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Abstract

The two-dimensional (2D) Hubbard model, widely believed to capture the essential
physics of high-T,. cuprate compounds, has attracted immense research interest ever
since the discovery of superconductivity in these materials. Despite its superficial
simplicity, the Hubbard model incubates abundant fascinating phenomena owing to
the strong interactions between charge carriers, encompassing antiferromagnetism,
the pseudogap, and unconventional superconductivity. Yet these very interactions
induce strong correlations, rendering canonical perturbative approaches unreliable.
With advances in modern computational hardware, numerical techniques — notably
tensor network methods and Artificial Intelligence (AI) algorithms — have become
indispensable to our expedition.

Tensor networks encode the amplitude information of many-body quantum states
in a network of interconnected tensors. Leveraging the entanglement area law, tensor
networks provide efficient, systematic, and controllable representations of quantum
states that would otherwise require an exponentially large number of parameters. Past
decades have witnessed the development of various tensor network ansatzes, such
as Matrix Product States/Operators (MPS/MPO) for one-dimensional systems and
Projected Entangled-Pair States (PEPS) for two-dimensional systems, together with
diverse algorithms for optimizing these ansatzes for both zero- and finite-temperature
scenarios.

Over the past years, Al technologies have revolutionized the way we analyze sci-
entific data. The transformer architecture, in particular, has demonstrated exceptional
capabilities in the domain of natural language processing. Its attention mechanism
excels at capturing long-range correlations in sequential data, making it a promising
tool for studying strongly correlated many-body systems. The interpretable nature of
the attention mechanism further offers valuable insights into the AI’s perception of
the underlying physics.

In this thesis, we assemble an all-inclusive numerical toolchain for analyzing
strongly correlated lattice systems. As a demonstration, we investigate the zero- and
finite-temperature properties of the 2D Hubbard model on a square lattice via the
infinite PEPS (iPEPS) and the eXponential Tensor Renormalization Group (XTRG),
respectively. The native two-dimensional iPEPS tensor network faithfully embodies
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the entanglement area law and helps settle long-standing debates regarding super-
conducting order in the ground state of the Hubbard model. The XTRG algorithm
efficiently constructs thermal density matrices across a broad temperature range via
a highly effective exponential-cooling protocol, thereby enabling detailed probes of
pairing and pseudogap phenomena. Afterwards, we generate a comprehensive snap-
shot dataset which furnishes subsequent training of an optimized encoder-only trans-
former model. Our novel Al architecture features a Markovian interpretation of the
attention design and affords improved parallelism. The collective technological stack
opens a brand new avenue for exploring the rich physics of strongly correlated many-
body systems.
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Chapter 1
Introduction and Motivation

Various fascinating phenomena and phases of matter have been discovered in the
high-T, cuprate compounds, including antiferromagnetism (AFM) [1-6], the pseu-
dogap [7-9], strange metal [10-14], and high-7, superconductivity [15-20]. Elu-
cidating the microscopic mechanisms responsible for these behaviors remains one
of the central challenges in condensed matter physics. Yet the exceedingly intricate
electronic dynamics pose formidable obstacles to both theoretical analysis and nu-
merical simulation. This motivates the development of simplified effective models
that distill the essential physics of these materials.

In generic solids, itinerant electrons experience electric-field screening from the
positively charged ionic cores and other electrons, which substantially reduces the
effective interaction between electrons and often yields a metallic or a Fermi-liquid
behavior. By contrast, experiments show that half-filled cuprates are Mott insula-
tors, with two electronic bands separated by a large Mott gap [21-25]. This indicates
an anomalously strong on-site Coulomb repulsion among itinerant electrons. The
Hubbard model [26,27] was found paradigmatic for such strongly correlated elec-
tron systems, combining a kinetic term describing electron hoppings with an on-site
interaction term that penalizes double occupancy.

Despite its austere simplicity, the Hubbard model has been found notoriously
challenging to solve, as strong interactions invalidate conventional perturbative meth-
ods. With the advances of high performance computational infrastructure, a suite
of powerful numerical techniques has been developed to assist — including Quan-
tum Monte Carlo (QMC) [28-31], Dynamical Mean-Field Theory (DMFT) [32-35],
Density Matrix Renormalization Group (DMRG) [36—40], and a variety of zero-
[41-48] and finite-temperature [49-57] Tensor Network State (TNS) algorithms.
Each method, however, has its respective comfort zone; a comprehensive under-
standing of the Hubbard model thus requires their integrated and complementary
application.

Projected Entangled-Pair States (PEPS) [41-43, 45-47] constitute a genuinely
two-dimensional (2D) TNS ansatz targeting ground states of lattice many-body sys-
tems. Infinite PEPS (iPEPS) [42, 58, 59] exploits translational invariance in infi-
nite 2D lattices, enabling direct simulations in the thermodynamic limit. Relative to
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other ground-state approaches, iPEPS is free of the sign problem and faithfully pre-
serves the native 2D geometry. Exponential Tensor Renormalization Group (XTRG)
[54,55,57,60] is a finite-temperature TNS algorithm that constructs thermal density
matrices efficiently across a broad temperature window via an exponential cooling
protocol. Compared to alternative finite-temperature schemes, XTRG excels in its
wide coverage of phase space, thereby supporting the exploration of phenomena that
emerge at disparate temperature scales.

In recent years, the rapid development of artificial intelligence (AI) techniques
has revolutionized the way we perceive and analyze scientific data. The transformer
architecture [61], grounded in the attention mechanism [62-66], has achieved re-
markable success in natural language processing (NLP) [67-72], computer vision
(CV) [73-76], bioinformatics [77-79], and many other domains [80—83]. Attention
enables the model to focus selectively on the most informative components of the
input, capturing long-range dependencies and intricate correlation patterns [84, 85].
These properties render transformer models particularly well-suited to the study of
strongly correlated electron systems such as the Hubbard model.

Our expedition starts with the zero-temperature iPEPS and finite-temperature
XTRG simulations of the Hubbard model on a square lattice. We systematically chart
ground-state and thermal properties across a range of doping levels and next-nearest-
neighbor hopping amplitudes. The resulting TNS representations yield a comprehen-
sive snapshot dataset via site-wise sampling, which in turn furnishes an Al-driven
analysis. We design an optimized encoder-only transformer (core architecture) with
an interpretable attention mechanism to classify snapshots drawn from distinct re-
gions in phase space. The trained model proves highly effective at capturing under-
lying correlation structures in the snapshot data and facilitates accurate omnimetry
(i.e., the simultaneous measurement of all calibrated observables) for ultracold atom
experiments [86-91].

1.1 High-T,. Cuprates and the Hubbard Model

The high-T}. cuprates comprise a broad family of copper-oxide materials and exhibit
a rich phase diagram [4,92-95] as a function of charge doping and temperature, as
sketched in Fig. 1.1(a). The undoped parent compounds are Mott insulators [21-25]
with long-range AFM order [1-4, 96, 97]. Upon doping, AFM order is rapidly sup-
pressed and a pseudogap phase [4,9,98-100] emerges below the onset temperature
T*. At lower temperatures, superconductivity (SC) [18-20, 101-106] develops be-
low the critical temperature 7, forming a characteristic dome in the phase diagram.
The strange-metal regime [10-13], marked by non-Fermi-liquid behavior, appears
at higher temperatures above the SC dome, while the overdoped regime tends to re-
cover conventional Fermi-liquid properties [107-111]. Additional charge/spin den-
sity waves [106,112—128] and electronic nematicity [129,130] have been observed in
specific doping ranges. The precise nature of these phases and their mutual interplay
remain subjects of active investigation.



High-T. Cuprates and the Hubbard Model 3

(a)
\
Strange
- Metal
0
& ¢
2
§ ’% Q>
o QO
Q NS
£ > CL
() m N
= <
<
(<)
=
d-wave SC
Doping, §

Fig. 1.1 (a) Schematic phase diagram of high-7'. cuprate compounds as a func-
tion of charge doping ¢ and temperature 7'. The phase structure of hole-doped
and electron-doped cuprates differs, though the overall qualitative features re-
main similar. (b) Crystal structure of YBCO, a prototypical high-T. cuprate.
Superconductivity occurs in the CuO; planes.

Deeper insight into these emergent phenomena demands careful scrutiny of the
crystal structure. Consider the prototypical high-T. cuprate YBa,Cu30;_, (YBCO).
YBCO is alayered, perovskite-derived cuprate with an orthorhombic unit cell stacked
along the vertical direction (see Fig. 1.1(b)) as CuO,-BaO-CuO-BaO-Cu0O,, with
Yttrium sandwiched between the two CuO, planes. [131-133] Superconductivity
resides within these CuO, layers [25, 134—137], while the quasi-1D CuO chains act
as a charge reservoir: by incorporating oxygen and ordering along the chains, they
dope the planes and tune the hole concentration. This intrinsically anisotropic struc-
ture suggests that high-T,. superconductivity is essentially a 2D phenomenon: the
pairing condensate is confined to the CuO; sheets, with interlayer coupling entering
weakly via apical oxygens. Consequently, the low-energy physics is well captured by
2D quantum lattice models, supplemented by a reservoir-like role of the chains that
sets the carrier density and modulates scattering without themselves hosting notable
portion of superconducting condensate.

At low energies, the active orbitals in a CuO, plane are the Cu 3d 2 _,» and the in-
plane O 2p,, ,,. [138—-140] A minimal three-band Emery-Hubbard model [141, 142]
assigns a d orbital to each Cu site and 2p,, ,, orbitals to the neighboring O sites. The
Hamiltonian (in the hole picture) is
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Here djo creates a hole with spin ¢ in the Cu d,>_,» orbital at Cu site 1, p}w creates
a hole in the O 2p,, orbital (o« = z,7) at oxygen site 7, and n¢ = d;radw, nhe =

p;m,pjw. The on-site energies €4 and ¢,, define the charge-transfer gap (A = ¢, —
€4); Ug and U, are the on-site Coulomb repulsions on Cu and O, respectively; Uy,q
denotes the nearest-neighbor Cu-O repulsion, while ,4 (Cu-O hybridization) and
tpp (O-O hopping) encode hole mobility within the Cu-O network.

Doped holes predominantly occupy oxygen 2p orbitals [138] but hybridize with
the Cu d,2_,2 local moments to form Zhang-Rice singlets [143—145] on CuO4 pla-
quettes. Pro_]ectmg onto this low-energy subspace yields an effective one-band Hub-
bard model on the Cu sites (the singlet band):

h) h)
’H:—Zt( (hT h]g—i-hc)—I—Uffz:nn)nf¢ an, (1.2)
1,J,0
where hj creates a hole in the Zhang-Rice-derived band, n(h) = hT ohio, and tEJ)
collects the effective hoppings. To pass to the electron representation commonly used
in numerical simulations, we perform a particle-hole transformation:
h

hly=cio,  hig=cly, 0l =1-ng, (1.3)
with cla creating an electron and n;, = czacw. For i # j, the kinetic term
changes sign under this transformation, and the chemical potential shifts according
to ngig )ngf) = (1 —n44)(1 —n;y). Up to an additive constant, the one-band Hubbard
Hamiltonian becomes

Z tij (cmc]g +h.ec. ) +U Z NNy — [ Z Nig, (1.4)

,J,0

where t;; = —t;?), U = Ue, and p = Ueg — u(h). These steps make explicit
how the widely used one-band Hubbard model emerges as a low-energy reduction
of the three-band, charge-transfer description. While this simplification can devi-
ate quantitatively from the actual material in certain regimes (e.g., spectroscopy or
oxygen-
lated carriers moving on a 2D square lattice — that govern much of the cuprates’
low-energy phenomenology.
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1.2 Zero-temperature Methods

At zero temperature, the system resides in its ground state(s). Therefore, numeri-
cal methods usually focus on simulating or encoding the many-body wavefunction
with the lowest energy for the system. Popular numerical methods to date include
Quantum Monte Carlo (QMC) methods, Density Matrix Renormalization Group
(DMRG), and infinite Projected Entangled-Pair States (iPEPS). Each method has
its respective advantageous domains, and which method to apply thus depends on
the specific system and the physical questions of interest.

Quantum Monte Carlo Simulation

Ground-state QMC approaches project a trial state in imaginary time using path-
integral factorizations (Trotter-Suzuki) or Hubbard-Stratonovich fields — e.g., De-
terminant QMC (DQMC) [28, 146] or Auxiliary-Field QMC (AFQMC) [29] formu-
lated in Slater-determinant space. These schemes sample the imaginary-time path
integral to obtain largely unbiased estimators when the sign problem is absent, e.g.,
many half-filled bipartite models without frustration. However, for doped, frustrated,
or generic fermionic systems, the average sign decays exponentially with system
size or projection time, turning polynomial algorithms effectively exponential. [147]
Workarounds (e.g., phaseless AFQMC [148], constrained-path priors [149]) restore
feasibility but introduce a variational bias tied to the trial state. Thus, QMC-based
methods remain challenging for generic doped Hubbard models.

Density Matrix Renormalization Group

DMRG [36, 38,40] is a variational optimization over matrix product states (MPS),
iteratively solving the ground-state eigenvalue equation under a rigorously defined
canonical form. This gauge structure yields stable contractions, well-conditioned lo-
cal updates via singular value decomposition (SVD), and clear truncation diagnos-
tics (discarded weight), enabling highly accurate ground states in 1D and on quasi-
1D geometries (cylinders). In 2D, however, an MPS must snake through the lattice
[37,150,151]. For a cylinder of circumference L,, an entanglement cut along y typi-
cally obeys an area law S ~ aL, +- - - [152-154]. An MPS with bond dimension D
has an entanglement capacity across any single cut bounded by Syps < log D, inde-
pendent of L, [155]. Consequently, a fixed-D MPS cannot reproduce the required
scaling — one requires D that grows exponentially with width, D ~ ev. Practi-
cally, this confines high-accuracy studies to limited widths, and actual simulations
with different widths yield inconsistent outcomes [31, 156—159]. Also, numerical
costs rise steeply with width and the required D, and long-range 2D correlations can
be distorted by the mismatched geometry. Despite the challenges, DMRG is free of
the sign problem, handles fermions and frustration naturally, and provides precise
variational bounds. Therefore, it remains a powerful tool for the Hubbard system, es-
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pecially when combined with careful finite-size scaling analysis and complementary
cross-checks.

Infinite Projected Entangled-Pair States

iPEPS [41,42,44-47,160] is a 2D tensor-network ansatz defined directly in the ther-
modynamic limit, tiling the lattice with local tensors connected according to the na-
tive geometry. This faithfully respects the 2D area law and helps avoid finite-size ef-
fects; accuracy is controlled by the bond dimension D, with contractions performed
approximately via e.g., Corner Transfer Matrix Renormalization Group (CTMRG)
scheme [42,58,59,161,162]. The ground state can be attained using imaginary-time
evolution [43, 163] or variational methods [164, 165], with environments approxi-
mated in a mean-field manner [43] or via CTMRG or related schemes. A key limi-
tation is the absence of a strict canonical form for PEPS: norms and environments
are only approximately conditioned, which can make optimization and contraction
numerically unstable, especially for gapless states with long correlation lengths (per-
culiarly acute for free fermions [48, 166]). However, in many regimes of interest —
e.g., the Hubbard model where a Mott gap or superconducting gap is present — these
instabilities are very well controlled and iPEPS achieves competitive, often state-of-
the-art, energies and order parameters. These features render iPEPS an ideal tool for
exploring the 2D Hubbard model under thermodynamic limit.

Other Notable Numerical Methods

Exact Diagonalization (ED) [167, 168] fully diagonalizes the many-body Hamilto-
nian in a finite Hilbert space (often using Lanczos/Arnoldi), yielding numerically
exact spectra, eigenstates, and correlation functions on small clusters — an indis-
pensable benchmark despite exponential scaling limiting accessible sizes. Multi-
scale Entanglement Renormalization Ansatz (MERA) [169—172] encodes scale in-
variance and critical entanglement via disentanglers and isometries, enabling effi-
cient representations of (1D/2D) critical ground states and extraction of scaling data.
Higher-Order Tensor Renormalization Group (HOTRG) [173] performs real-space
coarse-graining with higher-order SVD to approximately contract 2D/3D tensor net-
works and compute thermodynamics/ground-state properties with polynomial cost
in bond dimension. Diagrammatic [174,175] and Green’s-function [33-35,176-178]
approaches perform summation and stochastic sampling of many-body Feynman di-
agrams and provide access to spectral and thermodynamic quantities. Neural Quan-
tum States (NQS) [179-183] represent the many-body wavefunction with flexible
neural ansitze optimized by the Variational Monte Carlo (VMC) method, combining
expressive function classes with stochastic sampling to target ground states within
and beyond traditional Jastrow/Slater forms.
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1.3 Finite-temperature Methods

At finite temperature, one aims to access thermal density matrix p oc e~ ?* by either
(i) Lanczos diagonalization with small clusters [184—186], (ii) stochastic evaluation
of imaginary-time path integrals (finite-7' QMC), (iii) typical-state sampling of min-
imally entangled pure states (METTS), or (iv) tensor-network purification or evolu-
tion of the thermal density operator itself, including finite-7" PEPS, tangent-space
Tensor Renormalization Group (tanTRG), and eXponential Tensor Renormalization
Group (XTRG). Each method has its respective strengths and limitations, and an
optimal simulation may arise from a synthetic application of multiple approaches.

Finite-T' Quantum Monte Carlo

Finite-T' QMC samples the imaginary-time partition function — via discrete auxil-
iary field factorizations (DQMC/AFQMC) [28, 187, 188] or continuous-time (CT)
expansions [189, 190] — to obtain thermodynamics and correlation functions with
controllable statistical errors. Again, in generic doped/frustrated fermionic mod-
els, the average sign decays exponentially with system size and inverse temperature
B = 1/T [147], so the variance explodes and the lowest reachable temperature is
practically limited by the sign problem.

Minimally Entangled Typical Thermal States

METTS [49, 50, 191] represents thermal physics by sampling a Markov chain of
low-entanglement pure states: collapse into a product-state basis vector, imaginary-
time evolve it by e~#*/2 with DMRG, measure, and project to seed the next sample.
METTS is technically straight-foward to implement on top of a ground-state DMRG.
However, statistical noise and autocorrelation require multiple independent chains of
samples to reach convergence, and the entanglement growth during imaginary-time
evolution limits the lowest reachable temperature [192, 193].

Finite-T' PEPS (from Purification)

Finite-T' PEPS [52, 53, 194-196] encodes the thermal density matrix p(3) via pu-
rification (a PEPS in an enlarged physical-ancilla space evolved in imaginary time),
with environments contracted by CTMRG or boundary-MPS. As discussed in the
ground-state methods, PEPS achieves a faithful, native representation of 2D geome-
try and area-law physics, thereby reducing finite-size artifacts. However, PEPS-based
finite-7" schemes typically integrate along S with many small steps; at low 7T’ this
leads to long evolution times and error accumulation [197], which restricts the low-
est temperature they can reach for a fixed bond dimension and environment accuracy
(compounded by the lack of a strict canonical form and the cost of 2D contractions).
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Tangent-space Tensor Renormalization Group (tanTRG)

TanTRG [56, 198] treats the thermal evolution equation dgp(8) = —Hp(B) (or re-
lated formulations) within the variational tangent space of a tensor-network ansatz
(MPO/PEPO), advancing 8 by small steps using local projections and controlled
truncations. The key advantage is favorable scaling O(D?) with bond dimension D
per step and a strictly local update structure that makes tanTRG efficient and stable
in 1D and on cylinders. However, since it also integrates along S with many small
increments to control local errors, the number of steps grows unacceptably large at
low T, leading to error accumulation and limiting the lowest reachable temperature.

Exponential Tensor Renormalization Group (XTRG)

XTRG [54,55,60,199,200] builds the thermal operator as an MPO at high temper-
ature (small 3) and then doubles £ iteratively via MPO squaring and compression,
i.e. p(28) = p(B) - p(B). This exponential cooling means the number of steps grows
only logarithmically with the target 3, so one obtains high- to ultra-low-temperature
data commonly via < 20 iterations with consistent truncation control and built-in di-
agnostics from MPO entanglement. The price is heavier contractions/compressions
than tanTRG, making the per-iteration complexity higher. In practice, XTRG often
outperforms linear-in-{ integrators when one needs reliable data over a wide tem-
perature window down to very low 7.

Remarks on Synthetic tanTRG and XTRG

From the previous description, we find that tanTRG and XTRG have their respective
comfort zones. TanTRG is more efficient at moderate to high temperatures, while
XTRG excels at cooling down the system rapidly at low temperatures. To leverage
the strengths of both methods, we can combine them into a synthetic approach: use
tanTRG to evolve from high temperature down to an intermediate temperature 7},;q,
then switch to XTRG for even lower temperatures. This hybrid approach allows us to
efficiently cover a broad temperature range while maintaining accuracy and stability
in the simulations.

1.4 The Rise of Artificial Intelligence

Artificial Intelligence (AI) has developed through distinct phases with symbolic rea-
soning dominating early Al, and statistical learning gaining prominence later, espe-
cially with the rise of machine learning (ML) and deep learning (DL) enabled by
contemporaneous advances in algorithms, data availability, and computation. [201]
Over the past decades, Al evolved as a toolbox for modeling complex systems: from
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hand-coded rules and logical inference (akin to deterministic solvers) to probabilis-
tic models and optimization (statistical machinery in miniature), and finally to rep-
resentation learning at scale, where high-capacity function approximators discover
features directly from data.

A Historical Overview

The first decades (1950s-1980s) were dominated by symbolic Al. Early systems for-
malized knowledge as logical statements and searched over combinatorial spaces
using algorithms such as A* [202]; planning frameworks like STRIPS [203] showed
that non-trivial sequences of actions could be derived from explicit rules. Expert sys-
tems [204] — canonical examples include medical diagnosis prototypes — encoded
domain knowledge as human-written if-then rules combined with inference engines.
These systems demonstrated impressive performance in constrained domains but
were brittle: coverage gaps and rule interactions produced failure modes that were
difficult to predict or repair. In parallel, perceptrons [205] introduced learnable lin-
ear decision boundaries and catalyzed the first neural optimism, but limitations in
expressivity (e.g., inability to compute XOR without hidden layers) and the absence
of effective training for deep networks led to cycles of enthusiasm and retrenchment.
As a result, symbolic systems maintained primacy while data-driven methods ma-
tured slowly at the margins.

From the late 1980s through the 2000s, statistical learning became the center
of interest. Backpropagation [206] and multilayer perceptrons re-entered the main-
stream, but depth and scale were limited by data and hardware. Probabilistic ap-
proaches [207] flourished: hidden Markov models [208] defined the state of the art
in speech recognition; Bayesian networks captured structured uncertainty; and the
expectation-maximization algorithm [209] provided a general recipe for learning
with latent variables. Kernel methods, especially support vector machines (SVM)
[210,211] and Gaussian processes [212], delivered strong generalization via convex
objectives (for SVMs) and principled regularization. In natural language processing,
n-gram language models with smoothing [213], maximum entropy classifiers [214],
conditional random fields [215] for sequence labeling, and topic models (e.g., la-
tent Dirichlet allocation) [216] formed a robust toolkit. Computer vision progressed
largely through engineered local features (e.g. gradient and edge statistics) such as
SIFT [217] and HOG [218] combined with linear or kernel classifiers; convolutional
neural networks existed — LeNet [219] for digit recognition is emblematic — but
had not yet generalized to unconstrained images at scale. Representation learning
ideas revived in the form of autoencoders [220] and deep belief networks [221],
foreshadowing a shift from hand-crafted features to learned ones, while early neu-
ral distributional word embeddings [222-224] suggested that semantic regularities
could be captured geometrically.

The inflection toward modern Al arrived when computation, data, and architec-
tures aligned. In 2012, deep convolutional networks trained on large labeled image
datasets decisively outperformed traditional pipelines [225], initiating rapid progress
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in image classification, detection, and segmentation. For NLP, sequential models
— recurrent neural networks [226,227] with gated architectures — enabled end-to-
end machine translation via encoder-decoder frameworks with attention mechanisms
[62,228], alleviating the difficulty of modeling long-range dependencies. The deci-
sive conceptual shift came with the Transformer architecture [61], which replaced
recurrence with stacked self-attention and position encodings. The resulting paral-
lelizable training and direct access to global context dramatically improved global
awareness, providing a general mechanism for learning non-local correlations.

Modern Al for Language, Vision, and Science

In the last decade, pretraining and self-supervision have remade NLP. Continuous
word vectors matured into contextual encoders that condition on both left and right
context [229, 230]; masked-token objectives yielded bidirectional representations
that transfer to a wide range of downstream tasks via light fine-tuning [68, 231].
In parallel, autoregressive language models [70, 232] trained to predict the next
token at scale demonstrated emergent few-shot and zero-shot capabilities: without
task-specific training, they could perform translation, question answering, and code
synthesis by conditioning on a handful of examples. Instruction tuning and pref-
erence optimization [233-235] transformed raw language models into aligned as-
sistants being able to follow natural language specifications, reason over multi-step
chains of thought [236], and orchestrate tools such as retrieval systems [237], cal-
culators [238], and code interpreters [239]. Retrieval-augmented generation (RAG)
[240-242] introduced an explicit memory external to model parameters, improving
factuality and enabling controllable grounding in curated corpora — a particularly
important feature for scientific use, where provenance matters. The net result is that
text models have evolved into general language agents that can plan, decompose
problems, call external resources, and produce executable artifacts.

Computer vision has experienced a parallel transformation. Residual connections
[243] and normalization stabilized very deep convolutional networks, and transfer
learning from large image corpora became standard practice. Generative adversar-
ial networks [244], despite training instabilities, set new bars for photorealism and
class-conditional synthesis. The recent ascendancy of diffusion [245,246] and score-
based generative models [247] has combined likelihood-based training with stable
optimization to deliver high-fidelity synthesis and controllable editing. Parameter-
efficient fine-tuning via low-rank adapters (LoRA) [248,249] has become a widely-
used way to adapt large vision and language models by freezing the backbone and
learning low-rank updates, often approaching full fine-tuning while training orders-
of-magnitude fewer weights. Vision Transformers [74] extended attention to im-
ages, providing a unified architecture across language and vision and enabling self-
supervised learning with masked-patch or contrastive objectives. Cross-modal align-
ment models [250] — most prominently those that jointly embed images and text —
opened the door to zero-shot classification, retrieval, and multimodal assistants that
can interpret and generate across modalities.
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These core developments have carried over directly into scientific practice. In
molecular and materials science, message-passing neural networks can learn inter-
atomic potentials that approach first-principle accuracy in many regimes while re-
quiring far lower computational cost [251,252]; active learning selects new config-
urations on the fly to cover gaps in phase space [253]. Generative models now pro-
pose molecules, catalysts, and crystal structures conditioned on desired properties
[78, 254], supporting inverse design as a practical, iterative optimization process.
Across imaging modalities — MRI, CT, PET, and computational microscopy —
deep learned priors and unrolled optimization schemes couple physics-based forward
models with data-driven regularization [255-257], often yielding higher-quality re-
constructions at lower dose or faster acquisition. In high-energy physics and astro-
physics, learned surrogates accelerate simulation, triggers, and event reconstruction
[258,259]; in gravitational-wave astronomy, neural models assist denoising and real-
time signal characterization [260,261]. Finally, neural operators learn mappings be-
tween function spaces, providing fast solvers for parametric partial differential equa-
tions and supporting rapid design exploration in fluid dynamics [262, 263].

Recent progress has also reframed scientific workflows around language-centric
interfaces. Large language models fine-tuned for code [264] help generate and refac-
tor analysis scripts, interface with simulation packages, and enforce unit tests; cou-
pled with retrieval [241] over laboratory notebooks, instrument documentation, and
literature, they act as copilots that reduce cognitive load and help maintain repro-
ducibility. Tool-use agents [265] coordinate these components: they query databases,
schedule parameter sweeps, invoke differentiable simulators, and summarize results
for human inspection. When combined with Bayesian optimization and robotic plat-
forms, such systems partially close the loop on experimental design, enabling semi-
autonomous exploration under human oversight [266].

Why Modern Al is Powerful?

Several cross-cutting themes explain why this modern toolkit is effective. First, self-
supervision [267,268] shifts the burden from scarce labels to abundant raw data by
posing pretext tasks — predict the next token, reconstruct masked content, or denoise
corrupted inputs — whose solutions require learning transferable structure. Sec-
ond, scaling laws [269] observed empirically relate model performance to parameter
count, dataset size, and compute, providing guidance [270] on when additional re-
sources are likely to yield returns and when data quality or objective design becomes
the limiting factor. Third, alignment to human intent through instruction tuning and
preference optimization [234, 235] has become increasingly important for reliable
deployment; in scientific contexts, this can be complemented by retrieval for ver-
ifiability and explicit uncertainty quantification [271,272] via ensembling, calibra-
tion, or Bayesian surrogates. Finally, rigorous evaluation [231,273,274] now empha-
sizes domain-specific probes, robustness and out-of-distribution tests, and end-to-
end measures of scientific utility, ensuring that apparent improvements correspond
to real, usable capability rather than benchmark overfitting.



12 Introduction and Motivation

Cutting-edge Al for Quantum Physics

ML/AI has become productive for identifying phases and phase transitions in many-
body quantum systems [275], especially when order parameters are hidden or topo-
logical. In the supervised setting, classifiers trained on Monte-Carlo or tensor-
network data learn decision boundaries that recover conventional phase diagrams
and extrapolate to unseen parameters [276]. Unsupervised methods — principal
component analysis (PCA) [277, 278] and learning-by-confusion [279] protocols
— locate transition points via changes in manifold geometry without labels, while
information-theoretic objectives highlight candidate collective variables that be-
have like emergent order parameters. For topological phases, unsupervised manifold
learning can uncover signatures for winding-number sectors and identify candidate
transitions [280], providing interpretable results with reduced manual feature en-
gineering. Best practice in this literature is to couple learning with physics priors
(symmetries, conservation laws, gauge constraints), quantify finite-size effects via
scaling collapses, and validate against independent observables, so that discovery
reflects underlying physics rather than dataset quirks.

Neural approaches to quantum many-body physics connect these ideas to quantum
hardware and many-body simulation along two complementary tracks. First, classi-
cal neural parameterizations of quantum states — neural quantum states (NQS) such
as Restricted Boltzmann Machines (RBM) [281], autoregressive flows [183, 282,
283], and fermionic networks [284] — serve as expressive variational ansitze for
ground and, in some formulations, thermal states, enabling stochastic VMC train-
ing [285] directly on wavefunction amplitudes and accommodating symmetries,
fermionic signs, and gauge constraints; these ansitze integrate naturally with tensor-
network preconditioners [286] and can act as amortized solvers across Hamiltonian
families. Second, error-mitigation techniques combine classical learning with pa-
rameterized quantum circuits. Classical or hybrid ML surrogates can approximate
noise channels and thus support probabilistic error cancellation [287,288] as well as
model-based zero-noise extrapolation [289]. In parallel, parameterized quantum cir-
cuits (often termed quantum neural networks, QNNG5s) are used as variational ansitze
and discriminators designed to be robust against specific noise patterns or to assist in
data-driven readout and crosstalk calibration [290]. Generative surrogates trained on
paired noisy/ideal data [291-293] can act as denoisers for expectation values, while
QCNN-style architectures [294] have been proposed primarily for phase recogni-
tion and, in some exploratory work, as building blocks for shallow error-detection or
mitigation schemes [295], supporting co-optimization of task fidelity and robustness.
Ultimately, the success of these approaches will be judged not by benchmark scores
but by the new capabilities they unlock — robust identification of phases, scalable
many-body ansitze, and trustworthy quantum computations under realistic noise —
at the intersection of Al and quantum physics.



Chapter 2
Models, Methods and Algorithms

This chapter introduces the Hubbard model (together with its derivatives), several
highly-effective tensor network techniques, and the design and interpretation of the
transformer architecture. Altogether, these methods and algorithms provide a power-
ful toolbox for the numerical simulation and analysis of strongly correlated electron
systems across a wide range of charge doping and temperature.

This chapter is organized as follows. Section 2.1 introduces the minimal and ex-
tended Hubbard model, together with the derived ¢-J model and Heisenberg model.
These derivation offers a basic theoretical background for the exotic phases that may
emerge in the Hubbard model. Section 2.2 covers the basics of crucial tensor op-
erations, which is essential for understanding and implementing the follow-up ten-
sor network techniques. Section 2.3 discusses the graphical notations of tensors, the
incorporation of fermionic statistics and symmetries, and presents 1D and 2D Ten-
sor Network State (TNS) ansitze, including Matrix Product State (MPS) and Pro-
jected Entangled-Pair State (PEPS). Section 2.4 discusses several optimization algo-
rithms used in tensor network simulations, including the Density Matrix Renormal-
ization Group (DMRG), eXponential Tensor Renormalization Group (XTRG), and
the imaginary time evolution for the ground state search of infinite PEPS (iPEPS).
Finally, section 2.5 introduces the design strategy and variants of the Al architecture
based on transformer, along with the attention scheme and the controversy surround-
ing its interpretability.

2.1 Hubbard Model and Its Derivatives

In section 1.1 we derived a single-band description of the CuO, planes by downfold-
ing the three-band (Emery) model to the Zhang-Rice singlet manifold. Historically,
though, the Hubbard model itself was introduced earlier by Hubbard, Gutzwiller, and
Kanamori in the 1960s [26,296-298] to describe correlation-driven (Mott) insulat-
ing behavior in narrow-band transition-metal oxides [299-301] — not specifically
for cuprates. After the discovery of high-7,. superconductors, it was soon realized
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[ Sublattice A ] [ Sublattice B ]

Fig. 2.1 Schematic of a 2D bipartite square lattice with two sublattices A and
B. Particle-hole symmetry is preserved (up to an additive constant and a shift in
chemical potential) when the hopping only occurs between different sublattices.

that the parent compounds of cuprates are also Mott insulators, and thus the same
one-band framework proved useful as an effective model for the CuO, planes, with
parameters reflecting copper-oxygen chemistry.

For our purpose, we consider the Hubbard model on a 2D square lattice. The Hub-
bard Hamiltonian derived from cuprates follows Eq. (1.4) with the chemical potential
term. For the convenience of later discussions, we separate the full Hamiltonian into
a bare Hamiltonian and a chemical potential term as

H=— Z t;j {cjacjg + h.c.} + UZnnnw, Hen = H — ;Lan. 2.1
1,],0 7 1,0

A discrimination between H and Hg, can be vital in numerical simulations. One

can understand H as the Hamiltonian for a designated number of electrons (canonical

ensemble), while Hy,y allows the electron number to fluctuate by tuning the chemical

potential y (grand canonical ensemble).

Eq. (2.1) includes hopping amplitudes ¢;; between any two lattice sites ¢ and j. In
practice, we often truncate the hopping to a few leading terms, e.g., nearest-neighbor
(NN) ¢, next-nearest-neighbor (NNN) #’, and third-nearest-neighbor (3NN) ¢ hop-
pings etc. The Hamiltonian of NN (minimal) Hubbard model thus reads

He = —t Z {cjﬂcjg + h.c.} +U Z NG — W Z Nio, 2.2)
(1,5),0 % i,0

where (i, j) denotes NN sites. The first term describes the kinetic energy of electrons
hopping between NN sites with amplitude ¢, the second term is the on-site Coulomb
repulsion U penalizing double occupancy, and the last term controls the electron
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density via the chemical potential y. This minimal model respects a particle-hole
symmetry (up to an additive constant and a shift in chemical potential) defined by

Pon:  Cio > Micl. (2.3)

where 17; = +1 (—1) for site ¢ on sublattice A (B) as shown in Fig. 2.1. Under this
transformation, the kinetic term is invariant because hopping only occurs between
different sublattices, thereby the extra fermionic sign is cancelled by 7;n; = —1:

c;rocjg =y cigc;fa = *chig = c}ocw. 2.4)
Also, it is straight-forward to verify that
Nig = cjacw = 1 —n. 2.5)
Therefore, the full Hamiltonian transforms as

M+ Hian + 2 = U) D> nig + No(U — p), (2.6)

1,0

where N is the total number of lattice sites. At half-filling ({(n;) = 1), the chemical
potential is fixed at 4 = U /2 to preserve strict particle-hole symmetry. Away from
half-filling, the particle-hole transformation maps a hole-doped system ({n;) < 1)
to an electron-doped system ({n;) > 1) with a shifted chemical potential p’ = U —
1. Some literatures may introduce an explicit particle-hole symmetric form of the
Hubbard model by rewriting the Hamiltonian as

Hen = — 1 Z [C;rgcjg + h.c.} + const.

(i:3),0

1 1 1 2.7
+ UZ(TLZT - 5)(TL1¢ - 5) - ﬂZ(nia - 5)7

where i = 1 — U/2 is the shifted chemical potential. However, we will stick to the
form in Eq. (2.1) for consistency with common practice in the community.

A crucial consequence of the particle-hole symmetry is that the phase diagram of
the minimal Hubbard model is symmetric about half-filling, which evidently contra-
dicts with the experimentally observed asymmetry between hole-doped and electron-
doped cuprates. To break this artificial symmetry, one can include longer-range hop-
pings such as the NNN ¢’ terms. The extended Hubbard model thus becomes

Hen =— 1 Z [C;'racjff + hC} + Uznmnu
(i,4),0 i

_ ¢ Z [c;rgcjg + h.c.} - ,uznim

(@500

(2.8)
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where ((i, 7)) denotes NNN sites. The NNN hopping ¢’ connects sites on the same
sublattice, thus the particle-hole transformation in Eq. (2.3) will generate an extra
minus sign in the kinetic term as

c;rgcj(7 = i, c,;,,c;U = +cmc;.g = cjgcw 2.9)

Therefore, the NNN hopping term changes sign under the particle-hole transfor-
mation, breaking the symmetry between hole-doped and electron-doped systems.
For cuprates, Density Functional Theory (DFT) calculations suggest that the ra-
tio of NNN and NN hopping ¢’ /t is typically negative (¢'/t < 0) for hole-doped
compounds and positive (' /t > 0) for electron-doped ones [302,303]. The inclu-
sion of ¢ not only breaks particle-hole symmetry but also influences the stability of
various competing phases, such as antiferromagnetism, superconductivity, and the
charge/spin orders [48, 156,158, 159,304, 305].

At large U /t near half-filling, the double occupancy is energetically suppressed,
and the low-energy physics of the Hubbard model can be effectively described by
integrating out the high-energy degrees of freedom associated with double occu-
pancy. Concretely, view the hopping term as a perturbation to the interaction term,
and decompose the kinetic part into three contributions

T=To+Th+T-, (2.10)

where T, 71, and 7_; denote the hopping processes that keep, increase, and decrease
the number of doubly occupied sites by one, respectively. At large U limit, the prin-
cipal low-energy correction comes from the second-order superexchange process
T_1T1/U that virtually creates and annihilates a doublon-holon pair on NN sites.
The intermediate state with a doublon costs an energy U, leading to a perturbation
amplitude of 1/AFE ~ 1/U. Therefore, the leading order correction becomes

42 1
——T 1Ti= 2 <Z)(S °S; nmj> 2.11)
2,7

where S; = 5 Iao'aﬂclﬂ is the spin operator on site ¢ with o being the Pauli ma-
trices, and n; = m4 + n;). A detailed derivation of Eq. (2.11) involves projecting
the Hamiltonian onto the subspace with no double occupancy via Schrieffer-Wolff
transformation [306], which we omit here for brevity. The effective Hamiltonian in
the large U /¢ limit is known as the ¢-J model [307,308]:

W=t Z [cwc]{,Jrhc}JrJZ[S S, nmj], 2.12)

where J = 4t? /U is the superexchange coupling, and ¢;, = ¢, (1 — n;5) (where
o denotes the opposite spin) is the electron annihilation operator projected onto the
subspace with no double occupancy.
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At half-filling, the kinetic terms vanish due to the no-double-occupancy con-
straint, and the ¢-J model reduces to the Heisenberg model (up to an additive con-
stant)

H=J> S-S, (2.13)
(4,4)
which describes a quantum antiferromagnet with NN superexchange coupling J > 0.
This provides a natural explanation for the experimentally observed AFM order and
insulating behavior in undoped cuprates. Upon doping, the kinetic terms in the ¢-
J model become active, potentially leading to high-7 . superconductivity and other
exotic phases.

2.2 Basics of Tensor Analysis

The concept of fensor appears ubiquitously across many disciplines of physics, math-
ematics, and computer science, yet its precise meaning varies depending on the con-
text. In high energy or gravitational theories, a fensor is essentially a multi-linear
map that acts on vectors and covectors and yields a scalar. Formally, a tensor of
type (p, q) (or order-(p+q)) defined over a vector space V' is a multi-linear map
that maps p vectors from the dual space V*, and ¢ vectors from V, to the underly-
ing field (usually the real or complex number field). This definition is coordinate-
independent: the tensor itself is an intrinsic geometric object, while the components
THiHv,, .., arise only after a choice of basis. Operations such as index raising,
lowering, or contraction are defined through the natural pairings between V' and its
dual and are invariant under coordinate transformations. In general relativity, such
objects encode physical quantities like the metric tensor or curvature tensor, whose
transformation properties guarantee covariance.

In the context of tensor network (TN) methods in many-body physics, however,
the concept fensor acquires a more concrete and computationally accessible mean-
ing. Here, a tensor is a multi-dimensional array of (real or complex) numbers whose
entries correspond to components of a multi-linear map expanded in a basis of the
many-body Fock space. Each index of the tensor carries a well-defined dimension',
representing either a physical Hilbert space (such as a spin degree of freedom) or
an auxiliary bond space that connects neighboring tensors in a network. Whereas
the geometric notion of variance (covariant or contravariant indices) plays a central
role in differential geometry, it is largely absent in the TN setting, since the under-
lying vector spaces are finite-dimensional Hilbert spaces equipped with canonical
inner products, providing a natural isomorphism between the vector space and its
dual. What matters instead is the fopological structure — how tensors are connected
together to form a network representing a physical state.

! This indicates that the multi-linear map acts on disparate vector (Hilbert) spaces, in contrast with
the scenario in high energy physics where all (dual) vector spaces are naturally isomorphic.
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In machine learning and computer science, the term tensor is often used in an
even more relaxed sense, referring simply to a higher-order numerical array. In this
language, vectors (1D arrays) are tensors of order-1, matrices (2D arrays) are ten-
sors of order-2, and so forth. Each index may have its own range or dimension, so a
tensor is characterized not only by its order but also by its shape, denoted as a tuple
(d1,da,...,dy), where dj, specifies the dimension of the k-th index. Two tensors
of the same order may therefore differ in shape if their index dimensions are not
identical. In this computational viewpoint, tensors are concrete data structures ma-
nipulated through well-defined array operations such as reshaping, broadcasting, and
contraction; and the emphasis lies on efficiency and implementation rather than ge-
ometric interpretation. Despite the differences in terminology, these views are math-
ematically compatible: once a basis is fixed in the abstract multi-linear definition,
the tensor is completely specified by an array of its components. Conversely, any
multi-dimensional array may be regarded as the coordinate representation of some
multi-linear map.

Disambiguation: the Rank of a Tensor

Because of the coexistence of these perspectives, it is important to clarify terminol-
ogy when moving between contexts. A common source of confusion lies in the use of
the term rank. In much of the TN literature, many authors loosely refer to the number
of indices of a tensor as its rank. However, in the broader linear algebraic sense, rank
measures linear independence. To avoid ambiguity, in this work we adopt the con-
vention that the order (also called degree) of a tensor denotes the number of indices
it possesses, while rank refers to the dimension of the linear span of its components
after appropriate reshaping.? Thus, a vector is an order-1 tensor, a matrix an order-2
tensor, and so on, regardless of its rank in the algebraic sense. When one speaks of the
rank of a matrix, one refers to the number of linearly independent rows or columns,
i.e. the dimension of its image as a linear map. For higher-order tensors, this concept
generalizes by first unfolding or matricizing the tensor — grouping certain indices
together as rows and the remaining indices as columns — and then computing the
ordinary matrix rank of the resulting object. Different unfoldings generally produce
different ranks, leading to the so-called multi-linear ranks. These ranks provide in-
sight into the complexity and correlations encoded in the tensor, which is crucial
for critical techniques like Low-Rank Approximation (LRA) for TN, and Low-Rank
Adaptation (LoRA) in the context of Al architectures.

Basic Tensor Operations

As multi-linear objects, tensors admit the usual operations of addition and scalar
multiplication: the sum of two tensors with identical index structure produces another

2 However, in our publications in Chapter 3, we still follow the convention in TN community to
refer to the number of indices as the rank.
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tensor of the same type, and multiplying by a scalar simply rescales every compo-
nent. Beyond these linear operations, tensors can be multiplied to form higher-order
tensors through the tensor product. The tensor product between two tensors A and
B creates a new tensor whose indices are the union of those of A and B. In compo-
nent form, if A; ;,...;,, is of order-m and Bj, ;,...;, is of order-n, their tensor product
(C = A® B) is an order-(m + n) tensor with components

Cirig-imgijo-gn = Aivigeinm Birja-jn- (2.14)

This operation extends the familiar outer product of vectors and generalizes the Kro-
necker product of matrices to arbitrary orders. It preserves multi-linearity, associa-
tivity, and distributes over tensor addition, thereby endowing the collection of ten-
sors with an algebraic structure that mirrors the construction of composite physical
systems.

A more intricate operation is the tensor contraction, which generalizes matrix
multiplication to higher-order tensors. Contraction involves summing over one or
more pairs of shared indices (which implies identical dimensions), reducing the total
order of the contracted tensor. For example, contraction of index k between tensors
Ajji and BFkim yields a new tensor

Ciy'™ =" Ay BM™. (2.15)
k

Conceptually, contractions represent compositions of multi-linear maps. Thus, the
contracted pair of indices should be one covariant (lower) and one contravariant
(upper), but in the TN context, this distinction is often ignored due to the natural
isomorphism between the spaces involved. The cost of a contraction grows polyno-
mially with the dimensions of the contracted indices, so choosing an optimal con-
traction order is essential for computational efficiency. A special case of contraction
is the trace or partial trace, obtained by contracting one or more pairs of indices in
a single tensor.

A convenient simplification of contraction notation is the Einstein summation
convention, which omits the summation symbol when an index appears both as a
subscript and a superscript in a tensorial formula. For instance, Eq. (2.15) can be
succinctly written as

Cijlm _ Aijchklm~ (2.16)

This convention streamlines expressions and highlights the underlying multi-linear
structure. In many literatures, the Einstein summation convention is further relaxed
to allow repeated indices in the same vertical position (both subscripts or both super-
scripts) to imply summation, as long as the index dimensions match. However, we
insist on the original convention to respect the geometric significance of covariant
and contravariant indices.
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Principal Component Analysis and Low-Rank Approximation

A high-order tensor can be cast into a matrix across a chosen cut. Given an order-p
tensor 1" with shape (dy,...,dp), select a bipartition of the index set into groups
7 and J and merge them into composite indices. The outcome is a matrix M &
CPEXII with |Z| = [licz di and | 7| = [],¢ 7 d;. This matricization enables the
application of well-established linear algebra techniques to study the properties of
the original tensor.

For tensors unfolded into a square matrix, the eigen decomposition gives the nat-
ural basis in which a linear map acts by simple rescaling. If matrix H is Hermitian,
the spectral theorem furnishes an orthonormal basis U with

H=UAUT, (2.17)

so each eigenvector spans an invariant direction and each real eigenvalue sets its dila-
tion. In the TN context, this appears most transparently in transfer matrices: leading
eigenvectors encode dominant long-range structure, while eigenvalue gaps set corre-
lation lengths and relaxation scales. Numerically, the dense cost for a full spectrum
is O(n?) for an nxn input, whereas Krylov variants (Lanczos for Hermitian, Arnoldi
for non-Hermitian) target only a few extremal eigenpairs using matrix-vector prod-
ucts and thus may scale much better than O(n?) if only a small fraction of principal
components are required.

The singular-value decomposition (SVD) is the canonical factorization for tensors
unfolded to rectangular matrices. Any matrix M € C™*™ admits a decomposition

M=UxvVT, (2.18)

where U € C™*" and V' € C™*"™ are unitary, and 3 € R™*" is diagonal with non-
negative singular values. The columns of U and V' form orthonormal bases for the
domain and codomain, respectively, while the singular values quantify the strength
of each mode. In computation, modern SVD routines reach this form via norm-
preserving unitary bidiagonalization followed by a small-core diagonalization; for
a dense m x n matrix with m > n the leading cost is O(mn?).

Beyond diagnosis, the SVD yields a principled compression. The Eckart-Young-
Mirsky theorem asserts that truncating to the k largest singular values produces the
unique best rank-k approximation in both spectral and Frobenius norms, with error

1M — M| =87 (2.19)
i>k

In the TN setting this truncated SVD furnishes a basic LRA: after matricizing across a
physically meaningful cut, one retains only the dominant singular directions, thereby
limiting the effective rank (and hence the bond dimension) across the very cut. The
discarded weight quantifies the loss of entanglement and provides a direct measure
of observable errors.
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A further advantage of the SVD lies in the reduction of a high-order tensor into
a series of lower-order tensors. Concretely, one may interpret UY and VT as two
tensors joined by a new auxiliary index whose dimension equals the retained rank.
Iterating such binary splits yields chain- or tree-structured factorizations. If used
wisely, this can dramatically lower peak operation arities, memory footprint, and in-
termediate tensor sizes — often turning intractable follow-up SVDs into manageable
ones — without sacrificing physical fidelity.

2.3 Tensor Network Techniques

Here we introduce tensor networks as a compact language and toolbox for many-body
quantum systems. We begin with a graphical notation that turns multi-linear algebra
into diagrammatic manipulations and facilitates transparent contraction patterns. We
then incorporate fermionic statistics and global symmetries directly in the diagrams
— via fermionic swap gates and symmetry-adapted block decomposition — to en-
sure physically consistent and computationally efficient representations. Building on
this foundation, we present MPS and MPO as controlled 1D ansitze with canonical
forms and principled compression; and outline PEPS as native higher-dimensional
ansitze, emphasizing their structural features and expressive power for simulations
directly in the thermodynamic limit.

2.3.1 Graphical Notation of Tensors

Graphical notation of tensors provides a practical language for tensor networks. Al-
gebraic expressions for even modest contractions quickly become unreadable — in-
dices proliferate and parentheses obscure the computational flow. Diagrams con-
cretize this structure. By showing only connectivity — which pair of indices are con-
tracted with each other — and leaving index names implicit unless needed, a picture
exposes the topology of the computation at a glance. This brings about convenience
in planning efficient contraction orders and in relating algebraic manipulations to
physical content (which bond encodes which correlations).

In the Penrose-style convention we adopt, a tensor is drawn as a small node with
one external line (also called a leg or bond) per index; the node can be depicted as
an oval, polygon, or other closed shapes derived from these; each leg may carry, if
needed, a label for the corresponding index or its dimension. In this thesis, we follow
the common practice of representing state-related tensors using round shapes (circles
or shapes derived from circles), while reserving straight-edged polygons (squares,
rectangles, etc.) for operators or environments.

Figure 2.2 illustrates the diagrammatic representation of a vector (order-1 tensor),
amatrix (order-2 tensor), and a general order-3 tensor. The geometric arrangement of
legs on the page has no algebraic meaning; however, for fermionic tensors, the order
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of the legs matters — permuting the legs may lead to a negative sign. If symmetries
are invoked, each leg may carry an arrow indicating the flow of quantum numbers.
Details will be discussed in Section 2.3.2.

AU: Aaﬁ: a(:)ﬁ Ao'llﬂ: = IB

(o} (o
(a) Vector (b) Matrix (c) Tensor

Fig. 2.2 Diagrammatic expression of a vector, a matrix and a tensor of order-3.
The node is depicted as a circle here, and each external line (usually called leg
or bond) represents an index of the tensor.

Contraction is depicted by joining legs. Two tensors connected by a line share an
index, and summation over that index is implied. Thus, if two order-3 tensors are
drawn with one pair of legs connected, the result is an order-4 tensor whose remain-
ing free legs are precisely the unconnected ones, as depicted in Fig. 2.3. This graph-
ical calculus is faithful: every legal diagram corresponds to a well-defined algebraic
contraction, and different planar embeddings of the same connectivity (together with
fermionic encoding introduced in Section 2.3.2 where applicable) represent the same
multi-linear map.

Fig. 2.3 Diagrammatic expression of a contraction operation on index /3. Con-
traction is represented by a connected line. Indices are labelled for clarity here,
but will usually be omitted in practice.

Although a tensor network diagram uniquely specifies the contraction topology, it
leaves open how to carry out the contractions involved, and the choice of contraction
order has a great impact on the cost without altering the outcome. The overall com-
putational complexity depends on the sizes of intermediate tensors created along the
way. Since contraction is associative but not cost-commutative, contracting two in-
dices that produce a small intermediate tensor can be far cheaper than first forming a
large one that later collapses. Therefore, planning an optimal contraction sequence is
crucial for efficiency. In mature TN algorithms, optimal orders have been established
manually, while in generic situations, finding the optimal contraction order can be
NP-hard [309]. Therefore, one has to rely on various heuristic algorithms [310,311]
to find (near-)optimal orders, often leveraging graph-theoretic insights into the net-
work structure.
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2.3.2 Fermionic Statistics and Symmetry

Fermionic tensor networks must combine a local tensor calculus with anti-commuta-
tion. If diagrams were treated as bosonic, line crossings or index permutations could
flip signs. A practical fermionic formalism records statistics locally: each index car-
ries a Zo, parity label; exchanges of odd objects are handled by an explicit swap gate;
and genuinely odd operators are marked as such. Hence, statistics reduce to check-
able, diagram-local rules independent of page layout. In parallel, we endow indices
with symmetry charges or irreducible representations (irreps), and annotate them
with arrows indicating the flow of quantum numbers. Symmetry-aware tensors then
become block-sparse objects whose non-zero blocks satisfy charge/irrep fusion con-
straints; for non-Abelian groups, these constraints are mediated by Clebsch-Gordan
(CQG) coefficients, which we treat as explicit, small intertwiners. This bookkeeping
guarantees the correct overall fermionic sign structure under planar deformations,
and yields substantial speedups by contracting only symmetry-matching blocks.

Parity Conserving (Even) Tensors

Most states and evolutions in fermionic lattice systems conserve fermion parity. To
implement this feature in the tensor network, we endow every index a with a par-
ity label p(a) € {—1,1} in addition to its dimension. A tensor A with indices
a1, Qo,. .., qy is called even (parity conserving) if each non-zero component satis-
fies the graded selection rule

Hp(ozi) =1. (2.20)
i=1

Equivalently, A is block-sparse with respect to the Zo charge on its indices: only
blocks where the total incoming parity equals the total outgoing parity are allowed.
Treating parity at the index level has two immediate benefits. Conceptually, it turns
fermionic statistics into a local compatibility issue: illegal blocks are excluded rather
than relying on post hoc numerical cancellations. Algorithmically, block structure re-
duces floating-point work and memory — only parity-allowed blocks need be stored
and contracted. Contractions between even tensors preserve evenness. Here, we em-
phasize that Zs is not merely optional symmetry bookkeeping but the minimal struc-
ture that faithfully encodes fermionic statistics.

Fermionic Swap Gates

When two fermionic indices are permuted, a minus sign arises if both indices carry
odd parity. This anti-commutation is enforced by a local swap gate SWAP [44—47] in-
serted wherever two graded lines cross. Concretely, the swap gate can be represented
as an order-4 tensor SWAPz/g/ defined by
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N
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where 0 is the Kronecker delta, and SWAP(«, 8) = —1 if p(a) = p(8) = —1 and
+1 otherwise. The swap gate is an involution: applying it twice gives identity. We
emphasize that even though the swap gate is constructed as a tensor in the TN dia-
gram, in actual implementation, the effect is achieved via negating odd blocks of two
crossing indices — no actual contraction is performed. Diagrammatically, the swap
gate is represented as a small rhombus at the crossing point of two lines, as shown
in Eq. 2.21. With this construction the graphical calculus is planar and isotopy-safe:
lines may be deformed freely without changing the outcome.

SWAP) = 3% 8 SWAP(a, B) = (2.21)

«

Parity Changing (Odd) Operators

Though the majority of the Hamiltonians in fermionic systems conserve parity, they
can comprise parity-changing operators, such as single fermion creation/annihilation
operators. In the graded formulation we adopt, parity-changing operators are repre-
sented by even tensors equipped with an additional auxiliary index of odd parity that
carries a Zy parity flux. For example, the creation and annihilation operators ¢! and
c can be translated into tensors of order-3 as

|7 |7
()gs= — (0)2s= 6— (2.22)

/
|-

o
where « and o are the physical input and output indices, respectively, and ¢ exem-
plifies the auxiliary parity flux index. Both tensors are even, satisfying

pla)p(a’)p(d) = 1. (2.23)

When contracting with other tensors, the parity flux index must be connected to
another parity flux index to ensure overall evenness. The auxiliary index is then
routed through the network; whenever it crosses another odd index, a swap gate at
the crossing contributes the appropriate —1 sign, effectively taking over the role of
the Jordan-Wigner string in traditional fermionic representations. This construction
ensures that the entire tensor network remains even, transforming fermionic statis-
tics into symmetry-preserving tensors and allowing us to leverage symmetry-based
implementations for tensor operations.
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Symmetry in Tensor Networks

Symmetry is one of the most essential concepts in physics. In quantum many-body
problems, conserved quantities (charges) generated by symmetry operators label su-
perselection sectors; states that differ in their full set of symmetry quantum numbers
cannot be coherently superposed by symmetry-preserving operations. Phase transi-
tions are often accompanied by changes in symmetry or its realization (e.g., sponta-
neous symmetry breaking or topological order with emergent symmetries).

In tensor networks, enforcing global symmetries at the level of every tensor makes
the entire network block-sparse. Each tensor index decomposes into a direct sum
over irreps and an associated multiplet (or degeneracy) space. Contractions are per-
mitted only when the fusion (addition) of incoming charges complies with the out-
going charge — this is the graphical charge-flow selection rule that prunes enormous
swaths of zero elements. In practice, this yields large reductions in memory and run-
time, while also improving numerical stability by ruling out symmetry-forbidden
couplings. Modern libraries (e.g., QSpace [312, 313]) automate this bookkeeping
and expose a clean programming interface in which algorithms can be written with-
out explicit consideration of symmetry, yet run with full non-Abelian support under
the hood.

Abelian Symmetries

For Abelian groups (e.g., Zs, U(1)), all irreps are one-dimensional and commute.
A Dbasis state on an index is labeled by a charge ¢ and a multiplet label [ that distin-
guishes multiple states with the same charge (e.g., different orbitals carrying identical
particle number). In an order-3 tensor commonly used in 1D systems, writing out the
charge labels makes the block structure explicit:

ld"n) = Y (A lmnlala'm), (2.24)

ql,q’'m

with the selection rule ¢’ = ¢ @ ¢’ (addition mod n for Z,, or ordinary addition
for U(1)). Numerically, one stores only the non-zero reduced data blocks A for the
allowed triples (g, q’, ¢"") and omits everything else. This achieves compression by
orders of magnitude in charge-conserving models (electric charge, S?, etc.). This
block-sparse structure carries over to all tensor operations, including contraction,
SVD, eigen decomposition, etc., which are performed block-wise. Also, the parity
structure for fermions is implemented as a special Z, Abelian symmetry.

Non-Abelian Symmetries: SU(IV)

For non-Abelian groups such as SU(2), indices carry multiplets labeled by total spin
S (the irrep) and an internal magnetic component .S, within that multiplet. Crucially,
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one separates structure from data using the Wigner-Eckart theorem: the structural
part is fixed by group theory (Clebsch-Gordan objects and recoupling algebra), while
the reduced tensors contain all variational/numerical degrees of freedom that live
solely in multiplet spaces. For an order-3 tensor, this reads [314-316]

d"m,ql) = > ALyl - CF g lala:)|d'mal), (2.25)

qlg=,qm,q}

where CFF . = (¢'m, q.;ql,q:1q"m, ¢) is the Clebsch-Gordan coefficient [317]
that fuses two irreps g and ¢’ into ¢”’. Analogously, a symmetric operator factorizes
as [314-316]
e .
(01|10 |qls g:) = (O3} - Cl2=) (2.26)

with C a tabulated CGC object and (O)!!] the reduced data block (no ¢, indices). This
separation implements selection rules automatically and yields strong compression.

When several non-Abelian indices fuse, not only must the irreps combine to the
target irrep, but some fusion channels may occur more than once (outer multiplic-
ity). Implementations therefore attach a multiplicity index (often denoted «) in addi-
tion to the multiplet index [ to uniquely label repeated channels. Careful management
of fusion trees — i.e., the order in which indices are coupled — is essential for both
correctness and efficiency. This fusion-tree recoupling overhead can be offloaded to
X-symbols [316], which tabulate the Clebsch-Gordan/metric/recoupling structure
into reusable connection tensors so that pairwise contractions across different fusion
trees correctly resolve outer multiplicities.

The CGC/X-symbol tables are computed once per symmetry (and convention)
and then cached — amortizing their cost across an entire simulation. Also, QR/SVD
factorizations act within blocks, preserving charges and drastically shrinking the lin-
ear algebra. In practice, composite symmetries are common in models with both
charge and spin degrees of freedom: e.g., U(1)charge X SU(2)spin OF Za X SU(2)pin-
Libraries like QSpace (v4.0, now open-source) [312, 313] and TensorKit.jl [318]
support various Abelian and non-Abelian symmetries and handle outer multiplici-
ties automatically.

Graphical Features of Symmetric Tensors

In symmetric tensor diagrams, each index carries an arrow that encodes charge flow
and duality: ingoing arrows represent ket-type (primal) indices, outgoing arrows bra-
type (dual) indices. At every vertex, arrows enforce the local selection rule implied
by Eqgs. (2.24), (2.25), and (2.26): for Abelian groups the signed sum of charges on
outgoing indices should equal that on incoming indices; for non-Abelian groups,
fusion or splitting are only allowed if the corresponding fusion channel exists.
Figure 2.4 illustrates the basic diagrammatic primitives. [312] In particular, an
arrow-reversal 17 symbol converts an irrep to its dual, inserting a fixed structural
factor without affecting the reduced data, so that contractions only occur between
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Fig. 2.4 Diagrammatic expression of a matrix, a tensor of order-3 with non-
Abelian symmetry, and a 15 symbol for arrow inversion. Each index carries an
arrow indicating the flow of conserved charges.

oppositely oriented indices in accordance with the selection rules. In this calculus,
a standalone vector (tensor of order-1) cannot exist as a non-trivial symmetric ob-
ject: local charge conservation forces any single index carrying a non-trivial irrep to
vanish. Thus, the only allowed one-index object is a trivial singlet. Consequently,
symmetric tensors of interest always appear with at least two indices.

Contractions are arrow-sensitive: only indices with opposite arrow directions may
be contracted directly. If two would-be contracted indices share the same orientation,
one first applies the arrow-reversal 15 symbol to one index before performing the
contraction. However, with a consistent global convention, the scenarios of same-
orientation contractions can be extremely rare. A well-designed TN algorithm in
most cases only needs to contract indices with opposite arrows. Exceptions arise in
very specific situations such as the square root of a diagonal singular-value matrix.
Therefore, one should avoid invoking 15 symbols unless absolutely necessary.

2.3.3 Matrix Product States / Operators

Matrix Product States (MPS) — and their operator counterparts — offer a way to
study many-body quantum matter without drowning in exponential complexity. They
replace a monolithic wavefunction or operator with a necklace of small, local tensors
whose links carry entanglement, so structure and scale emerge from simple build-
ing blocks. The bond dimension becomes a tunable knob: increase to resolve more
intricate correlations, narrow for speed and memory. In this picture, Hamiltonians,
density matrices, and observables fit naturally as Matrix Product Operators (MPO),
enabling us to compute expectations and evolve states while staying within the same
compact framework. MPS and MPO recast many-body quantum states/operators into
a compact, local tensor language — economical when correlations are simple and
gracefully expandable when they grow — making large quantum systems tractable
and systematically controllable.

Consider a 1D lattice of L sites, each with a local Hilbert space of dimen-
sion d. A generic many-body wavefunction |¢)) can be expanded in the Fock basis

{lo1)loz)---|or)} as
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)= Y U oy)|oy) - fow). (2.27)

01,02, ,0L

The expansion coefficients U172 7L form a tensor of order L. Directly storing and
manipulating this tensor is infeasible for large L due to the exponential growth of
its size (d* components). Tensor network methods provide structured factorizations
of this tensor. The MPS ansatz approximates this high-order tensor as a chain of
site-local tensors contracted along auxiliary (or virtual) indices:

YTro2oh = ATL AT201 ATSO2 . ATE-1OL =2 ATLOL -1 (2.28)
where each Ag'“" " is a local tensor at site 4 with one physical index o; and two
virtual indices ;1 and «;. The dimensions of the virtual indices, called the bond
dimensions D;, control the amount of entanglement that can be captured between
different parts of the system. By adjusting these bond dimensions, MPS can effi-
ciently represent states with limited entanglement, such as ground states of gapped
1D systems, while still allowing systematic improvement by increasing D;.

Diagrammatically, one can translate the chain of tensor contractions in Eq. (2.28)
into a tensor network as

[ [0 o
NI

o1 02 g3 or-1 oL

where we have assumed that symmetry has been incorporated, and each index carries
an arrow indicating the flow of conserved charges.

An MPO can be constructed similarly to represent operators acting on the many-
body Hilbert space. A many-body operator O factorizes analogously as

/ / / / /
%51 ) O3 011 | %L

0 —{o}—{or------{o—{o! @
g1 02 o3 or—-1 oL,

Hamiltonians, density matrices, and observables can often be written compactly as
MPOs, enabling efficient evaluation of expectation values and evolutions within the
same TN language. We note that in occasional cases (e.g., in density matrix oper-
ations), it is possible to transform an MPO into an MPS by grouping the input and
output physical indices together (Choi transformation) [56]. However, this manipu-
lation must be carried out with extra caution to avoid unconsciously invoking line
crossings that introduce fermionic signs.
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Compression and Canonical Forms

The genuine MPS encoding of the many-body wavefunction of Eq. (2.28) can be ex-
act, with the bond dimensions D; = d™"(»L =% growing exponentially with system
size, rendering it impractical for large L. However, physical states of interest, such
as ground states of local Hamiltonians, often exhibit limited entanglement that can
be efficiently captured via moderate bond dimensions. To achieve this, one employs
appropriate compression to truncate the bond dimensions while retaining the most
significant correlations.

A prevalent approach for compression is the LRA via a sequence of site-wise
SVDs. By reshaping the MPS tensors into matrices across a chosen bond, performing
SVD, and truncating to the leading singular values, one can systematically reduce the
bond dimension while controlling the approximation error. There are in general two
ways of performing such an SVD:

N, SVD

—>—<+>:3>— = —>{>— — (2.31)

SVD °
4

? = —=— ‘?" (2.32)

where we have introduced a special notation: a circle with a protruding wedge on one
side and a notch in the other side represents a normalized MPS tensor (an isometry)
satisfying the left- or right-normalization conditions:

e Dy -

The normalization conditions ensure that the MPS is in a canonical form, which sim-
plifies the computation of observables and improves numerical stability. By sweep-
ing through the chain and applying these SVDs iteratively, one can bring the MPS
into a bond-canonical form with a central diagonal matrix that captures the entangle-
ment across a specific bond, while the tensors to the left =7, and right = are left-
and right-normalized, respectively:

(2.34)
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This bond-canonical form reveals the entanglement structure of the state explicitly.
The many-body wavefunction under this form reads

) =D Aa)L]a) k. (2.35)

[e3

Therefore, the singular values A correspond to the Schmidt coefficients across the
bond ¢, which quantify the entanglement between the left and right partitions of the
system.

Another crucial consequence of the canonical form is the reduction of the en-
vironment to identity due to the orthonormality of the left- and right-normalized
isometries:

—— — — —
— { , = ] (2.36)
— — — —

This property greatly simplifies the evaluation of local observables and correlation
functions. In addition, Eq. (2.36) implies that the singular values A$® carry full
information about the environmental weights for state |y, and |a)g in a mean-
field sense. Moreover, the right-hand side of Eq. (2.36) coincides with the messen-
ger matrix in the language of belief propagation [319-322] for 1D networks. Con-
sequently, this feature becomes critical in generalizing mean-field environments to
higher-dimensional tensor networks.

Kept and Discarded Subspaces

In 1D TN formulations, the limited bond dimension defines a restricted subset of the
full many-body Hilbert space. This naturally leads to a geometric decomposition of
the variational space at each bond into the kept subspace, spanned by the orthonor-
mal basis retained in the isometry, and its orthogonal complement, the discarded
subspace [323]. The kept space represents the manifold itself, capturing the varia-
tional degrees of freedom already encoded in the current tensor network, whereas
the discarded space collects directions along which the state can be systematically
expanded or corrected. This decomposition provides a rigorous language for defin-
ing tangent-space projectors, which underpin post-MPS methods such as the time-
dependent variational principle (TDVP) [324] and the construction of low-lying ex-
citations [323]. More recently, the same idea has been extended to the Controlled
Bond Expansion (CBE) [40] framework, where the discarded subspace serves as
a reservoir for bond-enlarging directions beyond the original variational manifold,
enabling adaptive accuracy improvements.

Diagrammatically, we write the decomposition of a full isometry into the kept
and discarded parts as
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D Dd D D D
+ (2.37)
Full Discarded Kept

where the left-hand side represents the full isometry which combines the D-dimen-
sional space (marked by the left index) and the d-dimensional local Hilbert space
into the dD-dimensional space on the right. The right-hand side decomposes this
full isometry into the discarded part (left, with a protruding wedge and no notch)
and the kept part (right, with both a protruding wedge and a notch). This decompo-
sition will be frequently utilized in an efficient DMRG optimization.

Analogously, one can define the kept and discarded isometries for the MPO rep-
resentation of operators as

D | D& D D D
[:|8 o ® (2.38)
Full Discarded Kept

where we similarly use a square with a protruding wedge and a straight edge on the
other side to represent the discarded isometry, and a square with both a protruding
wedge and a notch to represent the kept isometry. This decomposition plays a crucial
role in an efficient exponential cooling of the thermal density matrix via the XTRG
algorithm.

Traversal of 2D Lattices via Snake-Like Mapping

A common strategy to extend 1D tensor network architectures, such as the MPS or
MPO, to describe 2D systems is to map the lattice sites onto a 1D chain in a pre-
scribed order. Among various mapping schemes, the so-called snake-like traversal
(or serpentine ordering) [37,150, 151] provides a conceptually simple and compu-
tationally efficient approach. In this mapping, the sites of a rectangular (L, x L,)
lattice are sequentially ordered along a single path that winds through the lattice in
alternating directions — typically from top to bottom in one row, and from bottom to
top in the next — forming a continuous, 1D sequence of sites. This procedure effec-
tively linearizes the 2D geometry, allowing the use of standard 1D tensor-network
representations and algorithms.

Mathematically, one may define the mapping function i = f(z,y), which asso-
ciates each site at coordinate (z,y) with a position ¢ along the 1D chain. For the
snake-like path, this is explicitly given by

(2.39)

(x—1L,+vy, for x odd,
flz,y) = !
2Ly —y+1, for x even,
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Fig. 2.5 Snake-like traversal of a 6x4 lattice mapped onto a 1D chain. Some
neighboring sites in 2D become distant in the 1D ordering. Horizontal bonds
can encode much less entanglement than required.

Despite its simplicity, the snake-like ordering introduces an artificial non-locality in
the representation of physical correlations. In the original 2D geometry, neighboring
sites along the horizontal direction may become distant in the 1D ordering, causing
long-range couplings in the corresponding MPO or Hamiltonian representation, as
shown in Fig. 2.5. This artificial increase in entanglement typically leads to a growth
in the required bond dimension to faithfully represent the state, as the effective en-
tanglement entropy between bipartitions of the 1D chain scales with the boundary
length (L,) in the 2D lattice. Consequently, while the snake mapping enables the
reuse of powerful 1D algorithms such as the DMRG, its efficiency deteriorates for
wider systems due to this entanglement bottleneck.

2.3.4 Projected Entangled-Pair States

Central limitations of using 1D tensor networks for 2D quantum systems include
the artificial long-range structure and a lack of sufficient capacity for entanglement.
PEPS circumvent this by natively encoding the 2D geometry: tensors are placed on
the sites of the lattice and connected along all the 2D nearest-neighbor bonds. As
a consequence, PEPS adhere to the 2D area law by construction. For a bipartition
with boundary O R, the number of virtual-bond cuts scales with the boundary length
|OR|, and the entanglement entropy satisfies (up to an additive constant) [153, 154]

S(R) < |0R|log D (2.40)
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Fig. 2.6 Diagrammatic representation of a 5x5 supercell for an infinite PEPS
(iPEPS) on a square lattice. Each tensor is connected to its nearest neighbors
via virtual bonds (black lines), forming a 2D network that captures the entan-
glement structure of the system. This diagram is only schematic for fermionic
systems, as many physical indices (red lines) are enclosed within the loops.

for bond dimension D. This length scaling matches the entanglement structure ex-
pected for gapped local Hamiltonians in 2D and is the key motivation for adopting
PEPS as a ground-state ansatz for 2D quantum systems.

A further advantage of PEPS in two dimensions is that they naturally admit a
thermodynamic-limit formulation by exploiting lattice translational symmetry. In an
infinite PEPS (iPEPS), one specifies a finite supercell (unit cell) of tensors which is
periodically tiled over the infinite lattice. This establishes the translational symmetry
at the tensor level (or a controlled breaking thereof when larger supercells are cho-
sen). This construction eliminates explicit finite-size and boundary effects ab initio,
giving direct access to bulk observables and spontaneous symmetry breaking in the
thermodynamic limit. Henceforth, we adopt this infinite setting exclusively and work
with iPEPS throughout.

Figure 2.6 exemplifies an iPEPS on a square lattice with a 5x5 supercell. Each
tensor has one physical index (red line) representing the local Hilbert space at that
site, and four virtual (also called auxiliary) indices (black lines) connecting to its
nearest neighbors. We emphasize, however, that this tensor network diagram is only
partially legal for fermionic systems: many physical indices are enclosed within the
loops and do not extend beyond the boundary of the entire network. This brings
ambiguity in the ordering of the physical indices and neglects all the fermionic swap
gates that would have incurred if extended outwards. Therefore, special techniques
must be employed for a correct and efficient contraction of the fermionic iPEPS.

To prepare for the subsequent discussion on the contraction of iPEPS (especially
fermionic iPEPS), we introduce the concept of double-layer tensors, which involves
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contracting the physical indices of the PEPS tensors and their conjugates locally.
Concretely, the order-5 PEPS tensor M and its conjugate W can be written as

L »uﬁ — 3 (2.41)
TR T

Notice that the conjugate 1/ does not equal the direct Hermitian conjugate M T due
to the extra fermionic swap gates. The double-layer bulk tensor M is then formed
by contracting the physical indices of M and W:

= (2.42)

Also notice the two fermionic swap gates incurred here. This double-layer tensor M
has four virtual indices, each with a squared bond dimension D?. In the case of eval-
uating expectation values of local operators, one can further define impurity tensors
M by sandwiching the local operator O into the physical index contraction where
relevant. Multi-point correlators can also be constructed analogously by inserting
multiple impurity tensors at the corresponding locations. For parity-changing oper-
ators, the auxiliary parity flux index should be carefully routed through the network,
maintaining the correct fermionic signs via swap gates.

After constructing all the double-layer bulk tensors, the contracted tensor net-
work for evaluating the norm (1|1)) or expectation values (¢)|O|1)) reduces to a 2D
network of these bulk tensors, as shown in Fig. 2.7. The remaining challenge is to
efficiently contract this infinite 2D tensor network to obtain accurate approximations
of the desired quantities.

Contraction of iPEPS via CTMRG

A prominent strategy relies on the Corner Transfer Matrix Renormalization Group
(CTMRG) [42, 58,59, 161, 162], which approximates the infinite environment sur-
rounding a finite patch of the lattice using a set of corner and edge tensors, as marked
by colored shadows in Fig. 2.7. The corner tensors C' (green) capture the contribu-
tions from the four corners of the environment, while the edge tensors 7' (orange)
represent the contributions along the edges.

These tensors are iteratively updated via directional coarse-graining steps that
absorb layers of bulk tensors into the environment, followed by truncation to control
the bond dimensions. This process continues until convergence is achieved, yielding
an accurate approximation of the infinite environment. Detailed algorithms can be
found in Refs. [315,325].
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Fig. 2.7 Schematic illustration of the CTMRG scheme for contracting an iPEPS
tensor network. The environment is approximated by corner tensors C' (green)
and edge tensors 1" (orange), which are iteratively updated via directional
coarse-graining steps.

The environmental bond dimension x controls the accuracy of the CTMRG ap-
proximation: larger x allows for a more faithful representation of the environment
at the cost of increased computational resources. Heuristically, we expect xy > D?
to fully capture the correlations encoded in the double-layer bulk tensors. However,
in practice, smaller y values can often yield satisfactory observations, possibly at-
tributable to the redundant information encoded in the double-layer tensors. System-
atic convergence checks with respect to both D and x can be performed to ensure
the reliability of the results.

CTMRG can struggle with critical systems or those exhibiting long-range cor-
relations, where the environment becomes highly entangled. In these scenarios,
the CTMRG iterations may fail to converge properly, with a typical signal of ill-
conditioned or divergent matrix inversions when computing the RG projectors. No-
table examples include the tight-binding model — an analytically-solvable model
that superficially seems well-suited for benchmarking. However, this simple model
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Fig. 2.8 A sequential sampling scheme for iPEPS with CTMRG environment.
The measurements and projections (marked by the instrument symbol) are per-
formed row-by-row, and environmental tensors are updated accordingly.

possesses strong criticality with logarithmic violations of the area law [166]. There-
fore, one should include a pairing term to open a gap in the system for appropriate
benchmarks [46,438].

Sampling of iPEPS with CTMRG Environment

Once the CTMRG environment has converged, one can sample the iPEPS wavefunc-
tion to obtain a set of most probable configurations in the many-body Fock space.
This is achieved via a sequential sampling scheme, where one traverses the lattice
row-by-row, followed by a projection onto a specific local state according to the mea-
surement outcome. The probability of a measurement outcome is given by the diag-
onal elements of the local reduced density matrix constructed from the iPEPS tensor
and the surrounding CTMRG environment, as illustrated in Fig. 2.8. After each pro-
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jection, the environment tensors are updated to reflect the new boundary conditions
imposed by the sampled configuration. This process continues until all sites are sam-
pled, yielding a complete configuration of the system.

The coarse-graining renormalization with projected bulk tensors can be per-
formed by either a direct SVD of the enlarged edge tensors or recycling the CTMRG
projectors. Pragmatically, both methods work comparably well, since the standard
deviation of sampling a small cluster is usually much higher than the tiny inaccura-
cies introduced by different coarse-graining schemes. The sampling procedure can
be repeated multiple times to generate a statistically significant ensemble of config-
urations, which forms a valuable snapshot dataset for a forthcoming Al analysis or
the pretraining [182, 183,326] of neural quantum states.

2.4 Optimization Algorithms

This section introduces optimization algorithms for leading TNS ansitze, empha-
sizing the artistry involved in balancing accuracy, stability, and computational cost
that guides practical strategies in large-scale simulations. For 1D tensor networks,
we revisit DMRG in its one-site (1s) and two-site (2s) variants, highlighting how the
global optimization is converted into effective local eigenvalue problems and trun-
cations. We then discuss a hybrid update scheme [40] that interpolates between s
and 2s sweeps, designed to retain the robustness and the exploration of the enlarged
variational space from 2s DMRG while operating at a cost profile comparable to 1s
updates. The same idea will be ported to the finite-temperature setting with XTRG,
where the square of the thermal density matrix is computed and compressed at each
step; there, too, the hybrid optimization scheme yields near 2s accuracy with es-
sentially 1s complexity, which is especially beneficial when temperature decreases
rapidly or entanglement grows quickly at intermediate scales.

For 2D iPEPS tensor networks, we focus on ground-state search via imaginary-
time evolution using the simple update (SU) [43], which approximates environmen-
tal effects through local bond weights and thus scales favorably with bond dimension.
To contextualize SU we compare it conceptually with belief propagation schemes
[319-322] that propagate messages on the lattice, and with environment-aware al-
ternatives — the fast full update (FFU) [163,327] and the full update (FU) [46,328]
— that explicitly incorporate an approximate environment from contraction methods
like CTMRG. Moreover, variational optimization of iPEPS via automatic differenti-
ation [165,329-331] has gained traction as a powerful alternative to imaginary-time
evolution. We discuss when each approach is preferable for the study of the Hubbard
model at its challenging regimes. Throughout, we emphasize unifying principles —
each algorithm and ansatz has its own strengths and systematic flaws, and the choice
of method should be guided by the specific physical demands, system parameters,
and available computational resources.
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2.4.1 Ground State DMRG

Historically, DMRG emerged from real-space renormalization ideas and was first
formulated in terms of iteratively growing blocks and optimizing with respect to
reduced density matrices. In contemporary language, however, DMRG is most natu-
rally understood as a variational optimization over the MPS manifold of designated
maximum bond dimension. This modern perspective differs in emphasis from the
original proposal: rather than coarse-graining degrees of freedom in real space, the
algorithm performs a sequence of constrained variational updates on local MPS ten-
sors, guided by the entanglement structure revealed by the Schmidt decomposition.

Suppose the target system is described by a Hamiltonian H and we restrict the
ansatz to MPS at maximum bond dimension D. The ground-state search becomes
the minimization of the Rayleigh quotient

(W(A)H[p(A))
(Y(A)]e(A))

with respect to the set of tensors A = { A;}. We do not assume normalization of the
state [1)( A)) represented by the MPS. DMRG tackles this high-dimensional problem
by fixing all tensors except one (1s DMRG) or a nearest-neighbor pair (2s DMRG),
and minimizing with respect to the remaining variational degrees of freedom while
keeping the others as an environment. For 1s DMRG, this leads to a local optimiza-
tion for the tensor at site ::

(A HD(A) * e
WAy, < O AHE) = Bos Al

= M)A = BN A,

E(A) = (2.43)

where "HE? and NV, 1(: ) are the effective Hamiltonian and normalization matrices for
site 7, respectively, obtained by contracting the full Hamiltonian and identity opera-
tors with the fixed MPS tensors forming the environment:

(2.45)

. - i—1 i+1 -
Nl(sl) = % % =

(2.46)
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With appropriate gauges, one can make all MPS tensors to the left (right) of site ¢
left- (right-) normalized, so that /\fl(: ) reduces to identity, and Eq. (2.44) becomes a
standard eigenvalue problem. The optimal tensor A; is then given by the ground-state
eigenvector of Hg?. This can be solved efficiently using iterative eigensolvers such

as the Lanczos or Davidson algorithms, which only require the action of ’HEZ) on
trial vectors without explicitly constructing the full matrix. After updating A;, one
proceeds to the next site, updates the environment, and repeats the process, sweeping
back and forth through the chain until convergence.

A critical limitation of 1s DMRG is its confinement to the original symmetry sec-
tors defined by the initial MPS. One can observe from Eq. (2.45) that the effective
Hamiltonian HEZ) preserves the quantum numbers during the optimization of A;.
Consequently, if the initial MPS is restricted to a particular symmetry construction,
1s DMRG cannot explore states outside this submanifold, potentially missing lower-
energy configurations that differ in quantum numbers. This limitation can be par-
ticularly severe in systems with spontaneous symmetry breaking, where the ground
state may acquire a symmetry property disparate from that of the initialization.

In order to overcome this limitation, one can employ 2s DMRG, which allows
for a more extensive exploration of the Hilbert space. For 2s DMRG, the optimiza-
tion is performed over a pair of neighboring tensors A; and A, 1, leading to the 2s
eigenvalue problem:

where the shape of two connected circles represents the combined tensor A; A; 1.
After optimizing this combined tensor, one performs an SVD to split it back into two
tensors, truncating the bond dimension as necessary:

, SVD

_>q>:<[>_<_ — _>§>+Q.(_ (2.48)
!

The singular-value matrix can be absorbed into either A; or A;; to maintain the
MPS structure, depending on the direction of the sweep. This 2s update allows an
exploration of an enlarged variational space, enabling recombination of quantum
numbers across the bond. As a result, 2s DMRG can escape symmetry-constrained
subspaces and find lower-energy states that differ in global quantum numbers from
the initial MPS.

However, the benefit of 2s DMRG comes with a price: the computational cost
increases significantly due to the larger effective Hamiltonian matrix, which now
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scales with the square of the physical bond dimension. This makes 2s DMRG more
expensive and less scalable for systems with large local Hilbert spaces.

Hybrid 1s* DMRG

A careful examination reveals that the price of 2s DMRG is largely unnecessary. The
combined tensor A; A; 1 generically has a rank of (at most) Dd, which is subject to
a truncation back to D after the SVD, i.e. a total of (up to) D(d — 1) components will
simply be discarded. Therefore, one only needs to include a handful of the principal
components from the would-be discarded subspace to capture most of the benefits of
2s DMRG. This observation motivates the hybrid 1s* DMRG, which enters as a part
of the Controlled Bond Expansion (CBE) technique [40], to efficiently approximate
the 2s update by augmenting the 1s optimization with a small number of additional
components from the discarded subspace. By doing so, one can retain much of the
robustness and exploration capabilities of 2s DMRG while operating at a computa-
tional cost comparable to 1s updates.

The key idea of hybrid 1s* DMRG is to perform a principal component analy-
sis (PCA) on the two-site tensor at the left-hand side of Eq. (2.47), to extract the
most significant components in the discarded subspace that contribute to lowering
the energy, namely

[ | (2.49)

&

O
where the left-hand side applies the discarded-space projectors [323] to the full two-
site tensor. The right-hand side retains only the top Z. components from the dis-
carded subspace, forming a complement isometry R. Empirically, choosing Z,. to
be a small fraction of D (e.g., 10%) or /D suffices to capture most of the benefits
of 2s DMRG.

The PCA can be carried out in multiple ways. The guiding principle is to avoid
a full construction of the two-site discarded-space tensor, as this would inevitably
incur the full 2s DMRG cost. Ref. [40] proposes an orthodox approach, the shrewd
selection, which involves an SVD on the left half, obtaining the remainders, followed
by another SVD on the combination of the remainder and the right half.

An alternative and more efficient method is to perform a reduction of the bond di-
mension marked green in Eq. (2.49), via, e.g., a truncation of the Schmidt spectrum
on that bond. This allows an effective approximation of the two-site discarded-space
tensor without an explicit construction. One can then perform an SVD on this reduced
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tensor to extract the top Z. components, forming the complement isometry R. This
method, although less accurate than the shrewd selection, works sufficiently well in
most practical scenarios, while significantly reducing the computational overhead.

A plausible explanation for the effectiveness of this naive PCA approach is that,
the variational optimization still lies in the iterative local updates. The PCA of the
two-site discarded-space tensor merely needs to provide a reasonable expansion of
the variational space, rather than an exact LRA of the discarded subspace. As long as
the selected components capture the dominant directions that escape the symmetry
constraints, the subsequent 1s optimization can effectively utilize them to lower the
energy.

With the complement isometry R obtained, one can proceed to the subsequent
steps for 1s* DMRG optimization. We next take the left-to-right sweep as an exam-
ple; the right-to-left sweep follows analogously. The isometry at site ¢+ 1 is first
enlarged by absorbing the complement isometry:

—(R - = ® —~—
7 Ei *Q:— II% (2.50)

The resulting R™ tensor now acquires an enlarged bond dimension of 4, = D +
2. on the left side. The local eigenvalue problem for the MPS tensor at site ¢ now
becomes

= E. =»{[ - (2.51)

where the obtained MPS tensor LT also has an enlarged bond dimension Z, on the
right side. After solving this eigenvalue problem, one contracts L™ and R, performs
an SVD to decompose the updated tensor back into the standard MPS form, and
truncates the bond dimension back to D:

, SVD

=N -~ S 8’ O 3 (2.52)
I | |

The 2s DMRG has a computational cost scaling as O(D3d?w) (for MPO bond di-
mension w), while the hybrid 1s* DMRG scales as O(D?Z.dw). Since %, = D+ 9.
with . < D, the hybrid scheme effectively retains the favorable cost profile of
1s DMRG while capturing much of the exploration capacity of 2s DMRG. Note
that there is still a subleading cost from the SVD of the two-site tensor with cost
O(D3d?), and the 1s* DMRG also introduces extra overhead in constructing the
complement isometry 2. Therefore, the actual speed-up compared to 2s DMRG de-
pends on the specific parameters and implementations. Nevertheless, the hybrid 1s*
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DMRG provides a compelling compromise between accuracy and efficiency, mak-
ing it a valuable tool for large-scale simulations where full 2s DMRG may be pro-
hibitively expensive.

2.4.2 Thermal XTRG

Finite-temperature TN simulations have long relied on two paradigms: purification-
based imaginary-time evolution and sampling of typical states. In purification, one
embeds the thermal state into a pure state on an enlarged Hilbert space and evolves
in small imaginary-time steps, i.e., p(8) = tranc| U (5)) (¥ (5)| with |¥(8+4305)) ~
e~ FH | (3)). While robust, this incurs an ancilla overhead and requires O(5/63)
Trotter steps, with accumulated Trotter and truncation errors and bond-dimension
growth that becomes challenging at low 7'. The METTS approach, by contrast, avoids
ancillas and estimates thermal expectation values by a Markov chain of product-
state collapses and short imaginary-time evolutions. METTS can be very effective
at intermediate temperatures, yet its stochastic variance and autocorrelations de-
mand many samples for high accuracy and, again, the cost grows essentially linearly
with 5. Against this backdrop, XTRG reframes finite-7" calculations as deterministic
operator-space compression that reduces both the number of evolution steps and the
sources of systematic error.

The central idea of XTRG is to represent the thermal density matrix p(8) =
e~ PH as an MPO and to evolve it by repeatedly squaring the MPO. Starting from a
high-temperature thermal state p(€) at small inverse temperature ¢, one expands the
density matrix into a power series

g~ (o
_ _—€eH __ B k
ple) = e H ~ Z 5 H (2.53)
k=0

truncated at a large enough order N... Usually, for sufficiently small e (e.g. ¢ = 2711),
alow order IV, (e.g. N. < 8) suffices. The construction of the initial density matrix
involves pairwise summation and multiplication of MPOs, relevant techniques of
which will be discussed subsequently. Once p(¢) is constructed, one takes the square
repeatedly to reach the desired inverse temperature:

p(28) = p(B) - p(B)- (2.54)

This procedure gives p(2"¢) after n iterations, allowing an exponential reduction in
temperatures. In reality, the squaring procedure may significantly scale the norm of
the density matrix (or equivalently, the partition function Z(3) = tr p(f3)), leading
to exotically large tensor elements. This issue is particularly pronounced for XTRG
iterations n > 10. To mitigate this, one typically normalizes the density matrix at
each step, and keeps track of the partition function at each temperature. The free
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energy and other thermodynamic quantities can then be computed with an aid of the
accumulated normalization factors.

The summation and product of MPOs at each step inevitably increase the bond
dimension, necessitating a truncation back to a manageable size. Multiple strategies
exist for this truncation, including SVD-based LRA compression and variational op-
timization. The SVD method performs a local decomposition and truncation of the
MPO tensor, while the variational approach minimizes the distance between the ex-
act and truncated MPOs.

MPO-MPO Summation and Product

The naive summation of two MPOs 2(1) and £2(2) with bond dimensions wi and wo
proceeds via a site-wise direct sum of their local tensors

oM 9

_ oM (2) _
;=02 e = 0 n®

. (2.55)

This construction yields an MPO {2 with total bond dimension w = wy + wy. While
elementary and robust, such a procedure induces rapid bond-dimension inflation
when aggregating many terms, as occurs in the initial assembly of p(e) in Eq. (2.53).
A standard countermeasure is to perform an SVD-based truncation after each sum-
mation step.

However, the cost of repeated SVD truncations can scale unfavorably with the
growing bond dimension, particularly when a large number of summands are in-
volved. A more scalable alternative is a variational optimization scheme [54], which
seeks the truncated MPO by minimizing the Frobenius norm of the deviation be-
tween the exact sum and its compressed representation

min |12 — (20) + 23

—min [tr(mrz) —w((2W + Y ) — w(2T(OW 4 @) + const} .
(2.56)
The optimization can be performed using local updates via taking derivatives with

respect to each pair of neighboring MPO tensors, leading to a set of linear equations
that can be solved iteratively

ot af(nW 4+ 0®)

= 2.57

With appropriate gauging of the MPO, the left-hand side reduces directly to the up-
dated two-site tensor. Diagrammatically, this update can be represented as (take left-
to-right sweep as an example; right-to-left sweep is analogous)
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The product of two MPOs (1) and £2(2) can be constructed by contracting their
physical indices site-by-site, resulting in a new MPO 2 = 2() o 2(2) with bond
dimension w = w; - wy. Analogously, the bond dimension can grow exponentially
with repeated products, as in the squaring step of XTRG in Eq. (2.54). To control
this growth, one can again employ SVD-based truncation or variational optimization
similar to the summation case.

The variational optimization for the product MPO [54] adheres to the same guid-
ing principle as Eq. (2.56), namely, minimizing the Frobenius norm of the discrep-
ancy between the exact product and its truncated MPO approximation

min 2~ () 0 )3
“ (2.59)
= min [tr(QTQ) —tr((2W 0 ) Q) — tw(21(2W 0 23))) + const| .

By invoking the same projection framework, one arrives at local update rules that
mirror those for MPO summation, yielding a set of linear equations for each pair of
neighboring MPO tensors

o0t a0t (WM o 0@)

= 2.60
6((%914.1)* 8(Qi9i+1)* ( )

Diagrammatically, the update for the product MPO can be represented as (again take
left-to-right sweep as an example)

. 2.61)

In the foregoing, we have outlined the 2s formulation of variational optimization
for both MPO summation and product. In close analogy with DMRG, one may also
devise a 1s* variant that reinjects a limited set of components from the discarded
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subspace, thereby enriching the accessible variational manifold while preserving a
favorable computational profile. This hybrid strategy is the central subject of Sec-
tion 3.2, which pushes the lowest temperature accessible to a brand new level.

2.4.3 Ground State iPEPS

In the landscape of iPEPS optimization, two broad paradigms are commonly em-
ployed: imaginary-time evolution [43, 46, 47] and direct variational minimization
of the energy functional [53, 164, 329-332] — often via gradient-based schemes
[165] constrained to the iPEPS manifold. While fully variational routes provide self-
adaptive control over optimization procedures, imaginary-time projection offers a
robust and computationally efficient prior that is particularly effective under a suf-
ficiently accurate environment approximation. The central idea is to regard ground-
state preparation as spectral filtering: acting with e ~#H on any trial state with non-
zero ground-state overlap progressively damps excited components at a rate set by
their energy gaps. This damping procedure usually provides a stable and efficient
path to the ground state preceding a more refined variational optimization.

Formally, if an arbitrary initial state can be expanded in the Hamiltonian eigen-
basis as |¢o) = Y, ¢n|En) With H|E,,) = E, |E,), then imaginary-time evolution
yields

e o) = e~ PP | | Eo) + Z cne PEE) B V] (2.62)
n>0

so the normalized state |¢(3)) = e P [ahg) /|le?H |1)0)|| converges to the ground
state as § — oo whenever ¢y # 0. At the asymptotic level, the energy monotonically
decreases with increasing /3, and the convergence rate is characterized by the first ex-
citation gap A = E; — Ej. In the presence of symmetry, the projection converges to
the preset symmetric subspace; enforcing symmetries at the tensor level both targets
the desired sector and improves numerical stability.

The full Hamiltonian is a high-order tensor object, and the imaginary-time prop-
agator e~ #H for large /3 cannot be applied to iPEPS tensors in a single step without
incurring prohibitive cost and loss of locality. A standard remedy is to invoke a Trot-
ter—Suzuki factorization [333] that replaces the global evolution by a sequence of
strictly local gates acting on neighboring sites. For a Hamiltonian decomposed into
two-site terms H = > (i.5) h;j, a first-order Trotter expansion yields

eMa [ e ™ +0(r?), (2.63)
(4,9
where 7 needs to be sufficiently small to constrain the Trotter errors. In order to

reach a large 3, one then applies the local gates e~7"ii sequentially in many small
imaginary-time increments, updating the iPEPS tensors after each gate application.
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This iterative cooling is continued until convergence, typically diagnosed by negli-
gible variation in the Schmidt spectra across all updated bonds.

The local update necessitates an efficient mechanism for absorbing the two-site
gate into the iPEPS tensors and subsequently truncating the enlarged bond dimension
to its working value. In principle, an optimal truncation is variationally defined by the
full environment surrounding the updated tensors; this environment can be approxi-
mated via CTMRG as discussed in Section 2.3.4. This consideration naturally leads
to the full update (FU) scheme [46, 328], wherein, after each imaginary-time step,
an environment is (re)constructed and used to determine the truncation that best pre-
serves the post-gate state. Although FU markedly improves fidelity by aligning the
truncation with the global network geometry, recomputing the environment at every
step renders the procedure computationally demanding. The fast full update (FFU)
[163,327] ameliorates this cost by incrementally updating the environment tensors
after each gate application — rather than rebuilding them from scratch — thereby
retaining much of FU’s accuracy at a reduced overhead, albeit with an overall scaling
that remains substantial.

The simple update (SU) [43] provides a pragmatic surrogate for full-environment
methods by replacing the global contraction with local bond weights that encode
the corresponding Schmidt spectra. This approximation drastically lowers the com-
putational burden while retaining the ability to capture the most salient short- to
intermediate-range correlations along each bond. In practice, SU preserves a generic
Lambda-Gamma representation [334,335] that records the local entanglement struc-
ture on every virtual link, thereby enabling efficient and numerically stable tensor
updates without explicitly constructing the full environment.

As an illustrative example, consider applying a two-site gate g on neighboring
sites 7 and j connected by a bond surrounded by the Schmidt weights A as the envi-
ronment. The update proceeds as

\ \
A A
—( —( ] ———{ ] )—— (264)
S
A A
\ \

Other neighboring or next neighboring updates can be performed analogously. De-
tailed procedures for the SVD truncation and absorption of the Schmidt weights can
be found in Ref. [325] and in Section 3.1.

Within iPEPS (and, more generally, higher-dimensional tensor networks), gate
updates frequently act on tensors of very high order; for example, Eq. (2.64) in-
volves an order-8 tensor prior to truncation. A monolithic SVD at such arity is typi-
cally computationally prohibitive. A pragmatic remedy is to factor the object through
a controlled sequence of lower-order decompositions — most commonly SVDs or
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QR factorizations — thereby expressing the original high-order tensor as a compact
network of low-order constituents (preferably order-3)

(2.65)

In particular, this construction decomposes the high-order tensors @7, and @5 into
order-3 constituents v and u. The gate application and the subsequent truncation can
then be executed locally on v and u,

(2.66)

which markedly reduces computational overhead while maintaining the intended
variational structure. After these updates, the smaller tensors are recombined to re-
store the original connectivity. This sequential-decomposition strategy is particularly
effective at taming the complexity of high-order tensor manipulations during iPEPS
optimization. As will be demonstrated in Section 3.1, the technique is crucial for en-
abling efficient imaginary-time evolution in simulations of the next-nearest-neighbor
Hubbard model.

2.5 Transformer and Attention Mechanism

Transformers have rapidly become popular for scientific machine learning. For physi-
cists, this flexibility is attractive: fields on grids, sets of particles, graphs of interact-
ing subsystems, or symbolic expressions can all be serialized into tokens and pro-
cessed by the same computational primitive — attention — whose capacity to in-
tegrate non-local information mirrors many long-range correlations in physical sys-
tems. Also, scientific use demands more than predictive power: we must articulate
design choices that respect the native regularities of the real-world scientific data,
select transformer variants that align with task structure, and scrutinize what — if
anything — attention weights reveal about learned mechanisms. In this section, we
assume basic familiarity with transformer architectures. A beginner’s guide can be
found in the supplemental material in Section 3.3.

The first part of this section outlines a principled workflow for designing Al ar-
chitectures for physics. We frame model construction as three coupled mappings: (i)
encoding physical objects into token sequences with (relative) positional informa-
tion, (ii) processing with modular blocks that can be augmented to enforce awareness
of intrinsic patterns or correlations, and (iii) decoding back to physically meaningful
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quantities with calibrated uncertainties. Throughout, the emphasis is on architectural
levers — tokenization schemes, positional structure, conditioning, and objective de-
sign — that balance data efficiency, stability, expressivity, and fidelity.

The second part discusses transformer variants by the tasks common in physics.
Encoder-only models, which aggregate information into contextualized represen-
tations, are naturally suited to discrimination and regression (phase classification,
property estimation, anomaly detection). Decoder-only models, trained with autore-
gressive objectives, target generative synthesis and sequential prediction (trajectory
rollout, quantum information processing), where one conditions on past tokens to
produce plausible futures. Encoder-decoder models separate information acquisition
from controlled generation, enabling transduction problems (translating information
from one domain to another) and context-sensitive simulation (conditioning on given
physical parameters while generating sampled sequences of quantum states).

The final part addresses the interpretability debate surrounding attention. Atten-
tion matrices are accessible and sometimes align with salient physical couplings,
which makes them tempting explanatory artifacts. Yet they are not uniquely causal:
multiple internal pathways can yield the same output, and learned reparameteriza-
tions may redistribute attribution away from weights alone. We recommend a cau-
tious approach — using attention as one corroborating signal among many. Together,
these perspectives set the stage for a disciplined, physics-aware interpretation of the
attention mechanism.

2.5.1 Design of AI Architectures

Designing learning systems for physics requires a coherent incorporation of the phys-
ical data structure and the inductive biases of modern architectures. Experimen-
tal readouts, lattice configurations, and geometric constraints need to be properly
mapped into a machine-interpretable representation, transformed across depth, and
decoded into observables or information of interest. The central motivation of this
section is to develop a unified architectural perspective that guides the design — how
discrete and continuous inputs are tokenized and embedded; how to select interme-
diate processing blocks (fully connected, convolutional, recurrent, attention-based,
etc.); and how output heads are aligned with discriminative prediction or generative
tasks. Framing design in these terms clarifies where to inject physical priors, how to
balance computational cost with fidelity to correlation structure, and how to promote
interpretability and reproducibility across disparate physics tasks.

Architectural Overview: From Inputs to Outputs
Most contemporary models can be organized as a modular pipeline with three stages.

First, an input interface encodes raw data — discrete symbols (e.g., local states on
lattice sites, particle species, measurement outcomes) or continuous quantities (coor-
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dinates, fields, spectra) — into numerical vectors suitable for subsequent processing.
When the input is naturally a collection of items (sites of a lattice, time steps, de-
tector channels), it is convenient to represent each item as a token; the collection of
tokens forms a sequence or set that constitutes the model input. In this stage, one
may also attach positional information (e.g., lattice coordinates or time indices) to
preserve geometry or ordering.

Second, the model applies a stack of processing blocks. A block (also called layer
or module) denotes a standardized unit that combines a principal transformation
(e.g., a fully connected, convolutional, recurrent, or attention operation) with stabi-
lization mechanisms such as residual connections and normalization. The stack acts
on a matrix of 8ize Leq X dimodel, Where Ly is the sequence length (number of tokens)
and dpodel 1S the model size (number of features per token).

Third, one or more output heads transform the final internal representation into
the desired target: class labels (e.g., phase identification), continuous quantities (en-
ergies, order parameters), or full probability distributions over configurations (for
generative modeling or sampling). This modular decomposition separates concerns
— how physics enters, how it is processed, and how predictions are read out — fa-
cilitating a streamlined design paradigm that turns otherwise complicated black-box
processing into a block-building exercise.

Internal Representations: Feature Vectors

Within the model, each token is represented by a feature vector h € Rmow Al
though features in neural representations are typically distributed (i.e., a specific
physical quantity may be encoded across many dimensions), it is helpful to view
Rmeel a5 a feature space spanning directions that correlate with physically relevant
attributes. For example, suppose a token corresponds to a spin-up quantum state lo-
cated at a specific lattice site. The features may align with quantities such as particle
number, total spin S, or the spin-z component S, as well as contextual information
(sublattice identity, boundary proximity, or membership in a symmetry sector). The
width dppeger controls the capacity to encode such structure: larger dpoqe; affords finer
representational granularity at the cost of increased computational complexity and
memory. When system-level information (temperature, global magnetization, con-
served charges) is important, it can be injected (e.g., added or appended) uniformly
to all tokens or implemented as cross attention that interacts with local site tokens
in the processing stack.

Input Interface: Encoding, Embedding, and Continuous Projections
The input interface maps raw physical data into token sequences with associated

feature vectors. The design depends on the data modality: discrete symbols (e.g., spin
states, particle occupations) are typically embedded via learned lookup tables, while
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continuous quantities (e.g., coordinates, fields) may be projected through learned
linear layers. Two standard mechanisms translate discrete inputs into vectors:

* Encoding refers to a fixed, non-trainable mapping. Examples include one-hot
vectors for {1, ]}, binary occupation encodings {0, 1}%+, or hand-crafted co-
ordinates aligned with symmetry irrep labels. Encodings faithfully preserve se-
mantics and can enforce known constraints, but they may be high-dimensional
and do not adapt to data statistics.

* Embedding denotes a learned lookup: each discrete symbol is assigned an as-
sociated vector that is optimized during training. Embeddings are compact and
data-adaptive, often yielding better statistical efficiency, though they require suf-
ficient data and regularization to avoid overfitting spurious correlations.

For continuous inputs (positions, momenta, fields, spectra), the canonical front
end is a linear projection — a fully connected layer mapping RP — Rl that
transforms p physical properties into dpege; features. This may be preceded by stan-
dardization and can be augmented with engineered bases (e.g., sinusoidal/Fourier
features) to facilitate the representation of fine spatial or temporal variation. When
geometry or ordering matters, positional encodings — absolute or relative — are
added so subsequent blocks can exploit lattice structure or temporal causality.

Output Heads: Discrimination, Regression, and Generation

The choice of output head is dictated by the scientific objective. Discriminative
heads produce conditional predictions given the input representation. Typical in-
stances include (i) classification (e.g., phase labels, defect types) [276,336] via a
softmax function trained with cross-entropy, and (ii) regression (energies, magne-
tizations, susceptibilities) [337-339] via linear or shallow non-linear heads trained
with mean-squared or absolute error.

Generative heads model distributions over configurations or signals. Autore-
gressive framework emits one token at a time conditioned on predecessors, enabling
sampling of state configurations or sequences [182, 183] consistent with learned
physics. Diffusion/score-based heads learn to denoise from injected noise, which
may be effective e.g. for astronomical error mitigation [340,341]. In physical work-
flows, generative heads are valuable for proposing equilibrium configurations, accel-
erating sampling, or reconstructing signals under noise.

Processing Blocks: MLPs, Convolutions, Recurrence, and Attention

The processing stack captures correlations and inductive biases. Fully connected
multi-layer perceptron (MLP) blocks are universal approximators and work well
when inputs are already compressed into informative descriptors (a small set of
scalars per system). However, they function as a complete black box which lacks
explainability and thus diagnostic tools, and scale poorly with system size due to the
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Fig. 2.9 Architectural processors commonly used in physics-aware Al models.
(a) Fully connected MLP block interconnects all input features, making them
flexible but computationally expensive. (b) CNN involves repeated convolu-
tional filtering and pooling, capturing local patterns and translational equivari-
ance. (c) RNN maintains internal states across sequence steps, preserving order-
dependent context. (d) The attention mechanism computes attention scores be-
tween all token pairs, enabling global information integration.
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quadratic growth of parameters with input dimension. Therefore, contemporary ar-
chitectures usually employ MLPs only as feed-forward sublayers within more struc-
tured blocks (e.g., transformers).

Convolutional blocks encode locality and translational equivariance through
weight sharing and receptive fields, making them natural for lattice and image-like
data (spin textures, density maps, microscopy). Multiscale behavior can be captured
by strides, pooling, or dilated convolutions. However, strictly local receptive fields
can impede modeling of very long-range dependencies unless many layers or dilation
mechanisms are used.

Recurrent blocks e.g. Recurrent Neural Networks (RNNs), Long Short-Term
Memory (LSTMs), Gated Recurrent Units (GRUs), process sequences with explicit
state, preserving order-dependent context. RNNs are most effective when the data
possess an inherent causal order (e.g., time series or sequential experimental proto-
cols). Their main limitations are reduced parallelism and difficulties with very long
dependencies, which gating alleviates but does not eliminate.

Attention (as in transformer architectures) enables global awareness: every to-
ken can condition on every other token within a layer, allowing the model to learn
long-range correlations and non-local couplings that frequently arise in many-body
systems and critical phenomena. Attention is highly parallelizable over tokens and
adapts naturally to sequences, sets, or graphs once appropriate positional or struc-
tural encodings are provided. The principal cost is quadratic complexity (note the
difference from quadratic growth of parameters) in sequence length for dense atten-
tion, which motivates sparse or multi-expert variants for large or extensive systems.
In exchange, attention often provides superior fidelity when correlations are global
or long-range.

2.5.2 Variants of Transformers

Transformers come in three canonical wiring patterns — encoder-only, decoder-
only, and encoder-decoder. All three reuse the same two building blocks (multi-head
attention and position-wise feed-forward), but they differ in how attention is masked
and how the blocks are stacked. These choices shape the kinds of tasks each variant
serves best. Encoder-only models [68] process an observed sequence with bidirec-
tional self-attention (each token attends to both its left and right context) and are
most effective when the goal is discrimination: classification, regression, tagging, or
retrieval. Decoder-only models [70] use causal (left-to-right) self-attention and di-
rectly implement autoregressive likelihoods, making them the natural fit for genera-
tive tasks where outputs are produced token by token. Encoder-decoder models [61]
couple a bidirectional encoder to a causal decoder via cross-attention and are thus
tailored to transduction or context-sensitive generation, where the output sequence
must be generated conditioned on a separate input (e.g., translation or summariza-
tion).
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Fig.2.10 Two variants of transformer architectures. Encoder-only transformers
stack multiple layers of bidirectional self-attention, while decoder-only trans-
formers stack layers of causal (left-to-right) self-attention.

Encoder-Only Transformers (for Discrimination)

An encoder-only transformer contains a stack of layers that maps an input token
sequence X; (see also Section 3.3) to contextual representations g; (the output of the
gray shaded box in Figure 2.10). Each layer applies multi-head self-attention without
a causal mask, so token 4 can attend to {1,2,..., Lyq} \ {i}. This bidirectional
context is crucial: it allows the representation of a token to incorporate information
from both its left and right companions, which is precisely what many discrimination
tasks require (e.g., deciding a sentence’s sentiment or identifying phases of matter).

After processing through a stack of N attention and feed-forward layers, the final
representations g; are pooled (e.g., via averaging or a special classification token
CLS) and passed to an output head for classification or regression. For instance, the
logit of a K -category classification can be constructed as

ye = pool({g: YW, +b., c¢=1,...,K, (2.67)

where W, € R and b, are learned parameters. Probability p. of category cis then
given by a softmax over logits y.. The model can be trained end-to-end with cross-
entropy loss on labeled data. Regression tasks follow a similar pattern, replacing with
e.g. mean-squared error loss.
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In addition to the standard training procedure, encoder-only transformers can ben-
efit from an optional pretraining phase based on masked language model (MLM)
[68]. During this phase, a portion of the input tokens is randomly masked, and the
model is trained to predict the masked tokens based on their context. Let M C
{1,2,..., Lyq} index positions to mask, and let 7 \ o5/} be the corrupted sequence
(e.g., masked or noised tokens at indices in M). The model then produces contextual
representations g; for «+ € M, which are passed to a generative head

zio = Gi* Wo +bo,  Die = softmax;(zi,), i€ M, (2.68)

where W, € R and b, are learned parameters. A common efficiency trick is
weight tying [342], i.e. W, = e(o), where e(o) is the embedding vector for token
o. The model is trained to maximize the likelihood of the original tokens at masked
positions

Bz [— Y logp(oi |3\ o) (2.69)
€M

where E 5, denotes expectation over a mini-batch of sequences & and random mask
sets M. After pretraining, the model can be fine-tuned on downstream discrimination
tasks with supervised loss. This two-stage training encourages the model to learn
richer representations by forcing it to leverage bidirectional context, which often
improves data efficiency and robustness, especially when labeled data are scarce.

Decoder-Only Transformers (for Autoregressive Generation)

A decoder-only transformer differs from the encoder-only variant by employing
causal self-attention: each token 4 can only attend to its left context {1,2,...,i—1}.
This induces the left-to-right factorization, which is essential for autoregressive gen-
eration

Lseq
p(@) =[] ploi | 0<i), (2.70)
i=1
where o; = {01,09,...,0,_1}. The generative head is similar to Eq. (2.68), but

now applied to all positions. Training uses next-token prediction with teacher forcing:
the model is fed the gold prefix o; and optimized by the cross-entropy loss

Lseq
Ez |- logp(oi | o) | - (2.71)
=1

Atinference time, generation proceeds autoregressively: starting from a prompt (pos-
sibly empty), the model samples one token at a time, appending each sampled to-
ken to the input for the next step. Decoding can be deterministic (greedy, beam
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search with length normalization) [343] or stochastic (temperature scaling [344],
top-k/mucleus sampling [345,346]), trading off fidelity and diversity.

The causal mask enforces an information flow analogous to time-ordered con-
ditioning: each state aggregates only past context, making the model particularly
well-suited to tasks where outputs must be emitted in sequence. Practical implemen-
tations cache key-value pairs from previous layers so that each new step only attends
to stored states, enabling efficient long-form decoding.

Conditional tasks can be handled by concatenating the conditioning information
into the prefix [70,347,348]. If 7 denotes a context string (instructions, a problem
statement, or physical parameters), the model generates sequence o from p(o|7) us-
ing the same autoregressive mechanism. This prefix-LM view works well when the
conditioning signal is short and of fixed-length; for richer or complex multi-modal
inputs, the encoder-decoder pattern below provides a more explicit and scalable con-
ditioning pathway.

Encoder-Decoder Transformers (for Context-Sensitive Generation)

An encoder-decoder transformer combines a bidirectional encoder and a causal de-
coder connected via cross-attention, and separates the understanding of a source
sequence from generation of a target sequence. The encoder processes an input se-
quence 7 into contextual representations u;, while the decoder generates the output
sequence o autoregressively, attending to both its own history and the encoder con-
texts, yielding the conditional factorization

Lseq

p(@17) =]]ploil o< 7). 2.72)

i=1

Specifically, at each decoder layer, the self-attention block is followed by a cross-
attention block where each decoder token attends to all encoder outputs u;, i.e. take
queries from the decoder and keys/values from the encoder. This structure allows
the decoder to flexibly incorporate information from the source sequence at every
generation step.

Decoupling source encoding from target generation confers several advantages for
transduction (machine translation, abstractive summarization, speech/text transcrip-
tion, etc.) and, more broadly, context-sensitive generation. The encoder can build
globally consistent, bidirectional features over the entire input — often much longer
or structurally different from the output — while the decoder focuses on fluent emis-
sion conditioned on those features. This is especially helpful when there are strong
length mismatches, reordering, or many-to-one alignments between source and tar-
get. In multi-modal settings, the encoder serves as a dedicated front-end, providing
great scalability while retaining the same decoding machinery. Practically, the en-
coder/decoder separation also enables flexibility in partial fine-tuning: one can freeze
the encoder and adapt only the decoder to new generation tasks, or vice versa. At
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Fig. 2.11 Encoder-decoder transformer architecture. The encoder processes the
input sequence with bidirectional self-attention, while the decoder generates the
output sequence autoregressively with causal self-attention and cross-attention
to the encoder outputs.

inference time, this separation allows pre-encoding of static contexts, speeding up
generation when the same source is applied to multiple outputs.

2.5.3 Interpretation of Attention Scheme

The attention mechanism is often lauded for its interpretability or explainability. In
transformer architectures, an attention head at the ¢-th layer with model temperature
T computes a row-stochastic matrix

AY = softmax; (gﬁ“ K0 /S) 7 2.73)

where QEZ) and KZ;E) are the query and key vectors for tokens 7 and j at layer ¢. Read
as an alignment, A(©) often highlights linguistically [349] or visually [350] meaning-
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ful relations (e.g., dependency links in text, object-part structure in images), and in
scientific settings it frequently correlates with physically significant neighborhoods
or interactions [84,351]. In general, attention externalizes where the model concen-
trates its limited computational bandwidth. It is therefore a useful explanatory signal
directly tied to the model’s native computation, inexpensive to obtain at inference
time, and naturally comparable across layers and heads.

The main caveat is structural rather than philosophical. Because attention oper-
ates inside a deep neural network, the numerical weight on a particular edge does
not by itself equal causal influence on the final prediction. Residual pathways, value
content, and later non-linearities (e.g., layer-norm, feed-forward) can compensate for
changes to AW® [352]. As aresult, attention should be interpreted with the same care
physicists apply to intermediate quantities that depend on gauge or representation:
attention is informative — often highly so — provided we check that its salient pat-
terns are stable under benign perturbations [353] and consistent with simple causal
probes (e.g., masking the highlighted tokens or heads degrades performance) [354].
Under these routine checks, attention maps become reliable, compact summaries of
the model’s internal routing, effective for communicating which correlations are be-
ing prioritized.

Early stress tests [355] clarified why such checks are needed. Across standard
NLP tasks, it was shown that raw attention weights can be only weakly correlated
with gradient/perturbation measures [352,355] of importance and that one can of-
ten construct substantially different attention patterns that leave the output nearly
unchanged [355, 356]. These findings do not negate the value of attention; rather,
they delimit when raw weights alone are insufficient and motivate joint interpreta-
tion in conjunction with sensitivity analyses or simple interventions to confirm that
the highlighted routes matter for the prediction.

Subsequent work [357] reframed the question from “is attention the explanation?”
to “under what conditions is it a useful explanation?” Practical diagnostics emerged:
compare against a uniform-weights baseline [357]; assess stability across random
seeds [358]; probe with encoders whose parameters are frozen to separate the con-
tribution of attention from the rest of the network [357]; and test adversarially per-
turbed attention to ensure that plausible-looking maps still carry functional weight
[356]. When attention passes such checks, the maps can be both human-readable and
decision-relevant.

Later syntheses systematized these ideas, distinguishing plausibility (human-
readable alignment with domain structure) from faithfulness (measured counterfac-
tual dependence) [359], and recommending enhanced methodology via e.g. super-
vised effective attention [360,361]. The emerging consensus for practitioners is prag-
matic: treat attention as an explanatory lens that is credible when triangulated with
simple audits and unreliable when those audits fail.

This viewpoint balances value and caution. In many practical systems, the heads
that persist across training seeds and whose masking measurably reduces task per-
formance also display coherent, domain-aligned patterns in their attention maps
[362]. Conversely, diffuse maps, special-token sinks [363], or maps that vary errati-
cally across runs are best treated as descriptive diagnostics rather than explanations.
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Framed this way, attention provides an accessible explanatory lens while remaining
compatible with stricter notions of faithfulness.

Synthesis Across Multiple Attention Layers

For multi-layer models, single-layer maps can be misleading because they only show
one step of routing. A widely used remedy is attention rollout [364-366], which
aggregates routing across depth. If we write a residual block schematically as
=D = 0Oy AV 4 (1 - a9) x5, (2.74)
with Z’Z@ the block input and o¥) € [0, 1] a shorthand mixing coefficient (ignor-

ing position-wise projection/LayerNorm/MLP effects), then an effective end-to-end
routing operator is approximated by

1
R=1]] [(1 — a1+ a®A0)], (2.75)
(=L

multiplying from last to first layer. Visualizing rows of R yields a global atten-
tion map that captures multi-hop pathways and typically aligns more closely with
perturbation-based importance than any single A(). For multi-head attention, A(*)
denotes the head-pooled map (e.g., mean or value-weighted aggregation), which pre-
serves the notion of a single routing operator per layer while retaining head-level
diagnostics if needed. In practice, rollout is simple to compute, stable across small
perturbations, and offers an intuitive transport picture: information travels through a
sequence of stochastic propagations plus identity bypasses, so end-to-end influence
corresponds to the composition of propagation channels defined by each layer.

A complementary construct is attention flow [364,367], which treats the stack as
a directed graph and measures how much of an output unit’s mass can be sent back
to inputs under the network’s routing constraints. Concretely, each layer contributes
edges with capacities given by the attention weights; residual connections add iden-
tity edges. One then computes, for a fixed output query, the distribution over inputs
obtained by pushing a unit of flow backward through this capacitated graph. Intu-
itively, attention flow treats attention weights as maximum allowable traffic along
each edge and asks how much of the output’s influence can be traced back to each
input when respecting these limits.

Attention flow is defined with respect to a specific output and respects the multi-
layer nature of the computation; unlike generic gradients, it remains in the same
units/dimensions as attention and is easier to compare with rollout. Empirically, flow
and rollout tend to agree on dominant routes while differing in regions where resid-
ual propagation causes strong path competition — usually the regimes which may
warrant deeper inspection.

Other tools are often used as cross-checks rather than replacements. Gradient-
augmented variants (e.g., attention-gradient integration [368] or relevance propaga-
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tion through attention [369]) take importance measures into account and sharpen
maps near decision boundaries; head-importance and pruning [354, 362] quantify
how much performance depends on particular heads; and perturbation protocols
(deletion/insertion curves [370], remove-and-retrain controls [371]) provide scalar
faithfulness scores. In combination with rollout or flow, these methods integrate at-
tention information with genuinely influential routes, enhancing the reliability of the
interpretation of attention mechanisms.






Chapter 3
Findings on the Hubbard Model

This chapter presents results on the 2D Hubbard model obtained through a coherent
numerical program that interrogates the model across the entire temperature axis
and subjects the generated many-body data to Al-based analysis. The three con-
stituent components — ground-state iPEPS, finite-temperature XTRG, and an op-
timized encoder-only transformer — collectively establish an integrated pipeline for
quantum many-body research.

First, symmetry-preserved iPEPS provide controlled access to the landscape of
zero-temperature competing orders, with the global symmetry serving as a control
knob that can admit or suppress static antiferromagnetism so as to expose the uniform
superconducting phase and its competitors. This capability helps clarify the long-
standing debate surrounding the existence and strength of superconductivity in the
Hubbard model and offers a glimpse into a potential pairing mechanism driven by
spin frustration.

Second, an enhanced 1s* XTRG scheme pushes thermal simulations deep into
the ultracold regime, thereby establishing a continuous bridge between finite-7" and
T — 0 information. This enables the construction of a partial temperature-doping
phase diagram of the Hubbard model. Notably, we corroborate the superconduct-
ing features identified in the aforementioned ground-state studies and scrutinize the
pseudogap regime characterized by suppressed spin susceptibilities.

Third, we develop an attention-based Al tailored to the analysis of quantum many-
body data. Acting as an automated analyzer, this Al model ingests finite-7" snapshots
generated from XTRG and extracts salient correlation patterns, enabling a universal
omnimeter that infers calibrated quantities (e.g., temperature, charge doping, etc.)
from the perceived correlations in the experimental snapshots. Together, these el-
ements constitute a comprehensive toolbox for the Hubbard model and are readily
extensible to other quantum lattice systems.
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3.1 Ground State Properties and Superconductivity

The long-standing puzzle of whether the repulsive 2D Hubbard model can sustain
a uniform d-wave superconducting phase is complicated by the prevalence of stripe
order — unidirectional modulations of charge and spin — that frequently dominates
in state-of-the-art numerics. This work highlights the role of magnetic frustration.
By allowing an NNN hopping ¢’ and by increasing charge doping, one frustrates
AFM correlations that scaffold stripe textures. We implement a symmetry-resolved
iPEPS protocol that runs, in parallel and under otherwise matched conditions, (i) a
U(1) symmetric ansatz that admits static AFM order and thus stripes, and (ii) an
SU(2) symmetric ansatz that forbids static spin order and hence exposes the best
competing uniform state. The head-to-head comparison yields a conceptually sharp
conclusion: as frustration is increased, stripe order loses its energetic advantage and
a uniform state with robust d-wave singlet pairing becomes preferred. In other words,
frustration tips the balance toward a uniform superconducting phase by penalizing
magnetism-based spatial ordering.

A notable methodological advance is the design of a controlled comparison rather
than an isolated variational search. Because both U(1) and SU(2) simulations use the
same algorithmic pipeline, differences in energy and correlations can be attributed
to the presence or absence of static AFM order only. This strategy furnishes a useful
paradigm for disentangling intertwined orders in correlated-electron models. On the
experimental side, it suggests concrete targets for ultracold atom simulators of the
Hubbard model: by engineering NNN tunneling and charge density, one can realize
frustrated backgrounds in which singlet pairing should be maximized.

The study helps reconcile a substantial body of work reporting strong stripe ten-
dencies in the underdoped Hubbard model and closely related ¢-J models. Landmark
QMC, DMRG and PEPS calculations have found robust stripes at and near 1/8 dop-
ing, often outcompeting uniform SC under minimal settings. By identifying frustra-
tion as a lever that selectively destabilizes spin orders, the present results rationalize
why increased doping or long-range hopping leads to enhanced SC. The explicit
demonstration that positive ¢’ /t favors a uniform SC state complements cylinder
DMRG studies which are heavily influenced by finite-size effects.

The results also sharpen the open problem regarding the electron-hole asymme-
try. A positive '/t — loosely associated with electron-doped cuprates according
to DFT downfolding — emerges here as notably pairing-friendly, whereas empir-
ically many hole-doped compounds achieve higher critical temperatures; bridging
this gap likely requires augmenting minimal models with additional ingredients such
as density-assisted hopping. On the other hand, this mismatch likely suggests that the
underlying mechanism for unconventional superconductivity in cuprates may have
little relevance to the band structure in the material.
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The two-dimensional Hubbard model is widely believed to capture key ingredients of high-T7,
superconductivity in cuprate materials. However, compelling evidence remains elusive. In particular,
various magnetic orders may emerge as strong competitors of superconducting orders. Here, we study the
ground state properties of the doped two-dimensional 7-#' Hubbard model on a square lattice via the infinite
projected entangled-pair state method with U(1) or SU(2) spin symmetry. The former is compatible with
antiferromagnetic orders, while the latter forbids them. Therefore, we obtain by comparison a detailed
understanding of the magnetic impact on superconductivity. Moreover, an additional ¢ term accommodates
the particle-hole asymmetry, which facilitates studies on the discrepancies between electron- and hole-
doped systems. We demonstrate that (i) a positive #/7 significantly amplifies the strength of super-
conducting orders; (ii) at sufficiently large doping levels, the #-# Hubbard model favors a uniform state with
superconducting orders instead of stripe states with charge and spin modulations; and (iii) the enhancement
of magnetic frustration, by increasing either the strength of next-nearest neighbor interactions or the charge
doping, impairs stripe orders and helps stabilize superconductivity.

DOI: 10.1103/PhysRevLett.134.116502

Introduction—Despite continuous efforts during the past
few decades, the physics of high-7'. superconductivity in
cuprate materials [1] remains unclear [2,3]. The two-
dimensional (2D) Hubbard model [4] on a square lattice
is believed to capture the essential low-energy features of
cuprates. Various numerical methods [5-10] have been
used to tackle this issue. Nevertheless, previous computa-
tional attempts generate numerous candidate ground states
[11,12] very close in energies with abundant combinations
of charge and spin orders. Experiments [13-20] also
confirm simultaneous charge and spin modulated states
coexisting or competing with superconductivity. This
triggers our curiosity on the interplay between the anti-
ferromagnetic (AFM) background and the high-T'. super-
conductivity in cuprates.

Typical candidates encompass a uniform state [21-38]
and various stripe states [11,33,39-52]. The former features
a uniform charge density and is commonly associated with
d-wave superconductivity, while the latter often exhibit
charge-density and spin-density waves with diverse peri-
ods, with only part of them displaying coexisting super-
conductivity. For the nearest neighbor (NN) minimal
Hubbard model, a series of advanced numerical methods
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reached a consensus [11] that the ground state at 1/8 hole
doping is a filled (one hole per unit cell of the charge order)
period 8 stripe state devoid of superconducting orders. The
half-filled period 4 stripe state [13,20,53] favored more in,
e.g., LaSrCuO materials emerges primarily with negative
next-nearest neighbor (NNN) hopping, as demonstrated in
numerous computational simulations [48,51,54-59]. This
motivates our investigations beyond the minimal Hubbard
model.

Concurrently, multiple recent studies [60—62] focusing
on the extended 7-J model have uncovered substantially
more robust superconducting orders in electron-doped
settings as opposed to hole-doped configurations, a finding
that contradicts experimental observations. Explorations of
the extended Hubbard model using the density matrix
renormalization group have yielded inconsistent outcomes
[63,64], further underscoring the significance of research
beyond the minimal Hubbard model.

In this Letter, we use the infinite projected entangled-pair
state (iPEPS) [9,10] ansatz and simple update algorithm
[65] to study the ground state properties of the 7-# Hubbard
model. Our iPEPS ansatz is less susceptible to finite-size
effects than the density matrix renormalization group on
cylinders. Leveraging our cutting-edge QSpace tensor
library [66,67], we are capable of conducting simulations
with U(1) or SU(2) spin symmetry, where the former
admits local magnetic moments and the latter forbids them.
This allows us to scrutinize the impact of magnetic orders
on pairing properties. Our simulations demonstrate that (i) a
positive #/r significantly amplifies the strength of

Published by the American Physical Society
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superconducting orders; (ii) at sufficiently large doping, the
t-t' Hubbard model favors an SU(2) uniform state with d-
wave pairing orders instead of a U(1) stripe state in [S51];
and (iii) the enhancement of magnetic frustration, by
increasing either the strength of NNN interactions or the
charge doping, impairs stripe orders and helps stabilize
superconductivity.

Model—The 2D t- Hubbard model on a square lattice is
defined via the following Hamiltonian:

H= —Zt,-j[cz,cja +He]+ UZ"iT”il' (1)

ij.o i

Here, t;; =t or ' for NN or NNN, respectively, and zero
otherwise; U measures the on-site Coulomb repulsion.
Throughout this Letter, we use U/t = 10, as established to
be realistic for cuprate materials [68,69], and set ¢ = 1 for
convenience.

Method—In our computations, we apply the fermionic
iPEPS [70-77] ansatz, a tensor network method targeting
2D lattice models, to simulate the ¢-# Hubbard model in the
thermodynamic limit. The ansatz exploits translational
symmetry by assuming that the infinite tensor network
consists of periodically repeated supercells of tensors. Each
supercell comprises several rank-5 tensors with one physi-
cal index carrying states in the local Hilbert space, and four
auxiliary indices connecting neighboring sites. The accu-
racy of the simulation can be controlled by the bond
dimensions of the auxiliary indices. Different supercell
sizes yield stripe states with different periods in charge or
spin orders. Previous research [51,60,63] on the Hubbard
model or the -/ model has identified stripe states with
period 4 charge orders as a representative stripe state.
Therefore, we hereby focus on the period 4 stripe state.
Further discussions and details regarding stripes with
longer periods can be found in Supplemental Material [78].
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FIG. 1. The ground state energy per site (a), (b) and singlet pairing (c), (d) vs doping & of the 7-# Hubbard model at U/t = 10 and (a),

(¢) I/t = —=0.25 or (b), (d) ¥/t = 0.25, computed via U(1) iPEPS (red squares) on an 8 x 2 supercell at bond dimension D = 12 and
SU(2) iPEPS (blue circles) on a 4 x 2 supercell keeping D* = 7 multiplets (bond dimension D = 12). Green and yellow arrows,
respectively, indicate the NN (including on site) and NNN contributions to the energy for several typical data points. Inset: enlargement
of the region near 1/8 doping. (e)-(g) Details of the U(1) and SU(2) symmetric ground states on 8 x 2,4 x 2, and 2 x 2 supercells. Radii
of red circles and lengths of black arrows are proportional to the charge density (top rows) and the local moments (bottom rows),
respectively. Bond widths indicate NN singlet pairing amplitudes and two different colors indicate opposite signs. For (f), (g), we used
D*[D] = 8]13] for reasons explained in Supplemental Material [78].
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The optimization is performed via imaginary time
evolution [79] in which projector exp{—z(H —uN)}
(r is a small number, H the Hamiltonian, y the chemical
potential, and N the charge density) is repeatedly applied to
some random initial state until the ground state energy
converges. Models with NNN interactions are computa-
tionally very expensive. Therefore, we choose the simple
update scheme [65,70,71] for a balance between accuracy
and computational complexity. Observables are extracted
by contracting the tensor network using the corner transfer
matrix method [70,72,80-83]. The QSpace tensor library
[66,67,84] is used to implement either U(1) or SU(2) spin
symmetry.

The U(1) iPEPS simulations are conducted on an 8 x 2
supercell at bond dimension D = 12. This is required for
capturing the period 4 charge orders, as the corresponding
spin order periods are typically twice as long as the charge
periods. The SU(2) iPEPS simulations are performed on a
4 x2 or 2x2 supercell by keeping D* =7 symmetry
multiplets (corresponding to a bond dimension D = 12)
[66]. Spin orders are suppressed upon enforcing SU(2)
symmetry, making a 4 x 2 supercell adequate to detect any
potential period 4 orders, while the 2 x 2 supercell is
employed to ascertain the uniformity of the ground state.
Charge doping is adjusted by tuning the chemical potential.

Energetics—Figures 1(a) and 1(b) show the ground state
energy per site of the 7-#/ Hubbard model as a function of
doping under U/t = 10 and 7/t =F 0.25, computed via
the U(1) and SU(2) iPEPS and denoted as ¢, (red) and e,
(blue), respectively. Figures 1(c) and 1(d) show the corre-
sponding singlet pairing amplitudes. Figures 1(e)
and 1(f) display, respectively, the detailed characteristics
of the U(1) and SU(2) ground states with a negative ¢/t at
the predominantly studied 1/8 doping. Figure 1(g) presents
SU(2) ground states with a positive /¢, showcasing
numerically significant d-wave singlet pairing orders.

Utilizing an 8 x 2 supercell, our U(1) iPEPS generates a
nonsuperconducting stripe state with a period 4 charge-
density wave and a period 8 antiferromagnetically ordered
spin-density wave. These attributes, along with the ground
state energy acquired, are generally consistent with the
findings in [51]. By contrast, when we enforce the
SU(2) symmetry and suppress spin orders, we find a
uniform state without any charge orders, at odds with
finite-size studies [56,60,63]. Moreover, strong d-wave
pairing emerges for positive #/7, which implies super-
conductivity. The SU(2) iPEPS on 4 x 2 and 2 x 2 super-
cells produces physically identical states, confirming the
uniformity of the ground state.

Near zero doping, we find e, > e;. This is consistent
with the well-established fact that the Heisenberg model on
a square lattice has an AFM ground state that breaks SU(2)
symmetry. However, as the doping increases, e, decreases
faster than e,. They intersect at 5, =~ 0.25 for #/r = —0.25
and &, ~0.08 for #/r=0.25 (first order transition), as

depicted in Figs. 1(a) and 1(b), in agreement with prior
observations [51] that a negative or positive /¢ favors
stripe or uniform states, respectively. Intuitively, a positive
'/t promotes diagonal hopping of the doped charges,
which in turn disrupts the AFM background in the vicinity
of the domain wall within the stripe states, rendering the
presence of domain walls less desirable [45].

The lower energy of the SU(2) relative to the U(1)
ground state at large doping can be understood as the result
of magnetic frustration induced by the NNN hoppings. The
U(1) stripe state still accommodates AFM orders and thus
suffers strongly from magnetic frustrations with NNN
hopping. By contrast, the SU(2) uniform state is less
frustrated since it hosts no local spin orders. Indeed, the
NNN terms contribute much less to lowering the energy e
of the stripe state than to the energy e, of the uniform state,
as indicated via the yellow arrows in Figs. 1(a) and 2(b).

This issue is further elaborated in Figs. 2(a) and 2(b),
showing the contribution of NN (including on site) and
NNN terms to the total energy per site as a function of

doping, respectively. Throughout the entire doping range in
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FIG. 2. The contribution of (a) the NN (including on site) and
(b) the NNN terms to the total energy per site in the U(1) and
SU(2) ground states, respectively, as a function of doping. (¢) The
NN and (d) NNN spin-spin correlators in the U(1) and SU(2)
ground states, respectively.
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our study, the NN contribution is marginally lower in the
U(1) states than in the SU(2) states. Conversely, the NNN
contribution is substantially lower in the SU(2) than the
U(1) cases, ultimately leading to a lower overall energy for
the SU(2) states at large doping levels. As a comparison,
Figs. 2(c) and 2(d) show the NN and NNN spin-spin
correlators, respectively. The NN correlations stay negative
for both the U(1) and SU(2) states, reflecting the overall
AFM background. The NNN correlations, however, turn
negative considerably sooner for the SU(2) states than for
the U(1) states, echoing the findings in ultracold atom
experiments that doped charges drive the NNN spin-spin
correlation negative [85-89]. This indicates that the SU(2)
state better reconciles the magnetic frustration, thereby
achieving a lower NNN energy. Such behaviors exemplify
how the enhancement of magnetic frustration through NNN
hopping inhibits the formation of stripes and promotes the
emergence of superconductivity.

Pairing order—The superconducting order can be
characterized by the singlet pairing amplitude A, =
(cepCsy — Cry Cs). Specifically, we focus on the NN singlet
pairing. As illustrated in Figs. 1(e)-1(g), we observe finite
singlet pairing orders for both U(1) and SU(2) ground
states. However, the pairing amplitude (averaged over the
supercell) of the SU(2) states can be substantially larger
than that in the U(1) states throughout the entire doping
range for positive 7'/, as presented in Fig. 1(d). This can be
attributed to the fact that the SU(2) iPEPS is, by con-
struction, a spin-singlet state. Indeed, the latter can be
interpreted as a generalized version of the resonating
valence bond state [90]. Therefore, the existence of
d-wave pairing order is reminiscent of Anderson’s original
resonating valence bond proposal [91,92].

Moreover, we discover that the singlet pairing for positive
'/t can be considerably larger than that for negative 7' /z.
Intuitively, this could be perceived as pair formation being
enhanced (reduced) by the constructive (destructive) inter-
ference between NN and NNN hopping at positive (negative)
' /t[93]. This is in line with prior findings in the extended #-J
model [60-62,94] and Hubbard model [63] using density
matrix renormalization group. Electronic structure analysis
[68,69,95,96] suggests that positive (negative) ¢/t corre-
sponds to electron (hole) doped cuprates. Consequently, the
numerics so far yield outcomes that are opposite to the
experimental observations, where hole-doped cuprates
exhibit stronger superconductivity. This emphasizes the
necessity for further investigations regarding the appropriate
parameter settings in the effective models [61,97,98].

Long-range order—Figure 3(a) displays the long-range
spin-spin Syg = (S, - Sg) — (S;) - (Ss) and pair-pair P =
(AYAY) — (AY)(AY) (where A% = A,,., and @ =X,y is
the horizontal or vertical unit vector) correlators for two
specific ground states with U(1) or SU(2) symmetry for
¢/t > 0. Figure 3(b) shows the corresponding correlation
lengths. Our data indicate that all these correlators decay
exponentially, and the correlation lengths never exceed two
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FIG. 3. (a) The long-range spin-spin and pair-pair correlators in

the U(1) and SU(2) ground states, respectively. All these
correlators exhibit an exponential decay behavior. (b) The cor-
responding correlation lengths as a function of doping.

units throughout the entire doping range. This suggests no
connected long-range spin or pairing orders in both
scenarios. Accordingly, a minor local pairing order suffi-
ciently signals weak superconductivity in the stripe states.

0.45
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FIG. 4. The ground state phase diagram of the ¢-f Hubbard
model with respect to doping and #/z. The color scale indicates
e| — e,, obtained via linear interpolation from a discrete set of
scanning points (white). The gray dashed line marks e; = e,.
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Phase diagram—Figure 4 presents a schematic ground
state phase diagram for ¢/t > 0 derived via linear inter-
polation from a discrete set of scanning points. The U(1)
stripe states are energetically favored in the bottom-left
corner, and the SU(2) uniform states in the top-right corner.
This is largely consistent with previous studies of the #-#'-J
model [60]. Therefore, an increase of either charge doping
or the NNN hopping, which both intensify magnetic
frustration, will drive the ground state from striped to
uniform states. Recall that the uniform ground states are
typically accompanied by strong superconductivity. The
phase diagram thus supports the conclusion that the
enhancement of magnetic frustration helps stabilize
superconductivity.

Discussion—In this research, we have studied the ground
state properties and the phase diagram of the -7 Hubbard
model via the U(1) and SU(2) symmetric iPEPS method.
We discovered an SU(2) uniform state with strong d-wave
superconducting orders, with a lower energy than the
striped U(1) states at large doping levels. Although
the variational space of the U(1) iPEPS is larger than that
of the SU(2) iPEPS, the fact that the U(1) iPEPS has so far
failed to yield a uniform ground state suggests that the U(1)
iPEPS has difficulty handling the subspace devoid of
magnetic orders. This highlights the importance of explor-
ing quantum states with several different global symmetries
in tensor network simulations. We note, however, that it is
possible to recover the SU(2) ground states via a U(1)
implementation with a priori guidance about the SU(2)
compatible settings; see Supplemental Material [78] for
more details.

Also, we have demonstrated the interplay between local
magnetic orders and superconductivity. The additional
NNN interaction terms introduce extra magnetic frustration
and help suppress the AFM orders, favoring strong d-wave
superconductivity at large doping levels. Besides, a positive
'/t frustrates the domain walls and stimulates pair for-
mation. This suggests that the superconductivity in cuprate
materials can be enhanced, and 7. incremented, by
elevating the strength of NNN hopping.

Outlook—The novel SU(2) ground state, expressed in
terms of an iPEPS tensor network, contains information on
dominant contributions from the many-body Hilbert space.
Consequently, it is possible to generate various snapshots
of the type accessible via quantum gas microscopy in the
ultracold atom experiments [86,87], enabling a direct
comparison with experimental analysis [89,99]. Such
information would facilitate further investigations regard-
ing the dopant mobility through high-order correlators
[100,101] or string patterns using suitable pattern recog-
nition algorithms [88]. Also, similar SU(2) symmetric
tensor techniques can be applied to some thermal tensor
network methods, such as finite temperature PEPS
[102-104], exponential tensor renormalization group
[99,105,106], or tangent space tensor renormalization

group [107], to explore physics at finite temperatures
where strange metal behavior is observed experimentally.
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In the Supplemental Material, we discuss (S-I) some techni-
cal details for accelerating the optimization of infinite Projected
Entangled-Pair State (iPEPS) tensor networks for next-nearest
neighbor (NNN) lattice models; (S-II) our optimization strategy;
(S-III) the scaling behavior with respect to bond dimensions and
error analysis of our U(1) and SU(2) iPEPS algorithms; (S-IV)
the consistency checks of the ground state at larger supercell
sizes; (S-V) benchmarks of the U(1) and SU(2) iPEPS based
on exactly solvable free-fermion models; (S-VI) guided and un-
guided U(1) iPEPS optimization; (S-VII) artifacts of singlet
pairing; (S-VIII) stripes with longer periods; (S-IX) the nearest-
neighbor (NN) and on-site contributions; and (S-X) the strategy
for selecting optimization methods.

S-I. REFINED SIMPLE UPDATE SCHEME FOR
NEXT-NEAREST NEIGHBOR MODELS

In our research, we implement a refined version of simple up-
date based on [71], which leads to tremendous speedup of the
algorithm. The update of the nearest neighbor (NN) terms (in-
cluding on-site) is the same as described in [70]. We modified
the NNN update scheme, in a manner suggested by Andreas We-
ichselbaum as shown in Fig. S1, for further processing.

The major improvement comes from the separation of indices
directly involved in the update from the other spectator indices
not involved in the update. Figure S2 shows the details for treat-
ing the diagram in Fig. S1(b). The other diagrams can be per-
formed analogously. Greek letters a, 3, ... label the physical
indices. Figure S2(a) describes the construction of tensor Ay,
and the application of corresponding swap gates. Then, we split
off the relevant physical and auxiliary indices via singular value
decomposition (SVD). Next, we perform analogous actions for
Ap as depicted in Fig. S2(b). These procedures generate tensors
L and R of size Dd x D x d, where D is the bond dimension of
the auxiliary index and d the dimension of local Hilbert space.
Hereafter, we apply the Trotter gate, as in Fig. S2(c), and obtain
the updated tensors L’ and R’ via truncated SVD. Then, we re-
store the original I'-/ structure via truncated SVD as shown in
Fig. S2(d). Finally, we update all the involved I" and A tensors
as described in Fig. S2(e). The last two steps recover the original
structure in Fig. S1(b).

The refined simple update scheme has a much better scaling
behavior with respect to the bond dimension D. The original
version of NNN simple update [71] involves an SVD of com-
plexity O(D''d*), which is also the dominant contribution to
the total complexity of the algorithm. In our refined scheme, the
dominant complexity comes from the SVD in Fig. S2(a), which
scales as O(D7d?), much lower than the complexity of the orig-
inal simple update scheme.
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FIG. S1. Tensor network diagrams for the refined simple update
scheme for NNN terms. Four diagrams are needed to update the
relevant tensors. We use the standard I'-A form of iPEPS tensor
network [70]. g is the Trotter gate for the corresponding NNN
term. Arrows indicate the flow of quantum numbers [66]. Grey
rhombuses depict the fermionic swap gates [70].

S-II. OPTIMIZATION STRATEGY

Our computations start with a random initial iPEPS tensor
network state written in the I'-A form [70]. The ground state
is attained by repeatedly applying the projector exp{—7(H —
#N)} (7 is a small number, # the Hamiltonian (1), x the chem-
ical potential and N the charge density) to the initial state. The
application is broken into a sequence of projectors involving
only NN or NNN terms via Suzuki-Trotter decomposition. The
Trotter error is of order O(7?). Therefore, we start with a large
7 in the beginning so as to approach the ground state quickly,
followed by a gradual decrease of 7 to improve the accuracy.

Empirically, we find 7 = 0.1 a fairly good starting point. Dur-
ing the update iteration, we measure the expectation value of the
Trotter gate and compute an estimation of the ground state en-
ergy, which serves as an indicator of convergence. 7 is reduced
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FIG. S2. Realization of the diagram in Fig. S1(b), which updates
Ao, Ay and all I's, while leaving all other As unchanged. This pro-
cess factors out the environment encoded in @, and @R, before
applying the Trotter gate. (a)(b) Construct tensors Az and Agr
and split off the relevant physical and auxiliary indices using SVD
to obtain tensors L and R. (c) Apply the Trotter gate to tensor L,
R and the corresponding /. Obtain the updated L', R’ and A’ via
truncated SVD. (d) Restore the I"-A structure via truncated SVD.
(e) Update all the involved I" and A tensors. Greek labels, in cor-
respondence with Fig. S1(b), keep track of the physical indices.
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FIG. S3. The convergence characteristics of the U(1) and SU(2)
iPEPS with respect to the environmental bond dimension x and
x". The energies per site, e — un1 and ez — puna, are well con-
verged starting from x > 80 and x™ > 50, respectively.

by half once the decrease of estimated ground state energy in an
update step drops below 72. We regard the convergence to be
reached when 7 drops below the threshold of 1073,

The optimization starts with D = 2 for U(1) iPEPS and
D* = 2 for SU(2) iPEPS. After reaching convergence at the
fixed bond dimension, we increment D or D* by 1 (but see also
Sec. S-VI), until we arrive at D = 12 for U(1) or D* =7 for
SU(2). A preliminary ground state is obtained for some specific
chemical potential /9, which serves as the initialization of the
optimization for all other values of y.

The symmetry bookkeeping of the tensors in our algorithm
is managed via the QSpace tensor library [66,67,83]. The QS-
pace library implements a series of tensor operations (e.g. con-
traction, SVD, etc.) that handle the propagation of symmetries.
Therefore, we are able to use identical codes for both our U(1)
and SU(2) iPEPS, differing only in the initialization where sym-
metries are designated. This guarantees the equal reliability of
our iPEPS implementation with different symmetries.

The accurate contraction and measurement of the observables
are performed via the Corner Transfer Matrix Renormalization
Group (CTMRG) scheme [72,79,81], which generates a series
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FIG. S4. The scaling behaviors of several typical U(1) (a,b) and SU(2) (c,d) symmetric ground states with respect to the iPEPS
truncation error w defined as Eq. (S1) following [76]. The energies and charge densities are measured while reducing the bond
dimension from D = 12 to 3 for U(1) and from D* = 7 to 2 for SU(2). Since the charge density varies along with the bond
dimension, we display the total energy e1 > — pni 2 at a fixed chemical potential. Solid lines indicate exponential fits. The scaling
behavior demonstrates a sufficient convergence at D = 12 and D* = 7.

of environmental tensors. The convergence of the energies per
site e; — pnq and ey — png with respect to environmental bond
dimension x at fixed D = 12 for U(1) iPEPS or x* at fixed
D* = 7 for SU(2) iPEPS is shown in Fig. S3. Our findings
indicate adequate convergence commencing from y = 80 and
x* = 50. To ensure robustness, we set x = 144 and x* = 100
for the results presented in the main text.

S-III.  SCALING AND ERROR ANALYSIS

Fig. S4 illustrates the scaling behavior of various typical U(1)
and SU(2) ground states. As already pointed out in Ref. [76],
the evolution with increasing bond dimensions does not show-
case a sufficiently regular behavior to allow a meaningful ex-
trapolation. Consequently, following [76], we opt to present the
scaling as a function of the iPEPS truncation error w defined as

w= lig%}norm(hl/) — @) /7, (S1H

where |¥U) = exp{—7(H — uN)}|¢¥). Here, |¢)) represents
the original iPEPS ground state, with [¥) and [¢)") denoting the
time-evolved iPEPS prior to and following the truncation. Thus,
w serves as a metric for the truncation error and decreases mono-
tonically with increasing D and D*. This quantity yields a good
scaling behavior and furnishes a reliable estimation of the ob-
servables in the limit of w — 0 (corresponding to D, D* — 00).

The energies and charge densities are measured while reduc-
ing the bond dimension from D =12 to D=3 for U(1) and from
D* =7 to D* =2 for SU(2) (analogous to the knowledge distil-
lation process in the compression of machine learning models).
Given the context of an infinite lattice, there is no algorithmic
constraint on the charge density. Therefore, the charge density
can vary in concert with the bond dimension, and the energies e;
and e; do not display a predictive scaling behavior. Conversely,
the total energy ey » — f1n1 2, which combines the energy and the
charge density at a fixed y, performs much better, as evidenced
in Fig. S4.
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FIG. S5. (a) The 4 x2 initialization of the SU(2) iPEPS ground state. (b) The 4x4 SU(2) iPEPS ground state obtained by a continued
optimization from a perturbed version of (a). (¢) The 8 x2 initialization of the U(1) iPEPS ground state. (d,e) The 8 x4 (d) and 8 x8
(e) U(1) iPEPS ground state derived from a continued optimization via a perturbed initialization (c). The iPEPS simulations at larger
supercell sizes in the vertical direction converge back to the initial state, which verifies the consistency of the simulation.

At a specified bond dimension D or D*, the error of an iPEPS
simulation is attributed solely to the truncation in the CTMRG
process. As the environmental bond dimension increases, the
variation of key observables, e.g. the energy, the charge density,
the singlet pairing, etc., lies around 10~%. This serves as an error
estimate for these observables. Given that this error magnitude
falls below the marker sizes of our figures, we omitted explicit
error bars for clarity.

Although the total energy e; » — pun o scales well with the
truncation error w, the individual observables, such as the en-
ergy e; and e, the charge density and the singlet pairing, do not.
This poses challenges in formulating plausible extrapolation to-
wards the limit of w — 0 for a fixed doping. Additionally, the
scarcity of data points across varying bond dimensions for such
extrapolations further complicates the precision and reliability
of extrapolated values and associated error estimates within the
iPEPS tensor network framework. Hence, we elect to present
data at the largest bond dimensions attainable, i.e. D = 12 for
U(1) and D* = 7 for SU(2), rather than relying on extrapolated
numbers. Fig. S4 employs an exponential fits. In this manner,
the discrepancy between relevant observables at the largest bond
dimension and their extrapolated counterparts is of order 10~3
or less. We deem this level of precision adequate to underpin
our conclusions.

S-IV. CONSISTENCY AT LARGER SUPERCELL SIZES

In our main analysis, we conduct iPEPS simulations on the
4x2 and 8x2 supercells with different horizontal and vertical
lengths. Here, we extend our simulations to encompass larger
supercell sizes and verify if other candidate ground states may

emerge. The computational demands escalate significantly with
the increase in supercell sizes. Therefore, we adopt a strategic
approach to reconcile the challenges.

The essence of our approach is to initiate the simulation from
a slightly perturbed state from the already converged ground
state, and continue optimizing to scout for any other candidate
ground states. Specifically, for simulations on a 4 x4 supercell,
we populate this supercell with two replicas of 4x2 supercells.
Subsequently, we introduce perturbations across all tensors as

[ = L1+ &7,
01 6 o
1 T 7
where index 7 enumerates over all the tensors, and index « it-
erates over all tensor elements; p® is assigned a random value
in the range of [—1, 1] different for each different v, and £ is a
scaling factor. We set £ to 0.01 such that it is sufficiently large to
explore regions adjacent to the original ground state, yet small
enough to avoid a slow convergence. This perturbed state is then
subjected to further optimization using the 4 x4 iPEPS algorithm
to enable the identification of new potential ground states. The
8x4 and 8x8 iPEPS simulations are performed from the 8x2
initializations in a similar manner.

The findings are displayed in Fig. S5. Figs. S5(a,b) show the
4%2 SU(2) initialization and the 4x4 ground states obtained,
respectively. The resultant ground state is physically identical
to the 4x2 initialization. Fig. S5(c) depicts the 8x2 U(1) ini-
tialization, with (d) and (e) presenting the 8 x4 and 8 x8 ground
states after a further optimization. These larger-scale simula-
tions, particularly in the vertical direction, consistently revert to
the initial state. This outcome confirms the reliability of our
simulation with limited vertical dimensions.
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FIG. S6. The error of ground state energy eo, charge density n and singlet pairing amplitude A of the free-fermion model obtained
by U(1) and SU(2) iPEPS algorithm on a 2x2 supercell at D = 9 and D*[D] = 6[9], respectively. We set v = 1 and focus on
four values of t' = 4-0.2, +0.4. At each t’, we vary chemical potential from x = 1 to 8. The accuracy at large chemical potential is
generally better than that at small chemical potential, which is consistent with the fact that the energy gap grows with the chemical

potential in this model.

S-V. BENCHMARK

In this section, we present benchmarks of our U(1) and SU(2)
iPEPS algorithms for an exactly solvable free-fermion model.
The Hamiltonian reads:

H=—t Z [Clgcjg +7A + h.c.]
(i,3),0
—t 2 [czdcj,, + A + h.c.} + 1 Z chim

(@300 ho

(83)

where
Aij = ciyejy — cieyt, ($4)

t and ¢’ are the nearest and next-nearest neighbor hopping am-
plitude, ~y the singlet pairing potential, and p the chemical po-

tential. The ground state energy can be computed via a Fourier
transform followed by a Bogoliubov transform:

6():Z[fk*\/fﬁ+Ai]7
k

&k = 1 — 2t(cos k-1 + cosk-1y)
—2t'(cosk-14 + cosk-1,),
Ay = 2vt(cosk -1, 4 cosk-1y)
+ 29t (cosk-14 + cosk-1,),

(85)

and 1, = [1,0], 1, = [0,1], 14 = [1,1], 1, = [1, —1] are the
directional vectors of the four hopping directions, respectively.
In all our benchmarks, we sett = 1 and v = 1. And the ana-
lytical numerics are performed on a 100x 100 finite size lattice,
which suffices to approximate the thermodynamic limit with a
double precision accuracy.
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FIG. S7. The dispersion relation for the free-fermion model de-
fined according to Eq. (S3)att = 1, = 0.2,y = 1,and u = 1.
This system demonstrates a gapless nature when p = 0, and de-
velops an energy gap for 1 > 0. The dispersion relation exhibits a
characteristic Mexican hat shape for 0 < p < 8. In this range, the
energy gap is quantified by the minimal value around the depicted
purple region.

In the case of v = 1, the dispersion relation Ey = 1/ 512( + Ai
has a simpler form

Ex (1 = Ak)? + AR, (S6)

which exhibits a Mexican hat shape, as depicted in Fig. S7. The
minimum of the dispersion relation satisfies dxEx = 0. For
0 < p < 8, this condition leads to u = 2Aj, which yields an
energy gap

Ap=p/V2 (S7)

Therefore, the energy gap grows as the chemical potential in-
creases. Also, we can calculate analytically the average charge
density ng and singlet pairing amplitude A:

_ B 3%
=2 {1 m}

(88)
R e E
where
AR = 2vt(cosk 14 + cosk-1y) (S9)

Benchmark results for the U(1) and SU(2) iPEPS algorithms
are depicted in Fig. S6, demonstrating their errors relative to the
aforementioned analytical values on a 2x2 supercell with D =
9 and D*[D] = 6[9], respectively. The analysis incorporates

four selected values of ¢’ = +0.2, 0.4, and for each ¢’ value,
the chemical potential is varied from p = 1 to 8.

As the chemical potential increases, there is a discernible en-
hancement in the accuracy of both the U(1) and SU(2) iPEPS
algorithms. This improvement can be attributed to the increase
of the energy gap in proportion to the chemical potential, as de-
scribed by Eq. (S7). An increased energy gap implies dimin-
ished long-range correlations, thereby enabling the ground state
properties to be better encoded within an iPEPS ansatz at a lim-
ited bond dimension.

The SU(2) symmetry is an inherent characteristic of the
ground state of this free-fermion model. Thus, the errors pro-
duced by both the U(1) and SU(2) iPEPS are comparable.
However, in certain instances, the SU(2) iPEPS demonstrates
a marginally superior accuracy, which can likely be attributed
to the additional SU(2) symmetry constraint that aids in bet-
ter approximating the true SU(2) symmetric ground state. For
large chemical potential, the accuracies of both algorithms reach
10~*, corroborating the efficacy of the algorithms.

S-VI. GUIDED AND UNGUIDED U(1) IPEPS SIMULATIONS

As a mathematical construction, the U(1) iPEPS ansatz en-
compasses a larger parameter space compared to the SU(2)
iPEPS ansatz at the same virtual bond dimensions, since the for-
mer is subject to fewer symmetry constraints. Consequently, it
might be simplistically perceived that the U(1) iPEPS should be
capable of capturing SU(2) symmetric states for the parameter
regime where the ground states retain SU(2) symmetry. Yet,
from a pragmatic perspective, the U(1) iPEPS rarely converges
to an SU(2) symmetric state. This section aims to provide theo-
retical insights into this artifact.

D* D S[R]

11 0[1]

2 3 0[1] & 3[1]

3 4 0[2] @ 3[1]

4 6 0[2] & 3[2]

5 7 0[3] @ 3[2]

6 9 03] @ 303]
712 03eipBe1]
8 33 @ 1[1]

13 04le

TABLE L. The D*-D correspondence and the details of the sym-
metry sectors. S is the total spin quantum number and R the num-
ber of spin-S multiplets, each of dimension 25 + 1. For example,
for D* = 5, there are 5 multiplets, namely 3 singlets and 2 dou-
blets, leading to a total bond dimension of D = 7 (= 3x1+42x2).

During the optimization of tensor networks, specific strate-
gies are usually implemented to foster a more efficient approxi-
mation of the ground state. Concretely, the usual approach com-

SUPPLEMENTAL MATERIAL - 6



mences with a small bond dimension D, e.g. D = 2, followed
by optimization to convergence, prior to incrementing D until
the pre-determined maximum D is reached. The primary ratio-
nale behind this strategy is the circumvention of potential local
minimums in the expansive parameter space spanned by a large
D. Nevertheless, this strategy engenders complications when
searching through the SU(2) symmetric subspace.

In the course of conducting our SU(2) iPEPS simulations,
we have identified a distinct relationship between the number
of kept multiplets D* and the corresponding bond dimension
D. Particularly, in the context of the ¢-t/ Hubbard model, the
D*-D correspondence and the details of the symmetry sectors
are delineated in Table I.

A perusal of the table reveals that not all choices of D are con-
gruous with the SU(2) symmetry. In other words, if one carries
out an optimization at D,, =2, 5, 8,10, 11, - - - (the D values not
in Table I), the resulting ground state is invariably destined to vi-
olate the SU(2) symmetry. Hence, should one want to preserve
of SU(2) symmetry within a U(1) iPEPS algorithm, the opti-
mization process should be conducted exclusively following the
sequence Dy =1,3,4,6,7,9,12,---. We refer to this approach
as guided U(1) optimization. Conversely, should one traverse
the entire sequence D=1, 2, 3,4,5,6,7,8,9,10,11,12,- - -, the
SU(2) symmetry is assured to be broken. We thus refer to this
method as unguided U(1) optimization.

Figure S8 shows the ground state energy per site obtained
from both guided and unguided U(1) iPEPS on the 2x2 super-
cells, in conjunction with the SU(2) iPEPS on the 4x2 and 2x2
supercells. Remarkably, the 2x2 guided U(1), the 2x2 SU(2),
and the 4x2 SU(2) results agree very well with each other. The
overlap between 2x2 and 4x2 SU(2) iPEPS substantiates the
uniformity of the SU(2) ground states. Furthermore, the align-
ment between 2x2 guided U(1) and 2x2 SU(2) iPEPS signi-
fies that they are producing states that are physically analogous.
This proposition is further supported by comparisons of other
observables.

Conversely, the unguided U(1) iPEPS yields non-SU(2) sym-
metric states characterized by local magnetic orders, which ex-
hibit a higher energy than the states produced by the other three
methodologies. This suggests that an iPEPS preserving only the
U(1) spin symmetry can become entrenched in specific local
minimums in the absence of appropriate guidance or additional
symmetry constraints.

An intuitive interpretation of this phenomenon is rooted in
the observation that the configuration space of the U(1) iPEPS
for the ¢-¢' Hubbard model is non-convex. This is depicted in
Fig. S9, a sketch of the energy landscape of such a configura-
tion space. In this particular instance, two local minimums are
present (though there could potentially be more, we limit our
focus to the two most relevant local minimums): one resides
within the SU(2) symmetric subspace; the other stays outside. It
becomes evident that when the algorithm adheres to the guided
sequence Dy, it remains within the SU(2) symmetric subspace
(blue arrow). However, in the absence of such a guidance, the
algorithm veers away from the SU(2) subspace, beginning from
D = 2 (red arrow). Hence, we have demonstrated that guided
and unguided U(1) iPEPS can lead to markedly different results.

energy per site

-0.5 T T T T
| |
e
n ground state energy per site
-0.6 . - obtained from iPEPS on R
P various update strategy
m
L
07} °, 22 un) 1
LI o 4x2SU@)
o = = 2x2 gu(1)
2x2 SU(2)
-0.8f o = E
U/t =10 e =
'/t =0.25 L L]
09} ° . g
®
SU@): D*[D}=7[12] s " .
Al gU(1): guided increase to D=12 e |
U(1): unguided increase to D=12 o
L
11 L . L A
0.05 0.1 0.15 0.2 0.25 0.3
charge doping

FIG. S8. Ground state energy per site obtained from guided and
unguided U(1) iPEPS on the 2x2 supercells, as well as SU(2)
iPEPS on the 4x2 and 2x2 supercells respectively as a function
of doping. The data points of 2x2 guided U(1), 2x2 SU(2) and
4x2 SU(2) computations overlap with each other, confirming the
uniformity of the SU(2) ground states.

Configuration Space

Energy

SU(2) Symmetric Subspace

FIG. S9. Schematic free-hand drawing of the energy landscape of
the U(1) iPEPS configuration space for the ¢-¢ Hubbard model,
specifically within parameter settings where ground states preserve
SU(2) symmetry. Each curve depicted in the diagram represents
energy at varying points in the configuration space (i.e. the space
of all states that can be represented by an iPEPS ansatz), with
the numbers indicating the corresponding bond dimension. The
blue (red) curves correspond to bond dimensions compatible (in-
compatible) with the SU(2) symmetry. When optimizing U(1)
iPEPS tensor networks, a guided optimization process would fol-
low the direction indicated by the blue arrow, ultimately reaching
the SU(2) symmetric ground state. Conversely, an unguided opti-
mization process would follow the direction of the red arrow, lead-
ing to entrapment at a local minimum.

SUPPLEMENTAL MATERIAL - 7



S-VILI. SINGLET PAIRING PROPERTIES OF THE SU(2)

GROUND STATES

Our SU(2) iPEPS simulations encounter a minor artifact at
D*[D] = 7[12] when measuring the singlet pairing amplitudes.
Figure S10 displays a 1x2 subcell as a representative of each
4x2 supercell, since the states are uniform in the horizontal di-
rection. For the particular setting of D*[D] = T7[12], the vertical
bond in the middle exhibits a different symmetry structure than
the other bonds. This discrepancy significantly impacts the mea-
sured singlet pairing properties, as they deviate markedly from
the expected d-wave characteristics.

opl@is]| oo I8 e 111 o4 o Bl e 1]1]

o3|@ 3] o4l@ip]| oM e iE e[y

oB|@R (3| o3l 8o 1 o4l § o 111

D'D|=6[9) D'[D]=7[12] D*[D]=8[13]

FIG. S10. Singlet pairing properties of the SU(2) ground states
at different bond dimensions with § ~ 0.3 and ¢/t = 0.25. A
1x2 subcell of each 4x2 supercell is displayed (since the states
are uniform in the horizontal direction). At D*[D] = 6[9] and
D*[D] = 8[13], all horizontal and vertical bonds host the same
symmetry sectors. By contrast, at D*[D] ="7[12], the central ver-
tical bond has one more singlet and one less triplet compared to
the other bonds. This results in an enhanced singlet pairing ampli-
tude in the central vertical bonds. Increasing D* to D*[D]=8[13]
rectifies this anomaly.

We have confirmed that this anomaly arises exclusively at
D*[D]="T[12]. Atadjacent D*[D]=6[9] and D*[D]=8[13] (as
well as all smaller D*), the symmetry structure remains consis-
tent across all vertical and horizontal bonds, and the singlet pair-
ing amplitudes demonstrate excellent d-wave characteristics, as
illustrated in Fig. S10. Thus, we conclude that the ground state
should exhibit a d-wave pairing order. In the main text, we
present the pairing properties as derived from D*[D]=8[13].

S-VIII. STRIPES WITH LONGER PERIODS

In the main text, our focus is predominantly on the period 4
stripe states. Nevertheless, it is important to note that stripes
with longer periods might emerge under varying parameter con-
figurations. This section is dedicated to a further exploration of
this aspect. As the manifestation of stripes with longer periods
necessitates iPEPS on larger supercells, the computational cost
can become significantly higher. Consequently, our objective
here is not a complete optimization of the iPEPS across all scan-
ning points. Rather, our aim is to estimate the region where the
ground state begins to deviate from the charge uniform state.

We initiate the iPEPS simulation with a uniform state, ob-

tained through guided U(1) iPEPS at large doping. Consider,
for instance, a period 8 stripe. A 16x2 iPEPS is necessary to
capture stripes characterized by period 8 charge orders. We ac-
quire a single ground state via the guided 2x2 U(1) iPEPS at
large doping, typically around 6 ~0.3. Its 2x2 supercell is then
replicated 8 times to construct a 16x2 supercell. The corre-
sponding ground state subsequently serves as the initialization
for the further 162 optimization at lower doping levels.

0.45 T T T
04ro a X X X X 1
0.35F guided 16x2 U(1) scan i
estimated stripe/uniform boundary
0.3F estimated period 8 stripe region 4
0.25 a X X X g
had
NS
-~
0.2 both charge order 1
and spin order
0.15F 1
0.1F o X X XX X X X X X g
0.05F no charge order no charge order
i nor spin order with spin order
0 " s n
0 0.05 0.1 0.15 0.2

charge doping

FIG. S11. 16x2 guided U(1) scan at ¢/t = 0.1,0.25, 0.4, respec-
tively. Cross markers represent the 162 U(1) iPEPS simulations
maintaining uniform states devoid of charge and spin orders. Tri-
angle markers denote the 16x2 U(1) iPEPS simulations sustain-
ing uniform in charge orders but displaying spin orders. For even
lower doping, charge orders start to emerge, indicated by an or-
ange shaded region.

The outcome of this process is illustrated in Fig. S11. At
the majority of scan points where § > 0.05, the ground state
derived from further 16x2 U(1) iPEPS optimization remains
physically the same as the uniform state produced by guided
2x2U(1) iPEPS (cross markers). As the doping level decreases,
spin orders begin to appear (triangle markers), followed by the
charge orders (square marker). The pairing order is suppressed
once the spin orders are fully developed. The estimated re-
gion for period 8 stripes is indicated as an orange shaded area
in Fig. S11. This region clearly resides beneath the estimated
stripe/uniform boundary as derived in the main text. Conse-
quently, this boundary can be confidently considered as a non-
superconducting/superconducting demarcation for § > 0.05.

S-IX. NEAREST-NEIGHBOR VS. ONSITE CONTRIBUTIONS

The NN hopping and on-site terms are the minimal compo-
nents of the Hubbard model. Our primary objective was to as-
sess the impact of the additional NNN hopping terms. There-
fore, Fig. 2(a) of the main text shows only the sum of NN
hopping and on-site contributions as functions of charge doping.
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For completeness, Fig. S12 shows these two contributions sep-
arately. Our findings indicate that: (a) the NN contribution de-
creases faster for the SU(2) states compared to the U(1) states,
while (b) the on-site contribution decreases faster for the U(1)
states than for the SU(2) states. Consequently, the sum of the
NN and on-site contributions exhibits a roughly equivalent rate
of decrease for both SU(2) and U(1) states. This relationship is
detailed in Fig. 2(a) of the main text.

T-08 T r : :
P
c . u()
o Ll
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FIG. S12. The NN hopping and on-site contributions to the ground
state energy at ¢/t = 0.25 displayed separately. The NN hopping
contribution decreases faster for the SU(2) states compared to the
U(1) states, while the on-site contribution decreases faster for the
U(1) states than for the SU(2) states.

S-X. STRATEGY FOR THE OPTIMIZATION METHOD

This research adopts a time-evolution-based simple update
(SU) as the optimization method for iPEPS tensor networks.
There are numerous alternative optimization methods available,
such as the variation-based automatic differentiation (AD) [77],
which have been demonstrated to provide greater accuracy. This
section justifies the selection of this superficially less accurate
simple update method by contrasting it with automatic differen-
tiation as a representative of more precise algorithms.

Accuracy is undeniably a critical attribute of any optimiza-
tion algorithm. However, computational complexity is another

essential factor that influences the choice of optimization strat-
egy. Automatic differentiation is recognized as a more accurate
algorithm when compared to the simple update, but this asser-
tion is valid only under the condition of equivalent bond dimen-
sions and incurs significantly higher computational complexity.
In practical settings, where computational resources are limited,
the use of automatic differentiation would necessitate a reduced
bond dimension D. Consequently, a pragmatic comparison in-
volves evaluating the accuracy of the simple update at a larger
D against automatic differentiation at a smaller D.

Figure S13 illustrates the practical evaluation of automatic
differentiation’s performance across various bond dimensions
for U(1) and SU(2) iPEPS, respectively. The AD optimiza-
tion, based on the L-BFGS algorithm and initiated from an SU-
optimized ground state, was conducted for more than 10 itera-
tions until achieving satisfactory convergence. The results indi-
cate that for a fixed bond dimension D, automatic differentiation
yields marginally lower energies for U(1) iPEPS ground states.
However, the maximum bond dimension attainable by AD op-
timization is D = 7, and the lowest energy achieved at this
level is still significantly higher than the optimal result obtained
through the simple update method, which can accommodate a
bond dimension of D = 12. Furthermore, the reduction in en-
ergy achieved through a continued AD optimization is generally
less significant than that obtained by an incrementation of the
bond dimension. This pattern is similarly observed in the case
of SU(2) iPEPS, where the marginal accuracy benefits of auto-
matic differentiation do not surpass the advantages conferred by
a larger bond dimension. Thus, at the current stage, maximiz-
ing the bond dimension remains the most effective strategy for
achieving lower ground state energies.

Additionally, our current AD optimization, based upon 1-site
[77] L-BFGS algorithm, primarily lowers the variational energy
without modifying the symmetry structure of the tensors. In
parameter regimes where the ground states exhibit SU(2) sym-
metry, the AD algorithm is incapable of reinstating the SU(2)
symmetry for a U(1) iPEPS in the absence of the appropriate
guidance outlined in Section S-VI. Consequently, employing the
AD algorithm does not yield any physics distinct from those ob-
tained through the simple update method.

In conclusion, although the simple update method may not be
the most competitive optimization algorithm in terms of accu-
racy, its high efficiency enables the attainment of significantly
larger bond dimensions compared to other, more accurate alter-
natives. The ability to access a larger bond dimension not only
facilitates exploration of a more extensive variational space but
also yields considerably lower ground state energies. Therefore,
given the current computational constraints, the simple update
algorithm remains the most advantageous optimization method
for the purpose of this research.
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FIG. S13. Comparison of total energy e1 2 — pni 2 from automatic differentiation (AD) (red or blue symbols) optimization at
various bond dimensions with the optimal result from the simple update (SU) method at D = 12 (yellow line), computed while
enforcing U(1) (upper row) or SU(2) (lower row) symmetry. Each AD optimization was initialized using an SU-optimized state at
the respective bond dimension. While AD optimization yields lower energies at equivalent bond dimensions, it does not surpass the
performance of the SU method when computational resources are equalized. This is attributed to SU’s superior efficiency, which
facilitates a substantially larger bond dimensions.
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3.2 Finite-temperature Phase Diagram

The long-standing challenge in connecting Hubbard physics to cuprate phenomenol-
ogy is to chart, at finite temperature, how competing tendencies — AFM order,
pseudogap behavior, and SC correlations — emerge and fade with temperature and
doping. Direct numerical access to this regime is notoriously difficult: sign prob-
lems cripple standard Monte Carlo at finite doping, while many TNS studies have
focused on ground states. This paper advances the program by developing an en-
hanced XTRG scheme and deploying it to the 2D Hubbard model across a broad
temperature and doping range. The central conceptual contribution is to turn ther-
mal simulation into a controlled exponential cooling process that can be pushed into
the ultra-cold regime where meaningful comparisons to zero-temperature iPEPS be-
come possible, thereby providing a continuous bridge from thermal equilibrium to
ground-state physics and to ultracold atom experiments.

At the heart of the work is a refined 1s* XTRG update scheme, which augments
the single-site (1s) variational manifold so as to recover two-site (2s) update accu-
racy at essentially 1s computational cost. Technically, the innovation is to migrate
the CBE ideas, previously successful for MPS-based ground-state and time-evolution
algorithms, to MPO-MPO products within XTRG. Since XTRG constructs the low-
temperature thermal density matrix by fast exponentiation of a high-temperature ini-
tial density matrix with compression, the quality-cost tradeoft of the MPO product
becomes the algorithm’s linchpin; enriching the variational subspace under fine con-
trol helps maintain accuracy while accelerating cooling. In practice, the method con-
sistently reaches the low-temperature window where thermal states are sufficiently
pure to be confronted with iPEPS ground states. This constitutes a broadly applicable
upgrade to thermal TN simulations of correlated fermions.

The thermal properties extracted with 1s* XTRG yield a coherent narrative for
the doped Hubbard model. SC orders — quantified via nearest-neighbor singlet pair
correlators — grow systematically upon lowering temperature and, at fixed tem-
perature, are enhanced for positive NNN hopping ¢'/t. This mirrors ground-state
trends reported in the previous iPEPS and cylinder DMRG calculations, while be-
ing demonstrated directly in the thermal ensemble. This further underscores the in-
consistency of the DFT-proposed t' /¢ settings for hole-doped cuprates with the nu-
merically observed pairing propensities, underscoring further investigations into the
underlying pairing mechanism. In addition, the spin susceptibility delineates a pseu-
dogap regime whose onset temperature falls with doping, in qualitative accord with
cuprate phenomenology; intriguingly, a narrow underdoped window exhibits a low-
temperature upturn of the uniform susceptibility, signifying the emergence of a Na-
gaoka polaron.

Beyond methodological and physical insights, the study facilitates a curated en-
semble of snapshots (analogous to what is obtained via quantum state tomography)
covering underdoped to overdoped regimes and spanning high, intermediate, and low
temperatures. The dataset is well-suited for Al-driven analyses of patterns and cor-
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relations in the minimal Hubbard model and for ultracold atom cross-checks, where
site-resolved quantum gas microscopy produces comparable snapshots in optical-
lattice emulators. In this sense, this technology supplies a pivotal benchmark basis
that enables subsequent Al workflows and experiment-theory comparisons.
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The two-dimensional (2D) Hubbard model has long attracted interest for its rich phase diagram and its rel-
evance to high-T, superconductivity. However, reliable finite-temperature studies remain challenging due to
the exponential complexity of many-body interactions. Here, we introduce an enhanced 1s* eXponential Tensor
Renormalization Group algorithm that enables efficient finite-temperature simulations of the 2D Hubbard model.
By exploring an expanded space, our approach achieves two-site update accuracy at the computational cost of a
one-site update, and delivers up to 50% acceleration for Hubbard-like systems, which enables simulations down
to 7"~ 0.004¢. This advance permits a direct investigation of superconducting order over a wide temperature
range and facilitates a comparison with zero-temperature infinite Projected Entangled Pair State simulations.
Finally, we compile a comprehensive dataset of snapshots spanning the relevant region of the phase diagram,
providing a valuable reference for Artificial Intelligence-driven analyses of the Hubbard model and a comparison

with cold-atom experiments.

I. INTRODUCTION

High-T, superconductivity in cuprate materials has attracted
immense research interest ever since its discovery. [1-5] The
two-dimensional (2D) Hubbard model [6, 7] on a square lattice
is widely believed to capture the essential physics of these sys-
tems, particularly the effects of strong electron correlations. In
recent years, extensive researches have been carried out to ex-
plore the ground-state (zero-temperature) properties of the Hub-
bard model [8—47] or its simplified counterpart, ¢-J model [48—
65]. In particular, long-range or quasi-long-range pairing orders,
indicative of robust superconductivity, have been observed in the
presence of a positive next-nearest-neighbor hopping amplitude
t' [37,44,47,57-59, 63-65]. This naturally raises the question
of how much such superconducting behavior extends to higher
temperatures.

However, finite-temperature studies of the Hubbard model re-
main challenging due to the limitations of traditional numerical
techniques. For example, the finite-temperature Lanczos method
is constrained to small system sizes [66—68], while Quantum
Monte Carlo (QMC) is plagued by the notorious sign problem
at finite doping [69,70]. In this context, thermal tensor network
algorithms have emerged as promising alternatives. [71-89].
In particular, the eXponential Tensor Renormalization Group
(XTRG) [78] method excels in performing exponentially rapid
cooling of the system, albeit at the cost of relatively high com-
putational complexity.

In this work, we apply the Controlled Bond Expansion (CBE)
technique [90-92] originally designed for Matrix Product State
(MPS) methods such as Density Matrix Renormalization Group
(DMRG) [91] and Time-Dependent Variational Principle [92]
to products of Matrix Product Operators (MPOs), thereby in-
troducing an enhanced 1s* XTRG algorithm. By exploring an

enlarged variational space, our scheme attains 2-site update ac-
curacy at a much lower computational complexity, delivering up
to a 50% acceleration for Hubbard-like systems. This improve-
ment enables cooling down to 7'/t =1/256 (approximately 20 K
for t=0.3~0.5¢eV) and facilitates quantitative comparison with
zero-temperature infinite Projected Entangled Pair State (iPEPS)
results [47]. Pairing correlations are found to be enhanced at pos-
itive next-nearest neighbor (NNN) hopping ratio ¢'/¢, and the
pseudogap behavior, together with a possible Nagaoka polaron,
is identified through the temperature dependence of the spin
susceptibility. Finally, we generate and validate a comprehen-
sive dataset of snapshots spanning the underdoped, intermediate-
doped, and overdoped regimes across high, medium, and low
temperatures. This dataset offers valuable resources for future
Artificial Intelligence (AlI)-driven analyses [93,94] of the Hub-
bard model and for comparison or calibration of cold-atom ex-
periments [83,94-108].

II. MODEL AND METHOD

In this paper, we consider the 2D ¢-t Hubbard model on an
8x8 square lattice with periodic boundary conditions (PBC) on
the y direction and open boundary conditions (OBC) on the =
direction unless stated otherwise. The Hamiltonian is defined as

H= 72% {czac]‘a+h.c.} +UZ7L”7L1¢. 1)
0,J,0 7

Here, t;; = t or ¢’ for nearest neighbor (NN) or NNN hopping

amplitude, respectively, and zero otherwise; U measures the on-

site Coulomb repulsion. Throughout this paper, we use U/t =

10, as established to be realistic for cuprate materials [109, 110],

and set t = 1 for convenience.
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A comparison of band structure between cuprate supercon-
ductors and the Hubbard model suggests a positive ¢’ /¢ ratio
for electron-doped cuprates and a negative ¢/t for hole-doped
cuprates [109, 110]. However, we note that this identification
leads to inconsistencies between model predictions and exper-
imental observations for crucial order parameters, as reported
previously [47,88,111] and further corroborated in the present
work (see Section VI on pair-pair correlations).

The XTRG algorithm [78] provides an efficient framework for
constructing the thermal density matrix p = exp(—3H) of a
quantum many-body system in the form of a MPO, where 3 =
1/T is the inverse temperature. Specifically, an initial density
matrix p(3) is prepared at a high temperature (small 3y =27"0)
via the series expansion

1 o
P(Bo) =1 — BoM + oy BEH? + . @

The density matrix at half the temperature, or equivalently, at
inverse temperature 203, is then obtained by squaring the density
matrix at 3:

p(28) = exp{=28H} = p(B) - p(B)- 3)

After n iterations, one reaches an inverse temperature of 2" 3y,
realizing an exponentially fast cooling of the system. The prin-
cipal computational bottleneck in XTRG thus lies in the efficient
MPO-MPO product.

Analogous to the DMRG, XTRG supports both 1-site and 2-
site update schemes for MPO-MPO products. The 1-site update
is computationally cheaper but limited by a restricted variational
space. The 2-site update overcomes this limitation by exploring
a larger variational manifold, at the cost of much higher compu-
tational complexity.

The Controlled Bond Expansion (CBE) technique [90-92] of-
fers a balanced compromise: by modestly enlarging the vari-
ational space, CBE achieves near 2-site update accuracy while
maintaining a cost closer to that of the 1-site update. In the fol-
lowing section, we demonstrate how the CBE technique can be
adapted to the MPO-MPO product, leading to a 1s* scheme that
significantly accelerates the XTRG algorithm.

Our simulations employ the state-of-the-art QSpace tensor li-
brary [112-115], which preserves the U(1)charge X SU(2)spin Sym-
metry in the MPO representation of the thermal density matrix.
This allows us to retain up to D* = 1500 multiplets (approxi-
mately D ~ 4000 individual states), ensuring sufficient conver-
gence of the XTRG algorithm.

IIL.  1S* MPO-MPO PRODUCT

The MPO-MPO product constitutes a fundamental, and often
the most computationally demanding, kernel in the XTRG al-
gorithm. Both computing powers of  in the series expansion
of p(Bp) and performing the cooling step entail repeated MPO-
MPO multiplications. A naive contraction of two MPOs with

bond dimension D yields an MPO of bond dimension D?; com-
pressing it back to D via a straightforward singular value decom-
position (SVD) incurs a cost of O(D®). This overhead naturally
motivates the development of variational compression schemes.

In the variational approach, one posits an ansatz for the tar-
get MPO and optimizes its proximity to the exact product. Con-
cretely, given MPOs A and B with product A - B, we seek an
MPO C that minimizes the squared Frobenius norm of the dis-
crepancy

|c—A-B|%2=ctC—-C!A-B)+hc +const, (4)

where - denotes the MPO-MPO product. The optimization pro-
ceeds by sweeping along the chain and alternately updating one
tensor at a time (1-site update, or 1s) or two adjacent tensors
(2-site update, or 2s), while keeping all others fixed. The 1-site
update requires solving the linear system

actc  9Ct(A- B)
acy — 9Cr

(%)

iteratively fori = 1,2, ..., L, where L is the length of the MPO
chain. For canonicalized MPOs, the left-hand side collapses to
the tensor C; to be updated (denoted as 1s below). Diagrammat-
ically, the 1-site update reads

Ve 6

To circumvent the clutter introduced by twisty lines for physical
indices, we streamline the notation by re-arranging the physical
indices as follows

()

where the environment tensors V7, and Vy are pre-computed and
held fixed during the 1-site update. The semicircles at the contact
points between the physical index and tensor B indicate that the
physical index passes through without contraction.

A prevalent flaw of the 1-site update is its inability to enlarge
the variational space in the presence of symmetry constraints. As
implied by Eq. (7), the updated tensor remains confined to the
symmetry sector of the original tensor. This constraint can be
alleviated by the 2-site update, which simultaneously optimizes
two neighboring tensors, i.e.

ocic dCt(A- B)

®)
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Diagrammatically, the 2-site update reads

The meaning of the polygon-shaped tensor will be clarified later.
The optimized 2-site tensor is then decomposed via an SVD to
produce the updated MPO tensors, i.e.

11 SVD | |
- )y —~— = () ( —= (10)
1 | |

Note that a full SVD in Eq. (10) generates in total Dd? compo-
nents, where d is the physical Hilbert-space dimension, whereas
only the leading D components are ultimately retained. Con-
sequently, most components are computed only to be discarded,
squandering computational resources. Our 1s* scheme mitigates
this inefficiency by injecting only a small fraction of additional
components, thereby enlarging the accessible variational space
without incurring the full cost of a 2-site update.

In the spirit of [90], a full MPO tensor admits a decomposition
into a discarded-space component and a kept-space component

D | Di2 D D D
—"DID-" = *'q%?@ an

Full Discarded Kept

In our notation, tensors are depicted as (composite) polygons.
The discarded component is denoted by a pentagon with a wedge,
and the kept component by a polygon with both a wedge and a
notch. Gray lines indicate components from the discarded space.
The protruding face indicates the direction toward the orthogo-
nality center of the MPO, or equivalently, the opposite direction
to the normalization. In the example above, the MPO tensors are
left-normalized, placing the orthogonality center to the right of
the tensor. Directions of the arrows encode the flow of quantum
numbers, following the convention of [114].

Similar to the CBE technique [91], the discrepancy between
the variational spaces accessible to the 1-site and 2-site updates
can be identified by the following construction

12
o) (g :
C O ———
I I
The 2-site discarded-space tensor spans the variational sector
accessible to the 2-site update but excluded from the 1-site man-

ifold. An exact construction of this tensor would incur a compu-
tational cost O(D*d*) comparable to a full 2-site update. The
dominant cost resides in the contraction of the left and right part
of the above 2-site tensor. Therefore, for practical purposes, we
instead distill its principal components by performing the follow-

ing SVD
SVD D D
—)—@—(— = —>—i>—>~ e —— (13)

and retain only the leading Z, components. Here, &, serves as a
hyperparameter that controls the fidelity of the 2-site discarded-
space approximation. In our simulations, we choose %, =
round(\/ﬁ) to balance accuracy against computational over-
head. With this construction, the green tensor acts as a projector
that compresses the bond dimension further down to %,. The
principal components of the 2-site discarded-space tensor are
then extracted by inserting these projectors as

I “i 4

— CT
(14)

SVD Lo 9 1
= =

We emphasize that this procedure yields only an approxima-
tion to the principal components. In practice, exact identification
of the principal components are unnecessary: the goal is to effi-
ciently isolate the principal subspace that complements the 1-site
update, after which subsequent optimization sweeps would con-
verge to the desired solution.

We now outline the ensuing steps for a left-to-right optimiza-
tion sweep; the right-to-left sweep proceeds analogously. The
2-site discarded-space tensor is decomposed and truncated to 7.
via an SVD (see Eq. (14)), yielding the isometry R tailored for
the left-to-right sweep. The tensor R thus serves as the supple-
ment to the MPO tensor on the right. In our computations, we
set 2, = round(v/D). Next, the left supplement tensor, L, is
obtained by

1
= \—{Bl~{B~<V& (15)

—(R

Tensors L and R thus offers the additional components that
augment the variational space. Equipped with these ingredients,
we assemble the expanded MPO tensors L+ and R™ as follows

MANUSCRIPT - 3



PREPRINT FOR PHYSICAL REVIEW (2025)

ZHANG AND VON DELFT

1 1 |
> = g ——— P = [ =
I | I
| | |
—~~ (e = (e § = |(R—=
I I |

(16)

Contracting L+ and R produces a tensor analogous to the 2-
site object in Eq. (10), albeit with substantially fewer auxiliary
components. The updated MPO tensors are then obtained by
applying an SVD and truncating to the leading D components

| | SVD | |
— [ ———(R—— = () ( ——— (17)
| | | |

The canonical 2-site update exhibits a computational com-
plexity O(D*d*), where d denotes the physical dimension of the
MPO tensors; this scaling is dominated by constructing the up-
dated 2-site tensors. By contrast, the 1s* scheme reduces the
complexity to the 1-site level, i.e., O(D*d?), thereby shifting
the computational bottleneck to constructing the environmental
tensors V7, and V. Consequently, the overall complexity of the
1s* scheme is O(D*d? + D*d?). For Hubbard-like systems, the
physical dimension d = 4, rendering a maximum 4 x speedup
relative to the 2-site update. In practice, we observe speedups of
up to 50% for the Hubbard model, owing to the overheads from
the additional operations. The realized acceleration also depends
on the specific choice of %, and Z..

IV. BENCHMARKS

In this section, we present benchmarks of the 1s* XTRG algo-
rithm on an analytically solvable free-fermion model. We adopt
the following Hamiltonian defined on a one-dimensional open-
boundary chain of length L:

L—-1

H=—t> {c}cm +clal (18)

i=1

This Hamiltonian is exactly diagonalizable, yielding eigenvalues
€, = —2tcos(km/(L + 1)) fork = 1,..., L. Accordingly, the
free energy can be computed as

L
F=-T Zln(l + e Per) 19)
k=1

In our benchmarks, we initialize the density matrix at a high
temperature of 3 = 27! and perform 20 1s* XTRG iterations
to cool the system down to 3 = 28. Fig. 1 displays the relative
error of the free energy F’ as a function of the inverse temperature
B, computed via the 1s* XTRG algorithm with bond dimensions
D = 400, 600, 800, respectively. The numerics indicate that the
1s* XTRG algorithm achieves accuracy comparable to the 2-site
update scheme [78], while delivering a substantial speedup.

IFXTRG — Fexact/|Fexact!

L i i i i i
10° 10° 10" 10° 10 10

B=1T

FIG. 1. The error of the free energy F’ of the free-fermion model
relative to the exact value as a function of the inverse temperature
13, obtained via the 1s* XTRG algorithm with bond dimension D =
400, 600, 800, respectively.

V. ENERGETICS OF THE HUBBARD MODEL

In this section, we juxtapose the energetics of the ¢-t' Hub-
bard model obtained from an iPEPS ground-state search with
those from XTRG cooling. Our enhanced 1s* XTRG algo-
rithm enables a cooling of the system down to a temperature of
T /t=1/256, sufficiently low to warrant a comparison with zero-
temperature ground state studies.

The iPEPS ground state search is performed on an infinite lat-
tice, achieved by PBC on both = and y directions, with a 4x2
(uniform) or 8x2 (striped) supercell, following [47]. Ground
states of distinct characteristics are targeted by constraining the
spin symmetry of the tensor network: imposing SU(2)pin yields
a uniform state, whereas enforcing U(l);pin produces a striped
state. The uniform states retain D* = 7 multiplets, equivalent to
D = 12 individual states; for consistency, the striped states are
fixed to a bond dimension of D = 12.

The XTRG runs start from a high temperature of 3 = 2712 on
an 8x8 lattice with PBC along the y direction, and the system is
cooled down to 3 = 28 via 20 1s* XTRG iterations. Throughout,
we preserve U(1)charge X SU(2)spin Symmetry in the MPO repre-
sentation of the thermal density matrix, allowing us to retain up
to D* = 1500 multiplets (approximately D ~ 4000 individ-
ual states). We consider only the SU(2)pin symmetry here since
continous symmetry breaking is precluded at finite temperature
by the Mermin-Wagner theorem [116,117].

The iPEPS ground states and XTRG density matrices are de-
fined on lattices with differing boundary conditions, which in
turn modifies the count of kinetic terms in the Hamiltonian.
Specifically, an 8x8 lattice with PBC along both x and y direc-
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FIG. 2. The ground state energy per site (red for uniform and orange for striped states) obtained from iPEPS simulations, and the
energy at 7'/t = 1/256 (blue) obtained from the 1s* XTRG algorithm. The iPEPS ground states are acquired on an infinite lattice with
4x2 (uniform) or 8x2 (striped) supercell and the XTRG density matrices are generated on an 8x8 lattice with PBC on the y direction.
The light blue curves mark the projected energies for the XTRG density matrices with PBC on both directions. The insets show the
difference Ae between the projected XTRG energies and the striped iPEPS ground state (GS) energies with respect to temperature

for two representative doping levels.

tions contains 128 nearest neighbor (NN) hopping terms and 128
next-nearest neighbor (NNN) hopping terms, whereas the same
lattice with PBC only along the y direction comprises 120 NN
terms and 112 NNN terms. To reconcile these discrepancies, we
posit bulk-averaged energies for the missing boundary contribu-
tions. This leads to a projected (kinetic) energy with

ki
p:—gj _ 128 - enn + 128 - ennn 0)

ekin 7 120 exn + 112 - exnn’

(&

where exy and exnn denote the mean energies of the NN and
NNN hopping terms, respectively. This projected energy fur-
nishes a more commensurate reference for comparison with the
iPEPS results.

Fig. 2 displays the ground state energy (red for uniform and or-
ange for striped states) obtained from iPEPS simulations, along-
side the energy at 7'/t = 1/256 (blue) derived from the 1s*
XTRG algorithm. The light blue curves indicate the projected
energies for the XTRG density matrices with PBC along both
directions.

Forbotht'/t = —0.25and t’/t = +0.25, the projected XTRG
energies align well with the iPEPS ground state energies, show-
ing a similar overall doping dependence. In particular, they lie
quite close to the energies of the striped states, which may be at-
tributed to stripe formation induced by the OBC along the z di-
rection in the XTRG simulations. This agreement indicates that
our XTRG algorithm attains sufficient purity upon approaching
the ultra-cold regime, i.e. the density matrix p ~ |GS)(GS| at
lowest temperature, where |GS) is the ground state.

VI. PAIR-PAIR CORRELATIONS

In this section, we investigate the dependence of pairing cor-
relation, which signifies the strength of superconductivity, on
doping, temperature and the sign of ¢’ /¢. Rigorously speaking,
anomalous local pairing amplitudes are forbidden by the one-
dimensionality of the tensor network together with the conserved
U(l)charge symmetry. We therefore focus on the pair-pair corre-
lations, which quantify the propensity for pair propagation.

Here, we primarily examine the nearest neighbor singlet pair-
ing correlation

ps(r,als,B) = (Al alssip), @1
where the singlet pairing operator Ay ¢ o is defined as
Ar,r+o¢ = Cr1Crta,l — CrlCria,ts (22)

and o = X,y denotes the horizontal or vertical unit vector. Fol-
lowing [60,118], we zero-out the contributions whenever r, r+ca,
s, or s + (3 are not all distinct.

The correlator pg(r, als, 3), viewed as a matrix with compos-
ite indices (r, ) and (s, 3), can be diagonalized, and one can
take the dominant eigenvalue as a scalar indicator of the pairing
strength [60,118,119].

Figure 3 presents the dominant eigenvalue of pg as a function
of doping 0 and temperature 7°/¢, obtained via the 1s* XTRG
for t'/t = —0.25 (left) and ¢'/t = +0.25 (right). The colored
contour map shows the interpolation between discrete data points
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FIG. 3. The pair correlation indicator as a function of doping & and temperature T/t, obtained from the 1s* XTRG for ¢’ /t = —0.25
(left) and ¢’ /t = +0.25 (right). Red circles mark the positions with exact data, and the colored contour map displays the interpolation
between the data points. The pairing correlation is found strengthened at large doping, low temperature and a positive ¢’ /¢ ratio.

marked by the red circles.

We observe from Fig. 3 that pairing correlations strengthen
with increasing doping ¢ and decreasing temperature 7'/¢, con-
sistent with the general trends seen in iPEPS ground state simu-
lations [47] and in cuprate phenomenology. Moreover, the cor-
relations are systematically larger for positive ¢’ /¢, in line with
various ground-state or finite-temperature studies of the {—.J [57-
59, 63-65, 89] and Hubbard models [37, 44,47, 88, 111, 120].
However, if one adopts the band-structure-based identification
that for cuprate superconductors ¢/t > 0 or < 0 corresponds to
electron or hole doping, respectively, our finding that pairing is
stronger for ¢’ /t >0 than for ¢’ /t <0 would then be at odds with
the experimental observations that pairing is weaker for electron-
than hole-doped systems. This emphasizes the necessity for fur-
ther investigations regarding the appropriate parameter settings
or additional terms in the effective models [42,58,111,121].

VII. SPIN SUSCEPTIBILITY AND PSEUDOGAP

The pseudogap — manifest as a partial depletion in the elec-
tronic density of states — is a hallmark of underdoped cuprate
superconductors. Its onset suppresses the low-energy spectral
weight and, concomitantly, reduces the uniform spin suscepti-
bility xs. In practice, as temperature decreases, y s initially fol-
lows a Curie-Weiss-like increase, reaches a maximum at a char-
acteristic scale 7, and subsequently decreases as the pseudogap
develops. The locus of this maximum thus provides a practical
proxy for the pseudogap onset temperature 7.

‘We compute the spin susceptibility by augmenting the Hamil-
tonian with a Zeeman term, Hz = —h}_, S7. The uniform
susceptibility is then approximated as

Xs = —(S%)/h 23)

for a sufficiently small external field h = 0.01, where S* =
>°; 87 /L. To probe the response to a magnetic field, we relax the
SU(2)pin symmetry to U(1)pin in these simulations, and retain
a maximum bond dimension of D = 1500.

Figure 4 compiles ys across doping ¢ and temperature 7'/t,
obtained via the 1s* XTRG for ¢'/t = —0.25 (left) and ¢’ /t =
+0.25 (right). The colored contour shading interpolates between
discrete data points as indicated by red markers. The dashed
curve tracks the ridge line of the susceptibility, identifying the
onset scale 7 at which the pseudogap begins to emerge.

From the figure, 7 decreases monotonically with increasing
0, with a more pronounced reduction for positive ¢'/t. These
trends are broadly consistent with results for the ¢-J model [89]
and with observations in various cuprate compounds [122—124].
We note that the temperature axis is logarithmic, which visually
attenuates the apparent variation of 7* with doping. Besides, the
overall magnitude of x5 is smaller for positive ¢’ /¢, indicating a
more enhanced pseudogap effect in this regime.

Moreover, for positive '/t we observe an anomalous low-
temperature enhancement of xg near § ~ 0.02. On an 8x8
lattice, this doping approximately corresponds to a single hole
introduced into the half-filled system. The upturn can therefore
plausibly be attributed to the formation of a Nagaoka polaron
[125-128], which engenders an underlying ferromagnetic ten-
dency and exhibits a strong response to the external magnetic
field.

VIII. SAMPLING OF THE DENSITY MATRIX

In this section, we elaborate a straight-forward sampling [129]
scheme for the thermal density matrix p in the format of an MPO.
This procedure can be used to generate an ensemble of snapshots
(projections onto basis states of the Fock space) for each density
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FIG. 4. The spin susceptibility (a,b) as a function of doping ¢ and temperature T'/¢, and (c,d) as a function of temperature 7'/t for
three representative doping levels (via interpolation), obtained from the 1s* XTRG for (a,c) t'/t = —0.25 and (b,d) '/t = +0.25.
Red circles mark the positions with exact data, and the colored contour map displays the interpolation between the data points. The
thick dashed line indicates the locus of the susceptibility peak, signaling the onset temperature 7 where pseudogap starts to develop.

matrix at any specified location in phase space. These ensembles
can then be assembled into datasets for subsequent Artificial In-
telligence (AI) analyses aimed at uncovering novel, non-trivial
features of the Hubbard model.

We employ sequential sampling. Specifically, for site 4, as-
suming all sites ¢+ < i have already been sampled, the single-site
reduced density matrix p; can be constructed via the partial trace:

i~ i~ "~ "~
o | |
pi= | | ™ o
| | _ _
U

where the local state projector is defined as

|o)(c] (25)
with o denoting the sampled local state of the corresponding site.
The diagonal entries of p; thus furnish the probability distribu-
tion for the local state o; at site ¢. Sampling proceeds by drawing
o; according to this distribution and then repeating the procedure
for the next site 7 + 1.

In this work, we generate snapshot ensembles for the minimal
Hubbard model (¢ = 0) on an 8x8 open-boundary lattice in-

tended for future comparisons with modern ultra-cold atom ex-
periments [83, 97,99, 100, 103, 105, 108]. The thermal density
matrix MPOs are produced using the 1s* XTRG method across
the doping range of 0 < ¢ < 0.25 and down to a lowest temper-
ature of 7'/t = 1/256. To resolve the spin orientation, we relax
the symmetry here from SU(2),;, down to U(1),;,. Applying
the sampling protocol described above, we draw 1000 snapshots
for each combination of doping and temperature.

Figure 5 documents the convergence of the hole density ny,
and double occupancy n, as a function of sample size at § ~
0.1694 and 7'/t = 1/16. Green dashed lines indicate reference
values extracted directly from the density matrix. We find that
satisfactory convergence is achieved for > 200 samples; accord-
ingly, a sample size of 1000 is sufficient to furnish a representa-
tive ensemble for the corresponding point in the phase space.

IX. SUMMARY AND OUTLOOK

In this work, we introduced an enhanced 1s* XTRG algo-
rithm that accelerates the cooling of the two-dimensional Hub-
bard model at finite temperature. By enlarging the accessible
variational manifold, the method attains accuracy comparable
to a two-site update while incurring computational cost near
that of a one-site update, delivering speedups of up to 50% for
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FIG. 5. Convergence behavior of hole density nj, and double
occupancy nq as a function of sample size at § ~ 0.1694 and
T/t = 1/16. Green dashed lines indicate reference values ex-
tracted directly from the density matrix.

Hubbard-like systems. This improvement enables cooling down
to T/t ~ 0.004 and supports direct comparisons with zero-
temperature iPEPS simulations. We demonstrate that the pro-
jected XTRG energies and pairing-correlation characteristics are
in close accord with iPEPS ground-state results, indicating that
our XTRG approach achieves sufficient purity upon entering the
ultra-cold regime.

Our finite-temperature simulations provide a systematic char-
acterization of singlet pairing correlations and spin susceptibil-
ities across a broad range of dopings and temperatures. We
find that pairing correlations are enhanced at large doping, low
temperature, and for positive ¢'/¢; the latter trend accords with
numerous prior numerical studies yet contrasts with behaviors
observed in cuprate materials. The pseudogap onset tempera-
ture 7* decreases with increasing doping for both signs of ¢’ /¢,
in line with experimental observations. Finally, we identify an
anomalous low-temperature enhancement of the spin suscepti-
bility within a narrow underdoped regime, which may be at-
tributable to the formation of a Nagaoka polaron.

In addition, we leveraged a sequential sampling scheme that
generates snapshot ensembles for the minimal Hubbard model,
each comprising 1000 samples and shown to be statistically rep-
resentative of the corresponding point in phase space. These
snapshots furnish a data resource for analyzing thermal proper-
ties and correlations, opening the door to future Al-driven inves-
tigations of the Hubbard model. A comprehensive analysis of
this dataset will be presented in a forthcoming publication.
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3.3 Analysis via Artificial Intelligence

This work advocates a shift in how we interrogate the 2D Hubbard model and, more
broadly, strongly correlated quantum matter: rather than adding yet another solver or
tuning yet another Hamiltonian parameter, we propose interpretable Al workflows
as analysis tools for system-level snapshot datasets produced by modern TN meth-
ods and ultracold-atom experiments. The central premise lies in the capability of
attention-based architectures — now mature in their ability to capture high-order
correlations — to extract latent regularities from thermal states across temperature
and doping, while potentially revealing insights into what the model has learned.
The effective capture of correlations by the Al model furnishes a universal omnime-
ter that can infer calibrated quantities (e.g., temperature, charge doping, etc.) for
ultracold atom experiments based on the perceived correlations from quantum gas
microscopy.

Central to this study is a streamlined core architecture designed expressly for cor-
relation analysis and interpretability. It shares the same input encoding, output pro-
jection and multi-head attention backbone as the encoder-only transformer (referred
to as a pro variant), but defers most non-linearity to a single feed-forward module
placed after the entire attention stack and avoids interleaved layer normalizations.
This leads to a semi-linear attention pipeline whose intermediate computations are
simpler to interpret in physical terms (e.g., as effective mixing or propagation of
learned local observables across the lattice), while training and inference benefit
from enhanced parallelization. Despite its simplicity, this core model achieves per-
formance comparable to the pro variant in the production runs when attention is fully
functional. In the practical regime, the core thus achieves better computational effi-
ciency and internal transparency without sacrificing meaningful predictive power.

The proficiency of the core Al model in perceiving correlations is validated
through two analytical diagnostics. First, the confusion analysis shows that misclas-
sifications cluster within the same doping level and systematically diminish as tem-
perature lowers. This reduction is consistent with physics: as thermal fluctuations
subside, quantum correlations sharpen and become more recognizable, so the clas-
sifier errs less since the underlying signals are intrinsically clearer. Second, in the
small-scale omnimeter test, where classifier logits are mapped to a calibrated pos-
terior over thermodynamic conditions, we observe selective failures in temperature
estimates where correlation patterns were unseen in the training dataset. Also, the
inferred charge doping deviates toward the phase with analogous correlation regu-
larities. This indicates that decisions are governed by the many-body correlations
learned from data, rather than by spurious cues or simple interpolations.

The performance of the omnimeter can reach a practical level once a comprehen-
sive reference library of snapshots is established. Rather than fitting manufactured
correlators for the dataset, the Al omnimeter provides posterior-based readouts of
thermodynamic variables directly from microscopy snapshots. This yields a sub-
stantial efficiency gain in information retrieval compared with the traditional spin-



94 Findings on the Hubbard Model

correlation thermometer, since the model aggregates all correlation cues present in
the snapshots rather than committing to a single hand-crafted observable. Side-by-
side tests illustrate that, in regimes where simple spin correlators are weak, noisy, or
non-monotonic in temperature, the omnimeter maintains stable, calibrated estimates
with transparent uncertainty quantification. In this sense, the discriminative model
already functions as a practical metrological tool for ultracold-atom platforms, turn-
ing correlation perception into an efficient, quantitative experimental utility.
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Artificial Intelligence (AI) has become an exceptionally powerful tool for analyzing scientific data. In par-
ticular, attention-based architectures have demonstrated a remarkable capability to capture complex correlations
and to furnish interpretable insights into latent, otherwise inconspicuous patterns. This progress motivates the
application of Al techniques to the analysis of strongly correlated electrons, which remain notoriously challeng-
ing to study using conventional theoretical approaches. Here, we propose novel Al workflows for analyzing
snapshot datasets from tensor-network simulations of the two-dimensional (2D) Hubbard model over a broad
range of temperature and doping. The 2D Hubbard model is an archetypal strongly correlated system, hosting
diverse intriguing phenomena including Mott insulators, anomalous metals, and high-T. superconductivity. Our
Al techniques yield fresh perspectives on the intricate quantum correlations underpinning these phenomena and
facilitate universal omnimetry for ultracold-atom simulations of the corresponding strongly correlated systems.

I. INTRODUCTION

The invention of Artificial Intelligence (AI) has revolutionized
the way we interrogate and interpret scientific data. The attention
scheme [1-5] has been proven highly effective in transduction
tasks in conjunction with recurrent or convolutional networks.
Afterwards, the transformer [6] — an architecture built solely
upon the attention scheme — was demonstrated to be compelling
in capturing global dependencies in sequential data. Over the
past decade, transformer-like architectures have dramatically en-
hanced the capability of the AT models across various domains,
including natural language processing (NLP) [7-12], computer
vision [13-16], bioinformatics [17—19], and numerous other ar-
eas [20-23]. Compared with alternative designs, the attention
mechanism in the transformer excels particularly at encoding the
correlation structure of the input data. This feature motivates the
application of the transformer models in studying strongly cor-
related electrons.

Strongly correlated systems [24-27] are governed by con-
siderably strong interactions, inducing collective behaviors that
defy descriptions hinged on individual (quasi-) particles. Canon-
ical examples include Mott insulators [28-30], high-7 . super-
conductors [31-34], heavy-fermion materials [35-38], fractional
quantum Hall systems [39-41], spin liquids [42—45], and quark-
gluon plasmas [46—49]. The consequent high levels of quantum
entanglement and correlations render these systems notoriously
challenging for conventional theoretical approaches. With ad-
vances in computational hardware, a handful of numerical al-
gorithms — among them Quantum Monte Carlo (QMC) [50—
53], Dynamical Mean-Field Theory (DMFT) [54-57], Density
Matrix Renormalization Group (DMRG) [58-62], and various
ground-state [63-70] or finite-temperature [71-79] Tensor Net-
work (TN) methods — have been devised to tackle strongly
correlated systems. Moreover, quantum simulation apparatuses
based on ultra-cold atoms [80-85] have achieved substantial

progress in emulating strongly interacting lattice systems. To-
gether, these techniques offer valuable many-body data from
which the Al models can learn and distill meaningful insights.

Among the plethora of strongly correlated electron systems,
the two-dimensional (2D) Hubbard model [86,87] stands out as
a paradigmatic arena for a variety of intriguing phenomena, such
as Mott physics, anomalous metals, and high-7,. superconduc-
tivity. The Hubbard model encapsulates the essential physics
of itinerant electrons on a lattice with strong on-site Coulomb
repulsion. Over the past few decades, the 2D Hubbard model
has been subject to intensive investigations both numerically
[52,53,70,78,79, 88-98] and experimentally [80-85, 99-108].
Robust anti-ferromagnetic (AFM) orders have been confirmed
near half-filling [70,93,97,109-112], while in the doped regime
— especially with carrier hopping beyond neighboring sites —
diverse charge and spin orders, often coexisting with or compet-
ing against pairing tendencies, have been identified [70,78,93—
95,113]. These properties broadly echo the observations in the
cuprate superconductors.

Despite this decent progress, the majority of the existing re-
searches focused on local and low-order spin and/or charge cor-
relations, especially two-point correlators. However, mount-
ing evidence indicates that high-order [108, 114, 115], non-local
[116,117], polaronic [82,100,118,119] or otherwise string-like
[99,120,121] correlations play a pivotal role in deciphering the
complicated phase diagram of the 2D Hubbard model. This
recognition highlights the promise of the Al techniques for the
global vision of the underlying quantum correlations.

In this Article, we study the 2D Hubbard model using specifi-
cally designed Al models. We start with assembling a dedicated
dataset of snapshots across categories of temperatures and dop-
ing levels by sampling the thermal density matrix via TN simu-
lations. Then, we propose two Al architectures classifying snap-
shots into the respective categories: the pro architecture, an ana-
log of the encoder-only transformer, and the core architecture, a
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streamlined variant that attains comparable performance, better
support for parallelism and improved interpretability.

Next, we perform multiple analyses on the trained core model.
We use a confusion analysis to measure the quality of the clas-
sification tasks and obtain insights into the aggregate strength
of quantum correlations in each category. Exploiting the semi-
linear structure of the attention stack in the core architecture,
we propose an interpretation in terms of an effective Markovian
dynamics, demonstrating the alignment of the attention design
with intrinsic features of the physical system. Further examina-
tions on the orthogonality relationships of the embedding and the
attention maps are provided in the supplemental material [122].

Finally, we demonstrate an application of our core Al mod-
els as a universal omnimeter for ultracold-atom quantum simu-
lations. The Al classifiers produce probablistic scores (logits)
for each category, which serve as posterior likelihoods condi-
tioned on a snapshot acquired in the experiment. Averaging these
outputs over a snapshot ensemble from repeated observations
thus provides an empirical probability distribution over the cat-
egories. Once the categories are calibrated with pre-determined
physical quantities, the expectation values weighted by the prob-
ability distribution yield an accurate estimate of the correspond-
ing quantities for the ensemble.

II. LATTICE MODEL & DATASET

Lattice models serve as common platforms for the physics of
crystalline materials, wherein charge carriers reside on and hop
between discrete lattice sites. In many materials of interest, itin-
erant electrons predominantly occupy the outer-most s orbital for
transport. Consequently, the local Hilbert space at each lattice
site is spanned by four basis: empty | &), spin-up |1), spin-down
|{), and doubly occupied 1) state.

In our study, we focus on the quintessential 2D Hubbard model
on an 8x8 square lattice with open boundary conditions, defined
via the following Hamiltonian

H=- Z tij [CLC_,-U + h.c.] + UZ ningg. (1)

i,j,0

Here, c;-rﬂ (ciy) creates (annihilates) an electron with spin o on
site 7, and n;, = (::TU(:w denotes the corresponding number op-
erator. The first term in Eq. (1) describes the kinetic energy as-
sociated with electron hopping between sites ¢ and j with ampli-
tude ¢;;, while the second term accounts for the on-site Coulomb
repulsion with strength U. Throughout this work, we consider
the minimal Hubbard model where t;; = 1 for nearest-neighbor
pairs and ¢;; = 0 otherwise. Also, we set U = 10 as established
to be realistic for cuprate materials [123,124].

In many elemental metals, electron interactions are effectively
weak (U ~ 0) due to electric-field screening by the surround-
ing lattice ions, yielding conventional metallic behavior at half-
filling (one electron per site). By contrast, in materials like high-
T cuprates, the on-site Coulomb repulsion becomes abnormally

Temperature, T' Mott sC

/4 f=——————— -————— > -
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3% 12% 22%  Doping, §

FIG. 1. A schematic depiction of the locations in phase space for
the nine categories (Cat), created by combining three choices of
temperatures (high, medium, and low) with three doping regimes
(over-doped, medium-doped, and under-doped). The red and blue
freehand-shaded areas mark the AFM Mott insulating phase and
the high-T. superconducting phase, respectively, as expected for
the Hubbard model. The charge doping varies with temperature
(see also Fig. 5); precise values are provided in the supplemental
material [122].

strong for electrons, opening a large energy gap that penalizes
double occupancy. Hence, electron motion is substantially hin-
dered by a large potential barrier and the system exhibits Mott
insulating behavior at the macroscopic level.

Extra charge carriers can be introduced by adding (electron
doping) or removing (hole doping) electrons relative to half-
filling. Upon sufficient doping, charge transport in the material
sets in and superconductivity may emerge, signified by enhanced
pairing correlations at low temperatures. This evolution under-
lies the schematic phase diagram as shown in Fig. 1, where red
and blue shaded areas mark the AFM Mott insulating phase and
the high-T, superconducting dome, respectively.

The (unnormalized) thermal density matrix p = e~#* char-
acterizes the statistical state of the lattice system, with inverse
temperature 3 = 1/7. Note that p admits a Taylor expansion at
high temperature (small /3) for a given Hamiltonian, and that

p(28) = p(B) - p(B)- @

Accordingly, one may cool the system down by repeatedly squar-
ing the thermal density matrix starting from a high-temperature
construct. This idea underlies the eXponential Tensor Renor-
malization Group (XTRG) method [76,77,79,101, 125], which
offers a comprehensive thermal description of the lattice system
over a broad temperature range. We thus employ XTRG to pro-
duce thermal density matrices at high, medium, and low temper-
atures at over-doped, medium-doped, and under-doped regions
(hole-doped), yielding nine categories as indicated in Fig. 1.
We then perform standard site-wise sampling on each thermal
density matrix [79] to obtain snapshots (Fock bases of the many-
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FIG. 2. Schematic illustrations of the core (left) and the pro (right) architecture for classification of sequential inputs. Both archi-
tectures comprise input codecs, multi-head attention blocks, feed-forward networks and a final linear classification head. The pro
architecture is an analog of the encoder-only transformer, while the core architecture leaves out the feed-forward networks between
attention blocks which enhances parallelism and improves interpretability.

body Hilbert space) of the lattice system. The snapshots, each
consisting of 8x8 cells containing either |@), |1), ||}, or [1]), are
next flattened according to row-major order into a sequence of 64
elements. For each location in the phase space, we generate 1000
snapshots, yielding a dataset of 9 categories and 9000 snapshots
in total. This dataset is randomly partitioned into training (90%)
and test (10%) subsets for the subsequent Al workflows.

III. ARCHITECTURES

Our Al architectures originate from the transformer paradigm
while being tailored for categorical classification. Given an in-
put snapshot, the objective is to infer a probability distribution
over categories. Rather than appending a dedicated CLS token
[8,16] as a label, we adopt a streamlined design that endows the
involved attention mechanism with a distinctive and physically
meaningful interpretation.

Figure 2 depicts schematic layouts of the models deployed
in this study. Both architectures share the same foundational
components — input codecs, a stack of multi-head attention,
feed-forward networks, and a terminal linear classification head.
The pro architecture (right) is inspired by an encoder-only trans-
former, whereas the core architecture (left) leaves out the feed-
forward networks between attention blocks, thereby giving en-
hanced parallelism and improved interpretability.

Our exposition below assumes familiarity with standard com-
ponents and techniques in the practices of the transformer archi-
tecture [6], and hence will focus on our distinctive designs. Full
technical details can be found in the supplemental material [122].

A. Tokenization & Input Codecs

The tokenization is straightforward in our setting, as the vo-
cabulary (local Hilbert space) comprises only four distinct words
(local states). We therefore assign 0, 1, 2, and 3 to the empty,
spin-up, spin-down, and doubly occupied states, respectively.
Under this encoding, each snapshot in the dataset now becomes
a sequence of integers (tokens). Formally, let S = {0,1,2,3}
denote the tokenized local state space. The input sequence be-
comes & € S, where L is the flattened sequence length.

The input codecs accept and map each tokenized sequence into
the model’s latent parameter space in two stages. Each token o
is first transformed into a dpyeqe1-dimensional embedding vector
e(0) € R via a learnable embedding module; this embed-
ding depends solely on the token (local state) and is agnostic to
its location in the sequence. To preserve positional information,
we then add a positional vector g; € Rl for site i to each
embedding vector. For this purpose, we employ the sinusoidal
positional encoding [6], which has proved effective across a wide
range of applications.

The input codecs thus assemble a feature matrix X' with el-
ements X!' = et(o;) + o' for each snapshot, where i indexes
lattice sites and p indexes latent dimensions. Contingent on the
dataset under consideration, dmoegel Should be adjusted for a bal-
ance of expressivity against overfitting. Note that in [6] the input
embeddings are multiplied by a factor of v/dmoge to scale up the
weights; in contrast, this operation is empirically detrimental in
our application domain, plausibly due to the exceedingly small
vocabulary size relative to the sequence length.

MANUSCRIPT - 3



PREPRINT FOR PHYSICAL REVIEW (2025)

ZHANG AND VON DELFT

B. Locality-Biased Attention

The (multi-head) attention mechanism plays a central role in
harnessing global correlation awareness for both architectural
designs. We adopt the prevalent scaled dot-product attention
scheme [1, 6] to acquire raw attention scores, and subsequently
impose a locality bias for an improved training profile. Even
though positional information has been encoded amid the input
codecs, we find that the prototypical attention setup, which is
primarily designed for 1D sequences, struggles in perceiving 2D
spatial relationships. Hence, an explicit locality bias assists in
this regard.

We start with linear projections of the input embeddings into
query, key, and value vectors

Qi =XWy, Ki=XWg, Vi=XW 3
with Wy, Wi, and Wi, being learnable weight matrices. Here,
we suppress the latent-space index y and take matrix multiplica-
tions implicit. The attention between site ¢ and j thus reads

A;j = softmax;(Q,;IC; /%), 4

where T denotes the model temperature (conceptually distinct
from the physical temperature) which controls the sharpness of
the attention distribution. In our exercises, ¥ = /d}, (see below
for the definition of dj) works reasonably well.

The multi-head attention is realized by partitioning the latent
space into h subspaces, each with dimension dj, = dmode1/h. At-
tention is computed independently within each head, after which
the head outputs are concatenated and linearly transformed to
yield the final raw attention. In our actual practice, the multi-
head configurations fail to outperform their single-head counter-
part, likely attributable to the limited size of the training set.

Many realistic physical systems exhibit locality: objects only
significantly influence their immediate neighbors, leading to a
decay of the interactions and correlations with spatial separation.
Accordingly, we apply a locality bias to the raw attention scores

Ajj = softmax;(Ai; o Gij), %)

where G; is a hand-crafted bias function that decays with the
physical distance d;; between sites 7 and j, and the circle o de-
notes element-wise (Hadamard) multiplication. This locality
bias encourages the mechanism to focus on nearby sites, effec-
tively accelerating the convergence during the training process.
In our implementation, we choose a Gaussian kernel

Gij = exp {—dfj/ng} s (6)

with standard deviation ¢ = A\/2 and \ a characteristic length
scale of the system (e.g., A = 8 for the 8x8 square lattice con-
sidered here). The eventual performance is not highly affected
by the specific choice of the bias function G;;. For instance, a
power-law decay kernel works almost equally well.

Finally, as a standard technique to stabilize the gradient prop-
agation, we apply a residual connection [126] by adding a X; to
the output of the attention block as

attn(X;) = X; + Zin]Vj. (@)

Afterwards, layer normalization [127] is employed in the pro ar-
chitecture, whereas the core architecture omits this step for rea-
sons that will become clear in the ensuing interpretation.

C. Feed-Forward & Classification

The feed-forward networks (FFNs) constitute one of the prin-
cipal sources of non-linearity in the model. Each FFN is a site-
wise fully-connected three-layer perceptron comprising an input
layer, a hidden layer, and an output layer. The input and output
layers have width dpoder, While the hidden layer has width dpigden-
A ReLU activation is applied between the two affine maps to in-
troduce non-linearity. Concretely, the FFN reads

FEN(X;) = ReLU(X; Wi + b1)Wa + bo, ®)

where W, W5, by, and by are learnable weights and biases. The
same linear maps are shared across all sites ¢, whereas different
FEN blocks carry independent parameters. A residual connec-
tion and layer normalization follow each FFN.

The arrangement of FFNs constitutes the pivotal difference be-
tween the pro and core architectures. The pro variant inserts an
FFN of dimension dpjgqen = dg after each attention block, while
the core variant defers non-linearity to a single FFN of dimension
dhiaden = IN X dg after the entire stack of N attention blocks. We
call the latter design semi-linear attention stack (for the reason
that will become clear in the impending interpretation).

Under this parametrization, the core and pro architectures con-
tain an almost equivalent amount of learnable model parameters.
However, the postponed feed-forward network markedly reduces
the depth of non-linearity within the core model, which bene-
fits the upcoming interpretation since physical objects commonly
propagate linearly. Also, centralizing the FEN boosts parallelism
during both training and inference.

The classification head ingests the abstract embedding Eiff
processed through the preceding attention and feed-forward net-
works, and returns a categorical distribution over the target la-
bels. Concretely, the logit y; . and the corresponding probability
Dic are computed as

Yie = B Wo+be,  p;e = softmax,(y;.c) 9

where W, and b, denote the learnable weight and bias associated
with category c. Each site ¢ produces its own distribution; this
is warranted by the attention mechanism, which injects into each
site contextual information aggregated from all other sites. The
overall prediction is obtained by the argmax of the averaged per-
site distributions p. = avg; p; . over all lattice sites.
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FIG. 3. Training profiles and benchmarks of the production and baseline models following the core and pro architectures. Metrics are
displayed as raw data (thin lines with muted color) and with an exponential smoothing factor cv = 0.4 (thick lines with deep color).
For baseline models (with trivialized attention), the pro architecture consistently outperforms the core variant across all metrics,
congruous with the anticipated benefits of elevated non-linearity in the pro model. By contrast, for production models (with full-
functional attention), the core architecture achieves merely negligible gaps in performance, indicating an alignment of the semi-linear

attention with the intrinsic properties of the dataset.

D. Hyperparameters

For the XTRG-generated snapshot dataset of the Hubbard
model, we adopt the following hyperparameters: embedding di-
mension dmodel = 128; single-head attention h = 1; feed-forward
dimension dg = 1024; and N = 2 attention blocks. Increas-
ing either the number of heads or the number of attention blocks
empirically induces severe overfitting and should be considered
only after expanding the dataset.

Furthermore, we implement an ablation toggle that trivializes
all attention blocks by hard-setting A;; =1 when enabled. Under
this switch, the effective attention reduces to the fixed locality
kernel, thereby delegating the classification task entirely to the
FFNs. This toggle is useful both as a baseline and during the
warm-up phase of training.

IV. TRAINING & BENCHMARKS

Hardware. — All the production and baseline models were
trained on an NVIDIA 3090 GPU. The project utilizes PyTorch
version 2.2.2 and CUDA 11.8.

Initialization. — All learnable parameters are initialized with
Xavier (Glorot) initialization [ 128]. For production runs, the first
200 epochs serve as a warm-up phase during which the ablation
toggle is enabled, effectively pre-training the FFNs with trivial-
ized attention.

Batch & Epochs. — We use a batch size of 256 and train for a
total of 10,000 epochs. Checkpoints are saved every 100 epochs,
and the one with the lowest validation loss is selected as the final
deliverable.

Objective. — We optimize the ubiquitous cross-entropy loss
as our optimization objective. The loss is computed as the neg-
ative log-likelihood averaged over all sites

loss = avg; [—Y ", &clogpic], (10)
where &, denotes the ground-truth one-hot label for category ¢
(broadcasted across all sites), or specifically

an

{ 1 for correct category c,
& = .
0 otherwise.

Optimizer. — We use the standard Adam optimizer [129]
with 81 = 0.9, B> = 0.999, and ¢ = 10~9. The learning rate
is fixed to 5 x 1076, We find that both architectural designs are
sensitive to this setting: materially larger or smaller values tend
to induce premature plateaus at elevated loss.

Regularization. — We apply dropouts [130] with a rate of
0.01 to input codecs, attention blocks, FFNs and all residual con-
nections. Contrary to the common practice in the NLP applica-
tions, we disable the label smoothing [131] as over-confidence is
not a primary concern for a physically-generated dataset.

Training Yield. — Owing to stochastic initialization, training
outcomes exhibit variability. Empirically, roughly one in seven
attempts attains a top-performing model.

Benchmarks. — Figure 3 summarizes the training profiles
of four models we trained: the production and baseline models
under the core and pro architectures. The baselines are trained
with the aforementioned ablation toggle switched on, such that
their attention mechanisms are effectively disabled.

Benchmarks are reported as test-set accuracy and loss, along
with training loss. Test accuracy is defined as the fraction of cor-
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rectly classified snapshots in the held-out test set. All four mod-
els achieve stable convergence given sufficient training, and gen-
eralization is satisfactory as indicated by the proximity of train-
ing and test losses.

Moreover, the production models consistently surpass their
baseline counterparts, attesting to the efficacy of the attention
mechanism. For the baselines, the pro variant outperforms the
core across all metrics, consistent with the anticipated benefits of
enhanced non-linearity. By contrast, in production runs, the core
model closes the gap to within negligible differences, indicating
that FFNs interleaved between attention blocks are largely redun-
dant and that the semi-linear attention stack aligns well with the
intrinsic structure of the dataset.

V. INTERPRETATION

For decades, achieving a principled interpretation of the in-
ternal mechanism of Al models has been one of the highest en-
deavors in the field [132]. Unlike opaque black-box approaches
[133], the attention mechanism offers a natural lens on a model’s
focus and decision-making. The calculated attention scores A;;
are typically construed as a measure of importance of token j
to token ¢ (or equivalently, the attention paid by token ¢ to to-
ken j) [2,3]. This heuristic has been widely utilized in a variety
of application domains [4, 134-142] for analysis, diagnosis and
debugging.

However, a comprehensive study [143] showed that attention
weights often fail to provide consistent or exclusive explanations
of model predictions; in particular, alternative attention patterns
can yield essentially identical performance. These observations
have ignited a prolonged debate [143—151] on whether — or to
what extent — the attention meaningfully reveals a model’s rea-
soning process.

Despite the ongoing controversy, consensus remains that at-
tention maps furnish at least an (if not the) explanation for the
inner workings of the model [146]. Thereafter, further aggrega-
tion methods, such as attention rollout [152—154] and attention
flow [152, 155, 156], have been proposed to propagate attention
scores across multiple layers. The attention rollout, in particu-
lar, essentially performs a layer-wise matrix multiplication of the
(residual-augmented) attention matrices. Considering the fact
that these matrices are all row-stochastic, it becomes natural to
interpret them as Markovian transition kernels [153]. This prob-
abilistic viewpoint forms the basis of our interpretation.

Our interpretation focuses exclusively on the core architecture,
as it depends critically on the semi-linear nature of the attention
stack (the precise meaning of which will be clarified in the up-
coming subsections).

A. Classical & Quantum Markov Process

Before heading to the interpretation, we first formalize the
relevant constructs for both classical and quantum Markov pro-

cesses on the lattice system. For the classical scenario, consider
a discrete-time Markov dynamics in which, at each update, the
state s; at site 4 may overwrite the state s; at site j; the corre-
sponding transition probability is A;;. All lattice sites update
synchronously in one time step.

Suppose that a collection of observables is associated with
each local state, and write X! for the p-th observable evalu-
ated on the state at site ¢. Under the Markov evolution described
above, the observables update after one step as

For the quantum scenario, the local state can be associated
with a (pure) local density matrix p; = | 0;)(o;| = |¢)(i|. The
quantum Markov process is specified by a completely-positive
trace-preserving (CPTP) map £ (also known as a quantum chan-
nel) comprising a set of Kraus operators

Kj =3V Ay 1)l (13)
whose action on the local state is
E(p) = Y, Kipi K =32, Aijpj. (14)

Assign to each p; the same family of observables 2. Under the
channel £, these observables also evolve according to Eq. (12).
Therefore, in both classical and quantum constructs, Eq. (12)
captures the one-step evolution of observables under the Markov
process with the transition kernel A; e

B. Interpretation of the Attention Stack

We now make explicit the link between the attention stack
in the core architecture and the Markovian description above.
Viewing the embedded features as observables, the right-hand
side of Eq. (12) coincides with the application of the attention
matrix A;; to the input embedding X! In conjunction with the
embedding projector W3, and the residual connection, the output
of a stack of IV =2 attention blocks can be expressed as

T = 2+ ALzl

i

2 1 1 (2

+ 30,47 {21 + 3 AG = >] W
=5+ AV S W + 3 AD )

+ 30, AT AN Zw W)

15)

where A%) and va denote, respectively, the attention matrix
and the embedding projector from the ¢-th attention block. On
the right-hand side of the final equality, four terms appear: the
first term carries the original embedding; the second and third
terms propagate features according to the first and second atten-
tion kernels; and the final term captures the cascaded propagation
through both blocks. These terms can be interpreted as four dis-
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FIG. 4. (a) Sensitivity matrix (row-normalized confusion matrix) and (b) precision matrix (column-normalized confusion matrix) for
the core model. Color intensity indicates the degree of sensitivity (a) and precision (b), with exact values written within each cell.
Top rows indicate the charge doping and temperature of the corresponding categories. Diagonal entries show (a) the probability of
correct classification for each category and (b) the probability of a predicted category being correct.

tinct Markovian propagation modes acting on the input 32;. The
same expansion generalizes analogously to deeper stacks.

For trivial embedding projectors W\y) =1 (where 1 is the
identity matrix), Eq. (15) reduces to

Eian“ _ ZJRijEj - Ej [L(1+ A(f))ij X (16)

where R;; is precisely the standard attention rollout [152] (with-
out normalization). We refer to this limiting case as a linear at-
tention stack. However, in practice, the embedding projectors
are generally non-trivial, yielding the semi-linear attention stack.
This is the unique feature of the core architecture; by contrast, in
the pro variant, the layer normalization and the FFN introduce
non-linearity between attention blocks.

This perspective furnishes an interesting interpretation of the
core architecture. First, the input codecs learn a feature embed-
ding whose components can be construed as physically relevant
observables attached to each local state. The attention stack then
effects a superposition of Markovian propagation modes that
evolve these observables across the lattice, while residual con-
nections preserve the original features. Finally, the classification
head operates on the resultant evolved features (observables). In
essence, the model learns an effective Markov dynamics — en-
coded in the attention kernels and embedding projections — that
best aligns the propagated observables with the downstream clas-
sification objective.

VI. CONFUSION ANALYSIS

The core (production) model attains an overall 83% accuracy
on the test subset, as delineated in Fig. 3. However, this aggre-
gate metric masks substantial variation across categories; a nu-
anced assessment requires a full-scale confusion analysis of per-
category sensitivity (true positive rate) and precision (positive
predictive value).

We construct the confusion matrix =, where each entry =/
counts snapshots whose ground-truth category is ¢ but are clas-
sified as ¢/. Row-normalizing = yields the sensitivity matrix,
which estimates the probability p(c’|c) that a snapshot from cat-
egory c is predicted as ¢’. Column-normalizing = produces the
precision matrix, which estimates the probability p(c|c’) that a
snapshot predicted as ¢’ actually originates from category c.

Figures 4(a) and 4(b) display the sensitivity and precision
matrices, respectively. The 9x9 matrices are partitioned into
a 3x3 (doping) block of 3x3 (temperature) cells and exhibit a
pronounced block-diagonal structure, indicating that misclas-
sifications occur predominantly within the same doping level.
Moreover, sensitivity increases systematically as temperature
decreases (reaching almost 100% at the lowest temperature),
whereas precision does not exhibit an equally monotonic trend.

To rationalize these tendencies, we identify two principal
sources of randomness in the dataset: thermal and quantum fluc-
tuations. Thermal fluctuations are essentially structureless and
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FIG. 5. Error in the omnimeter estimation of (a) the thermal exponent and (b) charge doping. Open circles/pentagrams mark the
locations in phase space of the snapshot ensembles under evaluation, with pentagrams (circles) indicating data included (not included)
in the training set. Color scales are obtained via interpolation. Overall performance is good, except for the bands at the unseen doping

levels (around 7% and 17% in (a) and around 17% in (b)).

uncorrelated, while quantum fluctuations can admit non-trivial
quantum correlations. The latter effectively enhance the sys-
tem’s entanglement entropy, thereby providing additional infor-
mation that aids discrimination across categories.

Under this perspective, sensitivity may be interpreted as the
prominence of a category’s correlation pattern — greater cor-
relation strength raises the likelihood of correct classification;
whereas precision reflects the unigueness of that pattern —
greater distinctiveness reduces the chance that snapshots from
other categories are misattributed to it.

Consequently, the observed rise in sensitivity at lower tem-
peratures suggests increasingly prominent correlation structures,
consistent with the suppressed thermal noise (and relatively ac-
centuated quantum correlations). By contrast, the more mod-
est gains in precision at the lowest temperatures imply that low-
temperature patterns also occur at a higher temperature, in line
with the known persistence of Mott physics and superconducting
correlations into a moderate-temperature regime.

Lastly, we remark that misclassification is not catastrophic in
our context, since the dataset is itself intrinsically stochastic and
exhibits substantial randomness. Therefore, an argmax-based
decision rule may mislabel even under a Bayes-optimal classi-
fier. For instance, let’s suppose a perfect model assigns a snap-
shot 50% probability to category ¢ and 40% to category ¢’; the
argmax strategy will thereby deterministically predict category
¢, although this snapshot may quite plausibly originate from cat-
egory ¢. Hence, one should regard the probability distribution
p. as the faithful output of the model.

VII. UNIVERSAL OMNIMETRY

One of the straightforward applications of our Al classifier is
to perform measurements on an arbitrary ensemble of snapshots.
Each category in the dataset is affiliated with a set of known
observables, and the classifier outputs a distribution over cate-
gories, thereby inducing an estimate of the corresponding ob-
servables. We refer to this procedure as omnimetry, since all
affiliated observables are inferred simultaneously.

For a demonstration of this new technique, we augment the
dataset with additional snapshots drawn from regions of phase
space that were not included in the training set (i.e., unseen by the
model). A sufficiently generalizable model should then produce
a distribution over categories that reflects the resemblance of the
correlation patterns in the input ensemble against those learned
during training. Thus, the performance of the omnimeter serves
as a probe of the underlying correlation structure across distinct
partitions of phase space.

The workflow starts with a calibration of observables for all
categories in the training set. Let w(® denote the a-th ob-
servable affiliated with category c. In our study of the finite-
temperature Hubbard model, the affiliated observables are tem-
perature and charge doping. As XTRG algorithm produces ther-
mal density matrices at temperatures 7' = 1/2"7, we utilize the
thermal exponent ny as a representative observable in place of
temperature. Additional observables can, of course, be accom-
modated, provided the dataset supports and a corresponding cal-
ibration is available.
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Next, given an ensemble of snapshots {z} generated under
fixed conditions, the core classifier returns, for each snapshot, a
categorical distribution p.(z) over c. Averaging these distribu-
tions across the ensemble yields a collective distribution measur-
ing the probability that this ensemble corresponds to category c.
The target observable for the ensemble is then estimated by the
distribution-weighted average of the calibration

<w(“)> = ZC w((:u) avgxpc(@' an

Figure 5(a) shows the error of the omnimeter’s estimates of
the thermal exponent np for ensembles drawn from various lo-
cations in phase space. Overall performance is satisfactory —
particularly at doping levels partially covered in the training set.
Notably, two red bands appear at unseen doping levels (around
7% and 17%), with inferred temperatures systematically higher
than the ground truth. This bias is plausibly attributed to corre-
lation patterns in those regions that were absent during training;
the model interprets these as signatures of elevated thermal fluc-
tuations and hence predicts higher temperature. This behavior,
in turn, corroborates that the classifier has genuinely learned to
associate correlation patterns with thermodynamic conditions.

Figure 5(b) reports the error in estimating charge doping. Per-
formance is again strong, aside from a distinct band at the un-
seen doping of around 17%. A similar mechanism applies: the
model finds that the unseen patterns resemble those at around
22% doping, consistent with both doping levels lying within the
superconducting regime.

These artifacts can be eliminated by augmenting the training
data in the relevant portions of phase space. As a trailer, we can
announce that a 25-category classifier which includes the prob-
lematic doping levels in its training set substantially mitigates
these issues, reducing the relative error in both temperature and
doping to below 10%. Further details will be available in the
supplemental material [122] as well as an upcoming dedicated
technical report.

Thermometry remains a central challenge in ultracold-atom
experiments [85, 106], and our Al omnimeter offers a compet-
itive upgrade. Modern quantum gas microscopy [82, 83] pro-
duces ensembles of site-resolved snapshots of the analog cold-
atom simulator, which can be compared directly with our nu-
merical snapshot dataset. Whereas current thermometers often
rely on matching hand-selected metrics and correlators [85, 106,
107, 157], our approach automatically discovers discriminative
patterns and aggregates them into robust temperature estimates.
We therefore anticipate that this approach can materially enhance
the reliability of thermometry in ultracold-atom platforms.

VIII. SUMMARY & OUTLOOK

In this Article, we establish an end-to-end technological stack
for Al-assisted analysis of strongly correlated electron systems
on a lattice. The workflow starts with tensor-network simula-
tions that generate thermal density matrices and, in turn, an ex-

tensive snapshot dataset. This dataset is then processed by our
tailored Al architectures featuring locality-biased, semi-linear
attention with principled interpretability grounded in effective
Markovian dynamics and strong capacity to capture latent corre-
lation patterns. The trained model is subsequently subjected to
a comprehensive confusion analysis, revealing the prominence
and uniqueness of correlation structures across thermodynamic
conditions. Finally, the model is deployed as an omnimeter to in-
fer multiple observables from arbitrary ensembles of snapshots.
Our research demonstrates the viability of bespoke Al tech-
nologies for interrogating challenging strongly correlated quan-
tum systems. The approach is versatile and readily extends to
lattice models for diverse physical scenarios. Moreover, the tai-
lored architectures are especially useful for sequential datasets
with small vocabulary but long sequence length, a characteristic
feature of many scientific data such as DNA/RNA chains, pro-
tein structures, or other high-resolution imaging. The observa-
tion that the core model attains performance comparable to the
pro variant suggests further opportunities to optimize the trans-
former architecture. Besides, the universal omnimetry furnishes
a generic measurement methodology for quantum many-body
experiments equipped with site-resolved quantum microscopy
[82, 83]. Beyond classifiers, alternative Al paradigms — e.g.,
generative models — merit applications in e.g. autoregressive
neural quantum states [158—162] or neural transformer back-
flow [163-165]. We therefore anticipate that this work opens
a promising new avenue for the study of strongly correlated sys-
tems and will motivate further researches along these lines.
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In the supplemental material, we provide (S-I) an introduc-
tion for physicists to the transformer architecture; (S-1I) detailed
specifications of the snapshot dataset for the Hubbard model; (S-
IIT) a performance benchmark of both architectures on an arti-
ficial derangement dataset; (S-IV) an analysis of orthogonality
and attention maps; and (S-V) a performance preview of a 25-
category omnimeter.

S-I. INTRODUCTION TO THE TRANSFORMER

In this section, we present an elementary introduction for
physicists to the transformer architecture, grounded in the sem-
inal work Attention is All You Need [6]. The transformer was
originally developed for sequence transduction tasks in natural
language processing (NLP). Subsequently, an encoder-only vari-
ant [8] has been proposed for generative or classification tasks,
which we further develop into the pro architecture in the main
text. Here, we focus on this particular instantiation of the trans-
former as applied to physical lattice models, wherein snapshots
can be regarded as sequences in the language of the physical sys-
tem. And classifying a given snapshot into one of the nine cat-
egories in phase space is akin to e.g. classifying a sentence into
one of several sentiment classes in NLP.

Tokenization. — Tokens are the pre-defined elementary units
of the input sequence. In NLP, tokens are typically words,
whitespaces, punctuations, etc. For snapshots of a lattice sys-
tem, tokens are the local states o on each lattice site, e.g., empty,
spin-up, spin-down, and double-occupied states for the Fermi-
Hubbard model. The input sequence is then a one-dimensional
array of tokens obtained by flattening the two-dimensional (2D)
lattice snapshot in a row-major order. We assign 0, 1, 2, and 3 to
the four local states, respectively. Therefore, a snapshot of a lat-
tice system with L sites is now tokenized into an input sequence
Ge{0,1,2,3}".

Input Embedding. — The tokenizer described above assigns
a unique integer to each token (local state). However, these in-
tegers are purely nominal and do not encode any semantic in-
formation about the corresponding local state. A more informa-
tive strategy is to represent each token by a vector of features.
Specifically, one could use an array (., nc, Sz, S, . . .) compris-
ing, e.g., parity 7., number of particles n., spin-z s, total spin
S, etc., to represent each local state. In this example, the spin-
up state would be encoded as (—1,1, +%, % ...), and the other

local states follow analogously. We refer to this hand-crafted
representation as an input encoding of the sequence.

However, an input encoding requires manual identification of
the relevant features for each local state and may thus be con-
strained by prior knowledge about the system. A more flexible
approach is to allow the model to learn a suitable representation
of each token directly from data. This is achieved via an input
embedding, in which all features are learnable parameters. In
practice, the embedding layer is essentially a lookup table that
stores an embedding vector e(o) € R for each local state
o. The dimension dpege; (number of features) of the embed-
ding vectors is a hyperparameter to be chosen when constructing
the model. The components of e(o) are denoted e (o), where
pw=1,2,...,dnogel is the feature index.

Positional Encoding. — The embedding vector of a token
depends only on the local state it represents and carries no infor-
mation about its position in the sequence. We therefore need a
separate mechanism to inject positional information. The trans-
former architecture contains neither recurrent nor convolutional
structures — common devices in other architectures for captur-
ing sequential order — and instead relies on a positional encod-
ing. Analogous to the input encoding, the positional encoding
is a fixed (non-learnable) map that converts each position ¢ in
the input sequence into a positional vector g; € R, A com-
mon choice for the positional encoding is to use sine and cosine
functions of different frequencies:

, if piseven,

S1
c0s(4/10000%#/dmea) - if 11 is odd, Gh

W {sin(i/100002“/d‘“°“°')
k2

The motivation for this sinusoidal form is to enable the model
to infer relative positions between tokens, since any g, can be
expressed as a linear function of g;. Similar to the input embed-
ding, it is also possible to employ a learnable positional embed-
ding. However, in practice, we do not observe a benefit from this
upgrade, consistent with the findings in [6].

Input Codecs. — The input codecs consolidate the input
embedding and positional encoding. The embedding vector
e(o;) = e; of the token at position i is scaled by w, and added to
the positional encoding g; to yield the final input representation
Il = weel + ot ie. Xy = wee; + g; € R, Consequently,
for every snapshot, the tokenized input sequence o of L tokens
is transformed into a feature matrix
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whose rows enumerate positions and columns enumerate fea-
tures. In [6], the weight is set to w, = v/dmodel- In their NLP
tasks, the vocabulary size (number of unique tokens) is approx-
imately 37,000, while the sequence length is about 25,000. It
is therefore natural to emphasize the input embedding relative
to the positional encoding. In our physical applications, how-
ever, the vocabulary size is usually small (e.g., 4 for the Fermi-
Hubbard model) whereas the sequence length can be compara-
tively large (e.g., 64 for an 8x8 lattice). Hence, we instead use
w, = 1 to place the input embedding and positional encoding
on an equal footing.

Modular Design. — Contemporary Al systems commonly
adopt a modular design, wherein the overall architecture com-
prises a sequence of modules (depicted as rectangular blocks in
Fig. 2) with standardized inputs and/or outputs, enabling algo-
rithms to be assembled in a building-block fashion. In the trans-
former architecture, all the constituent modules consume and/or
emit data in the same format of feature matrix X € REXdmoar,
This uniform interface greatly simplifies the construction of deep
models via a straight-forward stacking of modules. Accordingly,
it is natural to regard X; as a register memory or a module argu-
ment, rather than a specific mathematical entity with fixed val-
ues, and one should understand its significance and the contents
stored according to the context.

Dot-Product Attention. — The principal workhorse of the
transformer is the attention mechanism, which enables the model
to capture long-range (global) correlations across the input se-
quence. The attention module receives and converts X; into
three sets of vectors: the queries Q; € R%, the keys K; € R%,
and the values V; € R%. For self-attention, one commonly
takes d,, = dj, and obtains the queries, keys, and values via lin-
ear projections of the input codecs:

dmodel

Qlll _ Z E,?VVQIW,

n=1

or Q; =XWy € R%,

model
v o_ TReSIng
K=Y srwp,

p=1

or K;=X ;Wi eR%,  (83)

dimogel
v o__ AT 7Y
V=3 srw,

=1

or V; =3,Wy € R%,

where Wy, Wk € Rmeasr i and W5, € R 4w are learnable
linear projection matrices. The same set of projection matrices
are shared across all positions <.

The objective of the attention module is to compute similari-
ties between queries and keys and to reweight the values accord-
ingly. In the scaled dot-product attention [6], similarities are

measured according to the dot products of queries with keys, so
the attention score A;; between the i-th query and the j-th key
is given by

A;j = softmax; (Q;K; /%) = Zi exp(Q;KC;/T),  (S4)

where

L
Z; = z exp(Q,KC; /%) (S5)

j=1

is the normalization factor, and ¥ the model temperature param-
eter (conceptually distinct from the actual physical temperature)
that controls the distribution of attention scores. Following [6],
we set T = \/dj. An inner product should be inferred in the
expression
dy,
QiK; = QK (S6)

v=1

and in Eq. S4, the subscript j in softmax; indicates that the soft-
max operation is taken along the j index. The dot-product atten-
tion thus outputs

L
attn(X; | Wo, Wi, W) = ZA“VJ-. (87
j=1

Intuitively, the attention mechanism can be recognized as a
fuzzy dictionary lookup. Rather than executing a hard retrieval
that selects the value associated with a single, exactly match-
ing key, the mechanism instead computes attention scores that
quantify the degree of similarity or correspondence between the
query and all available keys. These scores are then used to form a
weighted combination of the associated values, thereby produc-
ing a context-dependent output representation.

Multi-Head Attention. — The above single attention can be
extended to multi-head attention by partitioning the query, key,
and value vectors into h parallel subspaces (heads) with per-head
width dj, such that diogel = h - di.. The dot-product attention is
then applied independently within each head. Concretely, the
n-thhead (n = 1,2, ..., h) computes

7 = aun(Z; | WL WL W) € R%. (S8)

Note that each head has its own set of projection matrices W],
Wl € Rtmosaxdic and W;! € Rfmw v The outputs of all heads
are subsequently concatenated along the feature dimension to
form a vector in R""%v, before passing through a linear projection
with a learnable matrix Wy € R"dvXdmat The final output of
the multi-head attention layer is thus

M = concat(EY, ..., ZM W, € R, (S9)
For a single-head attention, the output projection Wy is redun-

dant, since it can be absorbed into 1j,. We therefore omit this
projection in the main text.
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In practice, a convenient and computationally efficient imple-
mentation maintains three shared projection matrices Wy, W,
and Wi, of shape diodel X dmodel- The overall queries, keys, and
values are computed, and then partitioned into h heads:

Q= o 9® o® ... oW
K=| g @ B ... g®

(S10)

v=| y p@ pd ... ph)

Here, the i-th row of the matrices Q, K, and V € RE*dmudt cor-
responds to the vectors Q;, IC;, and V;, respectively. Conse-
quently, the output of the 7)-th head becomes

Y =softmax | QM [KT]™ /3| v o (S11)

where the softmax is applied row-wise. This vectorized imple-
mentation is more efficient in practice, as it leverages highly op-
timized parallel linear algebra routines. The final output of the
multi-head attention block is thus

s _ e p@ pe) »0) | Wp. (S12)

Feed-Forward Network. — Following the multi-head atten-
tion block, a position-wise feed-forward network (FFN) is ap-
plied independently to each received X;. Again, the same FFN
(i.e., the same parameters) is shared across all positions 7. Con-
ceptually, the FFN is a three-layer fully-connected perceptron
comprising an input layer, a widened hidden layer, and an out-
put layer. The input and output layers have the dimension dmodel,
matching the output of the multi-head attention, while the hidden
layer has a larger width dpiggen to enhance the model’s represen-
tational capacity. A schematic illustration is provided in Fig. S1.

Specifically, the FEN applies the following transformation to
each position ¢ in the sequence:

FFN(X;) = ReLU(X; W + by)Ws + ba, (S13)
where W, € TR model X dhidden g Wsy € Rniasen X dmotel gqre Jearnable
projection matrices, and b; € R%we by € R (learnable)
bias vectors. The ReLU (Rectified Linear Unit) activation func-
tion, defined as ReLU(z) = max(0, x), supplies the crucial non-
linearity in the FFN. Figure S2 depicts the overall shape of the
ReLU function.

o 0 O - O 0O model
OO0 00000 00 didn
O O O O O dmodel

FIG. S1. Schematic diagram of a three-layer feed-forward network
(FFN) used in the transformer architecture. The input and output lay-
ers have dimension dnode1, While the hidden layer has dimension dhiaden-
Each neuron in a given layer is connected to all neurons in the adjacent
layers.

ReLU(z)

y=0forz <0 y=aforz >0

-2 -1 1 2

FIG. S2. Schematic diagram of the ReLU (Rectified Linear Unit) ac-
tivation function. The function zeros out the negative inputs and in-
creases linearly for positive inputs, providing essential non-linearity
while maintaining computational simplicity.

Output Projection. — Following the final FFN of the trans-
former, vectors X; are passed to an output projection module
responsible for producing the model’s logits. This output projec-
tion is usually implemented as a learnable linear transformation
into the output space G of the downstream task (e.g. categories
for classification or vocabulary in text generation). For each po-
sition 4, the output logits 3; € RI9! are computed as

yi = ZiW, + by, (S14)
where W, € Rm X191 denotes the weight matrix and b, € RI9!
the bias. The logits are subsequently normalized via a softmax
function to yield probabilities p; = softmax(y;) € RI9. In
generative scenarios, p; guides the sampling of the output to-
ken at position ¢. For classification or regression tasks, one may
aggregate the outputs across all positions (e.g., via averaging
p = avg,(p;)) or employ a dedicated CLS token [8, 16] to de-
rive a single, sequence-level prediction.

Residual Connection. — Deep neural networks are prone
to vanishing gradients during training; the residual connection
[126] is a standard remedy that markedly stabilizes the optimiza-
tion process. The key idea is to introduce a shortcut path that
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FIG. S3. Example snapshots from the 9-category XTRG dataset at the lowest temperature for the minimal Hubbard model on an 8x8
lattice. Each snapshot is represented as a 2D grid, where each site is color-coded according to its local state: empty (grey), spin-up

(red), spin-down (blue), and doubly occupied (purple).

bypasses the block and adds the input directly to the block’s out-
put. Concretely, for an input vector X;, the output of a block
with transformation function F(X;) is modified to

In this formulation, even if the gradient through F becomes van-
ishingly small, the identity pathway preserves well-conditioned
gradient flow, thereby facilitating effective backpropagation. In
our architectural depiction (namely Fig. 2) in the main text, the
Residual block and the Add in the Add & Norm block both rep-
resent this residual connection.

Layer Normalization. — Layer normalization (LayerNorm)
[127] further stabilizes and accelerates training by normalizing
the magnitude across the feature dimension per position. For an
input vector X; € R fmocer LayerNorm computes

3, — mean(X;)

LayerNorm(X;) = ST + e
k3

+ b, (S16)
where mean(X;) and std(X;) denote the mean and standard de-
viation of the elements of X7;, respectively; a and b are learnable
scale and shift parameters; and € = 1079 is a small constant
that prevents division by zero. In our architectural diagram in
the main text, the Norm in the Add & Norm block corresponds to
this LayerNorm operation.

S-II. SPECIFICATIONS OF THE SNAPSHOT DATASET

Here, we report the temperature 7", charge doping d, and dou-
ble occupancy n+, for the nine categories in the XTRG snapshot
dataset of the minimal Hubbard model on an 8x8 lattice, as sum-
marized in Table I. Several representative snapshots from each
doping level at the lowest temperature are shown in Fig. S3.

Categories T 3 npy
Cat0 174 02041 0.0123
Cat 1 /16 02190 0.0151
Cat2 17256 0.2188  0.0156
Cat3 174 0.1324 0.0149
Cat4 1716 0.1227 0.0186
Cat 5 1256 0.1250  0.0182
Cat 6 174 0.0732 0.0179
Cat 7 1/16  0.0413  0.0228
Cat 8 /256 0.0312  0.0220

TABLE I. Temperature 7", charge doping d, and double occu-
pancy n4, of the nine categories in the XTRG snapshot dataset
for the minimal Hubbard model.
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FIG. S4. Training profiles of the core and pro models for the derangement dataset. Metrics are displayed as raw data (thin lines
with muted color) and with an exponential smoothing factor o =0.4 (thick lines with deep color). Both models achieve near-perfect
training accuracy, demonstrating their capability to capture the imposed correlation structures, although the core model requires
more optimization steps to converge. This indicates the efficacy of the semi-linear attention mechanism for modeling correlations in

snapshot-type datasets.

S-III. BENCHMARK ON DERANGEMENTS

In this section, we benchmark our pro and core architectures
on a synthetic dataset of derangements to demonstrate their abil-
ity to capture latent correlation structure. A derangement is a
permutation in which no element remains in its original posi-
tion. For example, given [1, 2, 3], the derangements are [2,
3, 1] and [3, 1, 2]. We construct artificial 8x8 snapshots in
which the left half (left four columns) is generated uniformly at
random, while the right half (right four columns) is obtained by
applying a (column-wise) derangement to the left half.

Categories Derangements
Cat 0 Random
Cat 1 [1,0,3,2]
Cat 2 [1,3,0,2]
Cat3 [2,0,3,1]
Cat 4 [2,3,0,1]
Cat5 [2,3,1,0]
Cat 6 [3,2,0,1]

TABLE II. Derangements for the seven categories in the syn-
thetic dataset. Numbers in the derangements denote the columns
(not to be mistaken with tokens or local states). Category 0 con-
tains snapshots generated completely randomly as a comparison

baseline.

Table II enumerates the six derangements used in our dataset,
together with category 0 comprising fully random snapshots as
a comparative baseline. Each category contains 10,000 snap-
shots of size 8x8. Representative examples are shown in the up-

per panel of Fig. S7-(1-6). The derangement defining each cate-
gory is indicated above the panel, and corresponding columns —
i.e., columns that are identical by construction — are highlighted
with matching background colors. In these synthetic snapshots,
there is 100% correlation between corresponding columns across
the left and right halves, and no correlations otherwise. The ob-
jective is to assess whether a trained model can assign snapshots
to the correct category purely from these correlation patterns, i.e.
whether it can correctly identify the permutation used to generate
the right four columns from the left four random ones.

We train both the core and pro architectures on the derange-
ment dataset without a locality bias; training profiles are summa-
rized in Fig. S4. Both models attain near-perfect training accu-
racy, indicating successful identification of the imposed correla-
tions, although the core model requires more optimization steps
to converge. This observation further supports the efficacy of
the semi-linear attention mechanism for modeling correlations
in snapshot-type datasets.

Next, we examine the attention maps produced by the core
model. Figs. S7-(1-6) display, for each derangement category, a
snapshot together with the attention scores from the first attention
layer. These visualizations reveal where the model looks when
processing each position of the input. Each panel comprises an
8x8 array of subplots, each showing an 8x8 grid of cells. Within
each subplot, the attention scores .A;; are encoded by a color
scale; the query position 7 coincides with the subplot’s location
and is indicated by a red circle.

In general, we observe elevated attention at the same row of
the query, and in most maps the dominant attention is devoted to
the corresponding site (with an identical state by construction) in
the opposite half of the snapshot, e.g. the attention maps at the
Sth and 6th row, 1st column of Fig. S7-1 highlight the sites at the
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FIG. S5. Orthogonality relationships between the average embeddings under (a) mode 0 (no projection), (b) mode 1, (c) mode 2, and
(d) mode 3 projection of the four local states (empty, spin-up, spin-down, and doubly occupied) from the core model for the XTRG
Hubbard dataset. The angles between the original embeddings are close to 90°, a clear indication of the distinct local states; after
the projections, the spin-up and spin-down states become nearly opposite in direction, reflecting the SU(2) rotational spin symmetry

underlying the snapshots.

same row, 6th column. This behavior indicates that the model
has internalized the per-row permutation structure and largely
identified the strong cross-half correlations. The maps are not
perfectly pristine — some spurious attention persists, e.g. the
2nd and 3rd rows in Fig. S7-1 — likely attributable to the cor-
relations being sufficiently strong that high accuracy is achiev-
able without completely disentangling all dependencies. Never-
theless, the attention visualizations collectively corroborate the
model’s capacity to recover the underlying correlation structure.

S-IV.  ORTHOGONALITY AND ATTENTION MAPS

Orthogonality relations (angles) among the vectors X; that
represent tokens (local states) elucidate how the model internally
encodes and discriminates between these states. Since the vec-
tors X; also depend on the position i, we define the average em-
bedding X[o] of token o as

EloJ:Ni > S, (S17)

7 €T, allx

where 2 denotes an input snapshot, 3;(z) the corresponding in-
put embeddings, Z, = {i | o; = o} the set of positions at which
token o occurs, and N, = |Z,| its multiplicity in the entire en-
semble. The average embedding X[o] is therefore the mean em-
bedding vector of token o aggregated over all of its occurrences
in the dataset.

Also, for different propagation modes m in the attention stack,
the input embeddings X; are further projected according to
mode-specific linear transformations W3, (see main text). For
our core model with two attention layers (blocks), we identify
four projectors W (™): wm=0) — (identity, no projection),
wm=1 — WV(Z:D (layer 1 projection), W(m=2 = (=2
(layer 2 projection), and W (m=3) = lVy:l)IVyzz) (layer 1 &
2 projection). We then define the projected average embedding
of token o under mode m as

Znlo] = Blelw ™. (S18)
In this regard, we can calculate the overlap (i.e the normalized
inner product, and thus the cosine of their angle 05,':,)) between
the average embeddings of any pair of tokens o and o’ for prop-
agation mode m as

Ynlo] - Xnlo’]

cos(Zmlol Enle’) = 15 G TE o

(S19)
Detailed numerics are summarized in Table III.

To visualize these orthogonality relations for each mode m,
we embed the four vectors X,[0], 0 = 0,1,2,3, into three-
dimensional space via principal component analysis. Concretely,
we construct the Gram matrix

G =1, Gg’;? = cos 9070”,) for o #o’ (S20)
and perform an eigen-decomposition G™ = UAUT = XX T
with X = Uv/A. The rows Y, of X provide the coordinates of
the visualization vectors. When rank G(™) exceeds three, we re-
tain only the three largest eigenvalues and corresponding eigen-
vectors to obtain a three-dimensional approximation. The quality
of this approximation is quantified by the stress metric

3, (G — xTxs)?

TG o

stress —

Figure S5(a,b,c,d) visualizes the orthogonality relations for
modes m = 0, 1,2, 3, respectively. The angles between the orig-
inal embeddings (mode 0) cluster near 90°, indicating that the
model has learned to represent the four local states as nearly or-
thogonal vectors. The associated stress is large, consistent with
the impossibility of embedding four almost mutually orthogonal
vectors exactly in three dimensions.

After projection (i.e. modes 1, 2, and 3), the spin-up and spin-
down embeddings become nearly antipodal, reflecting the un-
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Token Pairs Overlap Angle (°)
(0,1) 0.3121 71.82°
(0,2) 0.2937 72.92°
(0, 3) 0.1858 79.29°
(1,2) 0.1460 81.61°
(1, 3) 0.06737  86.14°
(2,3) 0.1946 78.78°

(a) mode 0O: original average embeddings

Token Pairs Overlap Angle (°)
(0,1) -0.2111 102.2°
0,2) -0.1068  96.13°
(0, 3) -0.5090 120.6°
(1,2) -0.9195 156.9°
(1, 3) 0.04032  87.69°
(2,3) 0.1173 83.26°

(b) mode 1 projected average embeddings

Token Pairs Overlap Angle (°)
(0,1) 0.1127 83.53°
(0, 2) 0.1275 82.67°
(0, 3) 0.2651 74.63°
(1,2) -0.7540 138.9°
(1, 3) -0.2313 103.4°
(2,3) 0.4466 63.48°

(c) mode 2 projected average embeddings

Token Pairs Overlap Angle (°)
0,1) -0.1238  97.11°
(0, 2) -0.1439  98.27°
(0, 3) -0.6658 131.7°
(1,2) -0.9630  164.4°
(1,3) 0.02786  88.40°
(2,3) 0.1491 81.43°

(d) mode 3 projected average embeddings

TABLE III. Average inner product for each token-pair and correspond-
ing angles (in degrees) for (a) mode O: original embeddings (no projec-
tion), (b) mode 1, (c) mode 2, and (d) mode 3 projected average embed-
dings. All values are rounded to 4 significant digits.

derlying SU(2) spin-rotational symmetry of the snapshots. The
low stress corroborates this symmetry-induced constraint, which
effectively removes one independent basis state from the local
Hilbert space. Moreover, the spinful states are broadly orthogo-
nal to the plane spanned by the empty and doubly occupied states,
capturing the distinction between sectors of different total spin.

These orthogonality relations collectively substantiate that the
model faithfully captures the physical significance of the basis
states in the local Hilbert space.

Beyond orthogonality, attention maps offer complementary
insight into the model” s processing of snapshots. Figures S8-
(1-3) present, for three representative snapshots from the XTRG
Hubbard dataset, the attention rollout [152] of the core model.
As before, each panel comprises an 8x8 array of subplots, each
showing an 8x8 grid. Within each subplot, the rolled-out atten-
tion (with the identity component subtracted) R;; — I;; is en-
coded by a color scale; the query position ¢ coincides with the
subplot location and is marked with a red circle.

In contrast to the derangement benchmark, the attention maps
for the Hubbard snapshots are substantially more challenging to
comprehend. This is expected: correlations in the Hubbard data
are far more intricate and less deterministic. A salient feature
is produced by the locality bias, whereby attention concentrates
on nearby sites. Another notable characteristic is that — unlike
the derangement benchmark where attention typically condenses
onto a few positions — the attention scores for the Hubbard snap-
shots are markedly more diffuse. This suggests that the Hubbard
correlations can be high-order and spatially extended. Additional
structures likely exist and remain to be elucidated through more
refined analytical methods.

S-V.  PREVIEW OF A 25-CATEGORY OMNIMETER

In this section, we present a technical preview of a 25-category
omnimeter for the Hubbard model and demonstrate its advan-
tage over the contemporary spin-correlation-based thermometer
[85,106]. A comprehensive evaluation of this omnimeter and its
applications will be detailed in a forthcoming technical report.

In the main text, we observed that the 9-category omnime-
ter can fail at doping levels absent from the training set. To ad-
dress this limitation, we broaden the training coverage to five
doping levels, 0 ~ 3%, 7%, 12%, 17%, 22%; and for each dop-
ing level, we consider five thermal exponents np = —log, T' =
0,2,4,6,8, yielding a total of 25 categories.

Current state-of-the-art thermometry for cold-atom Hubbard
experiments relies on a direct comparison between measured
spin correlations and calibrated values from numerical simula-
tions [85, 106]. Concretely, one compares the spin correlations
measured from a snapshot obtained from the quantum gas micro-
scope and assigns a temperature based on the closest match to the
calibrated correlations. However, this straight-forward approach
becomes numerically unstable especially when the correlations
saturate at low temperatures (see Table IV), leading to large fluc-
tuations in the temperature estimates.
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FIG. S6. Error of the thermal exponent estimate nr = —log, T for (a) the 25-category omnimeter and (b) the spin-correlation-
based thermometer, evaluated on a random 30-snapshot ensemble. Open circles/pentagrams mark the locations in phase space of
the snapshot ensembles under evaluation, with pentagrams (circles) indicating data included (not included) in the training set. Color
scales are obtained via interpolation and made equal in both panels for a direct comparison. The omnimeter consistently outperforms
the spin-correlation thermometer in most regions of phase space, especially at lower temperatures where correlations saturate.

Therefore, instead of directly assigning the calibrated value,
we adopt a probability-based formulation that delivers more sta-
ble estimates. Specifically, we postulate the probability (weight)
of a snapshot x at thermal exponent ny as

p(nrlz) o< 1/[| 7% (x) — T (n7)]], (S22)
where I'**(x) and I'**(n) denote the nearest-neighbor spin-z
correlations along the y (vertical) direction measured from snap-
shot z, and the calibrated values (via XTRG) at thermal expo-
nent ng, respectively. This empirical formula ensures that the
the thermal exponent with the closer correlation value attains
the higher probability, while still allocating non-zero weights to
other categories to enhance stability. Other functional forms, e.g.
exponential decay, can also be considered; however, alternative
choices do not significantly affect the performance.

For an ensemble x of snapshots, the posterior p(ny|z) is ob-
tained by averaging p(nr|z) over all z. The restriction to the
y direction is required to match the 2D geometry to the tensor
network structure (only neighboring sites along the y direction
are guaranteed a bond directly connecting them) [79]. While
one can construct composite estimators that fuse multiple corre-
lation messengers, in practice these do not surpass the stability
or accuracy of the single-messenger formulation.

We evaluate the performance of the 25-category omnimeter
and the spin-correlation-based thermometer on random ensem-
bles of 30 snapshots for each location in phase space; results are
summarized in Fig. S6. As before, open circles/pentagrams mark
the locations in phase space of the snapshot ensembles under
evaluation, with pentagrams (circles) indicating data included
(not included) in the training set. Color scales are obtained via
interpolation and made equal for both panels to enable a direct,
like-for-like comparison.

The AI omnimeter consistently outperforms the thermometer
based on spin correlations across most of phase space, with a
pronounced advantage at lower temperatures where spin corre-
lations begin to saturate. To rationalize this behavior, Table IV
reports the reference spin-z correlations I'** together with their
standard deviations std(1'#¥) at the calibrated locations. At low
temperatures (large nr), the standard deviations exceed the sep-
aration between adjacent temperature categories, implying that
nearest neighbor spin correlations alone cannot reliably discrim-
inate fine temperature increments (e.g. in Table IV(a), the stan-
dard deviations std('#*) for ny = 6 and 8 are around 0.018,
whereas the difference between I'** is only ~ 0.001). By con-
trast, the omnimeter automatically exploits a broader spectrum
of correlation features beyond /%%, enabling substantially more
accurate temperature estimation.
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(@) p =12, §~22% by p=14, §~17% (©)p=16, 6~ 12%

nr = std(1"%%) nr = std(1'%%) nr = std(1"%%)
0.0 -0.01081 0.02386 0.0 -0.01126  0.02494 0.0 -0.01281  0.02607
2.0 -0.03751  0.02319 2.0 -0.04096  0.02541 2.0 -0.04639  0.02623
4.0 -0.06626  0.02012 4.0 -0.07556  0.02136 4.0 -0.08709  0.02200
6.0 -0.07412  0.01853 6.0 -0.08089  0.02037 6.0 -0.09164  0.02141
8.0 -0.07559 0.01867 8.0 -0.08156  0.02026 8.0 -0.09061 0.02056
@ =18, &~ 7% (€)= 2.0, 6~ 3%

nr r=  std(I'**) nr r=  std(I'**)

0.0 -0.01377  0.02611 0.0 -0.01381 0.02711

2.0 -0.05229  0.02630 2.0 -0.05450  0.02621

4.0 -0.09902  0.02453 4.0 -0.1078  0.02696

6.0 -0.1053  0.02413 6.0 -0.1169  0.02705

8.0 -0.1052  0.02321 8.0 -0.1192  0.02641

TABLE IV. The reference spin-z correlations I"** and the corresponding standard deviations, std(1"**), for different chemical po-
tentials  (and thus doping J) across thermal exponents np. All correlation values and standard deviations are computed over all
snapshots in each category, and rounded to 4 significant digits.
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Category: 1 Snapshot ID: 25

FIG. 7-1. Attention map (bottom) of the core model evaluated on a snapshot (top) from category 1 ([1,0,3,2]). The visualization consists
of an 8x8 array of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores .A;; are encoded by a color scale; the query
position 7 coincides with the subplot’s position and is marked by a red circle. The prominent highlighting of the attention map indicates that
the model has successfully captured the underlying correlations between corresponding columns in the left and right halves.
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Category: 2 Snapshot ID: 26

FIG. 7-2. Same as Fig. S7-1, now for a snapshot from category 2 ([1,3,0,2]). Same as Fig. S7-1, the visualization consists of an 8x8 array
of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores .A;; are encoded by a color scale; the query position i
coincides with the subplot’s position and is marked by a red circle. The prominent highlighting of the attention map indicates that the model
has successfully captured the underlying correlations between corresponding columns in the left and right halves.
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Category: 3 Snapshot ID: 14

FIG. 7-3. Same as Fig. S7-1, now for a snapshot from category 3 ([2,0,3,1]). Same as Fig. S7-1, the visualization consists of an 8x8 array
of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores .A;; are encoded by a color scale; the query position i
coincides with the subplot’s position and is marked by a red circle. The prominent highlighting of the attention map indicates that the model
has successfully captured the underlying correlations between corresponding columns in the left and right halves.
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Category: 4 Snapshot ID: 26

FIG. 7-4. Same as Fig. S7-1, now for a snapshot from category 4 ([2,3,0,1]). Same as Fig. S7-1, the visualization consists of an 8x8 array
of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores .A;; are encoded by a color scale; the query position i
coincides with the subplot’s position and is marked by a red circle. The prominent highlighting of the attention map indicates that the model
has successfully captured the underlying correlations between corresponding columns in the left and right halves.
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Category: 5 Snapshot ID: 17
(]

FIG. 7-5. Same as Fig. S7-1, now for a snapshot from category 5 ([2,3,1,0]). Same as Fig. S7-1, the visualization consists of an 8x8 array
of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores .A;; are encoded by a color scale; the query position i
coincides with the subplot’s position and is marked by a red circle. The prominent highlighting of the attention map indicates that the model
has successfully captured the underlying correlations between corresponding columns in the left and right halves.
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Category: 6 Snapshot ID: 22

FIG. 7-6. Same as Fig. S7-1, now for a snapshot from category 6 ([3,2,0,1]). Same as Fig. S7-1, the visualization consists of an 8x8 array
of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores .A;; are encoded by a color scale; the query position i
coincides with the subplot’s position and is marked by a red circle. The prominent highlighting of the attention map indicates that the model
has successfully captured the underlying correlations between corresponding columns in the left and right halves.
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FIG. 8-1. Attention map (bottom) of the core model evaluated on a snapshot (top) at low temperature and over-doped region. The visualization
consists of an 8x8 array of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores .A;; are encoded by a color scale;
the query position ¢ coincides with the subplot’s position and is marked by a red circle.
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FIG. 8-2. Attention map (bottom) of the core model evaluated on a snapshot (top) at low temperature and over-doped region. Same as
Fig. S8-1, the visualization consists of an 8x8 array of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores A;;
are encoded by a color scale; the query position 7 coincides with the subplot’s position and is marked by a red circle.
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FIG. 8-3. Attention map (bottom) of the core model evaluated on a snapshot (top) at low temperature and medium-doped region. Same as
Fig. S8-1, the visualization consists of an 8x8 array of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores A;;
are encoded by a color scale; the query position 7 coincides with the subplot’s position and is marked by a red circle.
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Category: 5 Snapshot ID: 621
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FIG. 8-4. Attention map (bottom) of the core model evaluated on a snapshot (top) at low temperature and medium-doped region. Same as
Fig. S8-1, the visualization consists of an 8x8 array of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores A;;
are encoded by a color scale; the query position 7 coincides with the subplot’s position and is marked by a red circle.
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Category: 8  Snapshot ID: 142

on

FIG. 8-5. Attention map (bottom) of the core model evaluated on a snapshot (top) at low temperature and under-doped region. Same as
Fig. S8-1, the visualization consists of an 8x8 array of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores A;;
are encoded by a color scale; the query position 7 coincides with the subplot’s position and is marked by a red circle.
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FIG. 8-6. Attention map (bottom) of the core model evaluated on a snapshot (top) at low temperature and under-doped region. Same as
Fig. S8-1, the visualization consists of an 8x8 array of subplots, each displaying an 8x8 grid of cells. In each subplot, attention scores A;;
are encoded by a color scale; the query position 7 coincides with the subplot’s position and is marked by a red circle.
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Chapter 4
Conclusions and Outlook

Motivated by the open questions surrounding the exotic phenomena and strong cor-
relations in cuprate superconductors, we develop and benchmark a comprehensive
numerical toolbox for the 2D Hubbard model, spanning zero and finite temperatures
and complemented by an Al snapshot analyzer. The framework integrates symmetry-
aware ground-state iPEPS tensor networks with an accelerated finite-temperature
XTRG into a coherent pipeline of many-body solvers, yielding controlled assess-
ments of key order parameters across temperature and doping. Built atop this solver
stack, we employ an interpretable, attention-based analyzer designed for system-
level snapshots from both our simulations and quantum-gas microscopy; it learns
the salient correlation patterns across temperature and doping and serves as a uni-
versal omnimeter, delivering highly accurate estimates of observables for ultracold
atom quantum simulators. Taken together, the toolbox advances a coherent physi-
cal narrative of intertwined orders and furnishes a methodology that is portable to
extended Hubbard, ¢-J, multi-band, and other well-defined quantum lattice models,
while readily interfacing with snapshot-based experimental platforms.

Starting from the physical motivation and lattice modeling, we review how strong
on-site repulsion gives rise to Mott physics and antiferromagnetism, thereby posi-
tioning the 2D Hubbard model on the square lattice as a minimal low-energy descrip-
tion relevant to high-T, cuprates. We explain the reduction from multi-band formu-
lations to an effective one-band Hamiltonian and emphasize the role of particle-hole
asymmetry induced by NNN hopping t’. In conjunction with charge doping, this ¢’
term serves as a tunable source of magnetic frustration that reshapes the compe-
tition between stripe order and d-wave pairing. We further survey zero- and finite-
temperature numerical approaches at a conceptual level — QMC, DMRG, PEPS, and
their finite-7" counterparts — highlighting complementary strengths and limitations,
before introducing the emergence of transformer-based Al as an analysis paradigm
capable of reading snapshot data and recognizing correlation patterns without prior
knowledge of any specific order parameters.

On the methodological side, we consolidate the formal machinery and compu-
tational infrastructure. We specify the Hubbard Hamiltonian, analyze particle-hole
symmetry on the square lattice, and delineate notable derivative models. On the TN
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side, we develop the tensorial building blocks for MPS, MPO, and PEPS, includ-
ing fermionic and SU(/N) symmetry implementation, canonical forms, PCA diag-
nostics, LRA techniques, environment contraction via CTMRG, and snapshot sam-
pling for iPEPS. The algorithmic sections detail ground-state optimization (DMRG
and iPEPS updates), the exponential-cooling philosophy of XTRG with variational
MPO sum/product handling, and practical advances that improve accuracy without
compromising efficiency. Afterwards, we set out design principles for Al systems
in scientific workflows, elaborate encoder-only, decoder-only, and encoder-decoder
variants for discrimination, autoregressive and context-conditioned generation, and
examine ongoing debates concerning the interpretability and generalization of the
attention mechanism.

Three capstone studies then operationalize this toolbox along a single through-
line. A symmetry-preserved iPEPS analysis at 7'=0 performs a controlled compar-
ison between stripe-admitting and stripe-forbidden sectors, demonstrating that in-
creasing magnetic frustration — especially for positive t' — systematically impairs
stripe formation and stabilizes a uniform state with a robust d-wave singlet pairing.
A finite-temperature campaign using an enhanced 1s* XTRG scheme achieves rapid
cooling, connecting thermal observations to ground-state benchmarks, revealing the
strengthening of pairing tendencies at low 7" and the emergence of pseudogap be-
havior. Finally, an interpretable Al analyzer is trained to identify salient correlation
patterns in snapshot data, facilitating a universal omnimeter for ultracold-atom quan-
tum simulators. Collectively, these researches instantiate a unified, extensible work-
flow that proceeds from Hamiltonian specification through ground-state and thermal
characterization, and to Al-assisted inference, in a manner readily transferable to
other strongly correlated many-body lattice systems.

Implications of ¢’ in the Hubbard Model

The significance of the NNN hopping terms (¢') in the Hubbard model gained trac-
tion with the consensus of the multi-messenger handshake showing no substantial
SC orders in the minimal Hubbard model. Therefore, anticipation is vested in the ¢’
term for its improved real-world relevance and the explicit breaking of particle-hole
symmetry. First-principles electronic structure calculations (DFT/LDA) [302, 303]
determine the Cu-O antibonding-band dispersion and thereby differentiate electron-
like from hole-like band topologies across cuprate families; systematic downfold-
ing of this dispersion onto a minimal tight-binding representation fixes the sign and
magnitude of ¢. The resulting parametrization implies ¢’ < 0 for systems whose
low-energy physics is hole-doped and ¢’ > 0 for electron-doped compounds.

Yet large-scale numerical studies paint a different picture. Most state-of-the-art
simulations concur that negative ¢’ suppresses SC orders, whereas positive ¢’ en-
hances them [48, 56, 158, 159,372,373] — a trend at odds with experiments, where
hole-doped cuprates display higher T;. and more robust SC than their electron-doped
counterparts. Beyond pairing, Section 3.1 shows that AFM order spans a broader
doping range for ¢’ <0 than for ¢’ >0, with SC emerging only at overdoped regimes,
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again reversing the experimental pattern in which electron-doped materials exhibit
the wider AFM dome. Altogether, these observations imply that, to align with the
phenomenology of order parameters, one should effectively assign ¢’ > 0 (t' <0) to
hole-doped (electron-doped) systems.

This reasoning does not warrant abandoning the established first-principles de-
termination of ¢ from band structure. Rather, it suggests that band-structure consid-
erations are only weakly predictive of the mechanisms that trigger superconductiv-
ity. Additional factors — such as interference among hopping pathways mediated by
oxygen orbitals or the magnetic frustration induced by ¢’ — may exert a more pivotal
influence on pair formation and the global phase diagram, while leaving the gross
band structure largely intact. This perspective furnishes a guiding principle for future
work regarding the decisive underlying mechanism of high-7,. superconductivity.

Multi-messenger Strategy in Solving Quantum Many-Body Systems

The intricate nature of strongly correlated quantum many-body systems often pre-
cludes a single numerical technique from delivering a comprehensive solution. Each
computational approach carries inherent strengths and limitations, dictated by its
foundational assumptions and algorithmic design. In the 2D Hubbard model, for
instance, QMC methods excel around half-filling but grapple with severe sign prob-
lems upon charge doping; DMRG attains high accuracy for ground-state properties
in quasi-1D geometries yet faces acute scaling challenges in genuine 2D; and PEPS
offers a natural representation for 2D systems and efficiently captures area-law en-
tanglement, but is constrained by the accuracy of environment contraction and com-
pression schemes. A similar situation also arises for finite-temperature simulations:
METTS, finite-T' PEPS, XTRG, and tanTRG each provide distinct advantages, ac-
companied by equally distinct trade-offs.

Despite these well-known facts, the computational community often fails to re-
spect the complementarity of methods, privileging a single approach and striving to
push it beyond competing alternatives. Parallel patterns also occur in the Al commu-
nity, where researchers and engineers have often been overly obsessed with achieving
the so-called state-of-the-art (SOTA) performance on evaluation scores, while under-
weighting the systematic biases and limitations inherent to the selected architectures
and training corpora.

Such tendencies risk overreliance on single-source/method/ansatz evidence and
the concomitant loss of insights gleaned from alternative perspectives. Illustrative,
and in hindsight cautionary, is the report of spurious SC orders in ¢’ /t <0 via DMRG
on an overly narrow width-4 cylinder [156]; this claim was subsequently challenged
and refuted by wider-cylinder DMRG studies [159, 372-375] and by iPEPS analy-
ses [48]. A naive argument might suggest that, despite geometric mismatch, DMRG
should recover the essential physics given sufficiently large bond dimension. In prac-
tice, however, the stringent entanglement constraints imposed by narrow cylinders
can lead to even qgualitatively incorrect conclusions relative to the 2D thermodynamic
limit.
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These experiences collectively motivate a multi-messenger strategy in which di-
verse numerical methods are deployed in concert to interrogate the same physical
problem. By leveraging the complementary strengths of each approach and cross-
validating their outcomes, one can arrive at a more reliable and nuanced under-
standing of complex quantum phenomena. This philosophy underpins our integrated
workflow, which combines ground-state iPEPS, finite-7" XTRG, and Al-assisted
snapshot analysis to deliver a holistic and self-consistent perspective on the 2D Hub-
bard model.

Future of the Autoregressive NQS Ansatz

Neural Quantum States (NQS) [179, 376, 377] have demonstrated remarkable effi-
cacy in tackling challenging quantum many-body problems. Among recent advances,
the Neural Transformer Backflow (NTB) [378-380] ansatz and autoregressive NQS
architectures [180, 182, 183,381,382] have achieved state-of-the-art performance on
fermionic lattice systems. Notably, the NTB ansatz has shown strong competency in
the notoriously difficult regimes of the Hubbard model [84]. However, certain qual-
itative features reported by NTB are not fully consistent with those obtained from
TN simulations — plausibly due to autocorrelations inherent to Markov-chain Monte
Carlo (MCMC) sampling.

Autoregressive neural networks circumvent this bottleneck by directly parameter-
izing the overlap between a quantum state and the many-body Fock basis. Concretely,
a quantum state |¢)) may be expanded using the probability p(c) and phase ¢ () as

W) = S u/p(0)e(@)[5), 4.1)

where 0 = {01, 09, ..., } denotes a many-body configuration of a length- L lattice
system. The autoregressive NQS factorizes the joint probability distribution into a
product of conditional probabilities:

p(@) = [1, ploilo<i), (4.2)

thereby yielding a normalized distribution amenable to unbiased ancestral sampling.
A practical complication is the additional phase factor ¢(c), which increases ar-
chitectural complexity and complicates training within the Variational Monte Carlo
(VMC) framework. A viable remedy is to introduce a pre-training stage [183,326] us-
ing a curated set of probable configurations, e.g., sourced from experiments or high-
fidelity simulations. Empirically, such pre-training markedly improves optimization
stability and convergence. Consequently, constructing a high-quality dataset for pre-
training the autoregressive NQS is of central importance at the current stage.

A comprehensive TNS scan of the target Hamiltonian provides precisely such a
high-quality dataset. More specifically, one can perform sequential sampling from
reduced density matrices obtained via TNS, while logging the diagonal elements
to supply ground-truth conditional probabilities p(c|o ;). In parallel, approximate
overlaps (o) can be extracted by projecting the TN state onto basis configurations
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|o), which in turn constrains the phase ¢ (o). With a suitable gauge choice, the con-
tinuous phase may effectively collapse into two discrete values, 0 or 7 (equivalently,
signs 1). Consequently, highly precise overlap magnitudes are unnecessary for es-
tablishing reliable phase labels. These robust targets enable effective pre-training
of the autoregressive NQS and are expected to substantially accelerate and stabilize
subsequent VMC fine-tuning.

Optionally, one can further employ an encoder-decoder architecture [383] in
which the encoder accepts system parameters (e.g., chemical potential, on-site in-
teraction, NNN hopping, etc.), and the decoder performs autoregressive generation
conditioned on the encoded context. This design aims to train a single, unified model
capable of representing quantum states across a continuum of parameter settings.
Unlike TN methods, which typically require re-optimization in their entirety when
parameters change, the encoder-decoder NQS only necessitates updating the encoder
(potentially with an additional LoRA). This approach promises a significant reduc-
tion in the computational effort required to chart complex many-body phase spaces.
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