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Summary

Within the hierarchy of biological organisation, between cells and organs lies a diverse set of tissues.

Soft tissues consist of elaborate cellular arrangements, comprising a variety of cell types, and form

the basis of larger-scale biological function. Tissues are further organised in regions with distinct

functions, morphology, and molecular composition. These regions can take the form of concentric

circular patterns as in kidney glomeruli, the laminar structures of cortical brain layers, or indistinct,

complex cancer infiltration. Commonly, these tissue regions are identified through sectioning the tissue

and using histological stains to increase the visual contrast of morphologies of interest.

Spatial transcriptomics is a collection of technologies enabling the direct transcriptional profiling of

tissue sections. This brings about an opportunity to evaluate spatial dependencies in gene expression

and to consider tissue coherence on a molecular level. The number of transcripts quantified in different

spatial transcriptomics approaches ranges from a few dozen to the entire transcriptome, exceeding

20’000 genes for human tissues. To handle this wealth of data, computational tools for the identification

of regions based on spatial transcriptomics have been developed.

As with all analysis approaches, there is a myriad of possible avenues to arrive at the same goal.

Method development for spatial domain identification has rapidly outpaced the ability of both users

and tool developers to keep track of options and approaches. In this situation, unbiased, independent,

and systematic method comparisons, known as benchmarking studies, are indispensable.

In this thesis, I present the setup of and results from a thorough benchmarking study of methods

developed for the identification of domains in spatial transcriptomics data. The benchmark utilises

public datasets from diverse technological origins, and additionally entails the creation of a custom ap-

proach for generating semi-synthetic benchmarking data. This pipeline is utilised for an extensive and

systematic evaluation of the effects of technological and tissue characteristics on method performances.

Specifically, we initially benchmark 26 methods for spatial domain detection on 63 tissue slices,

profiled using five different technologies across seven public datasets. First, we identify a simple

consensus aggregation of method outputs as a highly stable and competitive alternative to any single

method. Additionally, through detailed analyses of method performances, we form hypotheses about

dataset characteristics that may affect methods in distinct ways. To enable us to systematically

study the effect of these dataset characteristics, we develop an approach combining synthetic tissue

locations with transcriptome profiles from a real single-nucleus dataset of a mouse brain. Using this

combination, we create over 1000 samples of semi-synthetic spatial transcriptomics data, allowing us

to investigate the effects of diverse technology-inherent features. Further, by different expression-level

perturbations, we evaluate the effects of transcriptional domain similarity and cellular heterogeneity.

Lastly, we consider how the size and shape of tissue domains affect their detection by different methods.

We evaluate method stability using a data reordering approach specifically developed to identify

stochastic effects of rerunning methods on the same data. Lastly, the runtime, memory usage, and

usability of methods is evaluated. All in all, the work presented in this thesis is a valuable resource

for prospective method users and developers interested in the domain-based analysis of spatial tran-

scriptomics data, highlighting where and which methods excel and pointing to potential avenues for

improvement.
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Chapter 1

Introduction

The research presented in this thesis spans topics from molecular biology, tissue biology, and bioin-

formatics. The following sections present introductions to the relevant topics from each of these

areas, namely spatial transcriptomics, domain identification in tissues, and computational method

benchmarking.

1.1 The transcriptome and approaches to its analysis

Since the discovery of the cell as the basic building block of life, scientists have been investigating

its biochemical innards. Light microscopy enabled a deep appreciation for the diversity and quan-

tity of subcellular structures – from larger organelles like the nucleus or the Golgi apparatus down

to macromolecules of various functions. Arguably the most significant step towards understanding

the fundamental mechanisms of life was the postulation of deoxyribonucleic acid (DNA) as the car-

rier of genetic information. Its molecular structure, the double helix, is ideally suited to the storage

and proliferation of information. It is formed by two polynucleotide chains, which are held together

by backbones of phosphorylated sugars and joined by hydrogen bridges connecting opposing com-

plementary bases. The sequence of base pairs encodes information using an “alphabet” of four bases

(Adenine, Guanine, Cytosine and Thymine). The inherent redundancy of information storage in DNA

and evolution-honed precise copying and error-correcting procedures enable the genetic code of each

living organism to be stored, copied, queried, and recombined.

However, DNA is not in itself an active agent in cell function, reproduction or communication.

Long sequences of base pairs known as genes encode, essentially, building instructions. To create life,

information contained in those genes needs to be extracted, interpreted, and converted into proteins,

which carry out or catalyse the necessary cellular functions. This flow of information is known as

the central dogma1 of molecular biology: DNA is transcribed into ribonucleic acid (RNA) which

is translated into proteins, from where no information is able to flow back into, and change, the

DNA (Fig. 1.1). Thus, the division of labour within cells becomes clear: The entirety of the genetic

information of any organism is stored in the complete set of its genes, known as its genome. Cells

are able to survive and function thanks to a wide array of proteins carrying out specialised tasks.

Between information storage and cellular functioning lies the collection of RNAs produced in each

cell, interpreting the genome and enabling adaptation and variability.

RNA molecules, like individual DNA strands, consist of chains of nucleotides. The nucleotides

are equivalent in form to those of DNA, except for the sugar deoxyribose being replaced by ribose.

Additionally, the base Thymine is replaced by Uracil in RNA, keeping the complementarity to Adenine

1Certainly a misnomer, as Francis Crick, who coined the phrase, himself also acknowledged [1]. A dogma, as defined

by the online Cambridge Dictionary, is “a fixed, especially religious, belief or set of beliefs that people are expected to

accept without any doubts” – in order words, fundamentally incompatible with the modern scientific process.
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Figure 1.1: Schematic of the central dogma of molecular biology. DNA is transcribed into

RNA, which is translated into an amino acid chain, and subsequently folded into a protein.

intact. In contrast to DNA, RNA typically occurs in single strands. There are various RNA types

and functions – the most abundant being ribosomal (rRNA) or transfer (tRNA) [2]. Both rRNA and

tRNA are indispensable parts of the cellular machinery in the process of protein synthesis. However,

this thesis focuses exclusively on the analysis of a third type, called messenger RNA (mRNA). If rRNA

and tRNA are the construction workers, mRNA is the blueprint: These are the molecules transcribed

from coding regions of the genome, in whose sequence proteins are encoded.

Pre-mRNA gets transcribed from a segment of DNA by the enzyme RNA polymerase, as a

nucleotide-by-nucleotide copy. The RNA polymerase recognises molecular markers (codons) encoding

“transcription start” and “transcription stop”, delineating a gene, or a functional fragment of genetic

code. The resulting pre-mRNA gets processed further into mature mRNA by the process known as

splicing: Parts of the pre-mRNA known as introns are removed2 and the remaining pieces, called

exons, are spliced back together.

Finally, proteins are synthesised from mature mRNA as chains of amino acids, each encoded in

a three-nucleotide sequence termed a codon. Once the polypeptide chain is complete, proteins fold

into a specific conformation that allows them to carry out their highly specialised functions3. The

proteome, that is, the set of proteins in a given tissue or cell, is also a highly studied analysis target.

A wealth of detection and measurement approaches, frequently based on antibody binding or mass

spectrometry, enables detailed explorations of protein abundances and structures, and in some cases

allow for sequence-based analyses4 [6, 7]. However, even discounting challenges relating to abundance

and stability, unfolding a protein for sequencing is a challenging task [4, 8]. On the other hand, RNA

molecules show a simpler structure5, and their nucleotide chains are close relatives of the well-studied

DNA. The alphabet of amino acids constituting proteins and peptides contains 20 distinct characters,

while only four types of nucleotides build up the information stored in RNA. For scientists attempting

to decode the molecular phenotype of cells, RNA presents an attractive target. Finally, as RNA

molecules can be converted to complementary DNA strands (cDNA) through reverse transcription,

2While it is commonly assumed that introns are subsequently degraded back into their constituent nucleotides for

reuse, some introns remain stable in cells [3].
3Proteins may undergo post-translational modifications such as phosphorylation, potentially changing their function.

This further augments the space of possible proteins that can be produced from the fixed genome, already increased by

the possibilities of alternative splicing.
4Recently, single-molecule protein sequencing approaches have garnered interest, and notably, in 2024 spatial pro-

teomics was pronounced method of the year by Nature Methods [4, 5].
5Which is not to say they do not also exhibit secondary and tertiary folding structures [9]. Notably, double-stranded

RNA molecules or intrastrand double helices can form.
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methods developed for DNA molecules are also applicable to RNA.

The following section gives a brief historical overview of efforts to decode RNA sequences.

1.1.1 A history of RNA sequencing

An inherent property of both RNA and DNA is their tendency to anneal, or hybridise, to complemen-

tary nucleotide chains. Using radioactive molecular probes, both Pardue and Gall [10] and John et

al. [11] were able to localise sequences within Xenopus oocytes in 1969.6 The development of fluores-

cently tagged probes in the 1980s [13, 14] considerably simplified both synthesis and detection [15].

Thereafter, hybridisation-based techniques were commonly used to map RNA transcripts to previously

known regions in the genome [16]. DNA hybridisation microarrays, consisting of thousands of spe-

cific sequences attached to a surface, can quantify the occurrence of those sequences in a nucleic acid

solution [17]. They were used to map transcripts at a very high genomic resolution, down to several

base pairs, and could even detect and quantify differently spliced transcript versions, or isoforms, of

mRNA [18, 19]. However, microarray-based methods rely on existing knowledge of the underlying

genome. Therefore, they cannot be used to detect novel, previously unknown transcripts. Further,

the possibility of cross-hybridisation leading to background noise, as well as signal saturation, combine

to make microarrays a suboptimal technique for quantitative transcriptomics [19, 20].

The main early approach to DNA sequencing7, the chain-termination method, was developed

in 1977 by Sanger et al. and is now commonly known as Sanger sequencing [23]. Its fundamental

principle, shown schematically in Fig. 1.2, is iteratively producing all incremental length sequences of a

transcript and fluorescently labelling the terminal nucleotide in each [24]. The resulting fragments are

sorted by size through gel electrophoresis and subsequently imaged to reveal the locations of labelled

bases. This type of sequencing was used in the Human Genome Project [25, 26].

An enormous jump in sequencing throughput8 was made possible through the development of

flow cell technology, combined with sequencing-by-synthesis [19, 22]. In preparing a flow cell, tem-

plate adapter oligonucleotides are affixed to a support plate. RNA transcripts to be sequenced are

fragmented and reverse transcribed into cDNA strands, to which adapters complementary to those

oligonucleotides are ligated. Once attached to the flow cell, this collection of molecules, the “library”,

is bridge-amplified through a polymerase chain reaction (PCR) procedure. This results in “islands” of

clonally amplified cDNA templates. A schematic of these steps is shown in Fig. 1.3. Finally, sequenc-

ing occurs by the repeated addition of reversibly fluorescent nucleotides and imaging of each step [20,

24]. This is the most common type of short-read sequencing. Various technologies are commercially

available, however, including long-read implementations that skip the fragmentation step to create

reads spanning multiple splicing sites [28].

A fundamental limitation of traditional RNA-seq is its bulk nature: The original tissue processed

through the RNA-seq pipeline is completely dissociated and processed as one sample. Thereby, on one

hand, the diversity inherent in the different cells present in the sample is lost. The development of

single-cell RNA-sequencing has revolutionised the study of individual cells and cell types, and enabled

the creation of single-cell transcriptomic atlases of various organisms and tissues [29, 30].

On the other hand, in both bulk and single-cell sequencing, the spatial organisation of the sample,

or the microenvironment in which single cells reside, are lost in the tissue dissociation step. This infor-

mation crucially informs various biological processes, however, from cell fate decisions in development

6In situ hybridisation was concurrently and independently demonstrated by Buongiorno-Nardelli and Amaldi in

1970[12].
7Of course, there were earlier approaches. Using two-dimensional paper chromatography to identify short polynu-

cleotides by their migration characteristics, the sequence of the lac operon of Escherichia coli was inferred by Gilbert

and Maxam in 1973 – and the entire sequence was printed in the paper abstract [21, 22].
8In 1991, automated Sanger-based sequence analysis could handle 96 templates in a day [27].
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Figure 1.2: Essential steps of Sanger sequencing. (1) A fragment of double-stranded DNA is

denatured into its constituent strands. (2) One single strand of DNA is amplified into millions of copies,

e.g. through Polymerase Chain Reaction (PCR). (3) Short primers, consisting of 20–30 nucleotides,

are hybridised to one end of each fragment. (4) The fragments with attached primers are added in

equal amounts to four solutions. Each solution contains all four nucleotides, but those of one type are

fluorescently labelled to serve as terminal nucleotides. (5) In each solution, a complementary chain

to the introduced fragments grows until the random incorporation of a fluorescently labelled terminal

nucleotide. (6) The original fragments are denatured from their newly generated complements to

obtain a series of single-stranded DNA chains of various lengths. Each strand ends in a fluorescent

nucleotide. (7) The DNA chains are separated by length through gel electrophoresis and subsequently

imaged to read off the nucleotide sequence.

to disease progression and treatment response, notably in cancer [31–33]. In the following section, I

introduce various techniques for the inclusion of spatial information in transcriptional profiling.

1.1.2 Roads to spatiality in transcriptomics

Various technological approaches exist to take into account the spatial distribution of transcripts within

tissues. Two different branches of technology development are converging towards high-resolution,

unbiased spatial profiling of transcriptional tissue identity. From the high-throughput sequencing

side, strategies have been developed to keep information about the tissue context intact and avoid the

tissue dissolution necessary for traditional RNA-seq. On the other hand, imaging-based approaches

lend themselves naturally to profiling cells in their spatial context. The spatial aspect being thus

given, much research has instead gone into the simultaneous detection of multiple molecules, known

as multiplexing, and increasing throughput for those technologies. The following paragraphs, and

Fig. 1.4, give a brief overview of the different technologies emerging from these broad approaches.

The most straightforward way to spatiality, coming from high-throughput sequencing, is to iso-

late regions of interest (ROIs), for example through laser capture microdissection (LCM) [35]. Those

regions are then dissociated and processed through traditional sequencing. Although a modern ex-

tension of the LCM protocol, Geo-seq, is able to reach resolutions up to ten single cells, it is very

labour-intensive, limiting throughput [36].

An early alternative approach, the eponymous Spatial Transcriptomics [37], profiles transcripts

through an entire tissue slice by unbiased spatial indexing followed by sequencing. The technique,

commercialised and further developed by 10x Genomics as Visium, relies on prefabricated glass slides

with an array of uniquely barcoded spots. Visium increased the resolution by decreasing the spot size

from 100 µm in the original Spatial Transcriptomics to 55 µm, arranged in a hexagonal lattice, and
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Figure 1.3: Bridge amplification on a flow cell as used in Illumina sequencing. (1) The

flow cell contains an arrangement of oligonucleotides, to one of which a cDNA fragment hybridises.

Previously, adapters were attached to both ends of the fragment (5’ and 3’), one of which binds

to an oligonucleotide on the surface. (2) Starting from the oligonucleotide, a complementary DNA

strand is synthesised along the original fragment. (3) After complete synthesis, the original fragment

is denatured and washed away. The flow cell is now prepared for bridge amplification. (4) The second

adapter hybridises to another oligonucleotide on the flow cell, bending the DNA fragment. (5) Again,

a complementary strand is synthesised, beginning now at the second oligonucleotide sequence. (6)

The resulting two strands are separated by denaturation, yet both remain affixed to the flow cell

through their adapters. (7) Through repeated bridge amplification, a cluster of short DNA sequences

all corresponding to the original fragment is created on the flow cell. (8) Finally, one of the two

strand orientations is cleaved from the flow cell and washed away. The resulting arrangement of DNA

fragments is then sequenced through repeated imaging after adding fluorescent nucleotides.

the newer Visium HD further reduces the spot size down to 2 µm [38].

In an alternative approach to grid-based barcoding at previously known locations, Slide-seq [39]

uses DNA-barcoded 10 µm beads which are dispersed on a glass surface and tightly packed in a

monolayer. Bead locations then first need to be identified through in situ sequencing. The technique

was later extended, with improvements in sensitivity and capture efficiency, into Slide-seqV2 [40].

HDST employs a similar strategy; however, beads are deposited in an ordered well-based array [41].

Finally, Stereo-Seq replaces the beads with DNA nanoballs, created by rolling circle amplification of

barcoded primers, and thereby increases the available resolution to 0.2 µm [42].

Imaging-based spatial profiling of the transcriptome has its origins in single molecule fluorescence

in situ hybridisation (smFISH) [43]. Multiple short fluorescently labelled probes are hybridised to

visualise known transcripts in a fixed tissue. This approach is highly sensitive and specific, and can

profile a small set of molecules to a spatial resolution defined by the diffraction limit. Cyclic-ouroboros

smFISH (osmFISH) is a semi-automated implementation of smFISH capable of handling larger tissue

areas [44]. However, as smFISH only visualises one transcript at a time, the number of profiled

molecules is still limited by the number of hybridisation rounds.

In sequential FISH (seqFISH), multiple rounds of probe hybridisation, imaging, and stripping allow

genes to be identified through sequential colour barcodes [45]. Alternatively, genes can be encoded

through binary codes, as in multiplexed error-robust FISH (MERFISH). Separations between barcodes,
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Figure 1.4: Overview of technological approaches to spatial transcriptomics. a, high-

throughput sequencing-based approaches rely on in situ barcoding of transcripts. mRNA molecules

are captured within their tissue context and attached to primers corresponding to their location, of-

ten within a predefined grid. Subsequently, library preparation and sequencing is performed. b, in

situ sequencing consists of rolling amplification of transcripts within the tissue context, followed by

sequencing and imaging of the amplified DNA balls. c, in situ hybridisation-based approaches consist

of multiple rounds of fluorescent probe hybridisation and imaging. Optionally, error robustness is

improved through the encoding of the sequence in sequential barcodes. As both in situ sequencing

and in situ hybridisation result in molecular resolution, algorithms for cell segmentation are applied

to their results. d, From outputs of all approaches to spatial transcriptomics, a count matrix can

be defined. This matrix contains the quantified expression of each gene in each profiled spot or cell,

with associated spatial coordinates. Figure reprinted with permission from Rao et al. [34] © Nature

Publishing Group. NGS, next-generation sequencing.

measured in Hamming distance9, allow for the recognition and correction of sequencing errors [46]. In

both seqFISH and MERFISH, only the fluorophores are removed, and probes remain in place between

washes, saving time compared to earlier approaches.

Most recently, Xenium is a commercial FISH-based technique based on in situ hybridisation of

padlock probes and subsequent rolling circle amplification (RCA) [47]. Padlock probes have the

advantage of high specificity, and through RCA, the barcode contained in the probe is highly amplified,

increasing the signal-to-noise ratio in subsequent imaging-based readout. Based on the same starting

principles of padlock probe hybridisation and RCA, STARmap uses sequencing by ligation (SBL) as a

readout technique [48]. Sequencing by ligation, as the name suggests, relies on DNA ligase instead of

DNA polymerase for sequencing readout. Fluorescently labelled oligonucleotide probes hybridise to the

sequence of interest and are joined by the DNA ligase, resulting in a signal for readout. Technologies

such as STARmap are commonly referred to as in situ sequencing-based.

For interested readers, a variety of detailed reviews of available technologies for spatial transcrip-

tomics have been published [49–53]. All of the abovementioned technologies have inherent advantages

and disadvantages. They are situated within a parameter space opened by spatial resolution, profiled

gene panel size, and detection sensitivity. One commonality of all approaches, however, is the wealth

of information captured and the trend toward ever higher throughput [54].

9The Hamming distance between two barcodes is the number of positions at which the entries differ. It is useful to

compare two strings where only substitution errors, not insertions or deletions, are to be expected.
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1.1.3 From sequences to data analysis

The advent of large-scale RNA-sequencing-based data generation heralded the need for computational

evaluation of the resulting massive datasets, and thus the field of bioinformatics experienced a period

of rapid growth10 [19, 20, 60–62]. The output of a modern sequencing pipeline consists of base calling

files. Each sequenced read is stored in the FASTQ format as a sequence of bases, along with a

quality score for each base call. Quality scores are calculated based on the probability or odds of

a given base having been called correctly, and stored in a single ASCII character. FASTQ files are

subjected to quality control concerning quantities like base call quality, GC content, and possible

adapter contamination [61]. This ensures that samples with contamination, sequencing errors or PCR

artefacts do not affect the final analysis [60]. After trimming and filtering, the thereby processed reads

are typically aligned to a known reference genome or transcriptome. If this is not available, or if the

aim is to discover novel transcript isoforms, de novo assembly can be undertaken. In this case, reads

are first assembled into longer, putative contigs, to which reads are mapped back for quantification. In

all cases of alignment, one challenge is the significant fraction of reads that map to multiple locations in

the genome, or multiple isoforms in the case of alignment to a transcriptome [60, 62]. Multi-mapping

reads pose a difficulty for the quantification of gene, or transcript, expression. For more detailed

information about this difficulty and the approaches to overcome it, the interested reader is referred

to [62].

Broadly, the annotations of the reference genome or transcriptome are transferred to the aligned

reads and used to quantify (count) reads coming from each given gene or transcript isoform. Al-

ternatively, pseudoalignment-based or alignment-free methods forego exact alignment for fast and

nevertheless accurate quantification [63]. This quantified expression can be summarised in a count or

expression matrix which reports, for each sample, the number of molecules inferred to belong to each

gene.

Starting from the expression matrix, various computational analysis tasks can be undertaken. For

bulk RNA-seq, the discovery of differently expressed genes (DEGs) between two or more conditions

is commonly the next step. As the expression is usually measured, in modern RNA-seq, for many

thousands of features, the probability of type I errors (false positives) upon näıve comparison is greatly

increased. To avoid this multiple testing problem from distorting significance levels, normalisation and

filtering steps need to be carefully applied [62].

As mentioned above, bulk RNA-seq is fundamentally limited to analysis on the tissue level. Since

the advent of single-cell RNA-seq (scRNA-seq), assessing gene expression differences and patterns on

the cellular level has been possible [64, 65]. A main challenge posed by scRNA-seq is the annotation

of individual cells to cell types and states. This can be approached through the evaluation of gene

markers. Alternatively, scRNA-seq enables the creation of so-called atlas projects such as the Human

Cell Atlas [66], that can be used as reference datasets. Atlases are beginning to be available for a wide

range of species [67–69] and tissues [70–72]. Independent researchers can integrate their datasets with

these references to annotate their own data using label transfer strategies. Extensive reviews of the

challenges and possibilities of scRNA-seq are available [29, 30, 73, 74].

As described in previous sections, an additional limitation of both bulk and single-cell approaches

10Bioinformatics as a field had emerged decades earlier, with Ben Hesper and Paulien Hogeweg first coining the term

in the beginning of the 1970s to describe “the study of informatic processes in biotic systems” [55]. Even before that,

computational approaches to biology had been used in a scientific context [56]. For example, Margaret Dayhoff utilised

FORTRAN programs to assist in determining an error-robust amino acid sequence consistent with the known structure

of overlapping peptide sequences in 1964, and published the results in a comprehensive and still highly readable article

[57]. For the interested reader, I recommend a review of the early days of bioinformatics by Ouzounis and Valencia,

published in 2003 [58]. The growth period alongside and after the development of high-throughput technologies is perhaps

anecdotally best chronicled by the 2016 article by Jonathan Wren concisely entitled “Bioinformatics programs are 31-fold

over-represented among the highest impact scientific papers of the past two decades” [59].
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is the nonexistent capture of spatial information. Using spatial transcriptomics approaches, the output

of a profiling pipeline is not only an expression matrix containing gene counts for each spot or cell,

but also the matrix of associated tissue positions.

This data provides new computational challenges. While researchers employing single-cell resolu-

tion spatial transcriptomics approaches (see the previous section for a broad classification) are faced

with the problem of cell type assignment detailed above, many technologies aggregate transcriptional

profiles over multiple cells. In the Visium technology, with a spot diameter of 50 µm, expression values

of typically up to 10 cells can be measured at the same time [75]. Many computational approaches

have been developed for the deconvolution of this data and the estimation of cell type composition,

often incorporating single-cell reference datasets [76–78].

The immediate next analysis steps branch off into two complementary paths: the delineation of

coherent and cohesive transcriptionally defined tissue regions, and the identification of genes whose

expression shows a spatial pattern, known as spatially variable genes (SVGs). Approaches for both

analyses are manyfold – for SVG detection, methods usually present mathematical models aiming

to capture biological signals [79–81]. On the other hand, for spatial region or domain identification,

method development has ranged from statistical modelling through clustering-based approaches to

the inclusion of sophisticated neural network architectures [82–84]. Further, several approaches have

been demonstrated that integrate the two analyses [85, 86]. Of these two fundamental analysis steps,

this thesis will focus on approaches for spatial domain identification.

Using spatial transcriptomics approaches, researchers are able to decode spatial dependencies on

various length scales, ranging from subcellular transcript distribution up to functional tissue microen-

vironments [87]. This last type of structure is what the next section will focus on.

1.2 Defining tissue domains

Multicellular organisms are spatially heterogeneous and exhibit some degree of organisational structure

– different cell types carry out different tasks. The scale and complexity of cellular organisation range

widely, as differentiating tissues develop to fulfil highly specialised functions [88, 89]. Tissues can be

told apart by visual or molecular identifiers, as described in the following sections.

1.2.1 Histopathological and molecularly defined regions

Aiming to optimally distinguish different tissues under light microscopic evaluation led researchers to

develop advanced histopathological methods, including various staining approaches to increase visual

contrast [90]. The most common staining procedure uses Hematoxylin and Eosin (H&E) [90, 91].

Hematoxylin is a cationic basic dye, used as a stain in its oxidised form (haematein) and usually

combined with aluminium alum as a mordant [91]. Most prominently, it stains nuclei a blue colour.

Complementarily, the anionic acid dye Eosin stains the cell membrane, mitochondria and extracellular

matrix pink. Through the combination of the two dyes, fine intra-and intercellular structures can be

distinguished in shades of pink and purple (see Fig. 1.5a). On a bigger scale, various tissues within

an organ such as the brain appear visually distinct and enable researchers to delineate well-defined

regions (see Fig. 1.5b).

In histological approaches, identifying various tissue types is a matter of visual inspection of

the morphology after staining. Where they cannot be distinguished visually, tissues can be further

characterised by more specialised staining, electron microscopy approaches, or transcriptomic readouts

of regions of interest [93, 94]. Spatial transcriptomics, on the other hand, enables the direct assessment

of tissue domains in terms of molecular (i.e. transcriptional) identity. Utilised in conjunction with

histology, this opens up novel avenues in fields like cancer and neuroscience, for example, the analysis of

inter- and intratumour heterogeneity, cortical layers, and tissue development [34, 95]. Beyond animal
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a b

Figure 1.5: Decoding spatial regions from histological images. a, H&E stain of basal cell carci-

noma of the skin. Cell nuclei are stained in blue-purple, extracellular material is stained in pink. Im-

age from Wikipedia, licenced under CC BY-SA 3.0 (creativecommons.org/licenses/by-sa/3.0/deed.en)

[92]. b, Detail from a Nissl stain and the corresponding anatomical annotation of a coronal section of

a P56 mouse brain. Allen Mouse Brain Atlas, mouse.brain-map.org [71].

tissue, domain-specific transcriptomic analyses are also applicable to plant systems, though this will

not be the focus of this thesis [96].

The evaluation of tissue domains based on molecular tissue identity presents novel challenges.

Even for spatial transcriptomics technologies with lower multiplexing capability and thus small panel

sizes, such as osmFISH, still many dozens of genes are profiled. For high-throughput sequencing-

based approaches, the number of profiled genes can correspond to the size of the entire transcriptome

and thus be on the order of 104. Individual genes can be easily visualised in space through different

colour channels; however, considering more than three genes simultaneously is not possible in this way.

Approaches have been developed to visualise the molecular identities of profiled spots or cells using

RGB colour channels, through drastically reducing the dimensionality of transcriptomic readouts [97,

98]. These methods, while potentially aiding in the interactive exploration of tissues, may suffer from

the general pitfalls of unsupervised dimensional reduction [99, 100]. Therefore, the high dimensionality

of the transcriptome necessitates an algorithmic approach to defining spatial domains.

1.2.2 Challenges in defining domains from spatial transcriptomics

To the present day, many approaches and implementations for the identification of spatial domains

have been developed. In the effort to categorise methods for spatial transcriptomics analysis in general,

multiple databases have been created11 [54, 101]. Despite the wealth of interest and the rapid tool

development, there is no clear consensus on how to transcriptionally define spatial domains (Fig. 1.6a).

As reviewed by Walker et al., there are several ways to define what constitutes a domain [102].

Within published approaches, most methods tend to employ one of two definitions: The idea of

coherence in gene expression over a spatially contiguous region, or the view of regions with distinct

cell type distributions. In both cases, it is crucial to adaptively define thresholds for what is considered

incoherent or indistinct.

Further complicating the task of clearly defining spatial domains is the variety of technological ap-

proaches to spatial transcriptomics, as outlined in the previous section. Particularly, the disparity in

resolution provided by the different approaches makes it challenging to create a technology-spanning

definition. In the case of spot-based approaches such as Visium, one spot may capture the tran-

scriptome of multiple cells. This obscures the exact spatial provenance of distinct cells even when

11In 2022, Moses and Pachter counted 28 publications relating to spatial regions and in 2023, Chu et al. developed the

STASH database, showing 65 tools addressing spatial domain identification [54, 101]. In the STASH database, newer

methods are not categorised anymore, though the current iteration of the database published by Moses and Pachter

counts 148 publications relating to spatial domains ([54], accessed September 2, 2025).
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Figure 1.6: Domain definitions and dataset usage across 34 published methods. a, Histogram

of spatial domain definitions as employed in method publications. Twelve methods emphasise expres-

sion coherence, in conjunction with spatial contiguity, while nine methods instead define domains

through cell type composition changes. Five method publications view spatial domain identification

as spatially augmented clustering, analogous to the clustering of single cells, and two publications

focus on the functional distinction between spatial domains. Five publications do not claim a specific

definition. Definitions were manually extracted from publications. b, Datasets used within method

publications for evaluation and benchmarking, sorted by usage frequency. Only datasets that appeared

in at least two separate publications are shown. The x axis is broken for ease of visualisation, and

bars are coloured according to broad tissue category.

deconvolution of spots into constituent cell types is performed, leading to inexact borders across re-

gions [76, 78, 103]. On the other hand, at single-cell resolution, the challenge becomes exact domain

assignment across the diversity of cell types. In heterogeneous tissues such as tumours with a high

incidence of infiltrating cells, precise domain delineation may not be possible [104]. Methods have

been developed to account for this difficulty by leaving border tissue out of the analysis; however,

most methods continue to operate under the assumption of discrete ground truth domain assignments

[105].

Finally, considering single-cell resolution technologies, the distinction between cell type cluster-

ing and spatial domain identification needs to be an important point of consideration. Cells in the

same spatial neighbourhood tend to exhibit common patterns in their gene expression, potentially

even across cell types [106–108]. The first method incorporating a spatial proximity constraint into

transcriptomics clustering was described in 2014 by Pettit et al., and interestingly, the authors use the

method to cluster data into cell types [106]. There are several published methods that can be applied

both in a “cell type clustering” and a “domain identification” mode by changing a spatial smoothness

parameter [83, 109]. While there has been discussion about exact definitions of “cell types” [110–112],

domains should be clearly defined as separate entities.

In the absence of a clear and unified definition of spatial domains, and in the spirit of the purpose

of a system being what it does12, one may turn to the self-evaluation of methods as a way to determine

what it is they are looking to find. Particularly, the vast majority of methods benchmark their own

performance against that of alternative approaches. A qualitative evaluation is usually carried out,

relating the different domain segmentations to biologically meaningful tissue compartments. On the

other hand, however, often methods aim to quantify their own superior performance through an

accuracy-based comparison to a ground truth.

The ground truth employed in these comparisons is usually defined, at least partially, through

the expert annotation of a histological image of the sample in question13. However, transcriptional

12Stafford Beer coined the phrase “the purpose of a system is what it does” in 2002, in an adress on cybernetics [113].
13Although histology images of the same sample are coregistered with molecular profiles in some technologies, notably
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markers are often brought in to inform or refine the spot or cell level annotation. The annotation

origins of the datasets which are used in this thesis, and in the forthcoming article discussing the

benchmarking results, are discussed in Chapter 1.

As the field grew, a core cohort of datasets was established as gold standard resources, commonly

used for internal method benchmarking (Fig. 1.6b). These datasets are usually published alongside a

ground truth domain annotation, or alternatively, the data is annotated through later, unconnected

efforts.

The most prolific dataset by far consists of 12 samples of the human dorsolateral prefrontal cortex

(DLPFC) from three different donors, sequenced and published by Maynard et al. [114]. The samples

are annotated in the original publication into spatial domains corresponding to the anatomical regions

defined as white matter and the brain layers L1-L6. The expert annotation is informed by histology

images, coregistered automatically with Visium, and layer-specific marker gene expression scores.

The continued and widespread use of this dataset for evaluating the accuracy of spatial domain

identification indicates the interest in accurately identifying brain layers, corresponding to known

anatomical regions, from molecular profiles. Interestingly, of the 13 most frequently used datasets for

method evaluation, 10 are datasets of brain tissue (Fig. 1.6b). Of 34 evaluated method publications,

32 evaluate on some type of brain tissue data, while 21 evaluate on at least one cancer dataset.

The disparity between lacking clear definitions and wide purported method applicability is an

under-studied area in the field. Particularly, the range of tissue types of interest may necessitate

adaptable or varied domain definitions.

1.2.3 Approaches to computational domain identification

The earliest method for identifying spatial domains14 was published by Zhu et al. in 2018 [118].

They describe an approach to identify spatially associated cell subpopulations in seqFISH data using

hidden Markov Random fields (HMRFs), a method which would later be integrated in the Giotto

framework [87]. Viewed as an application of HMRF, domain identification amounts to modelling an

observable, usually a low-dimensional representation of the gene expression, under the assumption of

underlying domain labels. A Potts model is employed as a spatial prior in order to impose cluster

contiguity. HMRF-based approaches have continued to be developed, with innovations in tunability

and applicability to sequencing-based data, multi-sample analysis, and the integration of histological

images [82, 119, 120].

Integrating histology into domain recognition based on spatial transcriptomics was pioneered by

Pham et al. in their method stLearn [121]. In stLearn, morphological information is extracted from

an H&E image by an image classification neural network and utilised for spatially-aware normalisation

of gene expression values. In subsequent methods, histology images are converted into morphological

distances between spots based on RGB values, embedded jointly with gene expression by graph con-

volutional neural networks, or integrated with gene expression and spatial location through network

fusion [122–124]. So far, however, the inclusion of histological information has not been shown to aid

in accurate spatial domain identification [117, 125, 126].

Another early approach was demonstrated by Cang et al. in SCAN-IT, namely the usage of graph

convolutional networks (GCNs) to generate low-dimensional spatially-aware embeddings of gene ex-

pression information [127]. In the method SpaGCN, a graph convolutional layer aggregates gene

expression, spatial location and histology, where the latter two modalities were previously used to

define edge weights in an input graph [122]. With the continued development of the field, graph

Visium, this is not possible in all approaches. In those cases, imaging of adjacent tissue slices may provide close enough

analogues to then be able to transfer the annotation to the slice of interest.
14Various publications refer to this task as spatial clustering [115–117]. In this thesis, I refer to the more general spatial

domain identification, to include clustering-free approaches and emphasise the shared aim of spatial domain contiguity

across methods.
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attention autoencoders, variational graph autoencoders, along with various data corruption and reg-

ularisation strategies, have been applied to spatial domain identification [84, 109, 128–130]. In most

of these methods, sophisticated neural networks are applied to the task of generating low-dimensional

representations of gene expression, which in some way incorporate information about cellular neigh-

bourhoods. These representations are subsequently subjected to standard clustering algorithms like

k-means, model-based clustering as implemented in the R-package mclust, or Leiden clustering, a

popular algorithm for single-cell transcriptomics data [29, 131, 132].

A host of other methods also take advantage of well-established clustering algorithms to identify

spatial domains. The simplest approach to integrating gene expression and spatial information into

a graph for downstream clustering is implemented in TACCO, which simply creates a weighted sum

of adjacency graphs for both modalities [76]. Other methods create elaborate expression-aware neigh-

bourhoods or neighbourhood-aware spot networks [83, 133–135]. Yet another approach is taken by

SpatialPCA and GraphPCA [136, 137]. As the names suggest, these tools extend principal component

analysis (PCA) to be spatially aware by modelling spatial correlation across locations using a kernel

matrix or incorporating a spatial constraint in the data reconstruction step. Finally, the extracted

spatial PCs are clustered into spatial domains. More recently, spatial dimension reduction has been

further extended to multimodal data analysis [138].

The last category of methods approaches domain identification as an image processing problem.

Two notable implementations are MULTILAYER and Vesalius [139, 140]. MULTILAYER uses ag-

glomerative clustering of “gexels” to detect contiguous gene expression patterns, which are used to

compartmentalise the tissue into domains. Vesalius fully embraces the image processing approach,

embedding the transcriptome into an RGB colour space using the nonlinear dimension reduction ap-

proach UMAP [98]. Subsequently, spatial domains are identified through iterative smoothing and

segmentation.

1.3 Importance of computational methods benchmarking

Benchmarks are commonly used in computer science as a way to quantify and compare the perfor-

mance of different systems or architectures [141]. In bioinformatics, different algorithms or method

implementations are compared in what are commonly known as benchmarking studies [142]. The task

of benchmarking, or the comparative evaluation of tools, is often carried out by method developers

alongside the publication of new approaches. However, this type of self-evaluation is prone to biases,

such as favouring datasets, characteristics or evaluation criteria wherein the authors’ own methods

excel [143]. Impartial, third-party benchmarking efforts are therefore imperative to the unbiased as-

sessment of methods in a given field and the continued development of relevant and high-performing

methods [144].

Many reviews have been devoted to describing best practices and guidelines for benchmarking com-

putational methods. In 2019, Weber et al. published a seminal paper on guidelines to computational

method benchmarking [145]. More recently in 2023, van Mechelen et al. described good benchmarking

research practices in an excellent white paper, focusing on the example of clustering methods [146].

Specific to the field of high-throughput measurement in biology commonly termed “omics”, Mangul et

al. authored a comprehensive review in 2019, listing core principles of systematic method evaluations

and surveying the state of the art at the time [147]. Brooks et al. in 2024 reviewed common over-

sights and pitfalls in omics benchmarking, and argued for a methodological approach to the reporting

of benchmarking pipelines and results [148]. In this section, I will give a brief overview, expanding

on the challenges and trade-offs inherent in creating a benchmarking study. Then, I will introduce

the context of comparative method evaluation in spatial domains, demonstrating the necessity of a

comprehensive and independent analysis.
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1.3.1 Best practices and challenges in bioinformatics benchmarking

The core aim of comparative method evaluation is to provide guidelines for prospective users and

further method development. For meaningful and informative benchmarking in these contexts, careful

consideration must be applied when selecting methods, datasets, and evaluation metrics. Some trade-

offs inherent in these selections are listed in Tab. 1.1 and covered in more detail in the following

paragraphs. Specifically, I will discuss method selection and hyperparameter setting, data selection,

as well as performance metrics and broader evaluation criteria.

Regarding method selection, it is generally considered ideal to include all relevant methods [149].

However, the feasibility of this approach may be constrained by computational power and/or time,

as the number of methods exceeds multiple dozen for some tasks15. Nevertheless, there have been

efforts to benchmark impressive numbers of methods, such as a 2019 publication by Saelens et al.

that evaluates 45 tools for single-cell trajectory inference [151]. Most benchmarking studies, however,

consider significantly fewer individual tools. Two recent meta-evaluations of single-cell benchmarking

efforts record a median of 10 methods benchmarked in independent comparisons [152, 153]. On this

scale of method evaluation, it is important to choose tools which best represent the state of the art,

although this criterion remains ambiguous [154].

Once methods have been selected, the setting of possible hyperparameters plays an important role.

A common approach to hyperparameters is leaving them at default values, or setting them to values

recommended by the method developers. This reflects common usage and is simple to implement. It

may not always be clear how strongly the performance of a tool is affected by a given parameter, and

thus, how much effort should be invested into optimising the parameter tuning. This trade-off between

ease of optimisation and attainable performance benefit has been investigated in-depth for the case of

clustering [155]. However, not all methods provide default or recommended hyperparameter values,

and for those that do, not all values generalise to all types of data the method may be applied to.

Certain benchmarking studies therefore distinguish between “versions” of tools, implemented using

different hyperparameter settings [156]. It is also interesting to separately consider preprocessing

and postprocessing steps, which may be common between various tools and may not necessarily be

specified in detail [117, 157]. The impact of preprocessing on method performances has been studied

for selected analyses, notably in the case of dimensionality reduction [158, 159]. The other end of the

spectrum regarding hyperparameter determination, namely, implementing a comprehensive parameter

space sweep, is not feasible in most settings. In studies with small numbers of methods or highly

standardised hyperparameters, a sweep might be carried out across all methods. Particularly, if a set

of parameters is influential to method output and common to all tools, a parameter sweep is indicated

[147]. Otherwise, when parameter settings are optimised only selectively or optimised parameters are

only relevant in a subset of methods, one runs the risk of unequal treatment of tools. Further, all

methods should be provided with the same information about the test data [146].

Once the selection of tools is complete, the benchmark data to be used for their evaluation needs

to be selected. Here, the base consideration concerns the types of data commonly analysed in the field,

to which the selected tools are likely to be applied. The selected datasets should represent a wide

range of applications and conditions [145, 146]. Fundamentally, benchmark datasets can be either

real, containing experimentally measured data from a system of interest, or synthetic, created at least

partially through computational simulation. Hybrid, semi-synthetic datasets can be generated on the

basis of real data, but augmented or transformed in specific ways through simulation [145, 148].

For the evaluation of tool performance on selected datasets, it is indispensable to be able to quantify

15In the example of single-cell analysis, the scRNA-tools database at scrna-tools.org currently tracks 1837 tools (> 153

dozen) over all analysis types (status: October 1, 2025) [150]. For clustering alone, 397 tools (> 33 dozen) are recorded.

The numbers for spatial transcriptomics tools are lower due to the more recent emergence of the fields, but growing

rapidly [54].
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performance, in particular, to define what is understood to be a “good” performance outcome [146].

To this end, researchers often employ the comparison to ground truth values for the analysis outcome

[145, 147, 148]. In the case of real datasets, the generation of gold-standard information to be used

as a ground truth may be included as a part of data acquisition, as a first step in the benchmarking

pipeline [148]. Depending on the analysis type, gold-standard evaluation may be commonly published

alongside the raw data. This is the case for fundamental processing steps such as annotating cell types

in single-cell RNA-seq data. While this ground truth type is usually at least partially attained by

manual expert annotation and should have undergone rigorous quality control prior to publication,

it is often not feasible to comprehensively check ground truth validity. On the other hand, a ground

truth for semi-synthetic or fully synthetic datasets may be generated along with, or underlying, the

simulated data [160].

Special care must be taken, notably in the case of synthetic data, to avoid using the same models

to generate data that are also used in methods to be evaluated, as this would end up biasing the

evaluation towards those methods. A similar effect may also occur when using previously published

real datasets, as those may be utilised for evaluation during method development or even included in

training datasets for some learning-based methods. In emerging fields, there might be a lack of real

data generated with an associated ground truth, leading to overfitting of methods to specific popular

benchmarking datasets [161].

Lastly, method performance on benchmarking datasets must be evaluated using an appropriate

and comprehensive list of evaluation criteria. Primarily, the performance of a tool is graded by the

quality of its outputs, measured as accuracy of classification, correlation or cross-entropy of continuous

variables, or root mean square errors, among many further possibilities [145, 147]. A balance must be

struck here between including popular, easily interpretable metrics, considering edge cases that are

potentially not covered by common metrics, and creating specialised, tailored evaluation criteria for

benchmarking. If applicable, it may also be interesting to evaluate tools’ error rates in terms of the

relative abundance of type I and type II errors (false positives and false negatives). Further, beyond

the simple performance evaluation on individual tasks, a comprehensive benchmark should investigate

the stability and robustness of tools’ performance [146]. Stability analysis can encompass running

methods repeatedly on sub-sampled data from the same underlying dataset or, for non-deterministic

methods, on the same data for different values of a random seed [145, 146]. On the other hand, method

robustness can be tested with respect to data perturbations or hyperparameter settings. Data-level

perturbations of interest may include downsampling data, introducing artificial noise or outlier values,

or changing parameters in preprocessing steps [146].

These primary quantitative performance evaluation criteria should be complemented by secondary

criteria, concerning the quality of the method implementation [145]. Several criteria may be of interest

to the end user, such as method runtime, memory usage, scalability, and user-friendliness or usability.

Runtime and memory usage should be evaluated and compared using standard computational archi-

tectures to enable users to easily compare with their own machines. For scalability analysis, methods

should be evaluated on a range of datasets that vary in size but otherwise exhibit shared character-

istics. The assessment of usability, encompassing ease of installation, support for different operating

systems, and documentation quality, is highly subjective. It can be standardised, to a degree, by using

weighted checklists [162].

Finally, it can be useful to summarise metrics into an overall ranking, where a balance has to be

struck between weights assigned to the available evaluation criteria. Namely, end method users may

not be interested in a high-performing method requiring highly specialised computing architectures or

long running times, whereas high speed and computational efficiency might increase the attractiveness

of a lower-accuracy method [163].
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Concern Trade-offs

Method selection Comprehensiveness vs Investment of resources

Parameter tuning Exhaustiveness vs Investment of resources

Breadth of real data origins Range of applications vs Necessity of parameter tuning

Ground truth availability Broad dataset inclusion vs Comprehensive validity check

Synthetic data Realism vs Tunability and availability

Metric selection Interpretability vs Specialisation

Metric summarisation Primary evaluation vs Secondary evaluation

Table 1.1: Trade-offs inherent in benchmarking study design. Trade-offs are shown for different

areas of concern.

1.3.2 Comparative evaluation of spatial domain identification methods

This thesis deals with the evaluation of methods for spatial domain identification, so in this section, I

will review the state of the art of benchmarking in this field. Comparing method performance is only

reasonable and possible when multiple tools exist that try to accomplish the task in question. At the

advent of any avenue for data analysis, as tools are first being developed, comparative evaluation to

previous approaches is carried out within method publications. In the field of spatial domain identifi-

cation, most methods perform a quantitative comparison to available tools in addition to qualitatively

evaluating their own performance, aiming to demonstrate their advantage in select applications. The

majority of methods compare their performance to 7 other methods or fewer, with only four methods

out of a sample of n = 33 benchmarking against 9 or more methods (Fig. 1.7a). Four methods in this

informal review do not perform any comparisons to other methods for spatial domain identification

[76, 86, 118, 164]. A detailed overview of the surveyed methods is shown in Appendix A (Tab. A.1).

The Adjusted Rand Index (ARI) is chosen for the quantification of clustering accuracy in the vast

majority of comparisons (27 out of 33, see Fig. 1.7b). The ARI is introduced in more detail in the

following chapter. Briefly, it is a supervised evaluation metric, comparing a putative clustering to a

ground truth set of annotations by evaluating pairwise cluster membership. A number of supervised

metrics are employed in subsets of method publications, such as the Adjusted and Normalised Mutual

Information (AMI and NMI), homogeneity and completeness (HOM and COM), and the Fowlkes-

Mallows Index (FMI). All of these metrics will be detailed in Chapter 2. Like the FMI, both the

F-score and the Area Under the Curve (AUC) are supervised evaluation metrics based on precision

and recall, and are employed in a total of three recent method publications [120, 167, 168]. On the

other hand, only a few unsupervised metrics, which evaluate the goodness of a putative clustering

without relying on the comparison to a ground truth, are utilised. Among those that are included are

the CHAOS and Percentage of Abnormal Spots (PAS) scores (the latter not shown), both adapted

from image analysis and used in two publications [136, 169]. Further, the Local Inverse Simpson’s

Index (LISI) is employed in two method publications to evaluate the mixing of cell types in identified

domains [109, 136]. Differentially expressed marker genes and domain-specific SVGs are used in select

publications to gauge the quality of domains [120, 122, 127, 130, 170].

One particular well-annotated human brain dataset is employed for method comparison in most

cases, as already shown in Fig. 1.6b. This is a dataset of the human dorsolateral prefrontal cortex,

sequenced using the Visium technology, introduced in more detail in Sec. 1.2.2. For my purposes

here, the conjunction of common dataset and metric usage allows the creation of a directed graph

of method comparisons, as shown in Fig. 1.7c. This graph shows methods as nodes, connected by

an edge if the methods have been compared in a benchmark published alongside a novel approach.

The edges are directed from the reportedly higher- to the reportedly lower-performing method, and

weighted by the number of comparisons. As numerical performance values are not published in all

cases, in some comparisons, the edge direction had to be inferred from visual estimation.
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Figure 1.7: Existing benchmarking efforts for spatial domain identification. a, Histogram

showing the number of comparisons to other methods undertaken in the context of 33 publications

containing self-evaluation benchmarking. b, Usage of metrics for quantitative evaluation across the 33

publications. Metrics were only included if they were utilised in at least two separate publications. Bars

are coloured according to the evaluation type. c, Method rankings as extracted from within-publication

benchmarking efforts. All methods were benchmarked on the human dorsolateral prefrontal cortex

dataset published by Maynard et al. and performance was evaluated by ARI [114]. Methods are shown

as nodes, comparisons as directed edges. Arrows point from better to worse performing methods, and

edges are weighted by the number of published comparisons of the node methods. d, Pruned method

graph as in c, direct contradictions are marked in red. e, Method comparisons on the same dataset from

four published independent benchmarks of spatial domain identification [117, 126, 165, 166]. Methods

are only included in the graph if their performance is reported by at least two benchmarks, and edges

are only drawn if at least two benchmarks report their relative performance. Relative performance is

measured in ARI in all cases. Edges are directed from higher to lower reported performance. In cases

with conflicting reporting, the respective edge is bidirectional. The size of the arrow heads corresponds

to the number of publications reporting a given ranking, and the colour of the edge details the level of

agreement between the reports. Agreement ranges between 100% (all reports agree on the ranking),

75% (one report contradicts three), 67% (one report contradicts two), and 50% (one report contradicts

one other).

From Fig. 1.7c, we see that while most method comparisons are only benchmarked once, there is a

subset of methods frequently employed in comparisons. These methods tend to be implementations of

non-spatial clustering algorithms employed as baselines (such as scanpy and Seurat), or early spatial

clustering approaches (like Giotto, stLearn, BayesSpace, SpaGCN, SEDR, CCST, and STAGATE)

[84, 87, 109, 119, 121, 122, 170–172]. Between methods with multiple comparisons, contradicting

comparison results are possible. That is, edges with weight > 1 can be bidirectional. These are

highlighted in a reduced subgraph in Fig. 1.7d. Considering only the comparative method evaluations

performed in the context of within-method benchmarking can thus lead to contradictions. In certain

cases, these contradictions may be due to conscious or unconscious biased evaluation, as described

by Jelizarow et al. [154]. For example, some publications evaluate varying hyperparameters for the

presented method and not for those to which it is compared [128]. As hyperparameters used for other

methods are not reported in many cases, this is difficult to verify. On the other hand, the contradictions

in reported performances might also be simply due to method instability or randomness.

In an effort towards independent benchmarking, since the field is maturing, a handful of more

independent benchmarking efforts have been published [117, 126, 165, 166]. Notably, some of these

publications benchmark spatial domain identification tools previously developed within their working

groups [128, 161]. Still, these efforts should avoid any kind of biased evaluation, and within the

respective scopes of these comparisons, methods are evaluated more comprehensively. In spite of this,

the comparison of method performance by ARI on the aforementioned dataset by Maynard et al.

is a core part of the evaluation, again allowing a comparison of method comparisons to be drawn

(see Fig. 1.7e). Interestingly, even within independent benchmarks, evaluating methods on the same

dataset and with the same metrics, contradicting method performances are reported. Between methods

compared in two or more independent benchmarking studies, rankings are contradicting in a large

proportion of cases, shown in shades of orange and red in Fig. 1.7e.

These contradictions between independent benchmarks should not be due to preferential treatment

of select methods. Indeed, all four benchmarks report primarily utilising default parameter settings,

or setting hyperparameters according to developers’ recommendations. There may, however, be dif-

ferences in preprocessing steps not covered by method defaults, or ideal values for hyperparameters
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identified through parameter space sweeps. Alternatively, inherent randomness on the part of the

methods might still play a role.

The present benchmarking effort, as described in this thesis and as will be partially published

in the accompanying publication, aims to disentangle possible factors affecting method performance.

As method usage with default parameter settings reflects popular usage, the focus is placed less on

method parameter space exploration than on the effect of various data characteristics.

1.4 Thesis overview

Spatial transcriptomics has revolutionised the analysis of biological tissues, enabling the direct molec-

ular profiling of cell types, states, and interactions [50]. It has broad implications for medical research,

ranging from oncology to nephrology and neuroscience, as well as infectious diseases [173–178]. Fur-

ther, spatial transcriptomics can aid in fundamental research on development, tissue architecture, and

systems biology [173, 179, 180]. A central part of the analysis pipeline for spatial transcriptomics

data is the identification of cohesive and characteristic regions within the tissue, commonly termed

spatial domains [54, 87, 122, 181, 182]. For this purpose, a wealth of computational approaches has

been developed [183]. Efforts have been made to categorise and evaluate groups of tools on public,

annotated datasets [117, 126, 165, 166]. However, as described above and in the next chapter, ground

truth annotations of real datasets are commonly defined based on manual annotation and thus contain

a degree of uncertainty. A comprehensive analysis of method performances, which includes a system-

atic exploration of different data characteristics, has been missing from the field. The present thesis,

alongside the forthcoming corresponding benchmarking publication, attempts to fill this gap.

This thesis presents the cumulative effort of benchmarking computational methods for domain

identification in spatial transcriptomics data. The results discussed in the following chapters arise

from collaborative work. Chapter 2 introduces the 26 methods that will be investigated, as well as

publicly available spatial transcriptomics datasets and evaluation strategies utilised in the benchmark-

ing process. Further, it discusses our benchmarking pipeline and elaborates on results and hypotheses

derived from running methods on real data with expert-generated ground truth. Following up on

the analysis of method performance on real data, Chapter 3 describes the development of a reliable

pipeline for semi-synthetic data generation, commenting on the state of the art in spatial transcrip-

tomics simulation. Additionally, it showcases how method performances are affected by the systematic

variation of data characteristics. The effect of technological parameters such as the resolution, the

number of profiled genes and the sparsity of the resulting data is investigated. Moreover, the pipeline

allows the variation of parameters relating to tissue properties like cell type similarity, molecular het-

erogeneity, and the size and shape of domains. Additional analyses relating to the method evaluation

concerning runtime and memory usage, as well as usability, are presented in Chapter 3. Overall, this

thesis presents a significant contribution to the field, functioning as a review of the state of the art and

examining in detail various factors affecting the performance of spatial domain identification methods.



Chapter 2

Benchmarking spatial domain

identification methods on real datasets

This chapter describes the benchmarking of methods for spatial domain identification using public spa-

tial transcriptomics datasets. I introduce the materials and approaches employed in the benchmarking

effort, and show the results of different analysis strategies.

2.1 Prerequisites and implementation

As introduced in Section 1.3, the choice of methods, datasets and metrics is of vital importance for

the execution of a well-rounded benchmarking study. The methods selected for comparison should,

besides being suited to the task at hand, cover a significant portion of the available approaches, and

represent the state of the art. They should be run on data with a well-defined ground truth, chosen

from the entire field of possible method applications to ensure a broad method evaluation. Finally,

the metrics chosen to represent method performance need to be optimally suited to investigating the

specific task under study, interpretable, and relevant to the field. Each of these selections is detailed in

a dedicated section. Additionally, the implementation of a reproducible benchmarking pipeline using

Snakemake is described.

2.1.1 Method selection

We conducted an informal literature search for spatial domain identification tools, and chose methods

for benchmarking based on ad-hoc criteria formulated in Tab. 2.1. Broadly, the criteria cover method

relevance to the task and to the field, ease of installation and implementation in the pipeline, and the

variety of algorithmic approaches. In the following, for simplicity and brevity, “method” will always

refer to a method for spatial domain identification, unless otherwise specified.

As previously introduced in Section 1.2.3, methods range broadly in their approaches. In the

present thesis, we will focus on the main categories, which we identify as statistical modelling-based,

neural network-based, clustering-based and image processing-based methods. However, methods can

be further stratified within and across these categories. In Fig. 2.1a, this subclassification is shown as

a graphical introduction to the diversity of approaches included in our study.

The broadest category of methods, which intersects two of the three other main classification

groups, is the clustering-based approaches. We characterise methods as clustering-based when the

final step of their domain identification strategy implements conventional clustering algorithms such

as k-means, mclust, or Leiden [131, 132]. These methods use a variety of strategies to gain a data

representation to then cluster into domains. Some use neural network or statistical modelling-based

approaches, and are therefore categorised into these respective groups. Methods which are assigned to
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Figure 2.1: Aspects of methods included in the present benchmarking effort. Non-spatial

baselines are not shown. a, Methods are categorised by their approach broadly into statistical

modelling-based, neural network-based, clustering-based and image processing-based. Each of these

main categories is assigned a coloured box for visual stratification, and main categories containing

more than one method are indicated in bold. Further subclassifications within and across these cate-

gories are also indicated by coloured boxes and annotations. b, Coarse timeline of method publication.

For methods which were published as preprints before peer review and publication in a journal, the

time of preprint publication is indicated in grey and with an asterisk. c, Number of citations (ex-

tracted from Google Scholar) and number of Github stars (Status of both metrics: October 2, 2025).

Citations are stacked over all years a method has been available, and methods are sorted according to

the cumulative value. DGI, Deep Graph Infomax; VGAE, Variational Graph Auto-Encoder; HMRF,

Hidden Markov Random Field.
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Criterion Formulation

Relevance Is the method developed for spatial domain identification, or does it otherwise enable

the user to identify spatial domains?

Is the method referenced and/or benchmarked against in other method development

efforts for spatial domain identification?

Is the method applied for spatial domain identification in published research by

biologists or medical researchers?

Usability Is the method open source, and can it be accessed and installed from a public repos-

itory such as GitHub?

Can the method be run in a script-based, non-interactive manner (i.e., not exclu-

sively through a Graphical User Interface (GUI))

Is sufficient documentation provided to enable users to install and run the method?

Variety of

approaches

Does the method introduce a novelty in its approach to spatial domain identification?

Does the method claim competitive or superior performance to previous efforts in

specified scenarios?

Does the method belong to an otherwise underrepresented type of approach?

Table 2.1: Ad-hoc criteria used for method selection. Criteria cover categories of relevance,

usability, and variety of approaches.

the purely clustering-based group include UTAG, TACCO, MERINGUE, and SpaDo. UTAG creates

a neighbour graph between input coordinates based on a user-defined Euclidean distance threshold

[184]. Subsequently, it uses the adjacency matrix of this graph to aggregate features per neighbour-

hood, either by mean or sum over all neighbours. This augmented feature matrix is the input to the

downstream Leiden clustering. TACCO calculates two k-nearest neighbour (-NN) graphs of the input

spots or cells, based on spatial coordinates and gene expression [76]. It applies Leiden clustering to the

weighted sum of the two graphs, where the weight is a user-defined hyperparameter. MERINGUE

creates a -NN graph based on the gene expression [86]. It calculates a Voronoi tessellation in real space

and defines the nearness of two spots or cells via the number of borders crossed when passing from one

to the other. The nearness is used as the edge weights to the -NN graph, which is then clustered using

the Louvain algorithm. SpaDo defines neighbourhoods using a -NN graph for single-cell resolution

data and a user-specified radius threshold for grid-based spot resolution data [134]. It represents cell

or spot features by the cell type distribution within the local neighbourhood. As a preliminary step,

if cell type labels are not available for the input data, it includes automated cell type annotation and,

if necessary, spot deconvolution. The distance between spots or cells is calculated using distribution

distance measures, namely either the Jensen-Shannon divergence or the Manhattan distance [185].

Domains are identified from the distance matrix by hierarchical clustering.

BANKSY and CellCharter are also clustering-based methods, and both employ the common prin-

ciple of matrix concatenation. BANKSY starts by creating a neighbourhood graph based on real

space coordinates, using k-NN, radius-based, or Delaunay triangulation [83]. Edge weights for this

graph are generated by default using a 1/r kernel, and a neighbourhood representation is calculated

as the weighted average of the gene expression. The resulting representation, along with an azimuthal

Gabor filter representation, is concatenated with the scaled original gene expression matrix into a

neighbourhood-augmented matrix. After dimensionality reduction using Principal Component Anal-

ysis (PCA), Leiden clustering is employed to identify spatial domains. CellCharter uses a Delaunay

triangulation for single-cell resolution data, and a k-NN graph for regular grid-based data, to generate

a spatial coordinate network [135]. Features are aggregated within neighbourhoods of different sizes,

defined by adjacency steps from the original spot or cell, up to a user-defined number of steps. The

aggregation function can be designed for a specific task of interest. The resulting aggregated matri-
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ces are concatenated to the original gene expression and clustered using a Gaussian Mixture Model

(GMM).

One additional method, MNMST, utilises the matrix concatenation approach. As it incorporates

neural networks as a central architecture part, it is assigned to the neural network-based method

category. MNMST creates a spatial adjacency k-NN graph, and uses pointwise mutual information to

define the adjacency [186]. For the gene expression, it utilises the BANKSY approach to augmentation

with the local neighbourhood. An adjacency matrix is learned from the gene expression using sparse

self-representation learning. MNMST then jointly learns the shared cell features and an affinity graph.

The final learned affinity graph is clustered using the Leiden algorithm.

A further group of methods are characterised by their use of the unsupervised graph representation

learning method Deep Graph Infomax (DGI) [187]. Based on Graph Convolutional Networks (GCNs),

this approach aims to maximise the mutual information between local (patch-level) representations

and high-level graph summaries by learning to discriminate between “true” and “corrupted” node

relationships. Methods that use DGI include CCST, SCAN-IT, SpaceFlow and GraphST. CCST

creates a radius-based spatial adjacency graph of spots or cells, and uses a user-defined hyperparameter

to set the importance of spatial information for the subsequent embedding [109]. It utilises DGI

on the weighted graph to learn an encoder of four graph convolutional layers, creating corrupted

samples by permuting edges in the graph. The final embedding obtained by DGI is clustered by k-

means after dimensionality reduction by PCA. SCAN-IT utilises the alpha complex to define spatial

adjacency based on a distance threshold in the Voronoi tesselation [127]. It uses a two-layer GCN

as an encoder, trained using DGI using permuted note features as corrupted samples. Finally, a

consensus distance matrix from a collection of low-dimensional embeddings is employed to calculate

the final representation using metric multidimensional scaling (MDS). This final representation is

clustered using k-means or Louvain algorithms. SpaceFlow also uses an alpha complex approach

to generating a spatial adjacency graph, though a k-NN approach is also implemented [188]. It

utilises the DGI framework to train a two-layer GCN using node-permutation for the construction of

a corrupted graph. SpaceFlow adds a spatial regularisation term to the loss function to be optimised,

such that small distances in embedding space for far-apart spots or cells in real space are penalised.

The strength of this spatial regularisation is a hyperparameter. Finally, domains are obtained using

Leiden clustering. GraphST creates a spatial k-NN graph as an input, and creates a corrupted

graph by node feature reshuffling [115]. It utilises a GCN-based encoder-decoder structure, with an

objective function comprising the self-reconstruction loss and a DGI-inspired contrastive loss for both

the original and corrupted graphs. Finally, the reconstructed gene expression is clustered using mclust

[131].

Along with GraphST, most other neural network-based methods employ autoencoder-based frame-

works. Autoencoders learn latent factors inherent in the data through self-supervised learning, com-

paring the final output of the decoder component to the original input. The comparison is usually

accomplished by the mean squared error, if not explicitly mentioned otherwise. Two methods, STA-

GATE and ADEPT, are categorised as purely autoencoder-based, and both of these methods encom-

pass an additional graph attention layer, encoding the relative importance, or similarity, of neighbour

features [189]. STAGATE constructs a radius-based binary adjacency matrix, with the radius set

in grid-based data to detect only nearest neighbours [84]. For grid-based, low-resolution data, STA-

GATE can optionally prune the graph based on a coarse gene expression pre-clustering by the Louvain

algorithm. It then embeds the gene expression matrix, aggregating over the adjacency-defined neigh-

bourhoods using graph attention weights to achieve a spatially-aware embedding. A two-layer network

with graph attention is used as the encoder, and the decoder is given by an additional two layers. After

minimising the reconstruction loss, the embedding is clustered using mclust when domain numbers

are known, or Louvain otherwise [131]. ADEPT, after k-NN graph construction, uses a standard

graph attention autoencoder to learn a neighbourhood-aware spot or cell embedding [128]. Based on



2.1 Prerequisites and implementation 23

the resulting embedding, it performs an initial clustering, from which sets of differentially expressed

genes (DEGs) are extracted. DEGs are calculated on a one-vs-all basis by a Mann-Whitney U test of

expression rankings. For the total list of DEGs, it then creates a full, elementwise nonzero expression

matrix by imputation. This matrix is fed to the graph autoencoder, and the final output embedding

is clustered to define domains.

Further autoencoder-based methods are PAST, DeepST, SEDR, and SpatialMGCN. These meth-

ods specifically implement variational graph autoencoders (VGAEs). This autoencoder type learns

stochastic embeddings, modelling the latent space as a probability distribution and thus allowing for

inference and data generation based on the embedding. PAST uses two parallel modules in the first

layer of its encoder architecture, namely a Bayesian neural network (BNN) and an unrestrained fully

connected network (FCN) [129]. The output from these two modules is concatenated, and with a

k-NN graph of spatial locations, input to two self-attention layers. Finally, two FCNs are used for

reparametrisation into a latent Gaussian distribution and create the final embeddings. The decoder

consists of a three-layer network, encompassing two self-attention modules and an FCN layer. For

large-scale applicability, PAST includes a ripple walk sampling strategy to enable minibatch training.

Its objective function finally consists of the reconstruction loss, the Kullback-Leibler (KL) divergence

to a standard normal prior, the BNN loss and a metric learning loss. Using the BNN, PAST is

able to optionally incorporate reference gene expression data. DeepST calculates a modified gene

expression matrix, encompassing information from spatial neighbours weighted by their expression

correlation and, optionally, morphological similarity [190]. Additionally, it constructs a k-NN graph

based on spatial coordinates. Subsequently, DeepST implements a denoising autoencoder as well as

a VGAE with reconstruction loss and KL divergence. Domains are identified by Leiden clustering.

SEDR incorporates a data masking step, whereby the gene expression of randomly sampled spot

subsets is masked with learnable vectors [170]. It uses a two-layer encoder to create embeddings from

this masked input, and a GCN to embed the spatial information. The two embeddings are concate-

nated, and a one-layer graph convolutional decoder reconstructs the expression matrix, minimising

reconstruction loss. A VGAE learns a graph embedding based on the feature representation from the

previous step. The resulting embedding is again concatenated to its input, and an adjacency matrix is

reconstructed from this merged representation. The VGAE aims to minimise both the cross-entropy

loss for the learned adjacency and the KL divergence for the distribution obtained by reparametrisa-

tion from the graph embedding. Latent representations are clustered by default using mclust [131].

SpatialMGCN uses a radius-based binary adjacency criterion to create a spatial graph of spots or

cells [130]. From the expression values, it generates a k-NN feature graph, measuring gene expression

similarity by cosine distance. It then implements a multi-view GCN encoder, consisting of individual

convolution of the spatial and feature graphs separately, co-convolution of both by parameter sharing,

and finally an attention mechanism applied to the separately generated embeddings. The decoder to

reconstruct the expression matrix operates under the assumption of a zero-inflated negative binomial

(ZINB) distribution of the gene expression, using the negative log-likelihood of the ZINB distribution

as the reconstruction loss. Additionally, SpatialMGCN incorporates a spatial regularisation loss term

to minimise the embedding distance between spatial neighbour spots or cells.

The final neural network-based method is SpaGCN, the only non-clustering-based method in this

category. SpaGCN calculates a complete weighted undirected graph of spots or cells [122]. The edge

weights are calculated using a Gaussian kernel from the Euclidean distance in real space, optionally

integrating morphological feature information as a third dimension. It uses a single graph convolutional

layer to embed the expression matrix, along with the spatial graph structure. Cluster centroids are

initialised from this embedding using Louvain, and cluster assignments are refined using an iterative

strategy.

All but one of the remaining methods belong to the statistical modelling-based category. Spa-

tialPCA and GraphPCA generate spatially-aware low-dimensional embeddings by statistical means,
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analogous to PCA. These embeddings are then fed into a conventional clustering algorithm. Spa-

tialPCA follows the probabilistic implementation of PCA in solving a latent factor model [136, 191].

However, instead of assuming independently and identically distributed factors from a standard nor-

mal distribution, it uses a Gaussian kernel covariance matrix to model spatial correlation. This aims

to encourage similarity in the latent factors of spatial neighbours. Model parameters are inferred

by maximum likelihood estimation (MLE), and domains are inferred from the final latent factors

through standard clustering. GraphPCA calculates a binary spatial adjacency matrix using k-NN

[137]. It uses this adjacency to impose a spatial constraint term on the PCA objective function, with

a hyperparameter controlling the weight of adjacency. This formulation has a closed-form optimal so-

lution, resulting in low-dimensional representations of the gene expression for each spot or cell. These

representations are clustered using k-means.

The majority of modelling-based methods, namely SpiceMix, BayesSpace, BASS, PRECAST, and

SC-MEB, employ a hidden Markov random field (HMRF) mechanism. The HMRF represents a la-

tent Markovian variable distribution underlying an observable, and can incorporate prior information.

SpiceMix combines the HMRF with non-negative matrix factorisation (NMF) [192]. It models the

gene expression as a function of underlying metagene mixtures as the latent states. Gene expression is

related to the metagenes by an NMF formulation, while the spatial affinity of metagenes is captured

in a spatial correlation matrix. The weight of spatial affinities is controlled by a hyperparameter. The

parameters of the HMRF model are inferred by MLE, optimised by coordinate ascent. Finally, the

inferred metagenes are clustered conventionally into spatial domains. BayesSpace is a fully Bayesian

method, modelling a low-dimensional representation of the gene expression based on latent cluster

affiliations [119]. A Potts model prior encourages similar label assignments to neighbouring spots.

Adjacency is defined based on integer coordinates and thus defined only for grid-based data, which

BayesSpace was originally designed for. Model parameters and latent variables are inferred using a

Markov chain Monte Carlo (MCMC) approach, combining Gibbs sampling for the parameters and a

Metropolis-Hastings algorithm to update cluster assignments. BASS employs a hierarchical Bayesian

framework [82]. It models the relationship between gene expression and underlying spatial domain

labels through the intermediate step of cell type labels. Additionally, a Potts model is used to encour-

age label similarity in neighbouring cells, with neighbourhoods defined through k-NN. A combination

of Gibbs sampling and a Metropolis-Hastings algorithm is used for parameter inference. PRECAST

builds a hierarchical model, connecting gene expression to domain labels through a latent embedding

layer [164]. The latent embeddings are modelled using a probabilistic PCA approach, incorporating

spatial dependence through a conditional autoregressive approach. Domain labels are then modelled

using a GMM, and incorporate a Potts prior within a HMRF formulation. Information on the pa-

rameter inference is not available. SC-MEB models a dimensionally reduced spot representation as

resulting from HMRF latent domain labels, under a spatial smoothness prior [116]. Neighbours are

identified using a proximity threshold. The weight assigned to spatial information is adaptively se-

lected via a grid search, while parameters are inferred by an iterative expectation-maximisation (EM)

scheme incorporating a pseudo-likelihood maximisation step.

Finally, the last category, which only contains Vesalius, utilises an image processing approach.

Vesalius starts out by embedding the transcriptome of each spot or cell into an RGB colour space

by reducing the dimensionality using PCA, followed by the application of Uniform Manifold Approx-

imation and Projection (UMAP) [98, 140]. Alternatively, it can directly use three selected Principal

Components (PCs) for further analysis. From the spot or cell coordinates, it creates a tiling using

Voronoi tessellation and converts each tile into a set of pixels via rasterisation. The pixel colours are

determined by the colour embedding. Subsequently, image processing is applied using specialised R

packages. The pixel array is smoothed by blurring, and colour values are clustered using k-means

clustering. These processes may be repeated for different values of hyperparameters and types of

blurs. The final colour clusters are then subdivided into spatial domains based on a user-defined
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spatial distance threshold.

Fig. 2.1a shows one more method within the clustering-based category, which we call “smoothing”.

This refers to an optional add-on to non-spatial clustering approaches, implemented as a näıvely

spatially aware baseline for the benchmark. It consists of a simple spatial refinement based on local

neighbourhood majority voting. Specifically, for all spots or cells in the sample, we define the local

spot neighbourhood using k-NN and assign a new spot label as the mode of local neighbourhood labels

as assigned by a non-spatial baseline. This results in the removal of visual noise from the domains,

as individual spots or cells with locally unique labels get smoothed into the neighbourhood majority.

Purely transcriptome-based Leiden clustering, as implemented in the scanpy and Seurat packages,

served as a simple baseline for method performance in the entire benchmark [171, 193].

Besides considering the algorithmic variety of method approaches, we are also including methods

from a wide temporal range between 2020 and 2024, as indicated by Fig. 2.1b. Methods published after

the beginning of 2024 could not be included due to time constraints. As indicated in Fig. 2.1c, we are

benchmarking both a number of highly cited methods, as well as more niche approaches. This ensures

that our benchmark captures the state of the art, while introducing competitive novel and lesser-known

approaches to the broader community. Interestingly, the four most popular methods by number of

citations (SpaGCN, BayesSpace, STAGATE, and GraphST) encompass between themselves almost

55% of total citations over all methods. However, recently published methods such as BANKSY and

CellCharter show a high proportion of citations in 2025 (status October 2, 2025) compared to their

total popularity, possibly indicating an oncoming levelling of the playing field between established

methods and novel, optimised approaches. This interpretation is further supported by evaluating the

number of “stars” in the methods’ respective repositories on GitHub (see Fig. 2.1c). The “stars”

metric is utilised here as a proxy for method popularity in the research community, and may reflect

method usage in ongoing or future work. It is interesting to consider methods for which the number

of stars and the number of citations are discordant. Among others, these may be newly published

methods, such as the aforementioned BANKSY and CellCharter, but also GraphPCA, MNMST, or

TACCO, which show a disproportionate number of stars compared to total citations. On the other

hand, methods like BayesSpace, STAGATE, BASS, PRECAST, or SC-MEB are less often starred

than they are cited. This could reflect the GitHub affinity of the respective user bases, as, except for

STAGATE, these methods are implemented in the R programming language, rather than in Python.

2.1.2 Dataset selection

For the thorough evaluation of methods, their performance should be assessed in a variety of realistic

application scenarios. Particularly, for spatial transcriptomics, we are interested in the method perfor-

mance across technologies, in order to dissect their broad or differential applicability (see Sec. 1.1.2).

Therefore, we aim to include a number of data samples created using different technologies. Many

datasets have been made publicly available in the last years, and efforts have been made to categorise

and archive those datasets [194–196]. For example, the spatial transcriptomics database (STOmicsDB)

lists 361 datasets from 17 species and 128 tissues, while the spatial transcriptomics analysis resource

(SOAR) lists 3461 samples from 13 species, 42 tissue types, and 19 technologies (as of September 27,

2025). While many of these datasets are published alongside a cell type level annotation, they by and

large do not contain spatial domain annotations. Annotating domains requires expert knowledge and

is not yet a standardised processing step in most pipelines. However, an expert annotation of spatial

domains, usable as a ground truth, is necessary for accuracy-based method evaluation, as touched

upon in Sec. 1.2. This turns out to be the bottleneck for the inclusion of many datasets. We are only

able to include datasets annotated with domain labels for each individual spot or cell, so that spot or

cell-level method accuracy can be determined.

Upon searching the literature on spatial domain identification, we settle on the inclusion of eight
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publicly available datasets for benchmarking as shown in Tab. 2.2. Most of these datasets were

published alongside expert domain annotations, while in two cases, domain labels for each spot are

sourced from a different publication. We based our dataset selection on the availability of raw count

data, binned to single cells in the case of subcellular resolution, and ground truth domain annotation.

The chosen datasets exhibit a wide range of resolutions, from molecular up to spot diameters of

100 µm. Molecular resolution data, binned into single cells for our purposes, is attained by imaging-

based approaches like osmFISH, MERFISH and STARmap. On the other hand, sequencing-based

techniques profile the gene expression of spots, not necessarily bound by cell boundaries. The spot

diameter of the original Spatial Transcriptomics (ST) technique is reduced by half to 55 µm in Visium,

and even further by Slide-seq (see Sec. 1.1.2). Besides the resolution, the technique employed for

dataset generation also impacts the number of profiled genes. In the imaging-based technologies, the

gene panel size ranges from 33 (osmFISH) to over 1000 genes (STARmap). While the sequencing-

based technologies Slide-seq, Visium, and ST do not profile a panel of genes but instead unbiasedly

sequence the entire transcriptome, the resulting count matrix size varies between 15k and over 30k

genes. This is owed to different profiling sensitivity.

Notably, most datasets we were able to include profile tissue sections from the mouse brain. The

mouse is a widely employed model organism for the study of mammals, making it unsurprising to see

it broadly represented in tissue studies. The brain, on the other hand, is presumably overrepresented

in this list of datasets due to its well-studied layer structure, which can be annotated using either

accompanying histological images or the expression of well-known marker genes.

2.1.3 Metric selection

After selecting methods and datasets for inclusion in the benchmarking process, we need to decide on

criteria for grading method performance. In this section, we will focus on primary evaluation criteria

concerning the performance on the spatial domain identification task. Secondary criteria, such as

runtime and memory usage, scalability, or method usability, are discussed in Chapter 4 of this thesis.

The performance of computational methods can be evaluated with regard to a diverse set of criteria.

These criteria are commonly known as metrics. Contrary to the well-defined mathematical concept

of a metric as a distance measure in a metric space, the concept of a metric here refers more broadly

to a performance indicator. Generally, metrics can be categorised as “supervised” (that is, method

output is compared to a ground truth) or “unsupervised” (considering inherent qualities of the method

output). In the context of spatial domain identification, the most common metric types concern the

accuracy of label assignments (supervised) and the coherence, or visual smoothness, of those labels

(unsupervised).

An overview of supervised and unsupervised metrics considered in this work is shown in Tab. 2.3.

For the supervised, accuracy-based evaluation, the Adjusted Rand Index (ARI) is by far the most

prevalent metric, as already shown in Fig. 1.7b. Like all supervised metrics, it compares a putative

clustering result to a given ground truth to assess the goodness of clustering. Other popular supervised

metrics include the Normalised and the Adjusted Mutual Information (NMI and AMI), as well as the

Fowlkes-Mallows (FM) index. For basic evaluation, the clustering accuracy (ACC) can be used. On

the other hand, there also exist unsupervised metrics, which do not take a ground truth as input and

instead compute some inherent criterion for goodness of clustering. Generally, the Silhouette score is

a popular evaluation metric in this vein. However, it is not suited to the evaluation of spatial domain

assignments in real space due to the approximately uniform distribution of spatial coordinates. It

may be utilised for domain evaluation in gene expression space, when gene expression is dimensionally

reduced to avoid the curse of dimensionality. For the unsupervised evaluation of domain smoothness,

the Percentage of Abnormal Spots (PAS) can be used, adapted from the field of image segmentation.
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Figure 2.2: High-level schematic of the benchmarking pipeline. The benchmarking pipeline

shown is implemented using Snakemake [210]. Placeholders for dataset, sample and method names

are indicated using curly braces. Input and output files in comma-separated values (CSV) format are

shown using solid-colour rectangles, while instances of computing are indicated using a grey border.

Red rectangles refer to input files needed by the pipeline, grey rectangles correspond to technical

output files provided by Snakemake, and green rectangles refer to individual method outputs and

aggregated analysis results. Not shown are the files necessary for the execution of Snakemake rules,

such as method scripts and environment files.

2.1.4 Benchmarking pipeline

To create a reproducible and automatised pipeline for benchmarking, we use Snakemake for workflow

management [210]. This enables us to define execution rules for each separate method, while alleviating

the need to manually run all methods on all included data samples. If the pipeline is restarted,

Snakemake automatically recognises which output files already exist, and excludes the corresponding

method/data pairs from the rerun. Since every method has specific and unique software environments,

we utilise the package manager conda to define method-associated execution environments. Snakemake

integrates directly with conda through named YAML files, specifying environment dependencies and

packages to be installed.

The final workflow, described in detail in the following paragraphs, consists of Snakemake execution

rules, method environment files and scripts, as well as additional rules and scripts to calculate metric

scores based on method outputs. A schematic view of the entire pipeline is shown in Fig. 2.2.

For each sample, the pipeline expects a set of files in the comma-separated values (CSV) format.

The files necessary for method execution are coords.csv, containing a set of (x, y) coordinates for

each profiled spot or cell, and counts.csv, with the corresponding molecular measurements in the

form of a count matrix. Counts and coordinates are matched up by index, so it is paramount to ensure

equal ordering of spots or cells between the two files. Further, the labels.csv file is required for the

calculation of supervised metrics on the corresponding sample. This file should contain the ground

truth domain annotations in the form of one column of label assignments for each spot or cell. Again,

the ordering must match the other files exactly. If the labels file happens to be missing, unsupervised

metrics are still calculated, but supervised metrics measuring method accuracy cannot be evaluated.

For each method, Snakemake requires instructions on the location of both environment files and
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the script, and the exact command to execute the method correctly. Environment files are primarily

given to conda in the YAML format1 However, certain packages, notably for the R language, are not

available through conda. In these cases, Snakemake accepts a bash script, which it will execute after

the installation of all available conda-based packages. Through this script, packages or methods can

be installed from the pip package manager, or, using an additional Rscript file called from the bash

script, from Bioconductor.

The outputs of the Snakemake-based pipeline are defined within each rule. In our case, they

consist primarily of clustering.csv files containing label assignments, for each spot or cell. One

such file is produced per method and per sample. Additionally, the scores attained by each method

on each sample, across the calculated metrics, are summarised in one scores.csv file. Finally, each

method/sample combination produces a file called benchmark.csv, in which Snakemake automatically

compiles information about the runtime and memory usage of the corresponding run.

Implementing this comprehensive pipeline provides us with a resource enabling us to combine and

cross-evaluate independent methods. Besides benchmarking each method, we therefore investigate two

analysis approaches that go beyond individual method output. The results of a chimerisation analysis

of neural network-based methods will be published in the article presenting our benchmarking work,

and will not be discussed here in more detail. Further, we implement a consensus approach across

methods and leverage the ground truth to evaluate spot-wise method agreement. This enables us to

distinguish tissue areas that are easily detected as regions by most methods versus other areas that

provide a challenge for the state of the art, guiding future method development.

2.2 Evaluation of method accuracy

This section shows the results of evaluating method performance on the previously introduced datasets,

focusing on supervised metrics. We first compare the supervised metrics ARI, FM, AMI, NMI, and

accuracy (ACC), describing example cases where methods’ scores between these metrics do not co-

incide. Then, we expand on the varying method performance on different datasets, followed by the

description of a consensus evaluation approach.

2.2.1 Comparison of supervised metrics

In the evaluation pipeline, we implemented the supervised metrics ARI, FM, AMI, NMI, and ACC.

These metrics compare a putative clustering output to the ground truth, using different underlying

principles as described in Tab. 2.3. ARI is by far the most prevalent metric in the field (see Fig. 1.7b),

and utilising it as the main accuracy metric would therefore enhance the comparability of our results.

In order to solidify the validity of this choice, in this section, we compare the behaviour of ARI and

the other metrics.

Over all datasets and methods, the supervised metrics FM, AMI, NMI, and ACC show qualitatively

the same behaviour as the ARI (Fig. 2.3a). In order to exclude the possibility of dataset-specific or

method-specific biases, we evaluate the Pearson correlations per dataset and per method (Fig. 2.3b,c).

For all datasets and nearly all methods, the correlations by far exceed 0.8, indicating that it is justified

to focus on evaluation by ARI alone. Furthermore, AMI and NMI are correlated with ARI (Pearson

> 0.86) across methods.

Both ARI and AMI are adjusted metrics, meaning that they incorporate corrections to the under-

lying scores. Specifically, they account for chance effects by discounting the expected (non-adjusted)

score values for a random clustering. Similarly, NMI is normalised to 0 for no mutual information and

1YAML, according to the official website (yaml.org/spec/), stood originally (until Working Draft 10 December 2001)

for Yet Another Markup Language, before being changed (from Working Draft 07 April 2002) to YAML Ain’t Markup

Language. Quite the turnaround.

https://yaml.org/spec/
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1 for perfect coincidence. On the other hand, the FM and ACC metrics are not adjusted for chance.

This leads them to disagree with ARI in select cases, examples of which are shown in Fig. 2.3d. Dis-

parities between ARI and the adjusted metrics AMI and NMI are rarer and mostly occur in corner

cases of small or many domains. The example in Fig. 2.3d demonstrates the advantageous evaluation

of pure clusters by the mutual information-based metrics AMI and NMI, as described in Tab. 2.3. In

all three examples, ARI is qualitatively better suited to quantifying method performance.

Based on these evaluations, in the following and throughout this thesis, we focus on ARI as the

main supervised metric for sample-wide accuracy evaluation.

2.2.2 Accuracy across datasets

For the evaluation of general method accuracy, we utilise the mean ARI score of a method m on a

dataset d, which we call ARId,m. We calculate a method ranking based on aggregating performances

across datasets. In order to avoid datasets with highly variable performance between methods from

dominating the ranking, scores are standardised per dataset. Standardisation, alternatively known as

z-score transformation or simply normalisation, refers to a scaling procedure intended to increase the

comparability between groups. Specifically, the original ARId,m is scaled to the standardised ARIsd,m
as

standardised ARI = ARIsd,m =
ARId,m − µd

σd
, (2.1)

where µd and σd are the mean and standard deviation of ARId,m on dataset d. The standardised ARIs

are subsequently aggregated by mean over all datasets into an overall performance measure for each

method. Methods are ranked according to this measure, from best to worst overall performance. This

ranking is employed across Figs. 2.4a,b,c.

The standardisation step ensures that datasets on which methods show highly variable perfomance

are weighted similarly to less variable datasets. This is necessary primarily to account for method

performance on the dataset of the mouse olfactory bulb, sequenced using ST by Stahl et al. (see

Fig. 2.4a). Compared to the other datasets, methods behave in a highly variable and unique way

on ST–Stahl, with the best-performing methods being different to any other dataset. Notably, the

non-spatial baseline methods scanpy and Seurat here outperform all but one method. The only spatial

method performing better than the baselines, SpiceMix, does so by a marginal amount, as shown in

Fig. 2.4b.

In the case of the ST–Stahl dataset, spatial information appears not only not to aid the domain

recognition, but might be actively hindering it. Considering the UMAP embedding of transcriptional

profiles from one ST–Stahl sample shown in Fig. 2.4d, we see that the ground truth label assignments

coincide visually very well with transcriptionally defined clusters. This is confirmed quantitatively by

the average Silhouette score of the ST–Stahl ground truth labels exceeding 0.6, in contrast to values

of under 0.2 on the other datasets (Fig. 2.4f). On the other hand, in the spatial plot of the same

ST–Stahl sample (Fig. 2.4e), the domains are spatially contiguous but very thin, mostly only being one

spot wide. Combined, this indicates that the incorporation of spatial information in the non-baseline

methods might lead to an overemphasis on contiguous cluster-building in real space, smoothing over

relevant transcriptional differences. The influence of spatial smoothing will be considered in more

detail in later sections.

In all other datasets, most spatially-informed methods outperform the baselines (see Fig. 2.4b,c).

The extent of improvement that is achieved varies substantially across the datasets. In the two

Visium datasets, the maximal ARI improvements are 0.1 and 0.2 (for Fu and Maynard, respectively,

corresponding to factor improvements of of 1.2 and 1.5). In contrast, for the MERFISH datasets,

BASS improved upon the best baseline by 0.5, an increase by a factor of 4.5, in both datasets. Possible

reasons for this strong contrast between Visium and MERFISH are discussed in the following sections.

SpaDo reached the biggest improvements on the osmFISH and STARmap samples (ARI increases of
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Figure 2.3: Evaluation of FM, AMI, NMI, and ACC versus ARI. a, Values across all datasets,

samples and methods qualitatively agree with ARI values. b, Stratified by dataset and method,

Pearson correlation between the metrics and ARI consistently exceeds 0.8, with few exceptions. c,

Example results for methods and datasets where some metrics do not agree with ARI. Top row, ground

truth label assignments for three samples from the ST–Stahl, MERFISH–Zhang, and Visium–Fu

datasets. Bottom row, example label assignments for those same samples from MNMST, SpatialPCA,

and ADEPT, with the corresponding values of ARI and one other metric. The left column illustrates

the advantage of ARI over FM in accounting for chance effects in an example with very small domains.

In the middle column, the layered structure found by SpatialPCA upon closer inspection does not

correspond well to the ground truth. The right column illustrates the tendency of AMI to favour

pure clusters. For example, the bottom left (neon turquoise) and the top right (purple) ground truth

domains, marked with red borders, are split by ADEPT into multiple constituent clusters.
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Figure 2.4: Method accuracy stratified by dataset. a-c, Accuracy results per method and dataset,

aggregated by mean over samples. Methods are sorted by rank according to the mean standardised

ARI across datasets, and the best-performing method on each dataset is annotated by value. Datasets

are sorted according to their resolution. White squares indicate missing values, i.e. a method failing

to give spatial domain assignments. a, Unscaled ARIs. b, Difference in ARI between each method and

the best-performing non-spatial baseline (scanpy or Seurat). The colour scale is truncated at -0.4 to

emphasise relevant performance differences, and a less-than < indicates that the absolute difference

in ARI of a method to the baseline exceeds 0.4. c, Factor of improvement of ARIs of all methods

on all datasets over the maximum performance of non-spatial baselines. d, 2D UMAP embedding of

spots in ST–Stahl slide 1. e, Spatial 2D-plot of the spots in ST–Stahl slide 1. f, Mean Silhouette

scores of ground truth label assignments based on 2D UMAP embeddings. The silhouette score is

an unsupervised goodness-of-clustering measure (see Tab. 2.3). The best attainable value is 1; values

near 0 indicate overlapping clusters.
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0.3 and 0.4, respectively). These improvements are less impressive as factors of the best baseline (1.4

and 2.6, respectively), as baseline performance on these samples is not as low as on MERFISH (see

e.g. scanpy in Fig. 2.4a).

Notably, the biggest improvement by factor, 4.8, was reached by BASS on the Slide-seq dataset

(see Fig. 2.4c). This is an interesting case, as the final ARI attained by the best method BASS is

at 0.4 still quite low, but presents a difference of 0.3 to the best baseline. The Slide-seq technology

is known to have a comparatively low capture efficiency2 [40]. Accordingly, the Slide-seq–Langlieb

dataset has a counts sparsity of up to 99%.

As can be expected, the performance of the baseline methods scales with the mean Silhouette

score in the transcriptional embedding space (compare Fig. 2.4a, f). Where the Silhouette score is

around zero or even negative, as in the case of the high-resolution datasets, non-spatial baselines do

not achieve high accuracies. In these cases, the inclusion of spatial coordinates to inform domain

identification aids some specialised methods to improve their performance upon the baselines.

2.2.3 Consensus across methods

Combining individual clusterings of the same data into a final consensus, or ensemble, clustering has

been shown to improve the robustness and accuracy of the final clustering [126, 206, 211, 212]. We

therefore undertake a consensus evaluation across individual methods. To compute the consensus

annotation, we take a näıve approach of simply considering the most common label assigned to each

spot. Concretely, we compute the mode of labels for each spot or cell in a given sample.

In taking the mode, this approach depends on a coherent labelling of domains across methods.

That is, domain A as assigned by method X must correspond, as closely as possible, to domain A as

assigned by method Y, for their consensus domain A to remain consistent. However, as the methods do

not have any information about the ground truth annotations, they each assign independent domain

names with no clear correspondence between them. In our case, as our samples all contain ground

truth label assignments, we are able to utilise this ground truth annotation to harmonise method

outputs (Fig. 2.5a). This is commonly known within combinatorics as the assignment problem, and

can be formulated within graph theory as a maximum weight bipartite matching problem (Fig. 2.5b).

Specifically, the domain labels present in the ground truth and in a given clustering output are con-

sidered as nodes. Edges between a ground truth label i and a putative label j are weighted according

to the number of spots belonging to both in the respective clusterings, creating a cost matrix C with

Cij =
∑

⟨t,p⟩∈S

δtiδpj , (2.2)

where S is the set of spots or cells in the clustering, and t and p are the true and putative clustering

labels of each spot or cell. The problem then is to find a boolean matching matrix X of ground truth

labels to putative labels which maximises the total cost. The optimal matching is found by solving

argmaxX

∑
i

∑
j

CijXij . (2.3)

In our implementation, we utilise the linear sum assignment solver by the scipy package [213]. This

solver is capable of solving the generalised case in which the number of labels in the ground truth

and putative clusterings is different, that is, both C and X are rectangular. While this harmonisation

of labels depends on the existence of a ground truth, this could be circumvented by calculating

the correspondence of method outputs independently. Also, nota bene, using this simple consensus

approach, the resulting domain annotation may not contain all domains present in the ground truth.

2While Slide-seqV2 has been shown to compare to Visium in capture efficiency, the original Slide-seq technique

captured as little as 10% of transcripts compared to Slide-seqV2 [40].



36 2. Benchmarking spatial domain identification methods on real datasets

Name Optimised for: Included methods

all not optimised all methods

best overall highest performance BASS, SpaDo, GraphPCA, SCAN-IT

merfish MERFISH performance BANKSY, SpaceFlow, BASS, CCST, SCAN-IT

visium Visium performance PAST, GraphST, SpatialPCA, MNMST, GraphPCA

Table 2.4: Groups of methods investigated using consensus approach. Besides the unbiased

consensus over all method outputs, we evaluate method groups selected for the overall highest perfor-

mance and technology-specific performances.

We evaluate the consensus across all methods, without filtering for individual performance. Ad-

ditionally, we select groups of five methods each that excel in the overall ranking, and on MER-

FISH/Visium data (see Tab. 2.4) and use those to compute the consensus. Astonishingly, as seen

in Fig. 2.5, all resulting clusterings outperform all but the top-ranking individual methods on most

datasets (Fig. 2.5c). Notably, the selective consensus approaches show better performances than the

overall consensus in certain datasets (Fig. 2.5d). Consensus over the method group selected for MER-

FISH performance outperforms both the consensus over the overall best methods (consensus-best) and

the best individual method on the MERFISH–Zhang dataset, while consensus-best narrowly improves

upon the others on MERFISH–Moffitt. Interestingly, the consensus evaluation over all individual

methods is unique in the magnitude of its improvement on both Visium datasets (mean ARI increase

of 0.25 compared to the best non-spatial baseline, and 0.12 compared to the best individual method).

Even taking the consensus over methods specifically selected for their high Visium performance (see

Tab. 2.4) does not result in a comparable improvement (mean ARI increase of 0.18 over the best

non-spatial baseline). On the Visium dataset, consensus-best performs similarly to the consensus

over an especially selected method group. Lastly, on ST–Stahl, the aggregation over all methods,

uniquely among the consensus approaches, recovers the high performance of the best baseline and

best individual method.

Overall, the consensus over all methods matches or outperforms individual methods on all but

selected datasets. Except for the MERFISH–Moffitt and STARmap–Wang datasets, this unbiased

consensus exhibits highly competitive performance. While the performance on individual datasets can

be improved by targeted consensus approaches over method subsets, the unbiased consensus approach

is a stable and competitive alternative.

2.3 Visual smoothness effect

From the method performances observed on ST–Stahl, we hypothesised that an exaggerated reliance

on visual smoothness and coherence may lead methods to neglect relevant transcriptional differences

between clusters. This is contrasted to the performance of our näıvely spatially aware baselines

Seurat-smooth and scanpy-smooth, which rank higher than their non-smoothed counterparts in overall

performance (by 6 and 3 ranks, respectively, see Fig. 2.4). In this section, therefore, we investigate

the interplay between the spatial smoothness of label assignments and method accuracy.

2.3.1 Quantitative evaluation of visual smoothness

For a quantitative evaluation of the visual smoothness of a cluster assignment, we use the Percentage of

Abnormal Spots (PAS), as shown in Tab. 2.3. For our purposes, a spot or cell is considered “abnormal”

if it is assigned a different label than over half of its spatial neighbours. We assign neighbours based

on a 10-nearest-neighbour scheme.

The ground truth PAS of the MERFISH, STARmap and Slide-seq datasets exceeds that of Visium–
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(bottom) to result in a final consensus labelling. b, Harmonisation of method output labels with

respect to ground truth domain annotations by maximum weight bipartite matching. c, Consensus

approaches outperform individual methods on average, except for baselines on ST–Stahl. Performance

is shown per method as the mean over samples per dataset. d, Performance of consensus-all is com-

petitive on all datasets, and improves over other approaches on Visium. Consensus approaches are

compared to the best spatial and the best baseline method specific to each dataset, the performance

is shown as boxplots over samples in each dataset.
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Maynard (see Fig. 2.6c). While Visium–Fu has the highest ground truth PAS of all datasets except

ST–Stahl3, this might also be an effect of Visium–Fu having a comparatively high number of ground

truth domains (20, comparing to 4–10 for the other datasets). For evaluating the ground truth, PAS

mostly is a measure of border smoothness, as having a higher number of border spots (resulting

from having more domains) will lead to an increase in PAS. Notably, Visium–Fu also exhibits some

non-contiguous and fragmented domains in the ground truth annotation (see Appendix B), further

increasing its PAS. Nevertheless, for all non-ST datasets, the ground truth PAS is under 10%.

2.3.2 Smoothness and accuracy across technologies

Specifically, we focus on the comparison of the datasets MERFISH–Zhang and Visium–Maynard.

MERFISH and Visium represent opposite ends of the spectra of both spatial resolution (single-

molecule, segmented into single cells, versus spots of 55 µm) and number of profiled genes (gene

panel size of 254 versus full-transcriptome). Additionally, both contain over 10 samples, making a sta-

tistical analysis more viable, and exhibit comparable laminar tissue structure originating from brain

tissue (of mouse or human).

Most methods (23 out of 30) differ significantly in performance between these two datasets (as

measured by the Mann-Whitney U test, significance p < 0.05, see Fig. 2.6a). The differences seem to

primarily be driven by strong intra-dataset performance differences on MERFISH–Zhang. Evaluating

the average spatial smoothness per dataset and method, a trend becomes apparent whereby method

performance on MERFISH–Zhang appears to correlate negatively with PAS. Concretely, all methods

that perform significantly better on MERFISH than on Visium, except the generally less accurate

UTAG and MERINGUE, exhibit mean PAS ≤ 13%. For methods which perform significantly better

on Visium than on MERFISH, on the other hand, PAS values, especially on the MERFISH data, are

higher. Interestingly, this set of methods also shows non-negligible PAS on Visium.

Stratifying the datasets by resolution4 confirms the hypothesis of a strong negative ARI-PAS

correlation on all high-resolution samples (median Spearman correlation -0.85, see Fig. 2.6b). For

the low-resolution Visium samples, the anticorrelation is much weaker (median Spearman correlation

-0.31). Method performance on high-resolution datasets therefore seems to benefit from enforcing

high visual smoothness, while this does not aid performance as much in the lower-resolution Visium

data. It is not the case that the ground truth PAS on Visium data is generally higher, as seen in the

previous subsection.

This leads naturally to the question of whether a simple smoothing step improves method perfor-

mance to a larger extent on MERFISH data than on Visium. We evaluate this question by considering

the difference in performance between the spatially-aware and non-spatially-aware baselines. Indeed,

the improvement in ARI attained by a simple smoothing over the non-spatial baseline output is signif-

icantly larger on MERFISH–Zhang than on Visium–Maynard (average improvement of 0.071 vs 0.057,

see Fig. 2.6d). As expected, the PAS decreases strongly by applying the smoothing. The decrease

shows highly significant differences between the two datasets: On MERFISH–Moffitt, where the non-

smoothed baselines have a mean PAS of 51%, the smoothing reduces the visual noise dramatically,

to a mean PAS of 20% for a total reduction of 31%. On the other hand, on Visium–Maynard, the

difference is less pronounced, going from 36% to 12% for a total of 24%.

The average PAS across methods is around 20% for the high-resolution datasets, contrasted with

under 10% on Visium–Maynard (see Fig. 2.6c). Interestingly, even methods with very high PAS on

MERFISH–Zhang (as shown in Fig. 2.6a) exhibit lower PAS scores on Visium. This is the case for all

methods except UTAG. A fundamental technological difference which might account for this disparity

3The extraordinarily high PAS values of ST–Stahl are a consequence of its thin domains as shown in Fig. 2.4e.
4Visium datasets are categorised as low-resolution, Slide-seq, STARmap and the FISH-based datasets as high-

resolution. ST–Stahl is not considered in this evaluation due to its unique behaviour.
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Figure 2.6: Relationship between accuracy and spatial smoothness. a, ARI scores of all

methods on two datasets generated by MERFISH or Visium technologies. Methods are ordered by

the difference in mean ARI between the two technologies. Statistical significance was assessed using

two-sided Mann-Whitney U tests. Corresponding PAS values for each method on the same datasets

are shown in the top panel. b, Spearman correlation of ARI and PAS over all methods on data

stratified broadly by resolution (Visium datasets are designated low resolution, all other technologies

high resolution. ST–Stahl is excluded from this analysis). c, Median PAS of method outputs is

consistently higher than the median ground truth PAS, except for ST–Stahl. PAS of method outputs

is lower for lower-resolution Visium datasets, while no such effect in the ground truth PAS is apparent.

d, ARI and PAS of the baselines with and without additional smoothing step, on MERFISH–Zhang

and Visium–Maynard.
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is the resolution of the respective technologies. We hypothesise that in Visium data, a kind of inherent

smoothing is taking place in the gene expression space. Through the measurement of multiple cells in

a spot, large transcriptional differences between adjacent spots, which might be reflected in method

outputs as different label assignments, will not be registered, thus leading the methods to a lower

PAS.

2.4 Domain-specific phenomena

When considering the accuracy attained over an entire tissue slice, method performance can be ad-

equately quantified by ARI or similar metrics. However, ARI does not recognise domain-specific

aspects of the results, such as some domains being more easily identified than others. It is particularly

interesting for future method development to be able to distinguish domains which are challenging to

identify.

To gain a fine-grained view of “hardness of detection”, we evaluate the cross-method agreement

with the ground truth. That is, for each spot or cell, the number of methods that “agree” with the

ground truth annotation is tallied up. The resulting heatmap of the spots or cells in the sample

indicates “conflicting” tissue areas, or parts of domains that few methods annotate correctly. This

approach explicitly depends on the presence of a ground truth annotation, where the harmonisation

of labels is implemented in the same way as for the consensus evaluation.

We apply this method of consensus agreement on the Visium–Maynard dataset of the human

dorsolateral prefrontal cortex [114]. Aggregating over the proportion of labels correctly identified per

domain and over all samples, we find that the white matter (WM) and L1 domains are consistently

recognised throughout (Fig. 2.7a). However, we also find that the L4 domain evades detection. This

is confirmed by looking at the example slice 151675 shown in Fig. 2.7b, showing very low method

agreement with the ground truth across the entire L4 domain. The observations about WM and

L1 are also confirmed visually, with the caveat that at the borders, especially between WM and its

neighbouring layer L6, some uncertainty persists.

Applied to MERFISH–Moffitt (see Fig. 2.7b), the domain-level agreement is particularly low for the

paraventricular hypothalamic nucleus (PVH) and periventricular hypothalamic nucleus (PV), and to a

lesser degree, the medial preoptic area (MPA). This observation is confounded, again, by looking at the

example plots (Fig. 2.7b’). Additionally, we can identify hard-to-distinguish border regions around the

intersection of the MPA, PV and the otherwise better-distinguished medial preoptic nucleus (MPN).

As a further application, we consider two slices of the MERFISH–Zhang dataset (shown in Fig. 2.7c’).

In the overview barplot across all 33 samples of the dataset (Fig. 2.7c), most domains show relatively

consistent distinction levels of around 40–70%. However, the white matter layer (WM) exhibits a

larger spread than other layers, which is illustrated by the two example slides selected: In slice 131,

only 43 spots clustered together along the sample edge are annotated as WM, whereas in slice 180,

the WM domain with 734 spots occupies a sizable area in the same region. In slice 180, the large

WM domain shows the same pattern as exhibited in the Visium–Maynard dataset and gets recognised

easily by the majority of methods. In contrast, for the very small WM domain of slice 131, method

agreement with the ground truth is approaching zero. This is an indication that domain size, besides

transcriptional distinctness, may have a profound effect on detection.

An interesting phenomenon occurs in sample 151671 of the Visium–Maynard dataset. By evalu-

ation of the method agreement, we are able to identify a highly persistent and coherent subdomain

appearing in L3 (see Fig. 2.7d). Due to time constraints, we were not able to evaluate the biological

implications of this subdomain thoroughly. However, the UMAP of L3 spots shown in Fig. 2.7d’

indicates that there is an expression-level devide between high-agreement and low-agreement spots.
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Figure 2.7: Domain-specific phenomena observed in real datasets. Selected results are shown

for the datasets Visium–Maynard, MERFISH–Moffitt and MERFISH–Zhang. a, b, c, Method agree-

ment with the ground truth across all slices of the three datasets, aggregated per domain by mean. a’,

b’, c’, d, Samples from each dataset shown with spot-level method agreement and the corresponding

ground truth annotation. d’, UMAP representation of spots in the L3 layer of the Visium–Maynard

sample 151671, coloured by spot-level agreement.
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2.5 Stability with respect to data perturbations

To further evaluate the methods, we test their stability with respect to data perturbations. After

establishing a baseline of stochastic effects affecting domain identification, we test the robustness of

all methods to the loss of local spatial coherence. We evaluate the stability of methods on the Visium–

Maynard and MERFISH–Zhang datasets. These two datasets were chosen as they both contain

multiple samples, increasing statistical power, and show a similar laminar domain structure.

2.5.1 Stochastic effects

To establish a baseline measure of within-method variance, methods are run multiple times on the same

sample. Since many methods utilise randomness in their implementation, e.g. for initialisation of the

clustering or of model parameters, the outputs are often not deterministic [82, 122, 164]. However, it

is common practice to fix an internal seed, that is, fix the state underlying random number generation,

in order to ensure reproducibility of results. Some methods set the seed internally, so it is not possible

to evaluate their stability by simply changing the seed in our implementation [84]. Other methods do

not employ randomness in their approach [137].

As a way around this limitation, we devise a strategy for seed-independent evaluation of stochastic

method effects. Namely, instead of changing the internal state of method implementations, we change

the internal state of the input by reordering the rows of both the count matrix and the tissue locations.

We test the effect of this perturbation against changing seeds for four methods containing accessible

seeds, and demonstrate that there is no significant change in the distribution of ARI scores (Fig. 2.8a).

For the analysis of pure stochasticity, the inter-sample variability needs to be taken into account.

In order to correct for this, ARI scores are scaled linearly per sample such that all sample medians

coincide with the dataset median. The results show a wide range of method stability (Fig. 2.8b). CCST

stands out for its minimal variability on both datasets, with a mean standard deviation s.d. < 0.003.

On the other extreme, SpiceMix is particularly unstable, with s.d. > 0.087 in the mean across datasets.

All other methods are somewhere in between, with notably less variation in standard deviation on

the MERFISH dataset. There is no obvious correlation of stability to either high or low method

performance, though most overall well-performing methods exhibit consistent standard deviations of

around 0.04 across datasets.

2.5.2 Loss of local spatial coherence

Having established a baseline of method stability, we now aim to test the robustness of method

performances to perturbation. Specifically, we are interested in the degree to which the loss of local

transcriptional coherence between neighbouring spots or cells impairs method performances. We

consider local coherence to be given when spatial gene expression patterns are undisturbed.

We again investigate this perturbation on the Visium–Maynard and MERFISH–Zhang datasets.

In order to quantify the effect of local coherence loss, we permute count matrix rows within original

annotation groups, while keeping physical locations fixed. In this way, each cell gets assigned to new

coordinates, but domains are kept intact. The resulting change in the expression patterns of select

spatially variable genes is shown in Fig. 2.9a. Briefly, the expression of certain spatially variable genes,

previously showing smooth value changes and coherent local maxima, is then spread uniformly over

the annotated ground truth domains (shown in the top of Fig. 2.9a’). Interestingly, as also shown in

Fig. 2.9a’, the local gene expression patterns exhibited by certain genes are reflected in the domains

identified by BASS. BASS is selected here as an example because it is the best-performing method

over all and performs highly competitively on this dataset. In the domains BASS identifies as L3 and

L5, expression patterns from the genes COX6C and SCGB2A2, respectively, seem to be reflected.
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Figure 2.8: Method stability evaluation on real data. a, Distribution of results based on seed

change versus the proposed method of input reordering. Results are shown for four methods which

allow for seed change in their implementation. Twelve input permutations and twelve seed changes

are implemented for all samples from Visium–Maynard and twelve samples from MERFISH–Zhang.

b, Stochastic variability of domain identification accuracy. ARI scores are reported across 12 random

trials of each method on each of the 12 Visium–Maynard samples and 12 MERFISH–Zhang samples.

Methods are sorted by their average standard deviation between the two datasets (top bar plot). ARI

scores are normalised to correct for inter-sample variability.
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Perhaps unsurprisingly, then, the performance of BASS on Visium–Maynard is greatly aided by

the removal of these local gene expression patterns (see Fig. 2.9b). While BASS is most strongly

affected, increasing in ARI by a median of 0.46, this perturbation has a positive effect on most

methods. As expected, the performance of nonspatial baselines is not affected in either dataset,

along with methods like MERINGUE, PRECAST, and SC-MEB. Interestingly, the näıvely spatially

aware baselines improve more on the Visium–Maynard dataset than on MERFISH–Zhang (by 0.04

ARI). Similarly, BASS, SEDR, MNMST, BayesSpace, and SpatialMGCN exhibit a larger performance

improvement on Visium–Maynard. On the other hand, a group of methods comprised of BANKSY,

TACCO, UTAG, Vesalius, and GraphPCA shows the opposite behaviour, increasing in performance

more strongly on MERFISH–Zhang upon loss of local spatial coherence.

Generally, we observe that the loss of spatial gene expression patterns, which may not necessarily

be aligned with annotated spatial domains, affects the majority of methods positively.
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Figure 2.9: Method robustness to loss of local spatial coherence. a, Expression of example

genes for Visium–Maynard sample 151507, shown in the unperturbed (top) and perturbed (bottom)

tissue configurations. a’, BASS output on sample 151507 for unperturbed gene expression. Some

layers identified by BASS show similarities to gene expression patterns observed in a, namely Layer

L5 shows similarity to SCGB2A2 expression and parts of L3 to COX6C. b, Difference in ARI resulting

from the perturbation, across 12 samples each of the Visium–Maynard and MERFISH–Zhang dataset.

Each sample is perturbed for a total of 12 seeds, the original ARI is subtracted from the perturbed

ARI per sample. Methods are sorted according to the mean improvement across datasets.
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Chapter 3

Semi-synthetic spatial transcriptomics

data for systematic method evaluation

In this chapter, I present the results of running the previously described benchmarking pipeline on

semi-synthetic data with tunable characteristics. I introduce several published simulation approaches

for spatial transcriptomics data, as well as the pipeline we established for generating semi-synthetic

datasets.

3.1 State of the art of spatial transcriptomics simulation

As introduced in Sec. 1.3, synthetic data is an important component of benchmarking efforts. Ac-

cordingly, various approaches have been developed aiming to create realistic synthetic spatial tran-

scriptomics data [214, 215]. The resulting synthetic data is often provided alongside ground truth

annotations of underlying cell types – it is much rarer to find approaches designed to annotate tissue

domains. However, for the benchmarking of domain recognition algorithms, ground truth domain

annotations are indispensable, and so methods frequently develop strategies for domain-based spatial

transcriptomics simulation.

The following sections give a brief introduction to the approaches used in various method pub-

lications for internal benchmarking, as well as the dedicated spatial transcriptomics simulation tool

SRTsim [214].

3.1.1 Overview of published simulation approaches with concurrent ground truth

domain generation

Many methods for the identification of spatial domains benchmark their performance against other

methods based on a simulation approach. The simulation approaches utilised by a subset of methods

are briefly summarised in Tab. 3.1. Methods take different approaches to data simulation, some

based heavily on real data, while others create fully synthetic datasets (e.g. SpiceMix). Strategies

for the definition of spatial domains vary between two main approaches, similarly to the definitions

employed in method papers – namely, domains are defined based on their cell type composition or

their expression coherence (see Fig. 1.6). The domain definition which is employed in these simulation

approaches broadly coincides with the generation of coordinate and count information. Specifically,

simulations generating high-resolution datasets define domains based on cell type composition, whereas

grid-based, lower-resolution simulated data uses the expression coherence definition. Interestingly,

most approaches create layered tissues, based implicitly or explicitly on brain structures. In the list of

simulation strategies shown in Tab. 3.1, Vesalius is the only method directly utilising real expression

values, measured using Slide-seq, in their synthetic data. All other approaches employ a simulation
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step, either using published simulators like scDesign2, scDesign3, or splatter, or an in-house and

specially devised method, like one SpiceMix strategy, SC-MEB, and PRECAST [214–217].

The simulations differ widely in their data generation approaches, both in count and coordinate

origins as well as in domain definitions. Further, the approaches were devised and implemented to

enable the investigation of very different variation scenarios. SC-MEB and PRECAST vary the covari-

ance matrix defining spatial smoothness. Similarly, SpiceMix implements noise types influencing the

expression similarity between neighbouring cells, and SpatialPCA varies the neighbour correlation for

grid-based data directly using a split-cells approach. GraphPCA investigates a range of technological

parameters, ranging from sequencing depth and noise levels to spot and count sparsity. SpatialPCA,

Vesalius, and BASS vary the cell type composition heterogeneity of their domains, and BASS addition-

ally changes the proportion and variation magnitude of differentially expressed genes. Interestingly,

Vesalius is the only simulation approach which considers different domain layouts.

3.1.2 Simulation with SRTsim

One published simulation method that enables the simultaneous generation of count data, coordinates

and the corresponding domain labels is SRTsim [214]. In its de novo data generation mode, it takes

the desired tissue domain layout as input and allows for the user to input hyperparameter values

specifying the distributions from which expression values should be sampled. The approach SRTsim

takes to delineating different domains is simple, in that it is based on a user-defined logarithmised fold

change of the expression mean of a set of “signal genes”. Notably, the definition of domains based on

expression mean fold changes is not encountered in other publications to the best of our knowledge.

The SRTsim de novo mode is accessible primarily through an R-shiny application1, providing

a GUI. In order to enable serialised, script-based data generation, we adapted the code underlying

the application as publicly available on GitHub. We utilised the resulting script to generate data

containing a range of different numbers of cells and genes, and varied the signal-to-noise ratio.

Ultimately, we decided not to further pursue the use of this simulation strategy, as for our purposes,

the possibility of broader parameter tuning was important. Further, it is not yet possible to evaluate

different domain definitions, such as cell type heterogeneity, as an alternative to the inbuilt mean fold

change.

As an alternative to the de novo approach, SRTsim allows the generation of synthetic spatial

transcriptomics data based on reference input data [214]. Using this approach, it is possible to modify

certain data parameters, as well as the domain layouts, with respect to the reference. We tested

this mode by creating additional samples of the Visium-Maynard dataset and evaluating method

performance.

While data from this simulation mode is likely to better reflect real data characteristics in do-

main composition and gene expression patterns, it also specifically reflects the technology and tissue

characteristics of the reference data. This simulation strategy is not suited for comparing method

performance across a spectrum of one technological parameter while keeping others at fixed values.

3.2 Construction of the semi-synthetic data generation pipeline

In order to test hypotheses about how various data characteristics affect method performances, we

developed a flexible pipeline for generating semi-synthetic spatial transcriptomics data (Fig. 3.1a). Our

aim when creating this pipeline was to present a highly tunable approach, able to incorporate and

execute perturbations on the level of coordinates, counts and tissue domains. Yet we also wanted to

incorporate count data with realistic characteristics, which is hard to achieve in a synthetic approach

[218]. One possibility leading to higher realism in the expression data is to simply incorporate counts

1It is available at jiaqiangzhu.shinyapps.io/srtsim (accessed on October 12, 2025).

https://jiaqiangzhu.shinyapps.io/srtsim/
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from a publicly available spatial transcriptomics dataset, such as the approach taken by Vesalius (see

Tab. 3.1). However, as discussed in the previous section, this data carries with it the exact inherent

technological biases we are aiming to study. At the time of the development of our pipeline, to the

best of our knowledge, there was no public dataset from a spatial transcriptomics technology with full-

transcriptome profiling at true single-cell resolution. Finally, we landed on utilising a well-annotated

single-nucleus RNA-seq dataset of the mouse brain to serve as the origin of transcriptional identities

for our semi-synthetic data generation [200].

Briefly, we first create archetypal domain shapes and overlay them on an artificial tissue layout

of randomly generated cell locations. After transferring the domain identities to cells as label as-

signments, we proceed to ascribe mixtures of cell types from the mouse brain dataset to define each

domain. Counts from those cell types are chosen and assigned to cells within the corresponding do-

mains. Within this pipeline, we are able to vary relevant parameters at all individual steps. Each of

these steps is described in more detail in the following sections.

3.2.1 Creating the tissue layout

To generate tissues containing different shapes and arrangements of domains, we utilise the datasets

module of the scikit-learn Python package as a basic first step [219]. This module is designed to create

locations and cluster assignments for a set of points distributed non-uniformly in a 2D space (shown

in Fig. 3.1b). We therefore combine the thus generated points with a new set of cell coordinates,

drawn from a 2D uniform distribution (overlaid in Fig. 3.1c). Domain labels are assigned to all cell

locations based on label transfer from the nearest point in the sklearn-generated dataset (resulting

tissue shown in Fig. 3.1d). Finally, in order to create contiguous domains and remove any outlier

labels, a next-neighbour-based smoothing algorithm is applied to the newly created tissue, aligning

each spot to the majority-voted neighbourhood label (final synthetic tissue shown in Fig. 3.1e). This

strategy has the advantage of being able to create a diverse set of domain shapes and configurations, as

shown in Fig. 3.1f, while avoiding the need to define exact domain borders. Additionally, we create a

tissue type consisting of parallel stripes to represent a more balanced domain layout, and an archetype

that is present in many of the real datasets we included.

3.2.2 Choosing cell types and assigning counts

The single-nucleus mouse brain dataset published by Langlieb et al.2 contains detailed cell type anno-

tations [200]. After subsetting to only cell types containing sufficient numbers of cells, we specifically

chose cell types of high pairwise similarity for inclusion in our analysis3. Cell type similarities were

quantified by the inverse of their distances in a dendrogram published within the scope of the original

study [200].

Using this strategy, we settled on a set of five cell types for primary use within the simulation

pipeline. Results shown in this thesis, if not otherwise specified, are attained using primarily these cell

types to define the domains. After assigning individual cell types or mixtures thereof to define each

domain, cells are assigned to each coordinate of the previously generated tissue layout at random.

3.2.3 Implementing variation on different levels

In the course of the steps described in the previous sections, variation can be introduced at different

stages. The following paragraphs briefly describe the possible variations.

2The dataset is available online at braincelldata.org.
3We decided on this approach after preliminary simulations showed excellent domain recognition across all methods

applied to data created from transcriptionally dissimilar cell types. We aimed to give the methods more of a challenge.

https://braincelldata.org/
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Figure 3.1: Pipeline developed for semi-synthetic data generation. a, Overview of the pipeline,

along with possible variations it allows us to introduce in the data. b, Point clusters generated using

scikit-learn. c, Clusters from scikit-learn, overlaid with randomly generated locations for cells. d,

Domains after label transfer from scikit-learn clusters onto cell locations. e, Smoothed domain labels

after removal of outlier labels. f, Examples of other shapes the pipeline is able to generate. g, Pairwise

distances of the cell types selected by default, shown as a heatmap calculated based on dendrogram

data published by Langlieb et al. [200]. Cell types are indicated by colours. h, UMAP embedding of

cells from all selected cell types
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Tissue layout Domain shapes, and the tissue layout in terms of cell density and arrangement, are

determined at the start of the pipeline. Besides the default shapes shown in Figs. 3.1e,f, different

domain shapes and configurations can be created through scikit-learn or by manual definitions. In ad-

dition to the random cell locations simulated by default, grid-based coordinates are also implemented.

Technological parameters: Resolution We are also able to vary the resolution of the resulting

tissue after completing the simulation, by overlaying a grid onto the tissue and binning the expression

of multiple cells. Specifically, in order to create synthetic data of different resolutions while keeping

other parameters fixed, we create and then perturb one basic dataset of single-cell resolution. The

original cell locations are chosen randomly in a square tissue of size 100×100 points. Subsequently, for

the different resolutions, grids consisting of square tiles are overlaid on this tissue, and cell coordinates

are rounded to the nearest tile centroid. From all cells rounded to the same tile, expression counts are

aggregated by mean to form the counts of the newly created spot. The range of resolution explored

in the synthetic data is large, with tile (spot) side lengths from 0.5 up to 10 points. For reference, at

a side length of 5, on average, 9 cells are contained in one spot, comparable to the resolution achieved

by Visium. Consequently, a side length of 10 corresponds approximately to the original ST resolution,

with 33 cells being aggregated into one spot. This approach creates a more realistic low-resolution

dataset than would be possible using an a priori grid-based layout, as it mimics the characteristic

aggregation of counts across cells of Visium-like technologies.

Technological parameters: Number of genes The gene panel size can also be varied post facto,

by reducing the number of genes whose expression is included in the final data. Similarly to the

resolution strategy, to evaluate the effect of changing gene panel size, we modify a base dataset.

Specifically, we decrease the number of included genes to exponentially spaced proportions of the

original number (that is, the total gene panel size is reduced to 50%, 20%, 5%, etc., of the original

size). From 21899 profiled genes in the original single-nucleus RNA-seq count data, the proportions

investigated result in gene numbers close to those of our included real datasets. Once the number of

genes to include is calculated, we downsample the count matrix using random sampling. By default,

we use a random downsampling strategy to reduce the number of genes, but other strategies are easily

implemented.

Technological parameters: Sparsity A different downsampling procedure may be applied to the

generated data to increase the count matrix sparsity. We vary the level of sparsity within a range of

0.85 to 0.99. The lower end of this range is set by the sparsity inherent in the single-nucleus RNA-seq

count data, while the upper end is comparable to Slide-seq data. Concretely, high dropout levels are

simulated through randomly setting counts to zero until the desired sparsity level is reached. Again,

various models for high count sparsity could be implemented.

Expression similarity and heterogeneity Finally, we are able to introduce variation on the count

level. We investigate two main perturbation types, each applied to the entire tissue and subsequently

adapted to apply to all pairs of domains. In the first type of perturbation, starting from domains

defined by different cell types, the expression values in the affected domains are modified to increase

their similarity. This is achieved in the tissue-wide perturbation by introducing an additional “noise”

cell type, to which all domains are made to converge. Concretely, let the original expression vector

of spot s in domain d be c⃗ds , defining the expression levels of all genes. Additional gene expression

vectors n⃗s for each spot are then generated from the noise cell type n, and gradually replace the

original expression by a convex combination as

˜⃗c ds = (1 − λ)c⃗ ds + λn⃗s (3.1)
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Upon gradual variation of the mixing parameter λ, this approach modifies the count values of the

entire tissue, with the expression of all domains increasing in similarity to the “noise” type. In the

pairwise domain perturbation, counts are instead created through the convex combination of cell types

from both involved domains.

The second perturbation type we investigate approaches the idea of domain similarity through cell

type composition. Namely, we introduce cells from either a noise cell type (in whole-tissue perturba-

tion) or from the paired domain (in pairwise domain perturbation), into the tissue in question. In this

perturbation, counts are not added to the preexisting cells - instead, the entire expression profile of

a certain proportion of cells is replaced. This introduces a degree of expression heterogeneity on the

cell type level.

3.3 Investigating technology characteristics

First, we utilise our pipeline to create data with varying technological characteristics, aiming to disen-

tangle their effects on method performances. Specifically, we evaluate the effect of changing resolution,

the number of profiled genes, and the count matrix sparsity. In order to avoid any biases arising from

specific domain configurations, the following analyses are averaged across the different shapes shown

in Fig. 3.1e,f. All experiments are carried out using the same basic assignments of one cell type per

domain.

3.3.1 Effect of changing resolution

As described in Sec. 3.2.3, we generate semi-synthetic data samples with a variety of resolutions based

on a single-cell resolution base dataset (Fig. 3.2a). The resolution is gradually decreased by increasing

the side lengths of the overlaid grid (Fig. 3.2b).

We first examine the correlation of ARI and PAS across all methods. In the real data, we had ob-

served a strong anticorrelation of ARI and PAS in high-resolution data, whereas on lower resolutions,

this anticorrelation was weakened (see Fig. 2.6b). This trend is corroborated by the semi-synthetic

results, as shown in Fig. 3.2c. Specifically, we find a strong anticorrelation of ARI and PAS (Spearman

correlation around -0.5) at small spot side lengths of 0.5 to 3, whereas there is only a weak anticor-

relation (Spearman correlation around -0.2) at spot side lengths 4 to 6, which correspond loosely to

Visium spot size. Even this level of correlation disappears for even larger spot side lengths.

Concerning the effect of resolution changes on the individual methods, large differences become

apparent (Fig. 3.2d). MNMST and BANKSY decline drastically in performance with the aggregation

into larger spot sizes. At resolutions only slightly smaller than the Visium equivalent, they end up

with domain assignments equivalent to random, indicated by ARIs around 0. MNMST specifically

exhibits a sharp performance drop from side lengths 4 to 6, and does not even produce any output for

side lengths 9 and 10. The only method showing a similarly abrupt performance drop is CellCharter,

with a rapid decrease in ARI from spot side lengths 1 to 2. However, the performance of CellCharter

then stabilises at a mid-range ARI value. BANKSY, on the other hand, does not drop in performance

from one resolution to the next. Instead, it declines in performance almost monotonically from very

small aggregations, and ends up with negligible ARIs from side length 7. Many other methods, from

SCAN-IT and SpaDo to GraphST, also show similar gradual performance deterioration from small

spot sizes to BANKSY. Unlike BANKSY and MNMST, but like CellCharter, the decrease in ARI of

these methods flattens out at about 0.5.

On the other hand, methods like TACCO, PAST, and STAGATE decline only very gradually

upon the first aggregation of cells into spots. Only for under Visium-like resolution, that is, side

lengths greater than 5, their performance starts to decline more noticeably. Select methods, notably

SpiceMix, BASS, and DeepST, uphold a very strong performance with ARIs close to 1 throughout the



54 3. Semi-synthetic spatial transcriptomics data for systematic method evaluation

0.0

0.5

1.0

A
R

I

MNMST BANKSY SCAN-IT SpaDo CCST SpaceFlow

0.0

0.5

1.0

A
R

I

SEDR GraphPCA GraphST TACCO PAST STAGATE

0.0

0.5

1.0

A
R

I

SpatialPCA CellCharter ADEPT SpiceMix BayesSpace BASS

0.0

0.5

1.0

A
R

I

PRECAST DeepST SC-MEB Vesalius SpaGCN SpatialMGCN

5 10
Side length

0.0

0.5

1.0

A
R

I

UTAG

5 10
Side length

scanpy-smooth

5 10
Side length

scanpy

5 10
Side length

Seurat-smooth

5 10
Side length

Seurat

5 10
Side length

MERINGUE

5 10
Side length

0.6

0.4

0.2

0.0

0.2

0.4

A
R

I-
PA

S
 c

o
rr

e
la

ti
o
n

side length
Original locations Side lengths 2, 5, 10a b c

d

Figure 3.2: Performance dependence on resolution. a, The base data, which is subsequently

modified to investigate the resolution dependence, is generated with single-cell resolution. One example

domain layout is shown. b, Examples of binned data, generated to test resolution dependence, at spot

side lengths 2, 5, and 10. c, Spearman correlation of ARI and PAS as a function of the spot side

length. The correlation is aggregated over all methods and domain layouts by mean. d, Performance

dependence on resolution as parametrised by the spot side length, for all methods. The variance

per datapoint is over the different domain layouts. Methods are sorted by the difference in their

performance between “big” spots (side length > 6) and “small” spots (side length < 3).



3.3 Investigating technology characteristics 55

entire resolution range. An interesting behaviour is exhibited by the baseline methods scanpy, Seurat

and the respective smoothed implementations, as well as MERINGUE, SpaGCN, and SpatialMGCN.

These methods manage to actually improve their performances, in some cases to close to perfect ARIs,

upon the first aggregation of cells into spots. Subsequently, the performance stays high as the sample

resolution decreases.

The effect of changing resolution may be decomposed into an interplay of two main factors. First,

binning multiple cells into one spot leads to diminishing domain sizes, as measured both by the

absolute number of spots in each domain and in terms of domain diameters or widths in spot units.

For example, consider a domain consisting of 400 spots, arranged in a 20-spot-wide layer, at a given

spot side length of a. At a smaller resolution, defined by spot side lengths of 2a, this domain will

contain only about 100 spots, in a layer that is only 10 spots wide. Thus, the aggregation of increasing

numbers of cells in each spot causes a decrease in domain sizes. Additionally, this aggregation can

itself be viewed as a kind of spatial smoothing operation, converting transcriptional heterogeneity

between neighbouring cells to relative spatial homogeneity. Both of these factors will be considered

in more detail in later sections.

3.3.2 Effect of changing the number of genes

As a second technological parameter, we use our semi-synthetic data to investigate the effect of chang-

ing the number of genes on method performance. Interestingly, several methods do not produce any

domain output on samples with small gene numbers (Fig. 3.3). SpatialMGCN, as the most extreme

example, only successfully outputs domain labels on samples with over 10’000 genes. SCAN-IT com-

pletes runs on samples down to a gene panel size of about 1000 genes, SpatialPCA and SpiceMix down

to 200 genes, and some additional methods only fail completely on the smallest gene panel size. These

failures do not necessarily correlate with methods failing on real data with small gene numbers, such

as the osmFISH and MERFISH datasets.

For the methods which do successfully run over the entire range of gene numbers, the difference

between methods does not amount to a total trend reversal, as in the case of the resolution dependence.

Rather, while no methods are positively affected by diminishing gene numbers, they differ in the extent

of the resulting performance decrease.

UTAG and Vesalius, along with MERINGUE, are only minimally affected at an overall low per-

formance level. Methods like SpatialPCA and GraphPCA also do not exhibit a strong change due

to the number of genes, though, as mentioned above, they do not produce any domain labels for the

smallest samples. CCST, SpaDo, and BASS, among others, start out with excellent performances of

ARIs close to 1 and then decrease monotonically towards smaller panel sizes. These methods end up

at mid-range ARIs around 0.5 at the smallest gene numbers. Other methods showing very good per-

formances on the full transcriptome before downsampling, like GraphST, STAGATE, and MNMST,

decline gradually in performance to about zero ARI around gene panel sizes of 100. Besides the meth-

ods exhibiting a monotonic performance decrease, for some methods, including TACCO, CellCharter,

and BANKSY, performance drops sharply at “cutoff” gene panel sizes. While these methods perform

highly competitively on samples with large numbers of genes, the domains produced at smaller gene

numbers are equivalent to random label assignments. Finally, an interesting behaviour is exhibited by

a small group of methods encompassing SpaGCN, SpaceFlow, and notably the spatial baseline scanpy-

smooth. These methods do not have their peak performances on samples with the full transcriptome

before downsampling, but instead show performance maxima at 500–1000 genes.

The full performance overview of all methods is shown in Fig. 3.3. All in all, while most methods

decline in performance on samples containing decreasing numbers of genes, the extent and abruptness

of this decline vary widely.
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Figure 3.3: Performance dependence on number of profiled genes. Method performances in

terms of ARI are shown as a function of the number of genes, going from smaller gene panels to

full transcriptome profiling. The x axis is on a log scale. Methods are sorted by the difference in

their performance between “many” profiled genes (number of genes > 5000) and “few” profiled genes

(number of genes < 500). Variance per datapoint is over the shapes.

3.3.3 Effect of changing count matrix sparsity

The third technology characteristic we investigate using our semi-synthetic data is capture efficiency,

using the degree of count matrix sparsity as a proxy. The sparsity is varied between 85%, corresponding

roughly to the original sparsity of the single-nucleus RNA-seq data, and 99%.

At this highest level of sparsity, only 1% of all counts in the matrix are nonzero. While SpatialPCA

and SpiceMix do not produce any output on these samples, a considerable number of methods still

reach nonzero ARIs (around 16 of 30, see Fig. 3.4). Notably, GraphPCA, MNMST, and BASS result

in ARIs greater than 0.5 at a sparsity of 99%. Besides these methods, SpatialPCA, SpaceFlow and

SpaDo are among the least and last affected by the rising proportion of zeros. Notably, MNMST,

SpaceFlow, and SpaDo only start to decline in performance at over 95% sparsity. Among the methods

that are more strongly affected by sparsity levels are BayesSpace, TACCO, SpiceMix, ADEPT, and

PAST. While they perform highly competitively at low sparsity, their ARIs diminish starting at

about a sparsity of 90%, and at the highest sparsity levels, these methods end up producing domains

equivalent to the results of random label allocation. Similarly, the performance of the scanpy-based

baselines, along with SpatialMGCN, SpaGCN, PRECAST, and MERINGUE, decreases to negligible

ARIs for high sparsity. Interestingly, Seurat and the corresponding spatial baseline Seurat-smooth are

only barely affected by even very high sparsity. Methods like STAGATE and PAST exhibit a plateau

in method performance at an ARI around 0.5, which will be discussed in more detail in a later section.

Thus, Fig. 3.4 shows that there are large performance differences between methods concerning
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Figure 3.4: Performance dependence on count matrix sparsity. Method performances in terms

of ARI are shown as a function of the zero percentage of the expression matrix. Methods are sorted

according to their mean performance. Variance per datapoint is over the shapes.

the effect of an increasingly sparse expression matrix. Methods like BASS, MNMST, SpaceFlow, and

SpaDo stand out for their robustness with respect to high dropout levels.

3.4 Impact of transcriptional similarity and heterogeneity

So far, we have investigated the impact of data characteristics determined by the sequencing or imag-

ing technology. In this section, we analyse instead the influence of two cell type level perturbations

(type I and type II) on method performance. As described in Sec. 3.4, in perturbation type I, the

domain-defining cell types are gradually modified to increase their similarity. This perturbation can be

interpreted as a spectrum of cell types with differing similarities, or as progressive technical contami-

nation through ambient RNA or smearing during an experiment. The other count-level variation we

investigate, termed perturbation type II, consists of the addition of cells of a different type throughout

the affected domains. This corresponds biologically to the infiltrating behaviour of immune cells, or

to cell migratory behaviour during development. Generally, it simulates transcriptional heterogene-

ity of domains as caused by differences in the cell type composition. A perturbation level of 100%

corresponds, in both perturbation types, to zero clustering signal being available to the methods.

The following sections describe the application of these count-level domain similarity modifications

on two different levels. We primarily investigate tissue-level perturbation, where all domains are

modified to increase overall similarity within the entire tissue. As a further analysis step, we examine

the effect of pairwise domain similarity by perturbing two domains at a time, keeping all other domains

fixed.
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3.4.1 Whole-tissue perturbations

Just as we did for the previous technological parameter investigations, we create a basic dataset with

fixed assignments of cell types to domains, containing samples from all shape configurations. Aiming

to perturb the entire tissue, we choose an additional “noise” cell type from the group of cell types

selected for investigation previously (see Fig. 3.1g,h). Counts originating from cells of this type are

added as a uniformly distributed background signal to all cells (type I) or replace a proportion of all

cells throughout the tissue (type II). We create samples with “noise” count or cell proportions ranging

from 0 to 100%.

First, we investigate the performance behaviour of all methods under increasing proportions of the

perturbation type I. Most methods exhibit a gradual decline in ARI scores at increasing type I levels

(see Fig. 3.5a). In particular, BASS, ADEPT, and TACCO stand out with negligibly declining ARIs

up to perturbation levels of 60%. Other methods decrease in accuracy from the lower proportions, like

SpatialPCA, SEDR, and PAST, or from the first added perturbation, like SpaceFlow, STAGATE, and

GraphST. As a useful and successful sanity check, methods deteriorate in accuracy down to random

label assignments for the highest proportion levels. Still, most methods which start out with ARIs

close to 1 at zero perturbation manage to attain ARIs around 0.5 at very high perturbation levels of

up to 80%. BASS, ADEPT, and SpatialPCA, the latter of which does not produce any output on

100% perturbed samples, still perform very competitively at 90% type I perturbation. Only select

methods beside the spatial and non-spatial baselines, like MNMST, CellCharter, and DeepST, assign

labels completely arbitrarily, indicated by ARIs around 0, when there is still some amount of signal

to be found within the gene expression. Generally, for the majority of methods, the ARI declines in

a concave function of the perturbation proportion.

Additionally, we evaluate the methods using the unsupervised PAS metric. In the real datasets

investigated in the previous chapter, as well as in our systematic investigation of the effect of resolution

changes using semi-synthetic data, we had found a strong anticorrelation of ARI and PAS on high-

resolution data (see Figs. 2.6b and 3.2c). Since we are generating semi-synthetic data with single-cell

resolution for this investigation of count-level perturbations, we expect to see this anticorrelated

behaviour here. Indeed, increasing PAS levels appear to mirror the ARI decline of many methods, like

CellCharter, SpatialMGCN and MERINGUE (see Fig. 3.5a). However, interestingly, a large group of

methods, encompassing e.g. SpaDo, CCST, and BANKSY, exhibit PAS values close to zero throughout

the range of perturbation levels. In fact, we are able to distinguish three archetypal “modes of method

failure” based on the interplay of ARI and PAS, illustrated in Fig. 3.5b. In mode A, exhibited by

methods like SpaGCN, SC-MEB, PRECAST, and SpatialMGCN, a performance decrease measured

by ARI goes along with an increase in PAS. Methods failing in mode A tend to create visually noisy

domains, blurring region boundaries. The second failure archetype, mode B, encompasses methods

for which PAS stays low even at high levels of added noise, but which exhibit strictly monotonically

decreasing ARI scores. In this failure mode, methods like SpatialPCA, SCAN-IT, SpaDo, and CCST

tend to mislabel spatially contiguous groups of spots, leading to a fragmentation of the tissue. Other

methods with consistently low PAS, like BASS, STAGATE, and GraphST, exhibit a sharp performance

drop followed by a plateau, characterised by ARI scores around 0.5–0.6, from which they again drop

off sharply to zero ARI. This failure style indicates a bit flip mode of label misassignment, where an

entire domain is mislabelled above a cutoff perturbation level, usually assimilating to a neighbouring

domain. Many methods exhibit combinations of these failure modes, with particularly methods like

DeepST, SpaceFlow, and MNMST showing combinations of modes A or B with mode C.

Notably, the plateau observed in methods exhibiting mode C failure lies around the maximal

ARI values attained by the baselines, among other methods. These less well-performing methods

reach a maximal ARI of around 0.5 under zero-perturbation conditions, and in many cases do not

decline further in performance until perturbation levels around 50% (see Fig. 3.5a). To elucidate
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Figure 3.5: Effect of type I perturbation (increasing transcriptional similarity). a, ARI and

PAS dependence on the level of underlying “ambient RNA” noise (generated by perturbation type I).

This perturbation is generated through the expression of each cell representing a convex combination of

original counts with those originating from a noise cell type. Methods are sorted by mean performance,

and the variance per datapoint is over the shapes and cell assignments. b, Example performances of

methods exhibiting three different archetypal failure modes. Method output is shown for the methods

highlighted in red, at different type I perturbation levels. Perturbation levels of the shown examples

are chosen to represent the progression per method. c, Ground truth label annotations for all shapes,

along with example results of BASS at 80% type I perturbation and Seurat at zero perturbation.

The light blue and coral domains in the ground truth, defined by cell types Ex Rorb Col8a1 and

Ex Rorb Col8a1 Cntnap4 (see Fig. 3.1g), are indistinguishable in the two example outputs.
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this phenomenon, we examine the examples of BASS, as a consistently well-performing method which

exhibits a brief plateau in ARI at high perturbation proportions, and the baseline method Seurat

(Fig. 3.5c). Considering the example outputs of Seurat on the unperturbed samples and BASS at 80%

type I perturbation, it becomes apparent that the same domains evade detection in both methods.

Specifically, the methods which are indistinguishable to these methods are defined by the same cell

types across all the shapes we investigate (indicated in light blue and orange in the top row of Fig. 3.5c).

These are the highly similar cell types Ex Rorb Col8a1 and Ex Rorb Col8a1 Cntnap4, clustering

together both in the dendrogram and the UMAP representation shown in Fig. 3.1g,h.

Next, we evaluate the effect of the type II perturbation on method performances. Interestingly,

when applied to tissues with proportions of cellular heterogeneity of just 20%, only a small group

of methods are able to hold their performance level (Fig. 3.6a). The majority of methods decline in

accuracy immediately upon the addition of any level of type II perturbation. Additionally, we do not

observe the tendency toward the “bit flip” failure mode C that we observed on perturbation type I.

Rather, more methods exhibit mode A style failures, increasing in PAS gradually as they decrease in

ARI. Generally, in the majority of methods, PAS values are significantly higher on samples affected

by type II, rather than by type I perturbation (Fig. 3.6b). Specifically, the difference is significant for

all methods with non-negligible PAS (thus excluding UTAG, TACCO, BASS, SpaDo, and Vesalius)

except SpaceFlow and MERINGUE. As expected, the difference is highly significant for the non-

spatial baseline methods, which delineate domains purely based on transcriptional identity. On the

other hand, methods like ADEPT, BayesSpace, and PAST also result in significantly higher PAS

values on type II- than on type I-perturbed samples. Accordingly, while these methods perform quite

competitively under type I perturbation, they are strongly affected by even low levels of type II

perturbation (compare Figs. 3.5a and 3.6a). In some extreme cases like GraphST and DeepST, the

performance measured by ARI follows a convex function of perturbation proportion.

A few methods stand out for their performance on samples generated with perturbation type

II, namely BASS, TACCO, SpaDo, SpaceFlow, SCAN-IT, and SpatialPCA. These methods are able

to still attain ARIs around 0.5 for high perturbation levels of 80–90%. Notably, BASS and SpaDo

do not exhibit a visible performance decline up to 70–80% of type II perturbation levels. Further,

interestingly, SpaceFlow and SCAN-IT outperform most other methods on this perturbation type (as

evident by the method sorting in Fig. 3.6a), whereas on type I perturbation, their performance was

average within the set of all methods.

Overall, the investigations of tissue-level perturbations of types I and II reveal the different effects of

these perturbations. Most methods are immediately affected negatively in their domain identification

performance by infiltrating cells (type II perturbation), while transcriptionally highly similar domains

can be distinguished. When applied to domains defined by progressively more similar cell types, many

methods exhibit a “bit flip” failure style, unable to distinguish pairs of domains after a similarity cutoff.

Few methods excel on both perturbations, namely BASS, TACCO, SpatialPCA, and SCAN-IT.

3.4.2 Pairwise domain similarity

Following up on the phenomenon of “bit-flip” failure, and the domains indistinguishable to multiple

methods being defined by the same cell types (Fig. 3.5c), we investigate the effect of pairwise domain

similarity in more detail. Concretely, as described in Sec. 3.2.3, we gradually increase the pairwise sim-

ilarity of all domain pairs separately. We consider two types of domain similarity, defined analogously

to the previously discussed perturbation types I and II. The type I analogue is defined by what we call

“expression mixing”, that is, counts in two domains are gradually mixed through convex combination.

An alternative formulation of domain similarity, analogous to the type II perturbation, can be defined

through “cell shuffling”, whereby cells from both affected domains are gradually intermixed, leaving

individual cell expression intact.
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Figure 3.6: Effect of type II perturbation (increasing cellular heterogeneity). a, ARI and

PAS dependence on the level of “infiltrating cells” noise (generated by perturbation type II). Noise

proportion in this case corresponds directly to the proportion of noise cells inserted in the tissue.

Methods are sorted by mean performance, and the variance per datapoint is over the shapes and

cell assignments. b, PAS values on noise types I and II, aggregated over noise levels, excluding zero

noise and 100% noise. Methods are sorted according to the mean PAS across perturbation types.

Significance values for PAS values on type II being higher than on type I are calculated using a one-

sided Mann-Whitney U test.
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Domain-wise evaluation strategy and development of a pairwise confusion metric

As we are now not investigating tissue-wise perturbations anymore, we are also primarily interested in

domain-level effects. In order to evaluate method performance on this more granular level, we need to

consider a metric that is suited to evaluating the accuracy of individual clusters, rather than an entire

clustering result. For this purpose, we utilise the harmonic mean of precision and recall, commonly

called the F1 or simply F score, defined as

F1 =

(
recall−1 + precision−1

2

)−1

=
2TP

2TP + FP + FN
(3.2)

We utilise the scikit-learn implementation of the F1 score, which treats multi-label input as a collection

of binary problems [219]. Thus, TP (true positives), FP (false positives) and FN (false negatives) are

defined on the level of individual domains, and the metric does not distinguish between erroneous

assignments to different labels.

However, besides the evaluation of domain-level accuracy, we are specifically also interested in

disambiguating these misassignments, as these will indicate to which domain methods erroneously

assign spots, fragments or entire other domains. In other words, we are aiming to evaluate which

domains cannot be distinguished (in the following, this is sometimes also referred to as indicating

which domains “are confused”). We therefore define a “confusion” metric between domains a and b

as follows:

confusion =
rba + rab
raa + rbb

, where rji =
N j

i∑
j N

j
i

, (3.3)

where N j
i is the number of cells in ground truth domain i assigned label j. The quantity rji corre-

sponds to the recall when i = j. The confusion of a given pair of domains is thus 0 when no cells

are mislabelled, and values close to 1 signify “total confusion” or no distinction between domains. In

special cases, namely when more spots are mislabelled than labelled correctly, the confusion according

to this definition can exceed 1. If there were only two domains involved in the system, this configu-

ration would simply result in the label correspondence to the ground truth flipping to maintain good

agreement. This is a consequence of the maximum weight matching algorithm used to calculate label

correspondences, as described in Sec. 2.2.3. Confusion values over 1 are thus only possible because

our tissue layouts always consist of at least three domains, so there always exists at least one further

domain c to which cells can be erraneously assigned. The best overall label correspondence can thus

result in the above-described configuration of more mislabelled than correctly labelled spots, namely

in the edge case of very small domains. To avoid these outlier confusion values, we cap the confusion

metric at a “total confusion” of 1.

Results of pairwise perturbations

Looking first at the cell shuffling perturbation, and stratifying the F1 results by domain involvement in

the perturbation, we can distinguish three method behaviours (shown in Fig. 3.7a,b). Tab. 3.2 details

the methods assigned to each behavioural group. Methods in group 1 start out able to distinguish all

domains, with only the F1 scores of perturbed domains subsequently diminishing. The baseline-like

group 2 starts out at mean F1 values around 0.8, confusing the two left-most domains illustrated in

Fig. 3.7b. These domains, along with the corresponding ones confused in the other shapes, are defined

by the abovementioned highly similar cell types Ex Rorb Col8a1 and Ex Rorb Col8a1 Cntnap4 (see

Fig. 3.1g,h). Even still, similarly to group 1, with increasing proportions of cell shuffling, methods

from group II decline in their detection performance of the affected domains, whereas the unperturbed

domains continue at similar detection levels.

The last, and most interesting, group of methods is group 3, encompassing SpatialPCA, SEDR,

BANKSY, GraphST, and Vesalius. These methods start out at similar average F1 scores as the
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Group 1: BASS, STAGATE, TACCO, ADEPT, PAST, SpiceMix, MNMST, DeepST, CCST,

BayesSpace, SpaDo, SpaceFlow, CellCharter

Group 2: GraphPCA, SpaGCN, SCAN-IT, SC-MEB, Seurat-smooth, scanpy-smooth, scanpy,

Seurat, PRECAST, SpatialMGCN, UTAG, MERINGUE

Group 3: SpatialPCA, SEDR, BANKSY, GraphST, Vesalius

Table 3.2: Method groupings based on performance behaviour upon cell shuffling. The

groups exhibit distinct behaviours in F1 score, as shown in Fig. 3.7a,b.

baseline methods, if slightly lower. However, with increasing levels of perturbation, while the F1 score

of the perturbed domains declines as expected, the detection of domains which are not perturbed

increases substantially. Thus, the ability of these methods to recognise domains is affected directly

by cell-level heterogeneity, with added heterogeneity in one domain aiding in its distinction. In the

example of SEDR shown in Fig. 3.7b, the method is able to distinguish the two middle domains only

when 25% of cells are shuffled between the affected domains, at which point it proceeds to confuse

domains the second and fourth stripes.

For a different angle of evaluation, we consider instead the confusion metric, stratified by whether

the perturbed domains are defined by the a priori highly transcriptionally similar cell types (Fig. 3.7c).

As indicated above, we see the baselines, along with several other methods like SpaGCN, DeepST,

and SpatialPCA, confusing the transcriptionally similar domains independently of any additional

perturbation. A newly visible, striking phenomenon is the minimum confusion describing a smooth

monotonic function of perturbation, exhibited in methods such as DeepST, STAGATE, SpiceMix, and

MERINGUE. This minimum curve coincides broadly with the confusion of not highly similar domains

shown by baselines. Additionally, while for the baselines, PRECAST, and SpatialMGCN, among

others, the smooth increase in minimum confusion is close to linear, in some cases, such as SpaceFlow,

CCST, and GraphPCA, the confusion remains close to 0 until about 25% and subsequently increases

steeply. Only BASS, UTAG, TACCO, and Vesalius do not exhibit this smooth minimum behaviour

at all. UTAG, TACCO, and Vesalius in fact still display some instances of zero confusion at 50%

cell shuffling, with this proportion corresponding to zero signal distinguishing the affected domains.

This is thus attributable to a lucky guess and their inherent tendency to smooth domains. BASS, on

the other hand, stands out as the only method that does not result in incremental confusion values,

indicating its high performance and strict adherence to the bit flip failure mode described in Sec. 3.4.1.

In the case of the expression mixing perturbation, however, many methods show more bit flip-like

behaviour (Fig. 3.7d). In fact, the confusion values exhibited across the range of perturbation pro-

portions are nearly exclusively binary for several methods. Besides BASS, this includes, for example,

MNMST, STAGATE, and SEDR. However, again, we also see that many methods confuse the a priori

highly transcriptionally similar domains before the others. The onset of confusion of the other, tran-

scriptionally more distinct domain pairs varies widely between methods. TACCO, BASS, ADEPT,

and CCST stand out for zero confusion of those domain pairs before 25% perturbation. In general,

more methods are not affected by this perturbation until higher perturbation proportions compared

to the cell shuffling.

Generally, this investigation of pairwise domain effects compounds the tissue-wide observations of

the previous section. Most methods are more immediately affected by cell shuffling than they are by

expression mixing, in which case many methods exhibit a “bit flip” failure style.

3.5 Effect of domain shape and size

The last type of variation we investigate using semi-synthetic data is the size and shape of the individual

domains. We evaluate the effect of domain size, first focusing on the thickness of laminar domains,
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Figure 3.8: Effect of domain thickness, transcriptional similarity, and adjacency. a, Example

tissue configurations showing the reference domain in blue (left domain), and purple and yellow do-

mains of changing thickness. Configurations are shown for both settings of adjacency to the reference

domain; that is, both examples of adjacent highly similar (purple, left column) and dissimilar (yellow,

right column) are shown. b, F1 scores as a function of domain thickness, stratified by transcriptional

domain similarity and adjacency to the reference domain. Domain thickness is indicated by a percent-

age of the total tissue width. Methods are ordered according to mean performance, and the variance

per datapoint is over five seeds.

and perform an additional analysis on circular domains of different diameters. Then, we compare

method performances on tissues with different, archetypal domain shapes and layouts.

3.5.1 Laminar layer thickness

To investigate the effect of domain size, we create a range of semi-synthetic samples with three laminar

layers (Fig. 3.8a). Starting from a thin middle layer, we shift the boundary between the middle and

right layers gradually towards the edge of the sample, thereby simultaneously varying the thickness of

two domains. Additionally, we perform this experiment for two distinct assignments of cell types to

domains, as shown schematically in Fig. 3.8a. In both modes, we assign the cell types Ex Rorb Col8a1,

Ex Rorb Col8a1 Cntnap4, and Ex Slc30a3 Otof, where the first two cell types are highly similar

(Fig. 3.1g,h). Starting from this set of cell types, we fixedly assign cell type Ex Rorb Col8a1 to

the left, unchanged domain. The domain assignments of the other two cell types are swapped between

the middle and right domains, both of which vary in thickness. This allows us to investigate how high

transcriptional similarity modulates the effect of domain thickness. On top of that, it also enables the

evaluation of adjacency effects between these highly similar domains. In order to increase the statis-

tical power of the analysis, we create five samples for each tissue configuration, varying the random

state underlying the assignment of cells to locations within the data generation pipeline.

We evaluate method performance using the F1 score of the domains with changing thickness.
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Additionally, we stratify the results by both transcriptional similarity of the underlying cell type to

that of the reference domain and by the adjacency to that same domain. Methods are affected by the

domain thickness in very distinct patterns (Fig. 3.8b). BASS, ADEPT, TACCO, SpiceMix, SpaceFlow,

and SCAN-IT are barely affected. Some of these methods might show a dip at the smallest domain

sizes, but all domains remain detected with F1 scores above 0.76. For a different set of methods,

consisting of DeepST, SpatialPCA, STAGATE, PAST, and MNMST, the dip at the thinnest domain

becomes a more pronounced or even total total loss of detection. While these methods are only

affected for the thinnest domains, GraphST, SEDR, and CCST decrease abruptly in performance

already at larger domain thicknesses. Interestingly, for most of these methods, F1 scores near zero for

the thinnest domain only occur when that domain is highly transcriptionally similar to the reference.

Only MNMST and CCST also appear to be affected in their identification of the transcriptionally

distinct domains.

SpaDo and CellCharter decrease less abruptly in F1 score when applied to thinner domains, and

the effect is not conditional on the underlying transcriptional similarity levels. Another group of

methods exhibit more complex nonlinear dependencies on the domain size, like BayesSpace, SC-MEB,

GraphPCA, and BANKSY. The baseline methods and PRECAST show a gradual change in the

detection of the transcriptionally similar domains. Similarly, SpaGCN, PRECAST, SpatialMGCN,

and MERINGUE gradually decrease for the similar domains, but these methods, in contrast to the

previous baseline-like group, are also affected on the dissimilar domains. Finally, UTAG shows a

unique behaviour based exclusively on domain adjacency, whereas Vesalius is strongly affected by the

domain thickness irrespective of adjacency and similarity, and is only able to distinguish domains from

an approximate thickness of one-fourth of the tissue size in our experiment.

3.5.2 Size of circular domains

To corroborate our evaluation of size effects in domain identification performance in laminar tissue

configurations, we next investigate size effects in circular domains. To that end, we create two con-

figurations of semi-synthetic tissues containing three circular domains (“blobs”). In configuration I,

blob sizes are kept roughly equal, while in the other configuration II, we vary the sizes of the result-

ing domains by indicating different dispersion parameters for the underlying clusters generated by

scikit-learn. The resulting configurations are shown in Fig. 3.9a.

In the previous section, we found that the underlying domain similarity has a strong effect on the

detection of small domains. Therefore, we devise a strategy to avoid any bias introduced by the cell

type assignments in evaluating the size effect. Specifically, we permute the possible assignments of

cell types to domains and evaluate methods on all permutations, finally aggregating the results.

First, we evaluate the methods by means of the F1 scores attained on each blob across both

configurations (Fig. 3.9b). Indeed, configuration II shows a considerable size effect, with larger blob

sizes aiding detection across all methods. The biggest circular domain, termed blob A (see Fig. 3.9a),

is consistently detected with F1 scores over 0.8 by all methods except for SpatialMGCN, Vesalius,

MERINGUE, and UTAG. The scores decrease for the mid-size blob B, and the smallest domain, blob

C, has a median detection of only F1 = 0.44. Only BASS, ADEPT, and TACCO reach F1 scores of

over 0.61 on this smallest domain.

However, by a closer look at the F1 score results on the equal-sized tissue configuration I, it soon

becomes clear that the F -score is a biased evaluation metric for our purposes here (Fig. 3.9b, top).

Namely, in the vast majority of methods, the F1 score of blob B, in configuration I, exceeds the scores

of the other domains. This can not be a size-based effect, considering that the three blobs A, B,

and C are designed to be of approximately equal size. To elucidate this phenomenon, we perform

a thorough investigation of the domain segmentations found by different methods on both tissue

configurations. Finally, we found that the tendency towards favourable evaluation of blob B results
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Figure 3.9: Effect of domain size, evaluated in circular domains. a, Example samples showing

varying tissue configurations consisting of roughly circular domains. Configuration I consists of equal-

sized domains, while the domains in configuration II are of varying diameters. b, F1 scores per method

for each circular domain, corresponding to the domains shown in a by colour. Bar plots are shown for

configuration I with equal domain sizes (top) and configuration B with varying domain sizes (bottom).

Methods are ordered from left to right by descending average ARI, calculated by the mean across both

shapes of median performances. The variance per bar plot is over different assignments of cell types

to domains. c, Mean domain-wise confusion per method for each circular domain, shown as in b. The

domain-wise confusion is given by the maximal pairwise confusion involving the domain in question.

Method order is the same as in b.
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from an underlying bias in the harmonisation procedure undertaken to ensure label comparability.

Concretely, considering integer ground truth labels a and b, each assigned to na and nb spots such that

na ≈ nb but na > nb, putative domain assignments that mix two ground truth domains completely are

preferentially assigned label a. In the equal-size domain configuration, we have the case of nA = 336,

nB = 396, and nC = 315, such that a method output domain containing all spots from ground truth

labels A and B will be assigned label A. This leads to a disproportionate exaggeration of any size

effects present.

To circumvent this bias, we focus instead on the evaluation using our confusion metric, as in-

troduced in Sec. 3.4.2. We calculate the pairwise confusion between all domains i, j and define the

per-domain confusion as the maximum of its pairwise confusion

confusioni = max
j ̸=i

confusioni,j , (3.4)

where confusionij is calculated between domains i and j. Taking the maximum here is justified because

we are not interested in differentiating the number of domains being confused. That is, whether one

domain is confused with one or multiple others is irrelevant for our current purpose. Instead, we view

the per-domain confusion as a kind of “winner takes it all” metric - for a domain to be fully confused,

it is sufficient for it to be indistinguishable from one other domain.

Using this confusion-based approach, we evaluate all method performances and first investigate

the baseline methods. We find that the baseline methods now cease to show a size-specific effect in

the tissue configuration II (see Fig. 3.9c). This further confirms the validity of our analysis, as we do

not expect domain size to impact the behaviour of purely transcriptome-informed clustering methods.

As an additional validation in the case of equal-sized blobs generated in configuration I, we evaluate

the variation over the confusion of the different blobs. This variation appears randomly distributed

between all methods and is thus attributable to chance effects.

Finally, considering tissue configuration II with varying size circular domains, evaluating the impact

of domain size through the lens of the per-domain confusion shows a less striking effect than what

we found using the F1 score. However, still, nearly all methods exhibit increasing confusion with

decreasing domain sizes, notably for the smallest blob C domain. While many methods don’t show

a striking difference in confusion between differently sized domains, the only method that does not

exhibit the highest confusion for the smallest domain is SpatialMGCN.

Over both the analyses with F1 score and with our per-domain confusion metric, we thus see a

strong effect of the domain size. The most pronounced decreases in detection are seen for “small”

domains, with less pronounced effects between mid-size and large domains. We are also able to

corroborate some findings from the size evaluation based on layered domains. Specifically, methods

showing abrupt performance decline for thin domains in the layered configuration, like SpatialPCA,

STAGATE, PAST, and MNMST, show the same confusion levels for the large and mid-size blobs A

and B, and only increasingly confuse the smallest blob C.

3.5.3 Domain shape and tissue configuration

Finally, we want to evaluate whether the accurate identification of domains is affected by the domains’

shapes and the tissue layout more generally. To this end, we create semi-synthetic samples mimicking

four different archetypal of tissue layouts. Specifically, we generate individual circular, layered, and

concentric circular domains, and a more complex, interlocking domain configuration, all shown in

Fig. 3.10a. As with the previous evaluation of domain size in circular domains, we aim to minimise

the bias introduced by cell type assignments do domains. To this end, we again permute over all

possible cell type-to-domain assignments and average the results.

Since we are here again interested in whole-tissue performance rather than domain-specific effects,

we evaluate method performances using the ARI score. No perturbations are applied to the tissue in
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Figure 3.10: Effect of domain shapes and tissue configurations. a, Example samples showing

the different tissue configurations examined in this experiment. b, Top (bar plot), mean ARI scores

per method, averaging over the different tissue layouts (shapes). Bottom (heatmap), difference in

ARI to the mean per method. Mean differences are indicated by colour, where positive values (green)

indicate better-than-average method performance on a given shape. The colour scale is capped at the

range of -0.11 to 0.11 for better visibility; larger differences are indicated within the heatmap by value.

this analysis, leading most methods to perform very well on all samples, as shown by the mean ARI in

Fig. 3.10b). Still, we investigate the differences in ARI on each tissue layout to disentangle potential

shape effects.

Interestingly, most methods perform the best on the layered configuration. This improvement

over the mean, and the general effect of tissue layout on method performances, is modest in most

cases, ranging within ARI differences of -0.1 to 0.1. The most strongly affected methods within this

range of effects are DeepST, SpaceFlow, SCAN-IT, and SpaDo, which perform best on layered tissues,

and CCST, which performs decidedly worse on layered configurations than on all other shapes. In

contrast, Vesalius and particularly UTAG show significantly larger effects, markedly favouring the

laminar, layered tissue configuration. Specifically, they outperform their average performance by 0.16

and even 0.49, respectively, when applied to layered tissue.

While the Vesalius and UTAG show a strong preference towards finding layered domains, most

other methods only show small effect sizes concerning domain shape and tissue layouts.
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Chapter 4

Additional results from secondary

evaluation criteria

This last chapter presents additional analyses from the benchmarking pipeline introduced thus far,

focusing on secondary evaluation criteria. Specifically, I describe how we evaluate runtime, memory

usage and usability of the methods, and show results from these investigations.

4.1 Runtime and memory benchmarking

The evaluation of runtime and memory usage is an important part of method benchmarking, comple-

mentary to performance reporting. The following sections describe the setup enabling us to perform

this analysis, and show runtime and memory usage results across methods and different datasets.

4.1.1 Evaluation setup

Having implemented a comprehensive Snakemake-based method benchmarking workflow directly en-

ables us to measure the runtime and memory usage of the methods on each analysed sample. Specif-

ically, Snakemake rules can take the benchmark directive, configuring jobs resulting from these rules

to directly output wall clock time and memory usage to a user-specified text file.

Analysing method runtime and memory usage on the real data samples included in the benchmark

provides general insights into method behaviour. Additionally, we are interested specifically in the

evaluation of method scalability, in terms of these secondary evaluation measures, with respect to the

number of cells or spots. To that end, we utilise the SRTsim simulator introduced in Sec. 3.1.2 to

generate samples of varying cell numbers [214]. Specifically, we utilise the de novo mode of data gen-

eration, simulating the expression of 500 “signal” and 500 “noise” genes. The simulator is configured

to create random cell locations within a square tissue layout, and we define four rectangular layers as

spatial domains. Within that layout, we vary the number of locations in the tissue between 2000 and

100’000. Additionally, to increase statistical power, each sample size is generated for three random

seeds. The scalability experiments were evaluated on an AMD Ryzen Threadripper 3990X 64-Core

Processor @ 4.3GHz, equipped with a Nvidia GeForce RTX 3090 GPU. For the scalability evaluation,

differently to the experiments on real and semi-synthetic data, methods that have the capability of

utilising GPUs were configured to do so.

4.1.2 General runtime and memory results

As a first overview, we evaluate the runtime and memory usage of all methods on the real datasets.

We find that methods range widely in both quantities, with runtimes between under 20 seconds and
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close to 8 hours (Fig. 4.1a), and memory usage between barely over 200 MB and almost 100 GB

(Fig. 4.1b).

Generally, it is apparent that both runtime and memory usage are affected across methods by

the size of the count matrix. This size is not only determined by the number of cells or spots, but

importantly also by the number of profiled genes. Particularly, memory usage, but also runtimes on

datasets from the Visium and Slide-seq technologies are significantly increased. Interestingly, Vesalius

stands out with both the longest runtime and the highest memory usage of any method on any dataset,

with its performance on Visium–Fu. This dataset, in contrast to the other Visium dataset, exhibits

a relatively complex domain structure and more ground truth domains than any other dataset we

include (see Appendix B).

In terms of the runtime, CCST takes an average of close to 6 hours to run on the high-resolution

osmFISH and MERFISH datasets, and MNMST uses a similar amount of time on the Slide-seq data.

Considering the memory usage, ADEPT takes about one order of magnitude more than the average

method, across all datasets. In terms of fast runtimes and low memory usage, no method clearly stands

out. However, a number of methods keep their runtimes under five minutes consistently, and while

memory usages are increased across the board for the Visium and Slide-seq datasets, the majority of

methods still use under 5 GB of memory.

4.1.3 Scalability

Following up on the analysis using real data, we aim to isolate the effect of an increased number of

cells or spots. To this end, we evaluate method performances on simulated samples encompassing a

range of sizes. For better distinguishability of individual method trends, we split the methods into

four constituent groups based on slope quantiles in both runtime and memory. There is a tradeoff

between memory and runtime for some methods, though a large subset of methods shows either steep

or shallow increases across both measures.

Among the methods with both good runtime and memory scaling are ADEPT, BANKSY, CellChar-

ter, PAST, STAGATE, SpaceFlow, and TACCO (Fig. 4.2a,a’). These methods range in runtimes from

a few seconds to under a minute on the smallest samples (2000 cells), and just over a minute to less

than ten minutes on the largest samples (100’000 cells). Memory usage ranges from just over 300 MB

to under 4 GB on the smallest, and just under 2 GB to close to 10 GB on the largest samples. The

best scaling with respect to runtime is shown by BANKSY, while TACCO stands out for low memory

usage. ADEPT is the only method in this group which does not produce output on data with over

10’000 cells.

Methods which show decent scaling with respect to runtime, but increase steeply in memory

usage, include BASS, BayesSpace, CCST, PRECAST, SEDR, SpaDo, and SpiceMix (Fig. 4.2b,b’).

Among these methods, SpiceMix stands out with high runtimes, starting out at close to 30 minutes

for 2000 cells, and steep memory scaling. It does not produce output for samples with over 6000 cells.

BayesSpace, CCST, and PRECAST use over 100 GB of memory for the largest samples, while BASS,

SpaDo, and SEDR do not produce any output. There are only a few methods showing the opposite

behaviour of runtime and memory scaling, namely steep increases in runtime while memory usage

remains relatively stable (Fig. 4.2c,c’). Of the three methods showing this behaviour, SpatialMGCN

is the only one which results in any output for samples with high numbers of cells, taking over 6 hours to

finish running on the largest sample. By contrast, DeepST and SC-MEB show similar increase trends,

but cease producing clustering results for samples with over 10’000 and 20’000 cells, respectively.

Lastly, the remaining methods that show favourable scaling neither in runtime nor in memory usage

include GraphPCA, GraphST, MERINGUE, MNMST, SCAN-IT, SpaGCN, SpatialPCA, and UTAG

(Fig. 4.2d,d’). While all of these methods start out with runtimes of under 4 minutes and memory

usages of up to 3 GB on the smallest samples, they increase rapidly in usage of both resources as the
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Figure 4.1: Runtimes and memory usage on real data. Wall clock runtime (a) and memory

usage (b) of all methods on all real samples, aggregated by mean per dataset. Datasets are sorted by

the mean number of spots or cells.

number of cells increases. SpatialPCA does not produce any output for samples larger than 6000 cells,

MNMST and UTAG cease producing output above 20’000 cells, and GraphST fails to result in an

output on the largest sample of 100’000 cells. Except for SpatialPCA, all methods use at least 300 GB

of memory on the largest sample for which they result in any output. GraphPCA and MERINGUE

stand out with a maximum memory usage of over 200 GB on the largest sample, and MERINGUE

also takes the cake in runtime, running for almost two days to generate a result.

Vesalius did not produce any output for the samples generated using SRTsim. We were not able

to determine what caused this.

4.2 Usability evaluation

In addition to runtime and memory usage, the usability of methods plays a significant role in their

broader adoption by the research community. For completeness of the benchmarking, it is therefore

interesting to evaluate methods on usability criteria, encompassing user-friendliness and accessibility.

These assessments tend to be subjective, but can be made more objective by the use of predefined

checklists. The results shown in this section are preliminary, created through a basic usability checklist.
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Figure 4.2: Scalability of methods concerning runtimes and memory usage. Wall clock time

and memory usage by all methods on in silico samples with varying numbers of locations. Unprimed

subplots (left) show runtime, primed subplots (right) show memory usage. Methods are split into four

groups based on scaling trends in each quantity. Both the x and the y axes of all plots are shown on

a log scale. a, a’, Slow increase in runtime and in memory. b, b’, Slow increase in runtime and fast

increase in memory. c, c’, Fast increase in runtime and slow increase in memory. d, d’, Fast increase

in runtime and memory. Methods are categorised into slow and fast increases based on percentiles

such that the resulting groups contain roughly equal numbers of methods.
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Figure 4.3: Usability of methods. Evaluation is carried out using the checklist in Tab. 4.1. Methods

are sorted by mean performance over all criteria.

In particular, we took inspiration from a scoring checklist utilised by Duo et al. in their benchmark-

ing of single-cell and spatial transcriptomics simulators [162]. We implemented a simplified checklist,

adapted to the needs and circumstances of the spatial domain identification methods included in our

benchmark. The checklist is shown in Tab. 4.1. We categorise aspects of method usability into Avail-

ability, including installation procedures, Maintenance, which incorporates criteria relating to good

coding practices and continued support through platforms such as GitHub, and Documentation. Each

category of usability is interrogated using three specific questions, the answers to which are mapped

to values between 0 and 1, with 1 corresponding to the best and 0 to the worst outcome. An addi-

tional value of 0.5 is possible in some questions, indicating partial fulfilment of the criterion. All of

the methods included in this evaluation are open-source and freely available through GitHub, so we

primarily base our answers to the checklist on the public GitHub pages.

We find that only TACCO completely fulfils all of our usability criteria (Fig. 4.3). While all meth-

ods except for CCST, SpatialMGCN, and SCAN-IT provide at least rudimentary installation instruc-

tions within the README.md files of their GitHub repositories, several methods, including CellCharter,

SpatialPCA, BASS, MERINGUE, SpaDo, and SCAN-IT, do not list necessary dependencies in an eas-

ily accessible manner. Additionally, only just under half of all methods provide their tool as a package

easily installable using conda, pip, or Bioconductor. The remaining methods are primarily installed

directly through GitHub, which might pose a challenge to less computationally savvy prospective

users.

Concerning maintenance criteria, the majority of methods show good usability. Except for ADEPT,

CCST, and SpaDo, all methods publish modularised or otherwise transparently structured code. This

is relevant to potential method users for increased understanding of methods’ inner workings. Addi-

tionally, in some cases, users might need to modify functions locally to work in their own setups1. Be-

sides DeepST, all tools for which any GitHub issues had been opened provided full or partial responses

to those issues. Lastly, two-thirds of all methods have established version control, encompassing full

versioning or publication tags.

On the other hand, many methods do not provide adequate documentation according to our

criteria, with 11 out of 26 methods not documented beyond usage tutorials. All methods do provide at

least one tutorial, and except for DeepST, SpiceMix, SpatialMGCN, and CCST, even multiple tutorial

1For example, the mclust function of SEDR contains a hardcoded setting of the R home directory [170].
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versions. Additionally, slightly over half of the tools are additionally documented in a dedicated

site. However, most methods do not especially excel in terms of function documentation. Only

nine methods provide either a dedicated API documentation or thorough code comments to explain

function parameters and usage. This indicates that most tool developers rely on the prospective

users following tutorials closely to figure out the workings of individual functions. This may, in some

instances, significantly complicate the adoption of tools for novel technologies or data types, for which

no dedicated tutorial exists.

Overall, while most methods fulfil the majority of our usability criteria, there is considerable room

for improvement, especially in the realm of comprehensive documentation.
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Chapter 5

Discussion and Conclusions

Within the field of spatial transcriptomics, as in the broader bioinformatics community, new compu-

tational analysis approaches evolve alongside technological development. A wealth of different com-

putational approaches to a diverse set of data analysis types has been and continues to be developed.

In this context, independent benchmarking studies evaluate existing methods, providing an overview

of the current state of the art. They intend to guide the research focus of method developers, as gaps

in the literature and application areas become apparent. Further, they serve to educate prospective

method users, giving an overview of applicable tools and demonstrating their respective strengths.

This thesis presents the effort of, and results from, a benchmarking evaluation of methods for

spatial domain identification. The entire benchmarking pipeline was implemented using Snakemake

for workflow management and integration with conda, enabling reproducible and portable analysis. We

selected 26 methods for benchmarking and used real, publicly available spatial transcriptomics datasets

from a range of technologies for their initial evaluation. After generating a set of hypotheses about

the effect of various data characteristics on method performance, we created a pipeline for the tunable

generation of semi-synthetic spatial transcriptomics data. This custom pipeline enabled us to vary

parameters corresponding to features of spatial transcriptomics technologies, as well as tissue-inherent

factors, in turn allowing us to carry out a systematic investigation of how these factors affect method

performances. Additionally, we evaluated the stability and robustness of methods to perturbations,

and investigated consensus approaches as a competitive and robust alternative to individual methods.

Lastly, and importantly for a comprehensive method comparison, we benchmarked the runtime and

memory usage of all individual tools with a focus on scalability, and graded the methods on a usability

scale.

5.1 Benchmarking setup and pipeline

Methods were selected for evaluation based on informal criteria of relevance, usability, and variety of

approaches. We settled on the inclusion of 26 individual methods, which we be broadly categorised

into clustering-based, neural network-based, statistical modelling-based, and image processing-based

groups. The methods were first published over a number of years, ranging from 2020 to 2024. We

only included methods published after June 2024 if they had been previously uploaded to bioRxiv and

we had already included the tool based on this preprint version. A number of methods are first made

public in the preprint format on platforms like bioRxiv, enabling the community to access tools and

resources before the termination of peer review for traditional publication. This creates an opportunity

for method developers to make their approaches known to potential users and other interested parties.

In certain cases, especially when traditional publication is delayed by various possible factors, preprint

publication can lead to methods being widely adopted before their eventual publication. Such is the

case for methods like SEDR, which was published by Genome Medicine in 2024 [170]. However,
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Dataset Ref.

dataset

First publication of technology, and relation to dataset

ST–Stahl [37] [37] (same publication)

Visium–Maynard [114] – (commercial technique, first published study)

Visium–Fu – – (commercial technique, example data resource)

Slide-seq–Langlieb [200] [39] (same research group)

STARmap–Wang [48] [48] (same publication)

MERFISH–Moffitt [199] [46] (same research group)

MERFISH–Zhang [197] [46] (same research group)

osmFISH–Codeluppi [44] [44] (same publication)

Table 5.1: Relationships of datasets and technologies. The relation of the datasets included in

this benchmark to the technologies by which they were generated.

enabled by its having been made accessible as a preprint on bioRxiv in 2021, it is one of the most

highly cited methods in the field (ranked 5th out of the 26 methods included in our benchmark, with

over 200 citations as of October 2, 2025).

As for the selection of datasets for method evaluation on real data, we were able to include 8

datasets from 6 different technologies. The technologies span a wide range of the available tech-

nological parameter space, ranging from low-resolution, full-transcriptome sequencing approaches to

high-resolution, targeted smFISH-based techniques. We aimed to include a large number of datasets,

but were heavily constrained by the availability of ground truth domain annotations. Of the datasets

we were able to include, 6 are of the mouse brain, 1 is of the human brain, and 1 is of a human breast

cancer sample. All but two of the datasets were published by the same research group that originally

developed the technology utilised in the data acquisition, as detailed in Tab. 5.1. Notably, three of

the datasets are published as part of the original technology demonstration. Both datasets that are

not directly affiliated with the technology development are generated using Visium, a commercial

approach based on Spatial Transcriptomics (ST). One of these datasets, namely the dorsolateral pre-

frontal cortex dataset published by Maynard et al. in 2021, represents the first data published using

the (at that point) newly demonstrated technology [114].

It may be interesting to consider the implications of most of our included datasets being generated,

if not by, then in direct relation to the original developers of the utilised techniques. This shows, on

one hand, that first publications utilising a novel approach may take special care to present data in

such a way that it is usable as a resource. On the other hand, it may be an indication that techniques

developed by specific research groups may not generalise easily to different circumstances or resource

availability. Some techniques may only be applicable in highly specialised research environments,

restricting their usability by the interested community.

As for the selection of evaluation metrics, we classify the available quantitative strategies into

supervised (utilising the comparison to a ground truth annotation) and unsupervised (based on only

the putative clustering). By far the most prevalent metric in the field is the Adjusted Rand Index

(ARI), which evaluates the “goodness” of a putative clustering by its correspondence to a “true”

data labelling. This supervised approach to spatial domain evaluation carries some issues, notably

and most importantly, the necessity of a trustworthy ground truth data annotation. This is problem-

atic in multiple aspects. First, a detailed annotation of the data in question is often performed by

experts and thus necessitates a considerable investment of time and resources. Further, the annota-

tion is often based on, or aided by, an accompanying histological image. These images are generated

alongside the data acquisition process in technologies like Visium, making them easily accessible for

downstream evaluation. However, for other approaches, histological imaging presents an additional

step to be completed during data generation, again representing time and resources invested. Ad-
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ditionally, histology-based spatial domain annotation may produce a bias in the field through the

resulting ground truth – namely, aiming to identify the same structures as visible in histology again,

this time through transcriptomics-based strategies. This may obfuscate the identification of purely

transcriptionally defined tissue structures, which are not evident by visual examination.

In cases where no histology information is available, domain annotations are frequently inferred

by the evaluation of marker genes for known tissue regions. This is relatively straightforward to

implement for exceedingly well-studied tissues like the mouse brain, where curated marker gene lists

for different structures are available. It poses problems, however, in more complex or understudied

tissues. Particularly in samples originating from tumours, there may not be known gene sets available

for tissue annotation. An interesting approach is taken by the authors of SEDR in annotating the

human breast cancer dataset included in our benchmark [170]. Namely, they base their annotation

of spatial domains on the previously annotated cell type labels. Accurate and well-informed cell type

labelling is a long-standing focus of the single cell transcriptomics field, and may thus be used as a

starting point for the annotation of tissue structures and domains.

This leads to the last, and potentially most relevant, issue concerning the identification of a ground

truth for domain identification. As briefly touched upon in the introduction to the present thesis, to

the best of my knowledge, there is currently no consensus in the field about the definition of spatial

domains. As detailed in Fig. 1.6 of the introduction, many tools are published under loose working

definitions, citing expression coherence or cell type composition. Other methods simply operate under

the mantle of spatially-augmented clustering, avoiding the necessity of defining a specific goal, or give

no definition for the structures they aim to identify. Few methods, only 2 out of a sample of 33 inter-

rogated for this thesis, define domains as being functionally distinct from the surrounding tissue. This

definition is broad and does not translate directly to a well-formulated aim for method development.

Generally, any biologically solid definition for domains identifiable through transcriptomics would have

to be “translated” into the language of computing, necessitating an additional level of abstraction.

In the scope of this thesis, I am not able to further investigate or attempt to close this gap in the

research. However, I am convinced that for purposeful and streamlined method development, and

the clear demarcation of the field of applicability of these methods, it is imperative to work toward a

well-defined concept of spatial domains.

5.2 Method evaluation on real and semi-synthetic datasets

As a preliminary investigation, we considered the most popularly used supervised metrics for spatial

domain evaluation. Comparing the Fowlkes-Mallows index, the Adjusted and Normalised Mutual

Information metrics, and the Accuracy to the ARI, we showed that they are largely equivalent in their

assessment of clustering correspondence to the ground truth labelling. Using the example of outlier

inconsistencies in the domain assessment across metrics, we demonstrated the advantage of the ARI

for the purpose of evaluating spatial domain identification performance.

Further, we established a consensus approach, facilitated by the implementation of a host of

methods in our comprehensive Snakemake pipeline. We demonstrated that, particularly, the unbiased

consensus evaluation over all method outputs represents a stable and competitive alternative to any

individual method.

In the following sections, I will discuss insights gleaned from analysing method performances on

the real data and connect them to detailed and systematic investigations we performed using our

semi-synthetic data generation pipeline.
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5.2.1 Technological variation

On the real data, we found that method performances vary widely between different datasets. Partic-

ularly the resolution appeared to strongly affect method performances. While the dedicated spatial

domain identification methods showed a strong improvement upon the baselines on the single cell-

resolved datasets, no strong improvements were attained in the lower-resolution Visium data. Besides

the resolution, technologies differ in the number of genes which are profiled, and the sparsity of the

resulting count matrix. The number of profiled genes varies widely between our included datasets,

from 33 in the case of the osmFISH dataset to full transcriptome profiling for the sequencing-based

approaches. Interestingly, in the real data, no direct relationship of the number of genes in a dataset

to the method performances was apparent. Particularly, whereas many methods performed worse on

the MERFISH datasets (with 200–300 genes in the gene panel) than on the full-transcriptome Visium

data, the average performance on the osmFISH dataset was consistently high. To evaluate whether

there are more complex relationships at play, we later used our semi-synthetic data to investigate the

effect of differing gene numbers. Lastly, the sparsity of the data appeared to play a significant role

in method performances. The Slide-seq dataset, with a sparsity of 98%, exhibited very weak method

performances across the board.

This strong dependence on the dataset and particularly the technology led us to investigate the

effect of technology-level data characteristics systematically. We considered the effect of resolution by

binning semi-synthetic single-cell-resolution data into progressively larger “spots”, averaging over the

individual cells’ gene expression levels. We found that of the 9 competitive methods which perform

significantly better on MERFISH–Zhang than on Visium–Maynard, 6 were within the top 8 methods

exhibiting the strongest declines in performance with decreasing resolution. Conversely, the baseline

methods and a number of methods which performed similarly significantly better on Visium–Maynard

actually exhibited an increase in performance associated with larger spot sizes, and thus smaller

resolutions.

In terms of the effect of changing the number of profiled genes, all methods tended to decline in

performance at small numbers. However, they varied in the onset and rapidity of this decline. Meth-

ods which performed better on Visium–Maynard than MERFISH–Moffitt in the real data evaluations

exhibited the steepest ARI slopes, indicating that they are strongly affected by technological multi-

plexing capability. Interestingly, BayesSpace, which was originally designed for spot-level Visium or

ST data, was only strongly affected by declining gene numbers once the panel size shrank below 100

genes.

Modifying the sparsity of the semi-synthetic data, it is unsurprising that all methods declined in

performance when the sparsity neared 100%. Rather, it is interesting to evaluate methods by the onset

of the decline, and the performance at extremely low signal availability. Some method performances

only started to decline at sparsities of 0.95%, and at 99% sparsity, 7 methods still recovered enough

domain-specific signal to reach ARI scores above 0.42. All in all, several methods appeared suited for

the analysis of highly sparse data.

5.2.2 Tissue-level perturbation

Besides the direct technological parameters, we also investigated a related phenomenon, which could

be contributing to the strong baseline performances on Visium datasets. Essentially, we noted that

through the probable aggregation of multiple cells into one spot in low-resolution technologies, a

technology-inherent gene expression smoothing operation is performed. The idea is illustrated in

Fig. 5.1, considering an example gene which is highly expressed in only one of the semi-synthetic

domains. As the resolution of the data is decreased (Fig. 5.1a), and gene expression is aggregated

within spots, the region defined by high expression of the example gene becomes more contiguous and

visually easier to identify (Fig. 5.1b). This qualitative interpretation is further corroborated by 2D
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Figure 5.1: Effect of decreasing resolution on distinguishability of domains. Synthetic data is

shown for four settings of the sample resolution as parametrised by the spot side length, ranging from

0.5 (close to single-cell resolution) to 7 (corresponding to a resolution between the Visium and ST

technologies). a, Ground truth domain annotation. b, Expression of example gene Opcml. Expression

values are scaled from min to max per resolution; darker colours correspond to higher expression.

Within the data generation pipeline, gene expression values for lower resolution (higher spot side

length) are created by the mean over cells binned to the corresponding spot. c, UMAP embeddings of

the semi-synthetic gene expression at varying settings of the spot side length, showing more visually

separated clusters at lower resolutions.

UMAP embeddings of the gene expression space (Fig. 5.1c), which show clearer and more distinct

clusters as the resolution is decreased. In the same vein as the clusters being visually more easily

distinguished in the UMAP, the baseline expression-based clustering methods would identify these

constituent domains more readily.

The hypotheses emerging from these observations are twofold. The first can be formulated as

the conjecture that high-performing methods for single-cell resolution data should be able to handle

high levels of intercellular transcriptional heterogeneity, which would negatively affect the domain

identification performance of baseline-like methods. As for the second hypothesis, we observed that the

baseline methods are very adept at distinguishing domains when they correspond to transcriptionally

defined clusters. However, excellent spatial methods may be able to distinguish domains with a higher

transcriptional similarity to the rest of the tissue, based on subtle, spatially associated gene expression

differences.

We investigated both of these hypotheses using our semi-synthetic data generation setup by adding

varying levels of different perturbative noise types to the data. Indeed, we found that most of the
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spatially-informed methods are able to distinguish domains defined by highly similar cell types, which

are indistinguishable to the baseline approaches. We were able to identify three archetypes of method

failure on highly perturbed data, distinct in their respective characteristic ARI/PAS curves. Interest-

ingly, we found that many methods decline in performance in a nearly stepwise fashion upon increasing

transcriptional similarity, a finding which is slightly obscured by the tissue-wide performance evalu-

ation carried out using the ARI. To elucidate this observation, we additionally performed pairwise

domain perturbations, allowing for a more detailed evaluation of method performance as two cell

types progressively converge to a common gene expression profile. Here, we found that a large group

of methods exhibits a nearly binary confusion performance, with little in-between confusion states.

Investigating the effect of cellular heterogeneity, we encountered a different picture – namely, many

methods declining gradually in performance. This, along with the significantly higher PAS values ex-

hibited on this perturbation by the vast majority of methods, indicated that these tools continually

found transcriptionally defined clusters, neglecting spatial contiguity as expression heterogeneity in-

creased. A small group of methods stood out for their high performance on heterogeneous domains.

Besides the generally high-performing methods BASS, TACCO, and SCAN-IT, this notably included

SpaDo and SpaceFlow, which ranked in the top 4 methods considering their robustness to heterogene-

ity (compared to ranks 10 and 11 in robustness to transcriptional similarity). Similarly, in the pairwise

heterogeneity perturbation, they were among the methods maintaining low confusion at the highest

perturbation levels. Interestingly, they both performed significantly better on MERFISH–Zhang than

on Visium–Maynard in the real data, indicating a possible performance advantage on high-resolution

data awarded by robustness to intercellular heterogeneity.

5.2.3 Domain sizes and shapes

Interestingly, while methods designed for spatial domain identification outperformed the spatially

unaware baselines on most real data, this was not the case for the ST–Stahl dataset. On ST–Stahl,

the non-spatial baseline methods reached performances up to ARI = 1, corresponding to spotwise

perfect domain annotation. Investigation of the dataset structure in both real and expression-based

UMAP space indicated that the ground truth labels correspond exceptionally closely to well-defined

transcriptional clusters. On the other hand, in real space, the annotated domains of this dataset

are thin, arranged in concentric, laminar layers that are frequently only one spot wide. These two

complementary observations lead us to the hypothesis that some spatially-aware methods may be

prone to over-smoothing of transcriptional differences for the sake of contiguous, “blobby” domain

annotations. In particular, those methods may exhibit a performance difference on transcriptionally

identically defined domains, depending on the size of the domain in question. This hypothesis was

also further supported by the observations of method agreement on real data, where we encountered a

distinctly lower spot-level agreement in transcriptionally similar domains when they contained smaller

numbers of cells or spots.

We investigated the effect of domain size in two different scenarios, consisting of layered structures

with shifting widths and circular domains of varying diameter. In both cases, many methods were

affected by the size of the domains in their detection. This domain size effect notably played a large

role at small sizes.

Evaluating a possible influence of domain shape on method performances, we found that the

majority of methods showed a slight bias towards layered structures. Connecting this to the real

data, the overall well-performing methods SpatialPCA, SpaceFlow, SCAN-IT, SpaDo, and GraphST

all exhibited better performances on the MERFISH-Zhang dataset, which consists of laminar brain

layers, than on MERFISH-Moffitt, with a more complex shape.
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5.3 Analysis of method stability and secondary evaluation criteria

Besides investigating the effect of technological and tissue-level data characteristics on method perfor-

mance, we also aimed to complete our comprehensive analysis by secondary evaluation criteria. After

a first analysis of method stability and robustness to perturbation, we further benchmarked methods

on their runtime, memory usage and scalability. Lastly, method usability was briefly explored.

5.3.1 Stability analysis

The stability of methods was evaluated over multiple independent runs on the same data, and addi-

tionally, robustness with respect to the loss of local spatial coherence was investigated. To quantify the

stochastic method stability, we developed an approach utilising input reordering to circumvent fixed

random states implemented by some methods. We found substantial instability for some methods, as

measured by the spread of ARI achieved on reruns of the same, reordered data. One single method,

CCST, did not exhibit any variation in its performance.

The investigation of loss of local spatial coherence is motivated by an interest in synthetic data

generation. Many attempts to simulate spatial transcriptomics data encompassing a ground truth

spatial domain annotation have been published, primarily within the context of method development

and for within-method benchmarking purposes. With the exception of certain published simulation

software tools (SRTsim, scDesign3), which do not necessarily generate a spatial domain annotation,

most published strategies randomly assign cells to spatial locations.

We simulated the effect of this random count allocation in two real datasets, Visium–Maynard and

MERFISH–Zhang, by randomly reshuffling the gene expression among spots per domain. Our analysis

showed that random count assignment potentially creates a considerable bias in method evaluation

based on synthetic data, as methods were strongly and differentially positively affected by the loss of

local spatial coherence. Interestingly, except for BASS, all methods which improved more strongly

on Visium–Maynard are those which were also shown to perform significantly better on that dataset

a priori than on MERFISH–Zhang. On the other hand, methods like BANKSY, TACCO, UTAG,

and GraphPCA, which showed stronger improvement on MERFISH–Zhang, also generally performed

significantly better on that dataset than on Visium–Maynard in the unperturbed states. Thus, the

performance improvement attained by methods upon loss of local coherence seems to exhibit a measure

of correlation with their baseline method performance.

5.3.2 Runtime, memory usage, and usability investigation

We further evaluated the runtimes and memory usages of all methods, both on the public real datasets

and on a dataset of in silico samples generated using SRTsim [214]. We found considerable differences

between methods in both quantities.

Analysing real data results, a possible bias becomes apparent that is inherent in measuring these

secondary evaluation quantities näıvely. Specifically, we are not distinguishing the runtime and mem-

ory usage of the method itself from the resources and time needed to simply load the involved matrices

into memory, and potentially preprocess the data. We have implemented the same data loading pro-

cedures for all R and Python-based methods, respectively, but it is not possible in our setup to avoid

a biased evaluation between the two programming languages. Additionally complicating this dis-

ambiguation, methods differ in whether they incorporate steps for data preprocessing within their

framework, or assume preprocessed data as an input.

Next, we performed a scalability investigation of runtime and memory usage across methods.

Overall, the runtimes and memory usages exhibited on the larger synthetic data containing over

10’000 cells were comparable to those on the real datasets. However, the quantities we found on lower

cell numbers were lower than those measured on real datasets of similar sizes. This could – beside the
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possible effect of the different computing architecture – indicate an effect of the number of genes, or

of the lower complexity of the synthetic data.

We found that due to probable memory or runtime constraints on the side of method users, the

majority of methods are not suited for the analysis of very large datasets. This is a considerable issue

and will likely hamper the adoption of tools in the future, as the trends are towards profiling larger

tissue sizes (e.g. StereoSeq) and higher numbers of cells. In the extraordinary accompanying material1

to their 2022 publication, Moses and Pachter already count a number of published studies profiling

over 100’000 cells, profiled mostly using MERFISH and Xenium [54]. The earliest such study listed is

from 2018, and in the years since 2023, many more have been published. Spatial domain identification

methods which fail to produce a result on sample sizes exceeding even 10’000 cells are unlikely to find

wide applicability in this context. Similarly, methods which scale unfavourably in runtime or memory

usage may not be feasibly applied to the large datasets which are already being generated.

Lastly, methods were evaluated by usability criteria. This is an indispensable part of thorough

method benchmarking, as the adoption of methods by the user group is heavily influenced by ease

of use. We utilised a usability checklist inspired by Duo et al., through which we graded methods

on criteria of availability, maintenance and documentation. While most tools scored decently on

availability and maintenance, a majority of methods did not provide adequate documentation beyond

tutorials showcasing specific applications.

5.4 Future directions and outlook

In the research described within this thesis, we have provided a comprehensive overview and bench-

marking of the state of the art in spatial domain identification. As is also generally the crux of

descriptions of the state of the art, benchmarking projects describing current methods are rapidly

out of date [152]. We have attempted to circumvent some of this effect by focusing on not merely

describing method performances, but instead aiming to disentangle and thereby explain possible influ-

encing factors. However, since the cutoff date for method inclusion in our benchmark, a multitude of

methods have been developed which reportedly outperform existing approaches. In the introduction

to the present work, I have outlined reasons to be wary of highly confident performance claims – and

thus, further benchmarking efforts are needed to evaluate the existence and extent of performance

improvements [143]. However, the creation of evaluation pipelines is time and resource-intensive, and

there is an undercurrent of reinventing the wheel with every novel benchmarking effort.

To avoid this recurring trap, one direction to take with this present work is the continued develop-

ment of an extendable benchmarking framework. In fact, the structure of our pipeline already lends

itself to extension, both through the inclusion of new datasets and through novel method implementa-

tions. Methods are easily added to the Snakemake workflow through the generation of two files: one

describing the prerequisite computing environment in YAML format, and the other containing the

script for running the method non-interactively. We already provide a detailed guide to the expected

input and output formats, Snakemake rule definition, and the changes in configuration files necessary

to fully implement a new method. In this way, we hope to form a resource for method developers to

easily compare their new implementations to existing, high-performing approaches. Additionally, this

will aid researchers working on generating new datasets through presenting the ability to evaluate a

host of pre-implemented methods on their data and find the best fit.

Finding the best fit of methods and parameters for a novel dataset also connects to a different

future interest, namely, in creating a coherent and widely applicable definition of spatial domains.

Reviewing different avenues for ground truth generation in terms of the underlying, implicit domain

1The accompanying material, taking the shape of an evolving online resource in addition to the originally published

book, is accessible at pachterlab.github.io/LP 2021.
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definitions would form a meaningful starting point for this broad endeavour. It could also be highly

informative to evaluate tissue structures characterised by low method agreement with the ground truth

annotations, which could help to identify friction points in the current working domain definitions.

Generally, there needs to be an increased dialogue between experimental groups that generate data

and others focusing more strongly on data analysis. A more direct interchange of ideas between wet-

lab biologists and computational method developers would avoid tools being produced for the sake of

method development and instead aim collective efforts at solving concrete, existing problems. Ideally,

those problems can be formulated as part of one coherent and fixed spatial domain definition. In

the more realistic case, namely the vastly different applications and different tissue types leading to

disparate formulations, this investigation will still have brought a measure of clarity of purpose to the

field.

Aided by well-defined concepts and formulations of spatial domains, the development of well-suited

evaluation metrics for the specific task of domain identification could be within reach. Approaches

for unsupervised spatial domain evaluation that are specific to this field have not yet been developed.

It has been suggested to take inspiration from the geographical sciences in this endeavour, as these

already present a tradition of regionalisation methods and their evaluation [220, 221].

Concerning more concrete future paths, the further investigation and development of our consensus

approach could be of interest. The unbiased consensus over all methods included in our evaluation

is stable and highly competitive, but could potentially be improved by the integration of more so-

phisticated consensus strategies, such as the Monti consensus clustering algorithm [222]. Detangling

the positive performance effects of a consensus approach integrating individually worse-performing

methods could yield valuable insights. On a different note, it would be interesting to implement a

combination of the consensus approach with our input-reordering stability evaluation strategy. Our

investigation highlighted the considerable instability of a large group of overall well-performing meth-

ods. Through combining the ability to, through input reordering, repeatedly run a method on the

same data, with the subsequent integration of method outputs through taking the consensus, method

stability, and potentially also performance, could be enhanced.

Further, leaning on the accumulated knowledge from this comprehensive overview and in-depth

evaluation of the field, we could undertake the development of our own stand-alone method for spatial

domain identification. This would enable us to directly bring in our expertise to the field, creating

an approach to apply insights gleaned from the benchmarking process. One interesting avenue entails

the development of a not purely data-driven method, instead integrating in a level of prior knowledge

about the dataset in question. This would directly involve expertise in both method development

and the question of biological applicability. In the majority of applications, users are experts in the

datasets they are analysing, and might already have a measure of knowledge or intuition about the

structures they are aiming to identify. One example of such an application could be the molecularly-

informed identification of glomeruli in renal tissue [223]. This type of analysis might benefit from

the incorporation of priors, for example, to encode informative transcriptional markers or domain

shapes of interest. On the other hand, a fully exploratory analysis strategy might be chosen by

researchers studying tumour tissue of previously unknown structure. For such an evaluation, it might

be useful and informative to focus on a method enabling comprehensive, multi-level analysis through

tunable, interpretable hyperparameters. In any future method development approach, it is imperative

to especially consider robustness to cellular heterogeneity as a hallmark of good performance on high-

resolution spatial transcriptomics data. As technological advances point in the direction of higher

resolutions, this tool characteristic is likely to increase in importance.

Concerning the systematic method evaluation undertaken in this work using semi-synthetic data,

there are a few avenues for potential further development. Notably, the investigation of the effect of

changing the number of profiled genes could be further enhanced in realism. Instead of downsampling

to randomly selected gene subsets, we could select for highly variable or spatially variable genes, or
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alternatively, utilise an algorithm for marker gene detection. This might be more representative of

real data insofar as gene panels in FISH-based, targeted approaches are also selected for biological

informativeness. Further, it would be interesting to disentangle the effect of changing resolution on

method performance from the effect of domain size, as necessarily the binning of multiple cells into

one spot diminishes the number of individual points making up a domain.

There are also numerous avenues for further development considering the generation of semi-

synthetic data itself. One starting point could be incorporating a general cell type similarity measure to

enable direct quantification of the improvement in distinction attained by utilising spatial information.

On the other hand, creating semi-synthetic spatial transcriptomics data that closely mimics different

concrete tissue types and structures, but encompasses ground truth domain annotations, could enable

both method developers and users to directly tune tools to the characteristics of a tissue of interest.

Further, as identified by our investigation of the effect of local spatial coherence loss, the random

allocation of cells to spatial locations utilised in many approaches to synthetic data generation places

a strong caveat on the interpretability of simulation-based claims concerning method performance.

Existing simulators have circumvented this problem by assigning gene expression based on predefined

or learned spatial gene expression patterns [214, 215]. However, these published approaches to creating

semi-synthetic data often do not lend themselves to the concurrent generation of a spatial domain

ground truth. Integrating these different viewpoints, namely also under the consideration of a solid

domain definition, could enhance the potential of semi-synthetic data in spatial domain evaluation.

Lastly, we recognise that the usability of methods was not the focus of this thesis nor of the entire

benchmarking project. However, considering the central part it plays in the wider and continued use

of computational tools, a more in-depth investigation of the state of usability in the field of spatial

domain identification would be appropriate. Broad guidelines for increasing usability in bioinformatics

software have been developed, for example, by List et al. in 2017 [224] and by Mangul et al. in 2019

[225]. Adapting these guidelines to the specific challenges in this field would provide a framework for

researchers to consider when developing novel tools, in order to maximise the size of their potential

user base.

5.5 Conclusions

In this thesis, I have presented a comprehensive view of the context, state of the art and future

directions for domain identification in spatial transcriptomics. I report a detailed and systematic

benchmarking of published tools, comparing performances on real datasets with ground truth anno-

tations and additionally directly investigating the effect of a host of data characteristics on method

performances using semi-synthetic data. Additionally, I have pointed out possible future research

avenues within this field, most importantly the necessity of clearly defining the concept of spatial do-

mains, as well as entering a more immediate dialogue with prospective method users, as a prerequisite

for goal-oriented and efficient method development.

Independent benchmarkings of computational method performances are invaluable in the current

scientific climate, which is marked by overoptimistic self-reporting due to the well-documented phe-

nomenon of publication bias [143, 226–228]. Some guidelines to ameliorate this phenomenon from

the perspective of method developers can be found in an excellent 2015 editorial by Boulesteix [229].

However, in a scientific publication context that continues to incentivise unprecedented methodology

and reward outstanding reported performances, placing the responsibility for upholding rigorous stan-

dards for self-evaluation on authors alone would speak of some naiveté. Independent, post-publication

evaluation of tools in benchmarking studies guides future research directions and provides resources

for method users overwhelmed by choices. This type of analytical methodological research must find

a suitable place alongside the development of novel analyses and approaches.



Appendix A

General overview of tools for spatial

domain identification

With the aim of attaining a comprehensive view of the space of spatial domain identification methods,

I extracted pertinent information from 33 tool publications. This information is summarised over the

following pages in Tab. A.1.
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Appendix B

Ground truth domain assignments for

the included real data samples

In this appendix, all ground truth domain assignments for benchmarked samples are shown. The

origin of both the data and the corresponding ground truth labels is detailed in Tab. 2.2.
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Visium–Fua b c STARmap–WangosmFISH–Codeluppi

Figure B.1: Ground truth domain assignments of single-sample datasets. a, osmFISH–

Codeluppi. b, Visium–Fu. c, STARmap–Wang.

bregma-0.04 bregma-0.09 bregma-0.14

bregma-0.19 bregma-0.24

Figure B.2: Ground truth domain assignments of MERFISH–Moffitt.



97

slice1 slice10 slice102 slice112 slice122

slice131 slice153 slice162 slice170 slice180

slice190 slice200 slice201 slice21 slice212

slice221 slice232 slice241 slice251 slice260
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slice313 slice326 slice40 slice50 slice62

slice71 slice81 slice91

Figure B.3: Ground truth domain assignments of MERFISH–Zhang.
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hemi_layers01 hemi_layers02 hemi_layers03

hemi_layers04 hemi_layers05 hemi_layers06

hemi_layers07 hemi_layers08 hemi_layers09

hemi_layers10

Figure B.4: Ground truth domain assignments of Slide-seq–Langlieb.
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Figure B.5: Ground truth domain assignments of Visium–Maynard.
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Figure B.6: Ground truth domain assignments of ST–Stahl.
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