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Summary

Within the hierarchy of biological organisation, between cells and organs lies a diverse set of tissues.
Soft tissues consist of elaborate cellular arrangements, comprising a variety of cell types, and form
the basis of larger-scale biological function. Tissues are further organised in regions with distinct
functions, morphology, and molecular composition. These regions can take the form of concentric
circular patterns as in kidney glomeruli, the laminar structures of cortical brain layers, or indistinct,
complex cancer infiltration. Commonly, these tissue regions are identified through sectioning the tissue
and using histological stains to increase the visual contrast of morphologies of interest.

Spatial transcriptomics is a collection of technologies enabling the direct transcriptional profiling of
tissue sections. This brings about an opportunity to evaluate spatial dependencies in gene expression
and to consider tissue coherence on a molecular level. The number of transcripts quantified in different
spatial transcriptomics approaches ranges from a few dozen to the entire transcriptome, exceeding
20’000 genes for human tissues. To handle this wealth of data, computational tools for the identification
of regions based on spatial transcriptomics have been developed.

As with all analysis approaches, there is a myriad of possible avenues to arrive at the same goal.
Method development for spatial domain identification has rapidly outpaced the ability of both users
and tool developers to keep track of options and approaches. In this situation, unbiased, independent,
and systematic method comparisons, known as benchmarking studies, are indispensable.

In this thesis, I present the setup of and results from a thorough benchmarking study of methods
developed for the identification of domains in spatial transcriptomics data. The benchmark utilises
public datasets from diverse technological origins, and additionally entails the creation of a custom ap-
proach for generating semi-synthetic benchmarking data. This pipeline is utilised for an extensive and
systematic evaluation of the effects of technological and tissue characteristics on method performances.

Specifically, we initially benchmark 26 methods for spatial domain detection on 63 tissue slices,
profiled using five different technologies across seven public datasets. First, we identify a simple
consensus aggregation of method outputs as a highly stable and competitive alternative to any single
method. Additionally, through detailed analyses of method performances, we form hypotheses about
dataset characteristics that may affect methods in distinct ways. To enable us to systematically
study the effect of these dataset characteristics, we develop an approach combining synthetic tissue
locations with transcriptome profiles from a real single-nucleus dataset of a mouse brain. Using this
combination, we create over 1000 samples of semi-synthetic spatial transcriptomics data, allowing us
to investigate the effects of diverse technology-inherent features. Further, by different expression-level
perturbations, we evaluate the effects of transcriptional domain similarity and cellular heterogeneity.
Lastly, we consider how the size and shape of tissue domains affect their detection by different methods.

We evaluate method stability using a data reordering approach specifically developed to identify
stochastic effects of rerunning methods on the same data. Lastly, the runtime, memory usage, and
usability of methods is evaluated. All in all, the work presented in this thesis is a valuable resource
for prospective method users and developers interested in the domain-based analysis of spatial tran-
scriptomics data, highlighting where and which methods excel and pointing to potential avenues for
improvement.






Chapter 1

Introduction

The research presented in this thesis spans topics from molecular biology, tissue biology, and bioin-
formatics. The following sections present introductions to the relevant topics from each of these
areas, namely spatial transcriptomics, domain identification in tissues, and computational method
benchmarking.

1.1 The transcriptome and approaches to its analysis

Since the discovery of the cell as the basic building block of life, scientists have been investigating
its biochemical innards. Light microscopy enabled a deep appreciation for the diversity and quan-
tity of subcellular structures — from larger organelles like the nucleus or the Golgi apparatus down
to macromolecules of various functions. Arguably the most significant step towards understanding
the fundamental mechanisms of life was the postulation of deoxyribonucleic acid (DNA) as the car-
rier of genetic information. Its molecular structure, the double helix, is ideally suited to the storage
and proliferation of information. It is formed by two polynucleotide chains, which are held together
by backbones of phosphorylated sugars and joined by hydrogen bridges connecting opposing com-
plementary bases. The sequence of base pairs encodes information using an “alphabet” of four bases
(Adenine, Guanine, Cytosine and Thymine). The inherent redundancy of information storage in DNA
and evolution-honed precise copying and error-correcting procedures enable the genetic code of each
living organism to be stored, copied, queried, and recombined.

However, DNA is not in itself an active agent in cell function, reproduction or communication.
Long sequences of base pairs known as genes encode, essentially, building instructions. To create life,
information contained in those genes needs to be extracted, interpreted, and converted into proteins,
which carry out or catalyse the necessary cellular functions. This flow of information is known as
the central dogmaﬂ of molecular biology: DNA is transcribed into ribonucleic acid (RNA) which
is translated into proteins, from where no information is able to flow back into, and change, the
DNA (Fig. . Thus, the division of labour within cells becomes clear: The entirety of the genetic
information of any organism is stored in the complete set of its genes, known as its genome. Cells
are able to survive and function thanks to a wide array of proteins carrying out specialised tasks.
Between information storage and cellular functioning lies the collection of RNAs produced in each
cell, interpreting the genome and enabling adaptation and variability.

RNA molecules, like individual DNA strands, consist of chains of nucleotides. The nucleotides
are equivalent in form to those of DNA, except for the sugar deoxyribose being replaced by ribose.
Additionally, the base Thymine is replaced by Uracil in RNA, keeping the complementarity to Adenine

!Certainly a misnomer, as Francis Crick, who coined the phrase, himself also acknowledged [1]. A dogma, as defined
by the online Cambridge Dictionary, is “a fixed, especially religious, belief or set of beliefs that people are expected to
accept without any doubts” — in order words, fundamentally incompatible with the modern scientific process.
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Figure 1.1: Schematic of the central dogma of molecular biology. DNA is transcribed into

RNA, which is translated into an amino acid chain, and subsequently folded into a protein.

intact. In contrast to DNA, RNA typically occurs in single strands. There are various RNA types
and functions — the most abundant being ribosomal (rRNA) or transfer (tRNA) [2]. Both rRNA and
tRNA are indispensable parts of the cellular machinery in the process of protein synthesis. However,
this thesis focuses exclusively on the analysis of a third type, called messenger RNA (mRNA). If rRNA
and tRNA are the construction workers, mRNA is the blueprint: These are the molecules transcribed
from coding regions of the genome, in whose sequence proteins are encoded.

Pre-mRNA gets transcribed from a segment of DNA by the enzyme RNA polymerase, as a
nucleotide-by-nucleotide copy. The RNA polymerase recognises molecular markers (codons) encoding
“transcription start” and “transcription stop”, delineating a gene, or a functional fragment of genetic
code. The resulting pre-mRNA gets processed further into mature mRNA by the process known as
splicing: Parts of the preemRNA known as introns are removedﬂ and the remaining pieces, called
exons, are spliced back together.

Finally, proteins are synthesised from mature mRNA as chains of amino acids, each encoded in
a three-nucleotide sequence termed a codon. Once the polypeptide chain is complete, proteins fold
into a specific conformation that allows them to carry out their highly specialised functionsﬂ The
proteome, that is, the set of proteins in a given tissue or cell, is also a highly studied analysis target.
A wealth of detection and measurement approaches, frequently based on antibody binding or mass
spectrometry, enables detailed explorations of protein abundances and structures, and in some cases
allow for sequence-based analysesﬁ [@, . However, even discounting challenges relating to abundance
and stability, unfolding a protein for sequencing is a challenging task . On the other hand, RNA
molecules show a simpler structureEL and their nucleotide chains are close relatives of the well-studied
DNA. The alphabet of amino acids constituting proteins and peptides contains 20 distinct characters,
while only four types of nucleotides build up the information stored in RNA. For scientists attempting
to decode the molecular phenotype of cells, RNA presents an attractive target. Finally, as RNA
molecules can be converted to complementary DNA strands (cDNA) through reverse transcription,

2While it is commonly assumed that introns are subsequently degraded back into their constituent nucleotides for
reuse, some introns remain stable in cells .

3Proteins may undergo post-translational modifications such as phosphorylation, potentially changing their function.
This further augments the space of possible proteins that can be produced from the fixed genome, already increased by
the possibilities of alternative splicing.

4Recently, single-molecule protein sequencing approaches have garnered interest, and notably, in 2024 spatial pro-
teomics was pronounced method of the year by Nature Methods .

5Which is not to say they do not also exhibit secondary and tertiary folding structures El] Notably, double-stranded
RNA molecules or intrastrand double helices can form.



1.1 The transcriptome and approaches to its analysis 3

methods developed for DNA molecules are also applicable to RNA.

The following section gives a brief historical overview of efforts to decode RNA sequences.

1.1.1 A history of RNA sequencing

An inherent property of both RNA and DNA is their tendency to anneal, or hybridise, to complemen-
tary nucleotide chains. Using radioactive molecular probes, both Pardue and Gall [10] and John et
al. [11] were able to localise sequences within Xenopus oocytes in 1969@ The development of fluores-
cently tagged probes in the 1980s [13| |14] considerably simplified both synthesis and detection [15].
Thereafter, hybridisation-based techniques were commonly used to map RNA transcripts to previously
known regions in the genome [16]. DNA hybridisation microarrays, consisting of thousands of spe-
cific sequences attached to a surface, can quantify the occurrence of those sequences in a nucleic acid
solution [17]. They were used to map transcripts at a very high genomic resolution, down to several
base pairs, and could even detect and quantify differently spliced transcript versions, or isoforms, of
mRNA [18, [19]. However, microarray-based methods rely on existing knowledge of the underlying
genome. Therefore, they cannot be used to detect novel, previously unknown transcripts. Further,
the possibility of cross-hybridisation leading to background noise, as well as signal saturation, combine
to make microarrays a suboptimal technique for quantitative transcriptomics |19} 20].

The main early approach to DNA sequencingﬂ the chain-termination method, was developed
in 1977 by Sanger et al. and is now commonly known as Sanger sequencing [23]. Its fundamental
principle, shown schematically in Fig. is iteratively producing all incremental length sequences of a
transcript and fluorescently labelling the terminal nucleotide in each [24]. The resulting fragments are
sorted by size through gel electrophoresis and subsequently imaged to reveal the locations of labelled
bases. This type of sequencing was used in the Human Genome Project [25, 26].

An enormous jump in sequencing throughputF_;] was made possible through the development of
flow cell technology, combined with sequencing-by-synthesis [19, [22]. In preparing a flow cell, tem-
plate adapter oligonucleotides are affixed to a support plate. RNA transcripts to be sequenced are
fragmented and reverse transcribed into ¢cDNA strands, to which adapters complementary to those
oligonucleotides are ligated. Once attached to the flow cell, this collection of molecules, the “library”,
is bridge-amplified through a polymerase chain reaction (PCR) procedure. This results in “islands” of
clonally amplified cDNA templates. A schematic of these steps is shown in Fig. Finally, sequenc-
ing occurs by the repeated addition of reversibly fluorescent nucleotides and imaging of each step |20}
24]. This is the most common type of short-read sequencing. Various technologies are commercially
available, however, including long-read implementations that skip the fragmentation step to create
reads spanning multiple splicing sites [28].

A fundamental limitation of traditional RNA-seq is its bulk nature: The original tissue processed
through the RNA-seq pipeline is completely dissociated and processed as one sample. Thereby, on one
hand, the diversity inherent in the different cells present in the sample is lost. The development of
single-cell RNA-sequencing has revolutionised the study of individual cells and cell types, and enabled
the creation of single-cell transcriptomic atlases of various organisms and tissues [29, 30].

On the other hand, in both bulk and single-cell sequencing, the spatial organisation of the sample,
or the microenvironment in which single cells reside, are lost in the tissue dissociation step. This infor-
mation crucially informs various biological processes, however, from cell fate decisions in development

In situ hybridisation was concurrently and independently demonstrated by Buongiorno-Nardelli and Amaldi in
1970[12].

TOf course, there were earlier approaches. Using two-dimensional paper chromatography to identify short polynu-
cleotides by their migration characteristics, the sequence of the lac operon of Escherichia coli was inferred by Gilbert
and Maxam in 1973 — and the entire sequence was printed in the paper abstract |21} [22].

8In 1991, automated Sanger-based sequence analysis could handle 96 templates in a day 127].
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Figure 1.2: Essential steps of Sanger sequencing. (1) A fragment of double-stranded DNA is
denatured into its constituent strands. (2) One single strand of DNA is amplified into millions of copies,
e.g. through Polymerase Chain Reaction (PCR). (3) Short primers, consisting of 20-30 nucleotides,
are hybridised to one end of each fragment. (4) The fragments with attached primers are added in
equal amounts to four solutions. Each solution contains all four nucleotides, but those of one type are
fluorescently labelled to serve as terminal nucleotides. (5) In each solution, a complementary chain
to the introduced fragments grows until the random incorporation of a fluorescently labelled terminal
nucleotide. (6) The original fragments are denatured from their newly generated complements to
obtain a series of single-stranded DNA chains of various lengths. Each strand ends in a fluorescent
nucleotide. (7) The DNA chains are separated by length through gel electrophoresis and subsequently
imaged to read off the nucleotide sequence.

to disease progression and treatment response, notably in cancer [31-33]. In the following section, I
introduce various techniques for the inclusion of spatial information in transcriptional profiling.

1.1.2 Roads to spatiality in transcriptomics

Various technological approaches exist to take into account the spatial distribution of transcripts within
tissues. Two different branches of technology development are converging towards high-resolution,
unbiased spatial profiling of transcriptional tissue identity. From the high-throughput sequencing
side, strategies have been developed to keep information about the tissue context intact and avoid the
tissue dissolution necessary for traditional RNA-seq. On the other hand, imaging-based approaches
lend themselves naturally to profiling cells in their spatial context. The spatial aspect being thus
given, much research has instead gone into the simultaneous detection of multiple molecules, known
as multiplexing, and increasing throughput for those technologies. The following paragraphs, and
Fig. give a brief overview of the different technologies emerging from these broad approaches.

The most straightforward way to spatiality, coming from high-throughput sequencing, is to iso-
late regions of interest (ROIs), for example through laser capture microdissection (LCM) [35]. Those
regions are then dissociated and processed through traditional sequencing. Although a modern ex-
tension of the LCM protocol, Geo-seq, is able to reach resolutions up to ten single cells, it is very
labour-intensive, limiting throughput [36].

An early alternative approach, the eponymous Spatial Transcriptomics [37], profiles transcripts
through an entire tissue slice by unbiased spatial indexing followed by sequencing. The technique,
commercialised and further developed by 10x Genomics as Visium, relies on prefabricated glass slides
with an array of uniquely barcoded spots. Visium increased the resolution by decreasing the spot size
from 100 pm in the original Spatial Transcriptomics to 55 nm, arranged in a hexagonal lattice, and
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Figure 1.3: Bridge amplification on a flow cell as used in Illumina sequencing. (1) The

flow cell contains an arrangement of oligonucleotides, to one of which a ¢cDNA fragment hybridises.
Previously, adapters were attached to both ends of the fragment (5 and 3’), one of which binds
to an oligonucleotide on the surface. (2) Starting from the oligonucleotide, a complementary DNA
strand is synthesised along the original fragment. (3) After complete synthesis, the original fragment
is denatured and washed away. The flow cell is now prepared for bridge amplification. (4) The second
adapter hybridises to another oligonucleotide on the flow cell, bending the DNA fragment. (5) Again,
a complementary strand is synthesised, beginning now at the second oligonucleotide sequence. (6)
The resulting two strands are separated by denaturation, yet both remain affixed to the flow cell
through their adapters. (7) Through repeated bridge amplification, a cluster of short DNA sequences
all corresponding to the original fragment is created on the flow cell. (8) Finally, one of the two
strand orientations is cleaved from the flow cell and washed away. The resulting arrangement of DNA
fragments is then sequenced through repeated imaging after adding fluorescent nucleotides.

the newer Visium HD further reduces the spot size down to 2 pm [38].

In an alternative approach to grid-based barcoding at previously known locations, Slide-seq
uses DNA-barcoded 10 pm beads which are dispersed on a glass surface and tightly packed in a
monolayer. Bead locations then first need to be identified through in situ sequencing. The technique
was later extended, with improvements in sensitivity and capture efficiency, into Slide-seqV2 .
HDST employs a similar strategy; however, beads are deposited in an ordered well-based array .
Finally, Stereo-Seq replaces the beads with DNA nanoballs, created by rolling circle amplification of
barcoded primers, and thereby increases the available resolution to 0.2 pm .

Imaging-based spatial profiling of the transcriptome has its origins in single molecule fluorescence
in situ hybridisation (smFISH) . Multiple short fluorescently labelled probes are hybridised to
visualise known transcripts in a fixed tissue. This approach is highly sensitive and specific, and can
profile a small set of molecules to a spatial resolution defined by the diffraction limit. Cyclic-ouroboros
smFISH (osmFISH) is a semi-automated implementation of smFISH capable of handling larger tissue
areas . However, as smFISH only visualises one transcript at a time, the number of profiled
molecules is still limited by the number of hybridisation rounds.

In sequential FISH (seqFISH), multiple rounds of probe hybridisation, imaging, and stripping allow
genes to be identified through sequential colour barcodes . Alternatively, genes can be encoded
through binary codes, as in multiplexed error-robust FISH (MERFISH). Separations between barcodes,
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Figure 1.4: Overview of technological approaches to spatial transcriptomics. a, high-
throughput sequencing-based approaches rely on in situ barcoding of transcripts. mRNA molecules
are captured within their tissue context and attached to primers corresponding to their location, of-
ten within a predefined grid. Subsequently, library preparation and sequencing is performed. b, in
situ. sequencing consists of rolling amplification of transcripts within the tissue context, followed by
sequencing and imaging of the amplified DNA balls. ¢, in situ hybridisation-based approaches consist
of multiple rounds of fluorescent probe hybridisation and imaging. Optionally, error robustness is
improved through the encoding of the sequence in sequential barcodes. As both in situ sequencing
and in situ hybridisation result in molecular resolution, algorithms for cell segmentation are applied
to their results. d, From outputs of all approaches to spatial transcriptomics, a count matrix can
be defined. This matrix contains the quantified expression of each gene in each profiled spot or cell,
with associated spatial coordinates. Figure reprinted with permission from Rao et al. (© Nature
Publishing Group. NGS, next-generation sequencing.

measured in Hamming distanceﬂ7 allow for the recognition and correction of sequencing errors [46]. In
both seqFISH and MERFISH, only the fluorophores are removed, and probes remain in place between
washes, saving time compared to earlier approaches.

Most recently, Xenium is a commercial FISH-based technique based on in situ hybridisation of
padlock probes and subsequent rolling circle amplification (RCA) . Padlock probes have the
advantage of high specificity, and through RCA, the barcode contained in the probe is highly amplified,
increasing the signal-to-noise ratio in subsequent imaging-based readout. Based on the same starting
principles of padlock probe hybridisation and RCA, STARmap uses sequencing by ligation (SBL) as a
readout technique . Sequencing by ligation, as the name suggests, relies on DNA ligase instead of
DNA polymerase for sequencing readout. Fluorescently labelled oligonucleotide probes hybridise to the
sequence of interest and are joined by the DNA ligase, resulting in a signal for readout. Technologies
such as STARmap are commonly referred to as in situ sequencing-based.

For interested readers, a variety of detailed reviews of available technologies for spatial transcrip-
tomics have been published . All of the abovementioned technologies have inherent advantages
and disadvantages. They are situated within a parameter space opened by spatial resolution, profiled
gene panel size, and detection sensitivity. One commonality of all approaches, however, is the wealth
of information captured and the trend toward ever higher throughput [54].

9The Hamming distance between two barcodes is the number of positions at which the entries differ. It is useful to
compare two strings where only substitution errors, not insertions or deletions, are to be expected.
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1.1.3 From sequences to data analysis

The advent of large-scale RN A-sequencing-based data generation heralded the need for computational
evaluation of the resulting massive datasets, and thus the field of bioinformatics experienced a period
of rapid growth[r_U] [19, 20, 60-62]. The output of a modern sequencing pipeline consists of base calling
files. Each sequenced read is stored in the FASTQ format as a sequence of bases, along with a
quality score for each base call. Quality scores are calculated based on the probability or odds of
a given base having been called correctly, and stored in a single ASCII character. FASTQ files are
subjected to quality control concerning quantities like base call quality, GC content, and possible
adapter contamination [61]. This ensures that samples with contamination, sequencing errors or PCR
artefacts do not affect the final analysis [60]. After trimming and filtering, the thereby processed reads
are typically aligned to a known reference genome or transcriptome. If this is not available, or if the
aim is to discover novel transcript isoforms, de novo assembly can be undertaken. In this case, reads
are first assembled into longer, putative contigs, to which reads are mapped back for quantification. In
all cases of alignment, one challenge is the significant fraction of reads that map to multiple locations in
the genome, or multiple isoforms in the case of alignment to a transcriptome [60, [62]. Multi-mapping
reads pose a difficulty for the quantification of gene, or transcript, expression. For more detailed
information about this difficulty and the approaches to overcome it, the interested reader is referred
to [62].

Broadly, the annotations of the reference genome or transcriptome are transferred to the aligned
reads and used to quantify (count) reads coming from each given gene or transcript isoform. Al-
ternatively, pseudoalignment-based or alignment-free methods forego exact alignment for fast and
nevertheless accurate quantification [63]. This quantified expression can be summarised in a count or
expression matrix which reports, for each sample, the number of molecules inferred to belong to each
gene.

Starting from the expression matrix, various computational analysis tasks can be undertaken. For
bulk RNA-seq, the discovery of differently expressed genes (DEGs) between two or more conditions
is commonly the next step. As the expression is usually measured, in modern RNA-seq, for many
thousands of features, the probability of type I errors (false positives) upon naive comparison is greatly
increased. To avoid this multiple testing problem from distorting significance levels, normalisation and
filtering steps need to be carefully applied [62].

As mentioned above, bulk RNA-seq is fundamentally limited to analysis on the tissue level. Since
the advent of single-cell RNA-seq (scRNA-seq), assessing gene expression differences and patterns on
the cellular level has been possible |64} 65]. A main challenge posed by scRNA-seq is the annotation
of individual cells to cell types and states. This can be approached through the evaluation of gene
markers. Alternatively, scRNA-seq enables the creation of so-called atlas projects such as the Human
Cell Atlas [66], that can be used as reference datasets. Atlases are beginning to be available for a wide
range of species [67-69] and tissues [70-72]. Independent researchers can integrate their datasets with
these references to annotate their own data using label transfer strategies. Extensive reviews of the
challenges and possibilities of scRNA-seq are available [29, 30, 73} |74].

As described in previous sections, an additional limitation of both bulk and single-cell approaches

YBjoinformatics as a field had emerged decades earlier, with Ben Hesper and Paulien Hogeweg first coining the term
in the beginning of the 1970s to describe “the study of informatic processes in biotic systems” [55]. Even before that,
computational approaches to biology had been used in a scientific context [56]. For example, Margaret Dayhoff utilised
FORTRAN programs to assist in determining an error-robust amino acid sequence consistent with the known structure
of overlapping peptide sequences in 1964, and published the results in a comprehensive and still highly readable article
[57]. For the interested reader, I recommend a review of the early days of bioinformatics by Ouzounis and Valencia,
published in 2003 [58]. The growth period alongside and after the development of high-throughput technologies is perhaps
anecdotally best chronicled by the 2016 article by Jonathan Wren concisely entitled “Bioinformatics programs are 31-fold
over-represented among the highest impact scientific papers of the past two decades” [59].
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is the nonexistent capture of spatial information. Using spatial transcriptomics approaches, the output
of a profiling pipeline is not only an expression matrix containing gene counts for each spot or cell,
but also the matrix of associated tissue positions.

This data provides new computational challenges. While researchers employing single-cell resolu-
tion spatial transcriptomics approaches (see the previous section for a broad classification) are faced
with the problem of cell type assignment detailed above, many technologies aggregate transcriptional
profiles over multiple cells. In the Visium technology, with a spot diameter of 50 jnm, expression values
of typically up to 10 cells can be measured at the same time [75]. Many computational approaches
have been developed for the deconvolution of this data and the estimation of cell type composition,
often incorporating single-cell reference datasets [76-78].

The immediate next analysis steps branch off into two complementary paths: the delineation of
coherent and cohesive transcriptionally defined tissue regions, and the identification of genes whose
expression shows a spatial pattern, known as spatially variable genes (SVGs). Approaches for both
analyses are manyfold — for SVG detection, methods usually present mathematical models aiming
to capture biological signals [79-81]. On the other hand, for spatial region or domain identification,
method development has ranged from statistical modelling through clustering-based approaches to
the inclusion of sophisticated neural network architectures [82H84]. Further, several approaches have
been demonstrated that integrate the two analyses [85, 86]. Of these two fundamental analysis steps,
this thesis will focus on approaches for spatial domain identification.

Using spatial transcriptomics approaches, researchers are able to decode spatial dependencies on
various length scales, ranging from subcellular transcript distribution up to functional tissue microen-
vironments [87]. This last type of structure is what the next section will focus on.

1.2 Defining tissue domains

Multicellular organisms are spatially heterogeneous and exhibit some degree of organisational structure
— different cell types carry out different tasks. The scale and complexity of cellular organisation range
widely, as differentiating tissues develop to fulfil highly specialised functions [88, |89]. Tissues can be
told apart by visual or molecular identifiers, as described in the following sections.

1.2.1 Histopathological and molecularly defined regions

Aiming to optimally distinguish different tissues under light microscopic evaluation led researchers to
develop advanced histopathological methods, including various staining approaches to increase visual
contrast [90]. The most common staining procedure uses Hematoxylin and Eosin (H&E) [90, (91].
Hematoxylin is a cationic basic dye, used as a stain in its oxidised form (haematein) and usually
combined with aluminium alum as a mordant [91]. Most prominently, it stains nuclei a blue colour.
Complementarily, the anionic acid dye Eosin stains the cell membrane, mitochondria and extracellular
matrix pink. Through the combination of the two dyes, fine intra-and intercellular structures can be
distinguished in shades of pink and purple (see Fig. [1.5h). On a bigger scale, various tissues within
an organ such as the brain appear visually distinct and enable researchers to delineate well-defined
regions (see Fig. [L.5p).

In histological approaches, identifying various tissue types is a matter of visual inspection of
the morphology after staining. Where they cannot be distinguished visually, tissues can be further
characterised by more specialised staining, electron microscopy approaches, or transcriptomic readouts
of regions of interest [93],[94]. Spatial transcriptomics, on the other hand, enables the direct assessment
of tissue domains in terms of molecular (i.e. transcriptional) identity. Utilised in conjunction with
histology, this opens up novel avenues in fields like cancer and neuroscience, for example, the analysis of
inter- and intratumour heterogeneity, cortical layers, and tissue development [34} 95]. Beyond animal
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Figure 1.5: Decoding spatial regions from histological images. a, H&E stain of basal cell carci-
noma of the skin. Cell nuclei are stained in blue-purple, extracellular material is stained in pink. Im-
age from Wikipedia, licenced under CC BY-SA 3.0 (creativecommons.org/licenses/by-sa/3.0/deed.en)
. b, Detail from a Nissl stain and the corresponding anatomical annotation of a coronal section of
a P56 mouse brain. Allen Mouse Brain Atlas, mouse.brain-map.org .

tissue, domain-specific transcriptomic analyses are also applicable to plant systems, though this will
not be the focus of this thesis .

The evaluation of tissue domains based on molecular tissue identity presents novel challenges.
Even for spatial transcriptomics technologies with lower multiplexing capability and thus small panel
sizes, such as osmFISH, still many dozens of genes are profiled. For high-throughput sequencing-
based approaches, the number of profiled genes can correspond to the size of the entire transcriptome
and thus be on the order of 10%. Individual genes can be easily visualised in space through different
colour channels; however, considering more than three genes simultaneously is not possible in this way.
Approaches have been developed to visualise the molecular identities of profiled spots or cells using
RGB colour channels, through drastically reducing the dimensionality of transcriptomic readouts
. These methods, while potentially aiding in the interactive exploration of tissues, may suffer from
the general pitfalls of unsupervised dimensional reduction . Therefore, the high dimensionality
of the transcriptome necessitates an algorithmic approach to defining spatial domains.

1.2.2 Challenges in defining domains from spatial transcriptomics

To the present day, many approaches and implementations for the identification of spatial domains
have been developed. In the effort to categorise methods for spatial transcriptomics analysis in general,
multiple databases have been Createﬂ , . Despite the wealth of interest and the rapid tool
development, there is no clear consensus on how to transcriptionally define spatial domains (Fig. )
As reviewed by Walker et al., there are several ways to define what constitutes a domain [102].
Within published approaches, most methods tend to employ one of two definitions: The idea of
coherence in gene expression over a spatially contiguous region, or the view of regions with distinct
cell type distributions. In both cases, it is crucial to adaptively define thresholds for what is considered
incoherent or indistinct.

Further complicating the task of clearly defining spatial domains is the variety of technological ap-
proaches to spatial transcriptomics, as outlined in the previous section. Particularly, the disparity in
resolution provided by the different approaches makes it challenging to create a technology-spanning
definition. In the case of spot-based approaches such as Visium, one spot may capture the tran-
scriptome of multiple cells. This obscures the exact spatial provenance of distinct cells even when

111 2022, Moses and Pachter counted 28 publications relating to spatial regions and in 2023, Chu et al. developed the
STASH database, showing 65 tools addressing spatial domain identification . In the STASH database, newer
methods are not categorised anymore, though the current iteration of the database published by Moses and Pachter
counts 148 publications relating to spatial domains (, accessed September 2, 2025).
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Figure 1.6: Domain definitions and dataset usage across 34 published methods. a, Histogram
of spatial domain definitions as employed in method publications. Twelve methods emphasise expres-
sion coherence, in conjunction with spatial contiguity, while nine methods instead define domains
through cell type composition changes. Five method publications view spatial domain identification
as spatially augmented clustering, analogous to the clustering of single cells, and two publications
focus on the functional distinction between spatial domains. Five publications do not claim a specific
definition. Definitions were manually extracted from publications. b, Datasets used within method
publications for evaluation and benchmarking, sorted by usage frequency. Only datasets that appeared
in at least two separate publications are shown. The x axis is broken for ease of visualisation, and
bars are coloured according to broad tissue category.

deconvolution of spots into constituent cell types is performed, leading to inexact borders across re-
gions . On the other hand, at single-cell resolution, the challenge becomes exact domain
assignment across the diversity of cell types. In heterogeneous tissues such as tumours with a high
incidence of infiltrating cells, precise domain delineation may not be possible . Methods have
been developed to account for this difficulty by leaving border tissue out of the analysis; however,
most methods continue to operate under the assumption of discrete ground truth domain assignments
1105].

Finally, considering single-cell resolution technologies, the distinction between cell type cluster-
ing and spatial domain identification needs to be an important point of consideration. Cells in the
same spatial neighbourhood tend to exhibit common patterns in their gene expression, potentially
even across cell types . The first method incorporating a spatial proximity constraint into
transcriptomics clustering was described in 2014 by Pettit et al., and interestingly, the authors use the
method to cluster data into cell types . There are several published methods that can be applied
both in a “cell type clustering” and a “domain identification” mode by changing a spatial smoothness
parameter [83 [109]. While there has been discussion about exact definitions of “cell types” [110H112],
domains should be clearly defined as separate entities.

In the absence of a clear and unified definition of spatial domains, and in the spirit of the purpose
of a system being what it doesIEl, one may turn to the self-evaluation of methods as a way to determine
what it is they are looking to find. Particularly, the vast majority of methods benchmark their own
performance against that of alternative approaches. A qualitative evaluation is usually carried out,
relating the different domain segmentations to biologically meaningful tissue compartments. On the
other hand, however, often methods aim to quantify their own superior performance through an
accuracy-based comparison to a ground truth.

The ground truth employed in these comparisons is usually defined, at least partially, through
the expert annotation of a histological image of the sample in questioﬂ However, transcriptional

128tafford Beer coined the phrase “the purpose of a system is what it does” in 2002, in an adress on cybernetics \\
13 Although histology images of the same sample are coregistered with molecular profiles in some technologies, notably
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markers are often brought in to inform or refine the spot or cell level annotation. The annotation
origins of the datasets which are used in this thesis, and in the forthcoming article discussing the
benchmarking results, are discussed in Chapter 1.

As the field grew, a core cohort of datasets was established as gold standard resources, commonly
used for internal method benchmarking (Fig. ) These datasets are usually published alongside a
ground truth domain annotation, or alternatively, the data is annotated through later, unconnected
efforts.

The most prolific dataset by far consists of 12 samples of the human dorsolateral prefrontal cortex
(DLPFC) from three different donors, sequenced and published by Maynard et al. [114]. The samples
are annotated in the original publication into spatial domains corresponding to the anatomical regions
defined as white matter and the brain layers L1-L6. The expert annotation is informed by histology
images, coregistered automatically with Visium, and layer-specific marker gene expression scores.
The continued and widespread use of this dataset for evaluating the accuracy of spatial domain
identification indicates the interest in accurately identifying brain layers, corresponding to known
anatomical regions, from molecular profiles. Interestingly, of the 13 most frequently used datasets for
method evaluation, 10 are datasets of brain tissue (Fig. ) Of 34 evaluated method publications,
32 evaluate on some type of brain tissue data, while 21 evaluate on at least one cancer dataset.

The disparity between lacking clear definitions and wide purported method applicability is an
under-studied area in the field. Particularly, the range of tissue types of interest may necessitate
adaptable or varied domain definitions.

1.2.3 Approaches to computational domain identification

The earliest method for identifying spatial domainsFE] was published by Zhu et al. in 2018 [118].
They describe an approach to identify spatially associated cell subpopulations in seqFISH data using
hidden Markov Random fields (HMRFs), a method which would later be integrated in the Giotto
framework [87]. Viewed as an application of HMRF, domain identification amounts to modelling an
observable, usually a low-dimensional representation of the gene expression, under the assumption of
underlying domain labels. A Potts model is employed as a spatial prior in order to impose cluster
contiguity. HMRF-based approaches have continued to be developed, with innovations in tunability
and applicability to sequencing-based data, multi-sample analysis, and the integration of histological
images [82, (119, |120].

Integrating histology into domain recognition based on spatial transcriptomics was pioneered by
Pham et al. in their method stLearn [121]. In stLearn, morphological information is extracted from
an H&E image by an image classification neural network and utilised for spatially-aware normalisation
of gene expression values. In subsequent methods, histology images are converted into morphological
distances between spots based on RGB values, embedded jointly with gene expression by graph con-
volutional neural networks, or integrated with gene expression and spatial location through network
fusion [122H124]. So far, however, the inclusion of histological information has not been shown to aid
in accurate spatial domain identification [117, 125| 126].

Another early approach was demonstrated by Cang et al. in SCAN-IT, namely the usage of graph
convolutional networks (GCNs) to generate low-dimensional spatially-aware embeddings of gene ex-
pression information [127]. In the method SpaGCN, a graph convolutional layer aggregates gene
expression, spatial location and histology, where the latter two modalities were previously used to
define edge weights in an input graph [122]. With the continued development of the field, graph

Visium, this is not possible in all approaches. In those cases, imaging of adjacent tissue slices may provide close enough
analogues to then be able to transfer the annotation to the slice of interest.

Various publications refer to this task as spatial clustering [115H117]. In this thesis, I refer to the more general spatial
domain identification, to include clustering-free approaches and emphasise the shared aim of spatial domain contiguity
across methods.
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attention autoencoders, variational graph autoencoders, along with various data corruption and reg-
ularisation strategies, have been applied to spatial domain identification [84) |109, |128-130]. In most
of these methods, sophisticated neural networks are applied to the task of generating low-dimensional
representations of gene expression, which in some way incorporate information about cellular neigh-
bourhoods. These representations are subsequently subjected to standard clustering algorithms like
k-means, model-based clustering as implemented in the R-package mclust, or Leiden clustering, a
popular algorithm for single-cell transcriptomics data |29} 131}, 132].

A host of other methods also take advantage of well-established clustering algorithms to identify
spatial domains. The simplest approach to integrating gene expression and spatial information into
a graph for downstream clustering is implemented in TACCO, which simply creates a weighted sum
of adjacency graphs for both modalities [76]. Other methods create elaborate expression-aware neigh-
bourhoods or neighbourhood-aware spot networks [83) 133-135]. Yet another approach is taken by
SpatialPCA and GraphPCA [136} [137]. As the names suggest, these tools extend principal component
analysis (PCA) to be spatially aware by modelling spatial correlation across locations using a kernel
matrix or incorporating a spatial constraint in the data reconstruction step. Finally, the extracted
spatial PCs are clustered into spatial domains. More recently, spatial dimension reduction has been
further extended to multimodal data analysis [138].

The last category of methods approaches domain identification as an image processing problem.
Two notable implementations are MULTILAYER and Vesalius [139, 140]. MULTILAYER uses ag-
glomerative clustering of “gexels” to detect contiguous gene expression patterns, which are used to
compartmentalise the tissue into domains. Vesalius fully embraces the image processing approach,
embedding the transcriptome into an RGB colour space using the nonlinear dimension reduction ap-
proach UMAP [98]. Subsequently, spatial domains are identified through iterative smoothing and
segmentation.

1.3 Importance of computational methods benchmarking

Benchmarks are commonly used in computer science as a way to quantify and compare the perfor-
mance of different systems or architectures [141]. In bioinformatics, different algorithms or method
implementations are compared in what are commonly known as benchmarking studies [142]. The task
of benchmarking, or the comparative evaluation of tools, is often carried out by method developers
alongside the publication of new approaches. However, this type of self-evaluation is prone to biases,
such as favouring datasets, characteristics or evaluation criteria wherein the authors’ own methods
excel [143]. Impartial, third-party benchmarking efforts are therefore imperative to the unbiased as-
sessment of methods in a given field and the continued development of relevant and high-performing
methods [144].

Many reviews have been devoted to describing best practices and guidelines for benchmarking com-
putational methods. In 2019, Weber et al. published a seminal paper on guidelines to computational
method benchmarking [145]. More recently in 2023, van Mechelen et al. described good benchmarking
research practices in an excellent white paper, focusing on the example of clustering methods [146].
Specific to the field of high-throughput measurement in biology commonly termed “omics”, Mangul et
al. authored a comprehensive review in 2019, listing core principles of systematic method evaluations
and surveying the state of the art at the time [147]. Brooks et al. in 2024 reviewed common over-
sights and pitfalls in omics benchmarking, and argued for a methodological approach to the reporting
of benchmarking pipelines and results [148]. In this section, I will give a brief overview, expanding
on the challenges and trade-offs inherent in creating a benchmarking study. Then, I will introduce
the context of comparative method evaluation in spatial domains, demonstrating the necessity of a
comprehensive and independent analysis.
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1.3.1 Best practices and challenges in bioinformatics benchmarking

The core aim of comparative method evaluation is to provide guidelines for prospective users and
further method development. For meaningful and informative benchmarking in these contexts, careful
consideration must be applied when selecting methods, datasets, and evaluation metrics. Some trade-
offs inherent in these selections are listed in Tab. and covered in more detail in the following
paragraphs. Specifically, I will discuss method selection and hyperparameter setting, data selection,
as well as performance metrics and broader evaluation criteria.

Regarding method selection, it is generally considered ideal to include all relevant methods [149].
However, the feasibility of this approach may be constrained by computational power and/or time,
as the number of methods exceeds multiple dozen for some tasks{l—_gl Nevertheless, there have been
efforts to benchmark impressive numbers of methods, such as a 2019 publication by Saelens et al.
that evaluates 45 tools for single-cell trajectory inference [151]. Most benchmarking studies, however,
consider significantly fewer individual tools. Two recent meta-evaluations of single-cell benchmarking
efforts record a median of 10 methods benchmarked in independent comparisons [152} [153]. On this
scale of method evaluation, it is important to choose tools which best represent the state of the art,
although this criterion remains ambiguous |154].

Once methods have been selected, the setting of possible hyperparameters plays an important role.
A common approach to hyperparameters is leaving them at default values, or setting them to values
recommended by the method developers. This reflects common usage and is simple to implement. It
may not always be clear how strongly the performance of a tool is affected by a given parameter, and
thus, how much effort should be invested into optimising the parameter tuning. This trade-off between
ease of optimisation and attainable performance benefit has been investigated in-depth for the case of
clustering |155]. However, not all methods provide default or recommended hyperparameter values,
and for those that do, not all values generalise to all types of data the method may be applied to.
Certain benchmarking studies therefore distinguish between “versions” of tools, implemented using
different hyperparameter settings [156]. It is also interesting to separately consider preprocessing
and postprocessing steps, which may be common between various tools and may not necessarily be
specified in detail [117], 157]. The impact of preprocessing on method performances has been studied
for selected analyses, notably in the case of dimensionality reduction [158] 159]. The other end of the
spectrum regarding hyperparameter determination, namely, implementing a comprehensive parameter
space sweep, is not feasible in most settings. In studies with small numbers of methods or highly
standardised hyperparameters, a sweep might be carried out across all methods. Particularly, if a set
of parameters is influential to method output and common to all tools, a parameter sweep is indicated
[147]. Otherwise, when parameter settings are optimised only selectively or optimised parameters are
only relevant in a subset of methods, one runs the risk of unequal treatment of tools. Further, all
methods should be provided with the same information about the test data |146].

Once the selection of tools is complete, the benchmark data to be used for their evaluation needs
to be selected. Here, the base consideration concerns the types of data commonly analysed in the field,
to which the selected tools are likely to be applied. The selected datasets should represent a wide
range of applications and conditions [145, [146]. Fundamentally, benchmark datasets can be either
real, containing experimentally measured data from a system of interest, or synthetic, created at least
partially through computational simulation. Hybrid, semi-synthetic datasets can be generated on the
basis of real data, but augmented or transformed in specific ways through simulation [145, [148§].

For the evaluation of tool performance on selected datasets, it is indispensable to be able to quantify

151n the example of single-cell analysis, the scRNA-tools database at scrna-tools.org currently tracks 1837 tools (> 153
dozen) over all analysis types (status: October 1, 2025) [150]. For clustering alone, 397 tools (> 33 dozen) are recorded.
The numbers for spatial transcriptomics tools are lower due to the more recent emergence of the fields, but growing
rapidly [54].
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performance, in particular, to define what is understood to be a “good” performance outcome [146].
To this end, researchers often employ the comparison to ground truth values for the analysis outcome
[145] (147, 148]. In the case of real datasets, the generation of gold-standard information to be used
as a ground truth may be included as a part of data acquisition, as a first step in the benchmarking
pipeline [14§]. Depending on the analysis type, gold-standard evaluation may be commonly published
alongside the raw data. This is the case for fundamental processing steps such as annotating cell types
in single-cell RNA-seq data. While this ground truth type is usually at least partially attained by
manual expert annotation and should have undergone rigorous quality control prior to publication,
it is often not feasible to comprehensively check ground truth validity. On the other hand, a ground
truth for semi-synthetic or fully synthetic datasets may be generated along with, or underlying, the
simulated data [160].

Special care must be taken, notably in the case of synthetic data, to avoid using the same models
to generate data that are also used in methods to be evaluated, as this would end up biasing the
evaluation towards those methods. A similar effect may also occur when using previously published
real datasets, as those may be utilised for evaluation during method development or even included in
training datasets for some learning-based methods. In emerging fields, there might be a lack of real
data generated with an associated ground truth, leading to overfitting of methods to specific popular
benchmarking datasets [161].

Lastly, method performance on benchmarking datasets must be evaluated using an appropriate
and comprehensive list of evaluation criteria. Primarily, the performance of a tool is graded by the
quality of its outputs, measured as accuracy of classification, correlation or cross-entropy of continuous
variables, or root mean square errors, among many further possibilities [145, (147]. A balance must be
struck here between including popular, easily interpretable metrics, considering edge cases that are
potentially not covered by common metrics, and creating specialised, tailored evaluation criteria for
benchmarking. If applicable, it may also be interesting to evaluate tools’ error rates in terms of the
relative abundance of type I and type II errors (false positives and false negatives). Further, beyond
the simple performance evaluation on individual tasks, a comprehensive benchmark should investigate
the stability and robustness of tools’ performance [146]. Stability analysis can encompass running
methods repeatedly on sub-sampled data from the same underlying dataset or, for non-deterministic
methods, on the same data for different values of a random seed [145| [146]. On the other hand, method
robustness can be tested with respect to data perturbations or hyperparameter settings. Data-level
perturbations of interest may include downsampling data, introducing artificial noise or outlier values,
or changing parameters in preprocessing steps [146].

These primary quantitative performance evaluation criteria should be complemented by secondary
criteria, concerning the quality of the method implementation [145]. Several criteria may be of interest
to the end user, such as method runtime, memory usage, scalability, and user-friendliness or usability.
Runtime and memory usage should be evaluated and compared using standard computational archi-
tectures to enable users to easily compare with their own machines. For scalability analysis, methods
should be evaluated on a range of datasets that vary in size but otherwise exhibit shared character-
istics. The assessment of usability, encompassing ease of installation, support for different operating
systems, and documentation quality, is highly subjective. It can be standardised, to a degree, by using
weighted checklists [162].

Finally, it can be useful to summarise metrics into an overall ranking, where a balance has to be
struck between weights assigned to the available evaluation criteria. Namely, end method users may
not be interested in a high-performing method requiring highly specialised computing architectures or
long running times, whereas high speed and computational efficiency might increase the attractiveness
of a lower-accuracy method [163].
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Concern Trade-offs

Method selection Comprehensiveness vs Investment of resources
Parameter tuning Exhaustiveness vs Investment of resources

Breadth of real data origins Range of applications vs Necessity of parameter tuning
Ground truth availability Broad dataset inclusion vs Comprehensive validity check
Synthetic data Realism vs Tunability and availability

Metric selection Interpretability vs Specialisation

Metric summarisation Primary evaluation vs Secondary evaluation

Table 1.1: Trade-offs inherent in benchmarking study design. Trade-offs are shown for different

areas of concern.

1.3.2 Comparative evaluation of spatial domain identification methods

This thesis deals with the evaluation of methods for spatial domain identification, so in this section, I
will review the state of the art of benchmarking in this field. Comparing method performance is only
reasonable and possible when multiple tools exist that try to accomplish the task in question. At the
advent of any avenue for data analysis, as tools are first being developed, comparative evaluation to
previous approaches is carried out within method publications. In the field of spatial domain identifi-
cation, most methods perform a quantitative comparison to available tools in addition to qualitatively
evaluating their own performance, aiming to demonstrate their advantage in select applications. The
majority of methods compare their performance to 7 other methods or fewer, with only four methods
out of a sample of n = 33 benchmarking against 9 or more methods (Fig. ) Four methods in this
informal review do not perform any comparisons to other methods for spatial domain identification
76l 86], [118], [164]. A detailed overview of the surveyed methods is shown in Appendix A (Tab. [A.T).

The Adjusted Rand Index (ARI) is chosen for the quantification of clustering accuracy in the vast
majority of comparisons (27 out of 33, see Fig. [L.7b). The ARI is introduced in more detail in the
following chapter. Briefly, it is a supervised evaluation metric, comparing a putative clustering to a
ground truth set of annotations by evaluating pairwise cluster membership. A number of supervised
metrics are employed in subsets of method publications, such as the Adjusted and Normalised Mutual
Information (AMI and NMI), homogeneity and completeness (HOM and COM), and the Fowlkes-
Mallows Index (FMI). All of these metrics will be detailed in Chapter 2. Like the FMI, both the
F-score and the Area Under the Curve (AUC) are supervised evaluation metrics based on precision
and recall, and are employed in a total of three recent method publications [120} (167, [168]. On the
other hand, only a few unsupervised metrics, which evaluate the goodness of a putative clustering
without relying on the comparison to a ground truth, are utilised. Among those that are included are
the CHAOS and Percentage of Abnormal Spots (PAS) scores (the latter not shown), both adapted
from image analysis and used in two publications [136, [169]. Further, the Local Inverse Simpson’s
Index (LISI) is employed in two method publications to evaluate the mixing of cell types in identified
domains [109} |136]. Differentially expressed marker genes and domain-specific SVGs are used in select
publications to gauge the quality of domains |120} 122, 127|130}, |170].

One particular well-annotated human brain dataset is employed for method comparison in most
cases, as already shown in Fig. [I.6p. This is a dataset of the human dorsolateral prefrontal cortex,
sequenced using the Visium technology, introduced in more detail in Sec. For my purposes
here, the conjunction of common dataset and metric usage allows the creation of a directed graph
of method comparisons, as shown in Fig. [[.7c. This graph shows methods as nodes, connected by
an edge if the methods have been compared in a benchmark published alongside a novel approach.
The edges are directed from the reportedly higher- to the reportedly lower-performing method, and
weighted by the number of comparisons. As numerical performance values are not published in all
cases, in some comparisons, the edge direction had to be inferred from visual estimation.
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Figure 1.7: Existing benchmarking efforts for spatial domain identification. a, Histogram
showing the number of comparisons to other methods undertaken in the context of 33 publications
containing self-evaluation benchmarking. b, Usage of metrics for quantitative evaluation across the 33
publications. Metrics were only included if they were utilised in at least two separate publications. Bars
are coloured according to the evaluation type. ¢, Method rankings as extracted from within-publication
benchmarking efforts. All methods were benchmarked on the human dorsolateral prefrontal cortex
dataset published by Maynard et al. and performance was evaluated by ARI [114]. Methods are shown
as nodes, comparisons as directed edges. Arrows point from better to worse performing methods, and
edges are weighted by the number of published comparisons of the node methods. d, Pruned method
graph as in ¢, direct contradictions are marked in red. e, Method comparisons on the same dataset from
four published independent benchmarks of spatial domain identification [117, 126, 165, 166]. Methods
are only included in the graph if their performance is reported by at least two benchmarks, and edges
are only drawn if at least two benchmarks report their relative performance. Relative performance is
measured in ARI in all cases. Edges are directed from higher to lower reported performance. In cases
with conflicting reporting, the respective edge is bidirectional. The size of the arrow heads corresponds
to the number of publications reporting a given ranking, and the colour of the edge details the level of
agreement between the reports. Agreement ranges between 100% (all reports agree on the ranking),
75% (one report contradicts three), 67% (one report contradicts two), and 50% (one report contradicts
one other).

From Fig. [I.7c, we see that while most method comparisons are only benchmarked once, there is a
subset of methods frequently employed in comparisons. These methods tend to be implementations of
non-spatial clustering algorithms employed as baselines (such as scanpy and Seurat), or early spatial
clustering approaches (like Giotto, stLearn, BayesSpace, SpaGCN, SEDR, CCST, and STAGATE)
[84, |87, (109} 119} 121} |122} [170-172]. Between methods with multiple comparisons, contradicting
comparison results are possible. That is, edges with weight > 1 can be bidirectional. These are
highlighted in a reduced subgraph in Fig. [I.7[d. Considering only the comparative method evaluations
performed in the context of within-method benchmarking can thus lead to contradictions. In certain
cases, these contradictions may be due to conscious or unconscious biased evaluation, as described
by Jelizarow et al. [154]. For example, some publications evaluate varying hyperparameters for the
presented method and not for those to which it is compared [128]. As hyperparameters used for other
methods are not reported in many cases, this is difficult to verify. On the other hand, the contradictions
in reported performances might also be simply due to method instability or randomness.

In an effort towards independent benchmarking, since the field is maturing, a handful of more
independent benchmarking efforts have been published [117] 126, 165, |166]. Notably, some of these
publications benchmark spatial domain identification tools previously developed within their working
groups [128, 161]. Still, these efforts should avoid any kind of biased evaluation, and within the
respective scopes of these comparisons, methods are evaluated more comprehensively. In spite of this,
the comparison of method performance by ARI on the aforementioned dataset by Maynard et al.
is a core part of the evaluation, again allowing a comparison of method comparisons to be drawn
(see Fig. ) Interestingly, even within independent benchmarks, evaluating methods on the same
dataset and with the same metrics, contradicting method performances are reported. Between methods
compared in two or more independent benchmarking studies, rankings are contradicting in a large
proportion of cases, shown in shades of orange and red in Fig. [L.7p.

These contradictions between independent benchmarks should not be due to preferential treatment
of select methods. Indeed, all four benchmarks report primarily utilising default parameter settings,
or setting hyperparameters according to developers’ recommendations. There may, however, be dif-
ferences in preprocessing steps not covered by method defaults, or ideal values for hyperparameters
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identified through parameter space sweeps. Alternatively, inherent randomness on the part of the
methods might still play a role.

The present benchmarking effort, as described in this thesis and as will be partially published
in the accompanying publication, aims to disentangle possible factors affecting method performance.
As method usage with default parameter settings reflects popular usage, the focus is placed less on
method parameter space exploration than on the effect of various data characteristics.

1.4 Thesis overview

Spatial transcriptomics has revolutionised the analysis of biological tissues, enabling the direct molec-
ular profiling of cell types, states, and interactions [50]. It has broad implications for medical research,
ranging from oncology to nephrology and neuroscience, as well as infectious diseases [173-178]. Fur-
ther, spatial transcriptomics can aid in fundamental research on development, tissue architecture, and
systems biology [173, 179, [180]. A central part of the analysis pipeline for spatial transcriptomics
data is the identification of cohesive and characteristic regions within the tissue, commonly termed
spatial domains [54} [87} [122, |181} 182]. For this purpose, a wealth of computational approaches has
been developed [183]. Efforts have been made to categorise and evaluate groups of tools on public,
annotated datasets [117,|126, 165, |166]. However, as described above and in the next chapter, ground
truth annotations of real datasets are commonly defined based on manual annotation and thus contain
a degree of uncertainty. A comprehensive analysis of method performances, which includes a system-
atic exploration of different data characteristics, has been missing from the field. The present thesis,
alongside the forthcoming corresponding benchmarking publication, attempts to fill this gap.

This thesis presents the cumulative effort of benchmarking computational methods for domain
identification in spatial transcriptomics data. The results discussed in the following chapters arise
from collaborative work. Chapter 2 introduces the 26 methods that will be investigated, as well as
publicly available spatial transcriptomics datasets and evaluation strategies utilised in the benchmark-
ing process. Further, it discusses our benchmarking pipeline and elaborates on results and hypotheses
derived from running methods on real data with expert-generated ground truth. Following up on
the analysis of method performance on real data, Chapter 3 describes the development of a reliable
pipeline for semi-synthetic data generation, commenting on the state of the art in spatial transcrip-
tomics simulation. Additionally, it showcases how method performances are affected by the systematic
variation of data characteristics. The effect of technological parameters such as the resolution, the
number of profiled genes and the sparsity of the resulting data is investigated. Moreover, the pipeline
allows the variation of parameters relating to tissue properties like cell type similarity, molecular het-
erogeneity, and the size and shape of domains. Additional analyses relating to the method evaluation
concerning runtime and memory usage, as well as usability, are presented in Chapter 3. Overall, this
thesis presents a significant contribution to the field, functioning as a review of the state of the art and
examining in detail various factors affecting the performance of spatial domain identification methods.



Chapter 2

Benchmarking spatial domain
identification methods on real datasets

This chapter describes the benchmarking of methods for spatial domain identification using public spa-
tial transcriptomics datasets. I introduce the materials and approaches employed in the benchmarking
effort, and show the results of different analysis strategies.

2.1 Prerequisites and implementation

As introduced in Section the choice of methods, datasets and metrics is of vital importance for
the execution of a well-rounded benchmarking study. The methods selected for comparison should,
besides being suited to the task at hand, cover a significant portion of the available approaches, and
represent the state of the art. They should be run on data with a well-defined ground truth, chosen
from the entire field of possible method applications to ensure a broad method evaluation. Finally,
the metrics chosen to represent method performance need to be optimally suited to investigating the
specific task under study, interpretable, and relevant to the field. Each of these selections is detailed in
a dedicated section. Additionally, the implementation of a reproducible benchmarking pipeline using
Snakemake is described.

2.1.1 Method selection

We conducted an informal literature search for spatial domain identification tools, and chose methods
for benchmarking based on ad-hoc criteria formulated in Tab. Broadly, the criteria cover method
relevance to the task and to the field, ease of installation and implementation in the pipeline, and the
variety of algorithmic approaches. In the following, for simplicity and brevity, “method” will always
refer to a method for spatial domain identification, unless otherwise specified.

As previously introduced in Section methods range broadly in their approaches. In the
present thesis, we will focus on the main categories, which we identify as statistical modelling-based,
neural network-based, clustering-based and image processing-based methods. However, methods can
be further stratified within and across these categories. In Fig. [2.Th, this subclassification is shown as
a graphical introduction to the diversity of approaches included in our study.

The broadest category of methods, which intersects two of the three other main classification
groups, is the clustering-based approaches. We characterise methods as clustering-based when the
final step of their domain identification strategy implements conventional clustering algorithms such
as k-means, mclust, or Leiden [131, 132]. These methods use a variety of strategies to gain a data
representation to then cluster into domains. Some use neural network or statistical modelling-based
approaches, and are therefore categorised into these respective groups. Methods which are assigned to
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Figure 2.1: Aspects of methods included in the present benchmarking effort. Non-spatial
baselines are not shown. a, Methods are categorised by their approach broadly into statistical
modelling-based, neural network-based, clustering-based and image processing-based. Each of these
main categories is assigned a coloured box for visual stratification, and main categories containing
more than one method are indicated in bold. Further subclassifications within and across these cate-
gories are also indicated by coloured boxes and annotations. b, Coarse timeline of method publication.
For methods which were published as preprints before peer review and publication in a journal, the
time of preprint publication is indicated in grey and with an asterisk. ¢, Number of citations (ex-
tracted from Google Scholar) and number of Github stars (Status of both metrics: October 2, 2025).
Citations are stacked over all years a method has been available, and methods are sorted according to
the cumulative value. DGI, Deep Graph Infomax; VGAE, Variational Graph Auto-Encoder; HMRF,
Hidden Markov Random Field.
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Criterion Formulation

Relevance Is the method developed for spatial domain identification, or does it otherwise enable
the user to identify spatial domains?

Is the method referenced and/or benchmarked against in other method development
efforts for spatial domain identification?

Is the method applied for spatial domain identification in published research by
biologists or medical researchers?

Usability Is the method open source, and can it be accessed and installed from a public repos-
itory such as GitHub?

Can the method be run in a script-based, non-interactive manner (i.e., not exclu-
sively through a Graphical User Interface (GUI))

Is sufficient documentation provided to enable users to install and run the method?
Variety of Does the method introduce a novelty in its approach to spatial domain identification?
approaches | Does the method claim competitive or superior performance to previous efforts in
specified scenarios?

Does the method belong to an otherwise underrepresented type of approach?

Table 2.1: Ad-hoc criteria used for method selection. Criteria cover categories of relevance,
usability, and variety of approaches.

the purely clustering-based group include UTAG, TACCO, MERINGUE, and SpaDo. UTAG creates
a neighbour graph between input coordinates based on a user-defined Euclidean distance threshold
[184]. Subsequently, it uses the adjacency matrix of this graph to aggregate features per neighbour-
hood, either by mean or sum over all neighbours. This augmented feature matrix is the input to the
downstream Leiden clustering. TACCO calculates two k-nearest neighbour (-NN) graphs of the input
spots or cells, based on spatial coordinates and gene expression [76]. It applies Leiden clustering to the
weighted sum of the two graphs, where the weight is a user-defined hyperparameter. MERINGUE
creates a -NN graph based on the gene expression [86]. It calculates a Voronoi tessellation in real space
and defines the nearness of two spots or cells via the number of borders crossed when passing from one
to the other. The nearness is used as the edge weights to the -NN graph, which is then clustered using
the Louvain algorithm. SpaDo defines neighbourhoods using a -NN graph for single-cell resolution
data and a user-specified radius threshold for grid-based spot resolution data [134]. It represents cell
or spot features by the cell type distribution within the local neighbourhood. As a preliminary step,
if cell type labels are not available for the input data, it includes automated cell type annotation and,
if necessary, spot deconvolution. The distance between spots or cells is calculated using distribution
distance measures, namely either the Jensen-Shannon divergence or the Manhattan distance [185].
Domains are identified from the distance matrix by hierarchical clustering.

BANKSY and CellCharter are also clustering-based methods, and both employ the common prin-
ciple of matrix concatenation. BANKSY starts by creating a neighbourhood graph based on real
space coordinates, using k-NN, radius-based, or Delaunay triangulation [83]. Edge weights for this
graph are generated by default using a 1/r kernel, and a neighbourhood representation is calculated
as the weighted average of the gene expression. The resulting representation, along with an azimuthal
Gabor filter representation, is concatenated with the scaled original gene expression matrix into a
neighbourhood-augmented matrix. After dimensionality reduction using Principal Component Anal-
ysis (PCA), Leiden clustering is employed to identify spatial domains. CellCharter uses a Delaunay
triangulation for single-cell resolution data, and a k-NN graph for regular grid-based data, to generate
a spatial coordinate network [135]. Features are aggregated within neighbourhoods of different sizes,
defined by adjacency steps from the original spot or cell, up to a user-defined number of steps. The
aggregation function can be designed for a specific task of interest. The resulting aggregated matri-
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ces are concatenated to the original gene expression and clustered using a Gaussian Mixture Model
(GMM).

One additional method, MNMST, utilises the matrix concatenation approach. As it incorporates
neural networks as a central architecture part, it is assigned to the neural network-based method
category. MINMST creates a spatial adjacency k-NN graph, and uses pointwise mutual information to
define the adjacency [186]. For the gene expression, it utilises the BANKSY approach to augmentation
with the local neighbourhood. An adjacency matrix is learned from the gene expression using sparse
self-representation learning. MNMST then jointly learns the shared cell features and an affinity graph.
The final learned affinity graph is clustered using the Leiden algorithm.

A further group of methods are characterised by their use of the unsupervised graph representation
learning method Deep Graph Infomax (DGI) [187]. Based on Graph Convolutional Networks (GCNs),
this approach aims to maximise the mutual information between local (patch-level) representations
and high-level graph summaries by learning to discriminate between “true” and “corrupted” node
relationships. Methods that use DGI include CCST, SCAN-IT, SpaceFlow and GraphST. CCST
creates a radius-based spatial adjacency graph of spots or cells, and uses a user-defined hyperparameter
to set the importance of spatial information for the subsequent embedding [109]. It utilises DGI
on the weighted graph to learn an encoder of four graph convolutional layers, creating corrupted
samples by permuting edges in the graph. The final embedding obtained by DGI is clustered by k-
means after dimensionality reduction by PCA. SCAN-IT utilises the alpha complex to define spatial
adjacency based on a distance threshold in the Voronoi tesselation [127]. It uses a two-layer GCN
as an encoder, trained using DGI using permuted note features as corrupted samples. Finally, a
consensus distance matrix from a collection of low-dimensional embeddings is employed to calculate
the final representation using metric multidimensional scaling (MDS). This final representation is
clustered using k-means or Louvain algorithms. SpaceFlow also uses an alpha complex approach
to generating a spatial adjacency graph, though a k-NN approach is also implemented [188]. It
utilises the DGI framework to train a two-layer GCN using node-permutation for the construction of
a corrupted graph. SpaceFlow adds a spatial regularisation term to the loss function to be optimised,
such that small distances in embedding space for far-apart spots or cells in real space are penalised.
The strength of this spatial regularisation is a hyperparameter. Finally, domains are obtained using
Leiden clustering. GraphST creates a spatial k-NN graph as an input, and creates a corrupted
graph by node feature reshuffling [115]. It utilises a GCN-based encoder-decoder structure, with an
objective function comprising the self-reconstruction loss and a DGI-inspired contrastive loss for both
the original and corrupted graphs. Finally, the reconstructed gene expression is clustered using mclust
[131].

Along with GraphST, most other neural network-based methods employ autoencoder-based frame-
works. Autoencoders learn latent factors inherent in the data through self-supervised learning, com-
paring the final output of the decoder component to the original input. The comparison is usually
accomplished by the mean squared error, if not explicitly mentioned otherwise. Two methods, STA-
GATE and ADEPT, are categorised as purely autoencoder-based, and both of these methods encom-
pass an additional graph attention layer, encoding the relative importance, or similarity, of neighbour
features [189]. STAGATE constructs a radius-based binary adjacency matrix, with the radius set
in grid-based data to detect only nearest neighbours [84]. For grid-based, low-resolution data, STA-
GATE can optionally prune the graph based on a coarse gene expression pre-clustering by the Louvain
algorithm. It then embeds the gene expression matrix, aggregating over the adjacency-defined neigh-
bourhoods using graph attention weights to achieve a spatially-aware embedding. A two-layer network
with graph attention is used as the encoder, and the decoder is given by an additional two layers. After
minimising the reconstruction loss, the embedding is clustered using mclust when domain numbers
are known, or Louvain otherwise [131]. ADEPT, after k-NN graph construction, uses a standard
graph attention autoencoder to learn a neighbourhood-aware spot or cell embedding [128]. Based on
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the resulting embedding, it performs an initial clustering, from which sets of differentially expressed
genes (DEGs) are extracted. DEGs are calculated on a one-vs-all basis by a Mann-Whitney U test of
expression rankings. For the total list of DEGs, it then creates a full, elementwise nonzero expression
matrix by imputation. This matrix is fed to the graph autoencoder, and the final output embedding
is clustered to define domains.

Further autoencoder-based methods are PAST, DeepST, SEDR, and SpatialMGCN. These meth-
ods specifically implement variational graph autoencoders (VGAEs). This autoencoder type learns
stochastic embeddings, modelling the latent space as a probability distribution and thus allowing for
inference and data generation based on the embedding. PAST uses two parallel modules in the first
layer of its encoder architecture, namely a Bayesian neural network (BNN) and an unrestrained fully
connected network (FCN) [129]. The output from these two modules is concatenated, and with a
k-NN graph of spatial locations, input to two self-attention layers. Finally, two FCNs are used for
reparametrisation into a latent Gaussian distribution and create the final embeddings. The decoder
consists of a three-layer network, encompassing two self-attention modules and an FCN layer. For
large-scale applicability, PAST includes a ripple walk sampling strategy to enable minibatch training.
Its objective function finally consists of the reconstruction loss, the Kullback-Leibler (KL) divergence
to a standard normal prior, the BNN loss and a metric learning loss. Using the BNN, PAST is
able to optionally incorporate reference gene expression data. DeepST calculates a modified gene
expression matrix, encompassing information from spatial neighbours weighted by their expression
correlation and, optionally, morphological similarity [190]. Additionally, it constructs a k-NN graph
based on spatial coordinates. Subsequently, DeepST implements a denoising autoencoder as well as
a VGAE with reconstruction loss and KL divergence. Domains are identified by Leiden clustering.
SEDR incorporates a data masking step, whereby the gene expression of randomly sampled spot
subsets is masked with learnable vectors [170]. It uses a two-layer encoder to create embeddings from
this masked input, and a GCN to embed the spatial information. The two embeddings are concate-
nated, and a one-layer graph convolutional decoder reconstructs the expression matrix, minimising
reconstruction loss. A VGAE learns a graph embedding based on the feature representation from the
previous step. The resulting embedding is again concatenated to its input, and an adjacency matrix is
reconstructed from this merged representation. The VGAE aims to minimise both the cross-entropy
loss for the learned adjacency and the KL divergence for the distribution obtained by reparametrisa-
tion from the graph embedding. Latent representations are clustered by default using mclust [131].
SpatialMGCN uses a radius-based binary adjacency criterion to create a spatial graph of spots or
cells [130]. From the expression values, it generates a k-NN feature graph, measuring gene expression
similarity by cosine distance. It then implements a multi-view GCN encoder, consisting of individual
convolution of the spatial and feature graphs separately, co-convolution of both by parameter sharing,
and finally an attention mechanism applied to the separately generated embeddings. The decoder to
reconstruct the expression matrix operates under the assumption of a zero-inflated negative binomial
(ZINB) distribution of the gene expression, using the negative log-likelihood of the ZINB distribution
as the reconstruction loss. Additionally, SpatialMGCN incorporates a spatial regularisation loss term
to minimise the embedding distance between spatial neighbour spots or cells.

The final neural network-based method is SpaGCN, the only non-clustering-based method in this
category. SpaGCN calculates a complete weighted undirected graph of spots or cells [122]. The edge
weights are calculated using a Gaussian kernel from the Euclidean distance in real space, optionally
integrating morphological feature information as a third dimension. It uses a single graph convolutional
layer to embed the expression matrix, along with the spatial graph structure. Cluster centroids are
initialised from this embedding using Louvain, and cluster assignments are refined using an iterative
strategy.

All but one of the remaining methods belong to the statistical modelling-based category. Spa-
tialPCA and GraphPCA generate spatially-aware low-dimensional embeddings by statistical means,
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analogous to PCA. These embeddings are then fed into a conventional clustering algorithm. Spa-
tialPCA follows the probabilistic implementation of PCA in solving a latent factor model [136} |191].
However, instead of assuming independently and identically distributed factors from a standard nor-
mal distribution, it uses a Gaussian kernel covariance matrix to model spatial correlation. This aims
to encourage similarity in the latent factors of spatial neighbours. Model parameters are inferred
by maximum likelihood estimation (MLE), and domains are inferred from the final latent factors
through standard clustering. GraphPCA calculates a binary spatial adjacency matrix using k-NN
[137]. It uses this adjacency to impose a spatial constraint term on the PCA objective function, with
a hyperparameter controlling the weight of adjacency. This formulation has a closed-form optimal so-
lution, resulting in low-dimensional representations of the gene expression for each spot or cell. These
representations are clustered using k-means.

The majority of modelling-based methods, namely SpiceMix, BayesSpace, BASS, PRECAST, and
SC-MEB, employ a hidden Markov random field (HMRF) mechanism. The HMRF represents a la-
tent Markovian variable distribution underlying an observable, and can incorporate prior information.
SpiceMix combines the HMRF with non-negative matrix factorisation (NMF) [192]. It models the
gene expression as a function of underlying metagene mixtures as the latent states. Gene expression is
related to the metagenes by an NMF formulation, while the spatial affinity of metagenes is captured
in a spatial correlation matrix. The weight of spatial affinities is controlled by a hyperparameter. The
parameters of the HMRF model are inferred by MLE, optimised by coordinate ascent. Finally, the
inferred metagenes are clustered conventionally into spatial domains. BayesSpace is a fully Bayesian
method, modelling a low-dimensional representation of the gene expression based on latent cluster
affiliations [119]. A Potts model prior encourages similar label assignments to neighbouring spots.
Adjacency is defined based on integer coordinates and thus defined only for grid-based data, which
BayesSpace was originally designed for. Model parameters and latent variables are inferred using a
Markov chain Monte Carlo (MCMC) approach, combining Gibbs sampling for the parameters and a
Metropolis-Hastings algorithm to update cluster assignments. BASS employs a hierarchical Bayesian
framework [82]. It models the relationship between gene expression and underlying spatial domain
labels through the intermediate step of cell type labels. Additionally, a Potts model is used to encour-
age label similarity in neighbouring cells, with neighbourhoods defined through £-NN. A combination
of Gibbs sampling and a Metropolis-Hastings algorithm is used for parameter inference. PRECAST
builds a hierarchical model, connecting gene expression to domain labels through a latent embedding
layer [164]. The latent embeddings are modelled using a probabilistic PCA approach, incorporating
spatial dependence through a conditional autoregressive approach. Domain labels are then modelled
using a GMM, and incorporate a Potts prior within a HMRF formulation. Information on the pa-
rameter inference is not available. SC-MEB models a dimensionally reduced spot representation as
resulting from HMRF latent domain labels, under a spatial smoothness prior [116]. Neighbours are
identified using a proximity threshold. The weight assigned to spatial information is adaptively se-
lected via a grid search, while parameters are inferred by an iterative expectation-maximisation (EM)
scheme incorporating a pseudo-likelihood maximisation step.

Finally, the last category, which only contains Vesalius, utilises an image processing approach.
Vesalius starts out by embedding the transcriptome of each spot or cell into an RGB colour space
by reducing the dimensionality using PCA, followed by the application of Uniform Manifold Approx-
imation and Projection (UMAP) [98, [140]. Alternatively, it can directly use three selected Principal
Components (PCs) for further analysis. From the spot or cell coordinates, it creates a tiling using
Voronoi tessellation and converts each tile into a set of pixels via rasterisation. The pixel colours are
determined by the colour embedding. Subsequently, image processing is applied using specialised R
packages. The pixel array is smoothed by blurring, and colour values are clustered using k-means
clustering. These processes may be repeated for different values of hyperparameters and types of
blurs. The final colour clusters are then subdivided into spatial domains based on a user-defined
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spatial distance threshold.

Fig. shows one more method within the clustering-based category, which we call “smoothing”.
This refers to an optional add-on to non-spatial clustering approaches, implemented as a naively
spatially aware baseline for the benchmark. It consists of a simple spatial refinement based on local
neighbourhood majority voting. Specifically, for all spots or cells in the sample, we define the local
spot neighbourhood using k-NN and assign a new spot label as the mode of local neighbourhood labels
as assigned by a non-spatial baseline. This results in the removal of visual noise from the domains,
as individual spots or cells with locally unique labels get smoothed into the neighbourhood majority.
Purely transcriptome-based Leiden clustering, as implemented in the scanpy and Seurat packages,
served as a simple baseline for method performance in the entire benchmark [171, [193].

Besides considering the algorithmic variety of method approaches, we are also including methods
from a wide temporal range between 2020 and 2024, as indicated by Fig.[2.1p. Methods published after
the beginning of 2024 could not be included due to time constraints. As indicated in Fig. [2.T, we are
benchmarking both a number of highly cited methods, as well as more niche approaches. This ensures
that our benchmark captures the state of the art, while introducing competitive novel and lesser-known
approaches to the broader community. Interestingly, the four most popular methods by number of
citations (SpaGCN, BayesSpace, STAGATE, and GraphST) encompass between themselves almost
55% of total citations over all methods. However, recently published methods such as BANKSY and
CellCharter show a high proportion of citations in 2025 (status October 2, 2025) compared to their
total popularity, possibly indicating an oncoming levelling of the playing field between established
methods and novel, optimised approaches. This interpretation is further supported by evaluating the
number of “stars” in the methods’ respective repositories on GitHub (see Fig. 2.1¢). The “stars”
metric is utilised here as a proxy for method popularity in the research community, and may reflect
method usage in ongoing or future work. It is interesting to consider methods for which the number
of stars and the number of citations are discordant. Among others, these may be newly published
methods, such as the aforementioned BANKSY and CellCharter, but also GraphPCA, MNMST, or
TACCO, which show a disproportionate number of stars compared to total citations. On the other
hand, methods like BayesSpace, STAGATE, BASS, PRECAST, or SC-MEB are less often starred
than they are cited. This could reflect the GitHub affinity of the respective user bases, as, except for
STAGATE, these methods are implemented in the R programming language, rather than in Python.

2.1.2 Dataset selection

For the thorough evaluation of methods, their performance should be assessed in a variety of realistic
application scenarios. Particularly, for spatial transcriptomics, we are interested in the method perfor-
mance across technologies, in order to dissect their broad or differential applicability (see Sec. .
Therefore, we aim to include a number of data samples created using different technologies. Many
datasets have been made publicly available in the last years, and efforts have been made to categorise
and archive those datasets [194-196]. For example, the spatial transcriptomics database (STOmicsDB)
lists 361 datasets from 17 species and 128 tissues, while the spatial transcriptomics analysis resource
(SOAR) lists 3461 samples from 13 species, 42 tissue types, and 19 technologies (as of September 27,
2025). While many of these datasets are published alongside a cell type level annotation, they by and
large do not contain spatial domain annotations. Annotating domains requires expert knowledge and
is not yet a standardised processing step in most pipelines. However, an expert annotation of spatial
domains, usable as a ground truth, is necessary for accuracy-based method evaluation, as touched
upon in Sec. This turns out to be the bottleneck for the inclusion of many datasets. We are only
able to include datasets annotated with domain labels for each individual spot or cell, so that spot or
cell-level method accuracy can be determined.

Upon searching the literature on spatial domain identification, we settle on the inclusion of eight
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publicly available datasets for benchmarking as shown in Tab. Most of these datasets were
published alongside expert domain annotations, while in two cases, domain labels for each spot are
sourced from a different publication. We based our dataset selection on the availability of raw count
data, binned to single cells in the case of subcellular resolution, and ground truth domain annotation.

The chosen datasets exhibit a wide range of resolutions, from molecular up to spot diameters of
100 pm. Molecular resolution data, binned into single cells for our purposes, is attained by imaging-
based approaches like osmFISH, MERFISH and STARmap. On the other hand, sequencing-based
techniques profile the gene expression of spots, not necessarily bound by cell boundaries. The spot
diameter of the original Spatial Transcriptomics (ST) technique is reduced by half to 55 pm in Visium,
and even further by Slide-seq (see Sec. [1.1.2). Besides the resolution, the technique employed for
dataset generation also impacts the number of profiled genes. In the imaging-based technologies, the
gene panel size ranges from 33 (osmFISH) to over 1000 genes (STARmap). While the sequencing-
based technologies Slide-seq, Visium, and ST do not profile a panel of genes but instead unbiasedly
sequence the entire transcriptome, the resulting count matrix size varies between 15k and over 30k
genes. This is owed to different profiling sensitivity.

Notably, most datasets we were able to include profile tissue sections from the mouse brain. The
mouse is a widely employed model organism for the study of mammals, making it unsurprising to see
it broadly represented in tissue studies. The brain, on the other hand, is presumably overrepresented
in this list of datasets due to its well-studied layer structure, which can be annotated using either
accompanying histological images or the expression of well-known marker genes.

2.1.3 Metric selection

After selecting methods and datasets for inclusion in the benchmarking process, we need to decide on
criteria for grading method performance. In this section, we will focus on primary evaluation criteria
concerning the performance on the spatial domain identification task. Secondary criteria, such as
runtime and memory usage, scalability, or method usability, are discussed in Chapter 4 of this thesis.

The performance of computational methods can be evaluated with regard to a diverse set of criteria.
These criteria are commonly known as metrics. Contrary to the well-defined mathematical concept
of a metric as a distance measure in a metric space, the concept of a metric here refers more broadly
to a performance indicator. Generally, metrics can be categorised as “supervised” (that is, method
output is compared to a ground truth) or “unsupervised” (considering inherent qualities of the method
output). In the context of spatial domain identification, the most common metric types concern the
accuracy of label assignments (supervised) and the coherence, or visual smoothness, of those labels
(unsupervised).

An overview of supervised and unsupervised metrics considered in this work is shown in Tab.
For the supervised, accuracy-based evaluation, the Adjusted Rand Index (ARI) is by far the most
prevalent metric, as already shown in Fig. [I.7pb. Like all supervised metrics, it compares a putative
clustering result to a given ground truth to assess the goodness of clustering. Other popular supervised
metrics include the Normalised and the Adjusted Mutual Information (NMI and AMI), as well as the
Fowlkes-Mallows (FM) index. For basic evaluation, the clustering accuracy (ACC) can be used. On
the other hand, there also exist unsupervised metrics, which do not take a ground truth as input and
instead compute some inherent criterion for goodness of clustering. Generally, the Silhouette score is
a popular evaluation metric in this vein. However, it is not suited to the evaluation of spatial domain
assignments in real space due to the approximately uniform distribution of spatial coordinates. It
may be utilised for domain evaluation in gene expression space, when gene expression is dimensionally
reduced to avoid the curse of dimensionality. For the unsupervised evaluation of domain smoothness,
the Percentage of Abnormal Spots (PAS) can be used, adapted from the field of image segmentation.
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Type Metric Ref. Definition Characteristics
Supervised Adjusted Rand Index | [202 | Compares assignments of pairwise spots in true e Bounded by 1 (perfect match) and -1 (or-
(ARI) 204 labelling and putative clustering. thogonal clustering), takes value 0 when
Rand index: cluster assignments are equivalent to ran-
R_ TP+TN dom chance
TP+FP+TN+FN e Standard measure, high recognition in
ARJ — R — (R)chance many mem (see Fig. Eu thus compara-
Ruiaximal — (R)chance ble and interpretable
e Prefers balanced solutions [205)
Supervised Normalised Mutual In- | [206] Compares clusterings U and V' based on their e Bounded by 0 (no mutual information)
formation (NMI) entropies H(U), H(V') and conditional entropies and 1 (perfect match)
BUV), HVIU). e Prefers pure clusters [205
Mutual Information: :
e Prefers unbalanced solutions [205)
I(U,V)=H(U)-HU|V)=H(V)—-H(V|U)
NI, vy = — LGV
HU)H(V)
Supervised  Adjusted Mutual Infor- | [207] e Bounded by 0 (cluster assignments equiv-

mation (AMI)

Table 2.3: Continued on next page.

alent to random chance) and 1 (perfect
match)

For large number of samples, becomes
equivalent to NMI, thus similar character-
istics [205)
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( rule execution )

technical output
rule: {method}_run benchmark.csv
output files
J

-

rule: get_scores J

Figure 2.2: High-level schematic of the benchmarking pipeline. The benchmarking pipeline
shown is implemented using Snakemake . Placeholders for dataset, sample and method names
are indicated using curly braces. Input and output files in comma-separated values (CSV) format are
shown using solid-colour rectangles, while instances of computing are indicated using a grey border.
Red rectangles refer to input files needed by the pipeline, grey rectangles correspond to technical
output files provided by Snakemake, and green rectangles refer to individual method outputs and
aggregated analysis results. Not shown are the files necessary for the execution of Snakemake rules,
such as method scripts and environment files.

2.1.4 Benchmarking pipeline

To create a reproducible and automatised pipeline for benchmarking, we use Snakemake for workflow
management [210]. This enables us to define execution rules for each separate method, while alleviating
the need to manually run all methods on all included data samples. If the pipeline is restarted,
Snakemake automatically recognises which output files already exist, and excludes the corresponding
method/data pairs from the rerun. Since every method has specific and unique software environments,
we utilise the package manager conda to define method-associated execution environments. Snakemake
integrates directly with conda through named YAML files, specifying environment dependencies and
packages to be installed.

The final workflow, described in detail in the following paragraphs, consists of Snakemake execution
rules, method environment files and scripts, as well as additional rules and scripts to calculate metric
scores based on method outputs. A schematic view of the entire pipeline is shown in Fig.

For each sample, the pipeline expects a set of files in the comma-separated values (CSV) format.
The files necessary for method execution are coords.csv, containing a set of (x, y) coordinates for
each profiled spot or cell, and counts.csv, with the corresponding molecular measurements in the
form of a count matrix. Counts and coordinates are matched up by index, so it is paramount to ensure
equal ordering of spots or cells between the two files. Further, the labels.csv file is required for the
calculation of supervised metrics on the corresponding sample. This file should contain the ground
truth domain annotations in the form of one column of label assignments for each spot or cell. Again,
the ordering must match the other files exactly. If the labels file happens to be missing, unsupervised
metrics are still calculated, but supervised metrics measuring method accuracy cannot be evaluated.

For each method, Snakemake requires instructions on the location of both environment files and
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the script, and the exact command to execute the method correctly. Environment files are primarily
given to conda in the YAML formatﬂ However, certain packages, notably for the R language, are not
available through conda. In these cases, Snakemake accepts a bash script, which it will execute after
the installation of all available conda-based packages. Through this script, packages or methods can
be installed from the pip package manager, or, using an additional Rscript file called from the bash
script, from Bioconductor.

The outputs of the Snakemake-based pipeline are defined within each rule. In our case, they
consist primarily of clustering.csv files containing label assignments, for each spot or cell. One
such file is produced per method and per sample. Additionally, the scores attained by each method
on each sample, across the calculated metrics, are summarised in one scores.csv file. Finally, each
method /sample combination produces a file called benchmark. csv, in which Snakemake automatically
compiles information about the runtime and memory usage of the corresponding run.

Implementing this comprehensive pipeline provides us with a resource enabling us to combine and
cross-evaluate independent methods. Besides benchmarking each method, we therefore investigate two
analysis approaches that go beyond individual method output. The results of a chimerisation analysis
of neural network-based methods will be published in the article presenting our benchmarking work,
and will not be discussed here in more detail. Further, we implement a consensus approach across
methods and leverage the ground truth to evaluate spot-wise method agreement. This enables us to
distinguish tissue areas that are easily detected as regions by most methods versus other areas that
provide a challenge for the state of the art, guiding future method development.

2.2 Evaluation of method accuracy

This section shows the results of evaluating method performance on the previously introduced datasets,
focusing on supervised metrics. We first compare the supervised metrics ARI, FM, AMI, NMI, and
accuracy (ACC), describing example cases where methods’ scores between these metrics do not co-
incide. Then, we expand on the varying method performance on different datasets, followed by the
description of a consensus evaluation approach.

2.2.1 Comparison of supervised metrics

In the evaluation pipeline, we implemented the supervised metrics ARI, FM, AMI, NMI, and ACC.
These metrics compare a putative clustering output to the ground truth, using different underlying
principles as described in Tab. ARI is by far the most prevalent metric in the field (see Fig. ),
and utilising it as the main accuracy metric would therefore enhance the comparability of our results.
In order to solidify the validity of this choice, in this section, we compare the behaviour of ARI and
the other metrics.

Over all datasets and methods, the supervised metrics FM, AMI, NMI, and ACC show qualitatively
the same behaviour as the ARI (Fig. [2.3h). In order to exclude the possibility of dataset-specific or
method-specific biases, we evaluate the Pearson correlations per dataset and per method (Fig. ,c).
For all datasets and nearly all methods, the correlations by far exceed 0.8, indicating that it is justified
to focus on evaluation by ARI alone. Furthermore, AMI and NMI are correlated with ARI (Pearson
> (.86) across methods.

Both ARI and AMI are adjusted metrics, meaning that they incorporate corrections to the under-
lying scores. Specifically, they account for chance effects by discounting the expected (non-adjusted)
score values for a random clustering. Similarly, NMI is normalised to 0 for no mutual information and

"YAML, according to the official website (yaml.org/spec/), stood originally (until Working Draft 10 December 2001)
for Yet Another Markup Language, before being changed (from Working Draft 07 April 2002) to YAML Ain’t Markup
Language. Quite the turnaround.
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1 for perfect coincidence. On the other hand, the FM and ACC metrics are not adjusted for chance.
This leads them to disagree with ARI in select cases, examples of which are shown in Fig. 2.3d. Dis-
parities between ARI and the adjusted metrics AMI and NMI are rarer and mostly occur in corner
cases of small or many domains. The example in Fig. demonstrates the advantageous evaluation
of pure clusters by the mutual information-based metrics AMI and NMI, as described in Tab. In
all three examples, ARI is qualitatively better suited to quantifying method performance.

Based on these evaluations, in the following and throughout this thesis, we focus on ARI as the
main supervised metric for sample-wide accuracy evaluation.

2.2.2 Accuracy across datasets

For the evaluation of general method accuracy, we utilise the mean ARI score of a method m on a
dataset d, which we call ARIg,,. We calculate a method ranking based on aggregating performances
across datasets. In order to avoid datasets with highly variable performance between methods from
dominating the ranking, scores are standardised per dataset. Standardisation, alternatively known as
z-score transformation or simply normalisation, refers to a scaling procedure intended to increase the
comparability between groups. Specifically, the original ARl is scaled to the standardised ARIy,,
as

ARy — pa

standardised ARI = ARI,, = (2.1)

0d
where pq and o4 are the mean and standard deviation of ARIy,, on dataset d. The standardised ARIs
are subsequently aggregated by mean over all datasets into an overall performance measure for each
method. Methods are ranked according to this measure, from best to worst overall performance. This
ranking is employed across Figs. [2.4h,b,c.

The standardisation step ensures that datasets on which methods show highly variable perfomance
are weighted similarly to less variable datasets. This is necessary primarily to account for method
performance on the dataset of the mouse olfactory bulb, sequenced using ST by Stahl et al. (see
Fig. ) Compared to the other datasets, methods behave in a highly variable and unique way
on ST-Stahl, with the best-performing methods being different to any other dataset. Notably, the
non-spatial baseline methods scanpy and Seurat here outperform all but one method. The only spatial
method performing better than the baselines, SpiceMix, does so by a marginal amount, as shown in
Fig. 2.4p.

In the case of the ST—Stahl dataset, spatial information appears not only not to aid the domain
recognition, but might be actively hindering it. Considering the UMAP embedding of transcriptional
profiles from one ST-Stahl sample shown in Fig. 2.4d, we see that the ground truth label assignments
coincide visually very well with transcriptionally defined clusters. This is confirmed quantitatively by
the average Silhouette score of the ST—Stahl ground truth labels exceeding 0.6, in contrast to values
of under 0.2 on the other datasets (Fig. ) On the other hand, in the spatial plot of the same
ST-Stahl sample (Fig. ), the domains are spatially contiguous but very thin, mostly only being one
spot wide. Combined, this indicates that the incorporation of spatial information in the non-baseline
methods might lead to an overemphasis on contiguous cluster-building in real space, smoothing over
relevant transcriptional differences. The influence of spatial smoothing will be considered in more
detail in later sections.

In all other datasets, most spatially-informed methods outperform the baselines (see Fig. ,c).
The extent of improvement that is achieved varies substantially across the datasets. In the two
Visium datasets, the maximal ARI improvements are 0.1 and 0.2 (for Fu and Maynard, respectively,
corresponding to factor improvements of of 1.2 and 1.5). In contrast, for the MERFISH datasets,
BASS improved upon the best baseline by 0.5, an increase by a factor of 4.5, in both datasets. Possible
reasons for this strong contrast between Visium and MERFISH are discussed in the following sections.
SpaDo reached the biggest improvements on the osmFISH and STARmap samples (ARI increases of
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Figure 2.3: Evaluation of FM, AMI, NMI, and ACC versus ARI. a, Values across all datasets,
samples and methods qualitatively agree with ARI values. b, Stratified by dataset and method,
Pearson correlation between the metrics and ARI consistently exceeds 0.8, with few exceptions. c,
Example results for methods and datasets where some metrics do not agree with ARI. Top row, ground
truth label assignments for three samples from the ST-Stahl, MERFISH-Zhang, and Visium-Fu
datasets. Bottom row, example label assignments for those same samples from MNMST, SpatialPCA,
and ADEPT, with the corresponding values of ARI and one other metric. The left column illustrates
the advantage of ARI over FM in accounting for chance effects in an example with very small domains.
In the middle column, the layered structure found by SpatialPCA upon closer inspection does not
correspond well to the ground truth. The right column illustrates the tendency of AMI to favour
pure clusters. For example, the bottom left (neon turquoise) and the top right (purple) ground truth
domains, marked with red borders, are split by ADEPT into multiple constituent clusters.
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Figure 2.4: Method accuracy stratified by dataset. a-c, Accuracy results per method and dataset,
aggregated by mean over samples. Methods are sorted by rank according to the mean standardised
ARI across datasets, and the best-performing method on each dataset is annotated by value. Datasets
are sorted according to their resolution. White squares indicate missing values, i.e. a method failing
to give spatial domain assignments. a, Unscaled ARIs. b, Difference in ARI between each method and
the best-performing non-spatial baseline (scanpy or Seurat). The colour scale is truncated at -0.4 to
emphasise relevant performance differences, and a less-than < indicates that the absolute difference
in ARI of a method to the baseline exceeds 0.4. c¢, Factor of improvement of ARIs of all methods
on all datasets over the maximum performance of non-spatial baselines. d, 2D UMAP embedding of
spots in ST—Stahl slide 1. e, Spatial 2D-plot of the spots in ST—-Stahl slide 1. f, Mean Silhouette
scores of ground truth label assignments based on 2D UMAP embeddings. The silhouette score is
The best attainable value is 1; values

an unsupervised goodness-of-clustering measure (see Tab. .
near 0 indicate overlapping clusters.
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0.3 and 0.4, respectively). These improvements are less impressive as factors of the best baseline (1.4
and 2.6, respectively), as baseline performance on these samples is not as low as on MERFISH (see
e.g. scanpy in Fig. [2.4h).

Notably, the biggest improvement by factor, 4.8, was reached by BASS on the Slide-seq dataset
(see Fig. [2.4c). This is an interesting case, as the final ARI attained by the best method BASS is
at 0.4 still quite low, but presents a difference of 0.3 to the best baseline. The Slide-seq technology
is known to have a comparatively low capture efﬁciencyﬂ [40]. Accordingly, the Slide-seq—Langlieb
dataset has a counts sparsity of up to 99%.

As can be expected, the performance of the baseline methods scales with the mean Silhouette
score in the transcriptional embedding space (compare Fig. , f). Where the Silhouette score is
around zero or even negative, as in the case of the high-resolution datasets, non-spatial baselines do
not achieve high accuracies. In these cases, the inclusion of spatial coordinates to inform domain
identification aids some specialised methods to improve their performance upon the baselines.

2.2.3 Consensus across methods

Combining individual clusterings of the same data into a final consensus, or ensemble, clustering has
been shown to improve the robustness and accuracy of the final clustering [126, 206, 211, 212]. We
therefore undertake a consensus evaluation across individual methods. To compute the consensus
annotation, we take a naive approach of simply considering the most common label assigned to each
spot. Concretely, we compute the mode of labels for each spot or cell in a given sample.

In taking the mode, this approach depends on a coherent labelling of domains across methods.
That is, domain A as assigned by method X must correspond, as closely as possible, to domain A as
assigned by method Y, for their consensus domain A to remain consistent. However, as the methods do
not have any information about the ground truth annotations, they each assign independent domain
names with no clear correspondence between them. In our case, as our samples all contain ground
truth label assignments, we are able to utilise this ground truth annotation to harmonise method
outputs (Fig. ) This is commonly known within combinatorics as the assignment problem, and
can be formulated within graph theory as a maximum weight bipartite matching problem (Fig. )
Specifically, the domain labels present in the ground truth and in a given clustering output are con-
sidered as nodes. Edges between a ground truth label ¢ and a putative label j are weighted according
to the number of spots belonging to both in the respective clusterings, creating a cost matrix C with

Cij= Y by, (2.2)
(t,p)eS

where S is the set of spots or cells in the clustering, and ¢ and p are the true and putative clustering
labels of each spot or cell. The problem then is to find a boolean matching matrix X of ground truth
labels to putative labels which maximises the total cost. The optimal matching is found by solving

argmax y Z Z Cij Xij. (2.3)
i g

In our implementation, we utilise the linear sum assignment solver by the scipy package [213]. This
solver is capable of solving the generalised case in which the number of labels in the ground truth
and putative clusterings is different, that is, both C' and X are rectangular. While this harmonisation
of labels depends on the existence of a ground truth, this could be circumvented by calculating
the correspondence of method outputs independently. Also, nota bene, using this simple consensus
approach, the resulting domain annotation may not contain all domains present in the ground truth.

2While Slide-seqV2 has been shown to compare to Visium in capture efficiency, the original Slide-seq technique
captured as little as 10% of transcripts compared to Slide-seqV2 [40].
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Name Optimised for: Included methods

all not optimised all methods

best overall highest performance BASS, SpaDo, GraphPCA, SCAN-IT

merfish MERFISH performance BANKSY, SpaceFlow, BASS, CCST, SCAN-IT
visium  Visium performance PAST, GraphST, SpatialPCA, MNMST, GraphPCA

Table 2.4: Groups of methods investigated using consensus approach. Besides the unbiased
consensus over all method outputs, we evaluate method groups selected for the overall highest perfor-
mance and technology-specific performances.

We evaluate the consensus across all methods, without filtering for individual performance. Ad-
ditionally, we select groups of five methods each that excel in the overall ranking, and on MER-
FISH/Visium data (see Tab. and use those to compute the consensus. Astonishingly, as seen
in Fig. all resulting clusterings outperform all but the top-ranking individual methods on most
datasets (Fig. ) Notably, the selective consensus approaches show better performances than the
overall consensus in certain datasets (Fig. [2.5[). Consensus over the method group selected for MER-
FISH performance outperforms both the consensus over the overall best methods (consensus-best) and
the best individual method on the MERFISH-Zhang dataset, while consensus-best narrowly improves
upon the others on MERFISH-Moffitt. Interestingly, the consensus evaluation over all individual
methods is unique in the magnitude of its improvement on both Visium datasets (mean ARI increase
of 0.25 compared to the best non-spatial baseline, and 0.12 compared to the best individual method).
Even taking the consensus over methods specifically selected for their high Visium performance (see
Tab. does not result in a comparable improvement (mean ARI increase of 0.18 over the best
non-spatial baseline). On the Visium dataset, consensus-best performs similarly to the consensus
over an especially selected method group. Lastly, on ST—Stahl, the aggregation over all methods,
uniquely among the consensus approaches, recovers the high performance of the best baseline and
best individual method.

Overall, the consensus over all methods matches or outperforms individual methods on all but
selected datasets. Except for the MERFISH-Moffitt and STARmap—Wang datasets, this unbiased
consensus exhibits highly competitive performance. While the performance on individual datasets can
be improved by targeted consensus approaches over method subsets, the unbiased consensus approach
is a stable and competitive alternative.

2.3 Visual smoothness effect

From the method performances observed on ST—Stahl, we hypothesised that an exaggerated reliance
on visual smoothness and coherence may lead methods to neglect relevant transcriptional differences
between clusters. This is contrasted to the performance of our naively spatially aware baselines
Seurat-smooth and scanpy-smooth, which rank higher than their non-smoothed counterparts in overall
performance (by 6 and 3 ranks, respectively, see Fig. . In this section, therefore, we investigate
the interplay between the spatial smoothness of label assignments and method accuracy.

2.3.1 Quantitative evaluation of visual smoothness

For a quantitative evaluation of the visual smoothness of a cluster assignment, we use the Percentage of
Abnormal Spots (PAS), as shown in Tab. For our purposes, a spot or cell is considered “abnormal”
if it is assigned a different label than over half of its spatial neighbours. We assign neighbours based
on a 10-nearest-neighbour scheme.

The ground truth PAS of the MERFISH, STARmap and Slide-seq datasets exceeds that of Visium—
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Figure 2.5: Consensus approach over multiple methods. a, Domain labels as output from dif-
ferent methods (top) cannot be directly used in our consensus approach; instead, they are harmonised
(bottom) to result in a final consensus labelling. b, Harmonisation of method output labels with
respect to ground truth domain annotations by maximum weight bipartite matching. ¢, Consensus
approaches outperform individual methods on average, except for baselines on ST-Stahl. Performance
is shown per method as the mean over samples per dataset. d, Performance of consensus-all is com-
petitive on all datasets, and improves over other approaches on Visium. Consensus approaches are
compared to the best spatial and the best baseline method specific to each dataset, the performance

is shown as boxplots over samples in each dataset.
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Maynard (see Fig. ) While Visium—Fu has the highest ground truth PAS of all datasets except
STfStah]E], this might also be an effect of Visium—Fu having a comparatively high number of ground
truth domains (20, comparing to 4-10 for the other datasets). For evaluating the ground truth, PAS
mostly is a measure of border smoothness, as having a higher number of border spots (resulting
from having more domains) will lead to an increase in PAS. Notably, Visium-Fu also exhibits some
non-contiguous and fragmented domains in the ground truth annotation (see Appendix B), further
increasing its PAS. Nevertheless, for all non-ST datasets, the ground truth PAS is under 10%.

2.3.2 Smoothness and accuracy across technologies

Specifically, we focus on the comparison of the datasets MERFISH—Zhang and Visium—Maynard.
MERFISH and Visium represent opposite ends of the spectra of both spatial resolution (single-
molecule, segmented into single cells, versus spots of 55 pm) and number of profiled genes (gene
panel size of 254 versus full-transcriptome). Additionally, both contain over 10 samples, making a sta-
tistical analysis more viable, and exhibit comparable laminar tissue structure originating from brain
tissue (of mouse or human).

Most methods (23 out of 30) differ significantly in performance between these two datasets (as
measured by the Mann-Whitney U test, significance p < 0.05, see Fig. ) The differences seem to
primarily be driven by strong intra-dataset performance differences on MERFISH-Zhang. Evaluating
the average spatial smoothness per dataset and method, a trend becomes apparent whereby method
performance on MERFISH-Zhang appears to correlate negatively with PAS. Concretely, all methods
that perform significantly better on MERFISH than on Visium, except the generally less accurate
UTAG and MERINGUE, exhibit mean PAS < 13%. For methods which perform significantly better
on Visium than on MERFISH, on the other hand, PAS values, especially on the MERFISH data, are
higher. Interestingly, this set of methods also shows non-negligible PAS on Visium.

Stratifying the datasets by resolutionE] confirms the hypothesis of a strong negative ARI-PAS
correlation on all high-resolution samples (median Spearman correlation -0.85, see Fig. ) For
the low-resolution Visium samples, the anticorrelation is much weaker (median Spearman correlation
-0.31). Method performance on high-resolution datasets therefore seems to benefit from enforcing
high visual smoothness, while this does not aid performance as much in the lower-resolution Visium
data. It is not the case that the ground truth PAS on Visium data is generally higher, as seen in the
previous subsection.

This leads naturally to the question of whether a simple smoothing step improves method perfor-
mance to a larger extent on MERFISH data than on Visium. We evaluate this question by considering
the difference in performance between the spatially-aware and non-spatially-aware baselines. Indeed,
the improvement in ARI attained by a simple smoothing over the non-spatial baseline output is signif-
icantly larger on MERFISH-Zhang than on Visium—Maynard (average improvement of 0.071 vs 0.057,
see Fig. ) As expected, the PAS decreases strongly by applying the smoothing. The decrease
shows highly significant differences between the two datasets: On MERFISH-Moftitt, where the non-
smoothed baselines have a mean PAS of 51%, the smoothing reduces the visual noise dramatically,
to a mean PAS of 20% for a total reduction of 31%. On the other hand, on Visium—Maynard, the
difference is less pronounced, going from 36% to 12% for a total of 24%.

The average PAS across methods is around 20% for the high-resolution datasets, contrasted with
under 10% on Visium-Maynard (see Fig. [2.6c). Interestingly, even methods with very high PAS on
MERFISH-Zhang (as shown in Fig. [2.6h) exhibit lower PAS scores on Visium. This is the case for all
methods except UTAG. A fundamental technological difference which might account for this disparity

3The extraordinarily high PAS values of ST-Stahl are a consequence of its thin domains as shown in Fig. .
4Visium datasets are categorised as low-resolution, Slide-seq, STARmap and the FISH-based datasets as high-
resolution. ST—Stahl is not considered in this evaluation due to its unique behaviour.
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Figure 2.6: Relationship between accuracy and spatial smoothness. a, ARI scores of all
methods on two datasets generated by MERFISH or Visium technologies. Methods are ordered by
the difference in mean ARI between the two technologies. Statistical significance was assessed using
two-sided Mann-Whitney U tests. Corresponding PAS values for each method on the same datasets
are shown in the top panel. b, Spearman correlation of ARI and PAS over all methods on data
stratified broadly by resolution (Visium datasets are designated low resolution, all other technologies
high resolution. ST-Stahl is excluded from this analysis). ¢, Median PAS of method outputs is
consistently higher than the median ground truth PAS, except for ST-Stahl. PAS of method outputs
is lower for lower-resolution Visium datasets, while no such effect in the ground truth PAS is apparent.
d, ARI and PAS of the baselines with and without additional smoothing step, on MERFISH-Zhang
and Visium—Maynard.
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is the resolution of the respective technologies. We hypothesise that in Visium data, a kind of inherent
smoothing is taking place in the gene expression space. Through the measurement of multiple cells in
a spot, large transcriptional differences between adjacent spots, which might be reflected in method
outputs as different label assignments, will not be registered, thus leading the methods to a lower
PAS.

2.4 Domain-specific phenomena

When considering the accuracy attained over an entire tissue slice, method performance can be ad-
equately quantified by ARI or similar metrics. However, ARI does not recognise domain-specific
aspects of the results, such as some domains being more easily identified than others. It is particularly
interesting for future method development to be able to distinguish domains which are challenging to
identify.

To gain a fine-grained view of “hardness of detection”, we evaluate the cross-method agreement
with the ground truth. That is, for each spot or cell, the number of methods that “agree” with the
ground truth annotation is tallied up. The resulting heatmap of the spots or cells in the sample
indicates “conflicting” tissue areas, or parts of domains that few methods annotate correctly. This
approach explicitly depends on the presence of a ground truth annotation, where the harmonisation
of labels is implemented in the same way as for the consensus evaluation.

We apply this method of consensus agreement on the Visium-Maynard dataset of the human
dorsolateral prefrontal cortex |114]. Aggregating over the proportion of labels correctly identified per
domain and over all samples, we find that the white matter (WM) and L1 domains are consistently
recognised throughout (Fig. ) However, we also find that the L4 domain evades detection. This
is confirmed by looking at the example slice 151675 shown in Fig. 2.7p, showing very low method
agreement with the ground truth across the entire L4 domain. The observations about WM and
L1 are also confirmed visually, with the caveat that at the borders, especially between WM and its
neighbouring layer L6, some uncertainty persists.

Applied to MERFISH-Moffitt (see Fig. ), the domain-level agreement is particularly low for the
paraventricular hypothalamic nucleus (PVH) and periventricular hypothalamic nucleus (PV), and to a
lesser degree, the medial preoptic area (MPA). This observation is confounded, again, by looking at the
example plots (Fig. ’). Additionally, we can identify hard-to-distinguish border regions around the
intersection of the MPA, PV and the otherwise better-distinguished medial preoptic nucleus (MPN).

As a further application, we consider two slices of the MERFISH-Zhang dataset (shown in Fig. ’).

In the overview barplot across all 33 samples of the dataset (Fig. ), most domains show relatively
consistent distinction levels of around 40-70%. However, the white matter layer (WM) exhibits a
larger spread than other layers, which is illustrated by the two example slides selected: In slice 131,
only 43 spots clustered together along the sample edge are annotated as WM, whereas in slice 180,
the WM domain with 734 spots occupies a sizable area in the same region. In slice 180, the large
WM domain shows the same pattern as exhibited in the Visium—Maynard dataset and gets recognised
easily by the majority of methods. In contrast, for the very small WM domain of slice 131, method
agreement with the ground truth is approaching zero. This is an indication that domain size, besides
transcriptional distinctness, may have a profound effect on detection.

An interesting phenomenon occurs in sample 151671 of the Visium—Maynard dataset. By evalu-
ation of the method agreement, we are able to identify a highly persistent and coherent subdomain
appearing in L3 (see Fig. ) Due to time constraints, we were not able to evaluate the biological
implications of this subdomain thoroughly. However, the UMAP of L3 spots shown in Fig. 2.7d’
indicates that there is an expression-level devide between high-agreement and low-agreement spots.
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Figure 2.7: Domain-specific phenomena observed in real datasets. Selected results are shown
for the datasets Visium—Maynard, MERFISH-Moffitt and MERFISH-Zhang. a, b, ¢, Method agree-
ment with the ground truth across all slices of the three datasets, aggregated per domain by mean. a’,
b’ ¢’, d, Samples from each dataset shown with spot-level method agreement and the corresponding
ground truth annotation. d’, UMAP representation of spots in the L3 layer of the Visium—Maynard
sample 151671, coloured by spot-level agreement.



42 2. Benchmarking spatial domain identification methods on real datasets

2.5 Stability with respect to data perturbations

To further evaluate the methods, we test their stability with respect to data perturbations. After
establishing a baseline of stochastic effects affecting domain identification, we test the robustness of
all methods to the loss of local spatial coherence. We evaluate the stability of methods on the Visium—
Maynard and MERFISH-Zhang datasets. These two datasets were chosen as they both contain
multiple samples, increasing statistical power, and show a similar laminar domain structure.

2.5.1 Stochastic effects

To establish a baseline measure of within-method variance, methods are run multiple times on the same
sample. Since many methods utilise randomness in their implementation, e.g. for initialisation of the
clustering or of model parameters, the outputs are often not deterministic |82, 122} 164]. However, it
is common practice to fix an internal seed, that is, fix the state underlying random number generation,
in order to ensure reproducibility of results. Some methods set the seed internally, so it is not possible
to evaluate their stability by simply changing the seed in our implementation [84]. Other methods do
not employ randomness in their approach [137].

As a way around this limitation, we devise a strategy for seed-independent evaluation of stochastic
method effects. Namely, instead of changing the internal state of method implementations, we change
the internal state of the input by reordering the rows of both the count matrix and the tissue locations.
We test the effect of this perturbation against changing seeds for four methods containing accessible
seeds, and demonstrate that there is no significant change in the distribution of ARI scores (Fig. [2.8h).

For the analysis of pure stochasticity, the inter-sample variability needs to be taken into account.
In order to correct for this, ARI scores are scaled linearly per sample such that all sample medians
coincide with the dataset median. The results show a wide range of method stability (Fig.[2.8pb). CCST
stands out for its minimal variability on both datasets, with a mean standard deviation s.d. < 0.003.
On the other extreme, SpiceMix is particularly unstable, with s.d. > 0.087 in the mean across datasets.
All other methods are somewhere in between, with notably less variation in standard deviation on
the MERFISH dataset. There is no obvious correlation of stability to either high or low method
performance, though most overall well-performing methods exhibit consistent standard deviations of
around 0.04 across datasets.

2.5.2 Loss of local spatial coherence

Having established a baseline of method stability, we now aim to test the robustness of method
performances to perturbation. Specifically, we are interested in the degree to which the loss of local
transcriptional coherence between neighbouring spots or cells impairs method performances. We
consider local coherence to be given when spatial gene expression patterns are undisturbed.

We again investigate this perturbation on the Visium-Maynard and MERFISH-Zhang datasets.
In order to quantify the effect of local coherence loss, we permute count matrix rows within original
annotation groups, while keeping physical locations fixed. In this way, each cell gets assigned to new
coordinates, but domains are kept intact. The resulting change in the expression patterns of select
spatially variable genes is shown in Fig. [2.9h. Briefly, the expression of certain spatially variable genes,
previously showing smooth value changes and coherent local maxima, is then spread uniformly over
the annotated ground truth domains (shown in the top of Fig. [2.9’). Interestingly, as also shown in
Fig. 2.9, the local gene expression patterns exhibited by certain genes are reflected in the domains
identified by BASS. BASS is selected here as an example because it is the best-performing method
over all and performs highly competitively on this dataset. In the domains BASS identifies as 1.3 and
L5, expression patterns from the genes COX6C and SCGB2A2, respectively, seem to be reflected.
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Figure 2.8: Method stability evaluation on real data. a, Distribution of results based on seed
change versus the proposed method of input reordering. Results are shown for four methods which
allow for seed change in their implementation. Twelve input permutations and twelve seed changes
are implemented for all samples from Visium—Maynard and twelve samples from MERFISH-Zhang.
b, Stochastic variability of domain identification accuracy. ARI scores are reported across 12 random
trials of each method on each of the 12 Visium—Maynard samples and 12 MERFISH-Zhang samples.

Methods are sorted by their average standard deviation between the two datasets (top bar plot). ARI
scores are normalised to correct for inter-sample variability.
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Perhaps unsurprisingly, then, the performance of BASS on Visium—Maynard is greatly aided by
the removal of these local gene expression patterns (see Fig. ) While BASS is most strongly
affected, increasing in ARI by a median of 0.46, this perturbation has a positive effect on most
methods. As expected, the performance of nonspatial baselines is not affected in either dataset,
along with methods like MERINGUE, PRECAST, and SC-MEB. Interestingly, the naively spatially
aware baselines improve more on the Visium—Maynard dataset than on MERFISH-Zhang (by 0.04
ARI). Similarly, BASS, SEDR, MNMST, BayesSpace, and SpatialMGCN exhibit a larger performance
improvement on Visium—Maynard. On the other hand, a group of methods comprised of BANKSY,
TACCO, UTAG, Vesalius, and GraphPCA shows the opposite behaviour, increasing in performance
more strongly on MERFISH-Zhang upon loss of local spatial coherence.

Generally, we observe that the loss of spatial gene expression patterns, which may not necessarily
be aligned with annotated spatial domains, affects the majority of methods positively.
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Figure 2.9: Method robustness to loss of local spatial coherence. a, Expression of example
genes for Visium—Maynard sample 151507, shown in the unperturbed (top) and perturbed (bottom)
tissue configurations. a’, BASS output on sample 151507 for unperturbed gene expression. Some
layers identified by BASS show similarities to gene expression patterns observed in a, namely Layer
L5 shows similarity to SCGB2A2 expression and parts of L3 to COX6C. b, Difference in ARI resulting
from the perturbation, across 12 samples each of the Visium-Maynard and MERFISH-Zhang dataset.
Each sample is perturbed for a total of 12 seeds, the original ARI is subtracted from the perturbed
ARI per sample. Methods are sorted according to the mean improvement across datasets.
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Chapter 3

Semi-synthetic spatial transcriptomics
data for systematic method evaluation

In this chapter, I present the results of running the previously described benchmarking pipeline on
semi-synthetic data with tunable characteristics. I introduce several published simulation approaches
for spatial transcriptomics data, as well as the pipeline we established for generating semi-synthetic
datasets.

3.1 State of the art of spatial transcriptomics simulation

As introduced in Sec. synthetic data is an important component of benchmarking efforts. Ac-
cordingly, various approaches have been developed aiming to create realistic synthetic spatial tran-
scriptomics data [214) 215]. The resulting synthetic data is often provided alongside ground truth
annotations of underlying cell types — it is much rarer to find approaches designed to annotate tissue
domains. However, for the benchmarking of domain recognition algorithms, ground truth domain
annotations are indispensable, and so methods frequently develop strategies for domain-based spatial
transcriptomics simulation.

The following sections give a brief introduction to the approaches used in various method pub-
lications for internal benchmarking, as well as the dedicated spatial transcriptomics simulation tool
SRTsim [214].

3.1.1 Overview of published simulation approaches with concurrent ground truth
domain generation

Many methods for the identification of spatial domains benchmark their performance against other
methods based on a simulation approach. The simulation approaches utilised by a subset of methods
are briefly summarised in Tab. Methods take different approaches to data simulation, some
based heavily on real data, while others create fully synthetic datasets (e.g. SpiceMix). Strategies
for the definition of spatial domains vary between two main approaches, similarly to the definitions
employed in method papers — namely, domains are defined based on their cell type composition or
their expression coherence (see Fig. . The domain definition which is employed in these simulation
approaches broadly coincides with the generation of coordinate and count information. Specifically,
simulations generating high-resolution datasets define domains based on cell type composition, whereas
grid-based, lower-resolution simulated data uses the expression coherence definition. Interestingly,
most approaches create layered tissues, based implicitly or explicitly on brain structures. In the list of
simulation strategies shown in Tab. Vesalius is the only method directly utilising real expression
values, measured using Slide-seq, in their synthetic data. All other approaches employ a simulation
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step, either using published simulators like scDesign2, scDesign3, or splatter, or an in-house and
specially devised method, like one SpiceMix strategy, SC-MEB, and PRECAST [214-217].

The simulations differ widely in their data generation approaches, both in count and coordinate
origins as well as in domain definitions. Further, the approaches were devised and implemented to
enable the investigation of very different variation scenarios. SC-MEB and PRECAST vary the covari-
ance matrix defining spatial smoothness. Similarly, SpiceMix implements noise types influencing the
expression similarity between neighbouring cells, and SpatialPCA varies the neighbour correlation for
grid-based data directly using a split-cells approach. GraphPCA investigates a range of technological
parameters, ranging from sequencing depth and noise levels to spot and count sparsity. SpatialPCA,
Vesalius, and BASS vary the cell type composition heterogeneity of their domains, and BASS addition-
ally changes the proportion and variation magnitude of differentially expressed genes. Interestingly,
Vesalius is the only simulation approach which considers different domain layouts.

3.1.2 Simulation with SRTsim

One published simulation method that enables the simultaneous generation of count data, coordinates
and the corresponding domain labels is SRTsim [214]. In its de novo data generation mode, it takes
the desired tissue domain layout as input and allows for the user to input hyperparameter values
specifying the distributions from which expression values should be sampled. The approach SRTsim
takes to delineating different domains is simple, in that it is based on a user-defined logarithmised fold
change of the expression mean of a set of “signal genes”. Notably, the definition of domains based on
expression mean fold changes is not encountered in other publications to the best of our knowledge.

The SRTsim de movo mode is accessible primarily through an R-shiny applicationﬂ providing
a GUIL In order to enable serialised, script-based data generation, we adapted the code underlying
the application as publicly available on GitHub. We utilised the resulting script to generate data
containing a range of different numbers of cells and genes, and varied the signal-to-noise ratio.

Ultimately, we decided not to further pursue the use of this simulation strategy, as for our purposes,
the possibility of broader parameter tuning was important. Further, it is not yet possible to evaluate
different domain definitions, such as cell type heterogeneity, as an alternative to the inbuilt mean fold
change.

As an alternative to the de novo approach, SRTsim allows the generation of synthetic spatial
transcriptomics data based on reference input data [214]. Using this approach, it is possible to modify
certain data parameters, as well as the domain layouts, with respect to the reference. We tested
this mode by creating additional samples of the Visium-Maynard dataset and evaluating method
performance.

While data from this simulation mode is likely to better reflect real data characteristics in do-
main composition and gene expression patterns, it also specifically reflects the technology and tissue
characteristics of the reference data. This simulation strategy is not suited for comparing method
performance across a spectrum of one technological parameter while keeping others at fixed values.

3.2 Construction of the semi-synthetic data generation pipeline

In order to test hypotheses about how various data characteristics affect method performances, we
developed a flexible pipeline for generating semi-synthetic spatial transcriptomics data (Fig. ) Our
aim when creating this pipeline was to present a highly tunable approach, able to incorporate and
execute perturbations on the level of coordinates, counts and tissue domains. Yet we also wanted to
incorporate count data with realistic characteristics, which is hard to achieve in a synthetic approach
[218]. One possibility leading to higher realism in the expression data is to simply incorporate counts

Tt is available at jiagiangzhu.shinyapps.io/srtsim| (accessed on October 12, 2025).


https://jiaqiangzhu.shinyapps.io/srtsim/
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from a publicly available spatial transcriptomics dataset, such as the approach taken by Vesalius (see
Tab. . However, as discussed in the previous section, this data carries with it the exact inherent
technological biases we are aiming to study. At the time of the development of our pipeline, to the
best of our knowledge, there was no public dataset from a spatial transcriptomics technology with full-
transcriptome profiling at true single-cell resolution. Finally, we landed on utilising a well-annotated
single-nucleus RNA-seq dataset of the mouse brain to serve as the origin of transcriptional identities
for our semi-synthetic data generation [200].

Briefly, we first create archetypal domain shapes and overlay them on an artificial tissue layout
of randomly generated cell locations. After transferring the domain identities to cells as label as-
signments, we proceed to ascribe mixtures of cell types from the mouse brain dataset to define each
domain. Counts from those cell types are chosen and assigned to cells within the corresponding do-
mains. Within this pipeline, we are able to vary relevant parameters at all individual steps. Each of
these steps is described in more detail in the following sections.

3.2.1 Creating the tissue layout

To generate tissues containing different shapes and arrangements of domains, we utilise the datasets
module of the scikit-learn Python package as a basic first step [219]. This module is designed to create
locations and cluster assignments for a set of points distributed non-uniformly in a 2D space (shown
in Fig. ) We therefore combine the thus generated points with a new set of cell coordinates,
drawn from a 2D uniform distribution (overlaid in Fig. [3.1k). Domain labels are assigned to all cell
locations based on label transfer from the nearest point in the sklearn-generated dataset (resulting
tissue shown in Fig. ) Finally, in order to create contiguous domains and remove any outlier
labels, a next-neighbour-based smoothing algorithm is applied to the newly created tissue, aligning
each spot to the majority-voted neighbourhood label (final synthetic tissue shown in Fig. ) This
strategy has the advantage of being able to create a diverse set of domain shapes and configurations, as
shown in Fig. B.1If, while avoiding the need to define exact domain borders. Additionally, we create a
tissue type consisting of parallel stripes to represent a more balanced domain layout, and an archetype
that is present in many of the real datasets we included.

3.2.2 Choosing cell types and assigning counts

The single-nucleus mouse brain dataset published by Langlieb et alE] contains detailed cell type anno-
tations [200]. After subsetting to only cell types containing sufficient numbers of cells, we specifically
chose cell types of high pairwise similarity for inclusion in our analysisﬂ Cell type similarities were
quantified by the inverse of their distances in a dendrogram published within the scope of the original
study [200].

Using this strategy, we settled on a set of five cell types for primary use within the simulation
pipeline. Results shown in this thesis, if not otherwise specified, are attained using primarily these cell
types to define the domains. After assigning individual cell types or mixtures thereof to define each
domain, cells are assigned to each coordinate of the previously generated tissue layout at random.

3.2.3 Implementing variation on different levels

In the course of the steps described in the previous sections, variation can be introduced at different
stages. The following paragraphs briefly describe the possible variations.

2The dataset is available online at braincelldata.orgl
3We decided on this approach after preliminary simulations showed excellent domain recognition across all methods
applied to data created from transcriptionally dissimilar cell types. We aimed to give the methods more of a challenge.


https://braincelldata.org/
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Figure 3.1: Pipeline developed for semi-synthetic data generation. a, Overview of the pipeline,
along with possible variations it allows us to introduce in the data. b, Point clusters generated using
scikit-learn. ¢, Clusters from scikit-learn, overlaid with randomly generated locations for cells. d,
Domains after label transfer from scikit-learn clusters onto cell locations. e, Smoothed domain labels
after removal of outlier labels. f, Examples of other shapes the pipeline is able to generate. g, Pairwise
distances of the cell types selected by default, shown as a heatmap calculated based on dendrogram
data published by Langlieb et al. [200]. Cell types are indicated by colours. h, UMAP embedding of
cells from all selected cell types
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Tissue layout Domain shapes, and the tissue layout in terms of cell density and arrangement, are
determined at the start of the pipeline. Besides the default shapes shown in Figs. [3.1p,f, different
domain shapes and configurations can be created through scikit-learn or by manual definitions. In ad-
dition to the random cell locations simulated by default, grid-based coordinates are also implemented.

Technological parameters: Resolution We are also able to vary the resolution of the resulting
tissue after completing the simulation, by overlaying a grid onto the tissue and binning the expression
of multiple cells. Specifically, in order to create synthetic data of different resolutions while keeping
other parameters fixed, we create and then perturb one basic dataset of single-cell resolution. The
original cell locations are chosen randomly in a square tissue of size 100 x 100 points. Subsequently, for
the different resolutions, grids consisting of square tiles are overlaid on this tissue, and cell coordinates
are rounded to the nearest tile centroid. From all cells rounded to the same tile, expression counts are
aggregated by mean to form the counts of the newly created spot. The range of resolution explored
in the synthetic data is large, with tile (spot) side lengths from 0.5 up to 10 points. For reference, at
a side length of 5, on average, 9 cells are contained in one spot, comparable to the resolution achieved
by Visium. Consequently, a side length of 10 corresponds approximately to the original ST resolution,
with 33 cells being aggregated into one spot. This approach creates a more realistic low-resolution
dataset than would be possible using an a priori grid-based layout, as it mimics the characteristic
aggregation of counts across cells of Visium-like technologies.

Technological parameters: Number of genes The gene panel size can also be varied post facto,
by reducing the number of genes whose expression is included in the final data. Similarly to the
resolution strategy, to evaluate the effect of changing gene panel size, we modify a base dataset.
Specifically, we decrease the number of included genes to exponentially spaced proportions of the
original number (that is, the total gene panel size is reduced to 50%, 20%, 5%, etc., of the original
size). From 21899 profiled genes in the original single-nucleus RNA-seq count data, the proportions
investigated result in gene numbers close to those of our included real datasets. Once the number of
genes to include is calculated, we downsample the count matrix using random sampling. By default,
we use a random downsampling strategy to reduce the number of genes, but other strategies are easily
implemented.

Technological parameters: Sparsity A different downsampling procedure may be applied to the
generated data to increase the count matrix sparsity. We vary the level of sparsity within a range of
0.85 to 0.99. The lower end of this range is set by the sparsity inherent in the single-nucleus RNA-seq
count data, while the upper end is comparable to Slide-seq data. Concretely, high dropout levels are
simulated through randomly setting counts to zero until the desired sparsity level is reached. Again,
various models for high count sparsity could be implemented.

Expression similarity and heterogeneity Finally, we are able to introduce variation on the count
level. We investigate two main perturbation types, each applied to the entire tissue and subsequently
adapted to apply to all pairs of domains. In the first type of perturbation, starting from domains
defined by different cell types, the expression values in the affected domains are modified to increase
their similarity. This is achieved in the tissue-wide perturbation by introducing an additional “noise”
cell type, to which all domains are made to converge. Concretely, let the original expression vector
of spot s in domain d be &, defining the expression levels of all genes. Additional gene expression
vectors s for each spot are then generated from the noise cell type n, and gradually replace the
original expression by a convex combination as

cd = (1—N)ed + Mg (3.1)
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Upon gradual variation of the mixing parameter A, this approach modifies the count values of the
entire tissue, with the expression of all domains increasing in similarity to the “noise” type. In the
pairwise domain perturbation, counts are instead created through the convex combination of cell types
from both involved domains.

The second perturbation type we investigate approaches the idea of domain similarity through cell
type composition. Namely, we introduce cells from either a noise cell type (in whole-tissue perturba-
tion) or from the paired domain (in pairwise domain perturbation), into the tissue in question. In this
perturbation, counts are not added to the preexisting cells - instead, the entire expression profile of
a certain proportion of cells is replaced. This introduces a degree of expression heterogeneity on the
cell type level.

3.3 Investigating technology characteristics

First, we utilise our pipeline to create data with varying technological characteristics, aiming to disen-
tangle their effects on method performances. Specifically, we evaluate the effect of changing resolution,
the number of profiled genes, and the count matrix sparsity. In order to avoid any biases arising from
specific domain configurations, the following analyses are averaged across the different shapes shown
in Fig. 3.1e,f. All experiments are carried out using the same basic assignments of one cell type per
domain.

3.3.1 Effect of changing resolution

As described in Sec. we generate semi-synthetic data samples with a variety of resolutions based
on a single-cell resolution base dataset (Fig. ) The resolution is gradually decreased by increasing
the side lengths of the overlaid grid (Fig. [3.2p).

We first examine the correlation of ARI and PAS across all methods. In the real data, we had ob-
served a strong anticorrelation of ARI and PAS in high-resolution data, whereas on lower resolutions,
this anticorrelation was weakened (see Fig. ) This trend is corroborated by the semi-synthetic
results, as shown in Fig. . Specifically, we find a strong anticorrelation of ARI and PAS (Spearman
correlation around -0.5) at small spot side lengths of 0.5 to 3, whereas there is only a weak anticor-
relation (Spearman correlation around -0.2) at spot side lengths 4 to 6, which correspond loosely to
Visium spot size. Even this level of correlation disappears for even larger spot side lengths.

Concerning the effect of resolution changes on the individual methods, large differences become
apparent (Fig.[3.2d). MNMST and BANKSY decline drastically in performance with the aggregation
into larger spot sizes. At resolutions only slightly smaller than the Visium equivalent, they end up
with domain assignments equivalent to random, indicated by ARIs around 0. MNMST specifically
exhibits a sharp performance drop from side lengths 4 to 6, and does not even produce any output for
side lengths 9 and 10. The only method showing a similarly abrupt performance drop is CellCharter,
with a rapid decrease in ARI from spot side lengths 1 to 2. However, the performance of CellCharter
then stabilises at a mid-range ARI value. BANKSY, on the other hand, does not drop in performance
from one resolution to the next. Instead, it declines in performance almost monotonically from very
small aggregations, and ends up with negligible ARIs from side length 7. Many other methods, from
SCAN-IT and SpaDo to GraphST, also show similar gradual performance deterioration from small
spot sizes to BANKSY. Unlike BANKSY and MNMST, but like CellCharter, the decrease in ARI of
these methods flattens out at about 0.5.

On the other hand, methods like TACCO, PAST, and STAGATE decline only very gradually
upon the first aggregation of cells into spots. Only for under Visium-like resolution, that is, side
lengths greater than 5, their performance starts to decline more noticeably. Select methods, notably
SpiceMix, BASS, and DeepST, uphold a very strong performance with ARIs close to 1 throughout the
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Figure 3.2: Performance dependence on resolution. a, The base data, which is subsequently
modified to investigate the resolution dependence, is generated with single-cell resolution. One example
domain layout is shown. b, Examples of binned data, generated to test resolution dependence, at spot
side lengths 2, 5, and 10. ¢, Spearman correlation of ARI and PAS as a function of the spot side
length. The correlation is aggregated over all methods and domain layouts by mean. d, Performance
dependence on resolution as parametrised by the spot side length, for all methods. The variance
per datapoint is over the different domain layouts. Methods are sorted by the difference in their
performance between “big” spots (side length > 6) and “small” spots (side length < 3).
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entire resolution range. An interesting behaviour is exhibited by the baseline methods scanpy, Seurat
and the respective smoothed implementations, as well as MERINGUE, SpaGCN, and SpatialMGCN.
These methods manage to actually improve their performances, in some cases to close to perfect ARIs,
upon the first aggregation of cells into spots. Subsequently, the performance stays high as the sample
resolution decreases.

The effect of changing resolution may be decomposed into an interplay of two main factors. First,
binning multiple cells into one spot leads to diminishing domain sizes, as measured both by the
absolute number of spots in each domain and in terms of domain diameters or widths in spot units.
For example, consider a domain consisting of 400 spots, arranged in a 20-spot-wide layer, at a given
spot side length of a. At a smaller resolution, defined by spot side lengths of 2a, this domain will
contain only about 100 spots, in a layer that is only 10 spots wide. Thus, the aggregation of increasing
numbers of cells in each spot causes a decrease in domain sizes. Additionally, this aggregation can
itself be viewed as a kind of spatial smoothing operation, converting transcriptional heterogeneity
between neighbouring cells to relative spatial homogeneity. Both of these factors will be considered
in more detail in later sections.

3.3.2 Effect of changing the number of genes

As a second technological parameter, we use our semi-synthetic data to investigate the effect of chang-
ing the number of genes on method performance. Interestingly, several methods do not produce any
domain output on samples with small gene numbers (Fig. . SpatialMGCN, as the most extreme
example, only successfully outputs domain labels on samples with over 10’000 genes. SCAN-IT com-
pletes runs on samples down to a gene panel size of about 1000 genes, SpatialPCA and SpiceMix down
to 200 genes, and some additional methods only fail completely on the smallest gene panel size. These
failures do not necessarily correlate with methods failing on real data with small gene numbers, such
as the osmFISH and MERFISH datasets.

For the methods which do successfully run over the entire range of gene numbers, the difference
between methods does not amount to a total trend reversal, as in the case of the resolution dependence.
Rather, while no methods are positively affected by diminishing gene numbers, they differ in the extent
of the resulting performance decrease.

UTAG and Vesalius, along with MERINGUE, are only minimally affected at an overall low per-
formance level. Methods like SpatialPCA and GraphPCA also do not exhibit a strong change due
to the number of genes, though, as mentioned above, they do not produce any domain labels for the
smallest samples. CCST, SpaDo, and BASS, among others, start out with excellent performances of
ARIs close to 1 and then decrease monotonically towards smaller panel sizes. These methods end up
at mid-range ARIs around 0.5 at the smallest gene numbers. Other methods showing very good per-
formances on the full transcriptome before downsampling, like GraphST, STAGATE, and MNMST,
decline gradually in performance to about zero ARI around gene panel sizes of 100. Besides the meth-
ods exhibiting a monotonic performance decrease, for some methods, including TACCO, CellCharter,
and BANKSY, performance drops sharply at “cutoff” gene panel sizes. While these methods perform
highly competitively on samples with large numbers of genes, the domains produced at smaller gene
numbers are equivalent to random label assignments. Finally, an interesting behaviour is exhibited by
a small group of methods encompassing SpaGCN, SpaceFlow, and notably the spatial baseline scanpy-
smooth. These methods do not have their peak performances on samples with the full transcriptome
before downsampling, but instead show performance maxima at 500-1000 genes.

The full performance overview of all methods is shown in Fig. All in all, while most methods
decline in performance on samples containing decreasing numbers of genes, the extent and abruptness
of this decline vary widely.
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Figure 3.3: Performance dependence on number of profiled genes. Method performances in
terms of ARI are shown as a function of the number of genes, going from smaller gene panels to
full transcriptome profiling. The x axis is on a log scale. Methods are sorted by the difference in
their performance between “many” profiled genes (number of genes > 5000) and “few” profiled genes
(number of genes < 500). Variance per datapoint is over the shapes.

3.3.3 Effect of changing count matrix sparsity

The third technology characteristic we investigate using our semi-synthetic data is capture efficiency,
using the degree of count matrix sparsity as a proxy. The sparsity is varied between 85%, corresponding
roughly to the original sparsity of the single-nucleus RNA-seq data, and 99%.

At this highest level of sparsity, only 1% of all counts in the matrix are nonzero. While SpatialPCA
and SpiceMix do not produce any output on these samples, a considerable number of methods still
reach nonzero ARIs (around 16 of 30, see Fig. . Notably, GraphPCA, MNMST, and BASS result
in ARIs greater than 0.5 at a sparsity of 99%. Besides these methods, SpatialPCA, SpaceFlow and
SpaDo are among the least and last affected by the rising proportion of zeros. Notably, MNMST,
SpaceFlow, and SpaDo only start to decline in performance at over 95% sparsity. Among the methods
that are more strongly affected by sparsity levels are BayesSpace, TACCO, SpiceMix, ADEPT, and
PAST. While they perform highly competitively at low sparsity, their ARIs diminish starting at
about a sparsity of 90%, and at the highest sparsity levels, these methods end up producing domains
equivalent to the results of random label allocation. Similarly, the performance of the scanpy-based
baselines, along with SpatialMGCN, SpaGCN, PRECAST, and MERINGUE, decreases to negligible
ARIs for high sparsity. Interestingly, Seurat and the corresponding spatial baseline Seurat-smooth are
only barely affected by even very high sparsity. Methods like STAGATE and PAST exhibit a plateau
in method performance at an ARI around 0.5, which will be discussed in more detail in a later section.

Thus, Fig. 3.4 shows that there are large performance differences between methods concerning
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Figure 3.4: Performance dependence on count matrix sparsity. Method performances in terms
of ARI are shown as a function of the zero percentage of the expression matrix. Methods are sorted
according to their mean performance. Variance per datapoint is over the shapes.

the effect of an increasingly sparse expression matrix. Methods like BASS, MNMST, SpaceFlow, and
SpaDo stand out for their robustness with respect to high dropout levels.

3.4 Impact of transcriptional similarity and heterogeneity

So far, we have investigated the impact of data characteristics determined by the sequencing or imag-
ing technology. In this section, we analyse instead the influence of two cell type level perturbations
(type I and type II) on method performance. As described in Sec. in perturbation type I, the
domain-defining cell types are gradually modified to increase their similarity. This perturbation can be
interpreted as a spectrum of cell types with differing similarities, or as progressive technical contami-
nation through ambient RNA or smearing during an experiment. The other count-level variation we
investigate, termed perturbation type II, consists of the addition of cells of a different type throughout
the affected domains. This corresponds biologically to the infiltrating behaviour of immune cells, or
to cell migratory behaviour during development. Generally, it simulates transcriptional heterogene-
ity of domains as caused by differences in the cell type composition. A perturbation level of 100%
corresponds, in both perturbation types, to zero clustering signal being available to the methods.

The following sections describe the application of these count-level domain similarity modifications
on two different levels. We primarily investigate tissue-level perturbation, where all domains are
modified to increase overall similarity within the entire tissue. As a further analysis step, we examine
the effect of pairwise domain similarity by perturbing two domains at a time, keeping all other domains
fixed.
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3.4.1 Whole-tissue perturbations

Just as we did for the previous technological parameter investigations, we create a basic dataset with
fixed assignments of cell types to domains, containing samples from all shape configurations. Aiming
to perturb the entire tissue, we choose an additional “noise” cell type from the group of cell types
selected for investigation previously (see Fig. ,h). Counts originating from cells of this type are
added as a uniformly distributed background signal to all cells (type I) or replace a proportion of all
cells throughout the tissue (type IT). We create samples with “noise” count or cell proportions ranging
from 0 to 100%.

First, we investigate the performance behaviour of all methods under increasing proportions of the
perturbation type I. Most methods exhibit a gradual decline in ARI scores at increasing type I levels
(see Fig. ) In particular, BASS, ADEPT, and TACCO stand out with negligibly declining ARIs
up to perturbation levels of 60%. Other methods decrease in accuracy from the lower proportions, like
Spatial PCA, SEDR, and PAST, or from the first added perturbation, like SpaceFlow, STAGATE, and
GraphST. As a useful and successful sanity check, methods deteriorate in accuracy down to random
label assignments for the highest proportion levels. Still, most methods which start out with ARIs
close to 1 at zero perturbation manage to attain ARIs around 0.5 at very high perturbation levels of
up to 80%. BASS, ADEPT, and SpatialPCA, the latter of which does not produce any output on
100% perturbed samples, still perform very competitively at 90% type I perturbation. Only select
methods beside the spatial and non-spatial baselines, like MNMST, CellCharter, and DeepST, assign
labels completely arbitrarily, indicated by ARIs around 0, when there is still some amount of signal
to be found within the gene expression. Generally, for the majority of methods, the ARI declines in
a concave function of the perturbation proportion.

Additionally, we evaluate the methods using the unsupervised PAS metric. In the real datasets
investigated in the previous chapter, as well as in our systematic investigation of the effect of resolution
changes using semi-synthetic data, we had found a strong anticorrelation of ARI and PAS on high-
resolution data (see Figs. and ) Since we are generating semi-synthetic data with single-cell
resolution for this investigation of count-level perturbations, we expect to see this anticorrelated
behaviour here. Indeed, increasing PAS levels appear to mirror the ARI decline of many methods, like
CellCharter, SpatiaMGCN and MERINGUE (see Fig. [3.5h). However, interestingly, a large group of
methods, encompassing e.g. SpaDo, CCST, and BANKSY, exhibit PAS values close to zero throughout
the range of perturbation levels. In fact, we are able to distinguish three archetypal “modes of method
failure” based on the interplay of ARI and PAS, illustrated in Fig. 3.5b. In mode A, exhibited by
methods like SpaGCN, SC-MEB, PRECAST, and SpatialMGCN, a performance decrease measured
by ARI goes along with an increase in PAS. Methods failing in mode A tend to create visually noisy
domains, blurring region boundaries. The second failure archetype, mode B, encompasses methods
for which PAS stays low even at high levels of added noise, but which exhibit strictly monotonically
decreasing ARI scores. In this failure mode, methods like SpatialPCA, SCAN-IT, SpaDo, and CCST
tend to mislabel spatially contiguous groups of spots, leading to a fragmentation of the tissue. Other
methods with consistently low PAS, like BASS, STAGATE, and GraphST, exhibit a sharp performance
drop followed by a plateau, characterised by ARI scores around 0.5-0.6, from which they again drop
off sharply to zero ARI. This failure style indicates a bit flip mode of label misassignment, where an
entire domain is mislabelled above a cutoff perturbation level, usually assimilating to a neighbouring
domain. Many methods exhibit combinations of these failure modes, with particularly methods like
DeepST, SpaceFlow, and MNMST showing combinations of modes A or B with mode C.

Notably, the plateau observed in methods exhibiting mode C failure lies around the maximal
ARI values attained by the baselines, among other methods. These less well-performing methods
reach a maximal ARI of around 0.5 under zero-perturbation conditions, and in many cases do not
decline further in performance until perturbation levels around 50% (see Fig. ) To elucidate
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Figure 3.5: Effect of type I perturbation (increasing transcriptional similarity). a, ARI and
PAS dependence on the level of underlying “ambient RNA” noise (generated by perturbation type I).
This perturbation is generated through the expression of each cell representing a convex combination of
original counts with those originating from a noise cell type. Methods are sorted by mean performance,
and the variance per datapoint is over the shapes and cell assignments. b, Example performances of
methods exhibiting three different archetypal failure modes. Method output is shown for the methods
highlighted in red, at different type I perturbation levels. Perturbation levels of the shown examples
are chosen to represent the progression per method. ¢, Ground truth label annotations for all shapes,
along with example results of BASS at 80% type I perturbation and Seurat at zero perturbation.
The light blue and coral domains in the ground truth, defined by cell types Ex_Rorb_Col8al and
Ex_Rorb_Col8al_Cntnap4 (see Fig.|3.1g), are indistinguishable in the two example outputs.
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this phenomenon, we examine the examples of BASS, as a consistently well-performing method which
exhibits a brief plateau in ARI at high perturbation proportions, and the baseline method Seurat
(Fig. ) Considering the example outputs of Seurat on the unperturbed samples and BASS at 80%
type I perturbation, it becomes apparent that the same domains evade detection in both methods.
Specifically, the methods which are indistinguishable to these methods are defined by the same cell
types across all the shapes we investigate (indicated in light blue and orange in the top row of Fig. )
These are the highly similar cell types Ex_Rorb_Col8al and Ex_Rorb_Col8al_Cntnap4, clustering
together both in the dendrogram and the UMAP representation shown in Fig. [3.1jg,h.

Next, we evaluate the effect of the type II perturbation on method performances. Interestingly,
when applied to tissues with proportions of cellular heterogeneity of just 20%, only a small group
of methods are able to hold their performance level (Fig. ) The majority of methods decline in
accuracy immediately upon the addition of any level of type II perturbation. Additionally, we do not
observe the tendency toward the “bit flip” failure mode C that we observed on perturbation type I.
Rather, more methods exhibit mode A style failures, increasing in PAS gradually as they decrease in
ARI. Generally, in the majority of methods, PAS values are significantly higher on samples affected
by type II, rather than by type I perturbation (Fig. ) Specifically, the difference is significant for
all methods with non-negligible PAS (thus excluding UTAG, TACCO, BASS, SpaDo, and Vesalius)
except SpaceFlow and MERINGUE. As expected, the difference is highly significant for the non-
spatial baseline methods, which delineate domains purely based on transcriptional identity. On the
other hand, methods like ADEPT, BayesSpace, and PAST also result in significantly higher PAS
values on type II- than on type I-perturbed samples. Accordingly, while these methods perform quite
competitively under type I perturbation, they are strongly affected by even low levels of type II
perturbation (compare Figs. and ) In some extreme cases like GraphST and DeepST, the
performance measured by ARI follows a convex function of perturbation proportion.

A few methods stand out for their performance on samples generated with perturbation type
II, namely BASS, TACCO, SpaDo, SpaceFlow, SCAN-IT, and SpatialPCA. These methods are able
to still attain ARIs around 0.5 for high perturbation levels of 80-90%. Notably, BASS and SpaDo
do not exhibit a visible performance decline up to 70-80% of type II perturbation levels. Further,
interestingly, SpaceFlow and SCAN-IT outperform most other methods on this perturbation type (as
evident by the method sorting in Fig. ), whereas on type I perturbation, their performance was
average within the set of all methods.

Overall, the investigations of tissue-level perturbations of types I and II reveal the different effects of
these perturbations. Most methods are immediately affected negatively in their domain identification
performance by infiltrating cells (type II perturbation), while transcriptionally highly similar domains
can be distinguished. When applied to domains defined by progressively more similar cell types, many
methods exhibit a “bit flip” failure style, unable to distinguish pairs of domains after a similarity cutoff.
Few methods excel on both perturbations, namely BASS, TACCO, SpatialPCA, and SCAN-IT.

3.4.2 Pairwise domain similarity

Following up on the phenomenon of “bit-flip” failure, and the domains indistinguishable to multiple
methods being defined by the same cell types (Fig. ), we investigate the effect of pairwise domain
similarity in more detail. Concretely, as described in Sec. we gradually increase the pairwise sim-
ilarity of all domain pairs separately. We consider two types of domain similarity, defined analogously
to the previously discussed perturbation types I and II. The type I analogue is defined by what we call
“expression mixing”, that is, counts in two domains are gradually mixed through convex combination.
An alternative formulation of domain similarity, analogous to the type II perturbation, can be defined
through “cell shuffling”, whereby cells from both affected domains are gradually intermixed, leaving
individual cell expression intact.
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Figure 3.6: Effect of type II perturbation (increasing cellular heterogeneity). a, ARI and
PAS dependence on the level of “infiltrating cells” noise (generated by perturbation type II). Noise
proportion in this case corresponds directly to the proportion of noise cells inserted in the tissue.
Methods are sorted by mean performance, and the variance per datapoint is over the shapes and
cell assignments. b, PAS values on noise types I and II, aggregated over noise levels, excluding zero
noise and 100% noise. Methods are sorted according to the mean PAS across perturbation types.

Significance values for PAS values on type II being higher than on type I are calculated using a one-
sided Mann-Whitney U test.
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Domain-wise evaluation strategy and development of a pairwise confusion metric

As we are now not investigating tissue-wise perturbations anymore, we are also primarily interested in
domain-level effects. In order to evaluate method performance on this more granular level, we need to
consider a metric that is suited to evaluating the accuracy of individual clusters, rather than an entire
clustering result. For this purpose, we utilise the harmonic mean of precision and recall, commonly
called the F} or simply F score, defined as

P <1recall1 + precision ! > ! 2TP (3.2)

2 ~ 9TP + FP + FN

We utilise the scikit-learn implementation of the F} score, which treats multi-label input as a collection
of binary problems [219]. Thus, TP (true positives), FP (false positives) and FN (false negatives) are
defined on the level of individual domains, and the metric does not distinguish between erroneous
assignments to different labels.

However, besides the evaluation of domain-level accuracy, we are specifically also interested in
disambiguating these misassignments, as these will indicate to which domain methods erroneously
assign spots, fragments or entire other domains. In other words, we are aiming to evaluate which
domains cannot be distinguished (in the following, this is sometimes also referred to as indicating
which domains “are confused”). We therefore define a “confusion” metric between domains a and b

as follows: ) .
a . NJ
confusion = r‘; + T%, where r] = — = (3.3)
Ta + 1 >V

where Ng is the number of cells in ground truth domain ¢ assigned label j. The quantity rg corre-
sponds to the recall when ¢ = j. The confusion of a given pair of domains is thus 0 when no cells
are mislabelled, and values close to 1 signify “total confusion” or no distinction between domains. In
special cases, namely when more spots are mislabelled than labelled correctly, the confusion according
to this definition can exceed 1. If there were only two domains involved in the system, this configu-
ration would simply result in the label correspondence to the ground truth flipping to maintain good
agreement. This is a consequence of the maximum weight matching algorithm used to calculate label
correspondences, as described in Sec. 2.2.3] Confusion values over 1 are thus only possible because
our tissue layouts always consist of at least three domains, so there always exists at least one further
domain ¢ to which cells can be erraneously assigned. The best overall label correspondence can thus
result in the above-described configuration of more mislabelled than correctly labelled spots, namely
in the edge case of very small domains. To avoid these outlier confusion values, we cap the confusion
metric at a “total confusion” of 1.

Results of pairwise perturbations

Looking first at the cell shuffling perturbation, and stratifying the £} results by domain involvement in
the perturbation, we can distinguish three method behaviours (shown in Fig. ,b). Tab. details
the methods assigned to each behavioural group. Methods in group 1 start out able to distinguish all
domains, with only the F) scores of perturbed domains subsequently diminishing. The baseline-like
group 2 starts out at mean F} values around 0.8, confusing the two left-most domains illustrated in
Fig.[3.7b. These domains, along with the corresponding ones confused in the other shapes, are defined
by the abovementioned highly similar cell types Ex Rorb_Col8al and Ex _Rorb_Col8al_Cntnap4 (see
Fig. ,h). Even still, similarly to group 1, with increasing proportions of cell shuffling, methods
from group II decline in their detection performance of the affected domains, whereas the unperturbed
domains continue at similar detection levels.

The last, and most interesting, group of methods is group 3, encompassing SpatialPCA, SEDR,
BANKSY, GraphST, and Vesalius. These methods start out at similar average Fj scores as the
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Group 1: BASS, STAGATE, TACCO, ADEPT, PAST, SpiceMix, MNMST, DeepST, CCST,
BayesSpace, SpaDo, SpaceFlow, CellCharter

Group 2: GraphPCA, SpaGCN, SCAN-IT, SC-MEB, Seurat-smooth, scanpy-smooth, scanpy,
Seurat, PRECAST, SpatialMGCN, UTAG, MERINGUE

Group 3: SpatialPCA, SEDR, BANKSY, GraphST, Vesalius

Table 3.2: Method groupings based on performance behaviour upon cell shuffling. The
groups exhibit distinct behaviours in Fy score, as shown in Fig. 3.7h,b.

baseline methods, if slightly lower. However, with increasing levels of perturbation, while the F; score
of the perturbed domains declines as expected, the detection of domains which are not perturbed
increases substantially. Thus, the ability of these methods to recognise domains is affected directly
by cell-level heterogeneity, with added heterogeneity in one domain aiding in its distinction. In the
example of SEDR shown in Fig. [3.7b, the method is able to distinguish the two middle domains only
when 25% of cells are shuffled between the affected domains, at which point it proceeds to confuse
domains the second and fourth stripes.

For a different angle of evaluation, we consider instead the confusion metric, stratified by whether
the perturbed domains are defined by the a priori highly transcriptionally similar cell types (Fig. )
As indicated above, we see the baselines, along with several other methods like SpaGCN, DeepST,
and SpatialPCA, confusing the transcriptionally similar domains independently of any additional
perturbation. A newly visible, striking phenomenon is the minimum confusion describing a smooth
monotonic function of perturbation, exhibited in methods such as DeepST, STAGATE, SpiceMix, and
MERINGUE. This minimum curve coincides broadly with the confusion of not highly similar domains
shown by baselines. Additionally, while for the baselines, PRECAST, and SpatialMGCN, among
others, the smooth increase in minimum confusion is close to linear, in some cases, such as SpaceFlow,
CCST, and GraphPCA, the confusion remains close to 0 until about 25% and subsequently increases
steeply. Only BASS, UTAG, TACCO, and Vesalius do not exhibit this smooth minimum behaviour
at all. UTAG, TACCO, and Vesalius in fact still display some instances of zero confusion at 50%
cell shuffling, with this proportion corresponding to zero signal distinguishing the affected domains.
This is thus attributable to a lucky guess and their inherent tendency to smooth domains. BASS, on
the other hand, stands out as the only method that does not result in incremental confusion values,
indicating its high performance and strict adherence to the bit flip failure mode described in Sec.[3.4.1

In the case of the expression mixing perturbation, however, many methods show more bit flip-like
behaviour (Fig. B.7d). In fact, the confusion values exhibited across the range of perturbation pro-
portions are nearly exclusively binary for several methods. Besides BASS, this includes, for example,
MNMST, STAGATE, and SEDR. However, again, we also see that many methods confuse the a priori
highly transcriptionally similar domains before the others. The onset of confusion of the other, tran-
scriptionally more distinct domain pairs varies widely between methods. TACCO, BASS, ADEPT,
and CCST stand out for zero confusion of those domain pairs before 25% perturbation. In general,
more methods are not affected by this perturbation until higher perturbation proportions compared
to the cell shuffling.

Generally, this investigation of pairwise domain effects compounds the tissue-wide observations of
the previous section. Most methods are more immediately affected by cell shuffling than they are by
expression mixing, in which case many methods exhibit a “bit flip” failure style.

3.5 Effect of domain shape and size

The last type of variation we investigate using semi-synthetic data is the size and shape of the individual
domains. We evaluate the effect of domain size, first focusing on the thickness of laminar domains,
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Figure 3.7: Effect of increasing pairwise domain similarity. a, Mean F} scores of all domains
upon cell shuffling, stratified by whether the domain is affected by the perturbation. Methods are
aggregated into the groups indicated in Tab. b, Examples of method behaviours when shuffling
cells between the red and yellow domains as annotated by STAGATE at a perturbation proportion of
0. Method groups are the same as in a. ¢, d, Confusion upon increasing perturbation levels, stratified
by the similarity of the cell types defining perturbed domains. ¢, Increasing cell shuffling. d, Increasing
expression mixing.
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Figure 3.8: Effect of domain thickness, transcriptional similarity, and adjacency. a, Example
tissue configurations showing the reference domain in blue (left domain), and purple and yellow do-
mains of changing thickness. Configurations are shown for both settings of adjacency to the reference
domain; that is, both examples of adjacent highly similar (purple, left column) and dissimilar (yellow,
right column) are shown. b, F} scores as a function of domain thickness, stratified by transcriptional
domain similarity and adjacency to the reference domain. Domain thickness is indicated by a percent-
age of the total tissue width. Methods are ordered according to mean performance, and the variance
per datapoint is over five seeds.

and perform an additional analysis on circular domains of different diameters. Then, we compare
method performances on tissues with different, archetypal domain shapes and layouts.

3.5.1 Laminar layer thickness

To investigate the effect of domain size, we create a range of semi-synthetic samples with three laminar
layers (Fig. [3.8h). Starting from a thin middle layer, we shift the boundary between the middle and
right layers gradually towards the edge of the sample, thereby simultaneously varying the thickness of
two domains. Additionally, we perform this experiment for two distinct assignments of cell types to
domains, as shown schematically in Fig.[3.:8h. In both modes, we assign the cell types Ex_Rorb_Col8al,
Ex_Rorb_Col8al_Cntnap4, and Ex_Slc30a3_Otof, where the first two cell types are highly similar
(Fig. ,h). Starting from this set of cell types, we fixedly assign cell type Ex_Rorb_Col8al to
the left, unchanged domain. The domain assignments of the other two cell types are swapped between
the middle and right domains, both of which vary in thickness. This allows us to investigate how high
transcriptional similarity modulates the effect of domain thickness. On top of that, it also enables the
evaluation of adjacency effects between these highly similar domains. In order to increase the statis-
tical power of the analysis, we create five samples for each tissue configuration, varying the random
state underlying the assignment of cells to locations within the data generation pipeline.

We evaluate method performance using the Fj score of the domains with changing thickness.
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Additionally, we stratify the results by both transcriptional similarity of the underlying cell type to
that of the reference domain and by the adjacency to that same domain. Methods are affected by the
domain thickness in very distinct patterns (Fig. ) BASS, ADEPT, TACCO, SpiceMix, SpaceFlow,
and SCAN-IT are barely affected. Some of these methods might show a dip at the smallest domain
sizes, but all domains remain detected with Fj scores above 0.76. For a different set of methods,
consisting of DeepST, SpatialPCA, STAGATE, PAST, and MNMST, the dip at the thinnest domain
becomes a more pronounced or even total total loss of detection. While these methods are only
affected for the thinnest domains, GraphST, SEDR, and CCST decrease abruptly in performance
already at larger domain thicknesses. Interestingly, for most of these methods, F} scores near zero for
the thinnest domain only occur when that domain is highly transcriptionally similar to the reference.
Only MNMST and CCST also appear to be affected in their identification of the transcriptionally
distinct domains.

SpaDo and CellCharter decrease less abruptly in F} score when applied to thinner domains, and
the effect is not conditional on the underlying transcriptional similarity levels. Another group of
methods exhibit more complex nonlinear dependencies on the domain size, like BayesSpace, SC-MEB,
GraphPCA, and BANKSY. The baseline methods and PRECAST show a gradual change in the
detection of the transcriptionally similar domains. Similarly, SpaGCN, PRECAST, SpatialMGCN,
and MERINGUE gradually decrease for the similar domains, but these methods, in contrast to the
previous baseline-like group, are also affected on the dissimilar domains. Finally, UTAG shows a
unique behaviour based exclusively on domain adjacency, whereas Vesalius is strongly affected by the
domain thickness irrespective of adjacency and similarity, and is only able to distinguish domains from
an approximate thickness of one-fourth of the tissue size in our experiment.

3.5.2 Size of circular domains

To corroborate our evaluation of size effects in domain identification performance in laminar tissue
configurations, we next investigate size effects in circular domains. To that end, we create two con-
figurations of semi-synthetic tissues containing three circular domains (“blobs”). In configuration I,
blob sizes are kept roughly equal, while in the other configuration II, we vary the sizes of the result-
ing domains by indicating different dispersion parameters for the underlying clusters generated by
scikit-learn. The resulting configurations are shown in Fig. [3.9h.

In the previous section, we found that the underlying domain similarity has a strong effect on the
detection of small domains. Therefore, we devise a strategy to avoid any bias introduced by the cell
type assignments in evaluating the size effect. Specifically, we permute the possible assignments of
cell types to domains and evaluate methods on all permutations, finally aggregating the results.

First, we evaluate the methods by means of the Fj scores attained on each blob across both
configurations (Fig. ) Indeed, configuration II shows a considerable size effect, with larger blob
sizes aiding detection across all methods. The biggest circular domain, termed blob A (see Fig. ),
is consistently detected with F} scores over 0.8 by all methods except for Spatial MGCN, Vesalius,
MERINGUE, and UTAG. The scores decrease for the mid-size blob B, and the smallest domain, blob
C, has a median detection of only F; = 0.44. Only BASS, ADEPT, and TACCO reach Fj scores of
over 0.61 on this smallest domain.

However, by a closer look at the Fj score results on the equal-sized tissue configuration I, it soon
becomes clear that the F-score is a biased evaluation metric for our purposes here (Fig. , top).
Namely, in the vast majority of methods, the F} score of blob B, in configuration I, exceeds the scores
of the other domains. This can not be a size-based effect, considering that the three blobs A, B,
and C are designed to be of approximately equal size. To elucidate this phenomenon, we perform
a thorough investigation of the domain segmentations found by different methods on both tissue
configurations. Finally, we found that the tendency towards favourable evaluation of blob B results
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Figure 3.9: Effect of domain size, evaluated in circular domains. a, Example samples showing
varying tissue configurations consisting of roughly circular domains. Configuration I consists of equal-
sized domains, while the domains in configuration II are of varying diameters. b, F} scores per method
for each circular domain, corresponding to the domains shown in a by colour. Bar plots are shown for
configuration I with equal domain sizes (top) and configuration B with varying domain sizes (bottom).
Methods are ordered from left to right by descending average ARI, calculated by the mean across both
shapes of median performances. The variance per bar plot is over different assignments of cell types
to domains. ¢, Mean domain-wise confusion per method for each circular domain, shown as in b. The
domain-wise confusion is given by the maximal pairwise confusion involving the domain in question.
Method order is the same as in b.
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from an underlying bias in the harmonisation procedure undertaken to ensure label comparability.
Concretely, considering integer ground truth labels a and b, each assigned to n, and ny spots such that
ng = ng but ng > np, putative domain assignments that mix two ground truth domains completely are
preferentially assigned label a. In the equal-size domain configuration, we have the case of ng = 336,
np = 396, and nc = 315, such that a method output domain containing all spots from ground truth
labels A and B will be assigned label A. This leads to a disproportionate exaggeration of any size
effects present.

To circumvent this bias, we focus instead on the evaluation using our confusion metric, as in-
troduced in Sec. We calculate the pairwise confusion between all domains 4,7 and define the
per-domain confusion as the maximum of its pairwise confusion

confusion; = m;zx confusion, j, (3.4)
JF1
where confusion;; is calculated between domains 7 and j. Taking the maximum here is justified because
we are not interested in differentiating the number of domains being confused. That is, whether one
domain is confused with one or multiple others is irrelevant for our current purpose. Instead, we view
the per-domain confusion as a kind of “winner takes it all” metric - for a domain to be fully confused,
it is sufficient for it to be indistinguishable from one other domain.

Using this confusion-based approach, we evaluate all method performances and first investigate
the baseline methods. We find that the baseline methods now cease to show a size-specific effect in
the tissue configuration II (see Fig. ) This further confirms the validity of our analysis, as we do
not expect domain size to impact the behaviour of purely transcriptome-informed clustering methods.
As an additional validation in the case of equal-sized blobs generated in configuration I, we evaluate
the variation over the confusion of the different blobs. This variation appears randomly distributed
between all methods and is thus attributable to chance effects.

Finally, considering tissue configuration II with varying size circular domains, evaluating the impact
of domain size through the lens of the per-domain confusion shows a less striking effect than what
we found using the Fj score. However, still, nearly all methods exhibit increasing confusion with
decreasing domain sizes, notably for the smallest blob C domain. While many methods don’t show
a striking difference in confusion between differently sized domains, the only method that does not
exhibit the highest confusion for the smallest domain is SpatialMGCN.

Over both the analyses with F} score and with our per-domain confusion metric, we thus see a
strong effect of the domain size. The most pronounced decreases in detection are seen for “small”
domains, with less pronounced effects between mid-size and large domains. We are also able to
corroborate some findings from the size evaluation based on layered domains. Specifically, methods
showing abrupt performance decline for thin domains in the layered configuration, like SpatialPCA,
STAGATE, PAST, and MNMST, show the same confusion levels for the large and mid-size blobs A
and B, and only increasingly confuse the smallest blob C.

3.5.3 Domain shape and tissue configuration

Finally, we want to evaluate whether the accurate identification of domains is affected by the domains’
shapes and the tissue layout more generally. To this end, we create semi-synthetic samples mimicking
four different archetypal of tissue layouts. Specifically, we generate individual circular, layered, and
concentric circular domains, and a more complex, interlocking domain configuration, all shown in
Fig. [3.10h. As with the previous evaluation of domain size in circular domains, we aim to minimise
the bias introduced by cell type assignments do domains. To this end, we again permute over all
possible cell type-to-domain assignments and average the results.

Since we are here again interested in whole-tissue performance rather than domain-specific effects,
we evaluate method performances using the ARI score. No perturbations are applied to the tissue in
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Figure 3.10: Effect of domain shapes and tissue configurations. a, Example samples showing
the different tissue configurations examined in this experiment. b, Top (bar plot), mean ARI scores
per method, averaging over the different tissue layouts (shapes). Bottom (heatmap), difference in
ARI to the mean per method. Mean differences are indicated by colour, where positive values (green)
indicate better-than-average method performance on a given shape. The colour scale is capped at the
range of -0.11 to 0.11 for better visibility; larger differences are indicated within the heatmap by value.

this analysis, leading most methods to perform very well on all samples, as shown by the mean ARI in
Fig. ) Still, we investigate the differences in ARI on each tissue layout to disentangle potential
shape effects.

Interestingly, most methods perform the best on the layered configuration. This improvement
over the mean, and the general effect of tissue layout on method performances, is modest in most
cases, ranging within ARI differences of -0.1 to 0.1. The most strongly affected methods within this
range of effects are DeepST, SpaceFlow, SCAN-IT, and SpaDo, which perform best on layered tissues,
and CCST, which performs decidedly worse on layered configurations than on all other shapes. In
contrast, Vesalius and particularly UTAG show significantly larger effects, markedly favouring the
laminar, layered tissue configuration. Specifically, they outperform their average performance by 0.16
and even (.49, respectively, when applied to layered tissue.

While the Vesalius and UTAG show a strong preference towards finding layered domains, most
other methods only show small effect sizes concerning domain shape and tissue layouts.
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Chapter 4

Additional results from secondary
evaluation criteria

This last chapter presents additional analyses from the benchmarking pipeline introduced thus far,
focusing on secondary evaluation criteria. Specifically, I describe how we evaluate runtime, memory
usage and usability of the methods, and show results from these investigations.

4.1 Runtime and memory benchmarking

The evaluation of runtime and memory usage is an important part of method benchmarking, comple-
mentary to performance reporting. The following sections describe the setup enabling us to perform
this analysis, and show runtime and memory usage results across methods and different datasets.

4.1.1 Evaluation setup

Having implemented a comprehensive Snakemake-based method benchmarking workflow directly en-
ables us to measure the runtime and memory usage of the methods on each analysed sample. Specif-
ically, Snakemake rules can take the benchmark directive, configuring jobs resulting from these rules
to directly output wall clock time and memory usage to a user-specified text file.

Analysing method runtime and memory usage on the real data samples included in the benchmark
provides general insights into method behaviour. Additionally, we are interested specifically in the
evaluation of method scalability, in terms of these secondary evaluation measures, with respect to the
number of cells or spots. To that end, we utilise the SRTsim simulator introduced in Sec. to
generate samples of varying cell numbers [214]. Specifically, we utilise the de novo mode of data gen-
eration, simulating the expression of 500 “signal” and 500 “noise” genes. The simulator is configured
to create random cell locations within a square tissue layout, and we define four rectangular layers as
spatial domains. Within that layout, we vary the number of locations in the tissue between 2000 and
100°000. Additionally, to increase statistical power, each sample size is generated for three random
seeds. The scalability experiments were evaluated on an AMD Ryzen Threadripper 3990X 64-Core
Processor @ 4.3GHz, equipped with a Nvidia GeForce RTX 3090 GPU. For the scalability evaluation,
differently to the experiments on real and semi-synthetic data, methods that have the capability of
utilising GPUs were configured to do so.

4.1.2 General runtime and memory results

As a first overview, we evaluate the runtime and memory usage of all methods on the real datasets.
We find that methods range widely in both quantities, with runtimes between under 20 seconds and
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close to 8 hours (Fig. [.1p), and memory usage between barely over 200 MB and almost 100 GB
(Fig. [4.1p).

Generally, it is apparent that both runtime and memory usage are affected across methods by
the size of the count matrix. This size is not only determined by the number of cells or spots, but
importantly also by the number of profiled genes. Particularly, memory usage, but also runtimes on
datasets from the Visium and Slide-seq technologies are significantly increased. Interestingly, Vesalius
stands out with both the longest runtime and the highest memory usage of any method on any dataset,
with its performance on Visium—Fu. This dataset, in contrast to the other Visium dataset, exhibits
a relatively complex domain structure and more ground truth domains than any other dataset we
include (see Appendix B).

In terms of the runtime, CCST takes an average of close to 6 hours to run on the high-resolution
osmFISH and MERFISH datasets, and MNMST uses a similar amount of time on the Slide-seq data.
Considering the memory usage, ADEPT takes about one order of magnitude more than the average
method, across all datasets. In terms of fast runtimes and low memory usage, no method clearly stands
out. However, a number of methods keep their runtimes under five minutes consistently, and while
memory usages are increased across the board for the Visium and Slide-seq datasets, the majority of
methods still use under 5 GB of memory.

4.1.3 Scalability

Following up on the analysis using real data, we aim to isolate the effect of an increased number of
cells or spots. To this end, we evaluate method performances on simulated samples encompassing a
range of sizes. For better distinguishability of individual method trends, we split the methods into
four constituent groups based on slope quantiles in both runtime and memory. There is a tradeoff
between memory and runtime for some methods, though a large subset of methods shows either steep
or shallow increases across both measures.

Among the methods with both good runtime and memory scaling are ADEPT, BANKSY, CellChar-
ter, PAST, STAGATE, SpaceFlow, and TACCO (Fig. ,a’). These methods range in runtimes from
a few seconds to under a minute on the smallest samples (2000 cells), and just over a minute to less
than ten minutes on the largest samples (100’000 cells). Memory usage ranges from just over 300 MB
to under 4 GB on the smallest, and just under 2 GB to close to 10 GB on the largest samples. The
best scaling with respect to runtime is shown by BANKSY, while TACCO stands out for low memory
usage. ADEPT is the only method in this group which does not produce output on data with over
10’000 cells.

Methods which show decent scaling with respect to runtime, but increase steeply in memory
usage, include BASS, BayesSpace, CCST, PRECAST, SEDR, SpaDo, and SpiceMix (Fig. [4.2b,b").
Among these methods, SpiceMix stands out with high runtimes, starting out at close to 30 minutes
for 2000 cells, and steep memory scaling. It does not produce output for samples with over 6000 cells.
BayesSpace, CCST, and PRECAST use over 100 GB of memory for the largest samples, while BASS,
SpaDo, and SEDR do not produce any output. There are only a few methods showing the opposite
behaviour of runtime and memory scaling, namely steep increases in runtime while memory usage
remains relatively stable (Fig. ,c’). Of the three methods showing this behaviour, Spatial MGCN
is the only one which results in any output for samples with high numbers of cells, taking over 6 hours to
finish running on the largest sample. By contrast, DeepST and SC-MEB show similar increase trends,
but cease producing clustering results for samples with over 10’000 and 20’000 cells, respectively.

Lastly, the remaining methods that show favourable scaling neither in runtime nor in memory usage
include GraphPCA, GraphST, MERINGUE, MNMST, SCAN-IT, SpaGCN, SpatialPCA, and UTAG
(Fig. [£.2d,d”). While all of these methods start out with runtimes of under 4 minutes and memory
usages of up to 3 GB on the smallest samples, they increase rapidly in usage of both resources as the
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Figure 4.1: Runtimes and memory usage on real data. Wall clock runtime (a) and memory
usage (b) of all methods on all real samples, aggregated by mean per dataset. Datasets are sorted by
the mean number of spots or cells.

number of cells increases. SpatialPCA does not produce any output for samples larger than 6000 cells,
MNMST and UTAG cease producing output above 20’000 cells, and GraphST fails to result in an
output on the largest sample of 100’000 cells. Except for SpatialPCA, all methods use at least 300 GB
of memory on the largest sample for which they result in any output. GraphPCA and MERINGUE
stand out with a maximum memory usage of over 200 GB on the largest sample, and MERINGUE
also takes the cake in runtime, running for almost two days to generate a result.

Vesalius did not produce any output for the samples generated using SRTsim. We were not able
to determine what caused this.

4.2 Usability evaluation

In addition to runtime and memory usage, the usability of methods plays a significant role in their
broader adoption by the research community. For completeness of the benchmarking, it is therefore
interesting to evaluate methods on usability criteria, encompassing user-friendliness and accessibility.
These assessments tend to be subjective, but can be made more objective by the use of predefined
checklists. The results shown in this section are preliminary, created through a basic usability checklist.
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Figure 4.2: Scalability of methods concerning runtimes and memory usage. Wall clock time

and memory usage by all methods on in silico samples with varying numbers of locations. Unprimed

subplots (left) show runtime, primed subplots (right) show memory usage. Methods are split into four

groups based on scaling trends in each quantity. Both the x and the y axes of all plots are shown on

a log scale. a, a’, Slow increase in runtime and in memory. b, b’, Slow increase in runtime and fast
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Figure 4.3: Usability of methods. Evaluation is carried out using the checklist in Tab. Methods
are sorted by mean performance over all criteria.

In particular, we took inspiration from a scoring checklist utilised by Duo et al. in their benchmark-
ing of single-cell and spatial transcriptomics simulators . We implemented a simplified checklist,
adapted to the needs and circumstances of the spatial domain identification methods included in our
benchmark. The checklist is shown in Tab. We categorise aspects of method usability into Avail-
ability, including installation procedures, Maintenance, which incorporates criteria relating to good
coding practices and continued support through platforms such as GitHub, and Documentation. Each
category of usability is interrogated using three specific questions, the answers to which are mapped
to values between 0 and 1, with 1 corresponding to the best and 0 to the worst outcome. An addi-
tional value of 0.5 is possible in some questions, indicating partial fulfilment of the criterion. All of
the methods included in this evaluation are open-source and freely available through GitHub, so we
primarily base our answers to the checklist on the public GitHub pages.

We find that only TACCO completely fulfils all of our usability criteria (Fig. 4.3). While all meth-
ods except for CCST, SpatialMGCN, and SCAN-IT provide at least rudimentary installation instruc-
tions within the README.md files of their GitHub repositories, several methods, including CellCharter,
SpatialPCA, BASS, MERINGUE, SpaDo, and SCAN-IT, do not list necessary dependencies in an eas-
ily accessible manner. Additionally, only just under half of all methods provide their tool as a package
easily installable using conda, pip, or Bioconductor. The remaining methods are primarily installed
directly through GitHub, which might pose a challenge to less computationally savvy prospective
users.

Concerning maintenance criteria, the majority of methods show good usability. Except for ADEPT,
CCST, and SpaDo, all methods publish modularised or otherwise transparently structured code. This
is relevant to potential method users for increased understanding of methods’ inner workings. Addi-
tionally, in some cases, users might need to modify functions locally to work in their own setupsﬂ Be-
sides DeepST, all tools for which any GitHub issues had been opened provided full or partial responses
to those issues. Lastly, two-thirds of all methods have established version control, encompassing full
versioning or publication tags.

On the other hand, many methods do not provide adequate documentation according to our
criteria, with 11 out of 26 methods not documented beyond usage tutorials. All methods do provide at
least one tutorial, and except for DeepST, SpiceMix, SpatialMGCN, and CCST, even multiple tutorial

!For example, the mclust function of SEDR contains a hardcoded setting of the R home directory \\
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Category
Availability

Maintenance

Documentation

Table 4.1: Criteria for usability evaluation. Checklist questions relating to the usability of methods, grouped in criteria of availability, maintenance,

and documentation.

Question formulations

(a) Is the method installable through a package manager /repository (like
conda, pypi/pip or Bioconductor)?

(b) Are all dependencies listed in the README file or in a clearly re-
ferred to requirements file, including specific required versions?

(c) Are installation instructions provided and comprehensive, accessible
with basic coding knowledge?

(a) Is the code modularised and/or generally structured in a straight-
forward and transparent manner?

(b) Do authors respond to issues raised on GitHub?

(c) Is a type of versioning implemented, either through GitHub or a
package manager?

(a) Is there a dedicated package documentation, e.g. through readthe-
docs.io?

(b) Are individual functions well-documented, through an API docu-
mentation or as code comments?

(c) Are tutorials on how to run the method available?

Point assignments
yes-1,no-0

yes including versions - 1, yes without versions
-0.5,n0-0

yes accessible - 1, yes not accessible - 0.5, no - 0
yes - 1, partially - 0.5, no - 0

yes to all - 1, yes to some - 0.5, no - 0, no issues
opened - NA

yes-1,no-0

yes-1,no-0

yes - 1, partially - 0.5, no - 0

yes multiple - 1, yes one - 0.5, no - 0
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versions. Additionally, slightly over half of the tools are additionally documented in a dedicated
site. However, most methods do not especially excel in terms of function documentation. Only
nine methods provide either a dedicated API documentation or thorough code comments to explain
function parameters and usage. This indicates that most tool developers rely on the prospective
users following tutorials closely to figure out the workings of individual functions. This may, in some
instances, significantly complicate the adoption of tools for novel technologies or data types, for which
no dedicated tutorial exists.

Overall, while most methods fulfil the majority of our usability criteria, there is considerable room
for improvement, especially in the realm of comprehensive documentation.
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Chapter 5

Discussion and Conclusions

Within the field of spatial transcriptomics, as in the broader bioinformatics community, new compu-
tational analysis approaches evolve alongside technological development. A wealth of different com-
putational approaches to a diverse set of data analysis types has been and continues to be developed.
In this context, independent benchmarking studies evaluate existing methods, providing an overview
of the current state of the art. They intend to guide the research focus of method developers, as gaps
in the literature and application areas become apparent. Further, they serve to educate prospective
method users, giving an overview of applicable tools and demonstrating their respective strengths.

This thesis presents the effort of, and results from, a benchmarking evaluation of methods for
spatial domain identification. The entire benchmarking pipeline was implemented using Snakemake
for workflow management and integration with conda, enabling reproducible and portable analysis. We
selected 26 methods for benchmarking and used real, publicly available spatial transcriptomics datasets
from a range of technologies for their initial evaluation. After generating a set of hypotheses about
the effect of various data characteristics on method performance, we created a pipeline for the tunable
generation of semi-synthetic spatial transcriptomics data. This custom pipeline enabled us to vary
parameters corresponding to features of spatial transcriptomics technologies, as well as tissue-inherent
factors, in turn allowing us to carry out a systematic investigation of how these factors affect method
performances. Additionally, we evaluated the stability and robustness of methods to perturbations,
and investigated consensus approaches as a competitive and robust alternative to individual methods.
Lastly, and importantly for a comprehensive method comparison, we benchmarked the runtime and
memory usage of all individual tools with a focus on scalability, and graded the methods on a usability
scale.

5.1 Benchmarking setup and pipeline

Methods were selected for evaluation based on informal criteria of relevance, usability, and variety of
approaches. We settled on the inclusion of 26 individual methods, which we be broadly categorised
into clustering-based, neural network-based, statistical modelling-based, and image processing-based
groups. The methods were first published over a number of years, ranging from 2020 to 2024. We
only included methods published after June 2024 if they had been previously uploaded to bioRxiv and
we had already included the tool based on this preprint version. A number of methods are first made
public in the preprint format on platforms like bioRxiv, enabling the community to access tools and
resources before the termination of peer review for traditional publication. This creates an opportunity
for method developers to make their approaches known to potential users and other interested parties.
In certain cases, especially when traditional publication is delayed by various possible factors, preprint
publication can lead to methods being widely adopted before their eventual publication. Such is the
case for methods like SEDR, which was published by Genome Medicine in 2024 [170]. However,
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Dataset Ref. First publication of technology, and relation to dataset
dataset

ST-Stahl [37] [37] (same publication)

Visium-Maynard [114] — (commercial technique, first published study)

Visium-Fu - — (commercial technique, example data resource)

Slide-seq-Langlieb [200] [39] (same research group)

STARmap-Wang [48] [48] (same publication)

MERFISH-Moffitt [199] [46] (same research group)

MERFISH-Zhang [197] [46] (same research group)

osmFISH-Codeluppi  [44] [44] (same publication)

Table 5.1: Relationships of datasets and technologies. The relation of the datasets included in
this benchmark to the technologies by which they were generated.

enabled by its having been made accessible as a preprint on bioRxiv in 2021, it is one of the most
highly cited methods in the field (ranked 5th out of the 26 methods included in our benchmark, with
over 200 citations as of October 2, 2025).

As for the selection of datasets for method evaluation on real data, we were able to include 8
datasets from 6 different technologies. The technologies span a wide range of the available tech-
nological parameter space, ranging from low-resolution, full-transcriptome sequencing approaches to
high-resolution, targeted smFISH-based techniques. We aimed to include a large number of datasets,
but were heavily constrained by the availability of ground truth domain annotations. Of the datasets
we were able to include, 6 are of the mouse brain, 1 is of the human brain, and 1 is of a human breast
cancer sample. All but two of the datasets were published by the same research group that originally
developed the technology utilised in the data acquisition, as detailed in Tab. Notably, three of
the datasets are published as part of the original technology demonstration. Both datasets that are
not directly affiliated with the technology development are generated using Visium, a commercial
approach based on Spatial Transcriptomics (ST). One of these datasets, namely the dorsolateral pre-
frontal cortex dataset published by Maynard et al. in 2021, represents the first data published using
the (at that point) newly demonstrated technology [114].

It may be interesting to consider the implications of most of our included datasets being generated,
if not by, then in direct relation to the original developers of the utilised techniques. This shows, on
one hand, that first publications utilising a novel approach may take special care to present data in
such a way that it is usable as a resource. On the other hand, it may be an indication that techniques
developed by specific research groups may not generalise easily to different circumstances or resource
availability. Some techniques may only be applicable in highly specialised research environments,
restricting their usability by the interested community.

As for the selection of evaluation metrics, we classify the available quantitative strategies into
supervised (utilising the comparison to a ground truth annotation) and unsupervised (based on only
the putative clustering). By far the most prevalent metric in the field is the Adjusted Rand Index
(ARI), which evaluates the “goodness” of a putative clustering by its correspondence to a “true”
data labelling. This supervised approach to spatial domain evaluation carries some issues, notably
and most importantly, the necessity of a trustworthy ground truth data annotation. This is problem-
atic in multiple aspects. First, a detailed annotation of the data in question is often performed by
experts and thus necessitates a considerable investment of time and resources. Further, the annota-
tion is often based on, or aided by, an accompanying histological image. These images are generated
alongside the data acquisition process in technologies like Visium, making them easily accessible for
downstream evaluation. However, for other approaches, histological imaging presents an additional
step to be completed during data generation, again representing time and resources invested. Ad-
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ditionally, histology-based spatial domain annotation may produce a bias in the field through the
resulting ground truth — namely, aiming to identify the same structures as visible in histology again,
this time through transcriptomics-based strategies. This may obfuscate the identification of purely
transcriptionally defined tissue structures, which are not evident by visual examination.

In cases where no histology information is available, domain annotations are frequently inferred
by the evaluation of marker genes for known tissue regions. This is relatively straightforward to
implement for exceedingly well-studied tissues like the mouse brain, where curated marker gene lists
for different structures are available. It poses problems, however, in more complex or understudied
tissues. Particularly in samples originating from tumours, there may not be known gene sets available
for tissue annotation. An interesting approach is taken by the authors of SEDR in annotating the
human breast cancer dataset included in our benchmark [170]. Namely, they base their annotation
of spatial domains on the previously annotated cell type labels. Accurate and well-informed cell type
labelling is a long-standing focus of the single cell transcriptomics field, and may thus be used as a
starting point for the annotation of tissue structures and domains.

This leads to the last, and potentially most relevant, issue concerning the identification of a ground
truth for domain identification. As briefly touched upon in the introduction to the present thesis, to
the best of my knowledge, there is currently no consensus in the field about the definition of spatial
domains. As detailed in Fig. of the introduction, many tools are published under loose working
definitions, citing expression coherence or cell type composition. Other methods simply operate under
the mantle of spatially-augmented clustering, avoiding the necessity of defining a specific goal, or give
no definition for the structures they aim to identify. Few methods, only 2 out of a sample of 33 inter-
rogated for this thesis, define domains as being functionally distinct from the surrounding tissue. This
definition is broad and does not translate directly to a well-formulated aim for method development.
Generally, any biologically solid definition for domains identifiable through transcriptomics would have
to be “translated” into the language of computing, necessitating an additional level of abstraction.
In the scope of this thesis, I am not able to further investigate or attempt to close this gap in the
research. However, I am convinced that for purposeful and streamlined method development, and
the clear demarcation of the field of applicability of these methods, it is imperative to work toward a
well-defined concept of spatial domains.

5.2 Method evaluation on real and semi-synthetic datasets

As a preliminary investigation, we considered the most popularly used supervised metrics for spatial
domain evaluation. Comparing the Fowlkes-Mallows index, the Adjusted and Normalised Mutual
Information metrics, and the Accuracy to the ARI, we showed that they are largely equivalent in their
assessment of clustering correspondence to the ground truth labelling. Using the example of outlier
inconsistencies in the domain assessment across metrics, we demonstrated the advantage of the ARI
for the purpose of evaluating spatial domain identification performance.

Further, we established a consensus approach, facilitated by the implementation of a host of
methods in our comprehensive Snakemake pipeline. We demonstrated that, particularly, the unbiased
consensus evaluation over all method outputs represents a stable and competitive alternative to any
individual method.

In the following sections, I will discuss insights gleaned from analysing method performances on
the real data and connect them to detailed and systematic investigations we performed using our
semi-synthetic data generation pipeline.
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5.2.1 Technological variation

On the real data, we found that method performances vary widely between different datasets. Partic-
ularly the resolution appeared to strongly affect method performances. While the dedicated spatial
domain identification methods showed a strong improvement upon the baselines on the single cell-
resolved datasets, no strong improvements were attained in the lower-resolution Visium data. Besides
the resolution, technologies differ in the number of genes which are profiled, and the sparsity of the
resulting count matrix. The number of profiled genes varies widely between our included datasets,
from 33 in the case of the osmFISH dataset to full transcriptome profiling for the sequencing-based
approaches. Interestingly, in the real data, no direct relationship of the number of genes in a dataset
to the method performances was apparent. Particularly, whereas many methods performed worse on
the MERFISH datasets (with 200-300 genes in the gene panel) than on the full-transcriptome Visium
data, the average performance on the osmFISH dataset was consistently high. To evaluate whether
there are more complex relationships at play, we later used our semi-synthetic data to investigate the
effect of differing gene numbers. Lastly, the sparsity of the data appeared to play a significant role
in method performances. The Slide-seq dataset, with a sparsity of 98%, exhibited very weak method
performances across the board.

This strong dependence on the dataset and particularly the technology led us to investigate the
effect of technology-level data characteristics systematically. We considered the effect of resolution by
binning semi-synthetic single-cell-resolution data into progressively larger “spots”, averaging over the
individual cells’ gene expression levels. We found that of the 9 competitive methods which perform
significantly better on MERFISH-Zhang than on Visium—Maynard, 6 were within the top 8 methods
exhibiting the strongest declines in performance with decreasing resolution. Conversely, the baseline
methods and a number of methods which performed similarly significantly better on Visium—Maynard
actually exhibited an increase in performance associated with larger spot sizes, and thus smaller
resolutions.

In terms of the effect of changing the number of profiled genes, all methods tended to decline in
performance at small numbers. However, they varied in the onset and rapidity of this decline. Meth-
ods which performed better on Visium-Maynard than MERFISH-Moffitt in the real data evaluations
exhibited the steepest ARI slopes, indicating that they are strongly affected by technological multi-
plexing capability. Interestingly, BayesSpace, which was originally designed for spot-level Visium or
ST data, was only strongly affected by declining gene numbers once the panel size shrank below 100
genes.

Modifying the sparsity of the semi-synthetic data, it is unsurprising that all methods declined in
performance when the sparsity neared 100%. Rather, it is interesting to evaluate methods by the onset
of the decline, and the performance at extremely low signal availability. Some method performances
only started to decline at sparsities of 0.95%, and at 99% sparsity, 7 methods still recovered enough
domain-specific signal to reach ARI scores above 0.42. All in all, several methods appeared suited for
the analysis of highly sparse data.

5.2.2 Tissue-level perturbation

Besides the direct technological parameters, we also investigated a related phenomenon, which could
be contributing to the strong baseline performances on Visium datasets. Essentially, we noted that
through the probable aggregation of multiple cells into one spot in low-resolution technologies, a
technology-inherent gene expression smoothing operation is performed. The idea is illustrated in
Fig. considering an example gene which is highly expressed in only one of the semi-synthetic
domains. As the resolution of the data is decreased (Fig. ), and gene expression is aggregated
within spots, the region defined by high expression of the example gene becomes more contiguous and
visually easier to identify (Fig.[5.1b). This qualitative interpretation is further corroborated by 2D
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Figure 5.1: Effect of decreasing resolution on distinguishability of domains. Synthetic data is
shown for four settings of the sample resolution as parametrised by the spot side length, ranging from
0.5 (close to single-cell resolution) to 7 (corresponding to a resolution between the Visium and ST
technologies). a, Ground truth domain annotation. b, Expression of example gene Opcml. Expression
values are scaled from min to max per resolution; darker colours correspond to higher expression.
Within the data generation pipeline, gene expression values for lower resolution (higher spot side
length) are created by the mean over cells binned to the corresponding spot. ¢, UMAP embeddings of
the semi-synthetic gene expression at varying settings of the spot side length, showing more visually
separated clusters at lower resolutions.

UMAP embeddings of the gene expression space (Fig. [5.1k), which show clearer and more distinct
clusters as the resolution is decreased. In the same vein as the clusters being visually more easily
distinguished in the UMAP, the baseline expression-based clustering methods would identify these
constituent domains more readily.

The hypotheses emerging from these observations are twofold. The first can be formulated as
the conjecture that high-performing methods for single-cell resolution data should be able to handle
high levels of intercellular transcriptional heterogeneity, which would negatively affect the domain
identification performance of baseline-like methods. As for the second hypothesis, we observed that the
baseline methods are very adept at distinguishing domains when they correspond to transcriptionally
defined clusters. However, excellent spatial methods may be able to distinguish domains with a higher
transcriptional similarity to the rest of the tissue, based on subtle, spatially associated gene expression
differences.

We investigated both of these hypotheses using our semi-synthetic data generation setup by adding
varying levels of different perturbative noise types to the data. Indeed, we found that most of the
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spatially-informed methods are able to distinguish domains defined by highly similar cell types, which
are indistinguishable to the baseline approaches. We were able to identify three archetypes of method
failure on highly perturbed data, distinct in their respective characteristic ARI/PAS curves. Interest-
ingly, we found that many methods decline in performance in a nearly stepwise fashion upon increasing
transcriptional similarity, a finding which is slightly obscured by the tissue-wide performance evalu-
ation carried out using the ARI. To elucidate this observation, we additionally performed pairwise
domain perturbations, allowing for a more detailed evaluation of method performance as two cell
types progressively converge to a common gene expression profile. Here, we found that a large group
of methods exhibits a nearly binary confusion performance, with little in-between confusion states.

Investigating the effect of cellular heterogeneity, we encountered a different picture — namely, many
methods declining gradually in performance. This, along with the significantly higher PAS values ex-
hibited on this perturbation by the vast majority of methods, indicated that these tools continually
found transcriptionally defined clusters, neglecting spatial contiguity as expression heterogeneity in-
creased. A small group of methods stood out for their high performance on heterogeneous domains.
Besides the generally high-performing methods BASS, TACCO, and SCAN-IT, this notably included
SpaDo and SpaceFlow, which ranked in the top 4 methods considering their robustness to heterogene-
ity (compared to ranks 10 and 11 in robustness to transcriptional similarity). Similarly, in the pairwise
heterogeneity perturbation, they were among the methods maintaining low confusion at the highest
perturbation levels. Interestingly, they both performed significantly better on MERFISH-Zhang than
on Visium—Maynard in the real data, indicating a possible performance advantage on high-resolution
data awarded by robustness to intercellular heterogeneity.

5.2.3 Domain sizes and shapes

Interestingly, while methods designed for spatial domain identification outperformed the spatially
unaware baselines on most real data, this was not the case for the ST—Stahl dataset. On ST-Stahl,
the non-spatial baseline methods reached performances up to ARI = 1, corresponding to spotwise
perfect domain annotation. Investigation of the dataset structure in both real and expression-based
UMAP space indicated that the ground truth labels correspond exceptionally closely to well-defined
transcriptional clusters. On the other hand, in real space, the annotated domains of this dataset
are thin, arranged in concentric, laminar layers that are frequently only one spot wide. These two
complementary observations lead us to the hypothesis that some spatially-aware methods may be
prone to over-smoothing of transcriptional differences for the sake of contiguous, “blobby” domain
annotations. In particular, those methods may exhibit a performance difference on transcriptionally
identically defined domains, depending on the size of the domain in question. This hypothesis was
also further supported by the observations of method agreement on real data, where we encountered a
distinctly lower spot-level agreement in transcriptionally similar domains when they contained smaller
numbers of cells or spots.

We investigated the effect of domain size in two different scenarios, consisting of layered structures
with shifting widths and circular domains of varying diameter. In both cases, many methods were
affected by the size of the domains in their detection. This domain size effect notably played a large
role at small sizes.

Evaluating a possible influence of domain shape on method performances, we found that the
majority of methods showed a slight bias towards layered structures. Connecting this to the real
data, the overall well-performing methods SpatialPCA, SpaceFlow, SCAN-IT, SpaDo, and GraphST
all exhibited better performances on the MERFISH-Zhang dataset, which consists of laminar brain
layers, than on MERFISH-Moffitt, with a more complex shape.
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5.3 Analysis of method stability and secondary evaluation criteria

Besides investigating the effect of technological and tissue-level data characteristics on method perfor-
mance, we also aimed to complete our comprehensive analysis by secondary evaluation criteria. After
a first analysis of method stability and robustness to perturbation, we further benchmarked methods
on their runtime, memory usage and scalability. Lastly, method usability was briefly explored.

5.3.1 Stability analysis

The stability of methods was evaluated over multiple independent runs on the same data, and addi-
tionally, robustness with respect to the loss of local spatial coherence was investigated. To quantify the
stochastic method stability, we developed an approach utilising input reordering to circumvent fixed
random states implemented by some methods. We found substantial instability for some methods, as
measured by the spread of ARI achieved on reruns of the same, reordered data. One single method,
CCST, did not exhibit any variation in its performance.

The investigation of loss of local spatial coherence is motivated by an interest in synthetic data
generation. Many attempts to simulate spatial transcriptomics data encompassing a ground truth
spatial domain annotation have been published, primarily within the context of method development
and for within-method benchmarking purposes. With the exception of certain published simulation
software tools (SRTsim, scDesign3), which do not necessarily generate a spatial domain annotation,
most published strategies randomly assign cells to spatial locations.

We simulated the effect of this random count allocation in two real datasets, Visium—Maynard and
MERFISH-Zhang, by randomly reshuffling the gene expression among spots per domain. Our analysis
showed that random count assignment potentially creates a considerable bias in method evaluation
based on synthetic data, as methods were strongly and differentially positively affected by the loss of
local spatial coherence. Interestingly, except for BASS, all methods which improved more strongly
on Visium—Maynard are those which were also shown to perform significantly better on that dataset
a priori than on MERFISH-Zhang. On the other hand, methods like BANKSY, TACCO, UTAG,
and GraphPCA, which showed stronger improvement on MERFISH-Zhang, also generally performed
significantly better on that dataset than on Visium—Maynard in the unperturbed states. Thus, the
performance improvement attained by methods upon loss of local coherence seems to exhibit a measure
of correlation with their baseline method performance.

5.3.2 Runtime, memory usage, and usability investigation

We further evaluated the runtimes and memory usages of all methods, both on the public real datasets
and on a dataset of in silico samples generated using SRTsim [214]. We found considerable differences
between methods in both quantities.

Analysing real data results, a possible bias becomes apparent that is inherent in measuring these
secondary evaluation quantities naively. Specifically, we are not distinguishing the runtime and mem-
ory usage of the method itself from the resources and time needed to simply load the involved matrices
into memory, and potentially preprocess the data. We have implemented the same data loading pro-
cedures for all R and Python-based methods, respectively, but it is not possible in our setup to avoid
a biased evaluation between the two programming languages. Additionally complicating this dis-
ambiguation, methods differ in whether they incorporate steps for data preprocessing within their
framework, or assume preprocessed data as an input.

Next, we performed a scalability investigation of runtime and memory usage across methods.
Overall, the runtimes and memory usages exhibited on the larger synthetic data containing over
10’000 cells were comparable to those on the real datasets. However, the quantities we found on lower
cell numbers were lower than those measured on real datasets of similar sizes. This could — beside the
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possible effect of the different computing architecture — indicate an effect of the number of genes, or
of the lower complexity of the synthetic data.

We found that due to probable memory or runtime constraints on the side of method users, the
majority of methods are not suited for the analysis of very large datasets. This is a considerable issue
and will likely hamper the adoption of tools in the future, as the trends are towards profiling larger
tissue sizes (e.g. StereoSeq) and higher numbers of cells. In the extraordinary accompanying materia]r'_-]
to their 2022 publication, Moses and Pachter already count a number of published studies profiling
over 100’000 cells, profiled mostly using MERFISH and Xenium [54]. The earliest such study listed is
from 2018, and in the years since 2023, many more have been published. Spatial domain identification
methods which fail to produce a result on sample sizes exceeding even 10°000 cells are unlikely to find
wide applicability in this context. Similarly, methods which scale unfavourably in runtime or memory
usage may not be feasibly applied to the large datasets which are already being generated.

Lastly, methods were evaluated by usability criteria. This is an indispensable part of thorough
method benchmarking, as the adoption of methods by the user group is heavily influenced by ease
of use. We utilised a usability checklist inspired by Duo et al., through which we graded methods
on criteria of availability, maintenance and documentation. While most tools scored decently on
availability and maintenance, a majority of methods did not provide adequate documentation beyond
tutorials showcasing specific applications.

5.4 Future directions and outlook

In the research described within this thesis, we have provided a comprehensive overview and bench-
marking of the state of the art in spatial domain identification. As is also generally the crux of
descriptions of the state of the art, benchmarking projects describing current methods are rapidly
out of date [152]. We have attempted to circumvent some of this effect by focusing on not merely
describing method performances, but instead aiming to disentangle and thereby explain possible influ-
encing factors. However, since the cutoff date for method inclusion in our benchmark, a multitude of
methods have been developed which reportedly outperform existing approaches. In the introduction
to the present work, I have outlined reasons to be wary of highly confident performance claims — and
thus, further benchmarking efforts are needed to evaluate the existence and extent of performance
improvements [143]. However, the creation of evaluation pipelines is time and resource-intensive, and
there is an undercurrent of reinventing the wheel with every novel benchmarking effort.

To avoid this recurring trap, one direction to take with this present work is the continued develop-
ment of an extendable benchmarking framework. In fact, the structure of our pipeline already lends
itself to extension, both through the inclusion of new datasets and through novel method implementa-
tions. Methods are easily added to the Snakemake workflow through the generation of two files: one
describing the prerequisite computing environment in YAML format, and the other containing the
script for running the method non-interactively. We already provide a detailed guide to the expected
input and output formats, Snakemake rule definition, and the changes in configuration files necessary
to fully implement a new method. In this way, we hope to form a resource for method developers to
easily compare their new implementations to existing, high-performing approaches. Additionally, this
will aid researchers working on generating new datasets through presenting the ability to evaluate a
host of pre-implemented methods on their data and find the best fit.

Finding the best fit of methods and parameters for a novel dataset also connects to a different
future interest, namely, in creating a coherent and widely applicable definition of spatial domains.
Reviewing different avenues for ground truth generation in terms of the underlying, implicit domain

!The accompanying material, taking the shape of an evolving online resource in addition to the originally published
book, is accessible at pachterlab.github.io/LP_2021.
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definitions would form a meaningful starting point for this broad endeavour. It could also be highly
informative to evaluate tissue structures characterised by low method agreement with the ground truth
annotations, which could help to identify friction points in the current working domain definitions.
Generally, there needs to be an increased dialogue between experimental groups that generate data
and others focusing more strongly on data analysis. A more direct interchange of ideas between wet-
lab biologists and computational method developers would avoid tools being produced for the sake of
method development and instead aim collective efforts at solving concrete, existing problems. Ideally,
those problems can be formulated as part of one coherent and fixed spatial domain definition. In
the more realistic case, namely the vastly different applications and different tissue types leading to
disparate formulations, this investigation will still have brought a measure of clarity of purpose to the
field.

Aided by well-defined concepts and formulations of spatial domains, the development of well-suited
evaluation metrics for the specific task of domain identification could be within reach. Approaches
for unsupervised spatial domain evaluation that are specific to this field have not yet been developed.
It has been suggested to take inspiration from the geographical sciences in this endeavour, as these
already present a tradition of regionalisation methods and their evaluation [220, 221].

Concerning more concrete future paths, the further investigation and development of our consensus
approach could be of interest. The unbiased consensus over all methods included in our evaluation
is stable and highly competitive, but could potentially be improved by the integration of more so-
phisticated consensus strategies, such as the Monti consensus clustering algorithm [222]. Detangling
the positive performance effects of a consensus approach integrating individually worse-performing
methods could yield valuable insights. On a different note, it would be interesting to implement a
combination of the consensus approach with our input-reordering stability evaluation strategy. Our
investigation highlighted the considerable instability of a large group of overall well-performing meth-
ods. Through combining the ability to, through input reordering, repeatedly run a method on the
same data, with the subsequent integration of method outputs through taking the consensus, method
stability, and potentially also performance, could be enhanced.

Further, leaning on the accumulated knowledge from this comprehensive overview and in-depth
evaluation of the field, we could undertake the development of our own stand-alone method for spatial
domain identification. This would enable us to directly bring in our expertise to the field, creating
an approach to apply insights gleaned from the benchmarking process. One interesting avenue entails
the development of a not purely data-driven method, instead integrating in a level of prior knowledge
about the dataset in question. This would directly involve expertise in both method development
and the question of biological applicability. In the majority of applications, users are experts in the
datasets they are analysing, and might already have a measure of knowledge or intuition about the
structures they are aiming to identify. One example of such an application could be the molecularly-
informed identification of glomeruli in renal tissue [223]. This type of analysis might benefit from
the incorporation of priors, for example, to encode informative transcriptional markers or domain
shapes of interest. On the other hand, a fully exploratory analysis strategy might be chosen by
researchers studying tumour tissue of previously unknown structure. For such an evaluation, it might
be useful and informative to focus on a method enabling comprehensive, multi-level analysis through
tunable, interpretable hyperparameters. In any future method development approach, it is imperative
to especially consider robustness to cellular heterogeneity as a hallmark of good performance on high-
resolution spatial transcriptomics data. As technological advances point in the direction of higher
resolutions, this tool characteristic is likely to increase in importance.

Concerning the systematic method evaluation undertaken in this work using semi-synthetic data,
there are a few avenues for potential further development. Notably, the investigation of the effect of
changing the number of profiled genes could be further enhanced in realism. Instead of downsampling
to randomly selected gene subsets, we could select for highly variable or spatially variable genes, or
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alternatively, utilise an algorithm for marker gene detection. This might be more representative of
real data insofar as gene panels in FISH-based, targeted approaches are also selected for biological
informativeness. Further, it would be interesting to disentangle the effect of changing resolution on
method performance from the effect of domain size, as necessarily the binning of multiple cells into
one spot diminishes the number of individual points making up a domain.

There are also numerous avenues for further development considering the generation of semi-
synthetic data itself. One starting point could be incorporating a general cell type similarity measure to
enable direct quantification of the improvement in distinction attained by utilising spatial information.
On the other hand, creating semi-synthetic spatial transcriptomics data that closely mimics different
concrete tissue types and structures, but encompasses ground truth domain annotations, could enable
both method developers and users to directly tune tools to the characteristics of a tissue of interest.
Further, as identified by our investigation of the effect of local spatial coherence loss, the random
allocation of cells to spatial locations utilised in many approaches to synthetic data generation places
a strong caveat on the interpretability of simulation-based claims concerning method performance.
Existing simulators have circumvented this problem by assigning gene expression based on predefined
or learned spatial gene expression patterns [214, 215]. However, these published approaches to creating
semi-synthetic data often do not lend themselves to the concurrent generation of a spatial domain
ground truth. Integrating these different viewpoints, namely also under the consideration of a solid
domain definition, could enhance the potential of semi-synthetic data in spatial domain evaluation.

Lastly, we recognise that the usability of methods was not the focus of this thesis nor of the entire
benchmarking project. However, considering the central part it plays in the wider and continued use
of computational tools, a more in-depth investigation of the state of usability in the field of spatial
domain identification would be appropriate. Broad guidelines for increasing usability in bioinformatics
software have been developed, for example, by List et al. in 2017 [224] and by Mangul et al. in 2019
[225]. Adapting these guidelines to the specific challenges in this field would provide a framework for
researchers to consider when developing novel tools, in order to maximise the size of their potential
user base.

5.5 Conclusions

In this thesis, I have presented a comprehensive view of the context, state of the art and future
directions for domain identification in spatial transcriptomics. I report a detailed and systematic
benchmarking of published tools, comparing performances on real datasets with ground truth anno-
tations and additionally directly investigating the effect of a host of data characteristics on method
performances using semi-synthetic data. Additionally, I have pointed out possible future research
avenues within this field, most importantly the necessity of clearly defining the concept of spatial do-
mains, as well as entering a more immediate dialogue with prospective method users, as a prerequisite
for goal-oriented and efficient method development.

Independent benchmarkings of computational method performances are invaluable in the current
scientific climate, which is marked by overoptimistic self-reporting due to the well-documented phe-
nomenon of publication bias [143, 226/228]. Some guidelines to ameliorate this phenomenon from
the perspective of method developers can be found in an excellent 2015 editorial by Boulesteix [229].
However, in a scientific publication context that continues to incentivise unprecedented methodology
and reward outstanding reported performances, placing the responsibility for upholding rigorous stan-
dards for self-evaluation on authors alone would speak of some naiveté. Independent, post-publication
evaluation of tools in benchmarking studies guides future research directions and provides resources
for method users overwhelmed by choices. This type of analytical methodological research must find
a suitable place alongside the development of novel analyses and approaches.
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General overview of tools for spatial
domain identification

With the aim of attaining a comprehensive view of the space of spatial domain identification methods,
I extracted pertinent information from 33 tool publications. This information is summarised over the

following pages in Tab.
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Name Domain type Datasets Used # Co. Metrics Used
ADEPT |[128; expression coher- STARmap-Wang-mouse-visual-cortex, Visium-Maynard-human- 5 ARI, qualitative
ence DLPFC, Visium-demo-human-breast-cancer
BANKSY [83] cell type composi- CosMx-He-human-colon, MERFISH-Moffitt-mouse-hypothalamic- 7 ARI, qualitative
tion preoptic-region, Merscope-demo-human-colon-tumor, STARmap-
Wang-mouse-visual-cortex,  Slide-seqV2-Stickels-mouse-hippocampus,
Slide-seq-Rodriques-mouse-cerebellum-hippocampus-olfactory-bulb,
Visium-Maynard-human-DLPFC
BASS [82] cell type composi- MERFISH-Moffitt-mouse-hypothalamic-preoptic-region, STARmap- 3 ARI, qualitative
tion Wang-mouse-visual-cortex, Visium-Maynard-human-DLPFC
BayeSMART [120)] no definition STARmap-Wang-mouse-visual-cortex, ST-Andersson-human-breast- 9 ARI, AUC, Flscore,
cancer, Visium-Maynard-human-DLPFC domain-specific SVGs
BayesSpace [119) augmented clus- ST-Thrane-human-melanoma, Visium-Maynard-human-DLPFC, 7 ARI, qualitative
tering Visium-Zhao-human-breast-cancer, Visium-demo-human-ovarian-
cancer
CCST [109] augmented clus- MERFISH-Xia-human-sarcoma-cell-line, Visium-Maynard-human- 7 ARI, FMI, LISI, NMI,
tering DLPFC, Visium-demo-human-breast-cancer, seqFISH+-Eng-mouse- qualitative
somatosensory-cortex
CellCharter 135 cell type composi- CosMx-He-human-carcinoma, Merscope-demo-human-lung-cancer, 5 ARI, FMI, qualitative
tion Visium-Maynard-human-DLPFC
CytoCommunity |168] cell type composi- MERFISH-Moffitt-mouse-hypothalamic-preoptic-region 5 AMI, Flscore
tion
DeepST [190 expression coher- MERFISH-Moffitt-mouse-hypothalamic-preoptic-region, Slide-seqV2- 6 ARI, DB, Silhouette,
ence Stickels-mouse-hippocampus, StereoSeq-Chen-mouse-olfactory-bulb, qualitative

Visium-Maynard-human-DLPFC, Visium-demo-human-breast-cancer,
Visium-demo-mouse-posterior-brain

Table A.1: Continued on next page.
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Name Domain type Datasets Used # Co. Metrics Used
PRECAST [164] augmented clus- ST-Hildebrandt-mouse-liver, Slide-seqV2-Stickels-mouse-hippocampus, 0 ARI, NMI, qualitative
tering Visium-Liu-human-liver-tumor, Visium-Maynard-human-DLPFC
SC-MEB |[116] augmented clus- MERFISH-Moffitt-mouse-hypothalamic-preoptic-region, Visium- 4 ARI, qualitative
tering Maynard-human-DLPFC, Visium-Yang-human-colon-COVID-CRC
SCAN-IT [127] cell type composi- ST-Stahl-mouse-coronal-sagittal-posterior-brain, Slide-seq-Rodriques- 4 AMI, ARI, DE marker
tion mouse-cerebellum-hippocampus-olfactory-bulb, Visium-Maynard- genes, FMI, NMI, com-
human-DLPFC, osmFISH-Codeluppi-mouse-somatosensory-cortex, parison to reference tis-
seqFISH+-Eng-mouse-somatosensory-cortex, seqFISH-Zhu-mouse- sue, qualitative
visual-cortex
SEDR [170 no definition StereoSeq-Chen-mouse-olfactory-bulb, Visium-Maynard-human- 10 AMI, ARI, COM, DE
DLPFC, Visium-demo-human-breast-cancer marker genes, HOM, V-
measure, purity, quali-
tative
SOTIP (133 cell type composi- Visium-Maynard-human-DLPFC, osmFISH-Codeluppi-mouse- 7 ARI, qualitative
tion somatosensory-cortex, seqFISH+-Eng-mouse-somatosensory-cortex
SpaceFlow [188] augmented clus- ST-Andersson-human-breast-cancer, Visium-Maynard-human-DLPFC 6 ARI, qualitative
tering
SpaDo [134] cell type composi- STARmap-Wang-mouse-visual-cortex, Visium-Maynard-human- 6 ARI, qualitative
tion DLPFC, Visium-Meylan-human-renal-cell-cancer, osmFISH-Codeluppi-
mouse-somatosensory-cortex, seqFISH+-Eng-mouse-somatosensory-
cortex
SpaGCN [122] expression coher- STARmap-Wang-mouse-visual-cortex, ST-Moncada-human-pancreatic- 3 ARI, domain-specific

ence

Visium-Maynard-human-DLPFC, Visium-demo-mouse-

posterior-brain

cancer,

Table A.1: Continued on next page.

SVGs, qualitative
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A. General overview of tools for spatial domain identification




Appendix B

Ground truth domain assignments for
the included real data samples

In this appendix, all ground truth domain assignments for benchmarked samples are shown. The
origin of both the data and the corresponding ground truth labels is detailed in Tab.
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Figure B.1: Ground truth domain assignments of single-sample datasets. a, osmFISH—
Codeluppi. b, Visium—Fu. ¢, STARmap—Wang.
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Figure B.2: Ground truth domain assignments of MERFISH-Moffitt.
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Figure B.3: Ground truth domain assignments of MERFISH-Zhang.
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B. Ground truth domain assignments for the included real data samples

hemi_layersO1 hemi_layers02 hemi_layers03

dggaes

hemi_layers04

Figure B.4: Ground truth domain assignments of Slide-seq—Langlieb.
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Figure B.5: Ground truth domain assignments of Visium—Maynard.
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B. Ground truth domain assignments for the included real data samples
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Figure B.6: Ground truth domain assignments of ST—Stahl.




Acknowledgements

Thank you to my supervisor, Stefan Canzar, for all the steady support and feedback you offered me
over the years. Throughout the two moves, you kept the lab going, and we never even missed more
than a couple of weekly meetings!

My collaborators on the benchmarking project have taught me a lot, both scientifically and person-
ally. I specifically want to extend my gratitude to Tomislav Prusina for all of your help. Additionally,
I thank Hoan Van Do, Francisca Rojas Ringeling, and Domagoj Matijevi¢ for their input and contri-
butions.

To Pablo and Shuang — thank you for your advice, especially early on, and for the long chats at the
end of the day. To you, and to all the other current and past members of our group across Germany,
Croatia, and the US, I wish nothing but the best.

A particular thank you goes to Johanna Klughammer and Simon Mages, for not only allowing
me to socially integrate with your group, but also continuing to support me scientifically and offering
valuable insights on my work.

I am incredibly grateful to all the current and past members of the Klughammer and Mages labs
for your friendship, reassurance, and for offering your scientific expertise. Especially to Antonia,
Mohammad, and Jan, along with the extended, ever-changing lunchtime and kicker group — you truly
have been invaluable in helping me to keep going. I don’t know what I would have done without you.

Thank you to Augusto for all of your help and encouragement, and for making me want to try to
be a better scientist. This thesis would not be what it is without your feedback.

Finally and importantly, I want to thank my family and friends back home for all of your incredible
patience and support.

I was supported in my PhD by the Graduate School of Quantitative and Molecular Biosciences Munich
(QMB, formerly QBM). This work was supported by the Collaborative Research Center / Transregio
(CRC TRR) 338 (LETSIMMUN - Lymphocyte Engineering for Therapeutic Synthetic Immunity),
funded by the Deutsche Forschungsgemeinschaft (DFG).



102




Bibliography

Matthew Cobb. “60 Years Ago, Francis Crick Changed the Logic of Biology”. In: PLOS Biology
15.9 (Sept. 18, 2017), €2003243. 1SSN: 1545-7885. DOI: [10.1371/journal.pbio.2003243.

Alexander F. Palazzo and Eliza S. Lee. “Non-Coding RNA: What Is Functional and What Is
Junk?” In: Frontiers in Genetics 6 (Jan. 26, 2015). 1SSN: 1664-8021. pOI: 10 .3389/fgene .
2015.00002.

Jay R. Hesselberth. “Lives That Introns Lead after Splicing”. In: WIREs RNA 4.6 (2013),
pp. 677-691. 1sSN: 1757-7012. DOI: |10.1002/wrna. 1187.

Laura Restrepo-Pérez, Chirlmin Joo, and Cees Dekker. “Paving the Way to Single-Molecule
Protein Sequencing”. In: Nature Nanotechnology 13.9 (Sept. 2018), pp. 786-796. 1SSN: 1748-
3395. DOI: [10.1038/s41565-018-0236-6.

“Method of the Year 2024: Spatial Proteomics”. In: Nature Methods 21.12 (Dec. 2024), pp. 2195—
2196. 1SSN: 1548-7105. DOI: [10.1038/541592-024-02565-3.

Ruedi Aebersold and Matthias Mann. “Mass-Spectrometric Exploration of Proteome Structure
and Function”. In: Nature 537.7620 (Sept. 2016), pp. 347-355. 1SSN: 1476-4687. DOI: 10.1038/
naturel19949.

Hanno Steen and Matthias Mann. “The Abc’s (and Xyz’s) of Peptide Sequencing”. In: Nature
Reviews Molecular Cell Biology 5.9 (Sept. 2004), pp. 699-711. 1ssN: 1471-0080. po1: 10.1038/
nrm1468.

William C.S. Cho. “Proteomics Technologies and Challenges”. In: Genomics, Proteomics &
Bioinformatics 5.2 (June 1, 2007), pp. 77-85. 1SsN: 1672-0229. poI: 10.1016/31672-0229 (07)
60018-7.

Philip C. Bevilacqua, Laura E. Ritchey, Zhao Su, and Sarah M. Assmann. “Genome-Wide
Analysis of RNA Secondary Structure”. In: Annual Review of Genetics 50 (Volume 50, 2016
Nov. 23, 2016), pp. 235-266. 1sSN: 0066-4197, 1545-2948. DOI: |10 . 1146 / annurev - genet -
120215-035034.

Mary Lou Pardue and Joseph G. Gall. “Molecular Hybridization of Radioactive Dna to the
Dna of Cytological Preparations”. In: Proceedings of the National Academy of Sciences 64.2
(Oct. 1969), pp. 600-604. DOI: 10.1073/pnas.64.2.600.

H. A. John, M. L. Birnstiel, and K. W. Jones. “RNA-DNA Hybrids at the Cytological Level”.
In: Nature 223.5206 (Aug. 1969), pp. 582-587. 1SSN: 1476-4687. DOI: 10.1038/223582a0.

M. Buongiorno-Nardelli and F. Amaldi. “Autoradiographic Detection of Molecular Hybrids
between rRNA and DNA in Tissue Sections”. In: Nature 225.5236 (Mar. 1970), pp. 946-948.
ISSN: 1476-4687. DOI: 110.1038/225946a0.

J. G. J. Bauman, J. Wiegant, P. Borst, and P. van Duijn. “A New Method for Fluorescence Mi-
croscopical Localization of Specific DNA Sequences by in Situ Hybridization of Fluorochrome-
Labelled RNA”. In: Experimental Cell Research 128.2 (Aug. 1, 1980), pp. 485-490. 1SSN: 0014-
4827. DOI: [10.1016/0014-4827(80)90087-7.


https://doi.org/10.1371/journal.pbio.2003243
https://doi.org/10.3389/fgene.2015.00002
https://doi.org/10.3389/fgene.2015.00002
https://doi.org/10.1002/wrna.1187
https://doi.org/10.1038/s41565-018-0236-6
https://doi.org/10.1038/s41592-024-02565-3
https://doi.org/10.1038/nature19949
https://doi.org/10.1038/nature19949
https://doi.org/10.1038/nrm1468
https://doi.org/10.1038/nrm1468
https://doi.org/10.1016/S1672-0229(07)60018-7
https://doi.org/10.1016/S1672-0229(07)60018-7
https://doi.org/10.1146/annurev-genet-120215-035034
https://doi.org/10.1146/annurev-genet-120215-035034
https://doi.org/10.1073/pnas.64.2.600
https://doi.org/10.1038/223582a0
https://doi.org/10.1038/225946a0
https://doi.org/10.1016/0014-4827(80)90087-7

104

BIBLIOGRAPHY

[14]

P R Langer-Safer, M Levine, and D C Ward. “Immunological Method for Mapping Genes on
Drosophila Polytene Chromosomes.” In: Proceedings of the National Academy of Sciences 79.14
(July 1982), pp. 4381-4385. DOI: [10.1073/pnas.79.14.4381.

Joseph G. Gall. “The Origin of In Situ Hybridization - a Personal History”. In: Methods (San
Diego, Calif.) 98 (Apr. 1,2016), pp. 4-9. 1SSN: 1046-2023. DOI: 10.1016/j . ymeth.2015.11.026.
PMID: 26655524.

Mark Schena, Dari Shalon, Ronald W. Davis, and Patrick O. Brown. “Quantitative Monitoring
of Gene Expression Patterns with a Complementary DNA Microarray”. In: Science 270.5235
(Oct. 20, 1995), pp. 467-470. DOI: 10.1126/science.270.5235.467.

Roger Bumgarner. “Overview of DNA Microarrays: Types, Applications, and Their Future”.
In: Current Protocols in Molecular Biology 101.1 (2013), pp. 22.1.1-22.1.11. 1SSN: 1934-3647.
DOTI: [10.1002/0471142727 .mb2201s101.

Tyson A. Clark, Charles W. Sugnet, and Manuel Ares. “Genomewide Analysis of mRNA Pro-
cessing in Yeast Using Splicing-Specific Microarrays”. In: Science 296.5569 (May 3, 2002),
pp- 907-910. DOI: [10.1126/science.1069415.

Zhong Wang, Mark Gerstein, and Michael Snyder. “RNA-Seq: A Revolutionary Tool for Tran-
scriptomics”. In: Nature Reviews Genetics 10.1 (Jan. 2009), pp. 57-63. 1SSN: 1471-0064. DOT:
10.1038/nrg2484.

Valerio Costa, Claudia Angelini, [talia De Feis, and Alfredo Ciccodicola. “Uncovering the Com-
plexity of Transcriptomes with RNA-Seq”. In: BioMed Research International 2010.1 (2010),
p- 853916. 1sSN: 2314-6141. DOI: |10.1155/2010/853916.

Walter Gilbert and Allan Maxam. “The Nucleotide Sequence of the Lac Operator”. In: Pro-
ceedings of the National Academy of Sciences 70.12 (Dec. 1973), pp. 3581-3584. DOI: 10.1073/
pnas.70.12.3581.

Robert A. Holt and Steven J. M. Jones. “The New Paradigm of Flow Cell Sequencing”. In:
Genome Research 18.6 (Jan. 6, 2008), pp. 839-846. 1sSN: 1088-9051, 1549-5469. pOI: 10.1101/
gr.073262.107. PMID: 18519653

F Sanger, S Nicklen, and R Coulson. “DNA Sequencing with Chain-Terminating Inhibitors”.
In: PNAS 74.12 (Dec. 1977), pp. 5463-5467.

James M. Heather and Benjamin Chain. “The Sequence of Sequencers: The History of Se-
quencing DNA”. In: Genomics 107.1 (Jan. 1, 2016), pp. 1-8. 1sSN: 0888-7543. DOI: 10.1016/
j-ygeno.2015.11.003|

J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard J. Mural, Granger
G. Sutton, Hamilton O. Smith, Mark Yandell, Cheryl A. Evans, Robert A. Holt, Jeannine D.
Gocayne, Peter Amanatides, Richard M. Ballew, Daniel H. Huson, Jennifer Russo Wortman,
Qing Zhang, Chinnappa D. Kodira, Xiangqun H. Zheng, Lin Chen, Marian Skupski, Gan-
gadharan Subramanian, Paul D. Thomas, Jinghui Zhang, George L. Gabor Miklos, Catherine
Nelson, Samuel Broder, Andrew G. Clark, Joe Nadeau, Victor A. McKusick, Norton Zinder,
Arnold J. Levine, Richard J. Roberts, Mel Simon, Carolyn Slayman, Michael Hunkapiller, Ran-
dall Bolanos, Arthur Delcher, Tan Dew, Daniel Fasulo, Michael Flanigan, Liliana Florea, Aaron
Halpern, Sridhar Hannenhalli, Saul Kravitz, Samuel Levy, Clark Mobarry, Knut Reinert, Karin
Remington, Jane Abu-Threideh, Ellen Beasley, Kendra Biddick, Vivien Bonazzi, Rhonda Bran-
don, Michele Cargill, Ishwar Chandramouliswaran, Rosane Charlab, Kabir Chaturvedi, Zuom-
ing Deng, Valentina Di Francesco, Patrick Dunn, Karen Eilbeck, Carlos Evangelista, Andrei E.
Gabrielian, Weiniu Gan, Wangmao Ge, Fangcheng Gong, Zhiping Gu, Ping Guan, Thomas J.
Heiman, Maureen E. Higgins, Rui-Ru Ji, Zhaoxi Ke, Karen A. Ketchum, Zhongwu Lai, Yiding


https://doi.org/10.1073/pnas.79.14.4381
https://doi.org/10.1016/j.ymeth.2015.11.026
http://www.ncbi.nlm.nih.gov/pubmed/26655524
https://doi.org/10.1126/science.270.5235.467
https://doi.org/10.1002/0471142727.mb2201s101
https://doi.org/10.1126/science.1069415
https://doi.org/10.1038/nrg2484
https://doi.org/10.1155/2010/853916
https://doi.org/10.1073/pnas.70.12.3581
https://doi.org/10.1073/pnas.70.12.3581
https://doi.org/10.1101/gr.073262.107
https://doi.org/10.1101/gr.073262.107
http://www.ncbi.nlm.nih.gov/pubmed/18519653
https://doi.org/10.1016/j.ygeno.2015.11.003
https://doi.org/10.1016/j.ygeno.2015.11.003

BIBLIOGRAPHY 105

[26]

[27]

Lei, Zhenya Li, Jiayin Li, Yong Liang, Xiaoying Lin, Fu Lu, Gennady V. Merkulov, Natalia
Milshina, Helen M. Moore, Ashwinikumar K Naik, Vaibhav A. Narayan, Beena Neelam, Debo-
rah Nusskern, Douglas B. Rusch, Steven Salzberg, Wei Shao, Bixiong Shue, Jingtao Sun, Zhen
Yuan Wang, Aihui Wang, Xin Wang, Jian Wang, Ming-Hui Wei, Ron Wides, Chunlin Xiao,
et al. “The Sequence of the Human Genome”. In: Science 291.5507 (Feb. 16, 2001), pp. 1304—
1351. DOI: [10.1126/science.1058040.

Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V. Bzikadze, Alla Mikheenko,
Mitchell R. Vollger, Nicolas Altemose, Lev Uralsky, Ariel Gershman, Sergey Aganezov, Savan-
nah J. Hoyt, Mark Diekhans, Glennis A. Logsdon, Michael Alonge, Stylianos E. Antonarakis,
Matthew Borchers, Gerard G. Bouffard, Shelise Y. Brooks, Gina V. Caldas, Nae-Chyun Chen,
Haoyu Cheng, Chen-Shan Chin, William Chow, Leonardo G. de Lima, Philip C. Dishuck,
Richard Durbin, Tatiana Dvorkina, Ian T. Fiddes, Giulio Formenti, Robert S. Fulton, Arkarachai
Fungtammasan, Erik Garrison, Patrick G. S. Grady, Tina A. Graves-Lindsay, Ira M. Hall,
Nancy F. Hansen, Gabrielle A. Hartley, Marina Haukness, Kerstin Howe, Michael W. Hunkapiller,
Chirag Jain, Miten Jain, Erich D. Jarvis, Peter Kerpedjiev, Melanie Kirsche, Mikhail Kol-
mogorov, Jonas Korlach, Milinn Kremitzki, Heng Li, Valerie V. Maduro, Tobias Marschall,
Ann M. McCartney, Jennifer McDaniel, Danny E. Miller, James C. Mullikin, Eugene W. My-
ers, Nathan D. Olson, Benedict Paten, Paul Peluso, Pavel A. Pevzner, David Porubsky, Tamara
Potapova, Evgeny 1. Rogaev, Jeffrey A. Rosenfeld, Steven L. Salzberg, Valerie A. Schneider,
Fritz J. Sedlazeck, Kishwar Shafin, Colin J. Shew, Alaina Shumate, Ying Sims, Arian F. A.
Smit, Daniela C. Soto, Ivan Sovié¢, Jessica M. Storer, Aaron Streets, Beth A. Sullivan, Francoise
Thibaud-Nissen, James Torrance, Justin Wagner, Brian P. Walenz, Aaron Wenger, Jonathan
M. D. Wood, Chunlin Xiao, Stephanie M. Yan, Alice C. Young, Samantha Zarate, Urvashi
Surti, Rajiv C. McCoy, Megan Y. Dennis, Ivan A. Alexandrov, Jennifer L. Gerton, Rachel J.
O’Neill, Winston Timp, Justin M. Zook, Michael C. Schatz, Evan E. Eichler, Karen H. Miga,
et al. “The Complete Sequence of a Human Genome”. In: Science 376.6588 (Apr. 2022), pp. 44—
53. DOI: 10.1126/science.abj6987.

Mark D. Adams, Jenny M. Kelley, Jeannine D. Gocayne, Mark Dubnick, Mihael H. Poly-
meropoulos, Hong Xiao, Carl R. Merril, Andrew Wu, Bjorn Olde, Ruben F. Moreno, Anthony
R. Kerlavage, W. Richard McCombie, and J. Craig Venter. “Complementary DNA Sequencing:
Expressed Sequence Tags and Human Genome Project”. In: Science 252.5013 (June 21, 1991),
pp. 1651-1656. 1sSN: 0036-8075, 1095-9203. DOI: [10.1126/science.2047873.

Vivien Marx. “Method of the Year: Long-Read Sequencing”. In: Nature Methods 20.1 (Jan.
2023), pp. 6-11. 1sSN: 1548-7105. DOI: 10.1038/541592-022-01730-w.

Malte D. Luecken and Fabian J. Theis. “Current Best Practices in Single-Cell RNA-seq Analy-
sis: A Tutorial”. In: Molecular Systems Biology 15.6 (June 2019), e8746. 1SSN: 1744-4292. DOI:
10.15252/msb.20188746.

Geng Chen, Baitang Ning, and Tieliu Shi. “Single-Cell RNA-Seq Technologies and Related
Computational Data Analysis”. In: Frontiers in Genetics 10 (Apr. 5, 2019), p. 317. 1SSN: 1664-
8021. DOI: |10.3389/fgene.2019.00317.

Kyongho Choe, Unil Pak, Yu Pang, Wanjun Hao, and Xiuqgin Yang. “Advances and Challenges
in Spatial Transcriptomics for Developmental Biology”. In: Biomolecules 13.1 (Jan. 2023),
p- 156. 18SN: 2218-273X. DOI: [10.3390/biom13010156.

Esther Danenberg, Helen Bardwell, Vito R. T. Zanotelli, Elena Provenzano, Suet-Feung Chin,
Oscar M. Rueda, Andrew Green, Emad Rakha, Samuel Aparicio, Ian O. Ellis, Bernd Boden-
miller, Carlos Caldas, and H. Raza Ali. “Breast Tumor Microenvironment Structures Are As-


https://doi.org/10.1126/science.1058040
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1126/science.2047873
https://doi.org/10.1038/s41592-022-01730-w
https://doi.org/10.15252/msb.20188746
https://doi.org/10.3389/fgene.2019.00317
https://doi.org/10.3390/biom13010156

106

BIBLIOGRAPHY

[40]

[41]

[42]

sociated with Genomic Features and Clinical Outcome”. In: Nature Genetics 54.5 (May 2022),
pp- 660-669. 1SSN: 1546-1718. DOI: |10.1038/s41588-022-01041-y.

Anna Fomitcheva-Khartchenko, Aditya Kashyap, Tamar Geiger, and Govind V. Kaigala. “Space
in Cancer Biology: Its Role and Implications”. In: Trends in Cancer 8.12 (Dec. 1, 2022),
pp- 1019-1032. 1sSN: 2405-8033. DOI: 110.1016/j.trecan.2022.07.008. PMID: |35995681.

Anjali Rao, Dalia Barkley, Gustavo S. Franca, and Itai Yanai. “Exploring Tissue Architecture
Using Spatial Transcriptomics”. In: Nature 596.7871 (7871 Aug. 2021), pp. 211-220. 1SSN:
1476-4687. DOI: [10.1038/s415686-021-03634-9.

Michael R. Emmert-Buck, Robert F. Bonner, Paul D. Smith, Rodrigo F. Chuaqui, Zhengping
Zhuang, Seth R. Goldstein, Rhonda A. Weiss, and Lance A. Liotta. “Laser Capture Microdis-
section”. In: Science 274.5289 (Nov. 8, 1996), pp. 998-1001. poOI1: 10 .1126/science . 274 .
5289.998.

Jun Chen, Shengbao Suo, Patrick PL Tam, Jing-Dong J. Han, Guangdun Peng, and Naihe Jing.
“Spatial Transcriptomic Analysis of Cryosectioned Tissue Samples with Geo-seq”. In: Nature
Protocols 12.3 (Mar. 2017), pp. 566-580. 1SSN: 1750-2799. DOI: [10.1038/nprot.2017.003.

Patrik L. Stahl, Fredrik Salmén, Sanja Vickovic, Anna Lundmark, José Fernandez Navarro,
Jens Magnusson, Stefania Giacomello, Michaela Asp, Jakub O. Westholm, Mikael Huss, Annelie
Mollbrink, Sten Linnarsson, Simone Codeluppi, Ake Borg, Fredrik Pontén, Paul Igor Costea,
Pelin Sahlén, Jan Mulder, Olaf Bergmann, Joakim Lundeberg, and Jonas Frisén. “Visualization
and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics”. In: Science
353.6294 (July 2016), pp. 78-82. DOI: 10.1126/science.aaf2403.

Michelli Faria de Oliveira, Juan Pablo Romero, Meii Chung, Stephen R. Williams, Andrew D.
Gottscho, Anushka Gupta, Susan E. Pilipauskas, Seayar Mohabbat, Nandhini Raman, David J.
Sukovich, David M. Patterson, and Sarah E. B. Taylor. “High-Definition Spatial Transcriptomic
Profiling of Immune Cell Populations in Colorectal Cancer”. In: Nature Genetics 57.6 (June
2025), pp. 1512-1523. 1SSN: 1546-1718. DOI: |10.1038/s41588-025-02193-3.

Samuel G. Rodriques, Robert R. Stickels, Aleksandrina Goeva, Carly A. Martin, Evan Murray,
Charles R. Vanderburg, Joshua Welch, Linlin M. Chen, Fei Chen, and Evan Z. Macosko. “Slide-
Seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolu-
tion”. In: Science 363.6434 (Mar. 29, 2019), pp. 1463-1467. DOI: 10.1126/science.aaw1219.

Robert R. Stickels, Evan Murray, Pawan Kumar, Jilong Li, Jamie L. Marshall, Daniela J. Di
Bella, Paola Arlotta, Evan Z. Macosko, and Fei Chen. “Highly Sensitive Spatial Transcriptomics
at Near-Cellular Resolution with Slide-seqV2”. In: Nature Biotechnology 39.3 (Mar. 2021),
pp- 313-319. 1ssN: 1546-1696. DOTI: [10.1038/s41587-020-0739-1.

Sanja Vickovic, Gokcen Eraslan, Fredrik Salmén, Johanna Klughammer, Linnea Stenbeck, De-
nis Schapiro, Tarmo Aijé, Richard Bonneau, Ludvig Bergenstrahle, José Fernandéz Navarro,
Joshua Gould, Gabriel K. Griffin, Ake Borg, Mostafa Ronaghi, Jonas Frisén, Joakim Lunde-
berg, Aviv Regev, and Patrik L. Stahl. “High-Definition Spatial Transcriptomics for in Situ
Tissue Profiling”. In: Nature Methods 16.10 (Oct. 2019), pp. 987-990. 1sSN: 1548-7105. DOLI:
10.1038/s41592-019-0548-y.

Ao Chen, Sha Liao, Mengnan Cheng, Kailong Ma, Liang Wu, Yiwei Lai, Xiaojie Qiu, Jin Yang,
Jiangshan Xu, Shijie Hao, Xin Wang, Huifang Lu, Xi Chen, Xing Liu, Xin Huang, Zhao Li,
Yan Hong, Yujia Jiang, Jian Peng, Shuai Liu, Mengzhe Shen, Chuanyu Liu, Quanshui Li, Yue
Yuan, Xiaoyu Wei, Huiwen Zheng, Weimin Feng, Zhifeng Wang, Yang Liu, Zhaohui Wang,
Yunzhi Yang, Haitao Xiang, Lei Han, Baoming Qin, Pengcheng Guo, Guangyao Lai, Pura
Munoz-Canoves, Patrick H. Maxwell, Jean Paul Thiery, Qing-Feng Wu, Fuxiang Zhao, Bichao


https://doi.org/10.1038/s41588-022-01041-y
https://doi.org/10.1016/j.trecan.2022.07.008
http://www.ncbi.nlm.nih.gov/pubmed/35995681
https://doi.org/10.1038/s41586-021-03634-9
https://doi.org/10.1126/science.274.5289.998
https://doi.org/10.1126/science.274.5289.998
https://doi.org/10.1038/nprot.2017.003
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1038/s41588-025-02193-3
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1038/s41587-020-0739-1
https://doi.org/10.1038/s41592-019-0548-y

BIBLIOGRAPHY 107

[43]

[44]

Chen, Mei Li, Xi Dai, Shuai Wang, Haoyan Kuang, Junhou Hui, Liqun Wang, Ji-Feng Fei, Ou
Wang, Xiaofeng Wei, Haorong Lu, Bo Wang, Shiping Liu, Ying Gu, Ming Ni, Wenwei Zhang,
Feng Mu, Ye Yin, Huanming Yang, Michael Lisby, Richard J. Cornall, Jan Mulder, Mathias
Uhlén, Miguel A. Esteban, Yuxiang Li, Longqi Liu, Xun Xu, and Jian Wang. “Spatiotemporal
Transcriptomic Atlas of Mouse Organogenesis Using DNA Nanoball-Patterned Arrays”. In:
Cell 185.10 (May 12, 2022), 1777-1792.e21. 1sSN: 0092-8674, 1097-4172. por: 10.1016/j .
cell.2022.04.003.

Andrea M. Femino, Fredric S. Fay, Kevin Fogarty, and Robert H. Singer. “Visualization of
Single RNA Transcripts in Situ”. In: Science 280.5363 (Apr. 24, 1998), pp. 585-590. DOI:
10.1126/science.280.5363.585.

Simone Codeluppi, Lars E. Borm, Amit Zeisel, Gioele La Manno, Josina A. van Lunteren,
Camilla I. Svensson, and Sten Linnarsson. “Spatial Organization of the Somatosensory Cortex
Revealed by osmFISH”. In: Nature Methods 15.11 (Nov. 2018), pp. 932-935. 1sSN: 1548-7105.
DOI: |10.1038/s41592-018-0175-z.

Eric Lubeck, Ahmet F. Coskun, Timur Zhiyentayev, Mubhij Ahmad, and Long Cai. “Single-
Cell in Situ RNA Profiling by Sequential Hybridization”. In: Nature Methods 11.4 (4 Apr.
2014), pp. 360-361. 1SSN: 1548-7105. DOI: 10.1038/nmeth.2892.

Kok Hao Chen, Alistair N. Boettiger, Jeffrey R. Moffitt, Siyuan Wang, and Xiaowei Zhuang.
“Spatially Resolved, Highly Multiplexed RNA Profiling in Single Cells”. In: Science 348.6233
(Apr. 24, 2015), aaa6090. DOI: 10.1126/science.aaat090.

Amanda Janesick, Robert Shelansky, Andrew D. Gottscho, Florian Wagner, Stephen R. Williams,
Morgane Rouault, Ghezal Beliakoff, Carolyn A. Morrison, Michelli F. Oliveira, Jordan T.
Sicherman, Andrew Kohlway, Jawad Abousoud, Tingsheng Yu Drennon, Seayar H. Mohabbat,
and Sarah E. B. Taylor. “High Resolution Mapping of the Tumor Microenvironment Using In-
tegrated Single-Cell, Spatial and in Situ Analysis”. In: Nature Communications 14.1 (Dec. 19,
2023), p. 8353. 1SSN: 2041-1723. DOI: 10.1038/s41467-023-43458-x.

Xiao Wang, William E. Allen, Matthew A. Wright, Emily L. Sylwestrak, Nikolay Samusik, Sam
Vesuna, Kathryn Evans, Cindy Liu, Charu Ramakrishnan, Jia Liu, Garry P. Nolan, Felice-
Alessio Bava, and Karl Deisseroth. “Three-Dimensional Intact-Tissue Sequencing of Single-
Cell Transcriptional States”. In: Science 361.6400 (July 27, 2018), eaat5691. pOI: [10. 1126/
science.aatb5691l

Michaela Asp, Joseph Bergenstrahle, and Joakim Lundeberg. “Spatially Resolved Transcrip-
tomes—Next Generation Tools for Tissue Exploration”. In: BioEssays 42.10 (2020), p. 1900221.
ISSN: 1521-1878. DOTI: [10.1002/bies.201900221.

Luyi Tian, Fei Chen, and Evan Z. Macosko. “The Expanding Vistas of Spatial Transcriptomics”.
In: Nature Biotechnology (Oct. 3,2022), pp. 1-10. 1sSN: 1546-1696. DOI: 10.1038/s41587-022-
01448-2.

Jeffrey R. Moffitt, Emma Lundberg, and Holger Heyn. “The Emerging Landscape of Spatial
Profiling Technologies”. In: Nature Reviews Genetics (July 20, 2022), pp. 1-19. 1SSN: 1471-0064.
DOI:|10.1038/s41576-022-00515-3.

Lukas Valihrach, Daniel Zucha, Pavel Abaffy, and Mikael Kubista. “A Practical Guide to
Spatial Transcriptomics”. In: Molecular Aspects of Medicine 97 (June 1, 2024), p. 101276.
1SsN: 0098-2997. DOI: [10.1016/j .mam.2024.101276.


https://doi.org/10.1016/j.cell.2022.04.003
https://doi.org/10.1016/j.cell.2022.04.003
https://doi.org/10.1126/science.280.5363.585
https://doi.org/10.1038/s41592-018-0175-z
https://doi.org/10.1038/nmeth.2892
https://doi.org/10.1126/science.aaa6090
https://doi.org/10.1038/s41467-023-43458-x
https://doi.org/10.1126/science.aat5691
https://doi.org/10.1126/science.aat5691
https://doi.org/10.1002/bies.201900221
https://doi.org/10.1038/s41587-022-01448-2
https://doi.org/10.1038/s41587-022-01448-2
https://doi.org/10.1038/s41576-022-00515-3
https://doi.org/10.1016/j.mam.2024.101276

BIBLIOGRAPHY

[54]

[55]

[64]

[65]

Yue You, Yuting Fu, Lanxiang Li, Zhongmin Zhang, Shikai Jia, Shihong Lu, Wenle Ren, Yi-
fang Liu, Yang Xu, Xiaojing Liu, Fuqing Jiang, Guangdun Peng, Abhishek Sampath Kumar,
Matthew E. Ritchie, Xiaodong Liu, and Luyi Tian. “Systematic Comparison of Sequencing-
Based Spatial Transcriptomic Methods”. In: Nature Methods 21.9 (Sept. 2024), pp. 1743-1754.
ISSN: 1548-7105. DOI: |10.1038/s41592-024-02325-3.

Lambda Moses and Lior Pachter. “Museum of Spatial Transcriptomics”. In: Nature Methods
(Mar. 10, 2022), pp. 1-13. 1SSN: 1548-7105. DOI: |10.1038/s41592-022-01409-2.

Paulien Hogeweg. “The Roots of Bioinformatics in Theoretical Biology”. In: PLOS Computa-
tional Biology 7.3 (Mar. 31, 2011), €e1002021. 1ssN: 1553-7358. DOIL: 10.1371/journal.pcbi.
1002021.

Joel B. Hagen. “The Origins of Bioinformatics”. In: Nature Reviews Genetics 1.3 (Dec. 2000),
pp. 231-236. 1SSN: 1471-0064. DOT: [10. 1038/35042090.

M. O. Dayhoff. “Computer Aids to Protein Sequence Determination”. In: Journal of Theoretical
Biology 8.1 (Jan. 1, 1965), pp. 97-112. 1ssN: 0022-5193. DOI: 10.1016/0022-5193(65) 90096-2.

Christos A. Ouzounis and Alfonso Valencia. “Early Bioinformatics: The Birth of a Discipline—a
Personal View”. In: Bioinformatics 19.17 (Nov. 22, 2003), pp. 2176-2190. 1SSN: 1367-4803. DOI:
10.1093/bioinformatics/btg309.

Jonathan D. Wren. “Bioinformatics Programs Are 31-Fold over-Represented among the Highest
Impact Scientific Papers of the Past Two Decades”. In: Bioinformatics 32.17 (Sept. 1, 2016),
pp- 2686-2691. 1SSN: 1367-4803. DOI: [10.1093/bioinformatics/btw284.

Ana Conesa, Pedro Madrigal, Sonia Tarazona, David Gomez-Cabrero, Alejandra Cervera, An-
drew McPherson, Michat Wojciech Szczesniak, Daniel J. Gaffney, Laura L. Elo, Xuegong Zhang,
and Ali Mortazavi. “A Survey of Best Practices for RNA-seq Data Analysis”. In: Genome Bi-
ology 17.1 (Jan. 26, 2016), p. 13. 1SSN: 1474-760X. DOI: 10.1186/s13059-016-0881-8.

Aishwarya Gondane and Harri M. Itkonen. “Revealing the History and Mystery of RNA-Seq”.
In: Current Issues in Molecular Biology 45.3 (Feb. 24, 2023), pp. 1860-1874. 1ssN: 1467-3037.
DOI: 110.3390/¢cimb45030120. PMID: 36975490.

Koen Van den Berge, Katharina M. Hembach, Charlotte Soneson, Simone Tiberi, Lieven
Clement, Michael I. Love, Rob Patro, and Mark D. Robinson. “RNA Sequencing Data: Hitch-
hiker’s Guide to Expression Analysis”. In: Annual Review of Biomedical Data Science 2.1
(2019), pp. 139-173. DOI: 10.1146/annurev-biodatasci-072018-021255.

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo Shi, Pelin Icer
Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. Singer, Brunilda Bal-
liu, David Koslicki, Pavel Skums, Alex Zelikovsky, Can Alkan, Onur Mutlu, and Serghei Man-
gul. “Technology Dictates Algorithms: Recent Developments in Read Alignment”. In: Genome
Biology 22.1 (Aug. 26, 2021), p. 249. 1sSN: 1474-760X. DOI: [10.1186/s13059-021-02443-7.

“Method of the Year 2013”. In: Nature Methods 11.1 (Jan. 2014), pp. 1-1. 1SSN: 1548-7105.
DOI: 10.1038/nmeth.2801.

Rickard Sandberg. “Entering the Era of Single-Cell Transcriptomics in Biology and Medicine”.
In: Nature Methods 11.1 (Jan. 2014), pp. 22-24. 1SSN: 1548-7105. DOI: [10.1038/nmeth . 2764.


https://doi.org/10.1038/s41592-024-02325-3
https://doi.org/10.1038/s41592-022-01409-2
https://doi.org/10.1371/journal.pcbi.1002021
https://doi.org/10.1371/journal.pcbi.1002021
https://doi.org/10.1038/35042090
https://doi.org/10.1016/0022-5193(65)90096-2
https://doi.org/10.1093/bioinformatics/btg309
https://doi.org/10.1093/bioinformatics/btw284
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.3390/cimb45030120
http://www.ncbi.nlm.nih.gov/pubmed/36975490
https://doi.org/10.1146/annurev-biodatasci-072018-021255
https://doi.org/10.1186/s13059-021-02443-7
https://doi.org/10.1038/nmeth.2801
https://doi.org/10.1038/nmeth.2764

BIBLIOGRAPHY 109

[66] Aviv Regev, Sarah A Teichmann, Eric S Lander, Ido Amit, Christophe Benoist, Ewan Birney,
Bernd Bodenmiller, Peter Campbell, Piero Carninci, Menna Clatworthy, Hans Clevers, Bart
Deplancke, Ian Dunham, James Eberwine, Roland Eils, Wolfgang Enard, Andrew Farmer, Lars
Fugger, Berthold Gottgens, Nir Hacohen, Muzlifah Haniffa, Martin Hemberg, Seung Kim, Paul
Klenerman, Arnold Kriegstein, Ed Lein, Sten Linnarsson, Emma Lundberg, Joakim Lundeberg,
Partha Majumder, John C Marioni, Miriam Merad, Musa Mhlanga, Martijn Nawijn, Mihai
Netea, Garry Nolan, Dana Pe’er, Anthony Phillipakis, Chris P Ponting, Stephen Quake, Wolf
Reik, Orit Rozenblatt-Rosen, Joshua Sanes, Rahul Satija, Ton N Schumacher, Alex Shalek,
Ehud Shapiro, Padmanee Sharma, Jay W Shin, Oliver Stegle, Michael Stratton, Michael J T
Stubbington, Fabian J Theis, Matthias Uhlen, Alexander van Oudenaarden, Allon Wagner,
Fiona Watt, Jonathan Weissman, Barbara Wold, Ramnik Xavier, Nir Yosef, and Human Cell
Atlas Meeting Participants. “The Human Cell Atlas”. In: eLife 6 (Dec. 5, 2017). Ed. by Thomas
R Gingeras, e27041. 1sSN: 2050-084X. DOI: [10.7554/elLife.27041.

[67] Luke Simpson, Andrew Strange, Doris Klisch, Sophie Kraunsoe, Takuya Azami, Daniel Goszczyn-
ski, Triet Le Minh, Benjamin Planells, Nadine Holmes, Fei Sang, Sonal Henson, Matthew Loose,
Jennifer Nichols, and Ramiro Alberio. “A Single-Cell Atlas of Pig Gastrulation as a Resource
for Comparative Embryology”. In: Nature Communications 15.1 (June 18, 2024), p. 5210. 1SSN:
2041-1723. DOI: 110.1038/s41467-024-49407-6.

[68] Zizhen Yao, Cindy T. J. van Velthoven, Michael Kunst, Meng Zhang, Delissa McMillen, Changkyu
Lee, Won Jung, Jeff Goldy, Aliya Abdelhak, Matthew Aitken, Katherine Baker, Pamela Baker,
Eliza Barkan, Darren Bertagnolli, Ashwin Bhandiwad, Cameron Bielstein, Prajal Bishwakarma,
Jazmin Campos, Daniel Carey, Tamara Casper, Anish Bhaswanth Chakka, Rushil Chakrabarty,
Sakshi Chavan, Min Chen, Michael Clark, Jennie Close, Kirsten Crichton, Scott Daniel, Peter
DiValentin, Tim Dolbeare, Lauren Ellingwood, Elysha Fiabane, Timothy Fliss, James Gee,
James Gerstenberger, Alexandra Glandon, Jessica Gloe, Joshua Gould, James Gray, Nathan
Guilford, Junitta Guzman, Daniel Hirschstein, Windy Ho, Marcus Hooper, Mike Huang, Madie
Hupp, Kelly Jin, Matthew Kroll, Kanan Lathia, Arielle Leon, Su Li, Brian Long, Zach Madigan,
Jessica Malloy, Jocelin Malone, Zoe Maltzer, Naomi Martin, Rachel McCue, Ryan McGinty,
Nicholas Mei, Jose Melchor, Emma Meyerdierks, Tyler Mollenkopf, Skyler Moonsman, Thuc
Nghi Nguyen, Sven Otto, Trangthanh Pham, Christine Rimorin, Augustin Ruiz, Raymond
Sanchez, Lane Sawyer, Nadiya Shapovalova, Noah Shepard, Cliff Slaughterbeck, Josef Sulc,
Michael Tieu, Amy Torkelson, Herman Tung, Nasmil Valera Cuevas, Shane Vance, Katherine
Wadhwani, Katelyn Ward, Boaz Levi, Colin Farrell, Rob Young, Brian Staats, Ming-Qiang
Michael Wang, Carol L. Thompson, Shoaib Mufti, Chelsea M. Pagan, Lauren Kruse, Nick
Dee, Susan M. Sunkin, Luke Esposito, Michael J. Hawrylycz, Jack Waters, Lydia Ng, Kim-
berly Smith, Bosiljka Tasic, et al. “A High-Resolution Transcriptomic and Spatial Atlas of
Cell Types in the Whole Mouse Brain”. In: Nature 624.7991 (Dec. 2023), pp. 317-332. ISSN:
1476-4687. DOI: |10.1038/s41586-023-06812-z.

[69] Jin Li, Jongsu Choi, Xuesen Cheng, Justin Ma, Shahil Pema, Joshua R. Sanes, Graeme Mardon,
Benjamin J. Frankfort, Nicholas M. Tran, Yumei Li, and Rui Chen. “Comprehensive Single-
Cell Atlas of the Mouse Retina”. In: iScience 27.6 (June 21, 2024). 1sSN: 2589-0042. DOT:
10.1016/j.1isci.2024.109916.

[70] Ramén Massoni-Badosa, Paula Soler-Vila, Sergio Aguilar-Fernandez, Juan C. Nieto, Marc
Elosua-Bayes, Domenica Marchese, Marta Kulis, Amaia Vilas-Zornoza, Marco Matteo Biihler,
Sonal Rashmi, Clara Alsinet, Ginevra Caratu, Catia Moutinho, Sara Ruiz, Patricia Lorden,
Giulia Lunazzi, Dolors Colomer, Gerard Frigola, Will Blevins, Sara Palomino, David Gomez-
Cabrero, Xabier Aguirre, Marc A. Weniger, Federico Marini, Francisco Javier Cervera-Paz, Pe-
ter M. Baptista, Isabel Vilaseca, Felipe Prosper, Ralf Kiippers, Ivo Glynne Gut, Elias Campo,


https://doi.org/10.7554/eLife.27041
https://doi.org/10.1038/s41467-024-49407-6
https://doi.org/10.1038/s41586-023-06812-z
https://doi.org/10.1016/j.isci.2024.109916

110

BIBLIOGRAPHY

[71]

[72]

[75]

[76]

[78]

José Ignacio Martin-Subero, and Holger Heyn. “An Atlas of Cells in the Human Tonsil”.
June 26, 2022. DOI: [10.1101/2022.06.24.497299. Pre-published.

Susan M. Sunkin, Lydia Ng, Chris Lau, Tim Dolbeare, Terri L. Gilbert, Carol L. Thomp-
son, Michael Hawrylycz, and Chinh Dang. “Allen Brain Atlas: An Integrated Spatio-Temporal
Portal for Exploring the Central Nervous System”. In: Nucleic Acids Research 41.D1 (Jan. 1,
2013), pp. D996-D1008. 1ssN: 0305-1048. DOT: 10.1093/nar/gks1042.

Lisa Sikkema, Ciro Ramirez-Sudstegui, Daniel C. Strobl, Tessa E. Gillett, Luke Zappia, Elo
Madissoon, Nikolay S. Markov, Laure-Emmanuelle Zaragosi, Yuge Ji, Meshal Ansari, Marie-
Jeanne Arguel, Leonie Apperloo, Martin Banchero, Christophe Bécavin, Marijn Berg, Evgeny
Chichelnitskiy, Mei-i Chung, Antoine Collin, Aurore C. A. Gay, Janine Gote-Schniering, Ba-
harak Hooshiar Kashani, Kemal Inecik, Manu Jain, Theodore S. Kapellos, Tessa M. Kole, Sylvie
Leroy, Christoph H. Mayr, Amanda J. Oliver, Michael von Papen, Lance Peter, Chase J. Tay-
lor, Thomas Walzthoeni, Chuan Xu, Linh T. Bui, Carlo De Donno, Leander Dony, Alen Faiz,
Minzhe Guo, Austin J. Gutierrez, Lukas Heumos, Ni Huang, Ignacio L. Ibarra, Nathan D. Jack-
son, Preetish Kadur Lakshminarasimha Murthy, Mohammad Lotfollahi, Tracy Tabib, Carlos
Talavera-Lépez, Kyle J. Travaglini, Anna Wilbrey-Clark, Kaylee B. Worlock, Masahiro Yoshida,
Maarten van den Berge, Yohan Bossé, Tushar J. Desai, Oliver Eickelberg, Naftali Kaminski,
Mark A. Krasnow, Robert Lafyatis, Marko Z. Nikolic, Joseph E. Powell, Jayaraj Rajagopal,
Mauricio Rojas, Orit Rozenblatt-Rosen, Max A. Seibold, Dean Sheppard, Douglas P. Shep-
herd, Don D. Sin, Wim Timens, Alexander M. Tsankov, Jeffrey Whitsett, Yan Xu, Nicholas E.
Banovich, Pascal Barbry, Thu Elizabeth Duong, Christine S. Falk, Kerstin B. Meyer, Jonathan
A. Kropski, Dana Pe’er, Herbert B. Schiller, Purushothama Rao Tata, Joachim L. Schultze,
Sara A. Teichmann, Alexander V. Misharin, Martijn C. Nawijn, Malte D. Luecken, and Fabian
J. Theis. “An Integrated Cell Atlas of the Lung in Health and Disease”. In: Nature Medicine
29.6 (6 June 2023), pp. 1563—-1577. 1SSN: 1546-170X. DOI: 10.1038/s41591-023-02327-2.

Peter V. Kharchenko. “The Triumphs and Limitations of Computational Methods for scRNA-
seq”. In: Nature Methods 18.7 (7 July 2021), pp. 723-732. 1ssN: 1548-7105. por: 10 . 1038/
s41592-021-01171-x.

Changde Cheng, Wenan Chen, Hongjian Jin, and Xiang Chen. “A Review of Single-Cell
RNA-Seq Annotation, Integration, and Cell-Cell Communication”. In: Cells 12.15 (Jan. 2023),
p- 1970. 1ssN: 2073-4409. DOI: [10.3390/cells12151970.

How Many Cells Are Captured in a Single Spot? 10X Genomics. URL: https://kb.10xgenomics.
com/hc/en-us/articles/360035487952-How-many-cells-are-captured-in-a-single-
spot/ (visited on 08/20/2025).

Simon Mages, Noa Moriel, Inbal Avraham-Davidi, Evan Murray, Jan Watter, Fei Chen, Orit
Rozenblatt-Rosen, Johanna Klughammer, Aviv Regev, and Mor Nitzan. “TACCO Unifies An-
notation Transfer and Decomposition of Cell Identities for Single-Cell and Spatial Omics”. In:
Nature Biotechnology (Feb. 16, 2023), pp. 1-9. 1SsN: 1546-1696. DOI: 10.1038/s41587-023~
01657-3.

Dylan M. Cable, Evan Murray, Luli S. Zou, Aleksandrina Goeva, Evan Z. Macosko, Fei Chen,
and Rafael A. Irizarry. “Robust Decomposition of Cell Type Mixtures in Spatial Transcrip-
tomics”. In: Nature Biotechnology 40.4 (4 Apr. 2022), pp. 517-526. 1SSN: 1546-1696. DOTI:
10.1038/s41587-021-00830-w.

Vitalii Kleshchevnikov, Artem Shmatko, Emma Dann, Alexander Aivazidis, Hamish W. King,
Tong Li, Rasa Elmentaite, Artem Lomakin, Veronika Kedlian, Adam Gayoso, Mika Sarkin
Jain, Jun Sung Park, Lauma Ramona, Elizabeth Tuck, Anna Arutyunyan, Roser Vento-Tormo,
Moritz Gerstung, Louisa James, Oliver Stegle, and Omer Ali Bayraktar. “Cell2location Maps


https://doi.org/10.1101/2022.06.24.497299
https://doi.org/10.1093/nar/gks1042
https://doi.org/10.1038/s41591-023-02327-2
https://doi.org/10.1038/s41592-021-01171-x
https://doi.org/10.1038/s41592-021-01171-x
https://doi.org/10.3390/cells12151970
https://kb.10xgenomics.com/hc/en-us/articles/360035487952-How-many-cells-are-captured-in-a-single-spot
https://kb.10xgenomics.com/hc/en-us/articles/360035487952-How-many-cells-are-captured-in-a-single-spot
https://kb.10xgenomics.com/hc/en-us/articles/360035487952-How-many-cells-are-captured-in-a-single-spot
https://doi.org/10.1038/s41587-023-01657-3
https://doi.org/10.1038/s41587-023-01657-3
https://doi.org/10.1038/s41587-021-00830-w

BIBLIOGRAPHY 111

[79]

[83]

[84]

[85]

[36]

Fine-Grained Cell Types in Spatial Transcriptomics”. In: Nature Biotechnology 40.5 (5 May
2022), pp. 661-671. 1SSN: 1546-1696. DOI: |10.1038/s41587-021-01139-4.

Jiagiang Zhu, Shiquan Sun, and Xiang Zhou. “SPARK-X: Non-Parametric Modeling Enables
Scalable and Robust Detection of Spatial Expression Patterns for Large Spatial Transcriptomic
Studies”. In: Genome Biology 22.1 (June 21, 2021), p. 184. 1SsN: 1474-760X. DOI: 10.1186/
s13059-021-02404-0.

Valentine Svensson, Sarah A. Teichmann, and Oliver Stegle. “SpatialDE: Identification of Spa-
tially Variable Genes”. In: Nature Methods 15.5 (5 May 2018), pp. 343-346. 1sSN: 1548-7105.
DOI: |10.1038/nmeth.4636.

Guoxin Cai, Yichang Chen, Xun Gu, and Zhan Zhou. “Spanve: An Effective Statistical Method
to Detect Spatially Variable Genes in Large-scale Spatial Transcriptomics Data”. Feb. 8, 2023.
DOI:10.1101/2023.02.08.527623. Pre-published.

Zheng Li and Xiang Zhou. “BASS: Multi-Scale and Multi-Sample Analysis Enables Accurate
Cell Type Clustering and Spatial Domain Detection in Spatial Transcriptomic Studies”. In:
Genome Biology 23.1 (Aug. 4, 2022), p. 168. 1sSN: 1474-760X. DOI: 10.1186/s13059- 022~
02734-7.

Vipul Singhal, Nigel Chou, Joseph Lee, Yifei Yue, Jinyue Liu, Wan Kee Chock, Li Lin, Yun-
Ching Chang, Erica Mei Ling Teo, Jonathan Aow, Hwee Kuan Lee, Kok Hao Chen, and Shyam
Prabhakar. “BANKSY Unifies Cell Typing and Tissue Domain Segmentation for Scalable Spa-
tial Omics Data Analysis”. In: Nature Genetics 56.3 (Mar. 2024), pp. 431-441. 1sSN: 1546-1718.
DOI: 10.1038/s41588-024-01664-3.

Kangning Dong and Shihua Zhang. “Deciphering Spatial Domains from Spatially Resolved
Transcriptomics with an Adaptive Graph Attention Auto-Encoder”. In: Nature Communica-
tions 13.1 (1 Apr. 1, 2022), p. 1739. 1SSN: 2041-1723. DOT: [10. 1038/541467-022-29439-6.

Jian Hu, Amelia Schroeder, Kyle Coleman, Chixiang Chen, Benjamin J. Auerbach, and Mingyao
Li. “Statistical and Machine Learning Methods for Spatially Resolved Transcriptomics with
Histology”. In: Computational and Structural Biotechnology Journal 19 (2021), pp. 3829-3841.
ISSN: 20010370. DOI: [10.1016/7.csbj.2021.06.052.

Brendan F. Miller, Dhananjay Bambah-Mukku, Catherine Dulac, Xiaowei Zhuang, and Jean
Fan. “Characterizing Spatial Gene Expression Heterogeneity in Spatially Resolved Single-Cell
Transcriptomic Data with Nonuniform Cellular Densities”. In: Genome Research 31.10 (Jan. 10,
2021), pp. 1843-1855. 1SSN: 1088-9051, 1549-5469. por: 10 .1101/gr . 271288 . 120. PMID:
34035045.

Ruben Dries, Qian Zhu, Rui Dong, Chee-Huat Linus Eng, Huipeng Li, Kan Liu, Yuntian
Fu, Tianxiao Zhao, Arpan Sarkar, Feng Bao, Rani E. George, Nico Pierson, Long Cai, and
Guo-Cheng Yuan. “Giotto: A Toolbox for Integrative Analysis and Visualization of Spatial
Expression Data”. In: Genome Biology 22.1 (Mar. 8, 2021), p. 78. 1SSN: 1474-760X. DOTI: |10.
1186/s13059-021-02286-2.

Donald E. Ingber. “Mechanical Control of Tissue Growth: Function Follows Form”. In: Pro-
ceedings of the National Academy of Sciences 102.33 (Aug. 16, 2005), pp. 11571-11572. DOTI:
10.1073/pnas.0505939102.

Adam J. Engler, Patrick O. Humbert, Bernhard Wehrle-Haller, and Valerie M. Weaver. “Mul-
tiscale Modeling of Form and Function”. In: Science 324.5924 (Apr. 10, 2009), pp. 208-212.
DOI: [10.1126/science. 1170107k


https://doi.org/10.1038/s41587-021-01139-4
https://doi.org/10.1186/s13059-021-02404-0
https://doi.org/10.1186/s13059-021-02404-0
https://doi.org/10.1038/nmeth.4636
https://doi.org/10.1101/2023.02.08.527623
https://doi.org/10.1186/s13059-022-02734-7
https://doi.org/10.1186/s13059-022-02734-7
https://doi.org/10.1038/s41588-024-01664-3
https://doi.org/10.1038/s41467-022-29439-6
https://doi.org/10.1016/j.csbj.2021.06.052
https://doi.org/10.1101/gr.271288.120
http://www.ncbi.nlm.nih.gov/pubmed/34035045
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1073/pnas.0505939102
https://doi.org/10.1126/science.1170107

112

BIBLIOGRAPHY

[90]

[102]

[103]

D. Friday King and Laura A. C. King. “A Brief Historical Note on Staining by Hematoxylin
and Eosin”. In: The American Journal of Dermatopathology 8.2 (Apr. 1986), p. 168. ISSN:
0193-1091.

John K. C. Chan. “The Wonderful Colors of the Hematoxylin—Eosin Stain in Diagnostic Surgical
Pathology”. In: International Journal of Surgical Pathology 22.1 (Feb. 1, 2014), pp. 12-32. 1SSN:
1066-8969. DOI: 110.1177/1066896913517939.

Wikipedia contributors. Histopathology of Basal Cell Carcinoma of the Skin. Wikipedia. Jan. 9,
2006. URL: https : // commons . wikimedia . org /wiki /File : Basal _cell _ carcinoma _
histopathology_(3).jpg (visited on 10/17/2025).

Murli Krishna. “Role of Special Stains in Diagnostic Liver Pathology”. In: Clinical Liver Disease
2.51 (2013), S8-S10. 1sSN: 2046-2484. DOI: 10.1002/c1d.148.

Rolf Zehbe, Astrid Haibel, Heinrich Riesemeier, Ulrich Gross, C. James Kirkpatrick, Helmut
Schubert, and Christoph Brochhausen. “Going beyond Histology. Synchrotron Micro-Computed
Tomography as a Methodology for Biological Tissue Characterization: From Tissue Morphology
to Individual Cells”. In: Journal of The Royal Society Interface 7.42 (Mar. 25, 2009), pp. 49-59.
DOI:10.1098/rsif .2008.0539.

Silas Maniatis, Joana Petrescu, and Hemali Phatnani. “Spatially Resolved Transcriptomics and
Its Applications in Cancer”. In: Current Opinion in Genetics € Development. Cancer Genomics
66 (Feb. 1, 2021), pp. 70-77. 1sSN: 0959-437X. DOI: 10.1016/j.gde.2020.12.002.

Stefania Giacomello, Fredrik Salmén, Barbara K. Terebieniec, Sanja Vickovic, José Fernandez
Navarro, Andrey Alexeyenko, Johan Reimegard, Lauren S. McKee, Chanaka Mannapperuma,
Vincent Bulone, Patrik L. Stahl, Jens F. Sundstrém, Nathaniel R. Street, and Joakim Lunde-
berg. “Spatially Resolved Transcriptome Profiling in Model Plant Species”. In: Nature Plants
3.6 (May 8, 2017), p. 17061. 1SsN: 2055-0278. DOI: [10.1038/nplants.2017.61.

Zhiyuan Yuan, Wentao Pan, Xuan Zhao, Fangyuan Zhao, Zhimeng Xu, Xiu Li, Yi Zhao, Michael
Q. Zhang, and Jianhua Yao. “SODB Facilitates Comprehensive Exploration of Spatial Omics
Data”. In: Nature Methods (Feb. 16, 2023), pp. 1-13. 1SsN: 1548-7105. DOI: [10.1038/s41592~
023-01773-T7.

Leland Mclnnes, John Healy, Nathaniel Saul, and Lukas Grofiberger. “UMAP: Uniform Mani-
fold Approximation and Projection”. In: Journal of Open Source Software 3.29 (Sept. 2, 2018),
p. 861. 1SSN: 2475-9066. DOI: [10.21105/joss.00861.

Vivien Marx. “Seeing Data as T-SNE and UMAP Do”. In: Nature Methods 21.6 (June 2024),
pp- 930-933. 1SSN: 1548-7105. DOI: [10.1038/541592-024-02301-x.

Tara Chari and Lior Pachter. “The Specious Art of Single-Cell Genomics”. In: PLOS Com-
putational Biology 19.8 (Aug. 17, 2023), ¢1011288. 1SSN: 1553-7358. DOI: 10.1371/ journal.
pcbi.1011288.

Han Chu, Kun Wang, Hansen Cheng, Wenhao Ma, Liting Dong, Yixiong Gou, Jian Yang,
and Haoyang Cai. “Exploring the Landscape of Spatial Transcriptome Analysis: Introducing
STASH, a Database of Spatial Transcriptome Tools”. Apr. 21, 2023. DOI: [10.1101/2023.04.
20.537419. Pre-published.

Benjamin L. Walker, Zixuan Cang, Honglei Ren, Eric Bourgain-Chang, and Qing Nie. “Deci-
phering Tissue Structure and Function Using Spatial Transcriptomics”. In: Communications
Biology 5.1 (Mar. 10, 2022), p. 220. 1SSN: 2399-3642. DOI: 10.1038/s42003-022-03175-5.

Roopali Singh, Xi He, Adam Keebum Park, Ross Cameron Hardison, Xiang Zhu, and Qunhua
Li. “Retrofit: Reference-Free Deconvolution of Cell-Type Mixtures in Spatial Transcriptomics”.
June 9, 2023. DOI:[10.1101/2023.06.07.544126/. Pre-published.


https://doi.org/10.1177/1066896913517939
https://commons.wikimedia.org/wiki/File:Basal_cell_carcinoma_histopathology_(3).jpg
https://commons.wikimedia.org/wiki/File:Basal_cell_carcinoma_histopathology_(3).jpg
https://doi.org/10.1002/cld.148
https://doi.org/10.1098/rsif.2008.0539
https://doi.org/10.1016/j.gde.2020.12.002
https://doi.org/10.1038/nplants.2017.61
https://doi.org/10.1038/s41592-023-01773-7
https://doi.org/10.1038/s41592-023-01773-7
https://doi.org/10.21105/joss.00861
https://doi.org/10.1038/s41592-024-02301-x
https://doi.org/10.1371/journal.pcbi.1011288
https://doi.org/10.1371/journal.pcbi.1011288
https://doi.org/10.1101/2023.04.20.537419
https://doi.org/10.1101/2023.04.20.537419
https://doi.org/10.1038/s42003-022-03175-5
https://doi.org/10.1101/2023.06.07.544126

BIBLIOGRAPHY 113

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

112]

[113]

[114]

Kazumasa Kanemaru, James Cranley, Daniele Muraro, Antonio M. A. Miranda, Siew Yen
Ho, Anna Wilbrey-Clark, Jan Patrick Pett, Krzysztof Polanski, Laura Richardson, Monika
Litvinukova, Natsuhiko Kumasaka, Yue Qin, Zuzanna Jablonska, Claudia I. Semprich, Lukas
Mach, Monika Dabrowska, Nathan Richoz, Liam Bolt, Lira Mamanova, Rakeshlal Kapuge,
Sam N. Barnett, Shani Perera, Carlos Talavera-Lépez, Illaria Mulas, Krishnaa T. Mahbubani,
Liz Tuck, Lu Wang, Margaret M. Huang, Martin Prete, Sophie Pritchard, John Dark, Kourosh
Saeb-Parsy, Minal Patel, Menna R. Clatworthy, Norbert Hiibner, Rasheda A. Chowdhury,
Michela Noseda, and Sarah A. Teichmann. “Spatially Resolved Multiomics of Human Cardiac
Niches”. In: Nature 619.7971 (July 2023), pp. 801-810. 1SSN: 1476-4687. DOI:|10.1038/s41586-
023-06311-1.

Linhua Wang, Mirjana Maletic-Savatic, and Zhandong Liu. “Region-Specific Denoising Identi-
fies Spatial Co-Expression Patterns and Intra-Tissue Heterogeneity in Spatially Resolved Tran-
scriptomics Data”. In: Nature Communications 13.1 (1 Nov. 14, 2022), p. 6912. 1sSN: 2041-1723.
DOI: |10.1038/s41467-022-34567-0.

Jean-Baptiste Pettit, Raju Tomer, Kaia Achim, Sylvia Richardson, Lamiae Azizi, and John
Marioni. “Identifying Cell Types from Spatially Referenced Single-Cell Expression Datasets”.
In: PLOS Computational Biology 10.9 (Sept. 25, 2014), e1003824. 1SSN: 1553-7358. DOI: |10 .
1371/journal .pcbi. 1003824

Mor Nitzan, Nikos Karaiskos, Nir Friedman, and Nikolaus Rajewsky. “Gene Expression Car-
tography”. In: Nature 576.7785 (7785 Dec. 2019), pp. 132-137. 1SSN: 1476-4687. DOI: 10.1038/
s41586-019-1773-3.

Dylan Kotliar, Adrian Veres, M Aurel Nagy, Shervin Tabrizi, Eran Hodis, Douglas A Melton,
and Pardis C Sabeti. “Identifying Gene Expression Programs of Cell-Type Identity and Cellular
Activity with Single-Cell RNA-Seq”. In: eLife 8 (July 8, 2019). Ed. by Alfonso Valencia, Naama
Barkai, Elisabetta Mereu, and Berthold Gottgens, e43803. 1ssN: 2050-084X. DoI: [10. 7554 /
elLife.43803.

Jiachen Li, Siheng Chen, Xiaoyong Pan, Ye Yuan, and Hong-Bin Shen. “Cell Clustering for
Spatial Transcriptomics Data with Graph Neural Networks”. In: Nature Computational Science
2.6 (June 2022), pp. 399-408. 1SSN: 2662-8457. DOI: 10.1038/s43588-022-00266-5.

“What Is Your Conceptual Definition of “Cell Type” in the Context of a Mature Organism?”
In: Cell Systems 4.3 (Mar. 22, 2017), pp. 255-259. 1SSN: 2405-4712, 2405-4720. DOI: 10.1016/
j.cels.2017.03.006. PMID: 28334573.

Jonas Simon Fleck, J. Gray Camp, and Barbara Treutlein. “What Is a Cell Type?” In: Science
381.6659 (Aug. 18, 2023), pp. 733-734. DOI: 10.1126/science.adf6162.

Jeff J. Doyle. “Cell Types as Species: Exploring a Metaphor”. In: Frontiers in Plant Science
13 (Aug. 22, 2022). 1SSN: 1664-462X. DOI: |10.3389/fpls.2022.868565.

Stafford Beer. “What Is Cybernetics?” In: Kybernetes 31.2 (Mar. 1, 2002), pp. 209-219. 1SSN:
0368-492X. DOI: [10.1108/03684920210417283.

Kristen R. Maynard, Leonardo Collado-Torres, Lukas M. Weber, Cedric Uytingco, Brianna K.
Barry, Stephen R. Williams, Joseph L. Catallini, Matthew N. Tran, Zachary Besich, Mad-
havi Tippani, Jennifer Chew, Yifeng Yin, Joel E. Kleinman, Thomas M. Hyde, Nikhil Rao,
Stephanie C. Hicks, Keri Martinowich, and Andrew E. Jaffe. “Transcriptome-Scale Spatial
Gene Expression in the Human Dorsolateral Prefrontal Cortex”. In: Nature Neuroscience 24.3
(3 Mar. 2021), pp. 425-436. 1SSN: 1546-1726. DOI: 10.1038/s41593-020-00787-0.


https://doi.org/10.1038/s41586-023-06311-1
https://doi.org/10.1038/s41586-023-06311-1
https://doi.org/10.1038/s41467-022-34567-0
https://doi.org/10.1371/journal.pcbi.1003824
https://doi.org/10.1371/journal.pcbi.1003824
https://doi.org/10.1038/s41586-019-1773-3
https://doi.org/10.1038/s41586-019-1773-3
https://doi.org/10.7554/eLife.43803
https://doi.org/10.7554/eLife.43803
https://doi.org/10.1038/s43588-022-00266-5
https://doi.org/10.1016/j.cels.2017.03.006
https://doi.org/10.1016/j.cels.2017.03.006
http://www.ncbi.nlm.nih.gov/pubmed/28334573
https://doi.org/10.1126/science.adf6162
https://doi.org/10.3389/fpls.2022.868565
https://doi.org/10.1108/03684920210417283
https://doi.org/10.1038/s41593-020-00787-0

114

BIBLIOGRAPHY

[115]

[116]

[117)

[118]

[119]

[120]

[121]

122]

[123]

[124]

Yahui Long, Kok Siong Ang, Mengwei Li, Kian Long Kelvin Chong, Raman Sethi, Cheng-
wei Zhong, Hang Xu, Zhiwei Ong, Karishma Sachaphibulkij, Ao Chen, Li Zeng, Huazhu Fu,
Min Wu, Lina Hsiu Kim Lim, Longqi Liu, and Jinmiao Chen. “Spatially Informed Clustering,
Integration, and Deconvolution of Spatial Transcriptomics with GraphST”. In: Nature Commu-
nications 14.1 (1 Mar. 1, 2023), p. 1155. 1SSN: 2041-1723. DOI: 10.1038/s41467-023-36796-3.

Yi Yang, Xingjie Shi, Wei Liu, Qiuzhong Zhou, Mai Chan Lau, Jeffrey Chun Tatt Lim, Lei Sun,
Cedric Chuan Young Ng, Joe Yeong, and Jin Liu. “SC-MEB: Spatial Clustering with Hidden
Markov Random Field Using Empirical Bayes”. In: Briefings in Bioinformatics 23.1 (Jan. 17,
2022), bbab466. 1SSN: 1477-4054. DOI: 10.1093/bib/bbab466. PMID: 34849574.

Teng Liu, Zhao-Yu Fang, Zongbo Zhang, Yongxiang Yu, Min Li, and Ming-Zhu Yin. “A Com-
prehensive Overview of Graph Neural Network-Based Approaches to Clustering for Spatial
Transcriptomics”. In: Computational and Structural Biotechnology Journal 23 (Dec. 1, 2024),
pp- 106-128. 18SN: 2001-0370. DOI: [10.1016/j.csbj.2023.11.055. PMID: 38089467.

Qian Zhu, Sheel Shah, Ruben Dries, Long Cai, and Guo-Cheng Yuan. “Identification of Spa-
tially Associated Subpopulations by Combining scRNAseq and Sequential Fluorescence in Situ
Hybridization Data”. In: Nature Biotechnology 36.12 (12 Dec. 2018), pp. 1183-1190. 1SSN: 1546~
1696. DOI: 10.1038/nbt .4260.

Edward Zhao, Matthew R. Stone, Xing Ren, Jamie Guenthoer, Kimberly S. Smythe, Thomas
Pulliam, Stephen R. Williams, Cedric R. Uytingco, Sarah E. B. Taylor, Paul Nghiem, Jason H.
Bielas, and Raphael Gottardo. “Spatial Transcriptomics at Subspot Resolution with BayesS-
pace”. In: Nature Biotechnology 39.11 (11 Nov. 2021), pp. 1375-1384. 1sSN: 1546-1696. DOI:
10.1038/s41587-021-00935-2.

Yanghong Guo, Bencong Zhu, Chen Tang, Ruichen Rong, Ying Ma, Guanghua Xiao, Lin Xu,
and Qiwei Li. “BayeSMART: Bayesian Clustering of Multi-Sample Spatially Resolved Tran-
scriptomics Data”. In: Briefings in Bioinformatics 25.6 (Nov. 1, 2024), bbae524. 1SSN: 1477-
4054. DOTI: [10.1093/bib/bbaeb24.

Duy Pham, Xiao Tan, Brad Balderson, Jun Xu, Laura F. Grice, Sohye Yoon, Emily F. Willis,
Minh Tran, Pui Yeng Lam, Arti Raghubar, Priyakshi Kalita-de Croft, Sunil Lakhani, Jana
Vukovic, Marc J. Ruitenberg, and Quan H. Nguyen. “Robust Mapping of Spatiotemporal Tra-
jectories and Cell-Cell Interactions in Healthy and Diseased Tissues”. In: Nature Communica-
tions 14.1 (Nov. 25, 2023), p. 7739. 1SSN: 2041-1723. DOI: [10.1038/s41467-023-43120-6.

Jian Hu, Xiangjie Li, Kyle Coleman, Amelia Schroeder, Nan Ma, David J. Irwin, Edward B.
Lee, Russell T. Shinohara, and Mingyao Li. “SpaGCN: Integrating Gene Expression, Spatial
Location and Histology to Identify Spatial Domains and Spatially Variable Genes by Graph
Convolutional Network”. In: Nature Methods 18.11 (11 Nov. 2021), pp. 1342-1351. 1SSN: 1548-
7105. DOI: 110.1038/s41592-021-01255-8.

Daoliang Zhang, Na Yu, Zhiyuan Yuan, Wenrui Li, Xue Sun, Qi Zou, Xiangyu Li, Zhiping Liu,
Wei Zhang, and Rui Gao. “stMMR: Accurate and Robust Spatial Domain Identification from
Spatially Resolved Transcriptomics with Multimodal Feature Representation”. In: GigaScience
13 (Jan. 1, 2024), giae089. 1sSN: 2047-217X. DOI: [10.1093/gigascience/giae089.

Yiran Shan, Qian Zhang, Wenbo Guo, Yanhong Wu, Yuxin Miao, Hongyi Xin, Qiuyu Lian,
and Jin Gu. “TIST: Transcriptome and Histopathological Image Integrative Analysis for Spatial
Transcriptomics”. In: Genomics, Proteomics € Bioinformatics (Dec. 19, 2022). 1sSN: 1672-0229.
DOI: |10.1016/j.gpb.2022.11.012.


https://doi.org/10.1038/s41467-023-36796-3
https://doi.org/10.1093/bib/bbab466
http://www.ncbi.nlm.nih.gov/pubmed/34849574
https://doi.org/10.1016/j.csbj.2023.11.055
http://www.ncbi.nlm.nih.gov/pubmed/38089467
https://doi.org/10.1038/nbt.4260
https://doi.org/10.1038/s41587-021-00935-2
https://doi.org/10.1093/bib/bbae524
https://doi.org/10.1038/s41467-023-43120-6
https://doi.org/10.1038/s41592-021-01255-8
https://doi.org/10.1093/gigascience/giae089
https://doi.org/10.1016/j.gpb.2022.11.012

BIBLIOGRAPHY 115

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

133

[134]

[135]

[136]

[137]

Zhiyuan Yuan, Fangyuan Zhao, Senlin Lin, Yu Zhao, Jianhua Yao, Yan Cui, Xiao-Yong Zhang,
and Yi Zhao. “Benchmarking Spatial Clustering Methods with Spatially Resolved Transcrip-
tomics Data”. In: Nature Methods (Mar. 15, 2024), pp. 1-11. 1SSN: 1548-7105. DOI: |10.1038/
s41592-024-02215-8.

Liping Kang, Qinglong Zhang, Fan Qian, Junyao Liang, and Xiaohui Wu. “Benchmarking
Computational Methods for Detecting Spatial Domains and Domain-Specific Spatially Variable
Genes from Spatial Transcriptomics Data”. In: Nucleic Acids Research 53.7 (Apr. 16, 2025),
gkaf303. 1sSN: 0305-1048. DOI: [10.1093/nar/gkaf303. PMID: 40240000.

Zixuan Cang, Xinyi Ning, and Jing Zhang. “SCAN-IT: Domain Segmentation of Spatial Tran-
scriptomics Images by Graph Neural Network”. In: BMVC 2021. Nov. 2021.

Yunfei Hu, Yuying Zhao, Curtis T. Schunk, Yingxiang Ma, Tyler Derr, and Xin Maizie Zhou.
“ADEPT: Autoencoder with Differentially Expressed Genes and Imputation for Robust Spatial
Transcriptomics Clustering”. In: iScience 26.6 (June 16, 2023), p. 106792. 1sSN: 2589-0042. DOI:
10.1016/j.1isci.2023.106792.

Zhen Li, Xiaoyang Chen, Xuegong Zhang, Rui Jiang, and Shengquan Chen. “Latent Fea-
ture Extraction with a Prior-Based Self-Attention Framework for Spatial Transcriptomics”.
In: Genome Research 33.10 (Jan. 10, 2023), pp. 1757-1773. 1sSN: 1088-9051, 1549-5469. DOTI:
10.1101/gr.277891.123. PMID: 37903634.

Bo Wang, Jiawei Luo, Ying Liu, Wanwan Shi, Zehao Xiong, Cong Shen, and Yahui Long.
“Spatial- MGCN: A Novel Multi-View Graph Convolutional Network for Identifying Spatial
Domains with Attention Mechanism”. In: Briefings in Bioinformatics 24.5 (Sept. 1, 2023),
bbad262. 1sSSN: 1477-4054. DOI: [10.1093/bib/bbad262.

Luca Scrucca, Chris Fraley, T. Brendan Murphy, and Adrian E. Raftery. Model-Based Clus-
tering, Classification, and Density Estimation Using Mclust in R. New York: Chapman and
Hall/CRC, Apr. 20, 2023. 268 pp. ISBN: 978-1-003-27796-5. DOI: [10.1201/9781003277965!

V. A. Traag, L. Waltman, and N. J. van Eck. “From Louvain to Leiden: Guaranteeing Well-
Connected Communities”. In: Scientific Reports 9.1 (Mar. 26, 2019), p. 5233. 1SSN: 2045-2322.
DOI: |10.1038/s41598-019-41695-z.

Zhiyuan Yuan, Yisi Li, Minglei Shi, Fan Yang, Juntao Gao, Jianhua Yao, and Michael Q.
Zhang. “SOTIP Is a Versatile Method for Microenvironment Modeling with Spatial Omics
Data”. In: Nature Communications 13.1 (1 Nov. 28, 2022), p. 7330. 1ssN: 2041-1723. por:
10.1038/s41467-022-34867-5.

Bin Duan, Shaoqi Chen, Xiaojie Cheng, and Qi Liu. “Multi-Slice Spatial Transcriptome Domain
Analysis with SpaDo”. In: Genome Biology 25.1 (1 Mar. 19, 2024), pp. 1-23. 1SSN: 1474-760X.
DOI: |10.1186/s13059-024-03213-x.

Marco Varrone, Daniele Tavernari, Albert Santamaria-Martinez, Logan A. Walsh, and Giovanni
Ciriello. “CellCharter Reveals Spatial Cell Niches Associated with Tissue Remodeling and Cell
Plasticity”. In: Nature Genetics 56.1 (1 Jan. 2024), pp. 74-84. 1ssN: 1546-1718. po1: 10.1038/
s41588-023-01588-4.

Lulu Shang and Xiang Zhou. “Spatially Aware Dimension Reduction for Spatial Transcrip-
tomics”. In: Nature Communications 13.1 (1 Nov. 23, 2022), p. 7203. 1SSN: 2041-1723. DOTI:
10.1038/s41467-022-34879-1.

Jiyuan Yang, Lu Wang, Lin Liu, and Xiaoqi Zheng. “GraphPCA: A Fast and Interpretable
Dimension Reduction Algorithm for Spatial Transcriptomics Data”. In: Genome Biology 25.1
(Nov. 7, 2024), p. 287. 1SSN: 1474-760X. DOI: [10.1186/513059-024-03429-X.


https://doi.org/10.1038/s41592-024-02215-8
https://doi.org/10.1038/s41592-024-02215-8
https://doi.org/10.1093/nar/gkaf303
http://www.ncbi.nlm.nih.gov/pubmed/40240000
https://doi.org/10.1016/j.isci.2023.106792
https://doi.org/10.1101/gr.277891.123
http://www.ncbi.nlm.nih.gov/pubmed/37903634
https://doi.org/10.1093/bib/bbad262
https://doi.org/10.1201/9781003277965
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41467-022-34867-5
https://doi.org/10.1186/s13059-024-03213-x
https://doi.org/10.1038/s41588-023-01588-4
https://doi.org/10.1038/s41588-023-01588-4
https://doi.org/10.1038/s41467-022-34879-1
https://doi.org/10.1186/s13059-024-03429-x

116 BIBLIOGRAPHY

[138] Mo Chen, Ruihua Cheng, Jianuo He, Jun Chen, and Jie Zhang. “SMOPCA: Spatially Aware Di-
mension Reduction Integrating Multi-Omics Improves the Efficiency of Spatial Domain Detec-
tion”. In: Genome Biology 26.1 (May 21, 2025), p. 135. 1sSN: 1474-760X. DOI: 10.1186/s13059-
025-03576-9.

[139] Julien Moehlin, Bastien Mollet, Bruno Maria Colombo, and Marco Antonio Mendoza-Parra.
“Inferring Biologically Relevant Molecular Tissue Substructures by Agglomerative Clustering
of Digitized Spatial Transcriptomes with MULTILAYER”. In: Cell Systems 12.7 (July 2021),
694-705.e3. 1SSN: 24054712. DOI: [10.1016/j.cels.2021.04.008.

[140] Patrick C N Martin, Hyobin Kim, Cecilia Lovkvist, Byung-Woo Hong, and Kyoung Jae Won.
“Vesalius: High-Resolution in Silico Anatomization of Spatial Transcriptomic Data Using Image
Analysis”. In: Molecular Systems Biology 18.9 (Sept. 2022), e11080. 1sSN: 1744-4292. DOI: |10.
15252/msb.202211080.

[141] R.P. Weicker. “An Overview of Common Benchmarks”. In: Computer 23.12 (Dec. 1990), pp. 65—
75. 1SSN: 1558-0814. DOI: 110.1109/2.62094.

[142] Mohamed Radhouene Aniba, Olivier Poch, and Julie D. Thompson. “Issues in Bioinformatics
Benchmarking: The Case Study of Multiple Sequence Alignment”. In: Nucleic Acids Research
38.21 (Nov. 1, 2010), pp. 7353-7363. 1sSN: 0305-1048. DOI: 10.1093/nar/gkq625.

[143] Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. “The Self-assessment Trap: Can
We All Be Better than Average?” In: Molecular Systems Biology 7.1 (Jan. 2011), p. 537. 1SSN:
1744-4292. poI1: [10.1038/msb.2011.70.

[144] Anne-Laure Boulesteix, Sabine Lauer, and Manuel J. A. Eugster. “A Plea for Neutral Com-
parison Studies in Computational Sciences”. In: PLOS ONE 8.4 (Apr. 24, 2013), e61562. 1SSN:
1932-6203. por: 10.1371/journal . pone.0061562.

[145] Lukas M. Weber, Wouter Saelens, Robrecht Cannoodt, Charlotte Soneson, Alexander Hapfelmeier,
Paul P. Gardner, Anne-Laure Boulesteix, Yvan Saeys, and Mark D. Robinson. “Essential Guide-
lines for Computational Method Benchmarking”. In: Genome Biology 20.1 (June 20, 2019),
p- 125. 18SN: 1474-760X. DOI: [10.1186/s13059-019-1738-8.

[146] Iven Van Mechelen, Anne-Laure Boulesteix, Rainer Dangl, Nema Dean, Christian Hennig,
Friedrich Leisch, Douglas Steinley, and Matthijs J. Warrens. “A White Paper on Good Re-
search Practices in Benchmarking: The Case of Cluster Analysis”. In: WIREs Data Mining
and Knowledge Discovery 13.6 (2023), e1511. 1sSN: 1942-4795. DOI: [10.1002/widm. 1511,

[147]  Serghei Mangul, Lana S. Martin, Brian L. Hill, Angela Ka-Mei Lam, Margaret G. Distler, Alex
Zelikovsky, Eleazar Eskin, and Jonathan Flint. “Systematic Benchmarking of Omics Compu-
tational Tools”. In: Nature Communications 10.1 (Dec. 2019), p. 1393. 1SsN: 2041-1723. DOTI:
10.1038/s41467-019-09406-4.

[148] Thomas G. Brooks, Nicholas F. Lahens, Antonijo Mrécela, and Gregory R. Grant. “Challenges
and Best Practices in Omics Benchmarking”. In: Nature Reviews Genetics (Jan. 12, 2024),
pp- 1-14. 1sSN: 1471-0064. DOI: 110.1038/s41576-023-00679-6.

[149] Bjoern Peters, Steven E. Brenner, Edwin Wang, Donna Slonim, and Maricel G. Kann. “Putting
Benchmarks in Their Rightful Place: The Heart of Computational Biology”. In: PLOS Com-
putational Biology 14.11 (Nov. 8, 2018), €1006494. 1SsN: 1553-7358. DOI: 10.1371/journal.
pcbi.1006494.

[150] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Exploring the Single-Cell RNA-seq Analy-
sis Landscape with the scRNA-tools Database”. In: PLOS Computational Biology 14.6 (June 25,
2018), €1006245. 1sSN: 1553-7358. DOI: 10.1371/journal.pcbi.1006245.


https://doi.org/10.1186/s13059-025-03576-9
https://doi.org/10.1186/s13059-025-03576-9
https://doi.org/10.1016/j.cels.2021.04.008
https://doi.org/10.15252/msb.202211080
https://doi.org/10.15252/msb.202211080
https://doi.org/10.1109/2.62094
https://doi.org/10.1093/nar/gkq625
https://doi.org/10.1038/msb.2011.70
https://doi.org/10.1371/journal.pone.0061562
https://doi.org/10.1186/s13059-019-1738-8
https://doi.org/10.1002/widm.1511
https://doi.org/10.1038/s41467-019-09406-4
https://doi.org/10.1038/s41576-023-00679-6
https://doi.org/10.1371/journal.pcbi.1006494
https://doi.org/10.1371/journal.pcbi.1006494
https://doi.org/10.1371/journal.pcbi.1006245

BIBLIOGRAPHY 117

[151]

[152]

[153]

[154]

[155]

[156]

[157]

158

[159)]

[160]

[161]

Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. “A Comparison of
Single-Cell Trajectory Inference Methods”. In: Nature Biotechnology 37.5 (5 May 2019), pp. 547—
554. 1SSN: 1546-1696. DOTI: |10.1038/s41587-019-0071-9.

Anthony Sonrel, Almut Luetge, Charlotte Soneson, Izaskun Mallona, Pierre-Luc Germain,
Sergey Knyazev, Jeroen Gilis, Reto Gerber, Ruth Seurinck, Dominique Paul, Emanuel Son-
der, Helena L. Crowell, Imran Fanaswala, Ahmad Al-Ajami, Elyas Heidari, Stephan Schmeing,
Stefan Milosavljevic, Yvan Saeys, Serghei Mangul, and Mark D. Robinson. “Meta-Analysis of
(Single-Cell Method) Benchmarks Reveals the Need for Extensibility and Interoperability”. In:
Genome Biology 24.1 (May 17, 2023), p. 119. 1SSN: 1474-760X. por1: 10.1186/s13059-023~
02962-5.

Yue Cao, Lijia Yu, Marni Torkel, Sanghyun Kim, Yingxin Lin, Pengyi Yang, Terence P. Speed,
Shila Ghazanfar, and Jean Yee Hwa Yang. “The Current Landscape and Emerging Challenges
of Benchmarking Single-Cell Methods”. Jan. 31, 2025. DOI: |10.1101/2023.12.19.572303.
Pre-published.

Monika Jelizarow, Vincent Guillemot, Arthur Tenenhaus, Korbinian Strimmer, and Anne-
Laure Boulesteix. “Over-Optimism in Bioinformatics: An Illustration”. In: Bioinformatics 26.16
(Aug. 15, 2010), pp. 1990-1998. 1SSN: 1367-4803. DOI: [10.1093/bioinformatics/btq323.

Siddhartha Mishra, Nicholas Monath, Michael Boratko, Ariel Kobren, and Andrew McCallum.
“An Evaluative Measure of Clustering Methods Incorporating Hyperparameter Sensitivity”. In:
Proceedings of the AAAI Conference on Artificial Intelligence 36.7 (June 28, 2022), pp. 7788-
7796. 1SSN: 2374-3468. DOI: [10.1609/aaai.v36i7.20747.

Malte D. Luecken, M. Biittner, K. Chaichoompu, A. Danese, M. Interlandi, M. F. Mueller,
D. C. Strobl, L. Zappia, M. Dugas, M. Colomé-Tatché, and Fabian J. Theis. “Benchmarking
Atlas-Level Data Integration in Single-Cell Genomics”. In: Nature Methods 19.1 (1 Jan. 2022),
pp- 41-50. 1SSN: 1548-7105. DOI: |10.1038/s41592-021-01336-8.

Yue You, Luyi Tian, Shian Su, Xueyi Dong, Jafar S. Jabbari, Peter F. Hickey, and Matthew
E. Ritchie. “Benchmarking UMI-based Single-Cell RNA-seq Preprocessing Workflows”. In:
Genome Biology 22.1 (Dec. 14, 2021), p. 339. 1sSN: 1474-760X. DOI: [10.1186/s13059-021~
02552-3.

Shiquan Sun, Jiagiang Zhu, Ying Ma, and Xiang Zhou. “Accuracy, Robustness and Scalability
of Dimensionality Reduction Methods for Single-Cell RNA-seq Analysis”. In: Genome Biology
20.1 (Dec. 10, 2019), p. 269. 1sSN: 1474-760X. DOI: 10.1186/s13059-019-1898-6.

Felix Raimundo, Celine Vallot, and Jean-Philippe Vert. “Tuning Parameters of Dimensionality
Reduction Methods for Single-Cell RNA-seq Analysis”. In: Genome Biology 21.1 (Aug. 24,
2020), p. 212. 18SN: 1474-760X. DOI: 10.1186/s13059-020-02128-7.

Tim P. Morris, Ian R. White, and Michael J. Crowther. “Using Simulation Studies to Evaluate
Statistical Methods”. In: Statistics in Medicine 38.11 (2019), pp. 2074-2102. 1SSN: 1097-0258.
DOI: 10.1002/sim.8086.

Yunfei Hu, Manfei Xie, Yikang Li, Mingxing Rao, Wenjun Shen, Can Luo, Haoran Qin, Jihoon
Baek, and Xin Maizie Zhou. “Benchmarking Clustering, Alignment, and Integration Methods
for Spatial Transcriptomics”. In: Genome Biology 25.1 (Aug. 9, 2024), p. 212. 1SSN: 1474-760X.
DOI:[10.1186/s13059-024-03361-0.


https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1186/s13059-023-02962-5
https://doi.org/10.1186/s13059-023-02962-5
https://doi.org/10.1101/2023.12.19.572303
https://doi.org/10.1093/bioinformatics/btq323
https://doi.org/10.1609/aaai.v36i7.20747
https://doi.org/10.1038/s41592-021-01336-8
https://doi.org/10.1186/s13059-021-02552-3
https://doi.org/10.1186/s13059-021-02552-3
https://doi.org/10.1186/s13059-019-1898-6
https://doi.org/10.1186/s13059-020-02128-7
https://doi.org/10.1002/sim.8086
https://doi.org/10.1186/s13059-024-03361-0

118

BIBLIOGRAPHY

[162]

163

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

Hongrui Duo, Yinghong Li, Yang Lan, Jingxin Tao, Qingxia Yang, Yingxue Xiao, Jing Sun, Lei
Li, Xiner Nie, Xiaoxi Zhang, Guizhao Liang, Mingwei Liu, Youjin Hao, and Bo Li. “Systematic
Evaluation with Practical Guidelines for Single-Cell and Spatially Resolved Transcriptomics
Data Simulation under Multiple Scenarios”. In: Genome Biology 25.1 (June 3, 2024), p. 145.
ISSN: 1474-760X. DOI: 10.1186/s13059-024-03290-y.

Paul P. Gardner, James M. Paterson, Stephanie McGimpsey, Fatemeh Ashari-Ghomi, Sinan
U. Umu, Aleksandra Pawlik, Alex Gavryushkin, and Michael A. Black. “Sustained Software
Development, Not Number of Citations or Journal Choice, Is Indicative of Accurate Bioin-
formatic Software”. In: Genome Biology 23.1 (Feb. 16, 2022), p. 56. 1ssN: 1474-760X. DOI:
10.1186/s13059-022-02625-x.

Wei Liu, Xu Liao, Ziye Luo, Yi Yang, Mai Chan Lau, Yuling Jiao, Xingjie Shi, Weiwei Zhali,
Hongkai Ji, Joe Yeong, and Jin Liu. “Probabilistic Embedding, Clustering, and Alignment for
Integrating Spatial Transcriptomics Data with PRECAST”. In: Nature Communications 14.1
(1 Jan. 18, 2023), p. 296. 1SSN: 2041-1723. DOI: 10.1038/s41467-023-35947-w.

Congcong Hu, Nana Wei, Jiyuan Yang, Hua-Jun Wu, and Xiaoqi Zheng. “STCC: Consensus
Clustering Enhances Spatial Domain Detection for Spatial Transcriptomics Data”. Feb. 28,
2024. DOI: 110.1101/2024.02.25.581996. Pre-published.

Zhiyuan Yuan. “MENDER: Fast and Scalable Tissue Structure Identification in Spatial Omics
Data”. In: Nature Communications 15.1 (Jan. 5, 2024), p. 207. 1SSN: 2041-1723. DOI: 10.1038/
s41467-023-44367-9.

Asish Kumar Swain, Vrushali Pandit, Jyoti Sharma, and Pankaj Yadav. “SpatialPrompt: Spa-
tially Aware Scalable and Accurate Tool for Spot Deconvolution and Domain Identification
in Spatial Transcriptomics”. In: Communications Biology 7.1 (May 25, 2024), p. 639. ISSN:
2399-3642. DOI: 10.1038/s42003-024-06349-5.

Yuxuan Hu, Jiazhen Rong, Yafei Xu, Runzhi Xie, Jacqueline Peng, Lin Gao, and Kai Tan.
“Unsupervised and Supervised Discovery of Tissue Cellular Neighborhoods from Cell Pheno-
types”. In: Nature Methods (Jan. 8, 2024), pp. 1-12. 1ssN: 1548-7105. DOI: 10.1038/s41592-
023-02124-2.

Ying Ma and Xiang Zhou. “Accurate and Efficient Integrative Reference-Informed Spatial Do-
main Detection for Spatial Transcriptomics”. In: Nature Methods 21.7 (July 2024), pp. 1231-
1244. 18SSN: 1548-7105. DOI: 110.1038/s41592-024-02284-9.

Hang Xu, Huazhu Fu, Yahui Long, Kok Siong Ang, Raman Sethi, Kelvin Chong, Mengwei Li,
Rom Uddamvathanak, Hong Kai Lee, Jingjing Ling, Ao Chen, Ling Shao, Longqi Liu, and
Jinmiao Chen. “Unsupervised Spatially Embedded Deep Representation of Spatial Transcrip-
tomics”. In: Genome Medicine 16.1 (Jan. 12, 2024), p. 12. 1SsN: 1756-994X. po1: 10.1186/
s13073-024-01283-x.

F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. “SCANPY: Large-Scale Single-Cell
Gene Expression Data Analysis”. In: Genome Biology 19.1 (Feb. 6, 2018), p. 15. 1SSN: 1474~
760X. DOI: 10.1186/513059-017-1382-0.

Rahul Satija, Jeffrey A. Farrell, David Gennert, Alexander F. Schier, and Aviv Regev. “Spatial
Reconstruction of Single-Cell Gene Expression Data”. In: Nature Biotechnology 33.5 (5 May
2015), pp. 495-502. 1SSN: 1546-1696. DOI: |10.1038/nbt.3192.

Jun Du, Yu-Chen Yang, Zhi-Jie An, Ming-Hui Zhang, Xue-Hang Fu, Zou-Fang Huang, Ye Yuan,
and Jian Hou. “Advances in Spatial Transcriptomics and Related Data Analysis Strategies”.
In: Journal of Translational Medicine 21.1 (May 18, 2023), p. 330. 1SSN: 1479-5876. DOI: 10.
1186/s512967-023-04150-2.


https://doi.org/10.1186/s13059-024-03290-y
https://doi.org/10.1186/s13059-022-02625-x
https://doi.org/10.1038/s41467-023-35947-w
https://doi.org/10.1101/2024.02.25.581996
https://doi.org/10.1038/s41467-023-44367-9
https://doi.org/10.1038/s41467-023-44367-9
https://doi.org/10.1038/s42003-024-06349-5
https://doi.org/10.1038/s41592-023-02124-2
https://doi.org/10.1038/s41592-023-02124-2
https://doi.org/10.1038/s41592-024-02284-9
https://doi.org/10.1186/s13073-024-01283-x
https://doi.org/10.1186/s13073-024-01283-x
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1186/s12967-023-04150-2
https://doi.org/10.1186/s12967-023-04150-2

BIBLIOGRAPHY 119

[174]

[175)

[176]

[177]

178

[179]

[180]

181]

182

[183]

[184]

[185]

[186]

[187]

[188]

Yang Jin, Yuanli Zuo, Gang Li, Wenrong Liu, Yitong Pan, Ting Fan, Xin Fu, Xiaojun Yao, and
Yong Peng. “Advances in Spatial Transcriptomics and Its Applications in Cancer Research”.
In: Molecular Cancer 23.1 (June 20, 2024), p. 129. 1SSN: 1476-4598. DOI: 10.1186/512943-
024-02040-9.

Lijia Yu, Yue Cao, Jean Y. H. Yang, and Pengyi Yang. “Benchmarking Clustering Algorithms
on Estimating the Number of Cell Types from Single-Cell RNA-sequencing Data”. In: Genome
Biology 23.1 (Feb. 8, 2022), p. 49. 18sN: 1474-760X. DOI: 10.1186/s13059-022-02622-0.

Sanjay Jain and Michael T. Eadon. “Spatial Transcriptomics in Health and Disease”. In: Nature
Reviews Nephrology 20.10 (Oct. 2024), pp. 659-671. 1sSN: 1759-507X. DOI: 10.1038/s41581~
024-00841-1.

Ed Lein, Lars E. Borm, and Sten Linnarsson. “The Promise of Spatial Transcriptomics for
Neuroscience in the Era of Molecular Cell Typing”. In: Science 358.6359 (Oct. 6, 2017), pp. 64—
69. DOI: 10.1126/science.aan6827.

Le Zhang, Zhenqi Xiong, and Ming Xiao. “A Review of the Application of Spatial Tran-
scriptomics in Neuroscience”. In: Interdisciplinary Sciences: Computational Life Sciences 16.2
(June 1, 2024), pp. 243-260. 1SSN: 1867-1462. DOIL: 10.1007/s12539-024-00603-4.

Ran Zhou, Gaoxia Yang, Yan Zhang, and Yuan Wang. “Spatial Transcriptomics in Development
and Disease”. In: Molecular Biomedicine 4.1 (Oct. 9, 2023), p. 32. 1SSN: 2662-8651. DOI: 10.
1186/s43556-023-00144-0.

Andreas E Moor and Shalev Itzkovitz. “Spatial Transcriptomics: Paving the Way for Tissue-
Level Systems Biology”. In: Current Opinion in Biotechnology. Systems Biology e Nanobiotech-
nology 46 (Aug. 1, 2017), pp. 126-133. 1sSN: 0958-1669. DOI: 10.1016/j . copbio.2017.02.004.

Zexian Zeng, Yawei Li, Yiming Li, and Yuan Luo. “Statistical and Machine Learning Methods
for Spatially Resolved Transcriptomics Data Analysis”. In: Genome Biology 23.1 (Dec. 2022),
p- 83. 18SN: 1474-760X. DOI: [10.1186/s13059-022-02653-7.

Boxiang Liu, Yanjun Li, and Liang Zhang. “Analysis and Visualization of Spatial Transcrip-
tomic Data”. In: Frontiers in Genetics 12 (2022). 1SSN: 1664-8021.

Jessica Gillespie, Maciej Pietrzak, Min-Ae Song, and Dongjun Chung. “A Meta-Review of
Spatial Transcriptomics Analysis Software”. In: Cells 14.14 (July 10, 2025), p. 1060. 1SSN:
2073-4409. DOI: 110.3390/cells14141060. PMID: 40710313.

Junbum Kim, Samir Rustam, Juan Miguel Mosquera, Scott H. Randell, Renat Shaykhiev,
André F. Rendeiro, and Olivier Elemento. “Unsupervised Discovery of Tissue Architecture in
Multiplexed Imaging”. In: Nature Methods 19.12 (Dec. 2022), pp. 1653-1661. 1sSN: 1548-7105.
DOI: |10.1038/s41592-022-01657-2.

Jianhua Lin. “Divergence Measures Based on the Shannon Entropy”. In: IEEE Transactions
on Information Theory 37.1 (1991), pp. 145-151. 1SSN: 0018-9448. DOI: 10.1109/18.61115,

Yu Wang, Zaiyi Liu, and Xiaoke Ma. “MNMST: Topology of Cell Networks Leverages Iden-
tification of Spatial Domains from Spatial Transcriptomics Data”. In: Genome Biology 25.1
(May 23, 2024), p. 133. 1SSN: 1474-760X. DOTI: [10.1186/513059-024-03272-0

Petar Velickovi¢, William Fedus, William L. Hamilton, Pietro Lio, Yoshua Bengio, and R. Devon
Hjelm. “Deep Graph Infomax”. Dec. 21, 2018. DOI: 10 .48550/arXiv . 1809 . 10341. arXiv:
1809.10341 [cs, math, stat]. Pre-published.

Honglei Ren, Benjamin L. Walker, Zixuan Cang, and Qing Nie. “Identifying Multicellular Spa-
tiotemporal Organization of Cells with SpaceFlow”. In: Nature Communications 13.1 (1 July 14,
2022), p. 4076. 1SSN: 2041-1723. DOI: 10.1038/s41467-022-31739-w.


https://doi.org/10.1186/s12943-024-02040-9
https://doi.org/10.1186/s12943-024-02040-9
https://doi.org/10.1186/s13059-022-02622-0
https://doi.org/10.1038/s41581-024-00841-1
https://doi.org/10.1038/s41581-024-00841-1
https://doi.org/10.1126/science.aan6827
https://doi.org/10.1007/s12539-024-00603-4
https://doi.org/10.1186/s43556-023-00144-0
https://doi.org/10.1186/s43556-023-00144-0
https://doi.org/10.1016/j.copbio.2017.02.004
https://doi.org/10.1186/s13059-022-02653-7
https://doi.org/10.3390/cells14141060
http://www.ncbi.nlm.nih.gov/pubmed/40710313
https://doi.org/10.1038/s41592-022-01657-2
https://doi.org/10.1109/18.61115
https://doi.org/10.1186/s13059-024-03272-0
https://doi.org/10.48550/arXiv.1809.10341
https://arxiv.org/abs/1809.10341
https://doi.org/10.1038/s41467-022-31739-w

120

BIBLIOGRAPHY

[189]

[190]

[191]

[192]

193]

[194]

[195]

196

197]

198]

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. “Graph Attention Networks”. Feb. 4, 2018. DO1:|10.48550/arXiv.1710.10903. arXiv:
1710.10903 [stat]. Pre-published.

Chang Xu, Xiyun Jin, Songren Wei, Pingping Wang, Meng Luo, Zhaochun Xu, Wenyi Yang,
Yideng Cai, Lixing Xiao, Xiaoyu Lin, Hongxin Liu, Rui Cheng, Fenglan Pang, Rui Chen, Xi
Su, Ying Hu, Guohua Wang, and Qinghua Jiang. “DeepST: Identifying Spatial Domains in
Spatial Transcriptomics by Deep Learning”. In: Nucleic Acids Research 50.22 (Dec. 9, 2022),
el31. 18sN: 0305-1048. DOI: 110.1093/nar/gkac901.

Michael E. Tipping and Christopher M. Bishop. “Probabilistic Principal Component Analysis”.
In: Journal of the Royal Statistical Society Series B: Statistical Methodology 61.3 (Sept. 1, 1999),
pp. 611-622. 18SN: 1369-7412. DOI: 110.1111/1467-9868.00196.

Benjamin Chidester, Tianming Zhou, Shahul Alam, and Jian Ma. “SpiceMix Enables Integra-
tive Single-Cell Spatial Modeling of Cell Identity”. In: Nature Genetics 55.1 (1 Jan. 2023),
pp. 78-88. ISSN: 1546-1718. DOI: 10.1038/s41588-022-01256-z.

Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck, Shiwei Zheng, Andrew
Butler, Maddie J. Lee, Aaron J. Wilk, Charlotte Darby, Michael Zager, Paul Hoffman, Marlon
Stoeckius, Efthymia Papalexi, Eleni P. Mimitou, Jaison Jain, Avi Srivastava, Tim Stuart, Lamar
M. Fleming, Bertrand Yeung, Angela J. Rogers, Juliana M. McElrath, Catherine A. Blish,
Raphael Gottardo, Peter Smibert, and Rahul Satija. “Integrated Analysis of Multimodal Single-
Cell Data”. In: Cell 184.13 (June 24, 2021), 3573-3587.¢29. 1sSN: 0092-8674, 1097-4172. DOIL:
10.1016/j.cell.2021.04.048. PMID: 34062119.

Zhicheng Xu, Weiwen Wang, Tao Yang, Ling Li, Xizheng Ma, Jing Chen, Jieyu Wang, Yan
Huang, Joshua Gould, Huifang Lu, Wensi Du, Sunil Kumar Sahu, Fan Yang, Zhiyong Li,
Qingjiang Hu, Cong Hua, Shoujie Hu, Yiqun Liu, Jia Cai, Lijin You, Yong Zhang, YuXi-
ang Li, Wenjun Zeng, Ao Chen, Bo Wang, Longqi Liu, Fengzhen Chen, Kailong Ma, Xun
Xu, and Xiaofeng Wei. “STOmicsDB: A Comprehensive Database for Spatial Transcriptomics
Data Sharing, Analysis and Visualization”. In: Nucleic Acids Research 52.D1 (Jan. 5, 2024),
pp- D1053-D1061. 1ssN: 0305-1048. DOI: |10.1093/nar/gkad933.

Zhen Fan, Runsheng Chen, and Xiaowei Chen. “SpatialDB: A Database for Spatially Resolved
Transcriptomes”. In: Nucleic Acids Research 48.D1 (Jan. 8, 2020), pp. D233-D237. 1sSN: 0305-
1048. DOI1: 10.1093/nar/gkz934.

Yiming Li, Saya Dennis, Meghan R. Hutch, Yanyi Ding, Yadi Zhou, Yawei Li, Maalavika Pillai,
Sanaz Ghotbaldini, Mario Alberto Garcia, Mia S. Broad, Chengsheng Mao, Feixiong Cheng,
Zexian Zeng, and Yuan Luo. “SOAR Elucidates Disease Mechanisms and Empowers Drug
Discovery through Spatial Transcriptomics”. Dec. 15, 2023. DO1:/10.1101/2022.04.17.488596.
Pre-published.

Meng Zhang, Stephen W. Eichhorn, Brian Zingg, Zizhen Yao, Kaelan Cotter, Hongkui Zeng,
Hongwei Dong, and Xiaowei Zhuang. “Spatially Resolved Cell Atlas of the Mouse Primary
Motor Cortex by MERFISH”. In: Nature 598.7879 (Oct. 2021), pp. 137-143. 1SSN: 1476-4687.
DOI: 10.1038/s41586-021-03705-x.

Hao Xu, Shuyan Wang, Minghao Fang, Songwen Luo, Chunpeng Chen, Siyuan Wan, Rirui
Wang, Meifang Tang, Tian Xue, Bin Li, Jun Lin, and Kun Qu. “SPACEL: Deep Learning-
Based Characterization of Spatial Transcriptome Architectures”. In: Nature Communications
14.1 (Nov. 22, 2023), p. 7603. 1SSN: 2041-1723. DOI: 10.1038/s41467-023-43220-3.


https://doi.org/10.48550/arXiv.1710.10903
https://arxiv.org/abs/1710.10903
https://doi.org/10.1093/nar/gkac901
https://doi.org/10.1111/1467-9868.00196
https://doi.org/10.1038/s41588-022-01256-z
https://doi.org/10.1016/j.cell.2021.04.048
http://www.ncbi.nlm.nih.gov/pubmed/34062119
https://doi.org/10.1093/nar/gkad933
https://doi.org/10.1093/nar/gkz934
https://doi.org/10.1101/2022.04.17.488596
https://doi.org/10.1038/s41586-021-03705-x
https://doi.org/10.1038/s41467-023-43220-3

BIBLIOGRAPHY 121

[199]

[200]

[201]

202]

203]

[204]

205]

206]

207]

208]

209

[210]

[211]

212]

Jeffrey R. Moffitt, Dhananjay Bambah-Mukku, Stephen W. Eichhorn, Eric Vaughn, Karthik
Shekhar, Julio D. Perez, Nimrod D. Rubinstein, Junjie Hao, Aviv Regev, Catherine Dulac, and
Xiaowei Zhuang. “Molecular, Spatial, and Functional Single-Cell Profiling of the Hypothalamic
Preoptic Region”. In: Science 362.6416 (Nov. 16, 2018), eaaub324. DOI: [10.1126/science.
aaub324.

Jonah Langlieb, Nina S. Sachdev, Karol S. Balderrama, Naeem M. Nadaf, Mukund Raj, Evan
Murray, James T. Webber, Charles Vanderburg, Vahid Gazestani, Daniel Tward, Chris Mezias,
Xu Li, Katelyn Flowers, Dylan M. Cable, Tabitha Norton, Partha Mitra, Fei Chen, and Evan Z.
Macosko. “The Molecular Cytoarchitecture of the Adult Mouse Brain”. In: Nature 624.7991
(Dec. 2023), pp. 333-342. 1SSN: 1476-4687. DOI: 10.1038/s41586-023-06818-7.

Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data Using T-SNE”. In: Journal
of Machine Learning Research 9.86 (2008), pp. 2579-2605. 1sSN: 1533-7928.

William M. Rand. “Objective Criteria for the Evaluation of Clustering Methods”. In: Journal
of the American Statistical Association 66.336 (1971), pp. 846-850. 1sSN: 0162-1459. DOI: [10.
2307/2284239. JSTOR: 2284239

Leslie C. Morey and Alan Agresti. “The Measurement of Classification Agreement: An Adjust-
ment to the Rand Statistic for Chance Agreement”. In: Educational and Psychological Mea-
surement 44.1 (Mar. 1, 1984), pp. 33-37. 1sSN: 0013-1644. DOI: |10.1177/0013164484441003.

Lawrence Hubert and Phipps Arabie. “Comparing Partitions”. In: Journal of Classification 2.1
(Dec. 1, 1985), pp. 193-218. 1SsN: 1432-1343. DOI: |10.1007/BF01908075.

Simone Romano, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor. “Adjusting for Chance
Clustering Comparison Measures”. In: Journal of Machine Learning Research 17.134 (2016),
pp. 1-32.

Alexander Strehl and Joydeep Ghosh. “Cluster Ensembles — A Knowledge Reuse Framework
for Combining Multiple Partitions”. In: Journal of Machine Learning Research 3 (Dec 2002),
pp- 583—617. 1sSN: ISSN 1533-7928.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. “Information Theoretic Measures for Clus-
terings Comparison: Is a Correction for Chance Necessary?” In: (2009).

E. B. Fowlkes and C. L. Mallows. “A Method for Comparing Two Hierarchical Clusterings”.
In: Journal of the American Statistical Association 78.383 (Sept. 1, 1983), pp. 553-569. 1SSN:
0162-1459. pOI1: 110.1080/01621459.1983.10478008.

Peter J. Rousseeuw. “Silhouettes: A Graphical Aid to the Interpretation and Validation of
Cluster Analysis”. In: Journal of Computational and Applied Mathematics 20 (Nov. 1, 1987),
pp. 53—65. 1sSN: 0377-0427. DOI: 10.1016/0377-0427(87)90125-7.

Felix Molder, Kim Philipp Jablonski, Brice Letcher, Michael B. Hall, Christopher H. Tomkins-
Tinch, Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O. Twardziok, Alexander Kanitz, An-
dreas Wilm, Manuel Holtgrewe, Sven Rahmann, Sven Nahnsen, and Johannes Koster. “Sustain-
able Data Analysis with Snakemake”. In: 10:33 (Apr. 19, 2021). DOI: 10.12688/£1000research.
29032.2.

Sandro Vega-Pons and José Ruiz-Shulcloper. “A Survey of Clustering Ensemble Algorithms”.
In: International Journal of Pattern Recognition and Artificial Intelligence 25.03 (May 2011),
pp. 337-372. 18sN: 0218-0014. DOI: 10.1142/50218001411008683.

Vladimir Yu Kiselev, Kristina Kirschner, Michael T. Schaub, Tallulah Andrews, Andrew Yiu,
Tamir Chandra, Kedar N. Natarajan, Wolf Reik, Mauricio Barahona, Anthony R. Green, and
Martin Hemberg. “SC3: Consensus Clustering of Single-Cell RNA-seq Data”. In: Nature Meth-
ods 14.5 (May 2017), pp. 483-486. 1SSN: 1548-7105. DOI: 10.1038/nmeth.4236.


https://doi.org/10.1126/science.aau5324
https://doi.org/10.1126/science.aau5324
https://doi.org/10.1038/s41586-023-06818-7
https://doi.org/10.2307/2284239
https://doi.org/10.2307/2284239
http://www.jstor.org/stable/2284239
https://doi.org/10.1177/0013164484441003
https://doi.org/10.1007/BF01908075
https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1142/S0218001411008683
https://doi.org/10.1038/nmeth.4236

122 BIBLIOGRAPHY

[213] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cour-
napeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van
der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, Ilhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antonio H. Ribeiro, Fabian Pedregosa, and Paul
van Mulbregt. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In:
Nature Methods 17.3 (Mar. 2020), pp. 261-272. 1SSN: 1548-7105. DOI: 10.1038/s41592-019-
0686-2.

[214] Bokai Zhu, Shuxiao Chen, Yunhao Bai, Han Chen, Guanrui Liao, Nilanjan Mukherjee, Gustavo
Vazquez, David R. Mcllwain, Alexandar Tzankov, Ivan T. Lee, Matthias S. Matter, Yury
Goltsev, Zongming Ma, Garry P. Nolan, and Sizun Jiang. “Robust Single-Cell Matching and
Multimodal Analysis Using Shared and Distinct Features”. In: Nature Methods (Jan. 9, 2023),
pp. 1-12. 18SN: 1548-7105. DOI: 110.1038/s41592-022-01709-7.

[215] Dongyuan Song, Qingyang Wang, Guanao Yan, Tianyang Liu, Tianyi Sun, and Jingyi Jessica Li.
“scDesign3d Generates Realistic in Silico Data for Multimodal Single-Cell and Spatial Omics”.
In: Nature Biotechnology (May 11, 2023), pp. 1-6. 1SSN: 1546-1696. DOI: 10 .1038/s41587 -
023-01772-1.

[216] Tianyi Sun, Dongyuan Song, Wei Vivian Li, and Jingyi Jessica Li. “scDesign2: A Transparent
Simulator That Generates High-Fidelity Single-Cell Gene Expression Count Data with Gene
Correlations Captured”. In: Genome Biology 22.1 (May 25, 2021), p. 163. 1sSN: 1474-760X.
DOI:10.1186/s13059-021-02367-2.

[217] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Splatter: Simulation of Single-Cell RNA
Sequencing Data”. In: Genome Biology 18.1 (Sept. 12, 2017), p. 174. 18SN: 1474-760X. DOTI:
10.1186/s13059-017-1305-0.

[218] Helena L. Crowell, Sarah X. Morillo Leonardo, Charlotte Soneson, and Mark D. Robinson. “The
Shaky Foundations of Simulating Single-Cell RNA Sequencing Data”. In: Genome Biology 24.1
(Mar. 29, 2023), p. 62. 1SSN: 1474-760X. DOI: 10.1186/s13059-023-02904~-1.

[219] Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vander-
plas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard
Duchesnay. “Scikit-Learn: Machine Learning in Python”. In: Journal of Machine Learning Re-
search 12.85 (2011), pp. 2825-2830. 1SSN: 1533-7928.

[220] Orhun Aydin, Mark. V. Janikas, Renato Martins Assungao, and Ting-Hwan Lee. “A Quan-
titative Comparison of Regionalization Methods”. In: International Journal of Geographical
Information Science 35.11 (Nov. 2, 2021), pp. 2287-2315. 1SSN: 1365-8816. DOI: 10 . 1080/
13658816.2021.1905819.

[221] Lambda Moses, Pétur Helgi Einarsson, Kayla Jackson, Laura Luebbert, A. Sina Booeshaghi,
Sindri Antonsson, Nicolas Bray, Pall Melsted, and Lior Pachter. “Voyager: Exploratory Single-
Cell Genomics Data Analysis with Geospatial Statistics”. Aug. 20, 2023. DOI: 10.1101/2023.
07.20.549945. Pre-published.

[222]  Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. “Consensus Clustering: A Resampling-
Based Method for Class Discovery and Visualization of Gene Expression Microarray Data”.
In: Machine Learning 52.1 (July 1, 2003), pp. 91-118. 1ssN: 1573-0565. DOI: 10 . 1023 /A :
1023949509487.


https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-022-01709-7
https://doi.org/10.1038/s41587-023-01772-1
https://doi.org/10.1038/s41587-023-01772-1
https://doi.org/10.1186/s13059-021-02367-2
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1186/s13059-023-02904-1
https://doi.org/10.1080/13658816.2021.1905819
https://doi.org/10.1080/13658816.2021.1905819
https://doi.org/10.1101/2023.07.20.549945
https://doi.org/10.1101/2023.07.20.549945
https://doi.org/10.1023/A:1023949509487
https://doi.org/10.1023/A:1023949509487

BIBLIOGRAPHY 123

[223] Minoru Takemoto, Liqun He, Jenny Norlin, Jaakko Patrakka, Zhijie Xiao, Tatiana Petrova, Ce-
cilia Bondjers, Julia Asp, Elisabet Wallgard, Ying Sun, Tore Samuelsson, Petter Mostad, Samuel
Lundin, Naoyuki Miura, Yoshikazu Sado, Kari Alitalo, Susan E Quaggin, Karl Tryggvason, and
Christer Betsholtz. “Large-scale Identification of Genes Implicated in Kidney Glomerulus De-
velopment and Function”. In: The EMBO Journal 25.5 (Mar. 8, 2006), pp. 1160-1174. 1SSN:
0261-4189. DOI: [10.1038/s] . emboj . 7601014

[224] Markus List, Peter Ebert, and Felipe Albrecht. “Ten Simple Rules for Developing Usable
Software in Computational Biology”. In: PLOS Computational Biology 13.1 (Jan. 5, 2017),
€1005265. 1SSN: 1553-7358. DOI: 10.1371/journal .pcbi. 1005265,

[225] Serghei Mangul, Lana S. Martin, Eleazar Eskin, and Ran Blekhman. “Improving the Usability
and Archival Stability of Bioinformatics Software”. In: Genome Biology 20.1 (Feb. 27, 2019),
p. 47. 18SsN: 1474-760X. DOI: [10.1186/s13059-019-1649-8.

[226] Anne-Laure Boulesteix, Veronika Stierle, and Alexander Hapfelmeier. “Publication Bias in
Methodological Computational Research”. In: Cancer Informatics 14s5 (Jan. 1, 2015), CIN.S30747.
ISSN: 1176-9351. DOI: |10.4137/CIN.S30747.

[227] Fujian Song, Lee Hooper, and Yoon K Loke. “Publication Bias: What Is It? How Do We
Measure It? How Do We Avoid It?” In: Open Access Journal of Clinical Trials 5 (July 4,
2013), pp. 71-81. 1sSN: null. DOI: [10.2147/0AJCT.S34419.

[228]  Arielle Marks-Anglin and Yong Chen. “A Historical Review of Publication Bias”. In: Research
Synthesis Methods 11.6 (2020), pp. 725-742. 1sSN: 1759-2887. DOI: 10.1002/jrsm. 1452,

[229] Anne-Laure Boulesteix, Robert Hable, Sabine Lauer, and Manuel J. A. Eugster. “A Statisti-
cal Framework for Hypothesis Testing in Real Data Comparison Studies”. In: The American
Statistician 69.3 (July 3, 2015), pp. 201-212. 1ssN: 0003-1305. DOT: 110.1080/00031305.2015.
1005128.

[230] Yang Gui, Chao Li, and Yan Xu. “Spatial Domains Identification in Spatial Transcriptomics Us-
ing Modality-Aware and Subspace-Enhanced Graph Contrastive Learning”. In: Computational
and Structural Biotechnology Journal 23 (Oct. 22, 2024), pp. 3703-3713. 18SN: 2001-0370. DOT:
10.1016/j.csbj.2024.10.029. PMID: 39507820.


https://doi.org/10.1038/sj.emboj.7601014
https://doi.org/10.1371/journal.pcbi.1005265
https://doi.org/10.1186/s13059-019-1649-8
https://doi.org/10.4137/CIN.S30747
https://doi.org/10.2147/OAJCT.S34419
https://doi.org/10.1002/jrsm.1452
https://doi.org/10.1080/00031305.2015.1005128
https://doi.org/10.1080/00031305.2015.1005128
https://doi.org/10.1016/j.csbj.2024.10.029
http://www.ncbi.nlm.nih.gov/pubmed/39507820

	Summary
	Introduction
	The transcriptome and approaches to its analysis
	A history of RNA sequencing
	Roads to spatiality in transcriptomics
	From sequences to data analysis

	Defining tissue domains
	Histopathological and molecularly defined regions
	Challenges in defining domains from spatial transcriptomics
	Approaches to computational domain identification

	Importance of computational methods benchmarking
	Best practices and challenges in bioinformatics benchmarking
	Comparative evaluation of spatial domain identification methods

	Thesis overview

	Benchmarking spatial domain identification methods on real datasets
	Prerequisites and implementation
	Method selection
	Dataset selection
	Metric selection
	Benchmarking pipeline

	Evaluation of method accuracy
	Comparison of supervised metrics
	Accuracy across datasets
	Consensus across methods

	Visual smoothness effect
	Quantitative evaluation of visual smoothness
	Smoothness and accuracy across technologies

	Domain-specific phenomena
	Stability with respect to data perturbations
	Stochastic effects
	Loss of local spatial coherence


	Semi-synthetic spatial transcriptomics data for systematic method evaluation
	State of the art of spatial transcriptomics simulation
	Overview of published simulation approaches with concurrent ground truth domain generation
	Simulation with SRTsim

	Construction of the semi-synthetic data generation pipeline
	Creating the tissue layout
	Choosing cell types and assigning counts
	Implementing variation on different levels

	Investigating technology characteristics
	Effect of changing resolution
	Effect of changing the number of genes
	Effect of changing count matrix sparsity

	Impact of transcriptional similarity and heterogeneity
	Whole-tissue perturbations
	Pairwise domain similarity

	Effect of domain shape and size
	Laminar layer thickness
	Size of circular domains
	Domain shape and tissue configuration


	Additional results from secondary evaluation criteria
	Runtime and memory benchmarking
	Evaluation setup
	General runtime and memory results
	Scalability

	Usability evaluation

	Discussion and Conclusions
	Benchmarking setup and pipeline
	Method evaluation on real and semi-synthetic datasets
	Technological variation
	Tissue-level perturbation
	Domain sizes and shapes

	Analysis of method stability and secondary evaluation criteria
	Stability analysis
	Runtime, memory usage, and usability investigation

	Future directions and outlook
	Conclusions

	General overview of tools for spatial domain identification
	Ground truth domain assignments for the included real data samples
	Acknowledgements

