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SUMMARY

The Mongolian grasslands, particularly the Eastern Steppe, represent one of the largest
remaining intact temperate rangeland ecosystems in the world. Over recent decades,
increasing anthropogenic pressures—especially from livestock grazing and land use in-
tensification—have raised growing concerns about grassland degradation, ecological re-
silience, and sustainable pastoral livelihoods. Despite their ecological importance, large-
scale monitoring and understanding of vegetation dynamics and degradation drivers re-
main limited, largely due to the vast extent of the steppe and its spatial heterogeneity. In
particular, the effects of nomadic grazing patterns and their interaction with environmen-
tal variability have not been systematically assessed across broad regions using high-
resolution observational data. This dissertation addresses this knowledge gap by inte-
grating multi-source remote sensing data, process-based modeling, and machine learn-
ing approaches to (i) estimate aboveground biomass (AGB) across central and eastern
Mongolia, (ii) detect grazing-induced vegetation breakpoints associated with herder move-
ment, and (iii) assess the ecological impact of livestock and wildlife on steppe productivity
and vegetation dynamics. The key research statements and findings are summarized be-
low.

The first part of this thesis focuses on quantifying grassland aboveground biomass (AGB)
across the heterogeneous landscapes of Eastern and Central Mongolia, where diverse
grassland types—including typical steppe, desert steppe, meadow steppe, and forest
steppe—create a complex ecological mosaic. This spatial diversity leads to strong het-
erogeneity in biomass distribution, posing significant challenges for large-scale monitoring
and management. To address this, a machine learning approach using random forest (RF)
was developed to integrate multi-source remote sensing data, including multi-temporal op-
tical imagery (WorldView-2, Sentinel-2, Landsat-8) and Synthetic Aperture Radar (SAR)
from Sentinel-1. The model was trained and validated against over 600 field samples,
providing one of the most robust AGB estimations for the region to date. Furthermore, a
novel dissimilarity index (DI) was applied to quantify the area of applicability (AOA), en-
suring spatial reliability of the model outputs. Results demonstrated that the combination
of Sentinel-1 and Sentinel-2 achieved the highest predictive accuracy, and the model was
applicable to more than 70% of the steppe area. Areas with low model transferability were
mostly located at the ecological boundaries of grassland types. This study contributes a
new, validated AGB mapping framework for the Mongolian steppe, highlighting the value
of integrating SAR and optical data for monitoring biomass in large area.

Building upon the foundational mapping of aboveground biomass (AGB), the second part



of this thesis explores the dynamic interactions between vegetation condition and nomadic
grazing patterns through time-series analysis. Given the critical role of herder mobility in
sustaining livestock and pasture use in Mongolia’s traditional nomadic systems, this study
investigates whether vegetation changes—patrticularly those driven by grazing—can be
detected using time-series satellite data. A novel machine learning-based breakpoint
detection algorithm was developed, leveraging Interferometric Synthetic Aperture Radar
(INSAR), optical vegetation indices, and weather data. This method was specifically de-
signed to distinguish vegetation changes caused by grazing from those induced by natu-
ral climatic fluctuations such as snow and rainfall. Compared to the widely used BFAST
(Breaks For Additive Season and Trend) algorithm, the new method demonstrated supe-
rior performance in capturing temporal breakpoints linked to seasonal herder movements,
particularly in summer and winter pastures. Field-based validation across Eastern Mongo-
lia confirmed the method’s effectiveness, with detection rates of 44% and 28% for random
forest and BFAST, respectively, in summer pastures. Temporally, grazing-induced break-
points were mainly observed in April-June and October—March, aligning with traditional
migration cycles. Spatially, the random forest model revealed pasture-use patterns con-
sistent with known herder behavior in productive and heavily grazed areas, while results
were less conclusive in more arid, sparsely populated regions.

Finally, based on the satellite-derived AGB maps from 2019 to 2021 developed in the
first study, | further assessed the ecological impact of grazing by comparing observed
AGB with simulated AGB from the process-based dynamic global vegetation model LPJ-
GUESS. This comparison enabled us to evaluate the extent to which grazing activities
and wildlife foraging explain discrepancies between modeled and observed biomass. The
analysis was conducted across Eastern Mongolia at a 0.1° spatial resolution, integrating
field surveys, satellite products, and socio-ecological data on human population, livestock
density, and wildlife distribution. The results revealed that livestock grazing had a de-
tectable and systematic influence on vegetation dynamics, whereas changes in wildlife
populations—particularly gazelles—exhibited no clear correlation with biomass variability.
Weak positive correlations were found between model-data agreement and human/wildlife
population densities, while livestock numbers, adjusted into animal units, showed a weak
negative correlation with consistency. These findings suggest that livestock grazing acts
as a dominant anthropogenic driver affecting grassland productivity, serving as a visible
human footprint on vegetation.

Overall, this thesis provides novel insights into the monitoring and interpretation of
biomass dynamics and grazing-induced vegetation changes in the Mongolian steppe
ecosystem by integrating multi-source remote sensing data, field observations, and ad-
vanced machine learning approaches. Through the development of a large-scale, vali-
dated AGB mapping framework, this work advances the methodology for assessing grass-
land productivity across heterogeneous and sparsely monitored rangelands. For the first
time, grazing movement patterns were inferred at regional scale using INSAR time series
and breakpoint detection models, offering a new avenue to understand seasonal pasture
use in nomadic systems. Furthermore, the comparative analysis between LPJ-GUESS
simulations and empirical data revealed the distinct ecological impact of livestock grazing
on vegetation dynamics, which had previously been underexplored in studies of land use



impacts in Mongolia. By linking remote sensing observations with socio-ecological vari-
ables such as livestock distribution and settlement patterns, this thesis contributes to a
more comprehensive understanding of how human activities alter grassland functioning
across space and time. Collectively, the findings of this dissertation not only advance re-
mote sensing-based monitoring techniques for rangeland ecosystems but also provide an
empirical foundation for developing targeted and evidence-based grassland management
strategies in Mongolia and other dryland regions undergoing similar socio-environmental
transformations.
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CHAPTER 1
INTRODUCTION

1.1 Grassland ecosystem

The world’s grazing lands are a key element of livestock production systems (Bouwman
et al., 2005; Erb et al., 2016) providing food security for millions of people who depend
on livestock for their livelihoods (Galvin et al., 2008; O’Mara, 2012). Grassland ecosys-
tems fulfill critical ecological roles that underpin both biogeochemical cycles and biodi-
versity, rendering them indispensable components of terrestrial environments (White et
al., 2000). These biomes, characterized by herbaceous vegetation with minimal woody
plant cover, exert significant influence on carbon dynamics, acting as sinks through pho-
tosynthetic uptake of atmospheric CO, (Dass et al., 2018). In temperate grasslands, such
as the North American Great Plains or Eurasian steppes, perennial grasses with exten-
sive root systems facilitate substantial soil organic carbon (SOC) storage, often exceeding
100 Mg C ha' in the top meter of soil (Conant et al., 2017). This sequestration capacity
mitigates atmospheric CO, concentrations, with estimates suggesting grasslands glob-
ally store approximately 343 Pg C, or roughly one-third of terrestrial carbon stocks (FAO,
2010). Ecologically, grasslands sustain high species richness, supporting trophic net-
works that include large herbivores (e.g., Bison bison, Equus quagga), apex predators
(e.g., Canis lupus, Acinonyx jubatus), and pollinators critical for angiosperm reproduction
(Burkle et al., 2013; Estes et al., 2011; Knapp et al., 1999). Socioeconomically, grasslands
and cultivated forage crops play a crucial role in improving rural livelihoods and alleviating
poverty, particularly in regions where livestock farming is a primary economic activity. They
provide a stable source of income for pastoral and agro-pastoral communities by support-
ing livestock production, which supplies meat, milk, wool, and hides for both subsistence
and market trade (Herrero et al., 2009). Well-managed grasslands enhance food secu-
rity by improving livestock nutrition, leading to higher productivity and resilience against
climatic shocks (Thornton et al., 2009). Sustainable grassland management contributes
to environmental health, reducing land degradation and increasing carbon sequestration,
which can provide financial benefits through carbon credit schemes and ecosystem ser-
vice payments (Follett & Reed, 2010; Stringer et al., 2012). Promoting improved pasture
management and forage crop cultivation is thus a vital strategy for poverty reduction in ru-
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ral areas. However, anthropogenic pressures—overgrazing, tillage, and climate-induced
shifts in precipitation—reduce SOC stocks by up to 50% and erode biodiversity, with grass-
land conversion rates estimated at 1-2% annually (Gibson & Gibson, 2008). Grasslands
thus represent a nexus of climate regulation, biodiversity conservation, and human depen-
dence, warranting rigorous study and conservation prioritization (Y. Zhao et al., 2020a).

Grasslands occur in almost all climatic zones, except the poles, extreme arid zones,
and the highest mountains (Figure 1.1). Temperate grassland habitats include Eurasian
steppes, North American prairies, the pampas lowlands of South America, and Patago-
nian steppe. Tropical and subtropical grasslands (savannas) occur mostly in Africa and
Australia, but are also found in the north of South America, in the southern United States,
South Asia, and Southeast Asia (Petermann & Buzhdygan, 2021). With over 13 mil-
lion km?, the grasslands of Eurasia form one of the largest continuous terrestrial biomes.
They predominantly represent environments with low productivity and a long evolutionary
history of natural grazing. Over the last few decades, increasing population sizes and
socio-economic changes have subjected these steppes to growing pressure and associ-
ated degradation (Werger & Staalduinen, 2012). The degradation of these vast biomes
is a complex process that involves both gradual changes—such as a slow decline in veg-
etation greenness over time—and abrupt state shifts, like the conversion of grassland to
sparse vegetation (G. Zhang et al., 2018). While some studies suggest a net increase in
grassland area in the Eurasian steppe due to conversions from other land types, grass-
lands still account for the highest proportion of degraded land within the region (Du et al.,
2024). This ongoing degradation is driven by a complex interplay of climatic and anthro-
pogenic factors.
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Figure 1.1: GLASS-GLC (annual dynamics of global land cover) CDRs (climate data
records) results in 2015 (H. Liu et al., 2020).

Climate change is a primary driver of grassland degradation and desertification, particu-
larly in Central Asia. Persistent drought and the combination of decreasing precipitation
and rising temperatures are consistently identified as the main culprits, impacting grass-
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lands, forests, and sparse vegetation alike (L. Jiang et al., 2019; G. Zhang et al., 2018).
Studies have quantified this influence, showing that climate variation accounts for over
half (53.8%) of the total degraded grassland area in Central Asia (Y. Yang et al., 2023).
Interestingly, in some regions like Mongolia, climate change can actually act as a driver of
grassland recovery, while human activities are the primary cause of degradation, highlight-
ing a nuanced and region-specific relationship between climate and vegetation dynamics
(Y. Yang et al., 2016). Beyond climatic factors, a variety of human activities contribute to
degradation. While intensive grazing is a well-known factor that adversely affects grass-
land resilience (J. Wu et al., 2023), other less-documented disturbances are also signifi-
cant. For example, research on Russian steppes has revealed that while large-scale agri-
cultural abandonment in the post-Soviet era led to grassland recovery, this positive trend
was offset by fragmentation from new, smaller-scale disturbances. These included the
proliferation of informal roads, oil and gas exploration, shrub encroachment, and waste
dumps, which together severely fragmented the landscape (Prishchepov et al., 2021).
Other key anthropogenic drivers of degradation in the broader Eurasian steppe include
urbanization, mining, and cropland expansion (Du et al., 2024; L. Jiang et al., 2019). The
role of human activity is particularly pronounced in regions with high population density,
such as Inner Mongolia, where the decline in ecological resilience has been shown to be
more severe compared to less-populated areas (J. Wu et al., 2023). The specific drivers
and patterns of degradation are not uniform across the vast Eurasian biome. Studies have
identified desertification hotspots, such as in southern and northern Kazakhstan, where a
state shift from grassland to sparse land was observed between 2000 and 2014 (G. Zhang
et al., 2018). In a comparative assessment of four countries, research found that while cli-
mate change and human activities both play significant roles, their relative importance
differs markedly. For instance, in Mongolia, climate is the dominant factor in grassland
recovery, while human activities are the main driver of degradation.

Grassland degradation results in multifaceted impacts, affecting not only the environment
but also socioeconomic systems. Ecologically, a decline in vegetation cover is the primary
manifestation of degradation, which leads to exposed soil and a significant reduction in
biomass (Dong et al., 2012a). This loss of vegetation-soil connectivity triggers a cascade
of effects, including a reduced soil water retention capacity and increased soil hardness.
More severely, desertification processes driven by wind erosion cause a loss of soil fine
particles, which are the main carriers of soil organic carbon (OC) and total nitrogen (TN).
This results in a substantial decrease in the content of these essential nutrients, compro-
mising soil fertility (H.-L. Zhao et al., 2009). Research also indicates that even with the
re-establishment of artificial grasslands, it is challenging to fully restore the original soil
quality and nutrient reserves of degraded areas (Dong et al., 2012a). Beyond these direct
impacts on vegetation and soil, grassland degradation causes a loss of both above- and
belowground biodiversity. This biodiversity loss is a key driver for the decline in ecosystem
multifunctionality (EMF), which encompasses vital ecological processes such as nutrient
cycling and biomass production (Cui et al., 2022). As an important carbon sink, healthy
grasslands lose their carbon sequestration capacity when degraded. The degradation
process breaks down stable soil aggregates, releasing stored carbon and nitrogen as
greenhouse gases into the atmosphere. This can turn grasslands from a carbon sink into
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a carbon source, exacerbating climate change (G. Zhang et al., 2011). These ecological
changes have direct economic consequences for herding communities. In China, for ex-
ample, the Grassland Ecological Protection Award Policy (GEPAP) was implemented to
curb degradation by subsidizing herders to reduce livestock numbers. However, a study
in Inner Mongolia found that while the policy led to a slight increase in total household
income, herders’ net income actually decreased significantly. This highlights that livestock
revenue remains the primary source of income for these households, with off-farm income
playing only a supplementary role (Y. Yin et al., 2019). The findings underscore the com-
plex challenge of balancing ecological conservation with the economic sustainability of
pastoral livelihoods.

Natural grasslands occur around the world and have been characterized using a number
of methods. For global characterizations, the methods can be grouped into four types:
vegetation composition; ecological and economic assessment; ecosystem mapping; and
remote sensing classification (Dixon et al., 2014). Given the vast and often remote nature
of these ecosystems, remote sensing has become an indispensable tool for monitoring
and understanding grassland dynamics. A wide array of methods has been developed
to estimate key biophysical parameters, including aboveground biomass (AGB), a direct
measure of vegetation growth and carbon storage (G. Zhang et al., 2011), and net primary
productivity (NPP), which reflects the ecosystem’s carbon absorption capacity (G. Zhang
et al.,, 2011; H.-L. Zhao et al., 2009). Other fundamental parameters such as fractional
vegetation cover (FVC) and leaf area index (LAI) are also routinely estimated using a
combination of ground-based and satellite data (Dong et al., 2012b; Imran et al., 2017; Z.
Luo et al., 2017). These estimation techniques span from traditional statistical regression
models that link vegetation indices (e.g., NDVI) to biophysical parameters, to more ad-
vanced, non-parametric machine learning models (e.g., Random Forest, Support Vector
Machines) and process-based models like CASA and PROSAIL (Clementini et al., 2020;
Danner et al., 2021; Naidoo et al., 2012). The application of these remote sensing meth-
ods extends beyond simple parameter estimation to address critical operational needs.
These include the long-term monitoring of grassland degradation (J. Li et al., 2015; Zhou
et al., 2021), the assessment of utilization intensity through grazing and mowing activities
(Junges et al., 2019; Kolecka et al., 2018), the analysis of disaster impacts such as fires
and droughts (S. Chen et al., 2022; F. Li, Liu, et al., 2013), and the critical task of monitor-
ing carbon cycling to understand grasslands’ role as carbon sinks or sources (Berberoglu
et al., 2010; G. Zhang et al., 2011). Together, these methodologies provide the foundation
for a data-driven approach to grassland science, management, and policy-making.

1.2 Study area

Mongolia host one of the largest extra-tropical grasslands worldwide. Usage of these
vast grasslands have undergone and still undergo changes in terms of land-use practices
and intensities. Therfore, this section provides a foundational overview of the geograph-
ical characteristics of the eastern Mongolian steppe. Additionally, it examines the socio-
economic conditions of the region following the transition from a planned economy to a
market-oriented system in the 1990s.
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1.2.1 Background of Mongolia

Mongolia, a vast landlocked country in East Asia, presents a striking tapestry of natural
and socio-economic complexities. Situated between 41°35’N and 52°09’N latitudes and
87°44’E and 119°%6’E longitudes, it covers an expansive 1,564,000 square kilometers,
stretching 2,392 km from west to east and 1,259 km from north to south, with an aver-
age altitude of 1,580 meters above sea level (Batima et al., 2005). Its diverse landscape,
largely untouched by dense human settlements, is a product of millennia of internal and
external geological processes, resulting in a unique physical-geographical mosaic. This
includes the towering Altai Mountains in the west, the expansive Mongolian-Manchurian
steppe in the east, and the arid Gobi Desert stretching across its southern reaches. It
also features forested areas, particularly in the north, acting as a transition zone between
the Siberian taiga and the Asian deserts. This varied topography gives rise to a harsh
continental climate characterized by extreme seasonal temperature fluctuations and low
precipitation (Yembuu, 2021). Mongolia has already observed significant climate change,
with rising temperatures and uncertain rainfall patterns exacerbating the frequency and
magnitude of climate variability and extremes (Batima et al., 2005). These climatic con-
ditions profoundly shape the country’s six main natural zones and belts, as illustrated in
Figure 1.2: alpine and mountain taiga, mixed and deciduous forests, forest steppe, steppe,
Gobi (desert steppe), and desert zones (Doljin & Yembuu, 2021). These natural divisions,
often defined by vegetation cover and refined through modern physical geography, dictate
distinct physical patterns across the country, influencing its water resources, soils, and
rich biodiversity (Yembuu, 2021). The significant dependence of the country’s population
and economy on climate-sensitive sectors like animal husbandry makes it particularly vul-
nerable to these environmental shifts (Batima et al., 2005).

Following the dissolution of the Soviet Union in 1991, Mongolia embarked on a dramatic
shift from a centrally planned economy to a market-oriented system. This transition has
profoundly reshaped its human and economic landscape. While traditional nomadic ani-
mal husbandry remains a vital part of the national identity and rural livelihoods, accounting
for a significant portion of agricultural GDP and employing a substantial segment of the
workforce (National Statistical Office of Mongolia, 2017; (Y. Xu et al., 2019)), its relative
contribution to the national economy (GDP) has diminished. This shift is largely due to the
rapid ascent of the mining sector, which now dominates the economy, contributing approx-
imately 30% of GDP and over 70% of total export value through the extraction of resources
like copper, gold, and coal (Suzuki, 2013). This dual economic structure, however, has led
to increasing conflicts between mining operations and nomadic herding, particularly over
access to pastureland and precious water resources, as surface mining frequently occurs
beneath traditional grazing lands (Suzuki, 2013). By the end of 2023, Mongolia’s mining
sector accounted for 29% of GDP, a 5% increase from 2020. In contrast, agriculture’s con-
tribution fell to 10%, a 3% decrease, and manufacturing’s contribution decreased to 7%,
a 2% decrease. Furthermore, mining products accounted for 86% of exports, while light
industrial products and agricultural products accounted for only 5% and 2%, respectively
(NSO2003,NS0O2024c). The economic pressures have influenced herding practices, with
a notable shift from sheep to goats due to the global demand for cashmere, exacerbating
pasture degradation as goats are more detrimental to vegetation regeneration (Dorj et al.,
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2013). Coupled with a warming climate and increased frequency of natural disasters like
"dzuds" (severe winters causing livestock loss) (Y. Xu et al., 2019), these anthropogenic
impacts accelerate land degradation and desertification across the country’s vast pasture-
lands, posing significant challenges to both environmental sustainability and the traditional
nomadic way of life (Dorj et al., 2013; Y. Xu et al., 2019).
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Figure 1.2: The main classification of natural zonalization of Mongolia. (Mohamed &
Kimura, 2014)

1.2.2 Eastern Mongolia

Among the vast expanse of the Mongolian Steppe, the eastern region stands out due
to its ecological sensitivity and its exposure to intensified human activities. Therefore,
this thesis centers on the eastern Mongolian Steppe. The eastern Mongolian grasslands
represent the eastern extension of the Eurasian steppe and are situated in the southeast-
ern part of the Mongolian Plateau, spanning latitudes 44°- 48°N and longitudes 109°-
118°E (Herbert et al., 2019; B. Nandintsetseg et al., 2021; Térok et al., 2020). The region
is characterized by a temperate continental climate, with an annual precipitation ranging
from 200 to 350 mm, predominantly concentrated in the summer months. The mean an-
nual temperature varies between -1°C and 3°C, with harsh winters, short summers, and
pronounced diurnal temperature fluctuations (Jacoby et al., 2003; L. Jargalsaikhan, 2013;
Ni, 2003). The topography primarily consists of expansive plateaus interspersed with low
mountains and hills (Doljin & Yembuu, 2021). The dominant soil types are Kastanozems
and dark Kastanozems, which exhibit moderate fertility but are susceptible to wind erosion
(Khadbaatar, 2021). The vegetation is dominated by perennial xerophytic grasses, partic-
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ularly Leymus chinensis and various species of the genera Stipa and Artemisia, forming a
continuous steppe landscape that serves both as an ecological barrier and a repository of
biodiversity (Danzhalova et al., 2023; Ogureeva et al., 2019; Takatsuki et al., 2018). Sea-
sonal rivers and lakes are widely distributed across the region, providing essential water
resources for pastoral activities. However, these water bodies are increasingly subject
to hydrological imbalances due to climate variability and anthropogenic influences (Davi
et al., 2013; Sugita et al., 2015).

Since Mongolia’s transition to a market economy in the 1990s, the socioeconomic struc-
ture of the eastern grasslands has undergone profound transformations (Janzen, 2011;
Mearns, 2004). The formerly state-controlled pasture system, characteristic of the planned
economy era, gradually disintegrated, leading to the privatization of pastureland manage-
ment rights (Edstrém, 1993; Mearns, 1993). However, the absence of comprehensive
planning has resulted in pasture fragmentation and exacerbated overgrazing (Gantuya et
al., 2021; Tomita, 2013). Traditional nomadic livelihoods have increasingly shifted toward
semi-settled or fixed-point grazing systems, while livestock populations have surged in re-
sponse to market-driven demand, surpassing ecological carrying capacity and contribut-
ing to localized grassland degradation and desertification (Houle, 2024b; Janzen, 2005).
Concurrently, the expansion of mineral resource extraction and infrastructure development
has further encroached upon pastoral lands, intensifying land-use conflicts (Baas et al.,
2012; Lahiri-Dutt & Dondov, 2017). Eastern Mongolia is not only the main livestock gath-
ering place in Mongolia, but also an important wildlife habitat, supporting rich biodiversity,
especially ungulates. The number of gazelles is about 2.14 million (Buuveibaatar et al.,
2024), and they migrate over a large area every year, covering a distance of more than
18,000 kilometers (Dejid et al., 2022). As human activities in the region intensify, the esca-
lating traffic volume presents significant challenges to the movement patterns of gazelles
(Mendgen et al., 2023). The area is also home to other globally and regionally threatened
species, including mammals such as the manul, gray wolf, and red fox, and birds such as
the white-naped crane, gray crane, white-tailed sea eagle, hunting falcon, vulture, swan,
quail, black-tailed godwit, Asian sandpiper, and yellow-breasted bunting (Food and Agri-
culture Organization, 2020).

1.3 Grassland degradation

1.3.1 Grassland degradation in Mongolia

Mongolia’s vast rangeland ecosystems, fundamental to both its ecological integrity and
the sustenance of its nomadic pastoral society, are facing escalating degradation. This
decline is largely attributed to a complex interplay of anthropogenic factors and climatic
shifts, creating a pressing environmental and socio-economic challenge (Chuluun et al.,
2017). Anthropogenic pressures, primarily stemming from the country’s extensive no-
madic herding system, are widely recognized as a dominant driver of vegetation change.
Livestock populations have seen a dramatic increase, soaring from 25.8 million in 1990 to
43 million by 2009 (Tuvshintogtokh, 2014), and reaching over 71 million by 2022 (UNDP,
2023). This unprecedented growth has led to livestock populations exceeding pasture-
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land capacity by an estimated 2.6 times, intensifying grazing pressure across the steppes
(UNDP, 2023). This overgrazing results in a reduction in palatable species, a decrease
in vegetation cover, and a decline in overall rangeland health (Bazha et al., 2012; Lkhag-
vajav et al., 2022). The shift in herding practices, particularly the increased preference
for goats due to the lucrative cashmere market, exacerbates degradation, as goats are
more damaging to vegetation regeneration than sheep, feeding on roots and flowers and
disturbing the pasture’s regenerative capacities (Dorj et al., 2013). This intensified pres-
sure results in observable ecological transformations, including the spread of unpalatable
and weed species like Artemisia frigida, Caragana pygmaea, Cleistogenes squarrosa, Al-
lium polyrrhizum, and Ephedra sp., and can lead to a reduction in species diversity and
changes in dominant plant communities (Bazha et al., 2012; Lkhagvajav et al., 2022; Tu-
vshintogtokh, 2014).

Beyond vegetation changes, Mongolia’s soils have been significantly impacted by a wide
range of degradation phenomena, including soil erosion, desertification, nutrient deple-
tion, and various forms of soil pollution (Batkhishig, 2013; Han et al., 2021b; Hofmann et
al., 2016). This multifaceted soil degradation is driven by the combined effects of climate
change and diverse anthropogenic activities, which include mining, overgrazing, agricul-
ture, urbanization, and off-road transportation (Batkhishig, 2013; Batkhishig & Lehmkuhl,
2003; Chonokhuu et al., 2019). Overgrazing demonstrably impacts soil properties, leading
to decreased soil organic matter (30-50% lower in overgrazed areas), reduced fertility, al-
tered chemical properties (e.g., 40-60% lower exchangeable calcium), and increased soil
compaction, all of which compromise the ecosystem’s resilience (Q. Wang, 2014). The
scale of this issue is substantial, with approximately 72% of the country’s land considered
degraded (Darbalaeva et al., 2020; Eckert et al., 2015; Liang et al., 2021). Mongolia faces
severe desertification, which, according to some scientists, affects up to 90% of its total
pastureland. Historically confined to regions bordering the Gobi desert, land degrada-
tion has in recent years increasingly impacted central Mongolia and, to a lesser extent,
extended northward (J. Wang et al., 2020). The combined annual cost of land degrada-
tion in the country is estimated at around 2.1 billion USD, or 43% of the country’s GDP
(UNCCD, 2018), underscoring the severe economic consequences alongside the ecolog-
ical damage. This highlights the critical need for accurate estimation of soil erosion and a
clearer understanding of its spatiotemporal patterns and driving factors (Batkhishig, 2013).
While the influence of human activities is profound, the role of climate change, character-
ized by rising temperatures and altered precipitation patterns, cannot be overlooked in this
complex narrative of degradation (Batima et al., 2005; Chuluun et al., 2017). Mongolia’s
temperature has increased by 2°C and rainfall has declined over the past 70 years, creat-
ing a vicious cycle where herders increase livestock numbers to compensate for reduced
pasture productivity, further stressing natural resources (World Bank, 2024). The Mongo-
lian Plateau is identified as highly sensitive to climate change, and its pastoral economies
are particularly vulnerable to extreme weather events such as "dzuds"—severe winters
leading to massive livestock mortality (Y. Xu et al., 2019). Dzuds, characterized by ex-
treme cold, heavy snow, and unforgiving ice, can wipe out entire herds, leading to mass
livestock deaths, poverty, and long-term economic instability. The 2009-2010 dzud, for
instance, killed over 28% of the national livestock population, requiring more than two
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years for recovery. More recently, the 2022-2023 winter resulted in nearly 500,000 animal
losses by March 2023, with dzuds accounting for 87% of livestock loss in 2022 (UNDP,
2023). Drought conditions also pose significant challenges, leading to soil moisture short-
ages and a temporal lack of feed for animals, impacting the viability of nomadic pastoralism
(Sugita et al., 2015). Despite these climatic influences, recent empirical studies suggest
that the direct impact of livestock grazing often outweighs climate change as a primary
driver of vegetation decline, particularly when assessing specific degradation indicators
(Hilker et al., 2014c; Jamsranjav et al., 2018). While precipitation changes explained about
30% of degradation nationwide, and up to 50% in denser vegetation areas, temperature
changes played only a minor role. Most rangelands are assessed as slightly (33-53%) or
moderately (25-40%) degraded, with very severe and irreversible degradation being rare
(1-18% of land area), yet the cumulative effect of overgrazing is a primary contributor to
widespread degradation.

Effectively addressing rangeland degradation in Mongolia necessitates a nuanced ap-
proach that acknowledges both anthropogenic and climatic drivers, emphasizing sustain-
able management strategies. The concept of carrying capacity (CC) and relative stocking
density (RSD) is paramount for maintaining ecological balance, yet significant regional
variations exist, with some southern regions exhibiting extremely fragile carrying capaci-
ties as low as 0.3 Sheep Units (SU) per hectare (Q. Wang et al., 2024). Mitigation efforts
include legislative reforms to secure land user rights and tenure over grazing lands, as well
as the implementation of community-based grassland management programs that have
shown success in improving household incomes. Adopting management practices such
as rest-and-rotation grazing systems offers a common and cost-effective approach to al-
low pastures to recover (Tuvshintogtokh, 2014). Beyond grazing management, improving
livelihood resilience for herder households involves investing in animal feed and adapting
to unpredictable seasonal changes, as well as rehabilitating wells and protecting local en-
vironments to secure water for livestock and pastures (UNDP, 2023; World Bank, 2024).
While the precise interplay between climate and grazing remains a subject of ongoing sci-
entific inquiry, the overwhelming evidence points to the urgent need for targeted rangeland
restoration, adaptive management, and strengthened governance to prevent further irre-
versible degradation across Mongolia’s invaluable steppe ecosystems (Jamsranjav et al.,
2018). The resilience of this coupled human-nature system hinges on integrated strate-
gies that balance the socio-economic needs of herders with the ecological limits of the
grasslands, fostering a shift from quantity to quality in livestock production (UNDP, 2023).

1.3.2 Grassland degradation on eastern Mongolia steppe

This section provides an overview of past and current research on land degradation mon-
itoring in eastern Mongolia since the 1990s. A particular focus is placed on vegetation dy-
namics in the region, including temporal patterns and spatial variability across the steppe
landscape. The primary drivers of grassland degradation are discussed, encompassing
both anthropogenic pressures—such as overgrazing, increasing livestock numbers, and
land-use changes—and environmental factors like climate variability and drought events.
In addition, the section explores ongoing challenges in the sustainable use and man-
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agement of grassland resources, especially concerning the complex ecological interac-
tions between human activities, wildlife movement, and vegetation responses. Finally, an
overview of commonly used methods for detecting vegetation dynamics, including field
surveys, remote sensing approaches, and time-series analyses, is briefly presented to
provide a methodological context for the subsequent chapters.

The extensive grazing pressures in Mongolia’s rangelands have profoundly altered veg-
etation dynamics, leading to discernible patterns of vegetation succession in degraded
grasslands. This phenomenon, driven primarily by anthropogenic factors and, to a lesser
extent, by climatic shifts, involves shifts in species composition, cover, and overall plant
community structure (Davaanyam et al., 2024; Munkhzul et al., 2021; Tuvshintogtokh,
2014). Long-term monitoring studies in dry steppe zones have observed a clear, albeit
not always statistically significant, downward trend in species richness and a gradual de-
crease in average species diversity (Davaanyam et al., 2024). This reduction in species
diversity and plant cover serves as a key indicator of vegetation degradation (Davaanyam
et al., 2024; Herrero-Jauregui & Oesterheld, 2018; Y. Wang & Wesche, 2016).

The intensified grazing pressure, marked by a substantial increase in livestock numbers
(from 25.8 million in 1990 to over 71 million by 2022), is a primary driver of these changes
(“National Report on the Rangeland Health of Mongolia - Second Assessment | Land Por-
tal”, 2018; Tuvshintogtokh, 2014). This overgrazing can lead to a progressive succession
where weed and unpalatable species increase in coverage and abundance (Tuvshintog-
tokh, 2014). For instance, species such as Cleistogenes squarrosa, Allium polyrrhizum,
and Ephedra sp. have shown vigorous spread and expanding ranges in degraded areas
(Bazha et al., 2015; Tuvshintogtokh, 2014). In mountain-meadow and meadow steppes,
overgrazing tends to result in the dominance of Artemisia frigida and Caragana pygmaea.
In true and dry steppes, Caragana microphylla and Artemisia frigida become more preva-
lent, while desertified and desert steppes see an increase in Caragana stenophylla and
C. korshinskii (Bazha et al., 2012). This shift often leads to strongly monodominant com-
munities, where subdominants like Artemisia adamsii, Carex duriuscula, and Potentilla
acaulis may also increase depending on the subzonal steppe type (Bazha et al., 2012;
Lkhagvajav et al., 2022). Research also highlights that while edible plants are generally
dominant, the fraction of grazing- and trampling-tolerant plants increases with livestock
pressure, with species like Artemisia adamsii flourishing in degraded areas (Koyama et
al., 2016; Narantsetseg et al., 2018). The degradation process observed in Fescue-forbs
rangelands, a main type in the mountain steppe, shows significant declines in dominant
species like Festuca lenensis, replaced by increaser and tolerant species such as Are-
naria capillaris and Chamaerodos erecta (Lkhagvajav et al., 2022).

The interaction between grazing intensity and climatic conditions is crucial in shaping
these successional patterns. While the effects of grazing on plant species diversity and
composition are well-documented, their influence on plant functional traits and genetic
structures is less understood (Oyundelger et al., 2023; Wesche et al., 2016). Long-
term studies employing grazing exclusion along climatic gradients in the Palearctic steppe
biome reveal that grazing can have a significant positive effect on genetic diversity, as
seen in Artemisia frigida, suggesting that moderate grazing might even be beneficial for
certain species and ecosystem functioning (Oyundelger et al., 2023). Conversely, inten-
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sive grazing has been linked to decreased genetic diversity in common grassland species
(Peng et al., 2015). This complex relationship means that grazing effects can differ be-
tween relatively moist equilibrium and dry non-equilibrium rangeland systems, with envi-
ronmental filtering dominating vegetation composition in drier areas, and grazing-tolerant
species becoming more prominent in wetter regions (Ahlborn, 2020; Milchunas & Lauen-
roth, 1993). Beyond affecting plant community composition and genetic diversity, nomadic
livestock also play an instrumental role in shaping vegetation patterns through seed dis-
persal. The attachment of seeds to the fur of sheep (epizoochory) is the primary mecha-
nism for long-distance dispersal, which is particularly crucial for key fodder grasses such
as Agropyron cristatum and Stipa krylovii. As herds of sheep and goats can travel up
to 15 km per day and undertake long-range migrations during drought years, they act as
key vectors for maintaining the genetic connectivity and species distribution of the grass-
land ecosystem. Research has found that while goats are relatively poor vectors for seed
dispersal, their proportion in Mongolian livestock herds has increased significantly in re-
cent years—a trend that warrants concern for the long-term ecological dynamics of these
grasslands (Blai et al., 2010). The observed changes in vegetation, such as the trans-
formation of typical steppe into dry steppe and desert steppe, coupled with the relative
stability of desert steppe and desert vegetation, highlight the vulnerability of different eco-
logical zones (Gunin et al., 2019; Tuvshintogtokh, 2014). Satellite remote sensing, through
the analysis of Fractional Vegetation Cover (FVC) and AGB, along with Normalized Differ-
ence Vegetation Index (NDVI) trends, provides critical tools for monitoring these changes.
Studies using Sentinel-2 and Landsat data show significant declines in NDVI across large
areas of the eastern Mongolian steppe, indicating widespread vegetation cover changes
consistent with landscape degradation (Dashpurev et al., 2023; Gunin et al., 2019). These
tools also allow for a more accurate estimation of degradation levels, which, while sub-
stantial (with 58% of pastureland degraded by 2016), may not be as universally severe
and irreversible as sometimes perceived (Jamsranjav et al., 2018; “National Report on the
Rangeland Health of Mongolia - Second Assessment | Land Portal”, 2018).

The multifaceted nature of vegetation succession in Mongolia’s degraded grasslands un-
derscores the urgent need for effective management. Given that overgrazing is consid-
ered a primary driver of degradation, even potentially outweighing climate change in some
contexts, the adoption of sustainable grazing practices is crucial (Tuvshintogtokh, 2014).
Implementing rest-and-rotation systems for pastures offers a common and cost-effective
approach to allow vegetation recovery (Tuvshintogtokh, 2014). Furthermore, understand-
ing the distinct impacts of grazing versus trampling, particularly near water sources where
heavy animal traffic compacts soil and alters plant communities, is essential for targeted in-
terventions (Narantsetseg et al., 2018). While some studies explore the use of prescribed
burning and mowing for controlling undesirable subshrubs, their long-term effectiveness
in the context of climate variability and grazing impact requires further evaluation (Koyama
et al., 2016).
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1.3.3 Drivers leading to grassland degradation

Natural drivers

Climate change. Mongolia’s semi-arid continental climate, characterized by low pre-
cipitation and significant temperature fluctuations, is a primary driver of its ongoing land
and grassland degradation. Climate data reveals a significant warming and drying trend
over recent decades. Between 1940 and 2015, the country’s annual mean air tempera-
ture increased by 2.24 °C, while annual precipitation decreased by 7%, leading to a higher
aridity across the country (Lkhaakhuu et al., 2023). This combination of factors, coupled
with a positive feedback loop between soil moisture deficits and surface warming, has led
to a hotter and drier regional climate. The effects are evident in the landscape, with more
than three quarters of the country’s land affected by drought and desertification (Han et
al., 2021b). The dramatic impact is further underscored by the fact that over a quarter of
lakes larger than 1.0 km? on the Mongolian Plateau dried up between 1987 and 2010 (Han
et al., 2021a). This climate-driven environmental stress also affects herder livelihoods by
altering the timing of rainfall, which in turn interferes with plant growth and reduces pas-
tureland quality (Tugjamba et al., 2021b). This persistent drying trend is a major factor in
recurring droughts (Han et al., 2021b) and has culminated in severe atmospheric events
like the 2021 East Asia sandstorms, which were triggered by a combination of unusually
warm temperatures and low precipitation (X. Xu et al., 2022). While human activities like
overgrazing and mining are significant contributors to land degradation, climate change
provides the overarching natural framework that exacerbates these issues (Dorj et al.,
2013; Han et al., 2021b). However, some research suggests a more complex dynamic;
a study of the Mongolian Plateau from 2000 to 2019 found that a period of increasing
precipitation and temperature was the main driver behind a documented decline in desert
extent, which highlights the role of climate as a primary, though not uniform, factor in shap-
ing vegetation trends (X. Guo et al., 2021).

Natural hazards. Grasslands in Mongolia spanning the steppe and semi-arid zones
of the Mongolian Plateau, are a critical biome shaped by a continental climate with ex-
treme temperature swings and low precipitation (200400 mm annually). Natural haz-
ards—wildfires, snowstorms (“Dzud”), droughts, and sand storms—disrupt vegetation dy-
namics, influencing net primary productivity (NPP), species diversity, and ecosystem sta-
bility.

Natural hazards alter grassland vegetation ecologically by reshaping community structure
and function. Wildfires, common during the dry season, deplete aboveground biomass, re-
ducing the survival, resprouting and reproductive capacity of species with faster regenera-
tion rates, such as Stipa krylovii (Schellenberg et al., 2020). In eastern Mongolia’s Dornod
Province, the increase in fire frequency and the expansion of fire-affected areas led to a
7.2-fold increase in the proportion of Artemisia and Artemisia frigida, indicator species
of grassland degradation, while the proportion of Carex duriuscula and Stipa krylovii de-
creased by about 86% (Munkhbat et al., 2023). Droughts and dust storms compound
these effects, lowering moisture and stripping soils, respectively, driving vegetation toward
drought-tolerant states, especially in northcentral and northeast Mongolia (B. Nandintset-
seg et al., 2021). Dzuds are characterized by heavy snow or ice cover that limits access
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to forage and delays spring greening. Due to a lack of adequate preparation, the 2010
dzud in the central steppes killed an estimated 8.4 to 10 million livestock, representing
approximately 20% to 22% of the country’s total herd (Girvetz et al., 2012). The spatial
distribution of disasters determines the response of vegetation in Mongolia’s diverse ter-
rain. Although there is no statistically significant data showing that the spatial distribution
of shrubs after fire is related to fire occurrence, the distribution of shrubs represented by
Caragana microphylla was affected to varying degrees in the central and eastern steppes
of Mongolia after being mixed with the impact of drought, especially for A. adamsii, fire
caused the loss of its woody branches, thereby reducing biomass and the number of flow-
ering branches (Koyama et al., 2016; Narantsetseg et al., 2014).

Soil degradation. Soil degradation in the eastern Mongolian steppes significantly in-
hibit the primary productivity of vegetation by reducing soil organic matter content and
destroying surface structure. Studies have shown that soil compaction caused by over-
grazing reduces water infiltration, enhances drought stress, and stunts the root growth
of perennial grasses such as Stipa grass and Leymus chinensis (Kinugasa et al., 2015).
At the same time, soil nutrient loss (such as nitrogen and phosphorus) due to vegetation
succession to barren-tolerant annual herbs (such as Salsola salsa) further reduces com-
munity instability (Venter et al., 2021). This process is extremely significant in drought,
and the accelerated decomposition of soil carbon pools forms a positive feedback loop
with the recovery of vegetation cover (Sodnomdarjaa et al., 2022).

Soil degradation can lead to changes in plant community composition, which in turn affects
species diversity. In general, soil degradation can lead to a decrease in species diversity,
especially for species that are sensitive to environmental changes (Sundev et al., 2018).
For example, studies have shown that in the eastern Mongolian grasslands, as grazing in-
tensity increases, soil degradation worsens, and both plant species richness and diversity
indices show a downward trend (Hannam, 2017). Soil degradation can affect plant growth
and reproduction, which in turn affects biomass and productivity. For example, soil nutrient
loss can limit plant growth, thereby reducing biomass and productivity (Lkhagvajav et al.,
2022). Studies have shown that in the eastern Mongolian grasslands, soil degradation
has led to a significant decrease in both aboveground and belowground biomass of plants
(Q. Wang, 2014).

Anthropogenic drivers

Overgrazing. Livestock husbandry stands as a cornerstone of Mongolia’s economy,
playing a role as significant as its burgeoning mining sector. However, the rapid growth
in livestock numbers, particularly in key provinces, presents a severe and escalating chal-
lenge to the carrying capacity of the nation’s vast grasslands. In 2024, Mongolia’s total live-
stock population surged to 57,649.7 thousand heads (Figure 1.4). A substantial portion of
this increase is concentrated in the eastern provinces of Dornod, Sukhbaatar, and Khentii,
alongside Tuv province, which collectively accounted for 11,003.2 thousand heads. This
represents over one-fifth of the national total across just four out of 22 provinces. This
marks a dramatic increase from 1970, when the national total was 22,574.9 thousand
heads, and these same four provinces collectively held 4,632.82 thousand heads Fig-
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ure 1.5. Over 54 years, the livestock population in these pivotal regions has more than
doubled, intensifying pressure on an already fragile ecosystem. While grasslands, cov-
ering approximately 75% of Mongolia, have historically supported nomadic herding sus-
tainably for millennia, recent decades have witnessed a profound transformation in social
systems and nomadic practices, contributing to widespread pasture degradation (Koda &
Fujita, 2014).
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Figure 1.4: Number of livestock in Mongolia from 1970 to 2024 (NSO2003,NSO2024c).
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Figure 1.5: Number of livestock in eastern Mongolia from 1970 to 2024
(NSO2003,NS0O2024c).

The escalating livestock numbers, largely fueled by a market-driven demand for cash-
mere, have led to increasingly concentrated grazing patterns. Herders, influenced by the
market economy shift post-1992, often gravitate towards urban centers and main roads for
better access to markets, education, and healthcare (Yoshihara et al., 2008). This transi-
tion from traditional, highly mobile nomadic patterns to more sedentary grazing practices
directly impacts vegetation, causing a significant reduction in palatable plant biomass and
altering natural plant communities and structures (Sasaki et al., 2005). Intensive con-
tinuous grazing has been shown to rapidly decrease overall plant species richness and
aboveground annual production, potentially leading to irreversible changes, such as the
dominance of unpalatable, grazing-tolerant species like certain rhizomatous plants over
valuable tussock grasses (Fujita & Ariunbold, 2014; Koda & Fujita, 2014; Van Staalduinen
et al., 2007). This ecological imbalance creates a detrimental feedback loop: as pas-
ture quality declines, livestock productivity (e.g., weight gain, milk yield) and survival rates
decrease due to insufficient forage, often compelling impoverished herders to further in-
crease herd size for short-term economic survival, thereby exacerbating degradation (Lise
et al., 2006).

Beyond the direct removal of vegetation, overgrazing profoundly contributes to soil degra-
dation, manifesting as increased soil erosion (Onda et al., 2007) and accelerated soil al-
kalization (Fujita & Ariunbold, 2014). This soil alteration can significantly delay the natural
recovery of degraded pasture vegetation, impacting long-term ecosystem health. Further-
more, the combined environmental pressures from intensive grazing and mining activities,
which contaminate soils with heavy metals and dust, collectively inhibit natural plant re-
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growth and promote the proliferation of invasive species over native flora (Oyuntsetseg
et al., 2012; Shabanova et al., 2019). The cascading ecological consequences extend
to other biodiversity; for instance, studies indicate that moth species diversity, recognized
as an indicator of pasture health, is significantly lower in heavily grazed areas compared
to lightly grazed ones (Enkhtur et al., 2017). Moreover, the production of crucial plant
biomass in drylands becomes notably more vulnerable to intensified grazing and shifts
in precipitation patterns, especially in comparatively moister and more productive range-
lands. This highlights the intricate and fragile interactions between species richness, her-
bivory, and climatic variability (Ahlborn et al., 2021). These multifaceted and intercon-
nected impacts collectively compromise the biodiversity, ecological resilience, and long-
term sustainability of Mongolia’s iconic steppe ecosystems.

Given the array of problems arising from overgrazing, sustainable livestock management
is not merely an option but a critical necessity for Mongolia’s future. Traditional nomadic
pastoralism, a millennia-old cultural practice, offers a compelling solution by intrinsically
balancing livestock numbers with pasture regeneration. This system relies on seasonal
migrations across vast territories, ensuring the dispersal of grazing pressure and allowing
pastures sufficient time to recover and regenerate. Research consistently demonstrates
the effectiveness of this mobility: studies comparing traditional nomadic grazing to seden-
tary practices reveal that nomadic animals exhibit better body weight gains and improved
mineral balance due to access to a more diverse range of plant species across varied land-
scapes (Morinaga et al., 2016; Yoshihara et al., 2013). This inherent flexibility in movement
is especially vital in arid and semi-arid regions where forage supply and quality vary un-
predictably with precipitation (Michler et al., 2023). Therefore, promoting and supporting
such traditional mobile strategies are crucial for maintaining adequate forage intake for
livestock and effectively dispersing grazing pressure across the expansive rangelands.

However, the efficacy of traditional nomadic practices faces formidable contemporary chal-
lenges. The allure of urban centers, driven by desires for improved education, healthcare,
and market access, has notably reduced the frequency of herder camp migrations and
shortened livestock walking distances (Michler et al., 2023; Teickner et al., 2020). This
trend towards increased sedentarization inevitably leads to intensified, concentrated graz-
ing pressure around permanent or semi-permanent settlements, creating what are often
termed "sacrifice zones"—areas characterized by severe trampling, concentrated waste
deposition, and a stark reduction in plant diversity (Michler et al., 2022). To counter-
act this, a holistic approach is required, one that integrates the invaluable insights from
traditional ecological knowledge with modern monitoring tools like GPS tracking, which
can quantitatively analyze livestock movement patterns and inform adaptive management
strategies (Teickner et al., 2020). Maintaining the inherent flexibility of grazing mobility,
adapting to variations in biomass availability across the landscape, and leveraging altitu-
dinal migrations are likely the most robust strategies for achieving sustainable pasture use
amidst increasing livestock populations, complex socio-economic transformations, and an
unpredictable climate (Michler et al., 2023). Ultimately, effective rangeland management
policies must embrace and support these dynamic approaches to ensure both the long-
term health of Mongolia’s natural ecosystems and the continued viability of its herding
communities. A review of research on rangeland management policies will be presented
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by following.

Management policies. Grassland management policies in eastern Mongolia have
played a pivotal role in shaping the region’s grassland vegetation dynamics, often with
mixed outcomes due to the interplay between traditional practices, post-socialist reforms,
and modern environmental challenges (Sneath, 2003; Upton, 2010). Historically, Mon-
golia’s steppe ecosystems, including those in the eastern provinces like Dornod and
Sukhbaatar, were managed through nomadic pastoralism, a system that relied on sea-
sonal mobility to prevent overgrazing and maintain vegetation balance (Dorj et al., 2013;
Neupert, 1999). However, the transition from a centrally planned economy to a market-
based system in the 1990s dismantled collective herding structures and led to a privatiza-
tion of livestock, resulting in a dramatic increase in herd sizes—from 25.8 million in 1990
to over 60 million by the mid-2010s (Jamsranjav et al., 2018; Kowal et al., 2021). Without
corresponding policies to regulate grazing intensity, this shift has driven widespread over-
grazing in eastern Mongolia, reducing plant diversity and biomass while favoring unpalat-
able species like Artemisia frigida over nutritious grasses such as Stipa krylovii (Akhmadi
et al., 2022; Davaanyam et al., 2024).

In response to growing degradation, the Mongolian government introduced policies aimed
at sustainable grassland management, though their implementation in eastern Mongolia
has faced significant hurdles (Endicott, 2012; Undargaa, 2023). The 2002 Law on Land
and subsequent amendments sought to formalize pastureland use by assigning usufruct
rights to herder groups, intending to encourage rotational grazing and reduce pressure
on specific areas . However, studies indicate that in eastern Mongolia, where popula-
tion density is relatively low but livestock numbers are high, enforcement has been weak,
and many herders lack the resources or coordination to adhere to these guidelines (M. E.
Fernandez-Gimenez & Batbuyan, 2004). As a result, vegetation dynamics have shifted,
with research showing a 20-30% decline in aboveground biomass in heavily grazed zones,
alongside a decrease in species richness as grazing-sensitive plants are outcompeted
(Nakano et al., 2020). The lack of clear boundaries and monitoring has thus undermined
the policy’s effectiveness, exacerbating degradation rather than mitigating it.

More recent initiatives, such as the Green Gold Project and the National Livestock Pro-
gram launched in the 2010s, have aimed to integrate scientific management practices with
traditional knowledge to improve grassland health in eastern Mongolia. These programs
promote community-based management, providing training on sustainable stocking rates
and pasture rotation, and have shown some success in pilot areas, with restored vegeta-
tion cover increasing by up to 15% in managed plots (Jamsranjav et al., 2018). However,
their reach remains limited, and in eastern Mongolia, where mining and agricultural ex-
pansion compete for land, policy priorities often favor economic development over ecolog-
ical restoration (Kasymov et al., 2023). Remote sensing data highlights that areas under
effective management exhibit higher NDVI values compared to unmanaged regions, un-
derscoring the potential of well-executed policies to positively influence grass dynamics
(Fujita & Ariunbold, 2014; Jamsranjav et al., 2019).

Mining. Mining plays a pivotal role in Mongolia’s national economy, and its rapid ex-
pansion has significantly impacted the country’s steppe ecosystems. As a resource-rich
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economy, Mongolia’s development strategy has long centered on mineral resources. Be-
tween 1999 and 2024, Mongolia’s total exports surged from 454.2 million to 15.7834 bil-
lion, with exports to China escalating from 208.2 million to 14.4207 billion. Within export
categories, coal exports alone dramatically increased from 0.435 million tons in 2003 to
28.7 million tons in 2024. The share of mineral products in the national export composi-
tion also rose sharply from 32.3% in 1999 to 87.2% in 2024 (NSO2003,NS0O2024c). While
this heavy reliance on the mining sector has substantially contributed to economic growth
and improved local livelihoods, it has also introduced economic vulnerabilities, such as
susceptibility to commodity price fluctuations and diminished competitiveness in other tra-
ditional sectors (Dagys et al., 2023; Taguchi & Ganzorig, 2018).

Mining activities have profoundly influenced vegetation dynamics in Eastern Mongolia’s
grasslands, a region facing increasing pressure from resource extraction driven by eco-
nomic development (Enkhjargal, 2021; Jarsj6 et al., 2017). Since the early 2000s, Mon-
golia’s mining sector has expanded rapidly, with Eastern Mongolia hosting deposits of
coal, gold, and other minerals that attract both large-scale operations and artisanal mining
(Sodnomdarjaa et al., 2023). These activities directly destroy vegetation cover and disrupt
soil integrity through processes such as open-pit excavation, overburden removal, and
tailings disposal (Timofeev & Kosheleva, 2017). Studies estimate that mining-related land
disturbance in Mongolia affects over 40,000 hectares annually, with eastern provinces like
Dornod and Sukhbaatar experiencing significant ecological impacts due to their proximity
to mineral-rich zones 2019(. The resulting loss of native grassland species and alteration
of plant communities threaten both biodiversity and the traditional pastoral livelihoods de-
pendent on these ecosystems (Krtz et al., 2010). The direct impact of mining on Eastern
Mongolia’s grasslands is profound, as it replaces diverse vegetation with barren land-
scapes or degraded patches. Excavation removes topsoil and perennial grasses like Stipa
krylovii and Leymus chinensis, which are critical for maintaining steppe stability, leaving
behind exposed surfaces prone to erosion and desertification (Hartwig et al., 2016; Kasi-
mov et al., 2016). Remote sensing analyses reveal that the area of grassland disturbed
by dirt roads and oil extraction infrastructure has increased by 88% since 2005, with the
fastest increase of 47% between 2005 and 2010 (Dashpurev, Bendix, & Lehnert, 2020).
Furthermore, the deposition of dust and heavy metals from mining operations—such as
arsenic, lead, and mercury—contaminates soils and inhibits plant regrowth, favoring rud-
eral or invasive species over native flora (Oyuntsetseg et al.,, 2012; Shabanova et al.,
2019). These changes not only reduce grassland productivity but also compromise the
ecosystem’s capacity to recover naturally. Despite the economic importance of metallic
mineral resources in Mongolia, improper mining management can lead to the pollution of
stream waters, posing a threat to aquatic ecosystems and human health. For instance,
after passing through the Zaamar gold mining area, the Tuul River’'s water becomes highly
turbid (up to 742 Nephelometric Turbidity Units (NTU)) due to the disturbance of sediments
and soils by placer gold mining (Batsaikhan et al., 2017). The Zaamar area also serves
as a contamination source for the Tuul and Orkhon rivers, particularly with aluminum (Al),
iron (Fe), and manganese (Mn) during the mining season. The hydrochemistry of the
Khangal River is influenced by heavy metal-loaded mine drainage (especially Mn, Al, cad-
mium (Cd), and arsenic (As)) originating from a large tailings dam of the Erdenet porphyry
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copper-molybdenum (Cu-Mo) mine. These two contaminated rivers, the Tuul and Khan-
gal, merge into the Orkhon River, which then flows into the Selenge River near the border
between Mongolia and Russia, eventually reaching Lake Baikal, a UNESCO World Her-
itage site. Given the critical water quality problems arising from mining, activities in central
northern Mongolia require careful management to minimize the transboundary movement
of aquatic contaminants (particularly turbidity, dissolved organic carbon, Fe, and Al) (Bat-
saikhan et al., 2017; Myangan et al., 2017).

Land use change. Overgrazing has emerged as a significant driver of grassland veg-
etation dynamics in eastern Mongolia, a region characterized by vast steppe ecosystems
that have supported nomadic pastoralism for centuries (Han et al., 2021b; Jamsranjav
et al.,, 2018; Y. VY. Liu et al., 2013). The Mongolian Plateau, including eastern Mongo-
lia, hosts one of the world’s largest remaining grassland ecosystems, but it has faced
increasing degradation, with studies estimating that approximately 70% of this ecosys-
tem is now compromised (Hilker et al., 2014b; Miao et al., 2021). Overgrazing, primarily
due to a sharp rise in livestock numbers following the shift from a centrally planned to
a market-based economy in the early 1990s, has been identified as a key contributor to
this decline. For instance, livestock numbers in Mongolia surged from 25.8 million in 1990
to 43 million by 2009, intensifying grazing pressure and altering vegetation composition
and productivity (Tuvshintogtokh & Ariungerel, 2013). This increase has led to a progres-
sive succession where palatable species are replaced by unpalatable or grazing-resistant
plants, such as Cleistogenes squarrosa and Allium polyrrhizum, signaling degradation
rather than resilience to climatic stressors alone (Sasaki et al., 2008; Tuvshintogtokh & Ar-
iungerel, 2013). Grazing has a significant impact on the Artemisia frigida biome, with plant
height and specific leaf area significantly different compared to ungrazed areas (Oyundel-
ger et al., 2023). In addition, the growing market demand for meat has led to an increase
in the number of farmed livestock, which has also increased the consumption of water
resources. In the hydrological simulation of 29 rivers across the country, livestock water
use is even comparable to mining and urban water use. In local hotspots, groundwa-
ter degradation caused by human activities and grazing has further promoted grassland
degradation (Nakayama, 2025).

Agricultural expansion has had an increasing impact on grassland vegetation dynamics in
eastern Mongolia. An experiment on wheat production efficiency in Hentii in 2017 found
that limited water and low soil fertility intensified interspecific competition among plants.
The study highlighted that competition for productive water in spring was a major factor,
which increased the competition between agricultural crops and native grasslands (Litvi-
nova et al., 2020). As Mongolia transitioned from a socialist economy to a market-driven
system in the 1990s, pressures to increase food production and economic diversification
led to the conversion of grasslands into croplands, particularly in areas with relatively fer-
tile soils and adequate moisture. This shift has been notable in eastern Mongolia, where
the steppe’s flat terrain and proximity to water sources make it suitable for cultivation.
However, this expansion has come at the cost of reducing native grassland cover, alter-
ing plant community composition, and disrupting the ecological balance that sustains both
biodiversity and traditional herding practices (Gantumur et al., 2018; Sankey et al., 2018).
Studies estimate that agricultural land use in Mongolia increased by approximately 6% be-
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tween 1990 and 2021, with significant implications for vegetation dynamics in the eastern
provinces (Hao et al., 2023).

The indirect effects of agricultural expansion on eastern Mongolia’s grasslands are equally
significant, as it intensifies land-use competition and alters grazing patterns (Barcus, 2018).
As arable land encroaches on traditional pastures, herders are often forced to concentrate
livestock on smaller, remaining grassland patches, exacerbating overgrazing pressures
and accelerating degradation in those areas (Galvin, 2009; Sheehy & Damiran, 2013).
Additionally, agricultural activities introduce chemical fertilizers and pesticides, which can
alter soil nutrient cycles and affect non-target plant species, further shifting the compo-
sition of remnant grasslands toward less palatable or invasive species (Hofmann et al.,
2011; Merbold et al., 2021). These changes threaten the resilience of the steppe ecosys-
tem, particularly in a region where climate variability already poses challenges to vegeta-
tion stability.

Urbanization and infrastructure development, including road construction, have increas-
ingly shaped grassland vegetation dynamics in eastern Mongolia, a region traditionally
defined by its vast, unbroken steppe landscapes (Hao et al., 2023; J. Wang, Cheng, Liu,
Zhu, Ochir, Davaasuren, Li, Wei, Chonokhuu, Namsrai, & Bat-Erdene, 2019). As Mon-
golia’s economy has grown since the post-socialist transition in the 1990s, urban centers
like Ulaanbaatar have expanded, and the demand for improved transportation networks
has surged. This has led to the conversion of grasslands into built environments and
the fragmentation of ecosystems through roads and associated infrastructure (Myagmart-
seren et al., 2020; Tsutsumida, 2014). Studies estimate that urban land cover in Mongolia
increased by over 50% between 1990 and 2015, with eastern Mongolia experiencing no-
table impacts due to its strategic location near borders and resource-rich areas (Y. Zhang,
Wang, et al., 2022). These changes disrupt the continuity of grassland vegetation, reduce
habitat availability, and alter the ecological processes that sustain the steppe’s biodiversity
and productivity (Deng et al., 2011). Roads, in particular, act as linear barriers, fragment-
ing plant communities and limiting seed dispersal, which can shift species composition
toward ruderal or invasive plants better suited to disturbed environments, Vehicle activity
can remove the top 1 cm of seeds, making population recovery more difficult (Kinugasa &
Oda, 2014).

Indirectly, urbanization and infrastructure development exacerbate grassland degradation
by altering hydrological patterns and facilitating human activity. Roads and urban sprawl
disrupt surface water flow, reducing soil moisture availability critical for grassland recovery
in eastern Mongolia’s semi-arid climate (Y. Ren et al., 2022). Additionally, improved road
access often accelerates resource extraction, such as mining, and increases vehicular
traffic, both of which contribute to dust deposition and soil compaction—factors that inhibit
plant growth (Kinugasa et al., 2015; Sodnomdarjaa et al., 2024). Studies have noted that
The vegetation coverage, biomass, species composition and richness within one kilome-
ter around the paved road are lower than those of the unpaved road (Amarsanaa et al.,
2022).
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Demographic Changes

Demographic changes and settlement patterns, particularly the migration of herders from
eastern Mongolia to urban centers like Ulaanbaatar, have significantly influenced grass-
land vegetation dynamics in the region. Since the collapse of the Soviet-supported social-
ist system in the 1990s, Mongolia has experienced rapid urbanization, with the population
of Ulaanbaatar swelling from approximately 540,000 in 1990 to over 1.5 million by 2020,
representing nearly half of the country’s total population (M. E. Fernandez-Giménez et al.,
2017). This shift has been driven by economic pressures, harsh winters (known as dzuds),
and the allure of urban opportunities, pulling herders away from rural eastern provinces
like Dornod and Sukhbaatar (J. Chen et al., 2018; Fan et al., 2016). As herders abandon
traditional nomadic pastoralism, the resulting changes in land use and grazing pressure
have led to uneven impacts on grassland ecosystems, ranging from vegetation recovery
in some areas to intensified degradation in others (M. Fernandez-Gimenez, 2001).

Conversely, the concentration of remaining herders and livestock in areas closer to set-
tlements or transportation hubs in eastern Mongolia has intensified pressure on nearby
grasslands, accelerating degradation (Jamsranjav et al., 2018). As herders migrate to
Ulaanbaatar, those who stay behind often consolidate their herds near rural towns or
roads for easier access to markets and services, leading to localized overgrazing. Re-
search shows that within 5-10 kilometers of such settlements, aboveground biomass can
decline by up to 30%, with palatable grasses replaced by grazing-resistant or unpalatable
plants (Otgontuya et al., 2019). This spatial redistribution of grazing pressure disrupts
the traditional mobility that once balanced vegetation dynamics across the steppe, creat-
ing hotspots of degradation that contrast with underused, recovering areas further afield
(Upton, 2009). The resulting patchwork of grassland conditions reflects how demographic
shifts indirectly reshape ecological outcomes.

While both natural and anthropogenic factors contribute to grassland degradation in the
Eastern Mongolian steppe, anthropogenic influences have emerged as the dominant driver
in recent decades. Natural factors such as climatic variability and episodic droughts exert
long-term pressure on ecosystem stability; however, human activities—particularly those
related to intensive grazing and land-use changes—often induce rapid and profound im-
pacts on the landscape. These impacts include the disruption of soil structure, alterations
in vegetation composition, and the fragmentation of habitats, which collectively acceler-
ate ecosystem degradation. Compared to gradual natural changes, anthropogenic dis-
turbances tend to cause abrupt and sometimes irreversible shifts in grassland function
and resilience. Given this context, this PhD thesis places particular emphasis on grazing-
induced vegetation dynamics, aiming to better understand how pastoral practices shape
grassland condition and to identify measurable indicators of degradation using remote
sensing techniques.
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1.3.4 Problem statement

Monitoring Grazing Dynamics and Herding Movements in Eastern Mongolia

The transition to a market economy in Mongolia since the 1990s has profoundly re-
shaped the mobility patterns of pastoralists, driven by socioeconomic changes, environ-
mental pressures, and evolving livelihood strategies. Traditionally, Mongolian herders
practiced seasonal migrations, moving between distinct summer, autumn, winter, and
spring camps to optimize pasture use and livestock health. For instance, in the Dayan
high valley of the Mongolian Altai, herders historically moved four times annually, covering
distances of 10—170 km between camps to access suitable forage and water (Lkhagvador;j
et al., 2013a). However, post-decollectivization, many herders have reduced migration fre-
quency and distance, often moving only two or three times per year or remaining station-
ary, as observed in Dayan, where two-thirds of households have curtailed migrations to
cut transportation costs, reduce labor, or adapt to changing climate conditions like earlier
snowmelt (Lkhagvadorj et al., 2013a). In Altanbulag soum, herders select summer camps
based on ecological factors (abundant grass and water), territorial bonding, and social
accessibility to markets or schools, reflecting a blend of traditional ecological knowledge
and modern economic considerations (Ono & Ishikawa, 2020). Similarly, in the Great Gobi
Strictly Protected Area, herders shift camps approximately nine times yearly, prioritizing
biomass availability in summer and shelter from wind in winter, with Stipa spp. communi-
ties preferred for their nutritional value (Michler et al., 2022). These shifts in mobility are
influenced by rising livestock numbers, particularly goats for cashmere production, which
accounts for 70% of cash income in some regions, intensifying grazing pressure (Lkhag-
vadorj et al., 2013a).

The impacts of these mobility choices are significant, contributing to pasture degrada-
tion and socioeconomic challenges. Reduced mobility and increased herd sizes, as seen
in Ugtaal and Gurvansaikhan, have led to overgrazing, with pasture surveys in Gurvan-
saikhan showing a 28.2% increase in overgrazed land between 1992 and 2002 (Lise et
al., 2006). Overgrazing alters vegetation composition, replacing nutritious species with
less desirable ones like Chenopodium and artemisia, diminishing pasture carrying capac-
ity (Lise et al., 2006). In Dayan, intensified forest grazing due to reduced migrations has
further strained ecosystems, with herders resorting to forest edges for early spring for-
age, exacerbating degradation (Lkhagvadorj et al., 2013a). Socioeconomically, herders
face a reverse assurance game where maximizing herd size yields the highest payoff but
risks long-term environmental degradation, potentially reducing income by 30% in Gur-
vansaikhan and up to 60% in Ugtaal if sustainable practices are adopted (Lise et al.,
2006). Additional factors influencing mobility include access to education, as seen in
Khangai, where semi-nomadic families overwinter in towns to support children’s school-
ing, and harsh winters (dzuds), which force emergency moves or lead to livestock losses,
prompting investments in education for urban migration (Ahearn, 2018; Lkhagvadorj et al.,
2013b). Herders’ perceptions of environmental conditions, as highlighted by Fernandez-
Giménez, further guide these decisions, often prioritizing short-term economic gains over
long-term sustainability (M. Fernandez-Giménez, 1993). Thus, while mobility remains a
cornerstone of Mongolian pastoralism, its adaptation to modern pressures underscores
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the tension between economic survival and ecological sustainability.

Building on the insights into Mongolian pastoralists’ mobility choices and their ecologi-
cal and socioeconomic impacts, a critical research gap exists in systematically tracking
the spatial and temporal dynamics of herders’ seasonal movements to inform sustainable
pasture management. While studies have documented reduced migration frequencies
and overgrazing in regions like Ugtaal, Gurvansaikhan, and the Mongolian Altai (Lise et
al., 2006; Lkhagvadorj et al., 2013a), there is limited research on using advanced spa-
tial tools, such as GPS tracking or remote sensing, to monitor herder routes and guide
scientifically informed grazing strategies that optimize pasture use across Mongolia’s di-
verse landscapes. Moreover, the interaction between human activities and ecological dy-
namics is often spatially complex and poorly understood. In Mongolia, nomadic pastoral-
ism, wildlife movements (e.g., gazelle grazing), and environmental constraints co-exist and
shape vegetation patterns in intricate ways. There is a growing need to develop integrated
approaches that combine spatially explicit data—such as GPS tracking of herder routes
and wildlife distributions—with remote sensing indicators to quantify and disentangle the
ecological footprints of humans and wildlife across the steppe.

Grazing Impacts on Vegetation Dynamics in Eastern Mongolia

The grasslands of Eastern Mongolia, a cornerstone of nomadic pastoralism and regional
biodiversity, have faced increasing ecological pressure since Mongolia’s transition from a
planned to a market economy. These grasslands are critical for sustaining livestock-based
livelihoods and carbon sequestration, yet their productivity and stability are influenced by
grazing activities from both livestock and wildlife, such as gazelles. While nomadic pas-
toralists depend on these ecosystems for socio-economic well-being, the ecological im-
pacts of intensified grazing on vegetation dynamics, particularly aboveground biomass,
remain insufficiently quantified.

Despite growing research on Mongolian grasslands, significant gaps persist in under-
standing the combined effects of livestock and wildlife grazing on vegetation dynamics.
Previous studies have often focused on livestock grazing in isolation, documenting its
role in grassland degradation (Hilker et al., 2014d), or examined wildlife impacts without
integrating human-driven pressures (Olson, Fuller, Schaller, et al., 2010). Few studies
have employed process-based ecosystem models, such as LPJ-GUESS, to simulate AGB
and validate these predictions against field surveys and remote sensing data at fine spa-
tial resolutions (e.g., 0.1°). Moreover, there is a lack of research addressing the inter-
play between human population dynamics, livestock numbers, and wildlife populations as
drivers of ecological change in eastern Mongolia, particularly over short-term temporal
scales (2019-2021). Existing work often relies on coarse-scale remote sensing or local-
ized field studies, limiting the ability to capture spatially explicit vegetation responses to
grazing (M. E. Fernandez-Giménez, 2000; Wesche et al., 2010). Additionally, the differen-
tial impacts of livestock versus wildlife grazing on grassland ecosystems remain underex-
plored, as most studies fail to explore their respective contributions to vegetation dynamics
(Sankey et al., 2009). This fragmented approach hampers the development of sustainable
land management strategies tailored to the region’s unique socio-ecological context.
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1.4 Methods and proxies to monitor grassland vegeta-
tion changes

The eastern Mongolian Steppe represents a vast and ecologically critical grassland ecosys-
tem, supporting both biodiversity and traditional pastoral livelihoods. However, this ecosys-
tem is increasingly threatened by the compounded effects of climate variability and in-
tensifying anthropogenic pressures, particularly from extensive grazing practices. These
pressures contribute to shifts in vegetation productivity, degradation processes, and ulti-
mately to the loss of ecosystem services. Understanding and monitoring these dynamics
at broad spatial and temporal scales is essential for sustainable rangeland management
and ecological conservation. This section reviews the commonly used methods for study-
ing grassland vegetation dynamics, encompassing both traditional field-based approaches
and modern remote sensing techniques.

1.4.1 Field measurements

AGB is one of the most important measures of ecosystem health and function (Naidoo et
al., 2019; Shen et al., 2008). It is widely used in ecosystem research. Traditionally, AGB
is measured by a destructive method, which involves cutting and weighing the vegetation.
However, this is time-consuming, expensive, and often not possible in places like nature
reserves or long-term study sites. For this reason, non-destructive methods for estimating
biomass have become an important tool. To get around these problems, researchers have
developed several non-destructive techniques. These methods work by finding a relation-
ship between certain measurable features of the vegetation and its actual biomass. The
most common of these methods in grassland research are visual cover estimation, the
point intercept method, and field spectroscopy.

Each of these non-destructive methods has its own way of being used:

Visual Cover Estimation is a subjective but efficient method. It involves an observer vi-
sually estimating the plant cover for a specific species or for the entire plant community
in a plot. While this method is often questioned because of its subjective nature, studies
show a positive link between cover and biomass (Y. Jiang et al., 2017; Réttgermann et al.,
2000). For example, a study on a semi-arid grassland found that visual cover estimation
was just as accurate as the other two methods, and sometimes even more so (Onodi et
al., 2017). However, the results can vary depending on the plot size and the experience of
the observer (Klimes$, 2003). Therefore, it is often suggested that several observers work
together to ensure more consistent results.

The Point Intercept Method is an objective and common non-destructive method. It uses
a frame with evenly spaced points (for example, a 62 x 80cm frame with 50 points). Re-
searchers insert a pin vertically through each point and record what it hits, such as live
vegetation, dead plants, or bare ground (Jonasson, 1988). The number of times the pin
hits green vegetation gives a "canopy intercept" value, which is used to represent biomass.
Studies show that adding canopy height to this method can significantly improve its ac-
curacy (Frank & McNaughton, 1990). While this method can explain a large amount of
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biomass variation (R? = 0.98), some research suggests its accuracy might be lower than
other methods in certain situations (Byrne et al., 2011; Onodi et al., 2017).

Field Spectroscopy uses handheld devices like spectral radiometers to measure the light
reflectance from the plant canopy. This method is based on the idea that plants reflect light
differently in various light bands, like red and near-infrared. For example, healthy green
plants absorb a lot of red light and reflect a lot of near-infrared light. The ratio of this
reflectance is highly related to biomass. A study by (Pearson et al., 1976) found a very
strong correlation of 0.98 between the reflectance ratio from a handheld radiometer and
the biomass of short grass. Although this method might be less accurate than the point
intercept method in some cases, a cost-benefit analysis showed that it can achieve a good
level of accuracy with much less labor (Byrne et al., 2011), making it a very practical and
efficient tool.

Field surveys are indispensable for obtaining firsthand data and gaining a clear under-
standing of research objectives, particularly when assessing local-scale phenomena. They
are the most direct method for collecting subjective opinions from herders on specific in-
dicators and for monitoring nuanced vegetation dynamics within a smaller spatial range
(M. E. Fernandez-Gimenez, 1999; Ulambayar, 2017). This detailed, on-the-ground re-
search provides the "ground-truthed" data necessary to understand and quantify the scale
and speed of environmental changes, thereby establishing a scientific basis for ecological
protection and sustainable development policies (Tumur et al., 2020). However, no matter
how efficient these field-based methods are, they are still limited to small, isolated areas.
For a vast and continuous landscape like the Eastern Mongolian Steppe, it is simply im-
possible to cover the entire area with ground surveys alone due to the sheer scale and
human resource limitations. To solve this problem and monitor large-scale ecological dy-
namics, we must use a broader, more comprehensive approach. In this context, remote
sensing technology becomes a vital tool. It offers a powerful and cost-effective way to
overcome these spatial limitations, providing wide-ranging, repeated, and consistent ob-
servations of the landscape that field crews cannot achieve. Crucially, the detailed data
from field surveys is not replaced by remote sensing, but rather becomes essential for
calibrating and validating the models used to interpret the large-scale remote sensing im-
agery. By combining the detailed data from field surveys with the broad spatial coverage
of remote sensing, we can more comprehensively and accurately portray the current sta-
tus of grassland ecosystems and the multifaceted challenges they face (Kim et al., 2020;
Z. Xie et al., 2024). In the following section, we will therefore investigate the critical role of
remote sensing in retrieving AGB and its importance for sustainable rangeland manage-
ment.

1.4.2 Remote Sensing

Accurately estimating AGB is a central challenge in grassland ecosystem research (Bazzo
et al., 2023). As a key indicator of vegetation productivity and land degradation, AGB is
crucial for understanding the health of these ecosystems (Vundla et al., 2020). However,
with Mongolia’s grassland area spanning nearly 1.1 million square kilometers, traditional
manual survey methods are simply not practical. They are time-consuming, expensive,
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and logistically difficult, especially for reaching remote areas and capturing rapid veg-
etation changes. Furthermore, conventional field measurements provide limited spatial
coverage, while remote sensing methods based on single data sources often have their
own limitations, such as low spatial resolution or sensitivity issues. To effectively moni-
tor such a vast and dynamic landscape, a more powerful approach is needed. Remote
sensing technology provides a promising solution with its advantages of wide coverage,
short revisit cycles, and high data volume, allowing for efficient, large-scale, and long-term
vegetation monitoring.

Over the past decades, numerous methods have been developed to retrieve aboveground

biomass (AGB) from remote sensing data, each with distinct assumptions, input require-

ments, and spatial-temporal applicability (Galeana-Pizana et al., 2016; Tian et al., 2023).

To establish effective links between remote sensing imagery and field plot data, researchers
have applied a variety of algorithms within specific regions to conduct extensive biomass

estimation and biomass mapping efforts. These studies aim to develop remote sensing

indices with enhanced “penetration” capabilities or to integrate multiple indices in order to

improve the accuracy of grassland biomass estimation (Table 1.1).These approaches can

be broadly classified into empirical statistical models, physically based radiative transfer

models, and, more recently, machine learning techniques (Ali et al., 2016).

Empirical / Statistical Models. In numerous studies, vegetation indices (VI) derived from
optical sensors are frequently used as proxies to investigate the spatial and temporal dy-
namics of grassland productivity (Huete et al., 2002; Tucker, 1979). These indices, which
typically leverage the near-infrared and red bands, are calculated and analyzed based on
their sensitivity to chlorophyll content (Datt, 1999; Gitelson & Merzlyak, 1998; Hunt Jr. et
al., 2011). Statistical models then utilize these vegetation indices and other spectral fea-
tures from different bands within multiple linear or non-linear regression algorithm. This
allows researchers to establish a mathematical relationship with ground-based measure-
ment data, thereby achieving the goal of retrieving and monitoring surface characteristics
over large areas. These studies used optical sensor-based vegetation indices as proxy
indicators to investigate spatiotemporal patterns of grassland production, revealing varied
performance across different indices and ecosystems. The Normalized Difference Vegeta-
tion Index (NDVI) has been widely employed to assess primary productivity and vegetation
dynamics. For instance, in Sonora, Mexico, NDVI revealed reduced primary productivity in
buffelgrass pastures compared to native vegetation, alongside a 50% reduction in species
richness, highlighting the impact of land conversion (K. Franklin & Molina-Freaner, 2010).
Globally, NDVI trends from 1982 to 2011 showed significant increases in grassland pro-
ductivity in regions like the Arctic and central Africa, driven by temperature and precipita-
tion changes, while declines were noted in areas like the Mongolian Plateau (Q. Gao et al.,
2016). In central Nebraska, a 30-m resolution NDVI-based grassland productivity map, de-
rived from MODIS and Landsat data, captured detailed ecological patterns, outperforming
coarser 250-m maps for local management (Gu & Wylie, 2015). The Enhanced Vegeta-
tion Index (EVI) was used in eastern Australia to monitor grassland responses to extreme
drought and rainfall, showing sensitivity to hydro-climatic and land-use factors, with soil
moisture and C3:C4 ratios influencing decline and recovery patterns (Kath et al., 2019).
In the Hindu Kush Karakoram, MODIS-based NDVI indicated higher productivity in sub-
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alpine zones but a negative trend suggesting degradation (Qamer et al., 2016). A remote
sensing protocol using annual maximum NDVI identified degradation status in 16% of the
northern and 9% of the southern Great Plains, with minimal net primary production loss
(Reeves & Baggett, 2014). Time-integrated NDVI (TI NDVI) highlighted the role of C3 and
C4 grass dominance in the U.S. Great Plains, with C4-dominated southern plains show-
ing higher interannual variability (Ricotta et al., 2003; L. Yang et al., 1998). Early studies
in the Sahel using NDVI from AVHRR data demonstrated its utility for regional drought
monitoring by comparing primary production between years (TUCKER et al., 1986). Col-
lectively, these studies underscore NDVI and EVI as robust tools for monitoring grassland
dynamics, with their effectiveness varying by scale, resolution, and ecological context. A
comprehensive review of 253 studies found that in investigations of grassland productivity
using biomass samples and remote sensing data, the Normalized Difference Vegetation
Index (NDVI) was tested as a model input in 62% of cases, underscoring its dominance as
a reliable proxy for primary productivity (Reinermann et al., 2020). Other indices, such as
the Enhanced Vegetation Index (EVI) (15%), Soil-Adjusted Vegetation Index (SAVI) (9%),
and Leaf Area Index (LAI) (8%), were also frequently utilized, particularly in satellite-based
biomass models, reflecting their complementary roles in capturing vegetation characteris-
tics (Reinermann et al., 2020). Empirical relationships between these indices and biomass
were predominantly established using simple linear or multivariate linear regression, with
60% of studies employing such methods (Reinermann et al., 2020). For example, in Aus-
tralian grazing systems, NDVI derived from high-resolution satellite imagery showed a
strong linear relationship (R2 = 0.84) with field-measured pasture biomass, enabling re-
liable predictions across a range of 500—4000 kg DM ha' with a standard error of 315
kg DM ha' (Edirisinghe et al., 2011). Similarly, NDVI from SPOT-4 and SPOT-5 imagery
in New Zealand dairy pastures exhibited an 81% correlation with biomass, achieving a
paddock-scale prediction accuracy with a standard error of 260 kg DM ha' for biomass
ranges of 1500-3500 kg DM ha' (Edirisinghe et al., 2012). In southwestern Australia,
NDVI from MODIS data was used to estimate Feed On Offer (FOO) for early-season graz-
ing management, with an exponential relationship (R2 = 0.71-0.75) for FOO up to 2000
kg ha', though accuracy diminished at higher biomass or during senescence (R. C. G.
Smith et al., 2011). These findings highlight NDVI’s robustness in grassland monitoring,
with EVI, SAVI, and LAI providing additional insights, particularly in diverse ecological
contexts, while regression-based models enhance predictive accuracy for practical appli-
cations.

Radiative transfer models. Radiative transfer models (RTMs), such as the PROSAIL
model, which integrates the PROSPECT leaf optical properties model and the SAIL canopy
bidirectional reflectance model, are pivotal in estimating AGB from remote sensing data
by simulating the spectral reflectance of vegetation canopies based on physical principles
of electromagnetic radiation interactions (Jacquemoud et al., 2009; Vohland & Jarmer,
2008). Through model inversion, RTMs convert observed reflectance into biophysical
parameters like leaf area index (LAI) and leaf dry matter content (Cm), enabling AGB es-
timation via the relationship AGB = Cm x LAI (L. He et al., 2019). In the Zoige Plateau,
China, PROSAIL inversion with MODIS imagery produced AGB estimates with an RMSE
of 60.06 grm2 and R-RMSE of 18.1%, accurately reproducing reference AGB maps without
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field measurements, highlighting its potential for operational monitoring at regional scales
(L. He et al., 2019). Similarly, PROSAIL with Landsat 8 OLI data outperformed exponen-
tial regression and artificial neural networks (R? = 0.64, RMSE = 42.67 g-m?) in estimating
grassland AGB in China (Quan et al., 2017). On the Tibetan Plateau, PROSAIL inversion
implemented on Google Earth Engine generated spatiotemporally continuous AGB prod-
ucts (2000—2021) with an R2 of 0.87 and RMSE of 14.29 g-m?, capturing grazing-induced
biomass dynamics (J. Xie et al., 2022). In Southern England, Sentinel-2A data combined
with PROSAIL inversion yielded reliable LAl estimates for diverse pastures, surpassing
NDVI-based methods and supporting biomass mapping with moderate agreement to field
data (Punalekar et al., 2018). To address heterogeneous landscapes, PROSAIL was
paired with multiple endmember spectral mixture analysis (MESMA) in the Cantabrian
Mountains, achieving accurate AGB estimation (R? = 0.67, RMSE = 43.44 g-m?) by ac-
counting for subpixel variability (Fernandez-Guisuraga et al., 2024). RTM applications
have evolved through integration with advanced techniques. Data assimilation, such as
incorporating PROSAIL-retrieved LAl into the SWAP crop growth model using 4D-VAR,
improved AGB estimation in Ruoergai, China (R? = 0.76, RMSE = 542.52 kg-ha') (B. He
et al., 2015). Hybrid approaches combining RTMs with machine learning, such as sup-
port vector regression (SVR), mitigated the ill-posed inversion problem, enhancing AGB
accuracy in the Zoige Plateau (R? = 0.69, RMSE = 44.07 g-m?) (Z. Wang et al., 2024).
In Tianzhu County, hybrid models using PROSAIL with deep neural networks (DNN) and
SVR showed superior LAI retrieval performance, with SVR offering high computational
efficiency for near-real-time applications (Qin et al., 2024). In Mediterranean grasslands,
PROSAIL inversion with hyperspectral imagery achieved LAl estimates (R2=0.91, nRMSE
= 0.18) comparable to statistical methods (Darvishzadeh et al., 2011). Constraints, such
as a 4:1 water-to-dry-matter ratio, further improved LAl accuracy in Central European
grasslands (RMSE = 0.74) (Vohland & Jarmer, 2008). RTMs provide a robust, scalable,
and physically-based approach for AGB estimation, reducing reliance on field data com-
pared to empirical methods, and their integration with machine learning and spectral mix-
ture analysis enhances versatility in complex landscapes (Atzberger, 2010; Baret & Buis,
2008). These advancements position RTMs as a promising methodology for operational,
large-scale grassland AGB monitoring, despite challenges like the ill-posed inversion prob-
lem, which can be addressed through ecological constraints or hybrid techniques.

Machine learning method. Machine learning (ML) methods have revolutionized grass-
land aboveground biomass (AGB) estimation by leveraging advanced computational tech-
niques to model complex relationships between remote sensing data and ground observa-
tions, offering enhanced accuracy and spatial generalization over traditional empirical/s-
tatistical approaches (Al-Jarrah et al., 2015). ML can be viewed as a subset of empirical
models, as it relies on ground sample data to train algorithms that optimize performance
metrics by searching through large parameter spaces (Al-Jarrah et al., 2015). In the con-
text of the Mongolian steppe and other grassland ecosystems, ML methods, including
regression and classification approaches, have been widely applied to estimate AGB, de-
tect grazing land, and monitor vegetation health, providing critical data for sustainable land
management (Ali et al., 2015; Rumpf et al., 2010). Regression-based ML techniques, such
as random forests (RF), support vector regression (SVR), artificial neural networks (ANN),
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and Gaussian process regression (GPR), have proven particularly effective for AGB esti-
mation due to their ability to capture non-linear relationships and handle multispectral and
multitemporal remote sensing data.Random forest (RF) regression has been extensively
used for AGB estimation due to its robustness and ability to integrate diverse predictors,
such as vegetation indices (e.g., NDVI), topographic variables, and meteorological data.
In the Kazbegi region of the Greater Caucasus, RF modeling, incorporating species com-
position maps, achieved an R2 of 0.64 for AGB prediction, outperforming models without
species composition (R2 = 0.42) by mitigating saturation issues in high-yield grasslands
(Magiera et al., 2017). Similarly, on the Loess Plateau, China, RF explained 65.01% of
AGB variance, outperforming bagging, mboost, and SVM models, with NDVI from TM data
identified as a key predictor (Y. Wang et al., 2017). On the Tibetan Plateau, RF estimated
AGB with an R2 of 0.86, revealing significant correlations with temperature and precipita-
tion, thus enhancing understanding of climatic influences on grassland productivity (Zeng
et al., 2019). In South Africa, RF combined with WorldView-2 data predicted AGB with
over 84% variance explained, leveraging red-edge bands to improve accuracy during both
wet and dry seasons (Ramoelo et al., 2015).Support vector regression (SVR) has also
shown promise, particularly for high-resolution and near-real-time AGB monitoring. In Xil-
inhot, Inner Mongolia, SVR integrated with synthetic NDVI from a data-fusion approach
(STARFM) using MODIS and Landsat data achieved an R? of 0.77 and RMSE of 17.22
g'm2, surpassing MODIS-only models (R? = 0.73, RMSE = 30.61 g'-m?) and providing 30-
m resolution biomass maps with 8-day intervals (B. Zhang et al., 2016). When coupled
with the PROSAIL radiative transfer model (RTM) on the Zoige Plateau, SVR mitigated
the ill-posed inversion problem, yielding AGB estimates with an R2 of 0.69 and RMSE of
44.07 g-m2, demonstrating improved universality and reduced dependence on field data
(Z. Wang et al., 2024). In Tianzhu County, SVR exhibited superior computational effi-
ciency among hybrid RTM-ML models, making it ideal for operational AGB products (Qin
et al., 2024).Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems
(ANFIS) have been effective in capturing complex AGB patterns, particularly in intensively
managed grasslands. In Ireland’s pasture-based dairy farms, ANFIS achieved an R? of
0.85 (RMSE = 11.07 kg-ha'-day") at Moorepark and R2 of 0.76 (RMSE = 15.35 kg-ha'-day")
at Grange, outperforming multiple linear regression (MLR) and ANN when using MODIS-
derived vegetation indices (Ali et al., 2017). In the West Songnen Plain, China, ANN with
multitemporal MODIS data provided higher AGB estimation accuracy than statistical mod-
els, mapping spatial variability critical for grazing management (F. Li, Jiang, et al., 2013).
However, ANN was outperformed by RTM-based methods in some cases, such as PRO-
SAILH inversion with Landsat 8 OLI data (R? = 0.64 vs. ANN’s R2 = 0.43) (Quan et al.,
2017).Gaussian process regression (GPR) has addressed challenges like spatial gaps in
remote sensing data. In the Zoige Plateau, GPR combined with gap-filled Landsat 8 OLI
reflectance via the CACAO method produced AGB maps with an R2 of 0.64 and RMSE
of 48.13 g-m?2, accompanied by pixel-wise uncertainty estimates, enhancing reliability for
carbon cycle modeling (G. Yin et al., 2018). Generalized linear models (GLMs), while
simpler, have been less effective in some contexts; in NE-Iran’s semi-arid rangelands,
GLMs with transformed NDVI achieved an R2 of 0.47, outperforming soil-adjusted indices
like SAVI and EVI, which performed worse than a null model (Gholami Baghi & Oldeland,
2019).ML methods excel in integrating multi-source data, improving spatial and tempo-
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ral resolution, and capturing ecological nuances, such as species composition or grazing
impacts, compared to traditional statistical models (Ali et al., 2015). Hybrid approaches
combining ML with RTMs, like PROSAIL with SVR or DNN, further enhance accuracy and
scalability by blending physical principles with data-driven flexibility (Qin et al., 2024; Z.
Wang et al., 2024). Despite challenges like computational complexity and data require-
ments, MLs ability to handle non-linear relationships and diverse predictors positions it
as a powerful tool for operational AGB monitoring in the Mongolian steppe and beyond,
supporting sustainable grassland management and carbon cycle studies.

In Mongolian grasslands, remote sensing has played a crucial role in enabling researchers
to more effectively monitor vegetation dynamics, with early efforts dating back to the
1980s when images from the Soviet Soyuz-22 spacecraft were used to create the first
1:1,000,000 scale map for soil and landscape analysis (Vasil'yev, 1988). Since then, nu-
merous studies have utilized satellite-based observations to estimate AGB and assess
degradation. Researchers have successfully linked field observation data with various
remote sensing indices to monitor large-scale vegetation dynamics (Kogan et al., 2004).
This synergy between remote sensing and ground-based data has been particularly ef-
fective, with studies tracking desertification on the Mongolian steppe by establishing a
significant correlation between field surveys and NDVI data, which revealed historical land
cover changes and a decrease in plant density from 1998 to 2006 (Sternberg et al., 2011).
Indeed, the use of satellite data for AGB estimation dates even earlier, with one of the first
studies dating to 1989 exploring the relationship between ground biomass measurements
and NOAA AVHRR reflectivity values (Adyasuren, 1989). This pioneering work laid the
foundation for subsequent research that thoroughly explored the use of vegetation in-
dices (VIs), such as a 2004 study that compared AVHRR-based vegetation health (VH)
indices with biomass measurements to accurately estimate pasture biomass anomaly in
a semi-dry steppe ecosystem (Kogan Corresponding author et al., 2004). Over the past
two decades, different authors have developed and tested numerous satellite-based Vls
for different test sites, with one study from 2005 comparing NDVI, MSAVI2, and EVI from
SPOT-4 data to estimate biomass and monitor degradation in arid and semi-arid areas.
The study found that MSAVI2 performed best in the desert steppe and Gobi zones, while
EVI was superior in mountain steppe zones (Javzandulam et al., 2005). These techniques
have been used to determine the spatial and temporal variability of vegetation cover, re-
vealing that stable areas like the taiga and forest steppe zones are largely dependent
on precipitation, while the more vulnerable steppe and desert steppe zones show high
inter-annual fluctuations in vegetation dependent on the amount and distribution of rainfall
(Vandandorj et al., 2015). The use of multi-source data has been particularly effective.
For instance, multi-temporal optical and microwave data have been used to develop AGB
prediction models that provide large-scale insights into grassland productivity. These ef-
forts have produced valuable regional AGB maps: MODIS data were used to retrieve and
generate maps for Dornod and Sukhbaatar provinces in 2016 (Damdinsuren et al., 2023).
Remote sensing has also enabled broader land cover analyses, with Landsat images re-
vealing that between 1990 and 2010, Mongolia experienced a decline in forest and steppe
areas alongside an increase in desert steppe and bare land, indicating a severe trend to-
ward desertification (J. Wang, Cheng, Liu, Zhu, Ochir, Davaasuren, Li, Wei, Chonokhuu,
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Namsrai, & Ariunsanaa, 2019; J. Wang et al., 2020). These changes are attributed to
a combination of climate change and socio-economic factors, highlighting the complex
drivers of land degradation (J. Wang et al., 2020). More recent research has continued
to refine these methods. For instance, a 2022 study in the forest-steppe zone compared
seven different vegetation indices and found that the atmospherically resistant vegeta-
tion index (ARVI) had the highest correlation (R? = 0.62) with above-ground biomass,
making it a suitable candidate for pasture monitoring in north-central Mongolia (Bayaraa
et al., 2022). Remote sensing has also been crucial for understanding other forms of
human-induced land change, revealing that almost 88% of the grassland in Menengyn Tal
was disturbed by dirt roads and oil infrastructure between 2005 and 2018 (Dashpurey,
Bendix, & Lehnert, 2020). Studies have also monitored the ecological impact of other
infrastructure like roads and railways, and the effects of wildfires on vegetation cover and
plant functional groups (Dashpurev et al., 2021). Beyond broad-scale monitoring, remote
sensing has become a predictive tool, used to create habitat preference models for plant
species based on variables from Landsat data and digital elevation models (von Wehrden
et al., 2009). This predictive capability extends to key pastoral challenges, with multi-
sensor satellite data and machine learning models being successfully applied to identify
the key natural factors driving annual livestock changes and devastating winter livestock
disasters, known as dzud (Kang et al., 2024). A 2023 study further advanced this by com-
paring machine learning methods—random forest (RF), support vector machine (SVM),
and partial least squares regression (PLSR)—to estimate and map pasture biomass in a
forest-steppe area. Using spectral indices from Sentinel-2B imagery and field-measured
data, the research found that the PLSR model was the most accurate, achieving a coef-
ficient of determination of R? = 0.899 and a root mean square error of RMSE = 10.560
g/m?. The study concluded that while all models showed high accuracy (R* = 0.82), PLSR
provided the best results for pasture biomass estimation and mapping in the specific test
site (Amarsaikhan et al., 2023).

While remote sensing applications have provided a wealth of information, previous re-
search indicates that AGB estimation is a complex process influenced by multiple driving
variables. Due to its capacity to model high-dimensional and multicollinear variables, ma-
chine learning has become increasingly popular for AGB estimation. However, the accu-
racy of these models can be impacted by several factors, including a lack of representative
variables, discontinuous and highly variable ground conditions, and the presence of mixed
grassland types. These issues can lead to models that are either unstable or overfitted. In
this context, a critical issue remains largely overlooked: to what extent can we trust AGB
maps derived from models trained on limited ground sampling data? Given the sparse and
often uneven distribution of field observations in remote steppe regions, the reliability and
generalizability of model predictions warrant a closer examination. Machine learning algo-
rithms in spatio-temporal applications learn from observations to predict a certain variable
for unknown locations and times within a defined model domain (Meyer et al., 2018). It
is important to note that the term "prediction" here should not be confused with "forecast-
ing," as most models focus on predicting in past or present times as well as in space.
Therefore, addressing the research gap, the first study of this thesis aims to evaluate the
accuracy of these AGB prediction maps through independent validation approaches, ulti-
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mately assessing their applicability for regional-scale grassland monitoring.



Table 1.1: Summary of pioneering studies on grassland AGB modeling for various grassland biomes using different algo-

rithms, satellite data, explanatory variables, and R? values (H. Li et al., 2024).

Region Grassland Sample Models Data source Spatial Explanatory R? Reference
type size reso- variables
lution
(m)
Andean Water- 100 Nonlinear ERS 12.5 Backscattering 0.78 Moreau and
saturated coefficient Le Toan
grassland (2003)
Colombia Savanna 42 Linear, MODIS 500 EVI 0.82 Anaya et al
nonlinear (2009)
Swiss Grassland 155 Multiple lin- EO-1 30 NDVI, RNDVI, 0.86 Psomasetal.
Plateau along dry-mesic ear SAVI, TSAVI, (2011)
gradient SR, OSAVI,
MTVI1, NDWI,
SRWI, PWI,
WDVI, RESP,
GMI, MCARI,
TRVI, PRI, CAl,
CAI_ATSAVI,
TVI
Netherlands  Temperate 30 Multiple lin- MERIS 300 BDR, BNA, 0.73 Ullah et al.
grassland ear NBDI (2012)
Western Grassland 37 Linear SPOT 20 NDVI, LAI 0.73 Dusseux et
France al. (2015)
Iberian Meadow 17-39  Multiple lin- Landsat 5 30 NDVI, EVI, 0.76 Barrachina et
Peninsula ear TCG, TCW, al. (2015)
NDWI
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Region Grassland Sample Models Data source Spatial Explanatory R? Reference
type size reso- variables
lution
(m)
Inner Mongo- Meadow 288 Linear MODIS, 250,30 PVI 088 Li et al
lia steppe, typ- Landsat 8 (2016)
ical steppe,
desert steppe
US. Great Grassland 30 Random MODIS 250 NDVI 0.82 Wylie et al.
Plains forest (2016)
Three-River  Alpine meadow, 287 Linear, MODIS 500 NDVI, EVI, 0.70 Liang et al.
Headwaters  alpine steppe nonlinear, SAVI, MSAVI, (2016)
multiple OSAVI, SATVI,
linear RVI, climatic
factors, to-
pographic
elements
Ireland - 936 Adaptive MODIS 250, NDVI, EVI2, 0.85, Al et al
neuro- 500 SAVI, MSAVI, 0.76 (2017)
fuzzy OSAVI
inference
system
England Mixed pasture 10 Radiative Sentinel-2 10,20 NDVI, Radiative 0.87 Punalekar et
transfer transfer param- al. (2018)
eters
Mongolian Meadow 1188 Regression MODIS 500 LSWI, NDVI, 0.68 John et al
Plateau steppe, typ- tree NDWI (2018)
ical steppe,
desert steppe
Sénégal Savanna 63 Nonlinear ENVISAT, 150, V, H, VV, HH 0.52 Braun et al.
ALOS, SSM/I 100, (2018)

12500
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Region Grassland Sample Models Data source Spatial Explanatory R? Reference
type size reso- variables

lution
(m)

Mongolia Meadow 553 Random Landsat 8 30 GNDVI, SR, 0.76 Otgonbayar
steppe, typ- forest GCL, NDVI, et al. (2019)
ical steppe, EVI, EVI2,
desert steppe WDRVI, GW-

DRVI, MSAVI2,
Cl, HI, BIl, RI,
GSlI, NDWI,
MSI, SOC

South Africa  Wetlands grass- 62 Random Sentinel-1/2, 20, 10, NDRE, GNDVI, 0.63 Naidoo et al.
land, marsh forest Worldview 1 RVI (2019)

Brazilian Subtropical 60 Multiple lin- Sentinel-2 20 EVI, NDRE, 0.65 Guerini Filho

Pampa grassland ear NDVI, PSRI et al. (2020)

Eastern Meadow 546 Random MODIS 500 NDVI, EVI, CI, 0.47, Ding et al.

Eurasia steppe, typ- forest NDWI, NDPI, 0.44 (2022)
ical steppe, climatic factors,
desert steppe, topographical
meadow elements

Germany Temperate 150 Random Sentinel-1/2 10 EVI, NDVI, 0.42 Muro et al.
grassland forest MNDVI, GNDVI, (2022)

NDII, MIRNIR,
SAVI, ARVI,
CHLRE,
MCARI, LA,
topographical
elements
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Region

Grassland
type size

Sample Models

Data source Spatial

Explanatory
reso- variables

lution

(m)

RQ

Reference

China

18 grassland 10
types

Multiple
linear re-
gression,
Support
vector
machine,
Multilayer
perceptron,
Elastic net
regres-
sion, Hist
gradient
boosting
regressor,
Random
forest

Sentinel-1/2

10 31 variables

0.29

0.68

(H. Li et al,
2024)
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Introduction

1.5 Research questions and objectives

The overall aim of this thesis is to improve the understanding of human-induced impacts
on vegetation dynamics and land degradation in the eastern Mongolian Steppe. By inte-
grating remote sensing, machine learning, and ecosystem modeling, this study seeks to
assess and map the current status of grassland conditions. To achieve this goal, several
key research questions have been investigated, forming essential components of this final
thesis. These questions address the spatial and temporal patterns of vegetation change,
the role of grazing activities, and the broader ecological implications of human interven-
tions on the steppe ecosystem:

Research question 1: How can different combinations of ground sampling data and multi-
source satellite observations (e.g., Sentinel-2 optical and Sentinel-1 SAR) be used to
generate a reliable and spatially consistent aboveground biomass product for the east-
ern Mongolian grassland?

To answer this question, the following three research objectives were settled:

Objective (1): Improve the large-scale grassland AGB estimation method - combine multi-
source remote sensing data (including multi-scale and multi-temporal optical images and
synthetic aperture radar (SAR) data) and more than 600 field sample data points to opti-
mize the accuracy and applicability of AGB estimation.

Objective (2): Build a ML-based AGB prediction model - use machine learning combined
with multi-source satellite data and more than 600 field data points to improve the accu-
racy of AGB prediction.

Objective (3): Evaluate the scope of model applicability - use a novel dissimilarity index
(DI) method to calculate the model’'s area of applicability (AOA) and analyze the spatial
applicability of AGB prediction in central and eastern Mongolian grasslands.

Research question 2: How did vegetation breakpoints in the Eastern Mongolian range-
land manifest temporally and spatially between 2019 and 2021, and can InSAR coherence
time series data effectively differentiate those caused by herder and livestock mobility from
natural events?

In order to achieve the research goal of monitoring the spatial-temporal dynamics of
herders’ grazing activities in Mongolian grasslands based on remote sensing data, this
study set the following specific research objectives:

Objective (1): Develop grazing activity monitoring methods - Combine synthetic aperture
radar interferometry (INSAR), optical imagery and meteorological time series data to mon-
itor spatio-temporal grazing patterns.

Objective (2): Establish a grazing activity detection model based on machine learning -
Develop a machine learning (ML)-based method to identify mutation points in vegetation
conditions and compare them with the widely used Breaks For Additive Season and Trend
(BFAST) algorithm to evaluate its performance.

Research question 3: How do livestock grazing and wildlife foraging influence vegetation
dynamics in the eastern Mongolian Steppe?
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To address this question, | established two research objectives:

Objective (1): Quantify vegetation dynamics: Compare aboveground biomass predictions
from the LPJ-GUESS ecosystem model with field survey and remote sensing data to an-
alyze spatial and temporal vegetation changes.

Objective (2): Assess human and wildlife influence: Investigate the relationships between
population, livestock, and wildlife numbers with model consistency to determine their re-
spective impacts on vegetation.
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1.6 Structural framework
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Livestock has greater impact than wildlife on vegetation (Chapter 4)

Figure 1.6: Outline of thesis

This thesis is organized as a cumulative dissertation comprising three peer-reviewed pa-
pers, each contributing to the overarching objective of assessing human impacts on veg-
etation dynamics in the eastern Mongolian Steppe. Rather than aligning each manuscript
directly with a single research question, the structure reflects a logical progression from
data development to process analysis and impact assessment. The overall structure of
this thesis is shown in Figure 1.6:

The first study establishes a spatially continuous baseline of AGB estimation using multi-
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source satellite data and machine learning, forming the critical input layer for the analyses
that follow. The second study investigates spatiotemporal dynamics of grazing activity,
using InSAR time series and change detection algorithms to trace the role of nomadic
land use in driving vegetation changes. The third study synthesizes previous findings by
directly quantifying the ecological effects of grazing using a dynamic vegetation model and
AGB data from the first paper. This structured data, drivers, and impacts—ensures that
each manuscript contributes to a deeper, integrated understanding of how anthropogenic
pressure shapes ecosystem patterns over time.

1.6.2 Scientific publications

List of publications
Paper 1

Ji, S., Dashpurey, B., Phan, T. N., Dorj, M., Jaschke, Y., Lehnert, L. (2024). Above-ground
biomass retrieval with multi-source data: Prediction and applicability analysis in E astern
M ongolia. Land Degradation Development, Idr.5109. https://doi.org/10.1002/Idr.5109

Paper 2
Ji, S., Gonchigsumlaa, G., Damdindorj, S., Tseren, T., Sharavjamts, D., Otgondemberel,
A., ... Lehnert, L. (2025). Can vegetation breakpoints in Eastern Mongolia rangeland

be detected using Sentinel-1 coherence time series data? GlIScience Remote Sensing,
62(1). https://doi.org/10.1080/15481603.2025.2540222

Paper 3

Shuxin Ji, Jonas Van Laere, Bayarbaatar Buuveibaatar, Samantha Strindberg, Thomas
Muller, Nandintsetseg Dejid, Thomas Hickler, Lukas W. Lehnert. Tracking the ecological
footprint of humans and wildlife in Eastern Mongolia. This paper is under review at Eco-
sphere.
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ABOVE-GROUND BIOMASS RETRIEVAL
WITH MULTI-SOURCE DATA:
PREDICTION AND APPLICABILITY
ANALYSIS IN EASTERN MONGOLIA

Shuxin Ji ', Batnyambuu Dashpurev ', Thanh Noi Phan ', Munkhtsetseg Dorj 2, Yun
Jaschke 3, Lukas Lehnert '

! Department of Geography, Ludwig-Maximilian-University of Munich, Luisenstr.37,
80333 Munich, Germany

2 Agency of Land Administration and Management, Geodesy and Cartography,
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2.1 Abstract

Grassland aboveground biomass (AGB) is a key variable to measure grassland produc-
tivity, and accurate assessment of AGB is important for optimizing grassland resource
management and understanding carbon, water, and energy fluxes. Current approaches
on large scales such as the Mongolian Steppe Ecosystem often combine field measure-
ments with optical and/or Synthetic Aperture Radar (SAR) data. Meanwhile, especially
the representativeness of the field measurements for large scale analysis have seldom
been accounted for. Therefore, we provide the first remotely sensed AGB product for cen-
tral and eastern Mongolia which (1) uses random forest (RF), (2) is fully validated against
over 600 field samples and which (3) applies a novel method, the dissimilarity index (DlI),
to derive area of applicability (AOA) of the model with respect to the training data. There-
fore, different remote sensing data sources such as multi-scale and multi-temporal optical
images — Worldview 2 (WV2), Sentinel 2 (S2) and Landsat 8 (L8) in combination with SAR
data are tested for their suitability to provide area-wide estimation on large scale. The re-
sults showed that, the AGB prediction by combining Sentinel 1 (S1) and S2 using RF had
the highest accuracy. Furthermore, the model was applicable on at least 72.61% of the
steppe area. Areas, where the model was not applicable are mostly distributed along the
edges of grassland. This study demonstrates the potential of combining Sentinel derived
indices and machine learning (ML) to provide a reliable AGB prediction for grassland for
extremely large ecosystems with strong climatic gradients.

Key words: AGB — prediction — machine learning — AOA — DI — spectral and SAR

2.2 Introduction

The Eurasian steppe, the largest continuous temperate grassland in the world, provides
vital ecosystem services for humans. These include regulating global climate through sig-
nificant organic carbon storage, sustaining biodiversity, and supporting livelihoods through
agricultural and pastoral production (Bengtsson, Bullock, et al., 2019). However, the
steppe is facing severe environmental pressure, climate change and overexploitation of
resources which contributes to the presumed grassland degradation and desertification,
threatening the integrity of this vast ecosystem (Darbalaeva et al., 2020; Dashpurey,
Bendix, & Lehnert, 2020). Unsustainable use of grassland resources has also forced
local communities to change land use, preventing improvements in their living standards
in pastoral areas in the long run (Khishigbayar et al., 2015; Reid et al., 2014). The increase
in numbers of grazing, mining activities, as well as the effect of grassland reclamation for
food production and development, have been the main cause of grassland degradation
on the Mongolian Plateau (Leisher et al., 2012; Sainnemekh et al., 2022a). In situ mea-
surements showed that these human disturbances, coupled with climate warming, have
reduced biodiversity and ecosystem functions within the region (Kauffman et al., 2021;
ZHANG et al., 2010). Therefore, timely and accurate monitoring of vegetation dynamics
is key to assess potential grazing capacities and to protect the vast ecosystems (J. Wang
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et al., 2013). Since presumed drivers of vegetation condition are changing over time, sta-
ble and validated time series products are required for Mongolia.

AGB is a key biophysical indicator characterizing grassland growth and conditions. Tradi-
tionally, data collected in situ within the enclosure in the undisturbed, natural plant com-
munities is representative of aboveground net primary production. However, sampling
with destructive methods is labour and cost-intensive and has limiting spatial and tempo-
ral representativeness. Satellite remote sensing has been established as a low-cost and
widely used tool to monitor vegetation across large areas and to provide accurate data
for management of vast ecosystems. Several previous studies reported the capability of
optical data to be used for estimating AGB (Guerini Filho et al., 2020; F. Li, Jiang, et al.,
2013; Mundava et al., 2014; Otgonbayar et al., 2019; H. Ren & Zhou, 2019), however
several limitations remain, including (1) spaceborne optical remote sensing is limited by
clouds; (2) saturation of the relationship between AGB and surface reflectance at mod-
erate to dense grassland vegetation; and (3) the spectral information is mainly from the
top of canopy and ignores vertical vegetation structure. As a result, uncertainties of AGB
estimates may vary in space and time according to the quality of the optical satellite data
and the vegetation type.

One option to include information on vertical structure of grassland vegetation is to use
synthetic aperture radar (SAR data) which provide observations at a high spatial resolu-
tion in the order of tens of meters. In addition, the data are independent from clouds and
solar illumination (Torres et al., 2012; Veloso et al., 2017). Microwaves are sensitive to
the water content of vegetation and soil, consequently, SAR data has been proven to be a
good supplement, especially to estimate AGB of forests and crops (Blickensdérfer et al.,
2022; Forkuor et al., 2020). In contrast, only few studies used SAR data to estimate AGB
of grasslands (J. Wang, Xiao, et al., 2019), which is noticeable because a free data source
of SAR data became available with Sentinel-1 (S1) since 2014.

To estimate ABG based on any satellite data, a transfer function is necessary. Most com-
monly, such transfer functions are established using statistical approaches which can be
divided into parametric and non-parametric methods (Glneralp et al., 2014). ML methods
fall into the latter category. In a simplified perspective, ML can be seen as searching for
parameter values through a large option space, guided by training data, to find a solution
that optimizes a performance metric. Among the 26 articles published before the end of
2019 on the use of ML/deep learning to estimate AGB in grassland, random forest (RF),
support vector machines (SVM), artificial neural network (ANN) are the three most used
(Morais et al., 2021). Popular advanced methods used to retrieve biomass via multivari-
able satellite data are RF (Jansen et al., 2019; Meyer et al., 2017; Ramoelo et al., 2015)
and SVM (J. Wang, Xiao, et al., 2019; C. Wu et al., 2016) that have been evaluated as
valuable tool to be independent from multicollinearity among predictor variables.

In most of the existing studies, one ML method is used to train a model based on sampled
data, which is then applied to a larger study area without paying, attention to whether the
prediction is equally valid across the study area also beyond the training points used for
training. For instance, a recent study on salinity intrusion mapping in Vietham’s Mekong
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Delta, lacked training points at two cities in the north (Nguyen et al., 2021). Another ex-
ample is a recent study on mapping rainfall in Eastern Asian, where no training data are
included from outside of China (Yushan Zhang et al., 2021), but predictions are still made
for these areas. In this case, how reliable is the accuracy of prediction in such areas with-
out training points?

Thus, the objectives of this paper were to: (1) develop a fully validated time series of AGB
for Eastern Mongolia, (2) investigate the importance contribution of different indices and
bands to AGB mapping, and (3) evaluate in which area model predictions are reliable.

2.3 Materials and methods

2.3.1 Study area

The largest area of mostly intact steppe ecosystem in the world is found in Eastern Mon-
golia which is characterized by a close integration of social and natural processes at an
altitude of 500 - 1300 m Figure 2.1. Average temperatures range between around -4°C
and -8° and varies strongly among years (Harris et al., 2020). Annual precipitation rarely
exceeds 400 mm and is typically much lower in the south and central desert and steppe
regions. The vegetation in Eastern Mongolia is mainly grouped as steppe zone, and a
limited area belongs to the forest steppe belt (in the north and east), and a small area
in the south is covered by desert steppe. Dry steppe is the most dominant steppe type
in Eastern Mongolia (Tuvshintogtokh, 2014), while meadow steppe, mountain steppe, and
desertified steppe occur in the area of the forest steppe belt and transitional area to desert
steppe. Our study region covers mainly dry steppe, and the most dominant grass com-
munities are Stipa krylovii + Leymus chinensis + forbs and Stipa grandis + Caragana
spp. + forbs. Most frequent common species include grass species such as Stipa krylovii,
S. grandis, Leymus chinensis, and Cleistogenes squarrosa; sedge species like Carex
duriuscula; shrub species like Caragana microphylla, C. stenophylla; subshrubs such as
Artemisia frigida, A. adamsii; and forb species including Allium polyrhizum, Convolvulus
ammannii, Chenopodium spp. and Astragalus spp.
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Figure 2.1: Overview of the location of study area and land cover types (Phan et al.,
2022). Climate diagrams for the period 1990 to 2020 are calculated using data from the
Global Historical Climatology Network (Menne et al., 2012)

2.3.2 Data acquisition and pre-processing

In this section, we will first summarize the acquisition of field data used as reference in
the analysis. Then, we will describe the satellite data and the pre-processing used in this
study. For a general overview of the methods applied, please refer to Figure 2.2. The
major methodological steps include (1) data collection and preprocessing of different data
sources (e.g., optical images from WV2, S2 and L8 and SAR data from S1); (2) creation
of feature spaces (indices used as predictors derived from optical and radar sensor) to be
used for AGB prediction; (3) comparing the performance of the two popular ML methods
RF and SVM to retrieve the grassland biomass; (4) evaluation of AGB estimation results.
In this study, a total of 603 samples were systematically allocated on the grassland, of
which 216 were from 10 core sites. Core sites differed from other sampling area that WV2
data was available.
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Figure 2.2: Schematic overview of AGB mapping with multi-source satellite data.

In-situ data collection

Field data on core sites were collected during the growing season of 2019 and 2021 by
members from MORE STEP project (https://www.morestep.org), a stratified semi random
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sampling method was conducted at different geographical scales to support the multiscale
modeling and to ensure that only plots were considered which were representative for the
surrounding vegetation. Semi random in our context means that plots have been selected
based on the constraint that surrounding vegetation must be homogeneous in order to
reduce spatial scale effects. At 216 plots within the 10 core sites (Core sites differed
from other sampling areas that WV2 data was available), AGB has been removed within a
rectangle of 1 x 1 m marked with rulers (for statistics descriptive of field data see Table 2.1).
Biomass samples have been dried and weighted in the laboratory. Field data outside of
core sites were downloaded from the Agency for Land Administration and Management,
Geodesy and Cartography in Mongolia (https://egazar.gov.mn). Location of sampling
plots were recorded with a GPS.

Table 2.1: Descriptive statistics of the AGB (g/m?) collected from core sites during field
campaign.

Year N Minimum Mean Median Maximum SD (%) SE

2019 153 7.27 7599 7272 211.03 57.71 3.56
2021 63 17.85 96.18 94.17  200.16 39.95 4388

Sentinel-1 data and pre-processing

S1 images were selected based on acquisition dates to minimize the time lapse between
field campaigns and satellite overpasses and downloaded from the Copernicus Open Ac-
cess Hub (https://scihub.copernicus.eu). The data were acquired in the Interferomet-
ric Wide Swath (IW) mode with dual polarization (VV, VH). Pre-processing includes four
steps: radiometric calibration, speckle filtering, terrain correction and conversion of the
backscatter values to backscattering coefficients using the following equation:

0o (dB) = 101log;, 0

where o, (dB) is the normalized radar cross section and o is the backscatter for a specific
polarization, and the unit of backscattering coefficient is dB. Shuttle Radar Topographic
Mission (SRTM) Digital Elevation Model (DEM) at 30m resolution was used for the ter-
rain correction. To reduce speckle noise, Refined Lee speckle filtering algorithm (which
adapting the window size to the local texture and edge information) was applied to the
backscatter data which was selected due to its reported superior performance in SNAP
(Lukin et al., 2018). In order to co-registrate of S1 and S2 datasets at a spatial resolu-
tion of 10 m, the S1 dataset was chosen as the reference layer and bilinear interpolation
method was utilized (De Luca, M. N. Silva, et al., 2022).

S2 data and pre-processing

S2 images acquired during June to August of 2019 2020 and 2021 were downloaded
from the ESA Sentinel Scientific Data Hub (http://scihub.copernicus.eu) according to the
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closest dates for field samplings from June to August. The Level-1C was atmospherically
corrected with Sen2Cor processor plugin. S2 has 13 spectral bands with different spatial
resolution from visible to short-wave infrared. Except bands 1, 9 and 10, all bands were
pre-processed and included in the further analysis. The desired pixel size for the S2 image
was selected to be 10m. For the bands with a lower pixel resolution, the nearest neighbor
resampling method was used.

WYV 2 data and pre-processing

WV2 images covered 10 core sites and were acquired in 2019 and 2021, scheduled in
correspondence with the field campaigns. Radiance images were atmospherically cor-
rected and transformed from top-of-atmosphere to bottom of the atmosphere reflectance
via 6S model (Vermote et al., 1997) adopted for large scales and altitudinal gradients (Cu-
ratola Fernandez et al., 2015).

L8 data and pre-processing

With extensive data archive and wide range of wavelengths in the visible, near-infrared,
and shortwave-infrared band, Landsat images have been proved to be capable to pre-
dict grass biomass with 30 m spatial resolution (Otgonbayar et al., 2019). L8 images
were downloaded from the United States Geological Survey’s Earth Explorer website
(https://earthexplorer.usgs.gov), radiometric calibration and FLASSH atmospheric cor-
rection were conducted in ENVI 5.3. Only band 1 to band 7 were extracted in this study.
For the summary of all satellite images used in this paper please see Table 2.4 in the
supplementary material.

2.3.3 Predictor selection and experiment design

For the variables from S1, in addition to the backscatter values, the difference (VV-VH),
sum (VH+VV) (Vaglio Laurin et al., 2018) and ratio (VH/VV) (Veloso et al., 2017) were com-
puted as predictors. Besides that, depending on the number of bands available in each
optical sensor (S2, WV2 and L8), 12 common vegetation indices (Clre, mNDVIre, MSRre,
MTCI, NDVIre, SRre, Clgreen, OSAVI, EVI2, mNDVI, MSR, NDVI) (supplementary mate-
rial Table 2.5) and all NDVI-like normalized differences indices (Thenkabail et al., 2000)
(45 NDlIs from S2, 32 from WV2 and 20 from L8) were calculated and used as additional
- predictors. This resulted in feature spaces consisting of up to 72 predictor variables for
S2 and S1 (for number of predictors in other data sets see Table 2.2). In accordance with
the objectives of the study, performances of five different feature spaces were compared
to understand the applicability of indices from different datasets and their combinations
in mapping and predicting the AGB in Eastern Mongolia. R package ‘caret’ (Kuhn, 2008)
was employed to conduct two ML methods. Using the NDlIs derived from two different
spectral bands causes that variable importance values are difficult to interpret because
one spectral band contributes to several predictors in the feature space. Consequently,
the variable importance values were summed up by spectral bands contributing to each
feature.
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Table 2.2: Feature spaces in the ML regression models

Predictors Abbreviation Description Number
A: All optical data of S2 S2all Spectral and indices 67

B: All SAR Stall VV, VH and derivatives 5

C: Optical and SAR S1S2all All available predictors 72

D: All optical data WV2 WV2all Spectral and indices 48

E: All optical data of L8 L8all Spectral and indices 35

2.3.4 Assessing the accuracy of model performance

To evaluate the accuracy of grass biomass prediction models in this study and reduce the
error caused by the accidental division of training samples, 10-fold cross validation was
used. Each method in the model training was validated by a test dataset that was not used
in the model training process in the same resolution (70% for training and 30% for testing),
using the coefficient of determination R?, the cross-validation correlation coefficient (rcv),
RMSE, relative RMSE (RMSEr) and bias for evaluating the accuracy of predicted values.

Then AOA was calculated to evaluate the representativeness of the model for areas not
covered by the field sample locations (Meyer & Pebesma, 2021). Since the model has
no knowledge about such area, predictions on such areas must be considered more un-
certain compared to areas covered by sufficient training data. We calculated the recently
proposed DI (based on the minimum distance to the training data in the multidimensional
predictor space) which can be used to automatically derive the AOA of ML models. The
basic idea of the calculation is based on the minimum distance between each pixel to the
training data in the multidimensional predictor space, with predictors being weighted by
their respective importance in the model. Then, AOA was derived by applying a thresh-
old which was the maximum DI of the training data derived via cross-validation (Meyer &
Pebesma, 2021).

2.4 Results

2.4.1 Establishing model of AGB prediction

We used data from three satellite sensors to build models to predict AGB. In total, 6 AGB
models (A, B, C) have been developed based on variables from S1, S2 and their integra-
tion, and 4 models from WV2 (D) and L8 (E) with two ML methods Table 2.3. The results
showed that accuracies in predicting AGB differed among the models and ranged from
moderate to high (r. between 0.46 and 0.75, RMSE between 935.83 kg/ha and 532.12
kg/ha). Among the models, RF based on S1 and S2 (RF_S1+S2) performed best with
r = 0.87 and RMSE of 532.12 kg/ha. When compared only optical sensor-based models,
S2 showed better performance than WV2 and L8 Figure 2.3. Irrespective of which ML
method has been used, adding S1 data as an additional predictor improved the accuracy.
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The comparison of two ML methods showed that RF outperformed SVM in all cases ex-
cept when only S1 data was used. The performance of RF showed high quality when
backscatter from S1 was introduced as additional predictors in the models. Models based
on S1 and S2 (r = 0.87) still showed higher fits than models based on Landsat (r = 0.80).

Table 2.3: Summary of biomass (kg/ha) prediction model results in 2019 and 2021.

Method Predictors RMSE (kg/ha) r., R? Bias RMSEr

RF A 535.12 0.86 0.74 14.16 40.56
RF B 935.83 046 0.22 32.75 68.92
RF C 532.12 0.87 0.75 16.75 40.79
RF D 586.25 0.71 051 69.46 29.31
RF E 610.49 0.80 0.65 18.89 66.93
SVM A 582.71 0.82 0.67 39.21 44 .41
SVM B 929.78 0.45 0.20 115.96 69.87
SVM C 604.03 0.82 0.67 33.73 46.04
SVM D 652.15 0.63 0.39 37.9 27.18
SVM E 638.53 0.79 0.62 62.11 76.78
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Figure 2.3: Scatterplot of predicted against observed AGB based on datasets of three
optical sensors (see Table 2.2 for definitions of datasets), (a) WV2, (b) S2 and (c) L8. The
dash lines are the 1:1 line, and solid lines are linear regressions. Note that there were only
limited sample sites on the Worldview scale caused by the spatial extent of the available
WV2 data.

2.4.2 Variable importance

Sum of variable importance values per spectral bands were highest in the red-edge part of
the electromagnetic radiation for S2 and WV2 Figure 2.4. For Landsat, the red band had
the highest contribution to the model. Variable importance of the blue bands was lowest
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irrespective of the sensor used for AGB-prediction. Intermediate importance values have
been observed for NIR and SWIR parts of the electromagnetic radiation.
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Figure 2.4: Sum of variable importance in three trained models, (a) S2, (b) WV2, (c) L8.
Red rectangles show the red edge bands of S2 and WV2, blue rectangles indicate the
SWIR bands of S2 and L8.

2.4.3 AGB prediction and validation

Figure 2.5 shows the average AGB estimation of Eastern Mongolia in June, July and
August (summer period), in 2021 as calculated by the best performing method (RF re-
gression) on 10m pixel resolution based on S1 and S2 data. In the north of Tuv, Khentii
and Dornod, AGB more than 4000kg/ha were observed. This area is the transition zone
between mountain steppes and forest steppes. Biomass is highest in the area of the most
eastern part of Dornod. The histograms indicate the distribution of the AGB estimation
in four provinces in study area. The proportion of pixels with 1000-3000 kg/ha AGB in
Dornod is more than 50%, mainly distributed in the eastern region. Around 40% of the
grassland area in Sukhbaatar had less than 1000 kg/ha. In the north of Khentii and Tuyv,
models are not applicable to some areas because the distribution of meadow steppe even
forest steppe, AGB below 500 kg/ha is predicted in far south region, which is the area
most closely to the Gobi desert in Mongolia.
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Figure 2.5: Application of the best performing model to estimate biomass (kg/ha) across
Eastern Mongolia (A) in 2021 (for 2019 and 2020, see Figure 2.8 and Figure 2.9 in supple-
ment). Areas not fulfilling AOA criteria are in pink, forest in grey has been excluded before
prediction. Histograms in (B) show the distribution of AGB with in different provinces (I,
Dornod; I, Sukhbaatar; lll, Khentii; 1V, Tuv, locations are marked in A).

Except the area covered with forest steppe in the north part of Tuv and Khentii, the area
outside of AOA is mostly having AGB under 500 kg/ha or above 3500 kg/ha, especially the
south part of study area near to the Gobi desert and north of Dornord where distributed
mainly with mountain steppe (marked with red circles in Figure 2.6). Among the study
periods, the spatial accuracy of the selected model remains above 72.61% (Figure 2.7),
which means the model is trustworthy in the spatial prediction of grassland AGB in this
region.
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Figure 2.6: Dissimilarity index (DI) of 2021 biomass prediction map, darker colours sym-
bolize areas outside of AOA (For 2019 and 2020, see Figure 2.10 and Figure 2.11 in
supplement). Red ellipses mark regions with low AOAs discussed in the text.
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Figure 2.7: Percentage of pixels full-filling area of applicability (AOA) criteria for each year

2.5 Discussion

Grassland AGB monitoring provides a valuable data source for management and deci-
sions by local governments prohibiting degradation and, thus, maintaining biodiversity
and ecosystem functioning. In this paper, we used different source of satellite images

for biomass estimation and found that the estimation accuracy under combination of SAR
and optical data with RF was promising.
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2.5.1 Accuracy of models

Integrating SAR data with optical data has been found to improve the accuracy of biomass
estimates (De Luca, M. N. Silva, et al., 2022; De Luca, Silva, & Modica, 2022). However,
our study found that integrating S1 and S2 only slightly improved the accuracy of grassland
AGB prediction. This could be due to high percentages of bare soils in areas near desert
steppe, leading to surface roughness and uncertainty of vegetation conditions, which can
affect electromagnetic waves to some extent (Benninga et al., 2020). Additionally, the year
2019 was relatively wet in the study area, resulting in a high cloud cover (Javzmaa et al.,
2019). As a result, there were no cloud-free optical remote sensing images available near
the time of field sampling, and only images acquired earlier in the year could be used.
This resulted in a larger discrepancy between the vegetation condition at field samplings
and the time of satellite image acquisition compared to other years.

vspace0.28cm

Comparing different sensors, we found that integrating of S1 and S2 data outperformed
WV2 and L8. These sensors differ in spectral and spatial resolution. Using sums of vari-
able importances per spectral band, we could show that red-edge bands contributed most
to the models if such bands are available. In contrast, NIR bands were only intermediately
important. SWIR bands were also intermediate if present. The red edge band is par-
ticularly useful for estimating chlorophyll content because it is sensitive to the absorption
and reflectance properties of the pigment and reflectance is correlated with the amount
of chlorophyll in the vegetation, which is a key indicator of plant health and productivity
(Tong & He, 2017). S2 has three red-edge bands (ranging from 689.1 to 802.8) which is
different from WV2 (one band) and L8 (no bands in the red edge part). If SWIR bands are
available, they contributed intermediately to the models. Here, the SWIR band at 1600 nm
outperformed the bands at 2500 nm for S2 and L8 (WV2 does not have bands in the SWIR
part of the electromagnetic radiation). From a physical perspective, bands in the SWIR
region are particularly important for the discrimination of dead organic material from bare
soils (Daughtry et al., 2005). Consequently, we conclude that S2 outperformed the other
two sensors because of its spectral configuration encompassing three bands in the red
edge and two bands in the SWIR part of the electromagnetic radiation. The higher spatial
resolution of WV2 does not equalize the disadvantage of the lower spectral resolution of
its sensor in homogeneous grasslands such as the Eastern Mongolian Steppe (Spagn-
uolo et al., 2020).

The integration of optical and radar sensors, along with the use of machine learning (ML)
methods for biomass prediction, has become a popular practice due to its ability to pro-
duce more accurate results than traditional empirical models. However, spatial accuracy
assessments are rarely performed, which is particularly important for large-scale analy-
ses. In this study, we introduced a new approach to evaluate the model’s ability to predict
biomass at each pixel, and we found a minimal AOA of 72.61%, indicating that the training
data used in this study is representative of most parts of the study area. Nevertheless,
areas not represented by training data were mainly observed near the forest steppe in
the north and the Gobi-desert in the south, suggesting that future fieldwork should pay
more attention to collecting samples from the ecological transition areas at the edges of
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the pristine steppe.

2.5.2 Limitations and future work

AGB prediction through vegetation indices generated by optical sensors will cause ‘sat-
uration’, because these indices are constructed based on healthy vegetation absorbing
radiation in a certain wavelength range and reflecting radiation in another, such as NDVI
is based on the principle that healthy vegetation reflects more near-infrared (NIR) radia-
tion and absorbs more red radiation than non-vegetation surfaces, such as soil or water.
Limited by the spectral radiation range of sensors, ‘saturation” is difficult to be completely
eliminated. In the southwest of Eastern Mongolia, where desert grassland dominates and
the surface is more exposed, the prediction may be ignored or decreased, which have
been proved optical indices to be sensitive to soil optical properties under conditions of
in complete vegetation cover (H. Ren et al., 2018; G. Wang et al., 2019a). While in the
eastern Dornod province, where meadow steppe dominates, relying solely on the indices
may lead to a lower estimated biomass. And previous studies have utilized hyperspectral
sensors, which can better capture the canopy reflection signal and mitigate the influence
of bare soil (Cooper et al., 2021; Zandler et al., 2015). Therefore, our direction is to de-
velop a new machine learning model for biomass inversion and correction, using data from
the upcoming CHIME hyperspectral satellite data.

2.6 Conclusion

The objectives of this study were three - fold: First, we aimed to develop the first fully
validated time series of AGB for Eastern Mongolian Steppes. Therefore, we used over
600 in situ samples to train powerful machine learning models. In addition, we compared
the suitability of four different sensors to estimate AGB of Mongolian grasslands and found
that combining S1 and S2 outperformed models solely based on L8 data or the high
spatial resolution data of WV2. Second, the importance of different spectral regions for
AGB mapping was evaluated. Here, we found the red edge band is particularly useful for
estimating chlorophyll content, the high spatial resolution of WV2 seems not advantageous
compared to the additional spectral bands of S2 especially in the red edge and SWIR.
Third, we aimed to evaluate, in which spatial areas model predictions are reliable based
on the configuration of in situ samples. We found that that the prediction accuracy of
the model is higher when the sampling point is in a more homogeneous grassland. This
means that uncertainties of AGB estimates are low in the north near to forest steppe and
south covered by Gobi desert, while they are increasing in the typical steppe.

Sampling data acquisition often has accessibility limitations, resulting in a limited number
of ground sampling points. Therefore, it is crucial to ensure the accuracy of these points to
facilitate machine learning-based regional predicting. To achieve this, accurate decision-
making using AOA and Dl is essential. As we strive for continuity in future sampling work,
it's important not to overlook sample collection in diverse environments.
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Supplementary

Table 2.4: Summary of satellite image selected for core sites in this study.

Location Field work Satellite image acquaintance date

Start End Worldview 2 Sentinel1 Sentinel2 Landsat 8
Altanbulag 2019-07-16 2019-07-21 2019-08-31 2019-07-14 2019-07-12 2019-07-08
Bayantsagaan 2019-07-22 2019-07-27 2019-08-20 2019-07-21 2019-07-09 2019-07-08
Kherlen 2019-08-01 2019-08-04 2019-08-23 2019-07-28 2019-07-31 2019-06-24
Batnorov 2019-08-06 2019-08-08 2019-08-23 2019-08-04 2019-07-31 2019-08-04
Choibalsan 2019-08-09 2019-08-13 2019-08-21 2019-08-11 2019-08-02 2019-08-04
Tsagaan-Ovvo 2019-08-14 2019-08-16 2019-08-30 2019-08-11 2019-08-04 2019-07-14
Tsogt 2021-09-10 2021-09-12 2021-08-28 2021-09-01 2021-09-09 2020-08-18
Choibalsan 2021-08-28 2021-08-30 2021-08-28 2021-08-24 2021-09-10 2020-07-07
Matad 2021-09-01 2021-09-02 2021-08-17 2021-08-31 2021-08-23 2020-08-24
Erdenetsagaan 2021-09-05 2021-09-06 2021-08-19 2021-09-03 2021-08-23 2020-08-01
Bayandelger 2021-09-02 2021-09-03 2021-08-17 2021-08-24 2021-08-21 2020-07-14
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Table 2.5: Indices selected in this study

Abbreviation Spectral index

Equation / Definition

Citation

Red edge-based Vs

Clie red-edge chlorophyll index _PNR (Gitelson et al., 2003)
PRed-edge
MNDV/,e modified red-edge NDVI (Pnin = preg-odge) (Sims & Gamon, 2002)
(PNIR + PRed-edge — 20Blue)
PNIR _ 1
MSRc Modified red-edge simple ratio ”"+ (C. Wu et al., 2008)
NIR
\/ PRed-edge + 1
. . . (PNIR - ThORed-edge)
MTCI Meris terrestrial chlorophyll index (Dash & Curran, 2004)
(PRed—edge - PRed)
NDVl,e Red-edge NDVI (Pnin = preg-edge) (Gitelson & Merzlyak, 1997)
(PNIR + /)Red-edge)
SRre Red-edge simple ratio PNIR (Sims & Gamon, 2002)
PRed-edge
Broad band-based Vis
Clyreen Green chlorophyll index ppN'R 1 (Gitelson et al., 2005)
Green
OSAVI Optimized soil adjusted vegetation index PNIR — PRed (Rondeaux et al., 1996)
PNIR + PRed + 0.16
EVI2 Enhanced vegetation index 2 PNIR — PRed (Z. Jiang et al., 2008)
L+ pNiR + 2.4 X pRed
mNDVI Modified NDVI PNIR — PRed (Sims & Gamon, 2002)
PNIR + PRed — 2/Blue
(PNIR _ 1)
MSR Modified simple ratio AR/ (J. M. Chen, 1996)
PNIR
PRed
NDVI Normalized difference vegetation index (PR = prca) (Rouse et al., 1974)

(PNIR + PRed)

S1 based paramenters

28]
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(Vaglio Laurin et al., 2018)
(Vaglio Laurin et al., 2018)
(Veloso et al., 2017)

VH

A%

VH-VV

VH+VV

VH/VV

S1 based paramenters

Band2 Blue, 490nm

Band3 Green, 560nm

Band4 Red, 705nm

Band5 Red edge, 705nm

Band6 Red edge, 749nm

Band7 Red edge, 749nm

Band8 Near Infrared (NIR), 842nm
Band8A Near Infrared (NIR), 865nm
Band11 SWIR-1, 1610nm

Band12 SWIR-2, 2190nm
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Figure 2.8: Colours represent the mean value of sentinel scenes during the growing
season in 2019. Areas not fulfilling AOA criteria are in pink, forest in grey has already
been excluded before prediction. Histograms in (B) show the distribution of AGB within
different provinces (l. Dornod; Il. Stikhbaatar; Ill. Khentii; IV. Tév, locations are marked in
A).
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Figure 2.9: Colours represent the mean value of sentinel scenes during the growing
season in 2020. Areas not fullfilling AOA criteria are in pink, forest in grey has already
excluded before prediction. Histograms in (B) show the distribution of AGB with in different
provinces (l. Dornod; Il. Sikhbaatar; lll. Khentii; IV. Tdv, locations are marked in A).

Figure 2.10: Dissimilarity index (D) of 2019 biomass prediction map, darker colours sym-

bolize areas outside of AOA. Red ellipses mark regions with low AOAs discussed in the
text.
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Figure 2.11: Dissimilarity index (D) of 2020 biomass prediction map, darker colours sym-
bolize areas outside of AOA. Red ellipses mark regions with low AOAs discussed in the
text.



CAN VEGETATION BREAKPOINTS IN
EASTERN MONGOLIA RANGELAND BE
DETECTED USING SENTINEL-1
COHERENCE TIME SERIES DATA?

87






CHAPTER 3

CAN VEGETATION BREAKPOINTS IN
EASTERN MONGOLIA RANGELAND BE
DETECTED USING SENTINEL-1
COHERENCE TIME SERIES DATA?

Shuxin Ji ', Ganzorig Gonchigsumlaa 2, Sugar Damdindorj 2, Tserendavaa Tseren
2. Densmaa Sharavjamts 2, Amartuvshin Otgondemberel 3, Enkh-Amgalan Gurjav 4,
Munguntsetseg Puntsagsuren 2, Batnaran Tsabatshir 2, Tumendemberel Gungaa *,
Narantsetseg Batbold °, Lukas Drees ©’, Bayarchimeg Ganbayar &, Dulamragchaa
Orosoo °, Bayartsetseg Lkhamsuren 2, Badamtsetseg Ganbat '°, Myagmarsuren
Damdinsuren 8, Gantogoo Gombosuren 3, Batnyambuu Dashpurev ', Thanh Noi
Phan ', Nandintsetseg Dejid /', Thomas Miiller ’, Lukas Lehnert '

! Department of Geography, Ludwig-Maximilian-University of Munich, Luisenstr. 37,
80333 Munich, Germany

2 Department of Agricultural and Applied Economics, School of Economics and
Business, Mongolian University of Life Sciences, Khoroo 22, Khan-Uul District,
17024-Ulaanbaatar, Mongolia

3 Department of Cybernetics, School of Economics and Business, Mongolian University
of Life Sciences, Khoroo 22, Khan-Uul District, 17024-Ulaanbaatar, Mongolia

4 Department of Statistics and Econometrics, School of Economics and Business,
Mongolian University of Life Sciences, Khoroo 22, Khan-Uul District, 17024-Ulaanbaatar,
Mongolia

S Institute of Natural Resource and Agricultural Economics, Khoroo 22, Khan-Uul District,
17024-Ulaanbaatar, Mongolia

¢ Institute for Social-Ecological Research, Hamburger Allee 45, 60486 Frankfurt am
Main, Germany

" Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft fur
Naturforschung, 60325 Frankfurt (Main), Germany

8 Department of Management, School of Economics and Business, Mongolian University
of Life Sciences, Khoroo 22, Khan-Uul District, 17024-Ulaanbaatar, Mongolia

® Department of Accounting, School of Economics and Business, Mongolian University of

89



Can Vegetation Breakpoints in Eastern Mongolia rangeland be detected using Sentinel-1

coherence time series data?

Life Sciences, Khoroo 22, Khan-Uul District, 17024-Ulaanbaatar, Mongolia
10 Department of Finance, School of Economics and Business, Mongolian University of
Life Sciences, Khoroo 22, Khan-Uul District, 17024-Ulaanbaatar, Mongolia
" Institute of Meteorology and Climate Research Atmospheric Environmental Research
(IMK-1FU), Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467

Garmisch-Partenkirchen, Germany

3.1 Abstract . ... ...... .. 91
3.2 Introduction . .. ... .... 91
3.3 Materials and methods . . . . 93
34 Results . ........... 101
3.5 Discussion. . ... ... ... 106
3.6 Conclusion ... ....... 109
3.7 CrediT authorship contribu-

tion statement . . . . . .. .. 109
3.8 Declaration of Competing In-

terest. . . . ... ... .. .. 110
3.9 Dataavailable . . . ... ... 110
3.10 Acknowledgments . . . . .. 110
3.11 Appendix . . ... ...... 110

This study combined InSAR, optical, and
weather time series data with machine
learning for spatio-temporal grazing moni-
toring in Eastern Mongolia. A novel ran-
dom forest method, outperforming BFAST,
was developed to detect vegetation break-
points, distinguishing grazing impacts from
natural events. Validated across the
steppe, the model effectively identified sea-
sonal and spatial grazing patterns aligning
with herder movements. However, defini-
tively attributing all breakpoints solely to
livestock activity remains challenging, es-
pecially in drier areas.



Can Vegetation Breakpoints in Eastern Mongolia rangeland be detected using Sentinel-1
coherence time series data?

3.1 Abstract

Mongolian society and food production depends heavily on livestock farming, which is
usually practiced through nomadic systems. Consequently, movement patterns of herders
are crucial in respect of finding sufficient forage and sustainable use of pastures. Since
vegetation presumably changes after livestock pasture use, this study hypothesize that
changes in Interferometric Synthetic Aperture Radar (InSAR) data over time are linked to
herder and livestock mobility. In this study, a combination of INSAR, optical and weather
time series data has been explored as a tool for spatio-temporal grazing monitoring. To
detect movement patterns, a new random forest based method to detect breakpoints in
vegetation condition has been developed and compared to the widely-used Breaks For
Additive Season and Trend (BFAST) algorithm. In contrast to BFAST, the new method
accounts for vegetation changes caused by weather events such as snow and rainfall.
The results have been validated using test sites spread across the entire eastern Mon-
golian steppe ecosystem, covering different rangeland use intensities. The results indi-
cate that (1) random forest performed superior than BFAST indicating that random forest
is able to separate vegetation changes caused by grazing from those caused by natu-
ral events. However, the detecting was challenging especially for winter movements (for
summer camps, random forest and BFAST detected 44% and 28% of movements, re-
spectively). (2) Breakpoints in summer pastures mainly occurred from April to June, while
on winter pastures, they emerged in October, November, and the following February and
March. The breakpoints in October and November can be explained by increasing grazing
pressure as the herders moved to the winter camps while those occurring in spring are
associated to enhanced vegetation growth after herders left for summer camps. (3) From
a spatial perspective, the random forest model predicts summer and winter pastures with
homogeneous patterns. In areas with higher productivity and higher grazing pressure, the
summer pastures are located along the rivers while the winter pastures are in the sur-
rounding mountainous areas. This is in agreement to the general movement patterns. In
drier and less intensively used areas, the predicted pattern agrees less with the known
movements. Consequently, there is insufficient evidence to definitively attribute the occur-
rence of pasture breakpoints solely to herder movements especially in the eastern and
southern parts of the eastern Mongolian steppe ecosystem.

Key words: breakpoints; INSAR coherence; BFAST; random forest; grazing

3.2 Introduction

Rangeland are vital ecosystems that provide essential services such as biodiversity con-
servation, carbon sequestration, and support for pastoral livelihoods (Bengtsson, Bullock,
et al., 2019; Y. Zhao et al., 2020b). Globally, extensive grazing remains the predomi-
nant form of rangeland management in many regions, including North America, South
America, Australia, and Central Asia (D. Augustine et al., 2021; Bell et al., 2014; Bork
et al., 2021; Jaurena et al., 2021; Mirzabaev et al., 2016). These systems are typically
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characterized by low-input practices and large-scale livestock mobility, which are shaped
by environmental conditions, socio-economic factors, and historical land-use traditions.
Among them, the nomadic grazing systems of Mongolia rangeland represent one of the
few remaining examples of long-standing, large-scale mobile pastoralism (Drees et al.,
2022; Teickner et al., 2020). It is characterized by seasonal mobility, where herders move
livestock among spring, summer, autumn, and winter camps. This rotational grazing pat-
tern is guided by climatic variability, local ecological knowledge, and customary tenure
systems (M. E. Fernandez-Gimenez, 2000; Peter et al., 2024). Nomadic herding plays a
crucial role in sustaining ecological functions by allowing grazed areas to recover season-
ally, thus promoting vegetation resilience (Tugjamba et al., 2021a). Despite its ecological
significance, the dynamics of nomadic land-use—patrticularly patterns of camp movement
and their impacts on vegetation—remain poorly quantified at larger spatial scales.

Although optical satellite data such as NDVI are widely used to monitor vegetation pro-
ductivity (Pettorelli et al., 2005; Reinermann et al., 2020), their effectiveness in semi-arid
regions is limited by cloud cover and long revisit cycles. Synthetic aperture radar (SAR)
has emerged as a robust alternative due to its ability to collect data regardless of weather
or illumination. SAR backscatter and interferometric coherence have shown promise in
detecting vegetation height and cover changes (Y. Gao et al., 2021; Tamm et al., 2016).
In particular, INSAR data are sensitive to vegetation structure and elevation, making them
suitable for identifying changes related to grazing pressure (Santoro et al., 2018).

Studies have also shown that grazing activity with high livestock density can cause jumps
in SAR coherence, similar to those caused by mowing events, complicating classification
tasks (De Vroey et al., 2021). Recent advances have explored combining optical and SAR
data with machine learning techniques to improve change detection and classification ac-
curacy (Holtgrave et al., 2023).

Breakpoints in remote sensing time series—points where vegetation dynamics change
abruptly —can be caused by management events such as mowing or grazing. Algorithms
such as LandTrendr (Kennedy et al., 2007) and BFAST (Verbesselt, Hyndman, Newnham,
& Culvenor, 2010) have been widely used for detecting such disturbances. However, these
methods do not distinguish between anthropogenic and natural causes of change, limiting
their utility in complex systems like nomadic grazing.

Machine learning provide new avenues for ecological monitoring by offering flexibility in
analyzing complex, nonlinear patterns in satellite data. Algorithms such as random forest
(Breiman, 2001), Support Vector Machines (Mountrakis et al., 2011), and recurrent mod-
els like LSTM (Hochreiter & Schmidhuber, 1997; Noa-Yarasca et al., 2024) have shown
high performance in detecting land use changes and temporal anomalies. These models
can help isolate human-induced disturbances from natural variability, making them partic-
ularly well-suited for monitoring grazing patterns in dynamic, heterogeneous landscapes
like the Mongolian steppe.

The primary objective of this study is to develop and evaluate a machine learning-based
approach to detect grazing-induced changes in vegetation using INSAR coherence time
series in the nomadic rangeland of Eastern Mongolia. Specifically, we aim to:

1. Train a Random Forest model to identify breakpoints in INSAR coherence data that
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correspond to shifts in grazing intensity;

2. Compare the performance of the random forest model with the widely used BFAST
algorithm in detecting grazing-related breakpoints;

3. Integrate field interviews with herders to validate detected breakpoints and provide
socio-ecological interpretation;

4. Explore the feasibility of mapping seasonal pasture use (e.g., summer vs. winter
camps) through breakpoint analysis.

3.3 Materials and methods

3.3.1 Study area

Approximately 83% of Mongolia’s territory (1.3 million km2) is covered with rangeland (in-
cluding grasslands, shrublands, forest steppes, and deserts where livestock graze) (An-
gerer et al., 2008), peaked in supporting 71 million heads of livestock in 2019 [National
Statistical Office of Mongolia, 2021]. There is a long tradition of nomadic herding, which
has been the main form of agricultural production for centuries. Livestock graze freely,
centered around Gers (traditional Mongolian tents), and the livestock include cattle (Bos
taurus), horses (Equus), camels (Camelidae), goats (Capra), and sheep (Ovis aries). In
summer, herders commonly choose to set up their camps close to riverbanks, while in
winter they stay on wind-sheltered slopes. We conducted field data collection in 10 study
sites in Eastern Mongolia, which cover gradients in rainfall from 148mm to 447mm annu-
ally Figure 3.1. Consequently, the study sites represent different rangeland types that are
characteristic of the Mongolian Steppe Ecosystem. In addition, the grazing intensities vary
along the gradient from the west (higher grazing intensity by livestock) to the east (lower).
The gradient in numbers of wildlife is reverse, with higher densities in the east.
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Figure 3.1: Location of the study area. Camps in the lower left corner are the residence
place for local herders, and livestock graze around the camps. Number | to X: the core
sites where we design the experiment and interview with herder families.

3.3.2 Data collection and pre-processing

This section begins by summarizing the field data collection process, which serves as a
reference for our analysis. We then provide a detailed description of the satellite data and
associated preprocessing steps including. An overview of the applied methods can be
found in Figure 3.2. Following this, the build processes of the two algorithms employed in
this study, BFAST and the random forest based machine learning method, are described
in detail.
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Figure 3.2: Overview of the study’s workflow, (A) general steps of the BFAST algorithm,
(B) parameters and workflow of the random forest model used in this study and (C) data
processing and model building (for details, refer to Sect. 2.3.2).

In situ data collection

Field surveys were conducted in 2019, 2020, and 2022 in the summer camp sites using
structured interviews as the primary data collection method Table 3.1. Over the course
of the three years, a total of 862 households were interviewed, including some that were
revisited in more than one survey year. Each household corresponds to a seasonal camp
and is treated as one sample in the subsequent analysis. Household sizes ranged be-
tween 2 and 9 members, with interviews conducted with the male or female head of the
household. On each camp sites, we crafted a comprehensive dataset covering various as-
pects of grazing management. This dataset serves as an invaluable reference, helping us
to gain insight into important parameters such as arrival and departure dates at/from the
camps, livestock numbers, and perceptions of rangeland degradation by local herders.
It is important to note that these data were carefully collected by field staff and derived
from interviews with the herders themselves, as documented in the original questionnaire.
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Locations of the summer camp sites were collected using a GPS device. For detailed in-
formation regarding the survey questionnaires, please refer to Figure 3.8 in the Appendix.

Ultra-high resolution imagery obtained from Google Maps was utilized in the winter camp
sites to identify point locations (Jawak et al., 2019). The distinctive feature of these camps
is the presence of an artificial stone wall on the north side to shield against cold winds
and snowstorms during winter. Together with the low vegetation cover due to long-term
trampling effects of livestock, the stone wall creates a clearly visible feature in the aerial
images (Houle, 2024a).

To delineate the effective area of grazing around the gers, we utilized GPS collar data
from livestock. GPS tags were deployed on 89 individual livestock (30 goats, 31 horses,
26 cows, and 2 camels) across ten core sites in Figure 1, with data recorded every 30
minutes (Michler et al., 2022). The maximum range of livestock movement was up to 8 km
from the camps. With increasing distance, grazing pressure decreases and intersection
with grazing grounds of neighboring families increases. The direct vicinity of the camps
is usually heavily disturbed especially at the winter camp locations. Consequently, we de-
veloped a ring around each camp, excluding the central 50-meter area to avoid the direct
influence of human activities, and then extending outward from 50 meters to a 950-meter
range resulting in a total area from 50 meters to 1 kilometer for further analysis. This
ensures that the grazing pressure on the rangeland is assessed without the confounding
effects of human disturbance near the camps.



Table 3.1: Movement characteristics of respondents

Year Date move to Days stay on Distance  No. of
Number goring  summer autumn winter spring summer autumn winter (©fiver  animal
f camps camps camps camps camps camps camps camps av9[ml  units
families 54 avg avg avg avg avg avg avg
(N)  povy] [poY] [DOY] [DOY] [DOY] [DOY] [DOY] [DOY]
2019 320 58 149 247 305 114.89 109.45 64.84 153.31 970.6 191
2020 289 69 149 247 309 100.79 112.18 68.87 148.20 994.52 203
2022 253 76 148 248 308 76.95 102.34 63.69 144.01 1034.46 207

Note. DOY: day of year. Animal units were calculated based on conversion factors from Holechek (1988).
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INSAR coherence

The two Sentinel-1 satellites (Sentinel-1A and Sentinel-1B, abbreviated with S1 in the fol-
lowing) are equipped with a C-band synthetic aperture radar (SAR) operating at a center
frequency of 5.405 GHz (wavelength of approximately 5.54 cm). While S1 provides a 6-
day revisit time in Europe, its temporal resolution for most of the rest of the world is 12
days (Potin et al., 2021). Since S1-B suffered technical problems on December 23, 2021
leading to its cessation of operations, we used a 12-days interval to derive S1 InSAR co-
herence.

The Hybrid Pluggable Processing Pipeline (HyP3) provided by the Alaska Satellite Facil-
ity was used for small baseline INSAR processing (Hogenson et al., 2025). Key steps
included the selection of temporally close interferometric pairs, precise co-registration of
master and slave images, interferogram generation, and coherence calculation. INSAR co-
herence, a dimensionless measure ranging from 0 to 1, quantifies the similarity between
two complex SAR signals acquired at different times. Higher coherence values indicate
temporal stability of surface scattering properties, while lower values reflect decorrelation
caused by vegetation dynamics, soil moisture variation, or anthropogenic disturbances.

The use of HyP3 benefits from the tool’s high level of integration and ultra-high arith-
metic power relied on Amazon services (Hogenson et al., 2016). From 2018/01/01 to
2021/12/31, a total of 745 coherence images with a 40 m spatial resolution were pro-
cessed for 10 study sites.

Weather data

The impact of precipitation on rangeland vegetation is significant, and the biomass will in-
crease rapidly within 3-5 days after precipitation (Didiano et al., 2016). Precipitation data
comes from Global Satellite Precipitation Programme (GPM) with a spatial resolution of
0.1°x 0.1° Air temperature data from ERA5 - Land was monthly averaged and rescaled
to the same resolution as precipitation products. We computed the mean air tempera-
ture (in °C) and cumulative precipitation (in mm) for individual study sites on a daily basis.
Subsequently, we determined left-aligned rolling sums spanning 3, 6, 9, and 12 days for
precipitation and temperature data (Holtgrave et al., 2023). Employing these rolling sums
for precipitation and temperature, we aimed to capture the aggregated meteorological
conditions over preceding days, with the intent of reflecting plant growing conditions or
management influences. The utilization of MODIS snow products (Hall et al., 2006), with
a spatial resolution of 500 m, was additionally motivated by the potential impact of the
frequency of winter storms, which may serve as a threshold in the assessment of environ-
mental conditions. The weather data and MOD10A1 products were resampled to 40m to
align with the InSAR coherence using bilinear interpolation (F. Gao et al., 2006; H. Wu &
Li, 2009).
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3.3.3 Experiment design and model building

Detection of breakpoints using random forest

This study proposes a novel methodology for breakpoints detection using random forest,
based on the assumption that a random forest model learns the relationship between
weather conditions (predictor variables) and the signal at the satellite (response variable,
in our case coherence of S1 data). Consequently, if the model fails to predict the satel-
lite signal correctly, this failure can be caused by changes in rangeland usage by livestock
and/or wildlife. Therefore, breakpoints detected by the machine learning method are those
points in time, where absolute values of residuals of the predicted coherence vs. the mea-
sured coherence are high. From a technical perspective, we used a sliding window of
training and prediction periods for which separate random forest models are trained and
validated. This encompassed the following steps which are conducted separately for each
herder location (shown in Figure 3.2B):

(1) An initial random forest model was trained. To build this model, a subset of the avail-
able time series data was selected as the training period. This initial training period was
set to 1 year, based on preliminary tests comparing the performance of longer/shorter
periods. The predictor variables include snow cover, precipitation rolling sums, mean air
temperatures rolling means and the sine of the day of the year. The latter has been intro-
duced as predictor to capture seasonal fluctuations in time series data. As the response
variable, coherence was chosen Figure 3.2C. To evaluate the model performance, a 5-fold
2-times repeated cross validation was used. Therefore, training data was split into training
and validation folds before the model was trained.

(2) Model performance was evaluated in each fold, and the average performance across
folds was recorded by calculating the RMSE (Root Mean Square Error). Once trained and
validated, the model was applied to predict coherence for a time period following the train-
ing period (application period). The length of the application period was varied between 1
and 5 to test the ability of the random forest model to predict coherence values in future
relative to the training data. A value of 1 means that the model was used to predict the
coherence of the next available time step, which was 12 days after the last training data
due to the 12-day temporal resolution of the coherence data. If the application period was
set to 5 coherence data within the next 60 days were predicted. After testing the different
values for the application period, 1 was selected for this study as it resulted in best model
performance, with highest accuracy of breakpoints detection. After prediction of coher-
ence in the application period, residuals between the predicted and observed coherence
values were calculated and stored for further analysis.

(3) Model retraining occurs in a sliding window approach: the training period was subse-
quently shifted by the length of the application period and the random forest model was
retrained. This updated model was then used to predict coherence of the next application
period. Again, residuals between predicted and observed coherence values were stored.
This step was repeated until the end of the time series was reached. This iterative process
ensured that the model adapts to temporal changes in the input data and provided new
residuals for each time step as the window progresses.
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(4) Based on the assumption that the model will learn the relationship between weather
conditions and coherence, we searched for high absolute values of residuals between
predicted and observed coherence. These are points in time when the model was not
capable of predicting changes in the vegetation conditions due to factors which none of
the predictors contain such as grazing. Therefore, the distribution of residuals across the
entire time series was analyzed in the final step. Finally, breakpoints were defined as
those residuals which deviate by more than 2 times of standard deviations from the mean
values of all residuals. Assuming a normal distribution in the residuals, this means that
breakpoints are the 5% of less accurately predicted coherence values.

BFAST algorithm

BFAST is a data-based unsupervised statistical algorithm. Based on models of stable
historical behavior, abnormal changes in newly acquired data can be detected (X. Fang
et al., 2018; Watts & Laffan, 2014). Initially, regression coefficients are estimated from
historical observations and used to predict the values of observations in the monitoring
period. Subsequently, if the predicted values statistically differ from the observed values,
it indicates the presence of abnormal changes (Browning et al., 2017; Ma et al., 2020).
Parameters were set as follows: the historical period comprised one full year, followed by
another year as the monitoring or detection period. The sbin parameter, which controls
the number of seasonal dummies, was set to 3, and the h parameter, representing the
minimum segment size, was set to 0.5, allowing the detection of significant breaks or
changes within the monitoring period Figure 3.2A. The function used in this study comes
from BFAST package for R statistical computing (Version: 1.6.1)(Verbesselt et al., 2012).

Assessing the model accuracy

Prediction accuracy of the model is estimated using a 5-fold cross-validation with 2 repe-
titions. Here, RMSE was calculated (Cherif et al., 2024). To understand the effect of the
different predictor variables in the models, the variable importance has been analyzed.

In general, if breakpoints are detected in the time series, this does not necessarily mean
that the models are capable of detecting those changes caused by grazing (Ersi et al.,
2023). To ensure that the detected changes were indeed related to grazing activities, we
compared them with the actual movement dates of herders (Lobert et al., 2021). Given the
potential legacy effect between herder movements and vegetation responses observable
by satellite, we considered breakpoints occurring within 50 days after camp relocation as
grazing-related. To quantitatively evaluate the performance of the random forest method
and the BFAST algorithm in detecting these grazing-induced breakpoints, we constructed
confusion matrices for both summer and winter camps. These matrices allowed for a
direct comparison of true and false detections between the two approaches (Y. Zhang,
Wang, et al., 2022).
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3.4 Results

3.4.1 Breakpoints prediction and validation

Observed coherence Figure 3.3a aligned well with predicted coherence Figure 3.3b in
time series. Accuracies in coherence prediction among the models are ranged from mod-
erate to high (RMSE between 0.28 and 0.08). Since the initial training phase is limited to
the first year, values are always the same, then the RMSE remains 0 during this phase.
(RMSE is always calcualated for each model from every new phase) Figure 3.3c. Most of
the residuals are concentrated around 0, indicating that the overall prediction deviation is
small Figure 3.3d. At the two points marked by the red dotted line, the residuals deviate
significantly from 0 and are detected as breakpoints.
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Figure 3.3: Breakpoints detection using random forest model for a sample point. (a) ob-
served coherence from 2018 to 2020; (b) predicted coherence using the random forest
model developed above; (c) RMSE of each model in successive moving windows, since
the initial training phase encompasses the first year, RMSE values are constant over the
first year and set to 0 during this phase. (d) residuals in the model training process. Trian-
gles represent initial training data, circles represent application period data. Breakpoints
are marked with red dashed lines, background colors indicate seasonal periods.

Note: This figure demonstrates the model training and prediction process for one of the sample
points in the dataset comes from middle of Hentii province.

3.4.2 Variable importance

Among the variables in the model training process, the sine transformation of day of the
year Figure 3.4b and the left-aligned rolling sum across 6 days of precipitation Figure 3.4d
had the greatest variable importance in the model. The left-aligned rolling sum across 3
days Figure 3.4c, the left-aligned rolling sum across 12 days of precipitation Figure 3.4f
and temperature Figure 3.4g had medium contribution to the model. While snow cover
was partly important in single models Figure 3.4a and the left-aligned rolling sum across
9 days of precipitation Figure 3.4e had the lowest contribution to the model.
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Figure 3.4: Sum of variable importance in random forest model, (a) snow cover, (b) sine
transformation of day of the year, (c) precipitation 3 days rolling sum, (d) precipitation 6
days rolling sum, (e) precipitation 9 days rolling sum, (f) precipitation 12 days rolling sum

and (g) temperature.
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3.4.3 Application on temporal breakpoints detection

The random forest method successfully predicted 149 breakpoints at 200 summer camp
sites Figure 3.5, with the majority of these breakpoints occurring between April and June
Figure 3.6a. Notably, the random forest algorithm detected 44% of breakpoints occurring
after herders moved to their summer pastures Figure 3.6e. To benchmark the performance
of the random forest method, we applied the well-established BFAST algorithm to the
coherence time series data. Breakpoints were detected for every month except January
Figure 3.6¢c. Of the 200 camp sites, 115 breakpoints were detected throughout the year
using BFAST, but only 28% of them occurred after herders arrived at the summer camp
sites Figure 3.6f.
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Figure 3.5: Confusion matrix of breakpoints detection using random forest and BFAST
algorithm. No comparison is possible for winter camps because the movement dates
cannot be aligned with the winter locations detected from high resolution satellite data.

At 761 winter camp sites, the random forest method detected 614 breakpoints Fig-
ure 3.5, primarily occurring in February, March, and October to November Figure 3.6b. In
comparison, BFAST exhibited much lower performance at detecting breakpoints at winter
camp sites, identifying only 319 breakpoints (Flgure 5). Moreover, the temporal distribu-
tion of breakpoints detected by BFAST was less concentrated during the winter months,
with breakpoints detected in nearly every month except January Figure 3.6d.
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Figure 3.6: (a) and (b):Heatmaps of breakpoints detected by random forest method for
summer and winter camp sites respectively. (c) and (d): Heatmaps of breakpoints de-
tected by BFAST method for summer and winter camp sites respectively. Each heatmap
shows the temporal distribution of breakpoints aggregated across all sites; colored blocks
indicate frequency on specific day. (e): Difference in days between detected breakpoint
and actual moving dates using the random forest method. (f): same as (e) but for BFAST
(Bars indicate frequency distribution; the purple line indicates cumulative frequency).

3.4.4 Spatial prediction of breakpoints

Based on the method developed in Section 2.3.2, we performed spatial predictions for year
2019 for the four steppe sites in Eastern Mongolia marked by |, V, VI, and IX in Figure 3.7.
The figure illustrates that summer breakpoints are primarily detected along riverbanks in
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regions | (UB) and V (Khentii), exhibiting a relatively clustered distribution. Correspond-
ingly, winter breakpoints are distributed in adjacent areas. In Region VII, located in Dornod
Province, summer breakpoints are rarely detected, with winter breakpoints dominating
most of the region. In contrast, Region IX, situated in the southern part of Sukhbaatar
Province, exhibits a prevalence of summer breakpoints, while winter breakpoints are less
frequently observed.

in seasons

| winter
| B summer
~ [ ] autumn

Figure 3.7: Seasons when breakpoints have been detected four different areas in Eastern
Mongolia. (I, V, VII, and IX comes from Figure 1, winter is from December to March,
summer is from June to August).

3.5 Discussion

3.5.1 Methodological Performance: random forest vs. BFAST in Break-
point Detection

This study demonstrates the capability of machine learning, particularly random forest, in
detecting grazing-induced breakpoints using INSAR coherence data. The random forest
method accurately detected 44% of summer camp breakpoints—substantially outperform-
ing BFAST, which achieved only 28%. Moreover, random forest derived breakpoints in
summer pastures were temporally consistent, mainly clustering between April and June,
a period that aligns well with the onset of the growing season in Eastern Mongolia. In
contrast, BFAST showed irregular breakpoints patterns and lower temporal alignment In
theory different reasons could be responsible for the lower accuracy of BFAST compared
to the random forest method: BFAST is trained only on coherence data and calculates re-
gression coefficients based on the specified historical period (Dutrieux et al., 2015). When
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a new value is introduced, it is predicted using the regression equation and compared with
the observed value. If there is a statistical difference between the predicted and observed
values, the introduced value is considered anomalous. If there are outliers in coherence
values in the selected historical period caused e.g., by extreme weather events or heavy
grazing, the regression equation and coefficients derived from that period will become
"unstable" (Verbesselt, Hyndman, Zeileis, & Culvenor, 2010). This instability makes the
subsequent evaluation of anomalies in the prediction period uncontrollable. Moreover,
in rangeland ecosystems, vegetation growth is influenced by a multitude of natural and
human factors. Simply addressing temporal changes statistically overlooks the broader
impact of these factors on vegetation dynamics (Gaujour et al., 2012; Y. Liu et al., 2019).
Consequently, the new random forest method provides a much more efficient approach to
detect those vegetation changes which are caused by grazing in time series dominated by
large scale effects of natural factors such as snow and rainfall.

3.5.2 Seasonal and Spatial Breakpoint Patterns

Breakpoint patterns differed markedly between seasons. In winter camp sites, most break-
points occurred between February and March Figure 3.6b, when snow is the main natu-
ral driver of coherence. This is likely due to the impact of snow cover on InSAR signal
quality, which can hinder the detection of displacement signals (Eppler & Rabus, 2022).
Unlike summer camps sites, where grazing pressure necessitate careful management,
herders often designate specific areas as winter pastures during the growing season (Ono
& Ishikawa, 2020). These areas are monitored and protected to prevent unauthorized
grazing during summer, allowing forage to accumulate for livestock use in winter. Hay
feeding also plays a critical role, our interview data indicate that in 2019, herders reported
spending an average of 105,000 Mongolian Tugrik on hay for livestock feeding. Thus, the
main energy source for livestock is hay fed by herders, rather than relying heavily on free
grazing (Tsevegemed et al., 2019).

From a spatial perspective, random forest successfully predicted seasonal breakpoints
across all four study sites Figure 3.7. At sites near river systems, such as site | (near
Ulaanbaatar) and site V (northern Khentii), summer breakpoints predominantly aligned
along river systems, exhibiting pronounced clustering effects. The proximity of summer
camps to rivers is plausible, as herders typically avoid valley bottoms during winter due to
lower nighttime temperatures and the lack of natural wind shelters compared to locations
at slope feet. Since the 1990s, water resources, particularly river flow and depth, have
steadily declined in Eastern Mongolia, increasingly constraining herders’ ability to graze
livestock along riverbanks, which are critical for ensuring adequate water intake (Tugjamba
et al., 2021a).

In contrast, breakpoints patterns at sites VIl and IX were less related to topography be-
cause summer pastures have been predicted both in mountainous and flat areas around
the rivers. This may be a consequence of extensive grazing in the eastern study sites,
where low population densities and low livestock numbers reduce the grazing signal within
coherence time series (Hilker et al., 2014a). Moreover, the eastern region hosts higher
numbers of wildlife, such as Mongolian gazelles, whose roaming contributes to a gen-
eral grazing signals without seasonal cycles. This overlap with livestock grazing activities
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complicates the identification of breakpoints caused solely by livestock (D. Nandintsetseg
et al., 2019; Yoshihara et al., 2008). In the southern study sites, located at the grassland-
desert boundary, shorter vegetation further complicates the detection of grazing signals,
because the signal of vegetation in the INSAR-data is generally low (Michler et al., 2022;
Pan et al., 2022). Even biomass estimation in this region demonstrates lower accuracy
compared to other areas (Ji et al., 2024). Additionally, the uncertain spatial distribution of
grazing activities contributes to monitoring challenges, as some areas are heavily grazed
by livestock from multiple households, while others are rarely utilized.

3.5.3 Drivers of Grazing Patterns

The results presented in Figure 5 indicate that detection of breakpoints in summer and
winter camps remains challenging for both the random forest and BFAST methods, ir-
respective of whether they pertain to winter or summer camps. Precipitation variability
directly impacts forage availability and quality (Munkhtsetseg et al., 2007), serving as a
critical driver in determining herders’ movements time and destination. Additionally, the
depletion of water resources and the decline in river flow compel herders to adapt their
traditional movements routes and schedules (Gantuya et al., 2021). Based on a study
in northeastern Mongolia (Tugjamba et al., 2021a), resource constraints, economic pres-
sures and policy changes have further contributed to a reduction in the frequency of sea-
sonal movements, with the customary four seasonal movements per year often declining
to three or fewer.

3.5.4 Limitations and future work

Despite its improved performance, the random forest model faces limitations. In the east-
ern and southern regions current methods have proven less effective. These areas face
unique challenges, including the uneven spatial distribution of grazing activities, the over-
lapping presence of wildlife such as Mongolian Gazelles, and the difficulty of detecting
grazing signals in sparse and short vegetation. Moreover, the detection of breakpoints un-
der the combined influence of grazing and wildlife activities is ecologically complex. This
complexity is compounded by additional factors such as mining activities and wildfires,
which can significantly interfere with remote sensing signals used to identify breakpoints
(Serra-Burriel et al., 2021; Sun et al., 2024). Wildfires, in particular, can alter vegetation
patterns at a landscape scale (Kerby et al., 2007), masking the impacts of grazing and
wildlife activities in coherence time series and reducing the accuracy of breakpoint detec-
tion. As wildfires often coincide with dry seasons and can devastate pastureland, they
indirectly influence herders’ decisions regarding livestock movement and grazing inten-
sity, further complicating the spatial distribution of grazing activities (Kazato & Soyollham,
2022).

Furthermore, as the random forest-based approach requires supervised learning, users
must prepare appropriate training and validation datasets. The quality, representative-
ness, and spatial coverage of these data directly influence model robustness and gener-
alization capability. In data-scarce environments like Eastern Mongolia, obtaining reliable
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ground truth information for training remains a challenge. Future research could explore
semi-supervised or transfer learning strategies to alleviate data dependency.

Although our study focuses on Sentinel-1 coherence time series data, the proposed
random forest-based breakpoint detection framework is not limited to SAR data. The
method can be extended to other remote sensing time series datasets that capture veg-
etation dynamics, such as optical vegetation indices (e.g., NDVI from Sentinel-2 or Land-
sat). The key requirement is the availability of sufficiently dense and temporally consistent
observations that reflect the vegetation responses to disturbances. However, data char-
acteristics such as noise level, spatial resolution, and sensitivity to specific vegetation
changes should be considered when applying the method to different sensor data.

3.6 Conclusion

This study provides compelling evidence that machine learning, specifically random forest,
offers a powerful alternative to traditional methods for detecting grazing-induced vegeta-
tion breakpoints in Eastern Mongolia’s rangeland. By leveraging Sentinel-1 SAR coher-
ence time series, the random forest model achieved significantly higher detection accuracy
of known herder movements (44%) compared to the widely used BFAST algorithm (28%),
and revealed distinct seasonal breakpoint patterns aligned with traditional pasture rotation
practices.

A key strength of our approach lies in its spatial generalization capability, which en-
ables the transfer of learned patterns across diverse ecological zones and grazing con-
texts—highlighting its applicability for large-scale, data-driven rangeland monitoring. While
some confounding factors such as wildfires, mining, or wildlife grazing may also influence
the observed signals, our findings underscore the potential of random forest based frame-
works for capturing subtle and seasonally structured vegetation dynamics linked to no-
madic land use.

Overall, this study advances the integration of SAR time series and machine learning
for ecological monitoring, offering new pathways to understand and manage rangeland
systems under increasing environmental and socio-economic pressures.
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Figure 3.8: Typical Winter camp in Eastern Mongolian Nomadic System
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Table 3.2: Survey Questionnaires for Herder Household Interviews (2019, 2020, and
2022)

Year Link

2019 | https://docs.google.com/document/d/1o0k7EEiIEzZNvyuTUcPYE4
amkeaL TbaiXl/edit?usp=sharing&ouid=115666775336645475325
&rtpof=true&sd=true

2020 | https://docs.google.com/document/d/1C7JneN5sZDvuitts1D6ketJ8
FQxup9gt/edit?usp=sharing&ouid=115666775336645475325&rtp
of=true&sd=true

2022 | https://docs.google.com/document/d/1 KARSknuHKDAN8rGONNNnO
gsGvuYbIAWKg/edit?usp=sharing&ouid=1156667753366454753
25&rtpof=true&sd=true
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This study developed a novel grazing
pressure index by comparing remotely
sensed and model-predicted aboveground
biomass to quantify the combined im-
pacts of livestock and wildlife in Eastern
Mongolian grasslands from 2019 to 2021.
Our analysis revealed a significant posi-
tive correlation between livestock density
and proxy of biomass reduction(PBR), par-
ticularly in Khentii province, indicating its
utility as an indicator of grazing pressure.
While human population density showed a
correlation only in 2021, the relationship
between gazelle density and PBR varied
across provinces, highlighting the complex
interplay of factors influencing vegetation
dynamics. This PBR index proves a valu-
able tool for monitoring combined grazing
pressure in this vital ecosystem.
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4.1 Abstract

The vast grasslands of Eastern Mongolia have supported wildlife and traditional pastoral-
ists for thousands of years. The transition from a planned economy to a market economy
has been accompanied by considerable changes in livestock numbers. It is essential to
quantify the impacts of grazing on ecosystem functioning in this region, given the nomadic
pastoralists’ heavy reliance on natural resources to sustain their livelihoods, and the criti-
cal role played by these grasslands in terms of productivity and carbon sequestration. We
tested the hypothesis that the combined grazing activities of livestock and wildlife (pre-
dominantly Mongolian gazelle Procapra gutturosa) had a detectable impact on vegetation
dynamics in Eastern Mongolia from 2019 to 2021. To do this we devised an index of graz-
ing pressure by calculating the difference in potential and actual aboveground biomass:
subtracting estimated biomass from remote sensing and from the biomass predicted by
the process-based ecosystem model LPJ-GUESS and analyzed the resulting differences
in biomass in relation to livestock density, human population density, and gazelle den-
sity. The results showed that in 2020 and 2021 there was an overall significant positive
correlation between livestock density and proxy of biomass reduction (PBR), an indicator
of grazing pressure, and it was particularly evident in the western provinces. The hu-
man population density showed a significant positive correlation with PBR only in 2021.
No significant correlation was observed between gazelle density and PBR overall, while
among study areas a significant positive correlation was observed in Khentii, Sukhbaatar
and Dornod, but not for the westernmost province of Tuv. Our results support the utility of
PBR as an indicator of combined grazing pressure from livestock and wildlife in Eastern
Mongolia’s grasslands.

Key words: LPJ-GUESS; biomass proxy; Mongolian gazelle; Procapra gutturosa; live-
stock; ecological footprint

4.2 Introduction

In grassland ecosystems, the grazing activities of livestock and wildlife have significant
impacts on vegetation growth and biomass, making it crucial to distinguish between their
respective influences when assessing the impacts of grazing on the ecosystem. Live-
stock grazing is typically concentrated in specific areas, with livestock foraging behavior
and population dynamics directly affecting changes in grassland vegetation cover and
biomass at a more local scale (Cao et al., 2024; Lu et al., 2017). In contrast, the activities
of wildlife (e.g., Mongolian gazelle Procapra gutturosa) are more unpredictable spatially
and can involve migrations and foraging behaviors influenced by seasonal variations and
ecological conditions, spanning hundreds of kilometers and causing broader-scale vege-
tation dynamics. When evaluating grazing intensity (Dejid et al., 2022), it is essential to
consider the competition for resources and niche overlap between livestock and wildlife.
For instance, in some areas, overgrazing by livestock may lead to soil erosion and vegeta-
tion degradation (Sainnemekh et al., 2022b; Q. Wang, 2014), while the foraging behavior
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of wildlife may exert localized pressure on specific plant species (Coughenour, 1991).
Accurately distinguishing between these two influences not only helps to better under-
stand grassland ecosystem functioning, but also provides scientific guidance for sustain-
able grazing management and wildlife conservation.

Assessing vegetation dynamics over large-scale geographic regions can be approached
through two primary methods. The first, more commonly employed approach, combines
remote sensing data with ground-based measurements to estimate changes in vegetation
variables associated with their conditions. The second method involves using dynamic
vegetation models to simulate ecological processes based on existing climate and soil
data. For the latter, models such as LPJ-GUESS, a dynamic global vegetation model,
simulate plant growth and aboveground biomass (AGB) production under the influence of
multiple environmental factors, including climate, soil, water, and carbon dioxide concen-
trations, but often excluding biomass consumption by herbivores and anthropogenic land
management (B. Smith et al., 2001). Consequently, such a prediction can be interpreted
as a proxy for "potential natural biomass" (AGB,) in the absence of grazing. Such simula-
tions provide a baseline, enabling us to understand the potential growth of vegetation as a
function of the observed environmental conditions. In contrast, biomass estimates derived
from remote sensing (AGB,s) account for grazing, human land-use changes, and environ-
mental factors affecting plant growth (Galidaki et al., 2017). AGB,s measurements offer a
more comprehensive understanding of ecosystem health and productivity by considering
both natural factors and human influences, such as livestock grazing. By comparing the
potential biomass simulated by the LPJ-GUESS model with the actual biomass derived
from remote sensing, it might be possible to infer the combined effects of livestock and
wildlife grazing on grassland ecosystems (Seaquist et al., 2009).

In this study, we focused on the grassland steppe of Eastern Mongolia, particularly in four
provinces where the majority of Mongolian gazelles are found (Buuveibaatar et al., 2024;
Olson, Fuller, Mueller, et al., 2010). Our analysis considered data collected between 2019
and 2021. Within this context, we hypothesized that the combined grazing intensity of
livestock and wildlife are captured by the differences in AGB values between AGB,; and
AGB,s (hereafter referred to as “proxy of biomass reduction, PBR”) in the grassland steppe
of Eastern Mongolia, i.e. expecting a positive relationship between livestock density and
PBR in areas of high grazing pressure. We also expected weaker or no correlation in
regions with lower grazing pressure, particularly in the eastern part of the study area.

4.3 Data and methods

4.3.1 Study area

The study area is located in Eastern Mongolia, encompassing the provinces of Tuv, Khen-
tii, Sukhbaatar, and Dornod (Figure 4.1). This region serves as a vital livestock grazing
area and provides critical habitat for wildlife as well, including Mongolian gazelle and other
species. Our analyses were conducted at the administrative level of 'bag’, which rep-
resents the smallest administrative unit in Mongolia. For this study, a total of 299 bags
were included from these provinces, specifically comprising 79 bags from Khentii, 54 from
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Tuv, 58 from Sukhbaatar, and 67 from Dornod. These administrative units exhibit con-
siderable variability in their spatial extent; the bags within our study area have an aver-
age size of 107,619.5 hectares, with sizes ranging significantly from a minimum of 5,182
hectares to a maximum of 1,154,919 hectares. This substantial range in bag size is an
important consideration when interpreting spatially aggregated density values. The total
number of livestock in the region was more than 16.3 million in 2023, including horses, cat-
tle, camels, sheep, and goats, according to the National Statistics Office (NSO) dataset
(https://www.nso.mn/en/dissemination/73072997). According to a 2020 field survey, the
number of gazelles in central and eastern Mongolia was estimated to be 1.99 million with
a 95% confidence interval of 1.47 - 2.71 million (Buuveibaatar et al., 2024). Since the
transition to a free-market economy in the 1990s, the number of livestock has increased
significantly to meet export demand, resulting in a decline in pasture carrying capacity
(Tumur et al., 2021). Vegetation quantity and quality is highly unpredictable both spa-
tially and temporally, primarily influenced by variations in precipitation. During the study
period (2019-2021), the region showed noticeable inter-annual variability in precipitation
and temperature (Figure 4.10 and Figure 4.11). Apart from the well-known fenced rail-
way corridor between Beijing and Ulaanbaatar, the region has no significant man-made
physical barriers, making spatial overlap between livestock grazing activities and wildlife
habitats highly possible. For this study, our analysis primarily focused on vegetation dy-
namics during the growing season, when biomass accumulation is most evident.
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Figure 4.1: Study area (grey) in Eastern Mongolia covering a portion of the overall gazelle
range with survey transects, protected areas, and mining areas shown. A: Livestock graz-
ing (Photo by Lukas Lenhert); B: A group of Mongolian gazelle foraging (Photo by B.
Buuveibaatar).

4.3.2 Data source

Satellite-derived biomass data

We used an aboveground biomass dataset for years 2019 to 2021 generated using ma-
chine learning applied to Sentinel 1 and Sentinel 2 data. The dataset was trained and
validated against over 600 field-based measurements of aboveground biomass spanning
central and eastern Mongolia (Ji et al., 2024). The spatial data at a 10 m resolution
was resampled to a 0.1 ° resolution (using bi-linear interpolation) to be consistent with the
biomass layer produced by the vegetation model (see subsection 4.3.3).

Human population, livestock and gazelle density

Since grazing pressure and human activity are likely major drivers of the difference be-
tween modelled AGB,,: and remotely sensed biomass AGB,s, we tested the hypothesis
that higher livestock density and human population density would increase the difference,
while wildlife grazing (gazelles) would have a weaker or negligible effect. To examine this,
livestock density, human population density and gazelle density were selected as poten-
tial drivers to explain the spatial variation in PBR indicated by the difference in AGBy and
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AGB,s, aiming to disentangle the respective contributions of anthropogenic and grazing
pressure driven by wildlife and livestock.

Livestock density and human population density data were obtained from the Mongolian
Statistical Yearbook (www.1212.mn). We calculated the livestock density, human popu-
lation density, and gazelle density at the administrative level of bags to assess regional
variations in human and livestock impacts on vegetation dynamics in the study area. To
accurately quantify grazing pressures on grasslands, we converted the number of cattle,
horses, camels, sheep, and goats into animal units (au), according to (Miao et al., 2021).
In order to facilitate a direct comparison of the grazing impacts of these livestock species,
we converted their numbers into livestock density by dividing the total animal units per bag
by the area of each bag, which allowed for spatially explicit estimates of grazing pressure
across the study area.

Design-based gazelle density estimates were obtained from vehicle-based distance sam-
pling surveys (S. T. Buckland et al., 2015; S. Buckland et al., 2001) conducted across a
433,245 km? area in Central and Eastern Mongolia during May—June 2020 (Buuveibaatar
et al., 2024). In addition, Generalized Additive Models (GAMs; (Wood, 2017)) were applied
to these distance sampling data using the mgcv package in the R software to generate
a Mongolian gazelle density surface across the study area. Transects were divided into
10 km segments with group counts assigned to each segment and the sampled area for
each segment included as an offset term in the model to account for small variations in
segment length. A second model to predict group size was fit to the number of gazelle
recorded along each 10km segment with the number of groups included as an offset term
in the model and conditioned on at least one group being recorded. Gazelle group density
and group size were predicted across the entire study area at a spatial resolution of 1
km x 1 km based on location. The predicted gazelle group density was combined with
the predicted group size to obtain a density surface for Mongolian gazelle. The average
predicted gazelle density was 0.052 (95% Confidence Interval: 0.035—-0.076) individuals
per hectare.

4.3.3 Vegetation model
LPJ-GUESS

To simulate the AGB, in Eastern Mongolia, we used the LPJ-GUESS model (version
4.1), a dynamic global vegetation model designed to represent vegetation dynamics and
ecosystem processes at regional and global scales (B. Smith et al., 2001), including nitro-
gen cycles (B. Smith et al., 2014). Given that the dominant vegetation type in the Eastern
Mongolian Steppe is C3 herbaceous vegetation (Pyankov et al., 2000), only this plant
functional type (PFT) was included in the simulations.

Grass growth was modeled using the daily grass module developed by Boke-Olén et al.
(Boke-Olén et al., 2018), which is based on the framework originally proposed by Johnson
and Thornley (Johnson & Thornley, 1983). This module accounts for the daily allocation
of carbon to different plant organs, such as leaves, storage, and roots, where the original
model calculates carbon allocation on a yearly basis. To ensure some biomass remained
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during the winter months, the decomposition of senesced leaves (dead standing biomass)
was halted when temperatures dropped below 0°C. Patch disturbances and fire dynamics
were excluded from the simulations as they did not align with observed patterns in the
region.

Finally, the peak aboveground biomass (AGB,) was calculated as the maximum green
leaf biomass for each grid cell and year, leading to one spatial grid per year (2019-2021).

Model input

Daily climate data used to drive the model simulations, including air temperature, pre-
cipitation, and solar irradiation, were sourced from the ERA5-Land reanalysis database
(Munoz-Sabater et al., 2021). These data, originally provided at hourly time steps, were
processed into daily values using the Climate Data Operators (CDO version 2.4.1) tool
(Schulzweida, 2023). The dataset spans the period from 1950 to 2023, with a spatial res-
olution of 0.1°.

Atmospheric CO2 concentrations were obtained as global annual values from Blichner
and Reyer (BlUchner & Reyer, 2022), while nitrogen deposition data were sourced as
monthly values from the Atmospheric Chemistry and Climate Model Intercomparison Project
(ACCMIP) (Lamarque et al., 2013). Additionally, static soil texture data based on Zobler
(1986) was included as an input to the model at a 0.5° resolution.

To simulate vegetation establishment from bare ground and achieve equilibrium with en-
vironmental conditions, we conducted a 500-year spin-up. During this period, the first 30
years of climate data were repeatedly cycled, while CO2 concentrations and nitrogen de-
position rates were maintained at their levels from the initial year of the climate dataset
(1950).

4.3.4 Agreement between biomass estimates from LPJ-GUESS and
remote sensing

In order to evaluate the relationship between modelled and remotely sensed biomass
estimates, we examined the agreement between LPJ-GUESS outputs (AGB,.) and re-
mote sensing-based biomass (AGB,s). Spearman’s rank correlation coefficient (rs) was
calculated to assess the consistency between the data and model outputs (rs[AGBg; -
AGBs]). The Spearman coefficient ranges from 1 to +1, where higher positive values in-
dicate strong agreement, larger negative values reflect strong disagreement, and values
near zero signify random variation. This coefficient is used to measure the association
between two variables, such as AGBy,: and AGB;s, with their scores ranked (McGrew Jr.
Monroe, 2000). The selection of Spearman’s coefficient was motivated by its ability to
account for and mitigate any nonlinear relationships that could potentially distort the de-
tection of a monotonic relationship between AGB,; and AGB,s. Given the limited sample
size of data from 2019 to 2021, directly computing (rS[AGBy. - AGBs]) may introduce
considerable uncertainty. To mitigate this, we applied a 5 x 5 moving window approach
across the entire raster, this means that for each pixel, the mean value of its surrounding
25 pixels (including itself) was calculated, effectively smoothing local fluctuations. By mov-
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ing the window one pixel at a time, we generated a continuous surface of averaged values
that captures local spatial patterns more reliably. This approach improves the robustness
of the analysis by reducing noise and ensuring more stable correlation estimates (F. Gao
& Zhang, 2021).

To assess the fundamental relationship between the biophysical potential and the ob-
served biomass, and to ensure the coherence of these two datasets, we performed a
correlation analysis between AGB,,; and AGB,s across the study period (2019-2021).

4.4 Results

4.4.1 Data-model comparison

In terms of geospatial distribution, (rs[AGB: - AGBs]) showed strong consistency (greater
than 0) in most areas of Dornod, Sukhbaatar, and Khentii, but showed inconsistency (less
than 0) in the central and southeastern areas of Tuv and the southern area of Sukhbaatar
(Figure 4.2).

1l
O

0

-0.8
-0.6
-0.4
-0.2
0.0 -
0.2 -
0.4

0.6

>0.

o BRI

Figure 4.2: Spearmann rank correlation coefficient between AGB,,; and AGB,s from 2019
to 2021.

The scatter plot (Figure 4.3) illustrates the relationship between AGB,,: and AGBs in mul-
tiple years (2019, 2020, and 2021) showing statistically significant positive associations
between the two datasets (p < 0.001). The spread of data points around the regres-
sion line indicates variability in agreement between remote sensing estimates and model
predictions, which may be influenced by differences in vegetation structure, model pa-
rameterization (e.g., uncertainty in the climate data i.e., ERA5-Land) and uncertainties in
biomass retrieval.
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Figure 4.3: Correlation between AGB,,: and AGB;s for biomass data of 2019-2021. Each
point represents a spatial pixel, with the dots depicting individual biomass estimates and
the regression line indicating the linear trend.

4.4.2 Factors influencing grazing intensity

In 2020 and 2021, a significant but weak positive correlation was observed between live-
stock density and PBR (Figure 4.4), indicating that as the number of livestock density
per hectare of grassland increased, the PBR also increased (p < 0.01). In 2019, there
was no statistically significant relationship between the variables. Human population den-
sity showed negative and positive correlation with PBR, but only in 2021 was the positive
correlation significant. In 2020, no significant correlation was observed between gazelle
density combined across all four provinces and PBR (Figure 4.4).

Across different aimags, livestock density had a consistently significant positive effect on
the PBR in Khentii in 2019 and 2020 (the result was marginally significant in 2021, which
was also the case for Sukhbaatar). Additionally, in 2019 and 2021, livestock density also
exhibited a significant negative effect on the PBR in Tuv province (Figure 4.5). Regarding
the impact of human population density across provinces, a significant negative correlation
with PBR was observed only in Sukhbaatar in 2020 (Figure 4.6), while no clear positive
or negative effects were found in other cases. A significant influence of gazelle density on
the PBR was observed in Khentii, Sukhbaatar and Dornod, where an increase in gazelle
density corresponded to an increase in PBR. However, no significant effect was found in
Tuv (Figure 4.7).

Additionally, livestock density was strongly and significantly correlated with human pop-
ulation density across all years (2019-2021, p < 0.001), and negatively correlated with
gazelle density in 2020 (R =—-0.28, p < 0.001) (Table 4.1), indicating that areas with higher
human and livestock presence tend to have lower wildlife abundance.
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Table 4.1: Correlation coefficients among key drivers of PBR

Human population_density vs. Gazelle_density vs.

Livestock_density Livestock_density
2019 R =047 p <0.001 XXX
2020 R =0.52 p <0.001 R=-0.28 p <0.001
2021 R =0.50 p <0.001 XXX

2000

1000

-1000

-2000 o
00 02 04 06 08
Livestock Density (per ha)

1500
1000
500

PBR
o

r=0.11 r=0.23

C%O o
p=0.13 p <0.01
»

n=183| |8 n=184

-500
-1000
-1500

0.00 0.01 0.02 0.03 0.04
Human population Density

1500
1000

500
0 No data

500
~1000
~1500

No data

0.0 0.1 0.2
Gazelle Density

Figure 4.4: Correlation between proxy of biomass reduction with variables for 2019-2021
(with units per ha).
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Figure 4.7: Correlation between proxy of biomass reduction and gazelle density per aimag
in 2020.

4.5 Discussion

The observed positive correlation between AGB,.: and AGB,s across multiple years under-
scores the overall consistency between these two datasets. However, the variability ob-
served around the regression line suggests that several factors contribute to the discrep-
ancies. Remote sensing retrievals may not fully capture vegetation structural attributes
such as canopy height and species composition, which directly affect biomass estimates.
On the other hand, model predictions may rely on simplified assumptions about biomass
allocation and environmental drivers (e.g., precipitation variability, soil conditions), leading
to systematic deviations. For example, in the northeastern part of the study region, the
negative differences between RS-derived and modeled biomass in 2021 can be attributed
to anomalous climatic conditions (Figure 4.9). Excess precipitation (Figure 4.10) likely
enhanced vegetation growth, while anomalously low temperatures, particularly in autumn,
winter, and spring (Figure 4.11), reduced evapotranspiration and increased water availabil-
ity. These favorable conditions were reflected in the RS-derived biomass. However, the
LPJ-GUESS simulations, which in this study only represent grass plant functional types,
may systematically underestimate biomass accumulation in areas where tree and shrub
cover contributes to vegetation productivity, thereby compounding the mismatch driven by
the anomalous climate, thereby contributing to the observed difference. For the current
analysis, this means that part of the observed mismatch between AGBpot and AGBrs is
likely due not only to measurement uncertainty but also to structural limitations in how
both approaches represent vegetation dynamics.

The significant relationship between livestock density and PBR highlights the importance
of grazing pressure as a driver of grassland vegetation dynamics in Eastern Mongolia
(Figure 4.4). While the observed positive correlation is relatively weak, it nevertheless
points to measurable interactions between livestock management and biomass patterns.
This relationship may partly reflect uncertainties in remote sensing—based biomass es-
timation or model assumptions, but it also underscores the necessity of accounting for
grazing impacts when interpreting vegetation productivity. The significant negative effect
of livestock density on PBR observed in Tuv province in 2019 and 2021 may reflect com-
plex interactions between grazing intensity and environmental or management factors and
needs to be studied in detail in future (Figure 4.5). For instance, variations in precipitation,
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land-use policies, or local conservation efforts may contribute to grassland resilience in
some regions; while continuous grazing practices by pastoralists may limit the expected
relationship between livestock pressure and biomass (B. Nandintsetseg et al., 2021; Oniki
et al., 2024; Tsedev, 2021). However, an alternative explanation is also plausible. The
observed pattern may reflect legacy effects of past land degradation, whereby heavily de-
graded areas now support lower livestock densities precisely because they are no longer
suitable for grazing. In this case, the large PBR would not be due to increased current
grazing pressure, but rather the result of historical degradation that led to long-term de-
clines in vegetation productivity and a subsequent reduction in livestock use (Dashbal et
al., 2023; Garchinbyamba & Kang, 2013). These two explanations are not mutually ex-
clusive and highlight the need to consider both contemporary management and historical
land-use legacies when interpreting vegetation dynamics in grazed ecosystems. It is also
important to consider equilibrium versus non-equilibrium conditions in explaining the effect
of livestock on vegetation. Under non-equilibrium conditions, characterized by low rainfall
and high inter-annual climate variability, grazer populations cannot reach equilibrium with
available biomass, because strong intermediate declines in vegetation prevent grazer pop-
ulations from growing. Therefore, in such areas, the impact of livestock on vegetation is
expected to be limited. In contrast, under equilibrium conditions, where rainfall variabil-
ity is relatively low (CV < 0.33, roughly corresponding to forest steppe regions), grazer
populations can reach equilibrium with their environment, and the effects of grazing on
vegetation become more apparent.

The relationship between livestock density and vegetation dynamics in Eastern Mongo-
lia should also be contextualized within the theoretical framework of equilibrium versus
non-equilibrium rangeland dynamics. Classical equilibrium models posit that biotic in-
teractions, particularly herbivore grazing, regulate vegetation biomass through density-
dependent feedbacks, resulting in predictable grazing impacts ((Milchunas et al., 1988;
Oesterheld et al., 1992)). Conversely, the non-equilibrium paradigm emphasizes the pri-
macy of stochastic abiotic factors, such as precipitation variability, in driving rangeland
dynamics, particularly in arid and semi-arid ecosystems ((Sullivan & Rohde, 2002)). In
these environments, frequent droughts and high inter-annual climate variability can sup-
press livestock populations below the system’s carrying capacity, decoupling grazing pres-
sure from vegetation dynamics and rendering abiotic factors the dominant control ((Vetter,
2005)). In Eastern Mongolia, characterized by semi-arid grasslands and significant precip-
itation variability ((Bat-Oyun et al., 2016; C. Li et al., 2023)), non-equilibrium dynamics may
predominate, potentially explaining the weak positive correlation between livestock density
and PBR observed in our study (Figure 4.4). However, in regions like Tuv province, where
negative effects of livestock density on PBR were noted in 2019 and 2021 (Figure 4.5),
localized equilibrium dynamics may emerge due to more stable climatic conditions or in-
tensive grazing management practices. These contrasting patterns suggest that grazing
impacts in Eastern Mongolia are shaped by an interplay of contemporary management,
and the degree to which local ecosystems align with equilibrium or non-equilibrium dy-
namics.

Human population density showed a weak positive correlation with PBR only in 2021, sug-
gesting that direct anthropogenic pressures, apart from livestock grazing, may not be the
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primary driver of differences between AGB, and AGB,s (Figure 4.4). Areas with higher
population density also tend to have higher livestock density, indicating that the influence
of population density on PBR may be confounded by grazing pressure. However, it is pos-
sible that indirect effects, such as land-use changes, urban expansion, or socio-economic
activities linked to population density, could still play a role in shaping ecological differ-
ences (Allington et al., 2017; Korytnyi et al., 2023).

Similarly, no significant correlation was found between gazelle density and the PBR in Tuy,
indicating that wildlife activities may not be a primary driver of the observed differences in
this area (Figure 4.7). One potential explanation for this finding is that the overall impact
of gazelle density may be overshadowed by stronger anthropogenic influences, such as
livestock grazing and land-use changes, as well as a strong barrier effect caused by the
Ulaanbaatar—Beijing Railroad, which may restrict the movement of gazelles and limit their
grazing impact on certain areas (Ito et al., 2005, 2013). Additionally, the spatial distribu-
tion and high mobility of gazelle populations may lead to localized or transient effects that
are not captured at the broader provincial scale. Supporting this view, gazelle density per
hectare was lowest in Tuv Province (0.008 individuals/ha) in 2020, while Dornod Province
in the far east exhibited a substantially higher density (0.079 individuals/ha), highlighting a
marked spatial disparity in wildlife presence across the region (Figure 4.8). This contrast
reflects two opposing gradients in grazing intensity: livestock density is higher in the more
populated central and western regions, whereas gazelle density increases toward the less
populated eastern steppe.

Overall, these findings emphasize the need for region-specific calibration of biomass
estimation methods, considering both anthropogenic and ecological factors. Future re-
search should incorporate finer-scale grazing intensity data, species-specific vegetation
responses, and improvements in remote sensing algorithms to enhance biomass predic-
tion accuracy. Additionally, integrating field-based biomass measurements with satellite
observations could help disentangle the relative contributions of grazing, wildlife activity,
and environmental variability to biomass distribution patterns.

4.6 Limitation

Our experimental design hypothesis is that all cases where the data model agreement is
less than 0 are attributed to the direct impact of livestock grazing and wildlife activities on
vegetation dynamics, but other factors may also play an important role in the changes in
vegetation dynamics in some areas of Eastern Mongolia. One factor is the large-scale
mining operations that are spread across the landscape. Eastern Mongolia hosts an ex-
pansive array of diverse mining operations, whose increasing proliferation is driving sub-
stantial environmental transformation, principally evidenced by widespread land degrada-
tion and ecological disturbance, dust, and pollution, which can affect soil quality, water
availability, and microclimate, all of which can lead to changes in biomass (Mclintyre et al.,
2016; Park et al., 2020; Pecina et al., 2023a).

Regarding remote sensing data used as measured data, the production of the 10-meter
resolution aboveground biomass map of Eastern Mongolia also experienced challenges,
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especially after the model was validated and the spatial accuracy of the product was ver-
ified, due to the "saturation" of vegetation indices generated by optical sensors and the
decline in prediction accuracy in the transition zone at the edge of the study area, which to
some extent caused a decline in product accuracy (Ji et al., 2024). However, this potential
source of error is difficult to avoid.

Deviations between modelled and satellite-derived biomass values can also be caused by
unrealistic climate input data for the vegetation model as well as inaccurate parameteri-
zation. This is potentially exacerbated by the relatively sparse network of meteorological
stations in Mongolia. The consistency and robustness of our results suggest nevertheless
that the general conclusions of our study are correct.

4.7 Conclusion

We tested the hypothesis that livestock grazing and gazelle foraging had a measurable
impact on vegetation dynamics in Eastern Mongolia from 2019 to 2021. During the study
period, livestock density exhibited a significant effect on PBR in 2020 and 2021, especially
in western provinces Tuv and Khentii. The contribution of human population changes to
variations in PBR is not significant. Gazelle density had no significant effect on PBR
across the whole steppe while among the four provinces, a significant positive correlation
was observed in Khentii, Sukhbaatar and Dornod, but not in the westernmost province of
Tuv. Notable spatial discrepancies in PBR were observed in central and southern Tuy, the
southern and northern parts of Sukhbaatar, and the border region between Sukhbaatar
and Dornod. Our findings also highlight the need to refine remote sensing algorithms to
better capture vegetation structural characteristics and to improve model calibration with
respect to biomass allocation and environmental variability, in order to reduce differences
between predicted and observed biomass estimates.
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5.1 Conclusion and outlook

5.1.1 Conclusion

This thesis thoroughly investigates land degradation dynamics within the vast grassland
steppe of Eastern Mongolia, a region crucial for both wildlife and traditional pastoral liveli-
hoods. Given the significant environmental and socioeconomic changes this ecosystem
faces, the overarching aim of this work is to advance our understanding of grazing im-
pacts from both human and wildlife populations, and to develop robust remote sensing
methodologies for monitoring these impacts.

To lay the groundwork, this research initially focused on addressing a fundamental chal-
lenge in grassland ecology: accurately quantifying aboveground biomass (AGB) across
large and environmentally diverse regions. This involved developing and validating a reli-
able, remotely sensed AGB product for central and eastern Mongolia, establishing a cru-
cial baseline for subsequent ecological analyses.

Building on this capacity to estimate AGB, the investigation then delved into the complex-
ity of detecting and attributing vegetation changes to specific drivers. This involved ex-
ploring how advanced satellite data, particularly Interferometric Synthetic Aperture Radar
(InNSAR), can be used to identify subtle vegetation breakpoints, thereby aiming to differenti-
ate changes caused by livestock and herder movements from those resulting from natural
climatic events.

Further integrating these insights, the research culminated in quantifying the overall graz-
ing pressure exerted by both livestock and wildlife. This was achieved by devising and
testing a novel index of grazing pressure—based on the difference between potential and
actual biomass—and analyzing its correlation with various drivers to provide a compre-
hensive assessment of combined grazing impacts across the steppe.

Collectively, the research presented in this thesis addresses critical methodological gaps
in remote sensing applications for grassland monitoring and provides essential ecologi-
cal insights into the impacts of pastoralism and wildlife on the fragile Mongolian steppe,
ultimately informing future sustainable land management strategies.

This conclusion presents the main findings of the thesis, addressing the questions out-
lined in Section 1.5.1.

Research question 1: Can we combine ground sampling data with remote sensing satel-
lite data to generate a reliable aboveground biomass product covering a large area of the
eastern Mongolian grassland?

Chapter 2 introduces a pioneering approach to accurately estimate aboveground biomass
(AGB) in the vast and climatically diverse grassland steppe of central and eastern Mon-
golia. To achieve this, the study leveraged Random Forest (RF) modeling combined with
multi-scale and multi-temporal optical (Worldview 2, Sentinel 2, and Landsat 8) and Syn-
thetic Aperture Radar (SAR) (Sentinel 1) remote sensing data. A key contribution was the
application of a novel dissimilarity index (DI) to derive the Area of Applicability (AOA) of
the predictive model, ensuring the robustness and representativeness of the AGB prod-
uct. The findings highlighted the superior accuracy achieved by combining Sentinel-1 and
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Sentinel-2 data with RF, demonstrating the high potential of this approach for reliable AGB
prediction across extremely large ecosystems. Significantly, the model proved applica-
ble to over 72% of the steppe area, confirming its broad utility for large-scale grassland
monitoring despite the challenging climatic gradients. This comprehensive assessment
provides a crucial and validated baseline for understanding grassland productivity and its
ecological dynamics.

Research question 2: How did vegetation breakpoints in the Eastern Mongolian range-
land manifest temporally and spatially between 2019 and 2021, and can InSAR coherence
time series data effectively differentiate those caused by herder and livestock mobility from
natural events?

Chapter 3 extends the thesis’s focus from general biomass assessment to understand-
ing the dynamic interplay between vegetation change and mobility patterns in the East-
ern Mongolian rangeland. Recognizing that societal dependence on nomadic livestock
farming makes herder movement crucial for pasture sustainability, this study explored the
potential of Interferometric Synthetic Aperture Radar (InNSAR) coherence time series data,
in combination with optical imagery and weather information, as a tool for spatio-temporal
grazing monitoring. A novel Random Forest (RF)-based method was developed to detect
subtle breakpoints in vegetation condition, specifically designed to differentiate changes
caused by livestock and herder movements from those attributable to natural events like
snow and rainfall. The results demonstrated that the Random Forest method performed
superior to the widely-used BFAST algorithm, indicating its ability to separate grazing-
induced changes from natural phenomena. For instance, the RF model successfully de-
tected 44% of summer camp movements compared to BFAST’s 28%, though detecting
winter movements proved particularly challenging. Breakpoints primarily occurred from
April to June on summer pastures and during October, November, and the following Febru-
ary and March on winter pastures, aligning with seasonal herder movements. Spatially,
the model predicted homogeneous summer and winter pasture patterns that generally
agreed with known movement patterns in higher productivity areas (e.g., summer pas-
tures along rivers, winter pastures in mountains). However, in drier and less intensively
used regions, the agreement was less pronounced, suggesting insufficient evidence to
definitively attribute all pasture breakpoints solely to herder movements, especially in the
eastern and southern parts of the steppe ecosystem. This chapter thus presents a robust
methodological framework for discerning the ecological imprints of mobile pastoralism,
while also highlighting the complexities of attributing all vegetation changes in such dy-
namic environments.

Research question 3: How do livestock grazing and wildlife foraging influence vegetation
dynamics in the eastern Mongolian Steppe?

Chapter 4 builds directly on the foundational biomass assessments and vegetation change
detection by quantifying the comprehensive impact of grazing pressure from both livestock
and wildlife in Eastern Mongolia. This study hypothesized that the combined grazing activ-
ities of livestock and wildlife (predominantly Mongolian gazelle) had a detectable impact on
vegetation dynamics from 2019 to 2021. To investigate this, an innovative index of grazing
pressure was devised by calculating the "biomass difference": subtracting the remotely
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sensed actual aboveground biomass (AGBrs) from the potential biomass predicted by the
process-based ecosystem model LPJ-GUESS (AGBpot). This biomass difference was
then rigorously analyzed in relation to livestock density, human population density, and
gazelle density. The results revealed a significant positive correlation between livestock
density and biomass difference in both 2020 and 2021, a trend particularly pronounced
in the western study areas. Human population density also showed a significant posi-
tive correlation with biomass difference, though only observed in 2021. While no overall
significant correlation was found between gazelle density and biomass difference, impor-
tant regional insights emerged, with a significant positive correlation observed in Khentii,
Sukhbaatar, and Dornod provinces, but not in Tuv. These findings robustly support the
utility of biomass difference as a reliable indicator of combined grazing pressure from both
livestock and wildlife within Eastern Mongolia’s grasslands, offering a crucial tool for un-
derstanding and managing these complex human-wildlife-ecosystem interactions.

This thesis significantly advances the understanding and quantification of land degradation
in the Eastern Mongolian steppe, with a primary focus on the nuanced impacts of grazing.
It establishes a critical foundation by developing and validating a highly accurate, remotely
sensed Aboveground Biomass (AGB) product, a crucial variable for monitoring grassland
health across vast, climatically diverse regions. Furthermore, this research innovatively
harnessed INSAR coherence time series data to detect and discern vegetation break-
points, successfully differentiating changes induced by livestock and herder mobility from
those resulting from natural climatic fluctuations. By integrating these advanced remote
sensing techniques, the thesis provides a refined methodology for assessing vegetation
dynamics under complex pastoral systems. Crucially, it then introduces and validates a
novel "biomass difference" index to robustly quantify the combined grazing pressure from
both livestock and wildlife, elucidating their spatially explicit impacts across the steppe.
This comprehensive methodological suite offers a powerful toolkit for future integrations
of multi-source satellite imagery in vegetation cover studies, contributing directly to the
effective use of Mongolian pasture photo-monitoring data for producing reliable vegetation
cover maps from regional to country-wide scales.

Overall, this thesis presents a pioneering approach to understanding grassland degrada-
tion by providing validated remote sensing products and ecological insights critical for sus-
tainable land management in Mongolia. It contributes to a more granular understanding
of how both natural processes and anthropogenic drivers, particularly grazing by livestock
and wildlife, shape the fragile Eastern Mongolian steppe ecosystem. This knowledge is
paramount for maintaining and developing sustainable land-use practices, directly impact-
ing the welfare of a significant portion of the Mongolian population reliant on livestock
productivity. The tools and methodologies developed in this thesis are highly scalable, uti-
lizing readily available geospatial data for all of Mongolia, thereby offering the potential to
extend land degradation mapping to other regions or the entire country. These advance-
ments are especially timely given ongoing societal shifts in Mongolia, such as population
concentration and reduced herder mobility, which are likely to exacerbate localized degra-
dation in the future. With the robust products and insights generated, this thesis provides a
vital framework for projecting future grassland status and informing adaptive management
strategies in the face of evolving societal and climatic changes.
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5.1.2 Outlook

This thesis synthesizes three interconnected research papers, each contributing to a
deeper understanding of the vast and vital Mongolian Steppe Ecosystem. Paper 1 es-
tablished a reliable, remotely sensed Aboveground Biomass (AGB) product for central and
eastern Mongolia, leveraging the synergy of Sentinel-1 (SAR) and Sentinel-2 (optical) data
with Random Forest (RF) and a novel Area of Applicability (AOA) assessment. Building
on this, Paper 2 explored the intricate relationship between herder and livestock mobil-
ity and vegetation dynamics, developing a superior RF-based method to detect vegeta-
tion breakpoints that account for grazing influences, thus refining spatio-temporal grazing
monitoring. Finally, Paper 3 devised a "biomass difference" index to quantify the combined
impacts of livestock and wildlife grazing pressure on vegetation, identifying significant cor-
relations with livestock density in specific regions.

The individual contributions of this thesis lay robust groundwork for future integrated anal-
yses. A primary avenue for advancement lies in harmonizing the methodologies and in-
sights gained across the three papers.

Enhanced AGB and Mobility Linkage: Paper 1 provides the foundational AGB esti-
mates, while Paper 2 investigates mobility. Future research could explicitly link the de-
tected mobility patterns (from Paper 2) with the observed AGB changes (from Paper 1’s
product) at finer spatio-temporal scales. This would allow for a more direct quantification
of how specific movement events and grazing intensities impact AGB recovery and de-
cline.

Refining Grazing Pressure Indicators: Paper 3 introduced the "biomass difference" in-
dex as a proxy for grazing pressure. Combining this with the refined mobility detection
from Paper 2 could lead to a dynamic grazing pressure model. Such a model would not
only indicate where pressure exists but also when and by whom (livestock/wildlife) it might
have occurred, offering a more nuanced understanding of ecosystem response.

Unpacking Environmental and Anthropogenic Drivers: While Paper 2's RF method
showed promise in separating weather-induced changes from grazing, further work could
focus on disentangling the complex environmental and anthropogenic factors influencing
AGB dynamics and breakpoint occurrences. This might involve integrating more detailed
climate variables, soil moisture data, and land-use information into predictive models.

The methodology and results of this thesis demonstrate several promising new research
directions with great potential for application:

Predictive Modeling of Pasture Resilience: By combining the AGB product, mobility
data, and grazing pressure indicators, it's possible to develop predictive models of grass-
land resilience to varying grazing loads and climatic events.

Integrating Socio-Economic factors: Herder movement patterns (Paper 2) are driven
by a complex interplay of forage availability, water access, market forces, and traditional
knowledge. Future research should integrate socio-economic data (e.g., household de-
mographics, market prices, policy changes) with the remote sensing-derived ecological
insights to build more comprehensive socio-ecological models of pastoral systems.
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Wildlife-Livestock Coexistence and Management: Paper 3’s findings on gazelle im-
pacts, though less conclusive overall, highlight regional variations. Further studies could
employ advanced spatial statistics or species distribution models to better understand
competitive or facilitative interactions between wildlife and livestock, supporting integrated
conservation and management strategies.

Beyond AGB: AGB is a key indicator, but grassland health encompasses more. Ex-
panding the suite of remote sensing products to include metrics for plant functional types,
carbon fluxes, or water use efficiency could provide a more holistic view of ecosystem
functioning under grazing pressure.

The availability of fine-grained ground-truth data for model validation, the inherent com-
plexity of unraveling the intertwined drivers of natural systems, and the computational de-
mands of dealing with multi-source, large-area remotely sensed time series will all present
significant challenges. Within the challenges lie great opportunities. The acceleration of
remote sensing data acquisition (e.g., upcoming missions with higher temporal/spatial res-
olution, the emergence of new types of sensors), advances in machine learning algorithms
(e.g., deep learning for time-series analysis), and increased computational power provide
powerful tools to overcome current limitations. In addition, enhanced communication and
cooperation between disciplines is essential, and interdisciplinary cooperation between
remote sensing scientists, ecologists, social scientists and local communities plays an im-
portant role in the development of programs that are truly applicable to the sustainable
development of local environments.
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