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Aim of the thesis 

 

The aim of this work is the development of methods that utilize Molecular Dynamics (MD) 

simulations for molecular-level insights into siRNA-delivering nanoparticles. MD simulations 

have been proven valuable in other research areas, such as materials science or the design 

of small-molecule drugs. Hence, the application of MD in the research of complex nucleic acid 

delivery systems is a promising approach. As the validation of MD results by orthogonal 

methods is highly important to ensure the reliability of newly introduced simulation models, the 

presented work combines computational studies with complementary experiments. 

A general introduction to the topic is provided in Chapter I, which first focuses on available 

siRNA delivery vehicles and general considerations for siRNA delivery. Then, the theory behind 

MD simulations is explained, and different MD techniques are highlighted.  

In Chapter II, previously published approaches to the utilization of MD for understanding of 

nanoparticle-mediated siRNA delivery are summarized. 

Chapter III focuses on the molecular organization of poly(beta-amino ester) (PBAE)-based 

polymeric nanoparticles (polyplexes). The investigated particles are based on an in-house-

synthesized group of PBAEs comprising varying ratios of hydrophilic polycation side chains 

(spermine) to hydrophobic oleylamine side chains. Coarse Grained (CG) MD simulations 

showed the self-assembly of polyplexes on a molecular level, depending on polymer 

composition and N/P ratios. The presented MD results were validated by a variety of 

experimental methods, including Nuclear Magnetic Resonance (1H NMR) and Transmission 

Electron Microscopy (TEM). 

Chapter IV advances to the investigation of the interactions between nanoparticles and a 

biological environment. In this case, the interaction of four different polyplexes and one lipid 

nanoparticle (LNP) with endosome-mimicking membranes was simulated. Parameters such 

as particle hydrophobicity, environmental pH, and membrane composition were elucidated 

through large scale CG and complementary AA MD simulations. Subsequently, the 

computational results were correlated with performance differences observed between the 

particles in vitro. 
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Chapter I - General Introduction 

 

1 Short interfering ribonucleic acid (siRNA) as therapeutic agent 

 

1.1 RNA induced gene silencing 

Through the process of ribonucleic acid interference (RNAi), messenger RNA (mRNA) is 

cleaved in a sequence specifically manner by the RNA-induced silencing complex (RISC), a 

cell endogenous nuclease[1]. RISC is activated by binding of the guide strand of a short 

interfering RNA (siRNA) to the Argonaute 2 (AGO2) subunit of RISC[2, 3]. As a result, the 

targeted mRNA, complementary to the bound siRNA strand, is degraded and no longer 

translated into a protein (Figure I.1). 

 

 

Figure I.1. Simplified schematic overview of the RNAi mechanism.  
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As an endogenous mechanism, cells utilize RNAi for post-transcriptional regulation of gene 

expression, protection from transposable elements, and antiviral defense[4, 5]. In this regard, 

cells cleave long double-stranded (ds) RNA to produce short sequences of approximately 

20 – 25 base pairs[2], i.e., the siRNA.  

However, through the introduction of synthetic siRNA[6], the mechanism of RNAi can be 

directed against any desired mRNA sequence, making it a promising tool for therapeutic 

applications.  

To increase performance and stability, but also reduce immunogenicity, therapeutically applied 

siRNA is chemically modified[7]. Modifications can affect both strands and cover a broad range 

from the modification of the ribose (2′-OMe and 2′-F)[8] or the phosphate group[9], to base 

modifications and end-capping[10]. Nonetheless, only a few applications exist in which 

chemically modified siRNA, administered without a delivery vector (i.e., as “naked” siRNA), 

has demonstrated therapeutic efficacy in humans. These include direct targeting of the kidney 

and treatment of ocular diseases via intravitreal injection[10]. Systemically administered, 

naked siRNA shows poor cellular uptake and short circulation times due to rapid renal 

clearance, which can be improved by nanoparticle formulations[11]. With this approach, the 

first proof of successful siRNA delivery in humans in vivo was achieved in 2010[12]. Therefore, 

it is widely accepted that most therapeutic siRNA applications will depend on advanced 

nanotechnologies to achieve effective delivery.  

As of 2025, several siRNA therapies are undergoing clinical trials, and seven FDA-approved 

siRNA therapies[13, 14] for humans are already on the market. Six of these are delivered as 

siRNA conjugated to trivalent N- acetylgalactosamine (GalNAc), which facilitates liver-targeted 

gene knockdown in humans[15]. Other conjugation approaches, for example to antibodies, are 

being studied to enable targeting to other tissues, such as tumors[16]. The range of non-viral 

delivery systems developed so far further includes inorganic and carbon-based materials, a 

broad variety of polymer-based nanoparticle systems, and lipid-based approaches (Figure 

I.2)[17]. 
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Figure I.2. Overview of some of the most studied non-viral siRNA delivery systems. 

 

1.2 Lipid Nanoparticles 

The use of lipids in the concept of liposomes as drug delivery vehicles was established as early 

as 1964[18]. Fifty-four years later, in 2018, the FDA approved the siRNA therapy patisiran[19], 

demonstrating that lipids are also capable of safely and efficiently delivering siRNA in the form 

of lipid nanoparticles (LNPs). Shortly thereafter, the mRNA COVID-19 vaccines developed by 

Moderna and BioNTech/Pfizer were approved[20]. Today, LNPs are the most extensively 

researched RNA delivery vehicles. They are commonly composed of four lipid types in varying 

ratios: A sterol (typically cholesterol), a helper lipid, a PEGylated lipid, and an ionizable lipid[21]. 

Like the GalNAc conjugates, the LNP formulation used in patisiran predominantly targets 

hepatocytes, which has been postulated to result from the abundance of apolipoprotein E 

(ApoE) in the protein corona that forms around the nanoparticle after injection[22]. To further 

advance LNP technology, selective targeting towards organs beyond the liver is highly 

desirable. For instance, the incorporation of a fifth lipid component enables the design of so-
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called selective organ targeting (SORT) LNPs, which have been shown to direct siRNA delivery 

to the spleen, lungs, or kidneys[23]. Still, the search for novel lipids and optimized LNP 

formulations is ongoing, often aided by computational approaches such as the screening of 

large libraries by machine learning algorithms[24-26]. 

While the PEGylated lipid in LNP formulations is known to play a key role in controlling particle 

size and maintaining colloidal stability[21], fully delineating the individual contributions of each 

lipid component to RNA encapsulation or inner particle structure remains highly complex. For 

example, depending on the shape of the helper lipid[27], lipid to cargo ratios[28], and particle 

size[29], the inner structure of an oligonucleotide delivering LNP can range from multilamellar 

to inverse hexagonal structures and disordered phases. Consequently, lipid composition of an 

LNP largely determines its ability to fuse with biological membranes, which leads to large 

differences in downstream processes like the endosomal escape (EE) of LNPs[27, 30]. 

Sophisticated methods such as Small-Angle X-Ray Scattering (SAXS)[29, 31] help to unveil 

the inner organization of LNPs. Likewise, LNP structure is a research area in which computer-

aided methods, like Molecular Dynamics (MD) simulations (see below) have proven to be 

highly insightful[32, 33]. 

 

1.3 Polymer based delivery systems 

Due to the highly versatile nature of polymers, potential strategies to encapsulate siRNA into 

polymeric nanostructures are numerous. However, even though several applications have 

entered clinical trials[34], no polymer-based nanoparticle formulation for nucleic acids has 

been approved as a therapy to date (2025). 

Polycationic structures efficiently interact with the polyanionic backbone of siRNA through 

electrostatic interactions. The most prominent polymer in this regard is polyethyleneimine (PEI) 

in its linear or branched forms with varying molecular weights[35, 36]. Alternatives include 

poly(2-(N,N-dimethylamino)ethyl methacrylate) (pDMAEMA), which shows similar 

encapsulation ability but lower transfection efficiency compared to PEI[37], or poly(L-lysine) 

(PLL), which comes with the advantage of being biodegradable[13]. Poly(amidoamine)s 

(PAMAM) on the other hand are well known in the design of dendrimers, which are highly 

branched, well defined three-dimensional polymeric structures[38]. However, the high cationic 

charge densities found in many polyplexes are often associated with cytotoxicity in vitro and in 

vivo[13, 37]. Advancements have been achieved by combining polymers with biocompatible 

materials such as poly(lactic acid-co-glycolic acid) (PLGA)[39], by increasing 

biodegradability[40] or by incorporating stealth moieties, such as poly(ethyleneglycol) (PEG) 

grafted variants. PEGylation of polymeric nanoparticles improves stability and circulation 

times, while simultaneously reducing the cytotoxicity of polycations by shielding the charge 
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dense region[41, 42]. On the other hand, a dense PEG layer on the nanoparticle surface can 

decrease transfection efficiency by hindering cellular uptake and EE[43].  

As hydrophobic modifications of polymers exhibit great potential to enhance transfection 

efficiency[44-47], amphiphilic polymers received increasing attention[48]. In this regard, a 

block copolymeric structure facilitates the formation of polymeric micelles with a hydrophobic 

core[49]. Nucleic acids can be loaded into polymeric micelles through covalent conjugation or 

electrostatic interactions similar to conventional polyplexes, either in the core or the shell region 

of the micelle[50]. For polymeric micelles loaded with nucleic acids by electrostatic interaction, 

the term micelleplex has been established. Besides an often-increased EE performance, 

micelleplexes benefit from hydrophobic contributions to the self-assembly process, which 

results in increased colloidal stability[48, 51]. However, amphiphilic polymers do not always 

have a strictly block copolymeric structure, as showcased by poly(beta-amino ester)s 

(PBAE)s[52-54], which have attracted increasing interest due to their biodegradability and high 

versatility. PBAEs are synthesized by Michael addition of a diacrylate and primary amines, 

which enables the simultaneous introduction of hydrophilic and hydrophobic side chains[55].  

 

1.4 Universal challenges of the siRNA delivery process 

Although non-viral delivery vehicles vary widely in their chemical composition, several common 

challenges throughout the delivery process can be identified. 

Before reaching the target tissue, the hurdles a formulation must overcome largely depend on 

the delivery route. Serum proteins adsorbing to the particle surface (the so-called protein 

corona) may render nanoparticles prone to immunological recognition[56]. In contrast, inhaled 

nanoparticles must additionally diffuse through mucus barriers before reaching epithelial lung 

cells[57]. 

The conjugation of targeting ligands to the surface of nanoparticles can direct them towards 

specific tissues or cell types[58], but the composition of the protein corona can likewise 

influence biodistribution[23]. 

Cellular uptake of nanomedicines is mostly mediated through a variety of endocytic 

mechanisms, which depend on both particle properties and cell type. While the process of 

phagocytosis is restricted to certain cell types such as macrophages, pinocytosis can be 

observed in most cells to varying degrees[59] (Figure I.3A). Clathrin-mediated endocytosis 

(CME), a pathway exploited by many nanomedicines, is activated upon receptor-specific[60, 

61] or receptor-independent[62] contact between particle and clathrin-coated pits on the 

plasma membrane. During CME, particles are internalized into clathrin-coated vesicles, which 

subsequently undergo intracellular trafficking along the endo-lysosomal pathway. In contrast, 
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caveolae-dependent endocytosis and clathrin/caveolin independent endocytosis circumvent 

the lysosomal compartment[63]. 

Which endocytic mechanism dominates for a given nanoparticle formulation depends on many 

factors such as particle size and shape[64]. For instance, caveolae-dependent endocytosis 

favors smaller particles than CME[65]. 

Finally, achieving high cellular uptake does not necessarily guarantee high transfection 

efficiency of a formulation[53]. Instead, siRNA must be released from the delivery vehicle and 

escape from endocytic vesicles, i.e., the endo-lysosomal compartment. EE is often referred to 

as the bottleneck of nucleic acid delivery, and underlying mechanisms are being widely 

discussed. EE of LNPs is believed to occur through direct interactions of particles and 

membrane[66], resulting in exchange of lipids and the formation of pores for the cargo to 

escape. For polycationic materials, rupture via the so-called proton sponge effect has long 

been proposed but is unlikely to represent the sole EE mechanism[36, 67] (Figure I.3B). To 

date, EE remains a highly researched topic with many open questions[30, 48], as further 

discussed in Chapter IV. 
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Figure I.3. Overview of proposed mechanisms for A. Cellular Uptake of nanoparticles 

and B. Endosomal escape mechanisms of polyplex- and LNP formulations.   
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2 Molecular dynamics (MD) simulations 

2.1 MD simulations for pharmaceutical applications 

Molecular Dynamics (MD) simulations are a broadly applied tool in both materials and life 

sciences. Especially in the context of small-molecule drug discovery, MD is widely established, 

as it aids in target modelling, binding pose prediction, lead optimization and serves as a 

valuable tool in virtual screening processes[68]. Likewise, advancements have been made to 

apply MD in drug development: valuable contributions include studies on drug solubility[69], 

protein formulation[70], and nanotechnologies[71, 72].  

 

2.2 The physical background of MD simulations 

MD simulations visualize the motion of particles, such as single atoms, based on Newton’s 

equations of motion. The potential energy of such a simulated system is composed of two main 

components, i.e., bonded and non-bonded interactions. Bonded interactions involve forces 

between covalently bound atoms of a molecule, namely bond potentials, angle potentials, and 

both proper and improper dihedrals, whereas non-bonded interactions include contributions 

from the Lennard-Jones potential and electrostatic forces (Figure I.4)[73]. 

These interactions are defined within a force field, which serves as the mathematical 

framework of an MD simulation. However, accurately capturing all relevant interactions for a 

specific system remains a non-trivial task. As such, the refinement and development of MD 

force fields continues to be an active area of research. 

Force fields can be developed based on experimental data, such as X-ray diffraction or nuclear 

magnetic resonance (NMR) data. Alternatively, they can be derived from quantum mechanical 

(QM) calculations, such as ab initio calculations or density functional theory (DFT), or from a 

combination of both QM and experimental data[74, 75]. Force fields can be differentiated 

according to their application (i.e., force fields that are optimized for the simulation of a certain 

type of biomacromolecules[76]) or their resolution (see below). Additionally, a distinction 

between additive and polarizable force fields can be made[77]. In addition to bonded and non-

bonded interactions, polarizable force fields account for the response of electron clouds to 

changing electrostatic environments, which increases simulation accuracy[78]. However, this 

inclusion of additional mathematical terms comes at a significant computational cost[79]. 

In summary, all force fields are based on the common ground of classical mechanics. Yet, due 

to the incorporation of different data sources in their refinement, some force fields are more 

suitable for specific setups than others. The choice of the force field for an MD study can 

therefore strongly influence its outcome[80-83]. 
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Figure I.4. Basic representation of the interactions contributing to the force field 

within an MD simulation.  

 

2.3 All Atom Simulations 

MD simulations can be designed at different levels of resolution. Intuitively, All Atom (AA) MD 

simulations treat each atom as a particle with individual interactions and properties. The 

increasing availability and capability of computational resources over the last decades, for 

example acceleration through graphics processing units (GPUs)[84] and the incorporation of 

artificial intelligence, has enabled AA MD simulations of increasingly large systems, such as a 

complete model of the SARS-CoV-2 viral envelope[85]. However, more commonly, AA 

simulations are applied to system sizes below 50 nm and simulation times below 10 µs[86-88]. 

Several additive AA force fields with distinct strengths and limitations are widely used. The 

AMBER family encompasses a variety of force fields, primarily optimized for biomolecules such 

as proteins, nucleic acids, and lipids[89-91]. The most recent CHARMM force fields include 

CHARMM36[92] for biomolecules and the CHARMM General Force Field (CGenFF) for small 

organic molecules and non-standard compounds. Parameter extensions have been published 

for specific molecules[93, 94] as well as extensive, more general improvements[95]. In 
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contrast, the OPLS-AA force field is particularly well suited for small molecules but remains 

less advanced for biomacromolecules[96]. 

 

2.4 Coarse Grained Simulations 

Coarse Grained (CG) MD simulations make use of a simplified resolution of molecules, most 

commonly representing 3–4 heavy atoms as one bead[97] (Figure I.5). This reduction of 

particles in the system substantially decreases the degrees of freedom in a simulation setup. 

Additionally, coarse-graining enables larger integration time steps, as fast vibrating bonds 

(e.g., hydrogen bonds) are no longer represented and hence energy surfaces are 

smoother[98]. Overall, this leads to an increase in simulation time by 1–2 orders of magnitude 

in comparison to an equally sized AA simulation box with the same computational resource 

consumption[99]. With CG simulations, boxes well above 100 nm side length are 

accessible[100], as well as timescales of several tens of microseconds[101]. 

The most popular CG force field is the Martini force field, which was first introduced in 2007 as  

a general model for biomolecular simulations[102]. Since 2021, Martini has been available in 

its third, refined version, Martini 3[97]. The aim of Martini 3 was to reduce shortcomings of 

previous versions, such as overstabilization of biomolecular assemblies[103], and to expand 

the variety of bead types, thereby increasing the chemical space Martini 3 can be applied 

to[104]. As described above, force fields, especially AA force fields, are parametrized based 

on experimental data and quantum mechanical data. In the case of Martini 3, the bead types 

were validated by reproducing experimental water-oil transfer free energies and solvent 

miscibility data. Consequently, a variety of simulation setups were tested and compared to 

other experimental or AA simulation results, demonstrating strongly improved performance of 

the force field[97]. In general, CG results are often refined to match AA simulations to ensure 

the quality of a newly parametrized molecule model, before upscaling to larger simulation 

setups[101, 105]. Since the publication of Martini 3, parametrizations of complex molecules, 

such as carbohydrates[106] and cholesterol[107] have become publicly available. Additionally, 

automated tools to generate CG input have been developed: This allows for automated 

generation of protein models, membranes, and preassembly of whole LNPs in CG 

resolution[108, 109]. Furthermore, the titratable Martini 3 version allows to simulate changes 

of protonation depending on the pH environment of a molecule[110], whereas backmapping 

approaches — i.e., restoring AA resolution to a simulated system that has reached equilibrium 

in a CG setup — help to combine simulations of large systems with AA accuracy[111]. 

Nevertheless, even with Martini 3, room for improvement remains[112]. For instance, Martini 3 

failed to reproduce experimental data concerning protein-protein interactions, making further 
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optimization of the force field necessary[113]. Similarly, in the case of intrinsically disordered 

proteins, Martini 3 needed modifications to better keep up with state-of-the-art AA force 

fields[114]. Hence, AA and CG simulations coexist synergistically. 

 

Figure I.5. All Atom versus Coarse Grained MD simulation . A. Visualization of the 

coarse-graining process of a molecule fragment. B. Comparison of a siRNA molecule in 

AA and CG resolution.  
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2.5 Advanced sampling techniques 

A variety of techniques enable MD simulations of rare events that are not accessible within the 

timescales of classical equilibrium MD. 

The umbrella sampling method[115] applies harmonic biasing potentials to the system of 

interest, restraining it to overlapping windows along a predefined collective variable (CV). The 

biased distributions obtained from these windows are subsequently reweighted, for example 

using the Weighted Histogram Analysis Method (WHAM)[116], to reconstruct the unbiased 

probability distribution. From this, the potential of mean force (PMF) can be derived, 

representing the free-energy profile along the reaction coordinate. 

Similarly, metadynamics simulations derive free-energy surfaces (FES) of a system along 

predefined CVs. During the simulation, Gaussian hill potentials are added in a history-

dependent manner. This enables the system to overcome energy barriers, while at the same 

time discouraging the system to revisit previously explored states[117]. 

In accelerated MD (aMD), no prior knowledge of the potential energy landscape of a system 

and no definition of CVs are required. The method raises energy minima, thus reducing the 

barriers the system must overcome to transfer from one metastable state to another[118].  

In contrast to these methods, Replica Exchange MD (REMD) samples multiple replicas of the 

system at different temperatures or with independent Hamiltonians. Exchanges of replica 

configurations allow the system to cross energetic barriers more efficiently, thereby enhancing 

sampling even at lower temperatures[119]. 

 

2.6 Limitations of Classical MD simulation 

While being extremely powerful in providing mechanistic insights into biomolecular processes 

and molecular interactions, MD simulations do not allow the formation or breakage of covalent 

bonds[84]. The simulation of chemical reactions therefore lies beyond the scope of classic MD. 

For this type of insight, ab initio molecular dynamics (AIMD), which incorporates electronic 

properties of the system under investigation[120], is more suitable. Inherently, AIMD 

simulations are extremely computationally expensive and therefore limited to a few hundred 

picoseconds[121]. Alternatively, hybrid quantum mechanics/molecular mechanics (QM/MM) 

simulations apply accurate quantum mechanics to a small region of interest, e.g., the binding 

pocket of an enzyme, while treating the remainder of the system with a classical force 

field[122]. 

Although great advances have been made, the availability of computational resources remains 

a limiting factor for MD simulations. Consequently, many MD studies apply simplifications to 
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the system under investigation[71, 123], while others explicitly focus on increasing the 

complexity of simulated systems[124]. 

Additionally, the timescales of many biologically relevant processes exceed the temporal range 

accessible to MD simulations. Therefore, as mentioned above, rare events that would not be 

observed in equilibrium MD simulations are investigated using advanced sampling 

techniques[125]. 
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Chapter II - How can simulations 

aid our understanding of 

nanoparticle-mediated siRNA 

delivery? 
 

The following chapter was published as an editorial in Therapeutic delivery: 

Katharina M. Steinegger and Olivia M. Merkel*: 

“How can simulations aid our understanding of nanoparticle-mediated siRNA 

delivery?” Therapeutic delivery vol. 16,7 (2025): 617-619. 

doi:10.1080/20415990.2025.2505397 
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With artificial intelligence and simulation-based methods becoming more powerful, the 

increasing role of computational approaches in pharmaceutical research is undeniable. This 

includes Molecular Dynamics (MD) simulations, which have been under constant evolution 

since 1976[126]. As MD has already proven valuable in the design of small-molecule drugs 

and protein research, it is now emerging as a promising tool for the development of siRNA 

delivery systems as well. 

Short interfering RNA (siRNA) is used to downregulate disease-driving genes within an 

organism, offering broad applications in treating cancer, autoimmune diseases, and other 

conditions. Yet, due to fast degradation of exogenous nucleic acids in the body, successful 

delivery of siRNA strongly depends on the formulation strategy. While good responses can be 

achieved with N-acetylgalactosamine (GalNAc) siRNA conjugates in the liver, other formulation 

strategies focus on the delivery via Adeno Associated Viruses (AAVs) or the encapsulation of 

siRNA into nanoparticles. The materials used for siRNA nanoparticles cover a wide range from 

inorganic gold nanoparticles, via the more prominent lipid nanoparticles (LNPs) to polymeric 

nanoparticles, particularly polyplexes. Regardless of which material the carrier systems are 

based on, they all have a complexity in common which makes the complete understanding of 

a formulations’ behavior challenging. MD provides the potential to make molecular interactions, 

such as the internal organization of a nanoparticle, accessible while circumventing complex 

experimental methods such as x-ray scattering approaches. 

 

All-atom (AA) MD simulations show the molecules of interest in single atom resolution. While 

this is a big advantage for the observation of details, it results at the same time in the major 

disadvantage of AA simulations: The high number of interactions the simulation must account 

for leads to a limitation concerning size of the simulated system and time span of the 

simulation. Nevertheless, AA MD studies reveal valuable details on nanoparticle formation. 

They can be used to investigate the direct interaction of polyplex-forming cationic 

polymers[127, 128] with nucleic acids, unveiling binding strengths between polymers and the 

cargo, as well as preferred binding sites[129] (e.g., major grove vs. minor grove of the siRNA). 

Other applications allow insights on how modifications of polymers, such as the addition of 

hydrophobic units to hydrophilic polyethyleneimines (PEI), change the particle 

performance[130]. 

Similarly, AA simulations are used in the development of LNPs. First, they can be applied to 

predict the degree of protonation of an ionizable lipid[31]. This is crucial for LNP design, as the 

pKa of a lipid within an LNP (“apparent pKa”) can differ significantly from its pKa in solution. 

Second, insights on the geometry of lipid arrangements within an LNP[131, 132] won from AA 

MD strongly contribute to the understanding of LNP systems. However, AA models are hardly 
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capable of depicting polyplexes or LNPs at the full scale of experimentally observed 

nanoparticle sizes. 

 

To access larger systems, coarse-grained (CG) force fields have been developed, the most 

popular being the Martini force field[97]. Coarse graining reduces the degrees of freedom in a 

simulation by reducing the resolution, as groups of atoms are summarized into beads with 

predefined properties such as degree of hydrophobicity or charge. With this approach, not only 

systems up to ~ 100 nm are simulated, but also timescales of tenths of microseconds are 

accessible. To avoid wrong conclusions based on observations introduced by the inaccuracies 

of a CG model, the simplified models must be validated against AA simulations and/or 

experimental data before further use. Some well-established polymers in nucleic acid delivery, 

e.g. PEI, have therefore been simulated as AA models[35] and as larger CG models[133]. 

Here, the CG approach allows to cover the whole range of experimentally used molecular 

weights of PEI. CG simulations also expand the knowledge gained from MD to include more 

formulation parameters, such as the role of different N/P ratios (i.e., the ratio of positive charges 

in the encapsulation agent to negative charges of the RNA). This sheds light on different stages 

of siRNA encapsulation or the presence of unproductive polymer in a polyplex 

formulation[134]. Similarly, CG simulations shape the understanding on how different ionizable 

lipids form LNPs with substantially different properties[109]. Other simulations visualize the 

changes in LNPs upon pH changes in the environment, including dehydration and 

rearrangement of lipids in an LNP when dialyzed towards neutral pH[135]. Backmapping from 

CG resolution to AA is the chance to combine the advantages of both: Assembling larger 

structures in CG MD and observing atomistic details in the final state after AA resolution was 

reapplied to the molecules. This method can, for example, be used to research the complex 

interplay of the different lipid types in an LNP[111]. 

As siRNA delivery does not end with the formation of a stable nanoparticle, efforts of MD 

research also expand to the interactions of nanoparticles in biological environments. A key 

application is the widely debated question of how carrier systems enable efficient endosomal 

escape of the siRNA, which is necessary for it to reach the site of action in the cytoplasm. 

Advanced microscopy methods provide valuable insights by tracking nanoparticles in 

combination with endosomal escape markers[136]. While these methods enable the 

correlation of particle properties with endosomal escape performance, they do not provide 

detailed information on underlying mechanisms. MD simulation is beginning to make the 

molecular process of endosomal escape observable[71, 109], allowing for more 

comprehensive understanding of mechanistic backgrounds. In this regard, the influence of lipid 

composition and charge in an LNP on its ability to fuse with endosomal membranes can be 
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visualized. Additionally, the role of different lipid types in the biological membranes can be more 

thoroughly discussed when made observable by a simulation[123]. 

With the rapidly growing number of publications in the field, the availability of tools and methods 

for faster preparation of simulations increases as well. For example, tools for automatic 

generation of membranes with desired composition[137, 138] or flexible protocols for building 

LNPs in CG resolution[109] are publicly available. Certainly, this will further contribute to the 

progression of MD simulation in the field of siRNA delivery.  

It can be concluded that MD simulations aid our understanding of nanoparticle-mediated siRNA 

delivery by making processes visible and understandable on a molecular level. However, 

simulation data must always be carefully validated and compared to experimental results to 

avoid over-interpretation and false conclusions. For now, the strength of MD lies in elucidation 

and explanation of experimental observations, while the time where it replaces experiments in 

the development of siRNA delivery systems is yet to come. 
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1 Abstract 

 

Cationic polymers are known to efficiently deliver nucleic acids to target cells by encapsulating 

the cargo into nanoparticles. However, the molecular organization of these nanoparticles is 

often not fully explored. Yet, this information is crucial to understand complex particle systems 

and the role influencing factors play at later stages of drug development. Coarse-grained 

molecular dynamics (CG-MD) enables modeling of systems in the size of real nanoparticles, 

providing meaningful insights into molecular interactions between polymers and nucleic acids. 

Herein, the particle assembly of variations of an amphiphilic poly(beta-amino ester) (PBAE) 

with siRNA was simulated to investigate the influence of factors such as polymer lipophilicity 

and buffer conditions on nanoparticle structure. Simulations were validated by wet lab methods 

including nuclear magnetic resonance (NMR) and align well with experimental findings. 

Therefore, this work emphasizes that CG-MD simulations can provide underlying explanations 

to experimentally observed nanoparticle properties by visualizing the nanoscale structure of 

polyplexes. 

 

2 Introduction 

 

Short-interfering ribonucleic acid (siRNA) as therapeutic agent successfully entered the 

pharmaceutical market in 2018, with five FDA-approved products currently available[139]. Its 

mode of action is downregulation of transcription of disease driving genes via the mechanism 

of RNA interference (RNAi) in the target cells. However, while the demand for nucleic acid 

therapies is growing, all presently approved siRNA drugs target the liver[19, 140-142]. A major 

challenge therefore remains in finding delivery vectors[143], which enable efficient targeting to 

other organs and simultaneously avoid early degradation of the RNA. 

The five marketed siRNA therapies rely either on lipid nanoparticles (LNPs) or conjugation to 

trivalent N-acetylgalactosamine (GalNAc) to assure delivery[139]. Besides viral vectors, 

alternatives for delivery vehicles include polymers. Cationic polymers encapsulate the 

negatively charged RNA mainly via electrostatic interactions[35], forming so called poly- or 

micelleplexes. Using polymers as delivery vectors provides certain advantages[144, 145], such 

as broad tunability and good biodegradability. Therefore, polycations are being investigated as 

nonviral vectors for safe and efficient delivery targeting a wide variety of diseases[146-149]. 

The explored materials cover a broad chemical space ranging from polyethyleneimines 

(PEI)[150, 151], via carbohydrates such as chitosan[152], to more complex molecular 

structures such as poly(beta-amino ester) (PBAE)s[153]. 
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PBAEs were first introduced as polycationic vectors for plasmid DNA in the year 2000[154] and 

stand out due to their almost unlimited adaptability. Owing to a toolbox-like system, PBAEs 

allow various combinations of diacrylates for the backbone and amines as side chains of the 

molecular structure[155]. The introduction of amphiphilicity by combination of hydrophilic and 

hydrophobic side chains within one polymer was shown to improve colloidal stability[156]. 

Subsequently, amphiphilic poly(beta-amino ester) (PBAE)s, containing a varying ratio of 

polycationic spermine and lipophilic oleylamine (OA), have been identified as copolymers that 

successfully deliver siRNA, achieving particularly high knockdown efficiencies at low polymer-

to-RNA ratios[157].  

Understanding the internal organization of self-assembled polyplexes can help to identify 

relevant formulation parameters and to link these to the particles’ physicochemical 

properties[35]. Subsequently, the intracellular behavior of polyplexes can further be 

elucidated[48, 71]. Experimental methods including Transmission Electron Microscopy 

(TEM)[35, 51] or Small-Angle X-Ray Scattering (SAXS)[158] have been applied to investigate 

particle shapes. Others have exposed the role of the molecular weight (MW) of PBAEs by 

explicitly screening its influence on knockdown efficiency[159]. Meanwhile, Molecular 

Dynamics (MD) simulations have developed into a powerful tool to be incorporated in the 

development of drug delivery systems[133, 160, 161]. Especially with the refinement of coarse-

grained (CG) models, MD allows for simulating systems in the size of real nanoparticles up to 

100 nm at timescales of several microseconds[135, 162]. 

Herein, PBAEs comprising spermine as polycationic moiety and OA as lipophilic component, 

have been mapped and parametrized in CG resolution in the MARTINI 3 force field[97]. 

 

3 Results and Discussion 

 

The parametrization, based on the mapping (Figure III.1A), yielded distributions of bonded 

interactions in good agreement with the All-Atom (AA) reference (Figure III.S1A+B). The herein 

studied PBAE polyplexes are exposed to an acidic pH of 5.4 during polyplex formulation, a pH 

of 7.4 upon administration and again acidic pH after cellular internalization in the endosomal 

compartment[48]. According to the pKa values determined by Density functional theory (DFT), 

all amines of the polymer were protonated at pH 5.4. At pH 7.4, only the secondary amines 

and the tertiary amine of the OA linkage in the backbone were protonated (Figure III.1A). The 

remaining amines in the spermine moiety were considered deprotonated due to neighboring 

effects of the protonated secondary amines (Figure III.S2). PBAE models were generated for 

polymers with varying %OA between 10% and 85%. Initially, a molecular weight (MW) of 
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around 9 kDa was chosen. To account for possible influences of the MW, models with 4.5, 27, 

and 100 kDa were generated additionally. As the behavior of these models showed no notable 

differences upon particle formation in visible outputs and radial distribution functions (RDF) 

around RNA phosphates (Figure III.S3), further simulations were conducted with the 9 kDa 

models. Micelle formation of the amphiphilic polymer (Figure III.1B) was confirmed by TEM 

imaging (Figure III.1C), dynamic light scattering (DLS) (Figure III.1D), and a pyrene assay for 

critical micellar concentration (CMC) (Figure III.S4), with decreasing CMCs observed as the 

%OA increased. 

 

Figure III.1. PBAE mapping and model validation.  A. Molecular structure and pKa 

values at 25 °C of the PBAE copolymer with a spermine (left) and oleylamine  (r ight) 

subunit. Mapping to CG resolution within Martini 3 indicated by spheres. B.  Simulation 

snapshots of 9 kDa polymers in 10 mM HEPES at pH 5.4, simulated for 2.5  µs. Lipophilic 

components in grey, charged beads in red. Exemplary coloring corresponds to one 

polymer molecule per color.  C. Micelles formed of PBAE 70% OA as visible in TEM 

imaging. D. Comparison of hydrodynamic diameters in DLS and Simulation (MD) under 

low and high ionic strength buffer conditions. DLS results (n = 3) with mean ± SD of ma in 

peak below 20 nm by intensity. MD results are mean of Dh averaged over the whole box, 

calculated from mean square deviation (msd) between 1.75 and 2.25 µs simulated time.  
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To validate the behavior of the polymer models, setups with only PBAE in buffer were simulated 

and the average hydrodynamic diameter of micelles was calculated via mean square deviation 

(msd). The micelle sizes in simulation were in good agreement with DLS results (Figure III.1D) 

and followed the trend of increasing micelle size with increasing %OA of the polymer. Analysis 

of TEM images yielded a diameter of 18.8 ± 3.8 nm for the 70% OA polymer in 10 mM HEPES, 

which is larger than DLS (9.4 ± 2.8 nm) and simulation (10.7 nm). This deviation was attributed 

to the increased visibility of larger micelles in the TEM and unclear margins of single micelles. 

Another explanation can be an increased sample concentration in TEM making the formation 

of larger polymer aggregates more favorable, especially considering the high lipophilicity of the 

70% OA polymer. 

Previous in vitro experiments with this type of PBAE copolymer[157], and other PBAE-based 

studies[163] showed a strong influence of the polymers’ amphiphilicity on knockdown or 

transfection efficiency. Hence, the %OA in the polymer was selected as a factor for in depth in 

silico investigation. Upon simulation of particle assembly, precursor micelles assembled within 

the first µs. Polycationic spermine moieties remained on the surface and established 

electrostatic interactions with the negatively charged phosphate beads of the siRNA (Figure 

III.2A). Over time, this led to the formation of nanoparticles. Unlike for the micelles, the particle 

sizes cannot be directly compared between simulation and experiment, as the simulation box 

does not contain enough material to form real sized nanoparticles. 
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Figure III.2. Influence of polymer lipophilicity on particle morphology (in 10 mM HEPES, pH 5.4, 

at N/P 10). A. Simulation output after 5 µs of particle assembly with increasing lipophilicity, i.e., %OA of 

the polymer (10%, 30%, 50%, 70% and 85% shown) from left to right. Polymers in grey/red, siRNA in 

turquoise. B. Particles formed with either 55% or 70% OA in TEM. C. Simulation output of particle 

assembly under the same conditions as in A. for 70% OA but in a cubic box with 75 nm side length, 

containing 99 siRNA molecules, 5 µs. Orange color represents polymer outside of siRNA containing 

particles. 

 

Zhao et al.[129] demonstrated in an AA simulation setup the exclusive interaction of spermines 

with the major groove of siRNA. Notably, this exclusivity of interaction was not reproduced in 

our model (Figure III.S5), which could be attributed to the reduced mobility of the spermines 

anchored in the PBAE backbone at GC resolution. Shortcomings of the Martini 3 force field, 

including non-ideal nonbonded interactions[164], have been reported. Therefore, detailed 

small-scale interactions profit from the application of an AA simulation, whereas CG-MD is 

advantageous for large scale simulation setups due to the massive reduction of consumed 

resources. 

The particle morphology was strongly influenced by the lipophilicity of the copolymer: Low %OA 

polymers formed undefined particles with rugged surfaces. Increasing the %OA led to irregular, 

“bead-on-a-string”-like particles, as previously described for other polyplexes[35, 51]. Only 

above 70% OA, compact particles formed (Figure III.2A). TEM images (Figure III.2B) 

confirmed a change in particle shape, with 55% OA polymer particles being irregularly shaped 

and 70% OA polymer particles appearing condensed. The differences in particle shape 

between MD and TEM in the range from 70-80% OA might be attributed to the limited time of 
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assembly during the simulations. The 70% OA, N/P 10 (ratio of PBAE-amines to RNA 

phosphates) particle assembly was therefore extended to 15 µs. However, the particle did only 

slightly condense further but did not reach a similarly compacted shape as observed in the 

corresponding TEM images (Figure III.S6). As particle assembly in wet lab experiments 

requires incubation times in the minute-range, the process could be too slow to be portrayed 

in simulation to the final state. To determine if the limited simulation size of the cubic 40 nm 

box does affect particle assembly, the 70% OA polymer was exemplarily simulated in a 75 nm 

box with 99 siRNA molecules (Figure III.2C). The RDF around RNA phosphates showed similar 

contact levels with amines and water (Figure III.S7) compared to the smaller setup, validating 

the use of the 40 nm box simulations.  

The trends in particle shape were attributed to the capability of different polymers to form larger 

supramolecular assemblies, i.e., elongated micellar structures, spheres with RNA containing 

pores, or larger micelles in general. With increasing %OA, the total mass of polymer to achieve 

the same N/P ratio increases, as the number of charged spermines within the same total mass 

of polymer decreases. In the simulations, this was quantified as the number of spermines per 

nm2 of the micelle core surface (Figure III.S8). With increasing %OA, the spermine density on 

the micelle surface decreased, therefore the repulsion between single micelles was reduced. 

Thus, larger polymer arrangements formed, and more compacted particle shapes were 

accessible. 

The N/P ratio is often correlated with knockdown efficiency of siRNA polyplexes[35] and was 

shown to be of high impact for the characteristics of particles formed with the PBAEs[157]. 

Here, nanoparticles were prepared for polymers with 30%, 55%, and 70% OA at N/P ratios 1–

10 and the polymers’ encapsulation efficiencies were assessed. Z - average and PDI (Figure 

S9A) confirmed the formation of small (< 100 nm) and monodisperse (PDI < 0.2) nanoparticles 

for all polymers within an optimized N/P range. The ζ-potential increased with increasing N/P 

ratio from below 0 mV to maximum values around 20 mV. All formulations benefited from an 

N/P ratio where the ζ-potential (Figure III.S9B) was positive. In contrast, in the N/P range 

around charge neutrality, standard deviations for z - average and PDI were high due to 

aggregation tendencies of the nanoparticles. The PDI was lowest just above charge neutrality 

and increased with the addition of more polymer, arguably due to the formation of excess 

micelles as a second species. This indicated an optimal N/P ratio of 5–6 for the 30% and 55% 

OA polymers, while the 70% OA polymer formed the smallest and most monodisperse particles 

at N/P 7–10. This observation corresponds well with the N/P values at which full encapsulation 

was reached: Figure 3A shows that for 30% and 55% OA, full encapsulation was achieved at 

N/P ~ 4, with no notable difference between the two polymers. The more lipophilic polymer 

(70% OA) reached full encapsulation at an N/P ratio around 6. 
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Subsequently, MD simulations were conducted with the same polymers at N/P ratios from 1 to 

15. The encapsulation efficiency within the simulations was quantified via the area under the 

curve (AUC) of RDF for the water contacts of the RNA surface (Figure III.S10). Figure III.3B 

shows a decrease of water contacts until N/P 4 is reached for all polymers, which fully 

corroborates the experimental results for 30% and 55% OA. Conversely, the difference of 

encapsulation efficiency for the 70% OA polymer between N/P 1-5 was not reproduced. As 

observed with the results for particle morphology, this suggests inaccuracies of the CG-MD 

approach in the middle to high %OA range. 

It was however visible in the simulation output that particles formed by the hydrophilic polymers 

(30% and 55%OA) contained more spermine moieties on the particle surface at low N/P ratios 

(Figure III.3C, N/P 3 and 5). These spermines were not in reach of any RNA backbone and did 

therefore not contribute to RNA complexation. Instead, they formed a charged corona on the 

particle surface. The simulations thus provide an explanation for the transition from negative 

to positive ζ-potential at lower N/P ratios for particles with lower %OA PBAEs. Again, the 

observed effect can be attributed to limited possibilities for supramolecular arrangement of the 

polymer within the smaller micelles[161]. 

Further, the choice of N/P ratio is of high relevance as an excess of unnecessary excipients 

can promote side-effects[165-167]. Figure III.3C shows the first appearance of free, excess 

polymer at N/P 5 for 30% OA and N/P 7 for 55% and 70% OA. The amount of free polymer, 

and from that, the stoichiometry (i.e., effective N/P ratio) in MD simulations was quantified for 

all polymer models between 10% and 85% OA at N/P 10 in different buffers (Figure III.4A). The 

trend clearly suggests that the more lipophilic the polymer, the higher the amount polymer 

bound per siRNA, leading to higher effective N/P ratios. 
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Figure III.3. Nanoparticles at different N/P ratios. A . Encapsulation efficiency 

experimentally assessed by SYBR Gold assay, n = 3, shown as mean ±  SD. B.  Area under 

the curve (AUC) of radial distr ibution functions (RDF) within 0.6 nm of the RNA surface, 

indicating the decrease of water contacts of the RNA with increasing N/P ratios. 

C. Simulation output after 5 µs simulated particle assembly with increasing N/P ratios 

from left to r ight, simulated with 30%, 55% and 70% OA polymers. Excess polymer 

(outside of RNA containing particles) shown in orange.  
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These simulation results were validated by 1H nuclear magnetic resonance (NMR) 

spectroscopy. By titration of an siRNA sample with increasing amounts of PBAE and 

measurement of an 1H NMR spectrum after each step, new signals referring to excess polymer 

were identified above certain N/P ratios (Figure III.4B). After the addition of the first PBAE to 

the siRNA, additional signals appeared incrementally. Assuming that the polyplex signals are 

not visible due to severe line broadening resulting from short transverse relaxation times (T2), 

these signals were attributed to dangling residues on the polyplex surface[168]. In comparison 

to the peaks of PBAE only samples and samples with high N/P, these signals are slightly shifted 

towards higher ppm. At high N/P ratios, the most prominent signals showing a constant 

increase in intensity were signal A, B, C and D (Figure III.4B+C). Signals A and B can be 

exclusively attributed to the OA[169, 170] within the polymer (Figure III.S11). 

The appearance of free polymer at high N/P ratios was confirmed by 2D NOESY experiments. 

These are based on the nuclear Overhauser effect (NOE), used to detect spatial proximity of 

protons/ the chemical exchange of protons in different chemical environments[171, 172]. This 

type of experiment was performed with samples containing RNA and 70% OA polymer at N/P 

7 or 15 (Figure III.S12). First, reference spectra containing only PBAE were analyzed. Very 

intense intramolecular NOEs are present, mainly originating from the OA moiety of the polymer. 

At N/P ratio of 7, all intramolecular NOEs nearly collapse or are not visible at all due to the 

extreme line broadening. This may be due to either the sole presence of a giant supramolecular 

assembly i.e., polyplexes with low tumbling rates leading to drastically increased transverse 

relaxation rates (R2), or transitions between free and bound states with significantly different 

chemical shifts in the slow intermediated exchange regime on the NMR timescale[173]. These 

findings are in good agreement with the in silico results indicating that an N/P ratio around 7 

represents a stoichiometric inflection point in polyplex formation with 70% OA PBAE. Finally, if 

a relatively large excess of polymer is obtained (N/P 15), the NOEs previously present in the 

reference spectrum (PBAE only) become visible again. 

Both methods (NMR and CG-MD) implied that the stoichiometry within the particles no longer 

increased linearly with the theoretical N/P ratio (Table III.S1, Figure III.S13). Instead, the 

effective N/P ratio in 10 mM phosphate buffered saline (PBS) reached a threshold of about 9 

for 70% OA polyplexes and about 6 for the 30% OA PBAE particles. 

The good agreement between NMR results and effective N/P ratios from MD simulations 

(Figure III.4D) highlights the accuracy of the MD model. The strongest deviation between NMR 

and MD results was measured in high ionic strength buffer (150 mM PBS in NMR or 160 mM 

HEPES buffered saline (HBS) in MD) at an input N/P ratio of 15. Here, MD results imply nearly 

full binding of the 70% OA polymer. This trend towards higher effective N/P ratios in high ionic 

strength buffers was consistent throughout all simulations (Figure III.4A). However, by NMR 
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no significant difference was observed at N/P = 15 between particles formed in high or low 

ionic strength buffer with 70% OA PBAE (Figure III.4D). 

Notably, concentrations in MD simulations were about 100x higher than in experimental setups, 

which might have contributed to the observed deviation between NMR and MD results. 

Additionally, the reaction field (rf) algorithm used to handle electrostatic interactions in the MD 

setup comprises a tradeoff with improved computational performance but reduced accuracy of 

the simulation, as it uses a coulomb cutoff beyond which the dielectric constant of the system 

is treated as uniform[174]. This leads to poorer treatment of long range electrostatics in 

comparison to e.g. the Particle Mesh Ewald algorithm (PME)[175]. Still, ionic strength of the 

medium is known to often influence colloidal stability and size of nanoparticles[176, 177] and 

will therefore be further discussed below. 
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Figure III.4. Simulation validation by NMR. A. Effective N/P ratio calculated from MD 

(n = 1) at an input N/P ratio of 10. Simulated for polymers from 10% to 85% OA in 5% 

Glucose, 10 mM HEPES or 10  mM HEPES  + 150  mM NaCl (= HBS). B. 1H NMR spectra 

with water suppression (10 mM PBS, pH 5.4, 10% D 2O/H2O). N/P ratios increase from 

top to bottom by stepwise addition of 70% OA polymer to the sample. Signals with most 

prominent changes upon titration marked by boxes. C.  Excerpt of chemical structure of 

PBAE, signal assignment and overlay of 1H NMR spectra of N/P 15 and PBAE only; NMR 

conditions as described under A. D. Effective N/P ratio calculated from NMR (n = 3, mean 

± SD) in comparison to MD (n = 2, mean).  
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To determine the influence of buffer excipients, particles were formulated at N/P 10 in three 

different buffers/solutions at pH 5.4: 5% Glucose, 10 mM HEPES, and 160 mM HBS. DLS 

measurements revealed a shift towards larger particles (Figure III.5A) with higher ζ – potential 

(Figure III.S14) at high ionic strength of the medium, independent of lipophilicity of the used 

polymer. Although no significant difference between 5% Glucose and 10 mM HEPES 

concerning size and ζ – potential was observed, the presence of ions at higher concentrations 

(HBS) caused significantly larger particles with hydrodynamic diameters of above 400 nm. In 

MD simulation, visually more compact particles formed (Figure III.5B) and, as discussed 

above, the effect of ionic strength resulted in higher effective N/P ratios. 

The presence of more ions in the hydrodynamic shell of the PBAE micelles alters the repulsive 

forces upon particle assembly. Reduced colloidal stability and altered particle shapes are 

therefore to be expected. Furthermore, surface charge of nanoparticles is known to alter their 

interaction in physiological environments e.g., with proteins in serum[178]. Ultimately, this 

influences cellular uptake and intracellular trafficking[67, 179, 180]. 

When the particle contains functional groups with pKa values in physiological ranges, pH 

changes in the surrounding medium will alter the particle charge and its interactions with the 

environment[181]. To mimic these changes in the simulation, pH values of 5.4 (formulation), 

followed by pH 7.4 (administration), and again pH 5.4 (endosome) were applied via an 

adjustment of the protonation state of the polymer[135]. Increasing the pH to 7.4 caused 

condensation of the particles, as the decreased charge on the micelle surface allowed for a 

rearrangement of the micelles into larger supramolecular structures (Figure III.5C). These 

changes reduced the water contacts of the RNA phosphates (Figure III.5D) but increased the 

contacts with amines. In contrast to CG-MD observations made on lipid-based RNA 

carriers[135], the pH increase did not cause expulsion of RNA from the particle. After the pH 

was reduced again, the particles rearranged but primarily maintained the agglomerated shape. 

However, the microenvironment around the phosphates restored to the level as before the pH 

changes- for both water and amine contacts. Especially for high %OA particles, the shapes 

resulting after the pH changes align better with the TEM images (Figure III.2B, Figure III.S6) 

than before. It could therefore be argued that the pH changes speed up the process of particle 

condensation, which is otherwise too slow to be simulated to a final state. The readjustment to 

pH 5.4 was accompanied by a moderate swelling of the polyplex, which was hypothesized 

previously to play a role in endosomal escape[67]. 
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Figure III.5. Influence of buffer conditions on PBAE polyplexes.  A. Last frame of 

simulated particle assembly (5 µs) in different buffers. B. Z-average (bars) and PDI (dots) 

of polyplexes at N/P  = 10 in 5% Glucose, 10 mM HEPES or 10 mM HEPES + 150 mM 

NaCl (= 160 mM HBS), all pH 5.4. n  = 3, mean ± SD. C. RDF of amines of 50% OA PBAE 

and water around RNA phosphate beads a) after initial particle assembly b) after pH 

increase to pH 7.4, and c) after subsequent reduction of the pH back to 5.4. 

D. Visualization of changes in particle structure after simulation of subsequent pH 

changes (assembly at pH 5.4 for 5 µs, equilibration at pH 7.4 for 2 µs, equilibration back 

to pH 5.4 for 2 µs).  
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With a combinatorial approach of CG-MD simulation and experimental validation, 

experimentally observed influences on polyplex structure were explained on a molecular level. 

Our CG-MD approach did not suggest a pronounced effect of MW of the polymer for the 

investigated PBAEs. Instead, lipophilicity of the PBAE was identified to be the main influencing 

factor on particle shape - reflected by the charge, density, and mobility of spermines on the 

surface of polymeric micelles. Polyplex morphology may strongly affect cellular uptake and 

endosomal escape[182]. Hence, the demonstrated influence of lipophilicity of the polymer 

should be carefully considered when designing amphiphilic PBAEs. Structural alterations of 

polyplexes were also observed through changes of pH and ionic strength of the medium. 

Furthermore, with CG-MD and NMR, two methods were introduced to determine the critical 

N/Pmax for every %OA. Further increasing the N/P in the formulation did not significantly 

increase the stoichiometry within the particles. PBAEs are a heterogenous group of polymers, 

varying not only in lipophilicity, but e.g. also backbone rigidity or side-chain architecture. Similar 

simulation setups could therefore be applied to other PBAE structures, allowing for a more 

extensive comparison of the polymers. 

Future work will have to show, how the herein found differences between polyplexes of varying 

lipophilicity and structure are linked to their differing behavior in vitro and in vivo. A quantitative 

approach that directly links in silico data to in vitro data is however a major hurdle, as the 

simulation of whole cells, including their active mechanisms and pathways, is not possible 

yet[100]. Still, future simulations could provide underlying explanations for differences in 

biological interaction (e.g., endosomal escape)[71]. 

In this work, despite minor limitations in reproducing experimental results at high %OA, 

computational results were generally consistent with experimental findings. By comparing 

experiments with CG-MD simulations, this study clarifies the molecular organization of PBAE 

polyplexes and demonstrates the utility of CG-MD in developing drug delivery systems. 

 

4 Methods 

4.1 Chemicals 

All PBAEs were synthesized in house as described previously[55]: In brief, 1,4-butanediol 

diacrylate (TCI, Japan) as the backbone was polymerized in a Michael-addition step-growth 

polymerization with spermine (Fisher Scientific, Acros, USA), protected as tri-boc spermine, 

and oleylamine (Fisher Scientific, Acros, USA). Tri-boc spermine was deprotected with 

trifluoroacetic acid (Fisher Scientific, Acros, USA) and products were purified by gel 

chromatography. Amine-modified siRNA for the knockdown of eGFP ((5´-

pACCCUGAAGUUCAUCUGCACCACcg, 3´- ACUGGGACUUCAAGUAGACGGGUGGC), 

siGFP) was obtained from Integrated DNA Technologies (Leuven, Belgium). HEPES (4-(2-
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hydroxylethyl)-1-piperazineethanesulfonic acid), Dulbecco's Phosphate Buffered Saline 

(PBS), D-Glucose, sodium chloride, deuteriumoxide (D2O) and 3-(trimethylsilyl)propionic-

2,2,3,3-d4 acid sodium salt (TSP) were obtained from Sigma-Aldrich (Taufkirchen, Germany), 

while SYBR Gold dye was bought from Life Technologies (Darmstadt, Germany). Water was 

MilliQ quality produced by an in-house installation. 

 

4.2 Calculation of pKa values by Density Functional Theory (DFT) 

To choose appropriate protonation states for the amine beads of the polymer in the MD models, 

pKa values were determined by density functional theory (DFT) with the B3LYP version. The 

6311G+(d,p) basis set was applied using the Gaussian 16W software to optimize the geometry 

of four states (protonated in water, protonated in vacuum, unprotonated in water, unprotonated 

in vacuum) of a polymer fragment to minimum electron density. With the obtained sum of 

electronic energies within each state, pKa values were calculated applying a thermodynamic 

cycle as described elsewhere[183]. All protonable amines within the polymer structure were 

considered at 25 °C and 37 °C. After identifying the amines with the highest pKa values (i.e., 

the amines that will most likely be protonated first), the effect of their protonation on the pKa 

of neighboring amines was further investigated with the same approach.  

  

4.3 Molecular Dynamics (MD) Simulations 

Parametrizations 

All CG simulations were run using the Martini 3 force field[97] within GROMACS 2021.4[184]. 

The siRNA model for siGFP was adapted from our previous publication[133] by incorporating 

the RNA backbone parametrization recently published[135] for Martini 3. To obtain models for 

the PBAE, a dimer (one spermine subunit and one OA subunit) was parametrized and mapped 

to be used in the Martini 3 force field. To do so, the protocol suggested by the Marrink – Lab 

on the Martini website (cgmartini.nl/index.php) was followed, using the proposed tools to 

generate input files[185-189]. Similarly, a HEPES model was created to be used as buffer 

substance in the production simulations (Figure S15). To create polymer models from the 

parametrized dimer, a python script was created, which automatically generates the necessary 

input files for desired MW and %OA based on the initially obtained bonded interactions. 

 

Shear viscosity of simulated solvents 

As the hydrodynamic diameter of micelles in the simulation was calculated via the Stokes-

Einstein–equation[190], shear viscosities for the simulated buffers were required. The shear 

viscosities at 298 K for standard Martini 3 water, 10 mM HEPES, 5% Glucose[106] and 10 mM 
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HEPES + 150 mM NaCl (HEPES–buffered saline, HBS) were calculated via the periodic 

perturbation method[191], using the “cosine acceleration”(cos. acc.) option in GROMACS and 

analysis via the gmx energy tool. Each solvent was simulated in boxes with 12x12x23 nm3 size 

with five different cosine accelerations ranging from 0.001 nm*ps-2 to 0.005 nm*ps-2.  Shear 

viscosities [mPa*s] were then calculated via extrapolation to cos. acc. = 0 nm*ps-2. Viscosity 

results are shown in Table III.S2 and Figure III.S16. 

 

Production runs 

Unless stated otherwise, all simulations were run in a cubic simulation box with 40 nm side 

length and periodic boundary conditions. The boxes were set up by random placement of 

siRNA and polymer molecules, subsequent addition of ions or other excipients (HEPES/ 

Glucose[106]) and solvation with standard Martini 3 water[97]. 

The standard setup for the simulation of polyplex assembly contained 15 siGFP molecules. 

Individual simulations were additionally tested in a larger setup comprising 99 siGFP molecules 

in a cube with 75 nm side length. PBAE molecules were added as needed to reach the desired 

N/P ratio (i.e., ratio of protonable units in the polymer to RNA phosphates) (eq. 1): 

𝑛(𝑃𝐵𝐴𝐸) =
𝑛(𝑠𝑖𝐺𝐹𝑃) ∗ 50 ∗ 𝑁 𝑃⁄

𝑛(𝑐ℎ𝑎𝑟𝑔𝑒𝑠/𝑃𝐵𝐴𝐸−𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒)
  (1) 

Unless stated otherwise, simulations were run at 298 K in 10 mM HEPES with the protonation 

state of the polymer corresponding to pH 5.4 – the typical conditions for experimental polyplex 

assembly.[157] 

All boxes were minimized in 15 000 steps employing the steepest descent method, followed 

by an NPT equilibration with 100 000 steps at a timestep of 5 fs. The run settings for the 

production runs were derived from the settings introduced in the Martini Tutorials: Electrostatic 

interactions were controlled by the reaction field algorithm with a relative permittivity of εr = 15 

and a cutoff of 1.1 nm. Temperature was handled by the velocity rescale thermostat, while 

pressure was controlled by the Parinello-Rahman barostat [192, 193]. The timestep was 

reduced to 10 fs to ensure numerical stability for all simulations. Analysis was conducted with 

inbuilt GROMACS functions (gmx rdf, gmx clustsize, gmx energy), MD Analysis tools[194, 

195], msd analysis[196, 197], and density based object completion[198]. 

 

4.4 Wet Lab Methods 

Polyplex Formulation and Characterization 

All polyplexes were prepared by batch mixing as described previously for this group of 

poly(beta-amino ester)s[55, 157, 166]: PBAE was dissolved in the respective buffers at 2.5 
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mg/ml. Subsequently, the polymer was diluted to a concentration where 50 µl contain the 

number of protonable units needed for 50 pmol siGFP at the desired N/P ratio (eq. 2): 

𝑛(𝑝𝑟𝑜𝑡𝑜𝑛𝑎𝑏𝑙𝑒 𝑢𝑛𝑖𝑡𝑠 𝑃𝐵𝐴𝐸)

50µ𝑙
= 50 𝑝𝑚𝑜𝑙 ∗ 52 (

𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒𝑠

𝑅𝑁𝐴
) ∗ 𝑁/𝑃 (2) 

siGFP was diluted to a concentration of 1 nmol/ml, to facilitate batch mixing with the respective 

PBAE solution at a ratio of 1:1 (w/w), yielding a final siRNA concentration of 500 pmol/ml. After 

batch mixing, the particles were incubated at RT for at least 90 min before characterization. 

Size- and ζ - potential were measured on a Malvern Zetasizer Ultra (Malvern Instruments, 

Malvern, UK). The encapsulation efficiency was assessed by SYBR Gold assay[166]: Particles 

were prepared as described in a range from N/P = 1 to N/P = 10 and transferred as triplicates 

to black 384-well plates with a volume of 20 µl per well. SYBR Gold stain was diluted 1:2000 

and 3 µl of the final dilution were added to each well. Fluorescence resulting from intercalation 

of the dye into the RNA backbone was measured on a TECAN Spark Plate Reader (Tecan 

Trading AG, Switzerland) at 492 (20) nm excitation and 537 (20) nm emission. siGFP at the 

respective concentration (500 pmol/ml) without the addition of polymer was set to reference 

100% free siRNA. Particle preparation and characterization was conducted in triplicates 

(n = 3). 

 

Critical Micellar Concentrations (CMC) by Pyrene Assay 

The critical micellar concentration (CMC) of polymers covering the %OA range from 12% to 

75% was determined by the pyrene assay[199]. Pyrene was dissolved in acetone at a 

concentration of 1.2 mM, diluted 1:500 into glass vials and left for the acetone to evaporate 

overnight. Afterwards, a dilution series of PBAE between 0.5–1500 µg/ml was prepared in 

these vials and incubated in the dark for 24 h. After incubation, fluorescence spectra covering 

the range from 300 to 350 nm (step size 1 nm, bandwidth 20 nm) were measured on a TECAN 

Spark Plate Reader (Tecan Trading AG, Switzerland) using black 96-well plates, an emission 

wavelength of 397 (20) nm. Finally, the spectra were analyzed by calculating I345/I330 and 

plotting of these values against log (c [µg/ml]). 

Transmission Electron Microscopy (TEM) 

Polyplexes were imaged by transmission electron microscopy (TEM) using a FEI Titan Themis 

60-300 microscope (Thermo Fisher Scientific, Schwerte, Germany) as described 

previously[166]. The particles were prepared with either a 55% OA or a 70% OA polymer at 

N/P = 10 in 10 mM HEPES (pH 5.4) at a concentration of 6.1 µM siRNA. Micelles formed by 

PBAE 70% OA were imaged at a concentration of 2.5 mg/ml. For 10 min, 10 µl of sample were 

placed on a copper grid. Excess liquid was removed with a lint free tissue and next the grid 
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was stained with 2% (w/v) phosphotungstic acid (PTA) as negative stain. After removal of the 

excess dye solution, grids were left to dry for at least 15 min before imaging. The diameter of 

micelles in TEM images was measured in ImageJ (total 275 micelles from three images). 

1H Nuclear Magnetic Resonance (NMR) 

Calculation of excess polymer and therefore, “real” N/P ratios via the application of nuclear 

magnetic resonance (NMR) was inspired by a previously published method[168]. NMR 

measurements were recorded on a Bruker Avance III HD 500 MHz spectrometer equipped with 

a broad band observe 5-mm BB-H&FD CryProbe Prodigy (Bruker BioSpin GmbH, Ettlingen, 

Germany). 

All 1D 1H NMR spectra were recorded at 25 °C with a standard water suppression pulse 

sequence (zgesgp) from the Bruker pulse program library using excitation sculpting. The π/2 

pulse length was 10.4 µs. The spectra were acquired with 64K data points, an acquisition time 

of 1.64 s, a relaxation delay of 2 s, and 16 transients. 

For titration of polyplexes, siGFP was dialyzed against 150 mM PBS (pH 7.4) and diluted in 

10 mM or 150 mM PBS (pH 5.4) to a concentration of 2700 pmol/ml. 10% D2O were added as 

well as 0.036 mg/ml TSP as reference standard. PBAE was dissolved in the respective buffer 

to reach a concentration that contains (1500 * 52) pmol protonable units per 6 µl PBAE stock. 

This results in titration of N/P +1 per 6 µl PBAE stock added to the NMR sample. The total 

volume of the start-samples (RNA only, “N/P” = 0) was 550 µl. Titration was achieved by 

pipetting the PBAE stock solution into the tube, followed by mixing with a vortex. For 

measurement of PBAE only, the amount of siGFP stock added was replaced by buffer. A 

schematic overview of the titration NMR experiment can be found in Figure III.S17A. 

For analysis, the most prominent peaks originating from the OA moiety (peaks A and B, see 

Figure 4C) were integrated using MestReNova 15.0.0 software. First, all spectra were 

processed by automatic phase and baseline correction (Bernstein Polynomial Fit). 

Subsequently, PBAE only samples were analyzed by automatic peak identification and 

subsequent automated integration. The integration ranges were reused for the integration of 

the peaks in the polyplex samples to ensure consistency and reproducibility. For each condition 

(30% OA in 10 mM PBS; 70% OA in 10 mM PBS or 150 mM PBS) linear regression of the 

integrals (Figure S17B) of samples without siGFP was conducted. 

The effective N/P ratios were then calculated according to eq. 3: 

    𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑁 𝑃 = 𝑁 𝑃⁄
𝑖𝑛𝑝𝑢𝑡 − ((∫ 𝑃𝑒𝑎𝑘𝑠𝑎𝑚𝑝𝑙𝑒 − ∫ 𝑃𝑒𝑎𝑘𝑅𝑁𝐴−𝑅𝑒𝑓)/𝑠)⁄    (3), 

with s being the slope of the corresponding linear regression, conducted on the PBAE only 

samples. Finally, the effective N/P was averaged over peaks A and B, which refer to the OA 

moiety and provided the most consistent results. 
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2D NOESY spectra 

The 2D NOESY spectra were recorded at 25 °C with a phase-sensitive pulse sequence with 

water suppression employing an excitation sculpting element from the Bruker pulse program 

library (noesyesfpgpphrs). Data acquisition was performed with 1K (F2) x 512 (F1) data points 

and a mixing time of 0.1 s. The recycling delay was 1.0 s and 32 transients per increment were 

applied at a sweep width of 6 kHz in both dimensions resulting in an acquisition time of 

0.1204 s. The special acquisition parameters regarding the water suppression element of the 

pulse sequence were adopted from the optimized parameter set of the respective one-

dimensional experiment. A 90° shifted sine-square multiplication and an exponential window 

of 2.0 Hz in both dimensions in both dimensions prior to FT and zero filing was applied to yield 

a final symmetrical 2D matrix of 1K x 1K data points. 

Data analysis and visualization 

Data plotting, linear regressions, and -where applicable- statistical analysis (unpaired t-test, 

statistical significance defined as p < 0.05) were performed in GraphPad Prism (version 5.0, 

GraphPad Software, Inc., Boston, MA). Simulation output was visualized in PyMOL (version 

2.5, Schrodinger, Inc., New York, NY). Some figures shown herein include elements created 

with BioRender. 
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6 Supporting Information  

 

 

Figure III.S1. Distributions of A. bonds B. angels and C. distribution of solvent 

accessible surface area (SASA) within the parametrization of the PBAE dimer. Blue: 

distributions in the AA model, red: distributions of the CG model in Martini 3. 

D. Visualization of the SASA for the PBAE dimer.  

 

Figure III.S2. pKa values of the polymer at 25  °C (orange) and 37 °C (red). pKa values 

after protonation of the secondary amine with pKa 10.05 ( i .e ., the most alkaline) are 

shown in italics.  
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Figure III.S3. Variation of molecular weight of the polymer.  A. Visual output after 5 µs 

simulated particle assembly B.  Radial distr ibution function (RDF) around RNA phosphate 

beads (BB1) for 70% OA PBAE at varied MW of the polymer. Red: Amine beads, Blue: 

Water beads.  
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Figure III.S4. CMCs determined by pyrene assay.  A.  Calculation of the CMC for a 70% 

OA polymer B.  Overview of CMCs depending on %OA.  
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Figure III.S5. Closeup simulation snapshot, visualizing the interaction between siRNA 

(phosphates blue/ r ibose petrol/ bases mint) and spermines (red).  

  

Figure III.S6. 70%OA, N/P 10 particle at different time points.  A.  After 5 µs at pH 5.4 

B.  the same particle after 15 µs simulation at pH 5.4 C. The same particle after pH 

increase to pH 7.4 and subsequent reduction to pH 5.4.  
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Figure III.S7. Comparison of simulation in increased box size (75 nm) to the standard 

setup (40 nm) via RDF: Amines (red) and water (blue) around phosphate beads (BB1).  

 

 

Figure III.S8. Spermine density on the solvent accessible surface area (SASA) of the 

micelle cores, consisting of backbone and OA beads. Calculated after simulation of 

polymer only for 2.5 µs in 10 mM HEPES (blue) or 160 mM HBS (red).  
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Figure III.S9. Particle characterization at increasing N/P ratios for 30%, 55% and 

70% OA PBAE with siGFP.  A. z-average (bars) and PDI (dots) of particles as function of 

N/P ratio, mean ± sd, n = 3. B. ζ-Potential as function of N/P ratio, mean ± sd, n  = 3.  
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Figure III.S10. Calculation of encapsulation efficiency from MD output via the area 

under the curve (AUC) of radial distribution functions (RDF). A .  Radial distr ibution 

functions of water around the surface of the RNA model for 30%, 55% and 70% OA at 

N/P ratios from 0 (RNA only) to 15. B. Graph resulting from integration of RDF curves of 

(A) between 0 nm and 0.65 nm distance, yielding the AUC for each N/P ratio.  
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Figure III.S11. Proton assignment to 1H NMR signals of PBAE. A.  Artificial fragments 

of the oleylamine part (green) and the spermine part (blue) of the PBAE polymer for input 

into the 1H NMR spectra prediction tool of MestReNova. B. Overlay of the predicted 

spectra (oleylamine spectrum with signal assignment in green; spermine spectrum with 

signal assignment in blue; fragment signal assignment in lower case) and the real 1H 

NMR spectrum of PBAE (70% OA) with result ing region assignment (in upper case) of 

the polymer-PBAE structure in C.  
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Figure III.S12. Excerpts of 2D NOESY spectra with identical amplifications of A . 

PBAE alone; concentration as in C. B. PBAE alone; concentration as in D. C. N/P 7. The 

dashed oval circles indicate the region where previous NOE correlations are now missing. 

D. N/P 15.  

  

   

  

F1 H2O trace F1 H2O trace 

F1 H2O trace F1 H2O trace 

A B 

C D 

missing NOEs 
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Table III.S1. Summary of results from titration 1H NMR method. Effective N/P ratios were 

calculated according to eq. 3, based on the regressions shown in Figure III.S3B.  

 

 
theoretical 

N/P 
effective N/P 

  n1 n2 n3 mean SD 

30% OA. 10 

mM PBS 

1 1.15     

2 2.08     

3 3.27     

4 3.98     

5 4.64 4.92 5.08 4.88 0.22 

6 4.08     

7 5.31 6.36 6.32 6.00 0.59 

10 4.23 7.20 7.24 6.22 1.73 

70% OA. 10 

mM PBS 

1 0.93     

2 1.89     

3 2.81     

4 3.73     

5 4.77     

6 5.85     

7 6.88 6.82 6.61 6.77 0.14 

8 7.81     

9 8.60     

10 9.28 8.34 6.62 8.08 1.35 

15 10.61 6.83 6.98 8.14 2.14 

70% OA. 150 

mM PBS 

1.7 1.55     

3.3 3.03     

5 4.82     

7 6.82 6.85 6.93 6.86 0.05 

8.3 8.01     

11.6 9.37     

10 8.92 8.66 8.74 8.77 0.13 

13.3 9.68     

15 9.97 10.67 10.80 10.48 0.45 
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Figure III.S13. Effective vs. theoretical N/P ratio in NMR (titration) vs. MD, n  = 1.  
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Figure III.S14.  ζ-Potential of N/P = 10 particles in 5% Glucose, 10 mM HEPES and 160 

mM HBS, n  = 3, mean ±  sd.  

 

Figure III.S15.  Mapping and parametrization of the HEPES model used as buffer 

substance within MD simulations of the project. Bonded distr ibutions of the CG model 

(red) are shown in comparison to the All -Atom (AA) model (blue).  
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Figure III.S16. Shear viscosity of simulated buffers/solvents as determined by the 

periodic perturbation method. A.  Water B.  10 mM HEPES C.  5% Glucose D.  160 mM HBS.  

 

Table III.S2.  Shear viscosity of simulated buffers/solvents as determined by the periodic 

perturbation method.  

Buffer/Solvent Shear Viscosity [mPa*s] 

Water 0.683 

10 mM HEPES 0.696 

5% Glucose 0.832 

160 mM HBS 0.735 
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Figure III.S17. 1D 1H NMR method. A.  Titration setup for the 1D 1H NMR experiment 

used to determine effective N/P ratios. B. Linear regressions for the calculations of 

effective N/P ratios from NMR. PBAE only measured at concentrations corresponding to 

N/P 0 to 15. Each data point was assessed with n = 2.  
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1 Abstract 

 

To achieve a therapeutic effect, nanoparticles delivering nucleic acids must facilitate 

endosomal escape (EE) of their cargo. Despite extensive research, the mechanisms that lead 

to an effective EE are not sufficiently understood. Herein, we utilized Molecular Dynamics (MD) 

simulations in All Atom (AA) and Coarse Grained (CG) resolutions to differentiate the 

interaction of four polymeric formulations (polyplexes) and one lipid nanoparticle (LNP) with 

endosomal membranes. On the one hand, the results emphasize the benefit of hydrophobic 

residues in the nanoparticles. On the other hand, the role of anionic lipids in the biological 

membranes is demonstrated. Furthermore, the identified interaction patterns were 

successfully correlated to the in vitro performance of the formulations. For the first time, 

different EE mechanisms of polyplex formulations are visualized in simulation and therefore 

distinguishable from one another. Hence, this work highlights the power of MD simulations for 

taking a big step towards better understanding EE efficiency. 

 

2 Introduction 

 

Short interfering ribonucleic acid (siRNA) downregulates the expression of targeted, disease-

driving genes[3] by binding to the RNA-induced Silencing Complex (RISC) in the cytoplasm. 

Therefore, following endocytosis, escape from the endo-lysosomal pathway is essential to 

achieve a therapeutic effect[200]. A broad range of strategies has been developed to formulate 

potent nanoparticles for nucleic acid delivery[201, 202], including the use of polycationic 

polymers[151, 203]. However, many of these polymer-based polyelectrolyte complexes, 

commonly termed polyplexes, exhibit limited endosomal escape (EE)[136, 204], leaving room 

for significant technological improvement[45, 157].  

Various mechanisms have been discussed to play a role in the EE of polymeric nanoparticles: 

Initially, the “proton sponge” theory, first formulated in the 1990s[36], was among the most 

popular theories. It relies on the buffering capacity of endocytosed polymers, which promotes 

increased proton influx into the endosome during acidification. This is thought to be 

accompanied by the influx of neutralizing chloride ions and water[67], resulting in osmotic 

swelling. Ultimately, the endosome ruptures and nucleic acid cargos could be released into the 

cytoplasm. A closely related hypothesis proposes that endosomal acidification increases the 

charge density of the polymer, leading to polyplex swelling and inducing a steric burst of the 

endosomal membrane[48]. These hypotheses are supported by findings that polymers with 

pKa values in the physiological range (approximately 6-8) are more effective at facilitating 
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EE[205] and the circumstance that EE can be reduced by inhibiting endosomal acidification. 

However, conflicting results from live-cell imaging demand a revision of the proposed 

mechanisms[206], as the data does not indicate complete lysis of endosomes after successful 

EE of the nucleic acid. In either case, rapid and intense disruption of endosomes and 

lysosomes can induce cytotoxicity due to the concurrent release of harmful vesicular contents, 

and is therefore considered undesirable[207]. Subsequently, attention shifts to direct polymer- 

membrane interactions that locally form  smaller endosomal holes or pores[208, 209]. 

Polyplexes do not escape the endosomes intact[206], but rather in a disintegrated state. The 

role of acidification could therefore be attributed to its involvement in nucleic acid cargo 

unpacking and polymer shedding from the particle[179]. 

Concerning lipid-based nanoparticles (lipoplexes and lipid nanoparticles (LNPs)), research 

indicates EE to be a complex procedure including membrane fusion, phase transition in the 

lipid phase of the LNP, and lipid mixing between membrane and nanoparticle [30, 66, 71, 206, 

210]. 

In consequence, the lipid bilayer of the membrane is disturbed and the cargo escapes through 

resulting holes. LNPs can be highly effective and have successfully entered the market, for 

example in the form of Onpattro® (Patisiran)[19]. Still, LNPs too are limited by their EE, and 

only a small, often cited as single-digit percentage[211] of the encapsulated siRNA molecules 

reaches the cytoplasm[212].  

Even though great effort has been put into understanding EE mechanisms, the process is still 

not understood to a level that allows specific fine tuning of EE performance of a formulation. 

As Molecular Dynamics (MD) simulations help to understand underlying mechanisms in 

complex formulations or biological interactions on a molecular level[71, 213], they possess 

great potential to overcome the gap in understanding EE. All Atom (AA) MD simulations, 

showing the molecules in single atom resolution, provide detailed insights on e.g., binding 

mechanisms on a small scale[128, 129]. In contrast, Coarse Grained (CG) MD simulations 

work with a decreased resolution, as they summarize groups of atoms in predefined beads[97]. 

CG MD enables larger simulations up to ~ 100 nm side length of the simulation box with longer 

timescales in the range of multiple microseconds- enabling for example the simulation of the 

formation of whole nanoparticles[134, 135]. Additionally, it has previously been shown that CG 

MD can visualize EE mechanisms[71].  

This work compares the EE of four polyplexes and one LNP formulation through AA and CG 

MD simulations. The first polyplex material is 25 kDa branched PEI (bPEI), which is a 

commercially available polymer that has been used for siRNA delivery in research for over 20 

years[35, 36]. The second polymer is a block copolymer consisting of two blocks of 5 kDa 

bPEI, linked by a 5 kDa polycaprolactone (PCL) chain[214]. Furthermore, two variants of an 

amphiphilic poly(beta)aminoester (PBAE) copolymer[55, 157] were tested for their EE 
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performance. They differ in their content of hydrophobic oleylamine (OA) residues, so that a 

more hydrophilic particle is compared to a more hydrophobic variant. Lastly, an Onpattro®-like 

LNP formulation[109] was incorporated in the study to directly compare the EE of polyplexes 

and LNPs.  

In vitro experiments outlined strong differences in the performance of the compared 

formulations. Based on the interaction patterns visualized and identified by MD, these 

differences can be meaningfully interpreted. Hence, this work highlights the power of MD 

simulations for taking a big step towards better understanding EE mechanisms. 
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Figure IV.1. Polymer structures and model particles in CG resolution 

A. Molecular structures of polymers used in this work; branched polyethylenimine (bPEI), 

poly(beta)aminoester (PBAE) with varying ratios of hydrophilic spermine and hydrophobic oleylamine 

(OA), and bPEI – polycaprolactone (PCL) – bPEI block copolymer (PPP). B. CG model particles with 

three siRNA molecules each at pH 7.4. The LNP is additionally shown with transparent lipids to visualize 

the orientation of the siRNA molecules inside; polymer in gold/orange, MC3/MC3H in pink, DSPC in 

purple, cholesterol in green, RNA in blue.  
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3 Results and Discussion 

3.1 Characterization of nanoparticles 

Four polyplex formulations described in the literature were included in this study and based on 

the polymers shown in Figure IV.1A. For the PBAE, either a 70% OA polymer (i.e., more 

hydrophobic) or a 30% OA polymer (i.e., more hydrophilic) were used. All polyplexes were 

formulated at N/P 10, as all four polymers have been shown to form stable particles at that 

ratio[35, 54, 157, 214]. The LNP was formulated with an Onpattro®-like composition, but at 

N/P ratio of 6.5 to align as closely as possible with the simulated model LNP[109]. For all 

experiments, the formulations were normalized to equal siRNA concentration. However, due 

to differences in polymer charge density, the total polymer mass concentration varied notably 

between formulations, despite equivalent N/P ratios. Specifically, relative to bPEI, the 

concentrations were 7.9-fold higher for 70% OA PBAE, 5.9-fold for 30% OA PBAE, and 1.6-

fold for PPP.  

All five formulations formed particles with a hydrodynamic diameter (z-average) between 50 

and 70 nm and a polydispersity index (PDI) below 0.3 (Figure IV.S1A). The ζ-potential of all 

polyplexes was positive, whereas the LNPs were slightly negatively charged (Figure IV.S1B). 

In CG simulations, polyplexes were formed via self-assembly, resulting in stable nanoparticles 

with diameters ranging from approximately 10 to 18 nm (Figure IV.1B). All polymer molecules 

present were associated with the respective polyplex, except for 30% OA PBAE. Here, 20% of 

the polymer remained separate from the polyplex at both pH 5.4 and pH 7.4, resulting in a final 

N/P ratio of approximately eight. This agrees with our previous work on PBAE polyplexes, 

where 30% OA PBAE showed unbound polymer at pH 5.4 and N/P ratios above ~ 6[134]. For 

subsequent simulations of the membrane interaction, excess polymer in the 30% OA PBAE 

MD setup was removed. The model LNP with a diameter of ~ 16 nm did not originate from a 

self assembly simulation, but was constructed based on a protocol for the setup of LNPs with 

hexagonal core structure in Martini 3[109]. As Polyethylenglycol (PEG) lipids tend to shed from 

LNPs when in contact with serum[215] they are not expected to play a role in EE of LNPs. 

Therefore, no PEG lipids were incorporated into the simulated LNP model. 

 

3.2 Comparison of the particles in vitro 

In HeLa cells stably expressing enhanced green fluorescent protein (eGFP), the 70% OA 

PBAE polyplex and the LNP showed the highest knockdown efficiencies with 30 - 60% at a 

dose of 20 pmol/ 6,000 cells. (Figure IV.2A), whereas the other polyplex formulations achieved 

no knockdown at the same dose. No cytotoxicity was evident for the 30% OA PBAE and the 

LNP formulation, with cell viability being > 90% and lactate dehydrogenase (LDH) release 
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being < 10% (Figure IV.S3) at all tested particle concentrations. The bPEI and PPP particles 

only caused mild cytotoxicity (< 90% cell viability) at the highest concentration. However, the 

70% OA PBAE polyplexes caused notable LDH release (12-25%) and reduced cell viability 

(50-80%) at all tested concentrations. 

The limited knockdown efficiencies observed for the 30% OA PBAE, bPEI, and PPP polyplexes 

can be partially attributed to insufficient cellular uptake (Figure IV.2B and Figure IV.S4). Among 

all formulations, the 70% OA PBAE polyplex consistently showed superior uptake, while 30% 

OA PBAE exhibited particularly low internalization, and bPEI and PPP polyplexes performed 

comparably to each other. The relatively weak uptake signal of the LNP in confocal microscopy 

was likely due to fluorescence quenching within the dense core of the nanoparticles[216].  

Since the microscope settings were optimized to detect the strong fluorescence signal of 

AF647-labeled siRNA in polyplexes, they were suboptimal for capturing the quenched signal 

from the LNPs. Consequently, Figure IV.S4 indicates that cellular uptake of the LNPs is 

comparable to that of bPEI and PPP. Differences in uptake may explain the superior 

knockdown efficiency of the 70% OA PBAE. However, they do not fully account for the 

performance gap between the LNP and the bPEI or PPP polyplexes. Subsequently, EE 

efficiency was quantified through confocal fluorescence microscopy as puncta caused by the 

recruitment of mRuby-3-Galectin 8 fusion protein (Gal8) stably expressed by the cells. Gal8 is 

recruited to damaged endosomes when luminal glycans are exposed to the cytoplasm (Figure 

IV.2C+D) and is therefore widely used as EE marker[217]. The 70% OA PBAE polyplexes 

caused significantly more Gal8 recruitment compared to all other formulations. However, these 

polyplexes also achieved the highest uptake by the HeLa cells. Therefore, the high knockdown 

efficiency of the 70% OA PBAE was likely a combination of superior uptake and strong EE. 

The endo-lysosomal membrane disruption caused by the EE of the 70% OA polyplexes can 

trigger apoptosis or uncontrolled cell death[218, 219], consistent with the observed cytotoxicity 

of 70% OA PBAE. HeLa cells are characterized by relatively small endosomes, which has been 

suggested to favor the EE efficiency of polyplex formulations[204]. Hence, because Gal8 

recruitment is cell type-dependent[53], the same polymer may be safe and effective in other 

cell types[54]. The other polyplexes induced significantly lower Gal8 recruitment, suggesting 

that limited EE may contribute to their poor knockdown efficiency, which is in accordance with 

published results about PEI polyplexes[53]. 

Due to the lack of cellular uptake of 30% OA PBAE, their performance in the Gal8 assay could 

not be directly compared to the other formulations. Rui et al.[53] reported a negative correlation 

between the hydrophobicity of PBAE polyplexes and Gal8 recruitment. Notably, in their study, 

increased Gal8 recruitment did not translate into improved transfection efficiency. The authors 

suggested that high Gal8 puncta counts might result from empty polymer micelles that disrupt 

endosomes without delivering nucleic acid cargo. For other amphiphilic PBAEs, a positive 
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correlation between hydrophobicity and Gal8 recruitment was observed[220], with the most 

hydrophilic polymer causing the least Gal8 puncta. 

 

Interestingly, the LNP formulation caused Gal8 recruitment as low as bPEI and PPP, even 

though its knockdown efficiency was higher. However, the low Gal8 recruitment by the LNPs 

likely originated from the EE mechanism itself: It has been shown that the ionizable lipid DLin-

MC3-DMG does not induce Galectin recruitment[30], arguably due to the formation of only 

small pores in the endosomal membrane. In summary, although useful within narrowly defined 

particle libraries[136], Gal8 recruitment alone is not sufficient to predict the EE or knockdown 

efficiency across diverse nanoparticle formulations. The detection of Gal8 puncta does not 

indicate whether endosomal damage was accompanied by the release of nucleic acid 

cargo[53], nor does it capture smaller membrane defects[30]. This could lead to favoring 

potentially cytotoxic particles with high Gal8 recruitment over similarly effective particles that 

cause only minor endosomal damage through other EE mechanisms. To further analyze the 

interaction of the nanoparticles with cellular membranes, their capacity to induce erythrocyte 

lysis was tested (Figure IV.2E). The LNPs, 30% OA PBAE and bPEI polyplexes only caused 

minor hemolysis, independent of the medium’s pH level. In contrast, PPP particles caused 

notable hemolysis of ~ 10 – 25% at all pH levels, and 70% OA PBAE polyplexes caused 

increased lysis at pH 5.4 only. Hemolytic activity is generally associated with cytotoxicity[221]. 

However, lytic activity at acidic pH only, as demonstrated by 70% OA PBAE, is favorable for 

polyplexes[136], as it indicates increased membrane interaction in the acidified endo-

lysosomal compartment. Again, this emphasizes that the toxicity of the 70% OA PBAE can be 

referred to its excessive effect on the endosomes. 

As the uptake efficiency of the polyplexes differed strongly, it was not possible to fully 

distinguish the EE efficiency from the above presented results. However, the 70% OA PBAE 

and the LNP overall outperform the other formulations concerning knockdown efficiency, which 

will be correlated to their membrane interactions and EE mechanisms by MD below. Therefore, 

nanoparticles-membrane interactions were next assessed by measuring erythrocyte lysis 

(Figure IV.2E). The LNPs, 30% OA PBAE and bPEI polyplexes only caused minor hemolysis, 

independent of the medium’s pH level. In contrast, PPP particles caused notable hemolysis of 

~ 10 – 25% at all pH levels, and 70% OA PBAE polyplexes caused increased lysis at pH 5.4 

only. Hemolytic activity is generally associated with cytotoxicity[221]. However, lytic activity at 

acidic pH only, as demonstrated by 70% OA PBAE, is favorable for polyplexes[136], as it 

indicates increased membrane interaction in the acidified endo-lysosomal compartment. 

Again, this emphasizes that the toxicity of the 70% OA PBAE can be referred to its excessive 

effect on the endosomes. As the lytic activity of the PPP polymer exceeds the cytotoxicity 

observed in other assays (Figure IV.S3), it can be related to membrane interactions in the 
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hemolysis assay that are otherwise masked by a protein corona around the nanoparticle 

formed in serum[222]. 

As the uptake efficiency of the formulations differed strongly, differences in EE performance 

could not be clearly interpreted. However, the 70% OA PBAE and the LNP formulation overall 

outperform the other polyplexes concerning knockdown efficiency, which will be correlated to 

their membrane interactions and EE mechanisms by MD below. 
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Figure IV.2. Comparison of in-vitro behavior 

A. eGFP knockdown in HeLa/eGFP cells, mean ± sd, n = 2. B. Uptake in HeLa cells quantified as puncta 

of AF647 labeled siRNA per cell observed in the confocal images, mean ± sd, one-way ANOVA, ***p < 

0.001, ns = nonsignificant (p > 0.05). C. Confocal images showing Gal8 recruitment (green puncta) in 

HeLa cells (blue: DAPI) 4 h after transfection. D. Quantification of Gal8 puncta as shown in C, mean ± 

sd, one-way ANOVA, ***p < 0.001, ns = nonsignificant (p > 0.05).  E. Erythrocyte lysis of all five 

nanoparticle formulations relative to Triton X treatment at three different pH values (5.4, 6.5 and 7.4), 

mean ± sd, n = 3. 
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3.3 Membrane interaction mechanisms in simulation 

To identify the interaction mechanisms of nanoparticles with membranes after cellular uptake, 

AA and CG membranes mimicking different stages of the endo-lysosomal pathway were 

created (Table IV.S1). The first membrane represents the (early) endosome, which is slightly 

negatively charged and contains glycolipids that were initially present at the outer leaflet of the 

plasma membrane[223]. As the milieu in the early endosome is only slightly acidic, the particle 

interactions with this membrane type were simulated at pH 6.5. Deemed crucial for the 

functionality of biological membranes is also the formation of microdomains such as lipid 

rafts[224]. These specified membrane regions form through the preferred interaction of 

cholesterol, saturated lipids and sphingolipids. To investigate the influence of lipid raft 

formation on EE, a simplified membrane model, composed of 

palmitoyloleoylphosphatidylcholine (POPC), cholesterol, and N-Palmitoyl-D-sphingomyelin 

(DPSM) was created. This model contained an increased amount (2%) of glycolipids (glycolip-

monosialotetrahexosylgangliosides DPG1 and DPG3), which comprise one n-

acetylneuraminic acid each. Hence, the lipid raft model contained all its negative charge in the 

glycan layer. Lipid rafts are characterized by reduced lateral diffusion[225] in the ordered state, 

which was well represented by our models (both AA and CG) in comparison to the other 

membrane types (Figure IV.S2). 

Two additional membrane models were constructed to simulate the late endosome/lysosome 

with interactions at more acidic conditions (pH 5.4). In the late endosome, the amount of 

cholesterol and sphingolipids was decreased, whereas the amount of negatively charged lipids 

was increased[223, 226]. These negatively charged lipids include bis-(monoacylglycero)-

phosphate (BMGP)[227], a lipid that is unique to late endosomal/lysosomal membranes. The 

late endosomal membrane contained the same number of glycolipids as the endosomal 

membrane used in this study. The lysosomal membrane model was structurally identical to the 

late endosomal model, except that glycolipids were omitted to allow assessment of their 

specific influence. As a result, the lysosomal membrane was the only symmetrical bilayer 

among all models examined. While this study aimed to reproduce the lipid composition of endo-

lysosomal membranes with greater compositional diversity than previous models[71, 123], the 

incorporation of membrane proteins and active cellular processes remains beyond its scope. 

Consequently, the presented membrane models should still be regarded as simplified 

representations. 

The interaction of the four CG membrane models with all five particle formulations was 

simulated in triplicates. Initial contact of the particles with the glycosylated leaflet of the 

membrane was assured by a short pull applied to the particle in the first nanoseconds of 

simulation. After 2.5 µs, distinctive differences between the particles were detected (Figure 

IV.3A-E). Two types of interaction with the membranes were prominent: Firstly, hydrophobic 
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interactions of the PBAEs, the PPP polyplex and the LNP were visible as interference of 

polymers/LNP-lipids with the hydrophobic core of the membranes. In the case of the PBAEs 

(Figure IV.3A+B) and the LNP (Figure IV.3C), this led to mixing of membrane lipids and particle 

material[123], resulting in notable amounts of particle material being shed from the particle and 

integrated into the membrane. Simultaneously, the 70% OA PBAE polyplex and the LNP were 

capable of extracting membrane lipids out of the initial membrane plane. Due to the 

copolymeric structure of the PBAEs, their OA tails reached into the hydrophobic membrane 

center, while the backbone stayed in the headgroup region and the polycationic spermines 

reached into the solvent layer above. However, unlike the 70% OA PBAE and the LNP, the 

30% OA polymer was not capable of extracting lipids from the membrane into hydrophobic 

particle compartments above the membrane surface. Hence, the interaction mode of the 

hydrophilic PBAE appeared more comparable to the influence of bPEI and PPP, which caused 

only minor to no deviations of the membranes’ density profiles (Figure IV.3B, D and E). In the 

PPP polymer, the hydrophobic compartment of the particle (the PCL chain) is clearly separated 

from the hydrophilic bPEI units due to the block copolymeric structure. Consequently, if in 

immediate contact with the membrane, the PCL residue tended to partition into the membrane 

core, whereas the bPEI segments remained localized at the membrane surface (Figure IV.3E, 

Figure IV.S5). 
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Figure IV.3. CG-MD simulations of nanoparticles interacting with planar membrane models 

Density distribution along the z – coordinate of the simulation box after the interaction of a late 

endosomal membrane with A. a 70% OA PBAE particle B. a 30% OA PBAE particle C. an Onpattro – 

like LNP D. a 25 kDa bPEI polyplex E. a PPP polyplex. F. Lipids (excluding cholesterol) extracted from 

the plane of different membranes after interaction with the respective particles, mean ± sd, n = 3. 

 

Based on umbrella sampling simulations, the octanol – water partition coefficients (log P) of 

the polymers were ranked according to their hydrophobicity: 70% OA PBAE (most 

hydrophobic) > PPP > 30% OA PBAE > bPEI (least hydrophobic) (Figure IV.4A+B). As 

discussed above, a direct correlation of polymer hydrophobicity with its EE performance can 

be seen as controversial. In this case, the most hydrophobic polymer caused the strongest 

membrane disturbance, but no clear relationship between the other polymers’ log P and their 

effect on endosomal membranes was found. 
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Secondly, electrostatic interactions were observed for all particles. As the nanoparticles 

contained an excess of cationic charges, the interaction with negatively charged membrane 

lipids was favorable. For the 70% OA PBAE, this correlated with the amount of lipids being 

extracted from the membranes (Figure IV.3F). The least lipids were extracted from the least 

charged membrane type (lipid raft), and the most extraction took place from the strongly 

charged late endosome and lysosome membranes. The presence of glycolipids (late 

endosome vs. lysosome) however did not have a notable influence. 

 

 

Figure IV.4. Determination of log P values in CG MD. 

A. Potential of mean force (PMF) curves of the transfer of a polymer molecule from an octanol phase to 

a water phase, mean ± sd (n = 5). B. log P values of polymers, normalized to molecular weight (per 

kDa) as calculated from PMF curves in A., mean ± sd (n = 5). 

 

The preferred interaction of all polymers with negatively charged lipids was conclusive both in 

AA MD (Figure IV.5A+B, Figure IV.S6) and CG MD (Figure IV.5C+D, Figure IV.S6+ IV.S7). In 

both cases, the anionic lipids (purple shades) clustered around the attached particle or free 

polymer molecules interacting with the membrane. Figure IV.5 shows the interactions of 70% 

OA PBAE or bPEI with the late endosomal membrane. In AA resolution, the graphs are noisier 

due to the lower overall number of molecules in the simulations. Still, it is visible that both 

polymers (70% OA and bPEI) were transiently attached to the glycolipids, followed by favored 

contacts to other anionic lipids. This was in general true for all AA setups simulated (Figure 

S6). The importance of anionic lipids for stable polymer–membrane interactions was 

particularly evident in simulations involving the lipid raft model. In this system, negative 

charges were confined to the glycosylated layer extending above the lipid headgroups. As a 

result, during the transient contacts with glycolipids no negative charges were available in the 

headgroup region of the membrane, and permanent polymer adsorption did not occur. The role 

of anionic lipids, especially the lysosome-specific lipid BMGP, has previously been discussed 
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to be of high relevance for EE of cationic formulations/drugs[228, 229] and was emphasized 

again by the here presented results. Additionally, the AA simulations confirmed the presence 

of interactions with neutral lipids and cholesterol for the PBAEs (Figure IV.5B), which clearly 

distinguished them from the bPEI polymer. 

Analysis of the CG simulations (Figure IV.5C+D, Figure IV.S7+8) regarding polymer/MC3 – 

membrane contacts confirmed good agreement with the AA setups, although glycolipid 

contacts appeared less transient. In CG simulations, all particles remained associated with the 

membranes, including the lipid raft model, over the whole simulated timespan, likely due to the 

larger system size and hence an increased number of initial contact points. 
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Figure IV.5. Contacts with late endosomal membrane lipids over time in AA and CG-MD 

simulations 

A. Visualization of polymer – late endosome interactions (top- and side view) from AA simulations 

applying the charmm36 force field. B. Polymer contacts (upper: 70% OA PBAE, lower: bPEI) below 0.6 

nm per membrane lipid atom (late endosome) over time, n = 2. C. Visualization of particle – late 

endosome interactions (top- and side view) from CG simulations in Martini 3. D. Polymer contacts 

(upper: 70% OA PBAE, lower: bPEI) below 0.6 nm per membrane lipid bead (late endosome) over time, 

n = 3. 
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3.4 Interaction of nanoparticles with membrane vesicles 

For further investigation of potential EE mechanisms, all particles were simulated in 

endosome-mimicking CG membrane vesicles (Figure IV.S9). The vesicles had varied inner 

diameters between 19 nm (lipid raft) and 24 nm (lysosome) to acknowledge the fact that the 

lysosome tends to be larger than the early endosome[230]. In the early endosome and the lipid 

raft, simulations were begun with 1 µs at pH 7.4 protonation settings and then continued with 

7 µs at pH 6.5. In the late endosome and the lysosome, pH 7.4 was only simulated for the first 

0.6 µs, followed by 1.2 µs at pH 6.5 and prolonged to 8 µs at pH 5.4 protonation. Similarly to 

the previous results, the affinity of the polymers and the ionizable lipid MC3 to negatively 

charged lipids was observed (Figure IV.S8) with increasing contacts over time. In general, the 

number of polymer contacts per lipid bead rapidly increased in the initial ns and then stabilized 

towards the end of the simulations. 

The EE of lipid-based systems, such as the LNP incorporated in this study, is believed to rely 

on membrane fusion and the disruption of the membrane bilayer[231, 232]. In the vesicle 

simulation setups, the LNP fused with the membrane, which caused rapid exchange of lipids 

between membrane and LNP. Similarly as recently portrayed by others[109], this caused 

disruption of the membranes and the formation of disordered phases in the vesicle (Figure 

IV.6A+B). However, in only one of the eight LNP-vesicle interactions, this led to successful 

escape of siRNA molecules from the vesicle (Figure IV.6A). Closer observation of this 

simulation revealed that the EE of two siRNA molecules in this simulation occurred directly 

during the initial fusion of LNP and vesicle. The energetic hurdle that must be overcome for 

the fusion of LNP and membrane to be initiated[123, 233] seemed to be increased in the 

interaction with the lipid raft model. Here, no membrane fusion occurred (Figure IV.6C) in one 

simulation, while in the repeated simulation fusion only occurred after ~ 3 µs (Figure S8). This 

can be explained by the absence of anionic lipids, as described above, or the presence of an 

increased amount of glycosylated lipids, forming a “buffer zone” above the membrane surface. 

The effect of pH in the endosomal compartments on the LNP-membrane interaction has been 

investigated in depth elsewhere[66], with the result that acidic pH (< 6.5) enhances LNP 

disintegration and promotes lipid exchange between LNP and endosomal membranes. This 

was well reproduced by our results, as each step of pH reduction in the simulations led to an 

abrupt increase in the number of contacts between LNP lipids and membrane (Figure IV.S8). 
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Figure IV.6. CG MD simulation outputs of an Onpattro® like LNP interacting with endosome 

mimicking vesicles for 8 µs. A. LNP and early endosomal vesicle. B. LNP and late endosomal vesicle. 

C. LNP and lipid raft vesicle. (green: membrane lipids, light gray: glycans, light green: cholesterol, blue: 

siRNA, pink: MC3/MC3H, purple: DSPC) 

 

Interestingly, the 70% OA PBAE, even though to a smaller extent, caused membrane 

disturbances comparable to the LNP (Figure IV.7A). This formulation preferably interacted with 

the anionic lipids but was at the same time capable of forming hydrophobic interactions with 

all membrane lipids (Figure IV.S8). Over time, the polyplex disassembled and polymer 

molecules distributed over the whole vesicle (Figure IV.7A). In the lipid raft vesicle, the 

disintegration of the polyplex was less pronounced. Instead, incorporation of preferably 

cholesterol from the membrane into the hydrophobic PBAE core was observed (Figure IV.7B). 

Transmission electron microscopy (TEM) imaging has previously been used to visualize the 

effect of EE efficient polyplexes on endosomes[136]. Those images showed disturbed 

membranes that could be interpreted similar to the results from the vesicle- 70% OA PBAE 

polyplex simulations herein. However, no escape events were observed for the 70% OA PBAE 

polyplex. This may be attributed to the inherently low frequency of escape events, even in 

formulations considered effective for EE. Alternatively, the absence of detectable escape could 

suggest that PBAE-mediated EE involves a combination of membrane fusion and proton 

sponge-like mechanisms, which may have caused strong endosomal damage and Gal8 

recruitment in vitro. In the vesicle simulations, chloride ions were inserted inside the vesicles 

to compensate for the increasing positive charge of the polymer under increasingly acidic 

conditions. However, this approach is unlikely to fully replicate the osmotic pressure dynamics 

that might develop physiologically. 
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Figure IV.7. CG MD simulation outputs of 70% OA PBAE polyplex interacting with endosome 

mimicking vesicles for 8 µs. A. PBAE polyplex in the early endosomal vesicle (left), with visualization 

of disassembled polyplex only (right). B. 70% OA PBAE polyplex and lipid raft vesicle. (green: 

membrane lipids, light gray: glycans, blue: siRNA, beige/orange: polymer) 

 

The more hydrophilic PBAE (30% OA) followed similar principles to the 70% OA PBAE, but 

due to the decreased hydrophobic interactions (Figure IV.S8), the effect of the particles on the 

vesicles was less pronounced (Figure IV.8A+B). Instead of polymer molecules fusing into the 

membrane, the interaction was dominated by surface contacts between the cationic spermines 

and the anionic lipids. Only minor disturbances of the membrane bilayer occurred. However, 

the vesicles deformed to a flattened shape, which allowed more surface contact with the 

polyplex (Figure IV.8B).  

 

 
Figure IV.8. CG MD simulation outputs of 30% OA PBAE polyplex interacting with endosome 

mimicking vesicles for 8 µs. A. PBAE polyplex in the early endosomal vesicle (left), with visualization 

of disassembled polyplex only (right). B. 30% OA PBAE polyplex and lipid raft vesicle. (green: 

membrane lipids, light gray: glycans, blue: siRNA, beige/orange: polymer) 

 

The effect of the bPEI polyplex on the membrane vesicles resembled the 30% OA PBAE, with 

the difference that the bPEI polyplex did not shed any polymer (Figure IV.9A-C). As mentioned 

above, no hydrophobic interactions of the hydrophilic bPEI polymer with the membranes were 

observed (Figure IV.S8). The minimal membrane interaction observed for bPEI in this setup is 

consistent with its limited endosomal escape efficiency in the Gal8 recruitment assay. However, 
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others have reported satisfying efficiency of PEI siRNA polyplexes before[35]. Some reported 

the formation of membrane pores due to the interaction with PEIs in simulation, however with 

the PEI being already placed in the membrane at the beginning of the simulation[234]. Neither 

our CG nor our AA models produced membrane pores in unstirred simulations. Only when the 

bPEI particle was not only pulled onto, but forcefully pulled through a membrane, a pore in the 

CG membrane formed (Figure IV.S10). In summary, this particle’s results support a hypothesis 

formed by others on the EE of PEI polyplexes in HeLa cells[206]: The highly charged PEI 

polyplex firmly associates with the membrane, and local osmotic or mechanical forces are 

necessary for RNA release through local membrane defects into the cytoplasm. As described 

above, the buildup of osmotic pressure in our unstirred equilibrium simulations is limited, which 

makes the observation of escape events in this setup unlikely. 

 

 
Figure IV.9. CG MD simulation outputs of the bPEI polyplex interacting with endosome mimicking 

vesicles for 8 µs. A. bPEI polyplex in the early endosomal vesicle B. bPEI polyplex in the lipid raft 

vesicle. C. bPEI polyplex in the late endosome vesicle. (green: membrane lipids, light gray: glycans, 

blue: siRNA, beige/orange: polymer) 

 

Finally, the PPP polyplex performed comparably to the bPEI and the 30% OA particles (Figure 

IV.10A+B). As described for the planar membrane interaction, the PCL segment accumulated 

in the lipid tail region of the membranes, but only if the particle did not attach to the membrane 

surface with the bPEI residues first. In this case, the particle was hindered from hydrophobic 

interactions as the PEI stuck to the anionic membrane surface (Figure IV.10A). To investigate 

whether a larger PPP particle with therefore more hydrophobic units would cause membrane 

disturbance akin to the 70% OA polyplex, a PPP particle with a total polymer mass equal to 

the 70% OA particle was created. This polyplex caused some disturbance in the lysosomal 

membrane, but like the smaller particles, it did not disassemble (Figure IV.10C). 
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Figure IV.10. CG MD simulation outputs of the PPP polyplex interacting with endosome 

mimicking vesicles. A. Small PPP polyplex in the lipid raft vesicle B. Small PPP polyplex in the 

lysosomal vesicle. C. Larger PPP polyplex (containing 15 siRNA molecules) in the lysosomal vesicle. 

(green: membrane lipids, light gray: glycans, blue: siRNA, beige/orange: polymer (darker orange bPEI, 

PCL shown in brighter coloring) 

 

The outcome of particle–vesicle interactions is summarized in Figure IV.11A, reporting the total 

number of contacts between polymer (or MC3 plus DPSC for the LNP) and membrane lipids 

in the final simulation frame. Consistent with the observations from planar membrane 

simulations, both the LNP and the 70% OA PBAE polyplex exhibited substantially higher 

membrane contact numbers compared to the other formulations. Specifically, the total number 

of contacts between 70% OA PBAE and membrane lipids was between 18.6-fold (lysosomal 

membrane) and 52.8-fold (early endosomal membrane) greater than that observed for bPEI. 

Hence, the difference can not solely be attributed to the overall higher amount of polymer in 

the PBAE polyplex, but also polymer specific properties. Furthermore, as noted previously, the 

presence of anionic lipids appeared to promote interaction, with late endosomal and lysosomal 

vesicles showing higher abundance of polymer or LNP contacts than early endosomal or lipid 

raft membranes. 

Polyplex stability is known to depend on multiple interrelated factors, including polymer 

architecture, molecular weight, and hydrophobicity[55, 235]. In an effective polyplex 

formulation, these factors must be well balanced to ensure sufficient stability in serum and 

efficient cargo release following cellular uptake[236]. In our CG MD simulations, a comparison 

of polymer–siRNA contacts before and after endosomal membrane interaction revealed a 

reduction in siRNA encapsulation across all systems tested (Figure IV.11B), suggesting partial 

unpacking upon membrane contact. While no consistent trend emerged across membrane 

compositions, the results indicate that the 30% OA PBAE polyplex is the least stable, whereas 

the PPP-based polyplex shows the highest stability. Interestingly, the polyplex that exhibited 

the strongest membrane interaction (70% OA PBAE) did not show the most efficient siRNA 

unpacking. Nevertheless, comparisons between structurally related polymers (70% OA vs. 
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30% OA PBAE; PPP vs. bPEI) revealed that increased hydrophobicity was associated with 

reduced unpacking. 

Noticeably, the MD-based unpacking results reproduced the outcome from an experimental 

stability assay (Figure IV.S11), in which competitive displacement by heparin and Triton X 

revealed an identical stability ranking among the four polyplexes. This correlation validates the 

predictive power of the simulation approach and highlights its ability to mechanistically dissect 

complex structure–function relationships. 

 

 

Figure IV.11. Quantification of CG MD output after 8 µs simulated interaction between endosomal 

membranes and model particles. A. Total number of contacts of the polymer (or DLin-MC3-DMG and 

DSPC for the LNP) with membrane components in the last frame of simulations (8 µs); shown as mean 

from n = 2 simulations per setup. B. Percentage of contacts of the polymer (or DLin-MC3-DMG and 

DSPC for the LNP) with siRNA that remained after 8 µs simulated interaction with model vesicles in 

comparison to t = 0 ns; shown as mean from n = 2 simulations per setup. 
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 4 Conclusion 

 

The herein presented MD simulations visualized and quantified the interaction of different 

siRNA nanoparticles with endo-lysosomal membranes. All formulations showed increased 

affinity to anionic membrane lipids, highlighting that these play a significant role for EE. 

However, only two formulations (the 70% OA PBAE polyplex and the Onpattro®-like LNP) 

achieved eGFP knockdown in vitro. These were the only particles that formed larger numbers 

of hydrophobic interactions in MD, extracting lipids from planar membranes and disturbing 

membrane vesicles. Hence, a pronounced role of hydrophobic interactions for effective EE 

through membrane fusion was demonstrated. Particles that do not contain hydrophobic 

residues (such as bPEI polyplexes) were not capable of interacting with the lipid tails of 

endosomal membranes. 

Combining the findings of this work with the existing knowledge on EE mechanisms, we 

understand EE mechanisms of polyplexes as a spectrum ranging from proton sponge-like EE 

to membrane fusion-dominated mechanisms. For the EE of polyplexes based on hydrophilic 

polymers such as PEI, our simulations propose an electrostatically driven attachment of 

particles onto endosomal membranes, which could be followed by comparably rare escape 

events through the buildup of osmotic or mechanical stress. Larger hydrophobic modifications 

of a polymer are necessary for hydrophobic interactions to arise, which enhances membrane 

disruption and polymer shedding. By exploiting both proton-sponge like and membrane fusion-

based mechanisms, the amphiphilic polyplex formulations (represented herein by 70% OA 

PBAE polyplexes) possess increased EE efficiency, but also cause large membrane defects, 

visible in vitro through the observation of Gal8 recruitment. This type of polyplex is efficient at 

siRNA delivery, but potentially cytotoxic through excessive endosomal disruption.  

In our simulations, the Onpattro®-like LNPs caused the highest extent of membrane disruption 

through fusion of LNP and membrane and the mixing of lipids. In vitro, the formulation 

produced only small holes in the endosome, which were not detectable by galectins. 

Considering the cytotoxicity caused by large endosomal defects, the EE mechanism of the 

simulated LNP appears desirable. Engineering polyplexes towards more membrane fusion-

based EE, for example by modifying hydrophobic residues, could therefore largely advance 

the development of polymers for siRNA delivery. 

Even though escape events of siRNA from polyplex formulations were not observed in 

simulation, our results show that MD simulations of EE mechanisms can conclusively be 

correlated to in vitro results. In the future, expanding the library of simulated nanoparticle- 

membrane systems will help to solidify the identification of desirable EE mechanisms in MD 

simulations. Subsequently, MD could be used to predict EE behavior of a formulation and 

screen for beneficial properties. 
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5 Materials and Methods 

5.1 Materials 

Spermine and oleylamine for the synthesis of the poly(beta)aminoesters (PBAE) were obtained 

from Fisher Scientific (Acros, USA), whereas the 1,4-butanediol diacrylate for the PBAE 

backbone originated from Tokyo Chemical Industry Co. (Tokyo, Japan). The 25 kDa branched 

polyethylenimine (bPEI) and the 5 kDa bPEI for the synthesis of the PEI-PCL-PEI polymer 

(PPP) were a kind gift from BASF (Ludwigshafen, Germany). Polycaprolactone diacrylate 

(PCL), as well as HEPES (4-(2-hydroxylethyl)-1-piperazineethanesulfonic acid), Dulbecco's 

Phosphate Buffered Saline (PBS), D-Glucose, Triton-X, porcine Heparin sodium salt, 

Cholesterol and Copper sulfate pentahydrate, Minimum Essential Medium Eagle (MEM), 

High/Low glucose Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum (FBS), 

MEM Non-Essential Amino Acids (NEAA) solution (100X) and Cell Counting Kit-8 were 

obtained from Sigma-Aldrich (Taufkirchen, Germany). D-Lin-MC3-DMA was from 

MedChemExpress (Sollentuna, Sweden), DSPC and DMG-PEG 2000 from Avanti Research 

(Birmingham, United Kingdom). The siRNA used in this project was amine-modified siRNA for 

the knockdown of eGFP (siGFP), with the sequence 5´-

pACCCUGAAGUUCAUCUGCACCACcg, 3´- ACUGGGACUUCAAGUAGACGGGUGGC, or 

negative control siRNA (siNC) with the sequence 5´-pCGUUAAUCGCGUAUAAUACGCGUAT, 

3´-CAGCAAUUAGCGCAUAUUAUGCGCAUA, both purchased from Merck (Darmstadt, 

Germany). Dyes for confocal microscopy (DAPI (4',6-Diamidin-2-phenylindol, 

Dihydrochloride), Alexa-Fluor 647) were obtained from Life Technologies GmbH (Frankfurt, 

Germany).  Penicillin-Streptomycin (P/S, 10.000 U/ml), Blasticidin S HCl (10 mg/ml), 

Lipofectamine 2000, 4% Paraformaldehyde in PBS and DAPI (4′,6-diamidino-2-phenylindole) 

were bought from Thermo Fisher (Waltham, MA, USA). CytoTox 96® Non-Radioactive 

Cytotoxicity Assay kit was purchased from Promega Corporation (Madison, WI, USA). 
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5.2 Experimental Methods 

Polymer Synthesis 

The poly(beta)aminoesters (PBAE) were synthesized via Michael Addition as previously 

described[55]. The synthesis was based on tri-boc-spermine as hydrophilic side chain, 

oleylamine (OA) as hydrophobic side chain, and 1,4-butanendiol diacrylate as backbone. After 

polymerization, the tri-boc-spermine was deprotected with trifluoroacetic acid. The ratio of 

hydrophilic spermine to hydrophobic OA was controlled by the input ratio of the reagents and 

validated by 1H nuclear magnetic resonance (NMR). For this work, a polymer containing 33% 

OA (generally referenced as “30% OA” for clarity in the comparison to simulation) and 68% OA 

(“70% OA”) were used. 

The synthesis of the 5 kDa-5 kDa-5 kDa PEI-PCL-PEI polymer (PPP) was previously described 

by Jin et al.[214] In brief, 5 kDa branched polyethylenimine (bPEI) was stirred with 

polycaprolactone-diacrylate (PCL) for 48 h at 40 °C at a molar ratio of 2 (PEI) : 1 (PCL). Then 

the polymer was purified from monomers by dialysis against water with a molecular weight cut-

off of 10 kDa and subsequently lyophilized. The ratio of PEI:PCL in the product was evaluated 

to be 2:1 by a TNBS assay, which was calibrated with unmodified 5 kDa PEI[237]. 

Particle Formulation 

PBAE and bPEI Particles: PBAE and 25 kDa bPEI polyplexes were formulated at an N/P ratio 

of ten (i.e., ten protonable units of the polymer per phosphate of the siRNA). The polymers and 

the siRNA were separately diluted in 10 mM HEPES buffer at pH 5.4 to equal volumes. For the 

particles used in the hemolysis assay, HEPES- buffered Glucose (5%) (HBG) at three different 

pH levels (7.4, 6.5 and 5.4) was used instead to ensure isotonicity. Both components were 

mixed by batch-mixing and shortly vortexed afterwards. Finally, the particles were incubated 

for 90 minutes at room temperature before further use. 

PPP Particles: The PPP particles were prepared as previously described[214] by preparing 

empty particles first and subsequently adding the siRNA. The polymer was dissolved in 

acetone, and then slowly dripped into formulation buffer (as above) while stirring. The acetone 

was left to evaporate from the mixture over three hours, and the formation of empty particles 

was confirmed by dynamic light scattering (DLS). Then, siRNA loaded polyplexes were 

prepared by diluting the empty particles and mixing as described above for the PBAE and bPEI 

particles. 

MC3 – LNP: For the preparation of LNPs, the lipids were diluted in ethanol, with ratios of 50% 

Dlin-MC3-DMA, 38.5% cholesterol, 10% DSPC and 1.5% PEG-2000-DMG. The siRNA was 

diluted in 25 mM sodium acetate buffer at pH 4. Lipid blend and siRNA were combined by 
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microfluidic mixing in a T-mixer (micro IDEX H&S P-888) at flow rate ratios of 0.75 ml/min (lipid) 

and 2,25 ml/min (siRNA). Afterwards, the LNPs were dialyzed overnight against 150 mM PBS 

or HBG when used for the hemolysis assay. Before further use, the LNPs were filtered through 

a 0.22 µm syringe filter. 

Z-average, PDI and ζ-potential of all particles were determined on a Malvern Zetasizer Ultra 

(Malvern Instruments, Malvern, UK). All particles were produced in biological triplicates for 

characterization. 

Hemolysis Assay 

For the hemolysis assay[238], blood from a healthy anonymous donor was centrifuged for 10 

minutes at 1500x g. The sedimented erythrocytes were resuspended in PBS and repeatedly 

washed with PBS until the supernatant was clear after centrifugation. The erythrocytes were 

resuspended in PBS again and then diluted to 5 * 10^8/ml in HBG with either pH 5.4, 6.5 or 

7.4. Subsequently, 1:1 mixtures of erythrocytes and the respective particles (50 pmol siRNA/ 

100 µl) or 15 mg/ml polymer dilutions were then incubated in 96-well plates for 30 minutes at 

37 °C. 1% Triton-X was used as positive control (i.e., 100% hemolysis) and buffers as negative 

controls. After incubation, the plates were centrifuged for 5 minutes at 1500x g and the 

supernatants were transferred to fresh transparent well plates. The absorbance of the 

supernatants was measured at 541 nm on a TECAN Spark Plate Reader (Tecan Trading AG, 

Switzerland). The assay was performed in a biological triplicate. Erythrocyte aggregation was 

documented on the resuspended erythrocyte pellets on a Evos M5000 microscope (Thermo 

Fisher Scientific, Schwerte, Germany). 

Particle Stability Assay 

The stability of polyplex formulations was assessed by a competition assay at pH 5.4, as 

previously described elsewhere[55]. Briefly, a dilution series of stress solutions containing 

heparin and Triton X was prepared. In this regard, 100% stress referred to a concentration of 

200 USP units heparin/ml and 1% (m/m) Triton X. First, 10 µL of nanoparticles formulated at 

pH 5.4 were incubated with 20 µL of the respective stress solution for 1 h at 37 °C. Then, 5 µL 

of diluted SYBR Gold solution was added and after 5 minutes, fluorescence was measured on 

a TECAN Spark Plate Reader (Tecan Trading AG, Switzerland). Excitation was set to 492 nm; 

emission was set to 537 nm. For data analysis, all data points (n = 3 technical replicates) were 

normalized towards the 100% stress sample of each formulation, which was assumed to 

represent maximal unpacking (i.e., 0% encapsulation). To calculate the EC50 value of each 

formulation, a sigmoidal curve fit with automated outlier detection was performed in GraphPad 

Prism5 2007 software.  



81 
 

Cell culture 

Hela WT cells (passages 10-15) were cultured in MEM containing 10% FBS, Hela/eGFP cells 

(ATCC, USA, passages 5-10) were cultured in DMEM-high glucose containing 10% FBS, 0.1 

mM MEM NEAA, 1% P/S and 10 μg/mL Blasticidin. Hela-Gal8-mRuby3 cells (passages 5-10) 

were kindly provided by Professor Ernst Wagner (Ludwig-Maximilians-Universität Munich, 

Germany) and cultured in DMEM-low glucose with 10% FBS and 1% P/S. All cells were 

cultured in a humidified atmosphere containing 5% CO2 at 37 °C. 

Galectin-8 Assay 

The recruitment of Galectin-8 (Gal8) to damaged endosomes as an indicator of successful 

endosomal escape was tested on HeLa cells expressing mRuby-3-Gal8 fusion protein. Cells 

were seeded at a density of 10,000 cells per well in an 8-well ibiTreat chamber slide (Ibidi, 

Gräfelfing, Germany). The cells were transfected with nanoparticles containing 20 pmol siRNA 

per well for 4 hours or 24 hours. Of the total siRNA, 20% were labeled with Alexa Fluor 647. 

The culture medium was changed after 4 hours, and cells were imaged at the SP8 inverted 

confocal laser scanning microscope (CLSM; Leica Camera, Wetzlar, Germany) with a 63X oil 

objective. Cell nuclei were stained with DAPI. siRNA uptake and Gal8 puncta of ≥ 25 cells per 

sample were quantified from the images by automated counting using the Fuji plug-in of 

Image J. 

eGFP Knockdown 

HeLa/eGFP cells were seeded at a density of 6,000 cells per well in 96-well plates. The 

following day, cells were transfected with nanoparticles containing either 20 pmol siRNA 

targeting eGFP mRNA (siGFP) or 20 pmol scrambled siRNA of the same length (siNC) for 48 

hours. Lipofectamine 2000 was used as a positive control, while free siRNA served as a 

negative control. After incubation, the cells were collected to perform the FACS analysis 

(Attune NxT Flow Cytometer, ThermoFisher Scientific). The eGFP knockdown efficiencies 

(biological duplicate with n = 3 technical replicates) were calculated by dividing the Median 

Fluorescence Intensity (MFI) of siRNA-treated group by that of the respective siNC-treated 

group. 

Cellular uptake 

HeLa/eGFP cells were seeded at a density of 6,000 cells per well in 96-well plates. The 

following day, cells were transfected with nanoparticles containing 20 pmol siGFP, of which 

20% were labelled with Alexa Fluor 647. Lipofectamine 2000 was used as a positive control, 

while free siRNA served as a negative control. After 24 hours, the cells were collected to 

perform the FACS analysis (Attune NxT Flow Cytometer, ThermoFisher Scientific). 
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Additionally, uptake was analyzed by FACS after quenching the fluorescent signal on the cell 

surface with trypan blue (n = 3 technical replicates). 

LDH- and CCK-8 Assay 

To evaluate cytotoxicity, both an LDH- and a CCK-8 assay were conducted (n = 3 technical 

replicates). The particles for this experiment were prepared as described above and then 

diluted to test four concentrations (i.e., 40, 30, 20 and 10 pmol siRNA/50 µL). HeLa cells were 

seeded at 6,000 cells in 96 well plates. When reached 80% confluence, the cells were 

incubated with the four nanoparticle dilutions for 48 hours. For the LDH-assay, 50 µL cell 

culture supernatant was diluted 1:1 with CytoTox 96 reagent and incubated in the dark for 30 

minutes at room temperature. After addition of 50 µL stop solution, the samples were quantified 

at 490 nm absorbance, and the results were normalized to the positive control. The cells pre-

treated with 20 µL of lysis solution for 45 minutes at 37°C served as positive control for 

maximum LDH release. For the CCK-8 assay, 10 µL CCK-8 solution was added directly into 

each well containing treated cells and incubated for another 3 hours. The cell viability was 

quantified by absorbance relative to an untreated sample at 450 nm.  

 

5.3 CG-MD Simulation 

All simulations were run in Gromacs 2021.4-plumed[184]. For the CG simulations, the Martini 

3 force field[97] was applied. The CG model particles were generated with our previously 

established siRNA model[134] and contain three siRNA molecules each. The number of 

polymer molecules was chosen to reach ~ N/P 10 for all polyplexes, whereas the MC3 – LNP 

had a final N/P ratio of 6.5. After minimization and NPT equilibration, all simulations were run 

at a timestep of 15 fs with Particle mesh Ewald (PME) electrostatic handling[239] with a cutoff 

of 1.1 nm. Temperature was controlled by v-rescale temperature coupling at 298 K (particle 

assembly) or 310 K (membrane interactions), whereas pressure was handled by the Parrinello-

Rahman barostat[193] at 1 bar. 

 

CG Particle Models 

PBAE and bPEI Particles: The PBAE model particles were generated in accordance with our 

previously established approach for this group of polymers[134] with either a 30% Oleylamine 

(OA) or a 70% OA polymer model. The bPEI particles were generated the same way, based 

on a 25 kDa PEI model with a branching degree of 59%[133] (bPEI). PBAE or bPEI particles 

initially self-assembled in a 5 µs unbiased run in a cubic box with 26 nm side length. Boxes 

were solvated with 10 mM HEPES and neutralized with chloride ions. During the first run, the 

protonation corresponded to pH 5.4. This run was followed by 0.5 µs run time with reduced 
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polymer protonation, allowing the particles to adjust to a theoretical pH 7.4. To generate input 

for the interaction with planar membranes at pH 6.5 or 5.4, the protonation was subsequently 

adjusted for another 0.5 µs. All particles were extracted from their initial assembly box including 

the ions of their hydration shell to ensure the particle stability in new simulation boxes with 

PME electrostatics. 

PPP Particles: The PPP polymer model was created from two identical 5 kDa bPEI 

models[133] that were connected by a 5 kDa PCL chain. The parametrization of this PCL chain 

was obtained according to the common Martini parametrization approach 

(cgmartini.nl/index.php)[185-188]. To ensure a particle constitution comparable to wet-lab 

experiments, the PPP polymer was left to self-assemble for 3 µs under the simulation 

conditions described above. The siRNA molecules were then added to the empty particle in a 

subsequent 2.5 µs simulation for encapsulation. pH adjustments were done in the same way 

as for the PBAE and bPEI particles. 

MC3 – LNP: The MC3 – LNP with an Onpattro® – like composition was assembled following 

the recently published approach by Kjølbe et al.[109] The siRNA is placed in water channels 

within a hexagonal lipid core, covered by an outer lipid layer. This resulted in a particle 

consisting of 49% MC3, 39% Cholesterol and 12% DSPC and a total N/P ratio of ~ 6.5. PEG-

lipids were not incorporated, as they are expected to be already shed from the LNP when it 

reaches the endosomal compartment of cells[215]. Protonation of MC3 was calculated based 

on the apparent pKa of 6.55 for MC3[31], however the lipids in direct contact with the siRNA 

were kept protonated at all pH levels studied to avoid excessive shedding of siRNA from the 

LNP at pH 7.4. 

All particle models and the chemical structures of the polymers are depicted in Figure IV.1. 

Membrane Models 

To study the interaction of nanoparticles with different membrane compositions present in the 

endo-lysosomal pathway, four different membrane types were established, namely an early 

endosomal membrane, a lipid raft, a late endosomal membrane and a lysosomal membrane. 

The respective compositions were adapted from literature[226, 240-244] and are listed in table 

S1. The initial topologies were generated with the INSANE[137] tool. Lipid topologies were 

used from literature[97, 245, 246] or created based on the established building blocks if not 

yet available in Martini 3 (e.g., bis(monoacylglycero)phosphate (BMGP), glycolipids (DPG1 

and DPG3[106, 245])). All planar models had an initial size of 25x25 nm and were simulated 

with semi-isotropic pressure scaling. The membranes were fixed in their position by restraints 

on the z-coordinate applied to the POPC molecules (in case of the lipid raft, only 50% of POPC 

molecules) with a force constant of 1000 kJ/mol*nm2. Lateral diffusion of lipid components 
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(POPC, DPSM or cholesterol) inside the planar models was analyzed with the mean squared 

displacement tool[196, 247] from the MDAnalysis package[194, 248]. For the vesicular models, 

membrane discs with a radius of 25 nm (early endosome), 26 nm (lipid raft) or 28 nm (late 

endosome, lysosome) were generated. To initiate the formation of vesicles, the membranes’ 

center of mass (COM) was pulled out of the plane in z-direction by a moving restraint applied 

with the PLUMED plugin. Afterwards, closed vesicles formed in an unbiased simulation within 

less than 1 µs. 

Umbrella Sampling 

The lipophilicity of the simulated CG polymer models was characterized by the calculation of 

a logP/ kDa according to eq. 1:  

𝑙𝑜𝑔𝑃 𝑘𝐷𝑎 = (
𝛥𝐺𝑤 𝑜⁄

2.303 𝑅𝑇
) 𝑀𝑊𝑝𝑜𝑙𝑦𝑚𝑒𝑟⁄⁄  (1) 

The free energy ΔGw/o of transferring one polymer molecule from an octanol phase to a water 

phase was determined in umbrella sampling simulations[115, 249]. A polymer molecule and 

neutralizing chloride ions were placed in the center of an octanol phase of 9x9x20 nm. Then 

the molecule was pulled into the adjacent water phase with equal dimensions by a harmonic 

potential applied along the z-axis. A spacing of 0.25 nm was used for the umbrella windows, 

resulting in 65 windows, which were simulated for 20 ns each. The potential of mean force 

(PMF) was generated as a function of distance from initial position by weighted histogram 

analysis with the gmx wham function[116, 250, 251]. 

Planar Membrane Interactions 

For the investigation of particle-membrane interactions in a simple, planar setup, the 25x25 

nm membranes were simulated with each model particle (70% OA PBAE, 30% OA PBAE, 

bPEI, PPP and LNP) in triplicate runs. The box had a z-dimension of 35 nm, and the 

membranes were centered at z = 10 nm. All boxes were solvated with 150 mM NaCl and 

simulated at 310 K. The interactions with the early endosome and the lipid raft were simulated 

at pH 6.5, whereas late endosome and lysosomal interaction was simulated with protonation 

settings of the particles corresponding to pH 5.4. To ensure interaction from the glycosylated 

membrane leaflet, the particles were pulled in contact with the membrane by a moving restraint 

with the PLUMED plugin, lasting for 5 ns. Then a 2495 ns unbiased interaction was simulated 

with the above-mentioned settings. For analysis, the mass density distribution along the z-axis 

was calculated vie the gmx density function, defining the center of the membrane as z = 0. The 

amount of membrane components extracted from the membrane plane was calculated from 

the density distribution, where the upper limit of the membrane area was defined as the point, 

where the first derivative of the density distribution was > -100. 
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Vesicle Interactions 

Additionally, the interaction of particles with the inside of endosome-mimicking vesicles was 

simulated to compare a more realistic setup. Particles were placed inside the preformed 

vesicles and solvated with 150 mM NaCl at 310 K in cubic boxes with 40 or 42 nm side length. 

All setups started with protonation corresponding to pH 7.4. For the early endosome and the 

lipid raft, the pH was reduced to 6.5 after 1 µs, which was then followed by 7 µs simulation at 

the mildly acidic pH. In the late endosome and the lysosome vesicle, pH was reduced to 6.5 

after 0.5 µs, and then further reduced to pH 5.4 after another 1.2 µs, at which additional 6.3 µs 

were simulated. The additional chloride ions needed to neutralize the polymer charge after 

each pH change were placed inside the vesicle to mimic the osmotic pressure increase inside 

the endosome. Overall, every vesicle-particle setup was simulated for 8 µs and every setup 

was simulated twice. The vesicle interactions were analyzed for the number of polymer–

membrane contacts over time using the gmx mindist tool and for changes in the siRNA 

environment via the Radial Distribution Function (RDF). 

 

5.4 AA Models and Simulations 

The AA simulation input was generated with CHARMM-GUI[252, 253] using the CHARMM36 

force field[254]: Planar membrane models with a size of 10x10 nm and lipid compositions 

identical to the CG membranes were built by the Membrane builder[255-257]. Polymer models 

with a reduced molecular weight (trimers for PBAEs, i.e. ~ 1.3 kDa; bPEI and PPP ~ 1.8 kDa) 

were obtained through the Ligand Reader & Modeler[258]. All AA simulation boxes were 

neutralized and solvated with 150 mM sodium chloride. The simulations were run as NPT 

ensembles with the standard settings supplied by CHARMM, i.e. PME electrostatic handling, 

semi-isotropic pressure scaling with the c-rescale barostat, v-rescale thermostat at 310.15 K 

and a timestep of 2 fs. The membranes were first simulated for 500 ns without interacting 

polymers. For the simulation of polymer-membrane interactions, ~ 9 kDa total mass of a 

polymer were used. The PBAEs were simulated separately for 500 ns to form micelles similar 

as the CG model and then further used in this form. The bPEI and the PPP models were used 

as individual molecules, as they did not aggregate within 500 ns (for PPP unlike the CG model 

– arguably due to the reduced MW and therefore length of the PCL segment). All polymers 

were placed in proximity to the glycosylated membrane leaflets in a 10x10x18 nm box. To 

facilitate initial contact with the membrane, a short pulling sequence mediated by a PLUMED 

moving restraint was applied to the polymer molecules. The polymer-membrane interactions 

were simulated in duplicates for 1 µs and analyzed with the gmx mindist tool. 

 



86 
 

5.5 Data Analysis and Visualization 

Graphs were created in GraphPad Prism5 2007 software, which was also used for statistical 

analysis, where applicable. Simulations were visualized in Blender 4.5.2 LTS. 
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6 Supplementary Data 

 

Table IV.S1. Composition of model membranes [%] 

Percentage of lipid components by headgroup type in the four different simulated membrane types. Anionic lipids are marked in blue. 

  
Early Endosome Lipid Raft Late Endosome Lysosome 

 % Cholesterol  29.5  45.0  20.1  20.1 

Phosphatidylcholines (PC) POPC 17.0 POPC 27.5 POPC 11.0 POPC 11.0 

 
PIPC 15.1 

  
PIPC 18.1 PIPC 18.1 

 
PAPC 5.5 

  
PAPC 6.0 PAPC 6.0 

Phosphatidylethanolamines (PE) PIPE 4.1 
  

POPE 11.5 POPE 11.5 

 
PAPE 6.8 

  
PAPE 11.5 PAPE 11.5 

Sphingomyelins (SM) DPSM 7.1 DPSM 25.5 DPSM 2.7 DPSM 2.9 

 
PGSM 7.1 

  
DXSM 2.7 DXSM 2.9 

Phosphatidylserines (PS) 
    

POPS 2.0 POPS 2.0 

Phosphatidylinositols (PI) PIPI 7.3 
  

PIPI 8.0 PIPI 8.0 

Glycolip-monosialohexosylganglioside (DPG) DPG1 0.2 DPG1 1.0 DPG1 0.2 
  

 
DPG3 0.2 DPG3 1.0 DPG3 0.2 

  

Bis(monoacylglycero)phosphate (BMGP) 
    

BMGP 6.0 BMGP 6.0 

% neg. lipids (sum)   7.7   2.0   16.4   15.9 
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Figure IV.S1. Size and ζ-potential of nanoparticles A. Bars: Hydrodynamic diameters shown as z-

average in nm, mean ± sd, n = 3; Dots: PDI, mean ± sd, n = 3. B. ζ-Potential in mV, mean ± sd, n = 3. 

 

Figure IV.S2. Lateral diffusion [x 10-7 cm2/s] of membrane lipids in the different CG membrane 

models. 
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Figure IV.S3. CCK8 and LDH release assay in HeLa cells. A. Cell viability [%] calculated from CCK8 

assay with 4 different nanoparticle concentrations, mean ± sd, n = 3. B. LDH release [%] calculated from 

the same 4 concentrations of nanoparticles, mean ± sd, n = 3. 
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Figure IV.S4. Cellular uptake in HeLa-eGFP cells, 24 h after transfection with 20 pmol of nanoparticles 

containing 20% AF647-labelled siGFP, mean ± sd, n = 3. 

 

 

Figure IV.S5. Density distribution [kg/m3] after interaction of PPP polyplexes and late endosomal 

membranes. 
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Figure IV.S6. Interaction of polymer models (in total 9 kDa polymer per simulation box) with planar 

membranes at AA resolution: Polymer contacts below 0.6 nm per membrane lipid atom over time, n = 2. 
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Figure IV.S7. Interaction of nanoparticles and planar membranes at CG resolution: Polymer or MC3 

lipid contacts below 0.6 nm per membrane lipid bead over time, n = 3. 
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Figure IV.S8. Interaction of nanoparticles and vesicles in CG resolution: Polymer or MC3 lipid contacts 

below 0.6 nm per membrane lipid bead over time, n = 2. 
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 Figure IV.S9. Matrix of the five nanoparticles interacting with the four different vesicles. 
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Figure IV.S10. CG simulation of a bPEI polyplex being forcefully pulled through an endosomal 

membrane. 

 

Figure IV.S11. Experimental stability data of the polyplex formulations. % Encapsulated siRNA 

depending on the concentration (% stress) of the applied heparin/Triton X solution (mean ± sd, n = 3), 

and sigmoidal fit yielding an EC50 value for each polymer (i.e., the % stress at which 50% of the siRNA 

is unpacked). 
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Summary and Outlook 

 

Advances in computational power have enabled computational research to take on an 

increasingly important role in drug development. At the same time, nucleic acid delivery has 

emerged as one of the most active research fields in pharmaceutical science. This offers the 

opportunity to combine these two areas and accelerate the design of delivery systems by 

leveraging computational approaches. With this aim, this work highlighted previous research 

advances in the field and then developed large-scale MD simulation protocols to showcase 

how MD can provide meaningful insights into nanoparticle systems. 

The applied CG MD approaches reproduced the assembly of PBAE polyplexes in close 

agreement with experimental observations, as both MD analysis and experiments were 

designed to allow direct comparison of orthogonal approaches. The main achievements of this 

chapter demonstrated that hydrodynamic diameters of micelles retrieved from MD were 

comparable to DLS results. Furthermore, particle morphologies observed in TEM images were 

validated by MD and vice versa, and the encapsulation of siRNA by polymer, as well as excess 

polymer, was quantified by MD in good agreement with experiment. Hence, this chapter 

demonstrates that properly parameterized simulation workflows can capture the essential 

molecular assembly of complex polyplex formulations.  

Beyond polyplex assembly, MD simulations also provided mechanistic insights into 

nanoparticle–membrane interactions, with the aim of better understanding endosomal escape. 

The work revealed that hydrophobic moieties in polyplexes play a decisive role in membrane 

perturbation. Additionally, the contribution of electrostatic interactions, influenced by the 

composition of both nanoparticles and membranes, was highlighted. This chapter also 

incorporated a comparison of MD simulation results with in vitro data. Although this provided 

a less direct validation than the experiments described in the previous chapter, the analysis 

nonetheless offered valuable insights. The correlations observed between simulated behavior 

and experimental outcomes underline the capacity of MD to capture key aspects of complex 

biological processes, even when a higher level of abstraction is necessary, such as the 

exclusion of membrane proteins in the MD setup. 

Together, these studies demonstrate how simulation and experiment can complement one 

another: while experiments provide the essential benchmark for reliability and the real-world 

framework of application, simulations help to rationalize observed phenomena and reveal 

underlying mechanisms. In this way, MD can serve both predictive and explanatory roles in the 

development of nucleic acid delivery systems, ultimately bridging the gap between molecular-

scale processes and experimentally measurable outcomes. 
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The workflows presented herein reproduce experimental findings and offer mechanistic 

insights, but further validation is required to generalize the correlations across diverse 

materials and formulations. This will allow us to distinguish which of the presented results are 

specific to the simulated material (polymer), and which conclusions can be generalized to a 

broader range of particle formulations. Especially regarding the EE investigations, this will 

further refine the in silico –in vitro correlation and support the establishment of robust predictive 

models. 

Furthermore, MD workflows require a balance between model accuracy and computational 

efficiency. Larger, more sophisticated models provide detailed, realistic insights. However, 

once robust correlations between MD simulations and wet-lab experiments have been 

established and validated across a broader range of systems, it will be desirable to simplify the 

models while maintaining these correlations. Downsizing and streamlining MD protocols would 

reduce computational cost and thereby allow their broader and more efficient use in early 

formulation screening. In the future, this would allow the incorporation of MD simulations as a 

standard tool in the rational design of delivery platforms, guiding material synthesis and 

experimental prioritization. 

Ultimately, this work underscores the potential of MD simulations not only to deepen our 

mechanistic understanding of nucleic acid delivery but also to accelerate the development of 

novel nanoparticle systems. 
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List of Abbreviations 

 

AA All Atom 

AF647 Alexa Fluor 647 

AGO2 Argonaute 2 

AIMD Ab Initio Molecular Dynamics 

aMD accelerated Molecular Dynamics 

ApoE Apolipoprotein E 

AUC Area Under the Curve 

BMGP bis-(monoacylglycero)-phosphate  

bPEI branched Polyethylenimine 

CG Coarse Grained 

CMC Critical Micellar Concentration   

CME Clathrin-Mediated Endocytosis 

COM Center Of Mass 

CV Collective Variable 

DFT Density Functional Theory 

DLS Dynamic Light Scattering 

DMEM Dulbecco’s Modified Eagle Medium 

DPG1/3 Glycolip-monosialotetrahexosylgangliosides  

DPSM N-Palmitoyl-D-sphingomyelin 

DSPC 1,2-Distearoyl-sn-glycero-3-phosphocholine 

EE Endosomal Escape 

eGFP enhanced Green Fluorescent Protein 

FBS Fetal Bovine Serum  

FES Free Energy Surface 

Gal8 Galectin 8 

GalNAc trivalent N- acetylgalactosamine 

HBG HEPES Buffered Glucose 

HBS HEPES Buffered Saline 

LDH Lactate Dehydrogenase 

LF Lipofectamine 2000 

LNP Lipid Nanoparticle 

MC3(H) Dlin-MC3-DMA 
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MD Molecular Dynamics 

MEM Minimum Essential Medium Eagle  

mRNA messenger Ribonucleic Acid 

Msd Mean Square Displacement 

MW Molecular Weight 

N/P Amine (N) to Phosphate (P) Ratio 

NEAA Non-Essential Amino Acids 

NMR Nuclear Magnetic Resonance 

NOE Nuclear Overhauser Effect  

OA Oleylamine 

PAMAM Poly(amidoamine) 

PBAE Poly(beta-amino ester) 

PBS Phosphate Buffered Saline 

PCL Polycaprolactone 

PDI Polydispersity Index  

pDMAEMA Poly(2-(N,N-dimethylamino)ethyl methacrylate) 

PEG Poly(ethyleneglycol)  

PEI Polyethyleneimine 

PLGA Poly(lactic acid-co-glycolic acid) 

PLL Poly(L-lysine) 

PME Particle Mesh Ewald algorithm 

PMF Potential of Mean Force 

POPC Palmitoyloleoylphosphatidylcholine 

POPS 1-Palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine 

PPP 5 kDa-5 kDa-5 kDa PEI-PCL-PEI polymer 

QM Quantum Mechanical Calculations 

RDF Radial Distribution Function 

REMD Replica Exchange Molecular Dynamics 

RISC RNA Induced Silencing Complex 

RNA Ribonucleic Acid 

RNAi RNA Inteference 

SASA Solvent Accessible Surface Area 

SAXS Small-Angle X-Ray Scattering 

SD Standard Deviation 

siGFP siRNA for the knockdown of eGFP 

siNC negative control siRNA 
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siRNA Short interfering Ribonucleic Acid 

SORT Selective ORgan Targeting 

TEM Transmission Electron Microscopy 

WHAM Weighted Histogram Analysis Method 
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