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Summary

Benchmark studies are an important tool for assessing the properties of statistical meth-

ods by evaluating and comparing them on simulated or real data. Conducting such studies

requires researchers to make many choices, for example the specific methods to compare

as well as the data and performance measures to use for the assessment. From applied

research, which examines the models produced by methods rather than the methods them-

selves, it is well known that such flexibility, combined with the inherent non-neutrality

of researchers, may lead to results biased in the direction of their expectations. This

deviation can be referred to as optimistic bias and may, for example, manifest as false

positive rejections in hypothesis testing. In light of this, there is concern that optimistic

bias may also occur in benchmark studies. Such bias is particularly likely to arise in

studies that accompany the proposal of a new method, where researchers are clearly not

neutral, potentially causing false claims of superiority.

This thesis adds to existing work by broadening the discussion on how optimistic bias

can arise in benchmark studies, while also addressing the possibility that performance

differences between studies result from factors other than optimistic bias. Furthermore,

it provides additional strategies to reduce optimistic bias. To this end, the cumulative

thesis comprises four contributions.

The first contribution considers the often-overlooked role of preprocessing steps, such as

variable selection or transformation, in the generation and evaluation of prediction models.

By formalizing these choices as preprocessing hyperparameters, it highlights their impact

and potential for misuse. While being the only contribution not situated in methodologi-

cal but in applied research, the insights of this contribution are relevant to both contexts,

as the evaluation procedures it discusses closely parallel those used in benchmark studies.

The second contribution extends an existing benchmark study to empirically illustrate

how results can vary when different design and analysis decisions are made, and how this

variability can be easily exploited to obtain favorable results. As the first contribution, it

also examines important but rarely addressed choices, specifically the handling of miss-

ing performance values and the derivation of method rankings. It further proposes an

approach for visualizing the results obtained from different benchmark variants.

The widely noted tendency for newly proposed methods to perform best in the benchmark

studies accompanying their introduction is the focus of the third contribution. Through a

cross-design validation experiment, where two methods are reevaluated using each other’s

original benchmark study setup, it explores the roles of optimistic bias, researcher ex-

pertise, and mismatches between original and subsequent study settings in explaining

performance differences.

Finally, the fourth contribution focuses on the choice of data in benchmark studies, in

particular the generation of data using parametric simulations. A common approach is



to base these simulations on real datasets, yet in practice only one or two datasets are

typically used, and the rationale for their selection is often unclear. In addition to formal-

izing real-data-based parametric simulations, the fourth contribution promotes a more

systematic procedure for selecting real datasets, clarifying the data settings to which the

benchmark study’s conclusions are intended to generalize and increasing their represen-

tativeness for that scope.



Zusammenfassung

Benchmarkstudien, in denen Methoden anhand simulierter oder realer Daten evaluiert

und verglichen werden, sind ein wichtiges Instrument zur Beurteilung der Eigenschaften

statistischer Methoden. Die Durchführung solcher Studien erfordert zahlreiche Entschei-

dungen, die von den Forschenden getroffen werden müssen. Dazu gehört beispielsweise die

Auswahl der zu vergleichenden Methoden sowie der Datensätze und Performance-Maße,

die für die Evaluation verwendet werden sollen. Aus der angewandten Forschung, wel-

che nicht die Methoden selbst, sondern die von ihnen erzeugten Modelle untersucht, ist

hinlänglich bekannt, dass eine solche Flexibilität in Verbindung mit fehlender Neutralität

der Forschenden zu Ergebnissen führen kann, die in Richtung ihrer Erwartungen verzerrt

sind. Diese Verzerrung kann als optimistischer Bias bezeichnet werden und sich beispiels-

weise in einer fälschlichen Ablehnung der Nullhypothese im Kontext von Hypothesentests

äußern. Vor diesem Hintergrund besteht die Möglichkeit, dass ein solcher Bias auch in

Benchmarkstudien zu finden ist. Besonders wahrscheinlich ist dies in Studien, welche die

Vorstellung einer neuen Methode begleiten, da die Forschenden hier offenkundig nicht

neutral sind, was zu einer Überschätzung der Methodenperformance führen kann.

Diese Dissertation erweitert die bestehende Literatur, indem sie die Diskussion darüber,

wie ein optimistischer Bias in Benchmark-Studien entstehen kann, vertieft und zugleich

die Möglichkeit berücksichtigt, dass Performance-Unterschiede zwischen Studien auch auf

andere Faktoren zurückzuführen sind. Darüber hinaus werden zusätzliche Strategien zur

Verringerung von optimistischem Bias vorgestellt. Diese Aspekte werden in vier Beiträgen

untersucht.

Der erste Beitrag befasst sich mit der oft vernachlässigten Rolle von Preprocessing-

Schritten, etwa der Selektion oder Transformation von Variablen, bei der Entwicklung

und Evaluation von Prädiktionsmodellen. Durch die formale Einordnung dieser Entschei-

dungen als Preprocessing-Hyperparameter wird deren Bedeutung und das Risiko einer

methodisch unsachgemäßen Handhabung deutlich gemacht. Obwohl dieser Beitrag als

einziger nicht im Bereich der methodologischen, sondern der angewandten Forschung an-

gesiedelt ist, sind die gewonnenen Erkenntnisse für beide Kontexte relevant, da die be-

schriebenen Evaluationsverfahren denen in Benchmarkstudien weitgehend entsprechen.

Der zweite Beitrag erweitert eine bestehende Benchmarkstudie, um empirisch zu zeigen,

wie stark sich die Ergebnisse verändern können, wenn einzelne Komponenten der Studie

variiert werden, und wie diese Variabilität ausgenutzt werden kann, um vorteilhafte Er-

gebnisse zu erzielen. Wie der erste Beitrag betrachtet auch dieser wichtige, aber selten

untersuchte Entscheidungen, hier insbesondere den Umgang mit fehlenden Performance-

Werten und die Erstellung von Methodenrankings. Darüber hinaus wird ein Ansatz zur

Visualisierung der Ergebnisse verschiedener Varianten einer Benchmarkstudie vorgestellt.

Die weithin beobachtete Tendenz, dass neu entwickelte Methoden in Benchmarkstudien



zur Einführung der Methode die beste Performance aufweisen, steht im Fokus des dritten

Beitrags. Anhand eines Cross-Design-Validation-Experiments, in dem zwei Methoden in

dem ursprünglichen Benchmark-Setup der jeweils anderen Methode erneut evaluiert wer-

den, wird untersucht, welche Rollen der optimistische Bias, die Expertise der Forschenden

und Abweichungen zwischen den ursprünglichen und den späteren Studiensettings bei der

Erklärung von Performance-Unterschieden spielen.

Der vierte Beitrag widmet sich schließlich der Datenauswahl in Benchmarkstudien, ins-

besondere der Erzeugung von Daten mittels parametrischer Simulationen. Eine gängige

Vorgehensweise besteht darin, diese Simulationen auf realen Datensätzen zu basieren; in

der Praxis werden jedoch meist nur ein oder zwei solcher Datensätze verwendet und die

Kriterien für deren Auswahl sind oft unklar. Neben der formalen Behandlung realdatenba-

sierter parametrischer Simulationen wird in diesem Beitrag ein systematisches Verfahren

zur Auswahl geeigneter Datensätze vorgeschlagen, das die Datensettings, auf welche die

Schlussfolgerungen der Benchmarkstudie generalisiert werden sollen, transparenter macht

und zugleich ihre Repräsentativität für diesen Zielbereich erhöht.
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1 Introduction and motivation

Methodological research in statistics and related computational fields generally encom-

passes all activities aimed at advancing statistical methods. While the development of

new methods is a central focus, methodological work also involves generating evidence

about their properties. Such evidence can be obtained through theoretical analysis, but

an equally important component is the collection of empirical evidence by evaluating and

comparing methods on simulated or real data (Heinze et al., 2024). Work of this kind

can be referred to as benchmark studies and may serve different purposes, such as guiding

applied method users in making informed choices for a given task and assisting method

developers in identifying opportunities for further improvement (Weber et al., 2019).

Given the considerable impact that benchmark studies can have on multiple research

fields, it is particularly important that they are conducted with sufficient rigor to en-

sure valid conclusions. To identify potential threats that could undermine the conclusions

drawn from benchmark studies, it is useful to first review considerations already discussed

in applied research, an approach also taken by Boulesteix et al. (2017) and Hullman et al.

(2022). In contrast to methodological research, applied research does not aim to eval-

uate methods, but employs the models they produce to address substantive questions.

Over the past two decades, replication efforts in many applied research fields, including

psychology and preclinical cancer biology, have frequently been unsuccessful, that is, at-

tempts to repeat the original study’s analysis with new data have failed to obtain the

same results (see, e.g., Camerer et al., 2018; Errington et al., 2021; Open Science Collab-

oration, 2015). These outcomes have raised concerns about a possible replication crisis

(see Wiggins and Christopherson, 2019 for a concise overview) and echo earlier warnings

by Ioannidis (2005), who provocatively argued that “most published research findings are

false.”

As one possible reason for non-replicable results, practices commonly referred to as p-

hacking, fishing expeditions, or data dredging have been identified (e.g., Davey Smith,

2002; Head et al., 2015; Munafò et al., 2017; Wagenmakers et al., 2012). In essence,

these terms describe the (often unintentional) misuse of researcher degrees of freedom

(Simmons et al., 2011), which refer to the set of choices open to researchers during data

collection and analysis. If researchers make corresponding decisions in a way that sup-

ports their intended outcomes (often coinciding with what is publishable), this can lead

to optimistically biased results, that is, results that systematically deviate from the truth

in the direction of the researchers’ hopes or expectations, with common manifestations

including false rejections of the null hypothesis or inflated effect sizes (see, e.g., Ioannidis,

2008; Simmons et al., 2011).

In light of these considerations, it is reasonable to reflect on whether optimistic bias

may also be present in the empirical evaluation of methods, potentially contributing to a
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“replication crisis in methodological research” (Boulesteix, Hoffmann, et al., 2020). Such

concerns are particularly pronounced for benchmark studies that accompany the proposal

of a new method, as in this case researchers have a strong interest in presenting their

method as superior (e.g., Boulesteix et al., 2013; Norel et al., 2011). Indeed, multiple

empirical studies illustrate how readily optimistic bias can be introduced in such studies

(e.g., Jelizarow et al., 2010; Keogh & Kasetty, 2003; Macià et al., 2013; Pawel et al., 2024;

Ullmann et al., 2023; Yousefi et al., 2010), typically focusing on researcher degrees of free-

dom related to the data component (i.e. the selection of real data sets or the generation of

simulated data) or to the choice and implementation of the methods under comparison.

This thesis aims to complement this line of meta-methodological work in several ways. In

addition to proposing a way to systematically report and analyze the results of different

benchmark study variants, it broadens the scope of the discussion by highlighting that

optimistic bias can also occur in benchmark studies not introducing a new method, and by

examining a wider range of researcher degrees of freedom. In particular, it considers the

flexibility in aggregating raw performance values into method rankings and in handling

missing performance values, the latter being an aspect that has generally received little

attention in methodological research until recently (Pawel et al., 2025; Wünsch et al.,

2025). Furthermore, although for example Jelizarow et al. (2010) explicitly show how

the selection of variables can be exploited to achieve favorable method performance, it

remains insufficiently recognized in both methodological and applied research that the

choices concerning such preprocessing steps essentially constitute hyperparameters of the

full analysis pipeline. Correspondingly, their impact and potential for misuse have re-

ceived little attention. By providing a formal treatment of this issue, this thesis also seeks

to contribute to closing this gap.

In addition to understanding how optimistic bias can arise, an equally important ques-

tion concerns its prevalence. A valuable investigation in this regard is provided by Buchka

et al. (2021), who compare the relative performance of newly proposed methods to their

performance in subsequent studies conducted by other researchers. Most methods per-

form worse in these later evaluations, which may indicate optimistic bias. However, such

discrepancies can also result from factors other than optimistic bias, specifically differ-

ences in the expertise of those applying the methods or mismatches between the settings

used in the subsequent studies and those to which the original study’s conclusions were

intended to generalize. While the relevance of researcher expertise (e.g., Boulesteix et al.,

2017; Duin, 1996) and issues of unclear generalization with respect to data settings (e.g.,

Boulesteix, Hable, et al., 2015; Strobl & Leisch, 2024) have already been discussed in

the meta-methodological literature, this thesis explicitly addresses these factors in the

context of assessing optimistic bias. In addition, in the specific context of simulating data

from real datasets, it proposes and formalizes a more structured approach to specifying

data generation, which, among other benefits, helps clarify the data settings to which a
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benchmark study’s conclusions are intended to generalize.

The remainder of this cumulative thesis is organized as follows. Sections 2-4 provide the

conceptual basis, drawing on the literature to give a general perspective on benchmark

studies and the notion of optimistic bias in this context. Specifically, Section 2 clarifies

key terminology, followed by a review of the main components of benchmark studies in

Section 3. Section 4 then examines optimistic bias in benchmark studies, focusing on

how it arises, the challenges in assessing it, and possible solutions. Section 5 summarizes

the four contributions of the thesis, and Section 6 outlines possible directions for future

research. The subsequent Sections A-D contain the four contributions as presented in

the four articles: Contribution 1 (Sauer et al., 2024), Contribution 2 (Nießl et al., 2022),

Contribution 3 (Nießl et al., 2024), and Contribution 4 (Sauer et al., 2025).

2 Terminology

To provide a clear basis for the discussions that follow, this section defines the terms

benchmark study (Section 2.1) and statistical method (Section 2.2).

2.1 Benchmark study

In this thesis, the term benchmark study refers to studies that evaluate and compare

methods using simulated or real data to assess their empirical properties. Depending on

the research field and the specific types of methods and data considered, alternative terms

may be encountered, including comparison study (e.g., Boulesteix et al., 2013), method

evaluation study (e.g., Kreutz, 2016), (empirical) methodological study (e.g., Lange et

al., 2025), or comparative simulation study (e.g., Pawel et al., 2024). Although the ter-

minology in Contributions 1–4 also varies depending on the context of each study, this

thesis consistently uses the term benchmark study, as the contributions primarily focus on

method examples from machine learning and bioinformatics, where this term is commonly

used (e.g., Brooks et al., 2024; Hothorn et al., 2005; Weber et al., 2019).

To further clarify how benchmark studies are understood in this thesis, it is worthwhile

to briefly discuss a few study types that are regarded as included or excluded. First,

although benchmark studies (and also the term empirical) are sometimes associated ex-

clusively with real data (e.g., Boulesteix et al., 2017), the definition adopted here, as

stated above, explicitly includes both real and simulated data. This is consistent with

the usage in, for instance, Hothorn et al. (2005) and Weber et al. (2019). Second, while

studies comparing multiple methods are the primary focus (which also aligns with the

common understanding of benchmark studies), studies evaluating a single method are

also included. Obviously, statements in the thesis that assume the presence of multiple

methods do not apply in such cases. Third, only benchmark studies that are published
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in some form (e.g., in a scientific journal or in conference proceedings) are considered.

These are typically either studies that are part of methodological papers introducing a

new method, or standalone studies that explicitly focus on the comparison of existing

methods. In the former case, the benchmark component must be used to draw conclu-

sions about the empirical properties of the new method. Purely illustrative elements, such

as demonstrations of how to implement the method or interpret its output (Boulesteix,

2013), are not sufficient to qualify as a benchmark study in the sense intended here.

Benchmark studies comparing only existing methods may, under certain conditions, also

be referred to as neutral benchmark studies (Boulesteix et al., 2013), with the specific cri-

teria for this term outlined in Section 4.1. Finally, although competitions or community

challenges can also be regarded as benchmark studies, they will not be treated as such.

These formats are coordinated externally rather than conducted by a single research team,

with data and evaluation prespecified by the organizers and the methods implemented by

various participants (Weber et al., 2019). While they represent valuable complements to

the types of studies discussed here, they typically focus less on investigating the proper-

ties of individual methods and more on what can be achieved under a specific data and

evaluation setup, while also raising distinct methodological and practical considerations

that are beyond the scope of this thesis (Kodalci & Thas, 2024; Kreutz, 2016).

2.2 Statistical method

In describing benchmark studies as evaluating and comparing statistical methods, the

term statistical is understood in a broad sense to include, for example, machine learning

algorithms and computational methods commonly used in bioinformatics (for simplicity,

the qualifier statistical will be omitted in the following). Moreover, while the term method

might initially suggest a core analytical procedure (such as a statistical test or a machine

learning algorithm), it is not necessarily limited to these. For example, it may refer only

to a specific component or aspect of such a core procedure (e.g., a particular hyperparame-

ter), or to different pre- and postprocessing steps that are part of the overall data analysis

pipeline (Demšar, 2006; Siepe et al., 2024). More generally, in the context of benchmark

studies, the term method can refer to any part of a data analysis pipeline that aims to

recover a specific target (i.e. the ground truth of interest), as determined by the task at

hand. Common targets include estimands (for estimation tasks), true outcome values (for

prediction tasks), true hypotheses (for hypothesis testing tasks), or design characteristics

such as the optimal sample size (for sample size calculation tasks); see Morris et al. (2019)

and Siepe et al. (2024) for an overview.

To give concrete examples of methods that may be evaluated in a benchmark study, five

tasks and associated methods, all considered in the empirical illustrations of the four

contributions of this thesis, are outlined below.
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Testing treatment differences for ordinal outcomes A simple task featured in

Contribution 4 is the comparison of treatments in a two-arm randomized controlled trial

with an ordinal outcome. Here, the target is the validity of the null hypothesis of no

treatment difference. Well-known methods that may be used for this task include the

Chi-square test and the Wilcoxon rank-sum test (e.g., Agresti, 2010).

Prediction of palliative care costs Contribution 1 examines the prediction of costs

for patients in a palliative care setting based on multiple variables (e.g., cognitive or

physical symptoms) describing the care situation. This is an example of a supervised

machine learning task, where prediction models are trained on a dataset with observed

outcome values, and the target is the true outcome values of new observations (here, the

palliative care costs; Bischl et al., 2023). All methods applied in Contribution 1 are tree-

based algorithms and include the Classification and Regression Tree algorithm (Breiman

et al., 1984) and the Conditional Inference Tree algorithm (Hothorn et al., 2006). For an

introduction to tree-based algorithms, see Strobl et al. (2009).

Prediction of survival outcomes using multiomic data Contribution 2 also con-

siders a supervised machine learning task, but with a survival outcome (i.e. information on

the time of death and whether the patient is deceased or censored) and different variables

used for prediction. Specifically, these variables include both clinical data and multiple

types of high-dimensional molecular data, such as genomic and proteomic data (referred

to as multiomic data; Subramanian et al., 2020). Methods designed for this type of task

include Block forests (Hornung & Wright, 2019) and Priority-Lasso (Klau et al., 2018).

For an overview and comparison of these and other methods, see the benchmark study

by Herrmann et al. (2021).

Cancer subtyping using multiomic data Another application that uses multiomic

data is cancer subtyping, which is considered in Contribution 3. The aim is to identify

biologically or clinically meaningful clusters (in this context referred to as subtypes), with

the target being the true, but unknown, clusters (Duan et al., 2021). Unlike the supervised

cases above, this is an unsupervised learning task, as no true outcome values are available

(Hastie et al., 2009). Methods suitable for this task include NEMO (Rappoport & Shamir,

2019) and PINSPlus (Nguyen et al., 2019); see the review by Subramanian et al. (2020)

for a broader overview.

Differential gene expression analysis Both Contribution 3 and Contribution 4

employ methods for differential gene expression analysis using RNA-Seq data, which is

a specific type of omic data. In this task, the aim is to identify genes whose RNA-Seq

expression levels differ across conditions (e.g., cancer vs. normal tissues), with the target

being, for each gene, the validity of the null hypothesis that it is not differentially expressed
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between conditions. Popular methods include edgeR (Robinson et al., 2009) and DESeq2

(Love et al., 2014). For an overview and comparison of these and other methods, see, for

example, the benchmark study by Baik et al. (2020).

3 Components of benchmark studies

Although benchmark studies encountered in the literature can differ substantially in how

they are conducted, they typically follow a similar overarching structure. This section

distinguishes three main building blocks of a benchmark study: the aim (Section 3.1), the

study design (Section 3.2), and the analysis of results (Section 3.3). Each will be discussed

in detail in the following, along with the individual components they comprise and the

key decisions researchers face in specifying them. An overview is provided in Table 1.

Table 1: Overview of benchmark study components.

Aim (Section 3.1) Operationalization Section Design vs.
analysis

Methods of interest Method implementations
A1, . . . ,AM

3.2.1

Design

Population of
data-generating
mechanisms

Data-generating mechanisms
G1, . . . ,GL (either specified
directly or implicitly via
D1, . . . ,DL)

3.2.2

Evaluation
perspective

Performance measures
P1, . . . ,PP , generation of nrep

sampled datasets

3.2.3

Handling of missing
performance values

3.3.1
Analysis

Derivation of method rankings 3.3.2

3.1 Aim

The most fundamental decision in constructing a benchmark study lies in defining its

aim. At its core, this means formulating one or more research questions that the study is

intended to address. For simplicity, a single research question is assumed throughout this

thesis; in cases with multiple questions, the considerations apply to each one individually.

The research question is typically shaped by the intended audience of the benchmark

study (Weber et al., 2019). For instance, if directed at applied method users, the ques-

tion might take the form: “Which method should be preferred in which data settings

encountered in specific real-world applications?” In contrast, for method developers, a

more relevant question would be: “In which data settings does a specific method still
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require improvement?” The formulation of the research question is usually also guided

by the development stage of the methods of interest, or more precisely, by the phase of

methodological research the benchmark study aims to contribute to (a concept proposed

by Heinze et al. 2024 in analogy to the phases of drug development). For example, when

evaluating a newly proposed method, a corresponding question could be of the form: “Are

there data settings where the new method offers clear advantages over existing alterna-

tives?” or “Does the new method perform better than relevant competitors with respect

to specific evaluation criteria in data settings characterized by particular challenges?”

Conversely, when substantial empirical evidence already exists, a relevant question could

be formulated as: “How does the method perform in complex, extreme, or otherwise

atypical data settings relative to its initial field of application?”

As a related but separate dimension, the formulation of the research question also varies

along the continuum between exploratory and confirmatory research (also referred to as

hypothesis-generating and hypothesis-testing research), a distinction that has long been

discussed in applied research and has recently gained attention in empirical methodolog-

ical research (see Herrmann et al. 2024; Lange et al. 2025 for detailed discussions). This

dimension can be interpreted as reflecting the strength of evidence the study aims to pro-

vide. Exploratory-style questions may take the form “In the given data settings, where

could method A potentially perform better than method B?”, while confirmatory-style

questions typically involve a hypothesis that can be evaluated, such as “Does method A

perform better than method B in a given data setting?”

Despite differences in emphasis, all of these (still broadly formulated) questions can be

viewed as instances of a generic structure: “How do [methods of interest] perform accord-

ing to [evaluation perspective] in a [population of data-generating mechanisms1]?” Here,

the bracketed components serve as placeholders that can be instantiated in various ways

and at different levels of detail (specific examples will be given throughout Sections 3.2

and 3.3). Importantly, the data component in this structure does not refer to datasets but

to data-generating mechanisms (DGMs), also referred to as data-generating processes. A

DGM can be viewed as the complete probabilistic description of how data is generated, in-

cluding all distributions, structural relationships, and parameters, whether fully specified

in simulations or implicitly assumed in real-data contexts (Hothorn et al., 2005; Morris

et al., 2019; see Section 3.2.2 details on the different types of data). Referring instead

to a population of datasets, as done for example by Boulesteix et al. (2017), Brombacher

et al. (2025), and Lange et al. (2025), is also valid and consistent with the definition

above, since datasets are realizations of DGMs. However, focusing on a population of

1In Contribution 4, the term domain of interest is used to refer to the population of DGMs the
benchmark study aims to draw conclusions about, but specifically refers to populations of real-world
DGMs. While this is often the case in practice, a benchmark study may also consider DGMs that do not
occur in the real world. To avoid redefining the meaning of domain of interest as used in Contribution 4,
this term will not be used here.
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DGMs instead of datasets is arguably more appropriate in the context of methodological

research, which (unlike applied research) is typically not concerned with specific datasets

but with performance across a broader range of data-generating scenarios. This focus is

especially clear in simulation studies, where it is standard practice to draw conclusions

about DGMs rather than about individual datasets.

As will be discussed in more detail in Section 3.2.1, an important consideration when

specifying the research question is that method performance will usually depend on the

expertise of the researchers implementing the methods (Duin, 1996). Therefore, unless

the benchmark study explicitly investigates robustness with respect to these factors (see

Section 3.2.3), any research question (regardless of how it is formulated) implicitly in-

cludes the qualifier: “Given the methods are applied by a user with specific expertise.”

Finally, note that the following Sections 3.2 and 3.3 proceed under the assumption of

a formally specified research question, neglecting the fact that this is likely an idealized

view. This issue, and the problems it can cause, will be addressed in more detail in

Section 4.

3.2 Design

The design of a benchmark study, as defined in this thesis, encompasses all components

that must be specified prior to executing the study in order to obtain raw performance

results.2 This includes the specification of method implementations (Section 3.2.1), data-

generating mechanisms (Section 3.2.2), and both performance measures and the procedure

for generating the sampled datasets (Section 3.2.3). Together with the analysis of per-

formance results (Section 3.3), the design serves to operationalize the research question

formulated in the aim.

3.2.1 Method implementations

The purpose of the method-related component of the study design is to translate the

method specification as stated in the research question (“[methods of interest]” in Table 1

and Section 3.1) into a set of M fully defined analysis pipelines A1, . . . ,AM that can be

evaluated within the benchmark study. The flexibility available in this process depends on

the level of detail with which the methods of interest are defined in the research question.

The broadest (and at the same time minimal) specification consists in identifying meth-

ods solely by the target(s) they are intended to recover. This ensures that performance

comparisons remain meaningful. Beyond this, corresponding method specifications are

often vague. They may refer to broad classes of methods (e.g., “tree-based algorithms”,

2The term “(study) design” may also be used in a broader sense to include aspects that are here
considered separately as analysis. This usage is also adopted in Contribution 3, mainly for pragmatic
reasons.
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“regularized regression methods”) or to criteria based on reputation or frequency of use

(e.g., “popular methods”, “state-of-the-art methods”). More explicit specifications are

typically found in benchmark studies evaluating a newly proposed method, where it is

at least inherently clear that the new method must be included. However, even in such

cases, the number and type of competing methods are often only loosely defined, (e.g.,

“relevant competitors”).

Accordingly, researchers must first define the M methods to be investigated, typically re-

ferring only to the specific part of the analysis pipeline that the study focuses on. For ex-

ample, this could be {Classification and Regression Tree, Conditional Inference Tree, . . . };
or, in studies considering preprocessing rather than core analytical procedures, {missing

value imputation using the median, imputation using k-nearest neighbors, . . . }. However,
specifying the general methods to be considered is typically not sufficient to define the full

analysis pipelines that will be executed. For each method, researchers must additionally

specify (i) the configuration of the method’s hyperparameters, (ii) the associated pre-

and postprocessing steps (or, more generally, all remaining steps in the pipeline if the

method is not the core analytical procedure), and (iii) the computational environment

and constraints. In the remainder of this thesis, a fully specified analysis pipeline will be

referred to as a method implementation A, while the term method will, as introduced in

Section 2.2, continue to denote the general form of a method under study (with a single

method typically giving rise to multiple method implementations).

This section continues by discussing the decisions required to specify a method implemen-

tation, as well as the role of researcher expertise in this process.

Hyperparameters The hyperparameters of a method, also referred to as method pa-

rameters (Boulesteix et al., 2013), generally determine the specific configuration of a

method and can substantially affect its performance (Bischl et al., 2023). For example,

for a tree-based algorithm, a hyperparameter may be the minimum number of observa-

tions in each terminal node, or the choice of splitting criterion (with the latter illustrating

that hyperparameters can also be categorical). Unless already specified in the research

question, all existing hyperparameters must be set as part of defining the method imple-

mentation, for which one of three approaches may be chosen. First, if available, default

values defined by the chosen software package (see below) can be used. Alternatively,

researchers may choose to adjust the defaults to improve the method’s performance. This

can be done either data-independently (based, for instance, on findings from previous

benchmark studies) or in a data-dependent way, commonly referred to as tuning or (data-

driven) hyperparameter optimization (e.g., Bartz et al., 2023; Bischl et al., 2023; Probst

et al., 2019). Tuning may be performed manually (often in an informal way) or, prefer-

ably, through an automated procedure. In the latter case, additional choices are required,

such as how candidate hyperparameter values are generated and when the tuning process
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is terminated. Further details on the purpose and selection of hyperparameters in the

context of supervised machine learning are provided in Contribution 1.3

Note that instead of fixing hyperparameter values, researchers may also specify the tuning

procedure itself as part of the method implementation, which is particularly common in

machine learning. The resulting method implementation can then be considered “self-

tuning” (Bischl et al., 2023). Importantly, this introduces stochasticity into the method

implementation (although other sources of stochasticity may already exist, such as random

feature selection in random forest algorithms; Bouthillier et al., 2021).

Pre- and postprocessing steps Although it may not receive particular attention

when the benchmark study focuses on comparing core analytical procedures, researchers

must still specify any pre- and postprocessing steps to ensure that the entire analysis

pipeline is clearly defined. As the name suggests, preprocessing can be defined as any

steps applied to a dataset in its rawest available form within the benchmark study, prior

to the core analytical procedure. This includes, for example, the handling of missing

values or the transformation and filtering of variables (Kapoor et al., 2024). In contrast,

postprocessing steps comprise all operations performed after the core analytical procedure

(Li et al., 2019). An example of this is the adjustment of p-values for multiple testing in

differential gene expression analysis. In principle, whether pre- and postprocessing steps

are applied in the analysis pipeline, and in what form, can also be treated as hyperpa-

rameters of the analysis pipeline (Binder & Pfisterer, 2024; Bischl et al., 2023), with all

considerations discussed above applying accordingly. For example, the decision of whether

to transform a variable, and the choice of transformation (e.g., logarithmic or square root),

can be regarded as two preprocessing hyperparameters (where the latter is conditional on

the former, as it is only relevant if the transformation is performed; Feurer and Hutter,

2019). Although this perspective is not yet widely established, it helps emphasize the

importance of pre- and postprocessing steps by linking them to the well-recognized influ-

ence of hyperparameters on method performance. In Contribution 1, this is formalized

and discussed in detail for preprocessing hyperparameters in the context of supervised

machine learning. The framing of pre- and postprocessing steps as hyperparameters will

also be adopted in the remainder of this thesis; unless stated otherwise, references to a

method’s hyperparameters will refer to the full set of hyperparameters of the analysis

pipeline in which the method is embedded.

Computational environment and constraints To fully specify a method imple-

mentation, researchers must also define the computational environment in which it is

3Although Contribution 1 adopts the perspective of applied method users (concerned with evaluating
the final prediction model produced by A) rather than the methodological focus of benchmark studies
(concerned with evaluating A itself), the evaluation procedures employed may, in fact, be the same.
Accordingly, all explanations in Contribution 1 that do not concern a “final prediction model” (which is
not relevant in benchmark studies and often does not exist) remain applicable.
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executed, as this affects both the feasibility and performance of the implementation. This

includes aspects such as the operating system, programming language, software packages

and their versions, as well as hardware specifications such as the number of CPU cores

and the available memory (Hodges et al., 2022; Pawel et al., 2025; Weber et al., 2019).

In addition, it is often necessary to define computational constraints that limit the use of

these resources, for example, by setting a maximum total runtime or restricting the time

available for hyperparameter tuning (Lucic et al., 2018; Wünsch et al., 2025).

Researcher expertise An important factor in method implementation is the expertise

of the researchers involved. In this context, expertise refers to both theoretical knowledge

of a method and the practical experience gained through its repeated use. Importantly,

it is not an additional choice to be made, but rather a latent factor that influences how

the decisions described above are made and that cannot be directly controlled (at most,

researchers with high expertise may deliberately mimic non-experts if this reflects the

target audience, but not the other way round). Expertise is particularly relevant when

setting hyperparameters. As stated above, three general strategies exist: using default

values, relying on data-independent decisions, or applying data-dependent tuning. Setting

aside the option of tuning, researchers with limited expertise typically rely on defaults,

while experienced researchers may be more willing to deviate from default values and

make informed decisions that are more likely to result in improved performance (Duin,

1996). Even when tuning is performed, expertise remains influential. For example, it

guides decisions about which hyperparameters are worth tuning (i.e. “tunability”; Probst

et al., 2019) and how to define suitable search spaces (Bischl et al., 2023). Expertise can

also affect how the computational environment is chosen and managed during execution.

For instance, experienced researchers may know which software packages are more efficient

or stable, and how to resolve issues that arise while running a method (e.g., when it fails

to execute as expected).

3.2.2 Data-generating mechanisms

To operationalize the population of DGMs specified in the research question (“[population

of data-generating mechanisms]” in Table 1 and Section 3.1) in terms of a concrete study

design, researchers must specify a set of L DGMs, G1, . . . ,GL, for which the performance of

the M method implementations (Section 3.2.1) is to be assessed. However, before defining

a concrete set of DGMs, a more general decision must be made regarding the type of data

to be used. When discussing both the choice of data type and the specification of a

concrete set of DGMs in the following, it will be assumed that only one type of data is

employed in the benchmark study, although in practice, multiple types may be combined

(Friedrich & Friede, 2024).
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Data type Two general options can be distinguished for the type of data used in

benchmark studies (see also Contribution 4 for a detailed discussion): parametric simu-

lation and the use of real data, with the corresponding benchmark studies referred to as

parametric simulation studies and real-data studies, respectively. They differ primarily in

how the DGMs are defined and how the datasets for method evaluation can be obtained.

In a parametric simulation, each DGM Gl is a parametric stochastic model that can be

represented in closed form and is fully researcher-specified (Morris et al., 2019; Schreck

et al., 2024). To assess method performance on a given Gl, nrep datasets are independently

drawn from Gl (with nrep set by the researchers) and used as inputs for the method imple-

mentations. Each such dataset will be referred to as a sampled dataset and is considered

a realization of the corresponding DGM (as the generation of sampled datasets pertains

to performance assessment rather than DGM specification, it is considered in more detail

in Section 3.2.3).

As an alternative to parametric simulation, researchers may choose not to define the

DGMs under study explicitly, but instead select L real datasets, D1, . . . ,DL, each as-

sumed to have been generated by a (largely) unknown DGM, G1, . . . ,GL (Hothorn et

al., 2005). As in parametric simulation, the goal remains to assess the performance of

each method implementation on G1, . . . ,GL; however, the specification of these DGMs is

determined only implicitly through the selection of the corresponding real datasets.4 Im-

portantly, for each Gl, only a single realization is available: the real dataset Dl (Friedrich

& Friede, 2024). Therefore, to estimate performance, researchers may either apply the

method implementations directly to Dl (implying nrep = 1), or use a resampling scheme

to draw datasets from Dl (again, see Section 3.2.3). This second strategy corresponds to

defining an emulated DGM, Ĝl, that is intended to approximate the unknown DGM Gl

in the sense that performance estimates obtained from Ĝl are similar to those that would

have been obtained if repeated sampling from the true DGM Gl were possible (Hothorn

et al., 2005). Regardless of whether the method implementations are applied directly to

the real datasets or to datasets drawn from an emulated DGM, the corresponding datasets

will, as in parametric simulation, be referred to as sampled datasets, while the original

datasets will continue to be referred to as real datasets D1, . . . ,DL (noting that for the

first strategy, the real and sampled datasets coincide).

The distinction outlined above can be further refined through the following remarks.

First, using an emulated DGM where datasets are generated via resampling from a real

dataset can also be viewed as a form of non-parametric simulation (e.g., Morris et al.,

2019), since the sampled datasets are not real datasets themselves (even if they consist

4This DGM-based perspective may be unfamiliar to researchers focused solely on benchmark studies
using real datasets, where performance is often assessed in terms of the datasets themselves rather than
their underlying DGMs. However, as already argued in Section 3.1, in methodological research, the
interest usually lies not in the dataset per se, but in what it represents: a DGM, which in turn reflects a
broader population of DGMs.
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of real observations). However, particularly in prediction contexts, it is more common to

categorize such resampling-based evaluations as real-data studies (e.g., Boulesteix, Hable,

et al., 2015). Second, real datasets may also be incorporated into parametric simulations,

for example by estimating parameters of a given DGM Gl from one or more real datasets.

This is discussed in detail in Contribution 4. Nevertheless, unlike in real-data studies,

the DGM of interest in such real-data-based parametric simulation is still Gl, not the

(unknown) DGM(s) underlying the real dataset(s) used to construct it.5 Third, it is also

possible to combine elements from both parametric simulation and resampling from real

datasets. This approach can be referred to as semi-parametric simulation, or, for specific

implementations, as statistical Plasmode simulation (Franklin et al., 2014; Schreck et al.,

2024). In the remainder of this thesis, however, only parametric simulation studies and

real-data studies are discussed explicitly. Still, statements about these two types of studies

can generally be understood to apply to the corresponding elements of semi-parametric

simulation studies.

The choice of data type typically depends on how performance is to be assessed and on the

population of DGMs the study aims to reflect. With respect to performance assessment,

parametric simulation studies have clear advantages: each DGM is fully specified and

known to the researchers, so the target(s) of interest are either analytically available or

can be reasonably approximated (Boulesteix, Groenwold, et al., 2020; Friedrich & Friede,

2024). In addition, performance can be estimated with high precision for each DGM, as,

in principle, any desired number of independent datasets can be generated (Boulesteix,

Groenwold, et al., 2020). In real-data studies, by contrast, only one realization per DGM

is available. As described above, researchers must either use this dataset directly or apply

resampling, both of which pose challenges for performance estimation (see Section 3.3.2).

Moreover, since the DGM underlying a given real dataset is unknown, the target(s) of

interest are often also unknown. This limits the set of usable performance measures (see

Section 3.2.3), particularly in tasks such as estimation or hypothesis testing. Exceptions

include prediction tasks with labeled data, where the target (i.e. the true outcome values)

is known, and datasets from controlled experiments, such as spike-in studies, where known

amounts of specific biomolecules are added to real samples (Brooks et al., 2024; Weber

et al., 2019).

When it comes to representing the population of DGMs that the benchmark study aims to

reflect, both data types present limitations. Parametric simulations can, in principle, be

designed to reflect any DGM that is encompassed by the population of interest. In prac-

tice, however, this population is typically broadly defined, and only a limited number of

DGMs can be implemented due to computational constraints (Friedrich & Friede, 2024).

Consequently, researchers must specifiy a subset of DGMs that is sufficiently representa-

5This distinction is why this thesis uses G (DGM of interest) and Ĝ (emulated DGM), while Contri-
bution 4 uses G (DGM of interest) and G∗ (DGM underlying a real dataset used to construct G).
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tive of the population, which is a non-trivial task. Additional challenges arise when the

goal is to represent a population of real-world DGMs. In such cases, it is often difficult

to specify DGMs that plausibly reflect the data structures and complexity encountered in

practice (see, e.g., the reviews by Bono et al. 2017; Fernández-Castilla et al. 2020; Guevara

Morel et al. 2022; Langan et al. 2017; Pénichoux et al. 2015; Welvaert and Rosseel 2014).

While this issue can partly be mitigated by the above-discussed option of constructing

DGMs based on real datasets, this raises the problem of identifying appropriate datasets

(see below).

In contrast to parametric simulations, evaluations using real datasets are not suitable for

studying extreme or otherwise specific DGMs, as researchers cannot control the DGM

underlying a given dataset. Although employing real data has clear advantages when the

goal is to reflect a population of real-world DGMs, identifying suitable datasets remains

difficult, as each dataset’s underlying DGM is largely unknown and its representative-

ness therefore uncertain. Combined with the generally limited access to real datasets,

there are concerns that the set of datasets (and the corresponding set of DGMs) selected

for real-data studies often constitutes a convenience rather than a representative sample

(Boulesteix, Hable, et al., 2015; Friedrich & Friede, 2024; Strobl & Leisch, 2024; Van

Mechelen et al., 2023).

Set of DGMs Once the data type has been specified, a concrete set of L DGMs must

be defined for which performance will be evaluated. As described above, this is done either

directly in parametric simulation studies or implicitly through the selection of real datasets

in real-data studies. As noted in the discussion on data types, the DGM population

of interest is typically defined in broad terms, with only a few characteristics precisely

constrained. For instance, it could be specified as all DGMs that generate data from

clinical trial settings with two treatment groups, a continuous outcome, and a violation

of a specific assumption (see Contribution 4 for this and further examples). Since the full

population usually cannot be covered, a representative subset of DGMs must be selected.

Practical constraints, as previously mentioned, mainly arise from limited computational

resources in parametric simulation studies and from restricted dataset availability in real-

data studies. In the latter case, researchers may rely on datasets already available to

them or obtain datasets from public repositories, where selection must consider not only

representativeness with respect to the DGM population but also quality-related aspects

such as sufficient documentation. A concrete example of a public repository, also used in

Contribution 2, Contribution 3, and Contribution 4, is The Cancer Genome Atlas (TCGA,

https://www.cancer.gov/tcga), which offers access to various types of omics data.
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3.2.3 Performance assessment

In addition to the methods of interest and the population of DGMs, the research ques-

tion also involves an evaluation perspective (“[evaluation perspective]” in Table 1 and

Section 3.1), which can be interpreted as encompassing all aspects that define what con-

stitutes a relevant evaluation of the considered methods. This includes one or more evalu-

ation criteria, describing the facets of method behavior the study intends to assess. Other

aspects of the evaluation perspective that relate to how performance results are analyzed

will be discussed separately in Section 3.3.6 To operationalize the evaluation criteria in

the study design, researchers must define one or more corresponding performance mea-

sures per criterion, resulting in a total of P1, . . . ,PP performance measures. In addition,

they must specify the procedure used to generate the sampled datasets, which depends

not only on the selected performance measures but also on the method implementations

and DGMs (Sections 3.2.1 and 3.2.2). Both components of performance assessment are

reviewed in the remainder of this section.

Performance measures Performance measures quantify how well a method recovers

a target of interest, or describe characteristics of the method that are relevant to this

recovery. In this thesis, a performance measure is interpreted as a function P(G,A) of a

DGM G and a method implementation A, implying that there is a true performance value

for each combination of method implementation and DGM, as also suggested by Morris

et al. (2019).7

In the following, some examples of evaluation criteria and corresponding performance

measures are given, based on benchmarking guidelines and related literature by Bokulich

et al. (2020), Mandl et al. (2025), Van Mechelen et al. (2023), Morris et al. (2019), Weber

et al. (2019), and Xie et al. (2021). A commonly used evaluation criterion is accuracy,

with corresponding performance measures including bias (for estimation tasks), root mean

squared error (for estimation or prediction tasks), or the Adjusted Rand Index (for cluster-

ing tasks). Importantly, these performance measures, like many others, require knowledge

of the target. In contrast, for evaluation criteria such as stability, corresponding perfor-

mance measures such as the variance of an estimator (in the context of estimation) can

be assessed without access to the target. Another example is agreement with reference

6In Contribution 3, the term evaluation criteria is used broadly to include both the choice of perfor-
mance measures and aspects related to the analysis of results. In this thesis, a more nuanced terminology
is adopted: the term evaluation perspective refers to both components, whereas evaluation criteria is used
exclusively for the aspects of method performance that are to be quantified by performance measures.

7In Hothorn et al. (2005), performance measures are defined conditional on a sampled dataset drawn
from a DGM G, making them random variables whose distribution is determined by G, and for which
different distributional characteristics (e.g., expectation, variance) can be assessed (a similar view is taken
in Bischl et al., 2023). This definition remains compatible with the one used in this thesis, where the true
performance value is identified directly with such a characteristic. However, some performance measures
listed in Table 6 in Morris et al. (2019) would, under the view of Hothorn et al. (2005), correspond to
different characteristics of the same random variable rather than distinct performance measures.
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methods, where the method’s output is compared to that of a predefined reference method

rather than to a known truth (e.g., the Jaccard index can be used as a performance mea-

sure in this context). Performance measures for efficiency-oriented evaluation criteria,

such as total runtime (for computational efficiency) or the number of model parameters

(for model simplicity), not only require no information about the target, but are also

typically independent of the target of interest. Finally, while most performance measures

are quantitative, certain evaluation criteria, such as biological plausibility, are often as-

sessed using qualitative performance measures, such as expert judgment of a method’s

consistency with prior findings in the literature.

As defined above, performance measures in this thesis refer to assessments made for a sin-

gle DGM and method implementation. However, some evaluation criteria require the use

of higher-level performance measures, obtained by summarizing individual assessments

across varying DGMs or method implementations. For example, the criterion scalabil-

ity (Bokulich et al., 2020; Weber et al., 2019) involves repeatedly assessing performance

(e.g., runtime) across DGMs of increasing complexity, with the results summarized into

a higher-level performance measure (e.g., the slope of runtime increase over DGM com-

plexity). Similarly, the criterion stability across hyperparameter configurations requires

performance to be evaluated across different hyperparameter configurations, each corre-

sponding to a distinct method implementation (Van Mechelen et al., 2023). In principle,

this can be seen as a special case of the broader criterion stability across expertise levels,

which would involve repeated performance assessment across different implementations

of the same method by different researchers, but is rarely applied in practice, as it is

challenging to realize within a single benchmark study (Boulesteix et al., 2017; Duin,

1996). However, it may be approximated using qualitative performance measures such as

user-friendliness or documentation quality (Weber et al., 2019), which serve as proxies for

the potential impact of expertise on performance.

In the remainder of this section and in Section 3.3, the focus is on quantitative perfor-

mance measures. However, statements that do not assume numerical values also apply to

qualitative performance measures. Furthermore, it will be assumed that no higher-level

performance measures are considered in the study design, although the discussed concepts

naturally extend to this setting.

Generation of sampled datasets As already described in Section 3.2.2, to enable

performance estimation for a given DGM G and method implementation A, one or more

sampled datasets are required, which serve as inputs to the method implementation. Ide-

ally, a large number of such datasets are drawn independently from G, which, however, is
only feasible in parametric simulation studies. In real-data studies, where only a single

realization from the DGM is available, performance estimation requires either analyzing

that dataset directly (nrep = 1) or applying a resampling scheme to define an emulated
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DGM, Ĝ, from which sampled datasets can be drawn (Hothorn et al., 2005). Although

this technically will yield an estimate under Ĝ, it is intended to approximate the true

performance value P(G,A) for the original DGM G.
In parametric simulation studies, formulas are available to derive nrep to achieve a desired

standard error (also referred to as Monte Carlo standard error) for common performance

measures (Morris et al., 2019; Siepe et al., 2024). However, the choice of nrep is typically

constrained by available computational resources. In real-data studies, when the dataset

D is not analyzed directly (i.e. nrep > 1), both nrep and the resampling scheme must be

specified. While various schemes are available, it is often unclear which scheme leads to

an emulated DGM Ĝ that best approximates the true DGM G (Schreck et al., 2024; Stolte

et al., 2024).

Generating sampled datasets based on a single real dataset D poses particular challenges

in the context of prediction, where each sampled dataset must itself comprise two distinct

parts: a training dataset for fitting the method implementation and a test dataset for

evaluating its performance. Otherwise, performance estimates may be optimistically bi-

ased due to overfitting (see, e.g., Efron, 1986; Hastie et al., 2009; Kuhn & Johnson, 2013).

Here, a commonly used approach is k-fold cross-validation (see, e.g., Hastie et al., 2009),

where D is partitioned into k folds, each used once as a test dataset while the remaining

folds serve as the training dataset. Importantly, even when a clear separation between

training and test datasets is maintained, performance estimates may still be overly opti-

mistic if observations from the test dataset were already used to tune the hyperparameters

of A. This can be avoided by not evaluating A as a method implementation with fixed

hyperparameters, but instead specifying it as a self-tuning method implementation (see

Section 3.2.1), implying that tuning is performed exclusively on the corresponding training

dataset. However, ensuring this separation typically requires a nested resampling scheme,

which is computationally expensive. While the issue of tuning-induced overoptimism can

arise in other tasks as well, it is most commonly discussed in the context of prediction

(e.g., Bischl et al., 2023). For a detailed discussion of resampling and hyperparameter

tuning for prediction tasks, see Contribution 1.

3.3 Analysis

After the study has been executed, the result is a collection of raw performance values,

with one value intended for each combination of performance measure, method imple-

mentation, DGM, and sampled dataset (i.e. P × M × L × nrep values, assuming nrep is

the same for each DGM). The subsequent analysis concerns how these results are further

processed and examined. Specifically, this includes how missing performance values are

handled (Section 3.3.1) and how method rankings, which ultimately form the basis for

performance conclusions, are derived (Section 3.3.2).
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3.3.1 Handling of missing performance values

Once the raw performance values are obtained, the first step is to check whether all in-

tended values are present. If not, this is referred to as missing or undefined performance

values. The latter term is suggested by Wünsch et al. (2025) to emphasize that such values

often do not exist, rather than merely being unobserved. However, the term missing re-

mains common (e.g., Pawel et al., 2025) and is used here, consistent with Contribution 2.

Pawel et al. (2025) distinguish three types of missingness. The first is DGM missingness,

which occurs when one or more sampled datasets are invalid (e.g., datasets containing

only one class when predicting class labels). The second is performance missingness,

where the method produces a valid output but the performance value is undefined (e.g.,

a calibration slope cannot be computed due to constant predictions). The third and most

complex is method missingness, where a method returns an invalid output despite being

applied to a valid dataset. The causes of method missingness are often unclear, which is

a natural consequence given that the considered methods are not fully understood and

are therefore investigated in the benchmark study. According to Wünsch et al. (2025),

common manifestations of method missingness (rather than explicit causes) include com-

putational errors (e.g., non-convergence), memory issues, or runtime failures.

In addition to identifying reasons for missingness, researchers must decide how to proceed

with the analysis. This depends not only on the suspected cause of missingness and the

already chosen study design but, as with all decisions discussed in Sections 3.2 and 3.3,

also on the specified research question, in particular the evaluation perspective. In the

context of missing performance values, relevant considerations implied by the evaluation

perspective include whether these cases should be handled in a way that reflects how

applied users would typically proceed, or in a way that prioritizes aspects of interest to

method developers.

Provided the missingness is not attributable to a trivial implementation error (e.g., a typo

in the code), two general approaches can be distinguished, as discussed by Pawel et al.

(2025) and Wünsch et al. (2025). In the first approach, the results matrix is modified

without rerunning the study. This may involve deleting individual values, entire DGMs,

methods, or metrics, or imputing missing values (e.g., using the worst possible value, see

also Contribution 2). The second approach involves adapting the study design and re-

executing parts of the study. In the case of method missingness, researchers may slightly

alter the method implementation (e.g., by changing hyperparameters, using different soft-

ware, or allocating more resources) or replace the method entirely (e.g., with a baseline).

This adaptation may be applied to the entire study or only in instances of missingness

(in which case it is termed a fallback strategy), and can be specified prior to the initial

execution or decided post hoc after analyzing the missingness. Overall, the handling of
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missing values is a delicate matter, as it may complicate the interpretation of results; for

detailed considerations, see Pawel et al. (2025) and Wünsch et al. (2025).

3.3.2 Derivation of method rankings

Once missing performance values have been addressed, the next step is to determine how

the raw performance values should be analyzed and summarized. As with the components

of the benchmark study discussed in Sections 3.2.3 and 3.3.1, this step can be understood

as part of the operationalization of the evaluation perspective specified in the research

question, with different evaluation perspectives implying different types of analyses. A

first distinction relates to whether the focus lies on absolute or relative performance. Most

benchmark studies are concerned with the latter, comparing methods against each other

and deriving some form of ranking (formally a strict or weak order; see Mersmann et al.,

2015). This comparative perspective will be assumed in the following.

Another distinction, also motivated by the evaluation perspective, is whether the bench-

mark study aims to draw unconditional or conditional conclusions (Van Mechelen et al.,

2023). In the former case, the aim is to derive general-purpose recommendations, such

as identifying a “default method” that performs well in the absence of problem-specific

knowledge (Mersmann et al., 2015), which requires analysis strategies that yield a sin-

gle overall ranking of methods across all DGMs and performance measures. In contrast,

aiming for conditional conclusions reflects the intention to capture more nuanced aspects

of method performance, for example to identify decision rules that can guide method

selection (Hand, 2006; Van Mechelen et al., 2023). Strobl and Leisch (2024) even argue

that conditional conclusions are generally preferable, particularly when the population of

DGMs is very heterogeneous. Corresponding analysis strategies yield separate method

rankings within subgroups defined by DGMs or performance measures and may also in-

vestigate how the rankings vary across subgroups.

In the following, possible analysis strategies to obtain both types of conclusions are re-

viewed. While the strategies presented below follow a formal structure, they are in practice

often applied in a more informal manner, without explicit reference to specific procedures

or terms. Note that the form in which the results of the analysis are presented (i.e. figures,

tables, and textual summaries) also plays an important role but is not covered here, as it

is highly context dependent.

Unconditional analysis If only a single performance measure is considered, a possi-

ble approach to obtain an overall ranking is to first compute a point estimate for each

DGM and method implementation, aggregate the results across DGMs (e.g., using the

mean or median), and rank the method implementations accordingly. However, this is

only suitable for performance measures that are comparable across DGMs (e.g., this ap-

plies to dimensionless measures like AUC), and even then, rankings based on aggregated

19



point estimates ignore the relative ordering within each DGM and may be distorted by

skewed performance distributions across DGMs (Hornik & Meyer, 2007; Rofin et al., 2023;

Wainer, 2023). A common alternative is to still use the point estimates but first assign

ranks within each DGM, and then aggregate these ranks across DGMs, for example using

the mean rank or counting wins (Dehghani et al., 2021; Demšar, 2006; see Contribution 2

for an application). Such procedures can be viewed as simple examples of consensus rank-

ing (Hornik & Meyer, 2007), which describes the process of deriving an overall ranking

from individual rankings (or more generally, a set of pairwise relations), with roots in

disciplines such as social choice theory (Rofin et al., 2023). The fact that some consen-

sus ranking procedures require only pairwise relations rather than full rankings allows the

derivation of an overall ranking based on statistical tests performed for each DGM (rather

than the point estimates per DGM). By stating a relation such as A1 > A2 only when

A1 is significantly better than A2, these procedures allow to incorporate the uncertainty

associated with estimating performance on a given DGM (Eugster et al., 2012; Mersmann

et al., 2015). Challenges in this respect include the fact that statistical significance does

not imply practical relevance (Hothorn et al., 2005; Van Mechelen et al., 2023; Wagstaff,

2012; Wainer, 2023), additional variability in case of stochastic method implementations

(Bouthillier et al., 2021) and, for real-data studies, that the sampled datasets are not in-

dependent (in the context of prediction see, e.g., Dietterich, 1998 for a test that addresses

this issue and Schulz-Kümpel et al., 2025 for a general discussion). When multiple per-

formance measures are considered, an overall ranking can be obtained by first applying

consensus ranking within each DGM across performance measures (optionally incorpo-

rating weights), and then across DGMs (Eugster et al., 2012).

While applying pairwise statistical tests per DGM can address estimation uncertainty

within DGMs (first-level uncertainty), all approaches discussed so far neglect the fact

that the DGMs themselves represent only a sample from a larger population of DGMs

on which the benchmark study aims to draw conclusions (second-level uncertainty ; see

also Boulesteix, Hable, et al., 2015; Wainer, 2023). For a single performance measure,

second-level uncertainty can be addressed by performing statistical tests where DGMs

are treated as sampling units (e.g., the Friedman test followed by a post-hoc Nemenyi

test, as proposed by Demšar, 2006). However, these tests rely on point estimates (only

valid for comparable performance measures) or ranks derived from them, and therefore

do not account for first-level uncertainty (Dietterich, 1998). To incorporate both levels

of uncertainty, a possible approach is to derive consensus rankings based on statistical

tests as discussed above, but specifically apply a probabilistic consensus procedure such

as the Bradley–Terry model (Bradley & Terry, 1952). In this model, the estimated ability

parameters for each method implementation are accompanied by uncertainty estimates

that reflect variation across sampled DGMs, corresponding to second-level uncertainty.

A Bayesian extension of the Bradley–Terry model has been proposed by Wainer (2023),
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which addresses limitations of frequentist significance testing, e.g., by allowing for the

specification of regions of practical equivalence. For comparable performance measures,

another approach is to model the performance values on each sampled dataset for each

DGM and method implementation as observations using linear mixed models, as pro-

posed by Eugster et al. (2012). Here, the overall method performance is modeled as a

fixed effect, while various sources of variation are captured through random effects, in-

cluding one for DGMs to reflect that they are sampled from a larger population of DGMs.

Similar to the previous approaches, the model output allows for statistical inference on

the method-specific performance estimates.

The inference results from the presented approaches that account for second-level uncer-

tainty can be used in two ways: either to supplement a consensus ranking derived without

considering this uncertainty, or to directly construct a ranking based on the pairwise com-

parisons obtained from these results. The latter is discussed by Eugster et al. (2012), as

it enables subsequent aggregation across multiple performance measures.

Conditional analysis As outlined earlier, conducting a conditional analysis implies

deriving method rankings within subgroups defined by performance measures or DGMs.

In principle, any of the ranking procedures described above can be applied separately

within each specified subgroup. For DGMs, however, finding meaningful subgroups is

often nontrivial. These are typically constructed based on DGM characteristics that are

expected to influence method performance, so that rankings obtained within a subgroup

are informative for all DGMs in the population sharing those characteristics. In simula-

tion studies, suitable DGM characteristics are often directly available, as they correspond

to components of the DGM that are systematically varied (e.g., parameters such as effect

size; Eugster et al., 2014). In real-data studies, relevant characteristics are more difficult

to define, both because there are many possible options, and because many DGM charac-

teristics can only be estimated from the real dataset available (see also Contribution 4 for a

discussion on this differentiation). Still, commonly used characteristics include aspects of

data dimensionality (e.g., number of variables or observations), variable types, and basic

summary statistics (Brombacher et al., 2025; Eugster et al., 2014; Mersmann et al., 2015;

Oreski et al., 2017). To investigate which characteristics are associated with differences

in method rankings, Eugster et al. (2014) and Oreski et al. (2017) have proposed using

decision trees with DGM characteristics as splitting variables (with these characteristics

derived from real datasets in the context of their studies). Finally, if no such character-

istics can or should be extracted, an alternative approach proposed by Kandanaarachchi

and Smith-Miles (2023) for real-data studies is to use an inverted item response theory

model, which originates from educational psychometrics. In this approach, datasets are

treated as participants and method implementations as test items, allowing derivation of

both dataset difficulty and interpretable method properties such as a method’s difficulty
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limit, which describes how difficult a dataset can be while the method is still expected

to perform well. Although this approach does not involve explicit subgrouping, it can

still be interpreted as a form of conditional analysis, as it analyzes differences in method

performance in a structured way rather than aggregating results into an overall ranking.

4 Optimistic bias in benchmark studies

This section provides a structured discussion of optimistic bias in benchmark studies,

covering the structural risk factors that enable it (Section 4.1), its core mechanism and

manifestations (Section 4.2), challenges in assessing its presence along with related con-

ceptual considerations (Section 4.3), and possible solutions (Section 4.4).

4.1 Structural risk factors

To understand how optimistic bias can arise in benchmark studies, a first step is to

examine two structural risk factors: the non-neutrality of researchers and the available

researcher degrees of freedom.

(Non-)neutrality As described in Section 2.1, the benchmark studies considered in

this thesis are either (i) studies that are part of methodological papers introducing a

new method, or (ii) standalone studies that explicitly focus on the comparison of existing

methods.

For studies of type (i), the researchers are clearly not neutral towards their newly proposed

method, as they typically hope to show that it is, in some way, superior to existing meth-

ods. Developing a new method usually involves substantial time and effort, which makes

researchers reluctant to publish results that might be seen as a “failure” and potentially

harm their scientific reputation. Moreover, demonstrating superiority is still often an

(implicit) requirement for publication in journals and at conferences (Boulesteix, Stierle,

& Hapfelmeier, 2015; Ferrari Dacrema et al., 2021; Hullman et al., 2022). An acknowl-

edgment of this issue is rare, but Makino et al. (2023) explicitly address it in a comment

on their preceding publication introducing MBCdeg (a method for differential expression

analysis, originally presented by Osabe et al., 2021 and investigated in Contribution 3).

They state: “Like other method’s papers, we claimed the potential high performance of

MBCdeg. This is simply because a new method needs to have some merits in order to be

accepted for publishing in most cases” (p. 3 of the preprint; this statement was removed

in the final published version, see Makino et al., 2024).

In contrast to studies of type (i), for those of type (ii), generally a higher degree of neutral-

ity can be expected. However, it is not uncommon for researchers conducting such bench-

mark studies to have been involved in the development of some of the evaluated methods,

in which case they cannot be considered fully neutral either. Boulesteix et al. (2013)
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addressed this issue by introducing the concept of a neutral comparison study (referred to

here as a neutral benchmark study). According to their definition, neutrality requires not

only that the study focuses explicitly on method comparison but also that the researchers

are “reasonably neutral” (p. 8; the definition also mentions that the study design should

be chosen in a rational way, although this can typically be expected if the authors are

reasonably neutral). While Boulesteix et al. (2013) do not comprehensively define when

this requirement is fulfilled, they explicitly exclude cases in which the researchers have

contributed to the development of any of the evaluated methods. Nonetheless, even in the

absence of such direct involvement, researchers may still hold implicit preferences or prior

beliefs, for example, be particularly convinced of (or skeptical about) a specific method

or class of methods. More generally, one can argue that different degrees of neutrality

exist, but complete neutrality is difficult, if not impossible, to achieve. As a consequence,

a benchmark study is rarely conducted without some expectation or hope regarding its

conclusions.

Researcher degrees of freedom Originally introduced in the context of applied re-

search (Simmons et al., 2011), researcher degrees of freedom (RDFs) in benchmark studies

can be broadly defined as the set of choices open to researchers in the design and analysis

of the study given a specific research question, where the decisions made for these choices

typically affect the results of the study.

This definition, in the first place, covers all choices related to the components discussed in

Sections 3.2 and 3.3. As emphasized there, these choices should, in addition to practical

considerations, be made such that they constitute a representative operationalization of

the research question formulated in the study’s aim. However, in addition to requiring

that researchers carefully reflect on the research question and its implied generalization

(which may not always be the case in practice), this also presupposes that the research

question can be clearly and unambiguously specified. This is already difficult because

the elements constituting the research question, namely [methods of interest], [evaluation

perspective], and [population of DGMs] (see Table 1 and Section 3.1), are hard to define

precisely. For the population of DGMs, this challenge has been discussed frequently in

the literature (e.g., Boulesteix, Hable, et al., 2015; Hullman et al., 2022; Strobl & Leisch,

2024), but it has also been addressed to some extent for the methods of interest (e.g.,

Hand, 2006). In addition, the evaluation perspective, as it is understood in this thesis as

a broad concept encompassing diverse considerations related to method assessment (see

Sections 3.2.3 and 3.3), is also difficult to specify comprehensively. Given these concep-

tual difficulties, researchers have substantial freedom in making the required design and

analysis decisions, often with many options available for each RDF. In addition, there is

often no requirement to justify their decisions, and no consensus in the field on what con-

stitutes an appropriate choice. For example, in real-data studies, the selection of datasets
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typically involves a vast number of possible options, and random sampling, which could

help ensure representativeness with respect to the population of DGMs, is difficult to im-

plement in practice (Boulesteix, Hable, et al., 2015). Moreover, the criteria guiding this

selection are often not clearly reported (Boulesteix et al., 2017; Ferrari Dacrema et al.,

2021; Macià et al., 2013), and while it is generally agreed that using only a single dataset

is insufficient (e.g., Kreutz, 2019), there is no consensus on what constitutes an adequate

sample size (although specific proposals exist, such as the framework by Boulesteix, Hable,

et al., 2015 for supervised machine learning).

When discussing RDFs associated with benchmark studies, another important yet often

overlooked choice is the random seed used to initialize the pseudo-random number gener-

ator (Gundersen et al., 2023). Many components of benchmark studies involve stochastic

elements, such as the generation of sampled datasets or the use of stochastic method

implementations (see Section 3.2.1), which implies that executing the same benchmark

code multiple times with different seeds may yield different results (see, e.g., Henderson

et al., 2018; Picard, 2023 for empirical illustrations). Accordingly, although the choice of

seed is not linked to the study’s research question and may, contrary to good practice,

not even be explicitly specified by the researchers (in which case it is set by the system),

it still constitutes a distinct and potentially impactful RDF.

Finally, although RDFs are typically understood in line with the initial definition above

as the set of choices conditional on a given research question, the research question itself

can also be regarded as a special type of RDF. Setting aside the challenges associated with

precisely specifying the research question, its formulation corresponds to a fundamental

choice: While changing the research question does not alter the numerical results of the

benchmark study (assuming all other components are fixed), it does affect how the results

are interpreted and, consequently, the conclusions drawn (similar to hypothesis testing in

applied research, where different formulations of the null and alternative hypotheses may

leave the observed test results unchanged yet still lead to different interpretations). In

this broader sense, the definition of RDFs can be extended to include the specification of

the research question itself.

4.2 Mechanism and manifestations

Having considered the structural risk factors that create the potential for optimistic bias,

the next step is to examine how it can be introduced. This includes the underlying core

mechanism as well as its manifestations across different RDFs.

Definition of optimistic bias If researchers conducting a benchmark study use the

available RDFs in ways that favor their desired outcome, this can introduce optimistic bias

(or equivalently, lead to over-optimistic conclusions). Although the literature discusses

optimistic bias in benchmark studies (see below), there is no unified definition of the term.
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In this thesis, optimistic bias is defined as a systematic deviation of conclusions from what

(hypothetical) neutral researchers would have obtained, given a defined research question,

in the direction of the original researchers’ hopes or expectations. Under this definition,

optimistic bias undermines both methodological research, by distorting evidence about

method performance, and applied research, by promoting potentially misleading recom-

mendations for method use.

Mechanism of optimistic bias While there are various ways in which optimistic bias

can be introduced in benchmark studies, its core mechanism involves two key elements

beyond the presence of RDFs: data leakage and selective reporting.

The term data leakage originates from applied prediction modeling, where it refers to

information from the test data improperly influencing model development (Kapoor &

Narayanan, 2023). A textbook example of this, implicitly addressed in Section 3.2.3, is

using the same dataset for both training and testing. This prevents the evaluation from

detecting overfitting and leads to an optimistically biased estimate of prediction error

(see Contribution 1 for a detailed discussion of this and other forms of data leakage in

the prediction context). In benchmark studies, where the focus is on comparing methods

rather than evaluating a specific model, data leakage occurs when information about the

study’s results or conclusions improperly influences how decisions are made. Specifically,

it arises when researchers have some form of knowledge about which options to select for

the available RDFs that favor their desired outcome (cf. Gundersen et al., 2023; Lange et

al., 2025). This creates results that are unlikely to hold if alternative reasonable decisions

were made, analogous to evaluating a prediction model on a different dataset. A typ-

ical example is post-hoc modification of study components after inspecting preliminary

results, which allows researchers to evaluate different options for each RDF and learn

which selections yield favorable outcomes. However, even without explicit evaluations,

data leakage can occur subtly when researchers select specific options for the available

RDFs based on expectations about which will be most favorable.

For this improper advantage to result in optimistic bias, the influence of data leakage

must be concealed or ignored, which occurs through selective reporting. In the literature,

selective reporting is commonly understood as presenting only a subset of the generated

results (e.g., Buchka et al., 2021; Lohmann et al., 2022; Pawel et al., 2024; a similar un-

derstanding is also partly adopted in the contributions of this thesis). This corresponds to

the concealment of data leakage through post-hoc modifications. However, as described

above, data leakage may also occur without explicit evaluations. To describe optimistic

bias coherently as arising through data leakage and selective reporting, the term selective

reporting must therefore be extended to also include practices that obscure the presence

of a priori leakage. While selective reporting in the narrower sense is essentially binary

(results are either included or not), the concealment of a priori leakage may occur in
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more nuanced ways, reflected in how difficult it is for readers to recognize its presence.

In practice, this may take the form of presenting decisions as purely methodological or

practical, without acknowledging that they were guided by expectations about favorable

outcomes, or of omitting a description of the decisions altogether, thereby implying that

there was nothing to report.

In conclusion, when combined with flexibility in RDFs, data leakage and selective report-

ing may lead to conclusions aligned with researchers’ hopes and expectations, systemat-

ically deviating from what a neutral study would have produced. In applied research,

corresponding practices are considered forms of questionable research practices (John et

al., 2012).

Manifestations across RDFs In the literature, various forms of the previously de-

scribed core mechanism have been identified and illustrated for specific RDFs. In the

following, these examples are reviewed with a focus on how data leakage occurs and is

exploited; the selective reporting step can then be understood as the subsequent conceal-

ment of this influence.

Regarding method implementation, typical forms of data leakage through post-hoc mod-

ification include changing hyperparameter values or tuning strategies after seeing the

results, or even adding or removing entire methods from the comparison. These practices

have been empirically illustrated by Jelizarow et al. (2010), Pawel et al. (2024), and Ull-

mann et al. (2023), who specifically focus on hypothetical benchmark studies of newly

proposed methods. In this context, researchers have even more flexibility, as they may

also adjust hidden hyperparameters, i.e. aspects of the method for which different variants

are considered during initial development but which are later intended to remain fixed for

method users (Ullmann et al., 2023). Another form of data leakage in method implemen-

tation arises when researchers decide a priori to apply more extensive hyperparameter

tuning to the favored method(s) while leaving competing methods at their default values

(Ferrari Dacrema et al., 2021; Weber et al., 2019). Data leakage here is introduced because

the researchers can expect the tuned method(s) to outperform its competitors.8 Another

example of this more subtle form of data leakage occurs in parametric simulation studies,

when only the hyperparameters of the favored method(s) are specified using information

about the DGM (Kreutz et al., 2020; Ullmann et al., 2023).

Regarding the selection of the set of considered DGMs, either directly in parametric sim-

ulation studies or implicitly through the selection of real datasets in real-data studies,

post-hoc modification has been frequently discussed in the literature. Empirical illustra-

tions of this practice have been provided by Pawel et al. (2024) and Ullmann et al. (2023)

8Importantly, the central point in this context is not the unequal treatment of methods as such,
which may also reflect differences in researchers’ expertise across methods, but the unequal effort that
researchers invest in implementing the methods given their expertise (see Section 4.3 for a discussion of
the interplay between expertise and optimistic bias).
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for the simulation case, and by Jelizarow et al. (2010), Keogh and Kasetty (2003), Macià

et al. (2013), Ullmann et al. (2023), Yousefi et al. (2010), as well as in Contribution 2,

for the real-data case. In parametric simulation studies, there are also well-known exam-

ples of data leakage concerning the a priori specification of DGMs in a way that creates

advantageous conditions for the favored method(s). This includes cases where the DGM

structure is closely aligned with the assumptions of the favored method(s), or where the

favored method(s) is directly used to generate the sampled datasets (Brooks et al., 2024;

Smith et al., 2022).

For the remaining design and analysis RDFs, the literature has given comparatively less

attention to specific forms of data leakage. One of the more frequently addressed cases is

the post-hoc selection of performance measures (Jelizarow et al., 2010; Norel et al., 2011;

Ullmann et al., 2023), which is empirically illustrated in Contribution 2. Contribution 2

also investigates the post-hoc selection of the imputation method for missing values and

the method of performance aggregation.

As discussed in Section 4.1, in addition to RDFs related to design and analysis, there are

also RDFs concerning the random seed and the formulation of the research question. For

random seeds, it is generally not possible to know a priori which seed will yield favorable

results. However, by modifying the seed post-hoc, researchers may re-execute the code

with different seeds until a “lucky seed” is found; see Picard (2023) and Ullmann et al.

(2023) for empirical illustrations. The research question itself can also be (re-)formulated

post-hoc based on the results obtained (Lange et al., 2025; Pawel et al., 2024). For ex-

ample, if a favored method performs well only for a specific subset of DGMs, researchers

might not only discard the less favorable DGMs (as discussed above), but also adjust the

research question by redefining the target DGM population so that the remaining DGMs

appear representative of it. This practice is related to what has been termed HARKing

(“hypothesizing after results are known”) in applied research (Kerr, 1998).

Psychology behind optimistic bias While the empirical literature illustrating opti-

mistic bias typically involves deliberate and systematic introduction of optimistic bias, in

practice, researchers are more likely to engage in corresponding practices unconsciously.

This can be explained by the human tendency toward self-deception (Nuzzo, 2015), which

leads individuals to interpret ambiguity in ways that support their own hopes or expec-

tations, often without realizing it (Simmons et al., 2011). In the context of benchmark

studies, this pitfall is particularly likely to occur when post-hoc decisions arise naturally as

part of the research process. For example, journal constraints may require researchers to

report only a subset of results, or unexpected failures of certain methods may necessitate

implementation changes. Although such adjustments may have legitimate motivations,

they also offer convenient justifications for post-hoc modifications that make the results

appear more favorable from the researchers’ perspective (Boulesteix et al., 2017; Lohmann
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et al., 2022; Pawel et al., 2024). A particularly challenging scenario arises in the devel-

opment of new methods. Prior to systematic evaluation in a formal benchmark study,

it is natural for researchers to conduct informal, undocumented testing and refine their

method accordingly. However, when components used during method development are

carried over into the subsequent benchmark study, corresponding method refinements

effectively constitute post-hoc modifications of the method implementation (Boulesteix

et al., 2013; Jelizarow et al., 2010; Lange et al., 2025).

Optimistic bias vs. methodological unsoundness When examining how optimistic

bias arises, it is important to recognize that it is not the only way in which misleading

conclusions can be obtained. Specifically, even if decisions on RDFs are not made to ben-

efit or disadvantage specific methods, they may still be inappropriate in other respects,

making the study methodologically unsound without introducing optimistic bias. For ex-

ample, in parametric simulation studies, researchers may choose overly simplistic DGMs,

despite aiming to represent a population of real-world DGMs (Brooks et al., 2024; Weber

et al., 2019). In the derivation of method rankings (see Section 3.3.1), common issues

include relying solely on point estimates without quantifying uncertainty, or applying sta-

tistical tests despite clear violations of their assumptions (Hullman et al., 2022; Pineau

et al., 2021; Van Mechelen et al., 2023). While such decisions may lead to misleading

conclusions, they do not constitute optimistic bias unless they systematically benefit one

or more methods. However, they may increase the likelihood of optimistic bias. For in-

stance, ignoring uncertainty makes it easier to present a method as superior than if it

were integrated (see Boulesteix, Stierle, and Hapfelmeier, 2015 for a related discussion

and Section 4.4).

4.3 Assessment

After examining how optimistic bias can be introduced into benchmark studies, a key con-

cern is how often it occurs in practice. In the following, challenges in assessing its presence

are discussed, and how such assessments relate to reproducibility and replicability.

Challenges in assessment In general, it is not straightforward to assess the presence

of optimistic bias. While there may occasionally be hints of an unjustified a priori advan-

tage for specific methods (e.g., when hyperparameters are tuned only for one method),

post-hoc modifications are particularly difficult to detect. An alternative strategy is to

examine the extent to which the results of benchmark studies align with what researchers

are likely to prefer. As discussed in Section 4.1, in benchmark studies published alongside

the proposal of a new method, such preferences are typically clear: the new method is

expected to outperform existing ones. Indeed, several empirical investigations have found

that, in a substantial proportion of cases, the newly proposed method was reported to
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be superior to its competitors (Boulesteix et al., 2013; Buchka et al., 2021; Norel et al.,

2011; Smith et al., 2022). However, these patterns could also, in principle, reflect genuine

scientific progress. Therefore, to determine whether a specific benchmark study is affected

by optimistic bias, the definition introduced in Section 4.2 must be used as the basis for

assessment. That is, the study’s conclusions must be compared to those drawn by neutral

researchers, given the same research question. In practice, this would require repeat-

ing the study multiple times by different neutral researchers, adopting only the research

question formulated by the original study, while reasonably varying all other components.

The presence of optimistic bias would then be indicated by a systematic deviation of the

original study’s conclusions from those of the neutral repetitions.

Along these lines, Buchka et al. (2021) empirically investigate how pairwise comparisons

of methods derived from introducing papers hold in later studies (which they frequently

do not find confirmed). A different yet small-scale approach is pursued in Contribution 3,

where four benchmark studies introducing a new method from two analysis tasks are con-

sidered. Each of the four methods is reevaluated using the design and analysis choices

of a different benchmark study that proposes another method (and vice versa, which is

why this setup is referred to as a cross-design validation experiment). The adoption of

all components from another study (as far as possible), combined with the fact that the

authors of Contribution 3 were not involved in the development of any of the investigated

methods, can be seen as an approximation of neutral researchers. Although three of

the four new methods perform worse in this reevaluation, a single instance is clearly not

sufficient to provide evidence for a systematic deviation. In practice, each study would

need to be reevaluated multiple times to draw reliable conclusions about the presence of

optimistic bias.

Even if a sufficient number of (approximately) neutral researchers could be recruited for

such an assessment, two fundamental problems remain (see also the discussion in Contri-

bution 3, which specifically considers these problems for newly proposed methods). First,

as discussed in Section 4.1, the research question in benchmark studies is difficult to spec-

ify precisely. While this already creates challenges for researchers in making design and

analysis decisions, it poses an even greater problem for readers, who must rely solely on

what is reported, without access to the researchers’ implicit knowledge or intentions: not

only is it unclear what the benchmark study provides evidence for, but in the specific

context of assessing optimistic bias, it is also difficult to judge whether changes in design

or analysis components still constitute a valid operationalization of the same research

question or instead reflect a shift away from it. For example, given that the method is

evaluated in the original study as the specific implementation A, do the conclusions also

apply to all other values of each hyperparameter, or only to similar ones, or only to vari-

ations in a subset of hyperparameters, such as preprocessing hyperparameters? Similarly,

in parametric simulation studies, to what extent can DGM parameters be varied with-

29



out departing from the intended population of DGMs? As a result, differing conclusions

cannot be clearly attributed to optimistic bias or to an implicit change in the research

question.

The second fundamental problem in assessing optimistic bias originates from the fact that

researcher expertise generally affects method performance (see Section 3.2.1) and, unless

robustness to this factor is explicitly evaluated, becomes implicitly tied to the research

question by the qualifier “given the methods are applied by a user with specific expertise”

(see Section 3.1). Accordingly, even if the first problem of imprecise research question

specification were resolved, accurately considering the exact same research question when

assessing optimistic bias would still require identifying researchers who are not only neu-

tral toward all methods but also match the original study’s expertise profile across all

considered methods. Otherwise, differences in method performance between the original

and new study might simply reflect differences in expertise rather than bias. In practice,

however, identifying suitable researchers for such an assessment is hardly feasible. In

addition to being a latent factor that cannot be measured, expertise is often positively

correlated with neutrality: the more expertise a researcher has with a method, the more

likely they are to view it favorably, and vice versa.9

Taken together, these problems make it difficult to definitively determine whether opti-

mistic bias is present in a given benchmark study.

Relation to reproducibility and replicability When discussing the assessment of

optimistic bias, it is worthwhile to briefly address the concepts of reproducibility and repli-

cability, as they are frequently invoked in this context, often implicitly associating bias

with failures to reproduce or replicate studies (e.g., Boulesteix, Hoffmann, et al., 2020;

Gundersen et al., 2023; Hullman et al., 2022). Given the inconsistent use of the terms

reproducibility and replicability in both methodological and applied research (Bouthillier

et al., 2019; Plesser, 2018), the following discussion focuses on the aspects most relevant

for the scope of this thesis, rather than on terminological distinctions.

Similar to the assessment of optimistic bias, reproducibility and replicability broadly

concern the variation of components of an original study, followed by a comparison of

the results and conclusions (with a focus on assessments performed by independent re-

searchers, i.e. researchers not involved in the original study). A first central distinction

relates to the purpose of such assessments: either to determine how closely the original

results can be reproduced based on the provided documentation, or to examine whether

9This correlation may help explain why the two are often not treated as separate dimensions. For
instance, Boulesteix et al. (2017, p. 8) interpret the “reasonably neutral” requirement for neutral com-
parison studies by Boulesteix et al. (2013, p. 8) discussed in Section 4.1 as implying that researchers
should be “approximately equally experienced” with all methods. While this is a legitimate definition
that is also used in Contribution 2, one might argue that unequal expertise alone does not necessarily
lead to unfair comparisons, as the study may still be informative, or even more informative, for readers
with similarly unbalanced expertise.
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deliberate modifications to specific components still lead to the same results or general

conclusions. Albertoni et al. (2023, p. 4) describe this distinction as one between “vali-

dating the repeatability of the experiment” and “corroborating the scientific hypothesis

and theory the experiment aims to support”. While in the experiment repeatability set-

ting, researchers must decide which forms of documentation to rely on for reproducing

the original results (e.g., textual descriptions only, or a combination of text and code), in

the corroboration setting, they must determine which components of the original study

to keep fixed and which to vary. Corresponding variations in applied research typically

involve using different data while keeping the analysis fixed, using a different analysis

while keeping the data fixed, or modifying both (The Turing Way Community, 2025).

However, transferring this framework to benchmark studies is not straightforward, since

the distinction between data and analysis is not clearly defined in this context. For ex-

ample, data might refer to the raw performance values, which serve as the input for the

analysis of results described in Section 3.3, with different data arising from changes in any

component of the study design (Section 3.2). Alternatively, data might be understood

more narrowly as the sampled datasets, where different data could result from drawing

new samples with a different seed, or even from selecting a different set of DGMs.

Given these and other conceptual difficulties, terminology remains challenging. For ori-

entation, the following provides a brief overview of how terms are typically used in the

literature (see Albertoni et al., 2023 for a review that also provides references in which

the respective terms are employed). Assessments of experiment repeatability that use

all available information are typically described as evaluations of (computational) repro-

ducibility. If only written documentation is considered, the terminology becomes less

consistent: both (result) reproducibility and (direct) replicability are commonly employed

to describe this case. By contrast, assessments aligned with the corroboration setting,

where specific components of the study are intentionally varied, are often referred to as

evaluations of (conceptual) replicability, generalizability, or robustness. Here, choice of

term generally depends on which components are held fixed or modified, but the termi-

nology remains inconsistent (and it is debatable whether distinct labels are needed for

every possible combination).

Reconsidering optimistic bias in this context, the empirical assessment discussed earlier,

that is, repeating the benchmark study with the same research question conducted inde-

pendently by neutral researchers with comparable expertise to the original researchers,

can be understood as a corroboration experiment in which only the research question is

fixed, while specific requirements regarding neutrality and expertise are imposed (noting

that such researcher-related factors are often neglected in discussions of reproducibility,

replicability, and related concepts).
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4.4 Possible solutions

While optimistic bias can likely never be avoided entirely, it can and should be reduced

as much as possible. This section discusses possible solutions by revisiting the main

contributing factors outlined earlier: (non-)neutrality, RDFs, data leakage, and selec-

tive reporting, with the strategies addressing these factors intended to complement each

other. In addition, special consideration is given to benchmark studies that introduce a

new method, as well as to the role of other actors in addressing optimistic bias.

Importantly, the discussion assumes no malicious intent. If bias is introduced deliber-

ately, the strategies discussed here are irrelevant, as they are unlikely to be implemented

sincerely. Moreover, while the proposed strategies align with general recommendations

for good practice in empirical methodological research, they should not be understood as

a comprehensive guide to conducting high-quality benchmark studies.

(Non-)neutrality While researchers cannot just set aside their non-neutral positions

toward specific methods, it is important to acknowledge and transparently disclose them

(Boulesteix et al., 2013; Van Mechelen et al., 2023). Moreover, although neutrality may

not be realistically achieved on an individual level, some balance may be attained at the

team level by including researchers with differing preferences and perspectives (Siepe et

al., 2024).

Researcher degrees of freedom To mitigate optimistic bias at the level of RDFs,

efforts should focus on avoiding the often arbitrary and uncontrolled nature of how deci-

sions are made, and on reducing the variability in results that can arise from individual

RDFs.

As an initial step, researchers should carefully reflect on the research question and for-

mulate it as precisely as possible, in order to have a well-defined basis for subsequent

design and analysis choices. A possible strategy for these choices is to shift the decision

from directly selecting a component to specifying one or more criteria for its selection,

where each criterion may reflect either the research question or practical considerations.

This shift not only makes the decision process more structured and systematic but, if the

criteria are reported, also improves transparency for readers and provides an implicit jus-

tification for the decisions made. This strategy has been concretely proposed for selecting

methods to be considered in the study (Boulesteix et al., 2013; Xie et al., 2021) and for

selecting datasets in real-data studies (Boulesteix et al., 2017). A similar shift is made

in the context of real-data-based parametric simulations, where parts of the considered

DGMs are not specified directly, but researchers instead define a set of real datasets and

a procedure to infer these parts (see Section 3.2.2). An extension of this idea, which has

received little attention so far, is to select the real datasets themselves based on suitable

criteria as well. This approach is proposed in Contribution 4.
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To also prevent uncontrolled modifications of study components, researchers can prepare

and potentially preregister a study protocol that documents all planned decisions prior

to conducting the benchmark study, with any deviations explicitly reported and justified

afterward. Where it is not appropriate to prespecify concrete decisions, result-dependent

decision rules can be formulated. For example, with regard to handling missing perfor-

mance values, researchers might define a rule stating that if a method fails in more than

a specific proportion of sampled datasets, it will be excluded; otherwise, missing values

will be imputed. At present, few templates exist for such protocols. One exception is

the framework by Siepe et al. (2024), developed for simulation studies in the context of

methodological research in psychology. A general list of essential items to be included in

benchmark study protocols is provided by Lange et al. (2025).

As an additional complementary strategy, researchers can establish conditions that reduce

the impact of individual RDFs by making benchmark results more robust to small changes

in study components and thereby lowering the potential for their misuse. In general, this

can be achieved by setting up the study in a more comprehensive way. For example,

when drawing sampled datasets, the impact of the random seed on the resulting perfor-

mance estimates is generally reduced when a large nrep is used. The impact of dataset

choice in real-data studies likewise decreases when many datasets are included (see, e.g.,

the empirical illustrations in Contribution 2). Also, the more performance measures are

considered and the more comprehensively the results are analyzed, the more difficult it

becomes to exploit these RDFs in a way that favors a desired outcome (as also reflected

in the findings of Norel et al., 2011, who found that new methods were less frequently

reported as best when more performance measures were used).

Data leakage As discussed in Section 4.2, data leakage can occur either when re-

searchers modify components after inspecting results or when they make a priori decisions

based on expected outcomes. While post-hoc leakage can in principle be prevented by

prespecifying all decisions (see above), it may still be useful to implement additional pro-

tective measures. One such measure, inspired by clinical trials, is blinding (Boulesteix et

al., 2017). In the context of benchmark studies, this can be achieved by concealing method

identities (e.g., relabeling them as A, B, C) once raw performance values are obtained.

This ensures that even if post-hoc modifications are made, they cannot be directed toward

specific methods. Note that this procedure may require splitting responsibilities within

the research team, as certain tasks, such as identifying the source of missing performance

values, may still require knowledge of method identities.

To some extent, blinding can also help reduce a priori data leakage. Specifically, in para-

metric simulation studies, selecting hyperparameters based on DGM knowledge for some

methods but not others can be avoided by assigning the specification of DGMs and hy-

perparameters to separate research teams, with the team responsible for hyperparameters
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blinded to the DGM definitions; see Kreutz et al. (2020) for a concrete implementation.

Regarding other forms of a priori leakage that may arise in method implementation, re-

searchers should honestly reflect on whether there are any obvious unequal treatments

of methods that cannot be justified by differences in expertise across methods, such as

applying extensive hyperparameter tuning only to specific methods or allocating unequal

computing time (Ferrari Dacrema et al., 2021; Van Mechelen et al., 2023).

Finally, concerning the specification of DGMs in parametric simulation studies, a priori

advantages resulting from aligning DGMs with the assumptions of specific methods can

be avoided by granting this advantage to all methods, for example by generating separate

DGMs based on each method individually (Brooks et al., 2024; Smith et al., 2022).

Selective reporting If, despite all efforts, data leakage may have influenced decisions

on RDFs, this should be clearly disclosed to avoid selective reporting. For decisions made

a priori but still expected to favor or disadvantage specific methods, researchers should

explicitly state which methods may be affected and how. In the case of post-hoc modifi-

cations, all previous versions of the corresponding components and their impact on results

should be reported. As proposed in Contribution 2, visualizations such as multidimen-

sional unfolding (Borg & Groenen, 2005) can support this by systematically displaying

how method rankings vary across different combinations of specific choices. Originally

developed in psychometrics, this technique places objects (here, methods) and subjects

(here, combinations of other study components) in a typically two-dimensional space,

where shorter distances indicate better performance of a method under the corresponding

study conditions; see Contribution 2 for details. Note that while such transparent report-

ing mitigates optimistic bias by preventing both readers and the researchers conducting

the study from drawing misleading conclusions, it cannot undo the consequences of com-

promised RDF decisions. In particular, the ability to adequately address the research

question is diminished, and this should be acknowledged as a relevant limitation.

Although ideally all known or suspected cases of RDF decisions affected by data leakage

should be reported, some instances may go unnoticed due to the often unconscious nature

of the process (see Section 4.2). For this reason, researchers should generally make the

entire benchmark study as open and accessible as possible to others. This includes not

only clear textual summaries of all design and analysis components, but also all informa-

tion required to reproduce the results (e.g., code, random seeds, software and hardware

specifications, external datasets, intermediate results), as well as, to the extent possible,

a specification of the study’s research question and the researchers’ expertise with each

method. Such transparency enables readers to detect possible instances of optimistic bias,

conduct tentative empirical assessments of its presence, and reduce avoidable suspicions

in this respect. Moreover, it is generally considered good scientific practice and is there-

fore widely recommended in benchmarking guidelines (e.g., Brooks et al., 2024; Kreutz,
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2019; Morris et al., 2019; Van Mechelen et al., 2023; Weber et al., 2019), additionally

facilitating study extensions, meta-analyses, and other research efforts that contribute to

building cumulative evidence beyond individual studies.

Newly proposed methods When discussing strategies to reduce bias, benchmark

studies accompanying newly proposed methods merit particular consideration, as their

authors are clearly non-neutral (see Section 4.1) and many of the strategies described

above are difficult to implement. Specifically, as noted in Section 4.2, post-hoc modifica-

tions of the new method are an inherent part of the development process and are difficult

to document in sufficient detail. In light of these challenges, it has been argued in the

literature (e.g., Boulesteix, 2013; Boulesteix et al., 2013; Norel et al., 2011; also echoed to

some extent in Contribution 2) that benchmark-style evaluations in papers introducing a

new method should be regarded as purely illustrative, without allowing conclusions about

empirical properties of the method. However, framing them only as illustrations carries

its own risks. It may implicitly legitimize lower methodological standards, while readers

may still interpret the results as empirical evidence. If a method is presented as well-

performing, albeit incorrectly, it can spread quickly, for example through its inclusion as

a relevant competitor in the evaluation of other new methods. Such early reputations are

often persistent and difficult to revise (Boulesteix, Stierle, & Hapfelmeier, 2015; Henseler

et al., 2024). For this reason, even though reducing optimistic bias is particularly chal-

lenging in benchmark studies of newly proposed methods, researchers should still make

every effort to pursue it.

A possible approach in this context is to build on the idea of the train–test split used in

prediction modeling (see Section 3.2.3 and Contribution 1) by conducting an additional

evaluation once initial method development is complete. In the benchmarking literature

on real-data studies, this has already been proposed, primarily focusing on evaluating

the new method on additional real datasets (e.g., Boulesteix, 2009; Jelizarow et al., 2010;

Keogh & Kasetty, 2003; Norel et al., 2011). However, it may also be worthwhile to extend

this approach to other data types and, more generally, to additional components of bench-

mark studies, especially competing methods and performance measures. As suggested in

Contribution 3, this could be realized by drawing on existing benchmark studies conducted

by other research teams, while remaining mindful of possible differences in research ques-

tions. Of course, this is only feasible if authors share their materials transparently (see

above).

Role of other actors Although the focus of this section is on strategies available to

researchers conducting benchmark studies, it is also worthwhile to briefly address the role

of other actors, in particular journal editors and reviewers.

A first step is to reduce incentives that may drive researchers toward practices introducing

optimistic bias, by avoiding implicit requirements that new methods be shown as superior,
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and, more generally, that results be exciting or unexpected. Instead, greater emphasis

should be placed on the methodological soundness of the benchmark study as a whole,

independent of its outcome (Boulesteix, Stierle, & Hapfelmeier, 2015). The registered

reports format (Chambers, 2013) represents a rigorous implementation of this principle.

In this format, publication decisions are made before results are known, based on the

importance of the research question and the soundness of the study. In a similar vein, the

general appreciation and acceptance of standalone benchmark studies evaluating existing

methods should be strengthened (Boulesteix et al., 2013; Boulesteix et al., 2018).

Second, editors and reviewers can play a role in detecting optimistic bias. While its

presence is generally difficult to assess (see Section 4.3), they can check for potential

warning signs, such as consistently superior performance of a new method or benchmark

setups with a high risk of bias (e.g., very few DGMs or competitors). They may also

require the use of some of the above-mentioned strategies to reduce optimistic bias, such

as sharing code, which has already been implemented by some journals (e.g., Biometrical

Journal ; Hofner et al., 2015).

Finally, journals should encourage studies that assess the reproducibility and replicability

of existing benchmark studies, while making the intended aim of such assessments explicit

(see Section 4.3). In this context, inspiring initiatives include the RepliSims project for

simulation studies (Luijken et al., 2024) and the journal ReScience C (https://rescience.

github.io/), which publishes replication studies in computational science.

5 Summary of the contributions

This section provides a summary of the four contributions on which this thesis is based.

Contribution 1 The first contribution focuses on the often-overlooked role of prepro-

cessing steps in generating and evaluating prediction models based on supervised machine

learning. In practice, choices such as how to handle missing values or how to transform

and select variables are ubiquitous, yet they are rarely discussed in the literature. The

relevance of this issue became apparent to the authors during work on a real-world prob-

lem, the prediction of palliative care costs, which motivated Contribution 1.

As a consequence, the optimization of preprocessing decisions is often informal and may

not be adequately accounted for when evaluating model performance, which can lead

to optimistically biased prediction error estimates. To address this, Contribution 1 for-

malizes preprocessing choices as hyperparameters that are part of the complete set of

hyperparameters of the analysis pipeline (see Section 3.2.1; in the article, the term learn-

ing pipeline is used in line with the machine learning context). It also explains in detail

how optimistically biased prediction error estimates arise through the improper influence

of test data on model development, which in this context is commonly referred to as
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data leakage (see Section 4.2). Finally, using the palliative care example, the contribution

empirically illustrates both appropriate and inappropriate strategies for model generation

and evaluation, and argues for a more conscious and transparent handling of all types of

hyperparameters.

Although Contribution 1 is the only contribution in this thesis directed at an applied

rather than a methodological audience, it is still relevant for the latter. One reason is

that the performance attributed to a model in the applied context essentially constitutes

the performance of the method that generated it in the benchmark context, which makes

the insights from Contribution 1 transferable to methodological research. In addition, by

clarifying the notion of data leakage in its original applied sense, Contribution 1 provides

a basis for extending this concept to benchmarking.

Contribution 2 The second contribution extends the benchmark study by Herrmann

et al. (2021), which compares 13 methods for predicting survival outcomes from multiomic

data. The contribution empirically illustrates how results can vary depending on design

and analysis choices, specifically the selection of real datasets, performance measures,

handling of missing performance values, and the aggregation approach used to derive the

method ranking. The last two represent RDFs that have received little attention in the

literature (see Section 4.2). Considering all possible combinations of these choices (288 in

total), the study shows that almost any method can achieve nearly any rank, a scenario

that could easily be exploited to obtain a favorable result. Even when not all combina-

tions are considered but only one choice is optimized at a time, which is more reflective

of realistic researcher behavior, most methods still achieve a favorable rank (with opti-

mization directed toward lower ranks). To complement existing strategies for reducing

optimistic bias (see Section 4.4), Contribution 2 further proposes the use of multidimen-

sional unfolding, originally developed in psychometrics, as a way to assess the impact of

individual decisions and to systematically visualize how method rankings vary. In this

context, the technique places methods and study conditions in a two-dimensional space,

where shorter distances indicate better performance of a method under the corresponding

conditions.

Contribution 3 In contrast to Contribution 2, which primarily considers standalone

benchmark studies focusing on the comparison of existing methods, Contribution 3 ex-

amines benchmark studies that accompany the proposal of a new method. It investigates

the well-known tendency for newly introduced methods to perform best in the benchmark

studies presented in their introductory papers but worse in subsequent studies conducted

by other researchers. To this end, the contribution introduces a cross-design validation

experiment: for a given data analysis task, two methods developed for that task are

reevaluated using each other’s original benchmark study setup, emulating a subsequent

study performed by more neutral researchers. The considered tasks are cancer subtyping
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using multiomic data and differential gene expression analysis using RNA-Seq data, each

with two methods.

While, similar to Contribution 2, the experiment illustrates the variability of benchmark

results and is consistent with the observation of deteriorating performance in subsequent

studies (three of the four methods indeed perform worse in the other method’s design),

even more importantly, it provides insights into the reasons for these performance dis-

crepancies. The first reason, often seen as the most obvious, is the presence of optimistic

bias in the original benchmark study, with its mechanism discussed in Section 4.2. In

Contribution 3, this is framed as two specific variants (“overfitting of study design to

method” and “overfitting of method to study design”), reflecting its focus on newly pro-

posed methods. In addition, Contribution 3 identifies two further, less recognized reasons

for performance discrepancies, which are also discussed in Section 4.3 and can generally be

characterized as differences in researcher expertise and differences in the research question

between the original and subsequent study. In Contribution 3, which specifically consid-

ers the new-method context, the latter is described as the possibility that a subsequent

study does not align with the field of application investigated in the original study (where

finding the appropriate field of application of a new method can be regarded as a specific

research question, which is tied directly to that method).

Contribution 4 The fourth contribution focuses on parametric simulation studies that

use real datasets as a basis for constructing the DGMs under which the methods are eval-

uated. While this approach is widely used to make DGMs more realistic, it relies on the

choice of real datasets, which constitutes an impactful RDF; in practice, however, only one

or two datasets are often used, and the rationale for their selection is frequently unclear.

As a result, the constructed DGMs are unlikely to be representative of the population of

DGMs to which the study intends to generalize, and the dataset choice itself, due to its

strong impact and often unsystematic nature, is easily exploitable for obtaining favorable

results.

Contribution 4 addresses this issue by formally discussing real-data-based parametric sim-

ulations and proposing a more systematic dataset selection procedure using a database

and clearly specified eligibility criteria. While the idea of a more systematic dataset se-

lection already exists in the literature, especially in the context of real-data studies (e.g.,

Boulesteix et al., 2017), this contribution provides a more detailed treatment, including

a distinction between different types of eligibility criteria. It also illustrates the proposed

approach with two empirical examples: ordinal outcomes in randomized controlled trials

and differential gene expression analysis. For comparison, DGMs are additionally con-

structed either without a real dataset or from a single real dataset, and the results are

contrasted with those obtained with a systematic selection of real datasets.
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6 Outlook

While this thesis has advanced the discussion on optimistic bias in benchmark studies,

several aspects remain open for further investigation.

Addressing further researcher degrees of freedom Both Contribution 1 and Con-

tribution 2 highlight RDFs that have so far received little attention. Nevertheless, a range

of other RDFs remain to be explored. For instance, while Contribution 2 considers the

choice of descriptive summary statistics to aggregate performance results across DGMs

into method rankings, future research could also investigate the choice of statistical tests

for this purpose and explore the variability in results. In addition, while Contribution 1

formalizes preprocessing steps as hyperparameters, it could be equally valuable to explic-

itly formalize postprocessing steps in the same way. Moreover, the empirical illustration

of preprocessing hyperparameters in Contribution 1 is primarily directed at applied re-

searchers. Although these insights are also relevant for methodological researchers, a

dedicated illustration explicitly adopting the perspective of a benchmark study, similar

in style to Contribution 2, would likely raise awareness more directly for this audience.

Improving clarity on researcher expertise As discussed in Sections 3 and 4 and

in Contribution 3, researcher expertise is a key factor in interpreting the results of bench-

mark studies and, consequently, in assessing optimistic bias. While Contribution 3 and

earlier work (e.g., Boulesteix et al., 2017; Duin, 1996) highlight the importance of expertise

and illustrate how it can affect method performance, concrete ideas for how researchers

conducting benchmark studies could transparently communicate their expertise are still

lacking. Existing discussions (including Contribution 3) typically distinguish only be-

tween “experts” and “non-experts”, a dichotomy that is too coarse to provide sufficient

clarity. Ideally, the benchmark community would agree on a standardized way of report-

ing expertise, accompanied by an assessment of how strongly expertise is expected to

influence the performance of each method. Of course, developing such a reporting scheme

is difficult due to the latent nature of expertise, and any solution will inevitably remain a

simplification. Still, an ordinal scale might be a useful starting point, taking into account

aspects such as years of experience with the method, diversity of practical use, and depth

of theoretical understanding.

Improving clarity on the research question Analogous to expertise, the research

question of a benchmark study is highly relevant (and even more central) for interpreting

benchmark studies, yet difficult to formulate clearly (see Sections 3 and 4).

With respect to the population of DGMs, Contribution 4 proposes a step toward clari-

fication by advocating the explicit specification of a database and eligibility criteria for

selecting real datasets, which not only aims to improve representativeness of the intended
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population of DGMs but also serves to clarify this population (importantly, the criteria

aimed at representativeness are explicitly distinguished from technical criteria that ad-

dress issues like data quality; see Contribution 4 for details). However, Contribution 4

only considers real-data-based parametric simulations, and the specific approach it pro-

poses cannot be readily transferred to benchmark studies using other data types, which

calls for further work in this direction.

For the remaining elements constituting the research question, namely methods of interest

and evaluation perspective, the situation is even less developed. One possible explana-

tion is the asymmetry in recognizing the generalization that inevitably occurs: many

researchers acknowledge the step from specific DGMs to a population of DGMs, and this

issue has also received attention in the literature (e.g., Boulesteix, Hable, et al., 2015;

Herrmann et al., 2024; Strobl and Leisch, 2024). By contrast, the parallel generaliza-

tion from the concrete method and evaluation setup to the broader notions of methods

of interest and evaluation perspective, although likewise occurring in practice, is often

not consciously recognized and remains implicit. This is understandable, however, since

specifically the concept of an evaluation perspective is even more abstract than that of a

population of DGMs (with the terminology itself only introduced in this thesis). Based

on this background, an important direction for future research is to further elaborate and

refine the definition and scope of the evaluation perspective, which could then provide the

basis for developing more structured ways to specify it.

Overall, as in the case of expertise, it would be desirable to establish a standardized way of

reporting the research question in benchmark studies. A useful point of orientation could

be the ADEMP framework (aims, data-generating mechanisms, estimands, methods, and

performance measures; Morris et al., 2019) for simulation studies, which illustrates how

structured reporting can enhance clarity.

Advancing the proposed strategies to reduce optimistic bias The contributions

of this thesis propose additional strategies for reducing optimistic bias alongside existing

ones (see Section 4.4). However, these strategies still need to be examined in practice

and made more accessible. In particular, Contribution 4 suggests a workflow for con-

structing DGMs in parametric simulation studies based on a systematically selected set

of real datasets, but this workflow remains to be evaluated in actual simulation studies.

Moreover, while the general multidimensional unfolding approach employed in Contribu-

tion 2 to report variability in results is already implemented in the R package smacof (de

Leeuw & Mair, 2009), the specific visualization used in Contribution 2 is adapted to the

benchmarking context, which necessitates additional manual modifications. To enable

researchers conducting benchmark studies to generate this adapted visualization more

readily, a dedicated R package would be valuable, and its utility should be tested with
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RDFs beyond those considered in Contribution 2.

Despite these open tasks, this thesis has contributed to increasing awareness of how op-

timistic bias arises in benchmark studies and to outlining strategies for addressing it.

Although optimistic bias can probably never be avoided entirely, recognizing and coun-

tering it is essential for ensuring that benchmark studies can genuinely support both

applied and methodological research.
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Abstract

Adequately generating and evaluating prediction models based on supervised machine learning (ML) is often

challenging, especially for less experienced users in applied research areas. Special attention is required in settings

where the model generation process involves hyperparameter tuning, i.e. data-driven optimization of different

types of hyperparameters to improve the predictive performance of the resulting model. Discussions about tuning

typically focus on the hyperparameters of the ML algorithm (e.g., the minimum number of observations in each

terminal node for a tree-based algorithm). In this context, it is often neglected that hyperparameters also exist

for the preprocessing steps that are applied to the data before it is provided to the algorithm (e.g., how to handle

missing feature values in the data). As a consequence, users experimenting with different preprocessing options

to improve model performance may be unaware that this constitutes a form of hyperparameter tuning, albeit

informal and unsystematic, and thus may fail to report or account for this optimization. To illuminate this issue,

this paper reviews and empirically illustrates different procedures for generating and evaluating prediction models,

explicitly addressing the different ways algorithm and preprocessing hyperparameters are typically handled by

applied ML users. By highlighting potential pitfalls, especially those that may lead to exaggerated performance

claims, this review aims to further improve the quality of predictive modeling in ML applications.

Keywords: predictive modeling, machine learning, preprocessing, hyperparameter optimiza-

tion, tuning
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1 Introduction

Many applied research areas have recently seen an increase in the development of prediction

models based on supervised machine learning (ML) algorithms. However, after initially generat-

ing widespread enthusiasm—partly due to the availability of user-friendly software that enables

model development without requiring extensive expertise—ML-based prediction models are now

undergoing critical reexamination (Ball, 2023; Kapoor & Narayanan, 2023; Pfob et al., 2022).

Among other concerns, such as insufficient reporting of relevant aspects of the model develop-

ment process, it has been found that the claimed predictive performance of many models is

considerably exaggerated (Andaur Navarro et al., 2021; Dhiman et al., 2022a, 2022b; Kapoor &

Narayanan, 2023). While some of the pitfalls leading to such optimistically biased performance

claims (e.g., using the exact same observations for model generation and evaluation) typically

occur only among very inexperienced applied ML users and are well known within the ML

research community, others arise more subtly (Domingos, 2012; Hofman et al., 2023; Kapoor &

Narayanan, 2023; Poldrack et al., 2020).

This is particularly true when the model generation process involves data-driven hyperparame-

ter optimization, which is also referred to as hyperparameter tuning and is commonly employed

in ML applications. The most prominent type of hyperparameters (HPs) are those associated

with the learning algorithm, which specify its configuration (e.g., the minimum number of ob-

servations in each terminal node for tree-based algorithms). If selected by an adequate (and

ideally automated) tuning procedure, HPs can substantially enhance the performance of the

resulting prediction model. However, HP tuning also complicates model evaluation, as common

procedures such as simple k-fold cross-validation no longer guarantee an unbiased assessment

(Bischl et al., 2023; Hosseini et al., 2020).

An additional challenge comes from the fact that, beyond algorithm HPs, there are also pre-

processing HPs, which specify the steps applied to the data before it is fed into the learning

algorithm (e.g., selecting the set of features for prediction or determining how missing feature

values are handled; Binder and Pfisterer, 2024; Bischl et al., 2023). While the tuning of algo-

rithm HPs is rightfully considered important for model performance, the relevance of tuning

preprocessing HPs should not be overlooked. Preprocessing steps can make or break a model’s

predictive performance, and solely relying on user expertise to specify these steps (which is

the alternative to tuning) is often impractical and may result in arbitrary decisions (Kuhn &

Johnson, 2013). Despite this, reports of tuning preprocessing HPs aside from feature selection

are relatively rare. This could be because integrating preprocessing HPs into automated tuning

workflows typically requires advanced programming expertise, which not all applied ML users

have, or because this possibility is not widely recognized. Importantly, the limited use of au-

tomated tuning procedures for preprocessing HPs does not mean that these HPs are not being

tuned at all. In fact, it appears fairly common for applied ML users to experiment informally

with different preprocessing options (Hofman et al., 2023; Hosseini et al., 2020; Lones, 2024),

often without realizing that this constitutes a form of (manual) HP tuning. If this type of tuning
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is indeed conducted subconsciously, it will also remain unaccounted for during model evalua-

tion, thereby increasing the risk of drawing overly optimistic conclusions about the model’s

performance.

To avoid such issues, it is essential to educate users in applied settings about the different types

of HPs, the different forms of HP tuning, and how tuning can impact both the true and esti-

mated performance of prediction models. Although valuable literature already exists describing

the concept of HP tuning and various automated procedures (e.g., Bartz et al., 2023; Bischl et

al., 2023; Feurer & Hutter, 2019), this research primarily adopts the perspective of ML methods

researchers who are concerned with evaluating the overall performance of ML algorithms used

to generate prediction models. This focus does not align with the perspective of applied ML

users, who are more interested in the performance of a specific prediction model. Although this

literature is still useful for them—since the general principles described there essentially hold

for all types of audiences—applied ML users additionally need specific guidance for developing

their “final model” (a notion that does not exist in the methodological context). Moreover,

they may find it challenging to extract the relevant insights from literature aimed at a different

audience with partly different needs. In contrast, literature explicitly directed toward applied

ML users tends to either focus on general guidelines for ML-based predictive modeling, lacking

detailed coverage of HP tuning (e.g., Collins, Dhiman, et al., 2024; Kapoor et al., 2024; Kuhn &

Johnson, 2013; Lones, 2024; Pfob et al., 2022; Poldrack et al., 2020; van Royen et al., 2023), or

addresses HP tuning only within specific research areas (e.g., Dunias et al., 2024; Hosseini et al.,

2020). Additionally, much of the existing HP tuning literature does not consider preprocessing

HPs. Exceptions include the review by Bischl et al., 2023, which, however, touches on this topic

only briefly. This lack of detail is reasonable, given that preprocessing HPs can, in principle,

be tuned using the same automated procedures as algorithm HPs. However, this perspective

overlooks that preprocessing HPs are often tuned manually in applied settings, which carries

implications different from those associated with automated tuning.

This paper aims to complement the existing literature by reviewing the implications and pitfalls

of HP tuning in the generation and evaluation of prediction models from the perspective of ap-

plied ML users with varying levels of expertise. It explicitly distinguishes between preprocessing

and algorithm HPs, as well as the different procedures commonly used to tune them in practice.

A particular focus is placed on the potential for optimistically biased performance estimation,

which is also illustrated using a real-world prediction problem from palliative care medicine.

The paper is structured as follows. Section 2 introduces the key concepts related to predictive

modeling using ML, including the two types of HPs. In the next two sections, the challenges

and pitfalls that arise in the generation and evaluation of prediction models are described,

differentiating between the setting where all HPs are pre-specified (Section 3) and the setting

where one or more HPs are selected through tuning (Section 4). Section 5 empirically illustrates

the impact of different tuning and evaluation procedures on the estimated model performance.
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Section 6 summarizes the key insights, discusses the limitations of the empirical study, and

outlines future research directions.

2 General concepts of predictive modeling using supervised ML

2.1 Terminology and notation

The following terminology and notation is adapted from Bischl et al. (2023). Let Dtrain be a

labeled data set with ntrain observations. Accordingly, each observation i (i = 1, . . . , ntrain)

consists of an outcome y(i) (i.e. the variable to be predicted, also referred to as label or target)

and a p-dimensional feature vector x(i) (i.e. the p variables used to predict y(i), also referred to

as predictors), where y(i) and x(i) can take any value from the outcome space Y and feature

space X , respectively. Two common types of prediction problems are regression, for which y(i)

can be any real number (i.e. Y = R), and classification, for which y(i) can be one of g classes

(i.e. Y is finite and categorical with |Y| = g). We assume that the observations in Dtrain are

independent and have been sampled from the same (unknown) probability distribution Pxy.

The general aim of supervised ML is to “learn” a model from the data set Dtrain that is able

to predict the outcome values of new observations. Essentially, a prediction model is a function

f̂ : X → Rg that maps any observed feature vector x to a prediction vector f̂(x) in Rg.

The prediction vector f̂(x) either directly corresponds to the predicted outcome value (e.g.,

for regression, where g = 1) or can be transformed accordingly (e.g., for classification, where

f̂(x) corresponds to predicted probabilities for each class and the predicted class could be the

class with the highest probability). The prediction model results from a learning pipeline I,
which uses the data set Dtrain to find the function f̂ that yields the best predictions for the true

outcome values in Dtrain. To stress that a prediction model f̂ is based on learning pipeline I
and data set Dtrain, we write f̂

Dtrain
I . The prediction model f̂Dtrain

I can usually be parameterized,

meaning that it is defined by a set of parameters θ̂
Dtrain

I (simply denoted as θ̂ when data set

and learning pipeline are clear from context and θ when referring to the parameters prior to

estimation).

There are two key processes associated with I and f̂Dtrain
I , which we will explore in more detail

throughout the paper: (i) the training process, in which the learning pipeline I is applied to

Dtrain and estimates the parameters θ̂
Dtrain

I and thus the prediction model f̂Dtrain
I , and (ii) the

prediction process, in which f̂Dtrain
I is used to make predictions for an observation (whether from

Dtrain or from a new data set) with feature vector x, resulting in f̂Dtrain
I (x). Note that to make

predictions on a new data set, the outcome does not need to be observed (it would only be

necessary for evaluating those predictions). The training and prediction processes serve as the

foundation for more complex processes related to the development of prediction models, which

we will address in Section 2.4.
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2.2 Learning pipeline

Each learning pipeline I contains a learning algorithm as a central component but can also

include several preprocessing steps that are performed before the algorithm is applied to the

data. Since preprocessing steps are a particular focus of this paper, we use the term “learning

pipeline” instead of the more common term “learner” to emphasize that I can consist of several

components. Note that for now, we consider all components of I as fixed, but we will discuss

the case in which they can be modified in Section 2.3.

2.2.1 Learning algorithm

The choice of learning algorithm usually depends on the specific prediction problem. For ex-

ample, if the desired prediction model is a decision tree (which is the case for the real-world

prediction problem considered in Section 5), a possible algorithm choice is the well-known Clas-

sification and Regression Tree algorithm (CART), which partitions the feature space X by a

sequence of binary splits into terminal nodes and assigns a prediction value to each terminal

node (Breiman et al., 1984). In this case, the parameters of the learning algorithm contained

in θ̂
Dtrain

I are the splitting rules that generate the tree structure (i.e. which features are used

with which threshold value) and the prediction values at each terminal node. The learning

algorithm can also consist of multiple individual algorithms that are combined into one overall

algorithm (e.g., random forests). These types of algorithms are referred to as ensemble meth-

ods, but will not be discussed further in this paper. In general, the choice of algorithm has a

large impact on the hypothesis space of the learning pipeline, i.e. the set of prediction models

the learning pipeline can generate. For example, selecting a standard linear regression as algo-

rithm (with θ̂
Dtrain

I containing the regression coefficients) would imply that the corresponding

learning pipeline would not be able to learn prediction models that do not correspond to linear

combinations of the features (e.g., polynomials).

2.2.2 Preprocessing

While a data set can, in theory, be fed directly into the algorithm (i.e. the algorithm is the only

component of the learning pipeline), it typically undergoes some modification first. This process

can be referred to as data preprocessing and encompasses all the steps taken to transform the

data set from its rawest available form into the final form provided as input to the learning

algorithm (Kapoor et al., 2024). Data preprocessing steps are usually performed to improve

the performance of the resulting prediction model, to enable the data to be (better) handled

by the learning algorithm (Thomas, 2024), or to improve the interpretability of the resulting

prediction model. To better illustrate the different characteristics of preprocessing steps and

their implications on the training and prediction process, we consider a simple learning pipeline

as an example, which is also depicted in Figure 1 (middle panel). It consists of two prepro-

cessing steps, which are followed by the CART algorithm. The first preprocessing step is the

replacement of missing feature values using mean imputation, and the second preprocessing

step is the log-transformation of features.
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Figure 1: Example of a learning pipeline I consisting of two preprocessing steps and one learning
algorithm. Left panel: HPs of the learning pipeline, with each HP set to an example value.
Middle panel: Training process, where the learning pipeline is applied to the data set Dtrain to
generate the prediction model f̂Dtrain

I . Right panel: Prediction process, where a prediction for
an observation with feature vector x is obtained by reapplying all preprocessing steps, followed
by the prediction model resulting from the learning algorithm (here: a decision tree).

Parameterized vs. parameterless steps Based on this example learning pipeline, we can

make a first distinction between preprocessing steps. This distinction concerns whether the steps

have parameters estimated from Dtrain (with these parameters included in θ) or whether they

are parameterless and are carried out independently for each observation (Binder & Pfisterer,

2024; Kapoor et al., 2024). In the example, the replacement of missing feature values is a

parameterized preprocessing step, as it involves the parameter θimpute, representing the mean

of all non-missing values estimated from Dtrain. In contrast, the log-transformation of features

does not involve any parameters. Other examples of preprocessing steps with parameters include

centering or scaling of features, where parameters such as the mean or standard deviation are

estimated from Dtrain. On the other hand, creating a new feature by summing multiple features

serves as another example of a parameterless preprocessing step.

Application during prediction vs. training only The second key distinction in prepro-

cessing steps concerns whether they are applied only during the training process as part of the

learning pipeline or also during the prediction process. This distinction is closely related to

whether a preprocessing step modifies only the feature distribution or also affects the outcome

distribution. More formally, let y denote the outcome vector in Dtrain. If, after applying all
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preprocessing steps in the learning pipeline during training, y remains unchanged, we classify

the step as affecting only the feature distribution. Otherwise, the step affects the outcome

distribution, for example, by removing or adding observations or transforming outcome values.

We first consider preprocessing steps that affect only the feature distribution. These comprise

all preprocessing steps mentioned above, including those in the example learning pipeline. Ad-

ditional examples are dimensionality reduction techniques (e.g., principal component analysis),

feature selection, or data cleaning steps that do not alter the outcome distribution (e.g., correc-

tion of errors in features) (Kuhn & Johnson, 2013; Thomas, 2024). Preprocessing steps of this

type must be applied not only during training but also during prediction, in the same sequence

as in the learning pipeline. This ensures that the model produced by the learning algorithm

receives the data in the same format during prediction as it did during training, preserving the

validity of the model (Binder & Pfisterer, 2024). This requirement implies that these steps are

not only components of the learning pipeline I but also part of the resulting prediction model

f̂Dtrain
I . Consequently, if a learning pipeline I includes h preprocessing steps that only affect

the feature distribution, the prediction model f̂Dtrain
I is not a single function but a function

composition of h+ 1 functions (omitting Dtrain and I for simplicity of notation):

f̂h+1(f̂h(. . . (f̂1(x)))), (1)

where f̂h+1 corresponds to the model resulting from the learning algorithm, and f̂h, . . . , f̂1 reflect

the h preprocessing steps. Accordingly, a more accurate name for a prediction model would be

prediction model pipeline, but for brevity, we will continue to use the former. Returning to the

example learning pipeline, the resulting prediction model is a composition of three functions,

f̂3(f̂2(f̂1(x))), where f̂1, f̂2, and f̂3 correspond to the imputation step, the log-transformation

step, and the decision tree model, respectively. When making a prediction for one or more

observations, all three functions must be applied (see Figure 1, right panel). Importantly, if any

functions constituting the prediction model are omitted during the prediction process, or if any

preprocessing or algorithm parameters are re-estimated on a new data set for which predictions

are to be made, the validity of the prediction model may be compromised. However, in prac-

tice, this pitfall is often unavoidable for users who wish to apply a model but were not involved

in its development, as studies introducing new prediction models frequently fail to report the

preprocessing steps performed prior to applying the learning algorithm (Kapoor et al., 2024).

In contrast to preprocessing steps that only affect the feature distribution, preprocessing steps

that modify the outcome distribution are not necessarily applied during prediction. Here, we

must distinguish between steps aimed at improving compatibility with the learning algorithm

and those intended to alter the scope or interpretation of the prediction model. An example

of the first type is (invertible) transformations applied to the outcome during training, such

as a log-transformation to reduce skewness. To ensure predictions are returned on the correct

scale, these transformations must be reversed during prediction (Thomas, 2024). For instance,

if the outcome was log-transformed during training, the model will output log(f̂Dtrain
I (x)), which
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must then be exponentiated to restore the prediction to its original scale. Note that some other

compatibility-focused steps are not applied at all during prediction. In the context of classifi-

cation problems, this includes class-balancing steps such as oversampling, where observations

from the least prevalent class are randomly resampled to overcome class imbalance effects during

the training process (see, e.g., Kuhn and Johnson, 2013, for more details). In the notation of

the prediction model as a function composition introduced above, preprocessing steps that are

applied only in their inverted form or not at all during prediction are represented as inversion

function or identity function, respectively.

In contrast, preprocessing steps that modify the outcome to alter the scope or interpretation of

the prediction model should be consistently applied during prediction. For example, if a continu-

ous outcome is discretized to convert a regression problem into a classification problem (Hofman

et al., 2023), this (irreversible) transformation must also be applied to the true outcome during

prediction in order to enable a meaningful comparison between the predictions and the actual

outcome values. Such transformations of the outcome are not part of the prediction model

itself (which maps x to predictions, not y), but must be performed alongside the prediction

process. Moreover, since the outcome values are generally unknown when making predictions

for observations from a new data set that does not correspond to Dtrain, these transformations

are typically not actual steps executed when making predictions but instead determine how the

predictions are interpreted.

2.3 Hyperparameters

Until now, we have assumed that the learning pipeline I is fixed. However, individual compo-

nents of I usually have several hyperparameters (HPs), which determine their specific configu-

ration and thus substantially influence the resulting prediction model. This also applies to the

learning pipeline example considered in the previous section, for which possible HPs are shown

in the left panel of Figure 1 (see below for further explanation). In contrast to the parameters

θ, which are estimated as outputs of the learning pipeline, the HPs serve as inputs. This means

that they must be specified before the learning pipeline is applied to the data set (Bischl et al.,

2023).

2.3.1 Additional notation for HPs

The following notation is based on Feurer and Hutter (2019). We denote the jth HP of a

learning pipeline as λj , which is selected from its domain Λj (i.e. λj ∈ Λj). The domain of λj

can generally be real-valued, integer-valued, binary, or categorical, as we will see in the examples

given below. All J HPs of a learning pipeline can be summarized as a vector λ = (λ1, . . . , λJ)

and their overall configuration space as Λ = Λ1 × Λ2 · · · × ΛJ (with λ ∈ Λ). Note that Λ may

contain conditionality, meaning that some HPs might only be relevant when one or more other

HPs are set to a certain value (see below for examples).

As described in Section 2.2, the learning pipeline consists of several preprocessing steps and
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a learning algorithm. We can consequently differentiate between preprocessing and algorithm

HPs, which we denote as λP and λA (i.e. λ = (λP ,λA)).

2.3.2 Algorithm HPs

Each learning algorithm usually has several HPs, which are specified by the software package

used and can have a large impact on its complexity, speed, and other important properties of

the algorithm (Bischl et al., 2023). For example, the HPs of the CART algorithm include the

minimum number of observations in any terminal node (λminbucket), the maximum tree depth,

with the root node counted as depth 0 (λmaxdepth), and the factor by which a split needs to

decrease the overall lack of fit to be attempted (λcp) (Therneau & Atkinson, 2022). In the

CART implementation of the R package mlr3 (Lang et al., 2019), the respective HP domains

are Λminbucket = {1, . . . , ntrain}, Λmaxdepth = {1, . . . , 30} (both being integer-valued domains),

and Λcp = [0, 1] (real-valued domain). Most algorithm HPs have default values that are specified

by the software in which they are implemented (e.g., in mlr3, λminbucket = 7 per default).

Note that since there is usually more than one algorithm suitable for a given prediction problem,

the choice of algorithm can also be seen as an HP of the learning pipeline (with the HPs

associated with each algorithm representing conditional HPs that are only relevant when the

respective algorithm is used; Bischl et al., 2023). This creates an even more flexible but also

complex learning pipeline, which is why, in this paper, we assume that the algorithm has already

been selected.

2.3.3 Preprocessing HPs

As mentioned above, it is not only possible to specify learning algorithm HPs but also pre-

processing HPs (Binder & Pfisterer, 2024; Bischl et al., 2023). In principle, whenever multiple

options exist for performing a preprocessing step, these options can be considered as different

HP values of the respective preprocessing step.

First, the choice of whether a preprocessing step PS is applied at all can be considered as a

binary HP λPS with ΛPS = {yes,no} (e.g., whether features should be log-transformed or not).

Second, there is often more than one possible option for performing a preprocessing step. For

example, the influence of outliers in features can be reduced by replacing all values that are

outside the range [xmin, xmax] by xmin and xmax, respectively (“winsorizing”; Steyerberg, 2019).

There are different options to specify xmin and xmax, which means that λxmin and λxmax are

HPs of the winsorizing preprocessing step (e.g., Steyerberg, 2019, suggests percentiles such as

λxmin = 1st percentile and λxmax = 99th percentile).

Several possible options also exist for the imputation of missing feature values. For example,

imputation can be based on the feature’s mean or median, or on a sampled value from its empir-

ical distribution (as illustrated in Thomas, 2024). This constitutes a (categorical) preprocessing

HP λimpute with Λimpute = {mean, median, sample, . . .}.
Another typical example of a preprocessing step with many possible options is feature se-

lection. To define HPs in this context, we have to differentiate between filter and wrap-

per methods (the following explanations are based on Wright, 2024, who also provides more
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details and additional examples). Filter methods are preprocessing steps that assign a nu-

meric score to each feature (e.g., the correlation coefficient ρ between each feature and

the outcome) and select a set of features according to this score (e.g., all features with

ρ > 0.2). Consequently, the set of selected features is the parameter of the filter (i.e.

θfilter, with, e.g., θ̂filter = {x6, x8, x21, x25}), while its specific configuration can be modi-

fied by its HPs. For example, there are different options to define the score (λfilter1 , with

Λfilter1 = {correlation, variance, importance score, . . .}) and to select the features based on

their score (λfilter2 , with Λfilter2 = {top r features, all features with a score ≥ τ, . . . }, where r

and τ themselves are HPs that are conditional on λfilter2). Instead of using filter methods, it is

also possible to directly specify the set of features that should be selected. In this case, the set

of selected features is an input rather than an output of the learning pipeline and is therefore

the HP (λfeatures) of the feature selection step. For example, if only the features x6, x9, and x21

should be used by the learning algorithm, then λfeatures = {x6, x9, x21}. In many applications,

λfeatures is not specified once by the user, but different values of λfeatures are tried and evaluated

on Dtrain. This process is referred to as a wrapper method but is, in fact, a special case of HP

tuning, which will be discussed in Section 4.1.

Note that the individual HP values can also be application-specific. For example, in the real-

world prediction problem considered in Section 5, several options for aggregating 17 individual

features covering physical symptoms, psycho-social burden, family needs, and practical prob-

lems of palliative care patients to a sum score are reasonable (see Section 5.2.2).

In addition to specifying the preprocessing steps, the order in which they appear in the learn-

ing pipeline can technically be considered an HP as well. For instance, in the learning pipeline

shown in Figure 1, the log-transformation step could also be applied before the imputation step,

resulting in a different θ̂impute and, therefore, potentially a different prediction model. However,

we will not consider this type of preprocessing HP further in the remainder of this paper.

As already indicated by the examples above, many preprocessing HPs are conditional on other

preprocessing HPs (e.g., the winsorizing HPs λxmin and λxmax are only relevant when win-

sorizing is the chosen method to reduce the influence of feature outliers, which could also be

implemented by transforming the features instead). Moreover, in contrast to algorithm HPs,

preprocessing HPs often cannot be set by a single software function argument (for example,

all HPs of the CART algorithm named in the previous section can be specified within a single

R function, using, e.g., the argument minbucket for λminbucket); instead, in many cases, the

different options for a specific preprocessing step are implemented by different software pack-

ages. Consequently, there is often no formal HP domain, and defining the domain such that

it contains all possible HP values may not even be feasible (e.g., for λimpute, defining Λimpute

would require collecting all available methods for imputing missing values). Moreover, many

preprocessing HPs do not have a formal default value, although the option of not applying a

preprocessing step (if applicable and not leading to an error) seems to be a reasonable default

value that we will adopt in the following.
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In contrast to algorithm HPs, it seems that preprocessing HPs—apart from those related to

feature selection—are rarely discussed or referred to as such in ML applications (see, e.g., the

systematic reviews of Dhiman et al., 2022a, and Andaur Navarro et al., 2023, where such terms

were not mentioned). ML methods research usually also focuses on algorithm HPs rather than

preprocessing HPs. An exception is the benchmark study by Stüber et al. (2023), which, among

other factors, examines the impact of using principal component analysis in radiomics-based

survival analysis.

2.3.4 Selection of HPs

While it is usually possible to leave all HPs at their respective default value, it is common to

modify them in an attempt to optimize the prediction model generated by the learning pipeline.

This can also be necessary if there is no specified default value. The term “optimization” here

often refers to the predictive performance of the model but can also take into account other

criteria such as simplicity, interpretability, or runtime to generate the model (Bischl et al., 2023;

de Hond et al., 2022; Domingos, 2012; Pfob et al., 2022). Note that the selection of HPs can be

considered a “researcher degree of freedom” (Simmons et al., 2011), as it is one of many choices

that users must make throughout the model development process (other choices are, e.g., how

predictive performance is assessed; Hofman et al., 2017; Hosseini et al., 2020; Klau et al., 2020).

We can distinguish between two primary types of HP selection: data-independent and data-

dependent procedures. Data-independent HP selection does not make use of the data set Dtrain

and is ideally based on the user’s knowledge about the data set and learning algorithm. For

example, sensible algorithm HPs can be selected when users are experienced with the learning

algorithm or when corresponding recommendations from the literature (e.g., previous bench-

mark studies) are available (Bartz et al., 2023; Bischl et al., 2023). Similarly, some preprocessing

HPs may be inferred from substantive knowledge about the data set (e.g., which set of features

should be selected) or knowledge about how the learning algorithm is affected by certain data

set characteristics (e.g., whether the algorithm is sensitive to outliers in features, which requires

some form of transformation; Kuhn and Johnson, 2013). An example of data-independent HP

selection on the basis of model simplicity is the specification of the maximum tree depth in the

real-world prediction problem considered in Section 5, where the project team set the HP to

λmaxdepth = 4 to ensure that the resulting decision tree can be implemented in clinical practice.

In cases where users have insufficient knowledge about the data and learning algorithm to ensure

a reasonable HP selection but wish to avoid arbitrary or default HP values, it is possible to use

the data set Dtrain to select optimal HP values. This process corresponds to a data-dependent

HP selection, but terms such as HP tuning and (data-driven) HP optimization are more com-

mon (e.g., Bartz et al., 2023; Bischl et al., 2023; Probst et al., 2019). We will accordingly use

the term HP tuning in the remainder of this paper. Note that HP tuning implies that not only

the parameters θ are estimated from the data set Dtrain but also one or more HPs in λ. HP

tuning thus generally complicates model generation and evaluation, which will be described in

more detail in Section 4.
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Importantly, there are HPs that should not be selected through tuning. For learning algorithms,

this includes, for example, the number of trees (λnum.trees) in the random forest algorithm for

classification problems: Due to the monotonous relation between λnum.trees and model perfor-

mance in most cases, the largest computationally feasible number of trees should be chosen

(Probst & Boulesteix, 2018). Regarding preprocessing HPs, this typically applies to those

associated with steps that alter the scope or interpretation of the prediction model (see Sec-

tion 2.2.2). As such steps require careful specification, the corresponding HPs should be set

based on user expertise (i.e. data-independently) rather than determined through tuning.

To indicate how the value of a HP λj has been specified, we write λI
j if the value is left at default

value or selected independently of the data, and λII
j if the value was chosen through tuning.

2.4 Model development processes

The development of ML-based prediction models generally involves two key processes: (i) the

generation of the prediction model f̂Dtrain
I (model generation) and (ii) the evaluation of its

predictive performance (model evaluation). Given our focus on HPs and their selection, we

distinguish between two settings in the remainder of this paper. In Setting I, all HPs of the

learning pipeline are pre-specified (i.e. either set to default values or selected independently of

the data). In Setting II, one or more HPs are selected through tuning.

Before explaining the principles and potential pitfalls of model generation and evaluation for

both settings in Sections 3 and 4, we first clarify their general concepts.

2.4.1 Model generation

We refer to the model generation process as the set of processes required to obtain the final

prediction model f̂Dtrain
I . In Setting I, the model generation process consists of a single training

process, where the parameters that define the final prediction model are estimated from Dtrain

using the learning pipeline I with pre-specified HPs. In Setting II, where one or more HPs are

selected through tuning, the model generation process consists of a tuning process conducted

on Dtrain (which yields the tuned HPs), followed by a training process, where, similar to Setting

I, the parameters of the final prediction model are estimated from Dtrain using the learning

pipeline I with tuned HPs.

2.4.2 Model evaluation

Once the final prediction model f̂Dtrain
I has been generated, the next important step is its

evaluation. Since many algorithms yield black-box models that cannot be easily interpreted,

and are thus difficult to assess for plausibility without additional tools (see, e.g., Molnar, 2022),

a key quantity in the evaluation of a model is its prediction error. In the context of this work,

we will accordingly use the term “model evaluation” synonymously with determining a model’s

prediction error. The prediction error indicates how well a model performs on new observations

that are independently drawn from the same distribution as the observations in Dtrain (i.e.

from Pxy). It is specified with respect to a loss function L, which assesses the discrepancy

between true outcomes and predictions and constitutes the performance measure. Formally,
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the prediction error of f̂Dtrain
I can be defined as

PE(f̂Dtrain
I ) = E(x,y)∼Pxy

[L(f̂Dtrain
I (x), y)] (2)

(Bischl et al., 2023; Boulesteix et al., 2015; Hastie et al., 2009). The loss function L can be

chosen according to the prediction problem being addressed. For instance, a common choice

for L in regression problems is the squared loss. In this case, the prediction error reflects the

well-known mean squared error (MSE). Note that in equation (2), we assume for simplicity

that L corresponds to a point-wise loss function, although many commonly used performance

measures (e.g., the area under the receiver operating characteristic curve, AUC) would neces-

sitate a more general definition (provided in Bischl et al., 2023). Nonetheless, all following

statements regarding the prediction error hold regardless of this simplified (and more common)

representation.

An estimate of the prediction error in equation (2) can be obtained by using f̂Dtrain
I to make

predictions for an additional data set with new observations drawn from Pxy (referred to as

test data set Dtest). The prediction error can then be estimated by evaluating the loss function

L for each observation and calculating the average across all observations (again, assuming a

point-wise loss; Bischl et al., 2023; Hastie et al., 2009). The resulting prediction error estimate

for f̂Dtrain
I can be denoted as P̂E(f̂Dtrain

I ,Dtest). Note that the outcome values for Dtest must be

observed; otherwise, the loss function L cannot be evaluated.

The requirement for an additional data set, Dtest, for model evaluation can be challenging in

applications where data resources are limited. Denoting D as the only available data set at the

time of model generation and evaluation, there are two general approaches for defining Dtrain

and Dtest: (i) all available data are used for model generation, in which case Dtest is inevitably a

subset of Dtrain (i.e. Dtrain = D and Dtest ⊆ Dtrain), or (ii) the model is generated on a (proper)

subset of the available data, with the remaining subset held back for model evaluation (i.e.

Dtrain ⊂ D and Dtest = D\Dtrain). For the first approach, there are several ways to define Dtest,

each leading to a different evaluation procedure, which will be detailed in Section 3.2 (Setting

I) and Section 4.2 (Setting II).

Depending on the chosen evaluation procedure, a potential issue can be data leakage, which

occurs whenever information about the designated Dtest is improperly available during the gen-

eration of the model to be evaluated (Hornung et al., 2023; Kapoor & Narayanan, 2023; Kapoor

et al., 2024; Kaufman et al., 2012; Rosenblatt et al., 2024). Since, in this case, the observa-

tions in Dtest no longer truly represent new observations to which the model will be applied,

and the model thus has an unfair advantage when predicting these observations, the resulting

prediction error estimate can be optimistically biased. Kapoor and Narayanan, 2023 identify

three general types of data leakage, which may arise from: (i) overlap between the data used

for model generation and evaluation, (ii) violation of the assumption that all observations are

independently drawn from the same distribution, or (iii) use of illegitimate features. In this

paper, we will focus on overlap-induced data leakage but provide additional information on the
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other two types in Supplementary Section A. Furthermore, we encounter an example of one of

the other types in our empirical illustration in Section 5.

Finally, note that in some applications of ML (e.g., in the context of healthcare research), the

process of assessing a model’s performance on observations from Pxy is referred to as internal

validation. This is in contrast to external validation, which evaluates how well the model pre-

dicts observations from different distributions (e.g., different time points or healthcare settings;

Collins, Dhiman, et al., 2024; de Hond et al., 2022; Van Calster et al., 2023; van Royen et al.,

2023). As external validation is recommended to be performed in subsequent research only

after successful internal validation (Collins, Dhiman, et al., 2024), we will focus on internal

validation in this paper. Note that, in general, the term “evaluation” should be preferred over

“validation” as the latter suggests that a “validated model” has a low prediction error, which

is not necessarily the case (Collins, Dhiman, et al., 2024).

3 Setting I: Pre-specified HPs

In this section, we describe the model generation and evaluation process for Setting I. We

accordingly assume that the learning pipeline I is configured by HP values that are either

set to their default values or selected independently of the data, i.e. λ = λI. This aspect is

emphasized by denoting the learning pipeline as IλI .

3.1 Model generation

As stated in Section 2.4, the model generation process in Setting I consists of a single training

process. Moreover, as already outlined, “training” refers to the learning pipeline estimating the

parameters θ (which constitute the prediction model) from Dtrain. For brevity, we will also refer

to this process as “training the prediction model” although it is the learning pipeline that is

being trained and subsequently yields the prediction model.

Importantly, all parameters in θ must be estimated, including those from preprocessing steps.

The estimation of preprocessing parameters follows the sequence of their corresponding steps

in the learning pipeline IλI . This process is specified by the respective preprocessing step. For

example, in the case of mean imputation, the corresponding parameter estimate is found by

calculating the mean of all non-missing observations of the corresponding feature.

The parameters of the learning algorithm are usually estimated based on a loss function l

that measures the discrepancy between the true outcome and a prediction vector for each

observation i, i.e. l(y(i), f(x(i))). The algorithm parameters are then found by minimizing
∑ntrain

i=1 l(y(i), f(x(i))) (see, e.g., Bischl et al., 2023, or Bartz et al., 2023, for more details). For

example, in a regression problem where the learning algorithm corresponds to the CART algo-

rithm, the splitting rules are found by minimizing the sum of squared errors and the prediction

value for each terminal node corresponds to the mean of all outcome values in the respective

node (Breiman et al., 1984). Note that the loss function l may, but does not necessarily have

to, align with the loss function L from Section 2.4.2, which is used to estimate the prediction
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error.

When estimating the parameters, the learning pipeline may not only capture the signal in

Dtrain which represents the true underlying data-generating mechanism Pxy, but it may also er-

roneously learn the specific pattern of noise (i.e. unexplained variation) in Dtrain. The resulting

prediction model is too adapted to Dtrain and will perform worse on new observations (drawn

from Pxy) than on the observations in Dtrain. This is a well-known problem in prediction model

training and is commonly referred to as overfitting (e.g., Bischl et al., 2023; de Hond et al.,

2022; Hastie et al., 2009; Kuhn & Johnson, 2013; Poldrack et al., 2020; Steyerberg, 2019). The

risk of obtaining an overfitted prediction model depends on both the data set Dtrain (specifically

on its signal-to-noise ratio, which tends to decrease as the number of observations decreases)

and on the learning pipeline IλI used to train the model (Lones, 2024; Poldrack et al., 2020).

The association between the characteristics of a learning pipeline and its tendency to overfit is

not straightforward, but it is related to factors such as the size of its hypothesis space (i.e. the

number of prediction models that can be trained by IλI) and the procedure by which the model

is chosen from the hypothesis space (e.g., whether the hypothesis space is searched exhaustively;

Domingos, 2012). These factors can vary greatly between learning pipelines, especially depend-

ing on the type of learning algorithm and the chosen HP values. Note that the learning pipeline

may also suffer from underfitting rather than overfitting, which occurs if it is not flexible enough

to adequately model the underlying data-generating mechanism (Hastie et al., 2009).

As mentioned above, after training the learning pipeline once (and only once) on Dtrain, the

generation of the final prediction model is completed. This implies that if the model is found

to have a poor predictive performance in the subsequent evaluation (e.g., due to over- or un-

derfitting), the result either has to be accepted or the HPs of the learning pipeline have to

be modified based on the evaluation result. However, users should be aware that the latter

approach corresponds to Setting II, which has different implications for model evaluation (Sec-

tion 4). We denote the final prediction model as f̂Dtrain
I
λI

to emphasize that it is the result of

training a learning pipeline configured with HP values λI.

3.2 Model evaluation

As outlined in Section 2.4.2, evaluating the prediction model f̂Dtrain
I
λI

requires a test data set

Dtest, which is used to estimate the model’s prediction error. In that section, it was also

stated that evaluation procedures can be differentiated based on whether model generation

(which corresponds to model training in Setting I) has been performed on all available data

(with Dtrain = D and Dtest ⊆ Dtrain) or only on a (proper) subset of the available data (with

Dtrain ⊂ D and Dtest = D \ Dtrain). In the following sections, we examine the implications

for model evaluation in more detail for both approaches. An additional graphical overview is

provided in Figure 2.
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Figure 2: Overview of different model evaluation procedures and their relation to the model
generation process if all HPs are pre-specified. Data leakage is present if any subset of Dtest

used for prediction error estimation has also been employed to generate the evaluated prediction
model (which is not necessarily the final model). In the figure, the point at which data “leaks”
into the model evaluation is marked by the red caution symbol.

3.2.1 Evaluation of a model generated on all available data

Apparent error A straightforward way to evaluate a prediction model trained on all available

data is to estimate its prediction error using the same data set, i.e. Dtrain = Dtest = D. The

resulting prediction error estimate is referred to as apparent error (see Figure 2, model evaluation

a). As explained in Section 2.4.2, data leakage is present when information about the designated

Dtest is present during model generation. For the apparent error, this is clearly the case, as Dtest

is equal to Dtrain. As a consequence, the apparent error is not able to detect any overfitting of

the model (since the specific pattern of noise in Dtrain exactly corresponds to that in Dtest) and

will therefore be affected by a (possibly substantial) optimistic bias. Although this evaluation
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procedure is well-known to be flawed and has been frequently warned against in literature

(e.g., Collins, Dhiman, et al., 2024; Efron, 1986; Hastie et al., 2009; Kuhn & Johnson, 2013;

Poldrack et al., 2020), it is often still the only prediction error estimate that is reported in

studies presenting new prediction models (Kapoor & Narayanan, 2023; Poldrack et al., 2020).

Resampling error To avoid the optimistic bias caused by the overlap between Dtrain and

Dtest, several procedures exist that partition Dtrain one or multiple times into two subsets for

evaluation purposes while still training the final prediction model on the full data set. These

procedures can be referred to as resampling methods and the resulting estimate as the resam-

pling error (see Figure 2, model evaluation b). The following description is based on Simon,

2007, Kuhn and Johnson, 2013, Bischl et al., 2023, and Casalicchio and Burk, 2024; see their

work for more details.

The simplest resampling method is the holdout or split-sample method, where Dtrain is ran-

domly split into two subsets with different purposes: One subset, denoted as D′
train, is used to

retrain the same learning pipeline IλI that has been used to obtain the final prediction model.

This results in an additional prediction model f̂
D′

train
I
λI

, whose prediction error is then estimated

on the second subset, which serves as Dtest. The holdout method essentially has two drawbacks,

whose impact on the prediction error varies according to the split ratio and the absolute number

of observations in D′
train and Dtest (denoted as n′

train and ntest). First, while the holdout method

ensures a clean separation between D′
train and Dtest, it does not evaluate the actual prediction

model trained on Dtrain but the additional prediction model trained on D′
train, which does not

necessarily coincide with the former. Since the additional prediction model is trained on fewer

observations (i.e. n′
train < ntrain), estimating its prediction error on Dtest yields a pessimisti-

cally biased estimate for the prediction error of f̂Dtrain
I
λI

. Second, the smaller ntest, the more the

prediction error estimate varies depending on which observations are assigned to Dtest (i.e. the

higher the variance of the holdout estimator). As a consequence, specifying the split ratio for

the holdout method requires a careful trade-off between bias and variance.

A commonly used variation of holdout is k-fold cross-validation (CV), where Dtrain is randomly

split into k subsets (or folds) of approximately the same size, with 5 or 10 being typical choices

for k. Based on the k splits, the procedure described for the holdout method is repeated k

times: In each repetition (in this context also referred to as resampling iteration), the learning

pipeline is trained on k−1 subsets of Dtrain (constituting D′
train), and the prediction error of the

resulting model is estimated on the remaining subset (constituting Dtest). The final prediction

error estimate is obtained by averaging the k prediction error estimates, which leads to the

CV estimator having a smaller variance than a holdout estimator with the same split ratio.

However, the prediction error estimate resulting from CV is also pessimistically biased because

the evaluated prediction models are again trained on less than ntrain observations, although this

bias decreases with increasing k (n′
train = k−1

k · ntrain).

Other common resampling methods include repeated versions of holdout and CV (to reduce
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the variance of the corresponding estimator) and bootstrapping. Repeated holdout and boot-

strapping are similar in their execution, except that for repeated holdout, the observations

constituting D′
train in each resampling iteration are drawn without replacement, while they are

drawn with replacement for bootstrapping.

As stated above, all resampling methods require the learning pipeline to be retrained on one

or multiple subsets D′
train, each of which is a (proper) subset of Dtrain (i.e. D′

train ⊂ Dtrain). In

this context, a flawed evaluation procedure would be to apply all preprocessing steps on the

full data set Dtrain and retrain only the learning algorithm on D′
train during resampling. This

“incomplete resampling” (Simon et al., 2003) results in another form of data leakage, as in each

resampling iteration, the observations in the respective Dtest subset have already been used to

train part of the learning pipeline (i.e. the preprocessing steps). Incomplete resampling has

been frequently warned against in the literature (e.g., de Hond et al., 2022; Hofman et al.,

2023; Kapoor et al., 2024; Pfob et al., 2022; Poldrack et al., 2020), and the resulting optimistic

bias has been demonstrated by illustrations on real data (e.g., Hornung et al., 2015; Rosen-

blatt et al., 2024) and corrected reanalyses of published studies (e.g., Kapoor & Narayanan,

2023; Neunhoeffer & Sternberg, 2019). Yet, it still seems to be a common pitfall in the eval-

uation of prediction models (see Kapoor and Narayanan, 2023, and references therein), which

is probably caused by a lack of understanding of its implications. In addition, if the learning

pipeline is not implemented as a single object that can be trained with a single function call

such as train(learning pipeline) (e.g., this is possible in R with the mlr3 or recipes pack-

age by Lang et al., 2019, and Kuhn et al., 2024), each preprocessing step must be manually

repeated in every resampling iteration. In such cases, users may consider incomplete resampling

a time-saving shortcut, without realizing that it introduces data leakage. To avoid incomplete

resampling, every component of the learning pipeline, including the preprocessing steps, must

be retrained in each resampling iteration. The only preprocessing steps that can be safely ap-

plied to the full data set prior to resampling are those that are both parameterless and precede

the first parameterized preprocessing step in the learning pipeline.

3.2.2 Evaluation of a model generated on a subset of the available data

If the final prediction model has been trained on a subset of the available data (i.e. Dtrain ⊂ D),

its prediction error can be estimated using the remaining observations as Dtest (see Figure 2,

model evaluation c). This means that the training process does not need to be repeated, as there

is no need to use resampling methods. Note that this procedure is technically equivalent to the

holdout method introduced above, except that the model trained on Dtrain, which corresponds

to D′
train in the holdout method above, is the final prediction model and has not only been

trained for evaluation purposes. Accordingly, the procedure is referred to as holdout or split-

sample method as well, which can make it difficult to infer which procedure was used when the

evaluation result of a model is reported. We use the terms temporary holdout (described in

Section 3.2.1) and permanent holdout (described here) to distinguish the two procedures.

In principle, most points discussed in the previous section affecting temporary holdout (including
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data leakage due to incomplete resampling) also apply to permanent holdout. Again, the only

difference is that, for the temporary holdout, the model trained on a subset of the available data

is used solely for evaluation purposes, whereas it serves as the final prediction model for the

permanent holdout. Consequently, the prediction error estimate derived from the permanent

holdout is not pessimistically biased; instead, it is an unbiased estimate of a prediction error

that is indeed higher (i.e. worse) than that of a model using all available data. Since not

using all available data for training the prediction model essentially corresponds to a loss of

important information, the permanent holdout method is only recommended if the number of

observations in D is sufficiently large or if repeating the training process is computationally

expensive or infeasible (Collins, Dhiman, et al., 2024).

4 Setting II: HPs selected through tuning

In this section, we review the model generation and evaluation process for Setting II, where one

or more HPs are selected through tuning.

4.1 Model generation

4.1.1 Overview

HP tuning generally aims to improve the predictive performance of a model (Bischl et al., 2023;

Probst et al., 2019). Using the terminology introduced in Section 2.4.2, this corresponds to

finding the HP configuration that minimizes the model’s prediction error. To simplify notation,

we will assume for now that all HPs are to be tuned, but will revisit the scenario where this

does not apply later in this section. Under this assumption, the HP tuning problem can be

formalized as:

λ∗ = argmin
λ∈Λ

PE(f̂Dtrain
Iλ ), (3)

where f̂Dtrain
Iλ is the final prediction model resulting from training the learning pipeline I con-

figured with HPs λ, and λ∗ denotes the theoretical optimum (Bischl et al., 2023). The lowest

prediction error (i.e. the best performance) that can be achieved using λ∗ as HP configuration

depends on several factors, such as the HPs to be tuned, the selected learning algorithm, the

performance measure, and the prediction problem in general (Probst et al., 2019). Note that in

the following, we refer to the prediction error of a model that results from training a learning

pipeline determined by a candidate HP configuration λ(c), i.e. f̂Dtrain
I
λ(c)

, simply as the prediction

error of λ(c) for brevity. It should also be noted that equation (3) represents the standard case of

single-objective HP tuning, i.e. the optimization is performed with respect to one performance

measure. However, HP tuning can also be conducted based on multiple performance measures

or additional criteria such as model simplicity (Bischl et al., 2023; Dunias et al., 2024). Since

such multi-objective HP tuning poses further challenges, we will only consider single-objective

tuning in this paper.

While there exist different tuning procedures, the general model generation process involving
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tuning can be described as follows: Given a set of C candidate HP configurations (selected

before or during the tuning process), each HP configuration λ(c) (c = 1, . . . , C) is evaluated

on Dtrain by employing one of the model evaluation procedures introduced in Section 3.2.1.

Accordingly, Dtrain is split into D′
train and Dtest (either once or multiple times), which are then

used for training (D′
train) and prediction error estimation (Dtest). In other words, the model

evaluation that is performed once with λ = λI in Setting I to assess the prediction error of

the final prediction model is performed multiple times for each candidate configuration (i.e.

with λ = λ(c)) in the tuning process of Setting II. After having evaluated all candidate HP

configurations, the HP configuration with the lowest (i.e. best) prediction error estimate is used

as the final HP configuration. Following the notation introduced in Section 2.3.4, we refer to

this configuration as λII. Note that λII is also commonly denoted as λ̂, since it is an estimate

of λ∗ (Bischl et al., 2023). However, we adhere to λII to clearly distinguish it from Setting I,

where λ = λI. After setting λ = λII, the learning pipeline IλII undergoes a final training on

Dtrain, which yields the final prediction model f̂Dtrain
I
λII

.

Note that while the tuning process already results in a prediction error estimate for the final

prediction model (the estimate based on which λII was selected during tuning), this value is not

necessarily adopted as the final model evaluation result, as we will discuss in Section 4.2. In

fact, it is also possible to use different performance measures for the prediction error estimation

performed during tuning and the evaluation of the final model, but, for the sake of simplicity,

we will assume that they are the same.

To summarize, during the model generation in Setting II, both the HPs λ and the parameters θ

of the final prediction model are optimized using the data set Dtrain. However, the optimization

is not performed jointly: first, the HPs λ are optimized in the tuning process. Second, the

parameters θ are optimized in one (final) training process. Note that HPs are still an input of

the learning pipeline but can be seen as an output of the tuning process.

If only a subset of the HPs λ are to be tuned, the tuning process described above is applied

exclusively to those HPs, while the pre-specified HPs remain fixed throughout the process. For

example, assume that from all J HPs in λ, the HPs λ1:j = λ1, ..λj are pre-specified and the HPs

λj+1:J = λj+1, . . . , λJ are to be tuned. In this case, the tuning process yields a HP configuration

λII
j+1:J , and the final prediction model is trained with λ1:j = λI

1:j and λj+1:J = λII
j+1:J . Since

the tuning process is conceptually the same when not all HPs are optimized—untuned HPs are

simply kept fixed—we will continue to assume that all HPs are tuned to maintain notational

simplicity.

When choosing a tuning procedure, it is important to consider that the tuning process is lim-

ited in terms of both data availability and computation time: First, as outlined above, each

candidate HP configuration, λ(c), is evaluated using one of the evaluation procedures described

in Section 3.2.1 for Setting I. As explained there, the specified D′
train and Dtest subsets contain

a limited number of observations (i.e. n′
train and ntest ≤ ntrain) and could overlap, potentially

leading to unreliable prediction error estimates for each λ(c). Second, the computational bud-
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get available for the tuning process is typically limited, which restricts both the number of

evaluated HP configurations and the time spent evaluating each configuration (i.e. estimating

its prediction error). Due to these limitations and the resulting trade-offs (discussed in more

detail in Section 4.1.3), choosing an adequate tuning procedure is often non-trivial. Yet, guid-

ance is still lacking, and many of the existing recommendations are based on rules of thumb

rather than empirical benchmarks (see Bischl et al., 2023, for an overview). Inadequate tuning

procedures can result in a λII that yields a final prediction model with worse prediction error

than λ∗ (potentially even worse than setting all HPs to their default values) and/or an overly

time-consuming tuning process (i.e. a more efficient tuning procedure could have achieved the

same prediction error in less time).

4.1.2 Automated vs. manual tuning

Before describing different tuning procedures in more detail, we note that their specification

generally depends on whether the tuning process is fully automated or performed manually.

We consider the tuning process as automated if the relevant tuning components only need to

be specified as a function argument, which is possible in several ML software frameworks (see

Bischl et al., 2023, for an overview). In contrast, we refer to the tuning process as manual if the

candidate HP configurations are evaluated by repeatedly calling the same function(s), altering

only the argument that specifies the HP configuration.

Compared to automated tuning, manual tuning is more time-consuming, error-prone, and less

reproducible, as it is usually an informal and unsystematic process. On the other hand, auto-

mated tuning is usually more difficult to implement and requires more programming expertise

than manual tuning. As a consequence, although manual tuning is generally advised against

(e.g., Bartz et al., 2023; Bischl et al., 2023), it is likely still a common yet often unreported

approach in many ML applications (Hofman et al., 2023; Hosseini et al., 2020; Lones, 2024).

Note that this may be particularly true for the tuning of preprocessing HPs λP : As discussed

in Section 2.3.3, preprocessing HPs are often not identified as HPs. Consequently, users trying

out different preprocessing options might not be aware that this corresponds to (manual) HP

tuning and could be automated. Moreover, if the HPs to be tuned include application-specific

preprocessing HPs, the barrier to using automated tuning is further increased, as these HPs

may not yet be integrated into the corresponding software and require custom implementation.

As a consequence, given the potentially different characteristics of the tuned HPs (especially

preprocessing HPs λP vs. algorithm HPs λA), we cannot rule out that in practice, they are

selected by a combination of automated and manual tuning (see Section 5.2.3 for a concrete

example).

4.1.3 Tuning procedures

As stated above, the selected tuning procedure will affect both the duration of the tuning process

and the prediction error of the final prediction model. In the following, we will review the

individual components that characterize each tuning procedure and describe how they impact

the tuning process.
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Search space When tuning an HP λj , it is often not reasonable to consider all possible HP

values (i.e. all values in Λj). For example, this applies if certain values of λj are already known

to cause overfitting or convergence issues. Moreover, when λj is a preprocessing HP, Λj may

not even be formally specified (see Section 2.3.3). To perform HP tuning, it is thus essential

to specify a search space Λ̃j for each HP, where Λ̃j is a bounded subset of Λj and determines

the HP values that are considered for tuning (Bischl et al., 2023). For example, if the HPs of

the CART algorithm, λcp and λminsplit with Λcp = [0, 1] and Λminbucket = {1, . . . , ntrain}, are
tuned, their search spaces could be defined as Λ̃cp = [0.001, 0.1] and Λ̃minbucket = {5, . . . , 25}.
The (overall) search space of all J HPs is denoted as Λ̃ = Λ̃1 × · · · × Λ̃J .

It is important to consider that defining a search space Λ̃ restricts the tuning process to finding

the optimal HP configuration within Λ̃, denoted as λ̃
∗
, and not within Λ, i.e. λ∗. Given a

search space Λ̃, the tuning problem specified in equation (3) thus updates to

λ̃
∗
= argmin

λ∈Λ̃
PE(f̂Dtrain

Iλ ). (4)

Choosing a search space involves the following trade-off: If the search space is too small, the

prediction error achieved by λ̃
∗
and λ∗ may differ greatly. On the other hand, if the search

space is too large, this decreases the chance of finding λ̃
∗
(or a HP configuration that leads to

a comparable prediction error) within a given computational budget (Bischl et al., 2023).

Note that in contrast to automated tuning, the search space is usually not formally specified

when performing manual tuning and may be extended during the tuning process (e.g., when the

user initially planned to try two preprocessing options but then comes up with an additional

option during tuning).

Termination criterion Unless the specified search space Λ̃ is very small, such as when only

a few categorical HPs are tuned, evaluating all HP configurations in the search space can be

computationally challenging or even infeasible. For example, even if λcp and λminbucket are

the only HPs being tuned, with the search spaces as specified above and Λ̃cp being searched

in increments of 0.001, C = 100 × 21 = 2,100 candidate HP configurations would need to be

evaluated. Accordingly, one or several criteria must be specified to terminate the tuning process

once it is met. The trade-off to consider when choosing a termination criterion is that the tuning

process should neither stop before finding λ̃
∗
nor should it continue longer than necessary, which

would result in an inefficient use of resources and, as we will discuss below, increase the risk of

overtuning (Bischl et al., 2023).

In automated tuning procedures, commonly used criteria are based on the number of evaluations

or the runtime. However, additional criteria such as reaching a certain performance level or

stagnation of performance might also be reasonable (Bartz et al., 2023; Bischl et al., 2023).

Similar termination criteria, though often more intuitive than formally specified, may also exist

for manual tuning when, for example, the user stops searching when satisfied by the reached

performance level or gives up searching after a certain amount of time.
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Search strategy Since, in many cases, only a subset of all HP configurations in the search

space can be evaluated before the tuning process is terminated, the way in which the sequence

of evaluations is determined, also called search strategy or HPO algorithm (Bischl et al., 2023;

Elsken et al., 2019), is another important component of the tuning procedure. Search strategies

can be characterized by several aspects, such as the amount of time they spend inferring new

candidate HP configurations from already evaluated ones (known as the inference vs. search

trade-off; Bischl et al., 2023). For example, search strategies such as evolutionary algorithms

and Bayesian optimization consider the distribution and results of previously evaluated HP

configurations to propose new configurations. In contrast, the commonly used random search

strategy simply draws HP configurations from a predefined, typically uniform, distribution with-

out taking into account past evaluations (see, e.g., Feurer and Hutter, 2019, Bischl et al., 2023,

or Bartz et al., 2023, for more details and other search strategies). In the special case where

only the set of selected features is tuned, a well-known automated search strategy is backward

or forward feature selection (see, e.g., Hastie et al., 2009).

Note that the described search strategies are formally used only in automated tuning, as there

is usually no specified search strategy when tuning is conducted manually. However, the re-

sults of previous evaluations may still be considered in manual tuning when selecting new HP

configurations to evaluate.

Joint vs. sequential tuning In automated tuning procedures, all HPs are usually tuned

jointly, i.e. each evaluated HP configuration potentially considers different values of each HP.

However, the HPs could also be tuned sequentially, i.e. the complete tuning procedure is repeated

for each HP (Probst et al., 2019; Waldron et al., 2011). For example, in a setting with three HPs

(i.e. λ = (λ1, λ2, λ3)), λ1 would be tuned first with λ2 and λ3 set to default, which yields λII
1 .

Then, λ2 is tuned with λ1 = λII
1 and λ3 set to its default. Finally, λ3 is tuned with λ1 = λII

1 and

λ2 = λII
2 , yielding λII

3 . As sequential tuning does not consider any interaction effects between

the HPs, it is generally less likely to yield a λII comparable to λ̃
∗
than joint tuning. On the

other hand, sequential tuning demands less time, with the maximum number of evaluations

increasing linearly rather than exponentially with the number of HPs to tune, as is the case

with joint tuning. Hence, it could be a realistic approach for manual tuning.

Prediction error estimation As outlined above, the prediction error of each HP configura-

tion considered for tuning can be estimated using one of the evaluation procedures described in

Section 3.2.1. In principle, all issues discussed there also apply to the tuning context. However,

instead of leading to potentially invalid performance claims about the final prediction model

(which was the case in Section 3.2.1), using an inadequate evaluation procedure for HP tuning

initially only increases the risk of failing to select a λII with a (true) prediction error that is com-

parable to the prediction error of λ̃
∗
. In other words, if the prediction error of each candidate

HP configuration is not estimated adequately, this will initially only affect the model generation

process, but not (yet) the evaluation of the final prediction model. Still, the consequences can
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be detrimental.

For example, if each HP configuration is evaluated based on its apparent error (i.e. for each

λ(c), a model is trained and evaluated on Dtrain, which also serves as Dtest), the tuning proce-

dure will, due to the optimistically biased prediction error estimation, typically select the HP

configuration that results in the model with the highest degree of overfitting. Although this

approach should clearly be avoided, it might still be common practice in manual tuning as it is

time-efficient (only one model per HP configuration needs to be trained, which in this case also

corresponds to the final model) and may seem intuitive to inexperienced users.

Due to the optimistic bias of the apparent error, the standard approach for automated HP

tuning is to employ a resampling method. In the case of k-fold CV, which is a common choice

for HP tuning (Bischl et al., 2023), this means that for each candidate HP configuration λ(c),

k models are trained and evaluated on different subsets of Dtrain.

While resampling methods provide an improvement over using the apparent error, the corre-

sponding estimators also exhibit a certain degree of pessimistic bias and variance (with the

degree of bias and variance depending on the resampling method used, as discussed in Sec-

tion 3.2.1). A potential pitfall arising from the variance is that the winning HP configuration,

λII, may have been selected simply because the trained prediction model(s) using λII performed

particularly well by chance on the specified test data set(s) Dtest, which are the same for each

evaluated HP configuration. This means that the HP selection has essentially been overfitted

to the respective test data set(s) Dtest, which in this context is also referred to as overtuning,

overhyping, or oversearching (Bischl et al., 2023; Cawley & Talbot, 2010; Feurer & Hutter,

2019; Hosseini et al., 2020; Ng, 1997; Quinlan & Cameron-Jones, 1995). If the true prediction

error of λII is still comparable to the prediction error of λ̃
∗
, overtuning effects are negligible.

However, there might also be scenarios in which the true prediction error of λII is no better,

or even worse, than that of the default HP configuration, but its estimated prediction error is

drastically deflated (i.e. over-optimistic), as the corresponding prediction model(s) that were

trained during resampling incidentally fit very well to the specific noise pattern in the respective

test data set(s) Dtest. This has been demonstrated in several experiments where tuning was

conducted on null data (i.e. data without any true signal), yet the prediction error estimate of

the selected HP configuration λII was substantially smaller (i.e. better) than its true prediction

error indicating random prediction (Bischl et al., 2023; Boulesteix & Strobl, 2009; Hosseini

et al., 2020; Varma & Simon, 2006).

Note that since the HPs are overfitted to the test data set(s) Dtest, which are not seen during

training on the corresponding D′
train, overtuning occurs on a higher level than overfitting of

the model parameters (see Section 3.1). Accordingly, overtuning effects may only be visible

after evaluating a large number of HP configurations (Bischl et al., 2023). However, literature

suggests that the risk of overtuning does not only depend on the number of evaluated HP config-

urations but also, for example, on the search strategy, the type of tuned HP, and the number of

observations in Dtrain (Cawley & Talbot, 2010; Hosseini et al., 2020; Wainer & Cawley, 2021).
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In general, overtuning is considered an open problem of HP tuning, and although strategies

have been suggested to avoid it (e.g., using different splits for each evaluation, Nagler et al.,

2024), there are no commonly agreed-upon solutions (Feurer & Hutter, 2019).

Importantly, when overtuning is addressed in the literature, it is typically assumed that the

prediction error estimation is performed through resampling methods. However, as discussed

above, this estimation can alternatively be based on the apparent error. In cases where an

inadequate HP configuration is selected due to the use of the apparent error for prediction error

estimation, this can be considered a more extreme and direct form of overtuning since the test

data set(s) Dtest are seen during model training. We will refer to the two types of overtuning

as resampling-induced and apparent error-induced overtuning.

4.2 Model evaluation

As outlined in Section 4.1.1, the model generation process in Setting II results in a final predic-

tion model f̂Dtrain
I
λII

. Evaluating this model is generally more complex than evaluating a prediction

model with pre-specified HPs (Setting I), since it must be taken into account that the model

generation process involved HP tuning. Similar to Section 3.2, we will in the following differ-

entiate between cases in which the model generation (i.e. the HP tuning followed by a final

training) is performed on the full data set (i.e. Dtrain = D) vs. a (proper) subset of the available

data (i.e. Dtrain ⊂ D). A graphical overview of model evaluation in Setting II is provided in

Figure 3.

4.2.1 Evaluation of a model generated on all available data

Apparent error As in Setting I, reporting the apparent error for model evaluation is inap-

propriate in Setting II (see Figure 3, model evaluation a). In this case, however, the designated

test data set Dtest = Dtrain = D is even used twice during model generation: first during the

HP tuning process and then again during the final training process. Depending on the specific

tuning procedure employed, this can introduce an even greater optimistic bias compared to, for

example, using default HP values. Although the apparent error is generally not suitable for

assessing a model’s performance, some users who performed tuning via resampling may mis-

takenly believe it now reflects a form of resampling error. This was noted by Neunhoeffer and

Sternberg (2019), who also reference a paper that appears to have fallen into this pitfall.

Resampling error Similar to Setting I, an alternative evaluation procedure in Setting II is

to employ a resampling method (see Figure 3, model evaluation b). In principle, the chosen

resampling method is carried out as described in Section 3.2.1, except that in each resampling

iteration, the model is trained on D′
train and evaluated on Dtest with λ = λII instead of λ = λI.

Unfortunately, unlike in Setting I, using resampling methods for model evaluation in Setting II

results in data leakage: Although in each resampling iteration, Dtest is not involved in training

f̂
D′

train
I
λII

(the model trained on D′
train for evaluation purposes), it is used in the tuning process per-

formed on Dtrain (including Dtest) to obtain λII. Accordingly, since not every model generation

25



Figure 3: Overview of different model evaluation procedures and their relation to the model
generation process if tuning is based on (temporary) holdout and all HPs are tuned. Data
leakage is present if any subset of Dtest used for prediction error estimation has also been
employed to generate the evaluated prediction model (which is not necessarily the final model).
In the figure, the point at which data “leaks” into the model evaluation is marked by the red
caution symbol.
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step resulting in f̂
D′

train
I
λII

is conducted exclusively on D′
train, information from Dtest is available

during the model generation process (specifically, during tuning). Based on the definition given

in Section 2.4.2, this constitutes a form of data leakage and may result in an optimistically

biased resampling error (Hosseini et al., 2020; Wainer & Cawley, 2021). While the inadequacy

of the apparent error is widely recognized, the described pitfall associated with the resampling

error is less well known and will go undetected by those not involved in model development if

HP tuning is not reported (Hosseini et al., 2020; Lones, 2024).

The potential optimistic bias becomes evident when considering the following typical practice:

As outlined in Section 4.1.1, the tuning process already returns a prediction error estimate for

the final prediction model (the estimate based on which λII was selected). Given that tuning

was performed with a resampling method (e.g., CV), computation time can be saved by di-

rectly using this value as the resampling-based evaluation result. However, if the selected HP

configuration λII is the result of overtuning, this will not be detected in the model evaluation

process, as the deflated prediction error estimate is simply adopted here. In principle, adopt-

ing the resampling prediction error estimate from tuning in Setting II behaves analogously to

(resampling-induced) overtuning as using the apparent error does to overfitting in Setting I.

This is because both procedures are unable to discern that either the selected HPs (overtuning)

or the selected parameters (overfitting) have been adapted too much to the respective test data

set(s) Dtest.

As stated in Section 4.1.3, the extent to which overtuning occurs depends on the specific tuning

procedure. If the HP selection is mildly overtuned, the prediction error estimate obtained from

the tuning process may only exhibit a slight optimistic bias. However, as an extreme case, we

can again consider the experiments from Section 4.1.3 in which HP tuning has been performed

on null data (Bischl et al., 2023; Boulesteix & Strobl, 2009; Hosseini et al., 2020; Varma &

Simon, 2006). Here, the difference between the prediction error estimate of the selected HP

configuration and the true prediction error indicating random prediction is substantial, and

adopting the former as the final evaluation result for a useless prediction model is clearly a

biased approach.

Note that data leakage is also present if the specified D′
train and Dtest subsets used for tuning and

evaluation are not identical. This is the case if additional resampling iterations are conducted

during evaluation, if different resampling methods are used during tuning and evaluation (e.g.,

holdout and k-fold CV), or if the apparent error is used for tuning.

Nested resampling error The optimistic bias of the resampling error arises because, in each

resampling iteration, not all steps of the model generation process are performed exclusively

on D′
train. A natural extension, therefore, is to ensure that the complete model generation

is applied only to D′
train in every iteration (see Figure 3, model evaluation c). Specifically,

this implies that the tuning process is not only performed once on Dtrain in order to generate

the final prediction model but also on every D′
train specified during resampling (for evaluation
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purposes). If the tuning process itself is based on a resampling method (i.e. if tuning is not

performed using the apparent error, which is hardly ever the case if the currently described model

evaluation procedure is employed), this results in two nested resampling methods. Accordingly,

this procedure is called nested resampling, where the resampling method that initially splits

Dtrain into D′
train and Dtest is the outer resampling loop and the resampling method creating

additional splits within each D′
train (resulting in subsets denoted as D′′

train and D′
test) is the inner

resampling loop (e.g., Bischl et al., 2023; Hosseini et al., 2020; Wainer & Cawley, 2021). To

distinguish nested resampling from the resampling methods discussed above and in Section 3.2.1,

we will refer to the latter as simple resampling where necessary.

The most straightforward form of nested resampling is the nested holdout method, where Dtrain

is split once into D′
train and Dtest, and D′

train is further divided into D′′
train and D′

test. In this

setup, the best HP configuration for D′
train is determined by training and evaluating a model

for each candidate HP configuration on D′′
train (for training) and D′

test (for prediction error

estimation). We denote this configuration as λ′II, as it may differ from the final prediction

model’s configuration, λII, which has been obtained by tuning the model on Dtrain rather than

D′
train. Using the HP configuration λ′II, the model is then trained on D′

train and evaluated

on Dtest, which has remained unseen throughout the entire model generation process. Note

that nested holdout is commonly referred to as train-validation-test split (Bischl et al., 2023),

which, using the notation above, could also be referred to as D′′
train-D′

test-Dtest-split. Instead

of holdout, any other resampling method can be used for inner and outer resampling, and it

is also possible to combine different resampling methods. For example, k-fold CV can be used

for outer resampling and holdout for inner resampling, since in the inner resampling, precise

prediction error estimation is less critical as long as a sufficiently good λ′II is selected in each

iteration (Bischl et al., 2023; Hosseini et al., 2020).

While nested resampling prevents data leakage, it also has several disadvantages. First, it can be

very computationally expensive, since the tuning process, which can already be time-consuming

when conducted once, has to be repeated for each D′
train specified by the outer resampling loop

(Bischl et al., 2023; Wainer & Cawley, 2021). Second, it is usually not feasible to conduct

nested resampling with manual tuning. Apart from being even more time-demanding than

nested resampling with automated tuning, it is often not possible to repeat the same tuning

procedure more than once due to the informal nature of manual tuning (e.g., the user might not

remember which candidate HP configurations have been evaluated during tuning). Third, like

simple resampling, nested resampling does not provide an estimate of the prediction error for

the final model f̂Dtrain
I
λII

. However, while both methods evaluate models trained on D′
train rather

than Dtrain (with n′
train < ntrain), simple resampling at least uses the same HP configuration

λII as the final prediction model. In contrast, nested resampling does not necessarily evaluate

models with the same HP configuration, as each inner resampling loop may select a different

configuration (see the nested holdout example above, which evaluates a model based on λ′II

instead of λII). This makes the nested resampling result more difficult to interpret (Hosseini
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et al., 2020). The described disadvantages could explain why nested resampling estimates are

not commonly reported in studies presenting new prediction models, as indicated by a recent

systematic review on clinical prediction models (Andaur Navarro et al., 2023).

4.2.2 Evaluation of a model generated on a subset of the available data

As in Setting I (see Section 3.2.2), it is also possible in Setting II to use only a subset of the

available data for model generation (i.e. Dtrain ⊂ D) and reserve the remaining observations

exclusively for evaluation (i.e. Dtest = D \ Dtrain; see Figure 3, model evaluation d; Hosseini et

al., 2020). This approach essentially corresponds to nested resampling with holdout as the outer

resampling method, except that the holdout is permanent, meaning that the prediction model

generated on Dtrain (equivalent to D′
train in the previous section) serves as the final prediction

model. Similar to Setting I, we thus distinguish the two evaluation procedures by referring to

them as temporary outer holdout (described in Section 4.2.1) and permanent outer holdout

(described here). We also again note that there might be some confusion in the terminology,

as a permanent outer holdout combined with a (temporary) inner holdout can, just like its

temporary counterpart, also be referred to as a train-validation-test split.

The statements regarding the temporary vs. permanent holdout in Setting I also apply to Setting

II: Compared to the temporary outer holdout, the permanent outer holdout does not exhibit a

pessimistic bias as it actually evaluates the final prediction model. However, this comes at the

cost of not using all available data for model generation. Accordingly, the same recommendation

as in Section 3.2.2 applies: a permanent outer holdout should only be employed if the number

of observations in D is sufficiently large or if it is computationally expensive or practically

infeasible to repeat the model generation process. Note that the second point is particularly

relevant in Setting II due to the increased effort of model generation (Collins, Dhiman, et al.,

2024).

5 Empirical illustration of different model generation and eval-

uation procedures

In this section, we illustrate different procedures for model generation and evaluation and assess

their impact on prediction error estimates from available vs. new data. We specifically focus

on the selection of HPs and the potential for data leakage.

5.1 Real-world prediction problem

Our illustration is based on a real-world prediction problem from the COMPANION study

(Hodiamont et al., 2022). This study aimed to develop a casemix classification for adult pal-

liative care patients in Germany that considers the complexity of each patient’s palliative care

situation to assign them to a class reflecting their resource needs. A casemix classification for

palliative care patients has been deemed necessary, as the differentiation of patients based on

their diagnosis, which corresponds to the current practice in Germany, has been found to be

inappropriate for predicting resource needs in the context of palliative care. Despite yielding
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many important insights, the COMPANION project was ultimately unable to develop a predic-

tion model with sufficient predictive performance, even after exploring various model generation

approaches. However, this makes it a good example to illustrate how optimistically biased eval-

uation procedures can present prediction models in a more favorable light.

To develop a casemix classification that relates patients’ resource needs to the complexity of

their palliative care situation, the COMPANION team formulated a prediction problem where

each observation represents a patient’s palliative care phase. The outcome y(i), defined as the

average cost per day in palliative care phase i, serves as an empirical proxy for resource needs

in the corresponding phase. The set of features x(i) intended to reflect the palliative care situ-

ation of each phase consists of (i) the type of palliative care phase (categorical), (ii) patient age

(integer-valued), (iii) two cognitive features (confusion and agitation; both ordinal), (iv) the

Australia-modified Karnofsky Performance Status (AKPS; Abernethy et al., 2005) that mea-

sures the patients’ functional status (ordinal), and (v) the Integrated Palliative care Outcome

Scale (IPOS; Murtagh et al., 2019), which is a score that is based on 17 ordinal variables covering

physical symptoms, psycho-social burden, family needs, and practical problems. Accordingly,

the number of features provided to the learning algorithm is p = 6. All types of data were

collected by the clinical staff of participating palliative care teams.

It is important to note that although the study aimed to identify a casemix classification, the

continuous nature of the specified outcome variable (i.e. average cost per day) inherently makes

the prediction problem a regression task. To ensure that the obtained prediction model still

produces classes that are also interpretable and can be implemented in practice, a decision tree

approach was chosen (e.g., using the CART algorithm, discussed in Sections 2-4), despite po-

tential limitations on predictive performance. In the resulting decision tree, each terminal node

represents a casemix class (defined by the features that capture the complexity of the palliative

care situation) and predicts the average cost per day for that class. Notably, decision trees were

also used in the casemix classifications developed for palliative care patients in Australia (Eagar

et al., 2004) and the UK (Murtagh et al., 2023), which served as the basis for many decisions

in the development of the German casemix classification.

The COMPANION study collected data from three palliative care settings (specialist palliative

care units, palliative care advisory teams, and specialist palliative home care), with a casemix

classification to be developed for each setting. In our illustration, we only consider the data

from the specialist palliative home care setting. We apply several parameterless preprocessing

steps to the raw data set, which correspond to those used in the COMPANION study and are

considered as pre-specified in our illustration (e.g., the removal of dead patients; more details

can be found in Supplementary Section B.2.1). The resulting data set contains 1,449 palliative

care phases; descriptive statistics are provided in Table S1.

Note that while our experimental setup described in the following section is based on the COM-

PANION study, not all aspects align with how the actual study was conducted, as some elements

have been simplified or modified for illustrative purposes.
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5.2 Experimental setup

5.2.1 Overview

The aim of our study is to illustrate different model generation and evaluation procedures and

examine their impact on prediction error estimates derived from available data compared to

those obtained from new data. Additionally, we examine how these estimates are affected by

performance measure, sample size, and learning algorithm, resulting in a total of 96 distinct

analysis settings. Before providing more details on these, we first outline the general procedure

that is carried out for each analysis setting:

(i) The COMPANION data set with 1,449 observations (i.e. palliative care phases) introduced

above is randomly split into two subsets of equal size, which we denote as Dtrain and Dnew

(with ntrain = 724 and nnew = 725). We assume that Dtrain is the only data set available

for both model generation and evaluation. Consistent with the notation used in previous

sections, this implies Dtrain = D. The desired output is a prediction model as described

above (i.e. a decision tree that predicts the average patient costs based on several features

reflecting the palliative care situation).

(ii) We use Dtrain exclusively to generate and evaluate a prediction model. Although the

specific procedure is determined by the analysis setting, each model is generated using all

available data (which is already implied by referring to the available data as Dtrain). The

learning pipeline used for each training process and its HPs are described in Section 5.2.2.

Since the HP selection in the considered analysis settings can be either data-independent

or achieved through tuning, we refer to the chosen HP configuration as λ rather than λI

or λII in the following to keep the notation general. Step (ii) results in a model f̂Dtrain
Iλ and

an associated prediction error estimate, which we denote as P̂Etrain. In an ML application,

P̂Etrain would be the reported error.

(iii) The prediction model f̂Dtrain
Iλ is evaluated on the second data set Dnew, which represents

observations that are drawn from the same distribution as the observations in Dtrain but

were unseen during the generation of f̂Dtrain
Iλ . This step should therefore yield an unbiased

estimate of the model’s prediction error, denoted as P̂Enew (however, see the note on

clustering in Section 5.3 and Supplementary Section B.5). Note that, in principle, the

estimation of P̂Enew resembles a permanent holdout approach, where Dnew is held out

during model generation. However, it is not truly a holdout, as Dnew is unavailable during

model evaluation. This is also why Dnew is not referred to as Dtest; throughout the paper,

the notation Dtest is used exclusively for subsets of the available data.

Performing steps (i) to (iii) results in a vector (P̂Etrain, P̂Enew), which includes the prediction

error estimates derived from available and new data, respectively. By comparing these estimates,

we can determine whether P̂Etrain correctly reflects the predictive performance of the model or

if it is affected by any form of bias. Ideally, P̂Etrain should be equal to P̂Enew, indicating that
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the model evaluation conducted on Dtrain yields an unbiased estimate prediction error estimate

(although small differences do not necessarily indicate bias, as P̂Enew is also an estimate). To

ensure that the difference between the two prediction error estimates is not driven by a specific

data split, steps (i) to (iii) are repeated 50 times for each analysis setting (using the same 50

splits for each analysis setting). Since we consider 96 analysis settings and 50 repetitions of

splitting the initial COMPANION data set, our illustration generates 96×50 = 4,800 vectors of

(P̂Etrain, P̂Enew). Note that each analysis setting may produce 50 different prediction models,

as in each repetition, Dtrain contains different observations.

The described setup is implemented in the software environment R (R Core Team, 2022) using

the mlr3 package framework (Lang et al., 2019). While the COMPANION data set cannot be

made publicly available, the R code and the individual prediction error estimates can be found

at https://github.com/NiesslC/overoptimistic trees.

As stated above, we consider a total of 96 analysis settings. These result from a full factorial

variation of four factors: two performance measures, two sample sizes, two learning algorithms,

and twelve combinations of model generation and evaluation procedures (yielding the total of

2 × 2 × 2 × 12 = 96 analysis settings). The two considered sample sizes are (i) ntrain = 724

(the sample size of Dtrain after splitting the original data set) and (ii) ntrain = 362 (half of

the observations in Dtrain being randomly deleted). Note that Dnew is not affected by this

variation and still has nnew = 725 observations. The two performance measures considered in our

illustration are the Root Mean Squared Error (RMSE) and the coefficient of determination (R2),

which are commonly used performance measures and have also been employed to evaluate other

decision-tree-based prediction models for palliative care patients (Eagar et al., 2004; Murtagh et

al., 2023; see Supplementary Section B.3 for more information on both performance measures).

Note that in each analysis setting, we use the same performance measure for both the model

evaluations performed during model generation (i.e. tuning) and the evaluation of the final

prediction model. The two learning algorithms and twelve combinations of model generation

and evaluation procedures are described in Sections 5.2.2 and 5.2.3, respectively.

5.2.2 Learning pipeline and HPs

The learning pipeline I applied in each training process consists of six preprocessing steps,

followed by a learning algorithm (see Figure 4 for an overview). While the full learning pipeline

actually consists of more preprocessing steps (referred to in Section 5.1 and detailed in Supple-

mentary Section B.2.1), we will, for simplicity, not further consider them in the illustration, as

they are considered as pre-specified (i.e. have no HPs that are relevant for tuning) and are both

parameterless and precede the first parameterized preprocessing step in the learning pipeline

(i.e. can safely be applied to the full data set).

Preprocessing steps Here, we provide a brief overview of the six preprocessing steps in I
applied during each training process and outline their associated HPs. Additional details can be

found in Figure 4, and a comprehensive description is available in Supplementary Section B.2.2.
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Figure 4: Overview of the learning pipeline I used in the illustration (middle panel). In addition,
the considered HPs, their search spaces (left panel), and the steps applied during prediction
(right panel) are shown.

The six preprocessing steps serve one of three purposes: (i) correction of the outcome variable

(correction of costs), (ii) handling of problematic observations (removal of cost outliers and

handling of “cannot assess” values in IPOS features), and (iii) calculation or modification of

features (calculation of the IPOS score, modification of the feature “age”, and modification of

the feature “AKPS”). As discussed in Section 2.2.2, preprocessing steps can be distinguished

based on different characteristics, which also applies to the six preprocessing steps considered

in this section. Two of the six steps have parameters: the correction of costs (with θcorrect) and

the removal of cost outliers (with θoutlier). These two steps, along with another step (handling
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of “cannot assess” values in IPOS features), alter the outcome distribution, but the removal of

cost outliers is not applied during prediction.

All preprocessing steps, except for the correction of costs, include HPs: λoutlier, λca, λipos, λage,

and λakps. Consistent with the notation introduced in Section 2.3.1, we collectively refer to them

as λP . For these HPs, it is not possible to define a HP domain Λj that contains all possible

configurations; therefore, we only specify a search space Λ̃j for each HP (see Figure 4). Each

search space is categorical, offering 2 or 4 values, all of which have been discussed and deemed

reasonable during the COMPANION project. The first HP value in each search space is set as

the default and corresponds to the value ultimately selected for the COMPANION project.

Learning algorithm After applying all preprocessing steps to the data, it is provided to the

learning algorithm, which then yields a prediction model (i.e. a decision tree). We consider two

learning algorithms: (i) the CART algorithm (introduced in Section 2.2.1; R package rpart;

Therneau and Atkinson, 2022), and (ii) the Conditional Inference Tree algorithm (CIT; R pack-

age partykit; Hothorn and Zeileis, 2015; Hothorn et al., 2006; Zeileis et al., 2008). As stated

in Sections 2.2.1 and 3.1, the CART algorithm builds a decision tree model by partitioning the

feature space X into terminal nodes using a sequence of binary splits. Since we are considering a

regression problem, the splitting rules are determined by minimizing the sum of squared errors,

and the prediction value f̂(x) for each terminal node is the mean of all outcome values (here:

costs) in that node (Breiman et al., 1984). The CIT algorithm also employs recursive binary

partitioning, but instead of minimizing a simple loss function that represents node impurity

(here: the sum of squared errors), it uses statistical test procedures to find the optimal splits.

This approach has the advantage that, unlike the CART algorithm, the CIT algorithm is not

affected by selection bias toward features with many possible splits or missing values (Hothorn

et al., 2006).

For both algorithms, we consider two HPs for tuning that determine when the algorithm stops

splitting. The first HP is λminbucket, which specifies the minimum number of observations in any

terminal node. The smaller λminbucket, the larger the number of terminal nodes in the resulting

decision tree and the higher the risk of overfitting. We set the search space of λminbucket to

{5, . . . , 20} for tuning. If λminbucket is not tuned, we set the HP to its default, λminbucket = 7.

The second HP is either λcp (for CART) or λα (for CIT). Both HPs serve a similar purpose:

λcp determines the factor by which a split must improve the overall lack of fit to be attempted

(which, in case of a regression problem, corresponds to improving the overall R2 of the model by

at least λcp). The HP λα is the numerical significance level that must be met in the statistical

testing procedure conducted by CIT to implement a split. Accordingly, the smaller λcp or the

higher λα, the higher the risk of overfitting. We specify the search space for λcp and λα as

[0.001, 0.1] and [0.01, 0.1], respectively. If λcp and λα are not tuned, we use their default values

of λcp = 0.01 and λα = 0.05.

All other HPs of CART and CIT are not tuned and, except for one HP, follow the default values
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from their corresponding implementation in the mlr3 package (Lang et al., 2019), which largely

align with the defaults of the underlying packages (i.e. rpart and partykit; Foss and Kotthoff,

2024). The exception is λmaxdepth, which we set to 4 to align with the COMPANION project,

where this value was chosen to ensure that the resulting decision tree model would be useful in

clinical practice.

We refer to the algorithm HPs that are considered for tuning (i.e. λminbucket and λcp or λα) as

λA. The remaining algorithm HPs that are not tuned in any of the analysis settings will not

be considered further for simplicity.

5.2.3 Model generation and evaluation procedures

We consider twelve different combinations of model generation and evaluation procedures that

could be employed in step (ii) of our illustration (see Section 5.2.1) to obtain a prediction

model with associated P̂Etrain. They represent an exemplary yet non-exhaustive selection of

procedures that are used in ML applications. The twelve combinations are based on five model

generation procedures, where for three of them, we apply two different procedures to evaluate

the final prediction model, and for the other two, we use three different evaluation procedures

(resulting in a total of 3× 2 + 2× 3 = 12 combinations).

Before describing the procedures in more detail, there are a few general points to consider. First,

as already stated in Section 5.2.1, all model generation procedures use the full data set Dtrain

that was created by the respective repetition, i.e. we do not consider the permanent holdout

evaluation procedures introduced in Sections 3.2.2 and 4.2.2 (which would imply Dtrain ⊂ D).

Second, since the prediction model used in this illustration is a decision tree, it is theoretically

possible to manually assess the plausibility of the generated models in addition to estimating

their prediction error. However, in addition to not being feasible for all 96 × 50 generated

models, this step is also often not part of the evaluation process in practice, as many ML-

based prediction models are not interpretable by humans without additional tools. Therefore,

we do not perform this assessment. Third, whenever Dtrain is (temporarily) split as part of

a resampling method (either during model generation or evaluation), we use the same splits

(e.g., the same 10 CV folds) across all procedures to ensure that differences in prediction error

estimates are not due to variations in the data splits of Dtrain.

We now present the procedures in more detail, first describing the model generation procedure

and then the associated evaluation procedures to estimate the prediction error of the resulting

model. The following paragraph titles refer to the model generation procedures and can be read

as “Setting - Tuning Procedure (- HPs tuned)”. An overview of all generation and evaluation

procedures is provided in Table 1.

I-no tuning The simplest model generation procedure corresponds to Setting I, where all

HPs are set to their default values (i.e. no tuning is performed), and the learning pipeline only

needs to be trained once on the data set Dtrain.

For this model generation procedure, we evaluate the resulting model by (i) the apparent error
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and (ii) the 10-fold CV error. The former is affected by data leakage and may thus exhibit a

substantial optimistic bias (see Section 3.2.1).

II-manual-P In this model generation procedure, the preprocessing HPs (λP ) are tuned,

while the algorithm HPs (λA) are set to their default values. It aims to represent inexperienced

users who either lack the confidence or the programming skills to tune algorithm HPs but

manually experiment with different preprocessing options, without realizing that this is a form

of HP tuning. As discussed in Sections 4.1.2 and 4.1.3, manual tuning procedures typically differ

from automated tuning procedures, which is reflected by the procedure II-manual-P. First, the

HPs are tuned sequentially (i.e. each HP is tuned individually, with previously tuned HPs set to

their selected values and subsequently tuned HPs set to their default values). Second, during the

tuning of each HP, the apparent error is used to estimate the prediction error of each candidate

HP configuration. The order in which the HPs are tuned sequentially is λipos, λage, λakps,

λoutlier, λca (which reflects a user who first experiments with variations in the features before

removing observations, though any other order is also possible). If more than one HP value

yields the same prediction error estimate, the first value that was evaluated is selected. Since

the preprocessing HPs are tuned sequentially (i.e. one at a time), and only two (λage, λakps) or

four (λipos, λoutlier, λca) values per HP are available, only 16 (= 2× 2+ 4× 3) configurations of

λP need to be evaluated during tuning. Therefore, no criterion is specified to terminate tuning

before all configurations are evaluated.

Similar to the first model generation procedure (I-no tuning), we consider the apparent error

and the 10-fold CV error to evaluate the final prediction model. However, the 10-fold CV error

is now affected by data leakage, potentially leading to an optimistic bias due to (apparent error-

induced) overtuning (see Section 4.2.1). Note that we do not consider evaluation procedures

involving nested resampling for II-manual-P, as this is typically not feasible if manual tuning

was used for model generation (see Section 4.2.1).

II-automated-A This model generation procedure represents a standard procedure in many

ML applications, where the algorithm HPs λA are selected through automated tuning, while

the preprocessing HPs λP are set to their default values (e.g., because users are not aware that

they can be tuned). Even when tuning is fully automated, the procedures used in practice are

often simple and based on rules of thumb (Bischl et al., 2023), which we aim to reflect in our

illustration: we employ a random search algorithm, terminate the tuning after 60 evaluations

(which corresponds to 30 times the dimension of the search space, as there are 2 HPs in λA),

and use 10-fold CV for prediction error estimation. The tuning procedure is performed jointly

for all HPs, which is the standard practice for automated tuning.

As with the previous model generation procedures, we report both the apparent error and the

10-fold CV error. Note that, since the 10-fold CV error for the selected HP configuration, λII
A,

has already been calculated during tuning, we use this value as the 10-fold CV error estimate of

the final prediction model to avoid performing additional resampling iterations. Similar to the
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procedure II-manual-P, data leakage is present in both evaluation procedures and may result in

optimistically biased prediction error estimates. Specifically, the optimistic bias in the 10-fold

CV error would arise from (resampling-induced) overtuning. Since the procedure II-automated-

A is fully automated, we additionally estimate the prediction error using nested CV. Here, we

use 10 folds for the outer resampling loop and 2 folds for the inner resampling loop (the small

number of inner folds saves computation time, and we only need to achieve correct HP selection

rather than precise error estimation here; this is also recommended by Bischl et al., 2023). As

discussed in Section 4.2.1, this evaluation procedure is not affected by data leakage.

II-combined-PA As a fourth model generation procedure, we tune both preprocessing and

algorithm HPs (i.e. λP and λA), but with two different tuning procedures. More specifically,

the preprocessing HPs are tuned as in II-manual-P, and for each candidate configuration of the

preprocessing HPs, the algorithm HPs are tuned as in II-automated-A. Although this procedure

might initially seem unintuitive and overly complex, it actually mirrors a realistic scenario for

users who can tune algorithm HPs but may not be aware of or able to tune preprocessing

HPs: Consider a user who has programmed three functions: (i) preprocess data, which takes

the raw data set as input and returns the preprocessed data set; (ii) tune algorithm, which

tunes the algorithm HPs as specified in II-automated-A based on the preprocessed data set

and returns the selected HPs λII
A; and (iii) get apparent error, which takes the preprocessed

data set and a learning algorithm with HPs λII
A as input and returns the apparent error of

the resulting model. Suppose the user initially plans to run these three functions once but is

dissatisfied with the apparent error reported by get apparent error. They would then modify

preprocess data to try, for example, a different way of aggregating the IPOS score (i.e. using

a different λipos) and rerun tune algorithm and get apparent error. After testing all values

for λipos, they would proceed to adjust λage, λakps, and so forth, updating the algorithm HPs

by running tune algorithm before calling get apparent error for each tried preprocessing

configuration λP . Note that since 16 configurations for λP are tried (see II-manual-P), and for

each configuration of λP , 60 candidate configurations for λA are evaluated (see II-automated-

A), 60× 16 = 960 HP configurations are assessed in total. The user would ultimately select the

preprocessing HPs λII
P that yield the best apparent error and the algorithm HPs λII

A returned

by tune algorithm after setting λII
P in preprocess data.

For this model generation procedure, we again consider the apparent error and the 10-fold

CV error to evaluate the resulting prediction model. Note that the apparent error estimate

corresponds to the best apparent error achieved during tuning and can therefore be directly

adopted for evaluation. More specifically, it is the output of get apparent error after running

preprocess data with λII
P and then tune algorithm. The 10-fold CV error estimate can also

directly be taken from the tuning procedure and corresponds to the 10-fold CV estimate which

was calculated during the execution of tune algorithm after running preprocess data with
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λII
P . For the reasons discussed in the previous model generation procedures, both the apparent

error and the 10-fold CV error estimates are subject to data leakage.

II-automated-PA The final model generation procedure is similar to the procedure II-

automated-A described above, except that the set of jointly tuned HPs now also includes the five

preprocessing HPs, λP , and the number of evaluations is increased to 210. As in II-automated-

A, this corresponds to 30 times the dimension of the search space, as there are now 7 tuned HPs.

This procedure represents a conceptually simple way to incorporate preprocessing HPs into the

tuning process and is recommended by Bischl et al., 2023. However, as noted in Section 4.1.2,

integrating preprocessing HPs into an automated tuning procedure requires advanced program-

ming expertise, which may explain why this procedure is not standard practice yet.

We use the same three model evaluation procedures as in II-automated-A, with the same con-

siderations discussed in II-automated-A also applying here.

5.3 Results

Figure 5 illustrates the differences between P̂Etrain and P̂Enew for each of the 96 analysis settings

(with 50 repetitions per setting). Additionally, the absolute values of P̂Etrain and P̂Enew, as well

as the selected HPs (for analysis settings where HPs are tuned), are presented in Figures S2 to

S6.

Before examining the prediction error differences in more detail, we first consider the absolute

values of P̂Enew (displayed in Figure S2). Here, the general observation can be made that

across all analysis settings, none of the generated models demonstrates sufficient predictive per-

formance, which was expected and aligns with the findings of the COMPANION project. Of

course, this result does not imply that HP tuning is generally not useful; rather, it demon-

strates that tuning alone is not a guaranteed solution for obtaining a well-performing model for

any prediction problem. Even in the analysis settings with the best median prediction errors

(averaged across 50 repetitions), the median P̂Enew reaches only 0.074 for R2 (ntrain = 724,

CIT, II-manual-P) and 42.1 for RMSE (ntrain = 724, CIT, II-automated-PA). For reference,

the median P̂Enew for RMSE using a naive model that predicts the mean of Dtrain on Dnew is

44.0 for the smaller sample size and 43.5 for the larger sample size, which is only slightly worse

than the result from the decision tree models. While small effects of sample size and learning

algorithm on P̂Enew can be observed (with larger sample sizes and using the CIT instead of the

CART algorithm resulting in smaller prediction errors), no clear pattern emerges for the model

generation procedure.

We will now analyze the differences between P̂Etrain and P̂Enew. To ensure consistent inter-

pretation of their signs across both performance measures, the prediction error differences in

Figure 5 are presented as P̂Enew − P̂Etrain for RMSE and P̂Etrain − P̂Enew for R2. With this

definition, a positive median difference indicates that the prediction error estimate P̂Etrain is

optimistically biased, while a negative median difference suggests a pessimistic bias.

As stated in Section 5.2.3, depending on the model evaluation procedure, P̂Etrain corresponds
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Figure 5: Resulting prediction error differences for 96 analysis settings, with each boxplot sum-
marizing 50 repetitions of a specific setting. The prediction error differences are calculated as
P̂Enew− P̂Etrain for RMSE and P̂Etrain− P̂Enew for R2. For both performance measures, a posi-
tive median difference (averaged over the 50 repetitions) indicates that P̂Etrain is optimistically
biased, while a negative median difference suggests a pessimistic bias.

to one of three prediction error estimates: (i) the apparent error, (ii) the 10-fold CV error, or

(iii) the 2-fold-within-10-fold CV error. We structure the reporting of the results according to

these three evaluation procedures.

Apparent error Figure 5 shows that, across the considered model generation procedures,

the median prediction error differences vary the most for the apparent error. Despite this varia-

tion, the median differences are consistently positive in all analysis settings. Although there are

individual repetitions with negative differences, these results clearly indicate that the apparent

error is optimistically biased. As discussed in Section 3.2.1, this problem arises due to data

leakage, or more specifically, the fact that this evaluation procedure uses observations for pre-

diction error estimation that were already seen during model generation, which in turn allows

potential overfitting and overtuning (if HPs are tuned) of the model to go undetected.

The optimistic bias of the apparent error is most pronounced in analysis settings where the

preprocessing HPs λP are tuned manually (II-manual-P). This is not surprising, as this pro-

cedure specifically selects the HP values that optimize the apparent error. Here, the bias is
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largest when the smaller sample size and the CART algorithm are used for model generation,

resulting in a median difference of 7.39 for RMSE and 0.253 for R2. Note that while the abso-

lute values of P̂Etrain still do not indicate good predictive performance in these analysis settings

(see Figure S2), the median R2 values resulting from the CART algorithm (0.234 and 0.176

for the two sample sizes) are comparable to the prediction errors reported for the Australian

and UK decision tree models (0.17 and 0.27), which were generally deemed viable (Eagar et al.,

2004; Murtagh et al., 2023). Regarding the selected HPs, particularly for λipos (which specifies

how the IPOS score is calculated) and λca (which determines how “cannot assess” values in

IPOS features are handled), alternative values are frequently chosen instead of the defaults (see

Figures S3a to S6a). This suggests that these alternative values may present a high potential

for overfitting, thereby improving the apparent error.

In the analysis settings where both the preprocessing and the algorithm HPs are tuned using

different procedures (II-combined-PA), the optimistic bias of the apparent error is similar for

the CIT algorithm or slightly smaller for the CART algorithm compared to the II-manual-P

procedure. Again, the optimistic bias is largest in the analysis settings where a smaller sample

size and the CART algorithm are considered, resulting in a median difference of 4.09 for RMSE

and 0.117 for R2. The slight decrease in optimistic bias can be attributed to the fact that, across

all analysis settings using the II-combined-PA procedure, the algorithm HP λminbucket is set to

a higher value than its default of λminbucket = 7, which results in a reduced risk of overfitting

(see Figures S3b to S6b). In the analysis settings where no HPs are tuned (I-no tuning), the

optimistic bias of the apparent error is also reduced slightly compared to the II-manual-P pro-

cedure. For the smaller sample size combined with the CART algorithm, the observed median

difference is 6.21 for RMSE and 0.184 for R2. The reduction in optimistic bias compared to

II-manual-P is expected, as I-no tuning does not involve HP tuning.

The lowest optimistic bias for the apparent error is observed in the analysis settings where either

only λA (II-automated-A) or both λP and λA (II-automated-PA) are tuned automatically, with

the largest median difference being 3.22 for RMSE and 0.035 for R2. This is not surprising, as in

these procedures, all HPs are selected based on their associated CV error estimate rather than

the apparent error. Notably, across all analysis settings, the HP values for λP selected by the

II-automated-PA procedure differ from those chosen by the II-manual-P and II-combined-PA

procedures (see Figures S3a to S6a).

CV error If P̂Etrain corresponds to the CV error, the resulting median prediction error differ-

ences indicate that this error is, as expected, generally less optimistic than the apparent error.

The only exception occurs in a few analysis settings using RMSE as performance measure,

where the apparent error differences are close to zero; here, the median differences of apparent

error and CV error are approximately equal.

In the analysis settings without HP tuning, the R2 differences exhibit a negative median dif-

ference, with the median difference closest to zero, -0.059, observed for the smaller sample size
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combined with the CART algorithm. This pessimistic bias is an expected result, as CV evalu-

ates models trained on fewer observations than the final prediction model (see Section 3.2.1).

In contrast to R2, the prediction error differences for RMSE in the analysis settings without

tuning are mostly positive. Although the median differences are small (with the largest median

difference being 2.32 in the analysis setting where both the smaller sample size and the CART

algorithm are considered), the overall distribution of the prediction error differences in each set-

ting suggests the presence of an optimistic bias. This finding is unexpected, as prediction errors

estimated by CV in a setting where no HPs are tuned should not exhibit an optimistic bias but

rather a pessimistic bias (as observed for R2). However, this can be attributed to the fact that

both P̂Etrain based on CV and P̂Enew are affected by data leakage stemming from a violation

of the assumption that all observations are independently drawn from the same distribution

(see Section 2.4.2 and Supplementary Section A). This type of data leakage is distinct from the

leakage caused by the overlap between the data used for model generation and evaluation, which

is the primary focus of this paper. Specifically, the COMPANION data set exhibits a clustering

structure that is not accounted for during the split into Dtrain and Dnew or during the creation

of CV splits on Dtrain, resulting in a potential optimistic bias for both P̂Enew (due to the initial

split) and P̂Etrain (due to the CV splits). As P̂Etrain is also subject to a larger clustering-induced

optimistic bias than P̂Enew, the bias does not cancel out when taking their difference and is

therefore evident in Figure 5. Notably, the different levels of clustering-induced optimistic bias

in P̂Etrain and P̂Enew appear to have less impact on R2, where, as described above, the pre-

diction error differences are mostly negative. Further details on the impact of the clustering

structure on the results, including an explanation of why it was not considered when performing

the splits, are provided in Supplementary Section B.5.

The additional source of optimistic bias introduced by the clustering structure of the data is

also relevant when interpreting the prediction error differences in the analysis settings with HP

tuning. While our primary focus here is on overlap-induced data leakage that arises since the

observations used for the CV-based error estimation have already been seen during HP tuning

(thus hindering the detection of potential overtuning), we have to consider that any observed op-

timistic bias may as well stem from clustering-induced data leakage. Consequently, we compare

the prediction error differences in analysis settings with HP tuning to those in settings without

tuning (where only clustering-induced data leakage is present) rather than directly comparing

them to zero. Based on this assessment, the impact of overlap-induced data leakage on P̂Etrain

appears to be limited. This is particularly true for RMSE, where the CV error differences are

generally comparable to those resulting from the I-no tuning procedure. For R2, the median

differences tend to be closer to zero compared to the I-no tuning procedure. In some analysis

settings involving the smaller sample size and the CART algorithm, there is even a positive

median difference (with the largest median difference of 0.018 observed in the setting where II-

automated-PA is used in combination with the smaller sample size and the CART algorithm).

Consequently, there appears to be a small overtuning effect that is not detected by the CV

42



error due to overlap-induced data leakage. However, the median differences are too close to

zero, and the variation within each analysis setting is too large to definitively determine which

bias ultimately predominates, i.e. whether the CV error is overall optimistic or pessimistic in

these settings.

Nested CV error In the analysis settings using the II-automated-A or II-automated-PA

procedures for model generation, the prediction error differences of the nested CV error can

also be analyzed. As expected, we observe the tendency for the nested CV error to be more

pessimistic than the simple CV error (indicated by the smaller differences compared to the

CV error; however, in some settings, the median differences for simple and nested CV errors

are approximately equal). Although the nested CV error is not affected by the optimistic bias

that may result from undetected overtuning effects (see Section 4.2.1), the median differences

for RMSE are positive, indicating the presence of an optimistic bias. As discussed above for

the simple CV error, this is due to the clustering-induced optimistic bias, which appears to

outweigh the pessimistic bias typically associated with nested resampling. In the analysis

settings using R2 as performance measure, the distribution of the prediction error differences

indicates that the nested CV error is pessimistically biased.

To summarize, the choice of model generation and evaluation procedure generally affects the

difference between the prediction error estimates derived from available data and new data. As

expected, when the evaluation procedure is based on the apparent error, the resulting estimate

exhibits an optimistic bias, which varies depending on the model generation procedure. As

likewise expected, the simple CV error is less optimistic than the apparent error, while the

nested CV error is even less optimistic. The corresponding prediction error differences are less

variable across model generation procedures compared to the apparent error. For simple CV,

this indicates that, in the considered experimental setup, the tuning procedures do not introduce

relevant overtuning effects on error estimation. Instead, the main source of bias for simple CV is

either the clustering-induced optimistic bias (or, more precisely, the different bias level relative

to P̂Enew) or the pessimistic bias arising from the use of fewer observations during evaluation.

This also holds true for the nested CV error.

6 Discussion and conclusion

This paper reviewed and empirically demonstrated the implications and potential pitfalls of HP

tuning in the generation and evaluation of prediction models from the perspective of applied

ML users, with a specific focus on the distinction between preprocessing and algorithm HPs.

While HP tuning is generally a powerful tool for improving model performance, it also intro-

duces potential sources of error. In the model generation process, failing to select an adequate

tuning procedure can result in a prediction model that performs no better, or even worse, than

a model using default HP settings. During model evaluation, failing to properly account for HP
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tuning can lead to optimistically biased prediction error estimates. The risk of such errors is

especially high for preprocessing HPs, as they are often tuned subconsciously.

To provide different examples of model generation and evaluation procedures in the context of

HP tuning and to examine their impact on the difference between prediction error estimates

from available and new data, we conducted an illustrative study using a real-world prediction

problem from palliative care medicine. Although both the apparent error and CV error can,

in theory, be optimistically biased when HPs are tuned, this was consistently true only for the

apparent error (with the highest optimistic bias occurring in analysis settings that imitated

manual tuning of preprocessing HPs without considering algorithm HPs). In contrast, the pre-

diction error differences for the CV error appeared not to be considerably compromised by data

leakage, as these differences were comparable to the analysis settings without HP tuning.

In addition to explicitly considering preprocessing HPs and manual tuning procedures, our il-

lustrative study stands out from other investigations on HP tuning by not only using real data

but also building most of the setup (including the learning pipeline, HPs, and performance

measures) on a real-world project. While this ensures that the observed results are realistic

and not derived from overly simplified or extreme setups, they are not generalizable beyond

this specific context because the considered real-world project and the derived setup are not

representative of other ML applications. By using real data, our illustration was also limited in

that we could only compare the prediction error estimates from the available data set to those

from a new data set (which, due to the clustering structure, was also over-optimistic) instead

of comparing it to the true prediction errors. Nevertheless, it was still possible to compare dif-

ferences across analysis settings and derive tendencies. Finally, the illustration could have been

extended by treating the learning algorithm as a tunable HP. However, with the given setup,

doing so would offer limited insights, as it is reasonably predictable that the resampling-based

tuning procedures would select the CIT algorithm, while the tuning procedures based on the

apparent error would favor the CART algorithm.

Based on these conceptual and empirical insights, it is clear that to ensure HP tuning becomes

a benefit rather than a pitfall, applied ML users must take care throughout the entire model de-

velopment process. First, they should thoroughly consider which HPs (including preprocessing

HPs) are to be tuned and which are not. An adequate tuning procedure that fits the specific

prediction problem should then be specified. Unfortunately, this is typically non-trivial, as it

depends on various factors such as sample size and the specific HPs to be tuned. More research

is needed to better guide users in this respect (see Bischl et al., 2023, for an overview of current

recommendations). In general, it is recommended to use automated tuning procedures instead

of manual ones (see again Bischl et al., 2023, for automated tuning implementations in R and

Python). If automated tuning is not feasible, users should at least ensure that the manual tun-

ing procedure is error-free, reproducible, and resampling-based. For model evaluation, only two

evaluation procedures are guaranteed to be unaffected by data leakage caused by HP tuning:

(i) nested resampling (if the entire data set is used for model generation) or (ii) a permanent
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(outer) holdout (if only a subset of the available data is used for model generation). However,

similar to the tuning procedure, there is a lack of guidance on how to choose between these

approaches and how to specify them (e.g., which resampling methods to use for nested resam-

pling). Although simple resampling may turn out to be a viable option in some applications

(including our example), this can generally not be known in advance. Therefore, we discourage

its use in settings involving HP tuning, as well as any other evaluation procedures that could

result in data leakage.

Regardless of how model generation and evaluation are performed, it is essential that they and

all other relevant details (e.g., the complete learning pipeline and its HPs) are transparently

reported in both code and text form. For this purpose, users may rely on checklists such as RE-

FORMS (Kapoor et al., 2024; intended for all applied research fields using ML) or TRIPOD+AI

(Collins, Moons, et al., 2024; intended for clinical prediction models). While transparency does

not imply correctness, it allows readers to identify potential issues, such as data leakage, and

to critically interpret the claimed model performance. Moreover, it emphasizes the existence

and importance of preprocessing and its HPs, while the current lack of transparency can create

the impression that the data were not preprocessed at all or that no alternative preprocessing

options were explored. To further enhance transparency and encourage applied ML users to be

more intentional about their choices, it is also possible to preregister the entire model develop-

ment process, for example, by using the template proposed by Hofman et al., 2023.

In conclusion, by addressing the implications and pitfalls of HP tuning from an applied perspec-

tive and emphasizing often-overlooked aspects, we hope that this review can further enhance

the quality of ML-based predictive modeling.
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Öcal, O., Seidensticker, M., Ricke, J., Bischl, B., & Ingrisch, M. (2023). A comprehensive

machine learning benchmark study for radiomics-based survival analysis of CT imaging

data in patients with hepatic metastases of CRC. Investigative Radiology, 58 (12), 874–

881. https://doi.org/10.1097/rli.0000000000001009

Therneau, T., & Atkinson, B. (2022). rpart: Recursive Partitioning and Regression Trees [R

package version 4.1.19]. https://CRAN.R-project.org/package=rpart

Thomas, J. (2024). Preprocessing. In B. Bischl, R. Sonabend, L. Kotthoff, & M. Lang (Eds.),

Applied machine learning using mlr3 in R. CRC Press. https://mlr3book.mlr-org.com/

preprocessing.html

Van Calster, B., Steyerberg, E. W., Wynants, L., & van Smeden, M. (2023). There is no such

thing as a validated prediction model. BMC Medicine, 21, 70. https://doi.org/10.1186/

s12916-023-02779-w

van Royen, F. S., Asselbergs, F. W., Alfonso, F., Vardas, P., & van Smeden, M. (2023). Five

critical quality criteria for artificial intelligence-based prediction models. European Heart

Journal, 44 (46), 4831–4834. https://doi.org/10.1093/eurheartj/ehad727

Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model

selection. BMC Bioinformatics, 7, 91. https://doi.org/10.1186/1471-2105-7-91

Wainer, J., & Cawley, G. (2021). Nested cross-validation when selecting classifiers is overzealous

for most practical applications. Expert Systems with Applications, 182, 115222. https:

//doi.org/10.1016/j.eswa.2021.115222

51



Waldron, L., Pintilie, M., Tsao, M.-S., Shepherd, F. A., Huttenhower, C., & Jurisica, I. (2011).

Optimized application of penalized regression methods to diverse genomic data. Bioin-

formatics, 27 (24), 3399–3406. https://doi.org/10.1093/bioinformatics/btr591

Wright, M. N. (2024). Feature selection. In B. Bischl, R. Sonabend, L. Kotthoff, & M. Lang

(Eds.), Applied machine learning using mlr3 in R. CRC Press. https://mlr3book.mlr-

org.com/feature selection.html

Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of

Computational and Graphical Statistics, 17 (2), 492–514. https : //doi . org/10 . 1198/

106186008X319331

52



Supplementary Material

A Other leakage types

As stated in Section 2.4.2, Kapoor and Narayanan, 2023 identify three general types of data

leakage, which may arise from: (i) overlap between the data used for model generation and

evaluation, (ii) violation of the assumption that all observations are independently drawn from

the same distribution, or (iii) use of illegitimate features. While our paper primarily addresses

overlap-induced data leakage, we will now provide additional details on the other two types.

A.1 Violation of the i.i.d. assumption

In the following, we first consider the case of Setting I with Dtrain = D and discuss the implica-

tions for Dtrain ⊂ D and Setting II afterwards.

Even with a strict separation between the data used for model generation and evaluation,

achieved through the use of resampling methods, data leakage can still occur if the assumption

that all observations in Dtrain are independently drawn from the same distribution is violated.

This assumption, also known as the i.i.d. assumption, was stated in Section 2.1. Non-i.i.d.

settings may, for example, arise when Dtrain is a clustered data set, i.e. when the observations

originate from different clusters (e.g., study centers). Observations within clusters are typically

more similar than observations between clusters, where similarity can refer to both the feature

vector x(i) or the outcome y(i) (Hornung et al., 2023). If the prediction model is intended to

be applied to observations from other clusters than those present in Dtrain in the future, re-

sampling methods that are based on random sampling (i.e. ignoring the cluster structure) will

be optimistically biased since in each resampling iteration, the observations in Dtest are more

similar to D′
train than observations originating from new clusters (Hornung et al., 2023; Kapoor

& Narayanan, 2023; Rosenblatt et al., 2024). Although the level of optimistic bias depends on

the specific clustering structure (e.g., cluster size and correlation within clusters), it is generally

recommended to perform grouped resampling at cluster level, where all observations in a cluster

are either assigned to D′
train or Dtest in each resampling iteration (Bischl et al., 2023; Hornung

et al., 2023). In the context of healthcare research, this type of resampling is referred to as

internal-external validation (Collins, Dhiman, et al., 2024; Debray et al., 2023). For other ex-

amples of non-i.i.d. settings and corresponding resampling methods, see Hornung et al. (2023)

and the references therein.

Our elaborations also apply to the case of Setting I with Dtrain ⊂ D, with a permanent holdout

used instead of a (temporary) resampling method; here, one simply replaces Dtrain with D and

D′
train with Dtrain.

In Setting II, where resampling is typically used for both model generation (tuning) and eval-

uation, data leakage due to the violation of the i.i.d. assumption biases the prediction error

estimate of the final model only when the non-i.i.d. data structure is ignored during model

evaluation. This occurs specifically in the outer resampling loop of nested resampling (for
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Dtrain = D) or in the permanent outer holdout (for Dtrain ⊂ D). However, it is recommended to

also take into account the non-i.i.d. data structure during tuning, both for the final prediction

model and, if nested resampling is used, within the inner resampling loop, to ensure consistency

(Hornung et al., 2023).

A.2 Use of illegitimate features

If Dtrain and Dtest include features that are generally not available for new observations to

which the model will be applied in practice, these features can be considered illegitimate, and

if included in the final prediction model, constitute another type of data leakage. An example

raised by Kapoor and Narayanan, 2023 is the use of anti-hypertensive drugs as a feature for

predicting hypertension. Note that this type of data leakage is conceptually different from the

other two types, as it stems from a design issue that is independent of the model evaluation

procedure.

B Additional information on the empirical illustration

B.1 Descriptive statistics

Table S1 provides descriptive statistics of the COMPANION data set used in the empirical

illustration.

B.2 Preprocessing steps

B.2.1 Initial preprocessing steps

In the following, we describe the parameterless and pre-specified preprocessing steps that are

applied to the full COMPANION data set in its rawest version available. Note that the raw

data set is on patient contact level, which was the unit for data collection (Hodiamont et al.,

2022). The initial preprocessing steps are:

(i) data cleaning steps (e.g., correct variable types and labels),

(ii) the removal of contacts with palliative care phase “bereavement”, AKPS = 0 (“dead”),

or costs = 0,

(iii) the aggregation of the contact level data into palliative care phase level data (the outcome

is constructed by summing the costs of all patient contacts and dividing by the number of

days in the corresponding phase; for features that may vary during a phase, the highest

value of the first day is used),

(iv) the removal of palliative care phases (one phase with an extreme and implausible cost

value is removed; phases with “missing” values in either one or both cognitive features

or in one of the individual IPOS features are removed; phases with “missing” or “cannot

assess” in the AKPS feature are removed), and

(v) the replacement of “cannot assess” values with “absent” in the two cognitive features.
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Table S1: Distribution of the outcome variable and features in the COMPANION data set after
applying the initial preprocessing steps (described in Supplementary Section B.2.1). In addition,
two preprocessing steps from the learning pipeline I (see Section 5.2.2 and Supplementary
Section B.2.2) have been performed: the correction of costs and the aggregation of the IPOS
score (default version).

n =1,449

Average cost per day per palliative care phase (e)
Mean (SD) 49.0 (43.1)
Median [Min, Max] 35.9 [0.315, 357]

Palliative care phase
stable 453 (31.3%)
unstable 281 (19.4%)
deteriorating 486 (33.5%)
terminal 229 (15.8%)

Age (years)
Mean (SD) 74.7 (12.2)
Median [Min, Max] 76.0 [23, 102]

Confusion
absent 950 (65.6%)
mild 248 (17.1%)
moderate 144 (9.9%)
severe 107 (7.4%)

Agitation
absent 837 (57.8%)
mild 306 (21.1%)
moderate 217 (15.0%)
severe 89 (6.1%)

AKPS
(10) comatose or barely rousable 79 (5.5%)
(20) totally bedfast and requiring extensive nursing care
by professionals and/or family 381 (26.3%)
(30) almost completely bedfast 242 (16.7%)
(40) in bed more than 50% of the time 270 (18.6%)
(50) considerable assistance and frequent medical care required 265 (18.3%)
(60) able to care for most needs; but requires occasional assistance 151 (10.4%)
(70) cares for self; unable to carry on normal activity or
to do active work 38 (2.6%)
(80) normal activity with effort; some signs or symptoms of disease 14 (1.0%)
(90) able to carry on normal activity; minor sign of symptoms
of disease 9 (0.6%)

IPOS total score
Mean (SD) 24.8 (7.98)
Median [Min, Max] 25.0 [2.00, 55.0]
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These preprocessing steps yield a data set with 1,449 observations.

B.2.2 Preprocessing steps in the learning pipeline

In this section, we detail the six preprocessing steps of the learning pipeline I that is applied in

each training process, including their associated HPs. An overview of these preprocessing steps

is given in Figure 4.

Correction of costs As stated in Section 5.1, the outcome variable y(i) is defined as the

average cost per day in palliative care phase i, which is intended to reflect the resource needs

in that phase. This variable is calculated based on the staff time used to care for a patient and

their relatives on each day of the corresponding palliative care phase. However, analyses have

shown that if a palliative care phase is the first phase in an episode of care (see Supplementary

Section B.5 for more information on episodes of care), the staff time and thus the costs of

the first day are increased regardless of the complexity of the palliative care situation (e.g.,

due to time-consuming admission interviews). For this reason, the first-day costs of the first

phase of an episode are adjusted using a factor based on comparisons with the costs of the first

days in later phases of an episode. This factor is initially calculated for each palliative care

team and then averaged to obtain a single overall correction factor, denoted as θcorrect. This

preprocessing step accordingly includes a parameter that must be estimated from the data set,

though it does not involve any HPs in our illustration. Moreover, it is a step that modifies the

outcome (albeit slightly), not for compatibility with the learning algorithm, but to change the

interpretation of the prediction model, which now intends to predict a corrected version of the

outcome. Accordingly, this step is also applied during prediction.

Removal of cost outliers The distribution of the outcome variable in the COMPANION

data set is right skewed, i.e. some palliative care phases have exceptionally high costs (see

Table S1). Since it is not possible to definitively attribute these values to data entry errors,

they are not permanently removed from the data set. However, since the prediction values

calculated by the corresponding decision tree algorithm in each terminal node can be sensitive

to outliers, removing cost outliers during the training process could improve model performance.

Importantly, this preprocessing step is only applied during training and not during prediction,

i.e. when the final prediction model is used to make predictions on a data set, no cost outliers are

removed. Removing them during prediction could artificially improve the model’s performance,

as cost outliers are typically difficult to predict correctly (see also Kapoor & Narayanan, 2023).

The definition of outliers is generally not straightforward, as many possible options exist (Kuhn

& Johnson, 2013; Steyerberg, 2019). We denote the corresponding HP as λoutlier. In our

illustration, we define all cost values higher than the λoutlierth cost percentile as outliers, with

λoutlier ∈ {100, 99, 95, 90}. If λoutlier = 100 (the default value), no outliers are removed. Note

that this preprocessing step includes the parameter θoutlier, which corresponds to the percentile

calculated according to λoutlier.
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Handling of “cannot assess” values in IPOS features As outlined in Section 5.1, the

set of features to generate the prediction model includes the Integrated Palliative care Outcome

Scale (IPOS; Murtagh et al., 2019), which is a score based on 17 individual features covering

physical symptoms, psycho-social burden, family needs, and practical problems. Each of the

17 features is ordinal and can take values from 0 to 4, where 0 and 4 correspond to the least

and highest symptom or concern severity, respectively. For example, for the features IPOS-

“Pain” and IPOS-“Shortness of Breath”, a value of 0 corresponds to “not at all” and a value

of 4 corresponds to “overwhelmingly” (see Figure S1 for an overview of all 17 features). In its

default version (see the next preprocessing step), the IPOS score is constructed by summing

all 17 features, resulting in a score that ranges from 0 to 68. However, each IPOS feature also

includes missing values, which are either due to missing data entries (coded as “missing”) or

because the response option “cannot assess” was selected during the IPOS assessment. For

example, assessing whether a patient is burdened by pain (IPOS-“Pain”) can be challenging for

clinical staff if the patient is comatose.

While observations affected by the first type of missing values (“missing”) do not occur often and

are removed as part of the initial preprocessing steps described in Supplementary Section B.2.1,

handling the “cannot assess” values is more challenging. If all observations with at least one

“cannot assess” response were removed, almost half of the COMPANION data set would be

discarded (see Table S2; this would also apply approximately to any subset Dtrain or Dnew of

the COMPANION data set). To avoid the loss of valuable information, an alternative approach

is to treat “cannot assess” values as 0 (i.e. least symptom or concern severity), based on the

assumption that an unobserved burden does not initiate a care mandate and therefore does not

result in costs. However, it is not clear whether this assumption is valid for observations where

many or even all IPOS features are recorded as “cannot assess” (e.g., if 15 out of 17 IPOS

features are recorded as “cannot assess”, these features might not have been assessed at all). It

could thus be a reasonable approach to set “cannot assess” values to 0 but exclude observations

with many “cannot assess” values, as they potentially result in incorrect IPOS scores. Speci-

fying the exact threshold for the maximum number of “cannot assess” values is, however, not

straightforward. It can be denoted as HP λca, and ranges from 0 to 17 (observations with more

than λca “cannot assess” values are removed; if λca = 17, no observations are removed). In our

illustration, we consider the values {16, 14, 12, 10} for λca, with λca = 16 being the default.

This preprocessing step does not have any parameters. Since it removes observations, it mod-

ifies the distribution of the outcome variable. We argue that if observations with more than

λca “cannot assess” values are found to yield unreliable IPOS scores, the resulting prediction

model should not be used for future observations where this criterion applies, implying that

the corresponding preprocessing step alters the scope of the model (such that it cannot be used

for observations with more than λca IPOS features recorded as “cannot assess”). Accordingly,

this step is also applied during the prediction process. As shown in Table S2, the change in the

outcome distribution is, however, minimal because the values considered for λca remove only
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Figure S1: Distribution of the 17 individual IPOS features in the COMPANION data set after
applying the initial preprocessing steps (described in Supplementary Section B.2.1). a: Physical
symptoms. b: Emotional symptoms. c: Communication issues. d: Practical issues.

a small number of observations (9 observations for λca = 10 and 0 observations for λca = 16)

from the full COMPANION data set with 1,449 observations. As discussed in Section 2.3.4,

it is recommended to specify HPs of preprocessing steps that affect the outcome distribution

based on user expertise rather than tuning. However, given that this step only removes a few

observations and because specifying λca based on user expertise is challenging, we argue that

λca can be tuned.
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Table S2: Outcome distribution (average cost per day per palliative care phase) in the full COM-
PANION data set (after applying the initial preprocessing steps described in Supplementary
Section B.2.1) if observations with more than λca ∈ {0, 10, 12, 14, 16} “cannot assess” values in
the 17 individual IPOS features are removed. The minimum and maximum number of “cannot
assess” values are 0 and 17, respectively.

λca = 0
Mean (SD) 48.62 (45.12)
Median [Min, Max] 34.96 [1.11, 356.70]
Missing 662 (45.7%)

λca = 10
Mean (SD) 49.03 (43.14)
Median [Min, Max] 35.91 [0.32, 356.70]
Missing 9 (0.6%)

λca = 12
Mean (SD) 48.98 (43.09)
Median [Min, Max] 35.91 [0.32, 356.70]
Missing 3 (0.2%)

λca = 14
Mean (SD) 48.99 (43.07)
Median [Min, Max] 35.92 [0.32, 356.70]
Missing 2 (0.1%)

λca = 16
Mean (SD) 48.98 (43.05)
Median [Min, Max] 35.92 [0.32, 356.70]
Missing 0 (0.0%)

Calculation of IPOS score After removing observations based on their individual IPOS

feature values, the next preprocessing step is to construct the IPOS score from these features.

Aggregating the individual IPOS features into an IPOS score can be done in several ways, and

we denote the corresponding HP as λipos. A straightforward and commonly used option is to

simply sum the values of all 17 IPOS features, which we denote as IPOS-total (the default of

λipos).

Instead of aggregating all 17 IPOS features into one score, it is also possible to generate multiple

IPOS scores based on the subscales in which the features can be divided (Murtagh et al., 2019).

These subscales are: (i) physical symptoms (10 features), (ii) emotional symptoms (4 features),

and (iii) communication/practical issues (3 features) (see Figure S1). In our illustration, we

consider the generation of two subscale scores: one score that sums the features corresponding to

the physical symptoms (IPOS-physical; [0, 40]) and one score that sums the remaining features

(IPOS-others; [0, 28]). Note that in this case, the number of features provided to the learning

algorithm increases from p = 6 to p = 7.

A third option to construct the IPOS score is to sum all 17 IPOS features as in the IPOS-total

score, but recode them (before summing) as 1 if their value is ∈ {3, 4} (i.e. takes one of the two
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most extreme values), and 0 otherwise. This score will be referred to as the IPOS-extreme score

and ranges from 0 to 17. It was developed by the COMPANION team and was motivated by the

possibly too strict assumption made by the previous preprocessing step, namely that “cannot

assess” values are equivalent to a value of 0. This assumption is relaxed by the IPOS-extreme

score, which only requires assuming that the true value of an IPOS feature recorded as “cannot

assess” is ∈ {0, 1, 2} and not necessarily equal to 0.

The fourth considered IPOS score option is similar to the IPOS-extreme score, except that

the features IPOS-“Pain” and IPOS-“Shortness of Breath” are excluded from the score (which

now ranges from 0 to 15) and are instead provided separately on their original ordinal scale to

the learning algorithm. The motivation for this version is that pain and shortness of breath

may be strong predictors of the costs associated with a palliative care phase. Therefore, model

performance might be improved by including IPOS-“Pain” and IPOS-“Shortness of Breath” as

individual features rather than aggregating them into the IPOS-extreme score. If this IPOS

option is used, the number of features provided to the learning algorithm increases from p = 6

to p = 8.

This preprocessing step does not have any parameters. Moreover, it does not alter the outcome

distribution, which is why it is applied during both training and prediction.

Modification of feature “age” In the COMPANION data set, age is measured on an integer

scale and ranges from 23 to 102 years (see Table S1). In its default configuration, this feature

is provided to the learning algorithm on its original integer scale, without any preprocessing.

Alternatively, it could be transformed into a categorical feature with six categories, using the

years 50, 60, 70, 80, and 90 as cutpoints. This option could improve the model’s prediction error,

as, for example, the CART algorithm suffers from a selection bias towards features with many

possible splits (Hothorn et al., 2006). We refer to the HP that specifies the used option as λage,

with no modification of age as default. This preprocessing step has the same characteristics

as the aggregation of individual IPOS features into a score (i.e. no parameters, applied during

training and prediction).

Modification of feature “AKPS” The Australia-modified Karnofsky Performance Status

(AKPS; Abernethy et al., 2005), which measures patients’ functional status on an ordinal scale,

takes values of {10, 20, ..., 90} in the COMPANION data set, with AKPS = 10 corresponding

to “comatose or barely rousable” and AKPS = 90 to “able to carry on normal activity; minor

sign of symptoms of disease” (see Table S1). In its default configuration, AKPS is considered

ordinal, with the three highest categories, 70, 80, and 90, merged due to their low frequency.

However, it might also be reasonable to transform AKPS into an unordered categorical variable,

as costs may not monotonically decrease or increase with AKPS, but could be highest when the

patient has, for example, an AKPS of 50, which corresponds to “considerable assistance and

frequent medical care required”. In this case, we collapse the AKPS categories even further

to avoid overfitting, resulting in AKPS ∈ {10-20, 30-50, 60-90}. We refer to the corresponding
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HP as λakps, with the ordered AKPS variable as default. This preprocessing step has the same

characteristics as the two previous preprocessing steps (i.e. no parameters, applied during

training and prediction).

Note that for the preprocessing steps estimating parameters from the available observations (i.e.

correction of costs, with θcorrect, and removal of cost outliers, with θoutlier), their position in

the preprocessing pipeline in relation to the steps where observations are removed (i.e. removal

of outliers and handling of “cannot assess” values) is of relevance since a different set of obser-

vations might yield a different parameter estimate. Accordingly, performing the preprocessing

steps in a different order could lead to (slightly) different results.

Moreover, during the execution of the illustration as described in Section 5.2.1, in some resam-

pling iterations performed during model generation and evaluation (particularly for nested CV),

it occasionally happens that certain ordinal or categorical features in the data subset for which

predictions are being made contain new values that were not encountered during training. This

issue occurs exclusively with the highest and/or lowest values of these features, which are less

frequent in the original COMPANION data set and thus more likely to be absent in the training

set. Specifically, this affects the highest value of (cognitive) agitation, the highest and lowest

values of AKPS (if AKPS is not collapsed into three unordered categories), the lowest value

of age (if age is transformed into a categorical feature), and the highest values of “Pain” and

IPOS-“Shortness of Breath” (if the fourth option for aggregating the IPOS score is selected). In

these cases, we collapse the highest and second highest and/or lowest and second lowest values

when making predictions.

B.3 Performance measures

In the illustration, two performance measures are considered: RMSE and R2. The RMSE is

obtained by taking the square root of the MSE (see Section 3.1) and is expressed in the same

units as the outcome variable (i.e. costs in e). It ranges from 0 to ∞, where RMSE = 0 indicates

perfect prediction. The R2 performance measure is calculated by dividing the squared error of

the prediction model by the squared error of a naive model that predicts the mean and then

subtracting this ratio from 1. It is a relative measure that can be interpreted as the proportion

of variance in the outcome variable explained by the prediction model. The range of R2 is

(−∞, 1], with R2 = 1 indicating perfect prediction and a R2 value of 0 or less indicating that a

model performs no better or worse than the naive model, respectively. In this context, a lower

prediction error corresponds to a higher R2 value. See, e.g., Kuhn and Johnson, 2013 for more

details on both performance measures.
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B.4 Absolute prediction error estimates and selected HPs
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Figure S2: Absolute prediction error estimates P̂Etrain across 96 analysis settings, with each
boxplot summarizing 50 repetitions of a specific setting. Additionally, absolute prediction error
estimates P̂Enew are shown. Importantly, P̂Enew is independent of the model evaluation proce-
dure performed on Dtrain and is therefore shown only for the 40 settings formed by all possible
combinations of model generation procedures, performance measures, sample sizes, and learn-
ing algorithms (5 × 2 × 2 × 2 = 40), where each boxplot again represents 50 repetitions. For
reference, the dotted line represents the median prediction error estimate on Dnew (averaged
over the 50 repetitions) for a featureless learning algorithm, which naively predicts the mean.

Taking the difference between P̂Etrain and P̂Enew for each repetition results in Figure 5 in the
main text.
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Figure S3: Selected HPs for the analysis settings where CART is used as the learning algorithm
and ntrain = 362. Only model generation procedures that involve tuning the corresponding HP
type are shown. a: Preprocessing HPs. The labels A, B, C, and D correspond to the first,
second, and, if present, subsequent values in the corresponding search space (with A being the
default value). b and c: Algorithm HPs. Each boxplot represents 50 repetitions. The solid and
dashed lines indicate the range of the considered search space and the default value, respectively.
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Figure S4: Selected HPs for the analysis settings where CART is used as the learning algorithm
and ntrain = 724. Only model generation procedures that involve tuning the corresponding HP
type are shown. a: Preprocessing HPs. The labels A, B, C, and D correspond to the first,
second, and, if present, subsequent values in the corresponding search space (with A being the
default value). b and c: Algorithm HPs. Each boxplot represents 50 repetitions. The solid and
dashed lines indicate the range of the considered search space and the default value, respectively.
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Figure S5: Selected HPs for the analysis settings where CIT is used as the learning algorithm
and ntrain = 362. Only model generation procedures that involve tuning the corresponding HP
type are shown. a: Preprocessing HPs. The labels A, B, C, and D correspond to the first,
second, and, if present, subsequent values in the corresponding search space (with A being the
default value). b and c: Algorithm HPs. Each boxplot represents 50 repetitions. The solid and
dashed lines indicate the range of the considered search space and the default value, respectively.
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Figure S6: Selected HPs for the analysis settings where CIT is used as the learning algorithm
and ntrain = 724. Only model generation procedures that involve tuning the corresponding HP
type are shown. a: Preprocessing HPs. The labels A, B, C, and D correspond to the first,
second, and, if present, subsequent values in the corresponding search space (with A being the
default value). b and c: Algorithm HPs. Each boxplot represents 50 repetitions. The solid and
dashed lines indicate the range of the considered search space and the default value, respectively.
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B.5 Clustering structure

In Figure 5 (Section 5.3), which presents the prediction error differences for 96 analysis settings,

it can be seen that the CV error unexpectedly exhibits an optimistic bias in settings without

HP tuning. The same observation applies to the nested CV error in analysis settings with HP

tuning. These results can be attributed to the clustering structure of the COMPANION data

set, and we will explain this in more detail below. Specifically, we will describe the clustering

structure (Supplementary Section B.5.1), explain how it impacts the estimated prediction errors

(Supplementary Section B.5.2), discuss why the experimental setup was not adapted to account

for this clustering (Supplementary Section B.5.3), and present an additional extension of the

experimental setup with respect to clustering (Supplementary Section B.5.4).

B.5.1 Clustering in the COMPANION data set

The COMPANION data set exhibits a nested clustering structure. At the first level, clustering

arises because several palliative care phases may originate from the same episode of care of a

patient. An episode of care is defined as the period between admission to a specific specialist

palliative care setting and the termination of care in that same setting. At the second level,

clustering occurs because the episodes of care in the data were collected from different palliative

care teams. Episodes within the same team are typically more similar to one another than to

episodes from different teams. Since no episode of care is associated with more than one pallia-

tive care team, the clustering follows a nested structure.

As a result, the 1,449 palliative care phases reported for the COMPANION data set in Sec-

tion 5.1 originate from 705 episodes of care, which in turn are collected from 9 specialist palliative

home care teams. A more detailed depiction of this nested clustering structure is provided in

Figure S7.

B.5.2 Impact on prediction error estimates

While our empirical illustration and the paper as a whole focus on overlap-induced data leak-

age, the clustering structure of the COMPANION data set introduces another form of leakage

that generally occurs when the assumption of independent and identically distributed (i.i.d.)

observations is violated and the violation is not accounted for during model evaluation. This

type of leakage is briefly mentioned in Section 2.4.2 of the main paper and described in more

detail in Supplementary Section A.1. As a result, the prediction error estimates can be opti-

mistically biased, even in the absence of overlap-induced data leakage. We now explain where

the clustering is not accounted for in the experimental setup and how this affects the estimated

prediction errors and their differences.

First, the clustering structure is ignored when splitting the COMPANION data set into Dtrain

and Dnew, as the split is performed at the phase level rather than at the episode or team level.

Consequently, if the prediction model is intended to be applied to new episodes and teams not

present in the COMPANION data set, P̂Enew is optimistically biased, as it has an unfair advan-

tage compared to other data sets with new episodes and teams. A more precise statement in
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Figure S7: Overview of the nested clustering structure in the COMPANION data set. The x-
axis represents the clusters, and the y-axis indicates the cluster size. a: Phases within episodes
(first-level clustering). b: Episodes within teams (second-level clustering). The labeling of the
teams (A, B, C, etc.) is specific to this plot and reflects the teams’ ordering based on the
number of episodes, with ‘A’ representing the team with the most episodes.

step (iii) in Section 5.2.1 would thus be that P̂Enew is unbiased except for a potential optimistic

bias caused by clustering-induced data leakage. Second, if P̂Etrain is estimated via simple or

nested CV, the clustering structure is also ignored when creating the CV splits. Accordingly, as

with P̂Enew, this leads to an optimistic bias in P̂Etrain due to data leakage induced by clustering

(although in contrast to P̂Enew, P̂Etrain may also be affected by other biases). Note that for
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nested CV, it is only the ignoring of the clustering in the outer CV loop that results in the

optimistic bias, as the inner splits are only used for tuning.

For the difference between P̂Etrain and P̂Enew, which is the focus of our illustration, this has

two key implications: If P̂Etrain results from an analysis setting where the apparent error was

used to evaluate the final prediction model, the difference between P̂Etrain and P̂Enew may un-

derestimate the optimistic bias that would arise if Dnew contained exclusively observations from

new episodes and teams not present in Dtrain. If P̂Etrain corresponds to the simple or nested

CV error, the clustering-induced optimistic bias would, under the assumption that P̂Etrain and

P̂Enew are subject to the same level of bias, effectively cancel out when considering the differ-

ence between P̂Etrain and P̂Enew. However, as shown in Figure 5, this is not the case. Further

analysis (not shown) reveals that the observed differences arise from the slightly higher propor-

tion of patient episodes present in both D′
train and Dtest during resampling, compared to the

proportion of episodes present in both Dtrain and Dnew during the initial split. As a result,

P̂Etrain is affected by a larger optimistic bias than P̂Enew, which manifests in Figure 5, where

their difference is examined.

B.5.3 Splits on cluster level

To prevent data leakage due to clustering, both the initial split into Dtrain and Dnew, as well

as any resampling method applied to Dtrain, must be performed at the team level. With a

total of 9 teams, this means that in each repetition of every analysis setting, Dtrain consists of

either 4 or 5 teams. Furthermore, when performing CV on Dtrain at the team level, it is not

possible to create 10 folds. Instead, each team forms a fold, and CV is carried out in a leave-

one-out manner. Figure S8 presents the resulting prediction error differences for all analysis

settings where no HPs are tuned, alongside the corresponding results from the original setup

with naive splits (i.e. splits that ignore clustering) for comparison. First, it can be observed

that if P̂Etrain corresponds to the CV error, the differences are smaller than or equal to zero

for RMSE. This confirms that the optimistic bias found for the CV error in the corresponding

naive setup is caused by the clustering structure of the data. However, Figure S8b also reveals

that performing CV at the team level leads to highly variable prediction error differences, which

is not surprising given the limited number of teams, each varying in the number of episodes

and phases they contain. Since we argue that, under these circumstances, it is not reasonable

to perform HP tuning, we decided to ignore the clustering structure in the setup of our main

analysis. Additionally, in the interest of computational resources, we did not conduct the team-

level analysis for the remaining analysis settings involving tuning. However, this should clearly

not be taken as a standard for applications beyond illustrative purposes.

B.5.4 Learning algorithms for clustered data

In addition to performing splits at the cluster level, we also extended the main experimen-

tal setup by including additional learning algorithms specifically designed for clustered data.

These are the Random Effects/Expectation-Maximization Tree algorithm (REEMT; R pack-

age REEMtree; Sela and Simonoff, 2011), and the Linear Mixed-Effects Model Tree algorithm
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Figure S8: Comparison of prediction error differences when clustering is ignored vs. accounted
for. Both subfigures present the prediction error differences for all considered analysis settings
without HP tuning, with each boxplot summarizing 50 repetitions of a specific setting. The
prediction error differences are calculated as P̂Enew − P̂Etrain for RMSE and P̂Etrain − P̂Enew

for R2. a: Naive setup, where clustering is ignored during splitting. Results are adapted from
Figure 5, with extended y-axis limits. b: Cluster setup, where clustering is accounted for by
performing splits at the team level.

(LMMT; R package glmertree; Fokkema et al., 2018). In the implementation used for our il-

lustration, both algorithms take into account the clustering structure by iterating between two

steps: (i) fitting a decision tree using the CART algorithm for REEMT or the CIT algorithm for

LMMT and (ii) estimating random intercepts via a linear mixed model, which are subtracted

from the outcome variable in the subsequent tree-fitting iteration. To ensure model stability,

random effects are only included for each palliative care team, rather than for each individual

episode, as more than 300 episodes consist of only a single palliative care phase (Figure S7a).

Including REEMT and LMMT in the analysis, however, does not yield new insights. Their re-

sults closely resemble those of CART and CIT, as demonstrated in Figure S9, which compares

the prediction error differences of the algorithms.

70



Model generation

I−no tuning II−manual−P II−automated−A II−combined−PA II−automated−PA

ntrain = 362 ntrain = 724 ntrain = 362 ntrain = 724 ntrain = 362 ntrain = 724 ntrain = 362 ntrain = 724 ntrain = 362 ntrain = 724

P
e
rfo

rm
a
n
c
e
 m

e
a
s
u
re

R
M

S
E

R
2

C
A

R
T

R
E

E
M

T

C
A

R
T

R
E

E
M

T

C
A

R
T

R
E

E
M

T

C
A

R
T

R
E

E
M

T

C
A

R
T

R
E

E
M

T

C
A

R
T

R
E

E
M

T

C
A

R
T

R
E

E
M

T

C
A

R
T

R
E

E
M

T

C
A

R
T

R
E

E
M

T

C
A

R
T

R
E

E
M

T

−10

−5

0

5

10

−0.2

0.0

0.2

0.4

Learning algorithm

P
re

d
ic

ti
o
n
 e

rr
o
r 

d
if
fe

re
n
c
e

Model evaluation Apparent error 10−fold CV error 10−2−fold nested CV error
a

Model generation

I−no tuning II−manual−P II−automated−A II−combined−PA II−automated−PA

ntrain = 362 ntrain = 724 ntrain = 362 ntrain = 724 ntrain = 362 ntrain = 724 ntrain = 362 ntrain = 724 ntrain = 362 ntrain = 724

P
e
rfo

rm
a
n
c
e
 m

e
a
s
u
re

R
M

S
E

R
2

C
IT

L
M

M
T

C
IT

L
M

M
T

C
IT

L
M

M
T

C
IT

L
M

M
T

C
IT

L
M

M
T

C
IT

L
M

M
T

C
IT

L
M

M
T

C
IT

L
M

M
T

C
IT

L
M

M
T

C
IT

L
M

M
T

−10

−5

0

5

10

−0.2

0.0

0.2

Learning algorithm

P
re

d
ic

ti
o
n
 e

rr
o
r 

d
if
fe

re
n
c
e

Model evaluation Apparent error 10−fold CV error 10−2−fold nested CV error
b

Figure S9: Comparison of prediction error differences between CART and CIT and their coun-
terparts that include random intercepts, REEMT and LMMT, respectively. The same model
generation and evaluation procedures, performance measures, and sample sizes as in the main
setup are included. Each boxplot summarizes results from 50 repetitions of a specific setting.
The prediction error differences are calculated as P̂Enew−P̂Etrain for RMSE and P̂Etrain−P̂Enew

for R2. a: CART vs. REEMT. b: CIT vs. LMMT.
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Abstract

In recent years, the need for neutral benchmark studies that focus on the com-

parison of methods coming from computational sciences has been increasingly

recognized by the scientific community. While general advice on the design

and analysis of neutral benchmark studies can be found in recent literature, a

certain flexibility always exists. This includes the choice of data sets and per-

formance measures, the handling of missing performance values, and the way

the performance values are aggregated over the data sets. As a consequence of

this flexibility, researchers may be concerned about how their choices affect

the results or, in the worst case, may be tempted to engage in questionable

research practices (e.g., the selective reporting of results or the post hoc modifi-

cation of design or analysis components) to fit their expectations. To raise

awareness for this issue, we use an example benchmark study to illustrate how

variable benchmark results can be when all possible combinations of a range

of design and analysis options are considered. We then demonstrate how the

impact of each choice on the results can be assessed using multidimensional

unfolding. In conclusion, based on previous literature and on our illustrative

example, we claim that the multiplicity of design and analysis options com-

bined with questionable research practices lead to biased interpretations of

benchmark results and to over-optimistic conclusions. This issue should be

considered by computational researchers when designing and analyzing their

benchmark studies and by the scientific community in general in an effort

towards more reliable benchmark results.
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KEYWORD S

benchmarking, method comparison, over-optimistic results, questionable research
practices, variability of results

1 | INTRODUCTION AND RELATED WORK

With the constant development of new methods in computational sciences (e.g., machine learning and bioinformatics),
it is becoming increasingly difficult for data analysts to keep pace with scientific progress and to select the most appro-
priate method for their data and research question out of the many existing approaches. This problem is addressed by
benchmark studies, which systematically analyze and compare the performance of several methods in different condi-
tions using simulated or real data sets.

In many cases, benchmark studies are performed as part of a paper introducing a new method, usually with the
intention to demonstrate the superiority of the new method over existing ones. Accordingly, they can be considered as
biased in favor of the newly proposed method and should be seen as an informal method comparison rather than a real
benchmark study (Boulesteix et al., 2013; Buchka et al., 2021; Norel et al., 2011). In contrast, so-called neutral bench-
mark studies are defined as benchmark studies that focus on the comparison itself and are ideally performed by reason-
ably neutral authors, that is, authors who (1) are equally experienced with all considered methods and (2) design and
analyze the study in a rational way (Boulesteix et al., 2017). These characteristics make neutral benchmark studies
essentially unbiased. Therefore, recommendations resulting from such studies are especially relevant both for method
users and developers (Boulesteix et al., 2018).

Regarding the appropriate design and analysis of benchmark studies, the available literature ranges from general
guidelines (Boulesteix, 2015; Weber et al., 2019) and statistical frameworks (Boulesteix et al., 2015; Demšar, 2006;
Eugster et al., 2012; Hothorn et al., 2005, all with focus on supervised learning), to recommendations for context-
specific benchmarks (e.g., Bokulich et al., 2020; Kreutz, 2019; Mangul et al., 2019; Zimmermann, 2020). However, for
many issues relevant in practice (e.g., the selection of data sets and performance measures), no concrete guidance or
methodology can be found. This means that researchers are usually faced with a high amount of flexibility when con-
ducting their benchmark study.

As a consequence, researchers who are aware of these issues, although making well-considered design and analysis
choices prior to conducting the benchmark study, might be concerned about how their choices affect the results. On
the other hand, the high amount of flexibility could tempt less aware researchers to engage in questionable research
practices (see John et al., 2012, in the context of applied research) when conducting their benchmark study. This
includes the selective reporting of results (e.g., reporting the results of only one performance measure although perfor-
mance was originally assessed by two measures) and the modification of specific design and/or analysis components of
the benchmark study after seeing the results (e.g., using performance measures other than those originally selected). Of
course, these practices are not questionable on their own. For example, it is fine to use an alternative performance mea-
sure if the current one does not produce meaningful results as long as the change of performance measure is adequately
justified and documented. However, practices such as the selective reporting of results or the post hoc modification of
benchmark components do become questionable if they are applied to fit the researchers' expectations or hopes. For
example, researchers might seek an “exciting” result (e.g., a clear-cut result suggesting a univocal winner as opposed to
vague tendencies) or have a specific presumption in mind that they want to be confirmed by the results (e.g., the superi-
ority of a certain method or class of methods that they are more familiar with or that has performed well in previous
benchmark studies).

The problem with such research practices is that they are likely to produce over-optimistic results, that is, results
with an optimistic bias towards the researchers' expectations and hopes. While we are convinced that very few
researchers have the actual intention to cheat (Ioannidis et al., 2014), it should not be understated that “even an honest
person is a master of self-deception” (Nuzzo, 2015), meaning that every researcher is at risk of engaging in questionable
research practices. Moreover, the non-neutrality that leads to such practices in the first place is difficult to avoid
completely and is likely to arise in a subconscious manner even in studies intended as neutral. Note also that the actual
neutrality of neutral benchmark studies can only be checked to a certain extent. For example, one may review the
authors' publication lists to identify the methods they are most familiar with, but this gives only a partial picture of
someone's (non-)neutrality.
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In application fields of statistics (e.g., medicine and psychology), the multiplicity of analysis strategies and the asso-
ciated risk of over-optimistic results are well-known issues (Hoffmann et al., 2021; Ioannidis, 2005; Simmons
et al., 2011) and terms such as “p-hacking” or “fishing expeditions” have been discussed by many (Head et al., 2015;
Wagenmakers et al., 2012). However, in methodological research including benchmark studies, this topic is covered
rather sparsely. Existing literature on the risk and prevention of over-optimism in benchmark studies is either limited
to general considerations in benchmarking guidelines (Boulesteix et al., 2017; Weber et al., 2019) or to benchmark stud-
ies that are performed as part of a paper introducing a new method (Boulesteix, 2015; Norel et al., 2011), which can be
transferred to neutral benchmark studies only to a limited extent. Similarly, the scarce literature that empirically inves-
tigates the effects of over-optimism in benchmark studies in a quantitative manner is either also devoted to the bias
affecting evaluations of a newly proposed method to other existing methods (Buchka et al., 2021; Jelizarow et al., 2010),
or focusing on the selection of data sets (MacIà et al., 2013; Yousefi et al., 2010).

In this paper, we illustrate and discuss the multiplicity of options regarding the design and analysis of neutral
benchmark studies based on real data sets, and examine its effect on the results. Note that although we focus on neutral
benchmark studies based on real data, our results are also relevant to benchmarks comparing new to existing methods
and, to some extent, benchmarks based on simulated data. We will empirically address the multiplicity of options and
its effects in a twofold approach. In the first step, in order to raise awareness of the multiplicity of possible results and
the over-optimism that may arise from questionable research practices, we use the results of a recently published
benchmark study to illustrate how variable the resulting method rankings are when different options for design and
analysis are considered. In the second step, we propose a framework based on multidimensional unfolding (Borg &
Groenen, 2005) that enables researchers to assess the impact of each choice on the method rankings. More precisely,
the framework allows to analyze when and how using alternative options for a specific choice affects the results and
can thus be an effective strategy to prevent biased interpretations and over-optimistic conclusions.

The exemplary study we will use throughout the paper to illustrate our proposed framework and the multiplicity of
possible options and results is a benchmark experiment by Herrmann et al. (2021) comparing the performance of 13 sur-
vival prediction methods based on 18 real so-called multi-omics” data sets. Note that our paper does not intend to ques-
tion the results of this study. Instead, it should be seen as extended analysis of the benchmark study, which by
assessing the multiplicity of results and examining the impact of each choice, makes the results of Herrmann
et al. (2021) even more reliable and meaningful.

While the framework proposed in this paper can be utilized by all researchers who conduct benchmark studies of
computational methods (e.g., in the fields of machine learning, data mining, statistics, etc.), the illustrated multiplicity
of results should ideally also raise awareness among the readers of such studies. The concepts and results presented in
this paper may therefore be useful for method developers and methodological researchers as well as applied researchers
and data analysts.

The remainder of this paper is structured as follows: we review and discuss a selection of design and analysis choices
in the context of benchmark studies in Section 2, and describe the design of the study as well as the principle of multi-
dimensional unfolding in Section 3. The results are presented in Section 4, which is followed by a discussion in Section 5
and concluding remarks in Section 6.

2 | EXAMPLES OF DESIGN AND ANALYSIS CHOICES IN BENCHMARK
STUDIES

2.1 | Setting

In this section, we discuss some of the choices that researchers are faced with when conducting a benchmark study
based on real data sets. In general, most choices that have to be made to conduct a benchmark study relate to (1) the
general aim of the study, (2) the design of the study, or (3) the analysis of the performance results; see the left part of
Figure 1. Choices that belong to the first category are, for instance, the choice of methods to be compared or the type of
outcome variable to be considered. However, in this paper, we focus on choices regarding the design of the study
(i.e., how the aim of the study is addressed) and the analysis of performance results (i.e., how the L�M matrix of
results generated by each considered performance measure is analyzed, where L and M are the numbers of data sets
and methods, respectively). It is important to note that these choices should ideally be made prior to conducting the
benchmark study. However, we conjecture that they are in practice often made post hoc, that is, after seeing the
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results—which can amount to questionable research practices. When reading a benchmark study, there is no way to
check when the choices were made.

For each choice, we will give concrete examples of possible options that will later be analyzed with regard to their
effect on the results; see the right part of Figure 1. For this purpose, we consider the benchmark study by Herrmann
et al. (2021) mentioned above. The authors compare the performance of M¼ 13 survival prediction methods (here den-
oted as BlockForest, Clinical Only, CoxBoost, CoxBoost Favoring, Glmboost, Grridge, Ipflasso, Kaplan–Meier, Lasso,
Prioritylasso, Prioritylasso Favoring, Ranger and Rfsrc) on L¼ 18 real multi-omics data sets. See the original paper
(Herrmann et al., 2021) for details on the methods, the benchmark experiment, and the results. We selected this study
as an example because some of the authors of the present paper were also involved in conducting the benchmark study

FIGURE 1 Examples of choices that researchers are usually faced with when conducting a benchmark study including options used in

the example benchmark study by Herrmann et al. (2021) (second column) and alternative options (third column). Options that are

considered in our illustration are colored in pink
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by Herrmann et al. (2021). We therefore had first hand insight about the issues Herrmann et al. (2021) faced while
designing and analyzing the benchmark study, which we believe to be reasonably representative of the important chal-
lenges encountered in most benchmark studies, as we will discuss in the remainder of this section.

2.2 | Design choices

2.2.1 | Data sets

The selection of data sets is an important design choice in every benchmark study, as the performances are usually
highly variable across data sets (Novianti et al., 2015; Weber et al., 2019). To make meaningful statements and prevent
the study from being underpowered, it is recommended to consider an adequate number of data sets (Boulesteix
et al., 2017). Although there are suggestions on how to calculate the minimum required number (Boulesteix
et al., 2015), it seems that the number of included data sets is usually based on practical criteria (such as availability or
computational cost) rather than statistical considerations (MacIà et al., 2013). Moreover, if the benchmark study aims
at external validation, the number of data sets that can be included in the benchmark study is usually limited, as for
many data sets there is often no comparable data set available that could be used for external validation.

Concerning the type of data sets, researchers should include data sets that are representative for the domain of inter-
est and diverse enough to make sure the methods can be evaluated under a wide range of conditions (Gatto et al., 2016;
Weber et al., 2019). Corresponding inclusion criteria for the data sets should be defined before conducting the bench-
mark study (Boulesteix et al., 2017). However, the decision on how the inclusion criteria are defined lies with the
researcher. In many benchmark studies, the exact search strategy or inclusion criteria are not reported transparently,
suggesting that in these cases, there might be no clearly defined inclusion criteria at all.

In the benchmark study by Herrmann et al. (2021), the authors selected all cancer data sets with five different
multi-omics groups and more than 100 samples from the TCGA research network (http://cancergenome.nih.gov). Addi-
tionally, they excluded data sets that did not have observations for every data type or less than 5% effective cases
(i.e., patients with event), resulting in a total of L¼ 18 data sets. However, depending on their research interest, Herr-
mann et al. (2021) could have set additional constraints. For example, if the authors had been interested in the perfor-
mance of the methods on data sets with a small number of effective cases, they could have adjusted the inclusion
criteria accordingly (e.g., set ne <30). The other way around, one may decide to ignore data sets with a small number of
events (e.g., set ne ≥ 30) because it is questionable if it makes sense to fit models in this case at all.

In this paper, we will address the multiplicity of possible options regarding the selection of data sets and its impact
on the results by considering subgroups of the original L¼ 18 data sets defined based on some of the data sets' charac-
teristics. The considered characteristics are the number of clinical variables (clin), the number of observations (n), the
number of effective observations (ne), and the number of variables (p). For each data set characteristic, we will only
consider data sets that are smaller ( < ) or greater or equal (≥ ) than the median value of the respective data set charac-
teristic over the 18 considered data sets. This results in eight groups with 8–10 data sets.

2.2.2 | Quantitative performance measure

Another important aspect of benchmarking is the choice of evaluation criteria, which usually includes both quantitative
performance measures and other measures such as runtime or qualitative features such as user-friendliness. Although
all these evaluation criteria are important, we will focus on quantitative performance measures in this paper.

The choice of performance measure is usually context-specific, that is, it depends on the type of methods and data
addressed in the benchmark study, as well as on the aspects of performance that are considered the most important by
the researcher (Morris et al., 2019; Weber et al., 2019). It is also often a nontrivial choice. For some tasks such as classifi-
cation, researchers are spoilt for choice considering the variety of measures they can choose from (e.g., accuracy, sensi-
tivity/specificity, area under the curve or F1-score), which makes decisions difficult (Mangul et al., 2019; Robinson &
Vitek, 2019). In contrast, for more complex situations they might have to design their own performance measures,
which can also be challenging (Weber et al., 2019). To provide a more complete picture of the methods' behavior and
avoid over-optimism, it can be useful to consider more than one performance measure (Norel et al., 2011). However,
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there is no way to objectively determine the adequate number of performance measures as this is highly context
dependent.

In the benchmark study by Herrmann et al. (2021), the primary performance measure is the integrated Brier score
(Graf et al., 1999; denoted as ibrier). Additionally, they consider Uno's C-index (Uno et al., 2011; denoted as cindex).
The authors justify their decision to use the ibrier as primary measure by the fact that cindex only measures the dis-
criminatory power and is not a strictly proper scoring rule (Blanche et al., 2019), while the ibrier additionally measures
calibration. However, they argue that if the main interest lies in ranking patients according to their risk, then the cindex
would also be a valid measure. Furthermore, they reason that it makes sense to include the cindex for the purpose of
comparability with other studies, since it is a widely used performance measure. Accordingly, depending on which
aspect of performance they would have considered more important, Herrmann et al. (2021) could have also used the
cindex as primary performance measure or only selected one of the two performance measures. In this paper, we will
thus compare the results of ibrier and cindex.

2.3 | Analysis choices

2.3.1 | Handling of missing performance values

Because of non-convergence or other computational issues, methods sometimes fail to output a result for a specific
data set. In the context of resampling procedures such as cross-validation or bootstrapping, the consequence is that
performance values may be missing for all or part of the resampling iterations for some data sets. This problem seems
to be common especially in benchmarks of larger scale (Bischl et al., 2013). While there is at least some literature
devoted to the selection of data sets and performance measures, the issue of missing performance values in some
combinations of data sets and methods is almost completely ignored. Many authors of benchmark studies do not
report how they handled missing performance values, and there is to our knowledge no corresponding guidance
available.

Bischl et al. (2013) mention several possible ad hoc options that could be applied if the missing values occur only on
a subset of resampling iterations, namely that missing values could be imputed by the worst possible value or by the
mean of the remaining performance values obtained for this combination of data set and method—although both
options are not ideal in their opinion. Another ad hoc option they actually use for their benchmark study is a mixed
strategy, where the imputed value is sampled from an estimated normal distribution of the remaining values if the
method fails in less than 20% of the resampling iterations. If the method fails in more than 20% of the resampling itera-
tions, the worst possible value is used for imputation. Herrmann et al. (2021), who use cross-validation as resampling
procedure and also face the problem of failing iterations, use a similar 20%-threshold rule as Bischl et al. (2013). How-
ever, instead of sampling from a normal distribution, they use the mean performance value of the remaining iterations
and instead of the worst possible value, they assign values of the performance measures corresponding to random pre-
diction (i.e., 0.25 for ibrier and 0.5 for cindex).

Since there seems to be no common agreement on how to handle missing values in this context, other sensible
options would also be justifiable. For example, missing values could be imputed by a formula that weights the mean
performance value and the random performance value used by Herrmann et al. (2021) according to the proportion of
missing values, thus avoiding the choice of an arbitrary threshold. For the ibrier, where 0 corresponds to the best possi-
ble value and 0.25 to random prediction, the imputed value for the considered combination of data set and method
could be defined as

ximpute ¼ 0:25� 0:25�
P

i ∈ Ixi
Ij j

� �
� 1� rð Þ, ð1Þ

where I is the set of indices of the non-failed iterations, xi is the ibrier value for iteration i∈I , and r is the proportion
of missing values. For two methods with the same mean value for non-failed iterations, the method with more missing
values obtains a worse performance value. Moreover, the imputed value is equal to 0.25 if a method has 100% failures
for a data set, or a mean value greater or equal than 0.25 (which makes sense since fluctuations above the value 0.25
corresponding to random prediction are not relevant). Another advantage of this weighted imputation procedure is that
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it reduces to the mean when the proportion of missing values r tends to 0—as intuitively expected. The corresponding
formula for the cindex can be found in the Supplementary material.

In this paper, we will consider four imputation methods that can be used to handle the issue of missing performance
values: the 20%-threshold rule used by Herrmann et al. (2021), the weighted method in Equation (1), imputation using
values that correspond to random prediction, and imputation using the average of the non-failed iterations.

2.3.2 | Aggregation of performance values across data sets

Although it is common to analyze the methods' individual performances across data sets (e.g., using graphical tools),
most benchmark studies ultimately aggregate the performance values over the data sets to generate an overall method
evaluation. This is done, for example, in the form of a ranking (often taking not only the rank order into account, but
also the aggregated performance values that generate these ranks) or a list of methods that show statistically significant
differences in performance. While there is much literature addressing statistical testing procedures in benchmark exper-
iments based on a single data set (Dietterich, 1998; Hothorn et al., 2005) or several data sets (Demšar, 2006; Eisinga
et al., 2017), there seems to be no consensus on how to generate an overall method ranking from several data sets,
which we will focus on in this section.

For example, the performance values can be aggregated using standard summary measures such as the mean,
median, minimum, maximum, or standard deviation (Mersmann et al., 2015). Since the distribution of performance
values can be considerably skewed, some authors advise against using the mean or median as aggregation method.
Instead, they recommend assigning ranks to the methods for each data set such that the best method in the
corresponding data set obtains rank 1 and the worst method rank M, where M is the number of considered methods
(Demšar, 2006; Hornik & Meyer, 2007). The resulting ranks are then usually aggregated using the mean
(e.g., Kibekbaev & Duman, 2016; Verenich et al., 2019) or, less often, the median (e.g., Orzechowski et al., 2018).

Other possible aggregation methods include counting the number of times a method performs best, often divided by
the number of data sets to obtain a value between 0 and 1 (e.g., De Cnudde et al., 2020; Fern�andez-Delgado et al., 2014;
Wu et al., 2020). Some of these authors suggest to not only consider the best performing method for each data set but
also the set of methods performing similarly to the best method. Accordingly, Fern�andez-Delgado et al. (2014) consider
the number of data sets in which a method achieves 95% or more of the maximum accuracy (i.e., the accuracy achieved
by the best performing method in that data set) divided by the total number of data sets. In the same vein, Wu
et al. (2020) estimate the probability of achieving good performance as the number of data sets for which the method is
among the top three methods divided by the total number of data sets.

Note that all aggregation methods presented so far are based on point estimates of the methods' performances.
Although less frequently used in practice, it is also possible to generate method rankings based on the results of statisti-
cal tests (i.e., pairwise comparisons indicating if Method 1 performs significantly better than Method 2) using consensus
rankings (Hornik & Meyer, 2007).

If more than one performance measure and/or other evaluation criteria (e.g., runtime) are considered, researchers
also have to decide if rankings arising from multiple criteria should be combined in some form (e.g., Eugster
et al., 2012) or should be considered separately, as suggested by Weber et al. (2019). Specifically, Weber et al. (2019) rec-
ommend to identify a set of consistently high performing methods based on the individual rankings and then highlight
the different strengths of each method.

Herrmann et al. (2021) aggregate the performance values based on ibrier and cindex using the mean and consider
each ranking separately. To assess the heterogeneity of performances across data sets, they also calculate the resulting
standard deviations and confidence intervals and perform paired t-tests. In our illustration, we will consider four aggre-
gation methods that can be used to generate method rankings: mean (as used by Herrmann et al., 2021), median, mean
rank, and number of times a method performs best. If two methods obtain the same rank according to the number of
times they perform best, they are additionally ranked by the number of times their performance lies within the 5% envi-
ronment of the best performing method. This applies if jxm�xbest j

xbest
<0:05, where xm denotes the performance (cindex or

ibrier) of method m and xbest the performance of the best performing method in the corresponding data set. We denote
this aggregation method (i.e., counting the number of times a method performs best and the number of times it lies
within the 5% environment as secondary ranking method) as best0.05.

Note that we will focus on the ranks resulting from each aggregation method instead of the aggregated performance
values that generate these ranks since the four aggregation methods have different scales (cindex/ibrier for mean and
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median, mean ranks for mean rank and counts for best0.05), which would require appropriate normalization to compare
them in a meaningful way. While this normalization would be specific to the type of considered evaluation criteria and
aggregation methods, ranks can be generated in almost every benchmark study, which is why they are used in this illustra-
tive example. Moreover, since we only evaluate the results of one performance measure at a time (ibrier or cindex), we are
not considering different options for combining rankings that result from more than one performance measure.

3 | METHODS

3.1 | Design of the study

To illustrate the variability of benchmark results with respect to design and analysis choices, we use the benchmark
results from Herrmann et al. (2021) and systematically examine different combinations of design and analysis options.
Specifically, we consider all combinations of options regarding the choice of data sets (9 options), performance measure
(2 options), imputation method (4 options), and aggregation method (4 options) described in Section 2 and Figure 1.
This results in 9�2�4�4¼ 288 combinations. We then compare the 288 resulting rankings of the 13 survival predic-
tion methods, where a rank of 1 corresponds to the best performing method and a rank of 13 to the worst performing
method (average ranks are assigned in case of ties).

3.2 | Multidimensional unfolding

The impact of each choice on the method rankings is assessed using multidimensional unfolding (Borg &
Groenen, 2005; Coombs, 1964), which we will briefly introduce in the remainder of this section. Multidimensional
unfolding is a technique that represents preference data as distances in a low-dimensional space. It locates K ideal
points representing the subjects (in our case, K ¼ 288 combinations) and M object points representing the objects
(in our case, M¼ 13 methods) such that the distances from each ideal point to the object points correspond to the
observed preference values. The closer an object point lies to a subject's ideal point, the stronger the subject's preference
for that object. Accordingly, the ideal point itself corresponds to maximal preference (Borg et al., 2013). Note that this
intuitive representation of preferences is the main reason why multidimensional unfolding is preferred over other, more
widely used methods for dimension reduction, such as principal component analysis, that could alternatively be used to
analyze the method rankings (for details on the differences see Chapter 16.2 in Borg & Groenen, 2005).

Multidimensional unfolding takes non-negative dissimilarities δkm (k¼ 1,…,K; m¼ 1,…,M) as input, which are the
preference values possibly converted in a way that small values correspond to high preferences. In our case, where the
preference values are ranks, this is not necessary since a small rank already indicates high preference. Moreover,
the number of dimensions dim must be specified, which we set to dim¼ 2 as it is done in most applications of multi-
dimensional unfolding. To find the coordinates for the points representing the K subjects and M objects, a loss function
(stress) is minimized. It is defined as

σ2 D̂,Z1,Z2
� �¼XK

k¼1

XM
m¼1

wkm d̂km�dkm Z1,Z2ð Þ
� �2

, ð2Þ

where wkm denotes a non-negative a priori weight (which is set to wkm ¼ 1 by default), and Z1∈ℝK�dim and
Z2∈ℝM�dim are the coordinates for the points representing the subjects and objects, respectively. Moreover, dkm Z1,Z2ð Þ
denotes the fitted Euclidean distances

dkm Z1,Z2ð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXdim
s¼1

z1ks� z2msð Þ2
vuut : ð3Þ

The matrix D̂∈ℝþK�M
0 contains the disparities d̂km ¼ f δkmð Þ, which are the optimally scaled dissimilarities. This means

that the loss function in Equation (2) is not only minimized with respect to Z1 and Z2 but also with respect to a
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function f �ð Þ that transforms the dissimilarities δkm into disparities d̂km (the function class depends on the assumed
scale level). If, as in our example, the preference data are available in the form of ranks, f δkmð Þ reflects a monotone step
function that is found through monotonic regression on the dissimilarities. This type of multidimensional unfolding is
referred to as ordinal or non-metric unfolding. However, multidimensional unfolding can also be easily applied if the
preference data are on a metric scale level by simply employing a different function class. In our example benchmark
study, such metric preference data could be aggregated ibrier or cindex values, for instance.

To avoid degenerate solutions due to equal disparities which occur particularly often in non-metric unfolding, it is
recommended to use a penalized version of the stress function in (2) that involves the coefficient of variation v D̂

� �
. The

penalized stress function is minimized through numerical optimization using a strategy called SMACOF (Stress
Majorization of a Complicated Function) and is implemented in an R package of the same name (de Leeuw &
Mair, 2009). For details on multidimensional unfolding and its implementation see Mair et al. (2021), Borg and
Groenen (2005), and Busing et al. (2005).

4 | RESULTS

For full reproducibility, the entire analysis and the results presented in this section are publicly available in the GitHub
repository https://github.com/NiesslC/overoptimism_benchmark.

4.1 | Overall variability and step-wise optimization

As a first step, we compare the method rankings resulting from all 288 combinations of design and analysis options.
Figure 2 shows the corresponding rank distribution for each method. Importantly, it reveals that any method can
achieve almost any rank. On one hand, all methods but one achieve rank 1 (8 methods) or 2 (4 methods) for at least
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FIGURE 2 Rank distribution of 13 methods generated by 288 combinations of design and analysis options
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one combination. The exception is Kaplan–Meier, which does not use any feature information and can achieve ranks
as small as 3. On the other hand, 10 methods are found to be the worst or one of the two worst methods (i.e., have rank
13 or 12.5, respectively) for at least one combination. The highest rank obtained by the remaining methods (Clinical
Only, BlockForest, and CoxBoost Favoring) ranges from 10 to 11.5. Figure 2 also reveals that the ranks are distributed
differently for each method. For example, while Clinical Only obtains rank 1 or 2 in approximately 50% of the combina-
tions, the ranks of Ranger are more evenly distributed.

While considering all combinations of options provides valuable information on the overall variability of
results, it is not a realistic scenario concerning over-optimism in the sense that no researcher conducting a bench-
mark study would try all possible combinations to obtain a favorable result (unless they are actively cheating,
which we do not assume here). Therefore, we additionally illustrate how easy it is to modify the method rankings
if the design and analysis options are selected in a step-wise optimization process, which might represent a more
realistic scenario. In our illustration, the step-wise optimization for each method is performed as follows: In each
step (i.e., for each choice), the option that yields the best rank for the considered method (or the best performance
value in case of equal ranks) is selected. If all options yield the same result, the default option is used. As default
options, we use all 18 data sets, ibrier as primary performance measure, the 20%-threshold rule as imputation
method, and the mean as aggregation method. This corresponds to the setting of Herrmann et al. (2021). Moreover,
we assume that a favorable result is a small rank for a specific method. Note that this may not always be the case,
for example, if one expects a reference method such as Kaplan–Meier to obtain a high rank or considers a group of
several methods as target.

Figure 3 displays the optimization process if the ranks are optimized in the order: (1) imputation method, (2) aggre-
gation method, (3) performance measure, and (4) data sets. It shows that for 8 of 13 methods, the best rank achieved by
step-wise optimization corresponds to the smallest possible rank for the corresponding method (i.e., the smallest rank
that can be achieved when all 288 combinations are considered) and for another three methods, the step-wise optimiza-
tion achieves one rank higher than the smallest possible rank. Only two methods (Prioritylasso and Grridge) show a
larger discrepancy between step-wise optimization and considering all possible combinations. However, this is not too
surprising considering the few cases and thus very specific combinations where they achieve small ranks (see Figure 2).
If a step is missing in the optimization process of a certain method, this indicates that the corresponding step did not
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improve the rank of that method. In fact, all methods except Lasso and Prioritylasso Favoring require no more than
two optimization steps.

Note that the results of the step-wise optimization depend on the default options. For example, when cindex
instead of ibrier is used as default option, the resulting ranks are higher (see Figure S1). Moreover, the results depend
on the order in which the ranks are optimized. The order shown in Figure 3 is realistic in the sense that researchers
might find it more problematic to modify components of the benchmark study that are generally considered as
important (i.e., performance measure or data sets) and thus only resort to them if the previous optimization steps
(i.e., imputation method or aggregation method) do not yield a favorable result. However, other orders in which the
ranks are optimized would also be conceivable. For example, the selection of data sets could be optimized first since
it offers many options and can be easily modified by eliminating specific data sets. In this case, the selection of data
sets remains the only optimization step for many methods since the subsequent steps do not lead to an improvement
(see Figure S2), which already indicates the large impact of data set selection, discussed in more detail in the next
section.

4.2 | Impact of individual design and analysis choices

To gain additional insight concerning the impact of each design and analysis choice, the method rankings are analyzed
using multidimensional unfolding. Figure 4 displays the resulting unfolding solution that represents the rankings of all
288 combinations regarding the 13 methods. Before looking at the different colorings of the ideal points in Figure 4a–d,
we can make some general observations on how the combinations and methods are scaled in the plot (which is identi-
cal for each figure). First, the unfolding solution clearly shows that the method rankings can differ widely depending
on which combination of design and analysis options is considered, which is consistent with the results presented in
Section 4.1. Second, similar to the rank distribution in Figure 2, the unfolding solution indicates that some methods
tend to achieve smaller ranks than other methods. This applies specifically to Clinical Only, CoxBoost Favoring, and
BlockForest, which are scaled close to the origin and thus have a small distance to most ideal points. In contrast, other
methods such as Lasso and Kaplan–Meier can be found in the periphery of the plot, indicating that they obtain rather
high ranks by most combinations.

Of course, the degree to which the presented unfolding solution reflects the actual rankings depends on its
goodness-of-fit (a perfect fit usually requires as many dimensions as there are methods, i.e., dim¼M¼ 13). However,
following Mair et al. (2016), the unfolding solution in Figure 4 fits the ranking data reasonably well (see the Supple-
mentary material for diagnostic figures and measures).

An important feature of the unfolding solution in Figure 4 is that not only the distances between ideal and object
points can be interpreted, but also the distances within ideal and object points. This means that, in contrast to the
rank distribution in Figure 2, the unfolding solution also provides information about which methods are ranked simi-
larly and which combinations of design and analysis options yield similar rankings. We make use of the latter
(i.e., the fact that the unfolding solution indicates which combinations yield similar rankings) to assess the impact of
each design and analysis choice on the method rankings. For this purpose, the unfolding solution is supplemented
with additional information, which results in Figure 4a–d: For each choice, the ideal points are colored according to
the option that was used in the respective combination, with the default option (i.e., the option used in Herrmann
et al., 2021) colored in gray. Moreover, we connect each ideal point representing the default option to the ideal points
representing the alternative options given that the other three choices remain the same. Although this makes the rep-
resentation dependent on which option is used as the default, for reasons of clarity, we refrain from additionally con-
necting the alternative options with each other.

The resulting plot for the choice of performance measure is displayed in Figure 4a. The gray lines indicate that the
distances between most ideal points corresponding to pairs of ibrier and cindex within one specific setting
(i.e., combinations where the other three choices remain the same) are large. Accordingly, the choice of performance
measure strongly impacts the resulting method ranking for most settings. Figure 4a also reveals that the ideal points
corresponding to ibrier and cindex form two clearly separated clusters. Accordingly, the variability in the method rank-
ings is reduced if the performance measure is fixed. This applies in particular to the cindex, whose corresponding ideal
points show considerably less variation than the ideal points corresponding to the ibrier. With regard to the remaining
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three choices (data sets, imputation method, and aggregation method), this means that their impact is smaller if the
cindex is used as performance measure. This finding might be explained by the fact that the cindex only measures dis-
criminatory power (see Section 2) and might thus be more robust to changes in the remaining design and analysis
choices than the ibrier.
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combination (default options corresponding to Herrmann et al., 2021 are gray). Each ideal point representing a default option is connected

to the ideal points representing alternative options, given that the other three choices remain the same. (a) Performance measure, (b) data

sets, (c) imputation method, and (d) aggregation method
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As can be seen from Figure 4b, another important choice that accounts for a large part of the variability in the
method rankings is the selection of data sets, especially if the ibrier is used as performance measure (compare with
Figure 4a). Figure 4b also reveals that within the two clusters corresponding to cindex and ibrier, the ideal points are
roughly clustered according to the group of data sets that was used in the respective combination. This indicates that
keeping the data sets fixed in addition to the performance measure again reduces the variability in the method rank-
ings. Regarding the type of data sets used in each combination, Figure 4b shows that within both clusters of perfor-
mance measure, the ideal points corresponding to small and large values of each data set characteristic lie
approximately opposite to each other while the ideal points representing all 18 data sets are located between them. With
regard to the choice of data sets, the largest discrepancy between two rankings can thus be expected when comparing
the results of two groups that correspond to small and large values of one of the considered data set characteristics.
Using all 18 data sets, on the other hand, results in a compromise between the two extremes.

As already stated above, the variability in the method rankings is considerably reduced if performance measure and
data sets are fixed, which in turn means that the variations caused by using different imputation or aggregation
methods are expected to be small. This finding is confirmed by Figure 4c,d. The gray lines indicate that variations in
the method rankings caused by deviations from the default imputation or aggregation method mainly arise for ibrier as
the performance measure and all groups of data sets except those with many clinical variables or large values of n or ne

(compare with Figure 4a,b). In some of the other settings, the impact of the choice of imputation and aggregation
method is so small that the ideal points corresponding to different imputation/aggregation methods have the same
coordinates (i.e., yield the same ranking). This applies in particular to the choice of imputation method, which gener-
ally has less impact on the method rankings than the choice of aggregation method, as can be seen from comparing
Figure 4c and Figure 4d.

The distances between ideal points of default and alternative options that are represented as gray lines in
Figure 4a–d can also be summarized as boxplots, which are displayed in Figure 5. This representation provides informa-
tion that is technically also included in Figure 4a–d, but is presented more clearly in Figure 5. For example, it shows for
each choice which alternative option used instead of the default option tends to yield the highest variations in the
method rankings (e.g., for the choice of imputation method, it is the option that uses the mean of the non-failed itera-
tions as imputation value). Moreover, Figure 5 reveals that according to the unfolding solution, the largest discrepancy
between two rankings generated by only varying one design or analysis option is achieved by using the median instead
of the mean as aggregation method. This is an unexpected finding since it has already been stated above and can also
be seen from Figure 5 that in most settings (i.e., combinations where the other three choices remain the same), the
choice of aggregation method tends to have a smaller impact on the method rankings than the choice of performance
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measure and data sets. A major drawback of Figure 5 is that in contrast to Figure 4a–d, it does not provide any informa-
tion about how similar the rankings generated by the alternative options are, nor about how the ranks of the individual
methods change.

Of course, all findings concerning the impact of the individual design and analysis choices depend on the number
and type of options considered for each choice. Specifically, for the choice of data sets, we only consider a small subset
of possible options and we focus, in addition to the 18 original data sets, on groups of approximately equal size (8–10
data sets) generated by specific data set characteristics. We thus complement our analysis by illustrating the impact of
the choice of data sets if more options are considered, especially with regard to the number of data sets. For this pur-
pose, we keep performance measure, imputation method, and aggregation method fixed to their respective default
option and randomly draw 50 permutations of the 18 original data sets. For each of these permutations we store the
method rankings generated by only considering the first l data sets with l¼ 1,…,17, and remove duplicate groups of data
sets (which mainly occur for groups with 1, 2, or 17 data sets). This results in 774 rankings including one ranking gener-
ated by the 18 original data sets, which are all represented in the unfolding solution in Figure 6. The widely distributed
ideal points clearly indicate that the choice of data sets is even more essential if the number of data sets is not restricted
and the groups of data sets are not defined based on specific data set characteristics (as it was the case above in
Figure 4). As one might have expected, we also observe that the variability in the method rankings increases if the num-
ber of data sets decreases. Accordingly, the most extreme rankings (i.e., rankings that differ the most from the ranking
generated using all 18 data sets) occur for groups with only a few data sets. Since Figure 4a revealed that the impact of
the choice of data sets strongly depends on the choice of performance measure, we repeat the analysis using cindex as
performance measure (see Figure S3). Similar to Figure 4b, the impact of the choice of data sets is considerably reduced.
However, as in Figure 6, the variability in the method rankings increases with decreasing number of data sets.

5 | DISCUSSION

5.1 | Summary

In this paper, we addressed the multiplicity of design and analysis options in the context of benchmark studies and the
associated risk of over-optimistic results. As a preliminary step, we reviewed literature related to the choice of four
design and analysis choices that researchers are usually faced with when conducting a benchmark study based on real
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data sets, namely the choice of data sets, the choice of quantitative performance measure, the choice of imputation
method for missing performance values, and the choice of aggregation method to generate an overall method ranking.

We then used the benchmark study by Herrmann et al. (2021) to illustrate how variable the resulting method rankings
of a benchmark study can be when all possible combinations of a range of design and analysis options are considered. In
fact, in this example, the results were so variable that any method could achieve almost any rank, that is, each method could
almost be presented as best or worst method for at least one combination of design and analysis options. For the more realis-
tic scenario where the design and analysis options are not systematically examined for each combination but selected in a
step-wise optimization process, we observed that the variability in the method rankings is smaller but still remarkable.

In addition to examining the overall variability in the method rankings, we also investigated the individual impact
of each choice on the results using multidimensional unfolding. As might be expected, the choice of performance mea-
sure and data sets accounts for a large part of the variability in the method rankings. The impact of the choice of impu-
tation and aggregation method, on the other hand, tends to be considerably smaller but still non-negligible in many
settings. In general, the impact of each choice depends on the options used for the other three choices, with the choice
of performance measure affecting the impact of the remaining choices most strongly. In an additional analysis, we
increased the number of considered options for the choice of data sets, which clearly showed that the variability in the
method rankings increases if the number of data sets decreases and once again emphasized the importance of the
choice of data sets.

5.2 | Limitations

Of course, the specific results obtained for the example study by Herrmann et al. (2021) should only be seen as an illus-
tration that cannot be generalized to other benchmark studies. Moreover, one possible reason why the method rankings
are so variable is that in our example benchmark study, many performance differences are small and the performance
values differ widely across data sets, as discussed in the original study by Herrmann et al. (2021). The focus of our study
was on ranks, which do not reflect the size of the differences between the methods' performances or the heterogeneity
across data sets. On the one hand, taking these aspects into account rather than focusing on ranks may lead to much
less variable results, particularly if one relies on statistical tests. On the other hand, the multiplicity of possible analysis
options is not limited to the analysis of ranks: there are also plenty of possibly ways to analyze performance differences
and the heterogeneity across data sets, even if statistical tests are performed (e.g., paired t-test or Wilcoxon signed-rank
test with or without correction for multiple testing, or global tests such as the Friedman test).

5.3 | Negative consequences and possible solutions

Despite these limitations, our illustration suggests that, as a consequence of the multiplicity of design and analysis
options, the results of benchmark studies could be much more variable than many researchers realize. Combined with
questionable research practices (e.g., the selective reporting of results or the targeted modification of specific design and
analysis components), this potentially high variability of benchmark results can lead to biased interpretations and over-
optimistic conclusions regarding the performance of some of the considered methods. Given the high level of evidence
that is attributed to neutral benchmark studies (Boulesteix et al., 2017), a “neutral” benchmark study that is in fact
biased could thus negatively affect both methodological and applied research by misleading method users and devel-
opers (Weber et al., 2019).

Fortunately, there are several strategies to prevent over-optimistic benchmark results that arise from the multiplicity
of design and analysis options, some of which are already applied by many researchers, including Herrmann
et al. (2021). For example, strategies inspired from blinding in clinical trials can help to reduce non-neutrality and/or
the potential to exploit the multiplicity of possible options. Specifically, blinding could be realized by labeling the
methods with non-informative names (e.g., Method A, Method B, etc.) such that researchers have no information about
the performance of each method until the end of the study (Boulesteix et al., 2017). If the benchmark study is based on
simulated data, researchers could also be blinded to the data generation process, which prohibits the possibility to tune
the parameters of selected methods according to the known ground truth (e.g., Kreutz et al., 2020).

The remaining strategies to prevent over-optimistic results can be summarized using the work of Hoffmann
et al. (2021), who formalize the effect of both random sources of uncertainty (including sampling uncertainty) and
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epistemic sources of uncertainty (resulting in a multiplicity of possible analysis strategies and thus opening the door to
questionable research practices) on the replicability of research findings. They outline six steps researchers from all
empirical research fields can take to make their own research more replicable and credible. In brief, researchers should
(1) be aware of the multiplicity of possible analysis strategies, (2) reduce uncertainty, (3) integrate uncertainty, (4) report
uncertainty, (5) acknowledge uncertainty, and (6) publish all research code, data and material. Although Hoffmann
et al. (2021) focus on applied rather than methodological research, we argue that their recommended steps can also be
applied to address the sources of uncertainty that arise from the design and analysis of benchmark studies.

Step 1. In the context of benchmark studies, the first step to reduce the risk of over-optimistic results is to simply be
aware of the multiplicity of possible design and analysis options and the potential for questionable research practices.
We can only speculate about how much awareness for this issue is already present in methodological research but hope
that this paper contributes to raising it.
Step 2. The second step suggested by Hoffmann et al. (2021) is to reduce sources of uncertainty. In the context of bench-
mark studies, this could be realized by consulting existing benchmarking guidelines found in literature. However, as dis-
cussed in this paper, guidelines for many issues relevant in practice are still lacking. We claim that more guidance and
standardized approaches are needed in this context. Regarding the choice of data sets, uncertainty could be reduced if the
number of data sets to include in the study would be consequently based on statistical considerations such as power calcu-
lation (e.g., Boulesteix et al., 2015) and if data sets would be selected according to strict and well-considered inclusion
criteria. Both aspects are facilitated if structured and well-documented databases exist for the type of data to be studied.
Step 3. As a third step, Hoffmann et al. (2021) recommend to integrate remaining sources of uncertainty that could not
be reduced in the second step. Analysis approaches such as confidence intervals, statistical tests, or boxplots that take
the heterogeneity of performance values across data sets into account can be seen as first steps towards integrating the
uncertainty regarding the choice of data sets. However, they do not provide much information about how the bench-
mark results would change if only certain subgroups of data sets would be considered. A more advanced but less com-
mon way to integrate uncertainty regarding the choice of data sets is to analyze the relationship between method
performance and data set characteristics (e.g., Eugster et al., 2014; Kreutz et al., 2020; Oreski et al., 2017). Concerning
the choice of evaluation criteria (including quantitative performance measures), the aggregation of method rankings
resulting from different criteria into an overall ranking can be seen as an attempt towards integrating uncertainty. How-
ever, to our knowledge, currently existing approaches such as consensus rankings (Hornik & Meyer, 2007) do not pro-
vide any measure of uncertainty.
Step 4. For all sources that cannot be adequately integrated, Hoffmann et al. (2021) suggest to systematically report the
results of alternative analysis strategies, which, in the context of benchmark studies, would be alternative design and
analysis options. While reporting the results of alternative analysis strategies, for example, in the form of a sensitivity
analysis, is a common procedure in applied research (Hoffmann et al., 2021), to our knowledge it is rarely performed in
benchmark studies (especially if they are based on real data sets). However, considering the lack of ways to reduce and
integrate uncertainty when designing and analyzing benchmark studies, adequately reporting the results of alternative
options seems to be all the more important. One reason for the lack of uncertainty reporting in benchmark studies
could be that, to our knowledge, no suitable framework has been available so far. This gap could be filled by the frame-
work based on multidimensional unfolding that we used in this paper. It can be seen as a systematic version of standard
sensitivity analysis that allows to graphically assess the variability of the method rankings with respect to a large num-
ber of different combinations of design and analysis options. It also provides information about the individual impact of
each choice on the method ranking and thus enables researchers to analyze when and how using alternative options
for a specific choice affects the results. In this way, the risk of misleading readers is reduced and the benchmark results
become even more reliable and valuable. Moreover, using the framework allows to identify critical choices that substan-
tially affect the results and should therefore be particularly well justified in future benchmark studies and be given
more consideration in benchmarking guidelines.
Step 5. The next important step suggested by Hoffmann et al. (2021) is to accept the inherent uncertainty of scientific
findings. In the context of benchmark studies, this implies that researchers should clearly state that the benchmark
results are conditional on the selected design and analysis options (Boulesteix et al., 2013; Hornik & Meyer, 2007). In
this vein, researchers should also acknowledge that just as in applied research, generalizations from a single study are
usually not appropriate (Amrhein et al., 2019; Hoffmann et al., 2021). This emphasizes the need for more high-quality
benchmark studies and for meta-analyses of benchmark studies (e.g., Gardner et al., 2019), which, however, are still
rare and unfortunately sometimes not considered as full-fledged research by the scientific community (Boulesteix
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et al., 2020). Another aspect also related to the acceptance of uncertainty is to recognize that statistical inference within
exploratory analyses should be treated with great caution (Amrhein et al., 2019; Hoffmann et al., 2021). Similar to
applied research, strictly confirmatory benchmark studies could be realized by pre-registration of design- and analysis
plans, as recently implemented in the context of the so-called pre-registration experiment (see https://preregister.
science) or through the registered report” publication format (Chambers, 2013), which has meanwhile been adopted by
several interdisciplinary journals that also accept computational papers. It is also important to recall that there is usu-
ally no best method for all scenarios and data sets (the well-known “no free lunch” theorem; Wolpert, 2002). Especially
for data sets and evaluation criteria, it might thus be advisable to accept the uncertainty that is associated with their
choice by putting more focus on the analysis of the individual strengths and weaknesses of each method than on an
aggregated overall ranking. This can for example be realized by individually analyzing the rankings generated by each
evaluation criterion and by investigating the relationship between method performance and data set characteristics (see
Step 3).
Step 6. As a final step, the publication of codes and (if possible) data sets that ideally allow the extension to alternative
options and additional methods can reduce the impact of over-optimism since it enables readers to run alternative ana-
lyses and to reveal potentially biased results.

The strategies provided in this section are also summarized in a checklist (Table S1), which can assist researchers
when designing and analyzing benchmark studies.

6 | CONCLUSION

In conclusion, our illustration suggests that benchmark results can be highly variable with respect to design and analy-
sis choices, which can lead to biased interpretations and over-optimistic conclusions. However, there is a wide range of
strategies that can help to avoid these pitfalls. We hope that our proposed framework makes a useful contribution
towards this objective. While a certain amount of over-optimism can probably never be completely avoided, addressing
this problem will lead to more reliable and valuable benchmark results.
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A Weighted imputation method for missing cindex perfor-
mance values

For the cindex, where 1 corresponds to the best possible value and 0.5 to random prediction,
the imputed value for the considered combination of data set and method that corresponds to
the proposed “weighted imputation method” is

ximpute = 0.5 + (

∑
i∈I xi

|I| − 0.5)+ · (1− r), (1)

where I is the set of indices of the non-failed iterations, xi is the cindex value for iteration i ∈ I
and r is the proportion of missing values.

B Additional figures step-wise optimisation
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Figure S1: Step-wise optimisation of method ranks by (1) imputation method (blue), (2) ag-
gregation method (pink), (3) performance measure (green), and (4) data sets (yellow). The
dotted line corresponds to the smallest and highest possible ranks when all 288 combinations are
considered. Missing steps indicate that they did not lead to an improved rank. Default options
correspond to Herrmann et al. (2021) except performance measure, which is set to cindex.
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dotted line corresponds to the smallest and highest possible ranks when all 288 combinations are
considered. Missing steps indicate that they did not lead to an improved rank. Default options
correspond to Herrmann et al. (2021).
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C Additional figures unfolding
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Figure S3: Unfolding solution representing 774 rankings (circles) of 13 methods (triangles)
generated by randomly sampling different groups of data sets while imputation method and
aggregation method are fixed to their respective default option and performance measure is set
to cindex.

D Goodness-of-fit unfolding solutions
The assessment of the goodness-of-fit is based on Mair et al. (2016). We assess the fit of three
unfolding models presented in this paper:

• Model 1: Unfolding solution representing the rankings of 288 combinations of design and
analysis options regarding 13 methods

• Model 2: Unfolding solution representing 774 rankings of 13 methods generated by ran-
domly sampling different groups of data sets while performance measure, imputation
method, and aggregation method are fixed to their respective default option

• Model 3: Unfolding solution representing 774 rankings of 13 methods generated by ran-
domly sampling different groups of data sets while imputation method and aggregation
method are fixed to their respective default option and performance measure is set to
cindex

Permutation test We test the null hypothesis that the unfolding solution is obtained from a
random permutation of dissimilarities. Rejecting the null hypothesis provides some evidence that
the unfolding solution captures a structural signal. For all three unfolding models, the resulting
p-value is < 0.001.
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Scree plots We generate scree plots with varying number of dimensions (i.e. dim = 1, . . . , 12,
since dim = 13 results in a stress value of 0). Ideally, we would see an elbow at dim = 2 (the
dimension chosen for the unfolding models in this paper), which would indicate that additional
dimensions represent only random components of the data (Borg et al., 2013). Although no clear
elbow is visible in Figure S4-S6, the scree plots indicate that the stress is already considerably low
for dim = 2. Note that in Figure S6, the iteration limit was reached when running the unfolding
models for dim ≥ 6 and the stress is close to 0, which might indicate degenerate solutions (i.e.
solutions that yield extremely small stress values but are uninformative representations of the
data since the distances between subject and object points are all practically equal; Borg et al.,
2013).
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Figure S4: Scree plot for unfolding model 1. The stress value for dim = 2, which was used in
our application, is coloured in red.

0.18

0.20

0.22

0.24

1 2 3 4 5 6 7 8 9 10 11 12
Number of Dimensions

S
tr

es
s

Figure S5: Scree plot for unfolding model 2. The stress value for dim = 2, which was used in
our application, is coloured in red.

5



0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10 11 12
Number of Dimensions

S
tr

es
s

Figure S6: Scree plot for unfolding model 3. The stress value for dim = 2, which was used in
our application, is coloured in red.

Stress-per-point To check for influential points that should be subject to special consideration,
we can look at the stress-per-point values (SPP). The SPP values are assessed separately for
subjects (here: combinations of design and analysis options) and objects (here: methods). As
can be seen from Figure S7-S9, there are no extreme outliers for any of the three unfolding
models presented in this paper. On the method side, all stress proportions are smaller than 14%,
and on the combination side, most stress proportions are smaller than 1%.
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Figure S7: Stress-per-point for methods (left) and combinations of design and analysis options
(right) for unfolding model 1. The greater the stress proportion, the more the point contributes
to the misfit of the unfolding solution. The dotted line represents the stress proportion if every
method/combination contributed equally to the misfit.
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(right) for unfolding model 2. The greater the stress proportion, the more the point contributes
to the misfit of the unfolding solution. The dotted line represents the stress proportion if every
method/combination contributed equally to the misfit.
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Figure S9: Stress-per-point for methods (left) and combinations of design and analysis options
(right) for unfolding model 3. The greater the stress proportion, the more the point contributes
to the misfit of the unfolding solution. The dotted line represents the stress proportion if every
method/combination contributed equally to the misfit.
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E Overview of strategies to prevent over-optimistic results
in benchmark studies

Table S1: Overview of strategies to prevent over-optimistic results in benchmark studies. Most
strategies can be summarised using the work of Hoffmann et al. (2021), who outline six steps
researchers from all empirical fields can take to make their research more replicable and credible.

Strategy Implementation in the context of benchmark studies

Step 1: Awareness • Be aware of the multiplicity of design and analysis options in
benchmark studies and the potential for questionable research
practices

Step 2: Reduce uncertainty • Consult existing benchmarking guidelines

• Base the number of data sets on statistical considerations
(e.g. power calculation)

• Select data sets according to strict and well-considered
inclusion criteria

• If possible, use structured and well-documented data bases

Step 3: Integrate uncertainty • Use analysis approaches such as confidence intervals,
statistical tests or boxplots to assess the heterogeneity of
performance values across data sets

• More advanced: analyse the relationship between method
performance and data set characteristics

Step 4: Report uncertainty • Report the results of alternative design and analysis options,
e.g. using the framework based on multidimensional unfolding

Step 5: Accept uncertainty • Clearly state that the benchmark results are conditional on
the selected design and analysis options

• Treat statistical inference within exploratory analysis with
caution → confirmatory benchmark studies can be realised by
pre-registration or registered reports

• Recall that there is usually no best method for all scenarios
and data sets → more focus on analysing the individual
strengths and weaknesses of each method

Step 6: Data/code availability • Publish all code and (if possible) data sets that ideally allow
the extension to alternative options and additional methods

Blinding • Label the methods with non-informative names (e.g. Method
A, Method B, etc.)

• For simulated data: blinding to the data generation process

8
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Abstract
The constant development of new data analysis methods in many fields of
research is accompanied by an increasing awareness that these new methods
often perform better in their introductory paper than in subsequent comparison
studies conducted by other researchers. We attempt to explain this discrepancy
by conducting a systematic experiment that we call “cross-design validation of
methods”. In the experiment, we select two methods designed for the same data
analysis task, reproduce the results shown in each paper, and then reevaluate
each method based on the study design (i.e., datasets, competing methods, and
evaluation criteria) that was used to show the abilities of the other method. We
conduct the experiment for two data analysis tasks, namely cancer subtyping
usingmultiomic data and differential gene expression analysis. Three of the four
methods included in the experiment indeed perform worse when they are eval-
uated on the new study design, which is mainly caused by the different datasets.
Apart from illustrating the many degrees of freedom existing in the assessment
of a method and their effect on its performance, our experiment suggests that
the performance discrepancies between original and subsequent papers may not
only be caused by the nonneutrality of the authors proposing the new method
but also by differences regarding the level of expertise and field of application.
Authors of new methods should thus focus not only on a transparent and exten-
sive evaluation but also on comprehensive method documentation that enables
the correct use of their methods in subsequent studies.
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1 INTRODUCTION

In the literature on data analysis methods, including statistical journals, machine learning journals, and conference
proceedings, most articles describe new methods, thus contributing to an increasing multitude of potential methods
addressing various data analysis problems. It is commonly claimed by the authors proposing these new methods that
they perform better than existing ones in some sense. For anecdotal evidence in the context of supervised classification,
see Boulesteix et al. (2013). The fact that new methods are typically claimed to be better than existing ones does not
necessarily imply that these statements are wrong. In fact, this is what we would expect if we assume continuous scien-
tific progress. However, the recurrent character of these claims, combined with the requirement of journals and reviewers
to make these sorts of statements regarding the superiority of the proposed methods, make them somewhat suspicious
(Boulesteix et al., 2013; Norel et al., 2011). A recent survey of papers that compare preprocessing methods for a special
type of high-throughput molecular data indicates that, at least in this specific context, the paper introducing a method
is indeed more optimistic regarding its performance than subsequent papers that are more neutral towards the method
(Buchka et al., 2021).
In a different but related approach, several studies demonstrate that it is relatively easy to make a method appear better

than it actually is (Jelizarow et al., 2010; Nießl et al., 2022; Pawel et al., 2022; Sonabend et al., 2022; Ullmann et al., 2023).
These studies suggest that overoptimistic statements regarding a method’s performance may be partly attributed to the
nonneutral attitude of the authors, who are naturally interested to present their method in a positive light. More precisely,
it is argued that the nonneutrality may translate into a conscious or subconscious optimization of the method and the
study design in which it is evaluated (e.g., by selectively reporting the considered datasets or simulation parameters) such
that the proposed method shows good performance.
Imagine there are two methods, method 1 and method 2, available to address a specific data analysis task. We set the

number of methods to two for the sake of simplicity, but the following arguments can be extended to a setting with more
than two methods. Further, imagine the typical situation in which the authors of method 1 and the authors of method 2
both claim that their method performs well. The study designs they use to support their claims are different. We will call
them design 1 and design 2, respectively. Following the conjecture discussed in the previous paragraph that study designs
used by authors of methods may overfit their methods and vice versa, a natural question is how method 1 would perform
when reevaluated using design 2 and howmethod 2 would performwhen reevaluated using design 1. In the present paper,
we put this idea into practice by conducting a systematic experiment, which we call “cross-design validation of methods”.
More precisely, we consider two exemplary data analysis tasks, namely multiomic data integration for cancer subtyping
and differential gene expression analysis, and for each exemplary task we select two papers that propose a new method.
For each of these two methods, we reproduce the evaluation shown in the paper that introduced it and then reevaluate
it on the design used by the authors of the other paper. In this context of methodological research, where data analysis
methods are considered as research objects, the study design includes datasets (with a focus on real data for the first task
and simulated data for the second task), competing methods, and evaluation criteria.
The goal of this cross-design validation experiment is twofold. First, it allows dissection of the variability of study designs

and its impact on the results in the context of methodological research—in a similar way as so-called multianalyst experi-
ments (Silberzahn et al., 2018) do in application fields of statistics. Second, the cross-design validation experiment provides
insights into themechanisms leading to performance discrepancies such as those observed by Buchka et al. (2021) between
the original paper (i.e., the paper that introduces the method of interest) and subsequent papers (i.e., papers that propose
another method and include the method of interest as competitor or papers that are dedicated to method comparison
itself). Importantly, these are real-world observations—as opposed to the previous experiments by Jelizarow et al. (2010),
Ullmann et al. (2023), and Pawel et al. (2022), mimicking the behavior of fictional researchers who wish to present their
method in a favorable light. Finally, our experiment also provides insights regarding the reproducibility of results and the
difficulty of performing fair method comparisons as a by-product.
Because the authors of our selected papers made code and data available for the purpose of reproducibility, our experi-

ment can be performed without involving them personally, which considerably simplifies its organization and execution.
Moreover, while we could also gain insights from reevaluating the methods of a study design selected by ourselves, the
cross-design character of the experiment guarantees a certain degree of neutrality of our comparisons.
The remainder of this paper is structured as follows. The general structure of our cross-design validation experiment is

outlined in Section 2. Sections 3 and 4 present the two data analysis tasks, while a discussion of themechanisms leading to
the observed performance differences alongwith a summary can be found in Section 5.We conclude the paper in Section 6.

 15214036, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200238 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NIEßL et al. 3 of 23

2 PRELIMINARY REMARKS AND DESIGN OF THE EXPERIMENT

2.1 Terminology

Before describing the experiment in more detail, we briefly clarify the terminology used throughout the paper. Similar
to Klau et al. (2020) and Buchka et al. (2021), we define the term method not just as the statistical testing or modeling
approach, but as the full analysis pipeline potentially including steps such as data normalization. All methods considered
in the experiment have several parameters that can be set by the method user (e.g., the maximum number of clusters or
the type of multiple testing correction), which we refer to asmethod parameters.
Moreover, we define the study design as the combination of all components that contribute to the performance assess-

ment of the method of interest. The study design consists of three main components, namely datasets (real or simulated),
competing methods (including their respective method parameters), and evaluation criteria (in our exemplary analy-
sis tasks referring to the evaluation metric and the way the results are aggregated across the real datasets or simulation
repetitions). Note that data preprocessing can be seen both as part of the method or part of the data component. In
our experiment, we consider preprocessing steps as belonging to the data component if performed for all methods and
belonging to the method (i.e., the method of interest or the competing methods) otherwise.

2.2 Selection of the papers

As a preliminary step, we first have to select appropriate papers for both exemplary data analysis tasks that we consider
in our experiment, namely cancer subtyping using multiomic data and differential gene expression analysis. Both are
applications from the field of biostatistics at the interface with bioinformatics. Apart from the requirement that the paper
must introduce a new method, there are two eligibility criteria related to reproducibility: (i) the code to reproduce the
results presented in the paper is publicly available and can be run without errors, and (ii) the code is written in R, the
programming language we are most familiar with. Note that the number of papers to be included in the experiment is not
specified in advance and the search for eligible papers is not conducted in a formal or systematic way.
While the restriction to R as a programming language (ii) excludes some papers, the majority of papers fail criterion

(i). In many cases, authors only provide the code to use their method (e.g., an R package) but not to reproduce the results
shown in the paper. In other cases, the link to the code is broken, the code supposedly included in the supplement cannot
be found, or some of the files needed to reproduce the code are missing (e.g., the file containing the empirical data the
simulation shown in the paper is based on). Note that we purposely refrain from contacting the authors if the code is not
publicly available tomake the selection of papers independent of the authors’ willingness to respond and provide the code.
Although we do not restrict the number of selected papers in advance, the above-mentioned difficulties lead us to stop the
search after finding two eligible papers per data analysis task, resulting in 2 × 2 = 4 papers included in our experiment.
The conclusion of this search process, although being limited to specific analysis tasks and conducted informally, is

that the practice of making code and data openly available is far from being the standard in the methodological literature
beyond positive exceptions such as the Biometrical Journal (Hofner et al., 2016). The four papers included in our exper-
iment (Nguyen et al., 2019; Osabe et al., 2021; Rappoport & Shamir, 2019; Zhou et al., 2021) should thus be seen as rare
positive examples of open research practices in methodological research.

2.3 Design of the experiment

While all four papers evaluate their respective method extensively in various settings, our experiment includes only the
results that (i) are presented as figures or tables and appear in the main paper, that is, excluding the supplement (to
keep the experiment feasible) and (ii) compare the method of interest to competing methods (since we can only compare
the relative performance of a method if the considered papers use different evaluation metrics that do not allow a direct
comparison). If the results are based on both real and simulated data, we only consider the results of the data type that
is predominantly employed in the paper. In some cases, we exclude more results, which are reported and justified in
Sections 3.1 and 4.1.
For each of the four papers, we first compare the results obtained by running the available code to the results presented

in the corresponding paper. For this purpose, we use the same R and R package versions that were used by the authors,
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TABLE 1 Illustration of the cross-design validation experiment.
Performance of method 1 Performance of method 2

Study design by authors of method 1 A: Shown in the original paper B: ?
Study design by authors of method 2 C: ? D: Shown in the original paper

as far as this information is provided (see Tables S1 and S6 in the Supporting Information). Moreover, we do not modify
the code in a way that would change the results, even in cases where we notice discrepancies between the code and the
procedure described in the paper (referred to as “design-implementation-gap” by Lohmann et al., 2022, in the context of
simulation studies). Exceptions to these rules are explicitly reported in Sections 3.2 and 4.2.
For both data analysis tasks, we then reevaluate eachmethod on the study design used by the authors of the other paper

and compare the resulting performances. Our experiment can thus be seen as a “cross-design validation of methods” (see
Table 1). As stated above, the study design consists of three main components, namely datasets, competing methods,
and evaluation criteria. We also vary these components individually, which allows us to assess their individual impact
on the performance of the selected methods. Some challenges arise when reevaluating the methods on the new study
design, in particular the choice of method parameters, which we set before viewing the performance results to avoid
the risk of favoring one of the methods. Moreover, while we generally adhere to the code used to reproduce the results
when “crossing” the designs, some modifications are necessary. Details on how we address these challenges for each data
analysis task can be found in Sections 3.2 and 4.2.
The R code and data to reproduce the experiment are openly available at https://doi.org/10.6084/m9.figshare.20754028

3 DATA ANALYSIS TASK I: CANCER SUBTYPING USINGMULTIOMIC DATA

The first exemplary data task we consider in our experiment is cancer subtyping through clustering of patients based on
multiomic data, an active research field with many newly proposed methods in recent years (see Duan et al., 2021, for an
overview). The aim of these methods is to identify clusters (in this context referred to as subtypes) with common biological
characteristics or clinical phenotypes (e.g., survival time or drug response). This process helps to understand the etiology
of the disease and to develop better diagnostic tools and personalized treatment strategies (Duan et al., 2021; Subrama-
nian et al., 2020; Tepeli et al., 2020). Recently developed cancer subtyping methods are usually able to integrate multiple
types of high-dimensional molecular data such as genomics, epigenomics, transcriptomics, or proteomics (hence the term
multiomic data; Subramanian et al., 2020). The twomethods selected for our experiment are PINSPlus and NEMO, which
were proposed by Nguyen et al. (2019) and Rappoport and Shamir (2019), respectively. Information on where to find the
original codes provided by the authors is listed in our code documentation. We will abbreviate Nguyen et al. (2019) and
Rappoport and Shamir (2019) by N19 and R19.

3.1 Study design in the original papers

In the following,we outline and compare the study designs that are used to assess the performance of PINSPlus andNEMO
in their respective original papers and that meet the inclusion criteria of our experiment (see Table 2 for an overview).
We also report the authors’ justifications for the design choices. For this purpose, we will also refer to T. Nguyen et al.
(2017), which propose PINS, the predecessor method of PINSPlus, and to Rappoport and Shamir (2018), a benchmark
study intended as neutral that has been previously conducted by the authors of NEMO. All results of NEMO’s competing
methods originate from this benchmark study, that is, the results of NEMO were simply added to the results of the previ-
ously published benchmark study. Since both R19 and N19 mainly use real datasets to evaluate their methods, we do not
further consider the simulation results presented by R19.
Data Both R19 and N19 use datasets from The Cancer Genome Atlas Research Network (TCGA; https://www.cancer.

gov/tcga), where each dataset corresponds to a different cancer type (e.g., kidney renal clear cell carcinoma or acute
myeloid leukemia). The two author teams also consider the same three types of omic data (gene expression, methylation,
miRNAexpression) but use different numbers of datasets (34 inN19 vs. 10 inR19). NeitherN19 norR19 explicitly comments
on thenumber of datasets and the selected cancer types, although 34 seems to be close to themaximumnumber of available
datasets for the three considered types of omic data at the time of publication. Moreover, neither N19 nor R19 discusses

 15214036, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200238 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NIEßL et al. 5 of 23

TABLE 2 Overview of the study design components used for performance assessment of PINSPlus and NEMO.

Study design
component PINSPlus (Nguyen et al., 2019) NEMO (Rappoport & Shamir, 2019)
Datasets Number and

type
∙ 34 TCGA datasets (gene expression,
methylation, miRNA expression)∙ ∗2 METABRIC datasets (gene
expression, CNV)

∙ 10 TCGA datasets (gene expression,
methylation and miRNA
expression)∙ ∗Partial TCGA datasets

Preprocessing
(all methods)

See Table S2 See Table S2

Competing
methods

Number and
type

3: SNF, iCluster+, Consensus
Clustering

9: PINS, SNF, iClusterBayes, 𝑘-means,
spectral clustering, MCCA,
LRAcluster, ∗rMKL-LPP,∗MultiNMF

Preprocessing
(method-
specific)

See Table S2 See Table S2

Other method
parameters

∙ SNF: alpha = 0.5, no. iterations = 10,
number of clusters = estimated
according to eigen-gaps,maximum
number of clusters = 5, number of
neighbors = 20∙ Other methods: see the original
paper

∙ SNF: alpha = 0.5, number of
iterations = 30, number of clusters =
estimated according to rotation cost,
maximum number of clusters = 15,
number of neighbors = number of
samples/10∙ Other methods: see the original
paper

Evaluation
criteria

Metric ∙ Survival: logrank test ∙ Survival: permutation-based
logrank test∙ Clinical: permutation-based
/Kruskal–Wallis test
(discrete/continuous) for up to six
clinical variables∙ ∗Runtime∙ ∗Number of clusters

Aggregation ∙ Number of datasets with significant
and most significant logrank 𝑝-value ∙ Number of datasets with significant

logrank 𝑝-value∙ Number of datasets with at least one
enriched clinical variable∙ Mean −log10 logrank 𝑝-value∙ Mean number of enriched clinical
variables

Note: Included are only components (i) for which the corresponding results are presented as figures or tables in the main paper (i.e., not in the supplement), (ii)
that compare the method of interest to other competing methods, and (iii) that correspond to the performance assessment based on real data. In addition, some
components are not included in the experiment, which are indicated by asterisks (∗). Competing methods and evaluation criteria for datasets not included in the
experiment are not shown.

their choice of omic data types, which seems to be a general issue in papers proposing new cancer subtyping methods, as
criticized by Duan et al. (2021).
Although the 10 cancer types included by R19 are also considered in N19, the corresponding datasets have different

numbers of patients and omic variables. This is mainly caused by the different preprocessing steps applied by N19 and
R19 (see Supporting Information Section A.2 for details). In addition, the two papers probably also use different dataset
versions (it is not possible to identify the data version used by N19).
Note that N19 also considers two breast cancer datasets that do not originate from TCGA and exhibit different omic

types. However, we exclude them from our experiment since some evaluation criteria of R19 require six clinical variables
(see below), which are either not available or cannot be clearly identified for these two datasets. Moreover, we do not
include the partial datasets (i.e., datasets where some patients do not have any measurements for one or more omic data
types) used in R19 to demonstrate NEMO’s ability to analyze this type of data. This is because PINSPlus assumes complete
data and would require potentially suboptimal solutions such as imputation.
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Competing methods R19 and N19 use different numbers and types of competing methods to assess the relative perfor-
mance of their proposed methods. While R19 uses nine competing methods, N19 only considers three methods. The only
method that is included in both papers is similarity network fusion (SNF;Wang et al., 2014). The difference in the number
of competing methods is not surprising given that the performance evaluation of NEMO is, in contrast to PINSPlus, based
on a benchmark studywith a focus onmethod comparison itself (Rappoport & Shamir, 2018). Such studies typically aim to
compare as manymethods as possible to generate comprehensive guidelines for method users. Interestingly, R19 includes
PINS, the predecessor method of PINSPlus, as a competing method. PINSPlus itself is not included since it did not exist
yet when Rappoport and Shamir (2018) conducted their benchmark study. Concerning the choice of competing methods,
Rappoport and Shamir (2018) report that they aim to represent diverse multiomic clustering approaches, and that within
each approach they choose widely used methods with available software and clear usage guidelines. N19 refer to their
selected competing methods as established subtyping methods.
Regarding the parameter selection of the competing methods, NEMO’s authors state in Rappoport and Shamir (2018)

that they choose the method parameters following the guidelines given by the authors of the respective method (which
involves performing a parameter search if suggested) and construct parameter selection methods by themselves if there
are no available guidelines. N19 does not have a comparable statement except for the number of clusters for the method
consensus clustering (Monti et al., 2003), which, as stated in T. Nguyen et al. (2017), is determined as suggested by Monti
et al. (2003). For SNF, the only method that is considered as a competing method for both PINSPlus and NEMO, N19 and
R19 both normalize the omic variables to have a mean of 0 and a standard deviation of 1 (which, as stated in Section 2.1,
we consider as a method parameter since it is not applied for all methods in both papers). However, they choose different
values for the number of neighbors (20 vs. number of samples/10), the number of iterations (10 vs. 30), the number of
clusters (estimate according to eigen-gaps vs. rotation cost), and the maximum number of considered clusters (5 vs. 15).
See Table S2 for the method-specific preprocessing steps as well as N19 and R19 for all other parameters of the remaining
methods.
Note that we have to exclude two competing methods (rMKL-LPP and MultiNMF) considered by R19 from the

experiment since we are not able to run them (see Supporting Information Section A.3 for details).
Evaluation criteriaWith regard to the evaluation criteria, N19 focuses on the methods’ ability to identify clusters with

significant survival differences using the logrank test. Note that in this context, the logrank test is equivalent to performing
a Cox regression (which is the term used by N19), but we will refer to it as the logrank test since this seems to be the more
commonly used term in cancer subtyping methodology. T. Nguyen et al. (2017) note that the same logrank test was also
used by the authors proposing SNF (Wang et al., 2014), which can be seen as a justification for their choice. For each
method, N19 highlights the datasets with significant (i.e., 𝑝 < 0.05), and most significant (i.e., the smallest significant𝑝-value across all methods) 𝑝-values by color.
In R19, the assessment of significant survival differences is also based on the logrank test. In addition, the authors

assess “clinical enrichment” by testing the association between the identified clusters and six clinical variables (gender,
progression of the tumor, cancer in lymph nodes, metastases, total progression, and age at initial diagnosis), although not
all variables are available in each clinical dataset. R19 employs the 𝜒2-values using a permutation procedure, arguing that
in the cancer subtyping context, the 𝜒2-values, the number of datasets with at least one enriched clinical variable, the
mean −log10 logrank 𝑝-value, and the mean number of enriched clinical variables per dataset. R19 thus considers four
evaluation criteria regarding survival and clinical enrichment. Note that one of these criteria (the number of datasets with
significant logrank 𝑝-values) is very similar to the criterion used by N19 (the number of datasets with [most] significant
logrank 𝑝-values), the only difference being the estimation of the 𝑝-value (approximation-based vs. permutation-based)
and the inclusion of the number of datasets with the most significant 𝑝-values as a second-order ranking criterion in N19.
In addition to analyzing survival differences and clinical enrichment, R19 also reports the number of clusters and the

runtime of each method. However, we do not consider these criteria in our experiment since the number of clusters has
no clear optimal value and runtime is not comparable due to different computational resources.

3.2 Challenges when conducting the experiment

Reproducibility The results presented in N19 are fully reproducible, except for one 𝑝-value of iCluster+. In contrast, the
results presented in R19 cannot be exactly reproduced. Besides the twomethods that cannot be run at all, the performance
results of the remaining methods are slightly different compared to the original paper, especially for the clinical enrich-
ment criteria (the difference between original and reproduced results with regard to NEMO’s performance is reported
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in Section 3.3). Interestingly, 76 of the 80 clustering solutions (8 methods × 10 datasets) are equal to the clustering solu-
tions provided by Rappoport and Shamir (2018), with two of the remaining four solutions only differing in one and three
individuals, respectively. This means that the reproducibility problems (also observed for some of the 76 settings yielding
identical clustering solutions) might be caused by the permutation tests. Moreover, the provided code is probably not the
exact code used by R19, as indicated by the fact that R19 refers to Rappoport and Shamir (2018) for the code to repro-
duce the results, but also mention that the implementations for MCCA (sparse multiple canonical correlation analysis),
LRAcluster, and 𝑘-means were slightly changed compared to Rappoport and Shamir (2018).
When reproducing the results, we do not modify the code provided by the authors in a way that would change the

results and attempt to use the same R and R package versions as in the original papers (see Table S1 in the Supporting
Information). However, we have to set a different number of cores in some settings and use a different R version for
running the permutation tests by R19 due to different computational resources (see our code documentation for details),
which may contribute to the reproducibility issues.
Crossing the designs Evaluating the performance of PINSPlus and NEMO using each other’s datasets, competing meth-

ods, and evaluation criteria poses a number of challenges, the most important one being the choice of parameters both
for the two methods of interest, PINSPlus and NEMO, and the competing methods. Whenever a method is applied to a
new (set of) dataset(s), the method user needs to carefully select its parameters or a corresponding parameter selection
method, which of course also applies to our experiment. Since both N19 and R19 use the same three types of omic data
from the same source (TCGA), we set the parameters of PINSPlus and NEMO as in their respective original paper, which
corresponds to their default parameter setting. Note that we also do not change the range of possible values for the number
of clusters, a parameter that can be specified for bothmethods and is set to {2, 3, 4, 5} for PINSPlus and to {2, 3, … , 14, 15} for
NEMO.We also attempt to use the same parameters for the competing methods when applying them to the new datasets.
However, for two competingmethods of N19 (iCluster+ and Consensus Clustering), the optimal number of clusters has to
be selected by the user according to plots generated by the method when run on a specific dataset. When applying these
two methods on the datasets by R19, we thus have to manually choose the optimal number of clusters for every dataset,
and although we try to imitate the decisions of N19 on their datasets, a clear determination is not always possible (an issue
that is also noted by Duan et al., 2021). Moreover, some refinements regarding themethod-specific preprocessing steps are
necessary for two competing methods of R19 (see Section A.2 in the Supporting Information).
In addition to the choice of method parameters, some challenges arise when applying the evaluation criteria by R19 to

the datasets by N19. Specifically, the logrank permutation test by R19 does not converge for somemethods on two datasets
byN19, resulting in a𝑝-value of 0 in 15method-data combinations. In these cases, we use the approximation-based logrank𝑝-values. Moreover, clustering solutions resulting from the dataset UCS (N19) are not tested for clinical enrichment (R19)
since it only includes one of the six clinical variables (“gender”) with only one value (“female”).

3.3 Results

Performance based on the original study design Figure 1A and 1D shows the reproduced performance results of PINSPlus
and NEMO based on their original study design. Note that the representation in these figures slightly differs from the
original papers to achieve a comprehensive and yet clear summary of the results. The most important difference is that
the papers also report the individual performance results for each dataset (we provide the individual performance results
in Tables S4 and S5 in the Supporting Information).
When evaluated based on its original design, PINSPlus seems to be clearly superior to the three competing methods. It

has the most significant 𝑝-values (𝑝 < 0.05) regarding survival, with 21 of the 25 significant 𝑝-values being the smallest
across all methods. NEMO also shows good performance in its original study design, although its performance is not as
clearly superior to the competing methods as the performance of PINSPlus. It achieves the highest numbers of datasets
with significantly different survival and at least one enriched clinical variable (although there are two competingmethods
that achieve the same number of datasets with clinical enrichment). Moreover, none of the competing methods achieves
both a higher mean−log10 logrank 𝑝-value and a higher mean number of enriched clinical variables. OnlyMCCA obtains
a higher mean−log10 logrank 𝑝-value than NEMO but has a lower mean number of enriched clinical variables. Note that
despite the reproducibility issues, both the absolute (i.e., the values of the four evaluation criteria considered by R19) and
the relative performance ofNEMO (i.e., when comparing these values to the competingmethods) correspond to the results
shown in the original paper. The only difference affecting the relative performance of NEMO is that in the original paper,
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8 of 23 NIEßL et al.

F IGURE 1 Results of the cross-design validation experiment for the cancer subtyping example, where the subfigures A–D correspond to
the cells of Table 1. (A) Performance of PINSPlus based on the design by Nguyen et al. (2019) (= original design). (B) Performance of NEMO
based on the design by Nguyen et al. (2019) (= crossed design). (C) Performance of PINSPlus based on the design by Rappoport and Shamir
(2019) (= crossed design). (D) Performance of NEMO based on the design by Rappoport and Shamir (2019) (= original design).

one of the two methods that could not be reproduced (rMKL-LPP), achieves a higher mean number of enriched clinical
variables than NEMO but a lower mean −log10 logrank 𝑝-value.
Performance based on the crossed design The performance results of NEMO and PINSPlus based on each others’ study

design (i.e., datasets, competing methods, and evaluation criteria) are presented in Figure 1B and 1C, respectively. In the
study design of R19, PINSPlus does not outperform the competing methods. It is only the fourth and sixth best method
with regard to themean number of enriched clinical variables andmean−log10 logrank 𝑝-value, respectively. It belongs to
the three worst methods with regard to the number of datasets with significantly different survival and only outperforms
PINS, its predecessormethod,with regard to the number of datasetswith at least one enriched clinical variable. In contrast,
NEMO still outperforms the competing methods in the design by N19, although its superiority is not as pronounced as
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NIEßL et al. 9 of 23

F IGURE 2 Performance ranks of the two cancer subtyping methods PINSPlus and NEMO based on datasets, competing methods, and
evaluation criteria that either correspond to the original (PINSPlus: Nguyen et al., 2019; NEMO: Rappoport & Shamir, 2019) or crossed design
(PINSPlus: Rappoport & Shamir, 2019; NEMO: Nguyen et al., 2019). Each panel represents the performance rank(s) of PINSPlus or NEMO for
one combination of datasets, competing methods and evaluation criteria. If more than one method achieves the same value for a certain
criterion, the point represents the average rank and the line indicates the rank range based on minimum and maximum rank. The dashed
lines correspond to the number of compared methods, that is, the highest possible rank.

for PINSPlus in the same design (PINSPlus achieves 25 significant 𝑝-values while NEMO only achieves 16 for the same 34
datasets).
We also analyze the performance of PINSPlus and NEMO when datasets, competing methods, and evaluation criteria

are varied individually. Figure 2 shows the resulting ranks of PINSPlus and NEMO for all eight combinations of the three
components, where each component can either be set to the original or the crossed version (23 = 8). For each criterion
(one byN19 and four by R19), a rank of 1 corresponds to the bestmethod. If more than onemethod achieves the same value
for a certain criterion, the minimum, maximum, and average ranks are reported. As can be seen from Figure 2, the ranks
of PINSPlus and NEMO generally vary for each combination of datasets, competing methods, and evaluation criterion.
Apart from its original design, PINSPlus achieves rank 1 for the evaluation criteria related to survival (i.e., number of
[most] significant 𝑝-values and mean −log10 logrank 𝑝-value) in all combinations where the datasets by N19 are used.
However, PINSPlus belongs to the worst performing methods according to survival when applied to the datasets by R19.
As mentioned in Section 3.1, the 10 datasets corresponding to different cancer types that are used by R19 are also included
in N19. Interestingly, PINSPlus achieves a significant 𝑝-value for nine of these 10 datasets in N19, indicating that the
difference in performance for these datasets is mainly due to the different preprocessing steps. With regard to the clinical
evaluation criteria, PINSPlus seems to have average performance, neither clearly performing better nor worse than the
other methods.
In comparison to PINSPlus, the ranks of NEMO aremore robust across the different study designs. For six of eight study

designs, it achieves rank 1 or 2 for all evaluation criteria (if the minimum or average rank is considered). The only study
design where NEMO’s performance is considerably worse for two evaluation criteria is the design where only the datasets
are taken from N19 while evaluation criteria and competing methods correspond to the original paper. Moreover, it can
be noted that while the slightly different calculation of the number of datasets with significant logrank 𝑝-values in N19
and R19 does not have an impact on the ranks of PINSPlus, NEMO tends to achieve better ranks for the version of N19.
For example, it achieves rank 1 instead of 2, for settings where data and competing methods are by N19. A comparison
of approximation-based and permutation-based 𝑝-values for all methods and datasets can be found in the Supporting
Information file (Figure S1), showing that the approximation-based 𝑝-values are indeed generally smaller. The Supporting
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10 of 23 NIEßL et al.

Information file also provides a comparison of the two different parameter settings of SNF that are specified byN19 andR19
(Figure S2), which reveals a considerable but nonsystematic performance difference between the two implementations.

4 DATA ANALYSIS TASK II: DIFFERENTIAL GENE EXPRESSION ANALYSIS

The second data task we consider in our experiment is differential gene expression analysis, which aims at identifying
genes that show differences in their expression levels between two or more conditions (Soneson & Delorenzi, 2013). Of
the many methods that have been proposed for this task (Seyednasrollah et al., 2013), the more recent ones usually expect
RNA-Seq data as input, whichmeans that gene expression ismeasured as nonnegative counts (Rigaill et al., 2018). The two
methods for differential expression analysis included in the experiment are SFMEB (scaling-freeminimum enclosing ball)
and MBCdeg (derived from MBCluster.Seq, a model-based clustering algorithm for RNA-Seq data), which have recently
been proposed by Zhou et al. (2021) and Osabe et al. (2021) and require RNA-Seq data as input. As stated in Section 2,
these papers are selected because they make the code to reproduce the results openly available (information on where the
code can be found is reported in our code documentation). We will abbreviate them by Z21 and O21 in the following.

4.1 Study design in the original papers

In this section, we review the datasets, competingmethods, and evaluation criteria that are used to assess the performance
of SFMEB and MBCdeg in their respective original paper and that meet the inclusion criteria of our experiment (see
Table 3 for an overview). We also report the justifications for the design choices provided by the authors. Since Z21 and
O21 primarily use simulated data to evaluate their methods, we do not further consider their real data analyses.
Data Both Z21 and O21 generate simulated count data representing RNA-Seq read counts of 𝑝 genes in 2 × 𝑛𝑜𝑏𝑠 sam-

ples from two groups. O21 also simulates count data from three groups, but we exclude these settings from the experiment
because SFMEB does not seem to be intended for this type of data (all evaluations in the original paper by Z21 are based on
two-group data). The simulation framework of Z21 and O21 is based on different code implementations (code by Robinson
& Oshlack, 2010, and compcodeR R package, Soneson, 2014 vs. TCC R package, Sun et al., 2013) as well as different distri-
butions to generate the count data (Poisson and negative binomial distribution vs. only negative binomial distribution).
Moreover, the two papers choose different numbers of simulation repetitions (20 vs. {50,100}), different sample sizes per
group ({1,2,5,8} vs. 3), and different numbers of genes ({15,000,. . . , 29,800} vs. 10,000).
The simulations also differ with respect to the characteristics of the differentially expressed (DE) genes. In contrast to

O21, theDE genes in Z21 include uniquely expressed (UE) genes (𝑢1, 𝑢2) that have zero counts in groups 1 or 2, respectively.
Moreover, Z21 and O21 consider different proportions of DE genes ({0.3,. . . ,0.7} excluding UE genes vs. {0.05,. . . ,0.75}),
different log2 fold-changes between the groups (i.e., the true log2 ratio of expression change; ≥ 2 vs. 2), and different
proportions of upregulated genes (i.e., genes having higher expression) in group 1 ({0.6,. . . ,1} vs. {0.5,. . . ,1}).
In contrast to O21, Z21 applies prefiltering of the genes (e.g., filtering of genes with mean count ≤ 2) for all methods,

although some of their considered methods additionally filter genes internally. Moreover, in some settings, Z21 considers
heterogeneous data composed of two datasets with different simulation parameters (log2 fold-change, number of genes,
etc.). In the results included in the experiment, O21 only varies the proportion of DE genes and the proportion of upreg-
ulated genes, but in a fully factorial manner which results in 6 × 4 = 24 simulation settings. However, it should be noted
that O21 also varies other parameters (e.g., the log2 fold-change) in settings not considered in our experiment since they
did not meet the inclusion criteria (e.g., because the corresponding figures are shown in the supplement). In the simu-
lation settings by Z21 that are included in our experiment (15 settings in total), more parameters are varied, but not in a
fully factorial manner. More specifically, the 15 included settings originate from five “studies” (each consisting of three
settings) with different simulation parameters. Within each study, one simulation parameter is varied (see Table 3).
Understandably, neither Z21 nor O21 provides a justification for every single simulation parameter but often refers to

similar parameter values observed in real data. Regarding the choice of the number of simulation repetitions, however,
neither of the two papers provides a justification. As criticized by Morris et al. (2019), this seems to be a general issue in
papers presenting simulation studies.
Competing methods Z21 compares SFMEB with five competing methods they consider as widely used. Two of these

methods are referred to as edgeR and DESeq (Anders & Huber, 2010; Robinson et al., 2009; see below for more details),
which closely corresponds to the methods selected by O21 (edgeR and DESeq2; Love et al., 2014). In addition to these
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two methods, O21 also considers the less well-known method TCC (tag count comparison; Sun et al., 2013), arguing that
it is not sufficient to compare a newly proposed method to the most commonly used methods (edgeR and DESeq2) as
those might not be the ones best suited for the analysis. Moreover, they see TCC as the main alternative to their proposed
method since the normalization algorithm used by TCC corresponds to the normalization algorithm used by one version
of MBCdeg.
Interestingly, Z21 and O21 use different implementations of edgeR. While the implementation by O21 corresponds to

one of the edgeR standardworkflows, Z21 uses three different implementations of edgeR across their simulation settings of
which only one would be typically considered as edgeR (but still with different parameters than O21), while the other two
are only edgeR-like. One reason for this choice is that some simulation settings in Z21 do not have biological replicates (i.e.,𝑛𝑜𝑏𝑠 = 1 in each group), for which the standard edgeR implementation yields an error (see Supporting Information Sec-
tion B.2 for details). Regarding the implementation of DESeq/DESeq2, Z21 actually use both DESeq andDESeq2, although
they generally refer to the method as DESeq, the predecessor method of DESeq2. This might be explained by the fact that,
similar to edgeR, DESeq2 is not intended for settings without biological replicates and thus yields an error, which is why
Z21 uses DESeq in these settings. Note that it has been shown that DESeq and DESeq2 perform differently (Love et al.,
2014). Both Z21 and O21 use the same parameters for DESeq2. For the parameters of the remaining methods see Z21 and
O21 as well as the referenced code.
Evaluation criteria Both Z21 and O21 assess the methods’ ability to correctly identify DE genes using the area under

the receiver operating characteristic curve (AUC). They both justify this decision with the fact that the AUC, in contrast
to other popular measures, does not require the choice of a threshold value. The AUC takes values from 0 to 1, where 1
corresponds to perfect discrimination of DE and non-DE (i.e., nondifferentially expressed) genes, and 0.5 corresponds to
random assignment. However, due to an unfortunate default option in the R package used by Z21 to calculate the AUC,
the resulting AUC values are 1 minus the correct AUC for some repetitions (see Supporting Information Section B.3 for
details). Apart from the different R packages used to calculate the AUC, Z21 also employs a smoothed ROC curve (receiver
operating characteristic curve) to estimate the AUC in some of their simulation settings (study 5), which can lead to
slightly different results compared to the nonsmoothed ROC curve. Regarding the aggregation of AUC values across the
simulation repetitions, both Z21 and O21 use boxplots.

4.2 Challenges when conducting the experiment

ReproducibilityWhen reproducing the results presented in O21 and Z21, we do not modify the original code in a way that
would change the results, with one exception: We change the number of simulation repetitions from 10 to 20 (i.e., the
number reported in the paper) in the code provided by Z21 since the results using 20 repetitions are more similar to the
results shown in Z21 (note that we make this change before crossing the designs). As stated in Section 2.3, we also use
the same R and R package versions as in the original papers (see Table S6 in the Supporting Information). However, Z21
does not provide this information, which is why we use the most recent package versions available when conducting
the experiment (see our code documentation for the exact version information). The code by Z21 also does not include a
random number seed, which we therefore set but which is most likely different from the seed used by Z21. Note that for
reproducing the results of Z21, we use their AUC implementation potentially yielding incorrect results, but additionally
calculate the correct version.
Based on these modifications, running the code of Z21 and O21 results in very similar but not exactly the same boxplots

as shown in the original papers. More specifically, the relative performance of each method is the same in the original
and reproduced versions, but some boxplots have, for example, different outliers. For Z21, this relatively high degree of
reproducibility is noteworthy considering the fact that the provided code does not include a seed or version information.
The only three settings that do not yield similar results are the settings from study 5 by Z21 (the differences between the
original and reproduced results are described in Section 4.3). Apart from the aforementioned missing seed and version
information, the different results in these settings could be due to the fact that the code might not have been provided in
its final version.
Crossing the designs As already stated in the first example on cancer subtyping, conducting the cross-design experi-

ment implies that all considered methods are applied to new datasets (new in the sense that these datasets have not been
included in the original paper). It is thus necessary to carefully specify the method parameters of SFMEB, MBCdeg, and
all competing methods. Although the simulation settings of Z21 and O21 are less comparable than the real datasets of N19
and R19 in the cancer subtyping example, we nevertheless adopt the parameter values from the original papers because we
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NIEßL et al. 13 of 23

consider the risk of running the methods with suboptimal parameter settings to be lower for the parameters used by Z21
and O21 than for parameters selected by ourselves (especially because we select the parameters before seeing the results
to avoid the risk of favoring one of the methods, as stated in Section 2.3). However, both Z21 and O21 consider more than
one parameter value for some methods, and Z21 even uses different methods across the simulation settings (i.e., DESeq
and DESeq2). For all methods evaluated in Z21 (i.e., SFMEB and its competing methods), we adopt the parameters from
study 5 since they are the most similar to the simulation settings considered in O21 (i.e., nonheterogeneous data, gener-
ated using the binomial distribution, with replicates). In all simulation settings of O21 included in our experiment, the
authors evaluate two versions of MBCdeg, which are denoted as MBCdeg1 and MBCdeg2 and correspond to two different
normalization options. Since MBCdeg1 and MBCdeg2 are also implemented separately in the code, we include both ver-
sions in the experiment but decide to focus on MBCdeg2, which was observed to be slightly more stable and accurate in
O21, before seeing any results. Although O21 does not vary any other parameters of MBCdeg or the competing methods,
we note that the main parameter of MBCdeg that is extensively discussed by O21 might not be ideal for some simulation
settings of Z21. We thus conduct a sensitivity analysis using two different values for this parameter (see Section B.4 for
details).
Since O21 and Z21 use the same evaluation criterion (i.e., boxplots representing the AUC values of all simulation repe-

titions), we only reevaluate the performance of SFMEB andMBCdeg on each other’s competing methods and data. When
crossing the designs, we do not consider theAUC that is based on the smoothedROC curve used by Z21 in some simulation
settings. Of course, we also do not use the incorrectly calculated version of the AUC.
Note that not all design components of Z21 and O21 are compatible. More specifically, the DESeq2 and edgeR imple-

mentation in O21 results in an error when applied to the simulation settings without biological replicates by Z21. As stated
in Section 4.1, this is because DESeq2 and edgeR are not intended for settings without biological replicates and O21 does
not use a (possibly nonideal) workaround solution as done by Z21.

4.3 Results

Performance based on the original study design Figure 3A and 3D shows the reproduced performance results of SFMEB
and MBCdeg2 with an additional dashed line corresponding to the median AUC of the corresponding method of interest
overall simulation repetitions. Note that the method labels are adopted from the original papers although the compet-
ing methods DESeq and edgeR in Z21 do not exactly correspond to the actual method in some simulation settings as
discussed above.
For SFMEB, we show both the reproduced AUC values that are potentially biased towards higher values and the correct

AUC values. As stated in the previous section, we only observe a noteworthy performance difference between the repro-
duced results and the results shown in Z21 for three simulation settings (i.e., study 5). In these settings, two competing
methods consistently show better performance in the reproduced version, leading to SFMEB being the second best instead
of the best performing method in two settings. However, these differences become irrelevant when looking at the correct
AUC results. In fact, only the AUC values of the competing methods are in some settings affected by the incorrect AUC
calculation, resulting in SFMEB outperforming its competing methods more clearly than initially claimed by its authors.
The performance results of SFMEB based on the corrected AUC values are thus still consistent with the conclusion of
Z21 that SFMEB outperforms its competitors in most settings (achieving rank 1 according to median AUC in 13 out of 15
settings).
MBCdeg2 also performs well in its original study design. As noted by O21, the method tends to achieve higher AUC

values in the settings with a small (≤ 0.45) proportion of DE genes. In some settings where the proportion of DE genes is≥ 0.55; however, the method seems to fail, often resulting in AUC values below 0.25 and not being able to outperform any
of its competing methods (the same applies to MBCdeg1). O21 discusses the occasional failure of MBCdeg extensively and
concludes that the identification of the non-DE gene cluster (which they state to be the key to the proposed framework)
fails in these cases, which leads to an incorrect classification of DE and non-DE genes. However, MBCdeg2 generally
performs better than the competing method TCC in settings where TCC performs well (the same applies to MBCdeg1).
Given the fact that TCC could be expected to outperform other methods since the datasets are generated using the TCC R
package and the normalization algorithmused by TCCwas designed for settingswith asymmetric (i.e.,≠ 0.5) upregulation
as considered by O21, O21 see this as the main contribution of their study.
Performance based on the crossed design Figure 3B and 3C displays the performance results of MBCdeg2 and SFMEB

based on each other’s simulation data and competing methods. In the study design of O21, SFMEB generally shows worse
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14 of 23 NIEßL et al.

F IGURE 3 Results of the cross-design validation experiment for the differential gene expression analysis example, where the subfigures
A–D correspond to the cells of Table 1. (A) Performance of SFMEB based on the design by Zhou et al. (2021) (= original design). (B)
Performance of MBCdeg2 based on the design by Zhou et al. (2021) (= crossed design). (C) Performance of SFMEB based on the design by
Osabe et al. (2021) (= crossed design). (D) Performance of MBCdeg2 based on the design by Osabe et al. (2021) (= original design). In each
subfigure, the boxplots correspond to 𝑛𝑠𝑖𝑚 simulation repetitions, where 𝑛𝑠𝑖𝑚 ∈ {20, 50, 100}. The red dashed line corresponds to the median
AUC of SFMEB (A and C) and MBCdeg2 (B and D) across all simulation repetitions. In the original paper by Zhou et al. (2021), the AUC has
not been calculated as intended by the authors, which is why in subfigure A, both the correct AUC values and the reproduced and potentially
incorrect AUC values are provided.
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NIEßL et al. 15 of 23

F IGURE 3 Continued

performance than in its original design, having lowermedianAUC values than all of its competitors in 17 out of 24 settings.
However, in five out of the remaining seven settings (the settings with a high proportion of DE genes that are mostly
upregulated in one group), SFMEB clearly outperforms the competing methods. Interestingly, this difference in relative
performance is mainly caused by the varying AUC values of the competing methods edgeR, DESeq2, and TCC. SFMEB
itself, on the other hand, shows very robust AUC values across all settings. However, with a median AUC of about 0.65 in
each setting, SFMEB’s absolute performance is worse than in the original study, where the lowest median AUC of SFMEB
is 0.72.
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16 of 23 NIEßL et al.

F IGURE 4 Performance ranks of the two differential gene expression analysis methods SFMEB and MBCdeg2 based on datasets and
competing methods that either correspond to the original (SFMEB: Zhou et al., 2021; MBCdeg2: Osabe et al., 2021) or crossed design (SFMEB:
Osabe et al., 2021; MBCdeg2: Zhou et al., 2021). Each horizontal bar plot shows the performance rank distribution of SFMEB or MBCdeg2 for
one combination of datasets and competing methods. The number of ranks that is represented by each bar plot corresponds to the number of
simulation settings in the respective data source (𝑛𝑠𝑒𝑡𝑡𝑖𝑛𝑔 = 15 for data based on Z21; 𝑛𝑠𝑒𝑡𝑡𝑖𝑛𝑔 = 24 for data based on O21). The rank of each
simulation setting is calculated based on the median AUC value across all simulation repetitions. The dashed lines indicate the number of
compared methods, that is, the highest possible rank. Note that for both SFMEB and MBCdeg2, the ranks that result from the combination of
competing methods by O21 and data by Z21 are represented by two bar plots due to the incompatibility of two competing methods of O21 with
some simulation settings of Z21.

Similar to SFMEB, MBCdeg2 generally performs worse compared to its original design. In 10 out of 15 settings, it is
outperformed by all competingmethods.However, it is the second bestmethod in four of the remaining five settings (based
onmedianAUC). In contrast to SFMEB, the absolute performance variesmore across the settings and only reaches a value
comparable to the original design (excluding the settings where the method failed) in two settings. Similar to its original
design, there are four settings where MBCdeg2 shows extremely low AUC values, which again seems to be caused by the
incorrect identification of the non-DE cluster (note that these are all settings where the proportion of DE genes is ≥ 0.6,
which is consistent with O21’s observation in the original paper). As stated in Section 4.2, we also conduct a sensitivity
analysis where MBCdeg2’s main parameter is set to a different value. However, this does not improve the AUC values (see
Figure S3 in the Supporting Information).
Figure 4 shows the resulting performance ranks of SFMEB andMBCdeg2 when data and competingmethods are varied

individually. For both SFMEB and MBCdeg2, the datasets and competing methods can either be set to the original or
the crossed version, which results in four (= 22) different study designs. Note that for both SFMEB and MBCdeg2, the
study design that is based on the competing methods of O21 and the data of Z21 are represented by two panels instead
of one. This is because two of the three competing methods of O21 cannot be run in some simulation settings of Z21 (see
Section 4.2), which makes the resulting ranks incomparable to the ranks that are based on the simulation settings with
all three competing methods. Within each study design, the ranks are calculated separately for each simulation setting
based on the median AUC and are summarized as bar plots (i.e., each bar plot displays the distribution of 15 or 24 ranks,
which corresponds to the total number of settings considered by Z21 and O21, respectively). All AUC values are calculated
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NIEßL et al. 17 of 23

correctly. For both SFMEB and MBCdeg2, the performance mainly depends on which simulated datasets are considered.
In contrast, using different competing methods has no considerable impact on the distribution of ranks, except that the
maximum possible rank reflecting the worst method varies according to the number of competing methods. This is also
due to the partial overlap of competing methods between Z21 and O21.
The results of MBCdeg1 based on the crossed design are very similar to the results of MBCdeg2 and can be found in the

Supporting Information file (Figure S4).

5 DISCUSSION

5.1 Summary of results and limitations

In this paper, we conducted a systematic experiment, which we refer to as “cross-validation of methods” and in which we
reevaluatedmethods based on the datasets, competingmethods, and evaluation criteria of a paper proposing amethod for
the same data analysis task. We considered two exemplary data analysis tasks, namely cancer subtyping using multiomic
data and differential gene expression analysis. For each analysis task, we selected two methods, PINSPlus (Nguyen et al.,
2019) and NEMO (Rappoport & Shamir, 2019) for cancer subtyping, and SFMEB (Zhou et al., 2021) and MBCdeg (Osabe
et al., 2021) for differential expression analysis.
Although we did not conduct our cross-design validation experiment on a large scale, several interesting findings

emerged. First, the difficulties in finding eligible papers showed thatmany papers are still being published without openly
available code to reproduce the results. For the papers that were selected, running the provided code did not yield the exact
same results as presented in the respective paper. Only the results of PINSPlus were close to being fully reproducible with
only one differing 𝑝-value in one of the competing methods. Although the lack of reproducibility could be partly due to,
for example, our computational resources that were different from those of the authors of the four papers, other potential
reasons are that some codes were not provided in their final version and that not all R/R package versions were reported.
The latter is particularly relevant for R, which is subject to frequent package updates (potentially causing errors or chang-
ing results) and, in contrast to the programming language Stata, does not have integrated version control. Nevertheless,
the reproduced results of all four methods were consistent with the conclusion of the original papers that the respective
method shows good performance.
Second, the experiment concretely illustrated the researchers’ degrees of freedom regarding the performance assess-

ment of a method. Notably, all four study designs seemed well though-out and the authors provided justifications in most
cases. Interestingly, even for the design components that were similar in both papers, the exact implementation was often
different. For example, SNF and edgeR were included as competing methods in both papers of the cancer subtyping and
differential expression analysis task, respectively, but were run with different parameters.
Third, the experiment showed how differences in the study design can affect the performance of a method. Three

out of the four considered methods (PINSPlus, SFMEB, and MBCdeg) performed worse when assessed on the crossed
study design, which seems to be consistent with the general concern that the performance of newly proposed methods is
overoptimistic (Boulesteix et al., 2013; Buchka et al., 2021; Norel et al., 2011). Only one method, NEMO, performed well
when evaluated on the study design of PINSPlus’ original paper and only showed slightly worse performance in some
settings where datasets, competing methods, and evaluation criteria were varied individually. For both analysis tasks,
using different datasets (real or simulated) had the largest impact on the performance results, which was particularly
surprising for the real datasets of the cancer subtyping example where both papers used the same data type and source.
It is important to note that while the findings of our experiment might help to see the performance reported in the

original papers from a different perspective, they cannot be seen as evidence of any of the four methods generally having
good or bad performance. First, our experiment is limited in the sense that we did not include all study designs and corre-
sponding results reported in the papers, which gives an incomplete picture regarding the study design of the papers and,
importantly, the individual strengths and weaknesses of each method. This also includes qualitative evaluation criteria
such as PINSPlus’ user-friendliness regarding the choice of the number of clusters (which was also noted by Duan et al.,
2021), NEMO’s simplicity and support of partial data, the avoidance of potential error-prone data normalization when
using SFMEB, and the high interpretability of MBCdeg’s main parameter. Second, the method performances observed
in the experiment clearly depend on (i) our own expertise regarding each method and (ii) the respective new design we
reevaluated each method on. The latter is the result of an informal and unsystematic search process based on eligibil-
ity criteria (i.e., R as a programming language and publicly available code) that could have been specified differently. In
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addition, reevaluating each method on more than one new design (i.e., extending the 2 × 2 table in Section 2 [Table 1] to
a 𝐾 × 𝐾 table) could lead to different and more nuanced results.
In addition to the restricted informative value regarding the performance assessment of the considered methods, our

experiment is also limited in the sense that the deteriorating method performance observed in three of the four methods
cannot be transferred to methodological research in general. This is due to the fact that we only considered two data
analysis tasks and, as mentioned above, only included two papers per data analysis task that were selected based on an
informal search process.

5.2 Mechanisms leading to an optimistic performance evaluation and possible
solutions

Although the results of our experiment cannot be seen as general evidence for the optimistic performance evaluation
of newly proposed methods in methodological research, the experiment itself provides insights into the mechanisms
that might explain the observed performance differences. In the following, we will discuss four of these mechanisms,
which have either been addressed frequently in the literature or are rarely mentioned in the literature but seem to have
been present in our experiment. In addition, we point to possible solutions that can help to avoid large performance
discrepancies between original and subsequent studies.
Overfitting of study design to methodOur experiment illustrated the many degrees of freedom existing in the assessment

of a method’s performance. This flexibility can tempt researchers to choose the study design in favor of their proposed
method. This may happen both at the planning stage when researchers primarily select a study design in which their
method is expected to perform well (e.g., leaving competing methods at their default parameters or simulating data from
the model underlying the proposed method), and after seeing the results when they add and/or omit certain design com-
ponents (e.g., simulation parameters or evaluation criteria; Nießl et al., 2022; Pawel et al., 2022; Ullmann et al., 2023).
Focusing on advantageous designs at the planning stage is not necessarily a questionable research practice but becomes
problematic if not clearly stated. Changing the study design after seeing the results may be legitimate in some cases as far
as it is transparently reported, for example, if the originally chosen evaluation criterion turns out to behave inadequately
for all methods. But changing the study design is bad practice if it is performed in a cherry-picking fashion, that is, exclud-
ing or including results depending on whether they convey the expected message or not. The “overfitting” of the study
design to the method increases the risk of obtaining different, less optimistic conclusions in a subsequent comparison
study in which the authors have less incentives to present the corresponding method in a favorable light.
As already noted by Simmons et al. (2011) in the context of applied research, such optimizations most often do not

reflect malicious intent. Instead, they are usually the result of self-serving interpretations of ambiguity convincing honest
researchers that the decisions (in our case, regarding the study design) matching their expectations and hopes are the
most appropriate ones for various other reasons. These mechanisms are certainly encouraged by publication pressure and
publication bias (Boulesteix et al., 2017). Selective reporting after seeing the results can be largely avoided by preregistering
study designs and documenting all changes that have to be made subsequently (Morris et al., 2019; Pawel et al., 2022).
However, it does not prevent authors from selecting advantageous designs from the start when planning their study. This
pitfall could be avoided by adapting the designs from previous studies conducted by different authors. Although designs
from different studies might not be suitable to demonstrate all features of the new method, the inclusion of at least one
setting that is more “fair” for all compared methods and does not obviously favor the new method (even if the setting is
generated by the authors themselves andnot adapted fromadifferent study) reduces the risk of overoptimistic conclusions.
For the papers considered in our study, we do not assume that any components regarding the datasets, competing

methods or evaluation criteria have been optimized to make the corresponding method of interest appear better than it
actually is. On the other hand, we cannot completely rule out this possibility, although it is especially unlikely for NEMO,
which was evaluated using a study design adopted from a previously conducted comparison study (Rappoport & Shamir,
2018), similar to preregistration where the design is fixed in advance.
Overfitting of themethod to study design Just as the study design can be “overfitted” to themethod of interest, themethod

of interest can also be “overfitted,” that is, overoptimized to the study design. This was already noted by Jelizarow et al.
(2010) and Ullmann et al. (2023) with a focus on overfitting to the considered datasets. Since method development is,
in itself, an optimization process that usually consists of several improvements after seeing the performance results, it
is difficult to determine the point where further optimization amounts to overfitting the method to the design used for
performance assessment. This not only concerns the method characteristics that are not intended to be changed by the
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user but also the parameters that can be set by the method user and whose optimal values for different settings might also
be overfitted to the considered study design (Pawel et al., 2022; Ullmann et al., 2023). Note that the issue of overfitting of the
method to the study design is relevant for any method evaluation whose results are to be generalized to other evaluation
criteria or datasets. This also includes methods that are developed for very specific applications, as long as the authors of
the method want it to be used for any other evaluation criteria or datasets than those used for performance assessment (at
least for the datasets, this usually seems to be the case).
To avoid overfitting of the method of interest to the study design, it is recommended to evaluate the method extensively.

This includes using a large number of datasets and/or simulation settings and several evaluation criteria as well as check-
ing the robustness of the method with respect to small changes in the study design since this makes it more difficult for
the method to be artificially optimized (Boulesteix, 2015; Nießl et al., 2022; Norel et al., 2011; Ullmann et al., 2023). In
principle, this is comparable to the classical context of regression where overfitting is less likely to occur if the number of
observations is large.
Moreover, it may be helpful to reevaluate newly developedmethods using a different design after the termination of the

trial-and-error process, which might yield slightly worse but likely more realistic performance results (in the sense that
the performance discrepancy between original and subsequent papers decreases). Although previous literature usually
focuses on evaluating the method on new data (Jelizarow et al., 2010; Norel et al., 2011; Ullmann et al., 2023), considering
different competing methods and evaluation criteria could also be reasonable. To reduce the risk of choosing the new
design in favor of the proposed method, one could apply the design of a previous study conducted by different authors.
As discussed above, the design of a previous study might not be suited to present all features of the proposed method (or
even fully match the method’s potentially very specific field of application) but this might be less relevant if the design is
considered as an additional “external validation design”. An external validation design could be, for example, the design of
a neutral comparison study, or, similar to our experiment, a previously proposedmethod (e.g., a method that was included
as a competingmethod). This procedure is only feasible withoutmuch additional effort if the authors of the previous paper
havemade the code for reproducing the results openly available and does not protect against systematicmanipulation (e.g.,
modifying the method after seeing the results and thus consciously biasing the external validation).
When reading a paper, it is typically not possible to identify whether the method of interest has been overfitted to the

design used for method development and, unless explicitly stated, if there are any settings that have been separated from
the development process. This also applies to the papers included in our experiment, which do not have a corresponding
statement. However, MBCdeg is mainly based on an algorithm that was developed by different authors for a different
analysis task (i.e., clustering of genes that have already been identified as differentially expressed), which means that this
part of the method cannot be overfitted to the design of Osabe et al. (2021).
Different levels of expertise While the mechanisms discussed above are mostly attributed to the nonneutrality of the

authors proposing their new method, there are also other potential mechanisms leading to deteriorating performances
in subsequent papers. One of them originates from the fact that, as already noted by Duin (1996), the performance of a
method is not just dependent on the design it is evaluated on but also on the skill of the person who applies the method.
The difference in performance between original and subsequent papers may therefore also be due to the lower expertise
level of the subsequent authors whose parameter choice when applying the method to the new data is likely to be less
optimal than the parameters that the authors of the method would have selected. Of course, the degree to which the
performance deteriorates due to the lack of expertise may be different for each method (Boulesteix et al., 2017) and also
depends on how much the new design in which the method is applied differs from the design of the original paper.
As described in Sections 3.2 and 4.2, we also faced the challenge of choosing appropriate method parameters when

applying themethods of our experiment to the newdatasets andwe cannot rule out that these decisionsmight have led to a
worse performance than if the authors of the original papers had chosen the parameters themselves. In the first example on
cancer subtyping, we note that although the datasets in both papers had the same data type and originated from the same
source, the authors of NEMO and PINSPlusmight have set different parameters (includingmethod specific preprocessing
steps) for their respective method since the datasets have a different distribution of samples and omic variables (due to the
different preprocessing steps and number of datasets). For example, the authors of PINSPlus might have normalized the
data when applying it to the datasets of NEMO. The same applies to the differential expression analysis example, where
we decided to set SFMEB’s parameters for the crossed simulation data as in the simulation setting of the original paper
that seemed to be the most similar to the new simulation. It is possible that the authors of SFMEB who are experts in
this method might have used a different parameter setting. For MBCdeg, we also cannot rule out that our low level of
expertise has contributed to the deteriorating performance of the method. Although we evaluated different values for one
parameter of MBCdeg as a sensitivity analysis, we only did that to a limited extent and the considered values may still
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be suboptimal (e.g., the authors did not specify how the parameter should be set in the presence of uniquely expressed
genes, which are not considered in their simulation settings). It also has to be noted that we are nonexpert users for many
of the competing methods used for each paper, and, for instance, the performance of Consensus Clustering and iCluster+
(competing methods of PINSPlus) is certainly dependent on the expertise level of the user since the optimal number of
clusters has to be specified manually based on different types of plots and is thus very subjective. However, the difference
in expertise (i.e., comparing our expertise vs. the expertise of the authors of the four papers) is probably less drastic with
regard to the competing methods than for the methods of interest and is thus not of equal relevance.
One possibility to avoid the systematic deterioration of performance in subsequent studies due to a lower level of exper-

tise is to involve the authors of the method in the respective study (Boulesteix et al., 2017; Morris et al., 2019; Pawel et al.,
2022). This can be realized if they implement their method themselves, as done, for example, in the study by Zapf et al.
(2021) that involved the authors of all considered methods as co-authors or in benchmark studies that are organized as
challenges such as the DREAM challenges (https://dreamchallenges.org/). Alternatively, the authors of a method can be
contacted to make sure that their method is implemented correctly as done in the comparison study by Herrmann et al.
(2021). However, while the authors of a method could potentially be involved in the majority of comparison studies that
assess their method, they will not be able to verify the correct implementation of their method in every applied study.
Although there is value in studying the performance of a method when used by an expert, it might thus be even more
important to assess the performance when it is applied by nonexperts (Boulesteix et al., 2017; Duin, 1996), as we did in
this experiment. Note, however, that even among the nonexperts of a method, there are different levels of expertise—or a
different willingness to gain expertise by getting more familiar with the method (whichmay apply in particular to authors
that use the method as a competitor for their own method).
In general, it might thus be advisable for authors to make the performance of their method less dependent on user

expertise by providing high-quality method documentation that includes a description of all method components and
parameters, concrete guidelines on how to choose optimal parameter values in different applications, and ideally also
tutorials that help users to become more familiar with the method (Bokulich et al., 2020). If feasible, method authors can
also implement automated parameter selection, which protects against the above-mentioned tendency to leave method
parameters of competing methods at default values. Moreover, reporting the robustness of the method performance with
respect to different parameter values (as done by all four papers considered in the experiment) allows method users to
gain an understanding of which parameters need to be carefully specified (Ullmann et al., 2023). Of course, reducing the
effect of different levels of expertise also requires efforts from the authors of subsequent papers who need to consider the
available guidelines and information on how to set the method parameters.
Different fields of application An insight we gained from the experiment that seems to be rarely addressed in the liter-

ature but plays an important role in the optimistic performance evaluation of newly proposed methods is related to the
appropriate field of application of a method and its individual strengths within this field. If a method performs worse in
a subsequent paper, this can indeed be due to the mutual overfitting of method and design or the lack of expertise, as
discussed above. However, the deteriorating performance could also be explained by the fact that the field of application
of the subsequent study does not exactly match the field of application the method is intended for. Unfortunately, our
experiment suggests that it is often hard to assess if this is the case.
For example, although NEMO and PINSPlus obviously have the same general field of application (i.e., cancer subtyping

using multiomic data), it was clear that PINSPlus, in contrast to NEMO, is not intended to be used on partial multiomic
datasets (i.e., datasets where some patients do not have any measurements for one or more omic data type), which is
why we excluded them from our experiment. On the other hand, PINSPlus was initially (i.e., in its original paper) only
evaluated based on its ability of finding subtypes that have significantly different survival while NEMO was additionally
assessed based on the enrichment of certain clinical variables such as the tumor stage. We did not exclude the clinical
enrichment criterion, although it could be argued that PINSPlus is only intended for applications where it is relevant to
find subtypes with different survival. Similarly, in the differential expression analysis example, we excluded the three-
group simulated data used to assess the performance of MBCdeg in the original paper since the authors of SFMEB did
not explicitly mention that their method is intended for this type of application. On the other hand, we did not exclude
the settings without biological replicates (i.e., 𝑛𝑜𝑏𝑠 =1 in each group) used by the authors of SFMEB from our experiment
although the authors of MBCdeg did not explicitly state that settings without biological replicates belong to MBCdeg’s
field of application (and other popular methods such as edgeR and DESeq2 are explicitly not intended for these settings).
Moreover, it is not clear whether MBCdeg can be applied in settings with uniquely expressed genes (i.e., genes with zero
counts in one condition), which were included in most settings used to evaluate SFMEB.
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These examples show that it is often not clear for method users what the method’s exact field of application is, which
consequently makes decisions on whether it is appropriate to apply the method to a new design more difficult and sub-
jective. On the other hand, authors proposing a new method cannot be expected to provide an exact definition of the
method’s appropriate field of application that accounts for every imaginable design, and some authors explicitly state that
the method simply requires more evaluation in certain designs to assess whether they belong to the method’s appropri-
ate field of application. For example, the authors of MBCdeg mention that their method still needs to be evaluated on
additional simulation frameworks and real data with different experimental settings and organisms.
In general, authors proposing a new method should thus try to study and report its field of application as compre-

hensively as possible, which, in addition to guidelines for choosing adequate method parameters discussed above, we
also consider an important part of the method documentation. As a means to this end, authors should investigate their
method’s performance in relation to the properties of the included datasets instead of focusing on its overall performance
(Strobl&Leisch, 2022).On the other hand, authors using themethod in a subsequent study should carefully checkwhether
the application of the method is appropriate and ideally point to differences in the study design.
An issue related to the field of application is that methods often have specific strengths or features within their field of

application, which is typically reflected by the design and not problematic if reported transparently (as discussed above).
However, the method’s strengths and special features may not be highlighted to the same extent through the design of the
subsequent study (which may be, for instance, selected to highlight the strengths of a different method), thus leading to a
deteriorating performance.
We also observed this in our experiment. As mentioned above, a special feature of NEMO is that it can handle missing

values in the omic data. However, this feature does not come into play in the study design of PINSPlus, which cannot
handle missing values (so that its authors did not consider designs with missing data). Notably, NEMO outperformed
the competing methods in the original paper even more clearly for the datasets with missing values than for the full
datasets, and although NEMO showed good performance in the design of PINSPlus, its performance might have been
even better if the crossed design had also included datasets with missing values. In the differential expression example,
the authors of SFMEB emphasize its strength of not requiring data normalization, which is an essential step formost other
methods that can mislead downstream analysis if not done correctly. The authors of SFMEB include several data settings
where normalization can be error-prone, such as heterogeneous datasets with clearly different fold changes between the
conditions. This special strength is, however, not relevant for the settings of MBCdeg that are included in our experiment,
which may have also led to SFMEB’s deteriorating performance.
In contrast to the mismatch regarding the appropriate field of application discussed above, it is not necessarily inap-

propriate if a subsequent study disregards the strengths of a method, but it should be ideally mentioned. Note that the
discussed mechanisms can also be applied to the competing methods of the original and subsequent papers, whose field
of application and specific strengths might be more or less reflected by the study design.

6 CONCLUSION

Based on the insights gained from the cross-design validation experiment, we conclude thatwhile the discrepancy between
original and subsequent studies assessing the performance of a method may be, in part, attributed to the nonneutrality
of the method’s authors, there are also other mechanisms related to different levels of expertise and fields of application
that can contribute to a deteriorating method performance. It is important that both the authors proposing a method
and the authors applying the method in a subsequent study acknowledge and counteract these mechanisms. On the side
of the method authors, this requires not only a transparent and extensive evaluation but also comprehensive method
documentation that enables correct usage by other researchers. In terms of transparency, a minimum requirement for
all papers proposing and/or comparing methods should be to openly provide the code, software versions, computational
environment, and, if possible, data to reproduce the results. This does not guarantee but at least facilitates the detection
of potential overoptimistic statements in the original papers and the nonappropriate use of the methods in subsequent
papers. In the long run, these efforts will increase the reliability of studies proposing new methods.
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A Supporting Information: Cancer subtyping using multi-omic data

A.1 R and R package version information
Table S1 displays the (not necessarily complete) information on the R and R package versions that are
reported in the original paper of PINSPlus and NEMO.

A.2 Data pre-processing
As displayed in Table S2, N19 and R19 use different data pre-processing steps. This includes for example
the way missing data are handled or omic variables are selected and normalized. For SNF, the only method
that is considered as competing method in both papers, each omic variable (for all three omic types) is
normalized to have a mean of 0 and a standard deviation of 1 in N19, while R19 also remove omic variables
with zero variance and select the 5000 variables with the highest variance for the methylation data (this is
done for all methods in R19). Note that the information on pre-processing shown in Table S2 is based on
the published code and, as far as early pre-processing that generates the data provided by the authors is
concerned, on the text in the papers. This means that there could have been more pre-processing steps that
are not reported. Table S3 shows the resulting number of patients and omic variables for N19 and R19 after
applying the pre-processing steps.

As stated in Section 2.1, we consider all pre-processing steps that are performed for all methods as
belonging to the data component and method-specific pre-processing steps as belonging to the respective
methods. However, some refinements are necessary when crossing the designs. More specifically, we note
that iClusterBayes and LRAcluster (competing methods of R19) have very long runtimes when run on the
data sets of N19. This is because N19 do not perform any variable selection as a general pre-processing step

*e-mail: cniessl@ibe.med.uni-muenchen.de
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Table S1: R and R package version information provided in the original papers of the two cancer subtyping
methods PINSPlus and NEMO.

PINSPlus (Nguyen et al., 2019) NEMO (Rappoport and Shamir, 2019)
R version 3.4.3 3.5.0
R package
version

Method packages:
• ConensusClusterPlus 1.46.0

(Consensus Clustering)
• iClusterPlus 1.18.0 (iCluster+)
• PINSPlus 1.0.2 (PINSPlus)
• SNFtool 2.3.0 (SNF)

Method packages:
• iClusterPlus 1.16.0 (iClusterBayes)
• LRAcluster 1.0 (LRAcluster)
• NEMO 0.1.0 (NEMO)
• PINSPlus 1.0.1 (PINS)
• PMA 1.0.11 (MCCA)
• SNFtool 2.3.0 (spectral clustering, SNF)

Other packages: Other packages:
cluster 2.0.7-1 doParallel 1.0.11,
entropy 1.2.1, flexclust 1.3-5,
foreach 1.4.4, future 1.8.0, iterators
1.0.9, lattice 0.20-35, modeltools
0.2-21, pbmcapply 1.2.4, survival 2.42-3
Biobase 2.38.0, BiocGenerics 0.24.0,
codetools 0.2-15, compiler 3.4.3,
digest 0.6.15, globals 0.11.0,
heatmap.plus 1.3, listenv 0.7.0,
Matrix 1.2-14, splines 3.4.3, tools
3.4.3

No information provided

(only for iCluster+). Hence, when running iClusterBayes and LRAcluster on the data from N19, we select
the 2000 omic variables with the highest variance for each omic data type as it is done for k-means, spectral
clustering, MCCA, and MultiNMF in R19.

A.3 Reproducibility issues for two competing methods
We have to exclude two competing methods of NEMO (rMKL-LPP and MultiNMF) from the experiment.
In the README file accompanying the code of Rappoport and Shamir (2018), the authors state that repro-
ducing the results of rMKL-LPP requires the source code of the method, which they report is only available
on request from the authors of rMKL-LPP. It seems that the method can also be run on a web server by
now (www.web-rMKL.org), which, however, is not available at the time of writing (last checked in Au-
gust 2022). Moreover, we have to exclude MultiNMF since running the R code provided by Rappoport and
Shamir (2018) (and thus by R19) requires that the user inserts MATLAB commands, which we are not able
to specify correctly. Note that Tepeli et al. (2020) were also not able to reproduce the results of MultiNMF
shown in Rappoport and Shamir (2018)
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A.4 Approximation-based vs. permutation-based p-values
Rappoport and Shamir (2018) note that the χ2 distribution assumed for the test statistics of the logrank,
the χ2, and the Kruskal-Wallis test is not an accurate approximation for small sample sizes and unbal-
anced cluster sizes, especially for large values of the test statistic. Hence, Rappoport and Shamir (2018)
(and thus also R19) estimate the p-values using permutation procedures, i.e., they randomly permute the
cluster labels and calculate empirical p-values as the fraction of permutations for which the test statistic is
greater or equal than the test statistic yielded by the original clustering. Rappoport and Shamir (2018) re-
port that they observed large differences between approximation-based (i.e., assuming χ2 distribution) and
permutation-based p-values, with the former yielding increased type 1 errors. They conclude that at least for
TCGA data sets, analyses that use approximation-based p-values might not be valid. In our experiment, the
approximation-based p-values are indeed generally smaller, as can be seen from Figure S1.
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Figure S1: Comparison of approximation-based and permutation-based p-values. Each point refers to the
logrank p-value of a method when applied to a data set. All methods and data sets considered by N19 and
R19 are included, resulting in 528 points (12 methods × 44 data sets).

A.5 Reproduced performance results of PINSPlus and NEMO for each data set
Table S4 and S5 display the reproduced results of NEMO and PINSPlus for each data set.

A.6 Comparison of SNF implementations
The cancer subtyping method SNF is used as competing method for both PINSPlus and NEMO. However,
N19 and R19 set different method parameters for SNF. Figure S2 shows the logrank p-values and number
of enriched clinical variables resulting from the two different implementations, revealing a considerable but
non-systematic performance difference.
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Figure S2: Logrank p-values and number of enriched clinical variables resulting from the two different SNF
implementations specified by N19 and R19. The left panel includes 88 points, representing the two different
p-value estimation procedures on all 44 (34 +10) data sets considered by N19 and R19. The right panel
includes 44 points since the p-values for clinical enrichment are only calculated based on permutation tests.
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Table S2: Data pre-processing steps performed in the original papers of PINSPlus and NEMO. Competing
methods not included in the experiment are indicated by asterisks (*). In case of design-implementation-
gaps, the information shown in the table refers to the code for reproducing the results.

PINSPlus (Nguyen et al., 2019) NEMO (Rappoport and Shamir, 2019)
Missing values in
omic data

• No information on removal and
imputation of missing values

• Only use patients with observations in all
three omics

• Remove patients and omic variables with
more than 20% missing values; impute
remaining missing values with k nearest
neighbor imputation

• Only use patients with observations in all
three omics

Missing values in
survival data

Only include patients with non-missing
survival information

Set missing survival times and death info
to 0 (these patients can still be used for
clinical enrichment)

Remove sample types
not corresponding to
“Primary solid
Tumor” (e.g.,
“Metastatic”)

No information Yes, except for LAML and SKCM data set

Omic variable
pre-processing for all
methods

• log2 transformation for gene expression
and miRNA expression

• log transformation for gene expression
and miRNA expression

• In all three omics, remove variables with
zero variance

• For methylation data, select 5000
variables with maximal variance

Method-specific
pre-processing

For all three types of omic data:

• Normalize variables (mean 0, standard
deviation 1): SNF, Consensus Clustering

• Subtract median after normalization:
Consensus Clustering

• Select 2000 variables with max. median
absolute deviation: iCluster+

• Remove variables with zero variance:
iCluster+

For all three types of omic data:

• Normalize variables (mean 0, standard
deviation 1) : k-means, spectral
clustering, SNF, MCCA, NEMO,
*rMKL-LPP

• Select 2000 variables with highest
variance: k-means, Spectral, MCCA,
*MultiNMF
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Table S3: Number of patients and omic variables (gene expression, methylation,miRNA expression) after
all pre-processing steps (except method-specific pre-processing) have been performed.

PINSPlus (Nguyen et al., 2019) NEMO (Rappoport and Shamir, 2019)

Data set Patients Gene
expression Methylation MiRNA

expression Patients Gene
expression Methylation MiRNA

expression

BRCA 622 239322 363763 2588 621 20226 5000 891
COAD 220 239322 374946 30771 220 19991 5000 613
GBM 273 12042 22833 534 274 12042 5000 534
KIRC 124 17974 23165 590 183 20087 5000 796
LAML 164 16818 22288 552 170 19938 5000 558
LIHC 366 73599 369193 540 367 20153 5000 852
LUSC 110 12042 23348 706 341 20237 5000 878
OV 286 239322 21675 705 287 20174 5000 616
SARC 257 20531 374752 1046 257 20221 5000 838
SKCM 439 20531 373814 586 448 20226 5000 901
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Table S4: Reproduced performance results (logrank p-values) of PINSPlus and its competing methods for
each data set based on the original study design by N19.

Data set PINSPlus CC SNF iCluster+
1 KIRC 6e-05 0.118 0.691 0.058
2 GBM 8.7e-05 0.014 0.021 0.103
3 LAML 0.00087 0.292 0.002 0.083
4 LUSC 0.008 0.688 0.087 0.224
5 BLCA 0.019 0.089 0.109 0.17
6 HNSC 0.046 0.428 0.366 0.364
7 LIHC 0.03 0.622 0.334 0.072
8 STAD 0.002 0.428 0.041 0.434
9 THYM 0.013 0.139 0.097 0.24

10 GBMLGG 7.5e-17 0.00052 4.8e-14 5.4e-14
11 LGG 7.7e-25 2e-06 1.6e-14 2.7e-14
12 PAAD 0.00025 0.013 0.00074 0.00063
13 SKCM 0.048 0.604 0.478 0.108
14 COADREAD 0.003 0.946 0.66 0.178
15 UCEC 0.001 0.105 0.018 0.619
16 CESC 0.03 0.376 0.51 0.201
17 COAD 0.001 0.419 0.128 0.884
18 BRCA 0.007 0.008 0.119 0.046
19 STES 0.007 0.301 0.157 0.46
20 KIRP 1.1e-09 0.367 0.005 0.013
21 KICH 0.028 0.955 0.701 0.788
22 UVM 0.00075 0.005 0.00017 0.003
23 ACC 0.007 0.014 4.3e-05 0.00071
24 SARC 0.03 0.148 0.044 4e-04
25 MESO 0.00073 0.272 0.00042 0.00022
26 READ 0.649 0.737 0.762 0.249
27 UCS 0.458 0.207 0.859 0.983
28 OV 0.319 0.859 0.445 0.062
29 ESCA 0.33 0.791 0.392 0.16
30 PCPG 0.866 0.938 0.332 0.55
31 LUAD 0.099 0.926 0.501 0.118
32 PRAD 0.349 0.638 0.475 0.879
33 THCA 0.166 0.64 0.62 0.111
34 TGCT 0.531 0.758 0.838 0.58
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Table S5: Reproduced performance results (number of enriched clinical variables / −log10 logrank p-values)
of NEMO and its competing methods for each data set based on the original study design by R19.

Data set K-Means Spectral LRACluster PINS SNF MCCA iClusterBayes NEMO
1 LAML 1/2.9 1/1.9 1/2 1/1.1 1/2.9 1/1.4 1/0.9 1/2.1
2 BRCA 0/0.6 2/1.6 4/1.3 1/1.2 2/1 0/3.2 3/0.2 3/1.4
3 COAD 0/0 0/0.2 0/0.5 0/0 0/0.2 1/0.3 0/0.2 0/0.2
4 GBM 2/2.3 2/2.3 1/1.4 1/3.6 1/4.2 1/1.9 0/1 1/1.9
5 KIRC 0/0.2 0/0.3 0/4.5 0/1.8 1/2.1 1/3.8 1/2 1/1.2
6 LIHC 1/0.2 2/0.4 0/0.8 2/2 2/0.2 2/0.9 2/1 3/3.3
7 LUSC 1/0.2 2/0.3 1/0.9 0/0.3 0/0.6 0/0.4 2/0.6 0/0.4
8 SKCM 2/0.6 2/0.9 3/2.7 1/2.8 1/0.6 2/4.3 3/4.4 3/3.9
9 OV 1/0.1 1/0.8 1/0.6 0/0 0/0.2 1/0.7 0/0 1/0.1

10 SARC 2/1.3 2/1.3 2/1 2/1.2 2/2.1 2/0.6 2/0.8 2/1.8
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B Supporting Information: Differential gene expression analysis

B.1 R and R package version information
Table S6 displays the (not necessarily complete) information on the R and R package versions that are
reported in the original paper of SFMEB and MBCdeg. Note that the version of the ROC package specified
by O21 does not exist, which is why a different version is used in the cross-design experiment.

Table S6: R and R package version information provided in the original papers of the two differential gene
expression analysis methods SFMEB and MBCdeg.

SFMEB (Zhou et al., 2021) MBCdeg (Osabe et al., 2021)
R version No information provided 3.6.3
R package version No information provided Method packages:

• MBCluster.Seq 1.0 (MBCdeg)
• TCC 1.26.0 (TCC)
• edgeR 3.28.1 (edgeR)
• DESeq2 1.26.0 (DESeq2)

Other packages:
ROC 1.6.3, recount 1.12.1

B.2 Different edgeR implementations
While the edgeR implementation used by O21 corresponds to one of the edgeR standard workflows, Z21
use three different versions of edgeR, of which only one can be considered as standard edgeR workflow
(still using a slightly different version than O21). In six simulation settings, Z21 only use an edgeR-like
implementation, which is not based on the negative binomial distribution that is usually considered for edgeR
but on the Poisson distribution (presumably, this is done because the counts in these settings are generated
using Poisson distribution). Since Z21 also include settings with no biological replicates (i.e., n = 1 in each
group) where edgeR results in an error, they instead use a testing procedure involving a binomial test. While
there are in fact several options suggested by the edgeR user manual (Section 2.12 - What to do if you have
no replicates) for settings with no biological replicates (although it is stated that these options are not ideal),
these do not include the procedure used by Z21. Instead, it is mentioned as an option for technical replicates
(i.e., repeated measurements of the same sample that represent independent measures of the random noise
associated with protocols or equipment; Blainey et al., 2014).

B.3 Incorrect AUC calculation
Z21 use the pROC (Robin et al., 2011) to calculate the AUC. Z21 and O21 use different R packages for
calculating the AUC, namely ROC (Carey and Redestig, 2021) and pROC (Robin et al., 2011), respectively.
In the pROC package, the function that calculates the ROC curve (roc) takes the argument direction,
which determines whether values higher or lower than the threshold should be considered as cases (i.e., DE
genes in this context). Per default, the package sets the direction automatically according to the medians of
the predicted values (see argument direction in the roc function of the pROC manual), which implies
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that the ROC curves are biased towards higher AUC values if the direction argument is not set explic-
itly. More precisely, this means that if the automatically defined direction argument is not correct, the
resulting AUC will be 1 minus the correct AUC. It seems as if Z21 were not aware of this unfortunate default
option since they did not explicitly specify the direction argument, potentially leading to incorrect AUC
values.

B.4 Sensitivity analysis of MBCdeg
The main parameter of MBCdeg (which is based on a clustering algorithm) is the number of clusters K to
be found by the method. The number of clusters does not have a default value and is set to K = 3 by O21 in
the simulation settings that we reproduce in our experiment. This reflects the assumption that there are three
gene expression patterns: non-DE genes, DE genes up-regulated in group 1, and DE genes up-regulated in
group 2 (where up-regulated in group j again means having higher expression in group j). However, O21
note that for settings where genes that are up-regulated in one group show different degrees of differential
expression (i.e., fold-changes), allowing MBCdeg to generate a higher number of clusters could lead to more
accurate results. This could apply to the settings of study 2 and 4 considered in Z21, which consist of two
data sets with two different log2 fold-changes (i.e., 2 and 3). As a sensitivity analysis, we thus set K = 5
for these settings, reflecting non-DE genes and the two different degrees of differential expression for both
groups, which however does not result in higher AUC values (see Figure S3). Moreover, O21 state that for
settings where all DE genes are up-regulated in one group, the true number of clusters is actually K = 2,
reflecting non-DE genes and DE genes (all up-regulated in one group). Since this situation is present for
the three settings of study 5 in Z21, we also run MBCdeg with K = 2, which, however, does not lead to
improved results (see Figure S3).

B.5 Experiment results of MBCdeg1
Figure S4 presents the performance ranks of MBCdeg1, which, in contrast to MBCdeg2 uses the default
normalization algorithm.
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Figure S3: Performance results for MBCdeg1 and MBCdeg2 when using different values for K. K = 3 is
the value used in the main analysis.
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Figure S4: Performance ranks of the differential gene expression analysis method MBCdeg1 based on data
sets and competing methods that either correspond to the original (Osabe et al., 2021) or crossed design
(Zhou et al., 2021). Each horizontal bar plot shows the performance rank distribution of MBCdeg1 for one
combination of data sets and competing methods. The number of ranks that is represented by each bar
plot corresponds to the number of simulation settings in the respective data source (nsetting = 15 for data
based on Z21; nsetting = 24 for data based on O21). The rank of each simulation setting is calculated
based on the median AUC value across all simulation repetitions. The dashed lines indicate the number of
compared methods, i.e., the highest possible rank. Note that the ranks that result from the combination of
competing methods by O21 and data by Z21 are represented by two bar plots due to the incompatibility of
two competing methods of O21 with some simulation settings of Z21.
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Abstract

Simulation studies are indispensable for evaluating and comparing statistical methods. The most common simula-

tion approach is parametric simulation, where the data-generating mechanism (DGM) corresponds to a predefined

parametric model from which observations are drawn. Many statistical simulation studies aim to provide practical

recommendations on a method’s suitability for a given application; however, parametric simulations in particu-

lar are frequently criticized for being too simplistic and not reflecting reality. To overcome this drawback, it is

generally considered a sensible approach to employ real data for constructing the parametric DGMs. However,

while the concept of real-data-based parametric DGMs is widely recognized, the specific ways in which DGM

components are inferred from real data vary, and their implications may not always be well understood. Addi-

tionally, researchers often rely on a limited selection of real datasets, with the rationale for their selection often

unclear. This paper addresses these issues by formally discussing how components of parametric DGMs can be

inferred from real data and how dataset selection can be performed more systematically. By doing so, we aim to

support researchers in conducting simulation studies with a lower risk of overgeneralization and misinterpretation.

We illustrate the construction of parametric DGMs based on a systematically selected set of real datasets using

two examples: one on ordinal outcomes in randomized controlled trials and one on differential gene expression

analysis.

Keywords: data-generating mechanism, empirical methodological research, Monte Carlo ex-

periments, real-data-based simulation, realistic simulation settings

1 Introduction

In medicine and other disciplines, researchers applying statistical methods are faced with an

ever-growing number of options to choose from. To aid them in these decisions and provide well-

founded practical recommendations regarding the suitability of a method for a given application,

empirical methodological studies, i.e. studies that empirically evaluate and compare statistical

∗These authors contributed equally to this work.
†Corresponding author, e-mail: christina.sauer@stat.uni-muenchen.de.
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methods, are indispensable. In these studies, the data to which the statistical methods are

applied can be divided into two main categories: simulated data and real data. Accordingly,

we refer to these studies as simulation studies and real-data studies, respectively, although they

may be presented within the same publication, potentially in combination with the introduction

of a new method.

The first key distinction between the two study types lies in how the data-generating mechanism

(DGM) is determined: While in simulation studies, the DGM(s) must be explicitly specified

by the researcher, in real-data studies, the DGM underlying each real dataset is inherently

determined by real-world processes (Hothorn et al., 2005). For real-data studies, this shifts

the focus from specifying a DGM to the careful selection of appropriate datasets for the study.

Although simulation studies may employ semi-parametric approaches, where part of the DGM

involves resampling from a real dataset, the most common approach is parametric simulation,

where a predefined parametric model is used to draw observations (Morris et al., 2019; Siepe

et al., 2024). Focusing for now on parametric simulations, another critical distinction between

simulation studies and real-data studies emerges: Unlike real-data studies, where the true DGMs

remain unknown and reflect complex real-world processes, simulation studies operate with DGMs

that are fully known, as they are explicitly constructed by the researcher.

Based on these two distinctions, simulation studies offer two key advantages over real-data

studies. First, the full knowledge of the DGM (often referred to as access to the “ground

truth”) enables researchers to evaluate the performance of statistical methods with respect to

essentially any target of interest, such as a true effect size or the validity of a null hypothesis

(Boulesteix et al., 2020; Friedrich & Friede, 2024). In contrast, real datasets typically provide

only a limited set of targets for which the truth is known, with prediction tasks (where the

target corresponds to the true outcome of an observation) being a notable exception. Second,

the full control over the DGM in simulation studies allows researchers to investigate statistical

methods under virtually any scenario they wish to explore (e.g., varying parameter values and

distributions) and to generate an unlimited number of datasets from the same DGM. In stark

contrast to real-data studies, the amount of available data in simulation studies is essentially

only limited by the available computational resources (Boulesteix et al., 2020).

Importantly, however, having full control over the DGM, while offering clear advantages, also

places a substantial responsibility on the researcher, making it something of a mixed blessing.

While this applies to all decisions in the design and execution of a study—commonly referred

to as researcher degrees of freedom (RDFs; Simmons et al., 2011)—DGM-related RDFs are

particularly impactful, as the choice of the DGM(s) can strongly influence the results of a

simulation study and, as a consequence, the recommendations derived from them (Astivia &

Zumbo, 2015; Fairchild et al., 2024; Jansen & Holling, 2023; Kulinskaya et al., 2021; Metcalfe

& Thompson, 2006; Pateras et al., 2018). To illustrate the mixed blessing of having full control

over the DGM, consider a researcher conducting a simulation study to evaluate methods with

respect to a specific target in a clinical trial with two treatment groups, a continuous outcome,

and under the scenario where a specific assumption Z is violated. While it is advantageous

that the DGM can be easily tailored to match the researcher’s specific interests (e.g., continuous
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outcome, two treatment groups, violation of Z), several parameters (e.g., effect size, sample size)

and parts of the model structure (e.g., outcome distribution, presence of covariates, extent of

Z’s violation) still need to be defined, which is often a challenging process that requires careful

consideration.

Practical relevance For simplicity, assume for now that only a single numerical parameter θ

remains to be specified. To enhance the generalizability of the simulation findings to its domain

of interest, a reasonable approach is to choose values for θ that are practically relevant for that

domain. Here, the domain of interest refers to the (hypothetical) population of true real-world

DGMs to which the simulation study’s results and recommendations should apply, and the set

of chosen values for θ is practically relevant if its distribution closely aligns with that of θ in

the real-world DGMs within the domain of interest; this concept can similarly be extended

to all components of the DGM. Importantly, having realistic DGMs—defined as reflecting any

real-world DGM—does not automatically ensure practical relevance. Using again the example

of a specific parameter θ, practical relevance requires that the distribution of its values aligns

with the distribution observed in the DGMs that actually belong to the study’s domain of in-

terest. Thus, realistic DGMs are a necessary but insufficient condition for practical relevance.

The concept of specifying practically relevant DGMs (or at least realistic ones) aligns with rec-

ommendations in the literature, including formal guidelines and related discussions (Boulesteix

et al., 2020; Burton et al., 2006; Chipman and Bingham, 2022; Harwell et al., 2017; Paxton

et al., 2001; White, 2023). Of course, simulations using intentionally simplistic or unrealistic

DGMs also serve important purposes, such as identifying a method’s breaking point (Heinze

et al., 2024; Morris et al., 2019). However, we argue that for many simulations, researchers

implicitly aim for practical relevance, or at least this is what readers are likely to assume unless

explicitly stated otherwise.

Assuming an aim of practical relevance, two main issues arise: First, achieving practically rele-

vant DGMs for a given domain of interest is challenging. This is supported by several reviews

identifying discrepancies between the DGMs used in simulations and real datasets. For example,

when reviewing simulation studies on meta-analyses, Langan et al. (2017) and Fernández-Castilla

et al. (2020) found that the number of simulated individual studies often exceeded the number

typically observed in existing meta-analyses. Similar discrepancies were found in the context

of recurrent events data (Pénichoux et al., 2015), missing data (Guevara Morel et al., 2022),

fMRI data (Welvaert & Rosseel, 2014), or the health, educational, and social sciences in general

(Bono et al., 2017). Since these reviews treat the discrepancies as criticisms, it is reasonable

to assume that the studies aimed for practical relevance. These discrepancies may arise from

arbitrary or non-neutral choices, with the latter reflecting often well-intentioned but potentially

biased decisions that favor specific outcomes (e.g., demonstrating the superiority of a particular

method; Pawel et al., 2024) and thus exploit the RDFs associated with the DGM. Regardless of

the reason for the discrepancies, if a simulation study gives the impression of using practically

relevant DGMs when, in fact, they are not—even though it is widely understood that such

studies inevitably involve simplifications—this can lead to misinterpretation of the findings by

readers and possibly even the researchers themselves.
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Second, the definition of practical relevance given above inherently relies on a precise specifi-

cation of the domain of interest, which is usually not clear from the context of the study. For

instance, in the example above, assume the researcher has selected a set of DGMs; the domain of

interest to which the results are intended to generalize could then lie anywhere between the real-

world DGMs exactly corresponding to those considered in the study and all real-world DGMs

with a continuous outcome, two treatment groups, and a violation of assumption Z. While

Strobl and Leisch (2024) rightly argue that it is nearly infeasible to formally and unambiguously

define a domain of interest, failing to specify it entirely is not a better alternative. Without such

a specification, the domain of interest may be assumed to be broader than it actually is, which

can increase the risk of overgeneralizing the results (Nießl et al., 2024).

To address these issues, a reasonable approach in the analysis of results is to focus on analyz-

ing the relationship between DGM characteristics and method performance (Strobl and Leisch,

2024), as solely considering overall performance can be misleading if the DGMs lack practical

relevance and is generally hard to interpret without a clearly defined domain of interest. How-

ever, this approach is limited if, for example, most of the values selected for a specific parameter

in the DGM do not reflect any real-world DGMs. As a complementary perspective, attention

may thus also be directed toward specifying the DGMs themselves.

Real-data-based parametric simulations To ensure that the DGMs reflect any real-world

DGM (a necessary condition for practical relevance, as noted above), a natural approach is

to base them on real datasets. This can be done in a direct manner by resampling parts of

the simulated data from real datasets, which, however, requires transitioning from parametric

to semi-parametric simulation approaches, such as Plasmode simulation (Franklin et al., 2014;

Schreck et al., 2024). If one wishes to remain within the framework of parametric simulations,

specific parameters or parts of the model structure could still be derived from real datasets

(as suggested, e.g., by Burton et al., 2006). This approach has been adopted in a number of

simulation studies (see reviews by Morris et al., 2019, and Siepe et al., 2024), but the concept

is typically implemented differently—both in terms of which parts of the DGM are informed

by real data (Friedrich & Friede, 2024) and how directly the data inform these parts, which

inherently affects the degree of realism achieved. Thus, while real-data-based simulations reduce

RDFs associated with the direct specification of DGMs, they introduce new RDFs related to

the process of specifying the DGM based on the real dataset. To our knowledge, in contrast to

Plasmode simulation, there is no literature systematically discussing the rationale or implications

for different implementations of real-data-based parametric simulation.

In addition, basing simulations on real datasets also creates new RDFs related to the selection of

these datasets. In practice, very few datasets are typically used for this purpose. For example,

in the reviews by Morris et al. (2019) and Siepe et al. (2024), the real-data-based parametric

simulation studies almost always rely on just one or two datasets. The selection of these datasets

is rarely justified, often appearing to be one of convenience, and it is usually unclear which

domain of interest they are meant to represent. Consequently, while the resulting DGMs might

be realistic, they are not necessarily practically relevant—at least not beyond the specific DGMs
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underlying the selected datasets. In principle, the criticisms regarding dataset selection are

similar to those raised for real-data studies (see, e.g., Herrmann et al., 2024, and references

therein). A promising strategy for addressing these issues in real-data-based simulation studies

could thus be to adopt what has already been suggested for real-data studies: systematically and

transparently selecting datasets by specifying a database and clear eligibility criteria for dataset

inclusion (see, e.g., Boulesteix et al., 2017). While this approach does not fully resolve the

challenge of formally defining the domain of interest, the selection process can serve as a proxy,

providing more clarity to readers about the practical settings in which a simulation study’s

findings are expected to hold. Additionally, shifting RDFs from the selection of individual

datasets to defining a systematic selection process can facilitate more meaningful and neutral

decisions, thereby enhancing the practical relevance of the considered DGMs.

Our contribution Overall, while the concept of real-data-based simulations is widely rec-

ognized, its specific implementation for parametric simulations has not yet been thoroughly

addressed, and the process of selecting real datasets is often not conducted systematically. This

paper aims to address these gaps by discussing the possibilities, rationale, and implications

of all steps of real-data-based simulations. While our focus is primarily on parametric simula-

tions, the insights provided also apply to the parametric element of semi-parametric simulations.

Additionally, the discussion on dataset selection is also relevant for the resampling element of

semi-parametric simulations.

The paper is organized as follows: In Section 2, we cover all necessary preliminaries, including

the types of DGMs used in simulations and key distinctions in the components of parametric

DGMs. In Section 3, we detail the construction of real-data-based simulations, considering both

the inference of DGMs from real datasets and the systematic selection of these datasets. In Sec-

tion 4, we present two empirical examples of parametric simulations based on a systematically

selected set of datasets, demonstrating that considering only purely researcher-specified DGMs

or relying on a single dataset can lead to an incomplete picture of a method and results that

do not generalize well. In Section 5, we provide a structured step-by-step workflow, and we

conclude our paper in Section 6.

2 Preliminaries

2.1 DGM types

As outlined in the introduction, this paper focuses on parametric simulation. Hence, we refer to

the DGMs employed in this approach as parametric DGMs. DGMs of this type correspond to

parametric stochastic models that can be represented in closed form (Morris et al., 2019; Schreck

et al., 2024). A given parametric DGM is fully specified by its model structure, which consists

of various parts specifying the relationships among variables and the statistical distributions

assigned to them, and the numerical parameters that provide the specific values required to

fully define the model (e.g., sample sizes or effect sizes). We refer to the model structure (or its

parts) and the parameters as the components of the DGM. Importantly, the model structure
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inherently determines the set of parameters by outlining the distributions, relationships, and

other aspects that require numerical values for full definition. Detailed examples of parametric

DGMs are provided in Section 2.3.

Instead of parametric DGMs, simulation studies may also use semi-parametric DGMs. As the

name suggests, this type of DGM is not fully parametric but includes a non-parametric element

in the form of resampling from a real dataset (Schreck et al., 2024). Examples of resampling

schemes are simple resampling of observations (with or without replacement) or more advanced

methods such as sampling from a smoothed empirical distribution of the dataset estimated via

kernel density estimation (see Stolte et al., 2024, for further options). Note that although the

term “non-parametric” might suggest the absence of parameters, it refers only to the absence of

a predefined parametric form. Researchers still need to specify parameters for the resampling

scheme, such as the number of observations to be drawn. A specific implementation of semi-

parametric DGMs has become known as Plasmode simulation (Franklin et al., 2014; Schreck

et al., 2024), which combines resampling of covariate information from a real dataset (non-

parametric element) with an outcome-generating model specified by the researcher (parametric

element).

Building on the description of semi-parametric DGMs, one might also consider DGMs that are

entirely based on resampling without any parametric element. However, studies that rely solely

on resampling without incorporating any parametric element are commonly classified as real-

data studies, particularly in the context of prediction tasks (Hothorn et al., 2005). Nevertheless,

generating data by resampling from an existing dataset can also be regarded as an approach for

simulations (see, e.g., Morris et al., 2019). This is why we briefly address it here as well, even

though we categorize resampling-only studies as real-data studies. As noted in the introduction,

parametric DGMs are widely used, likely because of two key advantages: access to the ground

truth and full control over the DGM. However, when the aim is to utilize real datasets to improve

practical relevance, other options may, at first glance, appear even more suitable for this purpose

than parametric DGMs. More formally, let D be a real dataset that is considered given for now,

and let G denote the DGM we aim to specify to closely approximate the true but unknown DGM

of D, denoted as G∗D. While it is then possible to make the parametric DGM real-data-based by

deriving it from D (a process we intentionally leave vague for now in the context of parametric

DGMs but will elaborate on in Section 3), generating data by resampling might initially seem

like a more natural choice: it is intrinsically real-data-based, not constrained by a parametric

model, and therefore generally expected to yield a DGM G that aligns more closely with G∗D.
At the same time, as already outlined in the introduction, real-data studies face the critical

limitation that G∗D, as stated above, remains unknown. As a result, the set of known targets

available for evaluating methods is inherently restricted. In this respect, semi-parametric DGMs

represent a promising compromise. For instance, in the case of Plasmode simulations, the non-

parametric resampling element allows to preserve complex covariate structures present in the

real dataset, while the parametric element (which can also be based on D) offers knowledge of

the truth for specific aspects of the DGM, such as the relationship between the covariates and

the outcome (Schreck et al., 2024).
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Based on these considerations, one might conclude that semi-parametric DGMs should generally

be preferred over parametric DGMs for specifying realistic DGMs. However, this conclusion is

not universally valid, as it depends on the characteristics of the real dataset D and the specific

procedure used to derive the parametric or semi-parametric DGMs from D. Moreover, there

are also arguments in favor of (real-data-based) parametric DGMs over semi-parametric DGMs.

First, the non-parametric element of semi-parametric DGMs lacks a closed-form representation,

making it more difficult to comprehensively describe or evaluate its plausibility. If undesirable

characteristics of the dataset D (e.g., spurious correlations) are inadvertently incorporated into

the DGM, these issues are more likely to go unnoticed in semi-parametric DGMs than in para-

metric DGMs. Additionally, when multiple real datasets are considered, comparing relevant

differences between the resulting DGMs can be more challenging in the semi-parametric case.

Second, semi-parametric DGMs face practical limitations related to the accessibility of the real

dataset. If the dataset D is not openly available (though we do not recommend this practice),

a parametric DGM based on D can still be shared, even when the actual dataset D cannot be

disclosed. In contrast, semi-parametric DGMs rely on the availability of the complete dataset

for reproducibility. Furthermore, it may sometimes be possible to construct real-data-based

parametric DGMs without accessing the original dataset at all (this will be discussed in more

detail in Section 3.3). For example, relevant parameters can often be derived from summary

tables or similar sources, a convenience that semi-parametric DGMs generally lack.

Although semi-parametric DGMs also merit discussion regarding their specification based on

real datasets, this paper primarily focuses on parametric DGMs, as they remain the most com-

monly used type and, to our knowledge, lack a systematic examination in this respect. At

the same time, the discussion on deriving parametric DGMs from real datasets (Sections 3.1

and 3.2) is equally applicable to the parametric element of semi-parametric DGMs, while the

considerations for dataset selection (Section 3.3) are partially also relevant for the resampling

element of semi-parametric DGMs.

2.2 Differentiating components in parametric DGMs

Before discussing how parametric DGMs can be inferred from real data, we first need to exam-

ine their components in more detail. For this purpose, we consider a given parametric DGM

G, of which some components were inferred from a real dataset D. Given this setup, we intro-

duce additional differentiations beyond the distinction between model structure and parameters.

Specifically, we consider two differentiations: one regarding how the components of G were spec-

ified and another regarding our knowledge of their form or value in the true DGM underlying D.
These distinctions apply to both individual parts of the model structure of G and its parameters.

2.2.1 Specification-based differentiation of components

The first important differentiation concerns how exactly the components of G have been specified.

This differentiation, which should be made by the researcher when planning the study, is essential

because it determines how real datasets (here: a single dataset D) are selected and which

components are based on real data. Each component of G (i.e. each specific part of the model

structure and each parameter) falls into one of the following three categories:
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i. Researcher-specified components of interest: These are components of G that were ex-

plicitly specified by the researcher based on their research question. Conceptually, these

components anchor the domain of interest and thus determine the selection of real datasets

(together with any constraints on real-data-based components, see below). For example,

the hypothetical researcher in the introduction was interested in a setting with two treat-

ment groups, a continuous outcome, and the violation of a specific assumption Z. In this

case, the researcher-specified components of interest in G include the type of outcome vari-

able, the status of assumption Z (both are parts of the model structure), and the number

of treatment groups (a parameter).

ii. Researcher-specified components of convenience: These are components of G that were

specified by the researcher but not because they are directly aligned with the domain of

interest. While, in general, one might argue that all components that are not of specific

interest should be based on real data (see the next category), some might still be reasonably

specified by the researcher for practical reasons. This may be because they are assumed

to have negligible effects on simulation results, are expected to hold by default, or are

impractical to infer from real data. In the example above, such a component could be

the distribution chosen for the covariates. Importantly, the choice to directly specify

components of the DGM that are not of primary interest is a delicate one and should be

justified while considering potential unintended consequences for simulation results.

iii. Real-data-based components: These are components of G that were not specified by the

researcher but instead were inferred from real data. During study planning, these compo-

nents are not yet specified, but researchers might still impose explicit or implicit constraints

on them based on their research question. These constraints, along with the researcher-

specified components of interest, help define the domain of interest and, for this reason,

are also relevant for dataset selection. For example, consider an effect size parameter.

Researchers may explicitly specify a range of interest, directly restricting its possible val-

ues. Alternatively, they may restrict the simulation study to a specific context, such as a

certain disease type, which will implicitly constrain the possible values of the effect size

parameter when inferred from datasets of that disease type.

2.2.2 Knowledge-based differentiation of components

The second differentiation of the components of G considers whether their true form or value—

depending on whether the component is a part of the model structure or a parameter—in the true

DGM G∗D underlying the real dataset D is known or unknown. This differentiation is relevant

because, in general, unknown components introduce uncertainty that affects both the selection

of real datasets and the inference of components from them (the specific issues arising will be

discussed in Section 3). For the given DGM G, this means that the real-data-based components

were inferred from D despite their true form or value in G∗D being unknown. Meanwhile, for G’s
researcher-specified components of interest, which guide dataset selection, it remains uncertain

whether their specified form or value truly matches that in G∗D. Note that the latter implies that

the knowledge-based differentiation is relevant not only for real-data-based components but also
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for researcher-specified components of interest, highlighting its conceptual independence from

the specification-based differentiation.

As in the specification-based differentiation, the knowledge-based differentiation applies to both

individual parts of the model structure of G and individual parameters of G. Since parameters

in any parametric DGM are generally defined conditionally on the model structure, applying

this differentiation to a parameter of G requires assuming that at least the relevant part of its

model structure matches that of G∗D. Otherwise, the corresponding parameter (and its true

value) would not be meaningfully defined in G∗D. While we provide examples for both categories

below, more detailed examples will be given in Section 2.3.

i. Known components: These are components of G whose true form or value in G∗D is known,

either because it can be directly determined from D or because it is established by exter-

nal knowledge about the application where D originates (e.g., study design information).

Typically, only a limited number of components belong to this category. For parts of the

model structure, examples of known components include variable types, such as whether

a variable is dichotomous or continuous. For parameters, examples include the number of

treatment groups or the number of observations, as these can be observed directly from

D.
ii. Unknown components: These are components of G whose true form or value in G∗D is

unknown and can only be inferred from D with uncertainty. For example, if G includes a

relationship between the outcome variable and covariates, unknown components include

the functional form of this relationship (a part of the model structure) and the correspond-

ing effect sizes (parameters). Within unknown DGM components, a further distinction can

be made between those that explicitly or implicitly appear in the formulation of the sim-

ulation’s target and those that do not. For instance, if, as in the previous example, G
includes a relationship between an outcome and covariates, and the simulation aims to

compare methods for estimating the effect size, this parameter is directly relevant to the

simulation target.

2.3 Notation and examples

When describing the construction of real-data-based DGMs in Section 3, we will start with the

researcher-specified components already set, while the real-data-based components remain un-

specified. In this section, we introduce the corresponding notation needed for this process and

provide example simulation study descriptions that illustrate its use. To simplify the notation,

we make the following two assumptions.

First, in many cases, researcher-specified components of interest will not be set to a single op-

tion or value. Returning to the hypothetical researcher from the introduction, we have, up to

this point, suggested that they are only interested in a DGM with two treatment groups, a

continuous outcome, and the violation of a specific assumption Z. However, they may also be

interested in DGMs with three or four treatment groups or with a dichotomous outcome instead

of a continuous one. This would result in up to six possible combinations. To simplify the

discussion, we assume that the researcher-specified components of interest are fixed to a single

9



option or value at a time. In the example, this means that only one of these six combinations

would be considered within a given process of constructing real-data-based DGMs (which will

be described in Section 3). Accordingly, in practice, this process would need to be repeated

separately for each combination. In contrast to the researcher-specified components of interest,

the researcher-specified components of convenience are more likely to be set to a single option or

value—particularly when their influence is assumed to be negligible or they are expected to hold

by default. However, if such a component is assigned multiple options or values (e.g., because it

is impractical to infer from real data but still important to vary), this does not require repeating

the full process described in Section 3. Instead, it only requires deciding how these components

with multiple options or values will be combined with the later inferred real-data-based com-

ponents. For simplicity, we assume that all researcher-specified components of convenience are

also fixed to a single option or value in Section 3, though we encounter the non-simplified case

in the empirical illustrations in Section 4.

Second, while both parts of the model structure and individual parameters can, in principle, be

inferred from real data, this paper primarily focuses on parameter inference. Consequently, we

assume as a base scenario that only parameters are inferred from real data, meaning that all

parts of the model structure are specified by the researcher, either as components of interest or

convenience, and regard the case where parts of the model structure are also based on real data

as an extended scenario.

Based on these considerations, we introduce notation that will be used in the remainder of this

paper. To maintain clarity, we only introduce notation for elements that are directly relevant to

the discussion. Since all researcher-specified components are assumed to be set to a single option

or value, the base scenario implies a single, fully researcher-specified model structure, which we

denote asM. If, in addition, parts of the model structure are inferred from real data, this would

lead to multiple possible model structures, and notation for this case will be introduced at the

relevant point in the discussion in Section 3. For parameters, which are inherently determined

by the model structure, we denote the set of parameters that are intended to be real-data-based

as θ, while the set of parameters that are researcher-specified, either as components of interest

or as components of convenience, is denoted as λ. Because researcher-specified components are

assumed to be fixed to a single option or value, each parameter in λ is set to a single value.

Consequently, givenM and λ, if a single value were inferred for each parameter in θ, this would

fully specify a single DGM.

To also integrate the knowledge-based differentiation specifically for parameters into the no-

tation, we denote θknown and λknown as the parameters whose true values in the true DGM

underlying the real dataset are known, while θunknown and λunknown are those whose true values

are unknown. As explained in Section 2.2.2, this differentiation is relevant for all parameters,

regardless of whether they belong to θ (real-data-based) or λ (researcher-specified). Within the

category of unknown parameters, we further refine the notation to reflect the distinction between

parameters that explicitly or implicitly appear in the formulation of the simulation target and

those that do not. Accordingly, we write θunknown,target and λunknown,target for the former and

θunknown,other and λunknown,other for the latter.
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To illustrate the introduced notation, we now present descriptions of four simulation studies,

which will also serve as recurring examples throughout the paper. These examples do not

specify full study designs but focus on the aim, the model structure of the DGM, and the

target/estimand, aligning with the “A”, “D”, and “E” aspects of the ADEMP framework for

simulation studies proposed by Morris et al. (2019). Since the knowledge-based differentiation

of parameters may require additional explanation, we explicitly highlight it in these examples.

To avoid unnecessary complexity, we assume all parameters to be based on real data and thus

initially left unspecified, meaning that they are all contained in θ (although, since the purpose

of the examples is to elaborate on the knowledge-based differentiation, it is not relevant that

the parameters are in θ, and we could have just as well assigned values to them, i.e. made

them part of λ, instead). The only exception is the number of groups (K), which we set as

a researcher-specified parameter of interest, simplifying the notation, as explicitly formulating

the model structure for a general number of groups would be impractical. Since the true value

of K can be known in the true DGM underlying a dataset D, we have λknown = {K} (while

λunknown = ∅, as there are no other researcher-specified parameters).

Examples 2–4 are based on actual published simulation studies (references provided below).

However, only a single aim, target, and model structure were selected per study (if multiple

were present), and in some cases, these were slightly modified or simplified. Additionally, the

notation was adjusted to ensure consistency across the examples. A summary of the parameters

used in the examples, including their role in the knowledge-based differentiation, is provided in

Table 1.

Example 1 (Example-Ordinal)

• Aim: Evaluation of methods testing the null hypothesis H0 of no treatment differences in

two-arm (i.e. K = 2) randomized controlled trials with ordinal outcomes having M categories,

in settings where H0 is false

• Model structureM of the DGM: Each simulated dataset is an n×2 matrix containing the

ordinal outcome yi ∈ {1, . . . ,M} and the treatment assignment xi ∈ {1,2} for n individuals,

i = 1, . . . , n. Half of the individuals (n/2) are assigned to each treatment group. For each

individual in group k ∈ {1,2}, the outcome is generated by drawing from Multinomial(1,πk),
where πk = (π1,k, . . . , πM,k), with πm,k = P (Y =m ∣X = k), m = 1, . . . ,M , and ∑M

m=1 πm,k = 1.
In addition, since H0 is false, πm,1 ≠ πm,2 for at least one m ∈ {1, . . . ,M}.

• Estimand/Target: The null hypothesis H0 ∶ πm,1 = πm,2 for all m ∈ {1, . . . ,M}
The parameters in θ in Example-Ordinal are the number of individuals, n, the number of

ordinal categories, M , and the outcome probabilities for each group, π1 and π2. The true

values of n and M in G∗D are known, making them part of θknown, i.e. θknown = {n,M}. In

contrast, the true probabilities π1 and π2 in G∗D cannot be known. Since the simulation target

is to evaluate the null hypothesis H0 ∶ π1 = π2, it follows that θunknown,target = {π1,π2}. In this

example, there are no additional parameters, so θunknown,other = ∅.
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Example 2 (Example-Survival, based on the study by Dormuth et al., 2023)

• Aim: Evaluation of methods testing the null hypothesis H0 of no differences in two-arm (i.e.

K = 2) clinical trials with survival outcome, in settings where H0 is false

• Model structure M of the DGM: Each simulated dataset is an n × 3 matrix containing

the (uncensored or right-censored) survival time yi ∈ R+, the censoring indicator di ∈ {0,1}
(with di = 1 if the event was observed and di = 0 otherwise), and the treatment assignment

xi ∈ {1,2} for n individuals, i = 1, . . . , n. Each treatment group contains n/2 individuals. For

each individual in group k ∈ {1,2}, the observed survival time and the censoring indicator

are generated as y = min(t, c) and d = 1(t ≤ c), respectively, with theoretically observable

survival time t and censoring time c being drawn independently from Exp(ηk) and Unif(0, u),
respectively. Since H0 is false, η1 ≠ η2.

• Estimand/Target: The null hypothesis H0 ∶ S1(t) = S2(t) for all t ∈ R+, where S1(t) and
S2(t) are the survival functions of groups 1 and 2

In Example-Survival , the parameters in θ are the number of individuals, n, the event rate

parameters η1 and η2, and the upper bound of the censoring distribution, u. Similar to the first

example, the true value of n is known, i.e. θknown = {n}. This is in contrast to the parameters

η1, η2, and u, whose true values cannot be known (unless u is explicitly determined by the

study design). Since the target considers the survival function, which for group k under the

exponential distribution is given by Sk(t) = exp(−ηkt), it follows that θunknown,target = {η1, η2},
while θunknown,other = {u}.
Example 3 (Example-Meta-Analysis, based on the study by Langan et al., 2019)

• Aim: Evaluation of methods to estimate the variance of the true effect sizes (between-

study heterogeneity variance) in meta-analyses of studies with two groups (i.e. K = 2) and

continuous outcomes

• Model structure M of the DGM: Each simulated dataset represents a meta-analysis

of nstudy studies. It is an nstudy × 2 matrix containing the estimated effect size δ̂i ∈ R and

its estimated within-study variance σ̂2
i ∈ R+ for the nstudy studies, i = 1, . . . , nstudy. The

evaluated methods are applied exclusively to the meta-analysis dataset. However, to generate

this dataset, additional study-level data must be simulated for each of the nstudy studies. For

each study i, the true study effect δi is drawn from N(δ, τ2), where δ is the true overall

effect and τ2 is the between-study heterogeneity variance, and a study sample size nobsi is

drawn from Unif(umin, umax) and then split evenly into two groups. Outcome values for

the individuals in group 1 and 2 are drawn from N(µ1,i, σ
2
1,i) and N(µ2,i, σ

2
2,i), respectively,

where µ2,i −µ1,i = δi and σ2
1,i = σ2

2,i = σ2. Based on the simulated data at the study level, the

estimated effect size δ̂i and within-study variance σ̂2
i are calculated using Hedges’ g.

• Estimand/Target: The between-study heterogeneity variance (τ2)
The parameters in θ in Example-Meta-Analysis can be grouped by study level: At the meta-

analysis level, they include the number of studies, nstudy, the overall effect δ, the between-
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Table 1: Summary of all parameters in θ, categorized according to the knowledge-based differ-
entiation of components, in the example simulation studies. Except for the number of groups,
which is researcher-specified and set to K = 2 in all examples, these constitute the full set of
parameters defined by the corresponding model structureM.

Example Aim: Evaluate
methods for . . .

θknown θunknown,target θunknown,other

Ordinal . . . testing H0 of no
treatment differ-
ences in two-arm
randomized con-
trolled trials with
ordinal outcomes

· n: No. of
individuals

· M : No. of
outcome
categories

· π1,π2: Outcome
probabilities per
group

–

Survival . . . testing H0 of no
differences in two-
arm trials with sur-
vival outcomes

· n: No. of
individuals

· η1, η2: Event rate
per group

· u: Censoring upper
bound

Meta-Analysis . . . estimating the
variance of true ef-
fect sizes (between-
study heterogeneity
variance)

· nstudy: No.
of studies

· τ2:
Between-study
heterogeneity

· δ: Overall effect

· umin, umax: Range
for sample size

· µ1,i: Mean for
group 1 (per study)

· σ2: Within-group
variance

DE-Analysis . . . identifying
differentially
expressed genes
between two groups

· n: No. of
samples

· p: No. of
genes

· FCj : Fold change

· pDE : Proportion
of DE genes

· µj , ϕj : Expression
mean and
dispersion

study heterogeneity variance τ2, and the parameters umin and umax, which define the range

for the study sample sizes. At the study level, the parameters are the mean for group 1 (for

each study i), µ1,i, and the within-group variance σ2. Accordingly, G∗D essentially represents a

two-level mechanism, specifying both the generation of study-level data and the meta-analysis

dataset. If D represents a meta-analysis dataset (where each row corresponds to a study),

additional datasets for the nstudy studies summarized in D would be needed to infer the study-

level parameter values. Similar to the previous examples, the true value of nstudy in G∗D can

be known, i.e. θknown = {nstudy}, while the true values of the remaining parameters cannot.

Among the latter, τ2 represents the target of the simulation, i.e. θunknown,target = {τ2}, while the
remaining parameters are included in θunknown,other = {δ, σ2, umin, umax, µ1,i ∣ i = 1, . . . , nstudy}.
Example 4 (Example-DE-Analysis, based on the study by Baik et al., 2020)

• Aim: Evaluation of methods for differential gene expression analysis, i.e. methods that

identify genes with differences in their RNA-Seq expression levels, in a two-group (i.e. K = 2)
setting (e.g., cancer vs. normal)

• Model structureM of the DGM: Each simulated dataset is an n×(p+1)matrix containing

the RNA-Seq read count ri,j ∈ Z0+ for n samples, i = 1, . . . , n, and p genes, j = 1, . . . , p,

where the read count represents the gene expression level, with a larger count indicating
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higher expression. The matrix also includes the group indicator xi ∈ {1,2}, and each group

contains n/2 samples. For sample i and gene j, the read count is generated by drawing

from a negative binomial distribution, specifically NB(µj ⋅ FCj , ϕj), µj , ϕj ≥ 0, if xi = 1, and
NB(µj , ϕj), µj , ϕj ≥ 0, if xi = 2. Here, the fold change FCj quantifies the relative change in

expression. Among all genes, a proportion pDE is simulated as differentially expressed (DE),

with FCj ≠ 1 for those genes, while FCj = 1 for non-differentially expressed genes.

• Estimand/Target: The null hypothesis H0 ∶ FCj = 1 for all j ∈ {1, . . . , p}
In Example-DE-Analysis, the parameters in θ are the number of samples, n, the number of genes,

p, the mean expression level µj and the dispersion parameter ϕj for each gene j, j = 1, . . . , p,

the proportion of DE genes, pDE, and the fold change FCj (where FCj ≠ 1 only for DE genes).

While the true values of n and p in G∗D are known, i.e. θknown = {n, p}, the true values of

µj , ϕj , pDE, and FCj are not. Since the simulation target is to evaluate the null hypothesis

of no differential expression (FCj = 1) for each gene, θunknown,target includes FCj and pDE, as

pDE represents the proportion of genes where the null hypothesis does not hold. Accordingly,

θunknown,target = {FCj ∣ FCj ≠ 1} ∪ {pDE}. The remaining parameters, µj and ϕj , are part

of θunknown,other, as they are required for generating the data but not directly related to the

simulation target, i.e. θunknown,other = {µj , ϕj ∣ j = 1, . . . , p}.
3 Constructing real-data-based parametric DGMs

In this section, we provide a detailed discussion on the construction of real-data-based parametric

DGMs, along with practical recommendations. We begin with the inference of DGM components

from a set of real datasets, first considering the base scenario with a single, fully researcher-

specified model structure M, where only the parameters in θ are inferred (Section 3.1), and

then the extended scenario, where parts of the model structure are no longer specified by the

researcher and instead also inferred from real data (Section 3.2). For both scenarios, we assume

that any researcher-specified parameters λ are fixed to a single value. We then address the

systematic selection of these datasets (Section 3.3).

3.1 Inferring parameters from a set of real datasets

Given a set of R real datasets (the selection of which will be discussed in Section 3.3), D =
{D(1), . . . ,D(R)}, a model structureM, and a set of Q parameters, θ, which we now consider to

be arranged as a vector, i.e. θ = (θ1, . . . , θQ), there are different approaches for inferring the set

of L considered parameter vectors, Θ = {θ⌢(1), . . . ,θ⌢(L)}, from the real datasets. Each considered

parameter vector θ
⌢
l, l = 1, . . . , L, contains a single value for each parameter in θ (i.e. Q values

in total). The inference process can be broken down into two steps: in the first step, for each

parameter, values are inferred from D, resulting in a set of inferred parameter values for each

parameter in θ. In the second step, those sets are mapped to the set of considered parameter

vectors, Θ.

The approach that is expected to yield DGMs most closely approximating the true DGMs of the

real datasets proceeds as follows: In the first step, for each parameter, a value is inferred from

each dataset (i.e. R values are inferred from D, and values are not aggregated across datasets).
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In the second step, the inferred values for each parameter are combined per dataset to form the

set of considered parameter vectors, with each of the vectors containing the parameter values

inferred from one dataset. Since this approach essentially maps each dataset to one of the

considered parameter vectors (and thus is equivalent to constructing one DGM per dataset,

given M and λ), we will refer to it as the one-to-one inference approach. However, one may

also deviate from this approach and consider alternative strategies for the two outlined steps of

the inference process. An overview is presented in Table 2. In the following, we first discuss the

one-to-one inference approach before exploring these alternatives. Note that regardless of the

chosen inference approach, the resulting DGMs should be checked for plausibility.

Table 2: Overview of approaches for inferring parameters from a set of real datasets, D ={D(1), . . . ,D(R)}.
Step of the inference
process

One-to-one approach Deviation

1. Infer set of parameter
values for each
parameter θq in θ.→ θ′q

Direct inference: Use value from
each of the R datasets directly.→ θ′q ∶= θ̂q = {θ̂(1)q , . . . , θ̂

(R)
q }

Aggregated inference: Use information
from R datasets in aggregated form to
generate Aq values.→ θ′q ∶= θ̃q = {θ̃(1)q , . . . , θ̃

(Aq)
q }

2. Map sets of inferred
values for individual
parameters, θ′1, . . . ,θ′Q,
to set of considered
parameter vectors.→ Θ = {θ⌢(1), . . . ,θ⌢(L)}

Combine values of directly
inferred parameters per dataset,

i.e. θ̂
(r) = (θ̂(r)1 , . . . , θ̂

(r)
Q ) for

each D(r).→ θ
⌢
l contains the values from

one dataset (L = R).

→ Θ ∶= {θ̂(1), . . . , θ̂(R)}

Combine values of directly inferred pa-
rameters across datasets and/or aggre-
gately inferred parameters.→ θ
⌢
l contains not only values from one

dataset (typically L ≠ R).→ Θ ∶= θ′1 × ⋯ × θ′Q (for fully factorial

design), with θ′q ∶= θ̂q or θ′q ∶= θ̃q

3.1.1 One-to-one inference approach

In the one-to-one approach, each parameter θq in the parameter vector θ, q = 1, . . . ,Q, is first

directly inferred from each real dataset D(r), r = 1, . . . ,R. For a given parameter θq, this results

in a set θ̂q, which contains R values:

θ̂q = {θ̂(1)q , . . . , θ̂(R)q }. (1)

We refer to this way of inferring the values of a given parameter θq from D as direct inference.

To subsequently map the sets θ̂1, . . . , θ̂Q to the set of considered parameter vectors, Θ, in the

one-to-one approach, these directly inferred parameter values are combined per dataset, forming

a full parameter vector θ̂
(r) = (θ̂(r)1 , . . . , θ̂

(r)
Q ) for each dataset D(r). The set of considered

parameter vectors therefore contains L = R considered parameter vectors:

Θ = {θ⌢(1), . . . ,θ⌢(L)} = {θ̂(1), . . . , θ̂(R)} =∶ Θone-to-one. (2)

This way of mapping the sets of inferred values for the individual parameters to the set of consid-

ered parameter vectors corresponds to a scattershot design where each θ̂
(r)

contains potentially

distinct values (Siepe et al., 2024).

Given a model structure M, the one-to-one approach results in R DGMs, G(1), . . . ,G(R), each
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corresponding to a specific dataset and individually parameterized by θ̂
(1)

, . . . , θ̂
(R)

(and λ).

Since each dataset is essentially treated individually in the one-to-one inference approach, the

following considerations focus on the direct inference of parameters from a single real dataset

D(r). For this dataset, we denote its true underlying DGM as G∗D(r) and the corresponding true

model structure asM∗D(r) . To explore the direct inference of parameters θ from D(r), we apply

the categorization of parameters introduced in Section 2.3, distinguishing between θknown and

θunknown, with a further differentiation between θunknown,target and θunknown,other.

Parameters in θknown As illustrated by the four example simulation studies, parameters

whose true values in G∗D(r) can be known typically specify quantities such as the number of

variables, the number of categories within a variable, or the number of observations in the

DGM. While it is straightforward to infer their true value in D(r) (assuming that the corre-

sponding parameter exists in G∗D(r)), these parameters often have the least need to be explicitly

real-data-based (i.e. to be included in θknown rather than λknown), as researchers are likely to

choose reasonably realistic values even without relying on specific datasets. Additionally, pa-

rameters such as the number of observations are often chosen as rounded, tidy values (e.g.,

n ∈ {10,50,100}). Using values that deviate from these conventions might confuse readers or

make results harder to interpret. Nevertheless, unintentionally unrealistic values can arise. As

mentioned in the introductory section, Langan et al. (2017) observed that the number of studies

used in meta-analysis simulations was often unrealistically large compared to real-life meta-

analyses. Therefore, having parameters in θknown can be reasonable, and while directly inferring

their values from real datasets may not be necessary, they can still be based on aggregated

information derived from the real datasets (see Section 3.1.2).

Parameters in θunknown As discussed in Section 2.3, the true values of θunknown in G∗D(r)
are not known and can only be estimated from D(r). This estimation process introduces several

challenges, which we now address in detail. We begin by discussing the general challenges of

estimating parameters in θunknown, before highlighting the additional considerations specific to

θunknown,target.

A straightforward approach to estimate the parameters in θunknown is to apply a maximum like-

lihood (ML) estimation method, using the given model structureM as a basis. This approach

relies on the assumption thatM andM∗D(r) align, at least for the parts relevant for estimating

θunknown—an assumption that may not hold in practice, particularly if M is overly simplis-

tic. While perfect alignment betweenM andM∗D(r) is likely rare, even a close alignment may

suffice in many cases. However, substantial mismatches can make the dataset D(r) unsuitable
for parameter estimation, resulting in estimates that differ considerably from their true values

or become effectively meaningless. To address this issue, estimation methods that account for

and correct potential deviations between M and M∗D(r) can be employed. For instance, in

Example-Meta-Analysis, the model structure M assumes a normal distribution for the study

effect sizes (δi ∼ N(δ, τ2)). However, inM∗D(r) , the true distribution of effect sizes may deviate

from normality, which can result in biased estimates of the between-study heterogeneity vari-
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ance τ2. This issue can be mitigated by employing estimators that do not rely on the normality

assumption (e.g., the Sidik-Jonkman estimator; Sidik and Jonkman, 2005). In other cases, the

mismatch betweenM andM∗D(r) may be so pronounced that it cannot be reasonably addressed,

leading to essentially meaningless parameter estimates. For example, in Example-Survival , if the

distribution of the (theoretically observable) survival times inM∗D(r) deviates substantially from

an exponential distribution, the resulting parameters would fail to capture the characteristics

of G∗D(r) and no longer serve a meaningful purpose in the simulation study. Similarly, looking

beyond the four examples from Section 2.3, estimating regression coefficients for p covariates

(β1, . . . , βp) in a linear regression model specified byM becomes problematic if the relationship

between the outcome and covariates is, for example, strongly non-linear. In such cases, it may be

necessary to revise the model structureM or select real datasets D based on criteria that ensure

a better alignment withM. While we treat bothM and D as fixed here, these considerations

are addressed in Sections 3.2 and 3.3.

Even when M and M∗D(r) align closely, additional challenges arise due to the finite nature of

D(r), which represents a sample generated by G∗D(r) and is thus subject to sampling variability.

Consider, for example, Example-Ordinal , where the true probabilities πm,k of the ordinal out-

come variable in treatment group k can be reasonably estimated from D(r) via ML estimation

(i.e. by calculating the proportion of individuals within treatment group k who fall into ordinal

category m). Note that even in this simple example, M and M∗D(r) are not perfectly aligned:

WhileM assumes the outcome depends solely on treatment, other (observable and latent) fac-

tors also influence it in M∗D(r) . Due to randomization, however, the outcome’s distribution

within treatment groups remains unaffected, allowing the probabilities to be estimated without

bias. Although the ML estimator seems appropriate in this context, it can exhibit substantial

variance, leading to discrepancies between the estimated and true probabilities. This can cause

practical challenges, such as categories with low (but non-zero) true probabilities having zero

counts in D(r) due to sampling variability, resulting in estimated probabilities of zero. Conse-

quently, simulated datasets derived from such estimates would lack certain outcome categories

entirely. One potential solution is to impose a minimum sample size criterion when selecting

the real datasets, though this pertains to dataset selection (see Section 3.3). Another issue for

Example-Ordinal arises because its target is a null hypothesis. Specifically, the estimated prob-

abilities almost always exhibit small differences across treatment groups, even when the true

probabilities in G∗D(r) are equal (i.e. under H0). As a result, in the DGM constructed from the

estimated probabilities, H0 will almost always be false, whether H0 actually holds in G∗D(r) or
not. While this aligns with the model structureM of Example-Ordinal , which specifies unequal

probabilities across treatment groups for at least one ordinal category, it raises concerns about

how well the constructed DGM reflects reality if H0 might plausibly hold in G∗D(r) . A pragmatic

ad hoc approach to address this issue would be to incorporate the variance in parameter esti-

mation through a statistical test (e.g., a Wilcoxon rank-sum test). The resulting p-values could

then be used to decide whether H0 should be assumed true or false for a given D(r). This could,
for example, be achieved by applying a threshold (e.g., p < 0.05) or using p-values as sampling

weights for determining H0 status (a similar idea is applied by Benidt and Nettleton, 2015, who
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used p-values derived from the real dataset to sample genes for which the null hypothesis of

no differential expression should hold in the resulting DGM). Only probabilities derived from

datasets meeting these criteria would then be used. However, as with the sample size criterion

discussed earlier, such procedures effectively act as additional exclusion criteria for dataset selec-

tion (see Section 3.3.1), which D(r) would already need to satisfy. Although explored here with

Example-Ordinal , similar or additional finite-sample challenges may arise in other simulation

contexts.

So far, we have discussed the estimation of θunknown in general without differentiating between

θunknown,target and θunknown,other. While the estimation tasks for both parameter types face

similar challenges, the estimation of θunknown,target is particularly critical. This is because the

estimates of θunknown,target determine the parameter values involved in the target that the meth-

ods being examined in the simulation study must recover, making the selection of an appropriate

estimation method inherently more impactful. Moreover, when the statistical task of interest

is estimation, the method used to estimate θunknown,target could itself be among the competing

methods evaluated in the simulation study. This introduces an element of circularity and poten-

tial bias, as the chosen method might gain an unfair advantage. To address this, all competing

methods could be applied to estimate θunknown,target, with their results aggregated to provide a

more balanced basis for the simulation study.

While the specific challenges associated with estimating θunknown may differ, the provided ex-

amples illustrate the inherent complexity of the process. In principle, the challenge of inferring

information from a real dataset that is not directly observable mirrors the issues encountered

when analyzing data in real-world applications. For parameters related to the target, these chal-

lenges, as noted above, are closely tied to the very issues the simulation study aims to investigate

or improve upon.

3.1.2 Deviating from the one-to-one inference approach: Aggregated inference and

factorial designs

While the one-to-one approach, i.e. the direct inference of values from D for every parameter

and the subsequent mapping to Θ by combining the inferred values per dataset, is generally

expected to produce DGMs that closely represent the true DGMs of the selected real datasets,

there are alternative strategies worth considering for either step of the inference process from D
to Θ.

Aggregated inference For the first step of inferring the values for each parameter in θ, there

are several reasons not to use direct inference for every parameter. As discussed in the previous

section, for θunknown, the uncertainties associated with estimation may make it impractical to

rely strictly on specific values inferred from the datasets. For θknown, practical considerations—

such as the preference for numerically tidy values—may influence the decision against direct

inference. In addition to these previously discussed issues, the number of datasets, even if

adjustable during their selection (see Section 3.3.1), may prove insufficient or excessive, as the

researcher might prefer to consider more or fewer than R parameter values for a given parameter.

In all these cases, a reasonable alternative may be to use the information from the real datasets
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in aggregated form to generate the values for a parameter. We refer to this alternative as

aggregated inference. A simple implementation involves identifying the minimum and maximum

values for each parameter across the datasets to approximate a reasonable range and then

selecting a number of values, Aq, that are systematically distributed within this range (e.g.,

equidistant). Alternatively, these boundaries could define a uniform distribution, from which Aq

values are sampled. Moving beyond uniform distributions (and considering values beyond just

the minimum and maximum), parameter values could also be used to fit and sample from other

distributions (e.g., a normal distribution). Generally speaking, if Aq values are generated for a

given parameter θq through aggregated inference instead of direct inference, the result is not a

set θ̂q containing R values (see Equation 1) but a set θ̃q containing Aq values:

θ̃q = {θ̃(1)q , . . . , θ̃
(Aq)
q }. (3)

The described procedures are typically applied individually for each parameter, although in prin-

ciple, one could also model a joint distribution and then draw the values for multiple parameters

simultaneously. While inferring parameters via aggregated inference is unlikely to yield entirely

unrealistic values, it may, depending on the chosen procedure for generating parameter values,

still produce a (slightly) distorted representation of the true distribution of parameter values

in the real-world DGMs targeted by the simulation study. Note that unless joint modeling is

used, there is no natural way to map the sets of aggregated values for the individual parameters

into realistic considered parameter vectors, as there is no inherent correspondence between the

individual values. Accordingly, combining the values per dataset (as in the second step of the

one-to-one approach) is not possible, and any other method of combination—including other

scattershot designs and factorial designs (see below)—carries the risk of producing unrealistic

parameter combinations.

Factorial designs For the second step of mapping the sets of inferred values for the individual

parameters to the set of considered parameter vectors, we also want to discuss an alternative to

the scattershot design that is implied in the one-to-one approach. The combination of parameter

values per dataset, therefore only considering R specific (and potentially unique) combinations

of values for all parameters, can complicate the analysis of the effects of individual parameters

and their interactions on the performance of the methods being evaluated. An alternative is to

construct a factorial design using the inferred parameter values. The implementation of factorial

designs, which are employed in most simulation studies, involves combining parameter values

independently—considering either all possible combinations (fully factorial) or a subset thereof

(partially factorial) (Morris et al., 2019; Siepe et al., 2024). When a fully factorial design is

used, the resulting set of considered parameter vectors is given by

Θ = {θ⌢(1), . . . ,θ⌢(L)} = θ′1 ×⋯ × θ′Q =∶ Θfactorial, (4)

where θ′q represents the set of inferred values for a given parameter θq and is the result of either

direct inference (θ′q ∶= θ̂q, see Equation 1) or aggregated inference (θ′q ∶= θ̃q, see Equation 3). If
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every parameter is inferred directly from the R datasets (i.e. θ′q ∶= θ̂q for all q ∈ {1, . . . ,Q}), the
set Θfactorial (see Equation 4) includes the set of considered parameter vectors that would result

from the second step of the one-to-one approach (see Equation 2; i.e. Θfactorial ⊋ Θone-to-one).

If, additionally, each dataset provides unique values for every parameter, the fully factorial

design results in a total of L = ∣Θfactorial∣ = RQ considered parameter vectors in Θfactorial. Im-

portantly, when using direct inference, employing a factorial design instead of a scattershot

design introduces the risk of producing unrealistic considered parameter vectors: while the in-

dividual parameter values inferred from real datasets may each be plausible, their combinations

might not be, potentially resulting in DGMs that fail to represent any real-world DGM relevant

to the simulation study. If aggregated inference is used instead, the same concern applies in

principle—except that, as noted above, mapping sets of aggregated parameter values carries

this risk regardless of the way in which the values are combined.

3.2 Inferring parts of the model structure from a set of real datasets

In the previous section, we considered the scenario where only parameters are set to be real-data-

based. However, researchers may also wish to infer specific parts of the model structure from

the selected real datasets. For parts of the model structure whose true form in the underlying

DGM of a real dataset can only be inferred with uncertainty (e.g., a distribution or functional

relationship), similar issues as those discussed in Section 3.1.1 for θunknown arise and must be

taken into account—such as the impact of sampling variability—when choosing an inference

method. As with parameter inference, the choice of method can substantially influence the

results of the simulation study, particularly for parts of the model structure that explicitly

appear in the formulation of the simulation target. In our four examples, the only parts of the

model structure falling into this category are whether the null hypothesis (or hypotheses) holds

in Example-Ordinal , Example-Survival , and Example-DE-Analysis.

Unlike parameter inference, which involves estimating numerical values, inferring parts of the

model structure typically requires categorical decisions, such as determining whether a null

hypothesis holds or selecting an appropriate distribution for a variable. Often, this can be

done using hypothesis tests, as already outlined for Example-Ordinal in Section 3.1.1, where

we considered how the status of the null hypothesis of no treatment effect could be assessed

via a test (albeit as a criterion for selecting the real datasets rather than for inference from

them). Other examples include testing for the presence of an interaction effect or correlation.

In some cases—such as selecting the distribution of a variable—inferring a specific part of the

model structure via hypothesis testing additionally requires defining a set of plausible options,

from which the best-fitting choice is then selected using an appropriate test. Importantly, this

approach does not guarantee that any of the considered options closely approximate the true

model structure of any of the selected real datasets. To illustrate the data-driven selection

of distributions, consider Example-Survival , for which we discussed in Section 3.1.1 that the

true distribution of survival times may deviate from the exponential distribution assumed by

M. This can be addressed by considering more flexible distribution options, such as Weibull,

gamma, Gompertz, or mixture distributions, with the best-fitting distribution identified through
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goodness-of-fit tests like the Cramér–von Mises test. This procedure is implemented by Thurow

et al. (2024) in a meta-scientific study on simulating realistic survival data.

If parts of the model structure are real-data-based and thus may vary across datasets, multiple

model structures can emerge. Accordingly, when inferring parts of the model structure from the

set of real datasets, this procedure must be applied before inferring the parameters. Specifically,

the procedure described in Section 3.1 must be applied separately for each subset of datasets

corresponding to each resulting model structure derived from the inference of real-data-based

parts. For example, in an extended version of Example-Survival , suppose half of the real datasets

suggest an exponential distribution, while the other half align more closely with a Weibull

distribution. In this case, parameter inference must be conducted separately for the datasets

associated withMExp andMWeibull.

3.3 Selecting real datasets as a basis for the DGMs

We propose three general requirements for real datasets used to construct real-data-based DGMs:

(D1) they must be accessible to others, with a transparent and reproducible selection process;

(D2) their true DGMs must correspond to a representative subset of the simulation study’s

domain of interest; and (D3) they must provide the necessary information to both meaningfully

infer the DGM components intended to be real-data-based and assess their eligibility. In the

following, we examine these requirements in more detail, including strategies to fulfill them and

the challenges that may arise. Specifically, we discuss the identification of a database likely to

contain eligible datasets as well as the specification of additional eligibility criteria to ensure

that the final selection meets all requirements.

3.3.1 Database

Regarding the choice of database, requirement (D1) excludes collections of datasets that are

only accessible to the researchers conducting the simulation study. Public data reposito-

ries, therefore, represent a natural solution to fulfill (D1). For example, in the context of

Example-DE-Analysis, the open data repository of The Cancer Genome Atlas (TCGA) pro-

gram (https://www.cancer.gov/tcga) could be utilized, offering genomic, epigenomic, tran-

scriptomic, and proteomic data for 33 cancer types. Similarly, publicly accessible platforms

like OpenML (Vanschoren et al., 2014) or the UCI Machine Learning Repository (Kelly et

al., n.d.), which offer datasets across various research domains and data types, can serve as

valuable resources. Although primarily used for studies focused on prediction tasks, where

methods are evaluated directly on the real datasets, these repositories can also be used for

real-data-based simulation studies with other aims (e.g., Stolte et al., 2024, albeit in a meta-

scientific context). In addition to data repositories that are fully open to the public, we also

consider data repositories that are broadly accessible to the research community under con-

trolled conditions to fulfill (D1). Examples include clinical research data-sharing platforms such

as Vivli (https://vivli.org; Bierer et al., 2016), the Yale Open Data Access (YODA) Project

(https://yoda.yale.edu/; Ross et al., 2018), and the Virtual International Stroke Trials Archive

(VISTA; https://www.virtualtrialsarchives.org/vista/; Ali et al., 2007).
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Public data repositories may offer many datasets eligible under requirement (D3) (i.e. providing

sufficient information for inference and eligibility assessment), as researchers have direct access

to the dataset. However, finding a repository with enough datasets to fulfill requirement (D2)

(i.e. adequately representing the domain of interest) can be more challenging. An alternative

approach is to reconstruct datasets from tables and figures in research publications—such as

journal articles and reports—that present aggregated or visualized data. For example, survival

data can be reconstructed from digitized survival curves (e.g., Guyot et al., 2012), as employed

by Trinquart et al. (2016), Royston et al. (2019), Dormuth et al. (2022), and, in the simulation

context, Thurow et al. (2024). In these cases, possible databases may be collections of publi-

cations, such as PubMed (https://pubmed.ncbi.nlm.nih.gov/), as referenced by Dormuth et al.

(2022) and Thurow et al. (2024), or specific journals (Royston et al., 2019; Trinquart et al.,

2016).

Another alternative specifically for parametric DGMs is to rely on aggregated data instead of

raw datasets. This approach can still satisfy requirement (D3), provided that all necessary in-

formation can be extracted without direct access to the full datasets. Although the underlying

datasets are not directly accessible (and also not reconstructed), we continue to use the nota-

tion D to refer to the respective dataset used in the publication, which is implicitly represented

through the extracted information. Relying on aggregated data can, for example, be feasible in

Example-Ordinal , where the information needed to estimate outcome probabilities—the number

of individuals in each ordinal category per group—is often available in tables or figures included

in publications. In other cases, parameter inference may have already been conducted within

the publication itself, meaning that the reported values can be directly adopted. For instance,

in the context of Example-Meta-Analysis, both meta-analysis-level parameters (e.g., the [esti-

mated] overall effect) and study-level parameters (e.g., group means) are commonly reported in

published meta-analyses, thus providing the necessary information for both the meta-analysis

dataset and the individual study datasets without requiring access to raw data. The approach of

using aggregated information from published meta-analyses was implemented in the simulation

study by Langan et al. (2019). When using aggregated data, suitable databases again include

PubMed and specific journals but also systematic reviews summarizing multiple publications

(the latter serving as a database in contexts other than Example-Meta-Analysis). Given the

vast number of publications available in collections like PubMed or individual journals, it is

often reasonable to define the database as all publications within the collection, restricted to a

specific time frame.

Depending on the chosen database, several potential limitations may arise that researchers

should be aware of, address transparently, and, if possible, mitigate through additional eligi-

bility criteria (see Section 3.3.2). For public repositories containing existing datasets, similar

concerns to those typically discussed in the context of real-data studies apply (see, for example,

the discussions by Strobl and Leisch, 2024, Boulesteix et al., 2015, and Friedrich and Friede,

2024). A key concern is that the true DGMs of real datasets “donated” to repositories may fail

to adequately represent the domain of interest to which the simulation study’s results and rec-

ommendations are intended to apply. For instance, the real datasets in public repositories might
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focus heavily on specific subpopulations of DGMs (e.g., a particular cancer type). Furthermore,

the quality of the data may be low depending on how it was collected and curated, with issues

such as poor documentation or missing values.

For databases consisting of collections of publications, similar issues may arise. Specifically, pub-

lication bias can result in datasets with true DGMs that are not representative of the domain

of interest (e.g., if only results based on datasets with large true effect sizes are published), and

the quality and methodological rigor of how the underlying datasets were collected and reported

may also vary widely. However, when using publication collections as databases, additional

challenges arise, because the original datasets are rarely directly accessible. For reconstruction

procedures, the quality and accuracy of reconstructed datasets depend on several factors, in-

cluding the validity of assumptions underlying the reconstruction algorithm. For instance, the

previously mentioned algorithm by Guyot et al. (2012) for reconstructing survival data relies

on the assumption that censoring occurs at a constant rate within each time interval, which

may not hold in all cases. When aggregated dataset information is used, inconsistencies may

emerge if different publications apply varying aggregation methods. Moreover, publication bias

may not only introduce issues with representativeness but also lead to optimistically biased pa-

rameter estimates by incentivizing practices like p-hacking or selective reporting. In addition,

relying on publication collections as databases may demand more time and effort than using

open repositories with readily available datasets. This is because reconstructing or extracting

relevant information from publications involves additional steps, and assessing publications for

eligibility criteria often requires considerably more time.

Finally, a practical issue that arises independently of the chosen database is that the database

itself only determines the maximum possible number of datasets that could be selected but not

how many will actually meet all eligibility criteria. Accordingly, after applying these criteria,

researchers may end up with too few datasets, which would risk inadequate representation of the

domain of interest, or too many datasets, which would make it impractical to reasonably pro-

cess them in subsequent simulation steps. As a pragmatic approach, we suggest that researchers

specify a minimum and maximum number of datasets to be selected and, after applying the

eligibility criteria, check whether the number of selected datasets falls within this range. If the

number is too low, the database should be expanded (e.g., by including additional publication

years or related repositories). If the number is too high, we recommend using random selec-

tion to reduce the number of datasets to the specified maximum. While we cannot provide a

general recommendation for an appropriate minimum and maximum, as these values depend on

the specific simulation study, we argue that a minimum of only one or two datasets—which is

common in practice—is typically insufficient.

3.3.2 Eligibility criteria

Once the database has been specified, datasets can be selected based on eligibility criteria, which

may be formulated as inclusion or exclusion criteria. In general, assessing their fulfillment may

involve a combination of automated methods (e.g., filtering datasets in a repository or applying

search strings for journal databases) and manual review (e.g., screening data documentation or

publications).
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Ideally, all eligibility criteria would be specified before dataset selection to prevent bias from

post hoc modifications. However, this is often not feasible, as criteria may need to be refined

or extended during the assessment process to account for unforeseen challenges or inconsisten-

cies. In any case, to meet requirement (D1) (i.e. ensuring the selection process is transparent

and reproducible), it is essential to clearly and comprehensively report the final criteria applied

during the selection process.

The criteria themselves can be categorized into those addressing (D2) (i.e. ensuring adequate

representation of the domain of interest) and those related to (D3) (i.e. providing sufficient

information for inference and eligibility assessment), and researchers should explicitly indicate

which requirement each criterion is intended to fulfill.

Defining eligibility criteria to fulfill (D2) involves translating the domain of interest—i.e. the

population of true DGMs to which the simulation study’s results and recommendations are in-

tended to apply—into concrete criteria. As stated in Section 2.2.1, the specifications that define

the domain of interest consist of researcher-specified components of interest (e.g., the number of

treatment groups, the violation of a specific assumption) and constraints imposed on real-data-

based components (e.g., restricting parameter values to those observed in a specific disease type).

In contrast, researcher-specified components of convenience are not incorporated into the eligi-

bility criteria, meaning that datasets differing in these aspects may still be eligible. In general,

defining (D2)-related criteria can be a challenging task, in part because researchers typically

do not distinguish explicitly between components of interest and components of convenience

when planning simulations. Note that for databases consisting of collections of publications, an

effective strategy for defining a search string to identify an initial set of relevant publications

is to include the names of methods commonly used to analyze datasets from this domain as

keywords (e.g., the methods compared in the simulation study).

Beyond the challenge of specifying criteria related to (D2), assessing whether these criteria are

met presents additional difficulties. The domain of interest is defined by the true DGMs, mean-

ing that, in an ideal scenario, datasets would be selected based directly on these underlying

true DGMs. However, in practice, only the observed datasets (or their aggregated versions)

are available for assessment. Accordingly, if a criterion refers to parts of the model structure

or parameters whose true form or value in the true DGM underlying a real dataset cannot be

known with certainty (i.e. unknown components, as defined in Section 2.2.2), its fulfillment can-

not be determined with certainty either. This applies, for instance, when only datasets in which

a specific assumption does not hold or those with a large true effect size should be selected. In

principle, this introduces the same difficulties discussed in Sections 3.1 and 3.2, with the key

difference that, in those cases, inference was performed on an already selected set of datasets,D, whereas here, inference is required as part of the process of identifying D in the first place.

As a consequence, when a criterion involves a component whose true form or value in the true

DGM underlying a dataset is unknown, the criterion should also specify how fulfillment should

be assessed (e.g., by defining a statistical test or other procedure).

As stated above, in contrast to (D2), the criteria addressing (D3) do not relate to the study’s

domain of interest but rather ensure that the selected datasets contain the necessary informa-
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tion for meaningful parameter inference and the assessment of eligibility. Such criteria may, for

instance, address the sample size of the dataset. As already mentioned in Section 3.1.1, this

could include requiring a minimum total sample size n to ensure stable parameter estimation

or, in the case of Example-Ordinal , ensuring that there are more than zero observations per

group and ordinal category. Note that, in this case, n and other parameters related to sample

size cannot be real-data-based, and since their specific values are typically not of direct interest,

they would be considered researcher-specified components of convenience (and represent exam-

ples of this component category that neither have negligible impact nor are expected to hold by

default but also cannot be reasonably inferred; see Section 2.2.1). Other criteria may address

the quality of the selected datasets, which, as noted in the previous section, can be a concern.

Here, criteria could specify that certain metadata must be available, or they could, for example,

restrict inclusion to publications from reputable journals.

While the criteria mentioned above primarily relate to the “meaningfully” aspect of (D3), other

criteria—particularly when databases consist of collections of publications—ensure that param-

eter inference and the assessment of eligibility are possible in the first place. For example, when

reconstructing datasets for Example-Survival with the algorithm by Guyot et al. (2012), relevant

criteria may require that the number at risk is reported and that survival curves are presented

in high resolution (Dormuth et al., 2022; Thurow et al., 2024). Similarly, when using aggregated

information for Example-Ordinal , a relevant criterion is that the number of patients in both

treatment groups and ordinal categories is clearly reported in tables or figures.

Importantly, the criteria specified so far determine whether a dataset as a whole should be se-

lected or not. We refer to these as dataset-level criteria. However, some of these criteria also

inherently specify which subsets of the data within an included dataset are used. For example,

requiring datasets to include specific types of outcome variables already restricts the usable sub-

set of each dataset. Beyond such implicit subset specification, additional explicit subset-level

criteria may be applied after dataset selection is complete. These criteria refine the selection of

specific elements (e.g., outcome variables, treatment groups, or covariates) within an included

dataset to ensure consistency across the selected datasets. Additionally, considering subset-

level criteria allows for broader dataset inclusion by enabling the use of relevant subsets within

datasets that would otherwise be excluded. For instance, if a simulation study focuses on two

treatment groups, rather than excluding all datasets that do not match this criterion exactly,

one could exclude only those with a single treatment group while keeping those with more than

two groups, subsequently selecting the two treatment groups with the largest sample sizes. This

subset-level criterion would relate both to (D2) (ensuring the selection of the two treatment

groups) and to (D3) (ensuring an adequate sample size).

4 Example illustrations

To empirically illustrate the implementation of parametric DGMs based on a systematically

selected set of real datasets, we conduct two simulation studies that build on two of the ex-

amples discussed in the previous sections (Example-Ordinal and Example-DE-Analysis). We

also compare the systematic parameter inference from multiple datasets with other approaches
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by additionally considering purely researcher-specified parameters in the first illustration (Sec-

tion 4.1) and parameters inferred from a single real dataset in the second (Section 4.2). Im-

portantly, the simulations are not intended as comprehensive simulation studies with in-depth

analyses—each of which could warrant a dedicated paper—but rather as illustrative examples

demonstrating the implementation of parametric DGMs based on a systematically selected set

of datasets and their impact on results. The simulations and analyses are conducted in the

software environment R (R Core Team, 2023), and the code to reproduce all results is available

at https://github.com/NiesslC/realdata simulations.

4.1 Two-arm randomized controlled trial with an ordinal outcome

4.1.1 Design

ADEMP structure An overview of the ADEMP structure for this simulation can be found

in Table 3. The “A”, “D”, and “E” aspects correspond to those listed for Example-Ordinal in

Section 2.3, at least for the aspects already specified there. Accordingly, we consider a two-arm

(i.e. K = 2) randomized controlled trial, and we aim to evaluate the ability of methods to detect

a true treatment effect between groups.

Table 3: ADEMP structure for the example illustration on hypothesis testing in the con-
text of a two-arm randomized controlled trial with an ordinal outcome. Either all parame-
ters are researcher-specified, or all parameters except the outcome probabilities (π1,π2) are
researcher-specified, with the latter being real-data-based. Accordingly, in the first case,
λ = {K,M,n,π1,π2}, while in the second case, θ = {π1,π2} and λ = {K,M,n}.
Aim Evaluation of methods testing the null hypothesis H0 of no treatment differences in

two-arm (i.e. K = 2) randomized controlled trials with ordinal outcomes having M
categories, in settings where H0 is false

Data-
generating
mechanisms
(DGMs)

Model structure M
· Ordinal outcome of individual i, i = 1, . . . , n, in group k ∈ {1,2} (equal group sizes)
is drawn from Multinomial(1,πk), where πk = (π1,k, . . . , πM,k), πm,k = P (Y = m ∣
X = k), ∑M

m=1 πm,k = 1, and πm,1 ≠ πm,2 for at least one m ∈ {1, . . . ,M}.
Parameters λ and θ (varied fully factorially)

· λ: K = 2; M = 7; n ∈ {60,120,200,300,600}
· λ/θ: (π1,π2) (4 researcher-specified and 15 real-data-based pairs of outcome

probabilities, see Table S1 and Table S2)

Number of repetitions per DGM: nsim = 10,000
Estimand /
Target

The null hypothesis H0 ∶ πm,1 = πm,2 for all m ∈ {1, . . . ,M}
Methods 4 methods: Chi-square test, Fisher’s exact test, Wilcoxon rank-sum test, proportional

odds ordinal logistic regression

Performance
measure

Power, estimated as 1
nsim
∑nsim

s=1 1(ps ≤ 0.05), with ps being the p-value from repetition
s, s = 1, . . . , nsim

In Example-Ordinal , the remaining parameters to specify are the number of ordinal categories,

M , the sample size n, and the outcome probabilities π1 and π2. To simplify the illustration,

we focus on real-data-based inference for the outcome probabilities while fixing the number

of ordinal categories to M = 7 and setting the sample size manually to five predefined val-

ues (n ∈ {60,120,200,300,600}). For the outcome probabilities (π1,π2), which are specified
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jointly for both groups and treated as a single factor, we consider 4 researcher-specified outcome

probabilities (Table S1) and 15 real-data-based outcome probabilities (Table S2). The process

of generating the real-data-based outcome probabilities, which were inferred after defining the

researcher-specified outcome probabilities, will be detailed below. The different sample sizes and

outcome probabilities are combined using a fully factorial design, resulting in 20 DGMs when

(π1,π2) is researcher-specified (5×4 = 20) and 75 DGMs when it is real-data-based (5×15 = 75).
Regarding the remaining ADEMP aspects—methods and performance measures—we evaluate

four statistical tests: Chi-square test, Fisher’s exact test, Wilcoxon rank-sum test, and propor-

tional odds (PO) ordinal logistic regression, which are all tests that may be used in this context

(Selman et al., 2024). For a given DGM, the performance of the methods is assessed by their

power to reject the null hypothesis of no treatment difference, which is estimated using the

proportion of rejected null hypotheses at a nominal significance level of α = 0.05.
The number of repetitions (i.e. simulated datasets) per DGM, denoted as nsim, is set to 10,000,

ensuring that the Monte Carlo standard error (MCSE) remains below 0.5% for a worst-case

rejection proportion of 0.5 (the probability at which MCSE is maximized; Morris et al., 2019).

However, we only run the methods on simulated datasets where all seven ordinal categories are

observed, which reduces the number of analyzed datasets for some DGMs. To still ensure sta-

ble power estimates, we exclude all DGMs for which the number of repetitions where all seven

ordinal categories are observed is lower than 8,000.

Dataset selection and parameter inference As stated in Section 3.3.1, the information

needed to estimate π1 and π2 is often reported in publications on corresponding trials, meaning

access to the raw datasets is not necessarily required. Accordingly, one may use a collection of

publications as a database, which in this illustration is specified as all research publications in

The New England Journal of Medicine (NEJM ), with publication years restricted to 2017–2022.

The dataset selection process from this database is summarized below, with full details provided

in Supplementary Section A.2.1.

To construct the search string for identifying relevant publications, we include the terms “ran-

domized” and “ordinal”, along with variations of the names of the considered methods. This

search yields 270 publications, which are manually screened according to 11 dataset-level eli-

gibility criteria. Of these criteria, eight relate to (D2), including conditions such as requiring

at least one ordinal outcome, excluding studies where the ordinal outcome has fewer or more

than M = 7 categories, and excluding those in which participants were randomized in groups

or clusters rather than individually. The remaining three criteria are associated with (D3), two

of which ensure that the relevant information is clearly reported and that all ordinal categories

contain at least one observation, while the third addresses cases where two publications use the

same dataset. Applying these criteria results in R = 15 eligible publications and corresponding

datasets (see Table S2). On the subset level, we specify the following criteria for the 15 datasets:

When a publication includes more than two treatment groups, we select the two with the largest

sample sizes. Similarly, if multiple ordinal outcomes are available, we prioritize the outcome

considered most important; if no clear priority is established, we select the outcome with the

highest sample size.
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Notably, we do not impose any criteria on minimum sample size or whether the null hypothesis

of no treatment effect, H0, is false (both of which were discussed as potential criteria throughout

Section 3). The latter implies that H0 may, in fact, be true in some selected datasets. This

decision is intentional to illustrate the impact of not applying such a criterion. However, in a

formal simulation study, it may be reasonable to include such restrictions.

The outcome probabilities are estimated using simple maximum likelihood estimation, where

π̂m,k represents the proportion of individuals in treatment group k who fall into ordinal cate-

gory m.

4.1.2 Results

Parameter characteristics To systematically compare the researcher-specified and real-

data-based outcome probabilities, directly examining their individual values is impractical due

to their multi-dimensional nature (but see Figure S2 for an example of a researcher-specified

and a real-data-based set of outcome probabilities). Instead, one or several summary measures

are needed to characterize them. For simplicity, we focus here on the relative effect, which has

also been considered by Funatogawa and Funatogawa (2023) in their similar simulation study.

The relative effect, denoted as RE, is defined as P (Y1 > Y2) + 1
2P (Y1 = Y2), where Y1 and

Y2 denote the ordinal outcome variables in the two treatment groups. A relative effect of 0.5

indicates no systematic difference between the groups, whereas values greater or smaller than

0.5 suggest that observations in group 1 tend to be larger or smaller, respectively, relative to

those in group 2 (Agresti, 2010; Brunner et al., 2021). Figure 1 presents the relative effects

for the researcher-specified and real-data-based outcome probabilities. Since both values below

and above 0.5 indicate differences between groups, we consider the absolute deviation from 0.5,

∣RE − 0.5∣, where 0 indicates no difference, and larger values correspond to greater differences

between the two groups.
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Figure 1: Absolute deviation from 0.5 in the relative effect (∣RE −0.5∣) for 4 researcher-specified
and 15 real-data-based outcome probabilities (π1,π2). The more the relative effect deviates
from 0.5, the greater the difference between the two treatment groups.
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As shown in Figure 1, the real-data-based outcome probabilities generally imply smaller group

differences than the researcher-specified probabilities, illustrating that the two different ap-

proaches to parameter specification can lead to systematic differences in effect sizes. In the

specific case considered here, as discussed in Section 3.1.1, this may be due to the fact that,

for some of the true DGMs underlying the 15 real datasets, H0 of no treatment effect holds.

However, even if this applies to some datasets, a systematic difference remains between the two

types of parameter specification.

Method performance Figure 2 presents both the absolute performance (panel a: estimated

power) and the relative performance (panel b: difference to the best, i.e. highest power) in

relation to the relative effect deviation from 0.5 (∣RE − 0.5∣) for different sample sizes n. Note

that in both panels, not all 19 (4 + 15) outcome probabilities are included. As stated before,

we exclude DGMs for which the number of repetitions where all seven ordinal categories are

observed is lower than 8,000. For one of the 15 real-data-based outcome probabilities, namely

the probabilities extracted from Perkins et al. (2018), this was the case for all five DGMs, i.e. for

all five possible values for n. For the other 14 real-data-based outcome probabilities, only DGMs

with smaller sample size values (n ∈ {60,120}) fell short of the 8,000 repetitions. Specifically,

fewer than 8,000 datasets with observations in all seven ordinal categories were simulated for

six real-data-based DGMs with n = 60 and one real-data-based DGM with n = 120, leading to

their exclusion from the respective rows of the panels.

As seen in Figure 2a, the estimated power generally increases with the relative effect deviation

from 0.5. For the Wilcoxon rank-sum test and PO ordinal logistic regression, the estimated

power follows a nearly deterministic monotonic increase with the relative effect deviation, and

both tests yield highly similar results (see Supplementary Section A.3 for a brief explanation

of the theoretical basis for this alignment). For the Chi-square test and Fisher’s exact test,

the relationship between estimated power and the relative effect deviation is less clear. A more

detailed investigation into additional characteristics (e.g., asymmetry in outcome probabilities or

the expected number of observations per category) would be necessary in a more comprehensive

simulation study but is beyond the scope of this illustration.

With regard to the comparison between researcher-specified and real-data-based probabilities,

the systematic differences in relative effect deviation (Figure 1) are reflected in corresponding

differences in estimated power (Figure 2a). Specifically, all tests tend to yield higher estimated

power for the researcher-specified probabilities. Additionally, Figure 2b highlights that the

relative performance of the four tests varies across the two types of parameter specification. For

Chi-square and Fisher’s exact test, the difference in power between the best-performing test

and these tests is larger for researcher-specified parameters at smaller sample sizes. Conversely,

for the Wilcoxon rank-sum test and PO ordinal logistic regression, the difference in power is

more pronounced for real-data-based probabilities at larger sample sizes. Accordingly, if only

one type of parameter specification had been considered, the conclusions regarding the relative

performance of the tests would have differed, depending on whether the parameters were specified

by the researcher or based on real data.

29



Chi−square test Fisher’s exact test
Wilcoxon

rank−sum test
PO ordinal

logistic regression

n
=

6
0

n
=

1
2
0

n
=

2
0
0

n
=

3
0
0

n
=

6
0
0

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

|RE − 0.5|

E
s
ti
m

a
te

d
 p

o
w

e
r

Type of parameter specification Researcher−specified Real−data−based
a

Chi−square test Fisher’s exact test
Wilcoxon

rank−sum test
PO ordinal

logistic regression

n
=

6
0

n
=

1
2
0

n
=

2
0
0

n
=

3
0
0

n
=

6
0
0

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

−0.6

−0.4

−0.2

0.0

−0.6

−0.4

−0.2

0.0

−0.6

−0.4

−0.2

0.0

−0.6

−0.4

−0.2

0.0

−0.6

−0.4

−0.2

0.0

|RE − 0.5|

E
s
ti
m

a
te

d
 p

o
w

e
r

−
m

a
x
(e

s
ti
m

a
te

d
 p

o
w

e
r)

Type of parameter specification Researcher−specified Real−data−based
b

Figure 2: Absolute (panel a) and relative performance (panel b) of four statistical tests in
relation to the absolute deviation of the relative effect from 0.5 (∣RE − 0.5∣), calculated from
the outcome probabilities (π1,π2), across different sample sizes n. Panel a shows the absolute
estimated power. Panel b shows the difference between the estimated power and the highest
estimated power within each DGM. In both panels, the DGMs for all 4 researcher-specified and
14 of the 15 real-data-based outcome probabilities are included for n ∈ {200,300,600}, while for
n ∈ {60,120}, some of these 14 real-data-based outcome probabilities are not included due to an
insufficient number of repetitions where all seven ordinal categories are observed. The remaining
one of the 15 real-data-based probabilities is not included at all for the same reason.
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4.2 Differential gene expression analysis

4.2.1 Design

ADEMP structure For the second illustrative simulation study, we adopt the simulation

design from Baik et al. (2020) (hereafter referred to as B20) on differential gene expression

analysis, extending it only by the number of real datasets used for parameter inference, as

detailed below. Since B20’s simulation is highly comprehensive, we include only a subset of the

original DGMs (see Supplementary Section B.1 for details on excluded DGMs) and focus on

a single performance measure. An overview of the resulting ADEMP structure is provided in

Table 4.

Table 4: ADEMP structure for the example illustration on methods for differential gene ex-
pression analysis. Parameters λ = {K,p,λFC,minFC, pup, pDE, n} are researcher-specified, and
parameters θ = {µ,ϕ} are real-data-based.

Aim Evaluation of methods for differential gene expression analysis, i.e. methods that iden-
tify genes with differences in their RNA-Seq expression levels, in a two-group (i.e.
K = 2) setting (e.g., cancer vs. normal)

Data-
generating
mechanisms
(DGMs)

Model structure M
· Read count ri,j of gene j, j = 1, . . . , p, and sample i, i = 1, . . . , n, in group k ∈ {1,2}
(equal group sizes) is simulated as Ri,j ∼ NB(µj ⋅ FCj , ϕj), µj , ϕj ≥ 0, if xi = 1,
and Ri,j ∼ NB(µj , ϕj), µj , ϕj ≥ 0, if xi = 2. Among p genes, proportion pDE are
differentially expressed (DE) with FCj ≠ 1. Among DE genes, proportion pup are
upregulated (FCj > 1), rest are downregulated (FCj < 1). FCj is defined as

FCj = ⎧⎪⎪⎨⎪⎪⎩
(minFC + randFCj) if gene j is DE and upregulated,(minFC + randFCj)−1 if gene j is DE and downregulated,

where randFCj is drawn from Exp(λFC).
Parameters λ and θ (varied fully factorially)
· λ: K = 2; p = 10,000; pup = 0.5; pDE ∈ {0.05,0.10,0.30,0.60}; λFC = 1;

minFC = 1.5 for n = 6 and minFC = 1.2 for n = 20; n ∈ {6,20}
· θ: (µ,ϕ) = ((µ1, . . . , µp), (ϕ1, . . . , ϕp)) (14 pairs of values, see Table S3 for datasets)

Number of repetitions per DGM: nsim = 50
Estimand /
Target

The null hypothesis H0 ∶ FCj = 1 for all j ∈ {1, . . . , p}
Methods 11 methods: edgeR, edgeR.ql, edgeR.rb, DESeq.pc, DESeq2, voom.tmm, voom.qn,

voom.sw, ROTS, baySeq, PoissonSeq

Performance
measure

Area under the receiver operating characteristic curve (AUC)

Similar to the first illustration, the “A”, “D”, and “E” aspects largely align with those specified

for Example-DE-Analysis (see Section 2.3), which was itself based on B20’s study. That is,

we aim to evaluate methods for identifying DE genes from RNA-Seq data in a two-group (i.e.

K = 2) setting with n samples and p genes. The only difference is that in Example-DE-Analysis,

the fold changes of DE genes were directly assigned, whereas in the actual study by B20, they

are specified in a more refined manner, incorporating additional parameters and a stochastic

component. Our simulation study follows this more detailed formulation by B20 (see Table 4).

In the subset of DGMs considered in our simulation, all parameters except for the gene-wise

mean expression µ = (µ1, . . . , µp) and dispersion ϕ = (ϕ1, . . . , ϕp) are researcher-specified (by
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B20), and only the number of samples and the proportion of DE genes are varied (n ∈ {6,20} and
pDE ∈ {0.05,0.10,0.30,0.60}). B20 estimate the values of µ and ϕ from the Kidney Renal Clear

Cell Carcinoma (KIRC) RNA-Seq dataset from the dataset collection of TCGA (mentioned

earlier in Section 3.3.1), resulting in a single vector for both µ and ϕ. As an extension, we

consider 13 additional TCGA datasets, leading to 14 (µ,ϕ) pairs in total, which we consider

jointly. Details on dataset selection and parameter inference are provided below. B20 employ a

fully factorial design, which we also adopt. When using only one TCGA dataset to infer (µ,ϕ),
this results in 2×4 = 8 DGMs. When all 14 (eligible) TCGA datasets are considered, this results

in 8 × 14 = 112 DGMs. Following B20, the number of simulated datasets per DGM is set to

nsim = 50.
B20 evaluate 12 methods, including, e.g., edgeR (Robinson et al., 2010), DESeq2 (Love et al.,

2014), and their variants (see B20 for details). However, in our simulation, we are only able to

consider 11 methods, as SAMseq (Li & Tibshirani, 2013) is excluded due to persistent execution

errors that prevent it from running. For performance evaluation, we consider only the area

under the receiver operating characteristic curve (AUC), which is the primary measure used by

B20, although B20 also consider the true positive rate and the false discovery rate.

We conduct the simulation using the compareDEtools R package, which accompanies B20’s

study.

Dataset selection and parameter inference Since the real dataset used by B20 (KIRC)

is from the dataset collection of TCGA, we consider TCGA as the database, which contains

RNA-Seq datasets for 33 cancer types. To determine dataset eligibility, we follow the approach

that B20 used for the KIRC dataset, whereby only tumor and normal tissues are considered

and only paired samples (i.e. those in which tumor and normal tissue originate from the same

patient) are included. Specifically, we define one (D2) criterion, which excludes datasets that do

not contain both tumor and normal samples, and one (D3) criterion, which excludes unmatched

samples and, as an additional requirement for our study, datasets with fewer than 10 matched

sample pairs. After applying both criteria, R = 14 datasets remain. Details on the datasets and

the selection process are provided in Supplementary Section B.2.

For each TCGA dataset, the parameters µ and ϕ are inferred following the same approach

used by B20 for the KIRC dataset. Specifically, for each gene in a given TCGA dataset, the

mean expression is computed as the average across all samples, while dispersion is estimated

in a more complex manner: first, RNA-Seq counts are normalized to account for differences in

sequencing depth (i.e. variations in the total number of reads per sample). Then, an empirical

Bayes approach is applied to improve the stability of gene-wise dispersion estimates (see the

compareDEtools package for more details). Since each TCGA dataset contains 20,501 genes,

this process results in 20,501 mean and dispersion values per dataset. From these values, those

corresponding to genes with a mean expression of less than 10 are excluded. Finally, p = 10,000
genes (the number used in the simulation) are randomly selected, and their corresponding mean

and dispersion estimates constitute the resulting vectors µ and ϕ. Although these exclusion steps

may appear to be subset-level criteria (see Section 3.3.2), the excluded genes still contribute to
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parameter inference as they are used for dispersion estimation, making this better viewed as a

filtering procedure. Moreover, note that we follow the implementation by B20, who draw new

genes for each repetition.

4.2.2 Results

Parameter characteristics Similar to the outcome probabilities in the first illustration, the

multi-dimensional nature of the mean and dispersion values (µ,ϕ) makes a direct comparison

across the 14 TCGA datasets impractical. Instead, one or more summary measures are needed

to characterize their differences. For further analysis, we focus on the median dispersion of each

dataset, calculated from the set of dispersion estimates that serve as the basis for drawing ϕ

in the simulation—that is, the dispersion values from all genes with a mean expression greater

than 10. The median dispersion across datasets ranges from 0.161 to 0.451, with the median

values for each dataset shown in Figure 3. Notably, the KIRC dataset, which is used in the

original simulation by B20, has one of the lowest median dispersion values at 0.174.
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Figure 3: Median dispersion values across the 14 selected TCGA datasets, including the KIRC
dataset used by Baik et al. (2020), sorted in ascending order. Median dispersion is calculated
based on genes with a mean expression greater than 10, which serve as the basis for drawing
dispersion values in the simulation. Dataset abbreviations are detailed in Table S3.

Method performance In Figure 4, the absolute performance (panel a: AUC) and the relative

performance (panel b: difference to the best, i.e. the highest AUC within each repetition) are

shown in relation to the median dispersion estimated from each TCGA dataset. To improve

clarity, only 7 of the 11 considered methods are displayed—those recommended by B20 for the

DGMs under consideration (see B20, Table 2). Similarly, Figure 4 only includes results for

two of the four specified values of the proportion of DE genes (pDE ∈ {0.05,0.30}), as these

values are used by B20 to differentiate recommendations in their summary table. The results

for all methods and pDE values are provided in Supplementary Section B.3 but lead to similar

conclusions as those discussed below.
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Figure 4: Absolute (panel a) and relative (panel b) performance of six differential expression
analysis methods in relation to the median dispersion (averaged across all genes in the real
datasets after filtering), across different sample sizes n and proportions of DE genes, pDE, com-
paring results based on the KIRC dataset used by Baik et al. (2020) and the results based on 13
other selected TCGA datasets. Panel a displays the median and range of absolute AUC values,
while panel b presents the median and range of the difference between the AUC and the highest
AUC observed within each DGM.
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As shown in Figure 4a, regardless of the number of samples and the proportion of DE genes,

the AUC of all methods decreases as median dispersion increases. Since the KIRC dataset is

among the datasets with the smallest median dispersion, relying solely on this specific dataset

for simulation may overestimate the ability of all methods to identify DE genes. With regard to

relative performance (Figure 4b), if for a given n and pDE a method is among the top-performing

methods when considering only the KIRC dataset (i.e. its AUC difference is close to zero), then

its relative performance tends to remain stable across the remaining 13 datasets. However, if a

method is not among the best (particularly edgeR, edgeR.rb, and DESeq.pc under DGMs with

pDE = 0.05), its performance ranking may change more substantially when additional datasets

are considered. While expanding the analysis beyond the KIRC dataset does not lead to different

conclusions for all methods, we argue that confirming the stability of relative performance across

datasets also provides valuable insight.

5 Suggested workflow

Table 5 provides a structured workflow for constructing parametric DGMs based on a systemat-

ically selected set of real datasets, summarizing the considerations discussed in Section 3. Once

the real-data-based DGMs are fully specified, the simulation study can proceed as usual. When

reporting on this process, the dataset selection and inference steps should be documented in

detail, including the database used, eligibility criteria applied, inference methods employed, the

mapping of inferred parameter values to DGMs, and any additional information necessary for

reproducibility. Finally, as generally recommended in simulation studies, an overview of the

resulting DGMs should be provided.

6 Conclusion

Basing parametric simulations on real data can be a viable approach to improve the practical

relevance of DGMs, ideally achieving alignment with real-world DGMs in the study’s domain

of interest. However, current implementations often lack a systematic approach—both in de-

termining which components of the DGM should be based on real data and how they should

be inferred, as well as in selecting the real datasets. In particular, the rationale behind dataset

selection and the domain of interest they are meant to represent is often unclear, and the number

of utilized datasets is typically very limited. As a result, the findings of simulation studies using

real-data-based DGMs may not necessarily generalize better to practical applications than those

based on fully researcher-specified DGMs, despite potentially creating that impression.

To address these issues, this paper provided a detailed discussion on the construction of real-

data-based parametric DGMs, aiming to support researchers in assessing the possibilities and

implications of inferring specific DGM components from real datasets and in making dataset

selection more systematic. In addition to the formal discussion, we conducted two simulation

studies demonstrating the implementation of parametric DGMs based on a systematically se-

lected set of datasets and illustrating that they may lead to different conclusions than fully

researcher-specified DGMs or DGMs based on a single real dataset.
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Table 5: Structured workflow for constructing parametric DGMs based on a systematically
selected set of real datasets.

Section

Step 1: Apply specification-based and knowledge-based differentiation and
plan for variation of researcher-specified components.

1.1 Determine which components are researcher-specified components of interest,
researcher-specified components of convenience, and real-data-based components.

2.2.1

1.2 For researcher-specified components of interest and real-data-based components,
clarify whether their true form or value in the true DGM is known, as unknown
components introduce uncertainty for dataset selection and inference, respectively.

2.2.2

1.3 Decide whether multiple options/values should be considered for any
researcher-specified component of interest. If so, repeat steps 2–7 for each relevant
combination. For researcher-specified components of convenience, multiple
options/values can be considered without repeating the full process; only the
combination with the inferred real-data-based components needs to be specified.

2.3

Step 2: Specify researcher-specified components and additional constraints.

2.1 Specify the researcher-specified components of interest (one option/value per
component; see step 1.3), the researcher-specified components of convenience, and
any explicit or implicit constraints for the real-data-based components.

2.2.1

Step 3: Specify inference procedures for real-data-based DGM components.

3.1 Specify the inference method for each real-data-based parameter or part of the
model structure, ensuring that it accounts for potential misalignment between the
considered and the true model structure as well as for sampling variability.

3.1, 3.2

3.2 For parameters, specify for each one whether its values will be directly inferred or
aggregately inferred and specify how the sets of inferred values for the individual
parameters will be mapped to the set of considered parameter vectors,
acknowledging the trade-off between realism and greater control or practical
feasibility, as implied by the one-to-one approach versus the deviations from it.

3.1

Step 4: Specify the systematic selection of real datasets.

4.1 Specify eligibility criteria addressing (D2) by translating the researcher-specified
components of interest and constraints imposed on real-data-based components
(step 2.1) into concrete criteria. Where not directly evident, also specify how the
fulfillment of these criteria should be assessed.

3.3.2

4.2 Specify eligibility criteria addressing (D3) based on the inference procedure
specified in step 3.1 and the criteria specified for (D2) in step 4.1.

3.3.2

4.3 Specify a minimum and maximum number of datasets to be selected. 3.3.1

4.4 Select a database that meets accessibility requirements to fulfill (D1) and is likely
to contain datasets eligible with respect to the criteria specified in steps 4.1 and 4.2.

3.3.1

Step 5: Conduct dataset selection and adjust criteria if necessary.

5.1 Apply the eligibility criteria to the datasets in the database, refining or extending
the criteria during the assessment as needed.

3.3.2

Step 6: Check the number of selected datasets.

6.1 If the number of selected datasets falls within the predefined range, proceed with
step 7; if it is too low, expand the database (e.g., more publication years); if it is
too high, randomly draw the specified maximum number of datasets.

3.3.1

Step 7: Infer real-data-based DGM components.

7.1 If only parameters are inferred, apply the specified inference procedure to the R
selected datasets. If parts of the model structure are also inferred, determine them
first, then infer parameters separately for each subset of datasets corresponding to
each resulting model structure derived from the inference of real-data-based parts.

3.1, 3.2

7.2 Check the resulting DGMs for plausibility. 3.1
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Importantly, throughout the paper, several practical and conceptual limitations associated with

constructing real-data-based parametric DGMs as we suggest have emerged. One such limi-

tation is finding an adequate database. It is true that parametric DGMs offer more potential

database options than, for example, semi-parametric DGMs, which require access to complete

datasets, and certain issues—such as dataset quality—can be mitigated through carefully cho-

sen eligibility criteria. However, even with the most meticulous planning, one major limitation

remains: some datasets relevant to the domain of interest may not be included in the database

at all (e.g., if the database primarily contains datasets from a specific subpopulation of DGMs,

a restriction that is not always immediately apparent). Additionally, it is often unclear whether

the selected datasets truly belong to the domain of interest, as some eligibility criteria may refer

to DGM components whose true form or values in the underlying real-world DGM cannot be

determined solely from the real dataset itself. As discussed in detail, this issue arises not only

when datasets are selected based on DGM components that cannot be fully known but also when

these components are inferred from the selected datasets to construct the DGM. Specifically,

in the case of parameters, even the one-to-one inference approach does not guarantee that the

inferred values are close to the true ones. Similarly, if parts of the model structure are also

intended to be based on real data, the specified set of possible options (e.g., distributions) may

already deviate substantially from the true underlying structure (which may not even have a

closed-form representation).

As a consequence, there is no guarantee that the suggested approach will lead to practically

relevant parametric DGMs—and, at the same time, it demands substantially more effort than

simply relying on a single convenience dataset or entirely researcher-specified DGMs. However,

we propose the following considerations. First, the increased effort is worthwhile in itself be-

cause it encourages researchers to think more deeply about the simulation design. Moreover,

reporting how and why the real datasets were selected and how the DGMs were constructed

based on them enhances transparency and ideally provides a clearer understanding of the study’s

domain of interest. In principle, this follows a similar line of reasoning as other (complemen-

tary) approaches aimed at improving thoroughness and transparency, such as the writing (and

potential preregistration) of research protocols for simulation studies (Siepe et al., 2024), which,

despite seeming like an unnecessary burden, already improves study quality by requiring careful

consideration and documentation of decisions.

Regarding the extent to which practical relevance can be achieved, we argue that pursuing it

should not be abandoned just because it cannot be fully attained—especially since, also due to

our certainly idealized definition, it may never be completely achievable in the first place. More-

over, our proposed approach would likely lead to more practically relevant parametric DGMs

than the alternatives currently used in practice, i.e. fully researcher-specified parametric DGMs

or DGMs based on one or two convenience datasets. Of course, a rigorous discussion of the

limitations that hinder the achievement of practical relevance remains essential. This is partic-

ularly important to prevent the mere use of a larger-than-usual number of real datasets from

being misinterpreted—by readers or even the researchers conducting the study—as a guarantee

of practical relevance.
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Finally, it is worth reiterating that while this paper focused on parametric DGMs, researchers

aiming for practically relevant DGMs may also consider semi-parametric DGMs, for which the

use of a systematic selection of real datasets is also uncommon, just as it is for parametric DGMs.

Although our discussion is partially applicable to semi-parametric DGMs, a more detailed in-

vestigation specifically tailored to these cases would be valuable for future research. Moreover,

our approach for constructing real-data-based parametric DGMs does not address all potential

pitfalls in simulation studies that may contribute to overgeneralization and misinterpretation—

for example, biased post hoc selection of performance measures or considered methods (Pawel

et al., 2024). While these issues fall outside the scope of our approach, they underscore the

need for careful study design beyond just the choice of DGM. Still, we hope that the proposed

approach to constructing real-data-based parametric DGMs is a step toward simulation stud-

ies that yield more well-founded recommendations, ultimately helping applied researchers make

more informed choices when selecting statistical methods.
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Supplementary material

A Example 1: Two-arm randomized controlled trial with an

ordinal outcome

A.1 Specification of researcher-specified parameters

Table S1: The 4 researcher-specified pairs of outcome probabilities (π1,π2) considered in the
example illustration on hypothesis testing in the context of a two-arm randomized controlled
trial with an ordinal outcome (see Section 4.1).

Outcome pro-
babilities ID

π1,1 π2,1 π3,1 π4,1 π5,1 π6,1 π7,1 π1,2 π2,2 π3,2 π4,2 π5,2 π6,2 π7,2

k7 id1 0.04 0.07 0.11 0.14 0.18 0.21 0.25 0.14 0.14 0.14 0.14 0.14 0.14 0.14
k7 id2 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.05 0.05 0.07 0.10 0.10 0.28 0.35
k7 id3 0.05 0.05 0.07 0.10 0.10 0.28 0.35 0.05 0.10 0.20 0.30 0.20 0.10 0.05
k7 id4 0.05 0.05 0.20 0.20 0.30 0.10 0.10 0.05 0.10 0.20 0.30 0.20 0.10 0.05

A.2 Specification of real-data-based parameters

A.2.1 Dataset selection

Database As a database, we considered all research publications published in The New Eng-

land Journal of Medicine (https://www.nejm.org/) between 2017 and 2022, which corresponds

to the journal’s volumes 376–387.

Search string We first identified 270 articles for screening using this search string:

fulltext:"randomized" AND (fulltext:"ordinal" OR fulltext:"proportional-odds"

OR fulltext:"Mann{Whitney U" OR fulltext:"Mann-Whitney-Wilcoxon" OR

fulltext:"Wilcoxon-Mann-Whitney" OR fulltext:"Wilcoxon rank-sum" OR

fulltext:"Chi-Square" OR fulltext:"Fisher") AND (startDate:2017-01-01 AND

endDate:2022-12-31) AND (articleCategory:"research").

Dataset-level criteria for screening The inclusion and exclusion criteria on the dataset

level are listed below, followed by some notes to clarify how we defined ordinal outcomes for our

assessment of these criteria. Before each criterion, it is indicated to which of the three proposed

requirements for real datasets used to construct real-data-based DGMs (see Section 3.3) the

criterion is related.

• Inclusion criteria

– (D2) Randomized controlled trials

– (D2) At least one ordinal outcome

• Trial exclusion criteria

– (D2) Trials where individuals were not randomized individually but in groups or clusters,

for example

– (D3) Trials whose data overlaps with another trial considered at this stage, with preference

given to the trial with the larger sample size
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• Outcome exclusion criteria

– (D2) Ordinal outcomes that are non-efficacy outcomes (e.g., safety, procedural, treatment

adherence, or health economics outcomes)

– (D2) Ordinal outcomes that are patient-reported outcomes

– (D2) Ordinal outcomes analyzed according to anything other than the intention-to-treat

principle

– (D2) Ordinal outcomes that were not analyzed beyond the presentation of frequencies,

not analyzed as ordinal variables (e.g., if an ordinal outcome was dichotomized for the

analysis), or analyzed with methods inappropriate for ordinal data (e.g., methods for

continuous data)

– (D3) Ordinal outcomes for which the data was not clearly reported, either in tables or

figures (in the main/full text or supplement), for all categories

– (D2) Ordinal outcomes with more or fewer than 7 categories

– (D3) Ordinal outcomes with empty categories

• Details on the definition of ordinal outcomes we applied when assessing articles with respect

to the criteria above:

– Ordinal outcomes must be explicitly declared as trial outcomes either in the main/full

text, supplement, or study protocol to be considered.

– We considered an outcome variable ordinal if it was a categorical variable with ordered

categories that are mutually exclusive and explicitly labeled.

– If a reported distribution contained a category labeled “could not be evaluated” or “un-

known” in addition to otherwise ordinal categories, we did not consider the variable

ordinal.

– Both ordinal outcomes based on an ordinal scale and ordinal outcomes defined by cate-

gorizing continuous measures were considered suitable for inclusion.

– Non-ordinal outcomes involving an ordinal scale/measure, i.e. binary or continuous out-

comes based on ordinal scales/scores, such as dichotomized ordinal variables or continuous

variables reflecting the change in an ordinal scale/score, were not considered, even if there

was data available for the involved ordinal scale/score.

We first assessed for each of the 270 articles identified from the search whether or not it met

the two inclusion criteria. 174 articles failed to meet the inclusion criteria, resulting in 96

remaining articles. These were then assessed with respect to the trial exclusion criteria. For

two articles, the reported randomized controlled trials met trial exclusion criteria, leaving 94

articles with randomized controlled trials with ordinal outcomes to be assessed with respect

to the outcome exclusion criteria. Out of these articles, 79 only had ordinal outcomes that

met at least one of the outcome exclusion criteria, resulting in a final number of 15 articles with

eligible ordinal outcomes. The screening process of the 270 publications is illustrated in Figure S1

and the spreadsheet documenting the eligibility assessment can be found at https://github.com/

NiesslC/realdata simulations. Note that when assessing the eligibility of trials/outcomes, we did

not factor in specifics of the randomization procedure (as long as individuals were randomized
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individually), treatment of missing values, or small details regarding the conducted analysis

(e.g., covariates or random effects in regression models).

Figure S1: PRISMA flow diagram (Page et al., 2021) to illustrate the dataset-level screening
process for the example illustration on hypothesis testing in the context of a two-arm randomized
controlled trial with an ordinal outcome (see Section 4.1).

Subset-level criteria For the 15 selected articles, or more specifically, their underlying

datasets, we applied the following subset criteria.

• (D2)/(D3) If there are two or more suitable ordinal outcomes in an article/trial, include

the outcome that is considered most important in the trial (e.g., prefer primary outcomes

to secondary outcomes and prefer secondary outcomes to tertiary/exploratory/additional

outcomes). If such a distinction is not possible, include the outcome that has the highest

sample size.
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• (D2)/(D3) If more than two groups are compared in a trial with a suitable outcome, include

the figures for the two groups with the highest sample sizes.

A.2.2 Resulting parameters

Table S2 shows the 15 resulting real-data-based pairs of outcome probabilities. Note that we

extracted the data for ordinal outcomes as it was presented in the article, which means that we

did not change the order of the categories and extracted the distributions across the categories

either in absolute terms (counts) or in relative terms (proportions), whichever was reported.

Moreover, some papers reporting the distributions in relative terms included statements such

as “percentages may not total 100 because of rounding”. If that was the case, we scaled the

resulting probabilities to 1.

A.3 Additional results

Parameter characteristics Figure S2 shows an example of a researcher-specified and an

example of a real-data-based set of outcome probabilities (π1,π2), selected from the four

researcher-specified and 15 real-data-based outcome probabilities. As expected, the researcher-

specified outcome probabilities are more structured and systematically chosen, whereas those

based on real data appear less uniform and more irregular.

Relative effect = 0.30 Relative effect = 0.37

k7_id2 tao2022

1 2 3 4 5 6 7 1 2 3 4 5 6 7
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Figure S2: Two of the sets of outcome probabilities (π1,π2) considered in the example illus-
tration on hypothesis testing in the context of a two-arm randomized controlled trial with an
ordinal outcome (see Section 4.1), one researcher-specified (left) and one real-data-based (right),
as well as the corresponding relative effect for each set. The shown real-data-based probabilities
are the estimates published by Tao et al. (2022).

Method performance The strong alignment between the Wilcoxon rank-sum test and the

relative effect deviation from 0.5 arises because the Wilcoxon test statistic is based on rank-

based comparisons, which are inherently linked to the relative effect. However, this relationship

is not necessarily deterministic in all DGMs beyond those considered in this simulation (e.g.,

for smaller sample sizes; Thas, 2010). Similarly, the close agreement between the Wilcoxon

rank-sum test and PO ordinal logistic regression can be attributed to the fact that the score test

for the treatment effect in the PO ordinal logistic regression model is asymptotically equivalent
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to the Wilcoxon rank-sum test under the PO assumption. That is, when the treatment effect

results in a constant shift in the log-odds of higher categories, the two tests behave similarly

(Agresti, 2010), which appears to hold for the outcome probabilities considered here.

B Example 2: Differential gene expression analysis

B.1 Excluded DGMs

From the DGMs investigated by Baik et al. (2020), we adopted or excluded DGMs as specified

below.

• We adopted the DGMs with independent samples within groups; thus, we excluded those

with genetically identical replicates within groups.

• We adopted the DGMs where the proportion of DE genes (pDE) is greater than zero; thus,

we excluded those with pDE = 0.
• We adopted the DGMs whose results are presented as figures in the main text; thus, we

excluded those found only in the supplement.

• We adopted the DGMs representing the default mode (D) with respect to outliers; thus, we

excluded those with random outlier counts (R), where 5% of counts are turned into outliers,

and those with outlying dispersion samples (OS), where one third of the samples in each

group have their dispersions increased fivefold to simulate low-quality samples.

B.2 Dataset selection

Database As a database, we use The Cancer Genome Atlas (TCGA) program (https://www.

cancer.gov/tcga), which contains RNA-Seq datasets for 33 different cancer types. The datasets

are accessed via the R package curatedTCGAData (Ramos et al., 2017, 2020).

Dataset-level criteria The following exclusion criteria are applied:

• (D2) Exclude datasets that do not contain samples of both type “01-Primary Solid Tumor”

and type “11-Solid Tissue Normal”.

• (D3) Exclude datasets with fewer than 10 matched sample pairs across the two groups.

The first criterion excludes 10 datasets, and the second excludes an additional 9 datasets (7 with

fewer than 10 samples in total and 2 with fewer than 10 samples in both groups when considering

only paired samples). After applying both criteria, 14 datasets remain (see Table S3).
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Table S3: Information about the 14 TCGA datasets considered in the example illustration on
methods for differential gene expression analysis, including the KIRC dataset used by Baik
et al. (2020). Each dataset contains 20,501 genes. More information about the data, cancers,
and studies can be found at https://www.cancer.gov/ccg/research/genome-sequencing/tcga/
studied-cancers.

Study
abbreviation

Study name n

BLCA Bladder urothelial carcinoma 38
BRCA Breast invasive carcinoma 224
COAD Colon adenocarcinoma 52
ESCA Esophageal carcinoma 22
HNSC Head and neck squamous cell carcinoma 86
KICH Kidney chromophobe 50
KIRC Kidney renal clear cell carcinoma 144
KIRP Kidney renal papillary cell carcinoma 64
LIHC Liver hepatocellular carcinoma 100
LUAD Lung adenocarcinoma 116
LUSC Lung squamous cell carcinoma 102
PRAD Prostate adenocarcinoma 104
STAD Stomach adenocarcinoma 64
THCA Thyroid carcinoma 118
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B.3 Additional results
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Figure S3: Absolute performance of edgeR, edgeR.ql, edgeR.rb, DESeq.pc, and DESeq2 in rela-
tion to the median dispersion (averaged across all genes in the real datasets after filtering), across
all considered sample sizes (n ∈ {6,20}) and proportions of DE genes (pDE ∈ {0.05,0.1,0.3,0.6}),
comparing results based on the KIRC dataset used by Baik et al. (2020) and the results based
on 13 other selected TCGA datasets. Each panel displays the median and range of absolute
AUC values.
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Figure S4: Absolute performance of voom.tmm, voom.qn, voom.sw, ROTS, BaySeq, and Pois-
sonSeq in relation to the median dispersion (averaged across all genes in the real datasets
after filtering), across all considered sample sizes (n ∈ {6,20}) and proportions of DE genes
(pDE ∈ {0.05,0.1,0.3,0.6}), comparing results based on the KIRC dataset used by Baik et al.
(2020) and the results based on 13 other selected TCGA datasets. Each panel displays the
median and range of absolute AUC values.
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Figure S5: Relative performance of edgeR, edgeR.ql, edgeR.rb, DESeq.pc, and DESeq2 in rela-
tion to the median dispersion (averaged across all genes in the real datasets after filtering), across
all considered sample sizes (n ∈ {6,20}) and proportions of DE genes (pDE ∈ {0.05,0.1,0.3,0.6}),
comparing results based on the KIRC dataset used by Baik et al. (2020) and the results based
on 13 other selected TCGA datasets. Each panel displays the median and range of the difference
between the AUC and the highest AUC observed within each DGM.
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Figure S6: Relative performance of voom.tmm, voom.qn, voom.sw, ROTS, BaySeq, and Pois-
sonSeq in relation to the median dispersion (averaged across all genes in the real datasets
after filtering), across all considered sample sizes (n ∈ {6,20}) and proportions of DE genes
(pDE ∈ {0.05,0.1,0.3,0.6}), comparing results based on the KIRC dataset used by Baik et al.
(2020) and the results based on 13 other selected TCGA datasets. Each panel displays the
median and range of the difference between the AUC and the highest AUC observed within each
DGM.
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Nutzung von großen Sprachmodellen

Zur Anfertigung dieser Dissertation wurden große Sprachmodelle (Large Language Mod-

els) genutzt. Diese wurden ausschließlich herangezogen, um Vorschläge für sprachliche

Korrekturen auf Basis bereits verfasster Inhalte zu generieren. Hierbei wurden die Mod-

elle GPT-4o (OpenAI) und GPT-5 (OpenAI) verwendet.
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