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“If —” by Rudyard Kipling (1865-1936)

If you can keep your head when all about you
Are losing theirs and blaming it on you,
If you can trust yourself when all men doubt you,
But make allowance for their doubting too;
If you can wait and not be tired by waiting,
Or being lied about, don’t deal in lies,
Or being hated, don’t give way to hating,
And yet don’t look too good, nor talk too wise:

If you can dream — and not make dreams your master;
If you can think — and not make thoughts your aim;
If you can meet with Triumph and Disaster
And treat those two impostors just the same;
If you can bear to hear the truth you've spoken
Twisted by knaves to make a trap for fools,
Or watch the things you gave your life to, broken,
And stoop and build ’em up with worn-out tools:

If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,

And lose, and start again at your beginnings
And never breathe a word about your loss;

If you can force your heart and nerve and sinew
To serve your turn long after they are gone,

And so hold on when there is nothing in you
Except the Will which says to them: ‘Hold on!’

If you can talk with crowds and keep your virtue,
Or walk with Kings — nor lose the common touch,
If neither foes nor loving friends can hurt you,
If all men count with you, but none too much;
If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,
Yours is the Earth and everything that’s in it,
And — which is more — you’ll be a Man, my son!






Zusammenfassung

Internationale Klimaabkommen zielen darauf ab, die anthropogenen Treibhausgas-
Emissionen (THG) in den kommenden Jahrzehnten zu reduzieren. Ein erheblicher
Teil dieser Emissionen stammt aus lokalen Punktquellen wie z.B. Kraftwerken und
Kohlebergwerken. Mit abnehmenden Emissionen miissen die Quantifizierungsmeth-
oden préziser und belastbarer werden, um Veranderungen zuverlassig zu erfassen.
Satellitenbeobachtungen eignen sich aufgrund ihrer globalen Abdeckung gut fir diese
Aufgabe, stiitzen sich jedoch meist auf passive Sensoren, die reflektiertes Sonnenlicht
messen. Dadurch sind sie bei Bewolkung, tiber dunklen Oberflichen sowie nachts
oder im polaren Winter nur eingeschréankt nutzbar.

Die aktive Fernerkundung mit IPDA-Lidar (Integrietated Path Differential Ab-
sorption) unterliegt diesen Einschrankungen nicht. In dieser Dissertation wird das
flugzeuggetragene IPDA-Lidar-System CHARM-F verwendet, um COy- und CHy-
Emissionen aus Punktquellen anhand von Daten der CoMet-Kampagne 2018 in
Europa zu quantifizieren. Zwei Fallstudien mit zunehmender Komplexitiat demon-
strieren seine Fahigkeiten.

Fallstudie I untersucht die isolierte CO,-Abgasfahne des Kohlekraftwerks Jén-
schwalde. Unter Verwendung der Querschnittsflussmethode leite ich eine durch-
schnittliche Emission von 20,3 & 7,9 Tga~! ab, die innerhalb der Unsicherheit mit
den jéhrlich gemeldeten Inventardaten iibereinstimmt. Die Variabilitat zwischen
den Uberfliigen resultiert hauptsichlich aus turbulenzbedingten Inhomogenitéten
in der Plumeausbreitung und tubersteigt die formale Messunsicherheit. Einzelne
Uberfliige erzielen Flussabschitzungen mit Unsicherheiten von nur 8 — 10 %. Anhand
von Simulationen zeige ich, dass diese turbulenzbedingten Einschrénkungen durch
Nachtfliige unter stabilen Bedingungen umgangen werden kénnten, bei denen selbst
eine einzelne instantane Flussmessung eine Genauigkeit von etwa 95 % erreicht.

Fallstudie IT befasst sich mit multiplen CH,-Emissionen aus Liiftungsschéchten
von Kohlebergwerken im Oberschlesischen Kohlebecken. Um tiberlappende Plumes
zu entflechten, entwickle ich einen neuartigen inversionsbasierten Clustering-Ansatz:
Durch die Kombination von automatisierter Diagnostik mit Expertenwissen werden
einzelne Schachte zu 13 Emissionsclustern zusammengefasst. Fir jeden Cluster
werden posteriore Emissionsschatzungen ermittelt, die eine Emissionsschitzung
fiir das gesamte Becken von 570 + 78 kta~! ergeben, was 16 % iiber den offiziell
gemeldeten Inventardaten liegt. Diese Ergebnisse stimmen mit unabhéngigen, auf
Beobachtungen basierenden Studien iiberein, was die Robustheit der Methodik trotz
Transport- und Hintergrundunsicherheiten unterstreicht.

Zusammengenommen zeigen diese Fallstudien, dass das flugzeuggetragene IPDA-
Lidar zuverlédssige und unabhéngige Emissionsschatzungen sowohl fiir isolierte als
auch fir gruppierte Punktquellen liefern kann. Die Ergebnisse unterstreichen ihren
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Wert fiir die Validierung von Inventaren, die Verringerung von Unsicherheiten bei
der Berichterstattung und die Steuerung der Planung kiinftiger flugzeug- und satel-
litengestiitzter Missionen wie MERLIN, wodurch das globale Gesamtkonzept fir die
Uberwachung von THG gestérkt wird.



Abstract

International climate agreements aim to reduce anthropogenic greenhouse gas (GHG)
emissions over the coming decades. A substantial share of these emissions originates
from localized point sources, such as power plants and coal mines. As emissions
potentially become smaller, quantification methods must become more precise and
robust in order to reliably detect these changes. Satellite observations are well suited
for this task due to their global coverage, but most current missions rely on passive
sensors that measure reflected sunlight. Their capabilities are therefore limited under
clouds, over dark surfaces, and during night or polar winter.

Active remote sensing with Integrated Path Differential Absorption (IPDA) lidar
overcomes these constraints. This dissertation employs the airborne IPDA lidar
system CHARM-F to quantify CO, and CH, emissions from point sources using
data from the 2018 CoMet campaign in Europe. Two case studies of increasing
complexity demonstrate its capabilities.

Case Study I investigates the isolated CO4 plume of the Janschwalde coal-fired
power plant. Using the cross-sectional flux method, I derive an average emission of
20.3 4= 7.9 Tga™!, which agrees within uncertainty with annually reported inventory
data. The variability between overflights mainly results from turbulence-induced
inhomogeneities in plume propagation and exceeds the formal measurement un-
certainty. Individual overflights achieve flux estimates with uncertainties of only
8 — 10 %. Based on simulations, I show that these turbulence-driven limitations can
be circumvented by conducting nighttime flights under stable conditions, where even
a single instantaneous flux measurement reaches an accuracy of about 95 %.

Case Study II addresses multiple CH, emissions from coal mine ventilation
shafts in the Upper Silesian Coal Basin. To disentangle overlapping plumes, I develop
a novel inversion-driven clustering approach: by combining automated diagnostics
with expert judgment, individual shafts aggregate into 13 emission clusters. Posterior
emission estimates are obtained for each cluster, yielding a total basin-wide emission
of 570 & 78 kt a=!, which is 16 % higher than officially reported inventory data. These
results are consistent with independent observation-based studies, which highlights
the robustness of the methodology despite transport and background uncertainties.

Together, these case studies show that airborne IPDA lidar provide reliable
and independent emission estimates for both isolated and clustered point sources.
The findings underline their value for validating inventories, reducing reporting
uncertainties, and guiding the design of future airborne and spaceborne missions
such as MERLIN, thereby strengthening the global framework for GHG monitoring.
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1 Introduction

1.1 Motivation

The Changing Climate

In 2024, the annual mean temperature on Earth surpassed 1.5 °C above pre-industrial
levels for the first time on record (Tollefson 2025). The record-breaking heat of 2024
was not a mere statistical outlier, but a continuation of an ongoing warming trend.
As shown in Fig. 1.1, even when 2024 is excluded, the 30-year trend still indicates
that the 1.5°C threshold will be reached by 2031 (Copernicus 2024).

Rising global temperatures lead to more energy in the Earth system, intensifying
evaporation and increasing atmospheric water vapour. This enhances the potential for
extreme weather, such as storms, heavy rainfall, and droughts, while also accelerating
ice melt and contributing to sea level rise. Consistent with these physical mechanisms,
the World Meteorological Organization (WMO) and the Intergovernmental Panel
on Climate Change (IPCC) report that heatwaves, droughts, floods, and tropical
storms have already increased in both frequency and intensity across many regions
worldwide (Siegmund et al. 2020; [PCC 2021).

Recent events illustrate these trends vividly. After a prolonged drought from
2020 to 2023, heavy rainfall triggered severe flooding across much of East Africa
from March to May 2024, resulting in hundreds of fatalities (Kimutai et al. 2024).
In June 2024, devastating wildfires burned over 400 000 hectares in Brazil’s Pantanal
wetlands, destroying vast ecosystems and intensifying biodiversity loss (CAMS 2024;
Barnes et al. 2024). That same month, over 1000 pilgrims died from extreme heat
stress during the Hajj pilgrimage in Mecca, Saudi Arabia, where temperatures soared
beyond 50 °C (Memish et al. 2024; Ripple et al. 2024). In September and October
2024, widespread flooding hit Spain and Central Europe, submerging towns and
causing hundreds of fatalities and billions of dollars in economic losses (Munich Re
2025). During this time, hurricanes Helene and Milton brought extreme rainfall,
high winds, and severe flooding to the southeastern United States, parts of Mexico,
and the Antilles. This was fuelled by exceptionally high sea surface temperatures in
the Gulf of Mexico (Barnes et al. 2024; Munich Re 2025). The incidence of severe
tropical storms and intense rainfall has surged, a trend expected to continue without
drastic climate change mitigation (Knutson et al. 2020, 2021; Parmesan et al. 2022).
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Figure 1.1: Global surface air temperature anomalies relative to the pre-industrial average
(1850-1900), based on ERAS reanalysis data (Copernicus 2024). The time series shown
spans 1980 to 2025, with a linear trend (red line) fitted to the 30-year period ending
in December 2023 (highlighted in dark orange). If this recent trend were to continue,
global warming would reach 1.5°C by August 2031. The shaded orange area represents
the interquartile range of climate model projections from the IPCC Special Report on
Global Warming of 1.5 °C, illustrating an uncertainty envelope under a moderate mitigation
scenario. Plot downloaded from https://climate.copernicus.eu/ (accessed February 2025).

The socioeconomic consequences of these escalating climate extremes are profound.
The 2024 State of the Climate Report by Ripple et al. (2024) warns that rising
temperatures are exacerbating food and water insecurity, displacing vulnerable
populations, and straining economies. Heat stress threatens labour productivity,
while droughts and shifting rainfall patterns reduce agricultural yields. The financial
toll of extreme weather is mounting, with damages from storms, wildfires, and floods
costing billions annually.

Emissions Accounting

Recognizing the severity of the climate crisis, the Paris Agreement explicitly ac-
knowledges the necessity of limiting global warming to “well below” 2 °C relative to
pre-industrial average air temperatures, with a preferable target of 1.5°C (UNFCCC
2015). This commitment is based on the well-established fact that rising global
temperatures are driven by increasing concentrations of atmospheric greenhouse
gases (GHGs) caused by human activities (Cook et al. 2013; Lynas et al. 2021; IPCC
2021).

These gases influence the Earth’s climate system by altering the radiative energy
balance, a process known as radiative forcing. GHGs are trace constituents of the
atmosphere that absorb and re-emit infrared radiation. Incoming solar radiation,
primarily in the visible and near-infrared spectrum, mostly passes through the
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atmosphere and warms the Earth’s surface; the energy is re-emitted upward as
radiation in the mid- to far-infrared spectrum. GHGs absorb part of this outgoing
radiation and re-emit it in all directions, including back toward the surface, effectively
trapping energy in the lower atmosphere. This greenhouse effect increases the
downward infrared flux, reduces the loss of heat to space, and creates a radiative
imbalance that leads to surface warming until a new thermal equilibrium is established.
Observations from the National Oceanic and Atmospheric Administration (NOAA)
Global Monitoring Laboratory show that concentrations of CO, and CH, have
reached unprecedented levels in the modern observational record (Fig. 1.2).

Global Monthly Mean CO3 Global Monthly Mean CH,
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— 400 —1850
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Figure 1.2: Global monthly mean mole fraction of CO, (left) and CH, (right) from NOAA’s
Global Monitoring Laboratory (Lan et al. 2025a,b, last updated: 05.01.2025). The red
line with dots represents raw monthly mean values, while the black line depicts the long-
term trend with the average seasonal cycle removed. Data are based on marine surface
measurements from a globally distributed network of air sampling sites.

While the focus of this discussion lies on anthropogenic emissions, it is important
to note that natural sources and sinks also contribute substantially to the atmospheric
budgets of both CO, and CHy. For CO,, key natural fluxes include plant and soil
respiration as well as ocean-atmosphere exchange, with uptake by terrestrial biomass
and oceanic absorption acting as the main natural sinks (Friedlingstein et al. 2023).
In the case of CH,, natural emissions primarily originate from wetlands, followed
by freshwater systems, geological seepage, and wildfires. Its removal from the
atmosphere occurs mainly through oxidation in the troposphere, particularly via
reaction with hydroxyl radicals (OH), ultimately producing CO, and H,O (Saunois
et al. 2025). Although these natural fluxes have generally remained near equilibrium
under undisturbed conditions, recent trends — particularly the pronounced rise in
atmospheric atmospheric CHy in the last two decades — may also reflect changes
in natural emissions. In this context, wetland contributions represent a key area of
ongoing research and scientific uncertainty.

Nonetheless, anthropogenic activities are widely recognised as the dominant
drivers of the long-term increase in atmospheric GHG concentrations. Anthropogenic
CO, emissions from sources such as fossil fuel combustion, industrial processes, and
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land-use changes have increased atmospheric CO, mole fractions from a pre-industrial
baseline of approximately 280 ppm to over 420 ppm as of 2025 (Friedlingstein et al.
2023; Lan et al. 2025a). Simultaneously, CH4 mole fractions have more than doubled
from approximately 735 ppb to over 1940 ppb, largely due to agricultural activities,
fossil fuel extraction, waste management, and biomass burning (Saunois et al. 2025;
Lan et al. 2025b).

To effectively curb further warming, each signatory state to the Paris Agreement
has committed to so-called Nationally Determined Contributions (NDCs). These
NDCs outline emission reduction measures based on each country’s capabilities and
economic development (UNFCCC 2015). A central mechanism for assessing the
effectiveness of these measures is the Global Stocktake (GST), to be conducted
every five years since 2023. As part of this process, countries compile national
GHG emission inventories, which are submitted to the United Nations Framework
Convention of Climate Change (UNFCCC) to evaluate progress toward individual
NDCs and ensure collective progress in mitigating GHG emissions.

Two principal approaches exist for quantifying emissions: bottom-up and top-
down methods. Bottom-up inventories estimate emissions based on local activity
data and process-specific emission factors, scaling these estimates up to regional or
national levels. This approach allows for clear attribution of emissions to specific
sources and sectors, providing insights into where emissions originate. However, it
relies heavily on assumed emission factors, which are often uncertain and require
continuous verification. Moreover, bottom-up inventories can only account for
expected emissions and fail to capture unintended or unknown emission sources, such
as leakages, wetland emissions, or wild fires.

In contrast, top-down approaches estimate emissions based on observations
of atmospheric GHG concentrations, combined with information on atmospheric
transport and sinks. As outlined by Jacob et al. (2022), top-down methods comprise
a wide variety of techniques, spanning from global to local spatial scales. One such
technique is the cross-sectional flux method, which quantifies emission rates by
multiplying the mean wind speed with the integrated concentration enhancement
along a cross-sectional overflight of the exhaust plume, relative to a known background.
This requires that the full plume is intercepted and clearly distinguishable from other
sources, as uncertainties in background concentrations directly affect the accuracy
of the flux estimate. This method has been widely applied in both airborne and
satellite-based studies.

Another key method in this category is inverse modelling, which uses mathematical
optimization techniques to infer surface fluxes from atmospheric measurements
(Houweling et al. 2017). Unlike bottom-up methods, inverse modelling does not
require prior knowledge of emission processes or sectoral classifications. This makes it
particularly valuable for identifying unexpected or underestimated sources. However,
this advantage comes with its own challenges: the accuracy of the inferred emissions
depends critically on the quality of the atmospheric transport models used. Errors
in wind fields or mixing processes can lead to incorrect emission estimates, and the
spatial resolution of these methods is often too coarse to attribute emissions precisely
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to specific sources. Furthermore, the accuracy of top-down estimates is fundamentally
limited by observational constraints. Many regions remain poorly sampled, leading
to gaps in spatial coverage and maintaining high levels of uncertainty. Sparse
or infrequent measurements contribute to an underdetermined inversion problem,
whereby the same data can be explained by multiple emission patterns. Furthermore,
discrepancies between observations and model representations (e.g. due to differences
in timing, scale, or physical assumptions) can introduce further biases.

Following the IPCC’s Guidelines from 2006, national inventories are primarily
compiled using bottom-up methodologies (IPCC 2006). Since then, however, top-
down methods, i.e. global and regional inverse modelling systems, have advanced
considerably. They now incorporate data from ground-based networks, aircraft, and
satellites (Houweling et al. 2017). Despite recent advances, substantial differences
between bottom-up and top-down estimates persist. According to the latest Global
Methane Budget by Saunois et al. (2025), the discrepancy has narrowed compared to
the 2020 assessment, but the global estimates still diverge significantly. For example,
bottom-up estimates suggest global CH, emissions of 669 Tga™' [512-849 Tga™'],
while top-down inversions yield a lower estimate of 575 Tga™! [553-586 Tga™!].
Similarly, land-use change emissions of CO, remain highly uncertain, contributing to
a budget imbalance of approximately 1 Pga~! (Friedlingstein et al. 2023).

Recognizing the complementary value of top-down constraints, the IPCC’s Re-
finement to the 2006 Guidelines from 2019 acknowledges that comparisons between
bottom-up inventories and independent top-down estimates can help identify incon-
sistencies and improve inventory accuracy (IPCC 2019). In line with the UNFCCC
reporting framework, developed countries are encouraged to complement bottom-
up inventories with independent atmospheric measurements as part of a robust
Measurement, Reporting, and Verification (MRV) system. This includes the use
of top-down approaches to help reduce uncertainties and improve transparency in
national GHG reporting.

1.2 Satellite GHG Observations

Satellite instruments provide global observations with consistent spatial and temporal
resolution. They enable systematic monitoring even in regions with sparse in situ
networks and reduce cross-platform calibration uncertainties. Recent studies have
demonstrated the benefits of satellite-based top-down approaches for emissions
verification. Specifically, Worden et al. (2023) and Byrne et al. (2023) examined
how CH, and CO, measurements improve emission estimates. Both studies confirm
that top-down constraints enhance the accuracy of GHG monitoring. However, they
struggle to resolve localized sources due to their coarse spatial resolution.
Addressing this limitation, Jacob et al. (2022) emphasize that satellite obser-
vations with finer spatial resolution are necessary to pinpoint and quantify CHy
emissions from sources such as oil and gas infrastructure, landfills, and agricultural
activities. Moreover, Williams et al. (2025) highlight that a disproportionate fraction
of CH, emissions originates from numerous small; diffuse sources, many of which
remain undetected by current satellite instruments due to sensitivity and resolution
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limits. Complementing this, Cusworth et al. (2022) demonstrate that strong point
sources, such as super-emitters from oil and gas infrastructure, contribute dispropor-
tionately to regional CH, budgets — accounting for up to 40 % of total emissions in
major U.S. oil and gas basins.

Similarly, Strandgren et al. (2020) demonstrate that spaceborne monitoring of
localized CO, emissions requires higher spatial resolution for improved quantification,
particularly for medium-sized power plants (1 — 10 Mta~!). Many of these sources
contribute significantly to the overall CO, emissions, yet they remain below the
detection threshold of current missions. In fact, power plants alone account for 38 %
of global CO, emissions from fossil fuels (Crippa et al. 2024), with medium-sized
plants accounting for around two-thirds of total power plant emissions. Yet they
remain below the detection threshold of current missions (Strandgren et al. 2020).

Given that a substantial share of anthropogenic GHG emissions stems from
localized point sources (e.g. coal-fired power plants, landfills, and fossil fuel extraction
sites), accurate detection and quantification of these emitters is critical for effective
emissions monitoring and climate policy enforcement.

Passive Remote-Sensing

Most existing satellite missions that provide insights into point source emissions of
CO, and CHy rely on passive remote-sensing instruments, measuring solar radiation
reflected from the Earth’s surface. The Japanese Greenhouse Gases Observing
Satellite (GOSAT) series, operational since 2009, is a pioneer in satellite-based GHG
monitoring. It was the first dedicated satellite program to measure atmospheric CO,
and CHy concentrations globally and has now delivered over 16 years of continuous
observations. These long-term records represent the longest space-based time series
of column-averaged greenhouse gas concentrations and serve as a critical reference
for background levels and trend detection (Matsunaga and Tanimoto 2022; Tanimoto
et al. 2025). Although its spatial resolution limits its ability to detect localized point
sources, its value lies in enabling broad-scale flux estimates and in complementing
higher-resolution satellites by providing coverage in regions with sparse observations
(Hancock et al. 2025; Gadhavi et al. 2024).

Subsequently, the Orbiting Carbon Observatory (OCO) missions have expanded
on these capabilities with improved spatial resolution and more flexible targeting.
Currently, they provide the most advanced capabilities to quantify CO, emissions
from localized sources. Launched in 2014, OCO-2 follows a sun-synchronous orbit and
observes preselected locations, such as validation sites and a limited number of large
emission sources (Nassar et al. 2021). OCO-3 has been mounted on the International
Space Station (ISS) since 2019. It has greater observational flexibility than OCO-2
and can target emission sources more dynamically (Cusworth et al. 2023). However,
its coverage is constrained by the orbit of the ISS, limiting observations to latitudes
between approximately 52°S and 52°N (Moeini et al. 2025). Both missions have
demonstrated the feasibility of quantifying CO, emissions from space. Even so, their
sensitivity is limited to the largest point sources worldwide, like the coal-fired power
plants Betchatéw (Poland) and Matimba (South Africa), which emit tens to hundreds
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of kilotons of CO, per day (Nassar et al. 2021).

Detecting CO, plumes from anthropogenic sources is particularly challenging
due to the high and variable atmospheric background. By contrast, CH, often
exhibits sharper spatial gradients and stronger absorption features in spectral regions
accessible to a broader range of remote-sensing instruments. Beyond that, CH, is
increasingly integrated into satellite observation strategies due to its unique appeal
as a mitigation target. Emission reductions are often technically straightforward
and economically attractive, especially in the fossil fuel sector, where leak detection
directly translates into resource savings (Nisbet et al. 2020; Kuhlmann et al. 2025).
Furthermore, CH, has a relatively short atmospheric lifetime of less than 10 years
(Prather and Zhu 2024), compared to CO,’s lifetime of hundreds to thousands of years
(Archer et al. 2009). Thus, reducing CH, emissions rapidly yields tangible climate
benefits by swiftly lowering radiative forcing and near-term warming. Accordingly,
the combination of clearer detection capabilities and immediate climate benefits has
driven an increasing number of satellite missions dedicated to CH, in recent years
(Nisbet et al. 2020; Jacob et al. 2022).

The Tropospheric Monitoring Instrument (TROPOMI) plays a central role in
the large-scale identification of CH, emitters. It was launched in October 2017 on
board the Sentinel-5 Precursor (S5P) satellite as part of the European Copernicus
programme. With its daily global coverage and high sensitivity to large CH, sources,
TROPOMI provides a unique capability for systematic detection of major emitters. It
has been successfully used to identify strong emissions from various sectors, including
oil and gas infrastructure (Dubey et al. 2023), landfills (Tu et al. 2022a) and hard-coal
mining (Tu et al. 2022b). However, due to its relatively coarse spatial resolution of
approximately 5.5 x 5.5 km, TROPOMI cannot precisely detect smaller emissions
(< 25t/h), localize emission sources within a facility, or distinguish between multiple
nearby sources (Lauvaux et al. 2022).

To refine emission estimates and pinpoint exact source locations, high-resolution
satellite imagery is used complementary to TROPOMI detections. Several studies
have shown that missions such as Sentinel-2, the Precursore Iperspettrale della
Missione Applicativa (PRISMA) or the Environmental Mapping and Analysis Pro-
gram (EnMAP) can detect large CH4 plumes under favourable conditions, although
they were not originally designed for CH, detection (Varon et al. 2021; Guanter et al.
2021; Ehret et al. 2022; Roger et al. 2024). These and other imaging spectrometers
offer spatial resolutions in the range of 20-30m, but have lower spectral resolution
and/or operate in spectral bands that are not optimal for detecting CH4. Further-
more, their spatial coverage is significantly lower than that of TROPOMI, with revisit
times that are typically much longer, ranging from several days to weeks depending
on the satellite and location. Moreover, some instruments must be actively pointed at
a region of interest, either through pre-scheduled acquisitions or on-demand tasking.
This limits their ability to systematically monitor emissions over time.

In addition to publicly available missions, several commercial and restricted-
access satellites record high-resolution CH, observations. Commercial platforms
such as GHGSat and WorldView-3 offer facility-scale monitoring (Varon et al. 2020;
Jervis et al. 2021; Sanchez-Garcia et al. 2022). However, their coverage is often
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limited to targeted acquisitions rather than systematic global monitoring. Similarly,
some government-operated missions, including Gaofen-5, Ziyuan-1, and Huanjing-2B,
operate under restricted data policies, further limiting their use for independent
verification and systematic global monitoring.

Despite these limitations, several comparative studies have evaluated their de-
tection capabilities (Irakulis-Loitxate et al. 2021, 2022; Sherwin et al. 2023, 2024).
These studies highlight that detection performance of all passive satellite instruments
is often strongly influenced by surface reflectivity and cloud cover, regardless of their
spectral or spatial resolution. In particular, low-albedo surfaces such as water bodies,
forests, and snow-covered areas remain especially challenging for reliable retrievals
(Ehret et al. 2022). As a result, many studies have focused on homogeneous surfaces
with high albedo, such as deserts and snow-free regions, where the increased reflected
radiation enhances backscattered signal and thus the detection sensitivity. Key study
areas include Algeria, Turkmenistan, and China’s Shanxi region, as well as fossil
fuel production basins such as the Permian Basin in the U.S. (Guanter et al. 2021,
Irakulis-Loitxate et al. 2021, 2022; Sanchez-Garcia et al. 2022).

Aggravating these issues, cloud cover and aerosols pose major limitations, partic-
ularly in tropical regions. Here, persistent shallow cumulus clouds result in extremely
low data yields, often below 1%, even for dedicated GHG missions such as OCO-2
(Frankenberg et al. 2024). As a consequence, CH, emissions from key oil and gas
basins frequently remain obscured from satellite view, especially during the wet
season (Lauvaux et al. 2022). In regions where sporadic clear-sky conditions limit
single-pass observations, many studies rely on long-term data collection from multiple
overpasses over several years to improve the reliability of emission estimates (Tu
et al. 2022b; Dubey et al. 2023). Offshore emissions present an additional challenge,
as they can only be observed under sunglint conditions, where the solar incidence
angle is equal to the instrument view angle (Roger et al. 2024).

These limitations cause persistent gaps, particularly in the detection of weaker
point sources and in achieving frequent global coverage. The upcoming Copernicus
Carbon Dioxide Monitoring Mission (CO2M), a constellation of three satellites
in sun-synchronous orbit, is scheduled for launch in 2027!. It will enhance the
quantification of anthropogenic CO, and CH, emissions by providing higher spatial
resolution (~ 2km) and more frequent observations than current missions, achieving
a revisit time of 2-3 days (Meijer et al. 2020; Sierk et al. 2021). The mission’s primary
instrument is an imaging spectrometer which will retrieve CO5 and CH, concentrations
using Near Infrared (NIR) and Short-Wave Infrared (SWIR) spectroscopy at a
spectral resolution of 0.3nm (Strandgren et al. 2020; Reuter et al. 2025). The
addition of NO, retrievals will help distinguish fossil fuel-related CO, emissions from
natural background variability by co-detecting NO, plumes, which are associated
with combustion processes (Kuhlmann et al. 2021; Fuentes Andrade et al. 2024).
To further improve retrieval accuracy, CO2M incorporates additional sensors. A
multi-angle polarimeter will characterize aerosols, reducing their impact on CO5 and
CH, retrievals. A dedicated cloud imager will enhance cloud screening, mitigating
biases caused by partial cloud cover (Spilling and Thales 2021; Reuter et al. 2025).

1See https://www.sron.nl/en/missions/in-development/co2m/ (last access 20.08.2025)
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Despite these significant improvements, CO2M remains fundamentally constrained
by inherent limitations of passive remote-sensing. Observations still depend on surface
reflectivity, and region-specific retrieval biases may arise from low albedo, atmospheric
scattering, or aerosol loading — factors that restrict detection capabilities and affect
the accuracy of emission estimates across different geographic regions. For instance,
reduced sunlight intensity and lower solar elevation angles at high latitudes limit
measurement accuracy, while observations become entirely impossible during polar
winter. Moreover, persistent convective cloud cover in tropical regions severely limits
observations, leaving critical data gaps. These high-latitude and tropical regions are
not only important for anthropogenic emissions but are also crucial for understanding
climate-driven changes in natural emissions, particularly from boreal and tropical
wetlands (Yu et al. 2023).

Active Remote-Sensing

Active remote-sensing in the optical spectral range is a effective measurement ap-
proach for overcoming these observational limitations. Unlike passive sensors, which
rely purely on reflected sunlight, active systems emit their own signal and detect how
it interacts with the atmosphere. In the context of atmospheric GHG monitoring, the
key active remote-sensing technique is differential absorption lidar (Light Detection
And Ranging).These instruments transmit short laser pulses at specific wavelengths
and measure the returned signal after scattering by atmospheric constituents. By
applying the time-of-flight principle at multiple wavelengths, they can infer trace
gas concentrations providing range-resolved information (e.g. water vapour volume
mixing ratio). One specialized technique is Integrated Path Differential Absorp-
tion (IPDA) lidar, which relies entirely on the echoes from so-called hard targets like
the Earth surface or cloud tops. This helps to improve the measurement sensitivity
by more than two orders of magnitude.

In spaceborne applications, IPDA lidar enables global measurements both day
and night, and across all surface types, including water and low-reflectivity regions
(Ehret et al. 2008). It can be operated under different climatic conditions, retrieve
signals through cloud gaps, and is largely unaffected by aerosol interference (discussed
in more detail in Sect. 2.1.2). Taken together, these factors significantly improve
observational coverage and measurement reliability.

China’s Aerosol and Carbon Dioxide Detection Lidar (ACDL), launched in
2022 onboard the DQ-1 satellite, marks the first spaceborne lidar dedicated to
CO, detection (Shi et al. 2023). Han et al. (2024) demonstrated its capability to
quantify emissions from a wide range of power plants worldwide. Reported emission
estimates range from 6 £ 1 Tga~! for Shenhua Guoneng Hami power station in
China, 15+ 4 Tga~! for Jim Bridger in the U.S., up to 21 & 3Tga ! for Majuba
in South Africa. Compared to passive sensors, ACDL achieved significantly greater
observational coverage, surpassing the combined data availability of OCO-2 and OCO-
3. This advantage was particularly pronounced in high-aerosol environments, such as
Northern China, where passive sensors suffered from strong signal attenuation, while
ACDL maintained nearly complete observational coverage. These results demonstrate
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the potential of spaceborne lidar to overcome limitations associated with cloud cover
and aerosol interference, enabling more consistent and reliable CO, monitoring.

Similar improvements in observational coverage and data reliability can be ex-
pected for CH, in the near future. The upcoming Methane Remote Sensing Lidar
Mission (MERLIN) is a joint French-German initiative by Centre National d’Etudes
Spatiales (CNES) and Deutsches Zentrum fiir Luft- und Raumfahrt (DLR) and is
scheduled for launch in 2030 (Ehret et al. 2017; Bousquet et al. 2018). It will be
the first dedicated spaceborne CH, lidar, providing unprecedented measurement
capabilities for global CH, monitoring. By leveraging IPDA technology, MERLIN is
expected to address key data gaps, particularly in crucial regions for understand-
ing climate-sensitive natural CH, sources, such as boreal and tropical wetlands,
as mentioned above. While anticipated benefits of MERLIN have primarily been
emphasised for high-latitude CH, observations, its global coverage, low systematic
errors, and resilience to cloud interference make it equally valuable for monitoring
anthropogenic emission hotspots, particularly in tropical and mid-latitude regions,
as well as over water surfaces, where passive systems fall short.

While spaceborne IPDA lidar missions like ACDL and MERLIN significantly en-
hance global CO, and CH, monitoring, airborne measurements remain indispensable
for both mission development and operational validation. Airborne lidar systems
serve as crucial testbeds for refining retrieval algorithms, calibrating satellite instru-
ments, and improving emission quantification methodologies. Notably, the CO, and
CH4 Remote Monitoring-Flugzeug (CHARM-F) lidar system has played a pivotal
role in developing IPDA technology for space applications (Amediek et al. 2017). It
is the only IPDA lidar system worldwide that is capable of simultaneously measuring
both CO, and CH, and serves as an airborne demonstrator for MERLIN and other
future spaceborne IPDA GHG lidar missions. CHARM-F has been instrumental
in validating the lidar retrieval concept, optimizing measurement strategies, and
assessing systematic errors (Fix et al. 2011; Amediek and Wirth 2017).

Beyond technological developments, airborne campaigns are critical to bridge the
scale between ground-based in situ networks and satellite-based observations, enabling
high-resolution validation of emission estimates and improving our understanding of
atmospheric transport processes (Nisbet et al. 2020). Aircraft measurements also offer
unique flexibility to investigate specific sources under targeted conditions, allowing
rapid deployment in response to satellite detections or public reporting. A notable
example is provided by Krautwurst et al. (2024), where airborne measurements
conclusively verified CH, emissions from a landfill in Madrid that was not listed as
an active emitter despite clear satellite indications. Such campaigns demonstrate
the value of aircraft-based validation as an independent tool for source attribution
and policy-relevant emission verification. While aircraft alone cannot provide long-
term monitoring of transient sources, they remain essential for validating satellite
observations, investigating anomalies, and capturing emissions under challenging
conditions. As such, airborne platforms continue to play a vital role in the calibration,
validation, and verification framework for spaceborne missions, helping to ensure the
reliability and credibility of global GHG monitoring efforts (CEOS 2024).
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1.3 Research Objective

Building on recent advances in airborne IPDA lidar technology, this dissertation aims
to improve the quantification of CO, and CH, emissions from point sources. The
focus lies on point sources with high emissions, which require precise quantification
due to their significant impact on both regional and global GHG budgets. This work
supports the broader aim of developing reliable, high-resolution methodologies for
independent emissions monitoring, an essential component of verifying mitigation
efforts under international climate agreements such as the Paris Agreement.

Airborne IPDA lidar systems, such as CHARM-F, provide highly precise column
measurements and can resolve emissions from individual facilities. As a demonstrator
for the future MERLIN satellite mission, CHARM-F also allows the development
and validation of techniques that will later be used in spaceborne applications. This
study builds on high-resolution lidar observations from the airborne CHARM-F
system, collected during the 2018 Carbon Dioxide and Methane Mission (CoMet)
in Europe (see Sect. 2.1.3). These data are combined with atmospheric transport
modelling to investigate two distinct case studies:

o Case study I: A scenario involving an isolated CO, point source — the
Janschwalde coal-fired power plant. The analysis focuses on retrieving emission
rates using the so-called cross-sectional flux method and assess their accuracy
against reported inventory emissions. The absence of nearby sources allows a
direct association between the observed plume and facility-level emissions.

» Case study II: A more complex setting with multiple CH, sources — specif-
ically several coal mine ventilation shafts in the Upper Silesian Coal Basin
(USCB), which form overlapping CH, exhaust plumes. Here, inverse modelling
is applied to disentangle source contributions and evaluate the extent to which
airborne observations can constrain emission attribution.

Atmospheric transport modelling is employed in both cases to better understand
the dynamics of plume dispersion and to evaluate how different flight strategies and
meteorological conditions affect emission quantification. This leads to the formulation
of the following research questions (RQs):

« RQ1: How accurately can the cross-sectional flux method quantify CO,
emissions from an isolated point source?

« RQ2: Can a combination of airborne IPDA lidar and inverse modelling be
used to quantify and spatially attribute overlapping atmospheric signals
from CH, emissions from multiple sources?

« RQ3: Under which atmospheric conditions and flight geometries do uncer-
tainties in IPDA-based emission quantification become most pronounced, and
how can future flight planning be adapted to mitigate these effects?

To answer these questions, this dissertation integrates observational data, numerical
modelling, and methodological development to evaluate both the potential and
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limitations of IPDA lidar for emissions monitoring. The two case studies span
different levels of complexity and target different GHGs, offering a comprehensive
assessment of current capabilities and guiding the design of future airborne and
spaceborne campaigns.

1.4 Thesis Outline

To address the RQs outlined in Section 1.3, , this thesis progresses from method-
ological groundwork to two applied case studies. This stepwise approach is de-
signed to gradually increase real-world complexity, beginning with an isolated,
well-characterised point source to build methodological confidence, and advancing to
a more complex region with overlapping plumes to test the robustness and limitations
of the applied methods. In doing so, the thesis evaluates the potential and challenges
of airborne IPDA lidar for quantifying GHG emissions from point sources under
varying observational and atmospheric conditions.

Chapter 2 presents the methodological framework used throughout this work. It
introduces the principles of lidar and IPDA measurements, describes the airborne
CHARM-F system, and summarises the CoMet campaign, during which the key
observational dataset was collected (Sect. 2.1). Additionally, the chapter explains the
atmospheric transport models employed in the analysis, focusing on the setup and use
of the Weather Research and Forecast model (WRF') (Sect. 2.2). This methodological
foundation is essential for interpreting the case studies and is particularly relevant
for understanding the conditions under which the RQs can be addressed.

Chapter 3 investigates an isolated CO, point source: the Jénschwalde power plant.
The cross-sectional flux method is applied to quantify emissions based on airborne
lidar observations and WRF simulations (Sect. 3.1). This case study is designed
to answer RQ1, regarding the accuracy of emission quantification from isolated
sources. Furthermore, by incorporating high-resolution Large Eddy Simulation (LES)
(Sect. 3.2), it also addresses aspects of RQ3, examining the role of atmospheric
turbulence and uncertainty under near-ideal conditions.

Chapter 4 examines CH, emissions in a more complex environment: the USCB,
characterised by multiple closely spaced coal mine ventilation shafts. The study
employs an inverse modelling framework (Carbon Tracker Data Assimilation Shell
(CTDAS)-WRF) to disentangle overlapping emission plumes and quantify source-
specific contributions. This chapter provides the basis for answering RQ2, while
also contributing to RQ3 by assessing the impacts of plume interference, spatial
aggregation, and transport model limitations.

Chapter 5 summarises the findings from both case studies and concludes the
thesis. It relates the results to the overarching RQs, highlights methodological
strengths and limitations, and discusses implications for airborne and satellite-based
point-source monitoring. In doing so, it provides definitive answers to RQ1-RQ3,
reflects on the role of airborne IPDA lidar in the context of future satellite missions
such as MERLIN, and outlines specific recommendations for future campaigns as
well as key directions for further research.
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This chapter presents the methodological framework developed to address the research
questions formulated in Sect. 1.3. It describes the measurement techniques and
modelling tools required to quantify CO, and CH, emissions from anthropogenic
point sources under the conditions relevant for this work. The focus lies on the
capabilities and limitations of airborne IPDA lidar observations (Sect. 2.1) and on
the atmospheric transport models used to interpret these measurements (Sect. 2.2).
These components form the basis for evaluating the accuracy of the cross-sectional
flux method for isolated sources (RQ1), for applying inverse modelling to complex
multi-source environments (RQ2), and for assessing the influence of atmospheric
variability and observational geometry on emission estimates (RQ3). While the
methodological design is tailored to the two case studies examined in this thesis —
the Janschwalde coal-fired power plant and the USCB mining region — it could also
be applied to other sources of a similar type.

Section 2.1 introduces the active remote-sensing methods used to measure at-
mospheric GHG concentrations downwind of emission sources. It begins with an
overview of lidar technology in atmospheric science (Sect. 2.1.1), followed by the
CHARM-F airborne IPDA lidar used in this work (Sect. 2.1.2). CHARM-F was
deployed in several airborne campaigns as a demonstrator for the German-French
MERLIN mission, including the CoMet campaign that provided the data for both
case studies (Sect. 2.1.3).

Section 2.2 describes the numerical modelling used to interpret the lidar obser-
vations. It outlines the principles of atmospheric transport modelling (Sect. 2.2.1),
provides a brief description of the Weather Research and Forecast model (WRF)
model (Sect. 2.2.2), and presents the general WRF setup applied in both case studies
(Sect. 2.2.3). The modelling is crucial for reducing the uncertainties in emission rate
estimates, accounting for factors such as atmospheric turbulence, plume meandering,
and the influence of other nearby sources.

The methodology described in this chapter forms the common foundation for
both case studies. Different approaches are then applied to calculate the emission
rates of the respective point sources, as detailed in Chapters 3 and 4. These chapters
also describe the case-specific adaptations of the general WREF setup.
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2.1 Measurement Techniques

2.1.1 Lidar in Atmospheric Science

Light Detection And Ranging (lidar) is a remote sensing system that consists of a laser
and a receiver. Laser pulses are emitted from the instrument and propagate through
the atmosphere. Along their path, they interact with atmospheric constituents and a
fraction of this light is scattered back to the receiver. By analysing the backscattered
signal, it is possible to infer the type of interaction between the laser pulse and
atmospheric components. This is achieved by examining the signal’s intensity
attenuation, the elapsed time between emission and detection, and, potentially,
its polarisation. In this way, lidar provides a distance-resolved profile of various
atmospheric parameters.

The principle of light scattering, which underlies lidar technology, was first
explored by Lord Rayleigh in the 19" century. In his work on the transmission of
light through the atmosphere, Rayleigh proposed the theory that small particles,
including air molecules, scatter light of short wavelengths more effectively than light
of long wavelengths, whereby he famously explained the blue colour of the sky for
the first time (Rayleigh 1899). However, applying this effect to active atmospheric
measurements requires intense, coherent light sources that were not yet available.

Building on this concept, Edward H. Synge had the idea of using powerful light
beams to probe atmospheric properties at high altitudes in the 1930s. He proposed
a system that could measure atmospheric densities up to 30km by directing a
large array of searchlights into the night sky and collecting the backscattered light
with parabolic mirrors (Synge 1930). This approach laid the groundwork for “light
detection and ranging”, although the necessary technology to fully realize it would
only emerge decades later.

The breakthrough for lidar came with the invention of the laser developed by
Theodore H. Maiman in 1960 (Maiman 1960). Using a synthetic ruby crystal as the
lasing medium, Maiman’s device produced coherent, monochromatic light through
the process of stimulated emission. This first operational laser could emit highly
focused pulses of light. In the following decades, a variety of applications were
innovated and thus, lidar became an indispensable tool for atmospheric science.

Today’s applications range from measuring wind speeds (e.g. Reitebuch et al.
2009), classifying aerosols (e.g. Grof} et al. 2013), and acquiring temperature profiles
(e.g. Kaifler and Kaifler 2021) to monitoring GHG concentrations (e.g. Ehret et al.
2012). These systems are operated ground-based (e.g. Wildmann et al. 2018) or
from a variety of platforms including ships (e.g. Rubio et al. 2022), aircraft (e.g.
Barton-Grimley et al. 2022) and satellites (e.g. Lux et al. 2020). In other words, lidar
systems provide detailed observations of the atmosphere at both local and global
scales.
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Basic Lidar Principle

As indicated above, a lidar system consists of a laser transmitter, a receiver with
a telescope, and a data acquisition unit. Short, intense pulses of laser light are
transmitted and propagate through the atmosphere. Some of the pulses’ photons are
scattered back to the receiver, creating a backscatter signal.

To determine the distance to scattering events, lidar systems measure the elapsed
time ¢ (or “time-of-flight”) between the transmission of a pulse and the detection of
its backscattered signal. Since the speed of light c is constant, the range R to the
scattering point can be calculated as:

c-t

R= 5 (2.1)

This relationship enables lidar to produce distance-resolved profiles, revealing how

atmospheric properties vary with altitude or range. The data acquisition system

counts the number of photons received in specific time intervals At, allowing calcu-

lation of range bins with a length AR = ¢- At /2. It is important that the time

interval At is larger than the effective pulse length t.g to avoid overlap between
consecutive range bins.

The extinction, which a laser pulse is subjected to while propagating through
matter for a range of R, is described by the famous Lambert Beer’s law in Eq. 2.2:

R
N(R)= Ny-e 7 with TE/O’-TL dr (2.2)
0

N being the number of photons and the subscript 0 indicating the initial number
of photons in each laser pulse. The term e~ " is the so-called transmittance of the
medium. The particle density n and the absorption cross section o are material-
specific. As they depend on temperature and pressure, which change in the vertical
course of the atmosphere, the optical depth 7 must be calculated by a path integral.
The number of laser photons N(R) received in a bin at range R collected by the
telescope is described by the lidar equation (e.g.Gimmestad and Roberts 2023):

R
Ae C'te —24f0'~n dr
N(R) = Ny-v-Q(R) - Rt; 5 T B(R)-e © (2.3)
instrumental atmospheric

v is the efficiency of the entire optical module (transmitter and receiver), Q(R) is
the overlap function of the laser beam with the receiver field of view, A is the
telescope’s aperture, (¢ - tes / 2) is the range bin length. S(R) is the backscatter
coefficient by atoms, molecules and particles. Since the atmosphere is traversed twice,
the optical depth is multiplied by a factor of two within the exponential function.
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Differential Absorption Lidar

The Differential Absorption Lidar (DIAL) technique, pioneered by Schotland in
the 1960s (Schotland 1964, Schotland 1974), measures concentrations of trace gases
by using two laser pulses. The pair of two sequentially emitted laser pulses, with
differing but closely adjacent wavelengths, is emitted. The returning laser pulses
are detected in the receiving optics after they have traversed virtually the same air
column.

The wavelength of one pulse corresponds to the absorption line of the investigated
trace gas. Its intensity is predominantly reduced by the extinction caused due to
the trace gas in the atmosphere. This laser pulse is called the online pulse. The
second one is called the offline pulse, because its wavelength is slightly shifted from
the absorption line and therefore serves as a baseline reference as its intensity is less
attenuated. By comparing the backscattered intensities of the two wavelengths at
various distances, DIAL can derive a vertical profile of the gas concentration along
the laser path.

Integrated Path Differential Absorption Lidar

The Integrated Path Differential Absorption (IPDA) lidar applies the DIAL principle
in a simplified form, where the the backscatter signal reflects off a “hard” target, e.g.
the Earth’s surface, sea surfaces or cloud tops, (Ehret et al. 2008; Amediek et al.
2017; Mao et al. 2018; Barton-Grimley et al. 2022) instead of relying on atmospheric
backscatter. These hard target reflections provide a higher Signal-to—Noise Ratio
(SNR), which enhances column-averaged measurement precision and accuracy. This
can be achieved without the higher laser power or more sensitive detectors that
would be required to provide fine altitude resolution within the column. Thus,
IPDA is particularly suited for nadir-viewing measurements from airborne or satellite
platforms, where the laser beam illuminates the surface (or cloud tops) within a
narrow footprint determined by the beam divergence and platform altitude (Menzies
and Tratt 2003; Ehret et al. 2008; Abshire et al. 2010).

2.1.2 The Airborne IPDA Lidar CHARM-F

CHARM-F (CO, and CH,4 Remote Monitoring—Flugzeug) is an IPDA lidar, which
was developed at DLR’s Institute of Atmospheric Physics (IPA) at the department
Lidar. Installed onboard the German research aircraft HALO (High Altitude and
Long Range Research Aircraft), it serves as the airborne demonstrator for the
MERLIN satellite mission and is the core instrument in its preparation and validation
campaigns (see Figure 2.1).

In contrast to MERLIN, which measures only CH,, CHARM-F simultaneously
measures CO, and CH,. For this purpose, two separate laser systems are installed
for CO, and CHy, which alternately emit laser pulses. Both systems share the laser
electronics and cooling as well as the electronics for wavelength stabilisation and data
acquisition. The measurement principle for both GHGs is the same. In each case, a
diode-pumped Nd:YAG laser pumps an Optical Parametric Oscillator (OPO). Single-
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Figure 2.1: Left: the German research aircraft HALO before take-off. Right: inside High
Altitude and Long Range Research Aircraft (HALO)’s cabin, showing the full CHARM-F
system. From left to right: lasers and receivers; laser cooling and controlling; PCs for laser
operation, wavelength stabilisation and data acquisition. Both photos taken by A. Fix.

mode operation of both the pump and the OPO is achieved by injection seeding,
resulting in a linewidth close to the transform limit (typically a few megahertz;
Amediek et al. 2008; Fix et al. 2011; Amediek et al. 2017). The wavelength of the
seed laser is stabilized with the help of a cell filled with CO, and CH,, enabling
absolute wavelength calibration (Amediek et al. 2008).

In total, four receiving optics are used: for each GHG one large telescope
(200mm @) with a Positive Intrinsic Negative diode (PIN) and one small tele-
scope (60mm &) with an Avalanche Photodiode (APD) (cf. Table A.1). This allows
a direct comparison of the two detector types under real flight conditions. Due to
the aircraft’s high velocity, the ground spots of the two pulses are displaced only
slightly, as shown in Fig. 2.2.

Spectrally, the on- and offline wavelengths are in such close proximity to each
other that, apart from the absorption of the GHG of interest, the interaction with
other atmospheric constituents and with the reflecting surface is expected to be
nearly identical. Accordingly, any difference in the backscattered signals comes
from the extinction of the respective GHG in the surveyed column. By the same
reasoning, the atmospheric GHG concentration of the vertical column can be derived
from the backscattered intensities of the laser pulse pair. In the following, such an
online-offline pulse pair measurement is referred to as a “single-shot measurement”.

Due to the spatial divergence of the laser, the volume surveyed by a laser pulse
corresponds to a cone. The length of the cone is very large compared to the diameter
of the reflection surface. In common literature, as well as in the following, the sur-
veyed part of the atmosphere is hence referred to as a vertical air column, or simply
column measurement. By additionally measuring the laser pulse pair’s time-of-flight,
the distance between the aircraft and the backscattered surface (i.e. the range R) is
determined very precisely. The on- and offline wavelengths are tuned and stabilized
to well-characterized absorption lines of the investigated GHG.
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Figure 2.2: The measurement geometry of the CHARM-F instrument installed on the
HALO aircraft. Two laser pulses are emitted towards the Earth with a short delay. The
concentration in the surveyed cone volume can be derived from the ratio of the backscattered
online and offline intensities. The volume measured is commonly referred to as a vertical
air column. The order in which the on-off pairs are emitted alternates. In fact, successive
measurements overlap, as the diameter of the footprint on the floor is greater than the
distance between them. However, they are shown here with increased separation for clarity.
Modified from Wolff et al. (2021).

For IPDA the lidar equation Eq. 2.3 can be expressed to model the optical power
Ponsoft entering the lidar’s receiver (Grant 1982; Ehret et al. 2008):

Eon/off R Atel .
Lot R?

For each individual laser pulse, a beam splitter deflects a small portion of its energy
onto a detector. In this way, the laser pulse energy F,, and E.,g are determined
separately as a reference within the lidar system. The reflectivity of the surface is
designated as p.

The optical depth due to extinction by air molecules, aerosols, and clouds is
denoted 79, while 7,,/0¢ is the column optical depth from molecular extinction by
CO,, CHy, and H50O:

Tonjoff = »_ Teonjot With & € {COy, CHy, HyO} (2.5)
3

Ponjott = 0 ¥ Tonso) (2.4)

By inverting Eq. 2.4 and subtracting the two optical depths, the following relationship
between the observed Differential Absorption Optical Depth (DAOD) 045 and the
backscattered intensities is obtained:

1 P/ Eost
= — = — . 1 _ 2
50bs Ton — Toff 9 n (Pon/Eon> ( 6)

With a single-shot measurement we determine a measure for the column-averaged
concentration of either CO, or CH4. The wavelengths of the respective on- and
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offline laser pulses are carefully selected to minimize absorption by other atmospheric
gases. Moreover, the offline wavelength in particular is selected in a way that as
little absorption as possible takes place. Figure 2.3 shows the column optical depths
of CH, (a) and CO, (b) for a standard atmosphere over a wavelength range at the
selected absorption lines. Figure 2.3 shows the absorption line for CH, and COs,.

At the on- and offline wavelengths used for the CH, measurement, absorption
by H,O and CO, is not strictly zero. Hence the raw observed DAOD is dobs raw =
dcu, + 0co, + 0m,0- The interfering terms are computed with auxiliary information:
water vapour from ECMWF-IFS data (ECMWF 2018, cf. Sect. 2.2.2), while the
small contributions of CO, at the CH, wavelengths (and vice versa) are estimated
from standard profiles. These modelled contributions are denoted with a hat. The
corrected DAODs are then:

5CH4 = 5obs,raw - 5C02 - 6HQO (27)
6002 — Uobs,raw — 5CH4 - 5H20

The offline wavelength for CH, is chosen so that the absorption by H,O is equal
to the online wavelength and the contribution of the differential absorption is
minimized. This is particularly important because the water vapour concentration
in the atmosphere can be very variable leading to a greater error potential than with
CO, if not exactly known. For the CO, absorption line shown in Fig. 2.3b, things
are much simpler, as the absorption of the other gases is negligible.
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Figure 2.3: a) by Kiemle et al. (2011) and b) by Ehret et al. (2008) show the total vertical
column optical depth for standard atmosphere. The thin line shows the sum over all GHGs,
and the thick line shows the greenhouse gas of particular interest, i.e. CH, in a) and CO, in
b). The dotted line shows HyO. Additionally, the dashed line in a) shows the contribution
of CO,. The additional optical depth due to CH, is negligible in b). The dashed vertical
red lines mark the wavelengths of the on- and offline laser pulses.

Based on the general definition of optical depth (Eq. 2.2), the DAOD of each
individual absorbing atmospheric constituents & can also be represented by:

5 = / ne(2) - Aog (p(2),T(2)) dz with ¢ € {CO,, CH,, H,0}  (2.8)

Zsfc
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The integration limits are the height of the reflection surface (sfc) and the flight
height (flh). Ace(p,T) = 0¢(Aon, P, T') — 0¢(Aosr, p, T') is the pressure and temperature
dependent differential absorption cross section, which arises from the interaction
between the specific molecule and the laser pulses at the chosen wavelengths .,
and Aog. At low altitudes, the density n¢ is higher, then drops exponentially with
atmospheric height. The contribution of the particle density thus weights the path
integral in Eq. 2.8 to lower altitudes. Applying the hydrostatic equation (Eq. A.4)
allows the reformulation of the vertical path integral in Eq. 2.8 to a pressure integral:

Psfc

0= %214 ne(p) - Aoe (p, T(p)) - mdp (2.9)

T Ao (p.T(p) |

zgjpﬂh <) 9(2(p)) - nary (p) - (mdry + MH,0 ° THQO(p)) Y
[ ) Ace (p. T(p)) .

;/ nary () g(2(p)) - (mary + mus,o - ri,0(p) g

=r¢(p)

o Aoe (p,T(p)) q

;pi 5(p) g(Z(p)) ) (mdry + TMH,0 - THzo(pD Y

=we(p)

Here, r¢(p) is the mole fraction with respect to dry air at pressure p (given in pmol/mol
or ppm), which is generally defined as the ratio of the number of GHG particles &
to the number of other dry-air molecules. mg,, and mp,o are the molar masses of
dry-air and water vapour, respectively, ru,o is the mole fraction of water vapour and
g is the gravitational acceleration. The pressure and temperature dependence of the
differential absorption cross section Aog are determined by spectroscopic laboratory
measurements (Gordon et al. 2017). The corresponding pressure, temperature, and
humidity profiles at the time and location of the airborne measurement can be
obtained from a numerical weather simulation.

The second multiplicative term in the last line of Eq. 2.9 acts as a weighting
function for the air masses in the vertical pressure integral, thereby defining the
sensitivity of the IPDA measurement. Consequently, it is defined as the so-called
weighting function w (Amediek et al. 2017):

Ac (p, T(p))
9(=(p) - (mary + M0 - r1,0(p))

w(p) = (2.10)

The weighted dry-air column-averaged mole fraction XCO, (or equivalently XCH,)
is widely used as a metric for GHG measurements in remote sensing. It is generally
defined by a vertically weighted mean of the GHG’s mole fraction r (Rodgers 2000;
Dufour and Bréon 2003; O’Dell et al. 2012; Bousquet et al. 2018):

Jr-w(p)dp

KO0 =" )

(2.11)
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However, it should be noted that the vertical weighting varies in the literature. In
some studies, XCO, is weighted by total number of air molecules (e.g. Reuter et al.
2010), while in other studies the mole fractions are weighted by pressure (e.g. Connor
et al. 2008). In passive remote sensing, where the sun is used as light source, the
vertical weighting is often expressed in column averaging kernels, which are calculated
with radiative transfer models and depend on solar zenith angle and the a priori
atmospheric state (Wunch et al. 2010; Krings et al. 2011).

By comparing the measured DAOD ¢ (i.e. Eq. 2.6) with its definition derived
by the Lambert Beer’s Law (last line of Eq. 2.9) it is apparent that § becomes
equivalent to the enumerator in Eq. 2.11, by defining w as has been done in Eq. 2.10.
Consequently, dividing the measured DAOD ¢ by the vertically integrated weighting
function w fulfils the definition of the column-weighted average dry-air mole fraction
XCO, in Eq. 2.11 (Amediek et al. 2017):

5
XCO, = ol @ (2.12)

The weighting function w in Eq. 2.10 is an inherent part of the IPDA measurement
principle and determined by the chosen online and offline wavelengths. It defines the
vertical sensitivity of the measurement. IPDA systems with different wavelengths
will have different weighting functions and thus yield slightly different DAOD values,
even for the same atmospheric state. Therefore, meaningful comparisons require that
simulated GHG fields or in situ profiles are sampled with the wavelength-dependent
weighting function of the instrument under consideration (see Eq. 2.11).

The overall purpose of this work, as described in the Introduction, is to quantify
anthropogenic emissions that occur near the surface and propagate as plumes within
the Planetary Boundary Layer (PBL). With the wavelengths chosen for CHARM-F
(see Table A.1), the measurement sensitivity is maximized in the boundary layer and
decreases with altitude (Kiemle et al. 2017). This corresponds to a high absorption
cross-section at high pressure and a lower one at low pressure.

2.1.3 The CoMet 1.0 Campaign

The Carbon Dioxide and Methane Mission (CoMet) is a series of campaigns designed
to prepare and validate the satellite mission MERLIN. CoMet’s objective is to use
state of the art measurement instrumentation to improve our current understanding
of the global distribution of the two main human-influenced greenhouse gases CO,
and CH,, with special emphasis on their regional and local sources and sinks. One
such instrument is MERLIN’s airborne demonstrator CHARM-F (see Sect. 2.1.2).
The first deployment of CHARM-F on the German research aircraft HALO was in
2015, when initial performance tests and the methodology for determining emission
rates were carried out (Amediek et al. 2017).

In addition to the CHARM-F measurements, various auxiliary measurements
are made, to measure e.g. pressure, temperature, wind, humidity directly on the
aircraft (Giez et al. 2023). Moreover, the close cooperation with the Institute of
Environmental Physics, (University of Bremen), and the Max Planck Institute for
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Table 2.1: CoMet 1.0 airborne instrumentation

Instrument Description Aircraft
CHARM-F IPDA lidar HALO
JIG cavity ring-down spectrometer HALO
JAS flask sampler HALO
miniDOAS differential optical absorption spectroscopy HALO
BAHAMAS HALO basic data acquisition system HALO
dropsondes meteorological sondes HALO
FOKAL frequency comb HALO
MAMAP NIR-SWIR spectrometer FUB Cessna
QCLS quantum cascade laser spectrometer DLR Cessna
CRDS cavity ring-down spectroscopy DLR Cessna
METPOD Cessna basic data acquisition system DLR Cessna
sampler flask sampler DLR Cessna

Biogeochemistry (Jena) needs to be emphasized, as they participate in each CoMet
campaign with the passive spectrometer MAMAP (Methane Airborne MAPper,
Gerilowski et al. 2011) and the JIG/JAS instruments (Jena Instrument for Greenhouse
gas measurements/Jena Air Sampler, Gatkowski et al. 2021b), respectively. MAMAP
retrieves column-averaged dry-air mole fraction anomalies of CO, and CH, relative
to a background, while JIG/JAS are in situ instruments measuring through inlets
through inlets in HALO’s fuselage.

For the preparation of the research flights, it is essential to have a flight plan
customized for each target area and to the synoptic situation of each flight day.
Therefore, all campaigns are supported by IPA’s Earth System Modelling department.
With their global and regional chemistry-climate model MECO(n) (Kerkweg and
Jockel 2012; Mertens et al. 2016), the regional distribution of the GHGs from the
specific sources is forecast to allow for optimal flight planning. Furthermore, support
from atmospheric transport models is essential for the analysis and interpretation of
the measurement data (Nickl et al. 2020; Kostinek et al. 2021; Brunner et al. 2023;
Hanfland et al. 2024). Beside these regular campaign collaborations and instrumen-
tations, there are contributions that vary from campaign to campaign.

CoMet 1.0, the first edition of the campaign series, took place in May and June 2018
(Fix et al. 2020) with the objective of quantifying European anthropogenic GHG
emission sources. The campaign’s flagship was the German research aircraft HALO,
which surveyed on the continental scale and was based in Oberpfaffenhofen, Germany.
In coordination with HALO, two short-range Cessna aircraft operated from Katowice
Pyrzowice airport, focusing on the greater Berlin area and the USCB. The first, a
Cessna T207A operated by Freie Universitat Berlin (FUB), carried the passive spec-
trometer MAMAP (Krings et al. 2011). The second, a Cessna 208 Grand Caravan
operated by DLR, was equipped with a Cavity Ring-Down Spectroscopy (CRDS)
analyser measuring CH,, CO, and HyO (Fiehn et al. 2020) as well as a modified
Quantum Cascade Laser Spectrometer (QCLS) (Aerodyne) for additional trace gases
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(Kostinek et al. 2021). A complete list of the airborne instrumentation during
CoMet 1.0 is given in Table 2.1.

Furthermore, the USCB was of prime interest for the campaign, as it is one of
Europe’s major CH, emission hotspots, where the gas is predominantly released from
coal mine ventilation shafts (see Sect. 4.1). Therefore, ground-based measurements
were carried out there to complement the airborne activities. These included portable
(Luther et al. 2019) and stationary (Luther et al. 2022) sun-viewing Fourier-transform
infrared spectrometers (EM27/SUN, Doppler wind lidars (Leosphere Windcube 2008,
Wildmann et al. 2020), and car-mounted integrated cavity output spectroscopy
(MGGA - 918, Menoud et al. 2021). Lastly, another CRDS was installed aboard a
small quadrocopter drone to sample CO, and CH, downwind of individual ventilation
shafts and determine their emission rates (Andersen et al. 2023).
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Figure 2.4: Map of all HALO flight tracks during the campaign in May and June 2018.
The blue track to eastern Germany is analysed in Chapter 3, the orange track to southern
Poland in Chapter 4. Modified from Fix et al. (2020).

The activities of this campaign provide a unique and comprehensive dataset.
This thesis analyses two research flights with CHARM—-F onboard HALO during
CoMet 1.0 to address the research questions posed in Sect. 1.3. On 23 May 2018,
HALO flew over the coal-fired power plant Janschwalde near the German—Polish
border (blue track in Fig. 2.4). This isolated CO, point source forms the basis
of Case Study I, in which the cross-sectional flux method is applied to quantify
emissions and address RQ1. On 7 June 2018, HALO overflew the USCB in southern
Poland (orange track in Fig. 2.4). The numerous ventilation shafts in this region
produce overlapping plumes that cannot be separated with the cross-sectional flux
method. This forms the basis of Case Study II, in which inverse modelling is used
to disentangle source contributions and address RQ2.
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2.2 Numerical Modelling

To properly interpret the observed GHG concentrations, a detailed knowledge of their
atmospheric transport is essential. Ideally, enhanced concentrations would appear
downwind of the emission sites, with background concentrations found upwind. In
practice, however, the observed signals are often more complex. Interference from
nearby sources or long-range transport can make it difficult to identify a representative
background concentration. In addition, local turbulence can cause meandering and
inhomogeneities in plume propagation.

This study focuses on relatively short timescales of a few days and regional
domains of several hundred by several hundred kilometres. In order to relate the
observed signals to point source emissions under these conditions, it is necessary to
model their atmospheric transport. Numerical Weather Prediction (NWP) models
provide global fields of the atmospheric state by assimilating a large number of
observations and numerically solving a set of physical equations. The European
Centre for Medium—Range Weather Forecasts (ECMWF') operates one of the most
advanced global NWP systems, whose output offers a realistic representation of the
mesoscale circulation. In this work, external fields from the ECMWF are used to
drive finer-scale regional simulations of transport processes (see Sect. 2.2.2).

Given this focus, the term Atmospheric Transport Model (ATM) is used in the
following instead of NWP, in order to emphasize the specific application. Sect. 2.2.1
introduces the basic concepts of ATMs, followed by a description of the Weather
Research and Forecast model (WRF), which is the regional model employed in this
work. The general WRF setup is summarized in Sect. 2.2.3, while case-specific
adaptations are described in Chapter 3 and Chapter 4.

2.2.1 Atmospheric Transport Modelling

Atmospheric Transport Models (ATM) describe the motion of the atmosphere by
solving the Navier-Stokes equations, complemented by the continuity and energy
equations. Together, these form a system of non-linear partial differential equations
of second order, with temperature, wind, humidity, and pressure as the key prognostic
variables. In atmospheric applications viscosity is usually neglected, which reduces
the system to the Fuler equations. These can be expressed in two perspectives. First,
the Lagrangian framework, where the trajectory of an individual air parcel is followed
through space and time. Second, the Fulerian framework, where the state variables
are defined on a fixed spatial grid and their changes are computed from fluxes across
grid cell boundaries.

Both the Eulerian and the Lagrangian perspective provide valid frameworks
for describing atmospheric motion, yet they are suited for different applications.
Lagrangian models are particularly useful when following the trajectories of individual
air parcels, for example to analyse the influence of specific sources on a fixed
measurement location (Lin et al. 2003; Levin et al. 2020; Zhao et al. 2023). This
approach is less practical in the present context, since the airborne measurements
considered here are mobile. Instead, the fixed-grid approach of Eulerian models is
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applied. It provides a continuous representation of atmospheric processes and is
commonly used to simulate the dispersion of trace gases from fixed emission sources
and distributed measurement locations (Krol et al. 2005; Zhu et al. 2021; Brunner
et al. 2023). For the purposes of this work, the Eulerian approach is therefore the
natural choice, ant the simulations presented herein were performed with the Eulerian
Weather Research and Forecast model (WRF).

2.2.2 Weather Research and Forecast Model

The WRF model has been developed in collaboration between the National Center for
Atmospheric Research (NCAR), the NOAA, the Air Force Weather Agency (AFWA),
the Naval Research Laboratory, the University of Oklahoma, and the Federal Aviation
Administration (FAA). It is a community model that is widely used in atmospheric
research and forecasting and offers a broad range of physical and numerical options
(Powers et al. 2017). A full technical description of the Advanced Research WRF
(ARW) configuration can be found in Skamarock et al. 2008, 2019.

In WRF-ARW the Euler equations are implemented in a compressible, nonhy-
drostatic manner and are cast in flux form using variables that have conservation
properties. The prognostic variables are defined as perturbations from a hydrostat-
ically balanced reference state (e.g. wind components, vertical velocity, potential
temperature, geopotential, and surface pressure; see Skamarock et al. 2008, 2019).
That is, the reference state is in hydrostatic balance and is solely dependent on
height, while the temporal variability is embodied in the perturbations.

The hybrid sigma-pressure vertical coordinates n are based on dry hydrostatic
pressure, formulated terrain-following and permitted to stretch vertically. The so-
called eta values are expressed as values between 1 at the Earth’s surface and 0
at the model’s top at constant pressure. The n value is related to the hydrostatic
component dry-air pressure at level k by the following equation (Skamarock et al.
2019):

_ Pr — Ptop
Pstc — Ptop

The n-levels are defined manually by the user and are set such that the vertical
resolution is finer near the surface and decreases with altitude. This vertical layering
is constant over the horizontal domain. The exact distribution of the n-levels differs
slightly between the two case studies and is shown in Sect. 3.2.1, Fig. 3.5 and
Sect. 4.2.1, Fig. 4.6.

As mentioned in Sect. 2.1.3, the measurement flights analysed here were conducted
only a few kilometres from the emission sources. To realistically represent the
structure and propagation of the exhaust plumes, the simulations must therefore be
run at high spatial resolution on the order of hundreds to thousands of metres. Since
such simulations are computationally expensive, this high resolution is only applied
in the target region (see Fig. 2.5).

For this purpose, the regional WRF simulations are based on global operational
analysis fields from the ECMWEF| which operates one of the most advanced Integrated
Forecasting System (IFS) systems and assimilates the largest number of observations

Mk (2.13)
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worldwide (ECMWF 2018). Through this data assimilation process, meteorological
observations from ground stations, satellites, radiosondes, and aircraft are continu-
ously integrated into the model, resulting in an atmospheric state that is closer to
reality. The ECMWEF analysis fields provide temperature, geopotential, wind, spe-
cific humidity, vertical velocity, and surface pressure as initial and lateral boundary
conditions for the regional simulations.

Driven by the ECMWF data, the spatial and temporal resolution is regionally
increased by so-called “telescope nesting”. In this process, smaller and more highly
resolved child domains are embedded within coarser parent domains and inherit
the meteorological conditions at their boundaries from the respective parent. Each
child domain is fully contained within its parent domain and uses its time-dependent
lateral boundary conditions. At each parent time step, the boundary conditions
for the finer child grid are generated from the coarser parent grid by horizontal
interpolation. The child domain then performs its calculations at higher temporal
resolution until the next parent time step is reached.
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Figure 2.5: a) three domains over Janschwalde. b) two domains over USCB.

In addition to the use of boundary conditions, the development of the two horizon-
tal wind components, temperature, specific humidity and perturbation geopotential
can be forced towards “trustworthy” driving meteorological fields, to avoid divergence
within the domain. Such trustworthy fields could either be observations done within
the domain, or external model data, here the ECMWF operational analysis data.
This forcing is done using nudging, which in WRF has a built-in Four-Dimensional
Data Assimilation (FDDA). In nudging the respective variables are pulled in the
direction of the driving fields with a tendency term.

With these fundamental aspects of the WRF model introduced, the following
subsection outlines the general setup used for the regional simulations. Detailed
case-specific configurations are then described in Chapter 3 and Chapter 4.
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2.2.3 WRF Setup

The coupling is implemented such that chemical tracers are transported consistently
with the meteorology and, if activated, modified by emission processes and chemical
sink reactions. This enables WRF-Chem to represent the transport, transformation,
and removal of atmospheric species within a single framework.

However, the goal of the present study is to represent observed CO, and CHy
plumes in the vicinity of their emission sources. These enhancements are confined to
only a few kilometres downwind and to a residence timeframe of a few hours to a
few days. In contrast, the atmospheric lifetime of CH, is on the order of ~ 10 years
(Prather and Zhu 2024), whereas that of CO, extends to centuries (Archer et al.
2009). Consequently, for the purposes of this study, both gases can be treated as
passive tracers without the need to account for chemical reactions or sinks.

Technically, two different tracer implementations are used. In Case Study I
(Chapter 3), the standard WRF option for user-defined passive tracers is applied, as
introduced by Blaylock et al. (2017). In Case Study II (Chapter 4), the passive
tracer is implemented through WRF-Chem, as the coupling to CTDAS is built upon
the WRF-Chem infrastructure (Reum et al. 2020). In both cases, the tracer is
transported consistently with the meteorological fields, but no chemistry is activated.

The configuration presented here is based on a set of physics, dynamics, and boundary
control options that have been demonstrated to perform well in previous studies and
community applications of WRF (e.g. Blaylock et al. 2017). Rather than exploring
the full range of namelist choices, a selection of established options was adopted
following recommendations from experienced WRF users to ensure a robust setup
for the present purpose. In this section, only the most relevant options are described
and summarized in Table 2.2; further namelist parameters follow the defaults of the
respective WREF' version.

The vertical structure of the model comprises 57 levels, with a deliberately
higher resolution near the surface in order to adequately resolve processes within
the Planetary Boundary Layer (PBL). The model top is set at a constant pressure
of prop = 200 hPa, while the vertical spacing increases with altitude. Depending on
the location and the underlying orography, this configuration typically provides on
the order of 15-25 layers within the lowest 1.5 km. This ensures that emissions from
elevated sources, such as stacks or mine shafts, are released into model layers above
the surface rather than into the surface layer. This is important because Brunner
et al. 2019 demonstrated that emissions placed at the model surface lead to excessive
drag in plume propagation.

The lateral boundary conditions for the outer domain (DO01) differ from those
of the nested domains. Along the domain edge, two buffer zones are defined. In
D01, the outermost 5 rows and columns form the “specified zone” (namelist option
spec_bdy_width = 5)', where values are determined by temporal interpolation of
the ECMWF operational analysis data. Adjacent to this is the “relaxation zone”,

1See Table 2.2 for a summary of namelist settings.
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Table 2.2: Selected namelist settings for the two domains used in both case studies. The
parameters are explained in the text.

Parameter Domain 1 Domain 2
Boundary Control

spec__bdy width 5 5
relax_zone 4 4
FDDA (grid nudging)

grid__fdda 1 0

quu 0.0003 0.0003
gt 0.0003 0.0003
gph 0.0003 0.0003
gq 45%x107° 45 x107°
Physics

mp_ physics 10 10
ra_lw_physics 4 4
ra_sw_physics 4 4

radt 30 15
sf_sfclay physics 1 1
sf_surface physics 2 2
bl_pbl_physics ) )

cu_ physics 5 0
cu_rad__feedback true false
cu__diag 1 0
Dynamics

rk_ord 3 3

dif f__opt 1 1
km__opt 4 4

dif f 6th_opt 2 2

dif f_6th_ factor 0.3 0.3

consisting of 4 rows and columns (relax_zone = 4)'. Tt is designed to achieve a
smooth transition between the specified boundary conditions and the simulated
values from WRF. This is accomplished by a combination of Newtonian and diffusive
horizontal smoothing, as described in detail by Skamarock et al. (2008) following the
scheme proposed by Davies and Turner (1977). Thus, the specified and relaxation
zones in D01 serve as a transition between the lateral boundary conditions from the
driving meteorology and the regional WREF' simulation.

The introduction of D01 also marks the first refinement in spatial and temporal
resolution compared to the driving ECMWF analysis data, which have a horizontal
resolution of 0.125° and are provided every 6 h. For central Europe, this corresponds
to approx. 9km in the zonal direction and 14 km in the meridional direction. D01 is
set with a horizontal resolution of 5 km and a temporal resolution of 30 s. Horizontally,
the grid cells are quadratic and described in a Cartesian coordinate system, as the
WRF simulation is run in a Lambert conformal conic projection (Deetz 1918).
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A finer second domain (D02) increases the resolution to 1km and 5s. For Case
Study I in Chapter 3, even a third domain is introduced (0.2km, 1s) to explicitly
resolve local turbulence. This enables a realistic assessment of the effect of turbulent
plume distortions on the reliability of the cross-sectional flux method. The nested
domains use a two-way nesting approach, where the child domain inherits boundary
conditions from its parent and, in turn, influences the parent domain by feeding back
averaged values to coinciding grid cells.

boundary layer height convective eddies

Figure 2.6: Schematic illustration of turbulent plume dispersion in the convective boundary
layer. The blue arrows indicate the mean wind direction (advection), while the red curved
arrows represent convective eddies of different sizes, generated by surface heating and
buoyancy. These eddies cause the exhaust plume to oscillate vertically, meander, and
become progressively diluted through turbulent mixing. The dashed line denotes the
boundary layer height, which limits the vertical extent of the convective motions.

To prevent divergence within the domain, grid-nudging is employed, which is one
of the options of the WRF built-in FDDA. In grid-nudging the model’s prognostic
variables (e.g. horizontal wind components, temperature, specific humidity, and
perturbation geopotential) are pulled towards the driving meteorological fields from
ECMWFEF analysis data with a tendency term, similar to how it is done in the
relaxation zone for the boundary conditions. As shown by Ho et al. (2024), this
technique produces results that align well with airborne in situ measurements,
particularly in the Upper Silesian Coal Basin (USCB). Notably, grid-nudging is
applied to every grid cell in D01 (grid_ fdda = 1)!, while it is disabled in the inner
domains (grid_fdda = 0)'. There, the transport is intentionally determined by the
finer-resolution processes specified by the chosen physical schemes.

One of the key processes is vertical motion in the PBL which is primarily driven
by convective eddies. These are coherent rising and sinking air parcels that are
generated by buoyancy, which is caused by surface heating and density differences (see
Fig. 2.6). The kinetic energy of large convective eddies is transferred to progressively
smaller eddies until it is eventually dissipated as molecular heat. This cascade of
kinetic energy follows Kolmogorov’s law (Qian 1994) and is the fundamental driver of
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turbulence within the PBL. Because model resolution is finite, part of this turbulent
spectrum cannot be explicitly resolved. The associated vertical transport must
therefore be represented through parametrization. Different PBL schemes exist to
provide such parametrizations, each with different assumptions and strengths, which
can influence the representation of boundary layer processes. For this purpose, the
simulations were performed using the Mellor-Yamada Nakanishi Niino (MYNN)
Level 2.5 scheme (bl__pbl_physics = 5), which is based on a second-order turbulence
closure model (Nakanishi and Niino 2009). It accounts for buoyancy-pressure effects
and stability on the turbulent length scale, with refinements such as a scale-aware
mixing length and an eddy mass-flux option for non-local characteristics.

In WRF-ARW, the selection of a PBL scheme implies that the vertical mixing
is handled exclusively by this scheme. However, the horizontal diffusion gradients
are simply assessed along the coordinate levels n (dif f_opt = 1)'. Furthermore, for
the calculation of the horizontal eddy viscosity, the Smagorinsky first-order closure
approach is applied (km_ opt = 4)!, where the horizontal diffusion is diagnosed just
from horizontal deformation (Smagorinsky 1963).

An important aspect for vertical transport in the PBL schemes is the interac-
tion with the surface layer, most importantly the sensible and latent heat fluxes
to the boundary-layer scheme. This interaction is governed by a Land-Surface
Model (LSM), which incorporates internal information on the land’s state variables
and land-surface properties. Furthermore, it exerts an influence on soil and surface
processes, including the temperature and moisture profiles, the extent of snow cover,
and interactions with vegetation. The LSM operates as one-dimensional column
model at each land grid, and has no horizontal interaction on neighbouring grid cells.

Here, the Unified NOAH Land-Surface Model is selected (Tewari et al. 2004,
sf_surface_physics = 2)', which comprises four layers. The layer thicknesses are
10, 30, 60 and 100 cm, from the top down to a total depth of 2m. The LSM has the
capacity to predict both soil temperature and moisture, as well as canopy moisture
and snow cover. Further features of the Unified NOAH LSM include root zone, evap-
otranspiration, soil drainage, and runoff, taking into account vegetation categories,
monthly vegetation fraction, and soil texture. The LSM utilizes friction velocities and
exchange coefficients from the surface layer scheme, for which the Revised Mesoscale

Model 5 (MM5) scheme is used (Jiménez et al. 2012, sf sfclay physics = 1)L

To realistically represent the energy budget of the atmosphere, radiative transfer
processes must also be included, as they strongly influence atmospheric stability and
thus boundary-layer dynamics. For this purpose, the Rapid Radiative Transfer Model
for General Circulation Models (RRTMG) scheme is used for both shortwave and
longwave radiation (Tacono et al. 2008, ra_ sw_physics = ra_lw_physics = 4).
The RRTMG employs prescribed lookup tables to accurately represent radiative
processes due to HyO, O3, CO,, and other trace gases, as well as accounting for cloud
optical depth. In particular, CO, concentrations are prescribed as a simple linear
function of calendar year to reflect its increasing atmospheric abundance.

Another notable interaction with the LSM is with the precipitation data from
the Morrison two-moment scheme (Morrison et al. 2009, mp_ physics = 10)*. This
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microphysics scheme’s prognostic variables include cloud ice, rain, snow, and grau-
pel/hail, and cloud droplets and water vapour. The prediction of two moments
(number and mass mixing ratio) makes the calculation of particle size distributions
more reliable. In turn, the particle size distributions are an integral part in the
determination of microphysical process rates and the evolution of precipitation and
clouds.

However, the effects of convective and shallow clouds on the sub-grid scale are
represented by cumulus parametrization schemes. These schemes handle vertical
fluxes due to potential unresolved updrafts and the associated latent heat release,
as water vapour condenses in the cloud formation process. Here, the Grell 3D
Ensemble Scheme is applied (cu_ physics = 5)'. Tt is a further development of the
scheme introduced by Grell and Dévényi 2002), which is an ensemble cumulus scheme.
Originally, it is an average of several cumulus schemes of the mass-flux type, which
differ in the parameters for updrafts and downdrafts, the associated entrainment
and detrainment as well as in the precipitation efficiency. Beyond that, the Grell 3D
scheme allows subsidence effects to be spread to neighbouring grid columns, making
the method more suitable to comparatively smaller grid sizes like the 5 km horizontal
resolution domain in this setup (see Table 3.3). For the finer domains, where the
grid spacing is sufficiently small to explicitly resolve convective cloud processes, no
cumulus parametrization is applied.
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3 Case Study I:

Quantification of an Isolated CO, Point Source

Case Study I focuses on the coal-fired power plant Janschwalde, a single and
isolated CO, point source. Power plants are among the largest individual emitters
worldwide and represent a major share of national GHG budgets. Monitoring their
emissions with high accuracy is therefore essential for reliable reporting, and also to
provide independent checks that do not solely rely on operator-reported values. An
isolated source like Janschwalde offers a clear plume signature and thus an important
intermediate step for method development and uncertainty characterization, before
moving on to more complex multi-source environments as in Case Study 1I.

In this study the cross-sectional flux method is applied, since it is conceptually
straightforward and has been widely used in both airborne and satellite-based
studies. The method quantifies emissions by multiplying the mean wind speed with
the integrated concentration enhancement along a cross-sectional overflight of the
exhaust plume, relative to a known background. In principle, satellites can use this
technique to constrain emissions from point sources, but this requires favourable
wind conditions and typically only a single overpass is available.

Airborne IPDA lidar observations, by contrast, can provide repeated plume
crossings. This allows a systematic assessment of the uncertainties associated with
individual flux estimates and gives direct insight into the variability of results from
successive overflights. This chapter therefore investigates two research questions:

« RQ1: How accurately can the cross-sectional flux method quantify CO,
emissions from an isolated point source, such as the Janschwalde power
plant?

« RQ3: Under which atmospheric conditions and flight geometries do uncer-
tainties in IPDA-based emission quantification become most pronounced, and
how can future flight planning be adapted to mitigate these effects?

To address these questions, Sect. 3.1 presents the cross-sectional flux approach
as adapted for airborne IPDA lidar. Sect. 3.1.1 outlines the necessary steps for
background separation and enhancement integration. Sect. 3.1.2 describes the
strategy used to quantify flux uncertainties, while Sect. 3.1.3 provides the emission
results from four overflights conducted on 23 May 2018.
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From the flux estimation, it becomes apparent that the variations between
successive overflights exceed the estimated uncertainties. This discrepancy suggests
that the variations are not merely due to measurement uncertainty but rather to
real fluctuations in CO, concentrations, likely caused by inhomogeneities in plume
propagation induced by local atmospheric turbulence. To explore this hypothesis,
Sect. 3.2 reports on a WRF Large Eddy Simulation (LES). This section outlines
the simulation setup (Sect. 3.2.1), examines the impact of turbulence on plume
behaviour, and assesses how these dynamics contribute to the observed variability in
the emission estimates (Sect. 3.2.2).

Finally, Sect. 3.3 brings together the measurement results and the modelling
insights, and answers the overarching research questions of this case study.

3.1 Cross-Sectional Flux Method

The cross-sectional flux method determines the emission rate of a point source by
calculating the downwind flux through an instantaneous cross-section of the exhaust
plume. The method has been applied to air- and spaceborne nadir-viewing remote
sensing (Menzies et al. 2014; Frankenberg et al. 2016; Varon et al. 2018; Reuter
et al. 2019; Krautwurst et al. 2021; Jacob et al. 2022; Shi et al. 2023), portable
ground-based sun-viewing remote sensing (Luther et al. 2019), and airborne in situ
measurements (White et al. 1976; Cambaliza et al. 2014; Conley et al. 2016; Klausner
et al. 2020; Fiehn et al. 2020). Amediek et al. 2017 describe how this principle can
be realized with IPDA.

The IPDA-lidar CHARM-F directly measures the differential absorption between
the online and offline laser pulses (see Sect. 2.1.2, Eq. 2.6). The resulting DAOD
is proportional to the column mole fraction, expressed via the pressure integral of
the weighting function in the denominator of Eq. 2.12. While the cross-sectional
flux method is usually expressed in terms of column mole fractions, CHARM-F
allows direct use of DAOD. This is a significant advantage as it means that the flux
calculation relies solely on the measured observable rather than on weighting functions
derived from numerical weather models. Consequently, one external dependency is
eliminated and a potential source of systematic uncertainty avoided.

If the laser penetrates an exhaust plume, the DAOD signal is composed of a term
representing the background and a term representing the absorption of the online
signal by the enhanced CO, concentration (Amediek et al. 2017):

5 / (ny(2) + An(2)) - Ao(z) dz (3.1)

= [m(2)- Ao(z)dz + [ An(z) - Aa(z)dz
=0y + AS

The background term dy, is necessary because even in the absence of point source
emissions, there is a background concentration ny, of CO, in the atmosphere that
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varies spatially and temporally. The enhanced term AJ results from the distribution
of the CO, concentration in the exhaust plume.

Ad = 7hAn(z) Aco(2)dz = Ao /ﬁhAn(z) dz (3.2)

Zsfc Zsfc

During the time of the measurements, i.e. in the first minutes to hours after the
emission took place (see Sect. 3.1.3), the plume is mostly constrained within the PBL
(Gatkowski et al. 2021b). That means that contributions to the integral from beyond
the top of the PBL tend towards zero. Within the PBL, the differential absorption
cross section Ao exhibits only weak variability with height, since the selected laser
wavelengths provide enhanced sensitivity in the lower troposphere where pressure
and temperature conditions are relatively stable (Ehret et al. 2017). This allows
the mean differential absorption cross section Ao to be extracted from the integral.
Amediek et al. 2017 investigated this approximation by representing the mean CO,
enhancement with the “slender plume approximation”, which assumes a Gaussian
distribution of the concentration in the plume (Seinfeld and Pandis 1997; Stull 2017):

A ( ) q _%' y(2>2 _é(z—(h))j + %(zth))j (3 3)
c(r,y,2) = e P e % oes e ? osl .
) T o o(x) oy (1)

q is the emission rate (in kgs™') at emission height h. The mean wind speed u
is defined along the propagation direction of the plume. o2 Jy are the variances
in the vertical and along flight track, respectively, and xg is the distance between
the emission source and the cross-section of the flight ground track. Note that
in this representation the emission source is arbitrarily set to y = 0. Moreover,
the approximation assumes that the plume is reflected at the ground and remains
confined to the atmosphere (i.e. that no soil uptake takes place). Mathematically,
this condition is expressed by the two terms (zan — h) and (zan + h).

In the following derivation, the slender plume approximation is applied, in which
the plume concentration is assumed to follow a Gaussian distribution. Inserting this
representation into Eq. 3.2 yields:
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with M denoting the molecular mass of the GHG of interest and Ao the mean differ-
ential absorption cross section of the respective molecule, both typically determined
from laboratory spectroscopy. Here, the absorption cross sections for CO, were
taken from HITRAN2016 (Gordon et al. 2017). The mean wind is derived from the
ECMWF analyses (ECMWF 2018) interpolated in space and time to the flight path
at the altitude of the power plant’s exhaust shaft. The parameter A, is defined by
the integrated enhancement of the observed signal along the flight track (see blue



36 3 Case Study I: Quantification of an Isolated CO, Point Source
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Figure 3.1: Cross-sectional survey of an exhaust plume using CHARM-F. a) Two laser
pulses are emitted with a short delay: the online pulse at A, lies on the CO4 absorption line,
while the offline pulse at A\,f; does not. Their backscattered intensities yield the DAOD
via Eq. 2.6. An ideal exhaust plume has a Gaussian-shaped concentration distribution in
both horizontal and vertical directions. b) A perpendicular crossing (¢ = 90°) produces

a Gaussian-shaped signal along the flight track. The integrated enhancement A, of the
observed DAOD is shaded blue. Modified from Wolff et al. (2021).

shaded area in Fig. 3.1b). It can further be simplified by:

Zfih
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The flight altitude zg, must be sufficiently higher than the emission height (h),
and the vertical extent of the plume (0,), i.e. well above the PBL. For our IPDA
measurements on HALO (zg, &~ 6.5km), these conditions were fulfilled by design
of the flight!. Rearranging Eq. 3.5 provides the cross-sectional flux formulation, in
which the emission rate is determined by the integrated enhancement A observed by
the lidar, together with additional parameters that must be obtained independently:

M

'In practice, the flight altitude is chosen to balance several constraints. Ideally, the aircraft
would fly directly above the PBL to capture all emissions confined within it. However, this is not
possible because the detector could saturate at low altitudes. At the same time, flying much higher
increases the risk of including long-range transport and, what is more, reduces the SNR. Flight
regulations often impose upper limits, too. For the HALO aircraft, an altitude of about 6.5 km
represents an optimal compromise and ensures that the assumptions of Eq. 3.5 are satisfied.
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Crucially, Eq. 3.6 is not restricted to the Gaussian plume assumption. The slender
plume representation was only used to obtain an analytical solution of the vertical
integration. A deviation from Gaussian shape simply corresponds to a redistribution
of mass, but the vertical integral remains mass-conserving. Therefore, even for
plumes that cannot be described by a Gaussian distribution, Eq. 3.6 holds as long as
the full cross-sectional enhancement is captured.

To account for deviations between the flight path and the true wind direction,
Eq. 3.6 is extended by a geometric correction factor:

q:singp-AL-u-i (3.7)
Ao

Here, ¢ is the angle between the mean wind direction and the aircraft’s flight track
(see Fig. 3.1a). In practice, flights are planned such that ¢ &~ 90°, making sin ¢ = 1.
This choice not only maximizes the observed enhancement but also minimizes the
impact of wind-direction errors, as will be shown in Sect. 3.1.2 with Eq. 3.10.
The integrated enhancement A, is thus the only quantity directly measured by
CHARM-F. Eq. 3.7 describes the instantaneous flux through the lidar cross-section
at the time of overflight. In theory, this instantaneous flux equals the emission rate
of the point source. In practice, however, Sect. 3.1.3 will show that fluxes vary
significantly between successive crossings. A meaningful estimate of the emission
rate can therefore only be obtained by averaging over multiple overflights. These
fluctuations must not be confused with the uncertainty of the flux calculation, which
is quantified separately in Sect. 3.1.2.

3.1.1 Background Separation and Enhancement Integration

For the calculation of the integrated enhancement A and its uncertainty it is crucial
to separate the DAOD signal into two contributions: the part arising from the
background concentration of CO, (hereafter denoted as d;,), and the contribution
from the exhaust plume of the point source (AJ) (see Eq. 3.1). A complicating factor
is that the background term may not be constant. Small variations in local CO,
concentrations can occur due to other anthropogenic sources (traffic, urban areas) or
due to local biospheric uptake.

The separation procedure is shown in Fig. 3.2for a real-data example. The plume
must first be detected as an enhancement that exceeds the noise in the data. To
reduce noise, I apply a running mean (RM) to the observed DAOD (Fig. 3.2a).
Increasing the window length reduces noise and makes plume enhancements more
visible, but excessively wide windows can cause peak structures to become blurred.
A window width of 0.2 km proved to be a useful compromise.

Starting from the middle of the plume enhancement I define the plume’s limits
as the intersections between the 0.2-km RM and another 4-km RM (Fig. 3.2b). A
width of 0.2km has been chosen, since it corresponds to the grid cell size of the
simulation (see Sect. 3.2), thereby enabling better comparison between measured
and simulated data. Hereby the values of the measured data can be compared with
the simulated ones later. Experience suggests that by choosing a RM width of 4 km
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Figure 3.2: Plume crossing at a distance to the point source of 1.53km. In (a) the grey
curve shows the raw data, while the black curve shows a 0.2-km RM. In (b) the green
curve is a 4-km RM. Green vertical dashed lines mark the intersections between the 0.2-km
RM and 4-km RM, which are defined as the plume’s limits. The purple line in (c) shows
the region of the data used to construct a mean value of the data outside of the plume’s
limits. This mean value is used to bypass the plume enhancement and is also coloured
purple. In (d) again a 4-km RM over the bypassed dataset is shown in brown. This brown
data is used as background term . Finally, in (e) and (f) the enhanced term AJ, i.e.
difference between 0.2-km RM and dy, is plotted in black. Note the different scale on the
y-axis. In (e) the area underneath the curve is shaded red, as an example of the parameter
Agum determined with a Riemann sum. Alternatively, a Gaussian fit can be applied to Ad,
providing the parameter Ag; as a fit-parameter, as shown as a blue line in (f). Adapted
from Wolff et al. (2021).
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the plume enhancement is so blurred that it blends into the background, as shown in
Fig. 3.2b. The limits are then defined as the intersections between the 0.2-km RM
and the 4-km RM.

Subsequently, the data within these limits is replaced by the arithmetic mean of
the data outside these limits. For the calculation of this arithmetic mean I consider a
window with a width equal to that of the plume, depicted as a purple line in Fig. 3.2c.
Finally, I apply another 4-km RM to the raw dataset, with bypassed plume, resulting
in the background term ¢, shown in brown in Fig. 3.2d.

This procedure allows for variability in the background term on a few-hundred-
metre scale. However, smaller-scale features cannot be attributed to the background
and are therefore assigned to the enhancement term, AJd. In practice, this means that
noise peaks are treated as part of the enhancement. This ensures that, if a peak value
is due to a real enhancement rather than noise, the integrated area A would increase.
However, this scenario is unlikely since there are no additional emission sources in the
vicinity of the flight track, and onboard camera systems provide visual confirmation
of the plume context. Consequently, residual noise peaks are incorporated into AA
but do not bias the background estimate dy,.

As explained in the previous section, the only parameter that results from a
measurement by CHARM-F is the integrated enhancement A. For this purpose
Amediek et al. 2017 described two distinct methods. The first method is a Riemann
sum over all enhancement values Ad;, multiplied with their respective spatial distance
Ay; between two successive data points:

The second method applies a nonlinear least-squares fit to the Ad values of the
plume, which is approximated by a Gaussian function (Eq. 3.9).

2
Ag -i(a
o p )

This way, the integrated enhancement is obtained as the fit parameter Ag. K1 is
the peak’s position along the flight track and ko the turbulent dispersion parameter,
which is a measure for the width of the plume. The fit method typically yields very
low values for the uncertainty of the parameter Ag. In contrast to the Gaussian fit,
the Riemann sum is not depending on any model assumption for the calculation of
the integrated enhancement along the flight track. Both methods were investigated
in the course of this work and showed nearly identical results (Wolff 2018). Therefore,
the results for A correspond to the mean value of the two methods, as presented in
Table 3.1 in the following section.

F(y) = (3.9)

3.1.2 Uncertainty Estimation

For CHARM-F, the two closely spaced sounding wavelengths are selected such that
the differential extinction by unknown particles is minimized, while keeping the
absorption by water vapour as low as possible. For water vapour this is achieved
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because its differential absorption cross section is more than four orders of magnitude
smaller than that of CO, (see Fig. 2.3b). Thus, the influence of additional water
vapour in the plume released by the cooling or coal drying systems of the power
plant is negligible (Kiemle et al. 2017). Moreover, the selected CO, absorption line is
sufficiently temperature insensitive such that the influence of temperature variations
within the plume can also be neglected (see also Kiemle et al. 2017).

Under these conditions, the flux error is primarily influenced by the uncertainty
of the parameters A, Ao, u, and . Assuming these parameters are uncorrelated, the
relative accuracy of the flux calculation can be estimated using error propagation.

2 2 2 2
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q A Ao u tan(p)
With 8A/A, 8(Ao)/Ac, du/u, and dp/ tan(yp) denoting the relative uncertainties of
these parameters. From Eq. 3.10 it is obvious that crossing the plume perpendicular
to the wind direction would give the highest accuracy for any fluctuation of the
wind direction dp. On the other hand, atmospheric conditions at low wind speeds
or situation with high atmospheric turbulence are generally less favourable because
of the high relative uncertainty in the mean wind speed and wind direction. Varon
et al. 2018 have identified 2ms~! as the reasonable minimum threshold of wind
speed for the applicability of the cross-sectional flux method. This minimum value is
also referred to by Sharan et al. (1996), arguing that above this threshold, advection
dominates over diffusion.

To assess how noise in the observed DAOD AJ propagates into the uncertainty
of the integrated enhancement Ag.,, I compute 15 Riemann sums with varying
integration limits. The minimum integration range is defined as twice the plume
limits determined in Sect. 3.1.1 (see Fig. 3.2e), ensuring that the entire plume is
covered. To test the sensitivity to residual noise, the integration width is then
expanded stepwise by 400 m, yielding a total of 15 different integration ranges.

To obtain the value of Ao required in Eq. 3.7 and to quantify its contribution
to the error budget, the differential absorption cross section Ao is calculated using
the Voigt-profile model with input from HITRAN2016 data base for the line parame-
ters (Gordon et al. 2017). This calculation requires the knowledge of pressure and
temperature profiles, which are extracted from the WRF simulation (see Sect. 3.2).
For the lidar measurements, the online wavelength was tuned to the CO, absorp-
tion line centre at A\, = 1572.02nm, while the offline wavelength was adjusted to
Aoff = 1572.12nm in the wing of this line (cf. Fig. 2.3b). Based on this wavelength
selection and a flight altitude of 8 km, the background DAOD ¢, is approximately
0.5, while the plume causes a ~ 10 % enhancement (= 0.05), as depicted in Fig. 3.2.

A potential source of error arises from the fact that the absorption cross section
is not constant over the vertical extent of the plume. With increasing altitude,
decreasing pressure leads to reduced collisional line broadening, which slightly modifies
Aoc(z). The question is therefore whether the vertical dispersion of the plume
can introduce a systematic bias into the flux calculation. To assess this effect,
representative mean values of Ao were calculated at two downwind distances, x1 =
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1.5km and z = 4.7km (see Table 3.1), using the slender plume approximation
(Amediek et al. 2017; Seinfeld and Pandis 1997). The corresponding mean differential
absorption cross sections were obtained according to:

(z=h)? (z+h)?

er*aXAU(Z) . (e_?oz(wm)g +e 2'52(“’2)2) dz
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AO’ (.1'1’2) =

(3.11)

Here, zp = Okm and 2., = 4km define the integration boundaries, and h = 120m
is the release height of the emission shafts. The parameter o, describes the vertical
dispersion and thus links the turbulence intensity to the vertical extent of the plume.
For moderately turbulent conditions, plume widths of o, = 170 m and 600 m were
estimated for the two distances, while weaker turbulence yields narrower plumes of
0, =90m and 250 m. Since no further turbulence information was available, both
scenarios were considered. The vertical dependence of Ao (z) itself was approximated
by a 2°%order polynomial fit to representative Voigt-profile simulations up to 4000 m
altitude (cf. Wolff et al. 2021):

Ac(z) = 7.10652 - 107*'m? + 8.60755 - 10™*'m - 2 + 8.02673 - 107 - 22 (3.12)

The deviation of this polynomial from the exact Voigt-profile values is below
0.1 %, which is negligible for the present purpose. Applying Eq. 3.11 with this
parameterisation yields Ao =7.27 - 10727 & 0.04 - 1072" m? for z; = 1.5km and
74710727 £ 0.24 - 107%" m? for x5 = 4.7km. At 1.5km downwind, the relative
uncertainty in the mean differential absorption cross section is only 0.6 % and thus
negligible. At 4.7km, the larger vertical spread of the plume increases this value to
3.2 %, which represents a relevant contribution to the overall error budget in Eq. 3.10.
Possible systematic errors, due to uncertainties of the line parameters, are less than
2% (Gordon et al. 2017). Wavelength setting errors of the CHARM-F instrument
are very small (~ 0.5 %, Amediek et al. 2017) and can be neglected compared to the
other error sources.

As mentioned before, the wind data are taken from operational analysis data of the
ECMWE-IFS (ECMWF 2018). This is done by first interpolating the 4-dimensional
gridded model data onto the flight path at the altitude of the power plant’s exhaust
shaft. Secondly, a mean value of the wind speed and direction along the flight track,
as well as an estimate of their relative errors, is calculated according to Ackermann
1983. These wind uncertainties are not negligible and directly propagate into the
flux estimates. Their quantitative impact are evaluated together with the flux results
in the following section.

3.1.3 CO, Flux Estimation

In the German federal state of Brandenburg the Lausitz Energie Kraftwerke AG
(LEAG) operates the coal-fired power plant Jinschwalde, close to the German-Polish
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border (cf. Fig. 3.3). The power plant’s primary fuel is lignite, a type of brown coal,
but it is also a certified for the co-incineration of processed waste. It has an installed
capacity of 2000 MW, spread over four power plant units and, as mentioned in the
Introduction, is one of the largest power plants in Europe, both in terms of annual
electricity generation as well as annual CO, emissions.

15km
52.0°N | =
Poland
516N Germany
Map data © 2020 GeoBasierE/BKG (© 2009), Google'
14.0°E 14.5°E 15.0°E

Figure 3.3: Left: The black line depicts the flight track of HALO between 10:24 and 11:36
CEST on 23 May 2018. The red square marks the position of the power plant. The arrow
shows the mean wind direction during the observation period. The grey line marks the
German-Polish border. Right: Picture of the coal-fired power plant Jinschwalde. The
exhaust gases are released through the nine cooling towers. Adapted from Wolff et al.
(2021).

In March 2024, two 500 MW units were taken off the grid as part of Germany’s
ongoing coal phase-out and energy transition policies. The Janschwalde site is to be
maintained and transformed beyond the coal phase-out on the basis of gas, hydrogen
and storage technologies (LEAG 2024). Despite this, in 2018, when the measurements
discussed here were recorded, the power plant was still operational with coal. The
operators reported a total CO, emission of 23.1 Tg to the European Environment
Agency (E-PRTR 2023). Unlike similarly sized power plants, its emissions are not
released through high stacks but through six of its nine cooling towers. This design
results from the modern flue gas treatment system, which cools the exhaust to tem-
peratures too low for stack venting (Busch et al. 2002). Consequently, the effective
release height is relatively low and the buoyancy rise is limited. The cooling towers
are 120 m high and arranged in three parallel rows, with a distance of roughly 50 m
between the rows and 250 m between adjacent towers within a row (cf. Fig. 3.3).

In this work the measurement flight of HALO on 23 May 2018 between 10:24
and 11:36 CEST (08:24-09:36 UTC) is investigated. Figure 3.3 shows the flight track
of the aircraft. In total, the point source was flown over seven times downwind, two
times upwind, and once directly over the cooling towers. In three of the downwind
overflights, no enhancement in DAOD is detectable. For these transects, the distance
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to the point source is greater than 4.6 km. At such distances, it can be assumed that
the exhaust gases are too diluted with the surrounding air to generate a detectable
signal. The remaining four downwind overflights, however, are well suited for the
cross-sectional flux estimation.

Table 3.1 shows the measured integrated enhancements, the wind data, and the
resulting fluxes for the four exploitable overflights, alongside the obtained mean
values, under the assumption that during the measurement both the wind direction
and the wind speed were reasonably constant. The flight segments were not exactly
perpendicular to the mean wind direction. With a relative wind direction of ¢ = 103°
a correction factor of sin(103°) = 0.97 is applied (see Eq. 3.7). The mean wind speed
of u = 5.06ms~! is well above the threshold of 2ms™!, introduced in Sect. 3.1.2.

Table 3.1: Flight measurement results for the Jinschwalde power plant on 23 May 2018,
following the nomenclature of Eq. 3.7. Shown are the instantaneous flux ¢, integrated
enhancement A, and differential absorption cross section Ao, together with flown path
length and source distance. The mean wind speed is u =5.06 £ 0.36 ms~! and the mean
relative wind direction ¢ = 103.34° + 6.40°. Modified from Wolff et al. (2021).

Crossing Measurement
local path distance | mean q q A Ao
time in km in km in kg/s  in kg/s in m in 1072" m?
10:50 200 1.46 760 £60 15.36+0.67 7.27+0.04
10:57 268 4.77 650 £ 240 470 +£40 9.044+0.42 7.47+0.24
11:10 388 1.67 950+ 80 19.294+0.46 7.27+0.04
11:27 536 1.78 420+40 8454+1.11 7.27+0.04

The individual flux uncertainties, calculated with Eq. 3.10, are relatively small
and range between 8 % and 10 %. On average, 2/10 of this uncertainty arises from
the integrated enhancement 6A/A, 1/10 from the combined uncertainties of the mean
differential absorption cross section of CO4 8(Ac)/Ac and the mean relative wind
direction 8¢/ tan(y), while the dominant contribution of 7/10 stems from the mean
wind speed du/u. This highlights the importance of accurate wind information. The
reported value of 760kgs™! (24.0 Tga™!, E-PRTR 2023) lies within the error range
of the mean value of 650 + 240 kgs™' (20.3 + 7.9 Tga™!).

Nevertheless, the variations between the individual crossings are much larger than
the formal measurement errors (cf. Table 3.1). For example, the second and third
crossings differ by approximately a factor of two. The pronounced discrepancy is
also evident in Fig. A.1b) and c¢), where the plume enhancements exhibit distinctly
different amplitudes. Such discrepancies cannot be explained by the quantified un-
certainties and are therefore hypothesized to result mainly from turbulence-induced
inhomogeneities in the plume. This hypothesis will be investigated in the following
section.
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3.2 Large Eddy Simulation

The pronounced variability between individual flux estimates suggests that turbulence
plays a major role in shaping the observed plume. To test this hypothesis, high-
resolution modelling is required. In a Large Eddy Simulation (LES), the dominant
turbulent eddies are explicitly resolved, while only the smallest unresolved scales
(subgrid-scale turbulence) are parametrized. This differs fundamentally from a
conventional mesoscale WRF run at, for example, 5 km resolution, where all turbulent
motions below the grid size are represented only through simplified parameterisations.
LES therefore demands a much finer horizontal grid spacing, typically on the order
of 10 — 500 m, but in return it provides a physically realistic representation of local
eddies, updrafts, and downdrafts within the plume.

This capability is essential for the present study. I hypothesize that the variability
between successive overflights is driven by turbulence-induced heterogeneity in the
plume rather than by measurement errors. With LES, such localized structures —
puffs of enhanced CO, or constrictions of lower concentration — can be simulated
explicitly, whereas a coarser mesoscale model would smooth them out and reproduce
only a mean Gaussian-like plume. Using LES thus allows me to demonstrate that
turbulence-driven fluctuations account for the observed spread of instantaneous flux
estimates and that the variability reflects plume dynamics rather than instrumental
noise. In this context, the simulations are used to address RQ3: Under which
atmospheric conditions and flight geometries do uncertainties in IPDA-based emission
quantification become most pronounced, and how can future flight planning be
adapted to mitigate these effects?

3.2.1 WRF-LES Setup

The following section describes the setup of the numerical simulations. For this
purpose, WRF version 3.8.1 (Skamarock et al. 2008) is employed. WRF is a widely
used and well-established platform for investigating plume transport processes (Zhao
et al. 2019; Bhimireddy and Bhaganagar 2018; Yver et al. 2013). The specific model
configuration employed in this study is summarized in Table 3.2.

Considering the typical source distances of the measurement crossings (Table 3.1)
and the observed plume spread (Fig. A.1), a horizontal resolution in the sub-kilometre
range is required. To achieve this, three nested domains were introduced, centred
on the middle cooling tower (Fig. 3.4). The outermost domain (D01, 5km) ensures
consistency with the ECMWF boundary data, while the intermediate domain (D02,
1km) provides a mesoscale description of the regional flow. The innermost domain
(D03) is configured as a LES with 200 m horizontal resolution. Following Powers
et al. (2017), this setup explicitly resolves the dominant turbulent eddies and thus
captures the plume variability observed in the measurements. Several studies have
demonstrated that WRF-LES is well suited for modelling plume trajectories together
with turbulence and passive tracer dispersion (Moeng et al. 2007; Nunalee et al. 2014;
Nottrott et al. 2014). The corresponding configurations are summarized in Table 3.3.
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Table 3.2: WRF model configuration. Applicable WRF namelist option is given in italics.

Setting

Reference

WRF version WRF 3.8.1

06:00 UTC 21 June -
06:00 UTC 24 June 2018

Simulated time span

Rapid Radiative Transfer Model scheme

ra_lw_physics = ra_ sw__physics = 4

Morrison two-moment scheme

Spin-up 6h
Number of vertical layers 56
Model top 200 hPa
Radiation

Microphysics

mp_ physics = 10

Unified Noah land-surface model

Land surface model

sf_surface_physics = 2
Revised MM5 Scheme
sf_sfclay physics =1

Surface layer physics

Skamarock et al. 2008

Tacono et al. 2008

Morrison et al. 2009

Tewari et al. 2004

Jiménez et al. 2012

Table 3.3: Configuration of quadratic domains. For more information on the PBL physics
scheme MYNN level 2.5 refer to Nakanishi and Niino 2009. For the LES PBL scheme refer
to Moeng et al. (2007). Modified from Wolff et al. (2021).

Domain DO01 D02 D03
Horizontal

5km 1km 0.2km
resolution
Computational

30s 5s 1s
time step
Number of

100 x 100 150 x 150 175 x 175
grid cells
Domain 5 5 5

500 x 500 km 150 x 150 km 35 x 35km
size
PBL physics MYNN level 2.5 MYNN level 2.5 LES PBL
scheme bl__pbl_physics =5 bl_pbl_physics =5 bl_pbl_physics =0
Eddy coefficient 2D deformation 2D deformation 3D TKE
option km_ opt = 4 km_ opt = 4 km_ opt = 2
Turbulence and  Simple diffusion Simple diffusion Full diffusion
mixing option diff_opt =1 diff_opt =1 dif f_opt =2
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Figure 3.4: Location of three time-nested domains of the WRF simulation. They are
centred on the power plant Janschwalde (black cross). The domains have a side length of
500 (D01), 150 (D02), and 35km (D03) and a horizontal resolution of 5km (D01), 1km
(D02), and 0.2km (D03). The virtual transect marked in D02 corresponds to the vertical
cross-section shown in Fig. 3.5b—c. Modified from Wolff et al. (2021).

A virtual transect is depicted across D02 (Fig. 3.4) to serve as a reference for
examining the vertical model structure. Along this transect, Fig. 3.5 shows the 57
terrain-following vertical n-levels, highlighting the fine resolution near the surface.
The vertical discretisation was designed such that a full model layer lies below the
effective release height of the power plant (h = 120m). As discussed in the previous
section, the exhaust gases are released through cooling towers after passing through
a modern flue gas treatment system, which reduces their temperature to a level too
low for stack venting. Consequently, the effective release height is comparatively
low, the buoyancy rise is minimal and no additional plume-rise parametrization is
required. This setup has been shown to produce realistic plume characteristics when
compared with observations and other ATMs (see Brunner et al. 2023).

No atmospheric CO, background field is simulated, meaning only the exhaust
plume of the power plant is present in the simulation. For this purpose, WRF allows
the definition of a passive tracer variable tr(t,z,y, z), as introduced by Blaylock
et al. (2017). This tracer follows the transport and dispersion of the emissions
without chemical reactions. A detailed description of the calculation of simulated
DAOD can be found in the Supplement, where Eq.(A.3) is used to derive the DAOD
enhancement from the horizontal tracer distribution.

The WRF simulation provides a data output every 2min. One virtual plume
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Figure 3.5: Vertical layers in WRF. The ground is displayed in grey, the vertical layer
interfaces in black. a) displays the vertical layer thickness Az. The vertical resolution is
relatively fine at low altitudes and decreases at higher altitudes. b) shows all 57 vertical
layer interfaces from the Earth’s surface up to the model’s top (200 hPa) along the virtual
transect drawn into Fig. 3.4 flight track. c¢) shows a zoom into the lower 1.5 km above sea
level. The lowest level is equivalent to the Earth’s surface. Moreover, the terrain-following
nature of the n-level can be seen.

crossing is evaluated for each output time step at a point source distance of 1.5 km,
corresponding to the measurements presented in Table 3.1. For the determination of
the integrated enhancement, it does in principle not matter at which distance to the
point source the virtual flyover takes place, as neither background field nor noise is
simulated. Nonetheless, I try to match the virtual survey as closely as possible to
real conditions. Just as in the real measurement, the virtual crossings are arranged
perpendicular to the propagation direction of the plume (cf. Sect. 3.1). However,
in a turbulent atmosphere, it is not trivial to precisely identify this direction of
propagation. In this work, I consider the centre of mass of the emitted tracers within
a radius of twice the point source distance, i.e. 3km. A connecting line between this
centre of mass and the point source corresponds to the propagation direction.

For the calculation of the virtually retrieved emission rate, the mean wind speed
and direction are needed (see Eq. 3.7). To obtain these from the simulation, the
following procedure is performed. First, for each data output step the horizontal wind
components at the mean height of the plume are retrieved by vertical integration,
weighted with tracer mass content. Second, the resulting 2D wind field is linearly
interpolated onto the virtual flight path, yielding a 1D field with the horizontal wind
components along the flight track. Last, the wind components are integrated and
weighted with the DAOD along the flight track, resulting in the mean wind used for
calculation.
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3.2.2 WRF-LES Simulation Results

The WRF-LES simulations reproduce plume dispersion with realistic characteristics
(see Fig. 3.6). The simulated DAOD enhancements are of the same order of magnitude
as the values observed with the CHARM-F instrument, indicating good consistency
between model and measurements. Exemplary snapshots of the simulated plume
at different times of day (approximately every two hours) are provided in the
Supplement (see Fig. A.2). Additionally, an animated GIF of the simulated plume
can be found under https://doi.org/10.5281/zenodo.4266513 (Wolff 2020). In
the nocturnal absence of solar irradiation, the turbulence decreases, leading to narrow,
homogeneous plume dispersion within a laminar flow. The exhaust plume follows
Gaussian behaviour, as depicted in Fig. 3.6 at 23:30 CEST. By contrast, daytime
conditions are characterized by boundary layer turbulence. Solar heating of the
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Figure 3.6: Exemplary snapshots of simulated exhaust plumes. The flight track of the
virtual plume overflight is shown as a black line. At the top of the respective middle
panels, the local time is given in Central European summer time (CEST, i.e. UTC+2),
and at the bottom a denotes the local solar altitude. The first colour bar represents the
DAOD enhancement and refers to the respective middle panel, which shows the horizontal
dispersion of the plume. The second colour bar represents the mass per area and refers
to the top and right panels, which show the vertical dispersion. In a corresponding
measurement, DAOD enhancement values below 0.008 would not be distinguishable from
noise and are therefore displayed in blue. Values higher than 0.01 exceed the noise and can
be identified as plume enhancement in a real measurement. A value of 0.02 corresponds to
an enhancement of 4 % with respect to a background of 0.5 (cf. Fig. 3.2). Adapted from
Wolff et al. (2021).

surface generates convective air masses, which in turn cause a cascade of eddies.
Along these eddies, counter-gradient flow emerges, i.e. flow opposite to the main
wind direction. This results in local puffs of above-average column concentration
enhancements within the exhaust plume. Meanwhile, eddy-generated local flow in
the same direction as the ambient wind causes constrictions of lower concentrations
in the plume (Stull 1988). These plume structures deviate from Gaussian behaviour,
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as can be seen in Fig. 3.6 at 17:54 CEST.

A locally increased CO, column concentration results in a high value of the
integrated enhancement A, in contrast to an overflight over a constriction. According
to Eq. (3.7) this corresponds to a high value of the emission rate ¢. It should also be
noted that such puffs have a smaller spatial extent than complementary constrictions.

Therefore, a skewed distribution of the retrieved emission rates is to be expected, as
confirmed by Fig. 3.7.
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Figure 3.7: Histogram of virtually retrieved emission rates, showing a slight skew towards
smaller values than the input emission rate (dashed red line). It includes all 1980 retrievals
between 12:00 UTC on 21 May and 06:00 UTC on 24 May. Adapted from Wolff et al.
(2021).

On 23 May 2018, four measurement flyovers of the Jénschwalde power plant took
approximately 1h, as presented in Sect. 3.1.3. The first 6 h of the simulation are
discarded as spin-up (see Table 3.2). This leaves 66 h of simulation, which corresponds
to a total of 1980 virtual plume flyovers. The results of the virtually “measured”
emission fluxes, which are calculated using Eq. (3.7), are displayed as a histogram in
Fig. 3.7 and as a time series in Fig. 3.8a).

Figure 3.8a) shows how the diurnal course of solar altitude a influences the
retrieved emission rates q. The random occurrence of inhomogeneities in plume
propagation, caused by local turbulence, leads to significant variations in successive
crossing results. Turbulence lags behind solar altitude because the surface needs
time to heat up. It is also apparent that the emission rate deviations vary from
day to day, both in intensity and in dwell time. The implications for the measure-
ment results can be reduced by averaging over a multitude of retrieved emission rates.

Next, I investigate how often the exhaust plume must be surveyed to determine an
emission rate with satisfactory accuracy on average. Based on experience from the
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Figure 3.8: Virtual overflight results in the course of the day. In (a) it can be seen that
rising solar altitude « entails turbulence. Especially midday turbulence causes deviations
in the retrieved emission rate ¢ from the input emission rate ¢j,. In (b) the integrated
enhancement A shows equivalent behaviour, while the variations in wind speed u are
comparatively small. It is during the midday turbulence that the virtual flight tracks are
not exactly perpendicular to the instantaneous wind direction at the plume crossing, which
becomes apparent in the correction factor sin(p) in (c). In the night hours, as well as the
morning, the retrieved emission rates agree well with the input emission rate gi,. The wind
speed u surpasses the threshold value of 2ms™! at all times. Adapted from Wolff et al.
(2021).

measurement flights presented in Sect. 3.1.3, as well as other point source surveys dur-
ing the CoMet campaign not shown here, I prescribe a time delay of 6 min to 18 min
between two successive crossings. With typical wind speeds of 5ms™! to 8ms~! and
simulated spatial scales of puffs and constrictions of 1km to 2km, this delay exceeds
the residence time of coherent plume structures and thus prevents repeated sampling
of the same air masses.

The model setup provides one virtual crossing every 2min, yielding a large
number of possible permutations for merging successive transects (Table 3.4). For
each permutation, I calculate a mean value and compare it with the prescribed
emission rate ¢;,. To assess turbulence-induced inhomogeneity over the course of a

Table 3.4: Number of permutations of successive virtual crossings used for averaging.
Adapted from Wolff et al. (2021).

Number of overflights Number of possible permutations

1 60
4 5000
7 312500
10 9765625
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Figure 3.9: Box-whisker plots of the relative difference to the input emission rate gy, within
2 h-time frames. The right axis shows the associated retrieved emission rates. Different
colours represent different number of virtual crossings merged for averaging. The inner
boxes range from the first to the third quartile, thus containing 50 % of the values. The
median is marked within as a black dash. The upper whisker is drawn up to the 95
percentile, while the lower whisker is drawn to the 5% percentile. Consequently, 90 % of
the values are in between the two whiskers. All values outside the whiskers are outliers
and plotted as dots. Adapted from Wolff et al. (2021).

day, I analyse 2 h-time frames, each containing 60 virtual overflights. The number of
possible permutations rises quickly, from about 5000 for four merged crossings to
over 300000 for seven (Table 3.4). These high numbers stem from the identical set
of 60 single-crossing emission rates, shown as purple box-whisker plots in Fig. 3.9.

Figure 3.9 presents the resulting distribution of this relative difference to the
input emission rate as a box-whisker plot. The spread of the respective box-whisker
plot is an indicator of turbulence. It is evident that with an increasing number of
overflights merged for averaging, the spread of the relative differences decreases, while
the measurement precision increases. A high emission rate measured by a single
overflight scanning a puff is compensated for if the subsequent overflight measures a
lower emission rate. With a higher number of overflights averaged, it is more likely to
measure both high- and low-concentration air masses. Yet, although the precision can
be improved by increasing the number of overflights, even ten overflights are inferior
to the precision of one nighttime measurement. Additionally, not only the precision
but also the accuracy is compromised during times of strong turbulence, i.e. in the
afternoon. As mentioned above, the spatial extent of turbulence-induced puffs is
smaller than the one of the complementary constrictions. This asymmetry resembles
the well-known structure of turbulent motions in the convective boundary layer,
where strong and narrow updrafts are surrounded by broader regions of subsidence
(Stull 1988; Schmidt and Schumann 1989; Schumann 1989). Therefore, such puffs are
likely to be less frequent and only partially scanned when measured at a low sampling
frequency. Consequently, the retrieved emission rates will be biased low. This is an
effect that occurs especially during strong turbulence. In Fig. 3.9 a strongly turbulent
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day (22 May) is compared to a less turbulent day (23 May). Both precision and
accuracy are superior on a less turbulent day.

In contrast, the night hours show little turbulence and high precision. Even with
a single overflight, small differences to the true emission rate are to be expected. Here,
a higher number of overflights will only cause minor improvements. At this point,
it should be mentioned that the representation of nightly plume propagation must
be critically reviewed. The plume height decreases so much that the propagation
takes place only in the lowest four model layers. The fact that a bias of approx.
+5 % remains at night is not surprising from this point of view. This study should
therefore be understood as a qualitative assessment. The key finding is that avoiding
situations of high turbulence brings an enormous improvement for both precision
and accuracy. Even with a significantly higher number of measurement overflights, a
comparable improvement cannot be attained.

3.3 Summary & Conclusion

Case Study I builds upon the work of Amediek et al. (2017), who demonstrated
the feasibility of airborne IPDA lidar flux quantification at coal mine sources. Here,
I extend these investigations to a large coal-fired power plant and systematically
examine the reliability of the cross-sectional flux method using repeated overflights
of the Jéanschwalde power plant during the CoMet campaign in 2018. The aim is to
address RQ1 and RQ3.

The lidar measurements on 23 May 2018 yield mean emission rates of 20.3 +
7.9Tga™!, which is consistent with the operator’s reported value of 24.0 Tga™! (E-
PRTR 2023). The exhaust plume generated column enhancements in the DAOD
with a SNR of about 10%. The product of the enhanced column concentration,
integrated along the flight track, and the mean wind speed provides the instantaneous
flux through the lidar cross-section. The flux of an individual overflight can be
determined with an uncertainty of 8 — 10 %, mainly driven by errors in the integrated
enhancement, the differential absorption cross section, the relative wind direction,
and the horizontal wind speed. On average, 2/10 of this error is due to the integrated
enhancement of the DAOD signal, 1/10 arises from the differential absorption cross
section and wind direction, while the dominant 7/10 is linked to the horizontal wind
speed. This highlights the critical need for more accurate wind information.

Beyond the formal error budget, there are restrictions regarding the flight ge-
ometry. At source distances greater than 4.6 km, no plume enhancement becomes
detectable and the cross-sectional flux method can no longer be applied. At closer
distances of about 1.5km, distinct plume enhancements are observed, and the un-
certainty linked to the mean differential absorption cross section becomes negligible.
The closer the overflight is to the source, the more compact and pronounced the
plume signal. However, fewer data points lie within the plume cross-section. For
CHARM-F, this can be compensated by the high repetition rate. Overall, flying
close to the source, while avoiding too much dilution, provides the most favourable
conditions.
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To further investigate turbulence-induced variability, high-resolution transport
modelling was performed with WRF in an LES setup. As only four overflights
are available in the measurement, no statement on the absolute accuracy of the
simulation can be made, which is also not the intention here. Qualitatively, however,
the simulation provides valuable insights. At night, the plume remains weakly
distorted and close to Gaussian because laminar flow dominates. Over the course of
the day, turbulence increases, peaks in the afternoon, and distorts the plume into
non-Gaussian shapes. According to the simulation, nighttime conditions are so stable
that even a single instantaneous flux measurement can reach accuracies of up to
~ 95%. By contrast, in strongly turbulent afternoons, even ten averaged overflights
perform worse in both precision and accuracy than a single nighttime crossing.

At this stage, no strict limits on solar altitude or time of day can be derived, since
the intensity of turbulence varies from day to day (see Figs. 3.8 & 3.9). In general, the
strongest turbulence occurs in the afternoon. Consequently, flight planning should
avoid midday conditions and, wherever possible, target nighttime or morning hours.
In this respect, intrinsic independence from solar irradiation is a clear advantage of
active remote sensing over passive approaches. The turbulence-induced variability
diagnosed here is generic and should equally affect passive and in situ observations.
Whether these systems can realize a net benefit from avoiding peak turbulence,
however, depends on system-specific trade-offs, such as reduced radiance and larger
retrieval errors for passive sensors at low solar altitude, or limited access to the
boundary layer for in situ aircraft at night. The present study provides the first
explicit quantification of turbulence effects for lidar and thus an actionable basis for
flight planning. Assessing the net benefit for passive and in situ systems requires
dedicated studies by those communities.

In answer to RQ1, isolated point-source emissions can be quantified with airborne
IPDA lidar using the cross-sectional flux method with good reliability. The main
source of uncertainty is wind speed, which should ideally be measured directly from
the aircraft to improve accuracy. In regard to RQ3, the limiting factor is turbulence.
Strong turbulence causes plume variability that dominates over measurement noise
and formal errors. To mitigate this, future flight planning should prioritise nighttime
or early-morning flights and avoid large downwind distances where the plume is
diluted beyond detectability.
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4 Case Study II:
Quantification of Multiple CH, Point Sources

While the previous chapter focused on Case Study I — a well-isolated CO, plume
from a single, known point source — this chapter takes it a step further by exploring
Case Study II: a fundamentally different setting involving multiple, spatially
distributed CH, point sources. In many regions, CH, is not emitted from a single,
dominant hotspot but from spatially distributed sources. Examples of such regions
include oil and gas fields, and coal mining areas. The USCB is one such region, where
CH, is released from numerous coal mine ventilation shafts. The spatial proximity
of emitting shafts leads to overlapping plumes, which complicates source attribution
and limits the applicability of traditional cross-sectional flux estimates. In contrast
to the simple observational geometry of Case Study I, the spatial attribution of
emissions in such complex environments is inherently ambiguous.

Future satellite missions such as MERLIN are designed to constrain continental- to
global-scale CH, budgets using IPDA lidar, but are not designed to resolve individual
plumes or sources routinely. This may only occur under favourable conditions, for
example when wind direction causes a plume to be intersected nearly orthogonally
by the satellite track. Particularly for sources like wetlands or agriculture, where
emissions are both widely distributed and dynamically variable in space and time,
inverse modelling becomes essential. Compared to those unknown and diffuse source
settings, the USCB offers a more spatially well-characterized but still challenging
environment, making it a valuable intermediate step for methodological development.

This chapter therefore serves a dual purpose: It investigates whether airborne
IPDA lidar data can be used in combination with inverse modelling to constrain
emissions in a multi-source region, and it acts as a methodological stepping stone for
future satellite-based inversions. To my knowledge, this is the first demonstration of a
regional inversion framework using IPDA lidar observations, providing an important
proof-of-concept in the context of MERLIN preparation.

To address this challenge, an ensemble-based Bayesian inversion framework,
i.e. the Carbon Tracker Data Assimilation Shell (CTDAS), is deployed, combining
airborne lidar observations with atmospheric transport modelling. This approach
provides a pathway to constrain regional emissions by leveraging prior knowledge
of spatial source distributions and estimated source emissions, while incorporating
meteorological dynamics through the atmospheric transport model WRF-.
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Thereby, Case Study II directly addresses two key research questions:

« RQ2: Can a combination of airborne IPDA lidar and inverse modelling be used
to quantify and spatially attribute overlapping CH, emissions from multiple
sources?

« RQ3: What are the major sources of uncertainty in IPDA-based emission
quantification, and how can flight planning or methodological choices reduce
them?

This chapter is structured as follows: Section 4.1 introduces the target region
(USCB) and outlines its relevance as a major coal mining area with significant CHy
emissions. Section 4.1.1 summarizes key findings from earlier studies in the region,
highlighting existing uncertainties and gaps. Section 4.1.2 describes the airborne
measurement campaign conducted on 7 June 2018, including the CHARM-F flight
path and observed CH, enhancements.

A formal introduction to the Bayesian inversion methodology, including the
derivation of the cost function and ensemble Kalman filter mechanics, is given in
Appendix B. However, Sect. 4.2 briefly recapitulates the core components of the
Bayesian approach, including the formulation of the posterior state vector and its
covariance matrix. The latter plays a key role in the source attribution strategy
developed later in this chapter. Furthermore, it outlines the inversion setup using
CTDAS-WRF, including prior assumptions and model parameters (Sect. 4.2.1).

Section 4.3 presents an initial inversion run, in which each emitting WRF grid
cell is optimized individually. This is a diagnostic step to assess the performance
of the prior setup and define adjustments for a best-estimate inversion. One key
adjustment is introduced in Sect. 4.3.1, which identifies systematic mismatches
between model and observations and implements targeted data flagging to exclude
affected measurement segments. A second key adjustment is based on a novel
clustering approach, developed in this work and presented in Sect. 4.3.2. This
method aggregates spatially correlated sources into joint state vector elements to
reduce ambiguity in source attribution.

Based on the resulting clustered setup, the inversion is refined and re-run. Sec-
tion 4.4 presents the outcome of this best-estimate inversion and evaluates its robust-
ness through targeted sensitivity tests. Ultimately, it concludes with a comparison
of total emissions with external inventories and previous studies.

Finally, Sect. 4.5 provides a concise summary and general conclusions, reflecting
on how these findings inform future airborne and satellite-based inversion strategies.
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4.1 The Upper Silesian Coal Basin

Figure 4.1a) displays a map of central European CH, emissions. The Upper Silesian
Coal Basin (USCB) in southern Poland (approx. 50°N, 19°E) stands out as Europe’s
largest CHy emission hotspot, releasing 500 — 700 kt CH4 annually (Swolkieni et al.
2022; Galkowski et al. 2021a). These emissions, primarily from coal mining activities,
make the region a critical focus for climate and air quality studies.

a) 56°N

54°N 3

Figure 4.1: a) Anthropogenic CH, emission fluxes over central Europe on a 0.1°x0.1° grid
for the year 2018 (Emissions Database for Global Atmospheric Research (EDGAR) v7.0,
Crippa et al. 2021). Highest emissions are from southern Poland in the Upper Silesian
Coal Basin, marked by the black arrow. Please note the logarithmic scale.

b) Ventilation shaft V of the Soénica coal mine (50.2565°N, 18.7220°E), operated by Polska
Grupa Goérnicza S.A.. Annual CH, emissions in 2018 were approx. 2.6t/h.

Google Earth (3D Buildings mode), accessed June 2025. Satellite imagery © 2025 Airbus, image date: 5/3/2024.

The USCB is a plateau elevated between 200 — 300 m above sea level and bordered
to the south by the Western Carpathians (see Fig. 4.2). Westward, the basin extends
across the Czech border into the Ostrava region in the Czech Republic. An important
topographic feature is the Moravian Gate, a lowland corridor between the Sudetes
and the Carpathian Mountains. Under north-easterly wind conditions, it can act as
a channel for advecting CH, plumes.

The USCB is rich in high-quality bituminous coal, a sedimentary rock of biogenic
origin mostly consisting of elemental carbon (Kotarba 2001). This coal was formed
through the carbonization of organic material under high pressure and temperature,
a process that generated various hydrocarbons. This includes significant quantities
of CHy, which remains trapped in coal seams and surrounding rock strata (Kreiner
and Zyta 2006). During mining operations, the disturbance of coal seams releases
this trapped CH, into underground galleries.

Methane-air mixtures become explosive when the CH, content ranges between
5% and 15 %, depending on oxygen concentration and temperature (Kedzior and
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Dreger 2019). The tragic explosion at the CSM coal mine in the Ostrava-Karvina
industrial region in December 2018, which killed 13 miners, is a sombre reminder of
the real danger posed by uncontrolled CH, accumulation (see e.g. The New York
Times 2018; BBC News 2018; Die Zeit 2018; Reuters 2018). This accident occurred
only a few months after the airborne survey conducted as part of this study, during
which CSM was one of the sites investigated.

To mitigate the risk of explosions, Polish mining regulations stipulate that CHy
concentrations in the exhaust ventilation air must not exceed 0.75% (Journal of
Laws 2017). To comply with this threshold and ensure operational safety in the
mining galleries, all active shafts are equipped with continuous ventilation systems.

In addition to ventilation systems, Polish mines use CH, drainage systems to
reduce gas concentrations in the rock mass before, during and after mining. These
systems extract gas from coal seams via boreholes and transfer it to installations
on the surface. However, the captured gas typically contains unstable methane-air
mixtures, with CH, concentrations fluctuating between 40 % and 60 %, which makes
it difficult to use economically. It cannot be fed into the high-methane distribution
grid and must be combusted in dedicated facilities. Storage limitations further
restrict its utilization. Consequently, only a portion of the drained gas is used for
energy production, while the remainder is either released into the atmosphere as
so-called “discharge” gas or flared, depending on operational conditions. However,
there is no publicly available data specifying the proportion processed by either
method (Kedzior and Dreger 2019; Swolkien et al. 2022). Furthermore, even after
mining operations cease, CH, continues to be released from abandoned mines due to
residual gas stored in coal seams and surrounding strata. CHy, can diffuse through
fractured rock into remaining shafts, through which it can slowly escape to the
surface (Kedzior and Dreger 2019).

Overall, the USCB’s persistently high emissions are closely linked to the region’s
geological and operational characteristics, which vary significantly across the basin.
In the south, coal seams are mined at depths of up to 1200 m, and CH, content
can exceed 18 m® per tonne of dry ash-free coal (Kedzior and Dreger 2019). In
contrast, shallower seams in the northern region typically exhibit lower CH, content,
often below 2.5m?t~!. However, the number of Active Coal Mines (ACM) in the
north remains comparatively high, so that substantial emissions continue to originate
throughout the basin. Although total coal production in the USCB has steadily
declined in recent decades, this has not led to a proportional decrease in CH, emissions
(Kedzior and Dreger 2019; WUG 2019). One reason for this is the aforementioned
ongoing shift towards deeper extraction. This trend offsets some of the expected
emission reductions and illustrates that the USCB, as an industrial region, is in a
state of continuous transition.

The historical prominence of coal mining in the USCB has not only driven
CH, emissions but has also fundamentally shaped the region’s settlement patterns
and infrastructure. Over the course of more than a century, mining activity has
contributed to the development of one of the most densely populated and urbanized
areas in Poland. Cities such as Katowice, Rybnik, Bielsko-Biata, and Ostrava have
grown around the mining infrastructure, creating a landscape where residential and
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industrial zones are closely intertwined. A key feature of the mining infrastructure is
the presence of numerous ventilation shafts (Fig. 4.1b). Almost a hundred of such
shafts are scattered throughout the basin, often near or within urban peripheries.
These shafts act as localized point sources of CH, emissions (Kostinek et al. 2021;
Fiehn et al. 2020). Previous studies have also assessed other anthropogenic sources
of CH, in the region, such as landfills, wastewater treatment plants, and livestock
operations. Kostinek et al. (2021) and Luther et al. (2022) have stated that their
overall contribution is small in relation to the uncertainty associated with coal
mine emission estimates. In the context of this work, these non-mining emissions
are considered part of the regional background, while the focus is on quantifying
point-source emissions from coal mine ventilation infrastructure.

4.1.1 Previous Studies

Several studies have investigated the spatial structure and magnitude of CH, emissions
in the USCB region, mostly based on measurements collected during the CoMet 1.0
campaign.

Andersen et al. (2023) focused on the emission quantification of individual shafts
using drone-borne aircore samplers. They report shaft-specific emission rates between
0.8 and 14.4kt a~!, confirming the large heterogeneity in source strength, but without
aiming at a domain-wide synthesis.

Fiehn et al. (2020) used in-situ measured data from the DLR Cessna aircraft,
which flew a closed loop around the USCB, performing multiple stacked transects
downwind to capture the vertical distribution of CH,; enhancements from coal
mine ventilation shafts. The measured CH, data were inter- and extrapolated
using the Kriging algorithm to construct a two-dimensional representation of the
downwind enhancements. Based on these data, a simple mass balance approach
was applied to estimate total CH, emissions from the basin. This method assumes
conservation of mass within a virtual box surrounding the source region and uses
the observed horizontal wind speed and direction to infer the flux through the
downwind face of the box. Results from two research flights are reported, yielding
total emission estimates of 435 4 136kt a~! and 476 + 126kt a~!, respectively. While
conceptually straightforward, the interpolation and extrapolation of in situ data
introduce structural uncertainty, especially in heterogeneous flow conditions.

Kostinek et al. (2021) extended this approach by combining in situ data with
WRF-FLEXPART dispersion simulations and an inverse modelling framework, ar-
riving at consistent emission estimates (423 — 451 kta=!). To assess the role of
meteorological uncertainty, they conducted eight sensitivity simulations in which
key transport parameters (i.e. wind speed, wind direction, planetary boundary layer
height, and source location) were systematically varied within plausible ranges. The
resulting spread in emission estimates demonstrated that each factor contributed
comparably to the total uncertainty. However, since flux estimates are ultimately
derived from the plume segments intersected by the aircraft, unobserved portions of
the vertical or lateral plume extent can introduce systematic biases.

Moreover, both approaches are sensitive to the accuracy of the PBL height, which
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directly influences the inferred plume volume. Since the closed-loop flight pattern
is time-consuming, the aircraft cannot simultaneously sample individual shafts in
detail, limiting the spatial resolution of the emission attribution.

A conceptually similar approach to Kostinek et al. (2021) was adpoted by Luther
et al. (2022), who deployed a network of ground-based EM27/SUN spectrometers
and Doppler wind lidar to constrain a Phillips-Tikhonov inversion, also driven by
WRF-FLEXPART simulations. While the modelling framework closely resembles
that of Kostinek et al. (2021), the observations are column-integrated rather than
in situ, and constrained emissions from individual shaft clusters under favourable
wind conditions. Their results suggest that reported values from the European
Pollutant Release and Transfer Register (E-PRTR) substantially underestimate the
true emissions, with estimated instantaneous emission rates ranging from 80kt a*
to 133kt a~! for the southeastern part of the USCB, and up to 790kt a~! for larger
aggregated subsets.

Luther et al. (2019) conducted mobile column measurements with vehicle-
mounted EM27/SUN spectrometers to quantify emissions from individual shafts
using a mass balance approach. Although limited in spatial and temporal coverage,
their results demonstrate the feasibility of mobile remote sensing for localized CHy
flux estimates, with reported emissions ranging from 6 to 109kt a~! per source. The
employed stop-and-go sampling strategy required stationary measurement periods
of up to 2.5 minutes per stop, forcing a trade-off between spatial resolution and
temporal consistency: shorter transect duration improves the chances of capturing a
quasi-steady plume, but reduces the number of sampling points. Conversely, finer
spatial sampling increases the risk of plume deformation due to changing winds
or source variability during the measurement period. In addition, vehicle routes
were constrained to public roads, which are not always aligned ideally with plume
directions, thereby limiting geometric coverage and plume orthogonality.

Krautwurst et al. (2021) used the passive spectrometer Methane Airborne
MAPper (MAMAP) on board a small aircraft to retrieve column-integrated CHy con-
centrations downwind of selected shaft clusters. Their regional quantification for five
clusters yielded emissions of 9 — 79 kt a~! each. The emission calculation was based
on a cross-sectional flux method conceptually similar to that used in Case Study I
of this thesis (cf. Sect. 3). A key element of their retrieval was the application of the
CH, —over—CO, proxy method, which assumes a spatially homogeneous background
concentration of CO, for normalization. While this approach effectively reduces
light path errors in the passive remote sensing retrieval, it introduces uncertainty
in regions with heterogeneous CO, sources. Given the urbanized and industrial
character of the USCB, the assumption of a constant CO, background is not strictly
valid and could bias CH, flux estimates. Moreover, due to the spatial overlap of
plumes from multiple sources, a separation of individual shafts was not attempted,
and the spatial resolution of the flux attribution remained limited. Furthermore,
as a passive spectrometer, MAMAP relies on reflected sunlight and can thus only
operate around solar noon, when surface brightness and solar elevation are high.
However, as demonstrated in Sect. 3.2.2, these are also the conditions under which
local turbulence tends to be strongest, leading to enhanced variability in wind fields
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and plume dispersion. Therefore, this observational constraint can amplify the
uncertainty of flux estimates, due to increased atmospheric variability during midday
hours.

Table 4.1: Overview of compared studies quantifying CH, emissions in the USCB.

Study Platform/ Method Spatial/ tem- Emission
instrument poral scope estimates
Andersen Drone-borne air- Mass balance Individual  shafts 0.8 — 14.4 kta~! per

et al. (2023)

core samplers

(June 2018)

shaft

Fiehn et al. Airborne in situ  Mass balance Entire basin, 435 + 136kta—'; 476 £
(2020) 2 flights (June 2018) 126kta~*

Kostinek Airborne in situ  Inverse Entire basin, 423 — 451 kta~?

et al. (2021) modelling 1 flight (June 2018)

Luther et al. Mobile Mass balance Individual shafts from 6 4+ 1 kta~! per
(2019) interferometer (June 2018) shaft to 109 + 33 kta™!
(EM27/SUN) for a subregion
Luther et al. Ground-based Inverse Shaft clusters 80 — 133 kta~! (south-
(2022) interferometer modelling (June 2018) eastern basin); up to
(EM27/SUN) 790kt a~! aggregated
Krautwurst  Airborne Cross-sect. flux Shaft clusters 9 - 79 kta~! per cluster
et al. (2021) spectrometer +  CH4/COy (June 2018)
MAMAP proxy
Tu et al. Spaceborne Wind-assigned  Entire basin (3-year 437 — 496 kta~!
(2022b) spectrometer anomaly period, Nov. 2017-
(TROPOMI) inversion Dec. 2020)
Galkowski Database Reported Entire basin and Annual shaft-level
et al. compilation inventories shafts (2018) reports;  basin  total
(2021a) 450kt a~t
Tu et al. (2022b) used satellite observations from TROPOMI and IASI to

constrain CH, emissions in the USCB. Their inversion based on a wind-assigned
anomaly method estimated total emissions of 437 — 496 kt a~!. The method relies on
a simplified cone plume model driven by ERA5 reanalysis wind fields, enabling large-
scale regional attribution without requiring detailed transport simulations. However,
to achieve emission estimates with such low uncertainty, the study aggregates data
over a three-year period (November 2017-December 2020), which includes but far
exceeds the measurement period of the airborne CHARM-F observations presented
here. The resulting fluxes represent a long-term mean rather than temporally resolved
snapshots, and are not directly comparable to day-specific measurements.

Finally, Gatkowski et al. (2021a) have compiled the CoMet Emission Database
(CoMet ED) as part of the CoMet campaign (Sect. 2.1.3), which was also utilized
in some of the previously mentioned studies. The database v4.01 provides detailed
information on the location and annual emission rates of individual CH, sources
across the USCB and its surroundings. It integrates European-scale reporting data
from the 2018 release of the European Pollutant Release and Transfer Register
(E-PRTR 2021), as well as national Polish mining statistics from the Polish State
Mining Authority Wyzszy Urzad Gérniczy (WUG 2019), and internal measurement
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data voluntarily provided by a few of the operating mining companies via personal
communication. The shaft’s locations have been cross-validated with satellite imagery
where available.

4.1.2 Airborne CHARM-F Observations

While these studies have significantly advanced our understanding of CH, emissions
in the USCB, the airborne CHARM-F measurements used in this work provide a
unique combination of spatial coverage, temporal coherence, and column sensitivity
that sets them apart. The high-altitude overflight of the region by HALO on 7
June 2018 captured a dense sequence of plume transects within a time span of
just two and a half hours. This results in an observational dataset that equals or
surpasses the spatial coverage achieved in many earlier studies, but with the temporal
consistency of a single meteorological situation. As shown in Fig. 4.2, this flight
yields a rich structure of downwind XCH, enhancements across the basin, aligned
with the prevailing wind and influenced by multiple point sources.

Figure 4.2 provides an overview of the HALO flight pattern across the USCB on
7 June 2018 between 10:30 and 13:30 CEST (08:30-11:30 UTC). Panel a) shows the
spatial distribution of coal-related point sources from the CoMet database, colour-
coded by emission category (see Table 4.2), along with the flight track colour-coded by
local time (CEST), enabling reconstruction of the temporal sequence from the colour
gradient. For ease of interpretation, the local-time colour coding from Fig. 4.2a)
is also applied to the x-axis of Fig. 4.3, effectively linking the time series to the
respective flight segments shown on the map. Panel b) presents the same track,
now coloured by retrieved XCH, from CHARM-F, alongside point sources from
the CoMet database shaded by their reported CH, emission rates. Small data gaps
appear along the track due to aircraft turns and retrieval quality filtering.

Figure 4.2a) show that ACM form a dense cluster around the city of Rybnik,
with additional scattered sites in the Katowice metropolitan area and north of the
city of Bielsko-Biata. Active coal mines that do not report any emissions (ACMX)
are located on the southern and southeastern outskirts of Katowice, with another
dense cluster further north. Two Power/Cogeneration Plants (PP) are co-located
with shafts, including the Zory facility adjacent to the Budryk mine and the Bierun
plant southeast of Katowice. Inactive/closing Coal Mines (ICM) are distributed
more sparsely across the region. The Active Coal Mines in Czechia (ACMCZ)
are situated across the Polish-Czech border within the Moravian Gate. They are
included in the CoMet ED, but with no reported emission values. This implies that
the operators did not submit CH, emissions for the year 2018 under the E-PRTR
reporting requirements. For colour coding and category counts, see Table 4.2.

The flight track was strategically designed based on plume transport forecasts
provided in-house by the MECO(n) chemistry-climate model (Nickl et al. 2020),
tailored specifically for the CoMet 1.0 campaign. These forecasts predicted north-
easterly winds and associated plume propagation patterns across the USCB. On this
basis, the flight was planned to sample three key air mass regimes: upwind background
air, near-field plumes from major point sources, and far-field enhancements integrating
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Figure 4.2: Overview of HALO flight operations over the USCB on 7 June 2018. The flight
pattern was designed based on in-house plume transport forecasts from the MECO(n)
model, which predicted north-easterly winds with a characteristic bend in wind direction

toward the Moravian Gate.

a) Flight track colour-coded by local time (CEST), with individual point sources marked
by category according to CoMet ED v4.01 (see Table 4.2).
b) Same flight track overlaid with CHARM-F XCH, observations (colour-coded in ppm)
and source locations (colour-coded by emission rates in tonnes per hour), also based on
CoMet ED v4.01. Plume enhancements are visible in the observations and match the

forecasted plume propagation.

© 2025 Google, GeoBasis-DE/BKG (© 2009), used under Google Maps terms of service.
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Figure 4.3: Time series of XCH, retrieved from CHARM-F during the HALO overflight of
the USCB on 7 June 2018. The x-axis is colour-coded by local time (CEST), using the
same scale as in Fig. 4.2a), thereby enabling direct linkage of the measured values to the
corresponding flight segments on the map.

Table 4.2: Categories of coal-related CH, emission sources depicted in Fig. 4.2a).

Abbreviation Description Colour Count
ACM Active Coal Mines blue 39
ICM Inactive/closing Coal Mines red 14
ACMX Active Coal Mines no reported emissions green 17
ACMCZ Czech Active Coal Mines no reported emis. orange 8

PP Power /Cogeneration Plants purple 2

basin-wide fluxes. While the spatial layout of the pattern reflected scientific priorities,
the precise timing of each segment was governed by operational factors such as air
traffic control and minimizing fuel consumption. The following description is thus
ordered by the scientific logic of sampled air masses rather than by flight chronology.

Based on the flight pattern, a regional gradient can be identified. The lowest
XCHy values are detected north of the shafts (i.e. north of 50.5°N), indicating that
background airmasses were sampled there. Despite being upwind, the leg to the
east of the shafts still shows an increase in the observed XCH, values from north
to south. This is probably due to a mesoscale background gradient caused by the
accumulation of residual CH, along the southern border of the basin. Here, the
Sudetes and Carpathian mountain ranges could be impeding the regional outflow,
leading to partial pooling. This general pattern is also present in the Copernicus
Atmosphere Monitoring Service (CAMS) fields, which are used as the initial and
boundary conditions in the WRF-Chem simulations presented in Sect. 4.3.1, and it
re-emerges in the simulated background distributions (see Fig. 4.11).

In addition to the background gradient, enhanced XCH, levels associated with



4.2 Bayesian Inverse Modelling & Ensemble Approach 65

individual sources are evident in the legs that cross the USCB or are downwind of
the sources. In particular, the typical propagation along the Moravian Gate, as
described above, can already be inferred from the few transects

Several of these downwind legs were repeated to ensure observational redundancy.
Three such transects targeted a dense cluster of high-emitting shafts in the Ryb-
nik/Zory area and immediately southwest of Katowice. These are shown in Fig. 4.2a)
and the corresponding segments of the time series in Fig. 4.3, colour-coded as the
purple legs (10:35-10:40), the light green to yellow legs (12:22-12:27) and the orange
legs (12:50-12:55). All three followed a south-to-north orientation and were designed
to detect near-field plume signals from the most prominent sources.

To capture the downwind plume at intermediate distances, two additional cross-
basin transects were flown northeast of Ostrava, but still southwest of all Polish shafts.
The blue legs (11:05-11:20) and yellow (12:32-12:47) legs intercepted the regional
plume further downwind, providing integral constraints on aggregated emissions.

Complementing the intermediate transects, two extended legs over Czech territory
(dark green and light green, 11:30-12:22) intercepted the exhaust plume from the
entire basin, which was fully developed and well-mixed.

The red segment from 13:00-13:20 was conducted at a lower altitude for in situ
sampling (not used in this work), during which CHARM-F measurements were
suspended due to laser safety constraints at low altitude. Lastly, HALO exited the
domain toward the northeast (red to white, 13:30 onwards).

To realise the full potential of this dataset, a Bayesian inverse modelling frame-
work was applied that was tailored to the specific design of the research flight.
Rather than relying on simplified analytical plume models or long-term averaging,
this framework assimilates the high-resolution CHARM-F data into a transport
simulation ensemble to infer spatially resolved fluxes for the observed day. The
following section provides details of the underlying inversion setup, including its
treatment of observational and model uncertainty.

4.2 Bayesian Inverse Modelling & Ensemble Ap-
proach

This study builds on established inverse modelling methods (Peters et al. 2005; van
der Laan-Luijkx et al. 2017) and applies the Carbon Tracker Data Assimilation
Shell (CTDAS) as the inversion tool. A detailed derivation of the implementation of
the algorithms is provided in Appendix B. Appendix B.1 establishes the Bayesian
cost function, Appendix B.2 derives the analytical maximum a posteriori (MAP)
solution, and the ensemble formulation in Appendix B.3. In brief, CTDAS is a
modular data assimilation system designed to estimate surface—atmosphere fluxes of
GHGs using atmospheric observations. At its core, CTDAS employs an ensemble
Kalman filter (EnKF) to optimize a set of scaling factors that adjust prior emission
estimates q, such that simulated mole fractions match the observed CHARM-F
measurements, while remaining consistent with their respective uncertainties.
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These prior emissions q, are derived primarily from the reported shaft-level emis-
sion rates in the CoMet ED and are visualized in Fig. 4.2b). A detailed description of
how the prior emission vector is constructed and prepared for use in CTDAS-WRF is
provided in Sect. 4.2.1. To each emission value in the prior vector q;, a corresponding
multiplicative scaling factor is assigned. These scaling factors are initialized with a
prior value of 1.0 and form the state vector x. The state vector thus has the same
dimension S as q, where S refers to the number of emission sources or state vector
elements to be optimized. The initial inversion setup includes S = 76 such elements.

The observation vector y contains the XCH, values measured by CHARM-F.
A detailed description of how these observations are processed and how associated
uncertainties are assigned is provided in Sect. 4.2.1. In brief, the high-resolution
CHARM-F retrievals are horizontally averaged onto the corresponding WREF' grid
cells. This binning process reduces the native measurement resolution to match
the WRF-Chem grid and yields M = 1576 aggregated observations used in the
inversion, where M denotes the number of measurements assimilated. While it
would be possible to retain the native resolution of the CHARM-F observations, this
would not yield additional information, since the model output is interpolated to the
observation locations. Instead, binning reduces the length of the observation vector
while preserving its information content, which improves computational efficiency
during the sequential assimilation process (see Appendix B.3).

With the state vector x and the observation vector y defined, the inversion
problem can be expressed in probabilistic terms. Specifically, the optimal solution
for x is obtained by minimizing the Bayesian cost function (Peters et al. 2005):

Jx) = 3y~ B Ry~ Hx) + (- x) B ko x) . (4)

The observation operator H ([M x S]) maps the state vector x to observations
space, yielding the simulated observation vector Hx. This includes scaling the prior
emissions q, with the state vector x, mapping them to the WRF grid, simulating
the atmospheric transport of the emitted CH, via WRF-Chem, interpolation on the
flight track, and performing weighted vertical integration (see Eq. 2.11 in Sect. 2.1.2).
R and P, are the error covariance matrices in observation and state vector space,
respectively. To provide clarity on the mathematical notation used throughout this
chapter, Table 4.3 provides an overview of all the relevant quantities.

The cost function J(x) balances the mismatch between model and observations
with deviations from the prior, expressing the optimization problem in probabilistic
terms. In data assimilation, these terms are referred to as the innovation and the
increment, respectively. The innovation (y — Hx,) quantifies the mismatch between
observations and their prior simulation, while the increment (x —x,) describes the
adjustment applied to the prior state to reduce this mismatch. The remaining
difference after optimization is the residual (y — Hx,). These relationships are
illustrated in Fig. 4.4. In essence, the cost function weights the residual and the
increment by their respective error covariance matrices (R and P},), and finds the
posterior state vector x, that balances the two.

This formulation follows standard Bayesian statistics, in which both the prior
knowledge and the observations are assumed to follow Gaussian distributions. This
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Table 4.3: Reference list of mathematical symbols used in this work, along with their
names, units, and dimensions. Adapted from Peters et al. (2005).

Symbol | Name Unit Dimension
q emission rate vector kg/s S =176
n ensemble member index (n € {1,2,..., N = 150}) - 1
Xn state vector ensemble member n - S
X state vector ensemble mean - S

x', state vector deviation ensemble member n - S

P state-error covariance matrix - S xS
y observation vector pmol/mol M = 1576
R observation-error covariance matrix (amol/mol)? M x M
D state deviation matrix - Sx N
H observation operator - — nmol/mol S — M
H linear observation operator (matrix form) - — pmol/mol Sx M
Hx simulated observation vector pmol/mol M

K Kalman gain matrix pmol/mol — - M xS

assumption is an integral part of the Bayesian approach, not a specific decision
made in this study. It enables the posterior probability distribution to be derived
analytically, making the problem mathematically tractable. Therefore, minimizing
J(x) is therefore equivalent to finding the so-called MAP estimate under these
Gaussian assumptions. A full derivation of the Bayesian formalism is provided in
Appendix B.1. The posterior state vector x, and its covariance matrix P, are given
by:

X, = x,+ K(y — Hx,) (4.2)
P, =P,—KHP,,
with the Kalman gain matrix:
K=PH"(R+HPH") . (4.3)

The Kalman gain K determines how much weight is given to the innovation relative
to the confidence in prior knowledge. It balances the uncertainty in the observations,
represented by R and the prior uncertainty, represented by P,, to compute the
posterior update. As can be seen in Eq. 4.2, the increment is given by K(y — Hx,,).

In the three-hour observation window analysed in this study, emissions are as-
sumed to be constant. This eliminates the need for sequential time-stepping, and x,
is the “analysed” state obtained after a single assimilation step. In other studies,
particularly those involving longer time periods or evolving emissions (e.g. over weeks
to months), sequential or time-resolved inversions are required. In such cases, the
same subscript “a” is sometimes used to indicate an “advanced” or time-propagated
state (e.g. Thanwerdas et al. 2025).

While this formulation is conceptually valuable, its implementation requires ex-
plicit construction of the linearized observation operator H and manipulation of the
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Figure 4.4: Illustration of the innovation and residual in a representative segment of the
CHARM-F XCH, time series. The innovation (y — Hxp) is the mismatch between the
observations (black) and their prior simulation (blue). The residual (y — Hx,) is the
difference to the optimized simulation (red). Arrows mark example data points where
both are negative. The increment (x, —Xp) is not shown here, as it resides in state vector
space. Since each state vector element affects multiple observations, the inversion fits
the full time series, not pointwise mismatches. This explains why some observations (e.g.
11:10:30-11:10:45) fall between prior and posterior.

full covariance matrices P, and R. The observation operator is a matrix of size
[M x S], and the state covariance matrix scales as [S x S].

In this study, the dimensionality of the state vector (S = 76) and the observation
vector (M = 1576) is moderate and would, in principle, permit an analytical inversion.
Nonetheless, a formulation was chosen that not only addresses the current problem
effectively, but also lays the foundation for more complex future applications. As
outlined in Sect. 1.3, the goal is to develop a scalable and robust framework for
assimilating IPDA lidar data. This includes the airborne CHARM-F observations
used here, as well as future satellite missions such as MERLIN and studies involving
spatially uncertain and distributed sources, for example wetland CH, emissions.
These use cases will require flexible methods capable of handling large state vectors
and non-linear transport processes. In global CH, inversions at 1° resolution, for
instance, the number of state vector elements can easily reach S ~ O(10°), making
explicit matrix construction computationally prohibitive.

To address these computational challenges and enable scalability, the EnKF
formulation used within CTDAS avoids explicitly constructing the full [S x S]
covariance matrix P,. Instead, the prior distribution is approximated using an
ensemble of state vectors x,,, where n € {1,2,..., N}. Each member is defined as:

X, =X +X,, (4.4)

where x/,, is a random deviation drawn from a multivariate normal distribution. Each
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member thus represents a possible realization of the prior distribution with mean X,
resulting in a discrete but statistically representative ensemble. The ensemble size N
determines the statistical resolution of the prior covariance structure and is typically
chosen to balance robustness against computational cost. In this study, N = 150 is
used, and the rationale for this choice is discussed in the next Sect. 4.2.1.

Each state vector element, corresponding to a specific emission source, is thus
represented by N ensemble members. These realizations sample the space of plausible
scaling factors that modify the prior emissions. To define the spread of this ensemble,
CTDAS requires the user to specify a single global relative uncertainty. In this study,
a value of 100 % was selected to allow for maximum flexibility (further discussed in
Sect. 4.2.1), including the possibility that some reported sources may be inactive
and should be scaled to zero if the innovation suggests it (see Sect. 4.1). While
this implementation does not support individual uncertainty assignments per source,
a uniform relative uncertainty is consistent with the expectation that emission
magnitudes scale approximately with coal production. This makes extreme upward
adjustments for small sources implausible and ensures that the uncertainty range
remains physically meaningful.

A square-root representation of the covariance matrix P is given by arranging the
deviations of the ensemble members into columns of the state deviation matrix D:

P= DDT with D = \/% {X’l XIQ e X’N} (45)

In the WRF-Chem model, each ensemble member is implemented as an inde-
pendent tracer, yielding simulated observations Hx,, for each member. These are
directly used to compute the matrix products PH* and HPH?', which contribute
to the computation of the Kalman gain K in Eq. 4.3. The detailed derivation
and computational implementation of these ensemble-based terms is provided in
Appendix B.3.

Once the Kalman gain is available, the posterior ensemble is computed by
updating both the ensemble mean and the individual deviations. The mean is
updated according to Eq. 4.2, using the ensemble mean innovation (y — HX,). The
deviations, in contrast, are updated in a way that reflects the reduced uncertainty
and reproduce the updated covariance structure:

1
R

N R s . r_

Xan =Xpn, —kKHx',,, with k K(l—i— HPpHT—l—R) (4.6)

Rather than computing the posterior covariance matrix via the analytical expression
in Eq. 4.2, it is reconstructed from the updated deviations as P, = D,D?.

In summary, the ensemble-based Bayesian inversion framework provides a sys-
tematic approach to combine prior information with observations. The result is a
posterior estimate x, that minimizes the combined mismatch. The updated emission
estimates are obtained by scaling the prior emission rates q, with the optimized
factors X,: qa = QpXa.
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4.2.1 CTDAS-WRF Setup

The inversions in this work were performed using the CTDAS-WRF, which is
available for download under https://git.wur.nl/ctdas/CTDAS/-/tree/ctdas-
wrf. CTDAS is an open-access data assimilation framework originally coupled to
the global model TM5 (van der Laan-Luijkx et al. 2017; Krol et al. 2005). Thanks
to CTDAS’s modular design, it is in principle possible to operate it with different
ATMs. Reum et al. (2020) have adopted it in such a way that it is coupled to
WREF-Chem (Grell et al. 2005) to enable high-resolution, regional-scale applications.

WRF-Chem is the online chemistry module coupled to WRF (Grell et al. 2005).
In the context of atmospheric transport modelling of CH,, the most relevant chemical
processes are sink reactions (e.g. oxidation by OH). These processes are slow and
result in an atmospheric lifetime of nearly ten years for CH,. On the timescale
of a few hours considered here (i.e. 08:30-11:30 UTC), chemical loss is therefore
negligible. Consequently, CH, is implemented as a passive tracer. Accordingly, the
capability of WRF-Chem to simulate explicit chemical reactions is not needed here,
which reduces computational complexity and lowers the simulation’s runtime.

The simulation was initialized at 12:00 UTC on 6 June 2018 and ran until 12:00
UTC on 7 June, covering exactly 24 hours. This setup captures the key phases of
the diurnal cycle, including the contraction of the PBL at night and its subsequent
re-growth during the day. Thus, the model has sufficient spin-up, allowing the PBL
to develop realistically and the model to stabilize before the start of the observations.

The WRF-Chem configuration implements the general setup of Sect. 2.2.3; the
domain configuration and notable namelist options are summarized in Table 4.4.
Two square nested domains (d01 and d02) are centred over the USCB (see Fig. 4.5).

Table 4.4: Configuration of quadratic domains.

Domain D01 D02
Horizontal
5km 1km
resolution
Computational
30s 5s
time step
Number of
280 x 280 280 x 280
grid cells
Domain 9 9
1400 x 1400 km 280 x 280 km
size
Planetary boundary MYNN level 2.5 MYNN level 2.5
layer physics bl_pbl_physics =5  bl_pbl_physics =5
Eddy coefficient 2D deformation 2D deformation
option km_opt =4 km_opt =4
Turbulence and Simple diffusion Simple diffusion

mixing option diff_opt=1 diff_opt=1
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Figure 4.5: Nested model domains used in the WRF-Chem simulation. Both domains
are square and centred over the USCB. The outer domain (D01) spans 1400 km with
a horizontal resolution of 5km, while the inner domain (D02) covers 280km at 1km
resolution. The virtual transect marked in D02 corresponds to the vertical cross-section
shown in Fig. 4.6b-c.

Compared to the LES-based Case Study I in Chapter 3, where cross-sectional
transects were performed only 1 — 5 km downwind of a single source to resolve local
plume structure and turbulence in detail, Case Study II requires a substantially
extended model setup. Both D01 and D02 are therefore larger than those used in
the LES study to accommodate the area of interest and the regional-scale transport
patterns (see Fig. 4.5). Here, flight observations cover distances ranging from a few to
several hundred kilometres downwind of the sources. Moreover, the emission sources
are scattered over an area of approx. 10000km?, with measurements covering an
area of up to 40000 km?* (cf. Fig. 4.2).

Given this spatial extent, a trade-off between computational cost and horizontal
resolution is necessary. The inner domain D02 is setup with a horizontal resolution
of 1 x 1 km?, which has been shown to be sufficient to capture mesoscale features
in complex terrain and provide realistic near-surface wind fields (Jiménez et al.
2013). Comparisons between simulated tracer plumes and airborne lidar observations
confirm that this resolution adequately resolves the regional plume transport patterns
of interest.

For the lateral boundary and initial CH, conditions, the CAMS inversion-
optimized GHG analysis product (v20rl, CAMS 2022) was used. It provides global
CH, fields constrained by surface and satellite observations, offering realistic large-
scale distributions suitable for regional nesting. For meteorological initial and lateral
boundary conditions operational analysis data of the ECMWEF model (ECMWF
2018) is used, as already discussed in Sect. 2.2.2.
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As described above in Sect. 4.1, the most accurate CH, emission estimates for
individual coal mine shafts in the USCB are obtained from the CoMet ED v4.01
dataset. These emissions are spatially resolved at the shaft level, representing the
highest available spatial fidelity and source-specific detail within the domain. To
account for the remaining anthropogenic CH, sources, the annual emission data
from the EDGAR v7.0 inventory (Crippa et al. 2021) is used for the year 2018. At
the time the model setup was created, this represented the most recent dataset.
EDGAR provides annual CH, emissions with a spatial resolution of 0.1°x0.1° grid
(approx. 10km), and emissions are reported by Selected Nomenclature for Sources
of Air Pollution (SNAP) source sectors. This allows for the targeted replacement
of the “fuel exploitation” sector, which combines emissions from coal, oil, and gas
production, by the CoMet ED emissions.

To account for emission variations during the diurnal cycle time-dependent scaling
factors were applied to the respective emission source categories, based on standard
temporal profiles for SNAP sectors as reported by van der Gon et al. (2011). For the
fuel exploitation sector, the scaling factor remains constant at 1.0 throughout the
day, implying no diurnal variability in these emissions. This is consistent with the
CoMet ED where available temporally resolved emissions are also constant during
the overflight period.

For several non-reporting shafts, however, no emission data were available. As
discussed in Sect. 4.1, even inactive or unreported shafts may continue to emit
CH,, and observations during the flight indicate downwind enhancements in regions
dominated by such sources (c.f. 11:08 in Fig. 4.9a and 11:32 in Fig. 4.11c).

To enable their inclusion in the inversion, approximate prior emissions were
estimated using rough coal production figures and a regional average emission factor
of 11.83kg per tonne extracted coal, as reported by Fiehn et al. (2020). These
were partly based on outdated or indirect sources, and do not reflect accurate flux
estimates. Nevertheless, they provide plausible order-of-magnitude inputs for the in-
version to operate. A detailed overview of the derivation is provided in Appendix B.4.

Typical ventilation shafts in the USCB emit at a height of approx. 25m (cf. Fig. 4.1b).
Hyperspectral imaging of ventilation shaft plumes, acquired in 2022, shows that
considerable plume rise and vertical expansion can occur within the first 50 m to
100m downwind (Knapp et al. 2023). This rise is caused by mechanically forced
ventilation from underground galleries (see Sect. 4.1) and shaped by ambient wind
conditions. Knapp et al. also note that buoyant rise dominates only within the first
few meters, after which plume transport is governed by advection. Their data capture
only the near-field plume structure, which is significantly smaller than the resolution
of a single WRF-Chem grid cell. Nevertheless, they clearly indicate that emissions
should not be released at surface level in the model. Emitting at surface level would
subject tracers to unrealistic drag effects and distort initial plume dispersion.
Actual plume evolution depends strongly on meteorological conditions and may
exceed or remain below the rise heights observed in the hyperspectral images. To
accommodate this variability, the vertical model resolution near the surface was
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increased compared to Case Study I (see Fig. 4.6¢). This adjustment allows for
a simple but targeted sensitivity analysis to be conducted. Inversion experiments
were carried out using three different vertical model levels as injection heights: £ =1
(approx. 20 — 45 m), k = 2 (approx. 45 — 72 m), and k = 3 (approx. 72 — 104 m).
These levels are plausible when compared to the observed plume rise by Knapp et al.
(2023) and enable investigation of how variations in vertical mixing influence the
inversion results.
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Figure 4.6: Vertical layers in WRF. The ground is displayed in grey, the vertical layer
interfaces in black. a) displays the vertical layer thickness Az. The vertical resolution is
relatively fine at low altitudes and gets coarser at higher altitudes. b) shows all 57 vertical
layer interfaces from the Earth’s surface up to the model’s top (200 hPa) along the virtual
transect depicted in Fig. 4.5. ¢) shows a zoom into the lower 1.5 km above sea level. The
lowest level is equivalent to the Earth’s surface. Moreover, the terrain-following nature of
the n-level can be seen.

The CoMet ED initially provides 80 individual point sources. However, when multiple
shafts are co-located within the same 1 x 1 km? WRF-Chem grid cell, their emissions
cannot be distinguished by the model and are therefore aggregated into a single point
source. Accordingly, the state vector comprises 76 elements: 74 for the aggregated or
individual point sources; one additional element accounts for the regional background
emissions from all grid cells not associated with any shaft location, effectively scaling
the EDGAR emissions in the domain; and one element serves as an additive offset to
correct for a potential systematic bias between the CHARM-F measurements and
the CH, background simulated by WRF-Chem, which is effectively shaped by the
CAMS-derived initial and boundary conditions. This offset is not a scaling factor
but a uniform shift applied to all modelled column values, enabling the inversion to
reconcile potential mismatches in the background CH, concentration field.

An ensemble size of N = 150 is selected in this study, consistent with previous
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findings by Peters et al. (2007), who demonstrated that this ensemble size is
sufficient to capture the key features of the prior covariance structure and ensure
robust inversion performance in regional setups (see also Appendix B.3). Each of
the 150 ensemble members is represented as an independent passive tracer in the
WRF-Chem simulation. This allows direct access to ensemble-specific simulated
observations without requiring explicit construction of the linearized observation
operator. In CTDAS, the prior state vector deviations are constructed from a single
global relative uncertainty, which was set to 100 % in this study. This choice reflects
the considerable uncertainty in shaft-level emissions. For most sources, only annual
total emissions reported by mine operators are available. These values are temporally
downscaled to obtain hourly rates, assuming constant emission throughout the year.
However, actual emissions on the day of measurement can deviate substantially
from the annual average, depending on mining activity, ventilation strategy, and
operational schedules. As the CoMet ED does not provide uncertainty estimates, the
generous prior uncertainty allows the inversion to flexibly adjust source strengths,
including assigning near-zero scaling factors to individual shafts if supported by the
observations.

In addition to prior uncertainty, the model-data mismatch error € plays a critical
role in the inversion framework. It represents the total uncertainty associated
with each of the M = 1576 elements of the observation vector and embodies the
corresponding entries of the diagonal observational error covariance matrix R, as
introduced in the Bayesian framework described in Sect. 4.2. ¢ is defined as:

£ =,/02+ 0%, (4.7)

The term o, is derived from the retrieval error of the individual CHARM-F mea-
surements after binning onto the WRF-Chem grid. Assuming independent errors,
this binning process reduces the effective observational uncertainty per grid cell
approx. with ~ 1/y/m, where m is the number of measurements contributing to
that cell (Ehret et al. 2017). As a result, o, becomes comparatively small. In
atmospheric inverse modelling, overly small observational uncertainties can lead to
an over-constraint of the inversion, disproportionately amplifying the influence of
individual observations. Therefore, a user-defined representation uncertainty o4 is
introduced to account for discrepancies arising from model transport limitations,
spatial mismatch between observations and grid cells, and, beyond that, an imperfect
representation of plume structure. This term 63 dominates the total model-data
mismatch.

Selecting a meaningful value for o4 is inherently challenging and ideally requires
dedicated sensitivity studies that examine model-observation mismatch under differ-
ent transport regimes and measurement instruments. Since such an extensive analysis
is beyond the scope of this work, a conservative but well-justified value of 25 ppb was
chosen. Sheng et al. (2018) estimate a model transport error standard deviation of
12 ppb from residuals between GEOS-Chem simulations and Total Carbon Column
Observing Network (TCCON) XCH, column observations; but their residual spread
extends well beyond 20 ppb. Gatkowski et al. (2020) applied a transport error
initialized with 30 ppb when comparing WRF-based simulations with in situ CHy
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data from the FDLR Cessna over the USCB during the same CoMet 1.0 campaign.
However, it should be noted that in situ observations are generally more variable
than total column data.

A more sophisticated, simulation-dependent formulation was proposed by Steiner
et al. (2024b), who scale o4 with the simulated CH, enhancement, and further
developed in Steiner et al. (2024a) into a flow-dependent scheme using the ensemble
spread as a proxy for model mismatch. CTDAS-WRF does not support dynamic
error specification without source code changes. The fixed 25 ppb used here is there-
fore both conservative and consistent with the generous prior uncertainty (set to
100 %).This ensures that the inversion remains robust, limits the observational weight
to avoid overfitting, and still responds clearly to the atmospheric observations, as
confirmed by agreement between posterior and observed XCH, in test runs.

With the setup described above, the CTDAS-WRF framework is now fully configured
to simulate atmospheric CH, transport and to perform the inversion experiments. In
Fig 4.7 the right map illustrates an example of the resulting simulated CH, plume
for a representative snapshot (13:35-13:40), overlaid with the complete HALO flight
track. This visualization provides an initial impression of the spatial alignment
between the observed enhancements and the prior modelled distribution of XCH,.
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4.3 Initial Inversion & Source Clustering

To address RQ2, two inversion runs are conducted: an initial run (presented in this
section) and a best-estimate run (see Sect. 4.4.1). The initial run serves two purposes:
it enables a performance assessment of the prior simulation by comparing simulated
XCH, values against both the observations and the optimized posterior state, and
it provides a first set of spatially disaggregated emission estimates along with key
diagnostics on the system’s ability to resolve individual sources. Each WRF grid cell
containing one or more ventilation shafts is represented by a separate element in the
state vector, preserving maximal spatial detail. However, the ability to disentangle
emissions from individual sources depends strongly on their spatial distribution,
prevailing wind conditions, and the alignment of the flight path in relation to the
plumes. In cases where sources cannot be reliably differentiated — indicated by
strong posterior anti-correlation of their associated state vector elements — emissions
are aggregated into a joint vector element. This so called spatial clustering is a key
achievement of this work and introduced in Sect. 4.3.2. The resulting aggregated
state vector is then used in the second, best-estimate inversion run (Sect. 4.4.1). This
two-step approach enhances the ability to attribute observed enhancements more
precisely to individual or clustered ventilation shafts. It ensures that this spatial
disaggregation remains consistent with both the observational constraints and the
simulated transport.

4.3.1 Analysis of the Initial Inversion

With the inversion system configured and the observational data assimilated, the
first step is a direct comparison of simulated and observed XCH, values, undertaken
in this section. This reveals the extent to which the prior simulation reproduces key
plume features and whether systematic biases exist.

Additionally, this comparison allows the identification of measurement segments
where significant model-data mismatches clearly indicate transport errors. The atmo-
spheric inverse model assumes unbiased transport and cannot correct for systematic
errors. Including such segments would bias emission estimates, as transport-related
discrepancies would be misattributed to source strengths. The following section
describes how these segments are detected and under which conditions they occur.
As part of the quality control, the affected observations are flagged and excluded
from the best-estimate inversion (Sect. 4.4.1).

Figure 4.7 shows the full time series of observed XCH, values from CHARM-F
(black), together with the simulated values from the prior (blue), and optimized
state (red). All values are plotted as dots with associated uncertainty bars. The
error bars of the observations show the model-data mismatch €, which is comprised
of the representation uncertainty and the observational uncertainty (cf. Eq. B.2).
The constant representation uncertainty a4 of 25 ppb is relatively large, while the
observational uncertainty o, is inherently small for IPDA-based column retrievals
and is further reduced by spatial binning to the WRF grid (cf. Sect. 4.2.1). After
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Figure 4.7: a) Time series of retrieved XCH, from CHARM-F (black), prior simulation
(blue), and optimized simulation from the initial inversion run (red). Error bars of the
observations show the model-data-mismatch error €, which comprises the observational
error as well as a constant representation uncertainty. The error bars of the prior and
optimized simulation show the ensemble spread.
b) The trajectory line of the HALO flight track is colour-coded by local time to facilitate
spatial-temporal association with the time series on the left. Dots along the track indicate
airborne CHARM-F observations coloured by the retrieved XCH,. The background field
displays a snapshot of prior simulated XCH, values from 7 June 2018 (13:00 CEST). To
enable consistent visual comparison with the observed CHARM-F measurements using a
shared colour scale, the retrieved optimized bias terms is uniformly subtracted.
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binning, the mean uncertainty for the full observation vector drops to o, = 0.2 ppb.
Thus, o, contributes little to the total model-data mismatch €, given the much larger
representation uncertainty oy.

The uncertainty of the optimized simulation, here expressed as the standard
deviation of the posterior ensemble, is notably smaller than that of the prior. This
demonstrates that the inversion can effectively overcome the generous prior uncer-
tainty and produce posterior estimates with substantially improved confidence. The
reduced spread of the optimized ensemble reflects the information content provided by
the CHARM-F observations in combination with the atmospheric transport model.

The inversion yields an additive offset of 51 ppb!. This value is subtracted from
the simulated columns to adjust the overall baseline of the prior simulation (cf.
Sect. 4.2.1). As a result, the optimized and the observed baseline aligns well.

A closer look at the time series in Fig. 4.7a) shows that this agreement holds
across large parts of the domain, both in the background and within the plumes,
particularly in segments close to the ventilation shafts. Some localized discrepancies
remain: in the southwestern part of the domain (green segment, 11:45-12:20), the
optimized values stay below the observations, whereas in the northeastern background
(lightgreen-yellow, 12:25-12:35), they are slightly too high. Overall, however, the
inversion captures the main structures of the observed signal well enough to support
meaningful source attribution. The following section highlights to what extent
plume-related enhancements are reproduced and where the system shows limitations.

Successful Plume Simulation in the Near Field

Figure 4.8 shows three south-north transects flown in the lee of major ventilation
shafts at close range. Simulated and observed enhancements agree well. In all
segments the first plume is associated with shafts north of Jastrzebie-Zdréj. The
subsequent double peak originates from shafts west of Katowice.

While the overall structure aligns well, the observed plumes tend to be narrower
than their simulated counterparts. This is reflected in the fact that observed peak
values often exceed the simulated ones, while falling below the simulation along the
flanks. As established in Sect. 3.1, the physically relevant quantity linking observed
enhancements to emission rates is the integrated enhancement over the plume cross-
section. Hence, such shape differences (e.g. narrower peaks) do not necessarily imply
a flux mismatch, as long as the total enhancement remains consistent.

Nevertheless, the sharper structure in the observations suggests that in the model
the turbulent mixing may be stronger than in reality. Comparisons between observed
and simulated plume enhancements provide a useful indicator of how well turbulent
mixing is represented in the model. In principle, the choice of the numerical diffusion
parameter dif f_6th_ factor (cf. Table 2.2), which controls the strength of a sixth-
order smoothing term (larger values yield smoother, smaller values yield sharper
structures), could be optimized against such observations. This lies outside the scope
of the present study, as each test would require rerunning the WRF simulation.

'Please note that for visual consistency, in all upcoming plots a uniform offset of 51 ppb is
subtracted from the prior simulation in both the time series and the plume maps.
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Figure 4.8: Left panels: Time series of observed and simulated XCH, for three south-north
transects flown in close proximity to major ventilation shafts. Right panels: Corresponding
flight segments shown on maps of prior-simulated XCH,. All three transects exhibit similar

good agreement between model and observations. The plumes on the maps are numbered
to make them easier to find in the time series.
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Figure 4.9: Two extended transects across the domain, flown first south-north (a-b) and
then north-south (c-d). A spatial mismatch between observed and simulated enhancements
is evident in the region of the northerly double plume. In both time series (a, c), observed
XCH, peaks appear further south than the simulated plume. This displacement is also
visible in the spatial maps, especially in (b), where between 50.1°N and 50.2°N the observed
enhancements clearly deviate from the modelled plume, indicating a localized wind direction
error. Plumes on the maps are numbered to help finding them in the time series.

Effects of Wind Direction Error on Emission Estimates

A mismatch during the first transect (Fig. 4.8a) shows a simulated enhancement
around 10:36 that is absent in the observations. It stems from Czech sources east of
Ostrava and can be followed across the plume panels (Fig. 4.8b, d, f) along the wind
direction, suggesting that in reality it was displaced relative to the flight path and
therefore not captured. Such a mismatch would cause the inversion to downscale
Czech sources; to avoid this, the data points before 10:36:35 are flagged and excluded
from the best-estimate inversion (cf. Sect. 4.4.1).

Figure 4.9 shows two extended transects, first south-north (top, a-b) and then
north-south (bottom, c—d). The time series in (a) and (c) are therefore mirrored.
In the first segment (a), the flight crosses the same CH, accumulation downwind
of Czech sources east of Ostrava as in Fig. 4.8b. The feature appears in both
observations and simulation, though with weaker and more diffuse enhancements
in the observations, likely due to greater distance from the sources and stronger
turbulent dispersion.
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Shortly after 11:10, a narrow observed plume appears, which is also present
in the simulation. However, the modelled version is again somewhat broader and
blends into the following peak, consistent with the previously discussed tendency
towards overly diffuse plumes (cf. Fig 4.8). What stands out in this case is that
the observations show a clearer separation between two emission subregions. One
originating from shafts directly north of the Czech border (approx. 49.9°N-50.0°N),
and another from shafts near Rybnik (approx. 50.0°N-50.1°N). In the simulation,
these sources merge more strongly into a continuous double plume.

At around 11:12-11:13 a pronounced local minimum follows, visible in both
observed and simulated values. This marks a plume boundary around latitude
50.15°N, separating emissions from shafts north and south of Rybnik. This separation
coincides with a diverging wind field over the region. The northern plumes are
advected predominantly westward with a slight north-westerly tendency, while the
southern plumes are transported more towards the southwest.

By comparing the time series with the maps a misalignment between observed
and simulated enhancements becomes apparent, indicating a wind direction error.
In the region of the northerly double-peak plume, the observations indicate en-
hanced CH, concentrations further south than the simulated plume (before approx.
11:14). Conclusively, the inversion increases emissions from shafts located around
50.15°N-50.22°N to match the earlier observed signal, while simultaneously decreas-
ing emissions from shafts further north (50.25°N-50.30°N), where the simulation
places the plume too late (after 11:15). This results in an overestimation of the more
southern sources and an underestimation of the northern ones. Since this localized
wind error is evident, the affected data segment is flagged and excluded from the
best estimate inversion (see Sect. 4.4.1). Otherwise, this segment would degrade the
quality of the posterior emissions estimates.

During the return transect (Fig. 4.9¢), the same features are observed in reverse
order. An additional background segment in the far north samples plume-free air,
highlighting that both prior and optimized simulations slightly overestimate the
background XCH, in the north.

Loss of Plume Signal in the Far Field

Figure 4.10 shows two additional transects further downwind over Czech territory.
In both transects, measured XCH, values in the northwest are lower than in the
south, consistent with overall downwind dilution of CH, enhancements, possibly
superimposed by a misrepresentation of the background gradient.

Unlike in previous cases, the observed values lie almost entirely above the sim-
ulated ones. The observations also display substantial variability, indicative of
turbulent plume remnants, whereas the simulations show no discernible structures.
The spatial maps (Fig. 4.10b and d) suggest that the simulated plumes did not
propagate far enough downwind. This supports earlier indications of excessive tur-
bulent mixing in the model, which prevents plume signals from reaching the far-field
transects.

Consequently, this data is not sensitive to any state vector elements related to
shaft emissions. No adjustment of emission rates can improve the fit. The only
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Figure 4.10: (a, c¢) time series of observed and simulated XCH, along two extended
transects. (b, d) corresponding spatial maps. The time series are mirrored in direction. In
(a) around 11:45-11:46 an observed enhancement (I.), presumably from shafts north of
Jastrzebie-Zdrdj, appears overly diluted in the model. Both (a) and (c¢) show turbulent
variability in the observations that is absent in the simulation. Moreover, the time series in
(c) shows observations that are, in comparison to the simulation, elevated over the entire
transect. After 12:15, the prior simulation shows an accumulation at (II.), which is not
given in the observations.

parameter affected is the background offset. Because the inversion interprets these
far-field measurements as plume-free, the systematic positive residuals pull the
optimized background upwards. A high-biased background influences the entire time
series and leads to a systematic underestimation of all emission-related state vector
elements. For this reason, the entire segment in Fig. 4.10 is flagged and excluded
from the best estimate inversion (see Sect. 4.4.1).

A notable sharp enhancement appears in the prior simulation shortly after 12:15
(Fig. 4.10c), corresponding to an accumulation downwind of the southernmost isolated
Czech shaft (Fig. 4.10d). No such feature is visible in the CHARM-F data. As in
comparable cases discussed above, this highlights the difficulty of simulating such
localized structures in WRF-Chem.

Background Gradients and Orographic Effects

Figure 4.11 (a-b) and (c-d) show two transects with a consistent north-south gradient
in XCHy, reflecting a prevailing large-scale background pattern. In both transects
weak enhancements are visible in the southeastern parts of the tracks. These may arise
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partly from counter-gradient flow, which allows the main downwind plume to spread
southeastward even under northeasterly winds. Moreover, the Western Carpathians,
including the Tatra Mountains, form a natural barrier along the southern domain
border, where flow diversion and reduced ventilation may promote accumulation of
CH,.

The zoomed-in segment (e—f) reveals a localized enhancement within a narrow
mountain basin near the city of Zywiec (11:36-11:38, approx. 49.60°N-49.75°N). This
feature cannot be linked to any known emission source. As shown in Fig. 4.11f), the
data points are located in a basin-like orographic pocket surrounded by the Silesian
Beskids to the west and the Little Beskids to the east. The only open connection is
a narrow valley corridor leading north toward Bielsko-Biata along the S1 expressway.
It is plausible that this terrain configuration enables a localized accumulation of
CH, from earlier emissions under different wind conditions, which is not adequately
resolved at the model’s 1 km resolution.

As the enhancement cannot be linked to any local emission source or state
vector element, it is likely caused by accumulated CH, trapped in the valley. Since
this feature is not represented in the model, its inclusion would bias the optimized
background upward. Data points from 11:36 to 11:38 are therefore flagged and
excluded from the best estimate inversion (see Sect. 4.4.1).
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Figure 4.11: (a—b) show a background transect flown from north to south, east of the main
source region. (c—d) display a second transect in the same direction (approx. half an hour
later), with similar XCH, values in both the north and south. (e) zooms in on the central

part

of the time series in (c¢), while (f) presents two topographic views of the same area:

Google Maps terrain screenshot without track overlay on the left and a Google street-map
style on the right.
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4.3.2 Development of Inversion-Driven Source Clustering

While the initial inversion yields posterior emission estimates at individual shaft
level, this level of spatial resolution is not always supported by the observational
constraints. In some cases, the observed CH, enhancements result from overlapping
plumes emitted by multiple nearby shafts, making it difficult or even impossible to
attribute observed enhancements to individual sources.

In such cases, the inversion may yield implausible results, such as negative
posterior emission rates. In the following, two examples demonstrate how transport
model errors and plume accumulation effects can lead to such artefacts. To address
these limitations, this study introduces a novel clustering approach, developed here
for the first time, in which strongly “entangled sources” are aggregated into joint state
vector elements. Here, source entanglement refers to situations where exhaust plumes
produce a common signal in the observations, such that the state vector elements of
the respective sources cannot be optimized independently and their scaling factors
become anti-correlated. The method includes a mathematical criterion for identifying
source entanglement, a threshold definition, and a procedure for assigning sources
to clusters. Instead of optimizing each source individually, the inversion yields a
collective scaling factor applied to the entire cluster. This stabilizes the inversion
in regions with overlapping plumes, where individual sources cannot be reliably
resolved, and represents a key methodological contribution of this work.

Example 1: Spurious Downscaling due to Excessive Plume Broadening

Figure 4.12 displays a zoomed-in section of the transect from Fig. 4.8c-d. The aircraft
crosses a CH, enhancement between 12:22:45 and 12:23:30, which in the simulation
results from a superposition of emissions from several shafts. The integrated area
under the full enhancement reflects the sum of contributions from all involved sources,
in particular Zofiowka IV and V (co-located in the same WRF grid cell), the three
Pniowek shafts, Borynia VI, and even long-range contributions from Brzeszcze
and Andrzej further east. It is not possible to identify localized features within the
observed enhancement that can be unambiguously assigned to one of these individual
shafts alone.

However, given that Borynia VI is located in such proximity to the flight path,
it is plausible that its emissions primarily affects the peak’s flank at 12:23:15, where
the observed XCH, values fall below the simulated ones. As discussed above, this
localized undershoot can be explained by the general tendency of the model to
simulate plumes that are too broad due to excessive turbulent mixing. In this case,
the resulting negative mismatch coincides with the plume of the source Borynia VI,
although the corresponding simulated data points still reflect the superposition with
emissions from the other aforementioned sources.

Of all the sources contributing to the enhancement in this segment, Borynia VI
is a relatively small source. Therefore, scaling its emission rate has only a small
impact on the optimized plume shape. In the flank region, where the mismatch
occurs, Borynia VI contribution is largely overshadowed by the broader signal
originating from the Pniowek and Brzeszcze shafts. These larger sources, however,
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are also constrained by data points on other parts of the enhancement, such as the
central peak, which limits the extent to which their emissions are downscaled.
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Figure 4.12: Zoom-in on the central segment of the transect shown in Fig. 4.8c—d, high-
lighting a CH, enhancement observed downwind of the Zofiowka-Pniowek-Borynia
cluster. The simulated enhancement results from overlapping plumes of multiple sources,
including long-range contributions from Brzeszcze and Andrzej. The arrow marks a set
of negatively biased data points in the flank of the enhancement, which coincides with the
simulated plume of Borynia VI.

As a result, the negative mismatch in the flank can most easily be reduced by
downscaling Borynia VI, while the stronger sources remain comparatively fixed.
Therefore, the inversion assigns Borynia VI a negative posterior emission rate
(cf. Tab. 4.5), which lowers the penalty associated with the negative residual data
points that are affected by its emissions and thereby decreases the overall cost
function (Eq. 4.1).

This outcome reflects a particular combination of measurement geometry, trans-
port, mixing errors, and spatial source arrangement, in which such a solution becomes
mathematically favourable, even though it is not physically meaningful.



4.3 Initial Inversion & Source Clustering 87

Table 4.5: Prior emission estimates and initial optimized values for shafts contributing to
the observed accumulation enhancement in Fig. 4.12. Zofiowka IV and V are co-located
in the same WRF grid cell. Emission rates are in kth™=1.

Shaft Prior Optimized
Borynia VI 0.63 —0.45
Zofiowka IV &V 3.49 3.61
Pniowek III 1.77 0.82
Pniowek IV 0.91 0.65
Pniowek V 1.40 0.80
Brzeszcze 11 1.88 0.28
Brzeszcze IX 1.69 1.08
Andrzej IV 0.48 0.53
Andrzej VI 0.48 0.42

Example 2: Entanglement in Accumulated Plumes

Another illustrative example involves the Czech shafts between the cities of Ostrava
and Karvina. As shown in Fig. 4.13 before 11:09, the aircraft crosses a diffuse yet
extended enhancement in the simulated XCH, field. The prior simulation shows, that
this signal originates from a morning accumulation of CH, emitted under initially
stagnant wind conditions. As the wind picks up, this accumulated CH, is advected as
a compact, coherent plume representing a superposition of emissions from multiple
sources.

Such accumulations are notoriously difficult to simulate, both in terms of timing
and morphology. In reality, the aircraft may have passed through the outskirts
of the advected accumulation, whereas the simulation samples a more central and
concentrated section. This discrepancy could explain why the simulated enhancement
appears more pronounced than in the measurements. Alternatively, it is also con-
ceivable that the simulation accurately represents the plume structure and sampling
location, and that the actual emission rates were indeed lower than assumed in the
prior. These two scenarios cannot be distinguished based on the available data.
However, the inversion framework assumed that atmospheric transport is correctly
represented and can only compensate for mismatches by scaling emissions. Conse-
quently, the discrepancy is interpreted as an overestimation of emissions, resulting
in a reduction in the emission rates of all contributing sources. This is reflected in
the optimized values listed in Table 4.6, where almost all shafts’ emission rates are
reduced, including two with unphysical negative values: CSM B and CSA A.

Between 11:09 and 11:10, the aircraft reaches the downstream edge of the accu-
mulation. In map view, this section shows the gradual transition from the broader
accumulation to an emerging emission plume being emitted from CSA A, Lazy A,
and maybe even Darkov A. While this developing plume is partially superimposed
on the remnant accumulation, it is already discernible in the spatial structure.

After 11:10, a similar behaviour occurs as previously discussed for Borynia VI.
The flight track surveys another plume originating from northerly Polish shafts. In the
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Figure 4.13: Zoom-in on the central segment of the transect shown in Fig. 4.9a—b, high-
lighting a CH, accumulation observed downwind of the Czech shafts near Ostrava. The
enhancement is attributed to an accumulation of emitted CH, that formed under stagnant
morning conditions and was later advected as a coherent plume. The simulated enhance-
ment reproduces this feature but overestimates its magnitude and spatial extent, which
likely reflects uncertainties in timing and localization within the transport model. Since it
is not possible to determine whether the discrepancy arises from transport model error or
from overestimated emissions, the inversion system reduces all contributing emission rates
accordingly (cf. Tab. 4.6).

observations, this plume is clearly separated from the earlier enhancement, whereas
in the simulation both plumes appear overly broadened, likely due to excessive
turbulent mixing in the transport scheme. Thus, a residual negative mismatch arises
that is falsely attributed to CSA A and Lazy A.

Consequently, the inversion downscales their emissions not only to account for
the undershooting flank at 11:10, but also in response to the broader accumulation
feature sampled before. Within this accumulation their emissions are fully inter-
mixed so that the observational constraint by the data prior to 11:09 becomes highly
entangled, preventing a meaningful separation of their respective source contributions.

Table 4.6: Prior emission estimates and initial optimized values for Czech shafts contributing
to the observed accumulation enhancement in Fig. 4.13.

Results are based on the initial inversion run and should not be interpreted as final best
estimates. Emission rates are in kt h~!,

Shaft Prior Optimized
CSM B 1.01 0.33
CSM B 1.01 —0.53
Darkov A 2.23 2.24
CSA A 3.19 —0.86

Lazy A 0.69 0.18
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Altogether, the inversion result reflects a complex blend of contributing effects:
a misrepresentation of the initial accumulation, excessive mixing, and partial over-
laps with subsequent plumes. These effects lead to a reduction of all contributing
emissions, with CSM B and CSA A even reaching unphysical negative values.
As previously discussed, these mathematically favourable reallocations of emission
rates may reduce the cost function, but they do not reflect physically meaning-
ful distinctions, especially when the observations themselves no longer support a
disentanglement of individual contributions.

Clustering Sources by Anti-Correlation

The above described ambiguity is further manifested by a chain of anti-correlations
among the involved shafts shown in Table 4.7. These anti-correlations are a mathe-
matical response to their geographical proximity and the overlapping influence of
the plumes. This means that the corresponding state vector elements jointly affect
the same subset of the simulated observation vector. Each observation within this
subset causes an ensemble update in all contributing sources. This shared influence
leads to coordinated changes across the affected ensemble deviations (cf. Eq. 4.6).
As the posterior covariance matrix is reconstructed from these updated deviations,
any coupling introduced by shared observational influence is encoded as statistical
dependence, specifically in the form of negative correlation. To identify such cases, a
correlation threshold can in principle be applied to the posterior correlation matrix
to determine which state vector elements should be grouped into a joint cluster.
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Paskov A -0.02 -0.02 -0.01 0.01 0.02 0.01
CSMB  -0.14 -0.04 -0.01 0.03 0.1 -0.02 -0.07
CSM A 0.07 -0.04 0.28 -0.06 -0.08 0.13
Lazy A -0.02 -0.04 1.0 0.15 0.01 -0.08

Darkov A -0.02 -0.01 1.0

CSA A -0.01  0.03 M 0.1 -0.08 0.05
Moszez. A 0.01 0.1 -0.06 0.15 0.08 -0.1 | -0.03 -0.16
Silesia I~ 0.02 -0.02 -0.08 0.01 0.12 -0.08
Silesia V. 0.01 -0.07 0.13 -0.08 -0.09 0.05

0.08 0.12 -0.09

Table 4.7: Extract from the initial posterior correlation matrix, showing a cluster of
negative correlation values (shades of purple) among Czech shafts (CSM B-CSA A).
Positive correlations are shown in shades of green. The observed pattern results from
overlapping plume influence and the spatial proximity of the sources.

In the case of the Czech sources, these pairwise anti-correlations form a continuous
chain: CSM A and CSM B, which are located next to each other (see Fig. 4.13),
exhibit a strong negative correlation of —0.46 in their posterior estimates (Table 4.7).
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CSM A is likewise anti-correlated with Darkov A, which in turn anti-correlates
with CSA A, and so on, continuing through Lazy A. Together, these shafts form
an anti-correlating cluster in the posterior covariance structure. This reflects the
limited separability of the individual shafts and justifies aggregating them into a
single cluster for the best-estimate inversion run to infer their combined emission
rates.

While these Czech shafts form a clearly defined anti-correlating cluster, the
situation is less straightforward for other source pairs. For instance, Silesia I and
Silesia V exhibit a posterior anti-correlation of —0.23, which is noticeably weaker
than the values observed among the Czech cluster. Even weaker is the anti-correlation
between Paskov A and CSM B, which is only —0.14. Given these values, the
question arises: which anti-correlations are meaningful for clustering, and which
merely reflect statistical noise?

To address this, it is important to recall the concept of spurious correlations. As
discussed in Appendix B.3, each state vector element and its ensemble perturbations
are generated independently. However, due to the finite size of the ensemble, the
correlation values in the prior are not exactly zero. This introduces what is known
as spurious correlations, which include both positive and negative values that arise
by chance and are statistically insignificant by definition.

On the one hand, when two state vector elements are constrained by the same
observations, the ensemble is adjusted such that the elements become anti-correlated
in the posterior. On the other hand, if the elements are truly independent, their
prior correlation is not significantly altered by the inversion.

This distinction becomes evident when comparing, for example, Makoszowy A
and Moszczenica A (not shown in Table 4.7). These two sources exhibit a spurious
prior anti-correlation of —0.27. In the posterior, their correlation changes only
marginally to —0.26. Given their large spatial separation of roughly 40km and
their North-South alignment perpendicular to the wind direction (cf. Fig. 4.14a), it
is safe to say that their exhaust plumes do not overlap and consequently they do
not have any shared observational constraint. The inversion correctly recognizes
their independence and leaves the spurious prior relationship essentially untouched.
However, based on the posterior anti-correlation value alone, this pair would have
been incorrectly marked for aggregation into a joint cluster. Instead, the difference
between the posterior correlation matrix and the prior correlation matrix offers a
more robust indicator. In the following this difference will be denoted by “correlation-
shift matrix” (see Table 4.8). Such shifts in the correlation values highlight shaft
pairs, where the inversion has caused mutual adjustments. This distinguishes them
from random fluctuations.

In Table 4.8 the aforementioned Czech shafts form a pronounced cluster of negative
correlation-shifts, indicated by their red shading. The two Silesian sources discussed
earlier also show a transition from near-zero prior values to moderate posterior
anti-correlations, supporting their classification as a weaker but still meaningful
cluster.
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Table 4.8: Correlation shift matrix between selected shafts, showing the difference between
posterior and prior correlation values. Red shades indicate shifts toward stronger anti-
correlation, while blue shades mark shifts toward positive correlation. A threshold of —0.16
is used to identify statistically meaningful shifts. Based on this criterion, two distinct
clusters are formed: a Czech cluster spanning from CSM B to CSA A, and a smaller
cluster aggregating Silesia I and Silesia V.

In an ensemble system, the random anti-correlation values define the natural spread
of the prior and can be used as a baseline to evaluate whether an observed shift
is statistically significant. As will be detailed below in Sect. “Clustering Outcome
& Threshold Selection”; the cutoff threshold was set to the 95th percentile of the
prior anti-correlation distribution. In this case, the 95th percentile corresponds to a
value of —0.16, which serves as an estimate of the maximum spurious correlation
shift expected by chance. Any posterior shift exceeding this value is treated as a
statistically meaningful adjustment introduced by the inversion. The threshold was
determined through iteratively and was guided by physical interpretability. The goal
was to identify a level at which entangled sources, such as the Czech shafts or the
Silesian pair, are reliably grouped into clusters, while sources with distinguishable
contributions remain disaggregated. To illustrate this, the resulting clustering is
shown in Fig. 4.14.

Clustering Outcome & Threshold Selection

The polygons in Fig. 4.14 show the aggregated source clusters from the automated
correlation-shift approach; the colours will be explained later. As expected, the
resulting clusters generally align with the prevailing wind direction. This is especially
evident for the elongated light green cluster, which connects the shafts Borynia VI
and Brzeszcze IX over an along wind distance of >36 km. As discussed in Sect. 4.3.1
and shown in Fig. 4.12; the negative mismatch in the plume flank near Borynia VI
is also affected by contributions from Brzeszcze IX. This shows that anti-correlating
influence in the inversion can extend well beyond immediate proximity.
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Figure 4.14: Automated source clusters derived from the correlation shift between prior and
posterior, using a threshold of —0.16. Each polygon encloses a group of shafts connected
through a chain of anti-correlations that exceed this threshold. This clustering is only
applicable to the given flight pattern and wind direction. Panel (b) shows a zoom-in of the
central to northern subregion.

The case of Borynia VT also illustrates an important limitation of this method.
While Borynia VI and Borynia III lie along the same wind path, the latter is
not included in the same cluster, as visible in the zoomed Fig. 4.14b. This apparent
omission can be explained by the design of CTDAS: the prior uncertainty is defined
as 100% of the prior emission rate. This means that the absolute uncertainty of low-
emission sources is proportionally smaller, and their adjustment leads to a relatively
larger penalty in the cost function. The method primarily captures higher-emission
sources, which are more prone to posterior adjustments. In contrast, lower-emission
shafts tend to remain close to their prior and do not develop strong anti-correlations.

A more striking example of this effect can be seen in the dark green polygon
extending from Janina A in the east through the three Ziemowit shafts, across
Budryk V and II, and further west to the two Szczyglowice shafts. Despite
following a coherent along-wind direction, the cluster exhibits a zigzag pattern
(see Fig. 4.14b), with several intermediate shafts being systematically excluded.
Notably, these omissions involve smaller sources such as Murcki A, Barbara A,
and Boleslaw II, which clearly lie within the same transport corridor, but which do
not develop strong enough correlation shifts to meet the clustering threshold.
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A similar pattern can be observed in the northern red polygons, and even more
clearly in the dark blue polygons near the city of Bytom (around 50.35°N, 18.9°E),
where despite their geographic alignment, only a few shafts are linked. A broader vi-
sual inspection confirms that sources with posterior emissions below approx. 0.75th™?
(blue to dark blue markers) rarely participate in clusters.

Recognizing this relationship is essential to understand the effect that a modifi-
cation of the correlation-shift threshold would have. For instance, applying a slightly
more relaxed cutoff using the 94th percentile (i.e. —0.158) of the prior anti-correlation
distribution would lead to exactly two additional cluster links, both of which have
substantial implications:

The first additional cluster link would be between Budryk V and Wesola A.
As was previously observed for the Czech shafts (see Table 4.7), such pairwise links
can quickly propagate into a continuous chain of anti-correlations. In this case, the
coupling would trigger a cascade, merging Budryk V and Wesola A into a broader
sequence of adjacent shafts spanning large parts of the green and red clusters (see
Fig. 4.14b). However, this aggregation would negate the clearly distinguishable
double-plume structure evident in both the simulation and the measurements (see
Sect. 4.3.1 and Fig. 4.9). Consequently, the distinct peaks associated with the two
subregions could no longer be scaled independently, which would undermine the
physical interpretability of the posterior estimates. The purpose of clustering in
the first place was to combine indistinguishable shafts based on their observational
constraints. Since this is not the case here, clustering Budryk V and Wesola A
would be too restrictive. The observational data clearly provide sufficient leverage
to constrain them separately. Although some residual anti-correlation persists,
it does not reach a level of ambiguity that would necessitate their aggregation.
More generally, this example illustrates that the degree of ambiguity introduced
by shared observational constraints spans a continuous spectrum. Accordingly, the
resulting correlation shifts do not indicate binary separability, but rather a gradual
transition. Therefore, choosing an appropriate threshold ultimately becomes a matter
of balancing separation and robustness.

The second additional cluster connection would link Bielszowice II (50.28°N,
18.82°E) with Mystowice A (50.22°N, 19.12°E). These sources are located along
a common wind path, several kilometres apart, with multiple low-emission shafts
situated between them. As discussed earlier, these smaller sources remain unclustered
because their small prior uncertainty suppresses posterior updates, leaving their
ensemble deviations largely unchanged and thus decoupled from the surrounding
state vector elements. However, this does not mean that these small sources are
unaffected by shared observations. Rather, the inversion primarily compensates
for the resulting residuals through the more flexible, higher-emission sources (i.e.
Mystowice A and Bielszowice II). This reflects a mathematical preference for
adjusting sources where penalty in the cost function is smaller, instead of an actual
physical attribution of the observed signal. Consequently, the cumulative influence
of the smaller shafts is not properly acknowledged in the posterior, despite their
potential contribution to the observed enhancements.
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Figure 4.15: This method is based on the automated clustering shown in Fig. 4.14, but
additionally comprises low-emission sources that were manually assigned to nearby clusters
based on wind direction and observational geometry. The resulting cluster assignments are
used in the best-estimate inversion and all sensitivity analyses.

Together, these two examples illustrate a central insight: the absence of a cluster
does not guarantee physical separability, and the potential formation of a cluster does
not necessarily require aggregation. Instead, both outcomes reflect the mathematical
structure imposed by the inversion and must be interpreted in light of the physical
context and observational constraints. Selecting the 95th percentile as a threshold
resulted from iterative trial and error process. It began with a very strict criterion,
requiring correlation shifts to exceed all values found in the prior anti-correlation
distribution. This led to minimal clustering. The threshold was gradually relaxed
until lowering it to the 94th percentile was found to be too restrictive, as demonstrated
above. The 95th percentile of the prior anti-correlation distribution (i.e. —0.16)
was therefore found to provide a reasonable trade-off. It avoids overly extensive
clustering, while still capturing the dominant anti-correlating structure among the
major sources.

This threshold, however, is not a generic solution. It worked well under the
specific conditions of this case study, including the prevailing wind direction, source
distribution, flight trajectory, and model transport characteristics. Notably, the
threshold value itself is, in principle, independent of meteorological conditions;
different wind fields would alter the correlation structure and thus which sources
appear indistinguishable, but the same numerical threshold should remain valid
as a criterion for clustering. However, its broader applicability remains untested.
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Establishing a generally valid threshold for automated clustering based on posterior
correlation shifts would require evaluating a large number of measurement days under
different meteorological and observational conditions, which is beyond the scope of
this work.

Nonetheless, the correlation-shift method itself is a very useful diagnostic tool for
identifying significant anti-correlating structures in the posterior correlation matrix.
It indicates which source groupings are mathematically supported by the inversion
and highlights where observational constraints are strongly entangled. However,
this approach inherently overlooks many smaller sources whose posterior estimates
remain close to their prior because they are less responsive to updates.

To better capture the cumulative influence of minor emission sources — and
to acknowledge that these sources cannot be treated as fully independent — they
were manually aggregated into larger clusters for the best-estimate inversion run.
This clustering approach builds upon the automated posterior correlation analysis,
but additionally incorporates smaller shafts based on spatial proximity and plume
alignment. The resulting configuration reduces the number of state vector elements
to be optimized to 15, consisting of: 13 aggregated source clusters, 1 background
flux term, and 1 offset parameter. The source clusters are displayed on the map in
Fig. 4.15, with the colour indicating the aggregated state vector element to which
each polygon is assigned. In the Appendix’ Table A.2 provides a complete list of
which individual emission sources are aggregated in which cluster, including an
explanation of the clusters’ naming.

4.4 Final Results & Discussion

This section presents the results of the best-estimate inversion run based on the
clustered source configuration introduced in Sect. 4.3.2. The optimized emission
estimates are evaluated with respect to their posterior uncertainty and the influence
of observational coverage and transport conditions. In addition, several targeted
sensitivity runs are analysed to assess the robustness of the inversion results under
varying assumptions. Finally, a consolidated total emission estimate for the USCB
region is derived and compared to values reported in previous studies and emission
inventories.

4.4.1 Best-Estimate Inversion

The resulting prior and posterior emission distributions from the best-estimate
inversion are shown for each cluster in Fig. 4.16. The respective violin plots are based
on the N = 150 ensemble members (see Sect. 4.2.1). The prior uncertainty was set
to 100 % (as discussed in Sect. 4.2.1), but small deviations in the 1-o width reflect
sampling variability due to the finite ensemble size. Table 4.9 lists the ensemble
means, standard deviations, and uncertainty reductions for each source cluster.

As described in Sect. 4.2, the emission rate ensemble is obtained by multiplying
the state vector ensemble with the prior emission vector, i.e. @ = qpx. This relation
only applies to the emission-related elements of x, i.e. the 13 aggregated source
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Figure 4.16: Prior (blue) and optimized (red) emission distributions for each source cluster
from the best-estimate inversion run. Each violin plot visualizes the probability density
function (PDF) spanned by the N = 150 ensemble members evaluated for each state vector
element. Solid horizontal lines mark the ensemble mean, while dashed lines indicate the
ensemble standard deviation. The range of the y-axis was deliberately chosen so that the
prior violin diagrams would be truncated for clusters with high emissions, allowing the
posterior distributions to be seen more clearly.

clusters and the background fluxes. It does not include the offset parameter. In the
best-estimate inversion run, this offset converges to —57 ppb, which is slightly lower
than the —51 ppb value found for the initial inversion (Sect. 4.3.1). This difference
is primarily due to the exclusion of the biased far-field legs (discussed in Sect. 4.3.1),
which would otherwise have pulled the background baseline to higher values.

All clusters exhibit a posterior adjustment, confirming the behaviour noted
previously in Sect. 4.3.2. Clusters with smaller total emissions are less prone to
updates by the inversion. This is a direct consequence of their proportionally
smaller absolute uncertainties, which reduce their flexibility during optimization.
Consequently, uncertainty reduction tends to be greater for high-emission clusters,
whereas smaller clusters remain closer to their prior. The same applies to the
background fluxes. While not negligible in total, their signal is spatially diffuse
and comparatively weak in the observations. As a result, they remain effectively
unchanged, with a scaling factor of 1.0 and no meaningful uncertainty reduction.

From all clusters the smallest uncertainty reductions are observed for frecz and
pascz, at only 0.7 % and 2.2 %, respectively. This is not surprising, given that both
far-field legs were flagged and excluded from the inversion, such that no observational
data were left downwind of these shafts to constrain their emissions. Accordingly,
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Table 4.9: Prior and posterior emission estimates for each cluster from the best-estimate
inversion run (equivalent to the PDF's in Fig. 4.16). Prior and optimized values denote the
ensemble mean. Note: The uncertainty values reported here correspond to the standard
deviation of the posterior ensemble distribution (N = 150). They do not represent the
final consolidated uncertainty. For a comprehensive uncertainty assessment that includes
contributions from sensitivity tests, refer to Table 4.10. Emission rates in th™1.

Prior Scaling Optimized Uncertainty

Ll emis. rate factor emis. rate reduction
sosni 19.6 £21.9 0.89 17.5+ 3.0 86.4 %
budry 16.8+17.1 1.27 21.3+2.8 83.4%
zofio 9.6+9.4 0.84 81+14 84.7%
oskar 81+7.2 0.51 41408 89.0%
brzsi 45+47 0.40 1.8+1.7 63.8%
janma 3.3+34 0.24 0.8+1.9 44.0%
rybni 3.2+3.1 0.53 1.7+£24 21.9%
bytom 23+2.3 1.30 3.0+1.6 29.6 %
frecz 20+£2.1 1.15 23+£21 0.7%
brzbo 2.5+25 0.88 22+1.6 37.6%
piast 1.5+1.5 0.67 1.0+1.3 15.4%
krupi 0.8 £0.7 0.75 0.6 0.7 5.9%
pascz 0.8+£0.8 1.00 0.8£0.8 2.2%

the inversion system is unable to meaningfully update the corresponding state vector
elements, which therefore remain effectively tied to their prior values. However, a
closer inspection of Table 4.9 reveals that the uncertainty reductions, despite being
small, are not exactly zero. This suggests that spurious updates can occur within
the ensemble system, even when there are no direct observational constraints. These
should be therefore interpreted as statistical noise and not as meaningful posterior
adjustments.

The greatest reduction in uncertainty is observed for the cluster oskar (Czech
shafts between the cities Ostrava and Karvind), reaching 89.0 %. This is hardly
surprising, as this region was densely sampled and the observed enhancement was
intersected multiple times across different segments of the CH, accumulation, rather
than merely being overflown perpendicular to its extent, as discussed in Sect. 4.3.1
and 4.3.2 (see e.g. Fig. 4.13). This accumulation had formed earlier under stagnant
wind conditions and was subsequently advected as a coherent structure once the wind
picked up. The flight path happened to align with the elongated axis of this advected
enhancement, enabling a dense series of data points to be obtained within the plume
core. Each observation sensitive to a given source contributes an update to the
associated state vector element, which typically leads to a narrowing of the posterior
ensemble distribution (Eq. 4.6). The greater the number of data points available
to constrain a particular source, the greater the resulting uncertainty reduction —
modulated, of course, by the observational error covariance.

However, in the specific case of the oskar cluster, the high posterior certainty
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should be interpreted with caution. In this case, the dense observational coverage
was not the result of a deliberate sampling strategy, but rather due to stagnant wind
conditions before the flight, resulting in the coherent advection of accumulated CHy
(as discussed before in Sect. 4.3.2). Such accumulation events are notoriously difficult
to simulate for ATMs, particularly with regard to timing and spatial localization.

The simulation suggests that the flight track intersected the centre of the ad-
vected plume, where CH, concentrations are highest. However, there is no way
to confirm whether this was the case in reality. If the actual accumulation was
laterally displaced, the aircraft may have crossed its edge instead, resulting in a
weaker signal observed. In that case, the inversion would incorrectly scale emissions
to lower values. Alternatively, the simulated plume position may be accurate, and
the observed signal may genuinely reflect lower emissions. While this situation would
lead to an underestimation, the reverse effect is also possible in principle, namely
that the simulation misses the plume centre while the aircraft crosses it in reality,
in which case the inversion may overestimate emissions. Because such ambiguity
cannot be resolved with the available information, the apparent posterior certainty
must be interpreted with caution. The strong reduction in ensemble spread reflects
internal consistency within the inversion system, but it does not account for potential
systematic transport errors and should not be mistaken for accuracy.

Although the posterior covariance matrix provides a formal estimate of the un-
certainty in the optimized emissions, it does not fully capture the robustness of
the results. A key limitation is that the posterior uncertainty depends directly
on the user-defined prior uncertainty. In this study, as no reliable source-specific
uncertainty estimates were available, a relative standard deviation of 100 % was
uniformly assigned to all sources. While this is a conservative assumption, it is still
a subjective assumption that has considerable influence on the posterior spread.

In addition to prior uncertainty, the model-data mismatch term also influences
the posterior uncertainty. While this term formally accounts for instrument precision,
its dominant contribution comes from a large representation error. This inflation
compensates for discrepancies in the geometry of high-resolution measurements and
the coarser model grid. As described in Sect. 4.2.1, it also accounts for what can
realistically be expected from the transport model in representing spatial plume
features. However, this term primarily addresses random errors. Systematic transport
errors, which may cause biased emission estimates, are not captured in the inversion
and not reflected in the Bayesian uncertainty reduction. A more precise quantification
of model-data mismatch would require a systematic performance assessment across a
wide range of meteorological scenarios, which is beyond the scope of this study.

4.4.2 Sensitivity Analysis

Assessing the robustness of inversion results is of central importance, since posterior
uncertainties derived from the Bayesian framework alone do not fully capture potential
model errors. In principle, a comprehensive error assessment could involve multiple
ensemble simulations with varied initial states or even comparisons across different
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transport models. Such approaches, however, are computationally very demanding.
To provide a pragmatic first estimate, this study conducts a small number of
targeted sensitivity runs. As introduced in Sect. 4.2.1, one set of tests evaluates
the influence of initial vertical emission placement. To this end, the best-estimate
inversion was repeated with emissions injected into higher vertical layers. In ad-
dition to the best-estimate’s default configuration (injection into level & = 12, i.e.
20 — 45 m), two additional runs were performed with emissions placed into levels
k=2 (45 - 72 m) and k = 3 (72 — 104 m), respectively. These levels represent
plausible variations in initial vertical mixing within the planetary boundary layer.

As discussed above, the optimized simulation applies an additive offset of 0.057 ppm
to the prior simulation. While this correction aligns the overall baseline with the
measurement average, systematic spatial discrepancies remain. Figure 4.17a shows
the time series of observed and optimized XCH,, with shaded regions indicating flight
segments that sampled background concentrations. Based on the residual structure,
three distinct types of background conditions can be identified: segments with con-
sistently positive residuals (orange), negative residuals (purple), and segments with
neutral or balanced residuals (gray/white).

Small shifts in the background baseline can directly influence the apparent ampli-
tude of all plumes’ enhancements. If the baseline is higher, the enhancement decreases
and the inferred emission rate is smaller; if the baseline is lower, the opposite occurs.
To assess this effect, I conducted three sensitivity runs, each retaining only one
residual regime as background constraint while excluding the others. Because each
plume measurement also carries implicit background information, the background
residuals are not reduced to zero in any of these runs. Nevertheless, the comparison
provides a reasonable estimate of how regional background biases can influence the
inversion outcome. It also shows how the inversion outcome would respond if certain
segments of background data were missing.

For each group of sensitivity runs, the deviation of the estimated total emission
q. from the best-estimate q”** was evaluated. These deviations were weighted by
their respective posterior standard deviation o, of each run. The resulting metric

represents the mean squared deviation normalized by the ensemble uncertainty:

s best \ 2
¥, (s
8 = <"2) with s € S, (4.8)
. L
84_]‘3L

where §; denotes the set of inversion runs within sensitivity experiment group j.
In this study, two such groups were defined: one probing the impact of vertical
emission placement (Sy), and one assessing sensitivity to background residual regimes
(Sb). Each contribution 8% is calculated independently and added in quadrature to
the inversion’s Bayesian posterior standard deviation o, to derive a consolidated

uncertainty estimate.
Ohest = \/O2 + 82 + 67 (4.9)

2Note that the vertical level indexing in WRF starts from k = 0 as the surface layer.
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Figure 4.17: Panel (a) shows the flight track overlaid on the prior plume output (13:00-13:05)
from the best-estimate inversion run. The coloured points along the flight path represent
the residuals between observations and optimized model output (AXCH, = y — Hx,).
Orange segments indicate positive residuals (observations exceed the model), while purple
segments denote negative residuals (model exceeds observations). Panel (b) displays the
full time series of observed (black) and optimized (red) XCH, mole fractions, with shaded
regions highlighting background segments categorized by residual regime. Each background
regime is also marked by a corresponding coloured arrow in panel (a). In the background
sensitivity runs, only one residual regime (orange, purple, or gray) was retained at a time,
while the others were excluded from the background constraint. The remaining (unshaded)
portions of the time series correspond to plume-influenced segments and were preserved in

all runs.
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Outcome of Sensitivity Runs

Figure 4.18 displays the total USCB emissions retrieved from each individual sensi-
tivity run, together with their respective posterior uncertainties. The best estimate
is shown in red, together with its consolidated uncertainty (Eq. 4.9). All ver-
tical injection scenarios (kK = 1, k = 2, k = 3) yield nearly identical emission
estimates and posterior spreads. In contrast, the background sensitivity runs (neu-
tral /positive/negative residual regimes) introduce larger variability, particularly in
total emission magnitude. This is consistent with the quantitative breakdown of
uncertainty contributions, given in the bottom row of Table 4.10. Of the total
consolidated uncertainty of 8.9th™!, a share of 55.8 % originates from the posterior
covariance matrix of the best-estimate inversion (6,). The background sensitivity
(8y) accounts for 44.0 %, whereas the effect of vertical injection height is negligible at
only 0.2% (8y).

emission estimate for total USCB
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Figure 4.18: Total USCB emissions retrieved from each individual sensitivity run. The
associated error bars indicate the Bayesian posterior covariance derived from the ensemble.
The final bar in red shows the consolidated best estimate of 65.1 & 8.9 th™!, which retains
the same emission value as the £ = 1 run but with an inflated uncertainty that accounts
for all tested sensitivities (see Eq. 4.8 and Eq. 4.9).

Table 4.10 shows that the relative uncertainty contribution of each sensitivity
analysis varies considerably between the individual clusters. For all clusters except
oskar, the uncertainty contribution from variation in vertical injection height remains
below 1%. This low sensitivity is related to the nature of most observed plumes,
which exhibit more stable plume propagation and are less susceptible to small changes
in initial conditions. In contrast, the simulation of the CH, accumulation attributed
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Table 4.10: Prior and consolidated posterior emission estimates for each cluster from
the best-estimate inversion run. The prior values are identical to those in Table 4.9 and
represent the ensemble mean and standard deviation of the N = 150 members. The
optimized values shown here correspond to the best-estimate, but with their uncertainty
inflated by the variations from all sensitivity runs (Eq. 4.9). The last three columns indicate
the relative contributions of each uncertainty component to the total variance o‘%est. The
share of the inversion’s Bayesian posterior variance is denoted by 62/0% ., the contribution
from sensitivity to vertical emission placement by 8% / O‘Qbest, and the impact of variations in
background residual regimes by 62 / O'%est. Emission rates in th™1.

CINSIr oyt tate emis. ate reduct, /%% 81/t 8/0f
sosni 196 £21.9 175+ 3.5 84.0% 72.9% 0.1% 27.0%
budry 16.8£17.1 21.3+ 3.2 81.3% 76.6 % 0.1% 23.3%
zofio 96+ 94 8.1+ 2.2 76.6 % 41.6 % 0.0% 58.4%
oskar 81k 7.2 41+ 1.0 86.1% 67.8% 18.2% 14.0%
brzsi 4.5+ 4.7 1.8+ 2.0 57.4% 69.3 % 04%  30.3%
janma 33+ 34 08+ 19 441%  94.6% 0.0%  54%
rybni 3.2+ 3.1 1.7+ 2.5 19.4% 99.5% 0.0% 0.5%
bytom 23+ 2.3 3.0+ 1.7 26.1% 89.7% 0.0% 10.3%
frecz 20+ 2.1 23+ 2.1 0.0% 99.7% 0.0% 03%
brzbo 25+ 2.5 22+ 1.6 36.0 % 94.0 % 0.1% 5.9%
piast 15+ 15 10+ 1.3 133% 951%  0.0% 4.9%
krupi 0.8+ 0.7 06+ 0.7 0.0% 97.8% 0.0% 2.2%
pascz 0.8+ 0.8 0.8+ 0.8 0.0% 93.7% 0.7%  56%

Total 75.0+31.3 651+ 89 714% 558% 02% 44.0%

to oskar is highly sensitive to initial transport parameters, which explains the
comparatively higher variation with different vertical injection heights.

The limited impact of vertical injection height reflects the fact that the tested
perturbations, which were based on vertical extent and plume rise observed in
hyperspectral images (Knapp et al. 2023), introduced only minor variations in the
simulated plume propagation. Within this observationally plausible range, the
inversion results were largely insensitive to vertical emission placement.

However, this finding should not be interpreted as evidence that transport errors
are negligible overall. Other model parameters, such as planetary boundary layer
schemes, turbulence and surface layer options, may introduce more substantial differ-
ences in simulated transport.

While the sensitivity to vertical emission height is almost negligible, the influence of
background variability is more pronounced. The clearest example of this is the cluster
zofio, where background-related uncertainty even exceeds the Bayesian posterior
uncertainty (see Table 4.10). This result is not a surprising results, given that zofio
is directly downwind of the positive-residual background regime (cf. Fig. 4.15 and
Fig. 4.17). Including or excluding of background data in this region directly affects
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the optimized value for this cluster. Moreover, zofio is the third-largest emitter in
the domain, which gives the inversion more freedom to adjust its emission strength.
Nearby clusters, such as brzsi and brzbo, exhibit smaller adjustments and are less
sensitive to background variations. This limited responsiveness reflects a broader
tendency: clusters with lower prior emissions generally undergo less posterior change
and therefore show reduced responsiveness in the sensitivity analysis.

This tendency is particularly evident among the weakest emitters. In clusters with
low prior emissions, the inversion remains close to the initial estimates, regardless of
background or transport variations. Consequently, the final uncertainty is dominated
by the Bayesian posterior spread. For all clusters with a prior standard deviation
below 3.4th™!, the Bayesian posterior uncertainty contributes at least 89 % of the
total uncertainty.

4.4.3 Total Emission Estimate

The bottom row of Table 4.10 provides the consolidated emission estimate for the
entire USCB, amounting to 65.1 &= 8.9 th~!. This equates to 570 £ 78 kt a~! when
extrapolated to one year. Figure 4.19 shows a comparison of this value to those from
other studies. Several findings emerge from this comparison.

Notably, the difference between the CoMet ED and the prior estimate is substan-
tial: 23.6th™' (207kta~'). This offset reflects emissions from non-reporting shafts.
These include all Czech shafts aggregated in the clusters oskar, frecz, and pascz,
as well as additional non-reporting Polish shafts, including the entire cluster bytom
as well as eastern parts of the budry cluster.

The prior assumptions for oskar were certainly generous, as presented in Ap-
pendix B.4 and confirmed by the downscaled posterior value of 4.1 & 1.0 th™!
(reduction of 51 % compared to the prior). Nevertheless, the cluster emits significant
amounts of CH, that were not captured by the reporting. No clear conclusions can
be drawn for frecz and pascz, as the a posteriori uncertainty remains unchanged
at 100 % due to a lack of downwind observations. Zero emissions are therefore still
possible, but not confirmed. The situation is different for the northernmost Polish
cluster, bytom. It only contains non-reporting shafts, but has a posterior estimate
of 3.0 £ 1.7 th™%.

The two red bars in Fig. 4.19 represent the total posterior emissions retrieved
from the initial and best-estimate inversion runs, respectively. The difference between
these two inversions amounts to 14.3th~!, underscoring the cumulative impact of
the methodological adjustments introduced after the initial run. These include the
exclusion of segments with known transport mismatches (Sect. 4.3.1), particularly
the far-field legs where the model failed to reproduce the observed plume signals
(Sect. 4.3.1), and the implementation of source clustering based on inversion-driven
correlation shifts (Sect. 4.3.2), which was developed in this thesis. Both adjustments
addressed structural weaknesses of the initial setup, which had resulted in a biased
posterior offset and unphysical negative scaling factors. Their removal leads to a
higher and more robust total emission estimate in the best-estimate run.

Overall, the best-estimate result exceeds the values reported by E-PRTR and
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emission estimate for total USCB
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Figure 4.19: Comparison of total USCB CH, emissions from this study with inventory
data and previous studies. Black dots indicate reported or previously published estimates.
Values without error bars (e.g. E-PRTR, CoMet ED) do not include published uncertainty
estimates. The blue bar denotes the prior estimate used in the inversion. Red bars show the
total posterior emission estimates retrieved from the initial (Sect. 4.3.1) and best-estimate
inversion runs (Sect. 4.4.1), respectively. Emission rates are expressed both in kta=! (left
axis) and th™! (right axis).

CoMet ED by approximately 16 % and 27 %, respectively. Another factor contribut-
ing to this discrepancy is the temporal mismatch. Inventories report annual averages,
whereas the inversion is based on observations from a single day. The extent to
which daily emissions deviate from long-term averages remains uncertain. The same
limitation applies to the estimate by Tu et al. (2022b), who derive 458 + 65 kta™*
using three years of satellite data from TROPOMI. Their comparatively narrow
uncertainty range reflects the long averaging period.

A more direct comparison is possible with the results of Fiehn et al. (2020) and
Kostinek et al. (2021), who analysed airborne in situ measurements taken on the
same day, 7 June 2018. Their flight track did not cover the clusters frecz and pascz.
Excluding these two clusters — which in any case remain close to their prior values

— leads to a slightly lower posterior estimate of 62.0 &= 7.1 t h=*. This result is within
the range of uncertainty with both Fiehn et al. (2020), who report 52.0 + 34.6 th™,
and Kostinek et al. (2021), who obtain 49.9 4 21.0 t h~!. The uncertainty reported by
Fiehn et al. (2020) combines measurement and interpolation errors with systematic
contributions from sensitivity tests of transport and background conditions, whereas
Kostinek et al. (2021) derive their error bars from a combination of the statistical fit
uncertainty and systematic variations obtained from an ensemble of sensitivity runs.

Taken together, the agreement with previous studies and the plausible deviations from
inventory data lend confidence to the robustness of the inversion results presented
here. While certain limitations remain, particularly with regard to unconstrained
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clusters and potential transport errors, the methodology yields emission estimates
that are demonstrably consistent with observation-based estimates. These findings
form a reliable basis for the broader conclusions drawn in the following section.

4.5 Summary & Conclusion

Case Study II addresses research questions RQ2 and RQ3. To answer these, the
Upper Silesian Coal Basin (USCB) in southern Poland was selected as the study
region (see Sect. 4.1). The region is Europe’s most significant hotspot for CHy
emissions from coal mining and contains a large number of point sources, some of
which are located in close proximity to each other. On 7 June 2018, during the CoMet
campaign, multiple flight legs were conducted over the area using the airborne IPDA
lidar system CHARM-F, resulting in comprehensive spatial coverage of CH, column
enhancements. This work presents the first successful integration of IPDA lidar
observations into a Bayesian inversion with the CTDAS-WRF framework, applied
at regional scale with individual optimization of each point source (Sect. 4.2).

In an initial inversion run (Sect. 4.3), I evaluated the overall model performance
and the spatial consistency between simulated and observed XCH, enhancements.
The simulation reproduced the main features of the observed plumes near the sources
but revealed clear discrepancies at larger downwind distances. Two flight legs showed
a systematic wind direction error that displaced the simulated plume in the same
region, while other legs were affected by excessive dilution of the transported CHy.
To avoid unphysical posterior results, I excluded these affected data sections for the
best-estimate inversion (Sect. 4.4).

After data selection, I used posterior covariance diagnostics to determine which
emission sources could be distinguished by the available observations. To enhance
robustness in areas with plume overlap, observationally entangled sources were aggre-
gated, combining automated diagnostics with expert judgement on plume alignment
and wind direction. The automated approach alone tends to overlook low-emission
shafts that remain close to their prior because their small absolute uncertainties pre-
vent significant inversion updates. I therefore reviewed the unclustered minor sources
and manually merged them with neighbouring clusters whose plumes were aligned
and physically connected. This combination of statistical diagnostics and expert
knowledge ensured that weak but non-negligible emitters were properly accounted for
and that the spatial attribution remained consistent with observed plume structures.
This hybrid clustering approach formed the basis for the best-estimate configuration
and resulted in 13 aggregated source clusters. The geographical distribution of the
clusters is shown in Fig. 4.15, and the corresponding posterior emission distributions
in Fig. 4.16 (see Sect. 4.4.1).

Two targeted sensitivity experiments, each consisting of three runs, complemented
the CTDAS posterior covariance (Sect. 4.4.2). The first varied the assumed emission
height in WRF to represent perturbations in the initial vertical mixing. The second
altered the selection of background segments in the CHARM-F data to test the effect
of varying observational availability. Thus, the consolidated uncertainty includes not
only contributions from the inversion itself, but also perturbations in the simulated
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transport and observational constraint.

The consolidated posterior emission rates obtained from these sensitivity analy-
ses are listed in Table 4.10. From these results, the domain-wide total can be derived
by summing all cluster emissions. The entire coal mining region of the USCB amounts
to 65.1 £+ 8.9 th™!, which is equivalent to 570 + 78 kta™' (Sect. 4.4.3). This value
exceeds the officially reported emissions in the E-PRTR inventory by 16 %. Given
that the inversion is based on only three hours of airborne observations while the
inventory represents an annual mean, this deviation is relatively small. It may reflect
a combination of temporal variance from the annual mean and inventory uncertainty:.
At the same time, this result falls well within the uncertainty ranges of independent
studies based on satellite and in-situ data, further supporting the credibility of the
approach (cf. Fig. 4.19).

In conclusion, RQ2 can be answered in the affirmative. The combined use of
airborne IPDA lidar and the CTDAS-WRF inversion framework successfully quanti-
fied and spatially attributed overlapping CH, signals from multiple nearby sources.
The inversion-driven hybrid clustering provided the maximum achievable spatial sepa-
rability under the given observational and meteorological constraints, by aggregating
74 individual shafts into 13 source clusters.

With regard to RQ3, the analysis showed that transport-related errors increase
with downwind distance and can ultimately limit the accuracy of inverse estimates.
While this study identified clear discrepancies beyond approximately 40km, no
universal limit can be defined. The maximum tolerable downwind distance varies
from case to case and depends on a wide range of factors such as meteorological
conditions, orography, emission rates, and background variability. The results further
revealed that a higher density of in-plume data points leads to substantial uncertainty
reduction through increased observational constraint of the inversion. Consequently,
flight designs aligned with the expected plume axis or using zigzag patterns are
preferable for inverse modelling, while purely cross-sectional overflights tend to
provide fewer effective constraints.
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5.1 Thesis Summary and Outcomes

This thesis set out to assess how active remote sensing can quantify greenhouse
gas emissions from point sources and how the design of measurements and the
configuration of the inversion framework influence the resulting uncertainties. The
work addressed three research questions:

« RQ1: How accurately can the cross-sectional flux method quantify CO,
emissions from an isolated point source?

« RQ2: Can a combination of airborne IPDA lidar and inverse modelling be
used to quantify and spatially attribute overlapping CH, signals from multiple
sources?

« RQ3: Under which atmospheric conditions and flight geometries do uncertain-
ties in IPDA-based emission quantification become most pronounced, and how
can flight planning mitigate these effects?

In Case Study I, I successfully applied the cross-sectional flux method to
IPDA lidar data to determine CO, emissions from an isolated point source: the
Janschwalde coal-fired power plant. The estimated emission rate is consistent with
the officially reported annual emissions, with an average of 20.3 4+ 7.9 Mt a~! over four
instantaneous flux measurements. Limitations arise from atmospheric turbulence,
which distorts the exhaust plume and causes strong variability in the instantaneous
flux. These fluctuations dominate the overall uncertainty and exceed the combined
measurement errors from instrument precision, spectroscopy, and wind data. In other
words, while the measurement error of a single flux estimate is comparatively small,
turbulent variability drives the main discrepancy between instantaneous fluxes and
the true emission rate. These findings answer RQ1 in the affirmative and inform
RQ3: the main limitation is turbulence, which favours night or early-morning flights
and moderate downwind distances that preserve detectability.

In Case Study II, I achieved the first successful integration of airborne IPDA
lidar observations into a Bayesian inversion at regional scale. The study region was
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the Upper Silesian Coal Basin (USCB) with many closely spaced CH, sources. After
conducting an initial run and selecting data to avoid sections with clear transport
errors, I developed an inversion-driven hybrid clustering approach to achieve robust
spatial attribution under plume overlap. This approach combined a correlation-shift
diagnostic with a threshold based on the 95th percentile of the prior anti-correlation
and an expert review that merged low-emission shafts aligned with larger plumes.
This retained observationally supported separability while ensuring that weak but
non-negligible emitters are properly accounted for. The final configuration aggregated
74 point sources into 13 emission clusters.

I complemented the posterior covariance by performing two targeted sensitivity
experiments that perturbed the emission heights in the Atmospheric Transport Model
and varied the background segments in the observation data. Together with the
best-estimate inversion these analyses yielded consolidated posterior emissions and
uncertainties for each cluster and for the domain total. The total USCB emission
amounts to 65.1 + 8.9 th™!, that is 570 + 78 kta~!, which is 16 % above the
E-PRTR inventory and consistent with independent studies. These results answer
RQ2: airborne IPDA lidar combined with inverse modelling can quantify and
spatially attribute overlapping CH, signals from multiple nearby sources, with the
hybrid clustering delivering the maximum achievable separability under the given
conditions.

Regarding RQ3, I found that transport errors increase with downwind distance
and limit inverse estimates once modelled and observed plumes begin to diverge.
In this study, significant discrepancies appeared at distances beyond approximately
40 km, but no universal threshold can be defined since meteorology, orography, emis-
sion strength, and background variability differ from case to case. The analysis also
showed that a higher density of in-plume observations strengthens the observational
constraint and reduces posterior uncertainty, which motivates flight legs aligned with
the plume or zigzag patterns for inverse modelling, whereas purely cross-sectional
transects provide fewer effective constraints.

Main contributions of this thesis are:

o [ explicitly quantified the impact of turbulence on flux estimates and translated
these findings into practical guidance for flight planning.

o [ achieved the first integration of airborne IPDA lidar into a Bayesian inversion
at regional scale and successfully applied it to a complex multi-source basin.

o [ developed an inversion-driven hybrid clustering that combines a correlation-
shift diagnostic and expert judgement to maximize spatial attribution, including
low-emission sources that would otherwise be overlooked.

o [ established a consolidated uncertainty estimation that combines posterior
covariance with targeted sensitivity analysis in transport representation and
background data availability, reported at cluster and domain scales.
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5.2 Recommendations for Future Campaigns

The insights gained from the two case studies also offer practical guidance for future
field campaigns targeted at quantifying GHG emissions. While the present work fo-
cuses on IPDA lidar, most of the findings are equally relevant for other measurement
techniques. Some recommendations, however are more readily applicable to active
remote sensing, where lidar provides a particular advantage. By identifying common
sources of uncertainty, this work provides specific recommendations on how to avoid
or minimize common pitfalls. Well-informed flight design can thereby improve the
accuracy of flux estimates and increase the reliability of subsequent source attribution.

Accurate background estimation proved essential for both the cross-sectional flux
method and inverse modelling. In Case Study II, persistent residuals after the
inversion illustrated how sensitive the results are to background selection. A targeted
sensitivity analysis (Sect. 4.4.2) confirmed that different background choices alone can
alter the total USCB emission by up to 9% (cf. Fig. 4.18). Therefore, to account not
only for spatial but also for potential temporal changes in background concentrations,
background regions should be surveyed both at the beginning and at the end of each
flight pattern. This allows for the detection of temporal drifts and improves the
reliability of offset constraints in the inversion.

When applying the cross-sectional flux method, redundancy in background sam-
pling is helpful, though not as critical. Typically, a single upwind leg is sufficient
to assess whether additional sources contribute to the inflow. Even under spatially
inhomogeneous or temporally variable background conditions (as encountered in
Case Study II), a robust emission estimate can be achieved by determining the
background locally along the same flight leg. This is done by identifying the plume
within the transect, removing it, and reconstructing the background across the plume
by linear interpolation between the pre- and post-plume segments (see Sect. 3.1.1).
This method requires the segments before and after the plume to be sufficiently long.
In the present Case Study I, a length of approximately three to five times the plume
width on each side proved sufficient. This corresponded to a minimum flight distance
of 12km. Since it is not always possible to predict the plume width when planning
a flight, it is advised to select the transect length a little too long rather than too short.

For the cross-sectional flux method, the dominant source of uncertainty was the
turbulence-induced variability of flux estimates between individual overflights. To
minimize this effect without requiring a large number of repeated transects, mea-
surements should ideally be carried out under low-turbulence conditions, preferably
at night when plume propagation tends to be more stable.

This recommendation highlights a particular advantage of active remote sensing.
Passive techniques require solar illumination and therefore cannot be applied at
night. Airborne in situ instruments, in turn, may face difficulties in accessing the
very shallow nocturnal boundary layer without flying uncomfortably close to the
ground. By contrast, IPDA lidar can operate independently of sunlight and thus fully
exploit the enhanced stability of nighttime conditions. A dedicated simulation has
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shown that, under such favourable circumstances, a single lidar overflight can already
outperform the precision obtained from ten averaged midday transects (Sect. 3.2.2).

Improving inverse modelling requires different strategies. One of the most effective
measures is to increase the number of data points within the plume. This can be
achieved by designing flight patterns along the plume rather than perpendicular
to it. However, this requires precise wind forecasts. If the actual wind direction
differs from the forecast, a leg that is nominally aligned with the wind may miss the
plume entirely. Zigzag patterns offer a more robust alternative in this regard, as
they increase the likelihood of intersecting the plume even under forecast errors.

Conversely, cross-sectional flights are limited by definition to the minimum number
of in-plume measurements. This is disadvantageous for inverse modelling. On the
other hand, plume-aligned flight legs do not permit the determination of integrated
enhancements, rendering the cross-sectional flux method inapplicable. In terms of the
cross-sectional flux method, zigzag patterns would increase the number of in-plume
observations and, in principle, improve the estimation of integrated enhancements.
However, this benefit is negated by another error component. Specifically, the relative
uncertainty includes a term that depends on the angle ¢ between the flight direction
and the wind direction, which enters the uncertainty term proportional to taﬁfw).
As ¢ approaches 0°, the error term diverges and dominates the total uncertainty,
whereas near 90° it becomes negligible. For this reason, the flight in Case Study I
was deliberately designed to be close to perpendicular to the wind, ensuring that the
angular contribution remained minimal.

The two methods thus have incompatible ideal flight patterns, and compromising
between their respective requirements tends not to be beneficial. Therefore, before
planning the exact pattern, a clear decision should be made as to whether the flight
is primarily intended for cross-sectional flux evaluation or inverse modelling. If
both objectives are to be addressed, dedicated flight sections should be designed for
each approach. Otherwise, there is a considerable risk that neither objective will
be adequately fulfilled. This strategy may increase the total flight time but ensures
methodological clarity and robustness.

Nonetheless, Case Study II demonstrated that inverse modelling is effective,
even with a primarily cross-sectional flight design. The dominant source of error was
not the flight geometry, but a systematic transport error in the model. Significant
deviations between the model and the observations were found in flight legs located
more than 40 km downwind of the source or farther. These were mainly due to
excessive mixing and inaccurate wind directions in the simulation. Near the sources,
however, the model performed adequately. In hindsight, it would have been more
effective to fly additional legs within a range of 1 — 10 km rather than taking transects
at distances greater than 40 km. However, the ideal downwind distance depends
strongly on the respective meteorological situation. Further sensitivity studies under
a variety of different meteorological conditions — ideally at different times of the year
and day — would need to be carried out before a universally valid recommendation
for the ideal downwind distance for inverse modelling can be made.
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When it comes to the ideal time of day for measurements, Case Study I
provides an important insight. As mentioned above, the plume structure is highly
inhomogeneous under turbulent conditions at midday. In theory, such inhomogeneities
would not pose a problem for inverse modelling if the simulation reproduced them
accurately. In practice, however, this is rarely the case because turbulence and
boundary-layer schemes cannot resolve the exact position and timing of individual
puffs. Therefore, it is advantageous for inverse modelling to avoid highly turbulent
conditions, which improves the representativeness of simulated transport.

With regard to inverse modelling, however, caution should be exercised before
implementing nighttime flights as an turbulence-avoidance strategy. As explained in
Case Study I, the nighttime boundary layer shrinks to just a few model levels. This
could lead to poorer simulation of boundary layer processes such as vertical mixing.
Whether the advantage of reduced turbulence outweighs the potential degradation
of model quality is still to be proven. A possible compromise could be flights in
the early morning, when atmospheric stability and vertical model resolution in the
boundary layer are both acceptable.

In conclusion, future flight campaigns should define from the very start whether the
primary analysis will be based on cross-sectional flux estimates or inverse modelling.
This decision has important implications for flight geometry and observational cov-
erage. Attempting to satisfy both methods with a single flight plan will degrade
the effectiveness of both. Instead, future campaigns should either separate their
measurement objectives or allocate sufficient flight time to execute multiple dedicated
patterns per target.

5.3 Outlook

The findings of this thesis demonstrate that active remote sensing data can be robustly
integrated into inversion frameworks — a methodological step that paves the way for
exploiting upcoming satellite missions at global scale. Unlike episodic measurement
campaign data, as used in this thesis, future spaceborne missions such as MERLIN
will provide continuous and global coverage. This shifts the scientific focus from
sporadic emission quantification to systematic emission monitoring, budgeting, and
trend analysis on regional and global scales.

As MERLIN operates on a sun-synchronous orbit at a fixed inclination angle,
it is not possible to adjust the transects to local wind directions. Therefore, the
cross-sectional flux method can only be applied in cases where the wind direction is
perpendicular to the orbit. Under ordinary observation conditions, MERLIN data
will thus primarily be evaluated using inverse modelling. At the same time, MERLIN
will fill critical observational gaps by providing data at high latitudes and during
nighttime — precisely the regions and times where passive instruments are blind, but
where important sources such as boreal wetlands and thawing permafrost contribute
substantially to the global CH, budget.



112 5 From Case Studies to Spaceborne Applications

A major technical challenge in evaluating satellite data lies in the large number
of potential emission sources. In principle, each model grid cell could be treated as
a separate state vector element. However, this would introduce a greater number
of degrees of freedom, which could result in artefacts such as negative emission
rates (cf. Case Study II) and is computationally expensive. A key strategy
to mitigate this problem is to reduce dimensionality by clustering anti-correlated
emission sources and optimizing them jointly. When such clustering is guided by
the inversion itself — i.e. by meteorological transport and observation geometry
— it retains the maximum possible information content in emission attribution. In
contrast, conventional approaches based on administrative boundaries (e.g. states or
districts) fail to achieve this level of detail.

The achievable spatial resolution of such inversions is ultimately limited by the
observational constraint, which is defined by the along-track sampling within the
atmospheric plume. These measurements integrate the signal over an area that
typically exceeds the size of the emitting sources. For MERLIN, which offers an
effective horizontal resolution of about 50 km, it would therefore not be meaningful
to define state vector elements on a finer grid. This sets a practical lower limit for
the spatial discretization of future inversions using MERLIN data.

Applying the approach developed in Case Study II — i.e. performing an
initial inversion at maximum feasible resolution of 50 x 50 km? and subsequently
deriving an optimized clustering — would still be impractical for routine large-scale
applications. Repeated pre-inversions would remain computationally demanding and
thus the associated computational effort would still contradict the goal of reducing
computational costs.

Future work should therefore aim to evaluate clustering strategies under realistic
conditions. Synthetic MERLIN datasets could be generated for representative
synoptic weather situations, focusing on regions where a meaningful observational
constraint can be expected at 50 km resolution and are of particular interest to the
global CH4 budget. In the anthropogenic sector, these regions include coal mining
areas such as the USCB (roughly 100 x 100 km?) or Shanxi in China, as well as oil
and gas regions such as the Permian Basin or the Bakken Formation. For natural
emissions, relevant target regions would include wetlands such as the Hudson Bay
Lowlands, the Pantanal or the Congo Basin. Targeted inversion-based analyses
of these synthetic case studies could investigate the effect of different clustering
strategies on emission estimates and their uncertainties.

Another idea is to introduce an emission-weighted threshold for detecting correla-
tion shifts. This builds on the observation from Case Study II that smaller sources
were more insensitive to inversion updates than large emitters, making them less
likely to be automatically flagged for clustering. In such a weighted approach, the
correlation shift required for a source to be considered entangled would scale with its
emission strength. This could improve the detection of relevant groupings, however
it could be very sensitive to spurious correlations. Further studies are needed to
assess the practicability of this method.

As an alternative to the correlation-shift approach, future studies could also
explore significance testing using a Student’s ¢-test. This method assesses whether
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the posterior scaling factors of two emission sources differ significantly from each
other in a statistical sense. If not, the two sources could be considered observationally
indistinguishable and thus eligible for clustering. In contrast to heuristic thresholds,
this test would explicitly account for ensemble spread and sample size.

The USCB remains an ideal testing ground for developing and validating new
clustering and inversion methods. The region has high emission rates, a complex
source distribution and topographical features, as well as reliable and verifiable
inventory data. This combination enables realistic yet controllable test scenarios to
be created.

In addition to numerical sensitivity analyses, the USCB is also suitable as a target
region for future validation flights with aircraft-based systems such as CHARM-F.
With suitable wind directions, especially when the wind is approximately perpen-
dicular to the MERLIN orbit, emissions could also be detected and quantified
simultaneously. The region thus offers the opportunity for direct comparative studies
between satellite and aircraft measurements.

The next step in methodological development could be to repeat the analysis
carried out in Case Study II under different prior assumptions. This would enable
investigation into how the results change when coarse prior information, such as the
EDGAR inventory, is used instead of the specific CoMet ED. As the exact location
of the sources would be unknown in this case, the inversion would have to consider
significantly more model grid cells as scalable elements, increasing the degrees of
freedom and the uncertainties. Comparing the resulting emission distributions in
terms of their spatial attribution and total magnitudes could provide valuable insights
into the robustness and transferability of the developed methods.

On top of the CoMet 1.0 flights in Europe that have already been analysed, the
CoMet 2.0 Arctic campaign in Canada in 2022 provides a comprehensive set of
data that can be used in future analyses (comet2arctic.de, last access: 05.08.2025).
The mission focused on natural and anthropogenic sources in Arctic-boreal regions
and provided valuable measurement data on extensive CH, sources in permafrost
areas and North American wetlands. The region around Lake Winnipeg and the
Hudson Bay Lowlands was flown over several times, revealing measurable, albeit very
weak, gradients in the CH, signal accumulating along the wind direction. Detecting
these signals is at the limit of what current instruments can achieve, making inverse
modelling in such regions particularly challenging.

At the same time, anthropogenic emission sources were also surveyed as part
of CoMet 2.0, including the Athabasca Oil Sands, petrochemical plants near Fort
McMurray, power plants west of Edmonton, and oil and gas production facilities
in the Lloydminster area. These Canadian oil and gas facilities are extremely
numerous, with dense local groupings spread across a wide area, so that their
aggregate signal resembles a mix between point and area sources. On several
occasions, industrial exhaust plumes overlapped with CH, emissions from forest fires,
which both complicated source attribution and added a relevant contribution to the
global CH, budget.


http://comet2arctic.de/
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With CoMet 3.0 Tropics, another mission is planned for 2026, focusing on tropical
regions of Brazil. The campaign targets the extensive wetlands of the Pantanal and
the southern Amazon basin, where CH, emissions are generally weak and spatially
diffuse. Unlike point sources, these signals accumulate gradually over large distances
and are often hard to detect as distinct enhancements. The region is marked by
frequent cloud cover and highly dynamic meteorological conditions, which compli-
cate airborne measurements. Natural wetland emissions are also superimposed by
anthropogenic sources from agriculture, fossil fuel use, and biomass burning, making
source attribution particularly challenging. Nevertheless, the mission offers a valuable
opportunity to refine retrieval techniques under these conditions and contribute to
the validation of current satellite missions.

Taken together, the European, Canadian, and Brazilian datasets trace a logical
progression in complexity — from isolated point sources under favourable conditions,
to widespread oil and gas facilities mixed with wildfires and wetlands, to tropical
regions with diffuse natural emissions and frequent cloud cover. Each step builds
on the previous one and helps prepare methodologies for increasingly challenging
environments.

In this sequence, the launch of MERLIN, currently scheduled for 2030, marks
the decisive step from regional campaigns to systematic, global monitoring. For
the first time, active remote sensing data will be publicly available worldwide and
continuously. Building on the concepts and tools developed in this work, the scientific
community will then be in a position to fully exploit this new data stream and take
a major step towards closing the global CH, budget.
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A.1 Calculation of Simulated DAOD

At the initialization position of the power plant, the value of the tracer variable tr is
increased by the value 1 at each time step. In this study, it is defined only in the
inner domain D3.

tr(t + At,z,y, z) = tr(t,x,y,2) + 1 (A1)

Here, At corresponds to the computational time step of the third domain D3 (i.e. 1s,
see Table 3.3). At the same time the tracer is distributed in the domain D3 by
advection and turbulent dispersion. The corresponding mass concentration c(t, z, y, z)
at any grid point x,y, z at time ¢ is obtained as follows:

Gin * At
Ax - Ay - Az(t,x,y, 2)

c(t,x,y, z) = tr(t,z,y, 2) (A.2)

For the input emission rate ¢, a constant value of 760 kg s~ (24.0 Tga™!) is initialized,
which corresponds to the total annual emissions for the year 2017 reported to the
European Environment Agency by the operators (E-PRTR 2023). The horizontal
size of a grid point Az and Ay are temporally and spatially constant (0.2km).
The vertical layer size Az(t, x,y, z) corresponds to the spatial distance between two
model levels. In the simulation this distance is computed in pressure coordinates
and depends on all four dimensions. Since the pressure varies only slightly between
successive time steps, the temporal dependence of Az is small. At locations with flat
topography the dependence of Az on the horizontal coordinates x and y is also small,
and at locations with large topographic changes (e.g. steep slopes) the dependence
is more significant. The product x -y - Az(t, z,y, z) corresponds to the volume of the
respective grid box. Within this volume the value of the tracer variable and thus the
concentration is constant.

In order to compare the simulated data with an IPDA lidar measurement, the
concentration array must be summed up vertically and multiplied by the quotient of
the mean differential absorption cross section and the molecular mass.

5wrf(tax>y) = C(t,l’,y,Zj) : AZj(?f,.I',]J,Zj) (A3>
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The index j marks the respective vertical layer. Consequently, j € {1,56} applies,
and z; is defined as corresponding to the lower edge of the respective layer.

A.2 Auxiliary Equations

L g (A1)
Mtot
= = (A.5)
My + Mu,o
B v
o Ndry * Mary + NHQO *MH,0
N v
o Ndry

T (mdry + mu,o - THZO)

= Ndary - (mdry + mu,o - THQO>

My,0
@= Mary + My,o (A.6)
Q= Nu,0 - M0 * 52
(Nary - Mary + Niyo - Mi,0) - 7=
_ Nary * TH,0 - M0
Nary - (Mdry + TH0 - MiL0)
(Mdry + TH,0 - ME,0) - @ = THO * MH,0
Mary - Q = TH,0 - Mo - (1 — Q)
May @
mMH,0 1-Q :
Xcn, = XcHyhum - (1 + 1_QQ : ::;:Z) (A7)
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Figure A.1: Figures of individual HALO crossings on 23 May 2018, sorted equivalently to
Table 3.1. The black line shows a 0.2km (64 data points) running mean of the observed
DAOD enhancement (cf. Sect. 3.1.1 and Fig. 3.2). Vertical red lines mark the smallest
data extract used for the Riemann sum. The blue line represents a Gaussian fit. Adapted
from Wolff et al. (2021).
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Figure A.2: Simulated plumes and virtual flight tracks. At the respective tops, local time
is given in CEST, and at the bottom « denotes the local solar altitude. Every 2min a
virtual flyover is performed yielding 60 measurements within a time frame of 2h. One
representative snapshot within the 2h time frame is shown. Some exhaust plumes are
disjointed, due to vertical wind shearing. The discrete vertical layering in the model leads
to distinctive horizontal advection directions. The colour maps follow the guidelines for a
perception-based colour map presented by Stauffer et al. 2015. Adapted from Wolff et al.
(2021).
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Table A.1: CHARM-F’s Main System Parameters. Table by Amediek et al. (2017).

Nd:YAG-pumped OPOs, pulsed,

two wavelengths (on, off) per trace gas
online: 1.57202 pm

offline: 1.57212pm

online: 1.645 55 pm

offline: 1.645 86 pm

50 Hz repetition rate

Laser type:

Laser wavelengths COy:

Laser wavelengths CH,:

500 ps separation
double pulse specifications: ~ 20ns pulse width
50 MHz spectral width
2MHz rms OPO single-shot stability
CH,: 10mJ
CO,: 10mJ (upgradeable)
APDs (60 mm telescopes)
PINs (200 mm telescopes)

Pulse energies:

Detector types:

Transmitter divergence: adjustable, max. 3 mrad
Laser ground spot diameter: max. 50m, typically 25 — 40 m

Typical aircraft velocity: ~200ms!
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Cluster Included Sites
brzbo: Shafts include Brzeszcze IX and Borynias

brzsi: Strongest emitters are Brzeszcze II and Silesias

budry: Strongest emitters are Budryk V and I

bytom:  Located close to the city of Bytom
frecz: Single shaft
janma: Shafts include Jankowice and Marcel

krupi: Single shaft

oskar: Located between the cities of Ostrava and Karvina

pascz: Located close to the city of Paskov, Czech Republic

piast: Single shaft

rybni: Located close to the city of Rybnik

sosni: Strongest emitter is Sosnica V

zofio: Strongest emitter is Zofiowka V

Table A.2: The table shows which shafts are aggregated in each cluster, along with a
brief italicized explanation of the naming rationale for each cluster. Arrows indicate cases
where neighbouring sources were located within the same WRF grid cell. The cell colours
correspond to emission types (cf. Table 4.2 and Fig. 4.2). Blue are active mines, red are
inactive mines, green are non-reporting mines, orange are Czech mines that also do not
report, and purple are power/cogeneration plants.



B Inverse Modelling for Regional
CH, Emissions

This chapter provides a concise summary of the theoretical background of inverse
modelling, based mainly on Peters et al. (2005) and the Lectures on Inverse Modelling
by Jacob (2007), where the reader can find a more detailed explanation. The
presentation follows their notation and concepts and is included here to give the
reader a self-contained overview of the Bayesian formalism applied in this thesis.

In this chapter, inverse modelling is introduced as a method to estimate regional
CH, emissions based on observational data. This is achieved by combining prior
estimates of emission rates with atmospheric concentration measurements. Inverse
modelling leverages numerical models to connect prior estimates, such as bottom-
up models or expert assessments, with atmospheric observations. These models
represent atmospheric processes, such as transport, chemical reactions, and radiative
transfer, allowing for a comprehensive simulation of how emissions relate to observed
concentrations.

It is assumed that combining the two pieces of information will yield a result
closer to the truth. In many inverse modelling applications, observational data often
lack the density or spatial coverage needed to fully constrain all emission sources.
Even if the flight patterns of the measurement field campaign are designed to notably
enhance observational coverage, prior knowledge remains necessary to addressing
potential gaps and ensuring a robust solution.

This approach is mathematically grounded in Bayes’ Theorem, which is the frame-
work for updating prior knowledge with new observational data. Bayes’ Theorem
allows to determine the conditional probability of a state vector x given the observa-
tion vector y. In the mathematical formalism, the state vector x represents scaling
factors that are applied to the prior CH, emission rates q,, while the observation
vector y contains the XCH, measurements of CHARM-F.
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Table B.1: Reference list of mathematical symbols used in this work, along with their
names, units, and dimensions. Adapted from Peters et al. (2005).

Symbol Name Unit Dimension

dp prior emission rates keg/s S

Xn state vector - S
x mean state vector - S
n ensemble member index - 1

x', state vector deviation - S

P, prior state covariance matrix - S xS
P, posterior (analysed) state covariance matrix - S xS
D state deviation matrix - Sx N
H observation operator - — nmol/mol S—M
H linear observation operator (matrix form) - — pmol/mol S x M
y observation vector pmol/mol M

H(x) simulated observation vector nmol/mol M
R observation-error covariance matrix (nmol/mol)? M x M
K Kalman gain matrix pmol/mol — - M xS
K’ Kalman deviation gain matrix pmol/mol — - M xS

CHy(n,t,z,y,2) | simulated CH, field nmol/mol Nx WRF grid

B.1 Bayesian Formalism

The foundation in inverse modelling is the relation between the observation vector
y [dimension M| and the state vector x [S] through the observation operator H
[S — M], with a model-data-mismatch error & [M]:

y=H(x)+¢e with &~N(0,R) (B.1)

The so-called observation operator H relates x to y by incorporating atmospheric
transport modelled by WRF-Chem, as well as the interpolation and vertical in-
tegration that map the gridded CHy(n,t,x,y, z) field to simulated XCH, values.
Internally, H applies the scaling factors x to the prior emission rates q,, maps
the emission rates to the WRF grid, and simulates their atmospheric transport.
Finally, interpolation and vertical integration are performed to convert the three-
dimensional CHy(n, t,z,y, z) fields into simulated column-averaged mole fractions
XCHy(n,t) = yn.

The so-called model-data mismatch error € represents the uncertainty introduced
by discrepancies between modelled and observed data. This error arises from various
sources, including the limitations of the atmospheric transport model, inaccuracies
in the observation operator (o), and errors in the observations themselves (o). It
quantifies the expected discrepancy between observations and simulation, accounting
for uncertainties in both the observations and the modelling process.

_ /42 2
£ = ay—l—aH

The model-data mismatch error € is assumed to follow a Gaussian (normal) distri-
bution with a mean of zero and a covariance matrix R (e ~ NM(0,R)). It is further

(B.2)
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assumed that the observational errors are uncorrelated, i.e. that R is a diagonal
matrix. These assumptions facilitate the numerical solution.

The likelihood function P(y|x) quantifies how likely the observations y are for
a given state vector x, considering the uncertainties arising from the model and
observations, which are mathematically embodied in the covariance matrix R:

1 1 TR -1
Pr) = e onp (-3 - KR - M) (B3

In addition to the model-data mismatch error, uncertainties in the prior emission
estimates n are also taken into account. Again, they are assumed to be normally
distributed with a mean of zero and a covariance matrix P:

Xx=x,+1n with n~N(0,P,) (B.4)

P(x) is the prior PDF for the state vector x described by a Gaussian distribution:

PX) = ——exp (—;(x —x,) TP (x xp)) (B.5)

y (2m)7 [Py

The prior distribution P(x) reflects our initial knowledge of the state vector x, while
the likelihood function P(y|x) quantifies the probability of observing y given the
state vector x. To derive Bayes’ Theorem, the joint probability density function
P(x,y) needs to be considered. It quantifies the probability of both the state vector x
and the observations y being in specific ranges [x, x + dx, y, y + dy|. This joint
probability can be expressed in two equivalent forms:

P(x,y)dxdy = P(x)dxP(y|x)dy

or

P(x,y)dxdy = P(y)dy P (x]y)dx

Equating these two expressions yields:

Plaly) = YR

The term P(x|y) is the posterior PDF, representing the updated knowledge of the CHy
emission rates, given by the product qpx, after considering the XCH, observations y.
To find its MAP solution the equation VyP(x]y) = 0 needs to be solved, where Vy
represents the gradient operator with respect to the state vector x. The denominator
P(y) ensures proper normalization and as it is independent of x it can be ignored.
Inserting equations (B.3) and (B.5) leads to:

P(xly) o exp (=5 [l = HEVR My = 1) + (=) 'P (k=) ) (B.T)

(B.6)

Because the exponential function is strictly monotonously increasing, finding the
MAP solution is equivalent to minimizing the negative of the argument of the
exponential function and thus defining the Bayesian cost function J(x):
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1 1
J(x) = 5 = HE) Ry = Hx)) + S(x =) Pl (x =) (B.8)
This cost function J(x) balances the model-data misfit (y — H(x))TR~}(y — H(x))

and the deviation from the prior (x —x,) P! (x —x;).

B.2 Maximum a Posteriori Solution

The derivation of the maximum a posteriori (MAP) estimate builds on the Bayesian
framework introduced in the previous section. This section slightly adapts the
approach by substituting the observation operator H with its linearized matrix
form, H. The role of this linearization, its implications for theoretical formulations,
and its circumvention in ensemble-based approaches are discussed later in Sect. B.3.
However, for now we proceed with the linearized form H, simplifying the mathematical
formulation, which is particularly valuable for deriving analytical and numerical
results. The Bayesian cost function J(x), incorporating the linearized operator H, is
expressed as:

Jx) = 3y ~Hx)"R Uy ~H) + (x-x)B x-x,)  (BY)

Setting the derivative of J(x) with respect to x to zero provides the condition to
solve for the MAP solution x,, here referred to as the analysed state vector or a
posterior. In this work, the subscript “a” denotes the result after assimilating all
observations in a single analysis step. In the literature, particularly in time-stepping
or sequential assimilation frameworks, the same subscript is often used to indicate an
“advanced” state, reflecting propagation in time. Since this study does not include
such a forecast step, the interpretation as “analysed” is more appropriate.

2 = %)™y~ (v~ Hx)"RVH L0 (B.10)

X=X,

By rearranging terms and applying standard matrix operations, the equation is
solved for the posterior state vector x,:
(X0 — xp)TP;1 = (y — Hx,)'"R™'H (B.11)
x, —x, = P,H'R ' (y — Hx,)
Xa —Xp = PBH'R™ ((y — Hxp) — H(xa — ;)
x, —x, + P,H'R 'H(x, —x,) = P, H'R(y — Hx,)
(T+P,H'R'H) (x, — x,) = P,H'R ™ (y — Hx,)
x, =%, + (I+P,H'R'H)  P,H'R(y - Hx,)

=K
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The bracketed expression is equivalent to the widely used definition of the Kalman
gain matrix, K, as e.g. defined in Peters et al. (2005):

K= (I+P,H'R'H) PH'R"
~P,H" (I+R'HP,H") R~
K=PH" (R+HPH")

> push-through identity

> inverse of a product rule

(B.12)

From the first to the second row, (I+AB)'A = A (I+BA)™' is applied (push-
through identity, Boyd and Vandenberghe 2018), which allows P,H* to be moved
to the front of the expression. From the second to the third row, the inverse of a
product rule BT'A™! = (AB)! is used. This permits the simplification of the inverse
of the matrix product by rearranging R~! and the remaining terms.

Hence, the posterior of the state vector can be expressed in terms of the Kalman
gain matrix, K (Eq. B.12), which governs the relative influence of the prior and the

observations: .
xo =X, + P,H" (R +HP,H")  (y — Hx,) (B.13)

K

The Kalman gain matrix K optimally weights the increment to the prior state vector
by the observations based on the observational uncertainty and the prior covariance.
The posterior covariance matrix P, defines the width of the posterior PDF
within the Bayesian framework. It is associated with the exponent of the posterior
PDF, represented by the quadratic term (x — x,)TP;*(x — x,). Correspondingly, P,
quantifies the multidimensional “curvature” around the advanced state vector x,.
According to this notion, we equate the second derivative 9%/9x? of the Bayesian
cost function J(x) (Eq. B.9), to the second derivative of §(x — x,) TP (x — X,):

P! = H'R'H+P,! (B.14)

P, =(H'R'H+P;")

P, = P,-PH"(R+HPH") HP,
K

In the last line (A + UCV) ™' = A1 —A~'U (C~! + VA~'U) ' VA~! was used, which
is the Woodbury identity (Henderson and Searle 1981). All together the equations
for updating the state vector and covariance matrix are given by:

> Woodbury identity

x, = X+ K(y — Hx,) (B.15)
P, =P,~KHP,

In summary, the Bayesian inverse modelling framework provides a systematic way to
combine prior knowledge with observational data, yielding an posterior state vector
X, that minimizes the combined mismatch with both prior and observations. The
Kalman gain matrix, K, balances the influence of the prior and observations based on
their respective uncertainties. The a posteriori emission rates are then obtained by
applying the optimized scaling factors x, to the prior emission rates, i.e. Q. = qpXa.
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B.3 Ensemble Kalman Filter

The analytical framework of Bayesian inverse modelling becomes computationally
demanding when applied to large-scale problems with extensive state vectors, such
as global inversions of CH, emissions. In these scenarios, the state vector x, defined
across a global grid, can consist of a huge number of elements (e.g. S ~ O(10°) for
a horizontal resolution of ~ 1°). Computational costs are particularly dominated
by two factors: the evaluation of the observation operator H, which scales with the
size of the state vector and the number of observations ([M x S| matrix), and the
manipulation of covariance matrices P, which scale as [S x S| matrices. As S grows
large, both terms contribute significantly to the computational burden.

To address these challenges, ensemble data assimilation systems, such as the
Carbon Tracker Data Assimilation Shell (CTDAS) (van der Laan-Luijkx et al.
2017; Peters et al. 2005), represent the state vector and its covariance matrix in a
reduced-dimensional ensemble space. This is achieved by sampling the state vector
PDF (with mean X and covariance P) with an ensemble of state vectors x,,, where
n € {1,2,...,N}. Each ensemble member represents a possible realization of the
state, composed of a mean state and deviations from the mean. By using N < S,
the computational burden is significantly reduced while still capturing the essential
statistical properties of the system. In this approach, the covariance matrix P is no
longer computed explicitly as a full [S x S] matrix. Instead, the ensemble members
are used to approximate P, dramatically reducing the dimensionality of the problem.

While the dimensionality of the state vector in this study would in principle allow
for an analytical inversion, the use of an ensemble-based approach was a deliberate
and strategic choice. The decision to implement the ensemble Kalman filter (EnKF')
within CTDAS was motivated not primarily by computational necessity, but by
the broader goal of establishing and testing a scalable inversion framework suitable
for more complex future applications. In particular, upcoming studies of diffuse
and spatially uncertain sources — such as wetland CH, emissions — will require
ensemble-based methods capable of handling high-dimensional state vectors and
non-linear processes. Applying the method here, in a relatively controlled and
interpretable setting, enabled methodological development and validation under
realistic but manageable conditions.

Furthermore, ensemble-based formulations such as CTDAS offer increased flexi-
bility for incorporating spatial correlations and uncertainty estimates, and are well
suited for integration with transport models such as WRF. While this study focuses
on a short observational window and a moderate number of sources, the adopted
framework provides a foundation for future work where computational scalability
and methodological robustness will be of greater relevance.

Construction of the Ensemble

The ensemble is constructed to reflect the prior knowledge of the state vector. Each
ensemble member is a realization of a Gaussian distribution. Specifically, the mean
of each state vector element X, is set to a scaling factor of 1 (i.e. prior emission
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estimates are used), while the uncertainties and correlations in the prior determine
the deviations x’,, of the n-th member. These deviations follow a multivariate normal
distribution. The state vector of the n-th ensemble member is expressed as:

X, =X+x, (B.16)

In the WRF-Chem forward simulation, each ensemble member is represented as a
separate tracer, allowing the simulated observations Hx,, for each ensemble member
to be directly accessed from the simulation’s output files.

The deviations of the ensemble members are organized into the columns of the
state deviation matrix D, providing a square-root representation of the covariance
matrix P:

P=DD" with D= \/% X %> . X (B.17)

The Kalman gain matrix K, used to compute the updates, is approximated in
the ensemble framework using;:

T 1 / / / ! / / T
HPH zm[Hxl Hx', ... H¥y|[H¥, Hx, ... H¥y] (B.18)
PH™ ~ — X, ¥ x'y| [Hx', H¥ Hx'y]" (B.19)
~ N_1 1 2 ... N 1 2 ... N .
Each entry Hx’,, denotes one column of ensemble modelled CH, deviations in obser-
vation space.

CTDAS processes the observations iteratively one after the other. For diagonal
model-data mismatch matrices R and without localization (see below), the sequential
assimilation is mathematically equivalent to assimilating all observations at once,
and simplifies the computation: Equation B.18 thus simply describes a dot product
of two vectors and HPHT becomes a [1 x 1] scalar value, while PHT is a [S x 1]
vector. Through Equations (B.18) and (B.19), the Kalman gain matrix K linearly
maps observed quantities to state vector elements as an average over all the ensemble
members. The Kalman gain matrix K updates the ensemble mean as in Eq. B.13.
The ensemble deviations are updated independently as (Whitaker and Hamill 2002):

-1
: R
XIa,n = X,p,n — leX’p,n with ¥ =K <1 + }W) (BQO)

The updated mean state and ensemble deviations resulting from assimilating one
observation serve as the prior for the next. This process is repeated iteratively
until all observations are assimilated. To account for the state vector updates
from previously assimilated observations, the simulated mean and deviations of all
remaining observations must be updated accordingly. One approach to achieve this
would be to rerun WRF-Chem for each observation, however, this would be very
computationally intensive. Instead, they are updated using the previously calculated
Kalman gain matrix K, which is equivalent to Equations B.15 and B.20 but in
observation space:

,H(ia)m =

(Xp)m +H, K (y — Hx,) (B.21)
HE D m x'

H
HX'p)m — HokH(X',)
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Here, H,,, represents the matrix form of the observation operator for observation m,
and k’ is derived in the same way as in the update of the deviation of the state vector
(Eq. B.20). Calculating the term H,, K leads to H,,P,H" in the numerator of the
Kalman gain matrix (Eq. B.12). This results in a scalar value derived from Eq. B.18,
where the first term on the right-hand side corresponds to the simulated deviations
of the CH, concentrations, which still need to be assimilated, while the second term
corresponds to the values associated with the observation currently being assimilated.
If the transport model is perfectly linear, and in the absence of localization (see
below), the update by Eq. B.21 is exact. Otherwise, it is an approximation.

In the ensemble-based implementation of the Kalman filter, the explicit construc-
tion of the linearized observation operator H is unnecessary. Instead, by running the
atmospheric transport model N times — once for each ensemble member n — the
observation vectors H(x,) are directly obtained. These ensemble outputs are then
used to compute the terms required for the Kalman gain matrix K, such as HPH"
and PH™. While the linearized operator H was introduced earlier for mathematical
clarity, its explicit computation is avoided in practice. This distinction is discussed
further in the subsection below.

The EnKF approach offers several advantages. First, by eliminating the need
to compute or store H and large covariance matrices, the computation and storage
demands are reduced significantly. Second, it avoids the need to explicitly linearize
‘H, enabling non-linear processes to be incorporated via direct forward simulation.
Nevertheless, the ensemble-based approach still relies on the assumption that non-
linearities remain moderate within the ensemble spread. Consequently, the equations
derived earlier, though presented in their mathematical form for clarity, are seamlessly
implemented within CTDAS-WRF by leveraging ensemble members and direct
forward simulation. By operating directly on ensemble-based quantities, this method
ensures efficient computation while preserving the statistical properties necessary
for state vector optimization. The sequential implementation further simplifies the
process, as each observation is assimilated iteratively, updating both the state vector
and the covariance structure without explicit matrix-inversion of R + HP H™.

Comment on the Linearization of the Observation Operator

In classical formulations of Bayesian inverse modelling, the observation operator H is
often linearized to facilitate analytical derivations. This yields the Jacobian matrix H,
which describes the sensitivity of observations to perturbations in the state vector
and enables matrix operations such as transposition and inversion.

In this study, however, no explicit linearization is performed. Instead, the
ensemble-based implementation directly uses the full (potentially non-linear) observa-
tion operator H by perturbing the state vector and propagating these perturbations
through the forward transport model (WRF-Chem). As a result, ensemble-based
methods eliminate the need to construct the matrix H explicitly, while still enabling
the effective computation of terms such as HPH" or PHT.

However, while ensemble methods do not require a linearized operator, they
rely on the assumption that H behaves approximately linearly within the range
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spanned by the ensemble. Strong non-linearities in H can lead to biased estimates
or filter divergence if this assumption is violated. In this study, the transport model
is treated as sufficiently linear over the ensemble spread, consistent with standard
EnKF assumptions.

Localization

Each state vector element s and its ensemble perturbations 7, are generated inde-
pendently. However, due to the finite size of the ensemble, the correlation values are
not exactly zero, introducing what are known as spurious correlations between state
vector elements. The observation operator H projects the state vector perturbations
x’ into the observation space. Applying H results in simulated perturbations in
the observations, H(x'). A single observation may be influenced by multiple state
vector elements (e.g. an observation located within the overlapping plume of several
ventilation shafts), naturally creating meaningful correlations between the simulated
observation and these state vector elements. However, spurious intra-state vector
correlations can propagate from the state vector space into the observation space,
even when no true physical relationship exists. In ensemble-based Kalman filter
methods, such spurious correlations degrade the analysis quality by linking unrelated
state vector elements and observations, introducing noise rather than meaningful
information.

Localization addresses this issue by applying a factor between 0 and 1 to the
Kalman gain matrix K, thereby trying to eliminate erroneous state vector updates
that are caused by spurious correlations. When the localization coefficient is 0,
the state vector element sticks to its prior estimate for that specific observation.
Conversely, when the localization coefficient is 1, the Kalman gain fully incorporates
the covariance information, ensuring that observations contribute appropriately to
the state vector update.

Traditional localization in EnKF methods often relies on spatial proximity to
determine the influence of observations on state vector updates. This approach
assumes that observations closer to a state vector element (emission source) are more
relevant and assigns them localization coefficients closer to 1, effectively reducing
the impact of spurious correlations over long distances (Peters et al. 2005, 2007).

Localization has been shown to significantly improve the robustness and accuracy
of ensemble methods. For example, Peters et al. (2007) demonstrated that applying
localization enables ensemble sizes as small as 150 members to perform effectively
in their case, whereas >400 ensemble members were required without localization.
This conclusion was supported by their analysis of CO, surface flux inversions. By
focusing on significant correlations, localization reduces the need for larger ensembles,
thereby improving computational efficiency.

That being said, in this work, however, the localization is not determined based on
spatial distance, but rather on assessing whether the correlation between a simulated
observation and a state vector element is statistically significant. In the so-called
CT2007 implementation, the localization is assigned the binary value of 0 or 1, based
on a Student’s t-test. The critical t-value corresponds to a two-tailed test with a



130 B Inverse Modelling for Regional CH, Emissions

95 % confidence interval. For an ensemble size of 150 members, as used in this study,
the critical t-value is 1.976.

B.4 Prior Emissions for Non-Reporting Shafts

While most coal mine ventilation shafts in the USCB are associated with reported
emission rates in the CoMet ED, a subset of sources lack such data entirely. These
include Active Coal Mines no reported emissions (ACMX) as well as Active Coal
Mines in Czechia (ACMCZ), where no reporting obligation exists under the E-PRTR.
As discussed in Sect. 4.1, even abandoned shafts can continue to emit CH,, and
Sect. 4.3.1 demonstrates that plumes originating from several of these non-reporting
shafts are clearly detectable in the CHARM-F observations — e.g at 11:08 CEST
downwind of the Czech cluster (see Fig.4.9a), or at 11:32 CEST near the Ziemowit
complex (see Fig.4.11c).

To avoid the methodological issue that zero prior emissions would inhibit any
posterior updates, approximate prior values were assigned to these sources, based
on rough production estimates and a emission factor of 11.83 kg CH, emission per
tonne of coal produced. This factor is reported by Fiehn et al. (2020) as an average
for the USCB region. The affected shafts, along with their assigned prior emission
rates, assumed coal production volumes, and sources used for their derivation, are
summarized in Table B.2.

For Czech shafts, shaft-specific prior emission rates reported by Fiehn et al.
(2020) were adopted where available. For Frenstat A, the same value as for CSM was
assumed, while Lazy A was assigned a lower estimate due to the absence of reported
data.

For a group of non-reporting shafts north of Katowice either historical production
figures or conservative lower-limit assumptions were used. For example, the PowstSla
mine reported a monthly coal production of 11kt in 2016, cited by Wikipedia (last
access: 13 July 2025), which references the operator’s website (accessed 2 February
2016). This corresponds to a prior of 0.28t h™! per shaft and was also applied to
similar cases lacking data (cf. Tab. B.2).

For the Janina and Ziemowit mining complexes, production-based estimates were
derived from publicly accessible sources. Janina and Jaworzno are operated by the
same company, Tauron Wydobycie S.A. For these sites, values were taken from
Wikipedia (last access: 13 July 2025), which cites Grudzinski 2005. For Ziemowit
and the adjacent Piast IV shaft, the source was the archived operator webpage via
the Wayback Machine (last access: 13 July 2025). These sources suggest production
capacities consistent with emission rates of 1.22th™! (Janina A, B and Jaworzno A)
and 1.52th™! (Ziemowit A-C and Piast IV).

It is important to emphasize that these assigned prior emissions are not based on
rigorous measurement or reporting data, and should not be interpreted as accurate
flux estimates. Their purpose is solely to enable participation in the inversion
framework, which requires non-zero prior values. As discussed in Sect. 4.2.1, a
global relative uncertainty of 100 % was assigned to all prior emissions. This allows
the inversion to downscale these rough estimates to near-zero levels in the absence


https://de.wikipedia.org/wiki/Kopalnia_W%C4%99gla_Kamiennego_Powsta%C5%84c%C3%B3w_%C5%9Al%C4%85skich#cite_note-2
http://www.ekoplus-kopalnia.pl
https://en.wikipedia.org/wiki/Janina_Coal_Mine#cite_note-1
https://web.archive.org/web/20100527213918/http://www.kwsa.pl/22,zie,Oddzia%C5%82%20KWK%20Ziemowit.html
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of observational support. Conversely, if plumes are detected, the inversion can
adjust the corresponding fluxes accordingly. Nevertheless, the posterior estimates for
these non-reporting shafts remain sensitive to the assumed prior, especially when
observational constraints are weak. They should therefore be interpreted with caution
and considered indicative rather than definitive.

Table B.2: Prior emission assumptions for non-reporting coal mine shafts. The estimated
prior is based on rough production volumes and a regional emission factor of 11.83kgt™!
(cf. Fiehn et al. 2020). Shafts without reported coal extraction are assigned proxy values
(see text).

Coal Prior
Shaft Type  extraction emission Method Reference
in Mta—! in th™!

CSA A ACMCZ 2.36 3.18 emis. factor Fiehn et al. (2020)
CSM A ACMCZ 0.75 1.01 emis. factor Fiehn et al. (2020)
CSM B ACMCZ 0.75 1.01 emis. factor Fiehn et al. (2020)
Darkov A ACMCZ 1.65 2.23 emis. factor Fiehn et al. (2020)
Paskov A ACMCZ 0.315 0.42 emis. factor Fiehn et al. (2020)
Paskov B ACMCZ 0.315 0.42 emis. factor Fiehn et al. (2020)
Frenstat A ACMCZ - 2.02 proxy -

Lazy A ACMCZ - 0.68 proxy -
PowstSla A ACMX 0.011 0.28 emis. factor EKO-PLUS (2016)
PowstSla B ACMX 0.011 0.28 emis. factor EKO-PLUS (2016)
Barbara A ACMX - 0.28 proxy -

Bobrek A ACMX - 0.28 proxy -
Boleslaw 11 ACMX - 0.28 proxy -
Centrum A ACMX — 0.28 proxy —
Pstrowski A ACMX - 0.28 proxy -

Piekary A ACMX - 0.28 proxy -

Piekary B ACMX - 0.28 proxy -

Piekary C ACMX - 0.28 proxy -

Janina A ACMX 0.933 1.22 emis. factor Grudziniski (2005)
Janina B ACMX 0.933 1.22 emis. factor Grudziniski (2005)
Jaworzno A ACMX 0.933 1.22 emis. factor Grudzinski (2005)
Piast IV ACMX 1.125 1.52 emis. factor KW S.A. (Wayback, 2010

Ziemowit A ACMX 1.125 1.52 emis. factor KW S.A. (Wayback, 2010
Ziemowit B ACMX 1.125 1.52 emis. factor KW S.A. (Wayback, 2010
Ziemowit C ACMX 1.125 1.52 emis. factor KW S.A. (Wayback, 2010

— =
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https://de.wikipedia.org/wiki/Kopalnia_W%C4%99gla_Kamiennego_Powsta%C5%84c%C3%B3w_%C5%9Al%C4%85skich#cite_note-2
https://web.archive.org/web/20100527213918/http://www.kwsa.pl/22,zie,Oddzia%C5%82%20KWK%20Ziemowit.html
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