihood for w is thus flat and the constraints would lead to the estimate w; = %,
which is evidently biased. To illustrate the bias problem empirically, we refer to simulated data, which are
described in more depth in Section 4. We apply the sEM outlined in Section 3.2, above. We thus estimate
the exit rate without adjustment, for which a pull towards the uniform distribution can be observed. We
visualize this in Figure 2 a), top left-hand side plot. The light blue squares give the final estimates for wj.
The dark blue dots indicate the ground truth exit rate. The horizontal dashed line is 1/L = 1/12, which
indicates the probability of a discrete uniform distribution with maximum length of stay equal to L = 12.
We observe an evident pull towards the 1/12 line.

To correct this bias, we propose bias-corrected estimates of the exit rate. The basic idea relies on the
pull towards the 1/L line. In Figure 2 c) we plot the squared difference between @; as well as wy, and 1/L,
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Figure 2 a) Estimated exit rate, @ (light blue squares) and ground truth (dark blue dots) plotted over the
length of stay, . The estimated exit rate is not bias adjusted, thus the pull in the estimates from the ground
truth towards 1/12 is shown by the grey vertical lines. (Nota bene: ws = 1 — llil @;.) b) Illustrated

bias adjustment with adjusted estimates (cf:)) (black triangles) with an estimated pull v/é = 1.52 using
the ground truth and the unadjusted exit rate estimate, illustrated in a). c¢) Square difference between the

ground truth exit rate and 1/12, (w; — 1/12)2, and square difference between the estimated exit rate and
1/12, (& — 1/12)2, with line y = &(& — 1/12)?

respectively. This suggests the approximate proportionality

1\? 1\?
<d)lfz) zc(wlfz) (15)

for some value c. The ‘best’ value of ¢ could be estimated through least squares

1\° 2"
¢ = argmin, (o&l — —) —c (wl — —) } . (16)
1=1 [ L L

A bias-corrected version of the estimate is then available by replacing c in (15) by ¢ and reversing the
pull towards 1/L. To be precise, we define a bias-corrected version through

W =

amn
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8 Martje Rave and Goran Kauermann: DurationTimeOccupancyData

The resulting bias-corrected estimate is shown in Figure 2 b) on the top right-hand side as black triangles,
in addition to the true values and the raw, biased estimates. We see a close concordance with the true
values, demonstrating that the bias correction works in the right direction.

Apparently, looking at formula (16), it becomes obvious that the idea is not directly applicable in prac-
tice, since we would need the true values w; for [ = 1,..., L. However, we will utilise the idea and insert
an extension to the SEM loop, where we simulate from the k-th estimated model and refit the model sube-
sequently. By doing so, we can take the current estimates w as ground truth and are thereby able to estimate
¢, as described above. The idea is laid out as follows.

A bias correction is indeed necessary in each iteration step of the SEM algorithm, because a biased
estimate of the exit rate w; will induce biased simulations of the incoming patients (sE-step), which in turn
will lead to biased estimates of the incoming intensity (M-step). Hence, ignoring the bias creates a chain
of problems. To avoid these problems, we propose to extend the SEM-steps 1 and 2 in Section 3.2 with a
bias correction.

3. Simulate data from fitted model
Let A and A k+ be the estimates resulting after step 1 and 2 in the k-th step of the sEM
algorithm described in Section 3.2. These estimates are biased and need to be corrected. For the
bias correction, the estimates are taken as (current) ground truth. Therefore, simulate /, ((tk L and Rgpd

using the current estimates and do not impose It t, 31 R(k) 0 = = A,q)- Instead calculate

(k) _ 7(k) (k)
A(td) _Itd) _R(zd

and use these numbers as ‘simulated observations’ from a model, where the parameters are known.

4. Inner E-Step (on simulated data)
Conditional on the ‘simulated observations’, simulate [(; 4y and R(; 4) using the current estimates
from a Skellam distribution under the condition

o .
Aay = Lita) = Bita)-

This can be done as described in Section 3.2. Note, Al (t d) here are the simulated differences from
step 3 and not the observed data.

5. Inner M-Step: Outgoing
Use the simulated data from step 4 to obtain estimates &; for [ = 1,..., L. This can be done as
described in Section 3.2.

6. Bias Correction for Outgoing (w)
Based on the ‘raw’ estimates w(**+1) from step 2 and the derived estimates & from step 5, calculate
the optimal & using (16), with w; in (16) replaced by w*+1) and & replaced by &. This yields a bias
corrected version for (*+1), which is available through (17), that is

s ) T HAE@
wl = L
T

Sl

7. Bias Correction for Incoming (A7)

Simulate incoming and outgoing patients again, like in step 1, but now using the current (raw) esti-

~I (k41 . . N ..
mates A (k) and the bias-corrected estimates w(**1) and conditional on the observed data

7(k) P (k)
Ata) = I(fd) R(t,d)’
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Note, this is like the original step 1 in the SEM algorithm, but a bias-corrected version replaces the
exit rates.

Use the simulated incoming patients to obtain a bias-corrected version AT (D)

8. Concluding the loop

(k+1) (k <1 (k+1) by 5\1 (k+1)

Replace @ by & o and A and proceed with step 1 in the SEM algorithm.

In the application, we suggest extending steps 1 and 2 of the sEM loop with the extra steps 3 to 8 not
immediately, but only after some ‘burn-in’ phase. This accelerates the estimation process.

3.4 Inference

Given the application of the sSEM we can use the variability of the estimates within the SEM chain to adjust
for the underestimated variance, as given by [Rubin, 1976]. Let therefore 3 denote the parameter vector
with all model parameters stacked together. We use the variance estimation

K k — —
o TiwS | T80 -BBY -B)”
PTTK - K-k —1 ’

18)

with £(*) being the covariance matrix estimated at the k'" iteration, 3 being the mean (or median in case
of outliers) estimate of the last K — &’ runs of the column coefficient vector 3, with k’ being a starting
point at which convergence is assumed to have occurred. The estimated covariance matrix for the model on
incoming units, (12), is a standard estimation. For the model on outgoing units, (13), we take the inverse of
(27) as an estimate for the covariance matrix. For simplicity, we assume the incoming and outgoing units
to be independent.

4 Simulation

We simulate a data example, which is aimed to emulate the real data closely. We simulate 200 districts, d,
for which we observe data at 200 time points, ¢. This results in 40.000 observations. We then simulate two
covariates from which the incoming units are simulated, as seen in (19).

x1(g ~ Gamma(0.1,0.5), (Nota bene: varying over districts, constant over time)

22(,q) ~ Gamma(1, 3), (19)
A{ﬁd) = eXp(O‘S + Xl(d) + 0.2 xz(t,d))
Iy ~ Poisson()\(lm))
vte{l,...,200}, d € {1,...,200}.

For the simulation setup, we choose the maximum length of stay to be L = 10. The probability mass
function is

exp(—0.47)
Ziil exp(—0.4s) ’
From this, we now simulate the outgoing number of units in a slightly different way to the estimation

procedure. Namely, let (71, ..., 710) and for each incoming patient i(; qy € {1,..., 1,4y} at time ¢ and
district d we simulate a length of stay, [ from (71, ..., 710). Then

m=PL=1)= (20)

i(t,d)?

L Ig—1,a0)

Ruagy=>_ >, i, =1), Q1)
=1 i—=1
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Exit rate
\/§=1.23
Est. Ground _  Smoothed o
12 ExitRate ° Truth Est. Exit Rate 95% CI
e
0.31
L
0.21
<3 >
0.11 d
(]
* °
0.0- To———,

Length of stay

Figure 3 Estimated exit rate over the length of stay (denoted lag) with 95% confidence interval (of the

last 200 runs of the sEM) against ground truth, with w5 =1 — llil w.

with 1(.) denoting the indicator function. To summarise, the number of outgoing units, at time point ¢ and
district d, is the sum of units which have previously come in [ days before.
From (19) and (21) we obtain the difference,

Aay = L0y — Ritya)- (22)

Once the data are generated, the sEM is applied for 400 iterations. For different starting values, the
sEM would take a different number of iterations until convergence is observed. However, we conjecturally
observe a convergence rather quickly, maximally after 100 iterations. In Appendix C, we observe that the
likelihood has reached some convergence after around 50 iterations of the SEM. We summarise the results
for the last 200 runs of the applied SEM, by the median of respective point estimates and the estimated
standard deviation. The M-Step comprises the estimation of the incoming intensity parameter and the
exit rates. For the exit rate, we select a maximum lag L that exceeds the true lag used in the simulation.
This should mirror a plausible estimation strategy, where, for estimation, one sets the maximum lag large
enough, potentially larger than needed. To be specific, we set the maximum lag for fitting to be 12. The
estimate of the incoming intensity parameter is given by

S‘(It,d) = CXP(BO + BIXI(d) + ngz(t’@), 23)

In Figure 3 and Table 1 the median of the point estimates and the standard deviation, the square root
of the variance estimate as given in (18), are displayed, where the median of the simulated incoming and
outgoing units are displayed in Figure 4.

Table 1 shows the estimated and true effects of the covariates on the incoming units. We observe that the
estimates approximate the ground truth for both coefficient estimates. However, we observe a somewhat
larger deviation for the estimated intercept. We will get back to this point in a second simulation setup
below. The true and estimated exit rates, shown in Figure 3, evidence an estimation close to the ground
truth for all estimates of the exit rate, with some slight deviation from the 95% confidence interval at lag
5 and lag 7. Note this is just one simulation and overinterpretation should be avoided. Therefore, we
additionally fit a smooth fit to estimated exit rates, which mitigates the random deviations from the true
exit rates.
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Parameter Estimate Std. Dev. Ground Truth

Bo 0.3788 0.0089 0.5
B 0.9828 0.0167 1
Ba 0.2149 0.0036 0.2

Table 1 Results of coefficients against ground truth.

Incoming Outgoing
Incoming == Perfect fit Outgoing = Perfect fit
[} (o))
E= 204 = 204
g $
Qo 3
£ O
el Eel
2 L
2101 £ 101
= @
ul i
01 0+
0 10 20 0 10 20
True Incoming True Outgoing

Figure 4 Estimated incoming and outgoing number of units.

Though this simulation shows that the model is able to estimate the true underlying incoming and
outgoing units, as well as the true coefficients, in practice, there is likely to be overdispersion in inflow
and outflow relative to the Poisson model assumption. We therefore extend the simulation process by
generating inflow data from a Negative Binomial distribution (24), instead of a Poisson distribution. In
doing so, we retain the true incoming coefficients for the expected value of incoming units, as specified in
(19):

I(t.4) ~ Negative-Binomial(\{, ., 6). (24)

In (24) the variance assumption extends from that of the Poisson distribution to

2
N,
7< ¢ 0‘”> . (25)

We simulate data for different values of 6, with #; = 0.5,05 = 1,03 = 5, 6, = 10. The simulated
overdispersion decreases with increasing . For each 6, we again simulate 200 districts and 200 time points,
resulting in 40,000 observations per data set, and estimate inflow and outflow analogously to the previous
setup.

Table 2 reports the estimated and true covariate effects for each simulated data set, including the
Poisson-based simulation for comparison. We observe that the estimates approach the ground truth as
overdispersion decreases. We also refer to Appendix D, where we show simulated incomings, from one
of the last stochastic E-steps, plotted against the true incomings, based on the simulations. Overall, the
models’ estimates tend to approximate the true coefficients more closely as overdispersion diminishes.

Vs(Ia) = Mgy +

©0



12 Martje Rave and Goran Kauermann: DurationTimeOccupancyData

Table 2 Estimated coefficients from the 200" to the 400" of misspecified models compared to the true
values.

Bo B Bn
True 0.500 1.000 0.200
0=0.51| 1269 1.925 0.099
=1 0937 1.662 0.137
0=5 0.499 1406 0.178
0 =10 | 0.487 1.025 0.219
Poisson | 0.379 0.983 0.215

Estimated exit rates
For different simulated data
-o— Poisson Theta=1 Theta=5

Data Sim
-~ Theta=0.5 Theta =10 =e= True

0.4

Estimated exit rate

Figure 5 Estimated exit rate over the length of stay (denoted lag) for models applied to data simulated,
with incoming units simulated from a Poisson distribution and Negative-Binomial distributions, with 6; =
0.5, 03 =1, 65 =5, 6, = 10.

Looking at the exit rate, which is the primary focus of interest, we see from Figure 5 that overdis-
persion does not disturb roughly consistent estimation. The estimates of the exit rate all show a similar
performance.

5 Results

With the above prerequisites, we are now able to apply our model to the ICU data. For stability in our
estimation, we first apply the sEM, as a ‘pre-run’, to the data for a total 200 iterations, without conducting
any bias adjustment. Said ‘pre-run’ renders results which are assumed to be in a reasonable range for
starting values of the sSEM with bias adjustment, i.e. actually used in estimation results. The SEM with bias
adjustment runs for another 150 iterations. The final results are summarized over the last 100 runs. The
log-likelihood over the initial 200- unadjusted- iterations and the subsequent 150- adjusted- iterations are
shown in Appendix C. For reference, the linear predictor for the incoming intensity is given in (7).
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Figure 6 a) Estimated smooth function over space b) Estimated smooth function over time.

In Table 3 we see the results of the estimated effects of the infection rates and the weekday effects. We
see that the estimated effect of the lagged infection rates of the ‘35-59’ year olds is largest, which agrees
with the findings of our first paper, see [Rave and Kauermann, 2024]. The estimated weekday effects
further agree with our initial findings, where we estimate to see less incoming patients into the ICU on
weekends, compared to Fridays, and more during weekdays, again, compared to Fridays. Contextually,
one might argue that the severity of a disease might not care about the day of the week. However, this
might be explained by internal movements within a treatment centre, where severe cases might first be
treated in an Emergency Room (ER), and only be moved to the ICU, once the appropriate personnel has
authorised it.

In Figure 6 a), we see the estimated spatial effects, were we observe an increase, to varying degrees,
in and around large cities, such as Dortmund, Hamburg, Dresden, Berlin, Stuttgart and Munich. This also
agrees with the findings of our earlier work. Contextually, in the centralised health care system of Germany,
we tend to have more ICU capabilities in the cities, which leads to ICU patients from surrounding rural
areas typically being treated in near cities, rather than in their district. Particularly, during the COVID-19
pandemic, city hospitals were usually the treatment centres with treatment capabilities for isolation and
respiration of COVID-19 patients. So rather than directly inferring that the severity of the disease being
stronger in urban environments, the factor of the hospitalisation logistics may also be a driving factor here.

In Figure 6 b), we observe the estimated smooth function over time. It is wrapped by the 2.5*" and
97.5'" percentile of the estimated smooth functions of the 100 included sEM iterations. We observe an
initial increase in the estimated smooth function until September, 2021, with a subsequent sharp decrease, a
slight pick up from October until November and a following decrease, which seems to pick up again in the
end of December, 2021. The interpretation of the estimated temporal effect is, as all other interpretations,
conducted ceteris paribus. Thus, we estimate an increasing admittance to the ICU until September, which
cannot be entirely explained by the other covariates included in our estimation. This is followed by a
subsequent fall in ICU admittance, likewise not explained by the other estimated effects.

In Figure 8, we show the estimated incoming patients aggregated to Bundesland level, plotted against
the “Erstaufnahmen” (incoming) patients, reported by the [Robert Koch-Institut, 2025a]. We see that our
model underestimates the number of incoming patients in Berlin, which would fit intuition, following our
centralised health care system interpretation of the estimated spatial effects. For a better visual impression,
we included a smooth estimate of the exit rates.

Figure 7 shows the estimated exit rates up until a maximum of a 30 day lag. We estimate a sharp decline
in the estimated exit rate along the initial 16 days, and a subsequent slough off thereafter. More specifically,
we see an estimate of around 13% of ICU patients with COVID-19 leaving after one day, 50% of patients
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Covariates Estimates  Std. Dev.
Intercept -2.811 0.040
Infection Rate 35-59 0.545 0.023
Infection Rate 60-79 0.098 0.024
Infection Rate 80+ 0.112 0.011
Monday 0.105 0.022
Tuesday 0.045 0.023
Wednesday 0.033 0.023
Thursday 0.071 0.022
Saturday -0.018 0.023
Sunday -0.086 0.023

Table 3 Estimated coefficients on inflow of ICU patients.

Estimated exit rate
fe=1.18

1/30 = exitrate = exit rate 95% Confidence interval
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Figure 7 Estimated exit rate with 95% confidence interval (of the last 100 runs of the sSEM) with smoothed
estimate over exit rates.

are estimated to have left by their 6! day in the ICU and 80% of COVID-19 patients are estimated to have
left the ICU by the 17¢" day. Finally, 90% of COVID-19 patients are estimated to have left after 22 days.

Inspecting the [Robert Koch-Institut, 2025a] repository, one may discover, that since 2021 data on the
number of admitted ICU patients with COVID-19 have been published. However, the most granular these
data are published, are on state level (there are 16 states in Germany), while our data are on the district
level, which make up each of the respective counties to which they belong. We may therefore aggregate
our estimated admitted ICU patients and compare them with the data reported by the RKI. In Figure 8,
we plot our aggregated estimation against the RKI reported data. Specifically in Berlin and Brandenburg
(titles marked by the blue outline), we observe a clear deviance. This may be due to hospital logistics,
which we have not included in our analysis. The health care system in Germany induces that treatment
facilities in cities tend to be more equipped to treat patients in need of specialised care, such as isolation
for patients infected with COVID-19. A short outline of this principle during the COVID-19 pandemic
and the planned cooperation between counties is given by [Grisner et al., 2020]. We thus underestimate
the number of admitted ICU patients with COVID-19 in Berlin, as we suspect that many of which will
have been moved from surrounding counties, such as Brandenburg, where we overestimate the number of
admitted ICU patients.
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Figure 8 RKI reported admitted ICU patients with COVID-19 over time plotted against the estimated

admitted ICU patients.

6 Discussion

Our approach demonstrates that we can extract information on underlying inflow and outflow processes
by observing current snapshots of a system only. We also show how to include further covariates which
influence the incoming intensity. As remarked in the introduction, the idea can be extended to similar data
constellations. For example, the field of population dynamics would benefit from our approach in that herd
inflow and outflow are often expensive to record continuously over a long period of time. Our model is
able to circumvent this predicament elegantly by including information on the inflow.
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In the estimation of the length of stay, we draw on a ‘non-standard’ estimation process through the bias
adjustment. There is a possibility that the bias is merely mitigated, but still present, thus implying we
underestimate the variance. In further work, one could refine the approach to adjust for bias in the variance
estimation and thereby achieve better coverage of the estimates.

Despite the advantages of our approach, we do encounter some challenges when fitting the sSEM. We
have a clear disadvantage in the running time of the algorithm. This is likely optimisable in our particular
model, however, only to a certain degree, with a clear limitation being the stochastic nature of the algorithm.
Allin all, the estimation requires iterative simulations due to the sequential pattern of the model. This leads
inevitably to heavy computation.

A further possible extension to the model arises from the context of the COVID-19 ICU data. We do not
differentiate between patients who were moved to Intermediate Care Units (IMCU) or other units within
the hospital and patients who die during their stay at the ICU. We also do not take the movement of patients
between counties into account. It is therefore likely that our model predicts the number of admitted ICU
patients by district of origin well, but does not take patients’ placement between districts into account and
therefore deviates from the RKI-reported data.

Our approach allows us to obtain information about data which were not made public at the time of the
analysis. Apparently, for practical purposes, it is certainly better to record the original data and omit the
modelling exercise pursued in this paper. Meaning that in our view it seems advisable to enable any data
system to incorporate the true data on incoming and outgoing patients in ICU units.
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A Score function and Fisher Information

We derive the approximate score function from (10),

. NE(w
s@®) = 75051 )

T D R
ZZ( (t—t,d) — L(e— Ld)(%—l)) (26)

w=o®™ T3 g5 p I “)l< >I(tfl,d)

and the second-order derivative

()
Ow; 0wy,

T D
— Iy T pay— L—
ZZR t 1,d) (t L,d))( (t—k,d) (t Lﬁd)), Q27

Lin(@®™) = :
w=o® t=1 d=1 (Zlel @fk)l(t—l,d))Q

foril={1,...,L—1},j={1,...,L—1}and k = {1,..., L — 1}. These terms are derived to determine
the second-order approximation (11).

B Truncated joint probability mass function

First, we define a reasonable range [0, ;4. ] of probable income values I (t,d)> such that p(I t,d) = Imaz, B,a) >
Lnaz — Ags,a |/\ft_ dy’ /\g d>) ~ 0 . Then we calculate the conditional probability

p(It.ay = i Rieay = i = Ay Lit.ay < Imazi Me.ays Ai.ay) (28)
lim exp(— A(td)[ td)] exp(— Atd))[ktd)]l A“’d)(i'(i—A(t.d))!)fl

7055 5 exp(—AL o), o I exp(—AR I TS (UG — A )]
N exp(— M, )\ o) exp(=AR )R 172w (il(i — Aga)) ™

Sl fexp(— A, )V, o) exp(-AE AR T (GG — D)) ]

)

Vi €{0,..., Inas}. For conciseness, we omitted the indicator for sampling at the k-th iteration.

Nota bene: The bias correction need not be conducted at every iteration of the sEM. Particularly, the
estimation of parameters where the likelihood is multimodal, or the assumed model is highly complex. A
suggested solution is to conduct a SEM, without the bias correction until convergence is reached, and then
use the obtained estimates as starting values for conducting an sEM with bias correction.
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C Convergence

Log-Likelihood over iterations
Simulated Data
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Figure 9 Log-Likelihood over 400 iterations of the sEM applied to simulated data.

a) Log-Likelihood over all 350 runs b) Log-Likelihood over the last 150 runs
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Figure 10 a) Log-Likelihood over 350 iterations of the sEM applied to ICU COVID-19 data (initial
200 iterations ‘burn-in’ without bias correction, subsequent 150 iterations are implemented using bias

correction). b) Log-Likelihood zoomed in over the last 150 iterations of the sSEM applied to ICU COVID-
19 data.

NB: The y-axes in a) and b) are on different scales.
D Simulation-Predicted Incoming and Outgoing

Inspecting Figure 4, and Figure 11 to Figure 14, we observe an overestimation of inflow and outflow, which
diminishes as the overdispersion reduces.
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Figure 11 The estimated inflow and outflow for data with chosen data with Negative Binomial- § = 0.5.
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Figure 12 The estimated inflow and outflow for data with chosen data with Negative Binomial- § = 1.
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Figure 13 The estimated inflow and outflow for data with chosen data with Negative Binomial- § = 5.
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Figure 14 The estimated inflow and outflow for data with chosen data with Negative Binomial- § = 10.
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