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Abstract

Connectomics is a field dedicated to the high-resolution analysis of neural circuits. Making use of nanome-
ter scale resolution provided by volume electron microscopy (EM), analysis allows information on the level
of individual synapses and other subcellular structures.

This thesis presents a comprehensive analysis of a connectomic dataset from the songbird brain,
specifically Area X—a nucleus involved in song learning and part of the avian basal ganglia. The work
includes improvements to the processing pipeline, morphological characterization of neurons and glia,
and detailed analyses of synaptic connectivity and subcellular organelles.

To facilitate this analysis, the existing EM data processing pipeline was extended to include classifica-
tion of glial cells, migratory neurons, and three newly described GABAergic interneurons. Additionally,
to enable analysis of further subcellular structures, the endoplasmic reticulum (ER), the Golgi apparatus
(GA), and individual synaptic vesicles were predicted. This culminated in the first dataset that, along-
side dense reconstructions of over 8,500 neurons, includes densely segmented synapses, mitochondria, ER,
GA, and individual vesicles.

Mitochondria, vesicles and axonal ER densities were found to correlate with known firing rates and
help to bridge information between EM and functional methods.

The dataset provides the first connectomic overview of basal ganglia circuitry in any species. Analyses
revealed analogues of the direct, indirect, and hyperdirect pathways. In terms of synaptic connectivity,
the direct pathway is the strongest pathway through Area X, while the hyperdirect pathway appears to
be its strongest antagonist. The indirect pathway is poorly segregated from the direct pathway and also
weak in terms of synaptic connectivity. Since one cell type of the indirect pathway, the GPe, is more
involved in a feedback loop with novel GABAergic interneurons, the results challenge the idea of basal
ganglia connectivity being mainly in the form of feedforward pathways.

As not all cell types transmit information via synaptic transmission, individual vesicles were used to
further analyze the possibility of volume transmission. The presence of vesicles outside synaptic loci was
common in cholinergic and dopaminergic axons, consistent with their reported use of volume transmission
and their surroundings were in line with a global signal.

Finally, dense reconstructions of glial cells and migratory neurons allowed for organelle-level com-
parisons, providing insight into their metabolic demands. To highlight their role in neuronal plasticity,
contact sites with neurons were analyzed as a first proxy for neuron-glia interactions.

In summary, this thesis presents the first dense connectomic analysis of an avian basal ganglia nucleus,
integrating synaptic, morphological, and subcellular data. These findings not only provide new insights
into the structure and function of Area X and into connectivity within the vertebrate basal ganglia, but
also demonstrate how extending connectomic pipelines to include organelles and non-neuronal cells can
unlock richer biological interpretations from EM datasets.



Zusammenfassung

Das Forschungsfeld der Konnektomik beschéftigt sich mit der Analyse neuronaler Schaltkreise basierend
auf Daten aus der volumetrischen Elektronenmikroskopie (EM). Diese ermoglicht eine Auflésung im
Nanometerbereich und damit die Untersuchung auf der Ebene einzelner Synapsen und subzellulérer
Strukturen.

Diese Arbeit préasentiert eine umfassende Analyse eines konnektomischen Datensatzes aus dem Gehirn
des Zebrafinken, speziell aus Area X — einem Hirnareal, das fiir das Erlernen von Gesang notwendig und
Teil der avianen Basalganglien ist. Die Arbeit umfasst Verbesserungen der Datenverarbeitungspipeline,
die morphologische Charakterisierung von Neuronen und Gliazellen sowie detaillierte Analysen der synap-
tischen Konnektivitit und subzelluldrer Organellen.

Zur Durchfiihrung dieser Analyse wurde die bestehende EM-Verarbeitungspipeline erweitert, um die
Klassifikation von Gliazellen, migrierenden Neuronen und drei neu identifizierten GABAergen Interneu-
rontypen zu ermoglichen. Um Informationen von weiteren subzelluldren Strukturen analysieren zu kon-
nen, wurden auch das endoplasmatische Retikulum (ER), der Golgi-Apparat (GA) und einzelne synap-
tische Vesikel vorhergesagt. Das Ergebnis ist der erste Datensatz, der neben der dichten Rekonstruktion
von {iber 8.500 Neuronen auch die vollstédndige Segmentierung von Synapsen, Mitochondrien, ER, GA
und Vesikeln umfasst.

Die Dichten von Mitochondrien, Vesikeln und axonalem ER korrelierten mit bekannten Feuerraten
und koénnen damit die Liicke zwischen EM-Daten und funktionellen Methoden weiter schliefien.

Der Datensatz bietet erstmals einen umfassenden konnektomischen Uberblick iiber die Verschaltung
der Basalganglien. Analysen identifizierten Analoga der direkten, indirekten und hyperdirekten Signal-
wege. Der direkte Weg stellt den stérksten Verschaltungsweg durch Area X dar, wihrend der hyperdirekte
Weg als ihr stérkster Antagonist fungiert. Der indirekte Weg war nur schwach ausgeprégt und nicht klar
von dem direkten getrennt. Da ein Zelltyp des indirekten Signalwegs, GPe, vor allem in Riickkopplungss-
chleifen mit den neu beschriebenen Interneuronen eingebunden ist, stellen diese Ergebnisse die klassische
Vorstellung von vornehmlich vorwérts-organisierten Signalwegen in den Basalganglien in Frage.

Da nicht alle Zelltypen Informationen ausschlieRlich iiber synaptische Ubertragung weitergeben, wur-
den einzelne Vesikel genutzt, um mégliche volumenbasierte Ubertragungsmechanismen zu untersuchen.
Vesikel aufserhalb von Synapsen waren insbesondere in cholinergen und dopaminergen Axonen héufig,
was zu ihrer vermuteten Rolle in der Volumeniibertragung passen wiirde. Zelltypen und Synapsen in
der Umgebung der Vesikel auferhalb der Synapsen waren entsprechend ihrer H&iufigkeit im Datensatz
vertreten, was auf ein global wirkendes Signal hindeutet.

Abschliefsend ermoglichten die dichten Rekonstruktionen von Gliazellen und migrierenden Neuronen
erstmals organellbasierte Vergleiche, die Riickschliisse auf den Energiebedarf dieser Zelltypen zulassen.
Um ihre Rolle in der neuronalen Plastizitdt zu beleuchten, wurden Kontaktflichen mit Neuronen als
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erster Proxy fiir neuron-gliale Interaktionen analysiert.

Zusammenfassend prasentiert diese Arbeit die erste konnektomische Analyse eines avianen Basalganglien-
Kerns, in der synaptische, morphologische und subzelluldre Daten integriert wurden. Die Ergebnisse
liefern neue Einblicke in die Struktur und Funktion von Area X sowie in die Konnektivitdt der Basalgan-
glien bei Wirbeltieren und zeigen, wie die Einbindung von Organellen und nicht-neuronalen Zelltypen die
Aussagekraft von EM-Datensétzen erweitern kann.
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Abbreviations

ACh acetylcholine

ACSF artificial cerebrospinal fluid

AFP anterior forebrain pathway

AIS axon initial segment

ATLUM Automatic Tape-collecting Lathe Ultramicrotome

ATP adenosine triphosphate
BBB blood-brain barrier

CB cacodylate buffer
CNN convolutional neural networks

CR+ calretinin-positive interneurons

DA dopamine

DLM medial portion of dorsolateral thalamus
dMSN direct pathway medium spiny neuron
dph days post-hatch

DTT diffusion tensor imaging

ECS extracellular space
EM electron microscopy

ER endoplasmic reticulum

FFN flood-filling networks
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FIB focused ion beam

F'S fast-spiking neurons

GA Golgi apparatus

GABA ~y-aminobutyric acid
GCIB gas cluster ion beam
GPe globus pallidus externus

GPi globus pallidus internus
iMSN indirect pathway medium spiny neuron

LMAN lateral magnocellular nucleus of the anterior nidopallium
LTD long-term depression
LTP long-term potentiation

LTS low-threshold spiking neurons

mSEM multibeam scanning electron microscopy

MSN medium spiny neuron

NGPF neurogliaform neurons
NSCs neural stem cells

NXIIts tracheosyringeal branch of the hypoglossal nerve
OPC oligodendrocyte precursor cell
PFA paraformaldehyde

RA robust nucleus of the arcopallium
RFC random forest classifier
RFECYV recursive feature elimination with cross-validation

RPE reward prediction error

SA spine apparatus

SBEM serial block-face electron microscopy
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Abbreviations

SEM scanning electron microscopy
SNc substantia nigra pars compacta
SNr substantia nigra pars reticulata

STN subthalamic nucleus

TAN tonically active neurons
TCH thiocarbohydrazide

TEM transmission electron microscopy

VP ventral pallidum

VTA ventral tegmental area
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Introduction

To navigate our world and all of its different stimuli, we first need to learn. Learn what all things we
hear, see, smell and feel mean, how we move through this world and how we communicate with others.
This makes learning the main task during development of most animals and continues into adulthood to
maintain and expand our behavioral repertoire.

Learning all these different behaviors is no simple task and understanding how learning is facilitated
in the brain is one of the biggest challenges in neuroscience. There are several ways to study learning;
one well-known method is conditioning tasks. In these tasks, animals—often mice—learn to perform a
specific action, such as pressing a lever. When they perform the action correctly, they receive a reward,
such as water, sugar water, or fruit juice. Monitoring different brain regions via electrophysiology or
imaging techniques during or after learning this task provides insight into their role in learning. For
example, monitoring dopamine neurons during one of these tasks showed that they signal the prediction
of rewards and errors in this prediction (Schultz et al. 1997), key concept introduced further in section
1.3.2.

While these studies are essential for understanding learning, they only provide insight into controlled
environments. They do not necessarily explain all aspects of innate behaviors, such as learning how to
move or communicate with peers.

A common model organism to study learning of an innate behavior, song learning, is the zebra finch.
Zebra finches use their songs for courtship. Listening to the song as it improves makes it easy to track
the learning process.

The goal of this thesis is to contribute to our understanding of the learning of innate behaviors by
studying them in songbirds. The focus is on Area X, a part of the basal ganglia commonly associated
with learning in vertebrates. Unlike the examples above, I am not studying this in behavioral assays.
Instead, I am examining it on a much smaller scale to study the connection motifs that underlie the
function of this critical brain region. The field dedicated to studying neuronal connections in detail is
called connectomics. In the following paragraphs, I will introduce all of the aforementioned aspects of
this thesis.

1.1 Cellular and subcellular neurobiology

Analyzing a specific brain region in detail requires paying special attention to its cells. Santiago Ramon
y Cajal presented the idea that the brain consists of individual cells in 1888 as the "neuron doctrine"
(Lopez-Munoz et al. 2006). Through his detailed drawings of neurons, Cajal demonstrated the significant
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morphological differences between different types of neurons.

In addition to adult neurons, which process and distribute information via electrical and chemical
signals, the brain consists of migratory neurons and developing neurons that migrate through the brain,
as well as different types of glial cells. Glial cells maintain the environment, nourish neurons, influence
neuronal plasticity, act as immune cells, and comprise the blood-brain barrier. Originally, all of these cell
types were called "glia" (Old Greek for "glue") due to ignorance of their diverse tasks and importance for
brain function. Further studies revealed their different morphologies and allowed for further classification.

1.1.1 Neurons

Neurons are necessary for processing information by communicating via electrical and chemical signals.
They usually consist of three compartments: 1) the dendrite, 2) the soma (cell body), and 3) the axon
(see figure 1.1). Neuronal cell types differ in their morphology and their neurotransmitters.

Neuron structure

Neurons receive incoming signals from other cells on either the dendrites or the soma. The dendritic tree
consists of several primary dendrites that branch further after emerging from the soma. The extent of
branching varies by cell type (see figure 1.1).

A dendrite consists of a dendritic shaft and spines. Dendritic spines develop from filopodia, which
are long, thin protrusions that vary in shape and size (Hering et al. 2001). A classical mushroom-shaped
spine consists of a thin neck and a larger head. While synapses also connect to the dendritic shaft, spines
can provide separate microcompartments for Ca?" responses and allow for easier adaptions in synapse
size. Spines can harbor one or several incoming synapses. When a spine has a single synapse, its head
volume is proportional to the synaptic area (Harris et al. 1989, Holler et al. 2021).

The soma, the cell body, contains the nucleus as well as several other organelles, similar to other cell
types. It is the main site of protein synthesis and maintains other cellular functions, while also processing
incoming signals. If these signals lead to spiking in the neuron, an action potential is generated in the
axon initial segment (AIS).

The AIS is the first region of the axon. Action potentials generated here are transmitted across the
axon via either a myelinated or unmyelinated part (see figure 1.1, Debanne et al. 2011). Myelination,
which acts as insulation around the axon to speed up signal transmission, is provided by a glial cell type
called oligodendrocytes. To transmit signals to other cells, the axon splits into branches that synapse
onto cells via axon boutons or varicosities, which are larger swellings along the axon (en passant boutons)
or at its end (terminal boutons).

Neuron types

The morphology of neurons differs in all three compartments. They vary in general size, dendrite and
axon branch patterns, and spine density.

The brain consists of multiple regions that can be divided into functional units called nuclei. These
nuclei contain several different types of cells. Neurons that project out of their regions to transmit signals
to others are called projection neurons. Those that only connect within a nucleus are called interneurons.

Neurons also differ in their effects on each other depending on the neurotransmitters used for commu-
nication. The most common inhibitory neurotransmitter is y-aminobutyric acid (GABA), which hyperpo-



1.1. Cellular and subcellular neurobiology

dendrite axon

en passant

bouton .
terminal

bouton
~

spine head myelin

dendritic
shaft

Figure 1.1: Schematic of neuron compartments: dendrite, soma and axon. Dendrites consist of a dendritic
shaft and spines. The zoomed-in view shows that spines are commonly composed of a spine head and
spine neck. The axon shows a myelinated part, en passant and terminal boutons.

larizes the cell membrane. The most common excitatory neurotransmitter is glutamate, which depolarizes
the cell membrane (Hyman 2005). Other common neurotransmitters include acetylcholine (ACh) and
dopamine (DA), the effects of which depend on the type of receptor they bind to (Abudukeyoumu et al.
2019, Beaulieu et al. 2011).

While most neurons are expected to release only one type of neurotransmitter, the co-release of several
neurotransmitters has been reported in several types of neurons (Hnasko et al. 2012). One example are DA
neurons, which co-release GABA or glutamate (Morales et al. 2017), and even release DA and glutamate
on the same axons in different locations (Zhang et al. 2015).

In addition to their morphology and neurotransmitter types, neurons also vary in their electrophys-
iological properties and transcriptomic profiles. Therefore, grouping neurons into cell types based on
similarity can vary depending on the characterization technique used.

1.1.2 Immature neurons

New neurons are generated throughout development and adulthood. These neurons originate from neural
stem cells (NSCs) in neurogenic niches and must then migrate to their designated brain region. In adult
mammals, NSCs primarily differentiate into glial cells, though new neurons are found in certain regions
of the brain, such as the hippocampus and striatum (Gotz et al. 2016, Inta et al. 2015).

In other vertebrates, such as birds, new neurons are common in other regions of the brain such as the
forebrain. Until they reach their destination, these new neurons travel as migratory neurons. Migratory
neurons are bipolar, with an elongated soma and a few trailing processes (Scott et al. 2012, see result
figure 3.10).
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1.1.3 Glial cells

Glia cells perform a variety of tasks that support brain function. Types of glia cells found in the brain
include astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells (OPCs).

Astrocyte

Astrocytes are the most abundant glial cell type, making up an estimated 20 - 40 % of the cells in the
brain (Baldwin et al. 2024). In the context of this thesis, the relevant astrocytes are located in the gray
matter, which are called protoplasmic astrocytes. They have an elongated soma and several branches
that form a complex tree. These branches end in constrictions and expansions that result in several thin
processes. Astrocytes also have a high density of mitochondria and at least one endfoot that contacts a
blood vessel (Baldwin et al. 2024, Salmon et al. 2023, see result figure 3.10).

They have several functions. One is controlling access to the brain as part of the blood-brain barrier
(BBB).

The second is controlling the environment in which they are organized into an astrocytic network that
is coupled via gap junctions (Gutnick et al. 1981, Peng et al. 2023).

The third is a role in synaptic plasticity. There, astrocytes respond to various neurotransmitters and
influence synaptic communication by releasing different gliotransmitters, including glutamate, GABA,
D-serine, and adenosine triphosphate (ATP, Durkee et al. 2019). Thereby, individual astrocytes are not
restricted to using only one gliotransmitter. When excited, astrocytes display changes in cytosolic Ca?™
concentrations.

Astrocytes are also part of the tripartite synapse. In this structure, an astrocytic process ensheats the
synapse and can release its gliotransmitters in close proximity to the synapse, thereby regulating synaptic
homeostasis (Lalo et al. 2021).

Microglia

Microglia are the immune cells of the brain. In their "resting" state, they are not actually resting, but
rather surveilling the environment. In this state, they have a ramified morphology consisting of a small
soma from which several processes emerge and split into thin branches (Kettenmann et al. 2011, see result
figure 3.10).

When brain homeostasis is altered by trauma or disease, for example, microglia transform into their
"activated" state, in which their morphology resembles that of macrophages in the rest of the body. Their
somata swell, their processes become less complex, and their appearance becomes more amoeboid. In this
state, they can migrate toward an infection site and phagocytose damaged cells or microbes (Kettenmann
et al. 2011).

In addition to their immune function, they participate in synaptogenesis and the regulation of neu-
ronal activity. In states of hypoactivity, e.g., under anesthesia, they increase neuronal firing; conversely,
they reduce it in states of neuronal hyperactivity (Umpierre et al. 2021). They also remove inhibitory
synapses via phagocytosis (Hashimoto et al. 2023) or induce synapse formation through dendritic contact
(Miyamoto et al. 2016). This dendritic contact is followed by a Ca®" response that leads to filopodia
formation, thereby increasing synapse formation.



1.1. Cellular and subcellular neurobiology

Oligodendrocyte

The main function of oligodendrocytes is to myelinate axons during development and adulthood. Myelin,
an extension of the cell’s plasma membrane, enhances signal transmission across the axon (Elbaz et al.
2019). This process, known as saltatory conduction, allows action potentials to propagate via "gaps" in
the myelin layers (nodes of Ranvier), where sodium channels are located.

To create a myelin layer, oligodendrocytes have several processes that originate from the soma and
wrap around the axons multiple times (see result figure 3.10). Unlike Schwann cells, which are their
counterparts in the peripheral nervous system, oligodendrocytes can myelinate several axons (Elbaz
et al. 2019). Myelination depends on axon diameter and is only initiated when a certain threshold
diameter is reached. For cultured oligodendrocytes, this threshold is 0.4 pm (Lee et al. 2012, Matthews
1968). Through the accumulation of neurofilaments and phosphorylation, myelination can also increase
axon diameter further (Elbaz et al. 2019). Myelination is also a dynamic process regulated by Ca’t
activity in oligodendrocytes and neuronal plasticity (Elbaz et al. 2019). Myelinated axons are not usually
continuously myelinated (Tomassy et al. 2014).

In addition to their function as insulators, myelin sheets provide metabolic support to neurons and
transfer generated lactate to axons (Elbaz et al. 2019).

Oligodendrocytes develop from oligodendrocyte precursor cells (OPCs).

Oligodendrocyte precursor cell

Oligodendrocyte precursor cells (OPCs), which are also sometimes referred to as oligodendrocyte pro-
genitor cells, fulfill functions even before developing into oligodendrocytes.

OPCs can interact with neurons and directly receive synaptic input and respond to both, glutamate
and GABA (Buchanan et al. 2022). They have a round soma with several processes that branch into
finer processes (see result figure 3.10). These processes can also engulf axons (Buchanan et al. 2022).

Additionally, OPCs have immunomodulatory capabilities, can sample their environments with their
dynamic filopodia and migrate to injury sites (Elbaz et al. 2019, Hughes et al. 2013).

To ensure OPCs are available to replace oligodendrocytes when needed, OPCs are distributed through-
out the tissue at a constant density (Hughes et al. 2013).

1.1.4 Signaling in the brain

There are different modes of signaling in the brain: direct contact, such as chemical and electrical
synapses, and volume transmission, which involves the release of neurotransmitters or neuropeptides into
the extracellular space (ECS).

Chemical synapses

In chemical synapses (hereafter only referred to as synapses), signals are transmitted via different neuro-
transmitters. These neurotransmitters are released by the presynaptic cell into the synaptic cleft, where
they are taken up by receptors on the membrane of the postsynaptic cell. Prior to release, neurotransmit-
ters are stored in synaptic vesicles that fuse with the cell membrane, a process promoted by the second
messenger Ca”" (Brini et al. 2014, see figure 1.2).

The presynaptic terminal is usually an axon, and the postsynaptic terminal is usually a dendrite or
soma. However, exceptions include axo-axonic synapses and autapses, which are synapses onto the same
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cell.

To facilitate learning and memory storage, synapses can strengthen or weaken, which is accompanied
by changes in synaptic size. The synaptic area, as measured by electron microscopy (EM), is thereby
correlated with the synaptic strength, as measured by electrophysiological recordings (Holler et al. 2021).

The strengthening or weakening of synapses is called synaptic plasticity. In its simplest form, Hebbian
plasticity refers to an increase in synaptic strength when neurons on the presynaptic and postsynaptic
sites fire nearly simultaneously. This process is also referred to as spike-timing dependent plasticity
(Magee et al. 2020) and is summarized by the phrase "neurons that fire together wire together". This
mechanism relies on the overlap of increased postsynaptic Ca’" levels with synaptic input and action
potentials, operating on a timescale of tens of milliseconds.

If this strengthens a synapse over time, it is referred to as long-term potentiation (LTP). The process
that weakens a synapse over time is called long-term depression (LTD).

Simple Hebbian plasticity does not account for all learning rules in the brain. In order to strengthen
synapses that lead to suitable behavior, synaptic plasticity must be able to react to behavioral output
that occurs a second later. To facilitate this process, Hebbian plasticity is expanded into a three-factor
plasticity rule. In addition to the firing of presynaptic and postsynaptic neurons, a modulatory neuro-
transmitter (e.g., DA), which spreads over a large area via volume transmission, must reach the synapse
to strengthen it (Magee et al. 2020). In this concept, the firing of pre- and postsynaptic neurons together
only marks the synapse with an eligibility trace that degrades over the course of one to two seconds.
This plasticity concept is especially important in reinforcement learning, which will be introduced later
(section 1.3.2).

Electrical synapses

Electrical synapses, also known as gap junctions, are connections between cell types that convey electrical
charges and small metabolites bidirectionally. In vertebrates, they are composed of connexins, which are
transmembrane proteins (Nielsen et al. 2012). They are regulated by voltage, pH or Ca®".

Transmission via electrical synapses occurs on a fast timescale, with coincidence detection happening
in less than a millisecond. This process is continuous and maintained through a high turnover of connexins
(Alcami et al. 2019).

Electrical synapses, which mainly form axo-axonic or dendro-dendritic connections, coexist with chem-
ical synapses in neurons (Gutiérrez 2023). In glial cells, gap junctions exist in connections between
astrocytes and oligodendrocytes (Peng et al. 2023).

Volume transmission

Another form of signaling in the brain occurs without direct contact between cells and is called volume
transmission. In this process, neurotransmitters or neuropeptides are released directly into the ECS.
This form of transmission is mainly limited by the diffusion of neurotransmitters and can reach receptors
several micrometers away, and up to millimeters away for neuropeptides, in a time frame of several
milliseconds to potentially minutes (Ozcete et al. 2024). Thus, volume transmission is less specific than
synaptic transmission and acts as a global signal over a larger area.

Neurotransmitters are released from small, clear, core vesicles with diameters of 40-50 nm, while
neuropeptides are released from larger, dense core vesicles named for their appearance in EM with
diameters of 80-120 nm (Takamori et al. 2006, Ozgete et al. 2024).
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Several neurotransmitters, such as DA, ACh, glutamate, GABA, and serotonin, are released outside
of clear synaptic loci in the axon (Trueta et al. 2012). While it has been shown that DA vesicle release
depends on machinery similar to that in synapses, this machinery is only present in around 30 % of axonal
varicosities (Liu et al. 2018). It is unclear if this is true for other neurotransmitters.

Neuropeptides, such as substance P and oxytocin, are exocytosed from the axons, dendrites, and
somata of neurons (Trueta et al. 2012, Ozcete et al. 2024). Although neuropeptide signaling has been less
studied in vertebrates, it has been shown to connect neurons in a denser and more decentralized fashion
than the synaptic network in C. elegans (Ripoll-Sanchez et al. 2023).

1.1.5 Organelles

Neurons and glia cells contain a variety of organelles that ensure their basic functionality. Some of
these organelles, such as mitochondria, the endoplasmic reticulum (ER), the Golgi apparatus (GA), and
vesicles, are surrounded by lipid bilayer membranes similar to cell membranes. Due to the specific staining
of these membranes in EM (section 1.4.1), these organelles and their outlines can be clearly identified.
This is why they will be the focus of this thesis.

Nucleus

The nucleus is part of the cell’s soma. It is surrounded by a lipid bilayer membrane connected to the ER
and contains the cell’s DNA. For protein biosynthesis, RNA is transported through nuclear pores into
the cytoplasm (see figure 1.2).

In the opposite direction, Ca** signals can travel from synapses to the nucleus, where they can activate
genetic programs (Brini et al. 2014).

Mitochondria

Mitochondria are the main source of ATP production through aerobic glycolysis in cells. The inner mem-
brane structure consists of several cristae, and the enclosed matrix includes the mitochondrial genome,
RNAs, and ribosomes that translate several mitochondrial proteins (Frey et al. 2000, see figure 1.2, inset
1). Depending on the type of neuron, the shape of the cristae can change. For example, fast-spiking cells
in the hippocampus have more elongated cristae (Cserép et al. 2018).

In addition to their role in energy production, mitochondria act as Ca”" buffers and transfer of Ca®"
from the ER is facilitated via mitochondria-ER contact sites (Devine et al. 2018, Tsuboi et al. 2021).
Mitochondria can also react to changes in intracellular Ca** by stopping in areas with high Ca®" to
provide support in local energy production and Ca’™ buffering (Lopez-Doménech et al. 2023).

Mitochondria are present in all neuronal and glial compartments. Their shapes and sizes vary de-
pending on the compartment (Salmon et al. 2023, Turner et al. 2022, Thomas et al. 2023), as well as
on energy demands. Longer mitochondria are more efficient and protected against mitophagy and are
usually found in the soma and dendrites (Lopez-Doménech et al. 2023, Turner et al. 2022). In the axon,
mitochondria are typically smaller and rounder, likely to adapt to larger transport distances and local
requirements for Ca>" buffering.
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Figure 1.2: Schematic of organelles in the different neuronal compartments. One mitochondrion is shown
with its internal composition. Inset 1 shows that the internal structure of the mitochondria consists of
ribosomes (round) and cristae. Inset 2 shows a synapse on the spine of the depicted neuron. The ER
extends into the spine as the spine apparatus. Inset 3 shows an outgoing synapse from an en-passant
terminal of the depicted neuron.

Endoplasmic reticulum

The ER is well-known for its role in protein synthesis and trafficking. Important for neuronal plasticity
and signaling in the brain, ER also has Ca®" buffering and storage properties (Tsuboi et al. 2021).

The ER is present in all neuronal and glial compartments as an interconnected network of thin tubules,
especially in axons and spines, where they can be as thin as 15-30 nm in diameter (see figure 1.2, Tsuboi
et al. 2021, Terasaki 2018, Wu et al. 2017). In the soma, the ER exists as rough and smooth ER,
distinguished by the rough ER’s attached ribosomes. In the axon and dendrite, the ER is mostly smooth.

As mentioned above, the ER contacts and interacts with mitochondria in all compartments to regulate
Ca?* (Wu et al. 2017). Due to the high concentration of Ca*" near the ER, contact with the ER is
necessary for mitochondrial Ca®* uptake (Tsuboi et al. 2021).

The ER can expand its surface area in spines by organizing into several cisterns, forming the spine
apparatus (SA, see figure 1.2 inset 2). The SA is present in larger spines, especially large mushroom
spines (Cooney et al. 2002, Dorkenwald et al. 2022, Spacek et al. 1997, Wu et al. 2017). The role of the
SA in learning is still unclear. One study of the mouse hippocampus reported that spine enlargement is
accompanied by a loss of SA (Uytiepo et al. 2025), while another study of the rat hippocampus found
that the presence of SA is required for long-term potentiation (Chirillo et al. 2019).

Golgi apparatus

The Golgi apparatus (GA) consists of several stacks of cisternae and vesicles that move between them
(see figure 1.2). The GA’s main functions are intracellular membrane trafficking, protein sorting, and
modification. This is why the GA interacts closely with the ER (Chen et al. 2023).
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GA is primarily found in the soma, though it can extend to the initial segment of dendrites (Chen
et al. 2023). Golgi outposts are typically found in longer dendrites, with one per neuron, especially in
pyramidal cells of the hippocampus (Horton et al. 2005) and, rarely, in astrocyte endfeet (Boulay et al.
2017).

Vesicles

Vesicles are transport containers for different substances, such as neurotransmitters and neuropeptides.

As mentioned previously (section 1.1.4), the size and appearance in EM differ depending on the
contents. Neurotransmitters are transported in small, clear core vesicles with a diameter of 40-50 nm,
while neuropeptides are transported in large, dense core vesicles with a diameter of 80-120 nm (Takamori
et al. 2006, Ozcete et al. 2024).

The shape of the vesicles can differ depending on their contents. For example, in chemically fixed
tissue for EM, GABA-containing vesicles are more oval-shaped than glutamatergic vesicles (Korogod et
al. 2015).

Vesicles are also used in the soma for the general transport of proteins into and out of the cell via
endo- and exocytosis. In this thesis, however, the term "vesicles" refers to small, clear core vesicles that
transport neurotransmitters.

1.2 Basal ganglia

The basal ganglia are a subcortical brain region that includes several nuclei in the diencephalon and
mesencephalon (see figure 1.3, Tisch et al. 2004, Shipp 2017). They receive input from cortical and
midbrain structures and project to the thalamus in several basal ganglia pathways.

They are involved in motor control, motor learning, and action selection. Dysfunction is associated
with neurodegenerative diseases, such as Parkinson’s or Huntington’s, as well as psychiatric disorders,
such as addiction and obsessive-compulsive disorder (Fazl et al. 2018).

The basal ganglia are an evolutionarily conserved structure across vertebrates, with striking similari-
ties between lampreys and mammals that are separated by over 500 million years of evolution (Grillner
et al. 2016). Since the basal ganglia of mammals, especially rodents, are the most well-studied, they will
be used as a reference for common basal ganglia mechanisms.

1.2.1 Mammalian basal ganglia

The mammalian basal ganglia consists of several nuclei that receive cortical input and project between
different regions, as well as outside the basal ganglia to the thalamus (Fazl et al. 2018).

These nuclei include the putamen, which can be separated into the striatum (named after its striped
appearance), the globus pallidus externus (GPe), the globus pallidus internus (GPi, in mouse also en-
dopeduncular nucleus, hereafter referred to as GPi), subthalamic nucleus (STN), substantia nigra pars
reticulata (SNr), and the substantia nigra pars compacta (SNc, see figure 1.3 a).

Of these, the striatum and the STN are typically considered input nuclei because their primary input
comes from cortical projections (Shipp, 2017). The GPe and SNc only project to other basal ganglia
nuclei. The GPi and SNr are output structures that project to the thalamus. All nuclei also receive
dopaminergic input from either the SNc or the ventral tegmental area (VTA) of the midbrain (Cragg
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Figure 1.3: Schematic of mammalian basal ganglia. a Schematic of the mouse brain with different basal
ganglia nuclei. b Basal ganglia pathways: 1) the direct pathway, 2) the indirect pathway, and 3) the
hyperdirect pathway.

et al. 2004, Fazl et al. 2018, Tisch et al. 2004).

All projection neurons of the basal ganglia nuclei are GABAergic, except for those of the STN, which
are glutamatergic.

The basal ganglia output through these nuclei is mainly controlled by three pathways to facilitate
learning and movement initiation: 1) the direct pathway, 2) the indirect pathway, and 3) the hyperdirect
pathway (see figure 1.3 b)

Basal ganglia pathways

All three pathways begin with cortical input and lead over different nuclei to GPi/SNr which projects to
the thalamus. Since projection neurons of GPi and SNr are large, GABAergic, have a high firing rate
and are tonically active, the thalamus is inhibited in the default state. In the context of motor learning
and control, this results in a state in which no movement is executed (see figure 1.3, Shipp 2017).

The direct pathway begins with cortical input to the striatum. The striatum’s projection neurons are
medium spiny neurons (MSN, sometimes also referred to as striatal projection neurons). MSNs make
up 90 - 95 % of the striatum, have a small soma of 12 - 15 pm diameter and densely spiny dendrites
(Fazl et al. 2018, Gagnon et al. 2017, Tisch et al. 2004). In the direct pathway, the MSN project to
the GPi/SNr. The GABAergic projection leads to disinhibition of the thalamus and thereby movement
initiation (see figure 1.3 bl).

The indirect pathway also begins with cortical input to the MSNs of the striatum. The MSNs then
project to the GPe. In the "short" version of the indirect pathway, the GPe projects to the GPi/SNr.
This leads to inhibition of the thalamus and, consequently, inhibition of movement (see figure 1.3 b2,
Shipp 2017). In the "long" version of the indirect pathway, the GPe first projects to the STN. The
STN then excites the GPi/SNr, leading to the same effect: inhibition of the thalamus and, consequently,
inhibition of movement (Shipp 2017).
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To separate the direct and indirect pathway in the striatum, a different MSN subpopulation is as-
sociated with each pathway. These subpopulations can be distinguished based on their DA receptors,
connectivity, and morphological differences. MSNs of the direct pathway (dMSNs) express D1-like DA
receptors, leading to an excitatory effect when DA binds. In contrast, MSNs of the indirect pathway
(iMSNs) express D2-like DA receptors, resulting in an inhibitory effect when DA binds (Gerfen et al.
1990). Thus, the different MSN subpopulations are regulated differently by DA. Additionally, dMSNs
have longer, more branched dendrites than iMSNs (Gagnon et al. 2017, Gertler et al. 2008). iMSNs
project exclusively to the GPe, while dMSNs project to the GPi with collaterals to the GPe, making the
separation of these pathways less strict (Wu et al. 2000).

A third population of MSNs expresses both types of DA receptors and constitutes between 2 and 17
% of MSNs in the striatum, depending on the region and measurement technique (Bonnavion et al. 2024,
Gagnon et al. 2017). These cells have a lower spine density and smaller dendritic tree, making them
morphologically distinct from dMSNs and iMSNs (Gagnon et al. 2017). This population exclusively
connects to the GPe, yet it contributes to the functionality of both pathways by influencing the dMSNs
and iMSNs (Bonnavion et al. 2024).

The third pathway is the hyperdirect pathway, which starts with cortical projections to the STN.
The STN then projects to the GPi/SNr. This projection excites the GPi/SNr, thereby strengthening the
inhibition of the thalamus and leading to movement inhibition (see figure 1.3 b3). Because it involves
fewer cell types than the two versions of the indirect pathway, it is thought to be a faster route to
movement inhibition. Thus, it has been associated with stopping unwanted movements (Fazl et al. 2018,
Shipp 2017).

In addition to their roles in the indirect and hyperdirect pathways, STN neurons send collaterals to
the GPe. This creates a recurrent connection between these two nuclei (Fazl et al. 2018, Shipp 2017).

According to the classical model of basal ganglia function, the direct pathway initiates movement,
while the indirect and hyperdirect pathways inhibit or stop it. However, more recent research suggests
that both pathways are active simultaneously, leading to two newer models of their interaction (Bariselli
et al. 2019). One model proposes that the direct pathway initiates movement, while the indirect pathway
suppresses unwanted movement. The second model is based on research indicating that the two pathways
are similar in terms of selectivity. It proposes that the two pathways compete for the resulting action
(Bariselli et al. 2019).

Neurons in addition to basal ganglia pathways

The basal ganglia contain several other types of neurons that are important for basal ganglia function, but
which are not described in classical basal ganglia pathways. These include interneurons in the different
nuclei, as well as additional projection neurons.

The striatum includes several types of interneurons that contribute to the function of the basal ganglia.
The following types are most commonly discussed and will be the focus of this thesis: fast-spiking neurons
(FS), low-threshold spiking neurons (LTS), neurogliaform neurons (NGF), calretinin-positive interneurons
(CR+), and tonically active neurons (TAN).

FS are GABAergic, parvalbumin-positive interneurons. They have medium-sized somata, varicose
dendrites, and dense axonal arborizations. They also have a high firing rate of up to 199 Hz, and half of
the population forms autapses (Wang et al. 2023). Receiving cortical and thalamic input, they project
mainly to the MSNs, providing the largest source of feedforward inhibition from the cortex to MSNs in
the striatum (Gittis et al. 2010, Johansson et al. 2020, Owen et al. 2018).
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The LTS are GABAergic and co-express neuropeptide Y, somatostatin, and nitric oxide synthase.
Their morphology is characterized by long, sparsely branched axons and spiny dendrites (Ibanez-Sandoval
et al. 2011, Tepper et al. 2018). They receive cortical and thalamic input and project to MSNs (Gittis
et al. 2010, Ibafiez-Sandoval et al. 2011, Tepper et al. 2018). However, due to their low synaptic density,
their synaptic input onto MSNs or other striatal neurons is limited, and they are thought to play a
modulatory role through volume transmission (Gittis et al. 2010, Ibafiez-Sandoval et al. 2011).

The NGF are GABAergic, express neuropeptide Y and have round somata, highly branched and
sparsely spiny dendrites and dense axonal arborizations (Ibanez-Sandoval et al. 2011). They primarily
receive cortical input and target MSNs.

The CR+ interneurons are GABAergic, medium-sized with aspiny dendrites and can be further divided
into three morphologically and topographically distinct populations (Tepper et al. 2010, Tepper et al.
2018). They exhibit tonic activity in response to cortical activation, yet their connectivity patterns remain
unknown (Tepper et al. 2018).

TANs are cholinergic interneurons with large somata, spiny dendrites, and long, branched axons
(Abudukeyoumu et al. 2019). They receive input from MSNs, as well as from cortical and thalamic
regions, and they project to MSNs and other striatal interneurons (Abudukeyoumu et al. 2019, Johansson
et al. 2020). With limited number of outgoing synapses, TANs primarily signal via volume transmission
(Abudukeyoumu et al. 2019).

Other basal ganglia nuclei contain different classes of interneurons. The STN contains GABAergic
interneurons. The GPe and GP1i, on the other hand, include a small population of cholinergic interneurons
(Courtney et al. 2023, Miyamoto et al. 2022, Prasad et al. 2024).

In addition to interneurons, there are projection neurons in the basal ganglia nuclei that are not part
of basal ganglia pathways.

One type is the arkypallidal neuron, which resides in the GPe, expresses preproenkephalin, and
projects to the striatum (Mallet et al. 2012). There, they mainly target MSNs, as well as striatal
GABAergic interneurons and TANs. The inhibition they receive from the prototypical projection neurons
of the GPe makes them part of a feedback loop sufficient to inhibit movement in mice (Aristieta et al.
2021).

The GPe also has another class of GABAergic projection neurons that project to the midbrain, cortex
and reticular thalamus (Courtney et al. 2023).

In addition to GPi projection neurons, which comprise 90 % of the neurons in the core region, the
GPi has projection neurons that express somatostatin or nitric oxide synthase and project to the lateral
habenula (Miyamoto et al. 2022).

The SNc provides dopaminergic projections to all the other basal ganglia nuclei and to brainstem
motor centers (Grillner et al. 2016, Courtney et al. 2023). Their extensive axonal arborizations span
a broad area within target nuclei, facilitating signal transmission via volume transmission (Arbuthnott
et al. 2007, Liu et al. 2022). These neurons are important for movement initiation and motor learning,
although they are not directly part of the basal ganglia pathways. The depletion or death of these
neurons, as occurs in Parkinson’s disease, leads to problems with motor control and movement initiation.
In the context of motor learning, DA neurons of SNc and VTA provide the reward prediction error (RPE)
that is important for reinforcement learning, which will be introduced later (section 1.3.2, Grillner et al.
2016).
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Striosome-matrix organization of the striatum

In addition to being divided into different nuclei, the basal ganglia have other functional specializations.
One example is the striosome-matrix organization of the striatum.

Striosomes, also known as patches, are scattered across the striatum in compartments separated by
the matrix (Brimblecombe et al. 2017).

While the MSNs of both pathways are present in both the striosome and the matrix, other types of
interneurons are more specific to either compartment. Some, e.g., the TANs and LTS, are commonly
found in the border region between the striosome and the matrix (Brimblecombe et al. 2017).

Another difference is DA innervation and release. Although DA axons innervate both compartments,
individual axons may prefer one over the other. While striosomes show a higher innervation density, for
yet unknown reasons the DA concentrations in the matrix are higher (Brimblecombe et al. 2017).

The striosome and the matrix also differ in function. Striosomes are associated with the regulation
of dopaminergic influences, while the matrix compartment is associated with the initiation of movement
and motor control via the direct and indirect pathways (Grillner et al. 2016, Shipp 2017).

1.2.2 Avian basal ganglia

Avian basal ganglia nuclei

Although the basal ganglia is evolutionarily conserved in vertebrates (Grillner et al. 2016), there are still
differences among different vertebrate classes.

The avian basal ganglia, particularly those of songbirds, consist of several nuclei: Area X, commonly
referred to as striatal analogue, ventral pallidum (VP) and STN (Das et al. 2022, Chen et al. 2019, Farries
et al. 2002). These nuclei all play a role in song learning and receive cortical and dopaminergic input
from the VTA.

Of these areas, Area X is the largest. It contains an estimated 500,000 neurons within a 1.6 mm
volume in adult zebra finches (Burek et al. 1991). While the STN and VP contribute to song learning by
contributing to calculations of the RPE, Area X is where this information is used to learn time-muscle
associations during song (see section 1.3.2, Chen et al. 2020, Das et al. 2022).

Because this thesis focuses on analyzing a dataset of Area X, the differences between Area X and the
mammalian striatum are further discussed in more detail.

3

The basal ganglia nucleus for song learning: Area X

Area X contains several types of neurons that are functionally and morphologically similar to those in the
mammalian striatum. The most common neuron types in Area X are MSNs. Other interneuron types
are similar to TAN, LTS and FS cells (Farries et al. 2002).

Whether two distinct MSN populations exist in Area X, similar to dMSNs and iMSNs in the mam-
malian striatum, remains unclear. While pharmacological studies and receptor expression in one study
indicated that most MSNs express both D1 and D2 receptors (Ding et al. 2002, Kubikova et al. 2010), a
single-nucleus RNA sequencing study identified separate MSN populations, with only 18% of coexpressing
MSNs (Xiao et al. 2021).

Area X receives input from the lateral magnocellular nucleus of the anterior nidopallium (LMAN) and
HVC (former higher vocal center, now used as common name), two song nuclei located in the pallium.
Due to its organization into separate nuclei rather than a layered structure, the pallium differs from the
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mammalian cortex. However, it is otherwise considered a cortex analog and will therefore be referred to
as such throughout the thesis (Jarvis 2004). Additionally, Area X receives DA input from the VTA and
projects to the medial portion of dorsolateral thalamus (DLM, see figure 1.4, Fee et al. 2011).

Based on similar cell types and input and output structures, Area X is commonly considered an avian
analog of the striatum. However, Area X also contains cell types found in other basal ganglia nuclei.

These include two types of pallidal cells, the GPe and the GP1i, which are named after their mammalian
counterparts. The GPi was distinguished from the GPe based on its ability to project outside of Area X
and its higher tonic firing rate (Farries et al. 2005, Goldberg et al. 2010).

Additionally, recordings of pallidal cells in Area X slices indicate the existence of a glutamatergic cell
type that could be an STN analog in Area X (Budzillo et al. 2017).

With MSNs receiving HVC and LMAN input and connecting to analogous cells in the GPi, a direct
pathway analogue has been found in Area X (Farries et al. 2005, Fee et al. 2011). The presence of another
pallidal type and its close contacts with the soma and dendrites of the GPi could indicate a "short" indirect
pathway analog (Farries et al. 2005), but functional or connectivity evidence is still limited. Additionally,
it is unclear whether the presence of glutamatergic cells in Area X allows for connectivity similar to that
of a "long" indirect or hyperdirect pathway within Area X.

1.3 The songbird brain

Zebra finches are small songbirds native to Australia and Indonesia. The males have the characteristic
black stripe pattern for which they are named and which reaches from below their beaks to their breast
(see figure 1.4).

Male zebra finches grow up learning one song from a tutor that they sing as part of their courtship
behavior. Their songs last about one second and consist of one or several "motifs," each of which consists
of two to seven syllables, each lasting around 100 ms (Fee et al. 2011). Zebra finches learn only one song,
but they can sing it in a highly stereotyped fashion.

Since a good song performance is crucial for successful mating, male zebra finches are innately driven
to learn their songs. It takes around 50-60 days for them to first start singing, and around 90 days
post-hatch (dph) for their song to reach its "crystalized" stage (Fee et al. 2011).

Song learning occurs in several phases. In the first phase, the sensory phase, zebra finches listen
to and memorize their tutor’s song (Rundstrom et al. 2021). During the sensorimotor phase, the birds
first "babble" and produce an unstereotyped, highly variable subsong. Over the course of learning,
this subsong turns into a highly stereotyped, crystallized song with a clear structure (Fee et al. 2011,
Rundstrom et al. 2021).

This learning process and its phases are similar to how humans learn speech (Mooney 2018, Rundstrom
et al. 2021). To maintain the ability to sing, adults must continue to sing and practice daily to maintain
the muscle physiology needed for precise performance of the song (Adam et al. 2023).

The innate drive to learn, the high precision of its song, its similarity to human speech learning, and
the relatively short time frame make the zebra finch an ideal model organism for song and thus motor
learning.

The songbird has distinct brain circuits for producing and learning songs, which will be discussed in
the following sections.
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Figure 1.4: Schematic of a male zebra finch and its brain, showing the motor pathway for song production
and the anterior forebrain pathway (AFP), which is used for song learning. In addition to the HVC and
LMAN projections to Area X that are part of the AFP, VTA DA neurons also project to Area X.

1.3.1 Song production: the motor pathway

Songbirds use the song motor pathway for song production (see figure 1.4).

In this pathway, the pallial (cortical) nucleus HVC transmits timing information to the robust nucleus
of the arcopallium (RA). The RA then projects to the tracheosyringeal branch of the hypoglossal nerve
(NXIIts), which projects to eight muscle pairs in the bird’s vocal organ, the syrinx (Fee et al. 2011, Adam
et al. 2021).

HVC neurons signal timing by activating a population of RA neurons for a few milliseconds during
a song motif, thus activating them at a specific time in the song (Kozhevnikov et al. 2007). To control
the high temporal precision of the song, the syrinx is made of superfast muscles capable of acoustic
modulations up to 250 Hz (Elemans et al. 2008). Additionally, muscle fibers in the syrinx are tightly
controlled by the NXIIts, with 50 % of its neurons innervating < 3 muscle fibers and 13 - 17 % innervating
only one muscle fiber (Adam et al. 2021).

1.3.2 Song learning: the anterior forebrain pathway

To learn their song, or more specifically, to learn which muscles to activate and when during a song,
songbirds have a different brain circuit called the anterior forebrain pathway (AFP, see figure 1.4).
Information about which muscle to activate and when is stored in HVC-RA connections. During
learning, outputs from LMAN to RA, the output of the AFP, bias HVC-RA connections (Andalman
et al. 2009).
In the AFP, both HVC and LMAN project to Area X, which projects back to LMAN via the thalamic
nuclei DLM (see figure 1.4, Fee et al. 2011). HVC conveys timing information, while LMAN provides a
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copy of the information sent back to Area X while adding variability.
Together with the dopaminergic input from VTA, inputs from HVC and LMAN allow for song learning
in a reinforcement learning paradigm.

Reinforcement learning

In general, reinforcement learning describes a form of goal-directed learning driven by a reward. Although
reinforcement learning is common in animals, many of the ideas and terms used originate from computer
science. It is also used in machine learning, with AlphaGo being a prominent example (Silver et al. 2016).

Central to the idea of reinforcement learning is the maximization of reward through trial-and-error
search (Sutton et al. 2017).

To illustrate this, imagine a computer game about volleyball. The player is the “reinforcement agent”,
and their goal is to win the match. The agent tries out different moves to learn which ones increase the
chance of winning.

However, since a volleyball match is only won once a team reaches 25 points, giving a reward only at
the end of the match would be too sparse. Too many actions happen before the outcome, making it hard
to know which one was helpful. This is known as the ’credit assignment problem’ (Sutton et al. 2017).

To make learning easier, rewards could be given after every point scored. The agent would then try
to maximize points. But without clear guidance, it might learn that prolonging the game leads to the
most points. After all, in theory, the longer a match lasts, the more points can be scored. This shows
that the reward signal must be designed carefully so it encourages the right behavior and doesn’t stretch
across too many steps.

In addition to rewards, reinforcement learning uses a value function, which helps define the ultimate
goal (Sutton et al. 2017). In the volleyball example, this would be winning the match. It ensures that
the agent not only scores points, but also finishes the game with a win. While some actions, like a
strong serve, might lead directly to a reward (a point), other actions, like good team positioning or
communication, don’t immediately score but still contribute to winning. These are learned as valuable
over time.

Reinforcement learning can be model-free, relying solely on trial-and-error, or model-based, where the
agent builds a more general understanding of how the game works (Sutton et al. 2017).

While a reward signal can indicate whether an action was good, reinforcement learning can also work
with a RPE (Fee et al. 2011). In this case, there is a baseline signal that increases if a suitable action
is better than expected and decreases if it is worse than expected. This means that once a useful action
is learned, it no longer triggers a strong signal, thereby allowing the agent to focus on learning in less
familiar situations. The signal is computed from the difference between expected and actual reward.

In the brain, reinforcement learning uses an RPE in the form of DA signals (Schultz et al. 1997).

Song learning as a model of reinforcement learning

Motor learning, as well as song learning as a special form of it, follows a reinforcement learning framework.

In a proposed model, learning occurs in Area X through inputs from the HVC, LMAN, and VTA to
the MSNs (see figure 1.4, Chen et al. 2020, Fee et al. 2011). In an "actor-critic" model of reinforcement
learning, Area X would be the "actor." Input from the HVC provides a "context" or "state" signal that
indicates the current time point in song learning. To encourage exploration during learning, the LMAN
signal introduces variability in addition to providing a copy of the previous output, also known as an
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Figure 1.5: Song learning at the synaptic level in Area X, adapted from Kornfeld et al. 2020. a, b If HVC
and LMAN signal to an MSN in Area X at the same time, which excites the MSN and is followed by a
DA signal later, the HVC - MSN synapse is strengthened. In this model, HVC mainly targets the spines,
while the LMAN mainly targets the dendritic shafts. ¢ In a connectomics study, 86.7 % of HVC inputs
target the spines of MSN neurons, while only 52.3 % of LMAN inputs do so (Kornfeld et al. 2020).

"efference copy" (Fee 2014).

The song’s performance is evaluated using DA projections from the VTA in the form of an RPE. This
is also referred to as a performance error because there is no external reward, but the song’s performance
is evaluated (Gadagkar et al. 2016, Chen et al. 2020).

Since performance can only be evaluated after the time point has passed, this learning relies on a
three-factor plasticity rule similar to the one introduced earlier (section 1.1.4). There, the timing of
input from HVC must coincide with the firing of the postsynaptic MSN neuron. Together with a signal
from LMAN at the same time this results in an "eligibility" trace that marks the HVC-MSN synapse
until a DA signal indicates whether the performance was better or worse than expected (Fee et al. 2011).
Depending on the outcome, the HVC-MSN synapse strengthens or weakens. The output of the loop from
LMAN mirrors this to RA. Excitation of a given RA neuron by LMAN at the same time that HVC fires
strengthens the HVC-RA connection, which activates a specific muscle at a given time.

To enable muscle-specific updates, the LMAN-RA and LMAN-Area X-DLM connections are organized
into topographical loops that are microscopically closed (Luo et al. 2001). This means that a subregion
in the LMAN projects to a subregion in Area X, which then projects to a subregion in DLM, and so on.
Whether these correspond to specific muscles or muscle parts still needs to be determined.

In this model, only the HVC-MSN synapses change size during learning, while the LM AN signal acts
as a gatekeeper, allowing learning by exciting a specific MSN dendrite or not (Fee 2014). These different
functions are thought to correspond to the different targets of specific axons: HVC mainly targets the
spines of MSN neurons, while LMAN targets the dendritic shaft (see figure 1.5 a, b).

A connectomics study showed that, while 86.7 % of HVC inputs target the dendritic spines of MSN
neurons, only 52.3 % of LMAN inputs do so (see figure 1.5 ¢, Kornfeld et al. 2020). Since nearly half
of the LMAN inputs are also made on spines, potential spine alterations due to LMAN firing during
learning cannot currently be excluded, and the role of LMAN in learning is still under discussion.

With Area X as the "actor" of learning, the VP would be the "critic" (Chen et al. 2020). The
critic’s role is to compute the expected reward. The VP receives input from VTA neurons that transmit
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reward /performance prediction errors to Area X, along with a time representation from the thalamic
nucleus Uva, which also projects to HVC. In this model, if performance is better than expected at a given
time, these two inputs can strengthen the synapse at that time in the VP, leading to the expectation of
better performance in the next round.

In addition to input from VP, the VTA receives input from the auditory cortex that transmits the
actual error in the just-produced song (Chen et al. 2020). Based on the predicted quality at a given time
point from VP and the actual error from the auditory cortex, the reward/performance prediction error
can be computed in the VTA and sent to Area X in the form of a DA signal

1.4 Connectomics

The brain can be studied using a variety of techniques, such as behavioral assays, electrophysiology,
functional imaging, and RNA sequencing. Another focus is on connections between brain regions, cell
types, and individual cells. The latter is summarized in the field of connectomics.

Connectomics can be done on macroscale, examining the entire brain and focusing on the connections
between brain areas, often using noninvasive methods such as diffusion tensor imaging (DTI; Zeng 2018).
In DTI, diffusion of water is used to determine averaged axonal directions, but it does not provide
sufficient resolution to visualize individual axons (Vorona et al. 2015).

At the mesoscale, different tracing techniques such as viral tracers which are then visualized with light
microscopy can be used to visualize connections between neuron types of different regions (Zeng 2018).

At the microscale, connectomics is the study of connections between individual neurons, achieved
by visualizing (chemical) synapses (Zeng 2018, Abbott et al. 2020). This thesis focuses on microscale
connectomics, so the term "connectomics" will refer only to microscale connectomics.

To study the connections between neurons, the synapses must be explicitly visualized because mem-
brane contact alone does not indicate a synapse (Holler et al. 2021, Kasthuri et al. 2015). As synapses
strengthen or weaken during the course of learning, it is noteworthy that the synaptic transmission
strength correlates with the synaptic area as visualized in EM, and connectomics can thereby measure
connection strength (Holler et al. 2021).

To visualize synapses, a high-resolution 3D volume is acquired, with a resolution of around 30 nm
per pixel needed in the x-y direction. This was first achieved with EM, which was used to completely
reconstruct the brain of the worm C. elegans, which has roughly 5 x 10* pm?® (Abbott et al. 2020, White
et al. 1986) and the fruit fly Drosophila melanogaster with approximately 5 x 107 pm?® (Abbott et al.
2020, Zheng et al. 2018). For comparison, the brain volume of a mouse is around 5 x 10! ym?* (Abbott
et al. 2020), and a zebra finch brain is roughly at the same size.

Recent advances in expansion microscopy have enabled a light microscopy-based connectomics ap-
proach in which synapses can be identified using molecular markers (Tavakoli et al. 2025). Improvements
in X-ray tomography have demonstrated the ability to resolve individual synapses, suggesting its poten-
tial application in connectomics analysis in the future (Bosch et al. 2023). Currently, no in vivo imaging
technique can achieve the required resolution for connectomics; thus, all of the aforementioned approaches
image tissue postmortem.

This thesis focuses on EM-based connectomics, so it will introduce this technique and its workflow in
more detail. The process of EM-based connectomics can generally be divided into four steps: 1) sample
preparation, 2) cutting and imaging, 3) data processing, and 4) data analysis (see figure 1.6).
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Figure 1.6: Schematic of connectomics pipeline. a Zebra finch b Sample preparation: Brain extraction
and heavy metal staining. ¢ Cutting and imaging. The image shows a knife boat that cuts a sample,
which is imaged by an electron beam. d Data processing (image shows dataset j0251). e Data analysis
(image shows connectivity matrix, from section 3.4.2, figure 3.31).

1.4.1 Sample preparation for electron microscopy

In EM, electrons are shot at the sample. Depending on the atomic mass of the molecule, the electrons are
transmitted or scattered back at different angles. Biological samples consist mostly of carbon, hydrogen,
oxygen, and nitrogen, all of which have similarly low masses. Therefore, imaging of native tissue yields
little contrast, so molecules of interest must be stained with heavy metals to produce contrast.

In connectomics, the target structures for staining to visualize cells and their connections are lipid-
double membranes. This process also visualizes organelles with lipid bilayer membranes, such as the
nucleus, mitochondria, ER, and GA.

To achieve high contrast between the membranes and cytoplasm or ECS, the staining must be uniform
across the tissue, and the tissue’s ultrastructure must be preserved as much as possible. To facilitate this,
the sample is extracted and fixed before staining. After staining, the sample is embedded in epoxy resin
for cutting and imaging.

Tissue extraction and fixation

There are three different methods for extracting and fixing the tissue.

The first method involves extracting the brain via decapitation and then cryo-fixing the tissue, which is
also referred to as "high-pressure freezing". Although cryo-fixation effectively preserves the ultrastructure
and approximately 15 % ECS of the brain, it is only sufficient for samples up to 200 nm (Korogod et al.
2015, Studer et al. 1995).

The second method is immersion fixation with aldehydes. In this method, the brain is extracted
after decapitation and immersed in a mixture of glutaraldehyde and paraformaldehyde (PFA). During
aldehyde fixation, ions from the ECS enter cellular compartments, causing them to swell and reducing
the ECS (Harreveld et al. 1967, Harreveld et al. 1968). Increasing the osmolality of the fixative buffer
during immersion fixation can counteract aldehyde-induced swelling in small samples with less than 1
mm thickness (Cragg 1980, Fulton et al. 2020, Pallotto et al. 2015).

In addition to ultrastructural preservation, preserving ECS aids in the penetration of heavy metals
and antibodies. Preserving 6 % of the ECS also aids in the segmentation of cells for data processing
(Pallotto et al. 2015).
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Compared to cryo-fixation, aldehyde fixation changes the appearance of synapses, vesicles, and as-
trocytic processes (Korogod et al. 2015). In vertebrates, synapses, especially glutamate and GABAergic
synapses, can be distinguished based on whether they have an asymmetric or symmetric postsynaptic
density (Colonnier 1968, Gray 1959). Aldehyde-fixed tissue reveals distinct shapes of vesicles containing
GABA or glutamate at high resolution, while astrocytic coverage of synapses increases (Korogod et al.
2015).

The third method involves perfusing the brain with an aldehyde fixative. This method uses the
brain’s vasculature to distribute the fixative solution and is used for larger samples, such as whole mouse
brains (Mikula et al. 2015, Song et al. 2023, Lu et al. 2023). As with the aforementioned effects of
aldehyde fixation, without additional measures, this method’s ECS preservation is low. To improve ECS
preservation, pressure can be applied during perfusion (Cragg 1980) or a mannitol gradient can be used
to achieve a more uniform result (Lu et al. 2023).

Heavy-metal staining

To stain lipid-membranes, the most commonly used heavy metal is osmium tetroxide (OsOy). OsOy4
binds to several active groups, including C-C double bonds, diols, and thiols, in various structures, such
as proteins, polysaccharides, and, most prominently, lipids.

To increase the contrast and bind more OsO4 to the membranes, thiocarbohydrazide (TCH) was used
between two OsOy staining steps in the "OTO" protocol (Seligman et al. 1966). TCH binds to OsQOy,
allowing new OsQy to attach to it in a subsequent staining round.

Next, reducing the OsO,4 with ferrocyanide before the first step reduced protein staining but main-
tained membrane contrast in a protocol termed "ROTO" (Willingham et al. 1984). This protocol can be
combined with others using heavy metals, such as uranyl acetate and lead aspartate (Deerinck et al. 2010,
Walton 1979). It has also been adapted for en bloc staining of small samples up to 0.5 mm (Briggman
et al. 2011, Pallotto et al. 2015). Further modifications included separating the reduced osmium step
into an incubation with OsO4 alone, followed by an incubation with ferrocyanide in the tissue. This
modification worked with samples up to 1 mm (Hua et al. 2015).

For larger samples, TCH was found to induce ruptures through the formation of nitrogen bubbles.
Therefore, it was replaced with pyrogallol for staining whole mouse brains (Mikula et al. 2015). Further
modifications to the protocol, such as changing buffers, adjusting incubation times, adding washing steps,
and altering temperatures, have led to more reliable protocols for staining samples ranging from a few
millimeters thick to whole mouse brains (Lu et al. 2023, Song et al. 2023).

Embedding into epoxy resin

To further prepare the sample for imaging, the stained tissue is embedded in epoxy resin. First, the
sample is dehydrated using a gradient of ethanol. Then, it is washed several times with an organic
solvent, such as acetone, and incubated with increasing concentrations of resin in the organic solvent.

Epoxy resins are polymers that for proper infiltration are initially viscous at room temperature before
they are hardened at temperatures of 60 - 80 °C. To increase homogeneity, the resin is degassed before
infiltration. For optimal cutting, the resin requires a specific hardness (Tegethoff et al. 2024).

Depending on the cutting and imaging method (see section 1.4.2), sample is cut with a knife, milled
with ions, or both. This determines which epoxy resin is the best choice.

Spurr’s resin (Spurr 1969) is known for its low viscosity at room temperature, which improves infil-
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tration. Its hardness values are ideal for ultrathin sectioning (20-50 nm), and it can be milled with ion
beams (Hayworth et al. 2020, Tegethoff et al. 2024).

Hard-Plus Resin 812 is an alternative used for thicker sections (500 nm) to ensure less compression
during cutting (Kormacheva 2023). For other methods, such as X-ray tomography, qualities such as high
radiation resilience are important. Thus, other resins, such as "tough resin," are recommended for these
methods (Bosch et al. 2023).

1.4.2 Cutting and imaging in connectomics

Connectomics works with volume EM data. To create a volume, several EM images are stacked together
after imaging. Thus, the z-resolution of the volume depends on the thickness of the sections that can be
imaged. Several methods are used for cutting and imaging. In one method, the sample is first cut, and
then the sections are imaged. In another method, called en bloc imaging, cutting and imaging are done
repetitively. A third method is a mixture of the first two.

If samples are cut before imaging, they are cut into ultra-thin sections of 20 - 50 nm with a diamond
knife. These sections are then collected on grids or copper tape. Tape collection can be automated as part
of the Automatic Tape-collecting Lathe Ultramicrotome (ATLUM) pipeline and used for transmission
EM (TEM) or scanning EM (SEM, Hayworth et al. 2006).

In TEM, transmitted electrons are used to generate the image, which is therefore restricted to ultrathin
sections. In contrast, SEM uses electrons emitted from the surface as either backscattered or secondary
electrons, allowing it to image larger blocks (Kubota et al. 2025). Because it scans the image pixel by
pixel, SEM is slower than TEM. To increase SEM speed, microscopes with up to 91 beams have been
used for multibeam SEM (mSEM, Eberle et al. 2015, Kubota et al. 2025).

Instead of first cutting the sample into sections that are then imaged, serial block-face EM (SBEM)
repetitively cuts and images (Denk et al. 2004). In this method, a microtome is incorporated into the
microscope to cut a section after imaging (see figure 1.6 c). Thus, the z-resolution is limited to the
capacity of the diamond knife, as it also is for ATLUM. This technique was also used to acquire the
dataset analyzed in this thesis (j0251, Kornfeld 2017, Schubert et al. 2022).

To increase the z-resolution beyond the capacities of diamond knives, an alternative approach is to
use a focused ion beam (FIB) to remove tissue after imaging, a process also referred to as milling (Knott
et al. 2008). The FIB-SEM approach has achieved z-resolution as low as 4 nm (Xu et al. 2017).

Instead of using FIB for milling, the sample surface can be milled with argon clusters, which allows
for milling in larger areas. This process is called gas cluster ion beam (GCIB) milling (Hayworth et al.
2020, Kubota et al. 2025). To image larger tissue stacks without compromising the high z-resolution,
this approach can be combined with diamond knife sectioning. In this method, the sample is cut into
semi-thin sections ranging from 100 to 500 nm. These sections are collected on silicon wafers and imaged
using GCIB-SEM (Hayworth et al. 2020). For higher throughput, this approach can be combined with
mSEM (Kormacheva 2023).

1.4.3 Data processing for connectomics

After EM images are aligned and stacked into an EM volume, the data must be processed before it can
be analyzed to answer biological questions.

In the C. elegans connectome, manual identification of every synapse and cell was required (White et al.
1986). However, with computer programs like KNOSSOS, which trace cells via a skeleton representation,
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the necessary time for manual annotation could decrease (Helmstaedter et al. 2011, Kornfeld 2017).

To enable the analysis of larger data sets and further reduce manual annotation time, convolutional
neural networks (CNN) are used to segment cells and identify subcellular structures, such as synapses,
mitochondria, and other organelles. Manual annotations are still needed to provide labeled data for
training, but this is limited to a fraction of the data.

Flood-filling networks (FFNs), which use a recurrent approach, are commonly used for cell segmenta-
tion (Januszewski et al. 2018). To identify synapses, vesicle clouds, and mitochondria, frameworks such
as SyConn have been developed (Dorkenwald et al. 2017). In this pipeline, organelles are first identified
with a CNN, and synapses are additionally overlaid with the contact areas of cells to ensure that each
synapse connects two different cells. This is followed by a random forest classifier (RFC) to estimate the
probability that each identified structure is a synapse. An RFC includes multiple decision trees and, in
this case, is trained on sets of correctly and incorrectly identified synapses. The resulting probability
directly translates to the fraction of correctly identified synapses; for example, a synapse probability of
0.8 means that 80 % of synapses with this label are true synapses. This can then be used as a filtering
criterion for analysis.

In addition to identifying synapses and cells, neural networks can be used to classify cellular com-
partments and cell types using either 2D images or point clouds (Schubert et al. 2019, Schubert et al.
2022). Various neural network architectures have been employed to classify synapses with different neu-
rotransmitters (Eckstein et al. 2024) and identify up to 35 organelle classes (Heinrich et al. 2021), as well
as extract synapse features for unsupervised classification (Wilson et al. 2023).

Errors that can result from neural network predictions include false predictions of structures, missing
structures, splitting cell fragments that belong together, and merging parts that do not belong to the
same cellular structure. The latter are also referred to as split-and-merge errors. Manual reviewing
and/or proofreading of neuronal structures is required to address these errors.

To minimize the need for additional manual labor, different approaches can be implemented. One
approach is the aforementioned use of additional classifiers, such as RFCs, to assign probabilities for
additional filtering and estimate expected error rates (Dorkenwald et al. 2017). Another strategy is
to develop proofreading frameworks that distribute the workflow to multiple users, such as FlyWire
(Dorkenwald et al. 2022) and the Connectome Annotation Versioning Engine (CAVE, Dorkenwald et al.
2025). Lastly, the PATHFINDER framework (Precise Analysis, Tracing, and High-Fidelity Interpretation
of Neuronal Data for Exhaustive Reconstruction) uses multiple neural networks to identify potential errors
based on the shape of neurons (Januszewski et al. 2025).

1.4.4 Connectomic data analysis

The analysis of connectomic datasets depends on the size of the dataset, the data processing pipeline,
and the focus of the biological question. As neural networks for segmentation and identification of
synapses and other organelles become more widely available, the amount of data increases, requiring
more sophisticated analysis tools.

Since the synaptic area correlates with synaptic transmission strength (Holler et al. 2021), it is im-
portant that analyses focus not only on the presence of a synapse, but also on its area and the cumulative
area between two neurons.

The first step in connectomic analysis is commonly the generation of a connectivity matrix, which
shows the summed synaptic area of individual neurons or neuron classes (see figure 1.5 e with results
from section 3.4.2, Dorkenwald et al. 2017, Helmstaedter et al. 2013, Dorkenwald et al. 2024). While
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this provides a comprehensive overview of the data, a matrix alone is insufficient for answering specific
biological questions. This is the case when focusing on compartment-specific connectivity, which is lost
in overviews of neuronal connections alone, and also because pathways that cover multiple steps are
indirectly visible only in this visualization.

Depending on the size of the dataset, connectomic analysis can answer different biological questions.
For example, it can compare the target structure, such as the spine versus the shaft of different inputs
to the same neuron, in smaller datasets (Kornfeld et al. 2020). Alternatively, it can identify prominent
signal pathways in larger datasets, such as a complete Drosophila brain (Dorkenwald et al. 2024). These
signaling pathways were identified by tracing the presumed flow of information through several neuronal
connections.

With several connectivity datasets available, analysis can either focus on specific developmental dif-
ferences such as the number and summed area of synapses to a specific target structure over time (Gour
et al. 2021) or on comparisons between species which can yield results such as an increased interneuron
network in humans and macaques compared to mice (Loomba et al. 2022).

When additional information about the neurons is available from different techniques, such as molec-
ular markers or two-photon imaging, the first step of the analysis is to match the data across the different
imaging modalities. Then, the analysis can focus on differences between labeled synapses throughout
learning and their ultrastructure (Uytiepo et al. 2025) or on relating functional information with dif-
ferences in the connectivity of different neurons. The latter approach was used with a mouse cortical
column dataset to demonstrate that neurons with similar functional properties, as determined by 2-photon
imaging, also tend to connect with each other (Ding et al. 2025).

1.5 Aims and Hypothesis

This thesis aims to provide a comprehensive understanding of a previously acquired dataset, j0251, from
Area X of the songbird brain (Kornfeld 2017), focusing on the morphology, organelles, and connectivity
of neuronal and glial cell types. This is not only to improve the understanding of Area X’s role in song
learning but also to analyze basal ganglia pathways in connectomics for the first time.

In order to achieve this, first, the data processing pipeline was improved. Second, the morphology
and subcellular structures of neuronal and glial cell types were characterized. Third, the connectivity
between adult neuronal cell types was analyzed, with a specific focus on basal ganglia pathways, and
then the implications of volume transmission by modulatory neurons were examined.

1.5.1 Data processing

Over the past decade, neuronal networks and computational pipelines have enabled the analysis of thou-
sands of cells and millions of synapses in connectomics datasets (see section 1.4.3). However, in-depth
biological analysis of specific connections, morphologies, and subcellular structures still requires manual
proofreading. This is due to "merge errors," in which several neurons are segmented as one; misclassifi-
cations; and biases in the ground truth. These biases can include predicting short fragments as a specific
cell type that has shorter fragments in the ground truth or overestimating the certainty of a specific type
of synapse or cell due to its greater prevalence in the dataset, which is then transferred to the ground
truth.

To improve connectomics analysis and reduce the aforementioned biases in the ground truth, this thesis
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focuses on creating a new ground truth in order to improve synapse classification and the separation of
mitochondria, as well as the classification of different projecting axon types. The thesis also aims to add
new cell type classes, such as novel interneuron types, various glial cell types, and migratory neurons.

EM allows visualization of organelles surrounded by lipid double layers, such as mitochondria, ER,
GA and vesicles. So far, only mitochondria and vesicle clouds have been processed, even though the
number of vesicles has been linked to synapse size in the mammalian hippocampus and neocortex (Harris
et al. 1989, Murthy et al. 2001, Kasthuri et al. 2015), and the ER is related to synaptic function via its
role as a Ca”" source and buffer (Tsuboi et al. 2021). One goal of this thesis is to segment and process
these organelles in order to analyze them in relation to neuron morphology and firing properties.

While previous connectomics datasets have used information from different organelles (Kasthuri et
al. 2015, Simon et al. 2021, Uytiepo et al. 2025) and a detailed organelle atlas of different cell types
was recently released (Xu et al. 2021), this dataset j0251 is the first to densely reconstruct synapses,
mitochondria, ER, GA, and individual vesicles spanning thousands of cells.

1.5.2 Morphology of neurons and glia and their subcellular structures

With over 8,500 neurons, this dataset of Area X, j0251, is the largest connectomics dataset not only of
zebra finch but also generally of a basal ganglia nucleus so far. One goal of this thesis is to provide a
detailed understanding of the different neuronal cell types and identify potential mammalian analogues.
This includes identifying differences in subcellular structures and describing previously undescribed neu-
ron types, including three types of GABAergic interneurons.

Since information about mitochondria, vesicle clouds, and synapse density has been found useful for
classifying cell types (Dorkenwald et al. 2017), the second goal is to identify which morphological and
subcellular structures are useful for classifying cells into different types in the context of connectomic
analysis.

Additionally, higher firing rates during singing have been linked to higher densities of mitochondria
and vesicle clouds in a smaller dataset with only coarse cell type classification (Dorkenwald et al. 2017).
The third goal of the analysis is to determine whether this correlation extends to the ER, which stores
Ca®", and to the densities of the GA and individual vesicles. If so, densities of organelles in novel
interneuron types could predict their firing rates in vivo and facilitate identification in singing birds.

1.5.3 Connectomic analyses of Area X

Area X includes cell types analogous to those in several anatomically distinct basal ganglia nuclei in
mammals. These cell types are connected via known basal ganglia pathways. Thus, j0251 provides the
first opportunity to study these pathways together in a single connectomic dataset, which is the main
goal of this thesis.

The presence of GPi neurons and the connection of MSNs to them has identified a direct pathway
through Area X. Although an indirect pathway in Area X has been hypothesized, no synaptic contacts
have been identified to confirm its existence (Farries et al. 2005). Additionally, a glutamatergic cell type
that may fulfill functions similar to those of the STN has been identified in Area X slices (Budzillo et al.
2017), but its morphology and connectivity have not yet been studied to determine whether it gives rise
to an analog of the hyperdirect pathway. Thus, the first goal is to determine whether analogues of the
direct, indirect, and hyperdirect pathways exist in Area X.

Electrophysiological measurements have shown that the synaptic area of a synapse is related to its
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strength (Holler et al. 2021). Thus, it is hypothesized that the summed synaptic area of a pathway can
indicate its functional importance. The second goal is to compare the basal ganglia pathways based on
their overall synaptic area and input fraction to Area X’s output neurons, the GPi. Since estimating the
synaptic area of several thousand neurons requires densely reconstructed EM data, this is the first time
that basal ganglia pathways can be compared in this manner.

The third goal is to analyze the connectivity and relationship of three novel GABAergic interneuron
types to the basal ganglia pathways. While the connectivity of different interneurons in the mammalian
basal ganglia is known, their relative influence on basal ganglia pathway neurons in terms of synaptic
area has never been studied.

LMAN, Area X, and DLM are connected via a microscopically closed topographical loop (Luo et al.
2001). Within Area X, this topography contains LMAN-MSN and MSN-GPi synapses. It is unclear
how this closed loop extends to synaptic connectivity. Individual LMAN neurons could "focus" their
information on a small number of GPi cells via indirect connectivity with MSN cells. This creates a
closed topographical loop and allows for feedback loops at the level of individual cells. Alternatively,
LMAN neurons could indirectly spread information to all GPi neurons in their vicinity. The fourth goal
is to address this question using the current Area X dataset.

In summary, achieving these goals would lead to a comprehensive analysis of the connectivity between
different types of neurons in Area X. This analysis would shed light on song learning and basal ganglia
pathways in general.

1.5.4 Synaptic and non-synaptic vesicles

Because the locations of individual vesicles are available throughout the dataset, their relationship with
synaptic transmission can be determined, and they can be used as a proxy for non-synaptic transmission.

First, the relationship between the number of vesicles, either in total or in close proximity to the
synapse, and synaptic area will be examined. This relationship has been demonstrated in the mammalian
hippocampus and neocortex (Harris et al. 1989, Murthy et al. 2001, Kasthuri et al. 2015).

Second, it will be tested whether vesicles can be found at greater distances from synapses and in
proximity to the cell membrane, and whether there are differences between cell types. Although proximity
does not indicate vesicle release at a particular site, the presence of non-synaptic vesicles close to the
membrane is necessary for release. In the absence of molecular markers for docked vesicles, the presence
of these vesicles serves as a proxy for volume transmission in this dataset. With projections from the
VTA and the presence of TANs, Area X contains two cell types that signal via volume transmission in
mammals (Abudukeyoumu et al. 2019, Arbuthnott et al. 2007).

If evidence of volume transmission is found in DA and TAN axons, the environment of non-synaptic
vesicles in these cell types can be analyzed further. The third goal is to analyze this environment to
determine whether the presence of non-synaptic vesicles correlates with specific cell or synapse types,
and whether cells with high receptor densities are in closer proximity.

Additionally, volume transmission plays a central role in learning and affects synapse size in the
striatum (Abudukeyoumu et al. 2019, Yagishita et al. 2014). Therefore, the fourth goal is to test
whether the synaptic area differs in proximity to non-synaptic modulatory vesicles.
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1.5.5 Glia cell types and migratory neurons in Area X

Glia cell types are as prevalent as neurons in the brain and perform essential cellular functions. However,
their presence in connectomic datasets was not acknowledged until recently, when they became the focus
of several studies (Buchanan et al. 2022, Yener et al. 2025, Salmon et al. 2023, Uytiepo et al. 2025).
Previous songbird connectomic datasets (Dorkenwald et al. 2017, Kornfeld et al. 2017) or in previous
analyses of this dataset (Schubert et al. 2022) did not identify them as cell types.

Thus, the first goal is to determine if the morphology of songbirds’ basal ganglia is similar to that
described in mammals and to identify the glial cell types present in the current dataset.

Immature neurons have previously been identified in the HVC of songbirds (Shvedov et al. 2024). To
allow for a better understanding of structural plasticity in the adult songbird brain, the second goal was
to identify and classify migratory neurons.

For the first time, dense reconstructions of not only cells, but also mitochondria, the ER, and the GA
are available together in several completely segmented glial and migratory neurons. Therefore, the third
goal was to analyze the densities of these organelles to characterize these cell types further. Since higher
mitochondrial density has been associated with higher reported firing rates in neurons (Dorkenwald et al.
2017), the organelle densities of glial and migratory cells compared to neurons may also provide insight
into their metabolic demand.

The interaction between glial cells and neurons, as well as between glial cells themselves, is the subject
of ongoing studies. The fourth goal is to analyze the contact areas of glial cell types with different neuron
types and with each other to get an initial estimate of these interactions in EM.
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Materials and Methods

2.1 Sample preparation

The sample preparation in this thesis focuses primarily on preparing the analyzed dataset, j0251 (section
2.1.1, but also involves additional experiments with larger samples (section 2.1.2).

2.1.1 jO251 dataset

j0251 sample preparation

The j0251 dataset was prepared by Joergen Kornfeld via serial block-face electron microscopy (SBEM), as
previously described (Kornfeld 2017, Schubert et al. 2022). The dataset was collected from an adult male
zebra finch (> 120 days post-hatch (dph)). The sample preparation procedure included high-pressure
perfusion to open the blood-brain barrier, as previously suggested (Cragg 1980), heavy-metal staining
according to the ROTO protocol (Briggman et al. 2011), and cutting with 25 nm thickness with a custom-
built in-chamber microtome (Denk et al. 2004). The volume of the dataset is 256 x 256 x 384 pm?, and
the resulting voxel size is 10 x 10 x 25 nm? in the x, y, and z directions (Kornfeld 2017, Schubert et al.
2022).

ECS estimation

To understand how much extracellular space (ECS) could be preserved with the aforementioned prepara-
tion, first the fraction of voxels in a cube which were not included in the cell segmentation were estimated.
Google Research provided the cell segmentation using flood-filling neural networks (FFNs, Januszewski
et al. 2018, see section 2.2.1 for more details). To achieve this, 1,000 random offsets were generated
within 15 pm of the dataset boundaries to ensure that all offsets lay completely within the data. At
each offset, a cube measuring 864 x 864 x 864 voxels (8.64 x 8.64 x 21.6 pm?) was loaded. Then, the
fraction of voxels not included in the segmentation — i.e., the ones not predicted to belong to a cell —
was computed.

Not only ECS but also blood vessels, small neurites, and myelin are not included in the cell segmen-
tation. To obtain an exact estimate of the ECS, 501 coordinates were manually reviewed by Riccardo
Morbio. These coordinates were randomly selected from the offset coordinates of the aforementioned
estimate for non-segmented voxels.
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2.1. Sample preparation

substance | amount in 1 L | concentration [mM]
NaCl 5.084 g 87
Nafl,PO, 015 g 1.25
KCI 0.186 g 2.5
sucrose 25.675 g 75
glucose 4.504 g 25
NaHCO3 2.1¢g 25
MgCl, 7 mL 7
CaCly 1 mL 1

Table 2.1: Ingredients in 1L of ACSF. MgCl, and CaCly, were added after stirring and bubbling with
COs.

2.1.2 Preparation of 2.5 mm zebra finch samples for ECS experiments

To study the preservation of ECS in larger samples, 2.5-mm-thick samples were fixed via immersion
fixation and then stained.

Animal statement

All of the zebra finches used in this section and the following one were wild-type males (> 120 dph)
from the animal facility at the Max Planck Institute for Biological Intelligence in Seewiesen. All animal
procedures were performed according to the Government of Upper Bavaria’s guidelines.

Immersion fixation

Immersion fixation is a fixation procedure in which the extracted brain is placed in a fixative that enters
the sample via diffusion. This procedure was performed as previously described (Fernholz 2022, Pallotto
et al. 2015, Weiler 2018). The immersion fixations described in the following sections were prepared and
planned together with Jonas Hemesath.

First, artificial cerebrospinal fluid (ACSF) was prepared according to table 2.1, adapted from Fernholz
2022 and Peters et al. 2023. All ingredients except for MgCl, and CaCl, are added. Then, the ACSF is
kept on ice and bubbled with 95 % Os/ 5%COsfor 15-20 minutes. Then, MgCl, and CaCl, are added,
and the pH should be 7.5. The osmolality was 344 mOsm. The ACSF is then stored on ice or at 4 °C
until needed.

Brain extraction was then performed as previously described (Fernholz 2022, Weiler 2018), with
adaptations for zebra finches. Zebra finches were decapitated with surgical scissors, then the brain
extracted. The steps from decapitation to fixation are time sensitive because the brain should have
minimal contact with air. To accomplish this, the brain was extracted on a closed Petri dish filled with
ice and wetted with ACSF. First, the skull was opened by carefully grating scissors on the top side to
create an unclosed circle, and then it was opened with tweezers. The dura was carefully removed with
fine, sharp tweezers. Finally, the brain was removed and placed briefly in a small beaker filled with ACSF
and kept on ice.

Next, the brain is cut into 2.5 mm thick slabs. A custom-made form designed by Jonas Hemesath
according to measurements from the zebra finch MRI brain atlas (Poirier et al. 2008) was used for this.
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2.1. Sample preparation

sucrose concentration | 5 % | 7% | 9 %
osmolality [mOsm)] 120 | 205 | 273

Table 2.2: Osmolality of rinse solutions for different fixatives

The form was designed so that a 2.5-mm slab could be cut to include most of the song system nuclei and
be separated from the rest with two razor blades. Before use, the form was rinsed with ice-cold ACSF.
The brain was then cut into two hemispheres, each of which was cut into one 2.5-mm slab and the rest
of the hemisphere, which was around the same thickness.

The cut slices were incubated overnight in the fixative at 4 °C in a rotating wheel to gently move
the samples during fixation. Increasing the osmolality of the fixation buffer aids in ECS preservation
(Pallotto et al. 2015). Previously, a mixture of sucrose and CB (Cragg 1980), or for retina samples, high
concentrations of sucrose only (Pallotto et al. 2015) were used for this purpose.

All samples were fixed with 2 % glutaraldehyde and 2 % PFA in varying sucrose concentrations. For
samples prepared for EM, sucrose concentrations of 5, 7 and 9 % were used (see table 2.2 for measured
osmolalities). The rinse solution was measured to determine the osmolality of the different solutions
because it does not contain glutaraldehyde and PFA (Pallotto et al. 2015).

After fixation, the samples were rinsed in a sucrose solution with the same concentration as the
fixative. Then, they were kept at 4 °C for 48 hours until the staining process began.

Heavy metal staining for EM

Heavy metal staining was performed using a protocol adapted from Hua et al. 2015 and Lu et al. 2023,
together with embedding from Kormacheva 2023 according to table 2.3. The first osmium step was
performed using the same sucrose concentrations in which the samples were fixed.

To monitor the diffusion of heavy metals in the sample, a MicroCT was used (Stréh et al. 2022, Lu
et al. 2023). The MicroCT (CT portable, PXR) had a voxel size of 24.41 ym, was operated at 48.5 kV
and 500 pA, and had a magnification factor of 2.03. Before the experiment, the detector was corrected
using 500 images, resulting in an offset of -30.85 pixels, a skew of -0.024°, and a horizontal misalignment
of 1.527 pm. During the first and second osmium steps, the 7 % sucrose sample was imaged every hour.
All samples were imaged after the ferrocyanide and second osmium steps, as well as after the lead step,
to ensure complete diffusion. Additionally, all samples were imaged during the lead step. All scans
were performed with 200 ms imaging time, no averaging, and 400 images per rotation. Example images
illustrate diffusion over time for the 7 % sucrose sample during the first osmium step (see figure 2.1).
Although diffusion was not complete after 5.5 hours, the sample appeared uniform during the full six
hours and the subsequent ferrocyanide step.

During embedding, 100 % solutions of Hard-Plus Resin 812 (Electron Microscopy Sciences) were
degassed with a vacuum pump to remove air bubbles. The samples were then dried in custom-made
silicone forms made with the Sylgard 184 elastomer kit (Dow), with a 10:1 mixture of silicone and
hardener. After hardening, the samples were removed from the oven, trimmed into a hexagonal shape in
the workshop, and smoothed with an ultramicrotome (Leica). Then, a 100-nm section was collected on a
plasma-cleaned silicon 2-inch wafer and imaged with a Zeiss Ultra electron microscope at an accelerating
voltage of 1.5 kV, a dwell time of 12.8 ps, an aperture of 60 pm, and a pixel size of 5 nm.
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2.1. Sample preparation

staining step

2 % OsOy (fix buffer), 6 hrs, RT

0.15 M CB, 1, 10, 20, 30 min, RT

0.15 M CB, ON, 4 °C

0.15 M CB, 30 min, RT

2.5 % KFe(CN),, 0.15 M CB, 6 hrs, RT

0.15 M CB, 1, 10, 20, 30 min, RT

0.15 M CB, ON, 4 °C

0.15 M CB, 30 min, RT

0.32 M pyrogallol, 6 hrs, RT

0.15 M CB, 1, 10, 20, 30 min, RT

0.15 M CB, ON, 4 °C

0.15 M CB, 30 min, RT

2 % 0sOy, 0.15 M CB, 6 hrs, RT

0.15 M CB, 1, 10, 20, 30, 30 min, RT

lead aspartate, 23 hrs, 50 °C

ddH,0, 1, 10, 20, 30 min, RT

ddH>O, 1 hrs, RT

50, 75 % BEtOMH, 30 min, 4°C

100 % x 3, EtOH, 30, 45, 60 min, 4°C (freshly opened bottle)

100 % x 3, Acetone, 30 min, RT (freshly opened bottle)

80 % Acetone, 20 % Hard-Plus Resin 812, 48hrs, RT

@a@a@mm%%»%wwwwwmwm.—np,—ng
<

60 % Acetone, 40 % Hard-Plus Resin 812, 48hrs, RT

11 40 % Acetone, 60 % Hard-Plus Resin 812, 48hrs, RT

13 | 20 % Acetone, 80 % Hard-Plus Resin 812, 48hrs, RT (fresh)
15 100 % Hard-Plus Resin 812, 24hrs, RT (fresh, degassed)
16 100 % Hard-Plus Resin 812, 24hrs, RT (fresh, degassed)
17 | 100 % Hard-Plus Resin 812, 24hrs, RT form (fresh, degassed)
18 70 °C (oven), at least 48 hrs

Table 2.3: Staining and embedding of 2.5 mm samples. Lead aspartate is prepared according to Walton

1979 and the pH adjusted to 5.5 with NaOH.
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2.1. Sample preparation

0:20 1:23 2:27 3:30

2mm

4:33 5:36

Figure 2.1: MicroCT images of a 7 % sucrose sample during the first osmium step. The exact times after
the solution change are given in hours:minutes. The last image was taken after the ferrocyanide step.

after ferrocyanide step
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2.2. Data processing

weight [g]
NSA 5.9
ERL 4.1
DER 0.95
DMAE 0.1

Table 2.4: Spurr’s resin (Spurr 1969) for 10 mL (weighed).

Day dehydration and embedding step
50, 75, 96 % EtOH, 30 min, 4°C
100 % x 2, EtOH, 30 min, 4°C (freshly openend bottle)
100 % x 3, Acetone, 30 min (or 30, 45, 60), 4°C (freshly openend bottle)
25 % Spurr’s, 75% Acetone, ON, RT (fresh)
50 % Spurr’s, 50% Acetone, 6hrs, RT (fresh)
75 % Spurr’s, 25% Acetone, ON, RT (same day)
100 % Spurr’s, 6hrs, RT (fresh, degassed)
100 % Spurr’s, ON, RT form (same day)
70 °C (oven), at least 48 hrs

S Qo) Q| DO DO = = = =

Table 2.5: Sample embedding for ETS staining.

2.1.3 Light microscopy of 2-3 mm zebra finch samples

To determine whether artifacts around the blood vessels appear during fixation or staining, a light
microscopy image was taken immediately after fixation. For this purpose, a sample was fixed using
immersion fixation with 2 % glutaraldehyde, 2 % PFA and 7 % sucrose as described above. The fixed
tissue was dehydrated and embedded in Spurr’s resin (see table 2.4, Spurr 1969) as described in table
2.5, adapted from Kormacheva 2023.

The sample was placed in a silicone mold and trimmed as described above. Then, a 100-nm section
was cut with an ultramicrotome, as described above. This time, the section was collected on a glass slide
that had been cleaned with ethanol and heated to 65 °C for a few seconds to remove wrinkles.

For contrast, a stain of toluidine blue and basic fuchsin was used, which is commonly used as an
electron microscopy overview stain (Epoxy Tissue Stain, Electron Microscopy Services). The stain was
applied for 20 seconds before the excess stain was removed with ddH>O. Then, the sample was covered
with a glass cover slip and a drop of Spurr’s solution. Imaging was performed using a Leica SP8 confocal
microscope.

2.2 Data processing

Computing resources

Data processing and analysis were performed on the Cajal cluster, which is hosted by the Max Planck
Computing and Data Facility in Garching.
This cluster has 51 nodes for parallel computing, each with 64 cores (Intel(R) Xeon(R) Platinum
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2.2. Data processing

8358 CPU @ 2.60GHz), for a total of 3,264 CPU cores. Each node includes two GPUs ( 2 x NVIDIA
A40 GPUs) and 1 TB of RAM (https://docs.mpcdf .mpg.de/doc/computing/clusters/systems/
Biological_Intelligence.html). Job allocation and parallel processing across nodes were performed
using SLURM (Yoo et al. 2003).

For data processing, which included several steps in the SyConn pipeline (section 2.2.1, Schubert et al.
2022) and vesicle extraction (section 2.2.3), code was executed on up to 46 nodes. With these resources,
the SyConn steps took around one month to run and the vesicle extraction took one day.

The data analysis was configured to use one node with multiprocessing, which allows for parallel
computing on multiple cores.

Visualization with SyConn Neuroglancer

EM images, cell segmentations, and 3D renderings of cells, mitochondria, synapses, vesicle clouds,
endoplasmic reticulum (ER), and the Golgi apparatus (GA) are available via SyConnWeb (https:
//syconn.esc.mpcdf .mpg.de, Schubert et al. 2022), which uses Neuroglancer (https://github.com/
google/neuroglancer) to display the data. After processing the data to its current state, as described
in the following sections, Hashir Ahmad updated the data in SyConnWeb.

To access the data described in this thesis, select the dataset "j0251" and version "j0251 72 seg
20211027 _agglo2 syn 20220811 celltypes 20230822". Coordinates can be inserted in the top left
("x", "y", "z") and a cell ID in the top right under "Select". Figures in this thesis will reference either
the location of the raw data, the ID of the displayed cell, or both. Tutorials on further functions are
available on the website.

2.2.1 Improvements to the SyConn pipeline

SyConn is an API that provides a pipeline for processing volumetric EM data (Dorkenwald et al. 2017,
Schubert et al. 2019, Schubert et al. 2022). It uses convolutional neural networks (CNNs) for several
steps and works in an object-oriented fashion. Cells are objects ("SuperSegmentationObject") with
subcellular structures ("SegmentationObject") assigned to them, such as mitochondria, vesicle clouds,
and synapses, along with attributes like their volume. To allow for easier processing, attributes such as
the compartment of the synapse and the synapse IDs, are stored in several numpy arrays that are sorted
similarly. To visualize cells and their organelles in 3D, a mesh is generated for each cell, which can be
seen in SyConnWeb (section 2.2).

In this thesis, the SyConn pipeline was used as previously described (Dorkenwald et al. 2017, Schubert
et al. 2022) but with adjustments that will be described in the following sections.

Neurite reconstructions and compartment predictions were used from Schubert et al. 2022. Segmen-
tations were provided by Google Research using FFNs (Januszewski et al. 2018).

The CNNs used for compartment predictions and cell classifications were trained using the elektronn3
framework (https://github.com/ELEKTRONN/elektronn3). For compartment predictions, the cell com-
partments were classified as coarse or fine with three CNNs in total (Schubert et al. 2022, Schubert 2022).
The coarse prediction divided the cell into soma, dendrite, or axon compartments. The first fine predic-
tion was used to distinguish terminal and en passant boutons. In this thesis, these axon compartments
were not distinguished. The second fine prediction differentiated dendritic compartments into dendritic
shaft, spine head, and spine neck.
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2.2. Data processing

mi, sj, vC mi, more myelin gt mi, sj, vC

500 nm 1 um

Figure 2.2: Mitochondria detection in the first prediction and addition of ground truth for mitochondria
in myelinated axons. Left coordinates: 15265, 14275, 12997, right: 12051, 14156, 310. c.f. For raw data
see section 2.2.

Improvements to synapses, mitochondria, and vesicle clouds

Synapses, mitochondria and vesicle clouds are already part of the SyConn pipeline (Dorkenwald et al.
2017). For this thesis, the segmentation of synapses and mitochondria was based on new ground truth,
while the segmentation of vesicle clouds was reprocessed using the same ground truth as previously used
(Schubert et al. 2022).

The ground truth consisted of 51 cubes, each sized 300 x 300 x 150 voxels, where mitochondria and
synaptic junctions were annotated. Additionally, six cubes of the same size that included myelin, were
annotated for mitochondria, as the original predictions performed poorly around myelin (see figure 2.2).
To ensure that individual mitochondria would not be predicted together, binary erosion was performed for
two iterations with a border value of 1 (https://docs.scipy.org/doc/scipy/reference/generated/
scipy.ndimage.binary_erosion.html). Annotations were done in KNOSSOS (https://knossos.app/
by thirteen trained student annotators under my supervision. The annotations were then reviewed by two
of the annotators, Delta Schick and Julian Hendricks, and final revisions were done by Joergen Kornfeld
and me.

The new segmentations were trained and predicted by collaborators at Google Research under the
supervision of Michatl Januszewski.

Synapse, mitochondria, and vesicle cloud processing was done with Hashir Ahmad according to the
steps described in the SyConn2 pipeline (Schubert et al. 2022). To extract subcellular structures, mi-
tochondria and vesicle clouds were first predicted and split into different connected components. Then,
they were overlaid with the cell segmentation to map them to the cells (see figure 2.3). The extraction
process for synapses involved more steps.

To ensure that each synapse is a connection between two different cells, the synapse prediction was
first overlaid with the contact sites (cs) where the cell membranes of different cells touched. While this
removes false positives within a cell, it also removes autapses.

Second, the synaptic objects between two cells were split into individual objects (’syn ssv’) by con-
nected component analysis. These objects are represented as 3D meshes with a pancake-like shape, from
which their volume and surface area are computed (see figure 2.3, Dorkenwald et al. 2017). Next, they
were overlaid with the cell segmentation to map them to the cells.

To estimate the area of the synapse, the surface mesh area was divided by two to determine the contact
area between the two cells. Because of its pancake shape, the surface mesh area is mostly determined
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2.2. Data processing

raw data sj, mi, vc pred mi instance seg syn instance seg vc instance seg

Figure 2.3: Processing of synapses, mitochondria, and vesicle clouds. All scale bars show 850 nm. The
prediction from Google Research includes synaptic junctions (sj), mitochondria (mi) and vesicle clouds
(vc). These are separated and individual objects found to generate the different instance segmentations.

For synapses, the sj predictions are overlaid with contact site (cs) predictions. Top coordinates: 14750,
18722, 7747. Bottom: 14140, 14081, 7748.
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2.2. Data processing

by the contact area on each side of the mesh. Therefore, dividing by two yields a good estimate of the
contact area between the presynaptic and postsynaptic cells.

In the final step, a random forest classifier (RFC) was used to estimate the accuracy of the synapse
prediction (Dorkenwald et al. 2017, Schubert et al. 2022). This probability represents the proportion
of synapses with a given label that were correctly predicted. For instance, a synapse probability of 0.8
indicates that 80 % of synapses with that label were correctly predicted. Manual verification of the RFC
results is described later (section 2.2.1).

The ground truth for the RFC was updated to include synapses from the current prediction and,
unlike previous approaches, contained samples of all cell types to avoid the underrepresentation of less
frequent cell types. Specifically, the updated ground truth included 330 synapses, with 30 randomly
selected from each cell type. INT1-3 were divided into FS and NGF only. For neuronal cell types in
Area X, there were 15 incoming and 15 outgoing synapses. Only axo-dendritic and axo-somatic synapses
were selected. Three biological annotators (Riccardo Morbio, Delta Schick, and Laura Werner) and I
manually labeled the selected synapses as true or false. The annotators were given information only
about the synaptic coordinates to verify with SyConnWeb, where information about cell type, but not
mesh area, was available. The final label was assigned by majority vote. In case of a tie, I determined
the final label. This resulted in 234 true and 96 false synapses. After cross-validation, the resulting F1
score was 0.88, the non-synaptic score was 0.68, and the accuracy was 0.82 (see result section 3.1.2, table
3.1).

Evaluation of synapse quality

To assess the quality of the synapses and verify the accuracy of the RFC synapse probability scores, a
random subset of synapses was manually reviewed by biological annotator Riccardo Morbio.

Specifically, 330 synapses were randomly selected from various probability categories (0-0.2, 0.2-0.4,
0.4-0.6, 0.6-0.8, and 0.8-1) and cell types. Three synapses were selected for each presynaptic cell type
within each category. 180 of these synapses were filtered so that only one synaptic partner was an axon
(axo-axonic synapses were permitted). The remaining 152 synapses were filtered with a minimum synaptic
area of 0.1 pm. Only axo-dendritic and axo-somatic synapses were permitted, as well as synapses between
neuronal cell types that met the criteria used for data analysis later on (see section 2.3.1, minimum path
length of 50 pm for projecting axons, 200 pm for other neuronal cell types). In the lowest probability bin
(0-0.2), there were eight synapses total and all were included.

To avoid potential bias, the annotator was given only the synaptic coordinates and the two cell IDs
of the presynaptic and postsynaptic partners that could be evaluated in SyConnWeb, where information
about cell type is available (section 2.2), but no information about the assigned synaptic probability or
synaptic area. After the initial evaluation by the annotator, I reviewed the few synapses (fewer than five)
classified as "unclear" for final classification.

2.2.2 Cell type classification

A supervised machine learning approach operating on point clouds of cell meshes was used for cell
classification (Schubert et al. 2022). The cell types were based on literature descriptions (Kornfeld et al.
2020, see table 2.6) and were extended from Schubert et al. 2022 (253 cells, referenced as 'v4/’SyConnv2’,
see table 2.7).

The ground truth was expanded in two steps: first, an intermediate version, "v5" (324 cells total),
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and then the final version, "v6" (393 cells total), which was used for data analysis in this thesis (see
table 2.7). The new additions to the ground truth included the projection of axon fragments of different
lengths and the inclusion of new interneuron types, glial cell types, and migratory neurons, as described
in the following sections.

The prediction model was trained using the entire ground truth, excluding myelin information, with
50,000 points, a 20-pm context, and a redundancy of 20. This means that 20 predictions were made
per cell (small fragments were sampled with replacement). The model was subjected to a 10-fold cross-
validation separately on three different splits of the data into training and validation sets, as previously
described (Schubert et al. 2022).

The cross-validation results were summarized to report the mean and standard deviation of the F1
scores across three runs, as well as the mean of the confusion matrices for different redundancy values (1,
10, 20, and 50).

Projecting axon classification

To avoid potential bias related to fragment length, the ground truth for projecting axon types (HVC,
LMAN, and DA) was expanded to include different lengths within each class.

First, Joergen Kornfeld added additional HVC and LMAN axons to v5, especially longer fragments
(see table 2.8).

The prediction method works with randomly selected contexts, extracting parts of the point cloud. If
a certain axon class only has very short fragments, then the randomly selected context may often contain
a cutoff axon end. To prevent the classifier from associating a cutoff axon end with a specific cell class,
the number of axons in the ground truth within a specific length category was analyzed.

Since in v4 and v5 LMAN did not have short fragments, while DA only included them, the ground
truth needed to be extended (see result section 3.1.2). To accomplish this, ten random samples were
selected from all LMAN, HVC, and DA fragments for each cell type and length category and reviewed
by Joergen Kornfeld and me. Ultimately, 28 axon fragments were added to fill in missing categories (see
table 2.8).

The randomly selected cells did not contain an HVC fragment longer than 1 mm, but, since 11
fragments were larger than 500 pm, no additional HVC axons were selected. Since some morphological
differences result in differences in fragment length (e.g. LMAN axons branch frequently, whereas HVC
axons do not), omitting longer LMAN axons was not in the best interest. This is why the different cell
types did not have the exact same number of axons in each length category for training.

Identification of novel GABAergic interneurons

While the ground truth for most neuronal cell types remained consistent across versions, an examination
of the NGF class revealed morphological differences that allow it to be clustered into two distinct cell
types (see result section 3.1.2). Manual inspection and previous results showing two UMAP clusters
(Schubert et al. 2022), led to further analysis of NGF morphology.

The cells used for this analysis met the following criteria: the presence of an axon, a dendrite, and
a soma compartment was verified by the existence of at least one skeleton node that was predicted to
be such; the skeleton length of the axon and the dendrite was 200 pm each. Additionally, three FS class
cells and five NGF cells were excluded due to mergers (7) or uncharacteristic morphology (1). In a later
version, exclusions due to mergers and merger error rates were defined differently (section 2.3.1).
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Cell type Soma Dendrites Axon Synapses Incoming Outgoing References
few synaptic o )
DA B R junctions in inhibitory, . MSN Henselmans eF al. 1994
modulatory (in reptile)
boutons
unbranched, MSNs,
HVC - - regular en-passant excitatory - interneurons, Fortune et al. 1995
boutons GP
branched, cohesive MSNs,
LMAN - - terminal excitatory - interneurons, Vates et al. 1995
domains pallidal
small L , , GP,
MSN diameter spiny - inhibitory/ | HVC, LMAN, MSNs, Farries et al. 2002
B modulatory | FS and LTS .
< 10 pm interneurons
large .
. . large A QN Farries et al. 2002
GPe (tlallgeltuelli aspiny boutons inhibitory HVC, MSN GP Luo et al. 1999
larger large boutons, Farries ot al. 2002
GPi than GPe aspiny projecting to inhibitory HVC, MSN GP h S .
- v Luo et al. 1999
> 10 pm DLM
STN - - - excitatory pallidal pallidal neurons Budezillo et al. 2017
large . inhibitory/ arries et ¢ P
TAN diameter aspiny, . inhibitory/ . MSN Farries et al. 2002 ’
~ 10 pm sparse modulatory Henselmans et al. 1994
large aspiny. MSNs,
LTS diameter s I;r:e sparse inhibitory - interneurons, Farries et al. 2002
> 10 pm P GP
median densel broadly resembling
INT1 diameter aspiny - Yd inhibitory . - FS
12 pm ranche Farries et al. 2002
small densel broadly resembling
INT2 diameter spiny brankllzd inhibitory - MSN FS
9 pm Farries et al. 2002
larger densely branched, broadly resembling
INT3 diameter aspiny thick with inhibitory - MSN FS
14 pm boutons Farries et al. 2002
eloneated branchy processes, touch blood vessels
ASTRO C(;re i i(’)m with one process, densely packed - - - Buchanan et al. 2022
JOTe Teglon cytoplasmic protrusions
elongated soma, . . e Buchanan et al. 2022
MICRO lipofuscin granules several long, thin and branchy processes - - - Xu et al. 2008
OLICO sn}()Oth., thin processes (often (-ut: off), connected to } ) } Buchanan et al. 2022
ovoid soma myelin, partially wrapping around neuron
MIGR elongated soma elongatedAshape, few thin Processes, - - - Scott et al. 2012
bipolar morphology
FRAG small fragments, often located around blood vessels - - -
oblone nucleus ramified form with 15-17 highly branched
OPC & o processes, up to 50 pm from soma, - - - Buchanan et al. 2022

round soma

filopodia on tips

Table 2.6: Characteristics of different neuronal and glial cell types in Area X, adapted from Kornfeld
et al. 2020. See section 2.2.2 for details on INT1-3 classification.
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number of ground truth cells
cell type | v4/SyConnv2 | vb v6
DA 19 17 26
LMAN 31 48 58
HVC 33 39 53
MSN 32 31 31
STN 35 34 34
TAN 12 12 12
GPe 14 13 13
GPi 17 15 15
LTS 10 9 9
FS/INT1 | 27 24 24
INT2 - - 16
INT3 - - 16
ASTRO | - 12 17
OLIGO | - 12 14
MICRO | - 17 17
MIGR - - 14
FRAG - 24 24
NGF 23 17 -

Table 2.7: Cell types and the number of cells in different versions of the ground truth. The version labeled
"v4/SyConnV2" refers to the data used in Schubert et al. 2022. Version "v5" is an intermediate version,
and "v6" is the version used for data analysis

axon type | 0-50 pm | 50 - 100 pm | 100 - 500 pm | 500 - 1000 pm | > 1000 pm pathlength
DA v4 2 5 10 1 1
DA v5 1 5 10 1 0
DA v6 2 5 10 4 5
LMAN v4 0 0 1 3 27
LMAN v5 0 0 0 5 43
LMAN v6 1 3 4 7 43
HVC v4 2 5 16 10 0
HVC v5 0 0 28 11 0
HVC v6 4 4 34 11 0

Table 2.8: Projecting axon fragment length in different versions of the ground truth. The version labeled
"v4/SyConnV2" refers to the data used in Schubert et al. 2022. Version "v5" is an intermediate version,
and "v6" is the version used for data analysis.
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2.2. Data processing

morphological parameter manually set threshold
axon median radius 0.11 pm
axon mitochondria volume density 0.025 pm? /pm
soma diameter 11.5 pm
spine density 0.025 1/pum

Table 2.9: Manually set thresholds to separate the NGF class into two interneuron populations based on
morphology.

Morphological analysis revealed differences in NGF soma diameter, axonal mitochondrial volume
density, axon median radius, and spine density. These parameters could be separated in a principal
component analysis (PCA) with one principal component based on these parameters (see result section
3.1.2).

The soma diameter was calculated based on the median label of vertices (mesh surfaces) predicted
to be soma. Spines were identified by skeleton nodes labeled "spine neck" or "spine head" by the
compartment classifier. One spine was identified as the connected component using the NetworkX con-
nected component function (https://networkx.org/documentation/stable/reference/algorithms/
generated/networkx.algorithms. components.connected_components.html) after removing the graph
nodes labeled as dendrites. To calculate spine density, the number of spines was divided by the skeleton
length of the dendrite after removing the spines so that the number of spines would not influence the
overall dendritic length. The median radius was calculated from the "diameter" attribute of the skeleton
of all skeleton nodes predicted as axons by the compartment classifier. This attribute represents the
thickness of the neurite at the node’s location. Mitochondria volume density in the axon was calculated
by dividing the volume of all mitochondria in the axon compartment by the total skeleton length of the
axon compartment.

Two subtypes of NGF were identified using manually set thresholds based on all four parameters (see
table 2.9). Cells with a lower soma diameter, axonal mitochondrial volume density, and axon median
radius than the threshold, but a higher spine density, were labeled "NGF type 1/INT2". Cells with a
higher soma diameter, axonal mitochondrial volume density, and axon median radius, but a lower spine
density, were labeled "NGF type 2/INT3". All other cells were classified as "NGF undefined".

When FS cells were analyzed using the same morphological parameters, the results showed that their
cluster was morphologically intermediate between the two NGF subtypes (see result section 3.1.2). Since
the FS and the two NGF subtypes resemble the FS cell type described in the literature (Farries et al.
2002), they were relabeled as INT1, INT2, and INT3 for a new classification. For the ground truth, all
previous FS cells were relabeled as INT1.

For NGF, I manually classified all existing ground truth cells into the two subtypes and checked if
this classification overlapped with the thresholds from the analysis. Six of the 17 NGF cells in the v5
ground truth could be placed into each subtype this way; the other five cells were removed. Additionally,
ten cells from each NGF type were added to the ground truth according to the thresholds. NGF type 1
cells were labeled INT2 and NGF type 2 cells were labeled INT3.
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2.2. Data processing

Glial cell types and migratory neurons

In addition to neuronal cell types, the brain includes various glial cell types. In order to analyze them,
they first had to be recognized as distinct cell types.

In an initial version, Joergen Kornfeld and I added examples of astrocytes (ASTRO), microglia (MI-
CRO), and oligodendrocytes (OLIGO) to the ground truth, based on literature descriptions (see table
2.6). For microglia, only resting microglia were identified.

To further characterize these glial cell types, Delta Schick manually inspected several of them as part
of his master’s thesis, which I supervised. Cells were reviewed when they had a cell-type certainty of at
least 0.8 (a parameter provided by the cell-type classifier) and a skeleton length that varied depending
on the glial cell type (Schick 2023). Oligodendrocytes, which are often cutoff due to their thin processes,
had to have minimum skeleton pathlengths of 100 pm, microglia of 200 pm, and astrocytes of 500-1000
nm. Astrocytes with pathlengths over 1000 pm often included mergers and were therefore discarded.

During this analysis, 14 cells that were initially classified as microglia were found to have more
morphological similarities with migratory neurons. These cells were verified to be migratory neurons by
Ben Scott, Naomi Shvedov and Simon Castonguay (Scott et al. 2012, Shvedov et al. 2024). In the next
ground truth version (v6), these cells were added as "MIGR".

Additionally, JoAnn Buchanan manually inspected and verified several cells classified as microglia to
fulfill the criteria of oligodendrocyte progenitor cells (OPCs), such as a round soma and filopodia on the
tips of their processes. In contrast to microglia cells, there was an absence of lipofuscin granules (see table
2.6, Buchanan et al. 2022, Xu et al. 2008). For analysis, Delta Schick manually inspected all microglia
and labeled them as either "microglia" or "OPC". These labels were then used in the following analysis.
An earlier version of the analysis with OPCs was presented as a conference poster with Delta Schick
(co-first authorship) and is available online (Schick et al. 2024). Additionally to supervising the analysis,
I made all 3D renderings in the poster that are also used in this thesis. Unless otherwise specified in the
figure caption, I also created the raw data images.

2.2.3 Organelle segmentation

Not all of the subcellular structures visible in EM were processed with SyConn. To further investigate
the relationship between subcellular structures and cell type characteristics, ER, golgi apparatus (GA),
and individual vesicles were predicted as additional subcellular structures.

A neural network (U-Net) was used for prediction, and then the organelles were processed to extract
individual objects that could be analyzed and mapped to the cells.

Ground truth for organelle segmentation

In order to segment synaptic vesicles individually and include the GA and ER, a new ground truth based
on manual segmentation of these organelles had to be generated. Mitochondria, ER, GA, synapses, and
individual vesicles were annotated in 14 ground truth cubes measuring 4 pm x 4 pm x5 pm (400 x 400
x 200 voxels, x, y, z) using KNOSSOS. Twelve biological annotators performed the annotations under
my supervision. Delta Schick also oversaw the annotations and provided feedback on the initial reviews
while I oversaw the final reviews.

A total of 4,286 hours were spent on the annotation and review process, with a median of 305.5 hours
per cube. The time spent varied depending on the content of each cube and the number of reviews,
ranging from 39 to 522 hours. Ground truth cubes included various features of the dataset, such as
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Start . Darker | Cuttin, Blood | Used for
Number coordinates GA | Soma | Myelin cytosol artefactgs vessel | validation
1 886, 1728, 15040 no no no no no no no
2 1439, 16976, 15061 | yes yes yes no no no no
3 1777, 3033, 5791 yes yes no no yes no no
4 1904, 11933, 5806 no no no no no yes no
5 2265, 18393, 14730 | no no yes no no no no
6 3234, 2032, 8941 yes | partial no yes no no no
7 4465, 2131, 9 yes yes no no no no no
8 7293, 13339, 2716 no no yes yes no no no
9 13306, 13460, 7748 | yes yes yes no no no yes
10 13523, 13667, 774 no no yes no no no no
11 13677, 16740, 1489 | yes yes yes no yes no no
12 15984, 1104, 824 no no yes no yes no no
13 16012, 14119, 7831 | no no no no no yes yes
14 22468, 18096, 1413 | yes yes yes no no no no

Table 2.10: Coordinates and contents of the ground truth cubes used for organelle prediction. All cubes
contained mitochondria, ER, synapses and synaptic vesicles. Two cubes were selected for validation: one
contained a soma, GA, and myelin, and the other contained a blood vessel. A previous version of the
vesicle segmentation was initially used to identify individual vesicles in cubes 7, 10, 11, and 12. Cube 10
served as the validation cube for this segmentation.

myelin, soma, blood vessels, and cells with slightly darker-stained cytosols, as well as cutting artifacts,
such as debris in the image (see table 2.10, figure 2.4, appendix figures A2, A3).

All ground truth cubes included mitochondria, ER, synapses, and synaptic vesicles. However, GA was
only present in some of them because not all contained soma. Unfortunately, the raw images of vesicle
clouds often showed overlap of individual vesicles, making distinction difficult.

The resources used as references for the different organelles in the EM data were SynapseWeb (https:
//synapseweb.clm.utexas.edu/) and OpenOrganelle (Heinrich et al. 2021, Xu et al. 2021, https:
//openorganelle. janelia.org/).

The ground truth annotators were able to separate the GA and ER stacks. Due to the thin, tubular
structure of the ER, it was often fragmented, especially in thin axons or dendritic spines. Larger ER
stacks were visible in the soma, especially if they were close to the nuclear membrane (see figure 2.4 b).

Single vesicle segmentation

First, only individual vesicles were segmented. A preliminary version of the vesicle annotation of four
ground truth cubes (7, 10, 11, 12, see table 2.10) was used to accomplish this. One cube (10, see table
2.10) was excluded from training and only used for validation, while the model was trained on the other
three cubes. The final prediction was performed using a model trained on all cubes.

Training and prediction of a 3D U-Net (modified from Ronneberger et al. 2015, https://github.com/
ELEKTRONN/elektronn3/blob/8111e5df4/elektronn3d/models/unet.py) was done by Martin Bucella

42


https://synapseweb.clm.utexas.edu/
https://synapseweb.clm.utexas.edu/
https://openorganelle.janelia.org/
https://openorganelle.janelia.org/
https://github.com/ELEKTRONN/elektronn3/blob/8111e5df4/elektronn3/models/unet.py
https://github.com/ELEKTRONN/elektronn3/blob/8111e5df4/elektronn3/models/unet.py

2.2. Data processing

all classes mitochondria ER GA synapses and
vesicles

Figure 2.4: Examples of annotated cubes used for ground truth generation. They are all on the same
scale. The numbers indicate the cube numbers in table 2.10. For the rest of the cubes see appendix
figures A2, A3.
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using the electronn3d machine learning toolkit (https://github.com/ELEKTRONN/elektronn3). Training
was performed using randomly augmented 3D crops of size 88 x 88 x 88 voxels and took 22 hours. The
SyConn predict _dense to kd function was used for prediction.

Martin Bucella, Joergen Kornfeld, and I wrote extraction code to convert the prediction into individual
vesicles and find the central coordinate of each vesicle for analysis. To map the vesicles to cells, we overlaid
the center coordinates with the cell segmentation. Using the distance transform edt function (https://
docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_edt.html, we
also calculated the distance to the closest cell membrane.

Multi-class segmentation with ER, GA and single vesicles

In a second step, all new classes—ER, GA, and individual vesicles—were predicted together. This was
done using the entire ground truth set of 14 cubes, two of which were used for validation (see table 2.10).

Training and prediction were performed by Martin Bucella using a 3D U-Net, as described above.
Different organelle classes were assigned different weights in the training loss function based on their
frequency in the data: background = 0.1, ER = 1, GA = 2, vesicles = 2, synapses = 2 and mitochondria
= 0.5; organelles that appeared more frequently in the data received a lower class weight. The model was
trained twice: once with all five classes and once with only the ER, GA, and vesicles. The run times were
between 11.4 and 11.7 hours. The training and validation losses were similar (tr = 0.269, val = 0.642
for three classes, tr = 0.239, val = 0.637 for five classes, 2 ground truth cubes for validation). Therefore,
the final model was trained on all five classes. Training for the final model was done on all ground truth
cubes.

The processing of individual vesicles was performed as described above. ER and GA were processed
by Hashir Ahmad using the SyConn pipeline for subcellular objects such as mitochondria (section 2.2.1),
with modifications.

GA was processed with a minimum voxel size of 10 to allow identification of small vesicles when split
into individual objects. During the prediction process, the GA stacks were connected rather than kept
separate. This resulted in one large GA object containing several stacks after the connected component
step was run (see figure 2.5 a, b). To avoid mapping falsely labeled vesicles or close ER fragments to
the corresponding cells, only GA objects containing multiple stacks were mapped to cells, requiring a
minimum voxel count of 10,000. In the two examples, only the pink object with the GA stacks was
mapped to the cells. Since the cell segmentation does not fully cover the GA because dense membrane
stacks were misinterpreted as cell membranes in the prediction (see figure 2.5 a, b, cell segmentation),
the mapping ratio was set low to 0.1. The mapping ratio describes how much overlap an object needs to
have to be mapped to one cell.

The ER stretches across the cell and forms an interconnected network in all compartments (Tsuboi et
al. 2021). In the axon, especially, narrow ER tubules of 15-30 nm are common and are almost exclusively
connected to each other when examined manually. The same applies to spines, where the ER is thin
and connected to the dendrite (Terasaki 2018, Wu et al. 2017). Due to the small diameter of only a few
voxels in our dataset, the automatic processing of the ER could not produce an interconnected network.
Instead, it identified a large number of small fragments (figure 2.5 a~c). Processing the ER with the
SyConn default would mean splitting it up into a large number of connected components that are not
biologically relevant, and it would require a lot of computing power to process each of these fragments
as individual objects. Thus, to process the ER as one network, the prediction was overlaid with the cell
segmentation and the cell ID was assigned to all objects with a minimum voxel size of 100. This resulted
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in one ER object per cell, which was then processed with SyConn, as with the other organelles described
above.

ER, GA, and single vesicle evaluation

The performance of the prediction was manually evaluated by Riccardo Morbio in three different evalu-
ations.

First, the prediction of single vesicles, which was trained using only single vesicles (four ground truth
cubes, see section 2.2.3) was compared to the prediction of vesicles trained with all classes (14 ground
truth cubes, see section 2.2.3). The goal was to evaluate the accuracy of the prediction and determine
which parameters could be used to identify vesicles touching the membrane. The annotator was given
coordinates to evaluate in SyConnWeb, unaware whether it was the single-class or multi-class prediction
and which distances were calculated for the vesicles.

To evaluate the overall accuracy of the individual vesicles, 286 single-vesicle coordinates were randomly
selected, with 26 coordinates per cell type (11 neuronal cell types, v5 cell type classification, section 2.2.2).
All of the cells used were part of the ground truth.

To determine the best filter criteria for identifying vesicles that touch the membrane, different calcu-
lated distances to the next membrane were tested: 5, 10, 15, and >15 nm. Vesicles are reported to have a
diameter of around 40 nm (Siidhof 2004, Takamori et al. 2006). Several values lower than the radius were
selected to account for deviations from the vesicle’s exact center in the prediction. For each cell type and
potential distance threshold from the membrane (5, 10, 15, and >15 nm), five random coordinates were
selected. A vesicle was manually classified as membrane-close if it visibly touched the cell membrane in
two out of three viewports.

To include a mixture of vesicles close to the synapse and potential non-synaptic vesicles, three coor-
dinates per cell type were selected within 500 nm of the next synapse. Additionally, three coordinates
were selected more than 5 pm from the closest synapse. All of these coordinates were within 15 nm of
the membrane. The threshold of 5 pm distance to the closest synapse was selected because large axonal
boutons can span several millimeters in diameter (see figure 3.37).

Second, the accuracy of the ER, GA, and single-vesicle multi-class prediction was evaluated. All of
the cells used were part of the ground truth. Fifteen coordinates were randomly selected per organelle
and cell type. ER and single vesicle prediction were evaluated in 16 cell types (the fragment class was
excluded), while GA prediction was evaluated in only 13 cell types because projecting axon types were
excluded due to their lack of soma in the data. This resulted in a total of 675 coordinates to evaluate.

For single vesicles, only the center coordinates were predicted, so those were selected. For the ER
and GA, random coordinates were selected from the mesh vertices. During evaluation in SyConnWeb,
the annotator could see the cell ID and cell type, but not which of the three organelles the coordinate
was predicted as. Additionally, during the manual review of the coordinates, the compartment in which
the predicted coordinate was located was noted ("axon’, 'soma’, ’dendrite’, or ’glial process’).

The aforementioned evaluation aims to identify the number of true and false positives, i.e., the number
of correctly predicted organelles and the number of organelles incorrectly predicted as such. Another type
of error in the prediction is a false negative, meaning an organelle was not predicted. To identify false
negatives, a subset of the raw data must be manually screened and compared to the prediction. Since
the number of ER and vesicles was very high, this evaluation was only performed on GA stacks.

Thus, the third evaluation aims to understand the false positive and false negative rates in GA by
examining connected GA stacks in a random subset of somata. To achieve this, three random cell IDs
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multi-class | ER M mitochondria [_] vesicles
prediction

a raw data multi-class pred GA instance seg ER instance seg cell seg
o e

Figure 2.5: Generation of ER and GA objects. The GA was processed analogously to the syn, mi, and v,
and was split into an instance segmentation by connected components. ER segmentation was performed
by overlaying the ER prediction with the cell segmentation, rather than splitting it into individual objects.
Processing was done by Hashir Ahmad. All scale bars show 850 nm. a Coordinates: 14750, 18722, 7477.
b Coordinates: 13441, 13529, 7747. ¢ Coordinates: 14454, 18944, 7750.
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from 13 cell types were selected. Neuronal cells were filtered based on the presence of a soma and a 200
pm axon and dendritic path length, while glial cells were manually reviewed for completeness by Delta
Schick (see section 2.2.2). The number of unconnected GA stacks was counted in the raw data and the
prediction. The number of correctly predicted GAs, true positives, false positives, and missed GAs ("false
negatives") was then calculated.

2.3 Data analysis

After processing, dataset j0251 was analyzed with respect to cell morphology, subcellular structures, and
synaptic connectivity. The analysis was performed using the updated subcellular structures (sections
2.2.1, 2.2.3) and the new cell classification ('v6’, section 2.2.2). In addition to processing, cells, axon
fragments, and synapses were filtered for analysis.

The code used for data analysis was written to work with connectomics data processed using SyConn.
It is available on GitHub (https://github.com/StructuralNeurobiologylLab/areaX-connectomic-
analysis.git).

2.3.1 General preparations for analysis

Filtering of cells and axon fragments

To obtain connectivity and morphological data from the same subset of cells and reduce misclassifications,
the cells and axon fragments were filtered for completeness.

For neuronal cell types residing in Area X (MSN, STN, GPe, GPi, TAN, LTS, INT1, INT2, and
INT3), only cells with at least one skeleton node in each compartment (soma, axon, and dendrite) were
used for prediction. The compartment predictions were the same as those used previously (Schubert et al.
2022). Additionally, cells needed a minimum of 200 pm of axon and dendrite path length each. These
cells are referred to as "full" or "complete" throughout the thesis.

Additionally, manual reviews were conducted to estimate the number of mergers within the cells. To
do so, all "complete" cells of the GPe, GPi, LTS, STN, and TAN cell types were manually reviewed by
either Riccardo Morbio or myself. Cells that did not contain all three compartments, or cells fused with
a fragment of at least a 50-pm path length or one synapse, were excluded (24 cells in total, see appendix
table Al4). Due to the high number of MSNs and dense axonal branching in INT1-3, not all cells of
these types were reviewed manually, but rather, a subset of randomly selected cell IDs (500 MSNs and
10 INT1-3s) was used to estimate the merger rate. For comparison, the connectivity matrices in the
connectivity analysis (section 3.4.2) were computed without excluding any cells from the GPe, GPi, LTS,
STN, and TAN (see appendix figure A28). This resulted in 8,576 cells being used for the analyses.

One analysis examined the morphological differences of MSNs in relation to their connectivity to GPe
and GP1i cells (section 3.4.1). To ensure that the reported results were not due to cutoff dendrites, the
analysis was performed again with only MSNs that had their dendrites completely within the dataset.
Since dendrites are thicker than axons, the risk of them being cut off in the middle of the dataset due
to segmentation errors is very low. To identify cutoff dendrites, we checked if the skeleton of a dendrite
was within 7 pm of the dataset boundaries. If so, the MSN cell was excluded from the analysis. The 7
pm threshold was chosen from the dataset boundary, not the segmentation boundary. Due to the shift in
alignment, the effective size of the dataset (256 x 256 x 384 pm?) is not perfectly cubed and therefore
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smaller than the bounding box of the dataset displayed on SyConnWeb or used in the data processing (271
x 271 x 387 ym?). To bridge the distance between the bounding box and the start of the segmentation,
7 nm was manually selected as the threshold (e.g. visible at this coordinate: 27125, 10327, 5365).

Because the axons projecting into Area X (LMAN, HVC, and DA) were fragmented, different filtering
criteria were applied depending on the type of analysis. For morphological and subcellular analyses,
fragments with a skeleton path length of at least 200 pm were selected for comparison with complete cells
within Area X. For connectivity analyses, a path length of 50 pm was selected.

This threshold for connectivity analysis was chosen as a compromise. Since most axon fragments are
less than 100 pm in length, applying a connectivity analysis filter of 200 pm would underestimate the
synaptic area of projecting axons compared to full cells (section 3.1.2). However, including all fragments
would overestimate their influence on connectivity compared to full cells. This is because, in those cell
types, fragments from cells outside the dataset boundaries are also excluded, and the fraction of path
length attributed to incomplete cells varies by cell type (see appendix table Al). Additionally, it could
include misclassified axon types because classifying cells based on short fragments is more uncertain
than classifying them based on longer ones. To demonstrate the impact of these filtering criteria, the
connectivity matrix was calculated using two thresholds: 0 pm for projecting axons (with only one
skeleton node) and 50 pnm for full cells (see appendix figure A28).

As previously described in section 2.2.2, glia cells and migratory neurons were first filtered and then
manually reviewed.

Filtering synapses

To ensure an accurate connectivity analysis, synapses were filtered for all analyses. Only larger synapses
with a synaptic size of at least 0.1 pm? (section 2.2.1) and a synapse probability of at least 0.6 were
included (section 2.2.1).

Synapses had to be axo-dendritic or axo-somatic to be included in the analysis. The compart-
ment prediction, mapped to the mesh vertices of the cell and averaged over 10,000 vertices (key =
‘axoness__avgl0000’, Schubert et al. 2022) , was mapped to the synapses using scipy.cKDTree. Synapses
that were not between an axon and a dendrite or soma were excluded.

To determine compartment-specific connectivity, the ‘axoness avgl0000’ key was used to identify
whether a synapse was connected to a dendrite or soma. To distinguish between the dendritic shaft, the
spine neck, and the spine head, the dendrite-specific compartment prediction was used and mapped from
the mesh vertices to the nearest synapse (key = ‘spiness’, Schubert et al. 2022).

Only synapses between filtered neurons and filtered axon fragments were included in the connectivity
analyses.

Mapping of organelles to cellular compartments

In the SyConn pipeline, all subcellular structures are mapped to cells. However, synapses are also mapped
to different compartments. For the other subcellular structures, this compartment-specific mapping
was performed on all complete cells used in the analysis beforehand using SciPy’s ckdtree to map the
compartment prediction stored in the skeleton nodes to the objects. The results were saved in NumPy
arrays in a cell-type-specific manner, similar to SyConn, for more efficient computing.

The general attributes of the complete cells, such as the skeleton path length and mesh surface area
of each compartment, were stored in dictionaries for faster access.
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2.3.2 Data visualization

The data were visualized in Python using the Seaborn (https://seaborn.pydata.org/index.html) and
Matplotlib (https://matplotlib.org/) packages. Cell meshes were visualized with Blender versions
3.0.1 and 4.2 (https://www.blender.org/).

To visualize cell meshes and subcellular structures, the cells were exported using syconn.proc.meshes.
write mesh2kzip which uses the PlyData library (https://pypi.org/project/plydata/) to export the
meshes as .ply files. The meshes of the subcellular structures were filtered according to the aforementioned
criteria, mapped to the cells — sometimes compartment-specific — and then exported in a similar fashion.
Individual vesicles visualized in Blender were rendered as spheres with a 20 nm radius from their center
coordinates.

All schematics were created with Adobe Illustrator 2021 by me.

2.3.3 Statistics

Statistical analyses were performed in Python using the scipy.stats library (https://docs.scipy.org/
doc/scipy/reference/stats.html). Since most of the analyzed parameters were categorical or log-
normally distributed, non-parametric tests were generally used.

This means that the correlations were tested using the Spearman rank correlation coefficient. The
differences among groups with more than two cell types were tested using the Kruskal-Wallis test, and a
Wilcoxon rank sum test was used as a post hoc test. P-values less than 0.005 were considered significant.

The analyses of individual vesicles in relation to synaptic size had an extremely large sample size
(partially > 107 vesicles), which is not suitable for the aforementioned statistical tests without additional
analysis. Therefore, bootstrapping was also used here, as explained in more detail later (section 2.3.6).

2.3.4 Neuronal morphological analyses

To quantify the morphology of different cell types and their subcellular structures, several analyses were
performed using cell skeletons, meshes, and mapped organelles.

Neuronal morphology parameters

Cell type classification is based on morphological parameters (section 2.2.2, Schubert et al. 2022) and
previous analyses have shown that cell types can be separated based on morphology using custom-
made parameters (Kornfeld et al. 2020) or latent-space embeddings (Schubert et al. 2022). To quantify
the differences between the cell types in our dataset and provide a detailed description of previously
undescribed cell types in Area X, INT1-3, the morphology was analyzed with respect to parameters that
are commonly used to describe neurons also with other microscopy techniques.

Specifically, the parameters used for this analysis were the following: skeleton path length of the axon
and dendrite; mesh surface area of each compartment; median radius of the axon and dendrite; soma
diameter; axon myelin fraction; spine density; and cell volume. Analysis of axonal or dendritic length
refers to the skeleton length of each compartment based on compartment predictions mapped to cells
(Schubert et al. 2022). The mesh surface area is the sum of all triangles that can be mapped to different
cell compartments via cell skeleton nodes.

The soma radius was calculated using the median distance to the soma center. The center was the
median coordinate of all vertices of the cell that were predicted to be the soma. The median axon radius
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was calculated from the diameter of skeleton nodes predicted by the compartment classifier to be axons.

For the axon myelin fraction, the myelin was mapped to the cell skeleton nodes (Dorkenwald et al.
2017). Then, the path length of the myelinated axon was divided by the total axon path length.

Spine density was computed by dividing the number of connected components after removing all
nodes from the dendritic skeleton that were not "spine head" or "spine neck" by the dendritic length
after removing the spines.

The cell volume is equal to the number of voxels in the cell segmentation (cell.size in SyConn) multi-
plied by the voxel size (10 nm in x, 10 nm in y, and 25 nm in z).

These parameters were used to create an 11l-dimensional feature space to which UMAP (a non-
linear dimensionality reduction method) was applied using the umap-learn library (https://umap-
learn.readthedocs.io/en/latest/). Since the scales of the parameters differ, the values were stan-
dardized to z-scores using sklearn.preprocessing.StandardScaler (https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.StandardScaler.html). UMAP was performed once on
all cell types and once without the MSNs because the high number of MSNs would otherwise overshadow
differences between the other cell types. MSNs that were not part of the MSN cloud (UMAP 1 > 7.5; 46
cells) were manually reviewed for mergers by Riccardo Morbio.

To differentiate between specific cell types is GPe or GP1i (section 3.4.1) or INT1-3 (section 2.2.2, 3.1.2)
a PCA was used based on a smaller set of features. PCA was performed using sklearn.decomposition
(https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html) on stan-
dardized parameters, as described above. For GPe and GPi differentiation, the parameters were axon
mitochondria volume density, axon median radius, axon myelin fraction, and soma diameter. For INT1-3,
the parameters were soma diameter, axon mitochondria density, axon median radius, and dendritic spine
density.

Analyses of neuronal organelle densities

To analyze organelles, organelle densities in different neuronal compartments were examined. The anal-
yses had three aims: 1) to quantify potential differences in organelle density, 2) to test a correlation with
reported firing rates, and 3) to determine if organelle density aids in cell classification.

The organelle density was generally calculated as the volume density, meaning the summed volume
of an organelle in a compartment divided by the compartment’s path length (e.g., axon or dendrite) or
the estimated soma volume. The cell mesh cannot be divided into different compartments because the
generated meshes are not watertight. For the axon and dendrite, the path length was used to calculate
the density. For the soma, the skeleton follows a random pattern. Thus, the soma diameter is estimated
from the mesh vertices, as described above. Then, the soma volume is calculated assuming a spherical
shape. Organelles were mapped to specific compartments using their representative coordinates, which
could be on either side of the organelle. This means that larger organelles, such as long mitochondria that
begin in one compartment, may be entirely mapped to that compartment, even if most of their volume
is in another compartment.

Vesicle clouds and vesicles were only processed for neuronal axons in all analyses to focus on neuro-
transmitter-containing vesicles. For the vesicle density, the number of vesicles was divided by the axon
path lengths, as vesicles were not processed as volumes.

GA and ER are organelles that optimize their shape to maximize surface area. For GA, which was
only analyzed in the soma, the area density was calculated by dividing the summed GA surface area by
the surface area of the soma mesh. Unfortunately, the processed GAs do not have separate stacks. For
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cell type | firing rate singing [Hz| reference
MSN 1.58 +1.46 Goldberg et al. 2010
FS 19.1 £0.6 Goldberg et al. 2010
LTS 35.8+75 Goldberg et al. 2010
TAN 65.1 £19.8 Goldberg et al. 2010
GPe 135 + 42 Goldberg et al. 2010
GPi 258 + 66 Goldberg et al. 2010
HVC <1 Kozhevnikov et al. 2007

LMAN 349+£8.5 Kao et al. 2008
DA 1548 Gadagkar et al. 2016
STN (20) Budzillo et al. 2017

Table 2.11: The mean firing rates of different cell types during singing, as reported in the literature and
adapted from Schick 2021. STN neurons were not recorded during singing in zebra finches, but rather in
isolated Area X slices (Budzillo et al. 2017).

the ER, only the summed area per compartment could be calculated because the individual fragments
were not processed as separate objects. To separate the ER into different objects, the mesh would need
to be divided into several fragments, some of which might not be fully closed. This would make them
"not watertight," a requirement for computing volumes with the mesh library, similar to cell meshes. To
compare ER density to the densities of other organelles, density was computed twice: once in relation to
axon and dendritic path length, and once in relation to the surface area of all compartments.

For synapse densities, the summed synaptic area per compartment was divided by the axon and
dendritic pathlength, as well as by the mesh surface area of each compartment (synaptic area density).

To test whether different organelle densities correlate with reported firing rates, the firing rates re-
ported in the literature during singing (see table 2.11, adapted from Schick 2021, a Bachelor’s thesis
co-supervised by me), were correlated with the median and mean organelle densities.

A firing rate of 1 Hz was used for HVC in the correlation. Since it was unclear which INT1-3
corresponds to the measured FS cell type, it was not included in the analyses. For STN, the firing rate
was recorded from synapses with pallidal cells in isolated Area X slices and not during singing in zebra
finches (Budzillo et al. 2017). For this reason, the STN value was used as a reference only. Linear
regression using StatsModels (https://www.statsmodels.org/stable/regression.html) was used to
estimate the firing rates for INT1-3 and STN.

For cell type classification, point clouds of mitochondria, vesicles, and synapses are presented to the
CNN (Schubert et al. 2022). To determine whether information about cell organelles aids in cell type
classification, a UMAP was run on morphological features and organelle densities. Synapse area densities
of the axon, dendrite, and soma, vesicle density, and mitochondria volume density of all compartments
were added, as well as soma GA area density and ER area density of all three compartments, resulting in
a 22-dimensional feature space. The density used for synapses, GA, and ER was calculated in relation to
the surface area of the compartments. To have only one parameter for specific information, vesicle cloud
volume density and vesicle density were not selected both. The UMAP was run with both options, but
there was not much difference, so vesicle density was selected due to its better resolution of vesicles (see
appendix figure A20). The UMAP was run once on all neuronal cell types and once without MSNs. In the
UMAP without MSNs, one cluster contained LTS together with some cells from STN, INT1, INT2, and
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GPe. This cluster (UMAP 1 < 3.9) consisted of 117 cells and contained all 37 LTS cells. The remaining
80 cells were manually inspected for potential misclassifications or incomplete cells.

RFC for selecting parameters to differentiate cell types

To test whether organelle densities are necessary for better cell type separation, an additional RFC
was trained using all 22 parameters with the scikit-learn library (https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html).

To determine which parameters are necessary, the RFC was employed alongside recursive feature
elimination with cross-validation (RFECV, https://scikit-learn.org/stable/modules/generated/
sklearn.feature_selection.RFECV.html). In this process, the RFC is trained recursively, omitting
the least important feature as determined by cross-validation. Ultimately, the procedure selects the
optimal number of features, which is the feature set with the fewest parameters and no decrease in the
cross-validation score.

The RFECV was run once with MSNs and once without to see if the large number of MSN neurons
would bias the separation of the other cell types. A UMAP was then run on the resulting features.
To observe the effect on different parameters, the mean accuracy was calculated for each parameter
individually (see table A32).

2.3.5 Connectivity analysis

The analyses of connectivity focused on the filtered synapses and neurons described in section 2.3.1.

Connectivity between cell types

For the analysis of connectivity between different cell types, especially for the analysis of basal ganglia
pathways, connectivity was examined at various levels of detail, ranging from differences between cell
types to differences at the level of individual synapses.

All synapses of cells of the same type were grouped together, and the summed area for each combina-
tion of pre- and postsynaptic cell types was divided by the total synaptic area in the dataset. The results
were summarized in a matrix normalized to 100 % (see figure 3.31 c).

Second, connectivity was analyzed at the level of cell types. The connectivity of a given cell type was
analyzed by summing the synaptic areas of its input and output synapses, which were grouped by cell
type. Then, fractional input and output were measured as the sum of the synaptic area from a given cell
type, divided by the sum of all incoming and outgoing synapses. The values shown in figure 3.31a and
b represent the median percentage of the sum of synapse sizes on each compartment. Here, the input
and output fractions each add up to 100 %. The results are plotted as either boxplots, where each data
point represents one cell of the given cell type (see figures 3.23 b, 3.24 g.h, 3.25 d, 3.27, 3.28, 3.29¢), or
as a matrix, where the value of each element shows the summed value per cell type (see figure 3.31 a,b).
In the matrix, normalization to inputs corresponds to columns adding up to 100 %, while for the matrix
normalized to outputs, the rows add up to 100 %.

Third, connectivity is calculated between individual cells. Here, the synaptic area is summed for all
entries from one cell to another. Synapses in the same direction from one cell to another are also called
multi-synapses, and their number was plotted. Each data point in the plot represents a cell pair, meaning
each cell is represented by the number of cells it makes synapses with. Since some cells form more than
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ten synapses with the same cell, the number of multi-synapses is grouped into 1, 2-5, 5-10, and > 10 for
plotting (see figures 3.23 e, f, 3.24 d,e, 3.25 {, g, appendix figure A25 b, ¢).

Fourth, the sizes of individual synapses between the two cell types are analyzed. In this analysis,
all synapse sizes are pooled together, regardless of the cell to which they belonged. Each data point
represents an individual synapse (see figures 3.23 d, 3.24 ¢, 3.25 e, appendix figure A25 a).

MSN to GPe/i preference

In addition to analyzing MSN-to-GPe/i connectivity in the aforementioned ways, MSN-to-GPe/i connec-
tivity was compared to a shuffled version of the data. This comparison aimed to determine if individual
MSNs showed a preference for either GPe or GPi that exceeded the expected ratio of synapses (75 % of
the synaptic area from MSNs to GPe/i goes to the GPi, and 73 % of the synapses are to the GPi).

First, the GPi/GPe synaptic area ratio was calculated using the observed data. MSNs that only
synapse to GPi would have a value of 1, while those that only synapse to GPe would have a value of 0.
MSNs that did not connect to either the GPe or the GPi were excluded from the analysis (2.4 %, 197
cells; see figure 3.23 c).

Then, to test whether the preference exceeded the expected ratio, the data was shuffled. The synapses
and their targets remained the same, but their association with MSN presynaptic cells changed. Thus,
the number of synapses and the synaptic area for each target remained consistent with the observed data.
This shuffling was performed for 100 iterations. After each iteration, the number of cells per bin was
calculated, along with the mean and 95 % confidence interval (CI) of the shuffled data. Thirty bins were
used for plotting both the shuffled and observed data. In each iteration, the number of MSN cells with
a GP ratio of at least 0.9 was also calculated to estimate how many MSN cells were highly selective for
GPi (see figure 3.23 g).

Cell-specific recurrent inhibition analyses

If a cell receives input and sends output to the same cell type, it is possible that the interaction is between
individual cells, indicating a recurrent connection. This analysis was performed for STN-GPi, STN-GPe,
and MSN-TAN connections (see figures 3.26, 3.29 e, ). Cells that did not both receive input and project
to the other cell type were excluded.

To test this, the sum of the synaptic areas from the two individual cells was calculated for one cell,
as described above (section 2.3.5). To evaluate recurrency, two metrics were tested: overlap in synaptic
area and strongest partner reciprocity.

The overlap of synaptic areas was calculated as a ratio for both incoming and outgoing sides. This
was done by dividing the sum of the synaptic areas of cells on both sides by the total sum of incoming
synapses from that cell type (and likewise for outgoing synapses). To estimate the entire cell type, the
median of the overlap to input and output was used.

The strongest partner reciprocity is a binary score that tests whether the cell with the largest summed
incoming synaptic area was also the cell with the largest summed outgoing synaptic area. The fraction
of cells that had the strongest partner reciprocity was then calculated for the whole cell type.

Compartment-specific connectivity

Functionally, there might be a difference between synapses targeting a spine head and synapses targeting
the dendritic shaft or soma of a postsynaptic cell. Therefore, connectivity was also analyzed with respect
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to the postsynaptic compartment.

To differentiate between the soma and the dendrite on the postsynaptic side, the "axoness avg10000"
parameter was used to categorize the synapses. If the compartment prediction was a dendrite, the
"spiness" parameter was used to differentiate between the spine neck, spine head, and dendritic shaft.
The results were then normalized per incoming cell type. For example, the fraction of soma synapses
from GPe to MSN was normalized to the total number of synapses from GPe to MSN. In the box plots,
each cell is one data point (see figure 3.34a, appendix figure A27).

To highlight the differences in specific example connections, the median percentage of the sum of
synaptic sizes was shown for the spine head, spine shaft, and soma. Therefore, these percentages do not
add up to 100 % (see figure 3.30 ¢, d).

LMAN - MSN - GPi analysis

The connectivity from LMAN to Area X to DLM is reported to be topographic and microscopically closed
(Luo et al. 2001). However, it is unclear how focused this is at the level of individual cells. To analyze
this, the number of different GP1i cells that are indirectly innervated by LMAN via MSN was analyzed.

The filter criteria used for synapses, MSN, and GPi cells are described above (section 2.3.1). Since
there is no information indicating which LMAN cell or axon fragment enters the dataset, the analysis
focused on large LMAN axons, which are likely to originate from different LMAN cells. This means the
axons must enter the dataset myelinated and branch within it. To fulfill these criteria, LMAN axons
with a skeleton path length of at least 5 mm were manually selected and excluded if a myelinated branch
entered the dataset again. These criteria were fulfilled by 46 axons. Of the 8,093 MSNs, 5,135 received
input from at least one of the 46 LMAN axons and project to the GPi. These MSNs were included in
the analysis.

To understand how focused the loop is, the cell IDs of the MSNs connected to each LMAN axon
were saved, as well as the number of synapses and summed synaptic area per MSN cell. This process
was repeated for incoming synapses from LMAN to MSN per MSN cell, outgoing synapses to GPi per
MSN cell, and incoming synapses from MSN to GPi cell. The median number of cells innervated by one
LMAN axon, one MSN cell, and one GPi cell could then be calculated (see figure 3.32). Additionally,
the number of GPi cells that each LMAN cell indirectly innervates (and vice versa) was computed (see
figure 3.33 a,b).

To determine whether most MSNs innervated by one LMAN go to the same GPi, the fraction of
MSNs that go to the same GPi was calculated and the highest number plotted per LMAN cell. The same
analysis was performed for each GPi cell (see figure 3.33 ¢, d). To test whether one GP1i cell is indirectly
targeted by most MSN cells, the fraction of synapses that go to the five most indirectly innervated GPi
cells per LMAN axon was calculated for each LMAN axon (see figure 3.33 e).

Autapses

Autapses were not registered as synapses in the SyConn framework (section 2.2.1). Therefore, the identi-
fication of autapses was done manually by Riccardo Morbio and me. To determine the fraction of each cell
type with at least one autapse within 10 pm of the soma, we examined all cells from the GPe, GPi, STN,
LTS, TAN, INT1, INT2, and INT3 datasets with complete somata. Additionally, 50 randomly selected
MSNs were reviewed. Riccardo Morbio also manually reviewed wrinkled nuclei and nuclear infoldings in
those cells.
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GPi cells with and without autapses were then compared to each other using different morphological
parameters, including axon and dendrite synaptic area density, axon myelin fraction, soma and dendrite
surface area, axon and dendrite mitochondria volume density, and vesicle density. Additionally, the
incoming and outgoing synaptic areas per cell type were analyzed independently (see figure 3.35, appendix
figure A29).

2.3.6 Vesicle analysis

To analyze individual vesicles, all vesicles in the axons of complete cells or cell types from projecting
axons were analyzed (filtered as described in section 2.3.1, minimum axon path length 200 pm). Synapses
included in the analysis followed the aforementioned filtering criteria (section 2.3.1).

To analyze potential release candidates, vesicles within 10 nm of the closest membrane were called
"membrane-close" vesicles. However, as only 50 - 60 % of synapses within this distance actually touch the
membrane, as determined by manual evaluation (section 2.2.3), this is not an indicator of actual release,
but rather an estimate of proximity to the membrane.

Vesicle number and synapse size

To analyze the relationship between the number of vesicles and synapse size, the number of vesicles within
a given distance from the closest outgoing synapse of the same cell was counted and correlated with the
synaptic area (see figure 3.36, appendix figure A31). For the coordinate of the synapse, the representative
coordinate saved in SyConn was used, which is not necessarily the center. To avoid cutting off vesicles
on the other side of a large synapse, the analysis was performed with different distance thresholds from
the synapse: 0.5, 1, and 2 pm. The analysis was repeated using only "membrane-close" vesicles.

Membrane-close, non-synaptic vesicles

To test for hints of volume transmission in the data, the density of membrane-close synaptic and non-
synaptic vesicles was analyzed across different cell types.

Vesicles within a distance of 500 nm from the synapse were counted as "synaptic" while those with
a distance of 3 pm were counted as "non-synaptic". The 3 pm distance was selected because some cell
types, such as GPi, GPe, and INT3, have large axonal boutons filled with vesicles that span 3 pm in
diameter (see figure 3.36, 3.37). However, the median distance between synapses in INT3, the cell type
with the highest synaptic density, is 2.73 pm (see appendix table A40). Therefore, a much greater distance
from the synapse could result in the omission of non-synaptic vesicles in cell types with dense synapses.
However, to ensure that the effects are not strictly related to this threshold, the analysis was also run
with distances of 1, 2, and 4 pm (see appendix figure A32).

The vesicle density in relation to the axon path length was calculated for both synaptic and non-
synaptic vesicles. Additionally, the fraction of non-synaptic, membrane-close vesicles of all membrane-
close vesicles in each cell was calculated.

Membrane-close, non-synaptic vesicles in proximity to different cell types and synapses

Since the TAN and DA cell types had the highest fraction of close-membrane, non-synaptic vesicles and a
much higher non-synaptic density than synaptic vesicle density, it was assumed that this was due to the
volume transmission reported in these cell types (Abudukeyoumu et al. 2019, Arbuthnott et al. 2007).
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TAN

HVC

Figure 2.6: Schematic of an HVC-MSN synapse in proximity to a TAN axon filled with vesicles. The
synapse is shown in red.

To analyze differences in the surroundings of membrane-close, non-synaptic TAN and DA vesicles,
both cell surfaces and synapses within a given distance were analyzed. Vesicles were counted as non-
synaptic if they were at least 3 pm away from the closest synapse, as in the aforementioned analysis.

To determine whether cell types occur differently in spatial proximity to close-membrane TAN and DA
synapses, the mesh surface area within 2 pm of each close-membrane non-synaptic vesicle was analyzed.
This threshold was selected because DA release in the mammalian striatum using nanosensors revealed
hotspots with a median size of 2 ym (Beyene et al. 2019). For this analysis, the vertex coordinates of
each cell with a close-membrane non-synaptic vesicle within a 2 pm radius were saved, and the surface
area between these coordinates was computed for each cell. Then, the surface area was summed for all
cells of one cell type. The cell type from which the vesicles originated was excluded from the analysis.
For example, TAN cells were not analyzed for TAN vesicles.

Since some cells have a higher total surface area in the dataset, the summed surface area close to the
vesicles was divided by the total surface area of this cell type for normalization (see figure 3.38).

To analyze whether specific synapses occur more frequently in close proximity to TAN and DA close-
membrane non-synaptic vesicles, a similar analysis was performed on synapses of various cell types.
In this analysis, all synapses (filtered and between filtered cells) within a 2 pm distance of a close-
membrane non-synaptic vesicle were examined. The surface area was summed for synapses of the same
pre- and postsynaptic cell types, and the sum was plotted as a matrix similar to the connectivity matrices.
Additionally, the matrix was normalized by the total synaptic area of these synapses in the complete
dataset (see figure 3.39).

Both analyses were also performed at distances of 1 and 5 pm from the vesicles (see appendix figures
A33, A34).

Analysis of synapse sizes in proximity to modulatory vesicles

To determine whether TAN and DA vesicles affect synapse size, the number of vesicles from TAN and
DA axons in proximity to small and large synapses was analyzed (see schematic in figure 2.6). Only
non-synaptic vesicles located at least 3 pm away from the closest synapse were analyzed, regardless of
their distance from the membrane.

Small and large synapses were defined as the lowest and highest quantiles of synapse size between
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two cell types. This means that the number of small and large synapses analyzed is the same for each
combination of presynaptic and postsynaptic cell types. Therefore, differences in vesicle numbers do not
arise due to differences in synapse numbers when comparing "small" and "large" synapses. Since all
of the analyzed synaptic size distributions follow a log-normal distribution (see figures 3.23, 3.24, 3.25)
and not a bimodal one, there is no visible threshold that clearly separates small and large synapses.
Consequently, the size thresholds for small and large synapses vary between connections (see appendix
table Ad44).

The distance of the vesicles from the "small" and "large" synapses was calculated separately. For all
the vesicles that had a synapse within a 5 pm distance, the distance to the closest synapse was calculated.
To test for differences in vesicle number surrounding small and large synapses, the distribution from 0 to
5 pm was plotted as a histogram.

First, the Wilcoxon-ranksum test was used for a statistical analysis to determine a p-value. Then,
the two-sample Kolmogorov-Smirnov (KS) test was used to determine the effect size and p-values. The
Wilcoxon rank-sum test focuses on differences in medians, e.g. shifts in entire distributions, while the KS
test is more sensitive to differences in shape.

The number of vesicles surrounding the synapse within 5 pm varies depending on the number of
synapses between two cell types in the dataset (see appendix table A44), between 2444 (TAN, GPi -
STN) and over 40 Million (DA, HVC - MSN). The shape of the distribution is mainly determined by the
number of synapses. Therefore, the distributions for "small" and "large" synapses of the same pre- and
postsynaptic cell types have a similar shape. This was verified by selecting different numbers of synapses
from a connection with a high number of synapses: HVC - MSN (see appendix figure A35). Consequently,
if there is a difference between small and large synapses, the distributions would shift the curve rather
than modify its shape. Thus, the Wilcoxon rank-sum test is a better indicator of potential statistical
significance. This is also why KS effect sizes (KS d) are generally not expected to be very large.

Since the p-values from both the Wilcoxon rank sums and the KS tests depend on sample size, the
p-values were generally low when these tests were performed on full distributions, regardless of visual
differences between distributions, e.g. for HVC-MSN synapses in proximity to TAN vesicles (p < 0.001,
KS d = 0.01, see figure 2.7 a, appendix table A44).

To better estimate the significance of the different effects, bootstrapping was used. There, different
random subsets were drawn from each distribution for 1000 iterations and then the Wilcoxon-ranksum
test was performed for each iteration. This produced a distribution of p-values.

To determine an appropriate bootstrapping sample size that would represent the distribution while
yielding more reliable p-values, a range of bootstrapping sample sizes were tested in three different
example connections with differences in synapse number and effect size with TAN vesicles. The HVC-
MSN connection has a high sample size and low effect size ( >400,000 vesicles for each synapse type; KS
d = 0.01, see figure 2.7 a). The MSN-GPi connection has a slightly lower sample size ( > 100,000 vesicles;
KS d = 0.02, see appendix figure A4 a, b). Both connections have highly overlapping distributions. The
GPi-STN connection has a smaller sample size, a slightly larger effect size, and distributions that are not
fully overlapping ( > 20,000 vesicles, KS d = 0.0, see figure 2.7 ¢, d). There are visible differences in the
distribution of p-values between these different connections with 100, 1000, or 10,000 samples for each
draw. While HVC-MSN and MSN-GPi follow a more uniform distribution with 100 samples, GPi-STN’s
p-values lean toward lower values. For 10,000 samples, all three distributions are left-skewed.

To quantify these differences, the fraction of significant (p < 0.05) p-values, the median p-value, and
the p-value of the one-sample KS test were calculated for each sample size. The one-sample KS test was
used to compare the p-value distribution to a uniform distribution. For the GPi-STN sample, the fraction
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Figure 2.7: Non-synaptic TAN vesicles in proximity to HVC - MSN and GPi - STN synapses. TAN
vesicles were considered non-synaptic if they were at least 3 pm away from the distance of the vesicles for
the lowest and highest quantiles of synapse sizes (small’ and ’large’, respectively). See appendix table
A44 for more detail on vesicle numbers and synapse sizes. a Distance of vesicles for all synapses (left) of
HVC-MSN, then a random sample of 100 or 1,000 vesicles was used for bootstrapping. b P-values of the
Wilcoxon rank sum test across 1,000 iterations of bootstrapping with different sample sizes (n) for each
iteration. c¢,d Same as a,b but for GPi-STN synapses.
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Figure 2.8: Statistical parameters depending on the sample size per bootstrapping iteration for different
connections (HVC-MSN, GPi-STN, and MSN-GP4i). All results were computed with 1,000 bootstrapping
iterations. a Fraction of p-values from a Wilcoxon rank sum test that are smaller than 0.05 with different
sample sizes. b Median p-value from the Wilcoxon rank sum test with different sample sizes. ¢ P-values
from the Kolmogorov—Smirnov test to determine whether the distribution of p-values resembles a uniform
distribution depending on different sample sizes. The dotted black line indicates 0.05.

of p-values less than 0.05 increases the fastest, while the median p-value and the KS p-value decrease the
fastest (see figure 2.8).With 1,000 samples, over 60 % of p-values and the median are below 0.05. For
HVC-MSN, on the other hand, the fraction of p < 0.05 and the median p-value remain constant; the
KS p-value varies and begins to decrease at 7,500 samples. For MSN-GPi, p < 0.05 increases at 5,000
samples; the median p-value decreases starting at 1,000, reaching a value close to 0.2 at 10,000 samples.
The KS p-value varies, decreasing starting at 1,000 and becoming significant with 5,000 samples.

Based on these results, a sample size of 1,000 per draw was selected as a compromise: large enough
to reflect the distribution, yet with little bias toward significant p-values based on sample size. Since the
number of vesicles varies greatly, connections with high synapse numbers, which result in high sample
sizes, were also tested with a larger sample size.

Connections with more than 10° vesicles were additionally tested using a bootstrapping sample size of
2,000, > 5° vesicles with 5,000 and > 10° vesicles with 10,000, given a significant p-value in the original
distributions.

2.3.7 Analysis of glia and migratory neurons

After identifying different glial cell types and migratory neurons based on their morphology (section
2.2.2), their organelle densities and their contact areas with neurons were analyzed. The cells used were
manually selected as previously described. Note that oligodendrocytes have fine processes that are often
cut off during segmentation, and myelin was not segmented as part of the oligodendrocyte.

Organelle densities

To determine whether differences in metabolic activity are reflected in organelle density, the densities of
mitochondria, ER, and GA were compared.
Organelle density was calculated by summing the volumes of all organelles within a cell and dividing
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that sum by the cell’s total volume. For reference, the same analysis was performed using MSNs and GPi
as the cell types with the lowest and highest reported mean firing rates, respectively, during singing (see
table 2.11, figure 3.42).

A previous version of the mitochondrial analysis, without manually reviewed GPis for mergers, was
performed by Delta Schick in his masters thesis (OPCs, MIGR, part of microglia, supervised by me, Schick
2023) and presented in a shared poster at FENS 2024 (Schick et al. 2024).

Glia contact site analysis

To better understand potential glia-glia and glia-neuron interactions, the contact sites between glial and
neuronal cells, as well as between different glial cell types, were analyzed.

This analysis was performed by Delta Schick. It is the same version presented as a shared poster
(Schick et al. 2024), and an update compared to his Master’s thesis (supervised by me, Schick 2023). The
neurons for this analysis were filtered using the aforementioned criteria (section 2.3.1) but, rather than
being systematically reviewed, 77 mergers were manually identified and excluded. Projecting axon cell
types were not included in the analysis.

Contact sites (cs) are areas of contact between cell membranes of different cells. They are generated as
part of the SyConn pipeline (Dorkenwald et al. 2017, Schubert et al. 2022). Cs are processed as individual
objects, resulting in a pancake-shaped 3D mesh similar to synapse objects. To estimate the contact area,
divide the surface mesh of each object by two, as in the synapse size estimation (section 2.2.1).

For the analysis, the sum of the contact areas was calculated for all contacts with a specific cell type
and one glial cell. To determine if there were preferences for a specific cell type, the contact sites were
normalized by the mesh surface area of the given cell type (see appendix table A49). This is referred to
as the contact site ratio, which can be described by the following formula for astrocytes and MSNs:

Z A(:s
> Amswn
A, is the area of contact between astrocytes and MSNs, and Aj;sn is the surface area of the MSN
mesh (see figure 3.43 b).

ratio =
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Results

This thesis presents advancements in processing the EM dataset j0251 (section 3.1). After processing,
the analyses aim to provide a comprehensive understanding of cell types and their connectivity in Area
X, including analyses of morphology and subcellular structures (section 3.3), connectivity (section 3.4)
with respect to known basal ganglia pathways, analysis of non-synaptic vesicles and their surroundings
in neuromodulatory cell types (section 3.5) and glial cells (section 3.6).

3.1 Data processing in connectomics

The data processing in this thesis aims to improve the steps of the SyConn pipeline (Dorkenwald et al.
2017, Schubert et al. 2022) to enable the biological analysis of the Area X dataset j0251 from the adult
zebra finch. The updates to the data processing build on the work in Schubert et al. 2022 and include
an updated and extended organelle and cell type classification.

3.1.1 J0251 dataset

The data set j0251 was acquired by Joergen Kornfeld (Kornfeld 2017) with serial block-face electron
microscopy (SBEM). The dataset size is 256 x 256 x 384 pm?, and the voxel size is 10 x 10 x 25 nm?.
The data set was taken from an adult male zebra finch that was perfused with high-pressure perfusion to
preserve the extracellular space (ECS, Cragg 1980) and then stained with a heavy metal stain (see figure
3.1, methods section 2.1.1).

Before detailing the adaptations to the processing pipeline, this section focuses on the raw data itself.
It shows which subcellular structures are visible at this resolution and which artifacts occurred.

ECS preservation not only counteracts swelling related to fixation (Cragg 1980, Pallotto et al. 2015),
but also aids automated segmentation approaches (Pallotto et al. 2015). Thus, ECS was preserved in
this dataset and can be seen between neuropil (see figure 3.2 a,b marked by black asterisks).

Heavy metals stain not only cell membranes but also organelles with lipid bilayer membranes, such
as mitochondria (pink asterisks, see figure 3.2 a, ¢), endoplasmic reticulum (ER, blue arrows, see figure
3.2 a, ¢), Golgi apparatus (GA, orange arrows, see figure 3.2 ¢), the nuclear membrane (black arrow, see
figure 3.2 ¢), and (synaptic) vesicles (white arrow, see figure 3.2 a). Chemical fixation also allows staining
of synapses and the postsynaptic density (dark shadow, see figure 3.2 a). The synaptic cleft is indicated
by a black arrow on the postsynaptic site and a white arrow on the presynaptic site (see figure 3.2 a).
The myelin sheets are also visible in the data set (see figure 3.2 d, white arrows).
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Figure 3.1: Overview of dataset j0251, which was acquired from zebra finch Area X by Joergen Kornfeld.

The dataset size is 256 x 256 x 384 pm? (x, y, z). Cell renderings of examples from MSN, GPe, GPi,
STN, INT1, INT, and INT3 cells are shown in their respective locations.
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3.1. Data processing in connectomics

Although section loss is uncommon with SBEM acquisition, other artifacts can occur during tissue
preparation and acquisition. For example, parts of the previous section (section debris) can overlap
structures of the next section during imaging. While these artifacts can be found in the data (see figure
3.2 e), most structures can still be traced. Another artifact that occurs during acquisition is related to
a change in angle and appears as an alignment artifact. This artifact was manually fixed by Joergen
Kornfeld. It is barely visible in the XY plane but appears as a blur in the Z-axis (stitched images, see
figure 3.2 f).

Another artifact visible in the data appears around blood vessels, where several white spaces indicate
potentially damaged or washed-out areas (black asterisks, see figure 3.2 g, h). This artifact stems from the
sample preparation process, likely due to the pressure applied during perfusion to open the blood-brain
barrier (BBB) and maintain the ECS (Cragg 1980). The ECS can also be preserved via high osmolality
in immersion fixation (Pallotto et al. 2015, samples < 1 mm thickness).

When attempting this in larger samples (2.5 mm thickness) in zebra finches, the extent of the ECS
in the middle of the sample could be controlled by different sucrose concentrations (see appendix figure
A5 a-c). There were also artifacts around the blood vessels that looked as if cells had been washed out
or broken away (see appendix figure A5 d-f). The severity correlated with the ECS content preserved.
These artifacts appeared before heavy-metal staining, as confirmed by light microscopy imaging of the
fixed tissue (see appendix figure A6). Since the fixation procedures were different in these cases, the
similarity of the artifacts shows that they are likely due to the fixation process. The cells around the
blood vessels are generally highly susceptible to pressure or osmolality differences. While the effect of
these artifacts on the data is unknown, the following analysis results show that connectivity and cell
morphology are not disrupted on a large scale.

ECS, myelin sheets, blood vessels, and small neurites are not included in the cell segmentation.
To estimate the fraction of unsegmented data, 1000 data chunks with randomly generated offsets were
computed (see methods 2.1.1). The mean fraction of unsegmented cells was 25.4 + 5.0 % (see figure 3.3
a-c).

To obtain more accurate estimates of the ECS, myelin, and blood vessel fractions, 501 coordinates
were manually reviewed (methods section 2.1.1). 9.6 % of the coordinates were ECS, 1.6 % blood vessels,
3.2 % myelin and 5.2 % unsegmented cells (see figure 3.3 d). Using this method, the unsegmented parts
summed to 19.6 %, which is slightly lower than the automatic estimate.

In summary, although there are small artifacts visible in the data, the quality of j0251 allows for
detailed morphological and connectivity studies. With 9.6 % ECS, ECS preservation is in a range where
it is beneficial for automatic cell segmentation (> 6 %, Pallotto et al. 2015), as demonstrated in subsequent
sections. This enables biologically meaningful analyses.

3.1.2 Improvements to the SyConn pipeline

The SyConn pipeline involves several steps to transform raw EM data with grayscale images stacked
together into a catalog of data using multiple neural networks (see methods section 2.2.1, Dorkenwald
et al. 2017, Schubert et al. 2022). Ultimately, the cells are segmented into different compartments and
sorted into various cell types. Additionally, multiple subcellular structures, such as contact sites, synapses,
mitochondria, and vesicle clouds, are mapped onto them.

This thesis includes improvements such as the following: improved prediction of synapses and mito-
chondria (section 3.1.2), improved classification of projecting axons (section 3.1.2), addition of new cell
types, such as novel GABAergic interneurons (section 3.1.2, glial cells and migratory neurons (section
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3.1. Data processing in connectomics

Figure 3.2: j0251 raw EM data. a Neuropil. The synaptic cleft is indicated by a black arrow on the
postsynaptic site. The white arrow shows synaptic vesicles on the presynaptic site. The blue arrows
point to examples of the ER, the pink asterisks show mitochondria, and the black asterisk shows an
example of the ECS. Location: 14455, 13841, 7764 (see 2.2 for visualization instructions).b ECS between
neuropil, indicated by black asterisks. Location: 5005, 23199, 4505. ¢ A neuronal soma with different
organelles highlighted. The black arrow points to the nuclear membrane. Blue arrows point to examples
of ER sheets. Orange arrows point to sheets of the GA. Pink asterisks label mitochondria. Location:
14526, 13494, 7730. d Myelin sheet around an axon, marked with two white arrows. Location: 15617,
13627, 7503. e Section debris on top of the next section (middle), with the plane before (left) and after
(right). Location: 4465, 2131, 268. f Artifact from alignment, marked with two white arrows. Shown in
both the XY and XZ planes. Location: 23358, 1284, 5032. g,h Artifacts around blood vessels, marked
with black asterisks, at two different locations. Location: f: 16217, 14660, 7750; g: 24929, 11960, 7691.
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Figure 3.3: Estimate of ECS, blood vessels and myelin. a Raw data example. b Example of the cell
segmentation. Both are at location 14014, 14290, 7747. ¢ Fraction of voxels that did not belong to the
cell segmentation for 1,000 randomly generated offsets. d ECS estimate alongside estimates for blood
vessels, myelin, and unsegmented cells from 501 manually reviewed coordinates.
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3.1. Data processing in connectomics

3.1.2).

New synapses, mitochondria, and vesicle clouds

To enable more precise biological analyses, synapses, and mitochondria were reprocessed based on new
ground truth generated through manual annotations from thirteen biological annotators (methods section
2.2.1). Additionally, the vesicle clouds were processed using the same ground truth as previously employed
(Schubert et al. 2022).

For mitochondria, an additional step of eroding the individual mitochondria was added to better
separate the objects (methods section 2.2.1, see figure 3.4 a). Consequently, the number of mitochondria
increased compared to Schubert et al. 2022, while the mitochondrial volume decreased (see figure 3.4
b,c, appendix figure A7). The new ground truth improved synaptic prediction by removing small, falsely
labeled synapses (see figure 3.4 a), resulting in a drastic decrease in synaptic number and volume (see
figure 3.4 b,c, appendix figure AT).

Since the ground truth for vesicle clouds did not change, the differences compared to the previous
version resulted from differences in the prediction model only. The results show a slightly lower number
of objects with slightly greater volume (see figure 3.4 b, ¢, appendix figure A7). These changes are
the opposite of those for mitochondria, where the ground truth was updated. Therefore, changes in
mitochondria can be attributed to the updated ground truth.

In summary, the new ground truth for synapses and mitochondria leads to fewer synapses and better
separation of the mitochondria.

To further ensure the accuracy of synapse predictions, a random forest classifier (RFC, Dorkenwald
et al. 2017) is trained to predict synapse probability and assign a number between 0 and 1, where 0
indicates uncertainty and 1 indicates certainty. This probability should correspond to the percentage of
true synapses with a given value; for example, a probability of 0.8 should correspond to 80 % of true
synapses with this value. This probability can then be used to filter data for analysis.

Previous versions randomly selected ground truth synapses across the dataset. This resulted in low
probabilities for clear synapses from less frequent cell types, such as GPe or GPi, whose axonal boutons
look different from the more frequent projecting axons (see figure 3.5, visualized is the synapse probability
mapped to the cell meshes). To rate synapses from all cell types with equal precision, the ground truth
was updated to include randomly selected synapses with presynaptic sites from all neuronal cell types
(see method section 2.2.1).

The results of the 10-fold cross-validation of the RFC showed higher F1 scores for true synapses
than the previous version (see table 3.1, previously: 300 synapses, 156 synaptic, 144 non-synaptic, true
synapses: F1 score = 0.826, precision = 0.794, recall: 0.861; Schubert 2022 p. 92, 104). Scores in the
non-synaptic class were lower due to the smaller number of ground truth synapses in that class (see table
3.1).

Upon inspecting the certainty of all synapses in the dataset, a much higher proportion of synapses were
classified with a synapse probability greater than 0.8, particularly when filtering by minimum synapse
size and axo-dendritic or axo-somatic synapses (see figure 3.6 a, b).

To confirm that this change is due to higher accuracy in predicting synapses and better RFC classifi-
cation and the decrease in overall synapse number indeed due to the decreased number of false positives,
synapses with different probability scores were manually evaluated.

Riccardo Morbio, who had received training in annotating different subcellular organelles, performed
the manual evaluation. He was given a subset of 180 randomly selected samples, including all synapses and
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Figure 3.4: Comparison of synapses, mitochondria and vesicle cloud objects in different versions. a An
example of mitochondria, synapses, and vesicle clouds at location: 14140, 14081, 7748 in the version
'v4/SyConnV?2’ from Schubert et al. 2022 and the current version "v6". b Number of objects in different
organelle classes. ¢ Surface and volume density for different organelle classes For synapses, the synaptic
area was used for the analysis. Here, the synaptic area was divided by the dataset volume. For the other
organelles, the summed volume was divided by the dataset volume.
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Figure 3.5: Comparison of the predicted synapse probability between v4/SyConnV2 and v6 in different
examples. For visualization, the meshes were colored based on the synapse probability of the closest
synapse. a MSN (id: 686847652), synapse coordinates: 6760, 22509, 4729. b GPe (id: 17748051),
synapse coordinates: 11794, 18431, 4891. ¢ GPi (id: 453097983), synapse coordinates: 5177, 7167, 11070.
The scale bar of the insets of the 3D renderings shows 3, 4, and 5 pm for (a), (b), and (c), respectively.
The full cell renderings are on the same scale for each example cell.
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precision | recall | Fl-score | support
non-synaptic 0.70 0.67 0.68 96
synaptic 0.87 0.88 0.88 234
accuracy 0.82 330
macro avg 0.78 0.78 0.78 330
weighted avg 0.82 0.82 0.82 330

Table 3.1: Results of the RFC 10-fold cross-validation for synapse classification

filtered ones with respect to different cell types (method section 2.2.1). The results of both evaluation
rounds show that the synapse probability given by the RFC correlates with the fraction of correctly
predicted synapses in each probability bin (see figure 3.6 ¢, d).

Synapses with a probability > 0.6 (indicated in the figure in the 0.8, 1.0 bars) had a combined true
positive rate of > 90 % (90,27 % for all synapses, 93,01 % for > 0.1 ym?). To ensure a low false positive
rate, a synapse probability of 0.6 was used for all subsequent analyses involving synapses.

In conclusion, changes in synaptic processing result in a large proportion of high-probability synapses,
leading to a high number of accurately predicted synapses.

Improving the classification of projecting axons

Area X receives projecting axons from several areas, including the cortical areas HVC and LMAN, as well
as dopaminergic projections from the ventral tegmental area (VTA, see figure 3.7 a). Their morphological
differences, such as the highly branched axons of LMAN versus the straight axons of HVC (Henselmans
et al. 1994, Fortune et al. 1995, see table 2.6), allow for the automatic classification of these three cell
types (Schubert et al. 2022).

The ground truth for the previous classification included significantly longer LMAN than HVC and
DA axons (p < 0.005, see appendix table A3; figure 3.7 b). This led to the prediction that DA axons
would be shorter than LMAN and HVC axons on average and that LMAN axons would have a bimodal
distribution with a large fraction of axons greater than 100 pm (see figure 3.7 c).

Differences in the length of the ground truth samples can result in the prediction endpoint being asso-
ciated with a specific class without learning more about the morphology. An intermediate classification
("v5") based on more imbalanced ground truth data (with significant length differences in length between
all three classes, see appendix table A3) leads to larger differences in length between the three classes
(figure A8, appendix tables A4, A5). This points to the aforementioned bias in the ground truth data.

To improve the classification of projecting axon types, the ground truth was expanded to include
a broader spectrum of lengths for all classes, especially shorter LMAN and longer DA axon fragments
(method section 2.2.2, see figure 3.7 d). Due to their branched appearance, LMAN fragments were signif-
icantly longer than DA and HVC fragments (p-values in appendix table A3). The resulting predictions
are in a similar length range, even though statistical differences remain (figure 3.7 e, appendix table A4).
The LMAN distribution now mainly follows one distribution, with a small fraction of longer axons.

To determine whether changes in length distribution are accompanied by differences in classification
between these three cell types, the identity of the new axon fragments was compared to their classification
in "v4/SyConnV2" (Schubert et al. 2022).

The first difference is the lower number of classified HVC axons in the current version and the higher
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Figure 3.6: Comparison of predicted synapse probability between v4/SyConnV2 and v6. a Predicted
synapse probability for all synapses. b Predicted synapse probability for synapses filtered with a minimum
size of 0.1 pm?, only axo-dendritic synapses between neurons suitable for analysis (method section 2.3.1).
¢ Manual evaluation of 'v6’ synapses in different probability bins (method section 2.2.1). d Manual
evaluation of synapse probabilities filtered as in b.
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Figure 3.7: Projecting axons and their lengths. a Renderings of example ground truth projecting axons.
The myelinated part of the LMAN axon is shown in black. DA ID: 139212645, HVC ID: 1126849047,
LMAN ID: 436157555. b Length of fragments used for ground truth generation in Schubert et al. 2022
"SyConnV2/v4." The labels show the lower end of the corresponding bin. For example, 50 indicates axon
fragments with a length between 50 and 100 pm, and 1000 indicates fragments > 1000 pm. ¢ Length of
predicted axon fragments that have at least one synapse in SyConnV2/v4. d Length of fragments used
for ground truth generation in the most recent version, v6. The labels are the same as in b. ¢ Length of
predicted axon fragments that have at least one synapse in v6.
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axon type version number of axons | number of axons with at least one synapse

DA v4/SyConnV2 810174 673313
DA vH 1908217 1469296
DA v6 1889548 934246
HVC v4/SyConnV2 2796405 2271418
HVC vh 824085 793575
HVC v6 2714875 2169004

LMAN | v4/SyConnV2 65908 52844

LMAN vH 339335 255247

LMAN v6 221924 120580

Table 3.2: Number of axon fragments for different versions.

number of classified LMAN and DA axons (table 3.2). For both the DA and LMAN classes, the newly
predicted axons mainly come from axons that were previously classified as HVC (median ~ 25 % DA,
> 30 % LMAN, figure 3.8 a). The HVC class, on the other hand, remained stable, with nearly 80 %
classified as HVC beforehand. New axons in the DA class that were previously HVC also had lower
certainty (median ~ 0.6, figure 3.8 b). New axons that were previously HVC in the LMAN class had a
high certainty (median ~ 0.8), even higher than previous LMAN cellids. This is potentially due to a high
HVC certainty.

In the new classification, the level of certainty did not vary much depending on the previous class,
but it did increase overall with a higher cell number. Thus, HVC had the highest level of certainty
(see appendix figure A9). New axon fragments in LMAN also originate from axons that were previously
classified as STN, MSN, or GPi. However, in contrast to HVC, they were assigned low probabilities to
the previous cell classes. This can be partially attributed to the generally lower certainties of cell types
with lower cell numbers.

In summary, balancing the ground truth in terms of axon length improved their classification.

Identification of novel GABAergic interneurons

Area X contains several types of interneurons that are found in different nuclei of the mammalian brain
(section 1.2.2). Examples include MSN neurons from the striatum and GP neurons from the globus
pallidus. Some of these cells are projecting axons in their mammalian analogue, some of them are also
interneurons there. This dataset previously identified four cell types linked to interneuron cell types from
the mammalian basal ganglia: TAN, LTS, FS, and NGF (Schubert et al. 2022). While TAN, LTS, and
FS cells have been reported in Area X before (Farries et al. 2002), this was the first identification of the
putative NGF cell type.

Based on the separated UMAPs (Schubert et al. 2022, figure 2) and manual inspection of morphology,
it was analyzed whether these cells could be further divided into two subtypes. Four morphological
parameters—axon mitochondria density, axon median radius, soma diameter, and spine density— showed
two distinct clusters. One cluster exhibited a high mitochondria density, thicker axons, large somata, and
few spines ("NGF type 1"), while the other exhibited a low mitochondria density, smaller axons, smaller
somata, and more spines ("NGF type 2"). Manual thresholds were set for each parameter (method
section 2.2.2, see table 2.9). Cells that fit into one group based on all parameters were classified as "NGF
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Figure 3.8: Projecting axons and their predicted certainties in different versions. a Percentage of axons
of different projecting axon classes in v6 and their corresponding cell types in v4/SyConn V2 b axons in
different classes and the corresponding certainties in v4. Certainties in v6 are in A9.

73



3.1. Data processing in connectomics

type 1" or "NGF type 2" (figure 3.9 a, b). Cells that did not fit into one group with the thresholds of all
four parameters were labeled as "NGF undefined" (for cell numbers see appendix table A6).

The other two GABAergic interneuron groups in the dataset are LTS and FS. LTS cells have small
somata and long dendrites, giving them a different morphology (methods table 2.6, Farries et al. 2002).
Cells classified as "FS" have branched axons and are similar in size to "NGF" cell types (figure 3.9 c).
When plotted together with the two NGF types, the FS values lie between the two NGF types in all
four parameters (see appendix figure A10). They were also significantly different from both NGF types
(p-values < 0.005, see appendix table A7, AS).

Based on these results, it was unclear which of the three cell types (FS, NGF type 1, and NGF type
2) corresponded to the previously previously through electrophysiology described "FS" type. Therefore,
the FS and NGF types were renamed INT1 (previously "FS"), INT2 ("NGF type 1"), and INT3 ("NGF
type 2"). To further analyze them, the ground truth was extended for INT2 and INT3, and they were
classified as different cell types (methods section 2.2.2).

This new classification yielded three morphologically distinct cell types that can be separated using
a four-dimensional principal component analysis (PCA) with the aforementioned parameters (p < 0.005
for all parameters, see figure 3.9 d-f, appendix tables A7, A9).

In summary, morphological analysis of "FS"-like GABAergic interneurons identified three distinct cell
types in Area X. Further differences in organelle density and connectivity are analyzed in 3.3, 3.4.2).

Identification of glial cell types and migratory neurons

The brain consists not only of adult neuronal cell types, but also of several types of glial cells and
migratory neurons. As these cell types had not been previously identified in the data, the first goal
was to determine the extent to which they are part of the dataset and whether they could be classified
alongside neuronal cell types.

Based on literature describing morphology (see table 2.6) and an iterative cell classification process
aided by manual classification, four glial cell types (astrocytes, microglia, oligodendrocytes, and oligoden-
drocyte precursor cells (OPCs)) and migratory neurons could be identified in the data (methods section
2.2.2, see figure 3.10 a).

Using filtering for skeleton path length and classification certainty, as well as manual inspection, Delta
Schick identified 390 glial cells as part of his master’s thesis (see table 3.3, figure 3.10 a, Schick 2023)
and subsequent work (shared conference poster at FENS 2024, Schick et al. 2024), both of which were
supervised by me. All identified microglia were in their resting state (see figure 3.10 a).

Oligodendrocytes have several thin processes that produce myelin. Unfortunately, these cells are often
fragmented in our data, and myelin is not segmented as part of them.

After classification, Naomi Shvedov manually selected the migratory neurons for further analysis
(methods section 2.2.2, table 2.6, Shvedov et al. 2024).

At least one astrocyte process contacts a blood vessel to form the blood-brain barrier (see figure 3.10
a, b). Therefore, the blood vessels are densely surrounded by astrocytes. Due to incomplete segmentation
and to improve visibility, only a few examples are shown figure 3.10 b.

Cell type classifier performance

In summary, the following changes were made to the cell type classification: First, axonal fragments
of different lengths were added. Second, FS-like GABAergic interneurons were separated into three
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Figure 3.9: Three GABAergic interneuron types and their morphological differences. a Soma diameter
and axon mitochondrial volume density of neurons classified as "NGF" in v5. b Spine density and axon
median radius of the same neurons. ¢ Renderings of three example neurons alongside their mitochondria,
with insets showing dendrites with more and fewer spines. The mitochondria of the axon are labeled in
blue, and the soma and dendritic mitochondria are labeled in gray. Neuron IDs: INT1: 1080627023, INT2:
126798179, INT3: 24397945. d, e Morphological parameters plotted again with the new classification of
these interneurons as INT1-3. INT1 neurons were previously labeled as "FS" (see appendix figure A10).
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3.1. Data processing in connectomics
cell type vb filtered | vb manual | v6 filtered | v6 manual
astrocyte 208 105
microglia 111 93 169 54
oligodendrocyte 71 106 33
OPC - 1 - 126
migratory neuron - 14 35

Table 3.3: Numbers of the different glia cell types and migratory neurons in the different versions.
"Filtered" means filtered according to the criteria described in methods section 2.2.2, while "manual"

means manually verified.

a

microglia
astrocyte g

migratory neuron 20 pm

b

I astrocyte
I blood vessel

Figure 3.10: Glial cell types and migratory neurons. a Example cells of glial cell types and a migratory
neuron. Cell IDs: ASTRO: 2069615083, OLIGO: 1190822162, MICRO: 1143990345, OPC: 2017622103,
MIGR: 1644151292. b Example of astrocytes on a blood vessel that was incorrectly segmented as
a cell. Blood vessel cell ID: 2332213096, ASTRO IDs: left: 2491837340, 2412109485,2211357026;

right:2211357026, 2129941466.
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redundancy 1 | redundancy 10 | redundancy 20 | redundancy 50

quantity mean sd mean sd mean sd mean sd
DA 0.925 | 0.043 | 0.960 | 0.017 | 0.981 | 0.016 | 0.987 | 0.009
LMAN 0.862 | 0.020 | 0.953 | 0.013 | 0.942 | 0.000 | 0.953 | 0.007
HVC 0.886 | 0.004 | 0.959 | 0.012 | 0.949 | 0.004 | 0.956 | 0.004
MSN 0.884 | 0.006 | 0.995 | 0.007 | 0.995 | 0.007 | 0.995 | 0.007
STN 0.908 | 0.010 | 0.939 | 0.007 | 0.957 | 0.023 | 0.944 | 0.000
TAN 0.823 | 0.036 | 0.973 | 0.019 | 0.973 | 0.019 1 0.000
GPe 0.878 | 0.015 | 0.949 | 0.036 | 0.900 | 0.016 | 0.923 | 0.000
GPi 0.889 | 0.000 | 0.956 | 0.031 | 0.909 | 0.017 | 0.933 | 0.000
LTS 0.522 | 0.046 | 0.850 | 0.035 0.85 0.035 | 0.825 | 0.035
INT1 0.851 | 0.020 | 0.917 | 0.016 | 0.965 | 0.026 | 0.957 | 0.000
INT2 0.888 | 0.038 | 0.939 | 0.029 | 0.990 | 0.014 | 0.960 | 0.013
INT3 0.938 | 0.045 1 0.000 1 0.000 1 0.000
ASTRO 0.946 | 0.036 | 0.945 | 0.021 | 0.945 | 0.021 | 0.945 | 0.021
OLIGO 0.789 | 0.034 | 0.789 | 0.034 | 0.806 | 0.039 | 0.806 | 0.039
MICRO 0.857 | 0.010 | 0.872 | 0.018 | 0.872 | 0.018 | 0.872 | 0.018
MIGR 0.927 | 0.030 | 0.929 | 0.000 | 0.940 | 0.016 | 0.952 | 0.017
FRAG 0.837 | 0.049 | 0.847 | 0.035 | 0.847 | 0.035 | 0.847 | 0.035
f1 score macro | 0.860 | 0.008 | 0.928 | 0.008 | 0.931 | 0.004 | 0.933 | 0.007

Table 3.4: Mean and standard deviation of f1 scores from the 10-fold cross-validation for different cell
types and three different validation splits.

previously unknown types based on morphology. Third, glial cell types and migratory neurons were
identified in the data. These changes resulted in a total of 16 cell classes on which a classifier was trained
(plus one additional class for small fragments, Schubert et al. 2022).

To evaluate the classifier’s performance, a 10-fold cross-validation was performed with different re-
dundancy scores as previously described (see table 3.4, Schubert et al. 2022). The redundancy describes
how often one cell is presented to the classifier during prediction. The confusion matrices with the cor-
responding redundancies are in the appendix tables A10, A11, A12 and A13. As described in Schubert
et al. 2022, figure 2c¢, the F12-scores improve when the redundancy increases to 10, but not as much when
it increases from 10 to 20 or 50. For final training to classify the cells, a redundancy of 20 was used.

Overall, the classifier successfully sorted cells into different types with an F1 score of (0.931 & 0.004.
These results are comparable to the previous training with less classes and without myelin (0.932 £ 0.009,
Schubert et al. 2022).

3.1.3 Organelle extraction

The raw EM images contain several different organelles with lipid bilayer membranes. While mitochon-
dria, synapses and vesicle clouds are already processed as part of the SyConn Pipeline (Dorkenwald et al.
2017) but other organelles visible in EM, such as the ER and GA, are not yet processed, even though
they are linked to neuronal function. The ER, for example, functions as a calcium storage site in close
proximity to synapses (Tsuboi et al. 2021). To further enhance our understanding of neuronal morphology
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3.1. Data processing in connectomics

and potential functional links in connectomics, ER, GA, and individual vesicles must be identified and
processed in the data.

To segment ER, GA and individual vesicles, first new ground truth was generated by 12 biological
annotators in a total of 4286 hours of annotation and review for 14 cubes, each measuring 4 x 4 x 5 pm?
(methods section 2.2.3). This ground truth was then used to train and predict with a U-Net by Martin
Bucella, and was processed using the SyConn pipeline by Hashir Ahmad and me (methods section 2.2.3).

First, individual vesicles were predicted based on limited ground truth ("single class prediction").
Then, single vesicles were predicted alongside mitochondria, synapses, ER, and GA in a multi-class
prediction (see figure 3.11 a). To evaluate the accuracy of the prediction in the context of biological data
analysis, both methods were evaluated manually, and the results are shown in the following sections.

Evaluation of individual vesicles

The first evaluation focused on individual vesicles from the single-class and multi-class predictions. Af-
ter processing, the coordinates of all predicted vesicles were extracted. This resulted in a dataset of
approximately 3 billion single-class vesicles and 2.5 billion multi-class vesicles.

For the evaluation, 286 vesicle coordinates were randomly selected from each prediction to represent
various neuronal cell types, as well as different calculated distances to the cell membrane and the next
synapse (methods section 2.2.3). Manual evaluations were performed by biological annotator Riccardo
Morbio.

Multi-class prediction performed slightly better than single-class prediction, with 85.3 % of vesicles
being true individual vesicles overall (compared to 79.3 % in the single class; see figure 3.11 b). Apart
from one in each class, all true vesicles were located in axons (see figure 3.11 ¢). The fraction of true
vesicles differed depending on the cell type. For the multi-class prediction, all of them were over 65 %,
and eight out of eleven were over 80 %. For the single-class prediction, only 46 % of MSN were true
vesicles, while all other cell types had over 65 %, and seven out of eleven over 80 % of true vesicles (see
appendix figure A11 a). Thus, the multi-class prediction performed better than the single-class prediction
in eight cell types.

If the vesicle prediction was incorrect, it was mostly due to misclassification of the ER (see figure 3.11
d). Having the ER as a separate class slightly improved the distinction between the ER and the vesicles.
In the multi-class prediction, there was less ER (54.8 % , 23 vesicles, compared to 62.7 % and 37 vesicles
in the single-class prediction). Since mitochondria are sometimes stained less and appear differently in
astrocytes, cistae were also sometimes labeled as single vesicles in the multi-class prediction, as well as
in the current and previous vesicle cloud predictions (see figure All c).

Overall, both predictions can identify true vesicles, with the multi-class prediction performing slightly
better.

In an additional step, it was evaluated whether the calculated distance to the membrane could predict
whether a vesicle was touching the cell membrane. The fraction of different distances was similar between
the multi-class and single-class predictions, with values around 0.5. The single-class prediction had the
highest ratio at a calculated distance of 10-15 nm, with 59.2 % (see figure 3.11 e, A1l b). For vesicles
with a large calculated distance, the fraction of membrane-close vesicles was 20 % for the multi-class
prediction and 16.6 % for the single-class prediction. This shows that the distance calculation is not
completely reliable in predicting vesicles that touch the membrane. For further analysis, a threshold of
10 nm was selected to identify vesicles close to the membrane, indicating proximity rather than contact.

Overall, both single-class and multi-class predictions could identify individual vesicles, with multi-class
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Figure 3.11: Evaluation of single vesicles in single versus multi-class prediction. a Comparison of the
prediction of single vesicle segmentation in the single-class versus multi-class prediction (location: 14140,
14081, 7748). b Percentage of true and false vesicles in the evaluation set. ¢ Percentage of true vesicles
located in an axon. d Percentage of falsely labeled vesicles in different categories. e Fraction of membrane-
close vesicles depending on the calculated distance to the membrane.

predictions performing slightly better. However, calculations of distance to the cell membrane do not
accurately show whether the vesicle is touching the membrane; rather, they are a measure of proximity
to the membrane.

Prediction of ER, GA, and individual vesicles

As described above, the multi-class prediction includes three new organelle classes: ER, GA, and indi-
vidual vesicles. For GA, only large stacks were fully processed. Transport vesicles were only processed if
they were in contact with one of the larger stacks (methods section 2.2.3).

To evaluate the accuracy of the three new organelle classes, Riccardo Morbio manually reviewed a total
of 675 coordinates from 16 cell types (12 neuron types, three glia types, and migratory neurons, methods
section 2.2.3). To estimate the error rates among these three classes, the evaluation was performed
without knowing which organelle was predicted.
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Overall, 84 % of all coordinates were predicted correctly. Single vesicles performed worse than the
ER and GA, with 70.0 %, 90.8 %, and 92.8 % correct predictions, respectively (see figure 3.12 a). ER
is common in all compartments and was therefore predicted with a similarly high degree of certainty
across all compartments and cell types (see figure 3.12 ¢, appendix figure A12 a, d). GA and individual
vesicles were annotated only in specific compartments where most of these organelles were also predicted,
resulting in higher accuracy. Thus, for GA, 93.75 % of predictions in the soma were correct, as were 84
% of predictions in the axon (see figure 3.12 ¢, appendix figure A12 a). The elongation of soma in glial
cells allows some GA to reach the glial processes, which were predicted with much less accuracy (33.3
%).

The accuracy of both GA and vesicles varied depending on the cell type. In the vesicle prediction,
glial cells, migratory neurons, and MSNs performed worse than other neuronal cell types (see appendix
figure A12 d). No vesicles were originally annotated for migratory neurons and glial cells, while MSNs
generally have low vesicle and vesicle cloud densities, as described later (see figure 3.18). Thus, the less
accurate prediction was likely due to missing or insufficient ground truth annotations for these cell types.
GA predictions performed worse only in astrocytes (60 %), while predictions for all other cell types were
similarly accurate (> 80 %, see appendix figure A12 d).

Since only the connected components of large GA were processed, most of the predicted coordinates
were part of GA stacks (76.6 %, see appendix figure A12 b, method section 2.2.3). These stacks also had
a slightly higher fraction of correctly predicted coordinates (97.9 % in stacks vs 90.9 % in GA vesicles,
see appendix figure A12 c).

The aforementioned manual evaluation aims to identify the number of true and false positives, i.e., the
number of organelles that were correctly or incorrectly predicted in each class. To estimate the number
of false negatives (i.e., organelles predicted as another class or not predicted at all), the raw data must be
manually reviewed again. Due to the high density of ER and individual vesicles compared to the limited
number of GA stacks in each cell, such an analysis was performed on GA only (methods section 2.2.3).

For this evaluation, three randomly selected ground truth cells were reviewed per cell type, resulting
in a total of 30 reviewed cells and an average of 3.85 separate GA stacks per cell (150 stacks in total, see
appendix A12 b). 88.7 % were correctly predicted GA stacks, and only two real GA stacks were false
negatives (see figure 3.12 e). Both false negatives occurred in oligodendrocytes. Apart from TAN cells,
the majority of the separated GA stacks were correctly predicted in all other cell types (see appendix
figure A12 b). Upon manual inspection, the false positives and negatives were rather small compared to
the large, correctly mapped GA stacks (see figure 3.12 a). Most of the false-positive GAs were ER (43.8
% , see figure 3.12 e), and most were in the soma (64.7 % , see figure 3.12 f).

In summary, the multi-class prediction accurately predicted ER, GA, and individual vesicles in the
data when organelles were filtered by compartment (see figure 3.13). For this reason, subsequent analyses
of organelles focused only on individual vesicles in axons and GA in neurons in the soma.

3.2 Cell types for data analysis

After processing the data to include new cell types and organelle classes, it was analyzed in the following
sections with respect to cellular morphology, subcellular structures, and connectivity.

To ensure consistency and an accurate representation of cells within Area X, all data analysis was
performed on a selected set of neuronal cells that met the criteria for completeness (methods section
2.3.1). While it cannot be guaranteed that all of these cells are truly complete, this provides a set of cells
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Figure 3.12: Evaluation of ER and GA. a Example coordinates of the prediction: 14750, 18722, 7747;
14750, 18722, 7477. b Percentage of true predictions of ER, GA, and individual vesicles, normalized by
the coordinate count of each vesicle. ¢ Percentage of true predictions in each compartment, normalized
by compartment. d Percentage of misclassified coordinates in each category, normalized by compartment.
e Percentage of separated GA stacks that were correctly predicted and mapped to cells (true positives),
falsely predicted (false positives), or not predicted (false negatives). f Percentage of falsely predicted GA
in different categories. VC = vesicle cloud. g Percentage of falsely predicted GA stacks inside and outside
the soma.
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I ER
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Figure 3.13: Rendering of a GPi synapse with the surrounding ER, mitochondria, and vesicles. The
vesicles are rendered spheres with 20 pm radius. GPi ID = 26790127; location: 14378, 9679, 6232.

for which cellular morphology, inputs, outputs, and subcellular structures can be analyzed. For additional
quality control, 775 cells were manually inspected for mergers and the presence of the three compartments.
All cells of the cell types GPe, GPi, LTS, STN, and TAN were inspected, as well as a random subset of
MSN and INT1-3 due to their high numbers and dense axonal arborizations, respectively (see appendix
table Al14; methods section 2.3.1).

As a result, 35 merged cells and six incomplete cells were identified, translating to a merger rate of
0.0096 mergers per millimeter of skeletal path length (see appendix table A14). These cells were excluded
from further analysis for GPe, GPi, LTS, STN, and TAN.

In the end, 8,576 neurons were used for analysis, 94 % of which were MSNs (see table 3.5). MSNs are
also the smallest neuronal cell type (se figure 3.14).

Glial cell types and migratory neurons were filtered and manually selected, resulting in a total of 390
cells (methods section 2.2.2, table 3.3).

The filter criteria for projecting axon cell types differed from those for complete cells due to the
fragmentation of the former (see figure 3.7). For morphology-related analyses, a minimum path length
of 200 pm was selected to accurately represent the morphology and enable comparison to neuronal cell
types. Since this criterion excludes most axonal fragments, a path length of 50 pm was selected for
connectivity analysis (method section 2.3.1). This results in over 34,000 axons for morphology and over
310,000 axons for connectivity analysis (see table 3.6).

3.3 Morphological and organelle differences of neuronal cell types

The first data analysis section quantifies the morphology of different neuronal cell types and their organelle
densities. These are then used to test for potential correlations with neuronal firing rates during singing.
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Figure 3.14: Renderings of example cells of cell types identified in Area X, along with their corresponding
neurotransmitters. The cell numbers refer to the filtered axonal fragments of the projecting axon types
(DA, LMAN, and HVC) and the filtered full cells. The myelinated parts of the axon are shown in white
for LMAN and INT3, and in dark gray for STN and GPi. Cell IDs: DA: 139212645, HVC: 1126849047,
LMAN: 436157555, STN: 7626258, TAN: 10157981, GPi: 26790127, GPe: 32356701, MSN: 27161078,
LTS: 15521116, INT1: 1080627023, INT2: 126798179, INT3: 24397945.
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neuronal celltype | number of neurons | putative neurotransmitter

GPe 27 GABA

GPi 47 GABA

INT1 96 GABA

INT2 100 GABA

INT3 66 GABA

LTS 37 GABA

MSN 8093 GABA

STN 102 glutamate

TAN 8 acetylcholine

Table 3.5: The number of neuronal cell types and their putative neurotransmitters, with somata, axons,
and dendrite skeletons. The axons and dendrites are at least 200 pm long (methods section 2.3.1).

projecting number of number of putative
axon cell type | axons [> 50 pm| | axons [> 200 pm| | neurotransmitter
DA 53522 4767 dopamine
HVC 246153 23069 glutamate
LMAN 19186 6887 glutamate

Table 3.6: Number and putative neurotransmitter of the projecting axons used for the analyses were
those with a skeleton length of at least 50 or 200 pm.

3.3.1 Morphological differences of neuronal cell types

Cell type classification is based on morphological features and subcellular structures, such as synapses,
mitochondria, and vesicle clouds (Schubert et al. 2022). To quantify the differences between cell types,
especially previously undescribed types such as INT1, INT2, and INT3, a set of morphological parameters
was analyzed.

The parameters were selected to provide an overview of the morphology and to allow comparison with
other techniques, such as light microscopy. These parameters included the length and surface area of
different neuronal compartments, the myelin fraction, dendritic spine density, and cell volume (see figure
3.15 a-f, see appendix figure A13 a-e, method section 2.3.4).

Some cell types have striking features. For example, TAN has a high soma surface area (see figure 3.15
¢), GP1i has the highest myelin fraction (see figure 3.15 d), and MSN has a high spine density (see figure
3.15 e). In general, cell types differ significantly in their morphological features (see appendix tables A17,
Al15; A16).

Notably, while the literature describes TANs and LTS as sparsely spiny (Farries et al. 2002; see table
2.6), the higher resolution of the dataset shows that these cell types are among the spiniest in the dataset.
Additionally, some cells exhibited wrinkled nuclei or nuclear infoldings (see appendix figure A14). Upon
manual inspection, wrinkled nuclei were most prevalent in the GPis, affecting 52.4 % of cells, while nuclear
infoldings were most prevalent in the STNs, affecting 28.9 % of cells (see appendix table A18).

Although the cell classifier’s latent space embeddings could separate neurons in an earlier version of
the data (Schubert et al. 2022) and the classifier performed well with the expanded ground truth (section
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3.1.2), it is unclear which specific morphological features were used.

To determine whether the aforementioned eleven parameters are useful for classifying different cell
types, a UMAP analysis was performed with and without MSNs. The most abundant cell type, MSN,
separated quite well from the other neurons (see figure 3.15 g, appendix figure A13 f). Of the 46 MSN
cells not included in the full group, 39 (85 %) were mergers, and the MSN group not connected to the
GPe or GPi was overrepresented (MSN connected to both GP: 54 %, MSN connected to neither GP: 20
%, MSN connected only to the GPe: 9 %, and MSN connected only to the GPi: 17 %, related to results
in section 3.4.1). This indicates that the correct neurons are mostly separated from the other cell types.
When clustering without MSNs, clusters are visible; however, apart from TAN and GPi neurons, the
separation is unclear (see figure 3.15 h, appendix figure A13 g).

In summary, coarse morphological features can distinguish some cell types, such as MSN, GPi, and
TAN, but they are not sufficient to clearly distinguish all 12 neuronal cell types. Additionally, clustering
with these parameters can help identify mergers in large cell classes, such as MSN, without manual
inspection.

3.3.2 Subcellular structures in Area X

In addition to the morphological parameters described above, subcellular structures can also differ be-
tween cell types. With the prediction of the ER, GA, and individual vesicles, as well as the improved
prediction of synapses and mitochondria, five organelle classes can be analyzed in the data.

First, to quantify differences in organelles between cell types, organelle density was analyzed in dif-
ferent compartments. Due to differences in organelle function and attributes resulting from different
processing steps, some organelles, such as mitochondria, GA, and vesicle clouds, were analyzed for vol-
ume density, while synapses and ER were primarily analyzed for surface area.

To facilitate comparison, all density analyses were performed in relation to axonal and dendritic path
length. For the soma, the analyses were performed either in relation to the estimated volume or surface
area (methods section 2.3.4).

Synapse density

Synapses contain information about neuronal network connectivity, but their densities and appearances
can differ between cell types. For cell type classification, synapse location is used as a morphological
parameter (Schubert et al. 2019, Schubert et al. 2022).

Differences in synaptic density can be seen, for example, between MSN and GPi. While the GPi
appears covered in synapses, especially on the soma and dendritic shaft, the MSN mostly receives synapses
on dendritic spines (see figure 3.16 a).

To quantify these differences, synapse density was analyzed in different compartments. Synaptic
density differs among all cell types in all compartments, regardless of whether normalization is based on
skeleton path length or surface area (see figure 3.16 b, appendix figure A15, appendix table A19).

INT3 has the highest synapse density in axons, followed by INT2, GPe, and GP1i (see figure 3.16 a).
With their thick dendrites and large somata (see figure 3.15), GPe and GPi have the highest synapse
density in dendrites and somata (see figure 3.16 b, ¢). The results do not differ much between normaliza-
tions. One notable change is that the axon synapse density relative to surface area is slightly lower for
INTS3, resulting in a density similar to that of INT2 (appendix figure A15).

In summary, different cell types have different synaptic densities. The results were similar when
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Figure 3.15: Morphological differences in neuronal cell types.
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a-c Surface area of the meshes of the

different compartments. d Myelin fraction of the axon. e Dendritic spine density. f Volume of the cell
or projecting axon. g UMAP separation of an 11-dimensional feature space, including parameters in a-f
and A13 a-e. h Same as g, but without MSNs.
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normalized based on path length or surface area. Further analysis of synapse density used the density of
synaptic areas normalized to surface area.

Mitochondria density

Mitochondria are the main source of energy production in neurons. Therefore, higher firing rates are
hypothesized to relate to higher mitochondrial densities.

Previous analyses of a smaller dataset with coarser cell typing (Dorkenwald et al. 2017) and a bachelor’s
thesis by Delta Schick on an earlier version of the data (Schick 2021, supervised by Philipp Schubert and
me, data before Schubert et al. 2022), showed a positive correlation with firing rates reported during
singing for cell types in Area X. If this correlation holds true for the current data, it could be used to
predict the firing rates of the three novel GABAergic interneuron types.

First, differences in mitochondria density between neuronal cell types are analyzed. Previously, dif-
ferences in axon mitochondria volume density were used to distinguish INT1, INT2, and INT3 (section
3.1.2), and manual inspection revealed striking differences in other cell types, such as MSN and GPi (see
figure 3.17 a). Mitochondria density differs between cell types in all compartments (see figure. 3.17 b-d,
Kruskal-Wallis test p-value = 0.0, see appendix table A21, for mean, std values per cell type: appendix
table A20).

Second, the correlation between reported firing rates during singing and calculated median mitochon-
drial volume densities per cell type was tested. Although there is a reference value for STN, it was not
measured during singing, but rather in Area X slices (Budzillo et al. 2017). Thus, this value was used
as a reference for the STN only and was not included in the correlation analysis (methods section 2.3.4).
There was a high correlation in all compartments with the reported firing rates, the highest being with
the axon mitochondrial volume density (r-squared > 0.9, p < 0.05, figure 3.17 e-g, appendix figure A16,
appendix table A22). Using the mean or total mitochondrial density yielded a strong correlation, except
for the mean somatic mitochondrial volume density (r-squared = 0.76, p = 0.055, appendix figure A16,
appendix table A22). It should be noted that, although the correlation with total mitochondrial density
is high, the predicted values are negative for INT2 and are therefore not physiologically plausible.

Third, the regression fits were used to predict the firing rates of STN, INT1, INT2, and INT3. The
resulting firing rates were as follows: 35 Hz to 106 Hz for INT1, 14 Hz to 37 Hz for INT2, 97 Hz to 117
Hz for INT3, and 47 Hz to 62 Hz for STN (see appendix table A31).

In summary, the volume density of mitochondria in all three compartments varies greatly among cell
types and correlates well with reported mean firing rates during singing. While this allows for prediction
of the firing rate for INT1-3, the predictions vary greatly depending on the compartment.

Axonal synaptic and non-synaptic vesicle density

In previous analyses of a smaller dataset (Dorkenwald et al. 2017) and in a bachelor’s thesis with an
earlier version of the data in this dataset (Schick 2021), a high axonal synaptic and non-synaptic vesicle
density was related to a higher firing rate during singing in the form of vesicle clouds (vc). However,
as the volume of a vc does not provide information about the number of vesicles it contains (see figure
3.18 a, vesicles rendered with a 20-nm radius), it is unclear whether that correlation holds true for the
number of individual vesicles. If so, the correlation between vc volume density or vesicle density and the
reported firing rates could also be used to predict firing rates for INT1, INT2, and INT3.

First, differences in vc volume density between cell types in the axons are quantified. These two
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Figure 3.16: Synapse densities in different compartments.a Renderings of an MSN (ID: 832232717) and a
GPi cell (ID: 26790127) with synapses in different compartments, both on the same scale. Axon synapses
are pink, dendrite synapses are black, and soma synapses are yellow. The insets show the synapses in
the different compartments. b,c Synapse density is shown as the summed synaptic area in relation to the
skeleton path length in the axon and dendrite. d Summed synaptic area in the soma is shown in relation
to the soma surface area.
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Figure 3.17: Mitochondria volume density in different cell types and compartments.
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a Renderings of

an MSN (ID: 832232717) and a GPi cell (ID: 26790127) with mitochondria rendered on the same scale.
The insets show the mitochondria in the soma, axon, and dendrite. b-d Mitochondria volume density in
the axon, dendrite, and soma. For the axon and dendrite, the mitochondrial volume is divided by the
skeleton path length to calculate the density; for the soma, it is divided by an estimated soma volume.
e-g Mean firing rates are predicted from median mitochondrial volume densities using linear regression.
Black indicates cell types for which literature values for firing rate were available. Turquoise indicates
cell types predicted by the linear regression line (appendix table A22).
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parameters differ significantly between cell types, and upon visual inspection, extremes such as MSN and
INT3 show striking differences (p < 0.001, figure 3.18 b, d, appendix tables A23, A24).

Second, the correlation between the mean firing rate during singing and median vc volume density and
vesicle density is analyzed. Both show a significant correlation with the reported firing rates (spearman
r = 0.83, p = 0.01 for both, regression r = 0.90, p < 0.005; figure 3.18 ¢, e, appendix table A25). The
correlation is no longer significant for mean values, but the linear regression fit remains good (spearman
r = 0.67, p = 0.07 for both, r = 0.86 vc, 0.87 vesicles, p < 0.005, appendix figure A17, appendix table
A25).

Third, the results of the regression analysis are used to predict the firing rates of STN, INT1, INT2,
and INT3. Although the correlation with both parameters is high, the ranking order among cell types
changes. For example, INT3 has the highest vesicle density, but only the second-highest vc volume
density. This leads to different firing rate predictions. The predicted firing rates for the vesicle cloud
volume densities are: STN = 35 Hz, INT1 = 107, INT2 = 124 Hz, INT3 = 239 HZ. Predictions from the
vesicle density are: STN = 38 Hz, INT1 = 120 HZ, INT2 = 170 Hz, INT3 = 360 Hz (see appendix table
A31). Comparing these results to those from the mitochondrial volume density, the STN is predicted to
be lower, the predictions for INT1-3 are much higher, and the order of INT1 and INT?2 is switched.

In summary, the mean firing rate significantly correlates with both the vc volume density and the
axon’s vesicle density. However, the order of cell types differs between the two parameters, leading to
different firing rate predictions for novel GABAergic interneuron types.

Golgi apparatus density

The GA is involved in protein synthesis and is primarily found in neuronal soma. Since the GA has not
been segmented before, its relationship with neuronal firing rate is unknown and will be investigated in
this section.

First, differences between cell types were quantified after a visual inspection revealed differences in
some cell types. For example, GPi cells have a much larger GA in their large somata than MSN cells have
in their small somata (see figure 3.19 a). To determine whether these differences depend on soma size or
translate to differences in density, the volume and area density were calculated. Since the GA is layered
and has a high surface-to-volume ratio, area density was also calculated, even though segmentation does
not show individual GA stacks. Although significant differences exist in both volume and area density,
they are not as striking as those observed for mitochondria or vesicles (see figure 3.19 b, d, appendix
tables A26, A27).

Secondly, it was tested whether these weak differences were related to different reported firing rates.
The results showed non-significant Spearman correlations for volume density (r = 0.8, p = 0.1) and
significant correlations for median area density (r = 0.9, p = 0.04, appendix table A28). The correlations
with the regression fit were much weaker and non-significant (volume: r = 0.31, p = 0.19, area: r = 0.37,
p = 0.17, figure 3.19 ¢, e, appendix table A28). Although the regression fit between the parameters is
weak, the ranking of the cell types differs. Due to the weak correlations, the predicted firing rates for the
STN, INT1, INT2 and INT3 are not discussed further.

Overall, differences in GA volume and soma area density were observed, but only a weak, non-
significant correlation was found with the reported firing rates.
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Figure 3.18: Vesicle cloud volume density and vesicle density of different cell types. a Renderings of an
MSN (ID: 832232717) and an INT3 cell (ID: 24397945), both on the same scale, with axonal vesicle clouds
in black. The insets show an enlarged portion of the axon with a vesicle cloud and individual vesicles,
as well as the raw data from the same location (MSN: 13825, 6737, 5382; INT3: 13157, 6715, 4882). All
rendered vesicles are spheres with a radius of 20 nm and are only rendered at the specific coordinate. b
Axon vesicle cloud volume density in relation to skeleton length. ¢ Mean firing rate singing predicted
from the median axon vesicle cloud volume density with linear regression. Black indicates cell types for
which literature values for firing rate were available; turquoise indicates cell types predicted by the linear
regression line. The regression coefficient = 4393, the intercept = 5.82, the adjusted r-squared = 0.90,
and the p-value = 2.35 x 10~% d Axonal vesicle density in relation to the skeleton length. e Mean firing
rate singing predicted from the median axon vesicle cloud volume density with linear regression, similar
to (c). Regression coefficient = 1.75, intercept = 5.16, adjusted R-squared = 0.90, p-value = 1.99 x 10~
Mean firing rates see appendix table A25.
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Figure 3.19: GA volume and surface area density in different cell types. a Renderings of an MSN (ID:
832232717) and a GPi cell (ID: 26790127), both on the same scale, with GA. The insets show the GA in
the soma. b Soma GA volume density in relation to estimated soma volumes. ¢ Mean firing rate singing
predicted from the median soma GA volume density with linear regression. Black indicates cell types for
which literature values for firing rate were available; turquoise indicates cell types predicted by the linear
regression line. For values see appendix table A22. d Soma GA surface area in relation to soma surface
area by ascending order. e Same as (d) with soma GA area density.
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Endoplasmic reticulum density

The ER stores calcium and is therefore linked with neuronal activity (Tsuboi et al. 2021). Previously, the
ER had not been segmented, so differences between cell types and their correlation with reported firing
rates had not been studied in Area X. As in previous sections, first the differences between cell types are
quantified and then their correlation with reported firing rates is tested.

Since the ER is organized into sheets that maximize surface area, particularly near synapses and the
soma, the area density was analyzed. Due to the ER being processed as one compartment per cell, volume
density could not be analyzed additionally (method sections 2.2.3, 2.3.4).

Generally, the cells exhibit a dense network of ER, with portions of the ER extending into thin axon
fragments and spines (see figure 3.20 a, large renderings show only the ER). Occasionally, the ER forms
sheet-like structures that resemble a classical spine apparatus (example coordinates STN: 11069, 10540,
7056, MSN: 4234, 5348, 3010).

First, differences between cell types were quantified separately for each compartment. In all three
compartments, there were significant differences in ER density between cell types (see appendix table
A29; see figure 3.20 a-d, appendix figure A19 d, g). GPi cells had the highest surface area in all three
compartments, and INT2 cells had one of the lowest surface areas. MSNs have the smallest somata (see
figure 3.15 ¢), so the influence of the nucleus may be proportionally high see the shadow of the nucleus
in the ER~free area of the MSN soma in figure 3.20 a).

Second, ER area densities were related to reported firing rates during singing. All three compartments
showed correlations with the firing rate. The highest correlation was in the axon (r = 0.89, p < 0.005),
followed by the soma (r = 0.789, p = 0.028), and then the dendrite (r = 0.71, p = 0.048, see figure 3.20
e-g, appendix table A30). Note that the dendritic ER area density predicts physiologically impossible
negative firing rates for INT1 and INT2 (see appendix table A31). Correlations with mean densities
produced similar results for the axon and dendrite (r = 0.90, 0.76, p < 0.005, 0.035, see appendix figure
A19 a, b), but the correlation for soma is lower and not significant (0.68, p = 0.054, see appendix figure
A19 ¢, appendix table A30). Note that the axon prediction is also based on the most cell types due to
projecting axons.

The results differ when calculating the ER area density in relation to the surface area of the axon
and dendrite compartments. In both the axon and the dendrite, MSN has the highest ER densities,
followed by GPi (see appendix figure A19 d, g). Thus, the correlations with the firing rate are low and
not significant for both the axon and the dendrite (r = 0.15, -0.15, p = 0.2, 0.5; see appendix figure A19
e, f, appendix table A30). The high density in MSNs could be due to their thinner axons and dendrites,
which are more tightly packed with ER than the thicker axons and dendrites of other cell types. This
effect is less obvious when relating density to path length only.

Third, the regression results are used to predict the firing rates of the STN, INT1, INT2, and INT3.
Since only the axon and soma ER density in relation to path length yielded physiologically possible results
with significant correlations, only these are used to predict firing rates. The predicted firing rates range
from 32 Hz to 47 Hz for STN, from 62 Hz to 73 Hz for INT1, from 28 Hz to 46 Hz for INT2, and from
115 Hz to 132 Hz for INT3 (see appendix figure A31).

In conclusion, the ER area density differs between cell types and is highly correlated with several
compartments, especially the axon area density related to path length.
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Figure 3.20: ER renderings of an MSN (ID: 832232717) and a GP1i cell (ID: 26790127), both on the same
scale. The insets show the ER in different compartments. The MSN soma shows an area of lower ER
density, which is the nucleus. b, ¢ ER surface area in relation to the corresponding skeleton pathlength
in the axon and dendrite, respectively. d ER surface area in relation to soma surface area. e-g Median
values from b-d with the corresponding mean firing rate values from the literature. INT1-3 and STN
values were predicted with linear regression. The adjusted R-squared value and p-values are shown.
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3.3.3 Subcellular structures in relation to cellular morphology

As shown in the previous sections, several organelle densities are related to reported firing rates, and
significant differences are observed among cell types. In the SyConn pipeline, organelle information
improved cell classification (Dorkenwald et al. 2017, Schubert et al. 2022). To test whether organelle
densities can also aid in the separation of cell types, and to determine which parameters are the most
useful, an RFC was trained using recursive feature elimination with cross-validation (RFECV; method
section 2.3.4).

First, dimensionality reduction was applied to a combined set of organelle densities and morphological
features to determine whether organelle densities could enhance cell classification. An UMAP was used to
cluster the resulting 22-dimensional feature set, once for all cell types and once for all cell types without
MSNs. The results show that most cell types cluster well together (see figure 3.21 a, b, see appendix
figure A20 a, b), indicating improved clustering compared to the morphology-only approach (see figure
3.15).

The only cell type that is not well separated is the LTS, which is pooled together with some cells from
the STN, INT1, INT2, and GPe. Upon manual inspection, most of the 75 non-LTS cells were potentially
misclassified LTS cells (41 cells), followed by potentially misclassified MSNs (12 cells), unclear or cutoff
cells (12 cells), and 10 STNs that morphologically did not differ from the rest. For comparison, vesicle
density was replaced with volume density, but this did not yield different results (see appendix figure A20
¢, d). Using all the parameters for axons, the resulting eight-dimensional feature space was insufficient
to distinguish between projecting axon cell types (DA, LMAN, and HVC) in an UMAP (see appendix
figure A21).

Since the addition of organelle densities improved the clustering, the next step was to select the most
important features for clustering. To do so, an RFC was iteratively trained, leaving one feature out, while
the cross-validation score determined whether the feature was selected or discarded (RFECV, method
section 2.3.4). Ultimately, this procedure should select the fewest features possible before the cross-
validation score decreases. Training was performed once on all cell types in Area X and once without
MSNs.

In training with all cell types, nearly all parameters (21, excluding GA density) were required to
achieve similar clustering to that with the 22-dimensional feature set (see figure 3.21 c-e, appendix figure
A22 a, b). Accuracy of the RFC with all features was 0.991, the cross-validated accuracy with only
selected features 0.99 + 0.00 and the test accuracy with selected features on an RFC split in training and
test data 0.992, so all metrics are very similar. To see the influence on the different parameters, the mean
accuracy without one parameter was also calculated and did not differ much between the parameters (see
appendix table A32).

When this procedure was performed without MSNs, all features were selected (see figure 3.21 f,
appendix figure A22 ¢). The separation of cell types was similar to the UMAP of all parameters and
those with MSNs (see figure 3.21 g). Accuracy scores were slightly lower overall: 0.8902 with all features,
0.89 £+ 0.04 with selected features, and 0.897 with the test set. Training the RFC without one parameter
produced similar performance differences, independent of the parameter (see appendix table A32).

Although a 21- or 22-dimensional feature set is necessary to distinguish eight or nine cell types,
differences between specific cell types are visible with a much smaller feature set. As shown in previous
sections, the three interneuron types could be separated by a PCA with four parameters (see figure 3.9).

All parameters related to organelle information were selected for classification, apart from GA area
density. This demonstrates that organelle information is useful for cell classification.
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Figure 3.21: Separation of different cell types based on morphological parameters and organelle densities.
a Separation of different cell types based on parameters in figure 3.15 and organelle densities, see appendix
table A32. b The same as (a), but the separation is done without MSNs. ¢ Mean test accuracy plotted
against the number of features for all cell types with RFECV and an RFC. d UMAP clustering based
on a 21-dimensional feature vector selected for all cell types. e Same as (d), but UMAP clustering done
without MSNs. f Same as (c¢), but features selected without MSNs. g UMAP clustering on cell types
without MSNs based on a 12-dimensional feature vector selected in (f).
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3.4 Connectomic analyses of Area X

As shown in the previous section, the nine neuronal cell types and three projecting axons in Area X are
morphologically distinct and exhibit unique subcellular properties. The following sections will analyze
whether these differences also translate into differences in connectivity.

The connectivity will be analyzed with respect to the following: basal ganglia pathways known in
mammals (section 3.4.1), interneuron connectivity (section 3.4.2), and connectivity in the context of
motor channels (section 3.4.3).

3.4.1 Basal ganglia pathways in Area X

The three classical basal ganglia pathways in mammals consist of direct, indirect, and hyperdirect path-
ways. The following sections analyze the connectivity between neurons in Area X in relation to these
three pathways, how they are separated, and their relative connective strength.

Separation of GPe and GPi based on morphology

The cell types central to the basal ganglia pathways are MSNs, GPe, GPi, and STN. MSNs differ sub-
stantially in number and morphology from the other cell types (section 3.3). STN can be identified by
the presence of asymmetric synapses, making it the only glutamatergic cell type in Area X, in addition
to connectivity differences.

The aforementioned analyses of morphological features revealed that GPe and GPi are morphologically
distinct from each other and from other neuronal cell types in Area X, as demonstrated in a UMAP
(section 3.3.3). Due to their central role in basal ganglia pathways and proximity in UMAPs, their
different morphologies were examined more closely. Previous studies have only distinguished them based
on their electrophysiological properties or their ability to project outside of Area X (Goldberg et al. 2010,
Farries et al. 2005).

The results show that GPe and GPi cells can be separated based on a four-dimensional feature set in a
PCA with one principal component. These features are axon mitochondrial volume density, axon median
radius, axon myelin fraction, and soma diameter (see figure 3.22). The presence of myelinated axons
extending beyond the dataset boundaries aligns with the idea that the GPi is the putative projecting
neuron type of Area X (see figure 3.22 b, 3.15 d).

In conclusion, GPe and GPi cells differ in morphology, reflecting their functional differences. Thus,
they can be separated based on morphology alone.

Direct and indirect pathways at the MSN level

Both the direct and indirect pathways start with cortical innervation of MSNs in the striatum. The two
pathways diverge based on their next target: the direct pathway involves direct innervation of the GPi,
while the indirect pathway involves initial targeting of the GPe.

To determine whether the direct and indirect pathways exist at the level of MSNs, their input and
output connectivity was analyzed. MSNs receive most of their input from HVC (68.2 %), followed by
LMAN (15.6 % , see figure 3.23 a, b). Their main output targets are GPi (62.9 %) and GPe (21.1 %).
This is consistent with the connectivity of a direct and indirect pathway.
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Figure 3.22: Separation of GPe and GPi based on different morpholoical parameters. a The GPe and GPi
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To distinguish between the direct and indirect pathways, MSN subpopulations in mammals can be
differentiated by their dopamine receptors, their output targets (either to the GPe or the GPi, with
collaterals to the GPe, Wu et al. 2000), or morphological differences, e.g., spine density and dendritic
length (Gagnon et al. 2017, Gertler et al. 2008).

To determine if this data set contains two MSN subpopulations, it was tested whether morphological
differences could predict which MSNs project to the GPe and which to the GPi. An UMAP analysis of
a 22-dimensional feature set revealed no morphological separation of MSNs (parameters from appendix
table A32, see appendix figure A23 a). Focusing on the literature-reported features of spine density
and dendritic length revealed differences between MSN cells in these features, which were also weakly
correlated (r = 0.31, p-value < 0.001,3.15 e, 3.23 a, c. appendix figure A23). These morphological
parameters showed only a weak association with GPe or GPi connectivity (r = 0.14 for spine density, r
= -0.1 for dendritic length, p-value < 0.001, see figure 3.23 c. appendix figure A23 c¢). Insteatd, most
MSNs (73.4 %) connected to both the GPe and the GPi, while 21 % connected to the GPi only, and only
3.1 % connected to the GPe only (2.4 % did not connect to either; n = 197)

When the analyses were performed again with only the MSNs whose dendrites were not cut off (3,052
cells, method section 2.3.1), the correlations of the morphological features with each other and with
connectivity were weak (r = -0.24 to 0.15, p < 0.001, see appendix figure A23 d-f). The group of MSNs
that connect only to the GPe was also smaller, with only 0.78 % (24 cells, to both GP = 80.3 %, only
GPi = 18.2 %, neither = 0.69 %).

Additionally, MSNs that only connected to the GPe had shorter axons and dendrites, as well as a
soma that was closer to the dataset border, compared to MSNs that connected only to the GPi or to both
the GPe and the GPi (all p < 0.001, except for MSN no GPe vs MSN only GPe: p = 0.027, see appendix
figure A23 g-i, appendix table A33). These results suggest that the observation of MSNs connecting only
to GPe neurons may be due to reconstruction fragmentation or dataset boundaries.

In summary, most MSNs connect to both the GPe and the GPi, indicating that there is no clear
separation between the direct and indirect pathways at the MSN level. A total of 94.4 % of MSN cells
connect to the GPi. Therefore, the direct pathway has the strongest connectivity through Area X.

To determine whether there are differences in MSN connectivity to the GPe and GPi at the level of
individual cells and synapses, synapse sizes and the number of multi-synaptic connections were analyzed.
Multi-synapses refer to multiple synapses between the same presynaptic and postsynaptic cells. MSN-GPi
synapses are larger, and there is a greater tendency to form multi-synaptic connections with GPis. This
results in MSN-GP1i connections with larger total synaptic areas compared to MSN-GPe connections (p
< 0.001, see figure 3.23 d-f, appendix table A33). These results demonstrate that MSN-GPi connectivity
is significantly stronger than MSN-GPe connectivity.

Although there is a lack of evidence for distinct MSN populations, these connectivity differences could
be accompanied by MSN selectivity for targeting the GPi or GPe. To test this theory, the ratio of GPi
to GPe synaptic area was calculated for each MSN cell, and the synapses were shuffled among the cells.
Among the observed ratios, 35.61 % of MSN cells exhibited high selectivity for GPi outputs (GP ratio
> 0.9). After shuffling the data over 100 iterations, only 17.57 £ 0.35% of MSNs randomly exhibited the
same degree of selectivity (see figure 3.23 g, methods section 2.3.5). While the shuffled data shows a peak
in the GPi/GPe ratio at 75 % (the observed ratio), the observed data leans more toward the GPi. This
indicates that some MSN cells are selective for GPi.

MSNs generally form few synapses with GP cells (3.54+5.4 to GPe, 9.55+7.2 to GPi), which increases
the likelihood of selective MSN cells. Indeed, a small population has a high number of synapses and a
GP ratio close to 0.6 (> 40 synapses, appendix figure A24). However, most MSNs form fewer synapses,
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and some MSN cells connect only to the GPi with up to 40 synapses per cell. This again shows that
there is some level of selectivity to the GPi.

In summary, MSNs receive input from the HVC and LMAN and connect to GPe and GPi cells.
This indicates the presence of direct and indirect pathways at the MSN level. Neither morphology nor
connectivity revealed distinct subpopulations for direct or indirect pathway MSNs. Since the connectivity
to the GPi is stronger than to the GPe in the entire MSN population, these results demonstrate a strong
direct pathway through Area X (see figure 3.23 h).

’Short’ indirect pathway between GPe and GPi

In mammals, the indirect pathway from GPe can take two routes: the "short" indirect pathway, in which
GPe connects directly to GPi, or the "long" indirect pathway, in which GPe connects to STN, which then
targets GPi (Shipp 2017).

First, connectivity via the "short" indirect pathway is analyzed. On average, the GPi receives three
times more synaptic area from the GPe (7.93 4 10.6pm?, n = 40 GPi cells) than the GPe receives from
the GPi (2.124+1.62pm?, n = 23 GPe cells, see figure 3.24 a-e). With similarly sized synapses (p = 0.13),
this innervation pattern results from a greater number of multisynaptic connections from the GPe to the
GP1i than vice versa (p < 0.001, see figure 3.24 e, d, appendix table A34). Thus, there is evidence for a
"short" indirect pathway.

However, in the context of general GPe and GPi connectivity, this pathway is weak. GPe cells project
only 7.5 % of their outgoing synaptic area to GPi cells, and only 0.8 % of the GPi’s synaptic input comes
from the GPe (see figure 3.24 f,g). This small GPe input could take the form of particularly effective
somatic synapses. However, only a small percentage of GPi neurons receive somatic GPe input (13/47
neurons, 28 %).

In summary, connectivity exists in the direction of the "short" indirect pathway, but it is weak. This
pathway is neither a primary output target for GPe nor a primary source of input for GPi.

With the focus on the incoming and outgoing synaptic areas of the GPe and GP1i, three other note-
worthy results emerged.

First, both GPe and GPi cells receive a significant portion of their input from HVC. The range is
from 28.7 % to 54.7 % for GPe and from 20.5 % to 46.1 % for GPi, depending on the filtering criteria
(method section 2.3.1, appendix figure A28). This makes the HVC the second-largest source of input
after the MSNs.

Second, GPi cells send the largest fraction of their outgoing synaptic area to STN cells (31.4 %),
which will be discussed further in the following section 3.4.1 and their second largest fraction to other
GPi cells (25.5 %). Other GPi neurons also constitute of 6.9 % of the incoming synaptic area to GPi
cells. This level of interconnectivity between cells of the same cell type is not observed in GPe cells.
When comparing these intra-GPi synapses to intra-GPe synapses, intra-GPi synapses are larger than
intra-GPe synapses, establish more multisynaptic connections, and have a larger summed synaptic area
per cell pair (p < 0.001, see appendix figure A25, appendix table A34). The summed synaptic area per
cell pair is also larger in GPi-GPi synapses than in GPe-GPi synapses due to the former’s higher number
of multisynaptic connections (p < 0.001, appendix table A34). These results demonstrate the importance
of a GPi-GPi network, which will be further explored in 3.4.3.

Third, GPe cells primarily target INT2 and INT3, two of the novel GABAergic interneuron types,
accounting for 67.7 % of outgoing synaptic area together. Their connectivity will be discussed in detail
later (section 3.4.2).
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Figure 3.23: Identification of the direct and indirect pathways at the level of MSNs. a Two examples
of MSNs with different spine densities on their dendrites (IDs: 662789385, 542544908). b Incoming and
outgoing connectivity to and from MSNs. cMorphological parameters, such as spine density, only weakly
correlate with the connectivity of MSNs to the GPe or GPi. MSNs that did not project to either the GPe
or the GPi were excluded (2.4 % , n = 197). d MSNs connect to the GPi through slightly larger synapses,
e, with more parallel synapses, and f, larger total synaptic area per pre-post neuronal connection. g The
GPi preference of the MSNs is plotted against the shuffled synapses. The black curve shows the mean over
100 iterations and the gray curve shows the 95 % confidence interval. h Schematic representation of the
direct pathway, with the synaptic area between the shown cell types normalized to their corresponding
incoming and outgoing synaptic areas (see figure 3.31 a, b)
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Figure 3.24: Indirect pathway at the level of pallidal cells. a Renderings of exemplary indirect pathway
neurons starting at the MSN level (MSN ID: 27161078; GPe ID: 32356701; GPi ID: 26790127). The insets
show an MSN-GPe synapse (top:12139, 10877, 3292) and a GPe-GPi synapse (bottom: 13502, 17089,
6174). b Schematic representation of the indirect pathway starting at the MSN level, showing the summed
synaptic area in relation to the synapses in the dataset (see figure 3.31 a, b). Backward connectivity is
shown in gray. c-e Comparison of the synaptic areas of individual synapses and multisynaptic connections
from GPe to GPi cells (and vice versa). f,g Incoming and outgoing synaptic connectivity of GPe and GPi
cells. The inset shows the incoming synaptic area to the GPe and GPi cells.
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’Long’ indirect and hyperdirect pathways with STN

After analyzing the "short" indirect pathway, the "long" indirect pathway is now analyzed. In this
pathway, GPe does not make direct connections with GPi cells. Instead, GPe connects with STN, which
then projects to GPi.

First, the connectivity from the GPe to the STN is analyzed. STN is the third-highest output target
of GPe (16.8 %, see figure 3.24 g, 3.25 b), but GPe is not one of STN’s major input sources (6.9 % of
incoming synaptic area). STN cells’ largest output target is GPi cells (64.9 %), which receive 9.8 % of
their incoming synaptic area from STN. This connectivity demonstrates that the "long" indirect pathway
exists in Area X.

Synaptic projections from STN to GPi cells are also part of the hyperdirect pathway, which begins
with cortical input to the STN. STN neurons receive most of their input from LMAN and HVC (37 % in
total, see figure 3.25 a, b, d). This demonstrates that the hyperdirect pathway also exists in Area X.

In summary, results show the existence of a direct, indirect, and hyperdirect pathway in Area X.

In addition to input from HVC and LMAN, STN cells receive a major fraction of their incoming
synaptic area from GPi (34.2 %). As previously mentioned, the STN is the primary output target of
the GPi (31.4 %). However, this projection from GPi to STN is not part of the classical basal ganglia
pathways.

Since STN cells project to and receive synapses from both GPe and GPi, these connections are
examined in more detail. While all GPe and GPi cells receive input from and project to STN, only 82
% of STN cells project to either the GPe, the GPi, or both (see appendix table A35). Those that do
not project to either the GPe or the GPi mainly project to INT3 and STN cells (see appendix figure
A26). Since the analysis focuses on the connectivity between "complete" cells in Area X (method section
2.3.1), and since individual dendrites that are not connected to any soma constitute a large fraction of
the dendritic pathlength in Area X (see appendix table A1), this population could be a dataset artifact.

When comparing the connections from and to STN with those from and to GPe and GPi, the connec-
tions from and to GP1i consist of larger individual synapses and more multisynaptic connections. Thus,
the summed synaptic area per cell pair for STN-GPi connections is larger than for STN-GPe connections,
and vice versa (p < 0.01, see figure 3.25, appendix table A36).

In summary, these results demonstrate that STN-GPi connectivity is stronger than STN-GPe connec-
tivity. Along with the stronger innervation of STN cells by LMAN and HVC than GPe, it demonstrates
that the hyperdirect pathway is stronger than the "short" and "long" versions of the indirect pathway.
Thus, the hyperdirect pathway is the strongest antagonist of the direct pathway in Area X in terms of
connectivity.

Reciprocal connectivity of STN with GPe and GPi

The previous paragraph analyzed the reciprocal connections of STN with GPe and GPi cells in terms of
differences in connectivity. However, these connections can also be analyzed with regard to their focus on
cell-specific recurrent loops. From a functional perspective, network dynamics may differ depending on
whether cell pairs are coupled through recurrent connections or only exist at the population level, e.g.,
when one STN projects to a few GPi cells and receives input from completely different cells.

First, it was determined whether a cell had the same cell as its strongest input and output partner.
In other words, it was determined whether the largest sum of synaptic area came from the same cell to
which the largest sum of synaptic area was projected. This binary measure is called "strongest partner
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Figure 3.25: The hyperdirect pathway with STN cells. a Reconstruction of neurons in the hyperdirect
pathway: HVC ID: 975932938, LMAN ID: 18222490, STN ID: 7626258, GPi ID: 26790127. Insets 1-
4 show asymmetric synapses and inset 5 shows symmetric synapses. Location of insets: 1: HVC to
STN synapses: 13018, 8939,7226; 2. LMAN to STN synapse: 16088, 14773, 4515; 3, 4: STN to GPi
synapses: 7889, 8920, 6373; 11284, 13200, 69875; 5. GPi to STN synapse: 14381, 9867, 6235 b Schematic
representation of the hyperdirect pathway with summed synaptic area in relation to the corresponding
incoming and outgoing synaptic area per cell type (see figure 3.31 a, b). ¢ Schematic representation of
the long indirect pathway starting at GPe with summed synaptic area in relation to the corresponding
incoming and outgoing synaptic area per cell type (see figure 3.31 a, b). a Also shows the connectivity
from GPito STN to GPe. The numbers in (b) and (c) refer to the synapses shown as insets in (a). d Cell-
type-level characterization of the incoming and outgoing synaptic areas to and from STN-like neurons.
e-g Comparison of the synaptic areas, numbers, and summed synaptic areas of the connections from and
to the SN by the GPe and GPi.
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reciprocity". For the STN-GPe connections, this exists in 18.6 % of STN neurons and 18.5 % of GPe
neurons. For STN-GPi connections, this exists in 14.1 % and 19.1 %, respectively (see figure 3.26 a, b,
appendix table A37).

Second, the overlap of the synaptic area from the same cell bodies on the input and output sides was
determined. The fraction of synaptic area from cellids to which the cell also projects was calculated as
a fraction of the total synaptic area (method section 2.3.5). For STN-GPi connections, the majority of
cells have a large overlap (median: STN in 90.5 %; out 62.2 %; GPi in 75 %, out 77.9 %, see figure 3.26
¢, d). In STN-GPe connections, over a quarter of STN cells have little overlap (see figure 3.26 €). In
contrast, GPe cells have a higher overlap (in 81.8 %; out 49.4 %, see figure 3.26 f).

In summary, local feedback is partially conveyed via recurrent connections of individual cells in both
STN-GPe and STN-GPi connections.

3.4.2 Interneuron connectivity

In addition to the cell types involved in basal ganglia pathways, five interneuron types were identified
in the data. These include three novel GABAergic interneurons that morphologically resemble the "FS"
type (INT1-3, section 3.1.2), as well as GABAergic LTS and cholinergic TAN.

Novel FS-like Interneurons

INT1, INT2, and INT3 were initially identified by their "FS"-like morphology, but they could be further
classified into three distinct cell types (section 3.1.2). To test whether their morphological differences are
accompanied by differences in connectivity, their incoming and outgoing synaptic areas were analyzed.

The three cell types differ in their incoming connectivity. INT1 cells receive the highest input fractions
from LMAN (25.4 %) and other INT1 cells (22.8 %), while INT2 cells receive the highest input fraction
from HVC (31.9 %), followed by GPe (23.0 %). INT3 cells receive the majority of input from HVC (59.4
%; see figure 3.27). INT2 and INT3 are also the primary output targets of GPe at 40.8 % and 26.9 %,
respectively (section 3.4.1, see figure 3.24 g). The high fractional input numbers for INT2 and the high
fractional output from GPe show the relative influence of this connection on both sides.

There are also differences in their output targets. While INT1 primarily targets the GPe and GPi
(29.2 % and 41.2 %, respectively), INT2 and INT3 predominantly project to the MSN (92 % and 93.7 %
respectively; see figure 3.27).

These results demonstrate that the three FS-like interneuron types differ in both morphology and
connectivity. Their connectivity profiles suggest strong interactions with neurons from the basal ganglia
pathways: GPe, GPi, and MSN.

LTS neurons

LTS neurons exhibit long, sparse arborization of dendrites and axons (Farries et al. 2002, 3.28 a, b, see
table 2.6). They receive the highest input fraction (29.6 %) from the GPi and project mostly to MSN
neurons (68.1 %, see figure 3.28 c).

Thus, the LTS connectivity differs from any of the cell types previously described and could demon-
strate a GPi-LTS-MSN feedback loop.
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results are also summarized in appendix table A37.
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Figure 3.27: Connectomic analysis of GABAergic interneurons INT1-3. Renderings of three example cells:
INT1 (ID: 1080627023), INT2 (ID: 126798179), and INT3 (ID: 24397945). The incoming and outgoing
synaptic areas for INT1 (a), INT2 (b), and INT3 (c).
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dendrites of the LTS cell. ¢ Incoming and outgoing synaptic areas of LTS cells.
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Cholinergic interneurons

Cholinergic interneurons (TANs) are described as having large somata and sparsely spiny dendrites (Far-
ries et al. 2002; see table 2.6), but this dataset shows that they have spines and spiny somata (see figure
3.15, 3.29 a, b).

They receive synaptic input almost exclusively from MSN (46.3 %) and HVC (36.8%), and they almost
exclusively target MSN (96.2 %; see figure 3.29 c). Due to their large size, only eight TANs fulfilled the
filtering criteria and were included in the dataset, which could partially explain the focused connectivity
profile.

The connectivity with MSN as the strongest input and output could potentially be facilitated by
recurrent connections at the level of individual cells, similar to STN-GPe or STN-GPi. To test this
theory, strongest partner reciprocity and overlap of the same cell IDs on the input and output sides were
calculates (method section 2.3.5). While all eight TAN cells receive input from MSN and project to
MSN;, only 29 MSN cells (< 0.5% ) project to TAN cells and receive input from them (see appendix table
A37). Even with this small subset of MSN cells, only 27.6 % of MSN cells and no TAN cells showed the
strongest partner reciprocity.

When analyzing the overlap of synaptic areas between the same incoming and outgoing cells, MSN
cells have little synaptic overlap. About a fifth of these MSN cells seem to synapse exclusively with
one TAN cell and receive synapses exclusively from that same TAN cell (see figure 3.29 e). For TANS,
synaptic area overlap is generally very small, especially compared to the total synaptic area of output (up
to 0.02 %, see figure 3.29 f). This is because TANs receive input from many more MSN cells (median:
236.5) than they project to (median: 18.5, see appendix table A37).

In conclusion, TANs receive input from a large number of MSN cells, which converge onto a smaller
number of different cells. This distributes synapses among the MSN population rather than forming
recurrent loops.

Basal ganglia pathways overview

Overall, the results show that the dataset contains nine morphologically distinct neuronal cell types
that differ in connectivity. Analysis shows that the three basal ganglia pathways—the direct, indirect,
and hyperdirect pathways—exist. When comparing synaptic areas, the strongest pathway is the direct
pathway, followed by the indirect and hyperdirect pathways. The indirect pathway has little synaptic
connectivity (see figure 3.30 a).

The three newly discovered FS-like GABAergic interneuron types are innervated differently from
LMAN and HVC, and they interact with different cell types from basal ganglia pathways (see figure
3.30 b). These differences demonstrate three distinct connectivity patterns for each cell type. INT1
cells receive the largest fraction of their input from LMAN. They project to the GPe and GPi, forming
a connectivity pattern that resembles potential feed-forward inhibition from LMAN. INT2 cells receive
input mainly from HVC and GPe, and project to MSN. The MSN-GPe projection gives rise to an MSN-
GPe-INT2 feedback loop. INT3 cells receive most of their synaptic input from HVC and project mainly
to MSN. This resembles a feedforward inhibition from HVC onto MSNs.

The dataset’s resolution allows not only the analysis of connectivity between cells and cell types, but
also their target selectivity. MSNs have the highest number of dendritic spines and are the only cell type
that receives a majority of input from one of their inputs, HVC, onto spine heads (see appendix figure
A27 a). This is similar to previous observations of connectivity to MSNs (Kornfeld et al. 2020). However,
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Figure 3.29: Connectivity of TAN cells. a Rendering of a TAN cell (ID: 10157981). b Spiny soma and
dendrite of the TAN example cell. ¢ Incoming and outgoing synaptic areas of TAN cells. d Binary
specificity of TAN and MSN cells (largest synaptic input and output from the same cell). Note that only
29 out of 8,093 MSN cells (< 0.5 %) project to TANs and receive input from them, whereas all eight
TANs do so. e, f The fraction of the synaptic area from cells that act as both inputs and outputs is
calculated in comparison to the total summed synaptic area for all cells that are potential targets for
recurrent connections, either incoming or outgoing. The results are also summarized in appendix table
A37.
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most of the input in Area X goes to the synaptic shaft of cells (see appendix figure A27).

For some cell types, larger fractions of their inputs go to different compartments. For example, the
STN receives 15 % of its GPi input on the soma and a similar fraction from the LMAN and HVC on
their spine heads (median 15 and 13 % respectively, see figure 3.30 c, see appendix figure A27 d). GPe
and GPi generally direct a portion of their input to the soma of their target cells, but for INT2, 16 % of
GPe input goes to spine heads—a similar amount to LMAN input, but higher than HVC input (median:
17 and 9 % , respectively, see figure 3.30 d, appendix figure A27 h).

In summary, this shows that different cell types have different connectivity profiles and are selective
to the compartment to which they project.

The connectivity described above can be visualized using connectivity matrices of the different cell
types. Depending on the normalization, different aspects can be highlighted. Normalizing to outgoing
or incoming cell types shows the main output targets and input sources (see figure 3.31 a, b), while
normalizing across the entire dataset shows the major pathways of connectivity (see figure 3.31 c).

Normalization across the dataset is helpful when the flow of information through the entire dataset is
more interesting than the characteristic connectivity of individual cell types. Here, input to MSN from
LMAN, HVC, and INT3, as well as output from MSN to GPi, are visible. This again demonstrates that
the direct pathway is the strongest pathway through the dataset in terms of synaptic area.

The strong direct pathway and the structures of the classical basal ganglia pathways, feedback loops,
and feedforward inhibitions remain the same when including all cells in GPe, GPi, LTS, TAN, and STN
without manually reviewing cells for mergers or completeness. This remains also true when different
thresholds are applied to filter projecting axon fragments in regard to their path length (see appendix
figure A28). The filter criteria mainly influence the fraction of synaptic area from projecting axons relative
to cell types within Area X. Since there are more, longer LMAN axons in the dataset (see figure 3.7),
applying different filtering criteria affects the incoming normalized matrix in respect to the influence of
HVC vs LMAN connectivity.

Additionally, these matrices show that, although cell types have distinct connectivity profiles, some
cell types (DA, TAN, and LTS) have limited influence on all other cell types based on their overall
synaptic connectivity (see figure 3.31, see appendix figure A28).

In summary, to get full connectivity profiles of the cells and depict the complexity of connectivity
in Area X, several connectivity matrices are necessary. Although normalization to fractional incoming
synaptic area is susceptible to the filtering criteria of projecting axons, the connectivity motifs remain
consistent independent of the applied thresholds regarding skeleton path length.

3.4.3 LMAN - MSN - GPi - DLM Loop

The aforementioned analysis of basal ganglia pathways revealed that the direct pathway via HVC/LMAN-
MSN-GPi connections is the strongest in terms of synaptic connectivity. In songbirds, it is hypothesized
that song learning occurs in motor channels, each of which is responsible for different muscles (introduction
section 1.3.2, Fee et al. 2011). The following sections analyze the direct pathway with respect to these
channels, focusing on LMAN-MSN-GPi connectivity within the context of topographical loops, GPi-GPi
connectivity, and GPi autapses.
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Figure 3.30: Overview of Pathways in Area X. a Schematic of the direct, indirect, and hyperdirect basal
ganglia pathways identified in Area X. Arrow thickness is scaled to reflect the percentage of input to GPi.
b Schematic overview of inputs to INT1-3 and their major outputs. ¢ Compartment-specific connectivity
to INT2. Numbers show the median percentage of the compartment for the connection between two
cell types. For example, 80 % of the LMAN-INT2 synapses are on the INT2 shaft. d Summary of
compartment-specific connectivity for connections to the STN, similar to (c¢). Detailed results of (c) and
(d) are shown in appendix figure A27.
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Figure 3.31: Connectivity matrices with different normalizations. a Cell-type level connectivity matrices
are normalized by outgoing synaptic area (rows). The schematic shows an MSN making synapses onto
two different dendrites. b Cell-type level connectivity matrices normalized to incoming synaptic area
(columns). The schematic shows an MSN dendrite receiving input from two different axons. e Cell-type
connectivity normalized to the synaptic area of the entire dataset.
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LMAN - MSN - GPi specificity

In songbirds, the connectivity from LMAN, Area X, and DLM forms a microscopically closed topographic
loop which biases learning. Different topographies correspond to associations with different muscles or
subdomains of them (Luo et al. 2001, see figure 3.32 a). With eight muscles in the syrinx (Adam et al.
2021), that are learned in Area X ((Fee et al. 2011), the j0251 dataset is likely too small to depict the
connectivity of different muscle domains. However, there are different hypotheses regarding connectivity
within one topographical domain.

Within a topographical domain, the elements of the loop can be connected in a "focused" or "unfo-
cused" manner. With "focused" connectivity, different LMAN cells project only to MSNs that project
to one GPi neuron, allowing direct information flow over the entire topographical loop (see figure 3.32
b, left). In an "unfocused" loop, LMAN cells indirectly target several GPi neurons in their surrounding
area, distributing the information more widely while maintaining the closed loop (see figure 3.32 b, right).

To test whether the loop in Area X is "focused" or "unfocused," the number of GPi cells indrectly
innervated by one LMAN axon via MSN connectivity is analyzed. In a "focused" loop, one LMAN should
target only a small number of GPi cells in the dataset. To address this question, a subset of large (> 5
mm) LMAN axons that were manually reviewed and entered the dataset myelinated and branched out
inside the dataset, were used for analysis (method section 2.3.5). This was done to include only large
axons that likely originate from different cells within LMAN.

A median LMAN axon targets a large number of MSNs (235), while a median MSN cell receives input
from only two of these large LMAN axons (see figure 3.32 d). A median MSN cell connects to only four
different GPis, but a median GPi cell receives input from 396 different MSNs. Thus, a median LMAN
cell connects to 42 GPis via MSN, and each GPi receives input from 40 different LMAN cells via MSN.
All LMAN cells project to at least 25 GPi cells indirectly, and all GPi cells receive indirect input from
at least 20 large LMAN axons (see figure 3.33 a, b).

In conclusion, LMAN axons project to a large fraction of GPi cells, thereby rejecting the hypothesis
of a strictly "focused" loop.

While the loop is not strictly "focused" in terms of individual cells, each LMAN axon may favor a
few GPi cells by projecting to MSNs that primarily target those cells. In this case, a large fraction of the
targeted MSNs should project to the same GPi cell. However, in contrast to this hypothesis, the largest
MSN group that projects to the same GPi cell makes only up to 16 % of the synaptic area from one
LMAN axon (see figure 3.33 c). Similarly, most GPi cells have up to 15 % of their MSNs innervated by
the same LMAN axon. Thus, the loop is "unfocused" at the cellular level.

To determine whether one GPi is favored in terms of synaptic area, the fraction of synaptic area that
one GPi receives indirectly from one LMAN axon via MSN is analyzed. The five GPi cells with the
largest indirect synaptic area receive 5-15 % from most LMAN cells (see figure 3.33 e). This shows that
the loop is also "unfocused" in terms of synaptic area.

In summary, information from LMAN is transferred to the GPi cells via MSN cells in "unfocused"
topographical loops. This means that each LMAN cell targets most of the GPi cells in the dataset.

GPi - GPi inhibition

The GPi, the output cell type of Area X, receives a large number of converging inputs. The outputs
of GPi cells are influenced not only by inputs from other cell types, but also by interactions within the
population.

114



3.4. Connectomic analyses of Area X

muscles
LMAN

1,2 1.40
n=46 3

394 um MSN

n=5135

2351 1,396

a HVC b LMAN
RA X /
.- - = MSN
LMAN /] \
vy Vv
,, syrinx DL GPi

ST GPi 41 421
7

n =47

256 ym
256 um

Figure 3.32: LMAN - MSN - GPi connectivity. a Model of topographical loops between LMAN, Area
X, and DLM, as well as topographical connectivity of LMAN to RA, according to Luo et al. 2001. b
Potential hypothesis regarding connectivity within Area X within closed topographical loops: a "focused"
or "unfocused" loop. ¢ Examples of the manually selected LM ANSs used for the analysis are displayed with
the dataset boundaries (LMAN IDs: turquoise: 436157555; left gray: 96194764; right gray: 18222490).
d Median cell numbers of connectivity between LMAN, MSN, and GPi cells. For example, one median
LMAN cell connects to 235 different MSN cells, while a median MSN cell receives input from two different
LMAN cells.

115



3.4. Connectomic analyses of Area X

Y ) o
a LMAN @] ® GPi b LMAN o @ GPi
" 16 —
® 17.5
3 4 % 15.0
= 12 [} :
b 10 T 125
= O 100
ks S 75
5 6 5 7
2 4 g 50
E 2 3 25 —
C T T T T T T T T T T T
25 30 35 40 45 20 25 30 35 40 45
number of GPi cells number of LMAN cells
C d
2 175 » 16
[0] =
O 15.0 o] 14
= (&]
< 125 @ 12
= 100 o 10
S5 75 ° 8
o) 3 6
2 50 2
E 25 5 4
> C
S 00 —— 2
"~0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.05 0.10 0.15 0.20 0.25
% of MSN to same GPi % of MSN from same LMAN
e
§ 035{ o
= Qo
T 0.30
) .
Qa 0.25
g o
> 0.201 ° °
w
G 0.15 °
2 . Q e
5 =
8 oos —
1 2 3 4 5

ranking of GPi cells
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Figure 3.34: GPi - GPi inhibition via soma "claws". a Compartment-specific connectivity between GPi
neurons (see appendix figure A27 ¢). b GPi 1 (turquoise, ID: 453097983) inhibits GPi 2 (gray, ID:
11675355) via several soma synapses.

With 25.5 % of outgoing synaptic area, the GP1i is the second-highest output target for the GPi. With
6.9 % of incoming synaptic area, the GPi is the fifth-highest input source (section 3.4.1, see figure 3.24
f, g). 19.84 + 18% of these GPi-GPi synapses are located on the soma (see figure 3.34 a, appendix figure
A27 ¢). Manual reviews of GPi somata revealed that these connections are often facilitated by several
large synapses arranged around the soma in "claws" (see figure 3.34 b).

These results demonstrate the existence of interactions among GPi neurons via "claw"-like soma
synapses, which enable the GPi to strongly inhibit neighboring GPi neurons.

GPi autapses

In addition to being inhibited by other GPi cells, GPi cells may be able to influence themselves via
somatic autapses. To test this theory, all GPi cells were manually inspected for autapses to the soma
or the surrounding area (methods section 2.3.5). Twenty out of 47 GP1i cells (40.5 %) make at least one
autapse (see figure 3.35 a, appendix table A18).

Upon manually reviewing all GPe, LTS, TAN, STN, INT1, INT2, and INT3 cells, as well as a subset
of MSN cells, the results revealed that, while most cell types exhibited few, if any, autapses, 30.8 % of
GPe cells and 54.0 % of INT3 cells contained autapses (see appendix table A18). Thus, GPi is one of
three cell types in Area X in which at least one-third of the cells contain autapses.

To determine whether there are differences between GPi cells with and without autapses, several
morphological parameters, including axonal mitochondria and vesicle density and connectivity, were
analyzed. There were no differences in morphology or connectivity between GPi cells with and without
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autapses (see figure 3.35 b-f, appendix figure A29). Similar analyses of GPe cells revealed no differences
in morphology or connectivity, except for slightly higher axonal and dendritic surface areas with autapses
(p-values = 0.033, 0.049, see figure A30).

In conclusion, 40.5 % GPi of GP1i cells can self-regulate via autapses. There was no difference in
morphology or connectivity between cells with and without autapses.

3.5 Synaptic and non-synaptic vesicles

This thesis further inspects individual vesicles with two goals. The first is to investigate whether there
is a correlation between the number of presynaptic vesicles and the synaptic area (section 3.5.1). The
second goal is to determine if traces of volume transmission, e.g., in the presence of non-synaptic vesicles,
exist in the dataset (section 3.5.3).

To analyze volume transmission, first, the presence of vesicles outside of clear synaptic loci is verified,
then, their surroundings are analyzed.

3.5.1 Synapse size and number of presynaptic vesicles

Vesicle density is related to the firing rate reported for different cell types, and it has also been related
to synaptic area (Harris et al. 1989). Examples of synapses of different sizes can be seen in HVC (see
figure 3.36 a) and GPi (see figure 3.36 b,c ). Figure 3.36 b shows the GPi synapse with the largest
number of vesicles, which is a 0.21 pm? large, round synapse with 1,248 vesicles within 500 nm of the
synapse. Figure 3.36 ¢ shows the largest outgoing GPi synapse (3.4 pm?) with 421 vesicles within 500
nm of the synapse. Another small synapse is indicated by a white asterisk at the bottom of the bouton.
Compared to HVC synapses, these extreme GPi examples show that large, vesicle-filled boutons can make
associating vesicles with synapses difficult in these data.

To determine whether there is a correlation between the number of vesicles and synapse size, the
number of vesicles within 1 pm of the synapse is counted. When all synapses are pooled together, no
correlation is observed between synaptic size and vesicle number (see figure 3.36 b, r-squared = 0.03,
p-value < 0.005, appendix table A38). However, when the correlation is analyzed separately for each
cell type, the correlation values are higher. The highest correlation is found in INT1 (see figure 3.36 e,
r-squared = 0.45, all p < 0.005, appendix table A38).

For membrane-close vesicles (within 10 nm distance from the closest membrane, method section 2.3.6),
correlations are generally lower (all synapses: r-squared = 0.003, p-value < 0.005, appendix table A39).
However, there are also cell-type-specific differences (see figure 3.36 g-i, appendix table A39). The highest
correlation is found in HVC (r-squared = 0.35, p < 0.005).

Since it is unclear in all cases how to assign vesicles to a synapse and there is no clear distance threshold,
the analysis was also performed with vesicles within a distance of 0.5 to 2 pm from the synapse. This
yielded similar results, with slightly higher correlation coefficients for all vesicles within 0.5 pm. INT1
had the highest correlation coefficient (r-squared = 0.59, p < 0.005, see appendix figure A32).

Some cell types, such as GPi and INT3, have large, vesicle-filled boutons with multiple synapses,
which can partially explain the lower correlations. However, high synapse or vesicle density leading to
short distances between synapses (see figure 3.16, 3.18, appendix table A40) does not necessarily lead to
worse correlations, as GPe is also among the cell types with higher correlations. Conversely, cell types
such as LTS, which have low synapse and vesicle densities, do not have higher correlations. Therefore,
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Figure 3.35: Comparison of GPi cells with and without autapses. a GPi example cell with an autapse
(ID: 83542452). The loop from the axon to the autapse is highlighted in yellow in the first inset. Raw
data coordinates of the autapse: 8901, 24810, 5485. b Synaptic area of the axon in relation to the axon’s
surface area. ¢ Axon mitochondrial volume in relation to the axon’s path length. ¢ Number of axonal
vesicles in relation to the axon’s path length. e, f Incoming and outgoing connectivity of GPi cells with
and without autapses.
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the effects leading to cell type differences seem to be more related to the properties of specific cell types.
In summary, there are cell-type-specific differences in the correlation between synaptic size and synap-
tic vesicles. Some cell types show moderate correlations, but no global trend emerges across all synapses.

3.5.2 Membrane-close vesicles

Neurotransmitter-containing vesicles are found not only in proximity to synapses, but also along the axon
in cases of volume transmission (see figure 3.37 a). Volume transmission has been reported for some cell
types in the mammalian basal ganglia, such as DA and TAN (Abudukeyoumu et al. 2019, Arbuthnott
et al. 2007).

To test whether these cell types could signal via volume transmission in Area X, the presence of
non-synaptic vesicles close to the membrane was first verified. All vesicles within 10 nm of the membrane
and at least 3 pm from the next synapse were analyzed as non-synaptic and membrane-close (method
section 2.3.6). These were then compared to synaptic vesicles within 500 nm of a synapse.

The results show that non-synaptic, close-membrane vesicles exist and they account for a significant
proportion of vesicles in DA and TAN cells (see figure 3.37 ¢). Their density is higher than that of
synaptic vesicles in these cell types, which was not the case for the other cell types (see figure 3.37 d,
appendix table A41). In LTS cells, the fraction of synaptic and non-synaptic vesicles was similar. In cell
types with large boutons, such as the GPi, the density of non-synaptic vesicles is high, though still lower
than the density of synaptic vesicles (see figure 3.37 b, d).

Control analyses with different thresholds for non-synaptic vesicles produced similar results. GPi
non-synaptic density was higher than its synaptic density when the threshold was lowered to 1 pm.

In summary, membrane-close vesicles are found in non-synaptic locations, especially those in DA and
TAN axons. Therefore, the results are consistent with DA and TAN signaling via volume transmission,
which will be analyzed further in the next sections.

3.5.3 TAN and DA non-synaptic vesicles

Volume transmission from DA and TAN axons can reach receptors located several micrometers away,
allowing for a more widespread signal (Beyene et al. 2019, Ozgete et al. 2024). The dataset includes 4,767
DA axon fragments and eight TAN cells for analysis (see table 3.6). Since TAN cells have large axonal
arborizations, their axons still span the entire dataset (see figure 3.38 a). Taken together, this means
that TAN and DA vesicles in the selected axons are spread across the dataset.

Although the EM dataset lacks information on potential release sites for volume transmission, it is
possible to analyze the spatial surroundings of non-synaptic vesicles. The following sections analyze
the surrounding cell types, synapses, and synapse sizes to test for potential correlations within a 2 pm
distance of the vesicles. As in previous analyses, vesicles within 3 pm of the closest synapse are considered
non-synaptic, and those within 10 nm of the closest membrane are considered membrane-close (method
section 2.3.6).

In TAN cells, 22,431 out of 607,344 vesicles are membrane-close (3.69 %), and 20,776 of those are
non-synaptic (92.62 %). In DA cells, 2,481,905 out of 73,022,373 vesicles are membrane-close (3.40 %),
and 1,896,142 are membrane-close non-synaptic (76.40 %).
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Figure 3.36: Relationship between presynaptic vesicle number and synaptic area. a Image of an example
HVC axon (ID: 820388630; Location: 14641, 9127, 9375). Close-membrane vesicles are shown in white
and other vesicles are shown in black. The vesicles were rendered with a radius of 20 nm. b GPi synapse
with the highest number of vesicles (cell ID: 26252706; location: 6485, 6222, 6410). The arrow indicates
the location of the hidden round synapse beyond the vesicles. The synapse size is 0.21 pm? large and
contains 1,283 vesicles within 500 nm of the synapse. ¢ The largest GPi synapse (cell ID: 33643243,;
location: 9363, 17419, 170) is 3.4 pm? large, has 421 vesicles within 500 nm, and is indicated by an
arrow. Another, smaller synapse is located on the opposite side of the bouton and is indicated by a white
asterisk. d Synaptic area and number of vesicles within 1 pm of all synapses. e Synaptic area and number
of vesicles within 1 pm of all HVC synapses. f Spearman correlation coefficient for the correlation between
synaptic area and number of vesicles in different cell types. g-i Same as d-f, but only membrane-close
vesicles.
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Figure 3.37: Synaptic and non-synaptic membrane-close vesicles. a TAN vesicles outside of a synapse,
as indicated by the arrow (cell ID: 10157981; location: 20696, 20265, 4927). Next to the TAN axon is
a synapse from an HVC axon fragment to the spine head of an MSN cell (white asterisks indicate the
presynaptic axon). Membrane-close vesicles are shown in white and others in black. All vesicles were
rendered with a 20-nm radius. The tip of the TAN axon is in the center of another axon labeled in
rose in the raw data. b A GPi bouton with multiple vesicles (cell ID: 26790127, location: 16968, 9981,
6964). The synapse shown in the raw data is indicated by a black arrow. c Fraction of non-synaptic
membrane-close vesicles in different cell types. Vesicles were non-synaptic if they were located more than
3 pm away from the synapse and synaptic if they were located within 500 nm of the synapse. d Median
vesicle density non-synaptic and synaptic. Median vesicle density in non-synaptic and synaptic regions.
For full density distributions, see appendix figure A32 a, b.
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Modulatory vesicles in proximity to different cell types

Since different cell types have different neurotransmitter receptors, those with cholinergic (ACh) and
dopaminergic receptors may be found in closer proximity to TAN and DA non-synaptic vesicles. To test
for spatial correlation, the surface area of different cell types in proximity to non-synaptic, membrane-close
TAN and DA vesicles is analyzed 3.38 b.

Large cell types, such as GPi and INT3, have a higher surface area per cell in proximity to TAN
vesicles (see figure 3.38 c). However, MSN, the most prevalent cell type in Area X, has the highest
surface area in proximity to TAN vesicles among all cell types (see figure 3.38 d). When normalized to
the total surface area per cell and cell type (see appendix figure A33 a), all cell types occur in a similarly
low range in proximity to TAN vesicles, with GPi slightly underrepresented (see figure 3.38 e, f).

For DA, the results are similar in that there is little difference between the cell types. However,
generally, a larger fraction (> 40 %) of cells are within 2 pm of DA than of TAN vesicles (see figure
3.38 g-i, appendix figure A33 b). The results are similar when looking at the surface areas of cells at 1
pm or 5 pm distances. GPi is more strongly underrepresented at 1 pm than at 2 or 5 pm (see appendix
figure A33 c-f). The selected DA fragments span a much tighter network across the dataset since almost
the entire surface area of all cells lies within 5 pm of the DA membrane-close, non-synaptic vesicles (see
appendix figure A33 f). In comparison, only 6-7 % of the surface area of the other cell types lies within
5 pm of the TAN membrane-close non-synaptic vesicles

In summary, there is no spatial correlation between TAN and DA non-synaptic membrane-close vesicles
and a specific cell type. GPi cells are slightly underrepresented in close proximity to the vesicles. DA
axons form a dense network throughout the dataset, with all cells lying within 5 pm of a DA membrane-
close non-synaptic vesicle. Since most predicted fragments are shorter than the selected fragments (>
200 pm, see figure 3.7 e), this number is probably an underestimation of the distances.

Modulatory vesicles in proximity to different synapses

As in the previous analysis, the spatial correlations of synapses in proximity to membrane-close non-
synaptic TAN and DA vesicles is examined. If there were a correlation, these vesicles would be closer to
the synapse between the two specific cell types (see figure 3.39 a). To visualize the results, a connectivity
matrix was prepared with synaptic areas within a 2 pm distance of the vesicles, similar to the general
connectivity in the dataset (see figure 3.31).

In proximity to TAN vesicles, the synaptic areas are highest for HVC-MSN synapses, which generally
have the largest synaptic area in the dataset (see figure 3.38 b, 3.31 ¢). When the synaptic area close to
the vesicles is normalized to the synaptic area in the dataset, all connections fall within a similar range
of 0 to 2.5 %. Some connections with very few synapses are slightly overrepresented, e.g., GPi-TAN.

Similar results were found for DA: synaptic areas close to the vesicles generally reflect synapse size
distribution. Variations involving lower or higher synaptic areas generally involve connections with smaller
synapses, e.g., INT3-LTS (16.0 %) vs. INT3-INT (59.6 %)

As for cell surface areas, a much larger fraction of synapses are generally close to DA vesicles. For
example, 37.6 % of all synapses are within 2 ym, and 93.4 % are within 5 pm. In contrast, for TAN, only
0.7 % and 5.8% , respectively, are within these distances (see appendix table A42). Similar results were
found for distances of 1 and 5 pm to vesicles, indicating no preference for specific synapses (see appendix
figure A34).

In conclusion, the distribution of synapses around the TAN and DA membrane-close, non-synaptic
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Figure 3.38: TAN and DA non-synaptic, membrane-close vesicles in proximity to cells of different cell
types. a Rendering of the eight suitable TAN cells in the dataset (cell IDs: 25372570, 26353030, 26958335,
28209513, 33605129, 45452841, 52904364, 175077676). The soma and dendrite are shown in gray and the
axons are shown in turquoise. b Schematic drawing of 1) a spatial correlation for one cell type, where
more vesicles are close to the surface of a specific cell type, and 2) no correlation. ¢ Summed surface area
within 2 pm of TAN non-synaptic, membrane-close vesicles. d (c¢), summed per cell type. e,f (d) (¢) in
relation to the cell or cell type surface areas (see appendix figure A33 a). g-i (d) (f) for non-synaptic,
close-membrane DA vesicles. The surface areas of TAN and DA were not counted when analyzing their
own vesicles
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Figure 3.39: TAN and DA non-synaptic, close-membrane vesicles in proximity to synaptic areas between
different cell types. a A schematic drawing showing a preference for synapses between two cell types,
where more vesicles are close to these synapses, or no preference. b Summed synaptic areas within 2 pm
of TAN non-synaptic membrane-close vesicles. ¢ (b) normalized with the summed synaptic area between
two cell types (see figure 3.31 ¢). d, e (b), (¢) with DA non-synaptic membrane-close vesicles.

vesicles reflects the general distribution of synaptic areas across the dataset. As with cell surface area,
most synapses are within 5 pm of membrane-close, non-synaptic DA vesicles.

Modulatory vesicles in proximity to small and large synapses associated with different basal

ganglia pathways

Previous analyses showed that the non-synaptic vesicles of DA and TAN neurons are not close to a specific
synapse or cell type. However, there could be spatial correlations between the size of specific synapses.
The hypothesis is that if the released neurotransmitters (ACh or DA) acted to enhance synapses
between two cell types, there would be more vesicles around large synapses than small ones. Conversely,
if ACh or DA were suppressive, there would be more vesicles in proximity to smaller synapses (see figure

3.40 a).
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3.5. Synaptic and non-synaptic vesicles

For this analysis, all non-synaptic vesicles were considered independent of their membrane distance.
The distance of the vesicles was calculated from the smallest and largest quantiles of the synapses (labeled
"small" and "large"), so the number of synapses would not affect the surrounding number of vesicles.
Distances were then measured up to 5 pm around the synapses, and the distributions of small versus
large synapses were compared (method section 2.3.6).

Although the number of small and large synapses per connection is the same, the number of synapses
between different cell types is not, which affects the general shape of the curves. For high synapse
numbers, there is a peak in the distribution, as seen with HVC-MSN synapses, for example (see figure
3.40 b, c).

To see how the number of vesicles and the shape of the distribution depend on the number of synapses,
an analysis was performed on randomly selected subsets of HVC-MSN synapses, and the distance to the
closest TAN vesicles was calculated. For small numbers of synapses, the number of vesicles increases up
to 5 nm distance (see appendix figure A35 a-c). For higher synapse numbers, the vesicle number approach
a peak, with the peak becoming closer to the synapse as the synapse number increases (see appendix
figure A35 d-g). The overall number of vesicles within 5 pm of the synapses also increases proportionally
to the number of synapses (see appendix table A43, appendix figure A35 h).

In summary, these results demonstrate that the number of vesicles, and consequently the shape of the
distributions, depends solely on the number of synapses.

The number of vesicles surrounding the analyzed synapses ranges from 2,444 (TAN, GPi-STN, spine
only) to over 40 million (DA, HVC, LMAN-MSN, appendix table A44). With these high sample sizes,
statistical tests generally showed low p-values and if curves are similarly shaped, also low effect sizes (see
appendix table A44, methods section 2.3.6). In this case, the similar shape of the distribution for vesicles
in proximity to small and large synapses is explained by their overall dependence of the synapse number as
explained above. However, large effects should still be measurable and apparent by a shift in the curves.
Since high sample sizes bias p-values toward lower numbers, a bootstrapping approach was selected to
more accurately determine statistical effects. Over 1,000 iterations, 1,000 samples were randomly drawn
from each distribution. Then, the Wilcoxon rank-sum test was calculated for each round, and the median
was selected to rate potential effects (method section 2.3.6). For high sample sizes, this procedure was
performed with a higher number of samples per iteration.

This analysis focuses on the major connections of the basal ganglia pathways and feedback loops
(section 3.4.2). All connections from and to MSN (i.e., parts of the direct and indirect pathways) did
not show significant differences between small and large synapses (effect sizes = 0 - 0.3, see figure 3.40
b, ¢, appendix figures A36 a- i, A37 a-j, appendix tables A44, A45 A46, A47). These results remained
consistent when combining HVC and LMAN as major glutamatergic inputs and when focusing only on
synapses onto dendritic spines.

For the few GPe-GPi connections that indicated a weak indirect pathway (see figure 3.24), TAN
vesicles were more frequent around small synapses (see figure 3.40 d, appendix table A45). This was not
observed with DA (see appendix figure A37 k, appendix table A46).

For connections of the hyperdirect pathway, there was a trend toward more TAN (p = 0.056), but
not DA vesicles around the small synapses (see figure 3.40 e, appendix figure A37 1, appendix tables A45,
A46, A47). Other hyperdirect pathway connections (LMAN-STN and STN-GP1i) did not show effects in
either TAN or DA (see appendix figures A36 j, n, A37 m, A38 b). Combining HVC and LMAN to STN
synapses weakened this effect, which disappeared when focusing only on HVC and LMAN to STN spine
synapses (see appendix figures A36 k,1, A37 n,0).

For connections from GPi to STN cells, which were one of the strongest inputs to the STN alongside
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3.6. Glial cells and migratory neurons in Area X

cortical inputs (see figure 3.25), there were also more vesicles close to small synapses for TAN (see figure
3.40 f, appendix table A45). However, there was no effect when examining spine synapses or DA vesicles
(see appendix figures A36 m, A37 p, A38 a, appendix tables A46, A4T).

Two of the new interneurons, INT2 and INT3, were major output targets of GPe cells (see section
3.4.1), so their inputs and outputs were analyzed as well. While there were no effects on synapses with
their major output target, MSN (see appendix figures A36 e-g, A37 e-g, tables A45, A46, A47), there
were different effects on the input side. For INT2, TAN vesicle numbers increased near larger synapses
from GPe but decreased directly adjacent to GPi (see figure 3.40 g,h). For INT3, there was no effect
with GPe synapses, but a strong increase in vesicle number was observed with GPi inputs (see figure
3.40 i, appendix figure A36 o). None of these effects were visible with DA vesicles (see appendix figures
A38 c-f). Note that the direction of the reported effects depends on the pre- and postsynaptic cell types.
For instance, TAN vesicles exhibit distinct effects for INT2, as well as with GPi (see figure 3.40 g, h).
Additionally, the effect with presynaptic GPi varies in connection with STN, INT2, and INT3 (see figure
3.40 f, h,i).

There were no effects with HVC inputs to either INT2 or INT3 with TAN vesicles (see appendix figure
A36 p,q). For LMAN input to INT2, a higher number of TAN vesicles were found in close proximity to
small synapses (see figure 3.40 j). A similar trend was observed for DA, but it was only significant when
bootstrapping with 10,000 samples per iteration (see figure 3.40 k, appendix table A47). There was also
an increase around small synapses for LMAN-INT3, which was the only measured effect with DA vesicles
(bootstrap n = 2000, see figure 3.40 1, A46).

In summary, although the differences between small and large synapses for TAN and DA vesicles
were minimal, some connections exhibited effects that supported both the enhancement and suppression
hypotheses, depending on the neurotransmitter and the pre- and postsynaptic cell types.

3.6 Glial cells and migratory neurons in Area X

In addition to analyzing neuronal cell types, the following sections focus on differences in organelle density
and contact area with neuronal cell types in glial cells and migratory neurons.

3.6.1 Subcellular structures in glia and migratory neurons

Mitochondria, GA, and ER were predicted in glial cells and migratory neurons. As mitochondria relate
to energy consumption, the mitochondria density is analyzed now with respect to glial cells and their
potential differences in energy consumption. Additionally, also the densities of ER and GA are analysed
for comparison.

Different glial cell types exhibit variations in shape, number, and volume. For example, astrocytes
have long mitochondria, especially in their endfeet around blood vessels. In contrast, migratory neurons
have few, small, round mitochondria (see figure 3.41).

To see if there are differences between the different glial cell types, migratory neurons and neuronal
cell types, the organelle densities of mitochondria, GA and ER were calculated. As comparison with
neurons, a neuronal cell type with low firing rates and organelle densities, the MSN and one with a high
reported firing rate and high organelle densities, the GPi, were selected (see figures 3.17, 3.19, 3.20). As
glial cell types do not have the same compartments as neurons, the densities were calculated for the whole
cell in relation to the cells volume (method section 2.3.7).
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Figure 3.40: TAN and DA non-synaptic vesicles in proximity to small and large synapses of different cell
types. a Schematic showing the hypothesis that, when TAN vesicles enhance the growth of a synapse
between two other cell types, more vesicles will be found closer to large synapses. Conversely, if they
acted suppressive, there would be more vesicles closer to the smaller synapse. b Distance of non-synaptic
TAN and DA vesicles to the smallest and largest quantiles ("small" and "large," respectively) of synapses
between different cell types. The number of synapses and vesicles, as well as the relevant statistics, are
shown in the appendix tables: A44, A45, A46, A47.
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20 ym

astrocyte

migratory neuron

Figure 3.41: An example astrocyte (ID: 2069615083) and a migratory neuron (ID: 1644151292), as well
as their respective mitochondria. The location of the mitochondria in the insets is shown in blue. The
coordinates of the insets: 7811, 8655, 10721 (astrocyte), 4390, 3567, 9168 (migratory neuron).
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3.6. Glial cells and migratory neurons in Area X

First, the density of mitochondria was analyzed. Previous results from this lab, based on a different
cell classification (Schick 2023) and different cell IDs (Schick et al. 2024, shared conference poster), showed
differences in mitochondrial density between glial cell types. The results here also show differences between
glial cell types, with astrocyte mitochondrial densities comparable to those of GPi. All other glial cells
and migratory neurons have lower densities than MSN. Oligodendrocytes, microglia, and OPCs have
similar levels of mitochondrial density that do not differ significantly from each other (see figure 3.42 b,
appendix table A48).

Second, GA densities were compared among cell types. GA densities differed significantly between
glial cell types and migratory neurons, but not between the two neuronal cell types (see figure 3.42 c,
appendix table A48). Oligodendrocytes had the highest densities and migratory neurons had the lowest.
Note that, due to their short processes, the soma of oligodendrocytes is overrepresented in the cell’s
volume.

Third, the ER densities were analyzed. While the ER density of all cell types appeared dense visually,
analysis showed significant differences among the cell types (see figure 3.42 d). MSN cells had the highest
levels of ER volume density, followed by oligodendrocytes and OPCs, which did not differ significantly
(see appendix table A48). Microglia followed, and they did not differ significantly from oligodendrocytes.
Migratory neurons exhibit the lowest ER densities. As mentioned before, there are differences in the ER
densities of different compartments and depending on the parameter for normalization (section 3.3.2), the
high ER volume density of MSNs and the lower density of GPi differ from the ER surface area densities
calculated in relation to the corresponding compartment path length. However, these results are similar
to the ER area densities calculated in relation to the dendritic surface area (see figure 3.20, appendix
figure A19).

In summary, different glial cell types and migratory neurons have different levels of mitochondrial,
GA, and ER volume density. Compared to both glial and neuronal cell types, migratory neurons showed
the lowest density across all organelles. Glial cell types did not consistently have higher or lower densities
than neuronal cell types; results varied among organelles. For example, astrocytes had comparable
mitochondrial densities to GP1i, but lower GA densities.

3.6.2 Contact site analysis of glial cells

Glial cells can interact with each other and neuronal cell types via gap junctions, the release of glio-
transmitters, or synapses (Buchanan et al. 2022, Durkee et al. 2019, Elbaz et al. 2019, Peng et al. 2023,
Umpierre et al. 2021). Since synapses and vesicles were specifically trained and evaluated for neurons,
for glial cells, their contact sites are analyzed to examine potential interactions (method section 2.3.7).
Delta Schick performed this analysis under my supervision as part of a shared conference poster (Schick
et al. 2024) and a previous version was included in his master’s thesis (Schick 2023, supervised by me).

To analyze preferences independently of the frequency and size of specific cell types, the contact site
ratio was calculated. This ratio is the sum of the contact site mesh areas divided by the sum of the
surface area for a given cell type (method section 2.3.7, figure 3.43 a).

First, contacts with neuronal cell types were analyzed. In general, different glial cells have different
contact site ratios across cell types. Astrocytes have the highest contact ratios, followed by microglia,
OPCs, and oligodendrocytes (see figure 3.43 b). Additionally, there are differences among neuronal cell
types. For example, MSN cells have high contact areas with all glial types, while LTS cells have high
contact areas with astrocytes, microglia, and OPCs.

Second, the contact areas between glial types were analyzed. While microglia and OPC have the
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Figure 3.42: Organelle densities of glial cell types and migratory neurons. a Examples of cells from each
cell type: once as a mesh and then different organelles only, such as mitochondria (mito), GA, and ER.
All scale bars show 20 pm. The organelles and surface mesh of the same cell are on the same scale.
Example cell IDs (left to right): 2069615083, 1190822162, 1143990345, 2017622103, and 1644151292. b
Mitochondria volume densities in glial cells, migratory neurons, MSN, and GPi. ¢ GA volume densities
in glial cells, migratory neurons, MSN, and GPi. d ER volume densities in glial cells, migratory neurons,
MSN, and GPi. Volume densities were calculated as the summed volume of the organelle in relation to
the cell’s volume.
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3.6. Glial cells and migratory neurons in Area X

highest contact ratio with astrocytes, while oligodendrocytes have the lowest contact ratio with microglia
(see figure 3.43 c).

Third, contacts within the same glial cell type are investigated. While microglia and oligodendrocytes
have few contacts with each other, astrocytes frequently make contact with each other. Some OPCs also
have contact with other OPCs (figure 3.43 d).

Across all analyses, oligodendrocytes exhibit low contact site ratios and do not demonstrate a prefer-
ence for highly myelinated cell types, such as the GPi cells. The thin processes of oligodendrocytes are
often not segmented, and neither is the myelin, which is not considered part of either the oligodendrocyte
or the neuron. This results in contact sites of myelin wrapping around a neuron not being assigned prop-
erly (see figure 3.44). When visualized in 3D, it appears as if there is a gap between the cells; however, in
the raw data, the cell touches the axon. Note that in the raw data, membrane that is not myelinated is
also not properly assigned to the oligodendrocyte. In this example, the oligodendrocyte wraps the axon
next to the myelinated region, which could indicate a snapshot of the myelination process. Unfortunately,
this is not captured by the aforementioned analysis of contact areas.

In summary, glial cell types exhibit similar contact preferences for MSNs and LTS. Astrocytes demon-
strate the highest contact ratios among all cell types. Additionally, astrocytes make contact with other
glial cell types and with each other. Due to the incomplete mapping of myelin and the segmentation of
oligodendrocytes in the SyConn processing pipeline, their contact sites are generally underestimated.
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Figure 3.43: Contact sites of glial and neuronal cell types. An example of an MSN cell (ID: 1469986452)
and an astrocyte (ID: 2069615083) with different contact sites. a Electron microscopy image with cells
indicated by Delta Schick. b Schematic of MSN-astrocyte contacts. ¢ Contact site ratio for glial cells
with other glial cells. ¢ Contact site ratio for glial cells with other glial cells. d Contact site ratio with
other cells from the same cell type. c-e Y-axis is displayed in log scale.
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I GPi
I myelinated
axon

Figure 3.44: An oligodendrocyte wraps one of its processes around the axon of a GPi neuron. The
myelinated part of the axon is shown in black. Since myelin is not segmented, the oligodendrocyte and
the GPi are not in direct contact in the 3D rendering. The oligodendrocyte ID: 700174676, GPi ID:
63431281. Coordinates of the inset: 9841, 25211, 3117.
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Discussion

4.1 EM raw data quality and artefacts

The dataset discussed in this thesis, j0251, was acquired using serial block-face electron microscopy
(SBEM, Kornfeld 2017) and includes neurons, glial cells, their subcellular structures, blood vessels, and
an estimated 9.6 % extracellular space (ECS).

In the native brain, the ECS content is around 15 % which can be measured with cryo-fixation (Ko-
rogod et al. 2015). To stain and image samples over 200 nm thickness in EM, cryo-fixation is insufficient
and samples are commonly fixed with aldehydes (Korogod et al. 2015, Studer et al. 1995). During alde-
hyde fixation, ions from the ECS enter the cellular compartments, causing the ECS to shrink and the
compartments to swell, a process similar to oxygen deprivation (Harreveld et al. 1967, Harreveld et al.
1967, Harreveld et al. 1968). Increasing the pressure during perfusion or the osmolality of the fixative
buffer during immersion fixation (Cragg 1980, Pallotto et al. 2015) can counteract this effect in small
samples and was used to prepare this dataset. With 9.5 %, the current dataset has a higher ECS than
without these measures (2.5 %, Korogod et al. 2015) but it does not reach the level of the native brain.
Although the goal is to preserve the native brain as much as possible, only 6 % of the ECS is sufficient
to improve automated segmentation (Pallotto et al. 2015).

Among the aforementioned approaches, only the unbuffered sucrose solution was able to preserve the
ECS and its contents in larger (2.5 mm) zebra finch samples. This approach had previously only been
used on mouse retina samples (Pallotto et al. 2015). A recent approach involving a mannitol gradient
during perfusion enabled ECS preservation in the entire mouse brain (Lu et al. 2023). Together with
other protocols that allow for whole-brain staining in mammals (Lu et al. 2023, Mikula et al. 2015, Song
et al. 2023), this could be a promising approach to stain larger samples in songbirds as well.

In both the current dataset and larger samples, artifacts remained, showing damaged tissue around the
blood vessels. These artifacts have also been reported during whole-brain staining (Song et al. 2023) and
may be more common as most staining papers do not discuss blood vessels. Light microscopy experiments
have shown that these artifacts appear during fixation. These artifacts did not appear in the current
experiments or published datasets with low or no ECS (The MICrONS Consortium 2025, Turner et al.
2022). Neither the artifacts around the blood vessels nor the rare cutting artifacts hindered the analysis,
nor did the distribution of synapses indicate that a specific synapse type was more frequent around
blood vessels. However, to preserve the brain as close to its native state as possible and avoid missing
information, future protocols should aim to prepare samples that preserve ECS without introducing
artifacts around blood vessels.
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4.2 Data processing for connectomics

To enable biological analysis of the data set, several steps of the existing processing pipeline had to
be updated. These steps included synapse, mitochondria, and cell type prediction. Additionally, new
organelles, such as the ER, GA, and individual vesicles, were predicted to allow for further analysis of
cellular morphology.

4.2.1 Improvement of synapse and mitochondria segmentation and cell type
classification

Compared to the initial release of the dataset (Schubert et al. 2022), the synapses, mitochondria and cell
types were updated.

Synapse segmentation

For synapses, a new ground truth was used for prediction of their segmentation and for the RFC. This
ground truth and the RFC included synapses from all adult neuronal cell types identified in j0251 to
avoid biasing the prediction toward more frequent cell types. The resulting RFC confidence was manually
verified, leading to fewer synapses overall and greater accuracy of the predicted synapses. The synaptic
area was used for analysis because it has been shown to correlate with synapse strength in vivo (Holler
et al. 2021).

Based on their appearance in EM of vertebrate tissue, synapses can be categorized as either asymmetric
(excitatory) or symmetric (inhibitory) (Colonnier 1968, Gray 1959). In j0251, the different appearances
of synapses were used to manually verify the indentity of cell types and collect ground truth data but was
not used on the level of individual synapses to predict their sign. Thus, all circuit mechanism assumptions
assumed that synapses within one cell type are either all symmetric or all asymmetric.

While the aforementioned categorization is useful for identifying glutamatergic and GABAergic synapses,
it is less effective for identifying ACh or DA synapses. In this dataset, as well as in reports from rodents
and reptiles, both ACh and DA neurons make symmetric synapses (Cragg et al. 2004, Henselmans et al.
1994, Izzo et al. 1988). The effect on the postsynaptic cell type depends on the postsynaptic receptor. For
TANS, the effect on MSNs is excitatory, while for DA, the effect on STN and MSNs of the direct pathway
is excitatory. The effect of DA on MSNs of the indirect pathway, however, is inhibitory (Abudukeyoumu
et al. 2019, Cragg et al. 2004, Gerfen et al. 1990).

Additionally, co-release with other neurotransmitters has been reported for TAN and DA neurons
(Hnasko et al. 2012, Morales et al. 2017). DA-glutamate co-release has been found in different locations
on the same axon, where glutamate-containing vesicles are in axon terminals that form asymmetric
synapses (Zhang et al. 2015). Neurotransmitter release independent of synapses has also been reported
for TAN and DA neurons, which will be discussed later (section 4.5.2). Due to the assumption that the
sign of all synapses is similar within one cell type, the discussed results would not be suitable to identify
differences based on co-release.

Having more exact measures of the synaptic effect would mean having more information about the type
of neurotransmitter at a specific synapse. In drosophila, six different neurotransmitters were identified
from EM images alone (Eckstein et al. 2024). Although this study did not address potential co-release,
it demonstrates the potential for future studies to predict neurotransmitter types at the synapse level.

The synapses were trained and evaluated for axo-dendritic and axo-somatic connections between
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different neurons. Although potential axo-axonic and glia-neuron synapses were predicted, their certainty
has not yet been evaluated. References for axo-axonic and glia-neuron synapses are needed. To analyze
these connections, future work must first evaluate the performance of the predictions. Additionally, the
SyConn framework does not allow for autapses, which were manually identified and could be included in
the framework for future analysis (further discussion in section 4.4.2).

Mitochondria segmentation

The mitochondria segmentation was adapted to more effectively distinguish between mitochondria with
updated ground truth data and an additional step to erode the outmost layer of the segmentation,
resulting in a lower overall volume of mitochondria than before (Schubert et al. 2022). Therefore, the
values for mitochondrial volume density are slight underestimations.

Mitochondria exhibit varying shapes and sizes within different neuronal compartments (Thomas et al.
2023, Turner et al. 2022), as well as in astrocytic endfeet in proximity to blood vessels compared to other
astrocytic regions (Salmon et al. 2023). In this thesis, differences in mitochondrial density are analyzed
and will be discussed later (section 4.3.2). However, differences at the level of individual mitochondria
were not analyzed. Although mitochondria are processed as individual meshes, and their surface areas and
volumes are readily available, shape descriptors must be extracted from the meshes for further analysis.
Future studies should employ these descriptors to analyze differences in individual mitochondria across
neurons and glial cells.

Cell type classification

The cell type classification was updated with respect to three changes: 1) improved classification of
projecting axons, 2) identification of novel GABAergic interneuron types, and 3) inclusion of four glial
cell types and migratory neurons. All these updates resulted from changes in ground truth only, while the
neuronal network architecture based on point clouds (Schubert et al. 2022) remained unchanged. Adding
these new classes did not affect the network’s performance.

Improving the classification of different projecting axon types required generating a more balanced
ground truth with respect to fragment length. This was necessary because, compared to neurons in Area
X, the ground truth could only be based on fragments that were cut off due to entering the dataset or due
to the segmentation’s fragmentation because of their thinness. In addition to axons from HVC, LMAN;,
and VTA, Area X receives thalamic input in Bengalese finches (Nicholson et al. 2018) and thalamic input
has also been reported for the mammalian striatum (Powell et al. 1956). These may be included in one
of the other projecting axon types, and further studies are needed to identify their morphology in this
dataset and predict them as a separate cell type.

The three novel GABAergic interneuron types were identified based on morphological differences. All
of them resemble the previously reported fast-spiking (FS) cell type (Farries et al. 2002) and will be
discussed in detail later (section 4.3.3).

The glial cell types analyzed in this dataset include astrocytes, microglia, oligodendrocytes, and
oligodendrocyte precursor cells (OPCs). These cells were introduced alongside migratory neurons and
will be discussed further later (section 4.6). Of all the novel cell types, the only ones analyzed in this
thesis that were not predicted by the cell type classifier, but rather identified manually, were the OPCs.
Future analyses should include OPCs and rerun the cell type prediction with additional cell classes.
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4.2.2 Prediction of ER, GA and individual vesicles

To take advantage of staining several organelles with double-layered membranes and to allow for more
analysis of neuronal subcellular structures, the endoplasmic reticulum (ER), the Golgi apparatus (GA),
and individual vesicles were segmented. Manual evaluation proved the prediction to be highly accurate,
especially with additional filtering for specific compartments, e.g., the axon for individual vesicles.

Reconstructions using machine learning have been performed on individual vesicles and mitochondria
in a semi-automated (Kasthuri et al. 2015) or automated manner (Simon et al. 2021), as well as on
subsets of ER (Uytiepo et al. 2025). Together with GA and other organelles, automated reconstructions
have also been used on individual non-neuronal cells in cell culture (Heinrich et al. 2021), which revealed
different organelle distributions in different cell types. However, this dataset is the first available volume
EM dataset containing dense reconstructions of cells, synapses, mitochondria, ER, GA and individual
vesicles together, spanning several thousand cells. This allows for comparisons of these organelles in
several neuronal cell types.

While the ER is a connected network throughout all neuronal compartments (Terasaki 2018, Tsuboi
et al. 2021), in this dataset, it could only be processed as individual fragments. Similarly, stacks of
cisternae could not be recovered individually, thus underestimating the surface area of these organelles.
This is likely due to a resolution limit, as other studies have shown that thin ER, including its membrane
contacts with mitochondria, and individual cisternae could only be recovered with a 4-nm voxel size,
which was already difficult with an 8-nm voxel size (Xu et al. 2021). However, the voxel size in this
dataset is 10 x 10 x 25 nm?3.

For GA, the focus of prediction, evaluation and analysis was on the somatic form. Golgi outposts have
also been identified in one or two dendrites, or in the apical dendrite, in the hippocampus (Horton et al.
2005), and rarely in astrocyte endfeet (Kemal et al. 2022). While some GA structures were identified
outside of the soma, further work is needed to determine whether they are Golgi outposts or other
misclassified organelles.

At the given resolution, most individual vesicles are clearly identifiable, but some cell types, e.g.,
INT3, have very dense vesicle clouds (see figure 3.18 a) that overlap, and not every individual vesicle may
have been recovered. Additionally, glutamate- and GABA-containing vesicles exhibit distinct shapes at
high resolution (Korogod et al. 2015), though these differences were not apparent in this dataset.

Although this resolution is sufficient for predicting the ER and Golgi apparatus, as well as individual
vesicles, future studies with higher resolution are needed to analyze a connected ER network, resolve
individual GA cisternae, and observe different vesicle morphologies based on neurotransmitter content.

4.3 Morphological and organelle differences in neuronal cell types

Updates on cell type classification and organelle prediction were used to analyze differences in neuronal
cell type morphology and organelle density.

To evaluate the effectiveness of morphological parameters and organelles in clustering, all adult neu-
ronal cell types within Area X were analyzed collectively. While projecting axons differed in some
morphological and organelle density differences and these are enough to classify them (Schubert 2022),
these were not as strong as between neuronal cell types within Area X. As they are restricted to one
compartment, they could not be separated into different clusters based solely on these characteristics.
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4.3.1 Morphological differences in neuronal cell types

To not only classify the cell types based on morphology but also quantify their morphological differences,
several morphological parameters were analyzed, such as axon myelination, spine density, and soma area.
While these features differed among the cell types, they alone were insufficient for classifying all 12
neuronal types. Including information on the density of subcellular structures in different compartments,
such as axon, mitochondria, and synaptic area densities, allowed for the classification of all 12 cell types.
Using a recursive feature selection algorithm to select optimal features showed that nearly all additional
organelle information was necessary for classification.

The selected feature set is not entirely composed of independent parameters. Parameters such as the
median radius and surface area of an axon or dendrite depend on each other directly. The fraction of
axon myelination also depends on axon diameter because oligodendrocytes initiate myelination only when
a certain diameter threshold is reached (Lee et al. 2012, Matthews 1968). In cultured oligodendrocytes,
this threshold is 0.4 pm (Lee et al. 2012). Thus, the feature set could be further improved by selecting
only independent parameters.

Although the final selection of features is not universal, the approach of combining morphological
information and subcellular densities is sufficient to distinguish these neuronal types. Omne cell type
was not separated as well as the others: LTS. Upon manual inspection, several cells of other neuron
types in the same cluster were misclassified. LTS had the fewest ground truth cells of all the cell types.
Retraining the cell type classifier with more LTS ground truth cells may improve classification and should
be attempted in future studies.

In addition to identifying misclassified cells, manual inspection revealed that some MSN cells in
another cluster were mergers. This demonstrates that, even with a classifier in place, this approach can
assist in identifying mergers and misclassified cells.

That organelle features help classification and that morphological features can separate these cells has
been shown before on a smaller Area X dataset (Dorkenwald et al. 2017, Kornfeld et al. 2020). Clustering
based on a latent space extracted by a neural network has also been able to classify neuronal cell types
in the same dataset (Schubert et al. 2022). Unlike the current approach, the latent space feature set does
not provide clear, quantifiable parameters that could be used to identify these cell types in other datasets
or with different techniques.

The feature set selected for this thesis relied on nearly complete neurons, as several features relate
to axon and dendrite morphology. It has been demonstrated for several cortical cell types that a feature
set based solely on nuclear and somatic features, without information from additional somatic organelles,
can distinguish between excitatory, inhibitory, and glial cell types in a connectomics dataset derived from
the mouse cortex (Elabbady et al. 2025). In combination with somatic features and features from spines
up to 60 pm away, several inhibitory classes could be predicted. Thus, the classification approach is
not dependent on complete reconstructions. This approach is based on a hierarchical clustering system
that first separates neurons from glial cells and then classifies neuronal subtypes further (Elabbady et al.
2025).

In this dataset, some cell types also express different nuclear morphologies. For example, half of the
GPis had wrinkled somata, and 29 % of the STNs had nuclear infoldings. Therefore, including a nucleus
segmentation that quantifies these features could also aid in classifying cells in this dataset or in Area X
in general. Additionally, organelle information from and around the soma could be used to incorporate
more parameters into this approach.
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4.3.2 Organelle densities in different neuronal cell types

The density of synapses, mitochondria, vesicles, ER, and GA were analyzed for neuronal cell types in
different compartments. Significant differences were observed among all of these cell types. Mitochondria
volume density in the axon, dendrite, and soma; vesicle cloud volume density; vesicle density; and axon
ER surface area density showed strong correlations with reported firing rates during singing. This has
been shown for axon and dendrite mitochondrial volume density, as well as for vesicle cloud volume
density, in a smaller dataset of Area X for three coarse classes: MSN, INT, and GP (Dorkenwald et al.
2017). Note that the correlation with axon density was the highest, possibly because the inclusion of
projecting axon classes made more cell types available (eight cell types versus five). Nevertheless, the
strong correlation between axon ER area density and firing rate, as well as the density of individual
vesicles and firing rate, has not been measured before. The reason only the axonal ER density (when
normalized to the skeleton pathlength) is correlated to the reported firing rates but not the dendritic
density is also in part due to the dense ER in MSN dendrites, which have a low reported firing rate (see
table 2.11, Goldberg et al. 2010). As this is the first time MSN ER densities are analyzed in this matter,
the reason for their high ER densities remains to be elucidated.

Mitochondria are related to energy production, and both mitochondria and the and ER are related to
Ca’" storage (Devine et al. 2018, Lopez-Doménech et al. 2023, Tsuboi et al. 2021). In mouse pyramidal
cortex neurons, higher spike frequencies have also led to increases in mitochondrial Ca*" (Stoler et al.
2022). Conversely, GA has been associated with protein sorting and modifications (Chen et al. 2023,
Mohan et al. 2023). Thus, the correlation between mitochondria and ER and the firing rate that is
absent for GA is in line with the literature. However, as discussed previously (section 4.2.2), GA is not
predicted as stack of individual cisternae; thus, the surface area is not predicted accurately, which may
influence these results. GA has been correlated with morphology because it is oriented toward the apical
dendrite in hippocampal pyramidal neurons, but not in symmetric GABAergic interneurons (Horton et
al. 2005). Further analysis could examine the relationship between GA and cellular morphology in the
current dataset.

Other than overall power demand, in drosophila larvae it was shown that across the axon, mitochondria
are larger and have a higher density in terminals with higher power demands (Justs et al. 2022).The
distribution of mitochondria along the axon has not been analyzed in this thesis. In some cell types,
such as GPi (3.17 a), mitochondria seem to be concentrated mainly in the boutons. Whether there are
differences in shape or density between boutons needs to be determined by further analysis. In addition to
local changes in density, changes in mitochondrial ultrastructure have been reported in faster-spiking cells
in the hippocampus (Cserép et al. 2018). These mitochondria have a higher crista surface area density and
are more elongated. Whether these differences in mitochondrial ultrastructure can be analyzed within
the resolution of this dataset needs to be investigated further.

The high correlation between axon mitochondria and ER density and the reported firing rates in
the literature enabled prediction of the firing rates of three novel GABAergic interneuron types (further
discussed in section 4.3.3) and STN. Previously, STN had only been recorded at 20 Hz in Area X brain
slices, but not during song (Budzillo et al. 2017). While the total mitochondria volume density indeed
predicted a firing rate of 20 Hz for the STN, this prediction is not likely due to the physiologically not
possible prediction of less than 0 Hz for INT2 with the same parameter. All other predictions with
parameters that were both highly correlated with the firing rate and physiologically plausible ranged
from 31.5 to 62 Hz (see appendix table A31). Future studies with STN recordings during singing will
need to determine the exact firing rate and clarify which parameter best correlates with it.
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4.3.3 Novel GABAergic interneuron types

Three novel GABAergic interneuron types, INT1-3, were identified in Area X based on different morpholo-
gies and organelle densities. These types resemble previously identified FS-type interneurons (Farries et
al. 2002). They also have distinct connectivity profiles that differ from those of other GABAergic cell
types in the dataset, such as MSN, LTS, GPe, and GPi. Thus, together with LTS neurons, Area X in-
cludes four GABAergic interneuron types. However, this finding differs from a recent single-nucleus RNA
sequencing study that identified eight non-pallidal GABAergic interneuron types in Area X (Xiao et al.
2021). Without further morphological quantification, it is unclear whether the other four interneuron
types were overlooked in this study or if they correspond to morphologically and connectivity-wise similar
subpopulations of the described interneuron types.

The morphology and connectivity of the three novel GABAergic interneuron types, together with
firing rate predictions from the different organelle densities, allow for a detailed description.

INT1 neurons have a medium-sized soma, low spine density, and localized, dense axonal arborizations.
They are mostly innervated by LMAN, depending on the filtering criteria of the projecting axons (section
4.4.1). They also receive input from other INT1 neurons, and their targets mainly include GPe and GPi
neurons. Predicted firing rates range from 35 to 120 Hz. Since striatal interneurons do not project outside
the striatum by definition, neurons that mainly target the GPe and GPi are unlikely to be similar to
striatal interneurons. Several neuronal subtypes have been identified in both the GPe and the GP1i, apart
from the projecting neurons of the basal ganglia pathways (Courtney et al. 2023, Miyamoto et al. 2022,
Saunders et al. 2018). Both the GPe and the GPi also receive cortical projections (Naito et al. 1994).
Future studies of the mammalian pallidum and Area X are needed to determine whether INT1 neurons
are similar to these cell types in terms of molecular markers, morphology, and connectivity.

INT2 neurons have small somata and spiny dendrites with denser and larger arborizations than
MSNSs. Their main input comes from HVC, GPe, and GPi neurons, and they almost exclusively target
MSNs. The predicted firing rate is lower than that of INT1 and INT3 neurons, except for vesicle cloud or
density, and ranges from 14 to 170 Hz. In the mammalian striatum, apart from FS and LTS interneurons,
neurogliaform (NGF) interneurons and arkypallidal neurons in GPe are GABAergic and target mainly
MSNs (Ibaniez-Sandoval et al. 2011, Mallet et al. 2012). NGF neurons express neuropeptide Y, have round
somata, dense, highly branched, and sparsely spiny dendrites, as well as dense axonal arborizations. They
receive input from the cortex (Ibanez-Sandoval et al. 2011). Arkypallidal neurons in the GPe express
preproenkephalin and have branched, spiny dendrites with short, local axon collaterals in the GPe and
large, dense axonal arborizations in the striatum (Mallet et al. 2012). They receive input from prototypical
GPe neurons and become disinhibited when MSNs are activated via those inputs (Aristieta et al. 2021).
In addition to MSNs, they target other striatal GABAergic interneurons and TANs (Mallet et al. 2012).In
vivo, their activity is sufficient to inhibit movement in mice (Aristieta et al. 2021).

In addition to targeting MSNs, INT2 neurons exhibit characteristics of both NGF and arkypallidal
neurons. Their HVC input and dense axonal arborization resemble NGF, while their spiny dendrites
and prototypical GPe innervation, which place them in an MSN-GPe-INT2 feedback loop, resemble
arkypallidal neurons more. Further studies measuring their electrophysiological properties and molecular
markers are needed to determine whether they are analogous to either of these mammalian cell types or
if they are a unique type of interneuron found only in birds.

INT3 neurons have large somata, spiny dendrites, and large, dense arborizations with frequent, large
boutons that are densely filled with vesicles. 54 % of these neurons also form at least one autapse.
They receive input primarily from HVC and target MSNs almost exclusively. They have the highest
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predicted firing rates, ranging from 100 to 360 Hz. In the mammalian striatum, F'S neurons, identified
by parvalbumin expression, have spiny dendrites, dense axonal arborizations, and a high firing rate of
up to 199 Hz. Around half of these cells form autapses (Wang et al. 2023). FS neurons are the primary
source of feedforward inhibition from the cortex to MSNs in the mammalian striatum. They also receive
thalamic input (Gittis et al. 2010, Johansson et al. 2020, Owen et al. 2018). They are reported to synapse
onto MSNs from both the direct and indirect pathways; however, results vary as to whether they prefer
MSNs from the direct pathway (Gittis et al. 2010) or not (Johansson et al. 2020, Owen et al. 2018). In
this dataset, INT3 cells are the strongest source of feedforward inhibition to MSNs, but only from HVC
and not LMAN. As discussed previously (see section 4.2.1), thalamic input to Area X has been reported,
but the projecting axon types have not been identified separately.

Overall, there is strong evidence suggesting that INT3 is analogous to the mammalian FS type and
that it drives feedforward inhibition from HVC to MSN.

4.4 Connectomic analyses of the Area X dataset

The connectivity of novel GABAergic interneuron types was analyzed alongside known interneuron and
projecting neuron types to provide a comprehensive overview of connectivity in Area X. Additionally, the
analysis focused on the direct pathway and topographic loops in Area X.

4.4.1 Connectivity between neuronal cell types in Area X
Basal ganglia pathways

In the canonical view of basal ganglia in vertebrates, there are three main basal ganglia pathways: direct,
indirect and hyperdirect pathway. Connectivity analysis revealed that analogues of all three pathways
also exist in Area X.

While previous single-nucleus RNA sequencing in Area X found separate MSN populations (Xiao et
al. 2021), which have also been found in zebrafish (Tanimoto et al. 2024) and in mammals are separable
also based on morphology (Gertler et al. 2008, Gagnon et al. 2017), MSN could not be separated based
on morphology or connectivity in this study. Since 73 % of MSNs in this dataset project to both GPe
and GPi, there is no clear separation between the direct and indirect pathways at the MSN level in
this dataset. Consistent with this in one study over half of the MSNs in Area express both D1 and D2
receptors (Kubikova et al. 2010) and pharmacological measurements suggest DA receptor colocalization
in a large number of MSNs (Ding et al. 2002). In single-cell nucleus sequencing however, only 18 % of
MSNs expressed both receptor types, while 33 % did not express either (Xiao et al. 2021).

Most of the remaining MSNs were selective for GPi, with only a small population (3 %) that projected
to GPe. Even fewer neurons projected to GPe when considering only MSN cells with complete dendrites
in the dataset. Along with their generally shorter axons and somata closer to the border of the dataset,
it is unclear whether there is a small population of MSNs that specifically target the GPe or if this is
a dataset artifact. While previous studies also found that the MSN population only expressing the D2
receptor is the smallest group of MSNs, the reported numbers of 14-15 % were still higher than MSNs
that project to the GPe in this dataset. (Kubikova et al. 2010, Xiao et al. 2021).

However, the preference for GPi differs from that of mammals, in which 36 % of MSNs project to
the GPe only, and all direct pathway MSNs send axon collaterals to the GPe (Wu et al. 2000). MSNs
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that express both D1 and D2 receptors project exclusively to the GPe (Bonnavion et al. 2024). The
population of MSNs that express both D1 and D2 receptors makes up between 2 and 17 % of MSNs
in the striatum, depending on the region and measurement technique (Bonnavion et al. 2024, Gagnon
et al. 2017). The existence of this D1/D2 MSN population and the projection of all MSNs to the GPe
in mammals suggests that the lack of separation between the direct and indirect pathways at the MSN
level may not be specific to the zebrafinch. The difference in preference for the GPe and GPi may be
partially explained by the different spatial arrangements in Area X compared to the mammalian basal
ganglia. In mammals, the GPe is located next to the striatum, while the GPi/SNr is farther away (see
figure 1.3). In Area X, however, distance is not a constraint. Further studies are needed to investigate
the shift to GPi-default connectivity, as well as to determine if a GPe-specific population exists in Area
X and which dopamine receptors are expressed there.

Based on the overall connectivity throughout the dataset and the influence of MSN connectivity on
the GP1i, the "gatekeepers" of Area X’s output, the direct pathway is the strongest through Area X. The
hyperdirect pathway is the second strongest, while the indirect pathway (either the long version via the
STN or the short version) is the weakest (see figure 3.30).

This connectivity establishes the hyperdirect pathway as the strongest antagonist of Area X. The
weak connectivity and lack of separation from the direct pathway at the level of MSNs raises the question
of whether learning with the direct and hyperdirect pathways is sufficient in Area X and the indirect
pathway is not needed in its function as an additional inhibitor of movement.

This view is supported by analyses showing that both the MSN and the STN prefer the GPi over
the GPe, both in terms of connectivity and synapse size. Meanwhile, the GPe’s main output targets
are the INT2 and INT3. As previously discussed (see section 4.3.3), these predominantly target MSNs,
placing GPe at the center of an MSN-GPe-INT2/3 feedback loop partially mediated by GPe-INT2 spine
synapses (see figure 3.30). Since GPe projecting neurons (or prototypical GPe neurons) also project to
arkypallidal neurons, a similar feedback loop has been described in mammals that leads to the inhibition
of MSNs and locomotion (Aristieta et al. 2021). Along with cortical and dopaminergic input to the GPe,
the traditional view of the GPe as primarily part of the indirect pathway has also recently been challenged
in mammals (Naito et al. 1994, Courtney et al. 2023).

Due to the strong synaptic output from the GPe to the INT2 and INT3, the weak connectivity of
the indirect pathway, and the lack of MSN separation, being part of the MSN-GPe-INT2/3 feedback
loop appears to be the primary function of the GPe in Area X, rather than an additional function.
Potential roles for this feedback loop could be to reset MSNs to a default state after their inhibition or
synchronization of MSNs.

Functional studies in Area X are needed to determine whether this connectivity pattern has functional
implications and what role it fulfills. Connectomic studies of the mammalian basal ganglia must test
whether a closer examination of the GPe would reveal a similar connectivity pattern or whether this
pattern is specific to Area X.

Further connectivity in Area X

The role of GPe neurons as part of a feedback loop rather than as part of a feedforward pathway is not
the only connectivity pattern that arose outside of basal ganglia pathways.

A second finding is the back projection from GPi to STN, which is partially mediated by somatic
input and cell-specific recurrency. This has not been previously reported in the mammalian literature
(Shipp 2017, Tisch et al. 2004). Since DA can reduce GABAergic inhibition to the STN (Cragg et al.
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2004) and high, tonic firing of GPi (Goldberg et al. 2010), this could result in STN inhibition in the
default state, which restricts STN firing in the absence of DA input during learning.

Another potential role is the lateral inhibition of neighboring GPis. In this case, once a GP1 is inhibited
by MSNs, an STN cell is released from inhibition and can excite surrounding GPis. In the DLM, MSN
activation leads to disinhibition. There, MSN activation mainly excites a DLM neuron activated by a
specific GPi while silencing others that are more controlled by neighboring GPis. Therefore, if a GPi
inhibits an STN that projects mainly to its neighbors, it could lead to a more defined signal in the DLM.
To test this theory, a larger Area X dataset combined with synaptic information about DLM innervation
would be necessary.

The connectivity profile of TANs revealed that they primarily receive input from MSN and HVC,
and their main output target is also MSN. This is consistent with the mammalian striatum, where TANs
receive input from cortical and thalamic regions, as well as from MSN. However, TANs also target other
striatal interneurons (Abudukeyoumu et al. 2019, Johansson et al. 2020). As discussed previously (see
section 4.2.1), thalamic input was reported for Area X, though it was not classified separately in the data.

Rather than forming recurrent connections with MSNs, TANs target many and only receive feedback
from a few. This is consistent with the suggested coordinating role of TANs in the striatum (Graybiel
et al. 1994).

Together with DA and LTS, TAN belongs to a group of cell types with low synaptic density that
exerts little synaptic influence on other cell types (see figure 3.31). For TAN and DA, this relates to their
modulatory role using volume transmission, which will be discussed later (see section 4.5.2).

For LTS, low synapse density and little synaptic influence on other cell types are consistent with
findings in the mammalian striatum (Gittis et al. 2010, Ibanez-Sandoval et al. 2011). While their major
output target there is also MSN, results in this dataset show GPi as one of the major input sources,
next to the reported cortical input. These results suggest a potential feedback and feedforward role;
however, due to the small number of synapses, it may be difficult to test this functionally. Similar to
DA and TAN, which have known modulatory roles, a modulatory role has also been suggested for LTS
due to its low synapse density, potentially to release somatostatin or neuropeptide Y (Gittis et al. 2010,
Ibanez-Sandoval et al. 2011). In line with this, half of the very few vesicles in LTS axons are non-synaptic
in this dataset (see figure 3.37). Further studies are needed to verify this modulatory role and identify
the released neurotransmitter.

Although there are differences in innervation from the HVC and the LMAN, connectivity analyses
in this thesis have focused primarily on Area X cell connectivity. These differences include the fact
that HVC predominantly innervates MSN spines while LMAN innervates MSN spines and shafts to a
similar degree, as previously reported (Kornfeld et al. 2020), and that INT1 is the only cell type that is
innervated more by LMAN than by HVC. The reason for this focus is that, due to axon fragmentation,
the fractional connectivity input from the LMAN and HVC to other cell types depends on the filtering
criteria. When only long axons are included, LMAN axons are favored due to their branching morphology,
and connectivity with cell types within Area X is underestimated because most synapses in the dataset are
excluded. Conversely, when all fragments are included, every cell type receives input mainly from HVC,
and the input relative to the filtered cells within Area X is overestimated. Apart from these differences,
all connectivity patterns remain stable regardless of the filtering criteria. Further studies are needed to
investigate the importance of cortical inputs relative to neurons within Area X.
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LMAN

GPi (’—F’

Figure 4.1: Current model of LMAN-MSN-GPi connectivity within the Area X dataset. The LMAN
indirectly synapses with a significant portion of the GPi via MSN connections. The GPi is controlled by
inhibition from other GPi cells via "soma claws." More than one-third of GPi cells form autapses.

4.4.2 LMAN - MSN - GPi specificity

To investigate axon projection in more detail, a small sample of large LMAN axons was selected for
analysis of connectivity in Area X with respect to topographical loops.

In comparison to HVC, LMAN projects to Area X topographically onto Area X. Along with connec-
tions from Area X to DLM and from DLM back to LMAN, these form closed loops in light microscopy
(Luo et al. 2001, Fee et al. 2011). With large LMAN axons entering the dataset and branching there, it
is possible to analyze and determine how "focused" this loop is. Since the direct pathway is strongest
pathway through Area X in terms of synaptic area, information flow from LMAN is most likely to lead
over MSN to GPi. In a "focused" loop, one LMAN axon indirectly projects to only one GPi cell. In an
"unfocused" loop, however, it indirectly projects to all GP1i cells in the region (see figure 3.32).

The results show that the loop is "unfocused," with each LMAN axon projecting indirectly to most
of the GPi, and there is no clear "winner" in terms of synaptic area. Additionally, the GPi synapses
onto itself with multiple soma synapses, resulting in "claws" or "baskets". These have been previously
observed from the GPi to the DLM and to the GPi soma. However, it was unclear whether GPi neurons
were the source of these connections to other GPi neurons (Luo et al. 1999). To complete the picture of
GP1i connectivity, approximately a third of the GPis also form autapses (see figure 4.1).

Area X is estimated to contain 500,000 cells (Burek et al. 1991). If 94 % of these cells are MSN cells,
as in this dataset, then there are an estimated 470,000 MSNs in Area X. Together with approximately
2,300 GP1i cells (Farries et al. 2005), this leads to massive convergence within Area X. This convergence
can be measured in the data, with each GPi neuron receiving over 1,000 synapses from nearly 400
different MSNs. The number of MSNs is estimated to be high enough, so that each muscle fibre could be
represented with up to 100 time points in the song (Fee et al. 2011), while maintaining temporal precision
through convergence to the GPi by activating different GPis at different time points.

Following the feedback loop through the anterior forebrain pathway (AFP), the GPi projects to ap-
proximately 3,750 neurons in the DLM (Farries et al. 2005) which project to 6,000 - 10,000 LMAN
neurons. In juveniles that are still learning their song, this number is doubled, leading to 12,000 - 20,000
LMAN neurons (Burek et al. 1991, Bottjer et al. 1989). The LMAN neurouns, in turn, project topograph-
ically to 15,000 — 17,000 RA neurons (Burek et al. 1991, Gurney 1981). To innervate the approximately
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7,000 muscle fibers in the syrinx (Adam et al. 2021), the RA innervates 800-1,100 neurons in the tra-
cheosyringeal branch of the hypoglossal nerve (NXIIts, Adam et al. 2021, Gurney 1981, Lissandrello et al.
2017). With 50 % of the motor neurons in NXIIts innervating < 3 muscle fibers, the motor pathway
exerts extremely fine control over the vocal muscles (Adam et al. 2021). Since the topographical loop is
closed and muscle control is high, if this pattern were maintained in the AFP, up to 20 neurons in the RA
and LMAN, as well as a few GPis, would be responsible for one muscle fiber. Synaptic connectivity would
favor only up to three GPi that one LMAN axon indirectly synapses to. However, this level of topography
is not reflected in the data. Given the number of neurons in NXIIts, it seems too high a number for one
LMAN to synapse to over 40 GPis indirectly in order to separate individual muscle fibers throughout the
whole AFP. It is hypothesized that the topography in the AFP reflects individual motor channels (Fee
et al. 2011), but it is unclear which proportion of a muscle is represented in a motor channel. Since the
results did not vary across the dataset, it is likely that one motor channel spans a larger volume than
the current dataset. Further analysis of a larger volume is needed to analyze connectivity with respect
to motor channels and determine their size.

If the connectivity from LMAN via MSN to GPi alone does not reflect distinct units for individual
muscle fibers, then additional mechanisms must be in place to strengthen the signals of additional GPis.
One possibility is lateral inhibition of STNs, whereby activation of one GPi activates its neighbors,
which then silence surrounding neurons in the DLM, as discussed previously (see section 4.4.1). Another
mechanism could be the inhibition of GPis by each other, as seen in the form of "soma claws". Inhibiting
one GPi would lead to less inhibition by its neighbors, resulting in a similar effect to lateral inhibition.

Another function of GPi-GPi inhibition could be synchronization of the network. When inhibitory
neurons are recurrently coupled, they oscillate in anti-phase. If a third inhibitory neuron provides long
enough input to both of these neurons, the third input can synchronize the other two neurons, even if
it is weak (Belykh et al. 2008). It is unclear if any of the GABAergic inputs to GPi cells, MSN, GPe,
or INT1 are able to provide the necessary input for synchronization, and this needs to be determined
in further studies. Additionally, it remains to be tested whether GPi-GPi connectivity is recurrent or if
each GPi inhibits other cells to form a uniform network.

Another feature influencing GPi network activity is the presence of autapses on 41 % of GPi neurons.
GPi is not the only cell type that forms autapses; 31 % of GPe and 54 % of INT3 neurons also form
them. While autapses have not been reported in Area X or the mammalian GPe, GPi, or SNr, they have
been reported in the FS of the striatum (see section 4.3.3) and the cortex (Bacci et al. 2003).

In FS, autapses help maintain high firing frequencies (Wang et al. 2023), increase the regularity and
precision of spike times (Bacci et al. 2006) and help sychronization, particularly in networks that are
already coupled by inhibitory connections(Deleuze et al. 2019, Jia et al. 2023).

In mammals, F'S interneurons and projecting neurons of the GPe and GPi express PV (Courtney et al.
2023, Miyamoto et al. 2022). Since these cell types have high tonic firing rates, autapses likely exist in
the mammalian GPe and GPi, fulfilling similar functions as in Area X. These could include maintaining
high firing rates, making firing more precise, and aiding synchronization among a coupled GPi network.
Further studies are needed to investigate this.

4.5 Synaptic and non-synaptic vesicles

In addition to analyzing the connectivity and overall density of the different organelles, we examined the
relationship of individual vesicles with synapses, as well as those distant from synapses, to study volume
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transmission from TAN and DA axons.

4.5.1 Synapse size and relationship to number of vesicles

There is no global correlation between synaptic size and the number of synaptic vesicles across the dataset,
nor for those close to the membrane. However, some cell types, such as HVC and INT1, show correlations
when analyzed individually.

Previous reports on rat hippocampal neurons have shown that the number of vesicles correlates with
synaptic area (Harris et al. 1989) , that only the number of docked vesicles, but not the total number of
vesicles, correlates with synaptic area (Branco et al. 2010), or that both the number of vesicles and the
number of docked vesicles correlate with synaptic area (Murthy et al. 2001). In the mouse neocortex,
larger synapses have been shown to also have more synaptic vesicles (Kasthuri et al. 2015).

One reason the membrane-close vesicles do not correlate with the synaptic area is that membrane
closeness does not indicate whether the vesicles touched the membrane. Thus, they are not comparable
to reports about docked vesicles. Some vesicles that touch the membrane may also be excluded by the
filtering criteria. Further analysis may be needed to determine whether using the mesh of the synapse
object and the distance of the vesicle from it can indicate whether a vesicle is touching the synaptic
membrane.

Furthermore, fixation with aldehydes may result in a depletion of docked vesicles because this tissue
exhibits fewer vesicles in close proximity to the synapse than cryo-fixed tissue (Korogod et al. 2015, Maus
et al. 2020). However, since previous papers reporting correlations also used aldehyde fixation on their
samples (Branco et al. 2010, Harris et al. 1989, Murthy et al. 2001), it is unclear whether this explains
the differences in correlation.

One difference from the reported studies is that the synapses analyzed were exclusively on spines. In
the present dataset, all cell types except MSNs have more synapses on their dendritic shafts. Additionally,
if a bouton has more than one outgoing synapse, the number of vesicles is higher (Harris et al. 1989,
Kasthuri et al. 2015, Uytiepo et al. 2025). This may explain why synapses from HVC are among the
most highly correlated and primarily target MSN spines. However, INT1 mainly targets the dendritic
shaft of the GPe and GPi, upon manual inspection often shows more than one synapse per bouton and
also exhibits high correlations. Therefore, further analysis should control for the number of synapses on
the presynaptic bouton and the different postsynaptic compartments when testing for correlation.

In addition to vesicles, mitochondria and ER are also located close to synapses, on both the presynaptic
and postsynaptic sites.

At the presynaptic site, boutons containing mitochondria exhibit lower levels of cytosolic Ca?™, re-
duced neurotransmitter release, and larger vesicle pools compared to boutons lacking mitochondria (Kwon
et al. 2016). One study using EM showed that boutons with mitochondria had higher vesicle numbers
and were weakly correlated with larger spine heads in the mouse neocortex (Kasthuri et al. 2015), while
another study in mouse hippocampus showed that the synaptic area does not correlate with the presence
of presynaptic mitochondria but with the presynaptic mitochondria volume (Cserép et al. 2018). Mito-
chondria were also more prevalent in boutons with multiple synapses, and their volumes increased during
learning (Uytiepo et al. 2025).

Along the dendrite, mitochondria are present on the postsynaptic site and rarely inside spines (under 1
% of spines, Kasthuri et al. 2015). ER is present in the dendritic shaft and inside spines, sometimes forming
multiple cisternae as the spine apparatus (SA). Generally, the volume of the spine head is correlated with
the synaptic area onto the spine (Harris et al. 1989, Holler et al. 2021). Dendritic mitochondrial volume
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density is also correlated with spine density (Turner et al. 2022). When an action potential backpropagates
into the dendrites and coincides with an excitatory postsynaptic potential (EPSP) there, mitochondrial
Ca’" clevates in close proximity to active spines (Stoler et al. 2022).

Mitochondria in dendritic shafts are not correlated with synaptic areas on spines. However, spines
with mitochondria tend to have larger volumes and larger synaptic areas (Thomas et al. 2023). ER
reaches at least partially into 50 % of spines (Spacek et al. 1997, Wu et al. 2017). Spines with ER, in the
form of an SA, are larger (Dorkenwald et al. 2022, Wu et al. 2017), and ER is present in 80 % of large
mushroom spines (Cooney et al. 2002, Spacek et al. 1997). The synaptic area of a spine also correlates
with the number of cisternae in the SA, and measurements of four spines suggest a potential correlation
between SA volume and surface area (Spacek et al. 1997).

There are conflicting reports about SA in learning. One study of the mouse hippocampus reported an
enlargement of spines accompanied by a loss of SA in spines (Uytiepo et al. 2025), while another study of
the rat hippocampus found that only synapses with SA present enlarged during long-term potentiation
(LTP, Chirillo et al. 2019). Some enlargement was also observed in spines with polyribosomes, but it
was smaller than that observed in spines with SA. Additionally, LTP led to an increase in ER volume in
spines with SA and redistributed ER to areas with at least one spine with SA (Chirillo et al. 2019).

In addition to their relationship with synapses, the ER and mitochondria are reported to establish
connections in all neuronal compartments (Wu et al. 2017).

Together, the reported studies suggest a relationship between the presence of mitochondria and ER
and the larger volume and surface area of these organelles in larger synapses, at least in spines. Whether
the ER area is larger close to larger synapses in presynaptic boutons and if there is a relationship with
the number of synapses similar to that of mitochondria is unclear. Further investigation is needed to
determine whether the reported correlations for the ER, mitochondria, and vesicle number with synapse
size in spines are similar in birds and whether similar correlations can be found with synapses on dendritic
shafts.

4.5.2 Single vesicles in TAN and DA axons

TAN and DA are cell types that have been reported to signal via volume transmission (Abudukeyoumu
et al. 2019, Arbuthnott et al. 2007). Consistent with this, the axons of TAN in DA exhibit low synapse
density and a high proportion of vesicles close to the cell membrane distant from synaptic locations.

Environment of TAN and DA non-synaptic vesicles

The surroundings of these vesicles mirrored the distribution of cell types and synapses in the dataset,
with MSN cells and HVC-MSN synapses as the most prevalent. Within a 1 pm distance, GPe and GPi
surface areas were slightly underrepresented for both TAN and DA. Overall, the results for TAN and DA
are similar. This is interesting since DA axons are known to project to all of the aforementioned basal
ganglia nuclei (Cragg et al. 2004, Tisch et al. 2004), while cholinergic modulation has only been reported
in the striatum and GPe so far (Courtney et al. 2023, Dong et al. 2021, Ratna et al. 2025).

In general, DA axons form a dense network. 93.4 % of all synapses and over 90 % of all cell sur-
face area are within a 5 pm radius of a close-membrane, non-synaptic DA vesicle. However, as most
predicted DA axons are shorter than the minimum length of 200 pm, this number is likely an underes-
timation. Conversely, ECS shrinkage due to chemical fixation during sample preparation could result in
an underestimation of the measured distances compared to those in a living brain (Korogod et al. 2015).
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To ensure TAN classification certainty, the analysis included only TAN axons from cells within the
dataset. This explains why only around 6 % of all synapses and cell surfaces are within 5 pm of TAN
axons. Since these represent only 4 % of the axon path length in the dataset, it is possible that TAN
cells form a similarly dense network throughout the dataset. However, a recent study found that, in the
mammalian striatum, individual DA axons cover three times the area that TAN cells do, and that TAN
cells can activate DA release independently of soma activity (Liu et al. 2022). When multiple TANs are
active simultaneously, they can leverage the DA network to extend their reach. If the DA network is
indeed denser than the TAN network, this mechanism could compensate for that.

Results showing synapses and cell surfaces within 5 pm of DA vesicles align with a volume transmission
model assuming DA acts within a 7 pm sphere of influence (Cragg et al. 2004), which is temporally, but
not spatially, limited (Arbuthnott et al. 2007). In this model, the dense network of DA ensures that all
receptors can be reached, and specific synapses and receptors can be targeted with temporal precision.
This means that the effects on receptors, whether on- or off-synaptic, are due to previous changes in the
membrane potential of postsynaptic cells.

This is all under the assumption that membrane-close vesicles could potentially be released at this
spot, even though manual verifications showed that only half of these vesicles touch the membrane, and
there are no markers indicating docking of the vesicles. A more recent study found that DA is not
released at all vesicle-filled varicosities, but rather, only at around 30 % (Liu et al. 2018). These release
sites cannot be identified using EM alone, but rather require protein markers.

Additionally, measuring DA release in the mammalian striatum with nanosensors revealed hotspots
with a median size of 2 pm, suggesting a potentially smaller effective radius (Beyene et al. 2019). In
this dataset, 35-40 % of surface areas and 37.5 % of synapses were within 2 yum of DA vesicles. If only
30 % of the vesicles were at active sites, then only around 10 % of the cell surface area or synapses
would be within reach of one release. Consistent with this, a more recent model, the "dopamine-overlap"
model, assumes that, for tonic release, which is responsible for steady DA concentrations, most receptors
are not reachable by release from individual active sites (Liu et al. 2021). This model proposes that,
for phasic dopamine release driven by excitatory inputs that lead to fast changes in DA concentration,
several dopamine axons must be active simultaneously to reach receptors for learning signals. To better
understand the dynamics of DA volume transmission, further analysis must identify active sites with
synapse resolution, either by finding markers visible in EM or by staining them to analyze with light
microscopy-based connectomics (Tavakoli et al. 2025).

For both DA and TAN neurons, co-release with glutamate and, for DA, with GABA, has been reported
(Hnasko et al. 2012, Morales et al. 2017). In this study, all vesicles were assumed to contain the same
neurotransmitter and were classified only by cell type. Although it has been reported that, as an effect of
chemical fixation, presumed GABA-containing vesicles have a more oval shape than glutamatergic vesicles
(Korogod et al. 2015), the resolution of the raw data was insufficient to detect these differences in this
dataset. Furthermore, it is unclear whether DA- or ACh-containing vesicles could be differentiated based
on their shape. Thus, future studies should also verify the neurotransmitter identity when investigating
DA or ACh volume transmission.

TAN and DA non-synaptic vesicles and surrounding synapse sizes

Changes in synaptic size can be influenced by modulatory activity from both TAN and DA neurons
(Abudukeyoumu et al. 2019, Yagishita et al. 2014). To determine whether these effects are evident in
EM, the proximity of non-synaptic vesicles to smaller or larger synapses of different presynaptic and
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postsynaptic cell types was studied. The focus was on connections that had been studied in the context
of basal ganglia pathways and feedback loops. There was no difference in proximity between most cell
type pairs, and if there was a difference, it was small. Most of the reported effects were related to TANs
in relation to synapses that were not among the most frequent, which could indicate that these effects
were due to smaller sample sizes.

The two effects on more frequent synapses that were discussed as part of the basal ganglia pathways
were TAN vesicles, which are more associated with smaller HVC-STN and GPi-STN synapses, but not
DA. As mentioned above, there are no reports of cholinergic modulation of the STN thus far (Prasad et al.
2024, Tisch et al. 2004), but DA modulation can reduce GABAergic transmission to the STN (Cragg
et al. 2004), which is in contrast to these results. The incorporation of these cells into Area X, in close
proximity to TAN neurons, raises the question of whether other cell types have cholinergic receptors in
the songbird. Future studies are needed to elucidate the effects of ACh on STN and GPi neurons in Area
X.

The small differences were mostly cell type-specific for pre- and postsynaptic partners, e.g., more TAN
vesicles were associated with smaller GPi-INT2 synapses, while larger synapses were associated with more
vesicles for GPi-INT3 synapses, and slightly more vesicles were associated with larger synapses for GPe-
INT2 synapses. INT2 and INT3 are newly identified cell types in Area X, so these results could provide
additional insight into their functions, which should be explored further in functional studies.

As mentioned above, this analysis has the limitation of being oblivious to actual release sites, which
have been shown for DA (Liu et al. 2018) and could be similar in TAN. This means that if DA only affects
synaptic size in proximity to active-like zones, these effects would be missed in the data. Additionally,
small differences detected could be spatial artifacts rather than functionally relevant differences. There-
fore, all potential effects must be interpreted with caution and verified in future studies using functional
analysis or analysis that labels active-like zones.

4.6 Glia and migratory neurons

In addition to several types of adult neurons, astrocytes, microglia, OPCs, oligodendrocytes, and migra-
tory neurons have been identified and analyzed based on their organelle densities and contact areas with
neuron types.

The morphology of the aforementioned cell types is consistent with previous literature (Baldwin et al.
2024, Buchanan et al. 2022, Salmon et al. 2023, Xu et al. 2008). However, there are differences between
the glial cells described here and those in the living brain.

First, oligodendrocytes have several processes that extend to axons. Due to their thinness, these
processes could not be properly segmented in our data and were not properly linked to myelin segments.
This restricts the analysis of organelles to primarily the soma and omits most of their contact sites. In a
recent connectomics study from mouse neocortex, more of these processes could be segmented (Buchanan
et al. 2022, Turner et al. 2022). The current segmentation could potentially be improved by adjusting it
specifically for thin oligodendrocyte processes or by adding more to the ground truth segmentations.

Second, chemical fixation alters the morphology of astrocytes, resulting in increased coverage of spines,
more intricate morphology with thinner processes between neurites, and greater coverage of blood vessels
compared to cryo fixation (Korogod et al. 2015). Therefore, astrocyte contact areas are overestimated in
comparison to the living brain.
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4.6.1 Organelles in glia and migratory neurons

This is the first analysis comparing the densities of mitochondria, GA, and ER in different glial cell
types and migratory neurons. The analysis shows that glial cell types differ in their organelle densities,
as well as in comparison to neurons. Astrocytes had similarly high mitochondrial densities as tonically
active GPi; however, oligodendrocytes, OPCs, microglia, and migratory neurons had lower mitochondrial
densities than MSNs. Regarding GA and ER densities, glial cell types were similar to neuronal cell types,
with astrocytes having lower densities than the other glial cell types. Migratory neurons had the lowest
densities of mitochondria, GA, and ER. Oligodendrocytes had the highest GA densities, even compared
to neurons, but their processes are often cut off, which could lead to an overrepresentation of the soma
compared to other cell types.

Since 5-15 % of ATP demand is estimated to be required for astrocyte metabolic processes, high
mitochondrial density aligns with high metabolic demand, even though astrocytes are not dependent on
mitochondria for energy supply through glycogen stores (Rose et al. 2020). In contrast, a previous study
of only four astrocytes and microglia cells did not observe significant differences in mitochondrial density
in the somatosensory cortex of rats (Cali et al. 2019). Whether this discrepancy is due to the small
sample size or to differences in the developing brain needs to be further elucidated.

Interestingly, the high density of mitochondria in astrocytes is not correlated with high densities of ER
or GA, even though astrocytes respond to neurotransmitters with changes in intracellular Ca** (Durkee et
al. 2019) and higher ER density is correlated with higher firing rates in neurons (section 4.3.2). Similar to
neurons, astrocytic mitochondria have been associated with modulating Ca?" transients. Mitochondria
interact with the ER throughout the astrocyte. Although mitochondria are longer, they make more
contacts with the ER, and the ER has a higher surface area in the endfeet regions of astrocytes (Salmon
et al. 2023). The ER and mitochondria are also dense near the soma (Baldwin et al. 2024).

Overall, the high mitochondrial density and the compartment-specific differences in ER density suggest
that, for modulation of Ca®*T, ER may only be necessary at high densities in specific regions, provided
that the mitochondrial density is also high. Further analysis should focus on compartmental differences
in mitochondria and ER. Additionally, astrocytes have been reported to rarely have Golgi outposts in
the endfeet (Boulay et al. 2017), which has not been observed in this dataset but should be analyzed
systematically in the future.

Since OPCs and migratory neurons move through the tissue (Hughes et al. 2013, Shvedov et al. 2024),
their low mitochondrial and overall organelle densities, respectively, could indicate that migration in the
brain is more energy efficient than environmental surveillance or neuronal firing. Further studies are
needed to investigate the link between energy demand and organelle density in different glial cell types
and migratory neurons.

The organelle densities of microglia and OPCs were similar. These results are consistent with those
suggesting that they are similar not only in morphology, but also in function and distribution throughout
the brain (Buchanan et al. 2022).

The shapes of organelles differ among glial types and migratory neurons. For example, microglia have
been reported to have shorter mitochondria than astrocytes (Cali et al. 2019), while the data showed
small, round mitochondria in migratory neurons (see figure 3.41). Further analysis of the shapes and
sizes of mitochondria among glial cell types is needed for a more detailed comparison.
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4.6.2 Contact areas between glia and neurons

Since all glial cell types interact with neurons and influence the formation of neuronal synapses, contact
areas between different glial cell types and neuron types in Area X were analyzed. It should be noted that
the presence of a membrane contact does not indicate a functional interaction. However, since there are
no established markers for glia-glia or glia-neuron interactions in EM, the contact areas were considered
a preliminary estimate.

Astrocytes had the highest contact areas with all cell types, followed by microglia. When normalized
to the surface areas of the different cell types, the contact areas were similar, though MSN and LTS had
slightly higher normalized contact areas.

The high contact areas of astrocytes with all neuronal types align with their regular ensheathment
of synapses as part of the tripartite synapse. As part of this process, individual astrocytes can release
multiple neurotransmitters, the effects of which vary depending on the neuronal receptors (Durkee et al.
2019). In the mouse somatosensory cortex, 20 % of synapses were covered by 50 % or more (Yener et al.
2025), but due to the higher coverage of synapses in chemical fixation, this is probably an overestimate
(Korogod et al. 2015).

Astrocyte coverage is cell-type specific, with slightly more coverage in excitatory synapses in the mouse
somatosensory cortex. This coverage also depends on synapse size. Astrocyte coverage is low in small,
multi-synapses, suggesting that it plays a role in LTD (Yener et al. 2025). Additionally, astrocyte coverage
of axon terminals correlates with the number of outgoing synapses (Uytiepo et al. 2025). Further analysis
should focus on synapse coverage to determine if there are differences in astrocyte coverage of synapses
in this dataset. Furthermore, astrocytic mitochondria are closer to denser clusters of synapses (Salmon
et al. 2023), so astrocyte synapse coverage should be analyzed in the context of astrocytic organelles as
well.

In the mammalian striatum, astrocyte subpopulations have been found to respond specifically to direct
and indirect pathway MSNs. Although the analysis of MSNs revealed no distinct subpopulations in this
dataset (section 4.4.1), it is conceivable that astrocyte coverage of MSN-GPe and MSN-GPi synapses
differs due to variations in synapse size or spine density across the population. These questions should
be addressed in future analyses.

As mentioned above, oligodendrocyte myelination could not be properly analyzed automatically be-
cause processes were cut off and the myelin was not segmented. However, manually identifying some
processes showed that oligodendrocytes were myelinating a GPi. The GPi’s axons are not continuously
myelinated, as was previously shown in pyramidal axons in the neocortex (Tomassy et al. 2014).

Microglia have been shown to interact with neurons on a large scale by increasing neuronal firing
under anesthesia and reducing firing under hyperactivity (Umpierre et al. 2021), as well as on a small
scale by influencing synapse formation. In the nucleus accumbens, mice without microglia had fewer
excitatory synapses (Gongwer et al. 2025). They can also remove inhibitory synapses (Hashimoto et
al. 2023) and in Chandelier cells a type of GABAergic interneuron that synapses onto the axon initial
segment of a pyramidal neuron in the cortex, depletion of microglia leads to shorter cartridge length and
fewer boutons (Gallo et al. 2022). Microglia can also influence synapse formation directly by contacting a
dendrite. Within ten minutes, this dendritic contact is followed by a Ca®Tresponse that leads to filopodia
formation and subsequently increases synapse formation, especially in feedforward circuits (Miyamoto
et al. 2016). Additionally, depletion of microglia reduces spine density. These effects were demonstrated
in the somatosensory cortex of mice within the first eight to ten days of life. Further analysis is needed to
determine if microglia preferentially contact neuronal dendrites, if these contacts occur more frequently
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in proximity to feedforward synapses (e.g., onto MSNs), and if there is a relationship with MSN spine
density.

OPCs have been suggested to prune axons because they frequently form phagolysosomes containing
axons, particularly excitatory ones (Buchanan et al. 2022). Further analysis is needed to determine
whether they specifically target the axons of neurons within Area X and whether they make preferential
contact with excitatory projecting axons.

Reminiscent of their dense surveillance network, astrocytes had the most contact with other glial cell
types and with each other. This network develops in the first 15 days in mice and is coupled via gap
junctions (Gutnick et al. 1981, Peng et al. 2023, Zhong et al. 2023). Although astrocytes interact with
oligodendrocytes via gap junctions (Peng et al. 2023), this interaction is not evident in the data, likely
due to the cutoff of oligodendrocyte processes. There are no reports on how the different glial types
interact with each other, and further studies are needed to determine whether the reported contact areas
are functionally relevant.

Microglia and OPCs span the entire territory with little overlap (Buchanan et al. 2022, Hughes et al.
2013, Kettenmann et al. 2011) forming few contacts with each other. Microglia can form membrane
contacts with each other (Peng et al. 2023), but these contacts are rarely observed in the data. Both
OPCs and microglia are often in a "satellite" position, touching the soma of other cells, mostly neuronal
(Buchanan et al. 2022), which has also ben found for one example among OPCs (cell IDs: 1438305032,
1535070169, coordinate: 4320, 3208, 9284). This could potentially explain the interaction between OPCs,
but further analysis is needed to determine the percentage of contacts that result from soma contact.

Overall, the analysis of this dataset provided an initial understanding of glial cell contacts with
neuronal cell types, which is consistent with descriptions in mammalian literature, particularly with
regard to astrocyte networks and their interactions with other cell types. Since little is known about
glial interactions with each other, and whether these interactions are visible in EM, this data can provide
new insights for further studies. These studies need to determine how well membrane contacts in EM
translate to functional interactions.
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Conclusions and Outlook

This thesis focuses on the analysis of a songbird Area X dataset with respect to the morphology and
subcellular structures of neuronal and glial cells, as well as their connectivity.

A previously published pipeline (Dorkenwald et al. 2017, Schubert et al. 2022) was used to analyze the
current dataset. Improvements were made to the ground truth of cell type classification and synapse pre-
diction to remove artifacts. These improvements led to the identification of three previously undescribed
interneuron types and the prediction of glial cells and migratory neurons. Additionally, the prediction
and processing of single vesicles, the endoplasmic reticulum (ER), and the Golgi apparatus (GA) were
added and accurate prediction of these organelles was manually verified.

The analysis of neuronal morphology and subcellular structures revealed quantifiable differences
among cell types that align with existing literature. These findings can be applied to other microscopy
techniques for further investigation of the three novel interneuron types. Axonal mitochondria, ER, and
vesicle density were correlated with firing rates reported in the literature and led to different proposals for
the firing rates of novel interneuron subtypes: INT1, INT2, and INT3. Through the analysis of connec-
tivity, morphology, and organelle densities, the novel interneuron subtypes could be characterized. While
it is unclear whether INT1 and INT2 have mammalian analogues, INT3 bears striking similarities to the
mammalian F'S cell type. Further studies using molecular markers and electrophysiology are needed to
determine the identity of these interneuron types. Electrophysiological studies can also help determine
which organelle is the best predictor of firing rates during singing.

Overall, organelle information has primarily been studied in the context of volume densities, which can
improve cell classification and hint at neuronal activity, as well as glial energy demand. Further analysis
is needed to investigate correlations with synaptic area. However, these results show that including
organelle information allows us to gain more insight from connectomic datasets than just snapshots of
morphology and connectivity.

For the first time, connectivity analyses of neurons in Area X revealed that the three known basal
ganglia pathways—the direct, indirect, and hyperdirect pathways—are present with varying degrees of
synaptic strength. The direct pathway is the strongest, followed by the hyperdirect pathway, which is its
strongest antagonist. The indirect pathway is neither separated from the direct pathway at the level of
MSNs nor supported by a large area of synaptic connectivity.

The three novel GABAergic interneuron types differ in their incoming and outgoing connectivity. This
connectivity suggests potential roles for INT3 as a feedforward pathway from HVC to MSNs, for INT2
as part of a similar feedforward pathway, and for an additional feedback loop from GPe via INT2 to
MSNs. INT1 acts as feedforward inhibition from LMAN onto GPe and GPi. These connectivity patterns
demonstrate that these novel interneuron types interact not only with the known basal ganglia pathways
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as previously described for striatal and pallidal interneurons, but also play integral roles in them.

With GPe having INT2 and INT3 as their primary output targets, the GPe’s primary role, as dictated
by connectivity, is to be part of the MSN feedback loop, rather than the indirect pathway, as previously
described. This result positions feedback and feedforward loops as major pathways in connectivity along-
side the forward basal ganglia pathways. Further studies with functional and behavioral data are needed
to determine whether these results are limited to specific temporal conditions during song learning or if
they are common.

While not all of the investigated neuronal cell types act primarily via synaptic transmission, hints of
volume transmission were also analyzed. In fact, most of the vesicles in cholinergic and dopaminergic
axons were found outside of synaptic loci. Although release sites cannot be identified with EM, the
surroundings of these non-synaptic vesicles were analyzed and showed no preference for a specific synapse
type or cell type. This finding is consistent with a global signal. These results suggest that, if release
sites can be identified, connectomics could be a powerful tool for investigating volume transmission.

In summary, this thesis provides new insights into the cell types and connectivity within Area X. The
results also demonstrate that volume EM datasets enable the study of various organelles and cell types,
not just neurons and synapses. This can aid connectomic analysis by providing clues about cell properties
and non-synaptic transmission. Further research on verifying relationships between organelles and cell
properties will make connectomics an even more powerful tool, allowing us to bridge the gap between
static and functional analyses. Most importantly, this is the first time that connectomics has allowed for
a detailed analysis of a basal ganglia area, revealing novel interneurons and connectivity motifs. These
results demonstrate new insights into the songbird basal ganglia and show that connectomic analysis is
a powerful tool for understanding basal ganglia connectivity.
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Appendix

2pum 2.5um

Figure A1l: Annotated ground truth cubes 3 and 11 which include artifacts in the raw data. Arrows
indicate location of the artefact and how it affects the annotations. Mitochondria shown in pink, ER in
blue, GA in orange, synapses in green and vesicles in black.
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cell type | axon pathlength ratio | dendrite pathlength ratio
GPe 0.49 0.49
GPi 0.39 0.28
INT1 0.67 0.73
INT?2 0.22 0.57
INT3 0.55 0.68
LTS 0.08 0.34
MSN 0.77 0.73
STN 0.12 0.18
TAN 0.04 0.23

Table Al: The ratio of full cells versus fragments of a specific compartment per cell type in the dataset.
The path length ratio calculates the path length of this compartment for all full cells versus the sum of
the path lengths of all fragments in this cell type.

version ground truth | all fragments with at least one synapse | all fragments

v4 stats 52.48 74009.93 112518.87
v4 p-value 4.02e-12 0.0 0.0

vH stats 80.52 900698.26 1151326.87
vH p-value 3.27e-18 0.0 0.0

v6 stats 52.75 258860.58 914903.56
v6 p-value 3.51e-12 0.0 0.0

Table A2: Test statistic and p-values calculated using the Kruskal-Wallis test for the length of projecting
axons in the different versions.

version | DA vs HVC | DA vs LMAN | HVC vs LMAN
stats v4 -1.64 -5.63 -6.44
p-value v4 0.10 1.84e-08 1.18e-10
stats vh -4.29 -6.08 -7.86
p-value vH 1.82e-05 1.24e-09 3.82e-15
stats v6 -0.44 -5.08 -6.74
p-value v6 0.66 3.78e-07 1.56e-11

Table A3: P-values calculated using the ranksum test for the axon length in the ground truth for the
different versions.
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Figure A2: Annotated ground truth cubes 2, 4, 5, 6, and 8 according to table 2.10. All on the same scale.
Not all cubes contain GA. d Cube 6 is over annotated in the z direction.
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all classes mitochondria ER GA synapses and
vesicles

Figure A3: Annotated ground truth cubes 9, 10, 12, 13 and 14 according to table 2.10. All on the same
scale. Not all cubes contain GA.
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Figure A4: Non-synaptic TAN vesicles in proximity to MSN-GP1i synapses. TAN vesicles were considered
non-synaptic if they were at least 3 pm away from the closest synapse. "Small" and "large" synapses refer
to the lowest and highest percentiles of synapses, respectively, according to synapse size. See appendix
table A45 for more detail on vesicle numbers and synapse sizes. a Distance of vesicles for all MSN-GPi
synapses (left); then, a random sample of 100 or 1000 vesicles was used for bootstrapping. b P-values of
the Wilcoxon rank sum test across 1000 iterations of bootstrapping with different sample sizes for each

iteration.

version | DA vs HVC | DA vs LMAN | HVC vs LMAN
stats v4 -243.72 -152.61 -114.87
p-value v4 0.0 0.0 0.0
stats vh -906.41 -463.42 202.22
p-value vH 0.0 0.0 0.0
stats v6 -507.31 -122.53 93.65
p-value v6 0.0 0.0 0.0

Table A4: P-values calculated using the ranksum test for axon length in the predicted axons with at least

one synapse in the different versions.
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a 5 % sucrose b 7 % sucrose C 9 % sucrose

Figure A5: Different concentrations of sucrose were used for fixation of large samples. Three 2.5-mm
samples of a zebra finch brain were fixed with solutions containing 5, 7, or 9 % sucrose. a-c The neuropil
in the middle of the sample shows different amounts of preserved ECS depending on the sucrose concen-
tration. All images are on the same scale. All images are on the same scale. d-f Artifacts around the
blood vessels in the same samples as a-c. Insets show details of the damage around the blood vessels.

180



Appendix

10 pm 10 pm

Figure A6: Light microscopy images of ETS stained samples, fixed in solution containing 7 % sucrose.
The sample was fixed as a 2.5 mm block. a, b Two different locations containing blood vessels were
imaged with transmitted light (left) and fluorescence (right). The area around the blood vessel shows
artifacts in the unstained tissue similar to those in appendix figure A5 b.
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Figure A7: The summed synaptic area, summed mitochondrial volume, and summed vesicle cloud volume

were compared between the versions, 'v4/SyConnV2’ from Schubert et al. 2022 and the current version,
v6'.
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Figure A8: Projecting axons and their lengths. a v5 number of axon fragments in different length used for
ground truth generation. Labels show lower end of the corresponding bin, e.g 50 indicates axon fragments
with length 50 - 100 pm. b v5 percentages of axons with at least one synapse ¢ Comparison of the lengths
of predicted fragments in SyConnV2/ 'v4’ (Schubert et al. 2022), 'v5’, and the most recent version ,’v6’.
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version | DA vs HVC | DA vs LMAN | HVC vs LMAN
stats v4 -307.57 -178.61 -125.57
p-value v4 0.0 0.0 0.0
stats vH -1006.35 -556.32 271.62
p-value vH 0.0 0.0 0.0
stats v6 -953.45 -190.83 228.40
p-value v6 0.0 0.0 0.0

Appendix

Table A5: P-values calculated using the ranksum test for the axon lengths of all the predicted axons in
the different versions.
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Figure A9: Certainties of different projecting axon classes in the current version v6. Putative VTA
projecting axons (DA). b Putative HVC projecting axons. ¢ Putative LMAN projecting axons.
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Figure A10: Interneuron morphological differences in v5.
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a Soma diameter and axon mitochondrial

volume density. b Spine density and axon median radius of FS, NGF type 1, NGF type 2, and undefined
NGF. In the following version ("v6") labeled INT1 (FS), INT2 (NGF type 1), and INT3 (NGF type 2).
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cell type number of cells vb | number of cells v6
FS/ INT1 91 96
NGF type 2/ INT2 76 100
NGF type 3/ INT3 50 66
NGF undefined 27 -
total 244 262

Table A6: Number of complete cells used to distinguish the three interneuron types: FS/INT1, NGF
type 1/INT2 and NGF type 2/INT3. The cells used are filtered for completeness using the same criteria
as those used for data analysis.

morphological parameters vH stats | vb p-value | v6 stats | v6 p-value
axon median radius 155.87 1.42E-34 140.84 2.61E-31

axon mitochdondria volume density | 172.15 4.16E-38 198.81 6.76E-44
soma diameter 151.41 1.32E-33 150.84 1.76E-33

spine density 150.51 2.07E-33 145.10 3.10E-32

Table A7: P-values calculated using the Kruskal-Wallis test for different morphological parameters be-
tween FS, NGF type 2, and NGF type 1 in v5, as well as INT1-3 in v6. The results of the post hoc test
can be found in the appendix tables A8, A9.

FS vs NGF type 1 | FS vs NGF type 2 | NGF type 1 vs NGF type 2
axon median 8.29 -9.80 9.47
radius stats
axon median 1.15E-16 1.10E-22 2.68E-21
radius p-value
axon mltoc}.londrla 987 0.75 947
volume density stats
axon mitochondria 5.84E-23 1.87E-22 2.68E-21
volume density p-value
soma
diameter stats 9.28 -8.05 -9.47
| soma 1.73E-20 8.25E-16 2.68E-21
diameter p-value
spine
density stats -8.64 8.83 9.47
Spine 5.70E-18 1.04E-18 2.68E-21
density p-value

Table A8: Results of the pairwise Wilcoxon rank sum test for F'S and NGF types in v5.
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INT1 vs INT2 | INT1 vs INT3 | INT2 vs INT3
axon median radius stats 10.00 -3.37 -9.71
axon median radius p-value 1.52E-23 0.000762405 2.85E-22
axon mitochondria volume density stats 10.50 -9.57 -10.88
axon mitochondria volume density p-value | 8.73E-26 1.05E-21 1.40E-27
soma diameter stats 9.45 -6.37 -10.06
soma diameter p-value 3.43E-21 1.84E-10 7.99E-24
spine density stats -7.28 8.52 10.20
spine density p-value 3.22E-13 1.57E-17 2.00E-24

Table A9: Results of the pairwise Wilcoxon rank sum test for INT1, INT2 and INT3 types in v6.

DA | LMAN | HVC | MSN | STN | TAN | GPe | GPi | LTS | INT1 | INT2 | INT3 | ASTRO | OLIGO | MICRO | MIGR | FRAG

DA 23 0 0.67 0 0 0.67 0 0 0 0.67 1 0 0 0 0 0 0
LMAN 0 53.33 1 1 0.67 0 0 0 0 0.33 0.67 0 0 0 1 0 0
HVC 0 6 45.33 | 1.67 0 0 0 0 0 0 0 0 0 0 0 0 0
MSN 0 1.33 0 29.33 0 0 0 0 0.33 0 0 0 0 0 0 0 0
STN 0 1 0 0 29.67 0 0.33 0 1 1.67 0 0.33 0 0 0 0 0
TAN 0 0.33 0 0 0 9.33 0 0 0 0.67 0.67 1 0 0 0 0 0
GPe 0 0 0 0 0 0 12 0 0 1 0 0 0 0 0 0 0
GPi 0 0 1 0 0 0 2 12 0 0 0 0 0 0 0 0 0
LTS 0 0.33 1 2.33 0 0.33 0 0 3.67 1 0.33 0 0 0 0 0 0
INT1 0 1 0 0 0.67 | 0.33 0 0 0 22 0 0 0 0 0 0 0
INT2 0 0 0 0 0 0 0 0 0 0.33 | 15.67 0 0 0 0 0 0
INT3 0 0 0 0 0 0 0 0 0 0 0.67 | 15.33 0 0 0 0 0
ASTRO 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0
OLIGO 0 0.67 0 0.67 | 0.33 0 0 0 0 0 0 0 0 9.33 2.33 0.67 0
MICRO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0
MIGR 0 0.33 0 0 0 0 0 0 0 0 0 0 0 0 1 12.67 0

FRAG | 0.67 1.33 0.33 | 0.33 0 0 0 0 0 0 0.33 0 2 0.33 1.33 0 17.3

Table A10: Confusion matrix from the 10-fold cross-validation, averaged over three repetitions with
redundancy 1.

DA | LMAN | HVC | MSN | STN | TAN | GPe | GPi | LTS | INT1 | INT2 | INT3 | ASTRO | OLIGO | MICRO | MIGR | FRAG
DA 24 0 0.67 0 0 0.67 0 0 0 0 0.67 0 0 0 0 0 0
LMAN 0 57 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HVC 0 2.33 50.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSN 0 0 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0
STN 0 0 0 0 33.33 0 0 0 0 0.33 | 0.33 0 0 0 0 0 0
TAN 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0
GPe 0 0 0 0 0 0 12.33 | 0.67 0 0 0 0 0 0 0 0 0
GPi 0 0 0 0 0 0 0.67 | 14.33 0 0 0 0 0 0 0 0 0
LTS 0 0 0 0 1.33 0 0 0 6.67 1 0 0 0 0 0 0 0
INT1 0 0 0 0 2 0 0 0 0 22 0 0 0 0 0 0 0
INT2 0 0 0 0 0 0 0 0 0 0.67 | 15.33 0 0 0 0 0 0
INT3 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0
ASTRO | 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0
OLIGO 0 0.67 0 0 0.33 0 0 0 0 0 0.33 0 0 9.33 2.33 1 0
MICRO | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0
MIGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 0

FRAG 0 1.67 0.33 | 0.33 0 0 0 0 0 0 0 0 2 0.33 1.67 0 17.67

Table A11: Confusion matrix from the 10-fold cross-validation, averaged over three repetitions with
redundancy 10.
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DA | LMAN | HVC | MSN | STN | TAN | GPe | GPi | LTS | INT1 | INT2 | INT3 | ASTRO | OLIGO | MICRO | MIGR | FRAG
DA 25.33 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LMAN 0 57 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HVC 0 3.33 49.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSN 0 0 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0
STN 0 0 0 0 33.33 0 0 0 0 0.67 0 0 0 0 0 0 0
TAN 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0
GPe 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0
GPi 0 0 0 0 0 0 1.67 | 13.33 0 0 0 0 0 0 0 0 0
LTS 0 0.67 0 0 1 0.67 0 0 6.67 0 0 0 0 0 0 0 0
INT1 0 0 0 0 1 0 0 0 0 23 0 0 0 0 0 0 0
INT2 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0
INT3 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0
ASTRO 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0
OLIGO 0 0.67 0 0 0.33 0 0 0 0 0 0.33 0 0 9.67 2.33 0.67 0
MICRO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0
MIGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 0

FRAG 0.33 1.33 0.33 | 0.33 0 0 0 0 0 0 0 0 2 0.33 1.67 0 17.67

Table A12: Confusion matrix from the 10-fold cross-validation, averaged over three repetitions with
redundancy 20.

DA | LMAN | HVC | MSN | STN | TAN | GPe | GPi | LTS | INT1 | INT2 | INT3 | ASTRO | OLIGO | MICRO | MIGR | FRAG

DA 25.33 0 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LMAN 0 57 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HVC 0 2.67 50.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSN 0 0 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0
STN 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0
TAN 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0
GPe 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0
GPi 0 0 0 0 0 0 1 14 0 0 0 0 0 0 0 0 0
LTS 0 0 0 0 1.67 0 0 0 6.33 0 1 0 0 0 0 0 0
INT1 0 0 0 0 2 0 0 22 0 0 0 0 0 0 0
INT2 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0
INT3 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0
ASTRO 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0
OLIGO 0 0.67 0 0 0.33 0 0 0 0 0 0.33 0 0 9.67 2.33 0.67 0
MICRO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0
MIGR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 13.33 0

FRAG 0 1.33 0.33 | 0.33 0 0 0 0 0 0 0 0 2 0.33 2 0 17.67

Table A13: Confusion matrix from the 10-fold cross-validation, averaged over three repetitions with
redundancy 50.
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Figure A11: Evaluation of individual vesicle prediction and extraction by comparing training on individual
vesicles as a single class with multi-class prediction, together with mitochondria, ER, GA, and synapses.
a Fraction of true vesicles is depicted for each cell type. b Number of true membrane-close vesicles at

different distances.

¢ Astrocyte mitochondria that were misclassified as vesicles were found by Delta

Schick (location: 16609, 15810, 11746; astrocyte ID: 2302353201).
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Figure A12: Evaluation of ER and Ga prediction. a Number of coordinates in each manually identified
compartment. b Number of manually identified coordinates in either a GA stack or a GA vesicle. ¢
Percentage of coordinates predicted as a GA and manually verified to be either a GA stack or a GA
vesicle. d Fraction of true ER, GA, and vesicle coordinates per cell type. e Number of separated GA
stacks per cell type. True positives are GA that were correctly mapped to cells. False positives are those
that were mapped to cells but are not GA stacks. False negatives are stacks that are GA but were not
predicted or mapped to cells.
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number number number mergers number number
number . . . .
cell type erroneous | incomplete | cells with per mm mergers with | mergers with
total .
cells cells mergers | pathlength neurons glia

MSN 500 6 0 6 0.004 6 0
GPe 28 1 1 0 0.000 0 0
GPi 58 11 2 9 0.020 11 1
LTS 38 1 0 1 0.008 1 0
STN 108 6 2 4 0.006 5 0
TAN 13 5 1 4 0.049 5 0
INT1 10 3 0 3 0.030 2 1
INT2 10 1 0 1 0.018 1 0
INT3 10 1 0 1 0.014 1 1

Table Al4: Mergers from manually reviewed cells.

All reviewed cells had a predicted soma, axon,

and dendrite, with a minimum path length of 200 pm for each. For MSN, a random subset of 500
cells (out of 8,093) was chosen; for INT1-3, a random subset of 10 cells was chosen because these cells
have extensive axonal arborization, making manual checks time-intensive. The complete set of cells was
manually inspected for the other cell types (GPe, GPi, LTS, STN, and TAN). Cells were marked as
’erroneous’ if they either did not have an axon, soma, or dendrite after visual inspection (’incomplete’)
or were merged with another cell (>50 nm path length or >1 synapse). "Erroneous" cells were excluded
from the analysis for cell types where all cells could be manually checked (method section 2.3.1). To
determine the number of mergers per millimeter, all mergers involving different fragments were counted
(some cells had more than one merger) and divided by the total path length of all cells of this cell type.

median | median | surface | surface . .

length | length . . myelin myelin

cell type mean std radius radius area area fraction | fraction
[1m] [11m] mean std mean std mean std

[um] [um] [um?] | [pm?]

DA 349.39 189.35 0.09 0.010 400.43 229.69 0.000 0.000
GPe 5205.71 | 2016.70 0.11 0.016 8705.43 | 3878.51 0.009 0.015
GPi 6225.65 | 2201.74 0.16 0.027 14903.95 | 4708.35 0.132 0.056
HVC 333.84 154.10 0.09 0.018 326.31 207.83 0.000 0.003
INT1 8652.10 | 3948.12 0.09 0.006 11646.67 | 5426.67 0.000 0.000
INT2 3445.20 | 1761.09 0.08 0.008 3942.35 | 2143.13 0.000 0.000
INT3 10604.10 | 4759.77 0.09 0.008 20127.88 | 9600.45 0.003 0.006
LMAN 570.02 656.28 0.14 0.079 835.61 926.58 0.162 0.294
LTS 1619.04 | 1014.03 0.09 0.009 1607.07 | 1065.23 0.000 0.002
MSN 880.88 303.53 0.08 0.007 778.16 295.07 0.001 0.019
STN 5671.47 | 3877.94 0.08 0.011 6418.74 | 4835.05 0.004 0.010
TAN 3219.23 | 1737.58 0.10 0.008 4204.01 | 2049.72 0.000 0.000

Table A15: The mean and standard deviation of axon morphological parameters in all neuronal cell types.
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Figure A13: Different morphological parameters in neuronal cell types. a Axon skeleton pathlength. b
Dendrite skeleton pathlength. ¢ Estimated soma diameter. d Median axon radius. e Median dendrite
radius. f UMAP runs of all neurons in an 11-dimensional feature space with parameters from figure 3.15
a-f and a-e, same as figure 3.15 g. g Same as f, but UMAP separation is done without MSN cells, the
same as in 3.15 h.
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. . . . dendrite | dendrite | soma soma | dendrite | dendrite
soma soma spine spine | dendrite | dendrite . . cell cell
. . . . median | median | surface | surface | surface surface
diameter | diameter | density | density | length length . . volume | volume
cell type radius radius area area area area
mean std mean std mean std mean std
e i Ao e e o e 1
[11m] [11m] [m?|] | [pm?] | [um?] [11m?]
GPe 12.39 1.55 0.03 0.011 8309.65 2790.62 0.22 0.03 1104.17 | 277.04 6976.19 2526.29 | 3130.06 | 1184.74
GPi 14.52 2.24 0.01 0.007 10443.34 3101.68 0.24 0.06 1490.38 816.95 11483.55 4631.96 5856.73 | 1708.50
INT1 11.39 1.64 0.03 0.025 11521.39 | 4745.02 0.14 0.01 877.50 236.03 4617.08 1686.87 | 2338.41 | 802.45
INT2 9.21 1.14 0.04 0.026 5303.94 2243.63 0.13 0.02 554.17 157.94 3032.28 1124.85 1017.52 362.19
INT3 13.03 1.56 0.01 0.007 13011.69 5254.93 0.19 0.03 1147.40 | 322.33 4978.07 1671.06 | 3963.95 | 1522.97
LTS 9.36 1.33 0.04 0.023 2973.33 1251.43 0.16 0.04 622.36 179.79 2477.32 1044.77 826.58 282.34
MSN 8.77 1.38 0.18 0.038 2171.29 584.13 0.20 0.02 421.57 101.13 2942.25 939.49 729.58 165.20
STN 10.41 2.55 0.02 0.016 7588.33 4367.72 0.16 0.03 714.72 261.27 3594.38 2037.72 1547.73 | 850.18
TAN 20.53 1.54 0.06 0.015 7181.10 1723.76 0.19 0.01 4242.20 678.16 8015.88 1597.09 4349.92 605.97

Table A16: Mean and standard deviation of morphological parameters relating to soma and dendrite.

Figure A14: Specific nuclear morphologies. a An example of a wrinkly nucleus in a GP1i cell. The white
arrows point to the wrinkles. Coordinates: 7097, 20884, 3177. b An example of an STN cell with an
infolding in the nucleus, indicated by a black arrow. Coordinates: 21482, 25063, 6136.
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Figure A15: Synaptic area in relation to the surface mesh area of the axon and dendrite in different cell
types.
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parameter Kruskal stats | Kruskal p-value
soma diameter [pm] 42662.80 0.0
spine density [1/pm]| 42712.54 0.0
axon length [pm] 16827.14 0.0
dendrite length [pm] 42683.45 0.0
axon median radius [pm] 4581.13 0.0
dendrite median radius [pm]| 42672.15 0.0
soma surface area [pm2] 17090.02 0.0
axon surface area [pm2] 23940.75 0.0
dendrite surface area [pm2] 42636.92 0.0
axon myelin fraction 16508.46 0.0
cell volume [pm3] 42671.59 0.0

Table A17: Results of the Kruskal-Wallis test for different parameters on all cell types. For parameters
relating to axon or cell volume, projecting axon cell types (DA, HVC, and LMAN) were also included.
All p-values were significant in a post hoc Kruskal-Wallis test with p < 0.005, except: soma diameter:
GPe vs INT3 (0.03), INT2 vs LTS (0.88); spine density: GPe vs INT1 (0.17), GPe vs LTS (0.006), GPe
vs STN (0.02), GPi vs INT3 (0.29), INT1 vs STN (0.03), INT2 vs LTS (0.60), INT2 vs TAN (0.006),
LTS vs TAN (0.02); axon length: DA vs HVC (0.97), GPe vs GPi (0.11), GPe vs STN (0.82), GPe vs
TAN (0.02), GPi vs STN (0.23), INT1 vs INT2 (0.008), INT2 vs TAN (0.46), LTS vs TAN (0.006), STN
vs TAN (0.09); dendrite length: GPe vs GPi (0.009), GPe vs STN (0.27), GPe vs TAN (0.41), GPi vs
INT1 (0.02), GPi vs INT3 (0.007), INT1 vs INT2 (0.09), INT2 vs TAN (0.02); axon median radius: DA
vs LTS (0.07), GPe vs LMAN (0.58), GPe vs TAN (0.35), HVC vs INT1(0.23), HVC vs LTS (0.70), HVC
vs TAN (0.008) , INT1 vs LTS (0.10), INT3 vs LMAN (0.01), LMAN vs TAN (0.81); dendrite median
radius: GPe vs GPi (0.03), GPe vs MSN (0.005), GPe vs TAN (0.006), INT1 vs LTS (0.02), GPi vs TAN
(0.05), INT3 vs TAN (0.66), LTS vs STN (0.21), LTS vs TAN (0.01), STN vs TAN (0.005); soma surface
area: GPe vs INT3 (0.50), INT2 vs LTS (0.07); dendrite surface area: GPe vs TAN (0.46), GPi vs TAN
(0.02), INT1 vs INT3 (0.20), INT2 vs LTS (0.01), INT2 vs MSN (0.04), INT2 vs STN (0.37), LTS vs
MSN (0.006), MSN vs STN (0.04) ; axon surface area: GPe vs STN (0.01), INT2 vs TAN (0.94), STN
vs TAN (0.34); axon myelin fraction: DA vs HVC (0.27), DA vs INT1 (0.89), DA vs INT2 (0.97), DA vs
MSN (0.48), DA vs TAN (0.55), GPe vs INT3 (0.20), GPe vs LMAN (0.46), GPe vs STN (0.005), GPe vs
TAN (0.02), HVC vs INT1 (0.97), HVC vs INT2 (0.83), HVC vs LTS (0.66), HVC vs MSN (0.74), HVC
vs TAN (0.59), HVC vs INT2 (0,90), INT1 vs LTS (0.69), INT1 vs MSN(0.99), INT1 vs STN (0.006),
INT1 vs TAN (0.59), INT2 vs LTS (0.63), INT2 vs MSN (0.87), INT2 vs TAN(0.56), INT3 vs LMAN
(0.19), INT3 vs TAN(0.007), LMAN vs TAN (0.05), LTS vs MSN (0.64), LTS vs STN (0.09), LTS vs
TAN (0.78), MSN vs TAN (0.58), STN vs TAN (0.51); cell volume: DA vs HVC (1), DA vs LMAN (1),
GPe vs INT3 (0.009), INT3 vs TAN (0.63), LTS vs MSN (0.09)
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. percent | cells with | percent with | cells with | percent with
cell cells with . . .
cell type with wrinkled wrinkled nucleus nucleus
number | > 1 1 synapse . . . .
autapse nucleus nucleus infoldings infoldings

GPe 26 8 30.8 2 7.7 0 0.0
GPi 42 17 40.5 22 52.4 0 0.0
INT1 88 9 10.2 1 1.1 4 4.5
INT2 96 2 2.1 1 1.0 7 7.3
INT3 63 34 54.0 1 1.6 0 0.0
LTS 36 0 0.0 0 0.0 1 2.8
MSN 50 0 0.0 4 8.0 1 2.0
STN 97 0 0.0 5 5.2 28 28.9
TAN 7 0 0.0 0 0.0 0 0.0

Table A18: The fraction of cells with manually verified autapses, wrinkly somata, or soma indentations is
shown for different cell types. For the GPe, GPi, LTS, STN, TAN, INT1, INT2, and INT3, all of the cells
in the dataset with complete somata were inspected. For MSNs, only a random subset was inspected.

statistical test Kruskal-Wallis statistic | Kruskal-Wallis p-value
axon synaptic density per pathlength 7496.28 0
axon synaptic density per surface area 7619.34 0
dendrite synaptic density per pathlength 991.87 8.49E-209
dendrite synaptic density per surface area 1004.90 1.30E-211
soma synaptic density 1250.90 9.63E-265

Table A19: Kruskal-Wallis test results for synaptic density in different compartments. Synaptic density
was calculated twice: once as synaptic area per skeleton path length and once as synaptic area per mesh
surface area. For the soma, only the synaptic area per surface area was calculated. For the projecting
axon cell types (DA, HVC, and LMAN), values were only calculated for the axon. A post hoc Wilcoxon
rank sum test showed p-values < 0.005 for all pairs except: axon synaptic density per pathlength: DA
vs TAN (0.10), GPe vs GPi (0.10), GPe vs INT2 (0.65), GPi vs INT2 (0.008), LMAN vs STN (0.85);
axon synaptic density per surface area: DA vs TAN (0.02), HVC vs STN (0.01), INT1 vs LMAN (0.97),
INT1 vs STN (0.60), LMAN vs STN (0.98); dendrite synaptic density per pathlength: INT1 vs MSN
(0.26), INT2 vs LTS (0.19), STN vs TAN (0.07); dendrite synaptic density per surface area: GPe vs GPi
(0.06), INT1 vs MSN (0.02), STN vs TAN (0.84); soma synaptic density: GPe vs GPi (0.27), GPe vs
INT3 (0.35), GPi vs INT3 (0.01), INT1 vs STN (0.81), INT2 vs TAN (0.16), STN vs TAN (0.01)
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Figure A16: Mitochondrial volume density in different cell types in relation to firing rates. Black values
represent mean firing rates during singing from the literature. Turquoise values are predicted by linear
regression. a-c Mean firing rates predicted based on mean mitochondrial volume density in the axon,
dendrite, and soma. d Total mitochondrial volume density in different cell types. ¢, d Mean firing rates
predicted based on mean and median mitochondrial volume density.
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cell type total axon dendrite soma
mean  std  median | mean std median | mean std median | mean std median
DA 0.010 0.003  0.010

GPe 0.055 0.014 0.056 | 0.040 0.012 0.040 | 0.050 0.012 0.050 | 0.093 0.014  0.090
GPi 0.106 0.023 0.105 | 0.084 0.019 0.084 | 0.110 0.024 0.113 | 0.093 0.042  0.103
HVC 0.004 0.002  0.004
INT1 0.027 0.006  0.027 | 0.020 0.005 0.022 | 0.025 0.006 0.025 | 0.073 0.022  0.072
INT2 0.017 0.004 0.016 | 0.009 0.003 0.010 | 0.017 0.004 0.017 | 0.053 0.015 0.054
INT3 0.045 0.010 0.045 | 0.036 0.008 0.037 | 0.049 0.009 0.049 | 0.073 0.011  0.073
LMAN 0.013 0.008  0.011
LTS 0.022 0.007  0.022 | 0.007 0.003 0.007 | 0.020 0.004 0.020 | 0.058 0.013  0.056
MSN 0.025 0.004 0.025 | 0.004 0.001 0.004 | 0.026 0.003 0.026 | 0.049 0.010 0.049
STN 0.027 0.011  0.025 | 0.015 0.008 0.014 | 0.035 0.015 0.031 | 0.065 0.023  0.061
TAN 0.053 0.011  0.050 | 0.010 0.001 0.011 | 0.037 0.003 0.037 | 0.051 0.010 0.053

Table A20: The mean, median, and standard deviation were computed for axon and total mitochondrial
volume densities. For projection axon cell types (DA, HVC, and LMAN), only the axon volume density
was computed.

statistical test statistic p-value
total mitochondria volume density 676.26 9.226e-141
axon mitochondria volume density 22175.61 0.0

dendrite mitochondria volume density 755.77 6.98e-158
soma mitochondria volume density 495.67 5.96e-102

Table A21: Kruskal-Wallis test results for total mitochondrial volume density, as well as for axon, dendrite,
and soma volume densities. For the projecting axon cell types (DA, HVC, and LMAN), only the axon
mitochondrial volume density was computed. A post hoc Wilcoxon rank sum test showed p-values <
0.005 for all pairs except: total: GPe vs TAN (0.84), INT1 vs STN (0.01), INT3 vs TAN (0.04), LTS vs
STN (0.06), MSN vs STN (0.65); axon: DA vs INT2 (0.27), DA vs TAN (0.20), GPe vs INT3 (0.18),
INT2 vs TAN (0.19), LMAN vs STN (0.005), LMAN vs TAN (0.70), STN vs TAN (0.28); dendrite: GPe
vs INT3 (0.67), STN vs TAN (0.26); soma: GPe vs GPi (0.19), GPi vs TAN (0.008), INT1 vs INT3
(0.81), INT1 vs STN (0.01), INT2 vs LTS (0.20), INT2 vs TAN (0.53), LTS vs STN (0.06), LTS vs TAN
(0.26), MSN vs TAN (0.55), STN vs TAN (0.06)
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d; spearman |

coefficient | intercept | r-squared ad- f-statistic | p-value | correlation spearman

r-squared . p-value

coefficient

total mean 2905.10 -52.40 0.928 0.904 38.59 6.41e-03 0.90 0.04
total median 2945.25 -52.59 0.945 0.926 51.20 5.62e-03 0.90 0.04

axon mean 3113.43 1.10 0.965 0.959 166.50 1.33e-05 0.88 3.85e-03

axon median 3096.82 2.50 0.966 0.961 172.90 1.19e-05 0.88 3.85e-03
dendrite mean 2736.40 -34.34 0.937 0.916 44.58 6.85e-03 0.90 0.04
dendrite median | 2613.05 30.09 0.933 0.911 42.05 7.44e-03 0.90 0.04
soma mean 3993.13 -176.13 0.758 0.677 9.38 0.0549 0.80 0.10
soma median 3885.54 -174.03 0.900 0.866 26.89 0.0139 0.90 0.04

Table A22: The statistics of the different linear regressions are based on the mitochondria volume density,
as calculated with StatsModels. Additionally, the Spearman correlation was calculated for the mean and
median of the corresponding parameters.
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Figure A17: Vesicle cloud volume density and vesicle density of the axon in different cell types in relation
to their firing rates. The black values are mean firing rates during singing obtained from the literature.
The turquoise values are those predicted by linear regression. a Mean firing rates predicted based on mean
axon vesicle cloud volume density. b Mean firing rates predicted based on mean axon vesicle density.
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mean std median mean std median

cell type vesicle cloud vesicle cloud vesicle cloud vesicle | vesicle | vesicle

volume density | volume density | volume density | density | density | density

DA 0.018 0.010 0.015 44.64 24.66 38.43
GPe 0.030 0.009 0.030 73.36 20.68 70.35
GPi 0.053 0.016 0.055 138.91 37.53 139.90
HVC 0.003 0.006 0.001 10.38 23.28 2.60
INT1 0.021 0.009 0.023 59.19 26.13 65.38
INT2 0.023 0.011 0.027 79.54 39.43 94.03
INT3 0.053 0.011 0.053 203.11 47.34 202.92
LMAN 0.002 0.004 0.002 5.79 7.10 3.82
LTS 0.003 0.003 0.002 9.74 7.09 8.88
MSN 0.001 0.001 0.001 1.47 2.51 1.05
STN 0.007 0.004 0.007 20.29 12.99 18.74
TAN 0.010 0.004 0.009 26.00 12.40 23.42

Table A23: The mean, median, and standard deviation of the vesicle cloud volume density and the vesicle
density of the axon.

statistical test vesicle cloud volume density | vesicle density
Kruskal-Wallis statistic 11980.87 12728.95
Kruskal-Wallis p-value 0.0 0.0

Table A24: Results of the Kruskal-Wallis test for the vesicle cloud volume density and the vesicle density
of the axon. The post hoc Wilcoxon rank sum test showed p-values < 0.005 for all pairs except: vc
volume density: DA vs TAN (0.01), GPe vs INT2 (0.01), GPi vs INT3 (0.99), LMAN vs LTS (0.03),
STN vs TAN (0.10), vesicle density: DA vs TAN (0.01), GPe vs INT1 (0.09), GPe vs INT2 (0.02).
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spearman
coefficient | intercept | r-squared | adj. r-squared | f-statistic | p-value | correlation spearman
. p-value
coefficient
mean
vesicle cloud 4548.55 -0.34 0.883 0.864 45.30 5.24e-04 0.67 0.07
volume density
median
vesicle cloud 4393.16 5.82 0.910 0.895 60.80 2.35e-04 0.83 0.01
volume density
mean
vesicle 1.77 -0.24 0.892 0.874 49.45 4.13e-04 0.67 0.07
density
median
vesicle 1.75 5.16 0.915 0.901 64.54 1.99e-04 0.83 0.01
density

Table A25: The statistics of the different linear regressions are based on vesicle cloud volume density and
individual vesicle density, as calculated with StatsModels. Additionally, the Spearman correlation was
calculated for the mean and median of the corresponding parameters.

mean std median mean std median mean std median
cell type soma GA | soma GA | soma GA | total GA | total GA | total GA | soma GA | soma GA | soma GA

: volume volume volume volume volume volume area area area

density density density density density density density density density
GPe 0.019 0.004 0.019 0.0025 0.0009 0.0024 0.64 0.12 0.65
GPi 0.018 0.017 0.017 0.0040 0.0018 0.0041 0.65 0.81 0.62
INT1 0.019 0.007 0.019 0.0015 0.0009 0.0013 0.53 0.18 0.54
INT2 0.017 0.004 0.017 0.0014 0.0008 0.0012 0.50 0.13 0.52
INT3 0.017 0.003 0.017 0.0018 0.0011 0.0014 0.68 0.13 0.68
LTS 0.017 0.006 0.016 0.0028 0.0014 0.0027 0.44 0.15 0.45
MSN 0.013 0.010 0.012 0.0017 0.0014 0.0015 0.32 0.26 0.28
STN 0.018 0.007 0.017 0.0017 0.0010 0.0014 0.47 0.15 0.48
TAN 0.014 0.003 0.014 0.0083 0.0026 0.0075 0.60 0.05 0.60

Table A26: The mean, median, and standard deviation for soma GA volume density, total GA volume
density, and soma GA area density.
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Figure A18: GA volume and area density in different cell types in relation to their firing rates. The
black values are mean firing rates during singing from the literature and the turquoise values are those
predicted by linear regression. a Mean firing rates are predicted based on soma GA volume density in
relation to the estimated soma volume. b Total GA volume density is shown in relation to the cell’s total
skeleton path length in different cell types. ¢, d Mean firing rates predicted based on mean and median
GA volume density in relation to pathlength. e Mean firing rates predicted based on mean GA area
density, calculated as the surface area of the GA in relation to the soma surface area.
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statistical test soma GA volume density | total GA volume density | soma GA area density
Kruskal-Wallis statistic 212.06 147.53 452.96
Kruskal-Wallis p-value 1.83e-41 6.40e-28 8.57e-93

Table A27: Kruskal-Wallis test results for GA volume and area density. The post hoc Wilcoxon rank
sum test showed p-values < 0.005 for all pairs except: soma GA volume density: GPe vs GPi (0.21),
GPe vs INT1 (0.95), GPe vs INT2 (0.006), GPe vs LTS (0.02), GPe vs STN (0.18), GPi vs INT1 (0.14),
GPi vs INT2 (0.97), GPi vs INT3 (0.98), GPi vs LTS (0.92), GPi vs MSN (0.07), GPi vs STN (0.54),
GPi vs TAN (0.34), INT1 vs LTS (0.029, INT1 vs STN (0.11), INT1 vs TAN (0.007), INT2 vs INT3
(0.72), INT2 vs LTS (0.58), INT2 vs STN (0.20), INT3 vs LTS (0.91), INT3 vs STN (0.17), INT3 vs
TAN (0.02), LTS vs STN (0.27), LTS vs TAN (0.09), MSN vs TAN (0.35), STN vs TAN (0.02); total GA
volume density: GPe vs LTS (0.32), INT1 vs INT2 (0.66), INT1 vs INT3 (0.02) , INT1 vs MSN (0.38),
INT2 vs STN (0.02), INT2 vs TAN (0.009), INT1 vs STN (0.06), INT2 vs INT3 (0.009), INT2 vs MSN
(0.25), INT3 vs MSN (0.22), INT3 vs STN (0.65), MSN vs STN (0.28), soma GA area density: GPe vs
GPi (0.58), GPe vs INT3 (0.35), GPe vs TAN (0.08), GPi vs INT1 (0.21), GPi vs INT2 (0.048), GPi vs
INT3 (0.21), GPi vs LTS (0.049), GPi vs STN (0.03), GPi vs TAN (0.74), INT1 vs INT2 (0.28), INT1
vs TAN (0.12), INT2 vs STN (0.03), INT2 vs TAN (0.01), INT3 vs TAN (0.04), LTS vs STN (0.21).
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coefficient

intercept

r-squared

adj. r-squared

f-statistic

p-value

spearman
correlation
coeflicient

spearman
p-value

mean
soma,
GA volume
density

26277.04

-327.19

0.351

3.160

0.174

0.80

0.10

median
soma
GA volume
density

25658.96

-300.14

0.483

0.311

2.806

0.192

0.80

0.10

mean
total
GA volume
density

3822.26

84.31

0.010

-0.320

0.02977

0.874

0.39

median
total
GA volume
density

7685.76

71.20

0.032

-0.291

0.09824

0.774

0.50

0.39

mean
soma
GA area
density

558.63

-195.44

0.637

0.517

5.276

0.105

1.00

1.40e-24

median
soma
GA area
density

471.76

-146.31

0.525

0.367

3.317

0.166

0.90

0.037

Table A28: The statistics of the different linear regressions are based on GA volume and area density,
as calculated with StatsModels. Additionally, the Spearman correlation was calculated for the mean and
median of the corresponding parameters.
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Figure A19: ER area density in different cell types in relation to their firing rates. The black values are
the mean firing rates during singing obtained from the literature. The turquoise values are the predicted
values based on linear regression. a-c Mean firing rates predicted based on the mean ER surface area in
relation to the skeleton pathlength (axon or dendrite) or surface area (soma). d ER surface area in the
axon in relation to the axonal surface area. e, f Median and mean values from (d) in relation to the mean
firing rate from the literature. g ER ER surface area in the dendrite in relation to dendritic surface area.
h, i Median and mean values from (g) in relation to mean firing rates from the literature. e, f, h, i INT1,
INT2, INT3 and STN values were predicted with linear regression
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statistical test Kruskal-Wallis statistic | Kruskal-Wallis p-value
axon ER area per skeleton pathlength 17324.70 0.0
dendrite ER area per skeleton pathlength 908.54 8.13e-191
axon ER area density per surface area 20212.04 0.0
dendrite ER area per surface area 1162.50 1.21e-245
soma ER area per surface area 721.61 1.59e-150

Table A29: Kruskal-Wallis test results for the ER surface area in relation to the axon and dendritic
pathlength, as well as in relation to the surface area of the different compartments. The results of the
Spearman correlation coefficient are also shown. For projecting axon cell types (DA, HVC, and LMAN),
the total and axonal mitochondrial densities were the same. A post hoc Wilcoxon rank sum test showed
p-values < 0.005 for all pairs except: axon ER density per pathlength: GPe vs INT3 (0.04), INT1 vs
TAN (0.01), INT2 vs TAN (0.40), LMAN vs TAN (0.02), LTS vs STN (0.82), LTS vs TAN (0.02), MSN
vs TAN (0.06), STN vs TAN (0.03); axon ER density per surface area: DA vs LMAN (0.05), GPe vs
GP1i (0.08), INT1 vs INT3 (0.02), INT2 vs INT3 (0.06), INT2 vs LTS (0.20), INT2 vs TAN (0.02), INT3
vs LTS (0.02), LTS vs STN (0.02), LTS vs TAN (0.17), STN vs TAN (0.75); dendrite ER density per
pathlength: GPe vs TAN (0.06), INT1 vs LTS (0.51), INT2 vs LTS (0.006), MSN vs TAN (0.03); dendrite
ER density per surface area: GPi vs MSN (0.82), INT1 vs STN (0.02), INT2 vs LTS (0.34), INT3 vs
STN (0.68), STN vs TAN (0.03)
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Spearman | Spearman

coefficient | intercept | r-squared | adj. r-squared | f-statistic p-value corr. coeff. p-value

axon
ER area
per pathlength
mean

407.38 -65.38 0.918 0.904 66.95 1.8x107* | 0.74 0.037

axon
ER area
per pathlength
median
dendrite
ER area
per pathlength
mean
dendrite
ER area
per pathlength
median

379.80 -51.28 0.909 0.894 60.03 2.4 %107 | 0.76 0.028

151.60 -102.42 0.818 0.758 13.52 0.0348 0.90 0.037

176.24 128.30 0.778 0.705 10.54 0.0476 0.90 0.037

axon
ER area
per surface area
mean

538.25 -55.11 0.254 0.129 2.04 0.203 0.36 0.39

axon
ER area
per surface area
median
dendrite
ER area
per surface area
mean
dendrite
ER area
per surface area
median

525.85 50.80 0.269 0.147 2.21 0.188 0.33 0.42

300.06 -87.27 0.268 0.024 1.10 0.371 0.40 0.50

237.21 -45.47 0.135 -0.154 0.47 0.543 0 1

soma
ER area
density

mean

85.58 -145.01 0.761 0.681 9.543 0.0538 0.90 0.037

soma
ER area
density
median

80.84 -139.04 0.842 0.789 15.95 0.0281 0.90 0.037

Table A30: The statistics of the different linear regressions based on ER area density in different com-
partments were calculated using StatsModels. Additionally, the Spearman correlation was calculated for
the mean and median of the corresponding parameters.
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INT1 [Hz| | INT2 [Hz] | INT3 [Hz| | STN [Hz]
total mi volume density 26.93 <0 78.79 19.93
axon mi volume density 69.52 32.23 116.69 47.01
dendrite mi volume density 34.72 14.46 96.95 51.85
soma mi volume density 106.04 36.72 110.08 61.99
vc volume density 107.52 123.57 238.64 35.39
vesicle density 119.64 169.81 360.47 37.97
axon ER area density (pathlength) 73.29 46.33 115.39 31.54
dendrite ER area density (pathlength) <0 <0 <0 11.14
soma ER area density 61.97 28.17 132.42 47.41

Table A31: Predicted mean firing rates [Hz] during singing, based on linear regression of median organelle
volume and area density parameters. The cell types used for the prediction are: MSN, GPe, GPi, LTS,
and TAN. Mean firing rates during singing were based on literature for parameters in the dendrite, soma,
and all GA parameters. The DA, HVC and LMAN were also used for parameters calculated in the axon.
For total mitochondrial volume density, estimates from DA, LMAN, and HVC were used. Predictions
smaller than 0 are not physiologically possible and were only indicated as such. mi = mitochondria, vc
= vesicle cloud
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accuracy without parameter
parameters all cell types | without MSN
soma diameter 0.992 0.880
spine density 0.991 0.884
axon length 0.992 0.874
dendrite length 0.992 0.867
axon median radius 0.991 0.859
dendrite median radius 0.991 0.871
soma surface area 0.991 0.859
axon surface area 0.992 0.861
dendrite surface area 0.992 0.861
axon myelin fraction 0.991 0.874
cell volume 0.992 0.865
axon mi volume density 0.991 0.865
dendrite mi volume density 0.992 0.865
soma mi volume density 0.992 0.861
vesicle density 0.991 0.845
axon synaptic area density per surface area 0.991 0.863
dendrite synaptic area density per surface area 0.992 0.857
soma synaptic area density per surface area 0.992 0.859
soma GA area density 0.992 0.863
axon ER area density 0.992 0.869
dendrite ER area density 0.991 0.880
soma ER area density 0.991 0.861

Table A32: Parameters given to the RFC for training and were then potentially selected by the RFECV.
One round was done with MSNs and one without. Without MSNs, all parameters were selected; with
MSNs, all parameters except soma GA area density were selected. An RFC was trained without each of
these parameters, and the resulting accuracy score was calculated.
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Figure A20: UMAP clustering based on morphological parameters and organelle densities. a UMAP
clustering is based on a 22-dimensional feature vector with parameters from appendix table A32, variations
from figure 3.21 a. b Same as (a), but without MSN cells and with different runs, as in figure 3.21 b. ¢
Same as (a), but with vesicle cloud volume density instead of vesicle density. d Same as ¢ Same as (c),
but with clustering done without MSN.
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Figure A21: UMAP clustering based on parameters in the axon, as shown in A32. Projecting axon cell
types were clustered based on an eight-dimensional array of parameters (axon length, myelin fraction,
surface area, median radius, mitochondrial volume density, vesicle density, synaptic area density, and ER

area density).
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Figure A22: UMAP clustering based on morphological parameters and organelle densities. a UMAP
clustering is based on a 21-dimensional feature vector with parameters from A32 with variations shown
in figure 3.21 d. b Same as (a), but clustered without MSN, with variations shown in figure 3.21 e.
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Figure A23: Morphology and connectivity of MSN cells. a UMAP based on a 22-dimensional feature
vector for MSN morphology only; parameters from A32. b A broad spectrum of MSN morphologies exists,
where spine density is slightly correlated with dendritic length. ¢ Ratio of GPe and GPi in relation to
dendritic length in all MSNs. d Spine density and dendritic length in MSNs with complete dendrites
only (n = 3,052). e, f Ratio of GPe and GP1i in relation to spine density and dendritic length in MSNs
with no cutoff dendrites. MSN both = 80.3% (2451 cells), MSN only GPe = 0.78% (24 cells), MSN only
GPi = 18.2 % (556 cells), MSN no GP = 0.69 % (21 cells). g Axon skeleton length in MSNs grouped
by connectivity to GPe and GPi. h Dendrite skel pathlength. i Distance of the soma center to the
closest dataset border. g-i have significant differences between all groups (Wilcoxon rank-sum test; all p
< 0.005), except for dendritic length in MSNs with no GPe vs. MSNs with only (p = 0.027; see appendix
table A33)



Appendix

n p-value
MSN groups 3059 MSN colls R
axon length
MSN groups all < 10717
dendrite length 3052 MSN cells iy GPe vs none — 1,34 x 10-3
MSN groups s
soma, centre to 3052 MSN cells all <10

dataset border only GPe vs none = 0.027

MSN synapse sizes | MSN - GPe = 28297

—142
to GPe, to GPi | MSN - GPi — 76329 5:3x 10
MSN.number of MSN - GPe — 343 o
multi synapses MSN - GPi — 3516 1.75 x 10
to GPe, GPi ) '
MSN summed size
per GP cells, MSN - GPe = 343 2.51 x 10251

to GPe, to GPi MSN - GPi = 3516

Table A33: Results of two-sided Wilcoxon rank-sum test related to different analyses shown in figure 3.23
or appendix figure A23.
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Figure A24: MSN synapse numbers to GP. a GP ratio of synapse numbers in relation to the cell’s total
synapse numbers to GPe and GP1i for all MSNs. b (a) for only those with full dendrites. ¢ GP ratio of
synaptic area in relation to total synapse numbers to GPe and GPi for all MSNs. d (c) for only those

with full dendrites.
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n

p-value

GPe - GPi
synapse sizes

GPe-GPi = 766, GPi-GPe = 124

0.13

GPe - GPi

number of multi-synapses

GPe-GPi = 179, GPi-GPe = 63

8.47 x 10~4

GPe - GPi
summed size per
partner cell

GPe-GPi = 179, GPi-GPe = 63

0.02

GPe—GPe vs

GPi-GPi synapse sizes

GPe = 222, GPi = 6438

7.69 x 10725

GPe-GPe vs
GPi-GPi number of
multi-synapses

GPe = 79, GPi = 511

215 x 1077

GPe-GPe vs
GPi—GPi summed
synapse sizes per

partner cell

GPe = 79, GPi = 511

3.39 x 10714

GPe-GPe vs

GPi-GPe synapse sizes

GPe-GPe = 222, GPi-GPe = 124

9.25 x 1076

GPe-GPe vs
GPi-GPe number of
multi-synapses

GPe-GPe = 79, GPi-GPe = 63

0.13

GPe-GPe vs
GPi-GPe summed
synapse sizes per
partner cell

GPe-GPe = 79, GPi-GPe = 63

0.43

GPi-GPi vs

GPe—GPi synapse sizes

GPi-GPi = 6428, GPe-GPi = 766

0.08

GPi-GPi vs
GPe-GPi number of
multi-synapses

GPi-GPi = 511, GPe-GPi — 179

4.72 x 1077

GPi-GPi vs
GPe-GPi summed
synapse sizes per
partner cell

GPi-GPi = 511, GPe-GPi — 179

6.37 x 10~10

Appendix

Table A34: Results of the two-sided Wilcoxon rank-sum test related to the different analyses shown in

figure 3.24 or appendix figure A25.
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STN connectivity | number of STN cells | percent of STN cells
GPe and GPi 58 56.86
no GP 18 17.65
STN only GPe 18 17.65
STN only GPi 8 7.84

Appendix

Table A35: The number of STN cells that project to both the GPe and the GPi, to neither, or to only
one of the two.

n p-value
STN - GPe vs STN- GPi synapse sizes GPe = 2148, GPi = 7923 | 1.32*10-76
STN - GPe vs STN- GPi number multi-synapses GPe = 450, GPi = 1066 7.62%10-17
STN - GPe vs STN- GPi summed syn size per partner cell | GPe = 450, GPi = 1066 1.39%10-22
GPe- STN vs GPi - STN synapse size GPe = 1969, GPi = 14586 | 2.15*10-86
GPe- STN vs GPi - STN number multi-synapses GPe = 348, GPi = 1309 5.65%10-3
GPe- STN vs GPi - STN summed syn size per partner cell | GPe = 348, GPi = 1309 | 2.51*10-251

Table A36: Results of the two-sided Wilcoxon rank-sum test are related to the different analyses shown
in figure 3.25 pathway or appendix figure 3.25.

connection

cell number
input and output

fraction cells
binary specific

median number
of partner cells

median number
of partner cells

median fraction
synapse sum size

median fraction
synapse sum size

incoming outgoing overlap incoming | overlap outgoing
STN - GPi 64, 47 0.141, 0.191 13, 28 21, 23 0.90, 0.75 0.62, 0.75
STN - GPe 70, 27 0.186, 0.185 5, 13 4,16 0.76, 0.73 0.60, 0.48
MSN - TAN 29, 8 0.276, 0 1, 236.5 1, 18.5 0.30, 0.0029 0.27, 0.063

Table A37: Cell-specific recurrency for connections between different cell types.The number of cells that
project to and receive input from another cell type is referred to as cell number input and output. Note
that all full cells from GPe, GPi, and TAN do this for the given projections, while only a small fraction
of MSNs (< 0.5%) projects to TAN cells and receives input from them. Binary specificity relates to the
number of cells where the strongest input is also the strongest output. The fraction of synaptic summed
size overlap is calculated by dividing the summed area of synapses from cells that are both inputs and
outputs by either the sum of the summed area of all inputs from this cell type (including cells in the
analysis) or the sum of all outputs
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Figure A26: Connectivity of STN cells that do not project to GPe or GP1i cells (18 percent of STN cells,
see table A35).

Table A38:

cell type r-squared p-value r-squared p-value r-squared p-value
(0.5 pm) | (0.5pm) | (1 pm) (1 pm) (2 pm) (2 pm)
total 0.05 0.0 0.03 1.50E-233 -0.01 8.20E-44
DA 0.18 1.85E-174 0.17 3.984E-160 0.15 1.18E-122
GPe 0.47 0.0 0.42 0.0 0.30 0.0
GPi 0.38 0.0 0.35 0.0 0.18 1.87E-252
HVC 0.43 0.0 0.42 0.0 0.40 0.0
INT1 0.59 0.0 0.45 0.0 0.32 0.0
INT2 0.30 0.0 0.20 0.0 0.12 8.7T1E-277
INT3 0.26 0.0 0.21 0.0 0.12 0.0
LMAN 0.40 0.0 0.39 0.0 0.31 0.0
LTS 0.27 8.475E-48 0.25 4.06E-40 0.22 5.27E-31
MSN 0.28 0.0 0.29 0.0 0.26 0.0
STN 0.32 0.0 0.30 0.9 0.24 0.0
TAN 0.17 0.017 0.23 8.98E-4 0.29 3.43E-05

Spearman correlation results for vesicle number and synapse size in different cell types and
at different distance thresholds from the synapse.
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Figure A27: Compartment-specific connectivity for all neuronal cell types residing in Area X. the per-
centage of synaptic area per presynaptic cell type. The percentages for each presynaptic cell type add up
to 100 percent. Each data point represents one postsynaptic cell. a-i Compartment-specific connectivity
for different postsynaptic cell types. In c, e, f, h, i, TAN is missing because no TAN synapses were

detected (npan = 8).
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Figure A28: The connectivity matrices show the percentage of synaptic areas with different normalizations
and filtering criteria. a Matrices similar to those in 3.31, but for the STN, GPe, GPi, TAN, and LTS cell
types no cells were excluded due to mergers or incomplete cells (see appendix table A14). b Matrices with
full cells filtered to a minimum skeleton length of 200 pm for each, the axon and dendrite. Projecting
axon cell types (DA, HVC, LMAN) filtered with a minimum skeleton length of 50 pm. ¢ Matrices with
full cells filtered to a minimum skeleton length of 200 pm for the axon and dendrite, projecting axon cell
types with a length of 0 pm, representing fragments consisting of only one skeleton node.
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Figure A29: Comparison between GPi cells with and without autapses (n = 20, 27). a, b, Dendrite
and soma synaptic area in relation to the compartment surface area. ¢ Myelin fraction of the axon. d-f
Surface area of different compartments. Wilcoxon rank sum test: all p > 0.05.

cell type r-squared p-value r-squared p-value r-squared p-value
(0.5pum) | (0.5um) | (1 ypm) (1 pm) (2 pm) (2 pm)
total 0.003 1.28E-3 0.003 1.54E-3 -0.03 0.0
DA 0.054 5.01E-17 0.088 1.618E-43 0.08 1.21E-39
GPe 0.101 5.52E-45 0.266 1.03E-309 0.21 3.30E-192
GPi 0.030 5.06E-09 0.157 1.02E-200 0.08 2.14E-57
HVC 0.312 0.0 0.354 0.0 0.34 0.0
INT1 0.223 0.0 0.278 0.0 0.20 0.0
INT2 0.097 4.50E-187 0.107 7.786E-228 0.06 2.39E-78
INT3 0.059 3.74E-201 0.089 0.0 0.04 9.74E-113
LMAN 0.249 0.0 0.297 0.0 0.25 0.0
LTS 0.153 6.63E-16 0.157 1.03E-16 0.13 3.86E-12
MSN 0.172 0.0 0.196 0.0 0.18 0.0
STN 0.177 0.0 0.224 0.0 0.18 0.0
TAN -0.015 0.83 0.033 0.64 0.09 2.08E-01

Table A39: Spearman correlation results for the number of membrane-close vesicles and synapse size in
different cell types and at different distances from the synapse.
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Figure A30: Comparison between GPe cells with and without autapses (n = 8, 19). a-c Synaptic area
in relation to the surface area of different compartments. d Myelin fraction of the axon. e Axon mito-
chondrial volume in relation to axonal pathlength. fNumber of vesicles in the axon in relation to axonal
pathlength. g-i Surface area of different compartments. The Wilcoxon rank sum test revealed that all p
values > 0.05, except for the axon and dendritic surface areas (p = 0.033 and 0.049, respectively). j, k
show the incoming and outgoing connectivity in the GPe with and without autapses.
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Figure A31: Synaptic areas and the number of vesicles at different distances. a Number of all vesicles
and membrane-close vesicles in relation to their synaptic areas within 0.5 pm of the synapse, for all
synapses, and only INT1 synapses and vesicles (highest spearman correlation coefficent within 0.5 pm
of the synapse). Spearman coefficients for all cell types within 0.5 pm of the synapse are also shown. b
Same as (d), but only for membrane-close vesicles. ¢, d Similar to (a, b), but within 2 pm of the synapse.
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cell type | median | mean std
DA 80.87 | 110.43 | 90.50
GPe 7.47 7.81 1.88
GPi 8.46 8.54 2.71

HVC 18.81 61.74 | 90.85
INT1 9.89 20.90 | 4548
INT2 3.81 11.74 | 21.93
INT3 2.75 2.86 0.56
LMAN 13.43 58.27 | 120.98
LTS 43.13 67.42 75.61

Table A40: The median, mean, and standard deviation of the distance between synapses on the axons of
different cell types are shown in micrometers.

1 pm 2 pm 3 pm 4 pm
fraction non-synaptic membrane close vesicles stats 12610.04 | 12219.76 | 11618.32 | 11196.66
fraction non-synaptic membrane close vesicles p-value 0.00 0.00 0.00 0.00
density non-synaptic membrane close vesicles stats 14506.21 | 14783.14 | 14511.68 | 14193.64
density non-synaptic membrane close vesicles p-value 0.00 0.00 0.00 0.00
density synaptic membrane close vesicles stats 4300.92
density synaptic membrane close vesicles p-value 0.00

Table A41: Kruskal-Wallis test results for density of synaptic and non-synaptic membrane-close vesicles
with different distance thresholds for what is counted as non-synaptic. A post hoc Wilcoxon rank sum
test showed p-values < 0.005 for all pairs except: density synaptic membrane close vesicles: DA vs TAN
(0.12), GPe vs GPi (0.14), GPe vs INT1 (0.52), GPi vs INT1 (0.005), HVC vs LTS (0.36), HVC vs TAN
(0.08), LMAN vs LTS (0.68), LMAN vs TAN (0.01), LTS vs TAN (0.006), MSN vs TAN (0.68); fraction
non-synaptic membrane-close vesicles: 1 pm: DA vs TAN (0.06), GPe vs HVC (0.47), GPe vs INT2
(0.58), GPe vs INT3 (0.16), GPi vs LMAN (0.18), HVC vs INT2 (0.09), HVC vs INT3 (0.68), INT2 vs
INT3 (0.31), LMAN vs STN (0.07), LTS vs MSN (0.15); 2 pm: DA vs TAN (0.10), GPe vs HVC (0.02),
GPe vs INT2 (0.20), GPe vs INT3 (0.92), GPi vs HVC (0.23), GPi vs INT1 (0.44), GPi vs INT2 (0.09),
HVC vs INT2 (0.72), LMAN vs LTS (0.35); 3um: DA vs TAN (0.09), GPe vs HVC (0.01), GPe vs INT2
(0.20), GPi vs HVC (0.47), GPi vs INT1 (0.35), GPi vs LMAN (0.03), HVC vs INT1 (0.06), LMAN vs
STN (0.10); 4 pm: DA vs TAN (0.10), GPi vs HVC (0.69), GPi vs INT1 (0.13), GPi vs LMAN (0.05),
GPi vs STN (0.005), HVC vs INT1 (0.90), LMAN vs STN (0.11); density non-synaptic membrane close
vesicles: 1 pm: DA vs TAN (0.11), GPe vs INT1 (0.78), GPe vs INT2 (0.005), GPe vs TAN (0.31), INT1
vs TAN (0.17), INT2 vs TAN (0.74); 2 pm: DA vs GPi (0.15), DA vs TAN (0.07), GPe vs STN (0.18),
GPi vs INT3 (0.20), GPi vs TAN (0.28), INT1 vs INT2 (0.06), INT3 vs TAN (0.49); 3 pm: DA vs TAN
(0.08), GPe vs INT2 (0.38), GPe vs LTS (0.009), GPe vs STN (0.71), GPi vs TAN (0.81), INT1 vs INT3
(0.03), INT2 vs STN (0.11), LTS vs STN (0.01); 4 pym: DA vs TAN (0.09), GPe vs INT2 (0.01), GPe vs
INT3 (0.77), GPe vs LTS (0.33), GPe vs STN (0.45), GPi vs TAN (0.38) , INT2 vs LTS (0.21), INT3 vs
LTS (0.15), INT3 vs STN (0.66), LTS vs STN (0.09).
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Figure A32: Density of synaptic and non-synaptic membrane-close vesicles.

Vesicles are considered

membrane-close when the calculated distance to the cell membrane is less than 10 nm. a Density of

synaptic membrane-close vesicles.

Vesicles within 500 nm are counted as synaptic.

b Non-synaptic

membrane-close vesicle density. Vesicles are counted as non-synaptic if they are more than 3 pm away
from the next synapse. ¢ Non-synaptic membrane-close vesicle density with different distance thresholds
to the synapse. d Fraction of non-synaptic membrane-close vesicles with different distance thresholds.
e Median vesicle densities for synaptic and non-synaptic vesicles with different distance thresholds for

non-synaptic vesicles.
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Figure A33: TAN and DA non-synaptic close-membrane vesicles in proximity to cells of different types
at different distances from the vesicles. a The fraction of the surface area of a given cell type in relation
to the total surface area of the mesh for all considered cells is shown on the left (per cell) and on the
right (summed per cell type). b Summed surface area within 2 pm of DA non-synaptic, membrane-close
vesicles. c-f Fraction of the surface area of the mesh close to the membrane related to the total surface
area of cells (left) or cell types (right) for TAN and DA at different distances.

cell type | 1 pm (absolute) | 1 pm (%) | 2 pm (absolute) | 2 pm (%) | 5 pm (absolute) | 5 pm (%)
DA 78653 7.99 369673 37.57 919321 93.44
TAN 1061 0.11 6889 0.70 57056 5.80

Table A42: Number of synapses within a certain distance of non-synaptic, membrane-close TAN or DA
vesicles. The total number of synapses that fulfill these criteria is 983,887
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Figure A34: TAN and DA non-synaptic close-membrane vesicles in proximity to synapses in the dataset
with different distances to the vesicles. a, ¢, e, g Summed synaptic area in proximity to the vesicles. b,
d, f, h Percent of synaptic areas related to the overall synaptic areas in the dataset (see figure 3.31 ¢ for

synaptic areas normalized to the whole dataset).
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Figure A35: TAN non-synaptic vesicles in proximity to small and large synapses of HVC-MSN, as well as
to different random subsets of synapses. Vesicles were counted as non-synaptic if they were at least 3 pm
away from a synapse. Synapses were randomly selected without replacement from the entire distribution.
Then, the smallest and largest quantiles of this subset ("small" and "large," respectively) were selected to
calculate the distance to the vesicles. With n = 10k, 2,500 synapses are shown in each distribution. a-g
Distance to subsets of different numbers of synapses. h Mean number of vesicles around small and large
synapses in relation to the numbers of synapses in different subsets and in the real distribution (264,000
synapses). The number of synapses, vesicles, and p-values for the graphs are in appendix table A43.

224



Appendix

% LMAN - MSN b HVC, LMAN - MSN C HVC, LMAN - MSN d DA - MSN
% 4000 5000 5000 {SpINe iggg
§ 3000 4000 4000 1500
il 3000 3000 1250
O 2000 1000
5 2000 2000 750
O 1000 1000 1000 3%
IS 250
=]
g %1 3z 3 i % 1 2z 3 4 3 %1 3z 3 4 5 0 1 2 3 4 5
distance to synapse [um]
” INT2 - MSN INT3 - MSN g INT3 - MSN spine MSN - GPi
8 3000 4000 3000 2500
.g 2500 gzgg 2500 2000
> 2000 2500 2000 1500
—
O 1500 2000 1500 1000
g 1000 1500 1000
1000
£ 500 500 500 500
=]
c 0 i 2 3 a4 5 0 i 2 3 4 5 0 1 2 3 4 5 0 i 2 3 a4 5
distance to synapse [um]
Iw MSN - GPe J LMAN - STN k HVC, LMAN -STN I HVC, LMAN - STN
» 1000 350 spine
° 2000 s00 1200 300 sp
1000
§ 1500 800 =
G N 600 "
O 1000 400 150
400
2 s 200 100
= 200 50
3 o0 0 0 0
c 1 2 3 4 5 1 2 3 4 5 1 2 3 a 5 1 2 3 4 5
distance to synapse [um]
rwn GPi - STN spine n STN - GPi O GPe - INT3 p HVC - INT2
o)
S 400 1600 600 1000
‘B 350 1400 500
§ o
© 200 800 300 600
o 150 600 200 400
Qo 100 400
E o 200 100 200
2 o 0 ) 0
c 3 4 5 1 2 3 a2 5 1 2 3 4 5 1.0 1.5 210 2.5 3.0 3'5 4.0 4.5 5.0
distance to synapse [um]
r
q HVC - INT3 LMAN - INT3 .
n
B 150 w00 synapse size
% 1500 I small
O 1250 300 I large
>
o 1000
O 750 200
F
L 500 100
E 250
g 0 2 3 4 5 0 1 2 3 4 5

distance to synapse [um]

Figure A36: TAN non-synaptic vesicles in proximity to small and large synapses of different cell types.
Vesicles were classified as non-synaptic if they were at least 3 pm away from a synapse. The distance of
these vesicles from the smallest and largest quantile ("small" and "large," respectively) synaptic connec-
tions between different cell types was analyzed. c, g, 1 Only synapses mapped to the "spine head" of the
postsynaptic cell were counted. The number of synapses, vesicles, and p-values for the graphs shown are
found in the appendix tables: A44, A45.
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Figure A37: DA non-synaptic vesicles in proximity to small and large synapses of different cell types.
Vesicles were classified as non-synaptic if they were at least 3 pm away from a synapse. The distance of
these vesicles from the smallest and largest quantile ("small" and "large," respectively) synaptic connec-
tions between different cell types was analyzed. ¢, g, o Only synapses mapped to the "spine head" of the
postsynaptic cell were counted. The number of synapses, vesicles, and p-values for the graphs shown are
found in the appendix tables: A44, A46, A47.
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n syns n vesicles | n vesicles | max syn size | min syn size | ranksums KS KS
total small large small [pm?] large [pum?] p-value statistic p-value
5000 18139 20558 0.14 0.31 1.07E-104 | 0.11 1.29E-95
10000 39218 40829 0.14 0.31 1.19E-19 | 0.08 1.46E-120
25000 91382 81664 0.14 0.3 1.47E-59 | 0.05 1.08E-102
50000 160861 155424 0.14 0.3 1.70E-41 | 0.04 2.42E-119
100000 254519 263933 0.14 0.3 1.16E-27 | 0.03 1.02E-74
150000 319072 326151 0.14 0.3 2.67E-05 | 0.01 2.50E-21
200000 373564 368582 0.14 0.3 0.49 0.01 2.84E-09
263715% | 409741* 414768* 0.14* 0.3* 2.70E-4 0.01 8.25E-14

Table A43: TAN non-synaptic vesicles within 5 pm of HVC-MSN synapses.

Synapses were randomly

selected to evaluate the dependence of vesicle number on synapse count. Results using all synapses are
shown in rows marked with an asterisk (*, see appendix table A44).
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Figure A38: DA non-synaptic vesicles in proximity to small and large synapses of different cell types.
Vesicles were classified as non-synaptic if they were at least 3 pm away from a synapse. The distance of
these vesicles from the smallest and largest quantile ("small" and "large," respectively) synaptic connec-
tions between different cell types was analyzed. ¢, g, o Only synapses mapped to the "spine head" of the
postsynaptic cell were counted. The number of synapses, vesicles, and p-values for the graphs shown are
found in the appendix tables: A44, A46, A47.
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vesicle vesicle synapses . - o
modulatory pre post . . max synapse min synapse ranksums KS KS
cell type cell type cell type spiness? number number total size smallpm?>pm? | size largepm?>pm? p-value statistic p-value
R T R small large (n) T . e i R )
TAN HVC MSN None 409741 414768 263715 0.14 0.3 0.00026989 | 0.01 8.25E-14
TAN LMAN MSN None 350239 332297 180854 0.13 0.27 3.28E-89 0.03 7.00E-101
TAN HVC, LMAN MSN None 473525 479815 444569 0.14 0.29 5.71E-49 0.02 1.06E-64
TAN HVC, LMAN MSN spine only 446188 448426 329776 0.14 0.27 4.21E-73 0.03 1.29E-161
TAN INT3 MSN None 316915 320548 190814 0.12 0.19 3.02E-110 0.03 6.33E-126
TAN INT2 MSN None 150489 153561 65929 0.12 0.19 0.0164 0.01 2.20E-09
TAN INT3 MSN spine only | 123636 116166 37071 0.12 0.19 8.94E-46 0.03 1.46E-59
TAN MSN Gpe None 74897 71475 28006 0.17 0.3 0.000235 0.02 2.93E-09
TAN MSN Gpi None 127420 130231 76568 0.17 0.34 2.99E-06 0.02 1.49E-17
TAN GPe GPi None 3371 2580 759 0.23 0.53 0.0003158 | 0.16 4.37E-33
TAN GPe INT2 None 15115 15589 5626 0.19 0.37 1.25E-82 0.11 4.80E-82
TAN GPi INT2 None 7141 5283 2655 0.26 0.57 6.25E-13 0.19 1.36E-95
TAN GPi INT3 None 9158 9433 2427 0.25 0.53 0.1 0.05 1.96E-11
TAN GPi INT3 None 4535 7846 2160 0.32 0.71 4.11E-15 0.14 2.57E-46
TAN HVC INT2 None 15639 16213 5093 0.12 0.17 4.31E-07 0.06 8.25E-24
TAN HVC INT3 None 59489 49472 17169 0.14 0.22 0.6438 0.02 6.18E-14
TAN LMAN INT2 None 12714 13324 3753 0.13 0.21 2.57E-46 0.12 2.54E-80
TAN LMAN INT3 None 5703 7083 1794 0.14 0.23 0.0002579 | 0.11 4.00E-35
TAN HVC STN None 16553 12222 3155 0.13 0.23 1.81E-12 0.08 2.05E-44
TAN LMAN STN None 20968 18115 4621 0.17 0.39 1.07E-12 0.06 3.98E-33
TAN HVC, LMAN STN None 35148 27201 7776 0.15 0.32 9.14E-06 0.04 1.40E-25
TAN HVC, LMAN STN spine only 5722 5449 1576 0.16 0.37 0.0077 0.06 1.76E-08
TAN GPi STN None 26505 21653 8111 0.24 0.57 5.16E-29 0.05 1.54E-29
TAN GPi STN spine only 3367 2444 745 0.18 0.35 0.237 0.12 7.80E-17
TAN STN GPi None 50769 50006 15084 0.18 0.34 0.9873 0.03 1.41E-22
TAN DA MSN None 54151 47466 16928 0.11 0.15 4.40E-05 0.02 9.87E-13
DA HVC MSN None 41120740 | 41306591 | 263715 0.14 0.3 4.48E-121 | 0 1.58E-250
DA LMAN MSN None 34194234 | 33351317 | 180854 0.13 0.27 0 0.01 0
DA HVC, LMAN MSN None 47167065 | 47488354 | 444569 0.14 0.29 3.94E-09 0.01 3.94E-09
DA HVC, LMAN MSN spine only | 44199264 | 44395951 | 329776 0.14 0.27 6.48E-100 | 0 2.02E-286
DA INT3 MSN None 31337641 | 31184741 | 190814 0.12 0.19 4.98E-245 | 0 2.26E-170
DA INT2 MSN None 15816283 | 15536490 65929 0.12 0.19 0 0.01 0
DA INT3 MSN spine only | 11910049 | 11653354 37071 0.12 0.19 0.154 0 2.08E-17
DA MSN GPe None 6409969 | 6176899 28006 0.17 0.3 0.0656 0 3.33E-54
DA MSN GPi None 15301668 | 14839202 76568 0.17 0.34 7.50E-18 0 9.15E-135
DA GPe GPi None 316480 297519 759 0.23 0.53 1.70E-46 0.02 1.97E-48
DA GPe INT2 None 1711560 | 1774642 5626 0.19 0.37 9.60E-67 0.01 2.12E-91
DA GPi INT2 None 921757 987548 2655 0.26 0.57 4.83E-66 0.01 1.98E-50
DA GPe INT3 None 807255 803004 2427 0.25 0.53 0.0309 0 5.55E-09
DA GPi INT3 None 824300 843809 2160 0.32 0.71 4.08E-26 0.01 3.29E-72
DA HVC INT2 None 1874988 | 1817477 5093 0.12 0.17 1.78E-29 0.01 6.11E-61
DA HVC INT3 None 5378060 4945970 17169 0.14 0.22 1.44E-136 0.01 1.44E-136
DA LMAN INT2 None 1373543 1261291 3753 0.13 0.21 2.06E-121 0.01 7.02E-88
DA LMAN INT3 None 659978 596036 1794 0.14 0.23 1.73E-280 | 0.03 8.27E-237
DA HVC STN None 1217533 | 1205492 3155 0.13 0.23 6.06E-66 0.01 3.90E-80
DA LMAN STN None 1686153 | 1697965 4621 0.17 0.39 6.38E-124 | 0.02 5.30E-171
DA HVC, LMAN STN None 2811125 | 2728165 7776 0.15 0.32 1.75E-23 0.01
DA HVC, LMAN STN spine only | 637435 602216 1576 0.16 0.37 2.49E-06 0.01
DA GPi STN None 2576454 2441581 8111 0.24 0.57 1.21E-147 0.01
DA GPi STN spine only | 314972 339134 745 0.18 0.35 9.72E-19 0.02 1.16E-32
DA STN GPi None 4920004 | 5165882 15084 0.18 0.34 0 0.02 0
DA MSN TAN None 1479091 1387320 5150 0.15 0.26 1.80E-95 0.02 8.20E-196
DA TAN MSN None 109765 98375 276 0.11 0.14 2.49E-05 0.02 5.81E-14

Table A44: Non-synaptic vesicles of TAN and DA in proximity to synapses from different connections.
Vesicles were classified as non-synaptic if they were at least 3 pm away from the synapse. There were
546,364 non-synaptic TAN vesicles and 5,449,9825 non-synaptic DA vesicles. Small and large synapses
represented the lowest and highest quantiles of synapse sizes in that connection, respectively. The re-
sulting absolute values are shown in the table. The ranksums p-value shows the p-value of the Wilcoxon
rank sum test. The Kolmogorov-Smirnov (KS) test was used to compare the distribution of distances to
small and large vesicles; the statistic represents the effect size.
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bootstrapping
pre cell type | post cell type | spiness? n median ranksums p-value | ks test p-value | percentage p-values y 0.05
HVC MSN None 1000 0.4855 0.5238 5.7
LMAN MSN None 1000 0.236863851 2.63E-62 19.1
HVC, LMAN MSN None 1000 0.417348345 1.56E-10 10.5
HVC, LMAN MSN spine only | 1000 0.345091888 4.00E-26 14.6
INT3 MSN None 1000 0.21334246 1.54E-84 24.6
INT2 MSN None 1000 0.505 0.8205 4.3
INT3 MSN spine only | 1000 0.20167 2.85E-87 24.7
MSN GPe None 1000 0.46 0.0082 6.5
MSN GPi None 1000 0.47 0.011 7.1
GPe GPi None 1000 0.033959898 0 56.6
GPe INT2 None 1000 1.04E-06 0 99.9
GPi INT2 None 1000 0.00366 0 84.2
GPe INT3 None 1000 0.481 0.0119 7.7
GPi INT3 None 1000 0.001088 0 93
HVC INT2 None 1000 0.208 7.20E-85 22.4
HVC INT3 None 1000 0.48977 0.3928 5.8
LMAN INT2 None 1000 6.32E-05 0 98.4
LMAN INT3 None 1000 0.159 4.42E-122 27.7
HVC STN None 1000 0.0559 1.47E-274 48
LMAN STN None 1000 0.108 2.54E-173 35.6
HVC, LMAN STN None 1000 0.363997 4.63E-18 11.9
HVC, LMAN STN spine only | 1000 0.2457 2.44E-63 17.3
GPi STN None 1000 1.94E-02 0 64.9
GPi STN spine only | 1000 0.439 0.000548 6.2
STN GPi None 1000 0.508 0.91 4.8
DA MSN None 1000 0.414 1.32E-07 8.9
LMAN MSN None 2000 0.1308 2.84E-158 35
HVC, LMAN MSN None 2000 0.31 2.07E-32 13.6
HVC, LMAN MSN spine only | 2000 0.2156 3.72E-75 24.9
INT3 MSN None 2000 0.066958 1.08E-243 454
INT3 MSN spine only | 2000 0.0684 2.59E-282 43.3
MSN GPi None 2000 0.4289993 4.90E-05 7.7
DA MSN None 2000 0.392556 1.07E-20 11.5

Table A45: Non-synaptic TAN vesicles in proximity to synapses from different connections. Vesicles
were classified as non-synaptic if they were at least 3 pm away from the synapse. The total number of
non-synaptic TAN vesicles was 546,364. Small and large synapses represented the lowest and highest
quantiles of synapse sizes in that connection. More information on vesicle and synapse numbers can
be found in appendix table A44. Bootstrapping was performed with 1000 iterations, each with 1000 or
2000 samples. Two thousand samples per iteration were only used for connections with a high number of
potential vesicles. The median p-value is the median of the p-values calculated after bootstrapping with
the Wilcoxon rank sum test. A Kolmogorov-Smirnov (KS) one-sample test was performed on the p-value
distribution of the Wilcoxon rank-sum test after 1,000 iterations of bootstrapping to test whether the
distribution is uniform.
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pre cell type | post cell type | spiness? n median ranksums p-value | ks test p-value | percentage p-values 0.05
HVC MSN None 1000 0.5097 0.68358 5.4
LMAN MSN None 1000 0.4686 0.10689 5.8
HVC, LMAN MSN None 1000 0.4877669 0.3528 4.4
HVC, LMAN MSN spine only | 1000 0.4828878 0.2646 4.6
INT3 MSN None 1000 0.4972 0.955 5.5
INT2 MSN None 1000 0.463 0.026 54
INT3 MSN spine only | 1000 0.48279 0.4864 6
MSN GPe None 1000 0.5056 0.746789 5.2
MSN GPi None 1000 0.4825 0.13695 5.1
GPe GPi None 1000 0.3428 3.42E-23 13.2
GPe INT2 None 1000 0.473 0.0327 6.7
GPi INT2 None 1000 0.4245 2.80E-08 8.8
GPe INT3 None 1000 0.515 0.367 4.4
GPi INT3 None 1000 0.465076 0.014 7.2
HVC INT2 None 1000 0.477493 0.2037 6.3
HVC INT3 None 1000 0.4499 0.001877 7.4
LMAN INT2 None 1000 0.41 4.13E-10 10.4
LMAN INT3 None 1000 0.157287 1.54E-129 28.7
HVC STN None 1000 0.48019775 0.033 7.4
LMAN STN None 1000 0.42 5.40E-07 9.7
HVC, LMAN STN None 1000 0.495657 0.49368776 5.9
HVC, LMAN STN spine only | 1000 0.5192 0.475 4.6
GPi STN None 1000 0.4465 0.000219 6.9
GPi STN spine only | 1000 0.44318 4.04E-05 8.1
STN GPi None 1000 0.41516 1.98E-07 10
MSN TAN None 1000 0.4304 1.65E-07 8.1
TAN MSN None 1000 0.466 0.0195 4.9
HVC MSN None 2000 0.506 0.95 5.2
LMAN MSN None 2000 0.427 3.62E-06 7.2
HVC, LMAN MSN None 2000 0.49959 0.953 4.5
HVC, LMAN MSN spine only | 2000 0.4936 0.377 5.9
INT3 MSN None 2000 0.4786 0.16655 6.6
INT2 MSN None 2000 0.45869 9.37E-05 7
GPe GPi None 2000 0.25398 5.88E-57 19.1
GPe INT2 None 2000 0.4206 9.88E-08 9.6
GPi INT2 None 2000 0.37 1.87E-17 13
GPi INT3 None 2000 0.444 0.00077 7.6
HVC INT3 None 2000 0.4895 0.304 6
LMAN INT2 None 2000 0.3571 2.97E-21 15.8
LMAN INT3 None 2000 0.04253 0.00E+00 51.9
HVC STN None 2000 0.41 3.57E-10 10.2
LMAN STN None 2000 0.35767795 1.31E-21 12.5
GPi STN None 2000 0.387 4.75E-16 124
GPi STN spine only | 2000 0.405 1.53E-09 10.5
STN GPi None 2000 0.32 6.75E-30 16.6
MSN TAN None 2000 0.388 3.79E-17 11.4
TAN MSN None 2000 0.421 3.46E-07 8

Table A46: The bootstrapping results are shown for non-synaptic vesicles with n = 1,000 and n = 2,000
for DA. See the caption of appendix table A45 for a full explanation.
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pre cell type | post cell type | spiness? n median ranksums p-value | ks test p-value | percentage p-values 0.05
HVC MSN None 5000 0.48058 0.3586 6.4
LMAN MSN None 5000 0.393 1.17E-13 10.2
HVC, LMAN MSN None 5000 0.51407 0.1 5.1
HVC, LMAN MSN spine only | 5000 0.46689 0.038 5.3
INT3 MSN None 5000 0.458 0.011 6.8
INT2 MSN None 5000 0.4179 8.34E-08 9.1
GPe INT2 None 5000 0.294 6.96E-40 15.6
GPi INT2 None 5000 0.225 3.55E-70 22
GPi INT3 None 5000 0.35577889 1.41E-19 11.9
LMAN INT2 None 5000 0.166 1.58E-117 28.3
LMAN INT3 None 5000 0.001378 0.00E-+00 88.6
HVC STN None 5000 0.253 4.23E-56 20.3
LMAN STN None 5000 0.18 4.54E-98 25.5
GPi STN None 5000 0.244894 3.34E-64 21
GPi STN spine only | 5000 0.303 8.49E-43 18.6
STN GPi None 5000 0.175 3.77TE-105 26.6
MSN TAN None 5000 0.22 5.29E-76 21.7
HVC INT3 None 5000 0.371 4.13E-17 12.1
HVC MSN None 10000 0.451 0.004375 7
LMAN MSN None 10000 0.263897 2.40E-52 19.4
HVC, LMAN MSN None 10000 0.515 0.458 5.2
HVC, LMAN MSN spine only | 10000 0.472 0.053 6.3
INT3 MSN None 10000 0.40666 3.08E-10 9.4
INT2 MSN None 10000 0.297589 7.18E-40 15.6
GPe INT2 None 10000 0.191 2.76E-88 26.5
LMAN INT2 None 10000 0.0366957 0.00E-+00 55.5
HVC STN None 10000 0.1128 3.47E-165 34.6
LMAN STN None 10000 0.06 1.24E-246 46.1
GPi STN None 10000 0.1097 7.26E-187 36.7
STN GPi None 10000 0.052 1.78E-289 49.5
MSN TAN None 10000 0.082 7.79E-220 39.7
GPi INT2 None 10000 0.085 2.74E-209 39.7
HVC INT3 None 10000 0.2549 8.40E-54 19.4

Table A47: The bootstrapping results are shown for non-synaptic vesicles with n = 5,000 and n = 10,000
for DA. See the caption of appendix table A45 for a full explanation.
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statistic | p-value

mitochondria | 1141.31 | 2.40e-243
GA 245.96 2.99e-50
ER 772.43 | 1.39e-163

Table A48: Kruskal-Wallis test results for the different organelle volume densities in the glial cell types,
migratory neurons, MSN, and GPi as shown in 3.42 b-d. The post hoc Wilcoxon rank sum test showed
p values less than < 0.005 for all comparisons except: mitochondria: ASTRO vs GPi (0.02), MICRO vs
OLIGO (0.44), MICRO vs OPC (0.10), OLIGO vs OPC (0.13); GA: ASTRO vs MICRO (0.008), GPi vs
MSN (0.06), MICRO vs MIGR (0.04), MICRO vs OPC (0.87), MIGR vs OPC (0.02); ER: MICRO vs
OLIGO (0.47), OLIGO vs OPC (0.32)

cell type | sum surface mesh area [pm?]
ASTRO 1464086.21
OLIGO 11747.32
OPC 324445.74
MICRO 120388.87
MSN 33420555.22
STN 1120082.43
TAN 211414.04
GPe 436766.72
GPi 1343106.41
LTS 174336.75
INT1 1589200.63
INT2 732312.75
INT3 1683024.02
MIGR 46767.79

Table A49: Sum of surface areas for all suitable cells from different glial and neuronal cell types. The
values were calculated by Delta Schick.
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