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ABSTRACT ix

Abstract
Process mining enables us to extract critical insights from event data, which con-
sists of records of process executions. Nevertheless, the trustworthiness of its find-
ings is threatened by a central challenge: A lack of a standardized, comprehen-
sive evaluation framework for process mining algorithms. Since the set of real
datasets is limited and access to real event data is scarce, a common practice is to
evaluate algorithms on simplified, selective datasets. Such analyses fail not only
to accurately assess algorithm results but also to capture the impact of key data
characteristics, such as complexity, incompleteness, and statistical irregularities,
on evaluation measures. Therefore, we require new robust evaluation methods
that return valid and reliable results. This thesis addresses this critical gap by de-
veloping a data-driven methodology to systematically quantify the impact of data
characteristics on process mining methods beyond single datasets. Three focus
areas, Data Characterization, Bias Mitigation, and Experimentation, connect the
contributions of this doctoral thesis:

First, we establish a foundation for robust data representation through
structure-aware data characterization. Our paper on Structure-Aware Principal
Component Analysis for ordered data (DROPP) addresses preserving intrinsic struc-
tural characteristics in dimensionality reduction by incorporating order, enabling
an explainable visual comparison of datasets with low reconstruction errors and
good compression. For event data, we introduce FEEED: Feature Extraction from
Event Data, a domain-agnostic approach for extracting interpretable meta-features
from event logs at multiple granularities, enabling the reproducible measurement
and categorization of event data characteristics.

Second, to mitigate representational bias, we introduce frameworks for Gener-
ating Event Data Intentionally (GEDI). GEDI and its interactive extension, iGEDI,
enable process miners to generate event data with intentional meta-features, ad-
dressing scarcity and diversity of existing benchmarks. This work is extended by
Know Your Streams, which conceptualizes, characterizes, and generates intentional
event streams to address validity concerns in online process mining evaluations.

Finally, we provide an empirical method for measuring and explaining the im-
pact of characteristics on process mining algorithms. The SHAining on Process
Mining approach operationalizes explainability using Shapley Value analysis to sys-
tematically quantify how individual and interacting event data feature values im-
pact core process discovery metrics, such as fitness, precision, and F-score for an
underlying data-generating process.

The applicability of our framework, demonstrated on the process discovery
task, spans major algorithmic design paradigms, such as top-down vs. bottom-up,
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as well as various event data types, providing interpretable insights into the robust-
ness and associated trade-offs of process mining algorithms. Together, the papers
present a comprehensive methodology for empirical evaluation in Process Mining,
advancing the field toward more reproducible, valid, and generalizable research.
By systematically linking data characteristics, algorithm behavior, and evaluation
metrics, this thesis provides a valuable tool for researchers and practitioners to
better understand and trust the results generated by their process mining tools.
All methods presented in this thesis are provided in our open-source packages and
respective repositories.
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Zusammenfassung
Process Mining ermöglicht es uns, wichtige Erkenntnisse aus Ereignisdaten zu
gewinnen, die in Aufzeichnungen von Prozessausführungen enthalten sind. Die
Zuverlässigkeit der Ergebnisse wird jedoch durch eine zentrale Herausforderung
beeinträchtigt: Es fehlt ein standardisierter, umfassender Bewertungsrahmen für
Process-Mining-Algorithmen. Da nicht nur die Menge der realen Datensätze
begrenzt ist, sondern auch der Zugang zu realen Ereignisdaten rar ist, ist
es gängige Praxis, Algorithmen anhand vereinfachter, selektiver Datensätze zu
bewerten. Solche Analysen versagen nicht nur bei der präzisen Bewertung
der Algorithmusergebnisse, sondern auch bei der Erfassung der Auswirkungen
wichtiger Datenmerkmale wie Komplexität, Unvollständigkeit und statistische Un-
regelmäßigkeiten auf die Bewertungsmaßnahmen. Daher benötigen wir neue ro-
buste Bewertungsmethoden, die valide und zuverlässige Ergebnisse liefern. Diese
Arbeit befasst sich mit dieser kritischen Lücke, indem sie eine datengesteuerte
Methodik entwickelt, um den Einfluss von Datenmerkmalen auf Process-Mining-
Methoden über einzelne Datensätze hinaus hinweg systematisch zu quantifizieren.
Drei Schwerpunktbereiche, Datencharakterisierung, Bias-Minderung und Experi-
mentieren, verbinden die Beiträge dieser Doktorarbeit:

Zunächst schaffen wir durch eine strukturbewusste Datencharakterisierung
eine Grundlage für eine robuste Datendarstellung. Unsere Arbeit zum Thema
Strukturbewusste Hauptkomponentenanalyse für geordnete Daten (DROPP) befasst
sich mit der Erhaltung intrinsischer Strukturmerkmale bei der Dimensionsreduk-
tion durch die Einbeziehung der Reihenfolge, was einen erklärbaren visuellen
Vergleich von Datensätzen mit geringen Rekonstruktionsfehlern sowie eine gute
Komprimierung ermöglicht. Für Ereignisdaten führen wir FEEED: Feature Extrac-
tion from Event Data ein, einen domänenunabhängigen Ansatz zur Extraktion
interpretierbarer Metafunktionen aus Ereignisprotokollen mit mehreren Granu-
laritäten, der die reproduzierbare Messung und Kategorisierung von Ereignis-
datenmerkmalen ermöglicht.

Zweitens führen wir zur Bekämpfung von Darstellungsverzerrungen Frame-
works für Generating Event Data Intentionally (GEDI) ein. GEDI und die interaktive
Erweiterung iGEDI ermöglichen Ereignisdaten mit absichtlichen Metamerkmalen
zu generieren, wodurch die Knappheit und mangelnde Vielfalt bestehender Bench-
marks behoben werden. Diese Arbeit wird durch Know Your Streams erweitert, das
absichtliche Ereignisströme konzeptualisiert, charakterisiert und generiert, um Va-
liditätsprobleme bei der Bewertung des Echtzeit-Process-Minings zu beheben.

Schließlich bieten wir eine empirische Methode zur Messung und Erklärung
der Auswirkungen von Merkmalen auf Process-Mining-Algorithmen. Der
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Ansatz SHAining on Process Mining operationalisiert die Erklärbarkeit mithilfe
der Shapley-Wert-Analyse, um systematisch zu quantifizieren, wie sich die
Werte einzelner und interagierender Ereignisdaten auf zentrale Prozesserken-
nungsmetriken wie Fitness, Präzision und F-Score für einen zugrunde liegenden
datengenerierenden Prozess auswirken.

Die Anwendbarkeit unseres Frameworks, die anhand der Prozesserken-
nungsaufgabe demonstriert wird, erstreckt sich auf wichtige algorithmische De-
signparadigmen wie Top-down vs. Bottom-up sowie auf verschiedene Ereignis-
datentypen und liefert interpretierbare Einblicke in die Robustheit von Process-
Mining-Algorithmen und die damit verbundenen Abwägungen. Zusammen bi-
eten die vorgestellten Arbeiten eine umfassende Methodik für die empirische
Bewertung im Process Mining und bringen das Fachgebiet in Richtung repro-
duzierbarer, valider und verallgemeinerbarer Forschung. Durch die system-
atische Verknüpfung von Datenmerkmalen, Algorithmusverhalten und Bewer-
tungsmetriken bietet diese Arbeit ein wertvolles Werkzeug für Forschende und
Praktikende, um die von ihren Process-Mining-Werkzeugen generierten Ergeb-
nisse besser zu verstehen und ihnen mehr Vertrauen entgegenzubringen. Alle in
dieser Arbeit vorgestellten Methoden sind in unseren Open-Source-Paketen und
entsprechenden Repositorien verfügbar.
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Resumen
La mineŕıa de procesos nos permite extraer información cŕıtica a partir de los datos
de eventos, que consisten en registros de ejecución de procesos. Sin embargo, la
fiabilidad de sus resultados se ve amenazada por un reto fundamental: La falta de
un marco de evaluación estandarizado y completo para los algoritmos de mineŕıa
de procesos. Dado que no solo el conjunto de datos reales es limitado, sino que
también el acceso a datos de eventos reales es escaso, una práctica habitual con-
siste en evaluar los algoritmos con conjuntos de datos simplificados y selectivos.
Estos análisis no solo no evalúan con precisión los resultados de los algoritmos,
sino que tampoco captan el impacto de las caracteŕısticas clave de los datos, como
la complejidad, la incompletitud y las irregularidades estad́ısticas, en las medidas
de evaluación. Por lo tanto, necesitamos nuevos métodos de evaluación robus-
tos que arrojen resultados válidos y fiables. Esta tesis doctoral aborda esta brecha
cŕıtica mediante el desarrollo de una metodoloǵıa basada en datos para cuantificar
de manera sistemática el impacto de las caracteŕısticas de los datos en los métodos
de mineŕıa de procesos, más allá de los conjuntos de datos individuales. Tres fo-
cos de interés, Caracterización de datos, Mitigación de sesgos y Experimentación,
conectan las contribuciones de esta tesis doctoral:

En primer lugar, establecemos una base para la representación robusta de datos
mediante la caracterización consciente de la estructura de los datos. Nuestro
art́ıculo sobre Análisis de Componentes Principales con Reconocimiento de Estruc-
tura para Datos Ordenados (DROPP) aborda la conservación de las caracteŕısticas
estructurales intŕınsecas en la reducción de dimensionalidad. Lo hace mediante
la incorporación del orden, lo que permiten una comparación visual explicable de
conjuntos de datos con bajos errores de reconstrucción y una buena compresión.
Para los datos de eventos, presentamos FEEED: Extracción de Caracteŕısticas de
Datos de Eventos, un enfoque independiente del dominio para extraer metacarac-
teŕısticas interpretables a partir de registros de eventos con múltiples granulari-
dades. Esto permite la medición y la categorización reproducibles de las carac-
teŕısticas de los datos de eventos.

En segundo lugar, para combatir el sesgo representacional, presentamos mar-
cos para la Generación Intencionada de Datos de Eventos (GEDI). GEDI y su ex-
tensión interactiva, iGEDI, permiten generar datos de eventos con metacarac-
teŕısticas intencionales, abordando la escasez y la falta de diversidad en los pun-
tos de referencia existentes. Este trabajo se ampĺıa con Know Your Streams, que
conceptualiza, caracteriza y genera flujos de eventos intencionales para abordar
cuestiones de validez en las evaluaciones de mineŕıa de procesos en ĺınea.

Por último, proporcionamos un método emṕırico para medir y explicar el im-
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pacto de las caracteŕısticas en los algoritmos de mineŕıa de procesos. El enfoque
SHAining on Process Mining pone en práctica la explicabilidad utilizando el análisis
del Valor de Shapley. Aśı, cuantificamos sistemáticamente cómo los valores de
las caracteŕısticas de los datos de eventos, individuales e interactivos afectan las
métricas básicas de descubrimiento de procesos, como la aptitud, la precisión y la
puntuación F para un proceso subyacente de generación de datos.

La aplicabilidad de nuestro marco, demostrada en la tarea de descubrimiento
de procesos, abarca los principales paradigmas de diseño algoŕıtmico, como el
enfoque ascendente frente al descendente, aśı como diversos tipos de datos de
eventos. Esto proporciona información interpretable sobre la solidez de los algo-
ritmos de mineŕıa de procesos y de las compensaciones asociadas. En conjunto, las
publicaciones presentadas proporcionan una metodoloǵıa completa para la evalu-
ación emṕırica en la mineŕıa de procesos, lo que permite que este campo avance
hacia una investigación más reproducible, válida y generalizable. Al vincular sis-
temáticamente las caracteŕısticas de los datos, el comportamiento de los algorit-
mos y las métricas de evaluación, esta tesis proporciona una herramienta valiosa
para que personas, que trabajan en la industria o investigación, comprendan mejor
y puedan confiar en los resultados generados por sus herramientas de mineŕıa de
procesos. Todos los métodos presentados en esta tesis se proporcionan en nuestros
paquetes de código abierto y en sus respectivos repositorios.
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Chapter 1

Introduction
“All my life through, the new sights
of Nature made me rejoice like a
child.”

– Marie Curie

The joy of discovering something new, something hidden in plain sight, is at
the heart of science. When we work with complex real-world data, we aim to find
a structure that will tell us something deeper. True discovery comes from careful
work in shaping raw observations into something meaningful [104, 128].

This doctoral thesis is situated within process mining, a research area focused
on extracting actionable insights from complex sequential event data, to under-
stand and improve, e.g., business processes [111, 131]. However, a key challenge
lies in the validity and reliability of evaluation practices for process mining algo-
rithms. How can we know whether a method is capturing the true structure of
noisy, complex event data? How can we trust the results? Trust matters. It in-
volves the degree to which a human is willing to rely on a machine regarding a
situation or a task at hand, consequently often shaping how that human decides
to act [51]. From the reliability of a financial transaction [19] to the integrity of
a healthcare diagnosis [6], algorithmic systems are increasingly trusted to make
human-impacting decisions. For example, the automation market, driven by such
systems, is rapidly expanding in a multi-billion-dollar1 industry [55]. Lipton et
al. [82] challenge simplistic claims about the inherent interpretability of linear
approaches, and point out that trust in algorithmic system outputs is important
yet slippery. Consequently, without consistent transparency, weakly evaluated
algorithms risk bias, oversimplification, and ultimately a collapse of user trust
[43, 51, 85]. While research on data uncertainty [23, 46, 81] in process mining
develops models for stochastic processes and probabilistic event logs, this thesis
addresses the complementary challenge of improving evaluative certainty.

Specifically, in process mining, the lack of a standardized, data-driven, and
generalizable evaluation framework created a significant gap [108, 112]. Many
algorithms are tested on narrow algorithm-specific datasets that do not reflect the

11 billion dollars = 109 dollars
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full complexity and volume of current event data. As process miners develop in-
creasingly sophisticated algorithms [7, 77, 79], the lack of comprehensive data
hinders our ability to accurately assess algorithm performance [37, 123], compare
different methods [15], and understand how various data characteristics, such as
complexity, volume, and statistical irregularities, impact a results’ generalizabil-
ity [52, 71, 108].

Over the past decades, the relentless growth of data has transformed every
scientific domain. We have moved from analyzing simple, structured datasets to
grappling with high-dimensional, complex, and often noisy data [15]. Across do-
mains the need to extract meaningful patterns from sequential data is a growing
and fundamental challenge. Sequential data records interacting states, embed-
ded in causal, temporal, and sometimes concurrent relationships [39], where the
behavior of individual components and their interactions evolve over time, in-
troducing complexity to the analysis. This complexity manifests across diverse
domains, including molecular dynamics simulations, which model atomic move-
ments as high-dimensional sequences [89, 102, 118], and climate time series of
measurements —e.g., temperature, and radiation — which lead to massive pools
of evolving data to capture non-linear, temporal spatial interactions [30, 53, 86].

This evolution is also particularly evident in process mining. While tradi-
tional data mining methods, such as sequential pattern mining [5], often focus
on patterns within static or strictly sequential data, process mining requires one
step further for capturing the dynamic and intertwined nature of real-world pro-
cesses [78, 144]. Rather than isolated incidents, events in processes belong to a
broader, interconnected system, whose behavior emerges from complex [15], non-
linear [41] relationships, such as concurrency, loops, and choices [111, 117, 131].

Taking these multiple variabilities into account highlights the need for robust-
ness and realistic conditions in evaluations to ensure reliable and trustworthy find-
ings. Thus, this thesis focuses on building a clear, reliable way to evaluate process
mining algorithms, grounded in the characteristics of the data they operate on.
In doing so, it aims to bridge the gap between discovery and trust, ensuring that
the insights produced by algorithms can be assessed with transparency and confi-
dence.

The central aim is to develop and validate a transparent, data-driven method-
ology that systematically explains how event data characteristics impact the eval-
uation of process mining algorithms, centering on the following question:

Research Question

How can a data-driven methodology systematically explain the impact of
event data characteristics on the evaluation of process mining algorithms?

To address this question, we target the following three core research objectives,
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which were systematically defined, methodically implemented, and empirically
tested following the principles of the Research Science [95] cycle:

Objective 1 Method for Structure-Aware Data Characterization.

The first objective focuses on establishing robust and interpretable data rep-
resentations that preserve intrinsic structural properties of sequential and event
data. Operationalizing event data characteristics as meta-features serves as a suit-
able domain-independent, measurable representation for subsequent steps of this
thesis. For periodic sequential data, such as molecular dynamic trajectories or cli-
mate time series, DROPP: Structure-Aware Principal Component Analysis for ordered
data [18] incorporates order into dimensionality reduction via Gaussian kernels.
It performs Principal Component Analysis (PCA) [66] while preserving the intrin-
sic order-dependent structure with low reconstruction error. Results highlight the
benefits of preserving the underlying characteristic structures of ordered data. For
event data, FEEED: Feature Extraction from Event Data [94] systematically extracts
interpretable meta-features at multiple granularities, enabling reproducible mea-
surement and categorization of data properties. Together, the works in Section 3.1
establish the justification for a data-driven evaluation and provide robust and in-
terpretable data representations to compare datasets in subsequent steps.

Objective 2 Intentional Data Generation to Mitigate Bias.

The second objective addresses the scarcity and lack of diversity in available
event data benchmarks. This introduces representational bias, i.e. the gap be-
tween the available data samples and the true underlying distribution. Building on
previously discussed FEEED [94], GEDI: Generating Event Data Intentionally [92]
and its interactive extension iGEDI [90] introduce frameworks for controlled data
generation via intentional meta-features. This enables the exploration of under-
represented regions of the event data design space and reduce representational
bias. Know Your Streams [93] extends this work to event streams, conceptualiz-
ing, characterizing, and generating intentional datasets, which include streaming-
specific challenges, such as out-of-order events. This extension moves beyond
static logs and addresses validity concerns in online process mining evaluation.

Objective 3 Quantified Explainability of Algorithmic Impact.

Finally, the third objective aims to develop an explainable method to systemati-
cally measure and interpret how data characteristics impact algorithmic evaluation
measurements. The SHAining on Process Mining: Explaining Event Log Characteris-
tics Impact on Algorithms [91] method operationalizes explainability using Shapley
value analysis, quantifying how individual and interacting event data features im-
pact metric results, such as fitness, F-score, model size, and execution time of vari-
ous process discovery algorithms. We provide interpretable insights into algorithm
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robustness against feature value variations and associated trade-offs.
The combination of these works establishes the individual building blocks for

a comprehensive methodology for empirical evaluation in process mining. By sys-
tematically linking data characteristics, algorithms, and evaluation metrics, the
thesis provides insights and a framework that enable more transparent, reliable,
and generalizable studies.

1.1 Scientific Scope

A multitude of systematic reviews [8, 13, 68, 71, 107, 108, 113, 138] report that
a central challenge of process mining methods lies in the validity and reliability
of evaluation practices. To this end, the work Process Mining Crimes [107] high-
light risky practices, such as using unrepresentative data, misleading metrics, or
incomplete evaluations, that result in representational bias and threaten valid-
ity, on multiple levels. Therefore, the scientific scope of this thesis encompasses
the systematic development of a data-driven, transparent, and reliable method-
ology [108], as a structured system for studying methods – supported by justi-
fication, experimentation, and framework – to gain empirical knowledge about
process mining algorithm designs [96]:

• Justification denotes the theoretical grounding and logical validation of
methodological choices, ensuring that hypotheses are convincingly sup-
ported by deductive reasoning from prior knowledge and underlying the-
oretical assumptions [76].

• Experimentation refers to the systematic implementation of controlled stud-
ies that test how well methodological assumptions describe empirical reality,
thereby generating evidence on algorithm behavior under varying data con-
ditions [35].

• Framework represents the structured system for the experimental execu-
tion, to provide coherent, interpretable, and generalizable empirical findings
about process mining algorithm evaluations [113].

While classical process discovery serves as the primary case, our methodology
extends to other tasks and beyond static event logs, reflecting the increasing im-
portance of online and real-time process analysis [4, 27, 75, 87]. This work is
founded on structure-aware feature characterization of different kinds of sequen-
tial data, based on both the identification and representation of the intrinsic struc-
ture, to ensure that algorithm evaluation is grounded in accurate, interpretable,
and reproducible representations of the underlying datasets. While static process
discovery serves as the primary case, the methodology extends beyond static event
logs to event streams, reflecting the increasing importance of online and real-time
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process analysis [4, 27, 75, 87]. A key foundation of this methodology is structure-
aware feature characterization, the systematic identification and representation of
the intrinsic structure of different kinds of data. This pillar addresses the need
to ensure that algorithm evaluation is grounded in accurate, interpretable, repro-
ducible, and generalizable of the underlying datasets.

1.2 Thesis Structure

The remainder of this dissertation is structured as follows: In Chapter 2, we pro-
vide the foundational concepts, covering the fundamentals of sequential data, pro-
cess mining, and the principles of algorithm evaluation, validity, and representa-
tion bias, as well as discuss current challenges. Chapter 3 first presents the broader
empirical methodology, and subsequently provides an overview of the included
publications in three subsections, structured based on the objectives, presented
in Chapter 1. A summary of the main findings, complemented by a reflection on
threats to validity and potential opportunities for future work, is given in Chap-
ter 4. The original publications on which this cumulative dissertation is based can
be found in Section 4.3.
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Chapter 2

Background
“Only if we understand, can we care.”

– Jane Goodall

In the spirit of Jane Goodall’s quote, this chapter explores the fundamental con-
cepts underlying process mining and the empirical evaluation of algorithms. Un-
derstanding these fundamentals is essential for situating the contributions of this
thesis within a robust theoretical and methodological framework. In this chapter,
we systematically build that framework, guiding the reader through four intercon-
nected sections. This structure is designed to equip the reader with a coherent
understanding of the theoretical, methodological, and practical dimensions that
underpin this thesis.

We begin in Section 2.1 with the fundamentals of data mining, introducing
sequential and event data, preprocessing strategies, and event data generation.
Section 2.2 presents process mining as a discipline, including the process dis-
covery task and representative discovery algorithms. In Section 2.3, we discuss
the empirical evaluation of algorithms, focusing on experimental reliability, and
methodological validity. Finally, Section 2.4 presents notions and definitions for
representational bias and addresses current challenges in process mining evalua-
tions resulting from it, emphasizing the importance of generalizable benchmarks.

2.1 Foundations for Sequential and Event Analysis

This section provides the methodological foundation for working with complex
datasets, particularly sequential and event data, which are the central focus of
this thesis. Data mining [48] is the process of discovering patterns and insights
from large datasets using a variety of methods that draw from statistics, machine
learning, and database systems. Given the nature of sequential and event data,
the specific data mining tasks discussed in this section revolve around extracting
temporal, behavioral, and structural insights from sequential data [32, 38, 39].

Next, Section 2.1.1 explores the fundamental concepts and data types. In Sec-
tion 2.1.2, it also presents preprocessing techniques necessary for the analysis of
sequential and event data. Lastly, Section 2.2.2 introduces the use of synthetic
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data generation as a controlled evaluation strategy for developing and testing al-
gorithms.

2.1.1 Sequential and Event Data

Figure 2.1 shows a hierarchical specialization from general data to event-specific
representations. From the broadest category data, this thesis specializes in ordered
data, where entries are arranged or sorted, according to some criterion, without
necessarily any temporal or intrinsic dependency behind it [57, 134]. Sequential
data is a subset of ordered data with explicit sequence semantics, meaning that
dependencies across positions are meaningful [38]. All sequential data is ordered,
but not all ordered data exhibits inter-element dependencies.

Data

Ordered Data

...

Sequential Data
(Regular)

Sequential Data
(Irregular) Event Data

Event Log

Event Stream

Figure 2.1: Hierarchical specialization of data types, from ordered data to event data rep-
resentations (logs and streams).

Regular sequences are ordered measurements collected at uniform intervals in
one or more dimensions, such as equidistant timestamps, spatial positions, or in-
dexing steps. Irregular sequences are ordered data with variable intervals between
measurements, such as asynchronous sensor readings or event-triggered measure-
ments. Even with varying intervals, the sequential nature preserves trends, tem-
poral or spatial continuity, and dependencies between successive observations.
Beyond simple statistical averages, sequences require techniques that can parse
and model the evolving dynamics of the enveloping system.

Examples of sequential data include molecular folding trajectories [49], cli-
mate measurements time series [62], as well as event execution records [133]:

In molecular dynamics simulation [89, 118], scientists model physical move-
ments of atoms as high-dimensional sequences. Distilling a coherent picture of the
system behavior by analysing the vast amount of sequential information, scientists
can understand how microscopic interactions give rise to macroscopic properties.
In Figure 2.2, a protein folding for porcine NK-lysin trajectory [67] demonstrates
sequential data, exemplified by the position of the indexed atoms in three dimen-
sions, as well as the temporal progression of the protein’s movement. The recent
Nobel Prize in Chemistry 2024 highlights the enormous potential of modelling
these intricate, high-dimensional sequences, advancing knowledge about diseases
like Parkinson’s [59] and drug discovery [125]. These datasets often represent the
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Figure 2.2: Folding trajectory for a small alpha-helical protein [67].

Figure 2.3: Temperature and precipitation time series [62].

positions of several hundred atoms over tens of thousands of steps in time. Molec-
ular dynamics data often requires advanced analysis methods, to handle their high
dimensionality, as they involve intricate interactions, vast datasets, and substantial
computational demands [118].

In a different domain, climate researchers [86] have collected measurements,
e.g., temperature, radiation, pressure, and wind speed across time and countries,
leading to massive pools of high-dimensional sequences [30, 54]. In Figure 2.3,
a high spatial resolution of Temperature and Precipitation Time Series of Central
America [62] depicts suitable climate sequential data, containing spatial dimen-
sions and several measure dimensions. As the work in [53] recognizes, climate
data requires sophisticated methods to uncover its evolving dynamics, as it is
shaped by temporal dependencies, feedback loops, and non-linear interactions
between variables, and noise.

Formally, sequential data can be represented as

x1:T = ⟨x1, x2, ..., xT ⟩ , xt ∈ Rd, t ∈ {1, ..., T}

where t indexes the ordering variable, T is the sequence length, and each xt is a
d-dimensional measurement. The index t preserves data structure, ensuring suc-
cessive elements carry meaningful relationships [38, 97]. Although we recognize
that sequences may include categorical data xtdi ∈ {1, . . . ,m}, e.g., label encod-
ings or one-hot vectors, in this thesis, we focus on numerical sequential data.

Event data [3, 128] focuses on timestamped, discrete occurrences rather than
periodic measurements, constituting a subset of sequential data. Each event
records an activity and may include contextual attributes such as patient ID, pro-
cedure, or attending staff. Event data is irregular by default, as events occur asyn-
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Figure 2.4: Request for reimbursement at TU/e as dotted chart [133].

chronously and may interleave across cases.
An event is the atomic instance of event data, formally represented as

ei = (ci, ai, ti), ci ∈ C, ai ∈ A, ti ∈ T , (2.1)

where ci ∈ C denotes the case ID, ai ∈ A the activity label, ti ∈ T the timestamp.
While an event can include additional contextual attribute values, we focus on the
control-flow perspective of event data, which is exclusively structural and consists
of case ID, activity label, and timestamps to order events. Furthermore, a trace σj

of a case cj ∈ C is the totally ordered sequence of events associated with that case:

σj = ⟨e1, e2, . . . , emj
⟩, where ∀i ∈ {1, ...,mj}, ci = cj, t1 ≤ t2 ≤ ... ≤ tmj

.

(2.2)
In a trace, the sequence of events is ordered by ascending timestamps, and the
length of the trace |σj| = mj is defined by the number of events in that trace.

In event data, we recognize several dimensions of sequences and order. On
the one level, it presents sequences of activities within one trace. On another
level, multiple process executions can start, or end, in a particular order. Due
to the discrete nature of events, events of several traces of the same process can
and often temporally overlap each other. Finally, there is also the higher level of
order affecting both former ones, with the order of passing of time. The dotted
chart [121] in Figure 2.4 displays an event log, with over 37,000 events and 7,000
cases, of TU Eindhoven’s Reimbursement Process [133].

An Event Log is a finite set of n traces:

L = {σ1, σ2, . . . , σn} =
{
⟨e11, . . . , e1m1

⟩,

⟨e21, . . . , e2m2
⟩,

...

⟨en1 , . . . , enmn
⟩
}
,

(2.3)

where N =
∑n

j=1mj denotes the number of events in an event log L. Finally, the
set of events in a log L is {ei = (ci, ai, ti)}Ni=1, where ∀ei ∈ σj ∈ L [3, 128]. Al-
though the dotted chart is suitable for visualizing event distribution and spotting
timing patterns, it lacks deeper structural insight for further analysis. Event data
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can be analyzed along the structural — i.e., control-flow —, temporal, and orga-
nizational dimensions to capture activity sequences, bottlenecks, and involved re-
sources [26, 131]. Static event logs examples include hospital patient logs [103],
clinical interventions [116], and administrative records, such as the TU/e reim-
bursement histories [133] in Figure 2.4. In contrast, an event stream of the TU/e
reimbursement process would represent the continuous flow of submission, ap-
proval, and payment events as they occur in real time, supporting online moni-
toring and anomaly detection. Consequently, measurements from IoT sensors and
continuous monitoring systems are typical examples of event streams [22].

Opposed to event logs, event streams are real-time sequences of events that
arrive continuously, and potentially without end [26]. Formally, we define an
event stream

S = ⟨. . . , etr−2, etr−1, etr , etr+1, etr+2, . . . ⟩, (2.4)

with each event, as in Equation (2.1), and in respect to a reference point in time
tr ∈ T . The subset of events observed within a window time interval [to − δ, to] is

S[to−δ, to] = ⟨ei | to − δ ≤ ti ≤ to⟩,

where to−δ marks the start of observation time, δ denotes the duration, and to the
current time of observation. Unlike a finite event log L in Equation (2.3), an event
stream is unbounded. Additionally, events in a stream may arrive asynchronously,
out of order, with varying inter-arrival times, and interleaved across multiple cases
cto ∈ C. I.e., directly consecutive events observed in an event stream may neither
have the same case ID nor belong to the same trace.

2.1.2 Data Preprocessing

Preprocessing is a crucial step for data analysis, as raw datasets often contain het-
erogeneity, noise, and inconsistencies that may distort subsequent analysis [105].
For sequential data, common preprocessing operations include normalization, seg-
mentation, aggregation, and dimensionality reduction [88, 97].

• Normalization [74] ensures that features with different scales contribute
comparably.

• Segmentation techniques like windowing [63] split continuous data into in-
terval units to reveal local patterns.

• Aggregation reduces high-frequency fluctuations by summarizing observa-
tions.

• Dimensionality reduction alleviates the curse of dimensionality by extract-
ing compact yet informative representations. [122, 149] To preserve the
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structure of ordered data, ideally, a dimensionality reduction approach, as
any other preprocessing approach, should not break that invariant structure
across data instances.

Event data preprocessing addresses imperfections that arise from recording
process executions. Typical steps involve filtering infrequent or irrelevant traces,
reducing noise by removing duplicates or imputing missing values, and homoge-
nizing attributes such as timestamps or activity labels [42]. These operations are
essential to ensure the interpretability and reliability of process models derived
from event logs [9, 109, 130]. Complementary, trace encoding approaches such as
n-grams, bag-of-activities, or embedding-based methods (e.g., act2vec, trace2vec,
log2vec) map variable-length event traces into numerical representations suitable
for machine learning [17, 40, 114].

Preprocessing not only prepares data for algorithmic consumption but also
shapes model performance, interpretability, and evaluation outcomes. Choices
at this stage can improve robustness and convergence of learning algorithms, yet
inappropriate or inconsistent preprocessing may bias comparisons or threaten the
validity of empirical studies [107, 113]. Consequently, preprocessing constitutes
a foundational aspect of process mining and sequential data analysis, determining
the reliability of both methodological advances and experimental results.

2.2 Process Mining

Process mining bridges data mining and process science. It aims to extract knowl-
edge from event logs, which record the execution of activities in information sys-
tems, and transform this knowledge into process models and insights [131]. The
main goals of process mining include supporting process understanding, identify-
ing deviations from prescribed procedures, and enabling continuous improvement
of operational performance. From an algorithm engineering perspective [96], pro-
cess mining can be understood as a collection of tasks, comprising data assump-
tions, goals, algorithms, and evaluation metrics, which vary on the particular pro-
cess mining task. Table 2.1 provides a short overview for the application task of
this thesis, process discovery in violet, as well as two other examples tasks, con-
formance checking, and predictive monitoring, alongside a non-exhaustive, yet
illustrative selection of their components.

While the goals, data assumptions, algorithmic paradigms and evaluation mea-
sures differ depending on the process mining task, all these tasks present clear
values for each specification. Furthermore, all tasks utilize event data, e.g., event
logs, as input, setting the foundation for a data-centric, task-independent ap-
proach. This thesis demonstrates the applicability of the framework for process
mining tasks in process discovery, which will be introduced next.
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Process
Mining
Task

Goals
Data
Assumptions

Algorithms
Evaluation
Measures

Process
Discovery

Build a process
model capturing
actual behavior.

Event logs with
case ID, activity,
and timestamp

Inductive Miner,
ILP Miner,
Split Miner, etc.

Fitness,
precision,
model size, etc.

Conformance
Checking

Detect and
quantify
deviations
between log
and model.

Event log
and
process model

Token-based
replay, align-
ment-based
checking,
declarative rules

Fitness,
precision,
deviation counts,
cost of deviations

Predictive
Monitoring

Forecast future
behavior (e.g.,
remaining time,
next activity,
outcome).

Event
logs with
patterns,
outcomes or
attributes

Machine learning
(e.g., LSTM,
random forest),
prefix-based
models

Accuracy,
MAE/RMSE,
precision/recall,
timeliness of
predictions

Table 2.1: Illustrative overview of main process mining tasks.

2.2.1 Process Discovery

The goal of process discovery [77, 135] is to derive a process model M , expressed
in a formalism, such as Petri net [129], BPMN [77], or process tree [73], that
reproduces the behavior observed in a log L, as defined in Equation (2.3) with
high quality. Model quality is typically assessed along multiple dimensions [65]:

• Fitness: The extent to which traces in L can be replayed by M .

• Precision: The degree to which M avoids allowing behavior not seen in L.

• Generalization: How well M can capture likely but unobserved behavior.

• Simplicity: The structural complexity of M . Measured e.g. by model
size [13].

Formally, the process discovery problem can be framed as an optimization problem

M∗ = arg max
M∈M

Q(L,M), (2.5)

where M is the set of candidate models and Q is a quality function aggregating
measures for fitness, precision, generalization, and simplicity.

Process discovery algorithms can be broadly categorized into imperative and
declarative families [110]. Imperative approaches, such as Petri net or BPMN dis-
covery, aim to model explicit relations between activities, while declarative lan-
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guages, such as Declare [34], capture flexible behavioral constraints. These im-
perative models rely on control-flow relation patterns between activities to define
behavior: sequence (A → B) means activity A must be followed by B; exclusive
choice/or (A ⊗ B) means either A or B can occur, but not both; and concurrency
(A ⊕ B) means A and B can occur in any order or simultaneously. The corre-
sponding BPMN element for concurrency is formally named the parallel gateway,
as depicted in Figures 2.5 to 2.7.

Among imperative methods, algorithms differ fundamentally in their ap-
proaches: Top-down techniques, such as the Inductive Miner [77], start from a
high-level process structure, based on Directly-Follows graphs [80], and iteratively
refine it into smaller, block-structured, sound components.

In contrast, bottom-up techniques start with a fine-grained analysis, which pro-
gressively integrates low-level behavior into non-local control-flow patterns, com-
posing a comprehensive model. These bottom-up techniques can differ further in
their underlying principles, ranging from formally grounded optimization-based
miners to heuristic, frequency-driven ones. Formally grounded approaches, like
Integer Linear Programming (ILP) Miner [135], rely on mathematical optimization
and region theory to ensure maximal precision and soundness. They offer strong
behavioral guarantees at the cost of computational efficiency and robustness to
noise. In contrast, heuristic methods, such as the Split Miner [14], approximate
the discovery process using frequency- and structure-based heuristics, prioritizing
scalability, model simplicity, and practical interpretability over formal optimality.

In this thesis, we focus on imperative discovery approaches, which are par-
ticularly suitable for generating descriptive process models from complex event
logs. We demonstrate the application of the following algorithms using an ex-
ample log: For visual consistency and enhanced interpretability in this thesis,
the models discovered by all algorithms—including the natively produced Pro-
cess Trees and Petri Nets—are uniformly represented using the industry-standard
Business Process Model and Notation (BPMN) throughout the following examples.

Example 2.2.1

L = {⟨A,B,C,D,E⟩,
⟨A,C,B,D,E⟩,
⟨A,F,E⟩}

Among imperative techniques, the Inductive Miner is a top-down algorithm
that guarantees sound and block-structured models [77]. The application of the
Inductive Miner on Example 2.2.1 is shown in Figure 2.5. Its working principle
can be summarized as follows:

1. Base Case: If the log is empty or has a single activity, return a simple model.
In Example 2.2.1, we start from a single first activity A, thus not a base case.
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2. Find a Split: Segment the log by sequence, concurrency, loops, and choices.
In example 2.2.1, we find the first split after A into: A is followed by three
options: A → (B,C,D,E) or A → (C,B,D,E) or A → (F,E).

3. Recurse: Apply the same procedure recursively to each sublog. For exam-
ple 2.2.1, we investigate the three options of the first split to identify the next
one. Thus, resulting in a choice of two branches: A → (B ⊕ C) → D → E)

(left branch)— involving parallel activities B,C — and A → F → E) (right
branch), containing sequences only.

4. Reconstruct: Combine results into a process tree for Petri nets or BPMN.
Finally, for Example 2.2.1, the model is reconstructed by joining both splits,
as shown in the last step of Figure 2.5: A → (((B ⊕ C) → D)⊗ F ) → E

This recursive decomposition particularly guarantees soundness for the Inductive
Miner. Variants like IMf [77] filter out infrequent behavior to avoid overfitting,
which makes it robust to noise. This process is like sorting a deck of cards based on
a complex set of rules. The step-by-step, top-down approach allows the Inductive
Miner to discover structured, hierarchical process models from complex and noisy
event logs.

Step 1: Check if base case Not a base case

Step 2:
Find Top Split • A X

(BC)→D

F

E

choice

Step 3 Left:
Decompose Branch

... +

B

C

D E

choice

Step 3 Right:
Decompose Branch

... F E

Step 4:
Final Model

with
Join Nodes

• A X
+

B

C

+ D X E

F

choice split
parallel split parallel join choice join

Figure 2.5: Inductive Miner [77] example in BPMN notation in 5 steps

In contrast, the Integer Linear Programming Miner (ILP) [135] is a bottom-
up algorithm that discovers complex, non-local control-flow patterns that top-
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down algorithms may miss. It achieves this by constructing Petri nets using region
theory and integer linear programming. Figure 2.6 shows the application on Ex-
ample 2.2.1 as a BPMN, for consistency. Its working principle can be summarized
as the following:

1. Identify Dependencies: The miner analyzes the event log to find all possible
sequential relations between activities. In Example 2.2.1 that is all directly
follow relations: (A → B,A → C,B → D,C → D,D → E,A → F, F → E)

2. Interpretation of Discovered Places: Each place identified is interpreted
as enforcing a specific sequential or control-flow constraint, as parallel or
choice relations, between activities. An Integer Linear Programming (ILP)
solver determines the minimal assignment of places and arcs that satisfy all
constraints, while also ensuring that only traces in the log can be executed,
i.e., precision. For Example 2.2.1 in Figure 2.6, the discovered places can
be grouped and interpreted as follows: p1, p2 : A → (B ⊕ C), p3, p4 : (B ⊕
C) → D, p5 : D → E, p6 : A → F , p7 : F → E. This step reveals the
logical structure of the process: after activity A, activities B and C may
occur in parallel and are later synchronized by D, while an alternative path
A → F → E also exists.

3. Mapping Places to BPMN Gateways: The discovered places are then
mapped to BPMN control-flow elements, where non-sequential activity re-
lations correspond to gateways that control splits and joins. This mapping
step translates the Petri-net level semantics produced by the ILP Miner into
BPMN constructs, making concurrency and choice explicit. In Example 2.2.1
(p1, p2, p6) correspond to an XOR(⊗)–AND(⊕) split following activity A, ex-
pressing that A can either trigger the parallel branch (B ⊕ C) or the alter-
native sequential branch F . Additionally, (p3, p4) correspond to an AND join
before D, synchronizing the completion of B and C. Finally, (p5, p7) repre-
sent an XOR join at E, merging the branches from D and F .

4. Filtering infrequent constraints: Infrequent or redundant ILP constraints
may be removed to simplify the resulting model. In this example, all rela-
tions are consistent with the event log, so no filtering occurs.

5. Final Model Construction: The final BPMN model combines all identi-
fied splits and joins. It captures precisely the observed behavior in the
log, providing a sound and precise BPMN representation. In our exam-
ple: A → (((B ⊕ C) → D) ⊗ F ) → E, includes all discovered places
p1, p2, p3, p4, p5, p6, p7.

The Integer Linear Programming (ILP) Miner’s strength lies in its unique ability to
cover intricate, non-local control-flow patterns; however, its reliance on perfectly
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replaying the event log often leads to overfitting in noisy environments. The al-
gorithm’s computational complexity can also limit its scalability with large logs.
To better understand how the ILP Miner works, think of it as a detective trying
to figure out an instruction manual by only looking at the finished LEGO models.
This process allows the miner to work backward from the final results, using a
special kind of “math puzzle” to find the best rules that explain how the models
were built.

Step 1:
Find causal relations
(A→B, A→C, B→D,
C→D, D→E, A→F,
F→E) and discover

places

A B A C B D

C D D E A F

F E

p1: p2: p3:

p4: p5: p6:

p7:

Step 2:
Identify places

enforcing causal pairs
and control flow structure

p1, p2: A→(B⊕C)
p3, p4: (B⊕C)→D

p5: D→E
p6: A→F
p7: F→E

A B

C

B

C

D

D E A F F E

p1, p2: p3, p4:

p5: p6: p7:

Step 3:
Map places to BPMN gates:

XOR and AND gateways
emerge from ILP constraints

p1, p2, p6:
XOR–AND split at A

p3, p4:
AND join at D

p5, p7:
XOR join at E

A X
+

B

C

+ D

A X ... D X E

F

p1, p2, p6:

p1, p2, p6:

p3, p4:

p5, p7:

Step 4:
Filter infrequent ILP constraints

- nothing filtered

Step 5:
Final BPMN Model:
Combine discovered

splits and joins
into final process

• A X
+

B

C

+ D X E

F

choice split
parallel split parallel join choice join

Figure 2.6: ILP Miner [135] example in BPMN in 5 steps

The Split Miner is a bottom-up algorithm that constructs a sound and simple
BPMN model from an event log in five main steps [14], as exemplified in Fig-
ure 2.7. It achieves this by identifying and filtering sequential, concurrent, and
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loop-based relationships. Its working principle can be summarized as follows:

1. Graph Construction: The Split Miner first constructs a Directly-Follows
Graph (DFG) that captures all directly-follow relations, loops, and then iden-
tifies concurrences in the event log. In Example 2.2.1, this yields the relations
(A → B,A → C,A → F,B ↔ C,B → D,C → D,D → E,F → E). While no
loops are detected, the bidirectional relation B ↔ C indicates concurrency
between B and C.

2. Prune Concurrency: Pairs of activities that directly follow each other in both
directions are classified as concurrent, meaning that their order of execution
is interchangeable. In this example, the concurrency between B and C is
pruned, as shown in step 2 of Figure 2.7.

3. Filtering: The algorithm filters the Pruned DFG, based on a configurable
frequency threshold to remove infrequent behaviors and noise. In Figure 2.7,
all relations are frequent, so no filtering needs to be applied.

4. Splits Discovery: It classifies outgoing branching points in split gateways
(XOR or AND) to capture choices and parallel executions. In this example,
activity A introduces a combined XOR–AND split, meaning A can either start
the parallel branch (B⊕C) or the alternative sequential branch F . This step
corresponds to the partial BPMN model shown in Step 4 of Figure 2.7.

5. Joins Discovery: Finally, matching AND joins and XOR joins are added to
merge incoming paths, ensuring the final model soundness. In the final
BPMN model, B and C synchronize before D through an AND join, while
the alternative path via F merges with the former flow through an XOR
join before E. The resulting model captures the most frequent and logical
consistent behavior observed in the log: A → (((B ⊕ C) → D) ⊗ F ) → E

providing a simple yet precise representation of the process.

The process of the Split Miner is analogous to a smart program creating a simple,
easy-to-read map of your daily chores. It identifies the most common paths and
relationships, prunes away redundant and rare deviations, and adds gateways to
represent choices and parallel actions. Its main strength is its ability to produce
highly interpretable BPMN models that balance key quality metrics, but it may
produce unsound models, or underfit in complex or noisy scenarios, due to lacking
a strict block structure and presenting ambiguous joins, from its heuristic gateway
handling.

2.2.2 Event Data Generation

As real-life event logs are often scarce, sensitive due to privacy regulations [1, 2],
or lack the necessary ground truth for a definitive algorithm evaluation, synthetic
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Step 1: DFG Construction
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Figure 2.7: Split Miner [14] example in BPMN notation in 5 steps

event data generation emerges as a fundamental strategy to provide controlled,
reproducible, and diverse datasets for rigorous algorithm evaluation [28, 98].

For the primary objective of benchmarking and algorithm evaluation, the field
predominantly relies on simulation based on a defined process model. A pro-
cess model, as in Equation (2.5), is a formal representation that describes the
intended sequences and logic of activities within a system. Process model sim-
ulation creates synthetic logs by reproducing the specified process model, which
provides a controllable ground truth essential for a definitive of algorithm assess-
ment [29, 25, 98]. These formalisms typically capture control-flow logic, using
either Petri nets [29, 56, 137], BPMNs [20, 28, 98], or Declare [21, 33]. Be-
yond controlled testing, the utility of generated data is a critical dimension of its
evaluation. This is often measured by applying a process mining algorithm to the
synthetic log and assessing the quality of the results using metrics, like fitness,
precision, and F1-score [69], as presented for multiple tasks in Table 2.1.

Alternatively, to assess the utility of generated data, data-learned generative
models, such as GANs [50, 101] or sequence models [140, 146, 147], create real-
istic synthetic data from statistical patterns and distributions from real event logs.
This generated data is then used to train process mining or predictive approaches,
which are subsequently evaluated against real datasets to quantify the utility of
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the generated data.
The field faces challenges in producing logs with sufficient data richness, par-

ticularly in incorporating timestamps and additional attributes [11, 69, 99, 101,
142, 148]. There are also difficulties in accurately generating complex control-
flow dynamics, such as long traces and event repetitions [11, 50, 84, 99, 101, 106].
Additionally, there is a need to reduce the high manual modeling effort required
for knowledge-driven approaches [56, 137, 148].

Consequently, while generation offers significant benefits for reproducible re-
search, it still faces key challenges in the generalizability of its approaches. We
need more sophisticated approaches that can generalize real-world complexities
in a controlled manner, and still simplify the generation process, which motivates
the development of generation approaches in this thesis.

2.3 Empirical Evaluation of Algorithms

Algorithm engineering [96] is a comprehensive research framework, which is
structured around three philosophical dimensions: ontology, epistemology, and
methodology. While ontology defines the nature of algorithmic reality and episte-
mology considers how we can know about algorithms, the methodological perspec-
tive focuses on how knowledge about algorithms can be systematically developed,
extended, and validated. The methodological perspective addresses how knowl-
edge about algorithms can be systematically enhanced, in four categories:

Knowledge Category Research Methods
Algorithmic
Tasks

Inductive methods applied to qualitative empirical data
(e.g., case studies, focus groups, interviews).

Algorithm
Designs

Deductive (from general principles), inductive (from spe-
cific instances), abductive (from anomalies), or analogy-
based reasoning (transferring solutions from other do-
mains).

Formal Knowledge
(about Algorithmic Tasks
and Algorithmic Designs)

Formal analysis methods, algorithm theory, theorems, and
mathematical proofs (e.g., asymptotic analysis, correct-
ness proofs).

Empirical Knowledge
(about Algorithm Designs)

Hypothesis-driven research: exploratory, correlational,
and experimental designs; controlled experiments with
manipulation of factors.

Table 2.2: Knowledge extension categories and corresponding research methods in algo-
rithm engineering.

Mendling et al. [96] conceptualize that the body of knowledge can be ex-
panded on algorithmic tasks and algorithm designs, as well as theoretical and
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empirical insights about them, as listed in Table 2.2. On the one hand, algorithmic
tasks define the specific computational problems to be solved, e.g., process discov-
ery [128]. On the other hand, algorithm designs refer to the concrete construction
and structure of the solution method, e.g., the Inductive Miner[77]. In contrast,
formal knowledge entails the theoretical and mathematical truths about correctness
and complexity of tasks and designs, established through analysis and proofs. For
example proving the soundness of the Inductive Miner [77], or subprocess model
properties as inheretance [72] expand formal knowledge about algorithms and
process model. Finally, empirical knowledge results from observation and system-
atic experimentation with algorithm designs under varying conditions, focusing
on the robustness and generalizability of measured results, e.g., a bechmark study
of process discovery algorithms [13].

As shown in Table 2.2, each of these knowledge extension categories is associ-
ated with specific research methods. Typically, novel process mining algorithms
results focus mainly on two of these categories: While developing novel pro-
cess mining algorithms results in new algorithm design knowledge, highlighted
in blue, their validity is often evaluated employing empirical research methods,
highlighted in violet. Empirical research is established by developing and test-
ing hypotheses and distinguishes between exploratory, correlational, and exper-
imental research designs. This classification reflects three distinct purposes: ex-
ploratory designs generate insights and hypotheses, correlational designs measure
associations between variables without manipulation, and experimental designs
manipulate one or multiple factors under controlled conditions to establish causal
relationships.

As the refinement of empirical knowledge increases, the technical sophistica-
tion, data requirements, and scientific rigor of the research increase simultane-
ously, as shown in Figure 2.8. This increase in methodological sophistication not
only enables more precise and controlled investigations but also typically enhances
the reliability and validity of the resulting knowledge.

Figure 2.8: In [96], advances in the refinement of knowledge in empirical research come
with increasing technical sophistication, data requirements, and scientific rigor.
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2.3.1 Experimental Reliability

Reliability
Consistency and repeatability

Repeatability
(same researcher, same setup)

Replicability
(independent repetition

Direct replication
(same setup)

Conceptual replication
(altered conditions)

Figure 2.9: Adapted from Rehse et al. [108], conceptual structure of reliability in experi-
mental research.

In extending the body of knowledge, it is crucial to ensure that the generated
knowledge is both reliable and valid [96, 108]. Reliability, defined as the con-
sistency and repeatability of measurements [124]. Both generally improve with
increasing technical sophistication in empirical research. Exploratory designs tend
to prioritize breadth and insight, often trading off some reliability, while experi-
mental designs emphasize control and precision, maximizing reliability.

As depicted in Figure 2.9, reliability differentiates between repeatability and
replicability. Repeatability refers to the consistency of results when the same re-
searcher reproduces a study under identical conditions and replicability to the con-
sistency when the study is repeated independently, also called internal reliability.
Replicability can be further divided into direct replication, which attempts to re-
produce results with the same setup, and conceptual replication, which tests the
robustness of findings under altered conditions, e.g., different datasets, instru-
ments, or contexts. Reliability is a prerequisite to validity.

2.3.2 Methodological Validity

Validity refers to the extent to which a measure or method accurately captures the
concept or phenomenon it is intended to represent [124]. Methodological validity
in algorithm engineering concerns whether the research methods used to develop,
evaluate, and generalize knowledge about algorithms are sound, rigorous, and
appropriate for the type of knowledge being produced [96]. Rather than formal
proofs of algorithms, this work focuses on the validity concerns in their empirical
evaluation, as depicted in Table 2.2.

As illustrated in Figure 2.10, methodological validity spans the entire algorithm
research pipeline, from problem formulation to knowledge claims, and can be cat-
egorized into several types that align with specific stages of research. Each validity
type applies at the stage, where the corresponding research object is developed or
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evaluated. Color highlights central stages of empirically evaluated algorithm de-
velopment, as the objects of analysis in this thesis.

At the level of algorithmic tasks, ecological validity assesses whether the tasks
and evaluation setups reflect realistic problem contexts [96]. Moving to algorithm
design, design validity ensures that the internal logic and structure of the design
are coherent, justified, and explainable. During implementation, implementation
validity evaluates whether the code faithfully realizes the intended design and
behaves as expected. Key validity concerns arise in empirical evaluation:

1. Internal validity: Extent to which an experiment’s outcomes can be con-
fidently attributed to the manipulated variables, rather than confounding
variables [108].

2. Construct validity: Whether the measurements and evaluation metrics accu-
rately capture the intended properties of algorithms [36, 96].

(a) Soundness: Metric only identifies properties that truly exist (no false
positives).

(b) Completeness: Metric identifies all instances of the target property (no
false negatives).

3. External validity: Whether results generalize across datasets, domains, or
populations [115].

4. Conclusion validity: Reliability of statistical inferences and the support they
provide for hypothesized relationships [119].

Finally, at the stage of knowledge claims, deductive reasoning is critically assessed.
Justification validity examines whether hypotheses or theorems are convincingly
supported by theoretical reasoning. Logical validity evaluates whether the de-
ductive steps, or syllogisms, used in proofs preserve truth, following Aristotelian
principles [45].

Taken together, these validity types provide a comprehensive framework for
systematically enhancing knowledge about algorithms, linking the type of knowl-
edge being generated, i.e., task-level, design-level, formal, or empirical, to the
appropriate methodological safeguards.
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Real-World Problem

Algorithmic Task

Algorithm Design

Algorithm Implementation

Empirical Evaluation

Knowledge Claims

Ecological Validity:
Whether task setup reflects real-world conditions

Design Validity:
Whether internal logic is coherent and justified

Implementation Validity:
Whether implementation faithfully matches design

Internal Validity:
Whether effects are attributed to treatment
Construct Validity:
Whether measurements capture intended concepts
External Validity:
Whether results generalize across contexts
Conclusion Validity:
Whether statistical inferences are reliable

Justification Validity:
Whether hypotheses are supported by reasoning
Logical Validity:
Whether deductive arguments preserve truth

Figure 2.10: Algorithm research pipeline and associated validity concerns.

2.4 Representational Bias in Process Mining
Evaluations

Bias in representation is a well-known concern in machine learning and statis-
tics. [60] In those fields, sampling bias refers to a systematic mismatch between
an available sample and the true underlying data distribution, which distorts in-
ferences and reduces generalizability.

In contrast, in process discovery, the term representational bias has historically
referred to the structural constraints of an algorithm’s modeling formalism, as Petri
nets, BPMN models, process trees, or Declare shape different inherent constraints
in what process behaviors can be represented [127].

In this thesis, the concept is extended and redefined to address bias in event
data representation used for evaluating process mining algorithms and the impli-
cations of this concept of representational bias on process mining evaluations is
discussed.
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2.4.1 Representational Bias

This thesis formalizes bias on data representation at multiple levels: local, global,
and universal. Figure 2.11 illustrates the hierarchical progression of representative
bias, from traces in a single event log (local), to an event log collection, i.e., a data
set from a single process (global), and finally an event log collection representing
the universe of all possible processes. These are interrelated and progressively
broader in scope. Next, these multiple levels are formalized in colored blocks
corresponding to their depiction in Figure 2.11.

Figure 2.11: Local, global, and universal representational bias in process mining research.

Local Representational Bias captures deviations within a single event log, aris-
ing when the log fails to reflect the true diversity of possible executions of
the underlying process. This may involve frequency deviations of activity se-
quences or their complete absence in the log, which compromises evaluations
based on that log and produces misleading assessments of algorithmic perfor-
mance [71, 47, 127]. It is the foundational concept upon which broader forms
of bias are defined.

Formal Definition of Local Representational Bias

An event log is a finite set of traces L = {σ1, . . . , σn} (cf. Equation (2.3)).
Let P be a fixed underlying process, and let L(P) denote the generating
function for possibly sampling an infinite set of finite event logs the process
can generate under realistic conditions.
Formally, the generating function for event logs is:

L ∼ L(P) with L := {σ1, . . . , σn}, σi ∈ Σ∗
loc, 1 ≤ i ≤ n

where σi is drawn from the distribution πP , i.e., σi ∼ πP is an i.i.d. sample
from the probability measure πP induced by P, denoting the process’ trace
distribution, over the set of traces Σ∗

loc.
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For an observed event log Lobs = {σ1, . . . , σk} ⊂ Σ∗
loc, we define the empirical

distribution as follows:

πLobs(σ) =
1

k

k∑
i=1

1 [σi = σ] , ∀σ ∈ Σ∗
loc,

where 1[·] denotes the indicator function. We define the local representa-
tional bias as the mismatch of the trace distribution of the log Lobs to the
one of the process L(P), i.e.:

LRB(Lobs,P) := ddiv(πLobs , πP),

where ddiv(·, ·) denotes any divergence metric on probability measures (e.g.,
Jensen-Shannon divergence, Wasserstein-distance, etc.).

Global Representational Bias generalizes local bias to the level of a collection
of event logs from a fixed underlying process P. It occurs when the available
set of multiple event logs D systematically deviates from L(P), thus extending
the notion of local bias to an event log level sampling problem [70, 47]. This
involves frequency deviations of complete concepts in event logs due to, e.g., sea-
sonality [145], which compromises the validity of the resulting model and the
algorithmic evaluation results. This is analogous to the previous local represen-
tational bias, but includes structural omissions and distortions across the entire
collection of event logs [96, 108].

Formal Definition of Global Representational Bias

We define a set of sampled event logs D = {L1, ..., Lm} where each event
log is independently sampled from the generating function L(P) for a fixed
process P, i.e.:

Lj ∼ L(P), with Lj = {σj
1, . . . , σ

j
nj
}

with σj
i ∈ Σ∗

glo traces from the global setting, and where σj
i ∼ πP with πP is

the trace distribution adopted from the local representational bias.
For an observed collection of event logs Dobs = {L1, ..., Lℓ} with N =∑ℓ

i=1 ni. denoting the total number of traces in Dobs, we define the trace-
aggregated empirical distribution as follows:

πDobs
(σ) =

1

N

ℓ∑
j=1

nj∑
i=1

1{σj
i = σ}, ∀σ ∈ Σ∗

glo,
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where 1[·] denotes the indicator function, i.e., the relative frequency of trace
σ among all traces in the observed collection. A global representational
bias occurs when the trace aggregated distribution of the log collection Dobs

does not adequately match the one of the generating process L(P). For-
mally:

GRB(Dobs,P) := ddiv
(
πDobs

, πP
)
,

where ddiv(·, ·) is any suitable divergence metric on probability measures
(e.g., Jensen–Shannon divergence, Wasserstein distance).

Note that global representational bias builds directly upon local representa-
tional bias: local deviations in individual logs accumulate into global deviations
across datasets. Furthermore, it serves as the basis for the next and final level of
abstraction.

Universal Representational Bias further generalizes the concept to theoreti-
cally encompass all possible processes. It occurs when a collection of event logs
D fails to represent the universe L∗ of all possible event logs L(P∗) generated by
any conceivable process P∗. This is the broadest form of representational bias and
captures fundamental epistemic limitations of empirical evaluation [60, 96].

Formal Definition of Universal Representational Bias

Let P∗ denote the set of all possible processes. Define the universe of all
possible event logs as:

L∗ =
⋃

P∈P∗

L(P).

We define the likelihood of a process with P ∼ Π, where Π denotes the
probability measure over process, i.e., a process prior. The universal trace
distribution is therefore given as:

πU(σ) =

∫
P∗

πP(σ) dΠ(P),

where πP denotes the probability measure of a trace given a specific trace
P. Therefore, the sampling process of an event log is defined as:

LU : sample P ∼ Π, then L ∼ L(P)

A dataset of m logs is drawn from the universe as :

Lj ∼ LU , with Lj = {σj
1, . . . , σ

j
nj
}
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For an observed collection of event logs Dobs = {L1, . . . , Lr} ⊂ LU , with total
number of traces N =

∑ℓ
i=1 ni, the empirical universe-level trace distribu-

tion is:

πDobs
(σ) =

1

N

r∑
i=1

ni∑
j=1

1{σj
i = σ}, ∀σ ∈ Σ∗

uni,

where 1[·] denotes the indicator function. The universal representational
bias quantifies the divergence between the empirical distribution πDobs

and
the aggregate universe distribution πU :

URB(Dobs,P∗) := ddiv
(
πDobs

, πU

)
,

where ddiv(·, ·) is a suitable divergence metric for probability measures (e.g.,
Jensen–Shannon divergence, Wasserstein distance).

Universal representational bias subsumes both local and global bias, and is
the central focus of this thesis (see Section 1.1). Generalizable evaluation of pro-
cess mining algorithms requires controlling for universal representational bias as
it concerns finding the limitations, where evaluation results can hold across all
representative processes, as a subset of the theoretical possible processes, and
generalizable conditions [96, 108, 107]. We acknowledge that, especially when
researching the theoretical universe of all possible processes, not all of them might
be realistic or relevant in practice. For this purpose, L∗ should be defined per eval-
uation by controlling relevant features and characteristics in the particular process
mining task. This thesis approaches mitigating universal representational bias via
an exploratory data generation of controlled samples from L∗.

Representational bias manifests at local, global, and universal levels (cf. Fig-
ure 2.11).

• Local representational bias (LRB) quantifies deviations within a single
event log Lobs relative to the distribution πP of the underlying process
P [127].

• Global representational bias (GRB) aggregates deviations across a collec-
tion of event logs Dobs from a fixed process P , comparing the empirical dis-
tribution πDobs

to πP .

• Universal representational bias (URB) generalizes this notion to the full
universe of possible processes P∗ and their logs L∗, comparing the empirical
dataset Dobs to the aggregate universe-level distribution πU .

Formally, the levels satisfy the following hierarchy:

LRB(Lobs, P ) ⊆ GRB(Dobs, P ) ⊆ URB(Dobs,P∗),
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Universal representational bias integrates the preceding notions and defines the
scope for generalizable evaluation, which is the focus of this thesis. It threatens
the validity of process mining evaluations by limiting generalizability to unseen
processes and conditions, and by introducing dataset artifacts that can distort al-
gorithmic performance [96, 120, 108]. The remainder of this thesis explicitly
addresses this type of bias, and henceforth representational bias refers to universal
representational bias unless otherwise stated. These effects underpin many of the
challenges discussed in the next subsection, where links to process mining crimes
and threats to construct, internal, external, and conclusion validity are systemati-
cally analyzed.

2.4.2 Challenges and Implications

The evaluation of process mining algorithms is a fundamental challenge, as docu-
mented by systematic reviews and benchmark studies [8, 13, 138, 107, 71, 108].
From a methodological perspective, validity and reliability threats in process dis-
covery have been conceptualized as process mining crimes, i.e., unintentional but
systematic mistakes that undermine empirical evaluation results [107]. Several
of these crimes are directly linked to the challenge of data quality and represen-
tational bias. Table 2.3 presents a conceptual mapping of process mining crimes
to specific validity threats and highlights whether these crimes can be connected
to representational bias. A “•”, represents a directly connected crime, i.e., one in-
herently caused by representational bias. Whereas “◦” represents a indirectly con-
nected crime, i.e., a consequence or amplifier of representational bias, but which
might not primarily be a data problem itself, e.g., using selective metrics can hide
flaws caused by unrepresentative data, but is not a data selection concern itself.
Finally, “–” represents crimes, which are not connected to representational bias.
This mapping builds on prior work on methodological validity in process discovery
[96, 108] and integrates empirical findings [107] with theoretical considerations.
The table also links each crime category to construct validity, internal validity, ex-
ternal validity, and conclusion validity, which are key to empirical evaluation [96].

Implications on Process Mining Crime: Several key insights emerge from Ta-
ble 2.3. Category 1, Using the wrong evaluation data, shows the strongest direct
connection to representational bias. This highlights that the selection of datasets
is a foundational methodological concern [70, 108]. Here, the lack of justification
for dataset choice (1a), reliance on micrologs (1b), evaluation with simplified simu-
lations (1c), and misleading logs (1d) all directly compromise representativeness.
These practices result in evaluations that fail to capture the diversity and com-
plexity of real-world processes, thereby weakening both construct validity and
external validity. Categories 2, Misleading quality assessment, and 4, Incomplete
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Table 2.3: Process mining crimes’ connection to validity concerns and representational bias.

Crime category and crime Short Explanation Validity Concerns Rep. Bias

1 Using wrong evaluation data
1a Choice without justification Data choice not justified Construct, External •
1b Micrologs not representative Distorting generalization Construct, External •
1c Simplified simulated logs Lacks real complexity External, Construct •
1d Misleading logs Distorts measurement Construct, Internal •

2 Misleading quality assessment
2a Selective metrics Omits dimensions Construct, Conclusion ◦
2b Matching metrics to
desired outcomes

Tailored metrics Construct ◦

2c Only partial dimensions Ignores relevant dimensions Construct, Conclusion ◦

3 Scientific inaccuracies
3a No quality degradation tests Misses relevant effects Construct, Internal ◦
3b Creative result accounting Manipulates results Conclusion –
3c Claims without verification Lacks empirical support Conclusion ◦

4 Incomplete evaluations
4a No significance indication Lacks statistical reliability Conclusion ◦
4b No assumptions on noise Ignores confounders Internal ◦
4c No incremental testing Effects not isolated Internal, Construct ◦

5 Improper comparisons
5a No proper comparison Limits generalizability Internal, External ◦
5b Only self-evaluation Risks overfitting claims External, Construct ◦
5c Unfair competitor evaluation Bias distorts conclusions Internal, Conclusion –

6 Missing information
6a Missing hardware specs Reproducibility threatened Conclusion –
6b Missing software specs Reproducibility threatened Conclusion –
6c Missing individual measures Completeness unverifiable Construct, Conclusion ◦
6d Relative numbers only Lack of absolute context Construct, Conclusion ◦

evaluations, exhibit indirect connections, indicating that the lack of representa-
tive and diverse data can propagate methodological shortcomings. For instance,
selective use of quality metrics (2a–c) or incomplete evaluations (4a–c) can exacer-
bate the effects of unrepresentative data by hiding deficiencies that only emerge
under diverse conditions. Similarly, Scientific inaccuracies (3a, 3c) and Improper
comparisons (5a, 5b) propagate biases when conclusions are drawn from narrow
or unrepresentative samples. Even Missing information (6c, 6d), though not in-
herently a data problem, can prevent researchers from assessing whether results
depend on specific datasets or whether findings generalize beyond them. In con-
trast, crimes such as creative result accounting (3b), unfair competitor evaluation
(5c), or missing technical specifications (6a, 6b) primarily threaten reproducibility
or fairness, but are not directly tied to dataset representativeness. Taken together,
this analysis highlights that representational bias not only affects the initial choice
of datasets but also interacts with other methodological shortcomings, amplifying
threats to validity across the evaluation pipeline.
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Implications on Validity: Representational bias compromises multiple dimen-
sions in terms of validity in empirical evaluation [96, 108, 70].

• Construct validity is threatened when evaluation metrics do not align with
their intended goals, for example, when process discovery evaluations rely
solely on fitness measured against biased or overly simplified event logs.
Such logs may fail to capture the real complexity of operational processes,
leading to misleading conclusions about algorithm performance [96].

• Internal validity is compromised when confounding dataset properties
caused by representational bias, such as noise levels, incompleteness, or pre-
processing choices, are not controlled. This can result in incorrect causal
attributions, where observed differences in performance are due to dataset
artifacts rather than genuine algorithmic improvements [108].

• External validity is fragile when benchmarks systematically underrepresent
the diversity of real-world operational processes. Representational bias in cu-
rated datasets, particularly in streaming and online process mining, creates
unrealistic evaluation settings due to the scarcity of realistic event streams,
limiting the generalizability of conclusions to actual operational environ-
ments [70, 87, 4, 113, 108].

• Conclusion validity is equally at risk when statistical analyses and evalua-
tion claims are drawn without sufficient rigor, especially when evaluations
are based on biased datasets that do not capture process variability. This
includes omissions such as failing to report significance tests or selectively
publishing results that fit expectations, which can produce unfounded gen-
eralizations about algorithm effectiveness [96].

These threats collectively illustrate why addressing representational bias
through careful dataset selection, diverse log generation, and robust metric
design is central to ensuring methodological rigor in process mining evaluations.

Addressed Gaps: Presented validity concerns and discussed process mining
crime implications demonstrate a systemic problem, rooted in the limitations of ex-
isting benchmarks. These motivate the primary contributions of this thesis, which
address the following gaps:

• Despite initiatives like the BPI Challenges2, the Process Discovery Chal-
lenge [31] or by Costa et al. [37], benchmarks often cover only a narrow
subset of process characteristics, leaving representational bias unresolved.

2https://www.tf-pm.org/resources/logs

https://www.tf-pm.org/resources/logs
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• Algorithm robustness depends critically on log diversity [107, 139], which
necessitates systematic studies under controlled variations in log properties
such as noise, incompleteness, and structural complexity [10, 15, 139].

• The difficulty of systematically exploring the full event-log design space us-
ing traditional methods remains a barrier to comprehensive algorithm test-
ing [24, 94].

• Deficiencies persist in creating controlled, robust, and reproducible datasets
required to strengthen the validity of empirical evaluations [90, 92, 93, 115].

• A rigorous framework is lacking to reliably explain the impact of specific log
characteristics on algorithm evaluation measurements [91].
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Chapter 3

Contributions
Nothing comes without its world.

– Donna Jeanne Haraway

Haraway’s observation [58] reminds us that knowledge is always situated within
the contexts and practices that generate it. In process mining, new algorithms can-
not be meaningfully evaluated in isolation, but only in relation to the data, bench-
marks, and methodological choices that shape their performance [113]. Simi-
larly, the contributions presented in this chapter are interconnected elements of
a broader methodology, which refers to a structured system for studying process
mining methods, in this case, process discovery algorithms. [96]

The six systematic workflow steps for generation of empirical knowledge, ac-
cording to algorithm engineering [96] are illustrated in Figure 3.1. Next, each of
these steps is presented and discussed in the general scope of this thesis:

(1) Developing hypotheses, which derive from and operationalize the re-
search questions to be investigated. The overarching hypothesis of this disser-
tation, derived from the research question in Chapter 1 and literature obser-
vations about impacts of data characteristics in process mining evaluations (see
[8, 13, 68, 71, 107, 108, 113, 138]), is the following:

General Hypothesis: Because event data characteristics systematically im-
pact algorithmic evaluation results, a data-driven evaluation framework will
reliably identify and explain their impact on the evaluation measurements
and validity of process discovery algorithms.

(2) Deriving a research design, specifying how these hypotheses will be tested.
In this thesis, we adopt a data-driven empirical design that integrates data char-
acterization, intentional data generation, and explainable evaluation to system-
atically test how event data characteristics impact algorithm evaluation measure-
ments, corresponding to objectives in Section 1.1.

(3) Building an implementation for instrumentation, enabling systematic ob-
servation and measurement of algorithm behavior. To this end, we implement
open-source instrumentation frameworks that operationalize data characteriza-
tion, controlled experimentation, and explainable impact analysis across multiple
process discovery algorithms.
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Figure 3.1: Conceptual workflow of empirical steps from algorithm engineering [96]

(4) Choosing evaluation data, providing the experimental setting in which
the instrumentation will operate. As a central topic, we employ both available
real-world and synthetically generated event data. Employing GEDI [92] and
iGEDI [90], we ensure controlled variation of data characteristics, generalizability,
and reproducibility in evaluating process discovery algorithms.

(5) Conducting measurement and instrumentation, where performance data is
collected under controlled conditions. In SHAining [91], we perform systematic
experiments to capture algorithm evaluation measures as fitness, precision, model
size, and execution time for multiple algorithms. Controlled hardware configura-
tions, as well as intentional variation of event data characteristics, ensure repro-
ducible results for quantified characteristic impact explanations.

(6) Drawing conclusions, in which results are analyzed to contribute new em-
pirical knowledge to the field. To interpret the empirical findings of this thesis,
we relate our observations on algorithm robustness, validity, and generalizability
back to our general hypothesis. To confirm the General Hypothesis, we investigate
a set of three hypothesis aligned with the objectives in Section 1.1. The results of
this analysis are briefly discussed in the following sections of this chapter.

Ultimately, our results for each objective confirm that the proposed systematic,
data-driven evaluation framework reliably identifies and explains how event data
characteristics affect process discovery algorithm evaluation measurements in a
generalizable way for an underlying data-generating process.

In Figure 3.2, we depict which empirical steps, previously presented, were ex-
ecuted in individual contributions. Colors associated with each contribution rep-
resent the role they play in the general scope of this thesis. Star figures after a
contribution, represent points of produced new insights. These include what fea-
ture value combinations are feasible after GEDI [92] and Know Your Streams [93],
as well as validated statistical claims about the impact of event log feature val-
ues on particular process discovery algorithms’ evaluation measurements after
SHAining [91]. We position the included publications in the following two dimen-
sions: The vertical dimension classifies the works in one of three interdependent
methodological principles, presented in Section 1.1, and presented in different
background shades in the figure:

1. Justification — While DROPP [18] improves data analysis by preserving
structure-aware characteristics after dimensionality reduction. It forms the
justification for this thesis’ investigation in the context of sequential data by
demonstrating the impact of structure preservation on reconstruction error,
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Figure 3.2: Conceptual workflow of the dissertation’s approach, showing cumulative em-
pirical steps (x-axis) and paper-specific components (y-axis, cf. Section 1.1).

as well as proving the feasibility to identify and preserve these invariant
structural characteristics.

2. Framework — This dissertation provides a reusable framework for ro-
bust empirical process mining research. It unites the operationaliza-
tion of structure-aware event log characterization in the supportive tool
from FEEED [94], the generation of diverse and intentional event logs in
GEDI [92], and the systematic evaluation of event data characteristics impact
on process mining algorithms in SHAining [91]. Furthermore, the supportive
interactive ready-to-use web application in iGEDI [90], and the extension to
realistic event streams in Know Your Streams [93] enable extensions to other
process mining tasks, including in online scenarios.

3. Experimentation - A subset of the contributions that are part of the pre-
viously presented framework, belong to the overarching experiment. De-
signing and executing controlled experiments of this thesis includes multiple
design decisions. Therefore, blue arrows in Figure 3.2 illustrate how the
divergent exploration and convergent synthesis of feature dimensions con-
verge at key design junctures, which guide methodological choices such as,
the selection of representative features after FEEED [94] for event data gen-
eration, the filtering of feasible event logs in GEDI [92], and the aggregation
of feature impact values in SHAining [91] to interpretable evaluation results.

The horizontal dimension, classifies the presented works in relation to Objec-
tive 1-3, as presented in Chapter 1. The rest of this chapter presents how a series of
key papers collectively construct the described full-cycle methodology for explain-
able and robust algorithm evaluations, with each contribution serving a distinct,
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yet interconnected, component within the framework, and briefly discusses each
of the empirical workflow steps.

3.1 Structure-aware Data Characterization

Objective 1 of our research scope, as presented in Section 1.1, is to develop a
structure-aware method for data characterization. For this, we consider:

Hypothesis 1 Structure-aware data characterization methods reliably capture
and preserve intrinsic properties of sequential and event data across domains,
forming a robust foundation for subsequent algorithm evaluation.

We start by addressing the foundational problem of dimensionality reduction
techniques, which often fail to preserve the intrinsic structure of ordered data. The
paper DROPP: Structure-Aware PCA for Ordered Data, a General Method and Its
Applications in Climate Research and Molecular Dynamics [18] handles this prob-
lem by following the previously presented steps of an experimental design ap-
proach. It explicitly hypothesizes (1) that a structure-aware method will outper-
form traditional dimensionality reduction techniques. The experimental research
design compares (2) our implemented DROPP approach, using Gaussian kernels
to preserve the order structure in dimensionality reduction, (3) against PCA [44],
ICA [61], and tICA [100] on synthetic and real datasets across various applica-
tions (4) in terms of reconstruction error and similarity of principal components
(5) to demonstrate its superior performance (6). This foundational work on data
characterization laid the groundwork for the envisioned data-driven approach by
highlighting the importance of preserving the sequential data’s inherent structure.

Figure 3.3 depicts two example sequential process models, representing struc-
turally similar event data sets, with e.g., number of variants equal to 1 each, yet
stemming from different domains – healthcare and baking. While the realities of
both processes are likely to differ, data mining algorithms are likely to approach
them in very similar ways [15]. Figure 3.4 shows two additional example process
models, structurally different from the previous ones in Figure 3.3. The additional
examples are also structurally similar to each other, with e.g., the number of vari-
ants strictly higher than one, as both contain a parallel split after their first activity
(see Section 2.2.1). Both healthcare process models on the left, and both baking
process models on the right, are topologically different to each other, and may be
approached fundamentally differently by data mining algorithms. These figures
exemplify impactful structural features of event data extracted by FEEED [94] be-
yond domain knowledge.

Furthermore, to address the need to robustly capture interpretable structural
data properties from event data, we present FEEED: Feature Extraction from Event
Data [94], which computes interpretable meta-features from event logs at multi-



3.2 Intentional Event Data Generation 37

• Triage Diagnosis Treatment • Mix Ingredients Pour into Pan Bake

Healthcare Baking

Figure 3.3: Sequential processes in healthcare and baking
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ple granularities. FEEED [94] hypothesis (1) and research design (2) are derived
from further literature identifying domain-independent intrinsic properties of an
event log [15, 16, 143]. The supportive work in this contribution is a critical
piece of the framework, as it provides the implementation (3) for posterior al-
gorithm analysis and benchmarking. It contributes to operationalizing evaluation
data characteristics as meta-features (4), enabling similarity comparisons between
event datasets (5). Thus, it offers a method for reliably capturing structural event
data characteristics.

Both papers confirm Hypothesis 1 by measuring and preserving structure-
aware characteristics. While DROPP [18] justifies the preservation of the in-
variant structure of the underlying data-generating process across dimensions
during analysis, FEEED [94] forms the first part of the framework by capturing
domain-independent, yet human-interpretable, representative structural features
from event logs.

3.2 Intentional Event Data Generation

For Objective 2 of creating frameworks for intentional event data gener-
ation to mitigate representational bias, we formulate a second hypothesis.

Hypothesis 2 Intentional event data generation enables systematic creation
of diverse, feature-controlled datasets that mitigate representational bias and
improve the validity of process mining algorithm evaluation.

After measuring structure-aware meta-feature values for 25 publicly available
real-world event logs in FEEED [94], we analyze the inter-feature correlation
between features and between semantically associated feature groups, such as
activity-, trace-, and entropy-based features.

Figure 3.5 shows the complete correlation matrix using Pearson correlation
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between feature values of 25 public available event logs. Features are clustered
across all groups using hierarchical clustering with single linkage distance [83],
revealing overall similarity patterns. In the axes, features from specific groups, as
defined in [94], are represented by different colors. Dots indicate feature types
as defined in [94], with larger dots marking representative features. The selected
features for the rest of the experiment are shown in Figure 3.6.

The correlation with a full list of features can be found in Figure 4.1. Observing
the light-colored squares close to the diagonal in Figure 3.5, we can identify mul-
tiple clusters. Colored blocks of feature groups along the axes reveal that features
in the same group often correlate with other features in the same group. Never-
theless, almost no groups of features, besides eventropies, correspond completely
to the discovered clusters, as colored blocks along the axes often have more than
one appearance per color.

We applied a greedy feature selection procedure to obtain a representative
subset of features, as elaborated in SHAining [91]. The method iteratively adds
features that contribute maximal diversity while minimizing redundancy, based
on correlation analysis of feature values for the 25 real-world event logs, most
used in evaluations, across feature groups. This selection process continues un-
til a defined threshold is reached, which in this case yielded eight meta-features
using the elbow method [126]. Notably, the selected features resulting from this
procedure, depicted as bigger dots in Figure 3.5 and specified in Figure 3.6, often
correspond to one bigger cluster, depicted as a light square close to the diago-
nal. Selected features, employed for posterior steps in the overarching experiment
of this dissertation, as well as their correlation matrix, are shown in Figure 3.6.
These selected features are critical because they serve as the essential quantitative
variables that enable both the intentional data generation (Objective 2) and the
quantified explainability (Objective 3)in the overarching methodology.

The limitations of current benchmarks in process mining, namely their lack of
diversity and controllability, created a significant gap in available choices for the
evaluation data selection phase (4). This gap justifies the explorative data gener-
ation approach of our experiment and framework. GEDI: Generating Event Data
with Intentional Features for Benchmarking Process Mining [92] directly addresses
this gap by introducing a method for intentional data generation on multiple si-
multaneous dimensions. It develops the hypothesis that intentional data genera-
tion can overcome benchmark event data generalizability and diversity limitations
(1), testing the feasibility of feature value combinations, assessing the coverage
of the feature space, and investigating the changes in metric correlation tests by
considering the exploratory data sample (2). Implementation involves building
the GEDI [92] framework using hyperparameter optimization on parameterizable
event data generators (3), which is directly reused in the following papers, as
depicted by the purple arrows to iGEDI [90], and Know Your Streams [93] in Fig-



3.2 Intentional Event Data Generation 39

Figure 3.5: Clustered correlation matrix using hierarchical clustering with single linkage
and Pearson correlation as distance [83] between event data features [94]

ure 3.2. Its core contribution is enabling the generation of intentional event data
with controllable characteristics (4), which is explicitly employed in the next step,
as depicted by the dotted purple arrow between GEDI [92] and SHAining [91] in
Figure 3.2. Measurement validates the feasibility and coverage of the event data
feature space by the generated data (5). Conclusions establish GEDI’s effectiveness
in creating diverse and tailored evaluation datasets for rigorous experimentation
(6), thus sufficiently confirming Hypothesis 2.

Building upon GEDI [92], the tool iGEDI [90]: interactive Generating Event
Data with Intentional Features [90] addresses the need for interactive exploration
of the feature space. It supports the implementation phase, providing instrumenta-
tion to generate data (3), contributing to operationalizing evaluation data charac-
teristics (4) through a user-friendly interface on an web application. This enables
researchers to design targeted benchmarks more easily, thereby streamlining the
process of deriving a research design.
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Figure 3.6: Correlation plot for selected features from Figure 3.5

Furthermore, the inadequacy of current evaluation practices for streaming pro-
cess mining also shows a significant gap in online scenarios. The contribution
Know Your Streams[93]: On the Conceptualization, Characterization, and Gen-
eration of Intentional Event Streams [93] addresses this issue by extending the
data-driven methodology to the streaming context. It addresses multiple method-
ological steps simultaneously, hypothesizing about the inadequacy of current eval-
uation practices (1). The research design combines a literature review for identi-
fying characteristics not well understood in streaming contexts (2), as well as the
implementation of the Stream of Intent prototype generator, which produces real-
istic event streams (3). Data generation for evaluation focuses on creating realistic
event streams with intentional characteristics (4). Measurement defines and op-
erationalizes stream characteristics like temporal dependencies and out-of-order
events (5). Conclusions establish a conceptual framework for event streams and
demonstrate the prototype’s effectiveness (6). This contribution demonstrates the
adaptability and generalizability of the overarching methodology beyond process
mining algorithm paradigms, from static to dynamic.

Overall, these contributions enable the systematic generation of diverse
feature-controlled datasets to mitigate representational bias. Confirming Hypothe-
sis 2, GEDI [92], iGEDI [90] and Know Your Streams [93] present scalable essential
parts of the framework, which can be used to improve the validity of process min-
ing algorithm evaluations in various process mining tasks. Particularly, GEDI [92]
generational capabilities are leveraged in the experimental design of this thesis.
This is further elaborated in the next section.
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3.3 Measuring the Impact of Data Characteristics

Finally, Objective 3 targets quantifying and explaining the impact of event data
characteristics on algorithm evaluation measurements. They are investigated
through the following:

Hypothesis 3 Interpretable aggregation of feature impact values through
SHAining enables systematic explanations of how event data characteristics
influence algorithmic evaluation results, supporting generalizable and reliable
conclusions.

Intentional event data generation can systematically create diverse, feature-
controlled datasets that reduce representational bias and enhance the validity of
process mining algorithm evaluation.

The challenge of understanding how specific event log characteristics impact
the performance of process mining algorithms is the main goal of the contribu-
tion SHAining on Process Mining: Explaining Event Log Characteristics Impact on
Algorithms [91]. This contribution serves as the culmination of the entire frame-
work and directly implements the complete empirical knowledge generation ex-
periments (1-6) by leveraging the feature computation of FEEED [94] as well as,
data generation capabilities of GEDI [92]. It develops hypotheses (1) about how
event log characteristics impact algorithm performance, such as “trace length vari-
ance has a higher impact on ILP miner’s fitness than the other selected features”.
The research design (2) involves feature combinations, event log generation, pro-
cess discovery execution, culminating in Shapley analysis and correlation tests.
Implementation (3) involves instrumenting contributions presented in the previ-
ous framework contributions, as well as multiple process mining algorithms, and
the overarching Shapley value analysis.

Evaluation data (4) comprises over 22,000 intentionally generated logs from
GEDI [92] and 25 real event logs from BPI Challenges3, as shown in Figure 3.7.
Starting from 8 selected features, we generate an 8-dimensional space with 10
values per feature, which results in 80 initially generated event logs. To employ
Shapley values, we require event logs, displaying each feature value singularly as
well as all possible combinations of feature values of disjunct features simultane-
ously, resulting in this case in three levels. As shown in the feasibility evaluation in
GEDI [92], feature values of disjunct features may stand in contradiction to each
other. For example, the value for maximum number of activities in a trace cannot
be lower than the value of minimum number of activities in a trace. For this rea-
son, 58,302, 1-3 level feature value combinations result in feasible event logs. On
these feasible event logs 3 algorithms are applied. As hardware constraints might
not be manageable by all algorithms for all event datasets, approximately 58% of

3https://www.tf-pm.org/resources/logs

https://www.tf-pm.org/resources/logs
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possible executions actually yield a valid output, resulting in 101,445 process dis-
covery output models. All executions, which yielded valid output, are evaluated
in terms of 6 process discovery measures. Due to soundness, 529,416 of 608,607
yield actual measurements. Each evaluation measure is regarded separately by
the Shapley value analysis. This analysis employs combinatorial lattices consisting
of combinations of measurement results and corresponding feature values. When-
ever a value of a combinatorial lattice is missing, that Shapley value is skipped.
Accumulated infeasibility propagates restrictively at this point. In our setup, we
end up with 313,176 Shapley value results from 22,000 event logs to consider in
the correlation tests. Although feasible Shapley values only cover under 36% of all
possible values, Figure 3.8 shows the coverage of our 22,000 involved generated
event logs in orange, compared to real event logs in blue. Compared to scarce real
event logs, we observe that the generated event logs cover and enrich the feature
space, providing a more generalizable samples than in prior contributions.

1d ED generation

3d ED generation

discover model

measure

Shapley value
computation

correlation test

8080

58,30258,880

101,445174,906

529,416608,670

313,176873,264

8 features, 10 values

8 features, 10 values,
3 levels

3 algorithms

6 measures

6 Shapley values

144 (features x measures x
algorithms) correlation tests

experimental trial

experiment

Figure 3.7: Visual representation of our experi-
mental trial set-up. Annotations in
black indicate how many combina-
tions result, and in green indicate
how many of these were feasible.

Figure 3.8: Our 22,000 generated and tested
event logs cover and enrich the fea-
ture space.

Involved process discovery evaluation measurements (5) operationalize qual-
ity, simplicity, and performance of algorithms through standard metrics like fitness,
precision, F-score, size of the resulting model, and execution time. Through the
boxplots in Figure 3.9, we observe that for most combinations of algorithms and
metrics, results using the generated event logs (in orange) cover and go beyond
the previously available results from real event logs (in blue). This demonstrates
the representational bias of current event data benchmarks, which was the gap
addressed in the previous subsection. Particularly for the combination of output
model size and Split Miner (sm1), feasibility restrictions to discover more models
from more complex event logs with limited hardware constraints become evident.
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Figure 3.9: Evaluation metrics of process discovery algorithm results from our 22,000 generated (or-
ange) vs. real event logs (blue).

Conclusions of this contribution provide answers to validate or disprove spe-
cific hypotheses about particular features, algorithms, and evaluation metric com-
binations. More generally, we validate Hypothesis 3, i.e., using SHAining [91],
as we can measure how event log characteristics impact algorithm metrics for
specific algorithms (6), contributing new empirical knowledge about algorithm
robustness, generalizability, and the correlation of structural feature values and
impact on evaluation results for specific metric-algorithm setups. This paper acts
as the proof of concept and first systematic experiment of this methodology, using
the previous insights and frameworks to produce final, conclusive knowledge.

Taken together, these papers provide a full-cycle methodology for algorithm
engineering in process mining. They move the field towards more systematic,
transparent, and reproducible research by providing experiments and frameworks
for generating and analyzing data-driven behavior of algorithms. Consequently,
we can confirm the general hypothesis from these results, answering our original
research question in Chapter 1. This collective body of contributions lays the foun-
dation for a new generation of empirical studies that can lead to more robust and
reliable process mining algorithms.



44 3. Contributions



45

Chapter 4

Conclusion
Understand well as I may, my com-
prehension can only be an infinites-
imal fraction of all I want to under-
stand.

– Ada Lovelace

In keeping with Ada Lovelace’s profound insight, this thesis regards the vast, un-
known space of knowledge not as a sobering predicament but as an encouraging
invitation to broaden our understanding and embrace complexity. This chapter
provides a culminating summary of our research findings and an overall synthe-
sis of the presented methodology. We will address the justification, experimental
value, and contributions to the field. Afterwards, we will reflect on its limitations,
particularly validity concerns, as our own “process mining crimes”. Finally, we will
point out new research opportunities that arise from our work.

4.1 Summary

This thesis has successfully addressed the feasibility challenge of understanding
the complex inner workings of process discovery algorithms by developing a novel
explainability methodology based on Shapley values.

The justification of our methodology has two parts: On the one hand, identify-
ing [94] and preserving [18] structure-aware data characteristics benefits ordered
data analysis. On the other hand, as heavily pointed out by the process mining
community, due to real event data scarcity, current process mining research lies
in the persistent lack of systematic and generalizable evaluation datasets. Our
work responds to this methodological gap by providing a data-driven approach
to explaining algorithms’ effectiveness and robustness in process discovery. The
experimentation followed a full-cycle methodology grounded in algorithm engi-
neering principles. Through systematic manipulation of event log characteristics—
including noise, incompleteness, and structural complexity—, we generated more
than 22,000 synthetic logs with intentional features, using a novel approach [92].
The experimental design in [91] allowed us to test hypotheses about the influ-
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ence of log properties on algorithm outcomes, while ensuring reliability and re-
producibility across a representative selection of algorithms and across different
algorithmic paradigms, including top-down (Inductive Miner [77]), and bottom-
up (ILP Miner [136], and Split Miner [14]), to showcase its general applicability.
The resulting framework integrates these contributions into a modular and exten-
sible pipeline. It combines structure-aware data characterization, intentional data
generation, and Shapley-based impact measurement into a coherent methodol-
ogy for empirical evaluation. This framework not only enabled us to demonstrate
the robustness and trade-offs across algorithmic paradigms in [91], offline and
online [93], but also provides a reusable foundation for future research. To this
end, we introduce the Python packages FEEED4 and GEDI5; the online application
iGEDI6, as well as our repository SHAining7.

By uniting justification, experimentation, and framework, the thesis establishes
a transparent methodology for understanding algorithm behavior in process min-
ing. This thesis provides an affirmative answer to the guiding Research Question,
presented in Chapter 1, demonstrating that by systematically connecting event
data characteristics with algorithmic evaluation outcomes, a data-driven approach
can indeed explain, in a reliable and generalizable way, the impact of data proper-
ties on process discovery evaluation. This work contributes to building trust in au-
tomated decision-making systems by making their evaluation more interpretable,
reliable, and generalizable of real-world complexity. Ultimately, the ability to ex-
plain algorithm limitations and robustness in regards to data characteristics is cru-
cial for fostering greater trust in process mining algorithm design.

4.2 Threats to validity

Nevertheless, how much can we trust our methodology? To assess the validity of
our contribution in this dissertation, we employ the checklist by Rehse et al. [108].
While our experimentation and framework demonstrate strong safeguards against
common pitfalls, its validity remains bounded by computational limitations, syn-
thetic evaluation settings, and limited real-world validation. A first concern is
internal validity. Although our experiments carefully controlled for noise, vol-
ume, and structural complexity, residual confounding effects from preprocessing
choices cannot be fully excluded. A second concern is construct validity, as pro-
cess discovery measures have been criticised for not measuring the intended mat-
ter [12, 65, 113]. This threat is reduced by including a comprehensive collection
of widely accepted evaluation metrics for process discovery. As a third concern,

4https://pypi.org/project/feeed/
5https://pypi.org/project/gedi/
6https://huggingface.co/spaces/andreamalhera/igedi
7https://github.com/andreamalhera/SHAining

https://pypi.org/project/feeed/
https://pypi.org/project/gedi/
https://huggingface.co/spaces/andreamalhera/igedi
https://github.com/andreamalhera/SHAining
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we confront external validity. With GEDI [92] and iGEDI [90], we systematically
generated over 58,000 diverse synthetic logs to mitigate representational bias and
validated our framework across three distinct algorithmic paradigms. Yet, the gen-
eralization of these findings to characteristics beyond structural ones may contain
irregularities that were not fully captured in our experiments. To mitigate these
threats, the modular nature of our framework easily allows for the integration
of additional measures, algorithms, and characteristics in the future. Consider-
ing conclusion validity, a fourth concern involves large-scale problems. Due to
computational constraints of discovering models for an exponentially increasing
number of possible coalitions, approximations of Shapley values may introduce
statistical uncertainty. Finally, on ecological validity, we acknowledge that our
experiments were conducted in controlled synthetic settings, and whether they
capture the complexity of operational environments and real-world contexts re-
mains to be validated. Taken together, these limitations do not undermine the
presented contributions but highlight important boundaries for interpreting re-
sults and avenues for methodological refinement.

4.3 Future Work

The proposed methodology offers several opportunities for further research
projects. We want to present some ideas briefly:

Exploring Computational Optimizations: As noted in our limitations, com-
putational constraints are a key area for improvement. We plan to address this
by exploring refined sampling methods, using a priori reasoning, and leveraging
domain-specific assumptions to reduce the number of logs required for each Shap-
ley value computation while maintaining the reliability of our insights.

Expanding Algorithmic and Data Diversity: Currently, our framework has
been applied to three representative process discovery algorithms, and the under-
lying pipeline relies on a structure-driven event data-generating system. Besides
testing on a broader collection of algorithms, a valuable next step would be to
generate intentional event data beyond event logs and data streams, including
OCEL [22, 132], federated, ambiguous, and collaborative data. Another direc-
tion is generating intentional event data that embeds contextual constraints or
accounts for additional event attributes, concerning, e.g., time constraints, pay-
loads and resources.

Measuring Representativeness of Event Logs: A key challenge is defining
and measuring the representativeness of a given event log. It would be valuable
to explore new metrics for this purpose, for example, by using Hill diversity, and
generalizing existing work [70, 71].

Integration into Tools and Other Process Mining Tasks: As a scientific com-
munity service, we suggest the integration of our explainability framework into ex-



48 4. Conclusion

isting process mining tools and challenges [31]. This would provide a good basis
for comparing the interpretability of different procedures and for creating insight-
ful benchmarks. To this end, we have introduced the AVOCADO challenge [64], a
standardized evaluation framework integrating criteria for streaming algorithms.
We have presented this challenge as a poster in at ICPM 2025 Stream Management
& Analytics for Process Mining Workshop8 in Montevideo, Uruguay.

Studying Fairness-Related Metrics: Finally, the framework establishes a
unique foundation for studying fairness metrics by integrating fairness with utility
and resemblance into a single evaluation methodology. Currently, a critical gap
is that these dimensions are analyzed in isolation [141]. Future doctoral work
can leverage our comprehensive framework to establish standardized evaluation
protocols for diverse datasets and systematically detect and mitigate bias, thereby
advancing the trustworthiness and generalizability of AI systems.

8https://sma4pm.github.io/2025/

https://sma4pm.github.io/2025/
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C Suppl. Materials to “FEEED: Feature Extraction
from Event Data”

Clustered correlation matrix generated using full hierarchical clustering with sin-
gle linkage and Pearson correlation distance [83]. Features are clustered across all
groups to reveal global similarity patterns. Dots indicate feature types as defined
in [94], with uppercase and prefixed features marking representative features.

Figure 4.1: Extended clustered correlation matrix generated using full hierarchical cluster-
ing with single linkage and Pearson correlation distance [83].

The full list of all feature names 9, as well as the code to produce this plot, can
be found in our repository 10.

9https://github.com/lmu-dbs/feeed
10https://github.com/andreamalhera/SHAining/blob/main/notebooks/section5_greed

y_feature_selection.ipynb

https://github.com/lmu-dbs/feeed
https://github.com/andreamalhera/SHAining/blob/main/notebooks/section5_greedy_feature_selection.ipynb
https://github.com/andreamalhera/SHAining/blob/main/notebooks/section5_greedy_feature_selection.ipynb
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