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Aim of the thesis

The aim of this work is the development of methods that utilize Molecular Dynamics (MD)
simulations for molecular-level insights into siRNA-delivering nanoparticles. MD simulations
have been proven valuable in other research areas, such as materials science or the design
of small-molecule drugs. Hence, the application of MD in the research of complex nucleic acid
delivery systems is a promising approach. As the validation of MD results by orthogonal
methods is highly important to ensure the reliability of newly introduced simulation models, the

presented work combines computational studies with complementary experiments.

A general introduction to the topic is provided in Chapter I, which first focuses on available
siRNA delivery vehicles and general considerations for siRNA delivery. Then, the theory behind

MD simulations is explained, and different MD techniques are highlighted.

In Chapter Il, previously published approaches to the utilization of MD for understanding of

nanoparticle-mediated siRNA delivery are summarized.

Chapter lll focuses on the molecular organization of poly(beta-amino ester) (PBAE)-based
polymeric nanoparticles (polyplexes). The investigated particles are based on an in-house-
synthesized group of PBAEs comprising varying ratios of hydrophilic polycation side chains
(spermine) to hydrophobic oleylamine side chains. Coarse Grained (CG) MD simulations
showed the self-assembly of polyplexes on a molecular level, depending on polymer
composition and N/P ratios. The presented MD results were validated by a variety of
experimental methods, including Nuclear Magnetic Resonance ("H NMR) and Transmission

Electron Microscopy (TEM).

Chapter IV advances to the investigation of the interactions between nanoparticles and a
biological environment. In this case, the interaction of four different polyplexes and one lipid
nanoparticle (LNP) with endosome-mimicking membranes was simulated. Parameters such
as particle hydrophobicity, environmental pH, and membrane composition were elucidated
through large scale CG and complementary AA MD simulations. Subsequently, the
computational results were correlated with performance differences observed between the

particles in vitro.






Chapter | - General Introduction

1 Short interfering ribonucleic acid (siRNA) as therapeutic agent

1.1 RNA induced gene silencing

Through the process of ribonucleic acid interference (RNAi), messenger RNA (MRNA) is
cleaved in a sequence specifically manner by the RNA-induced silencing complex (RISC), a
cell endogenous nuclease[1]. RISC is activated by binding of the guide strand of a short
interfering RNA (siRNA) to the Argonaute 2 (AGO2) subunit of RISC[2, 3]. As a result, the
targeted mRNA, complementary to the bound siRNA strand, is degraded and no longer

translated into a protein (Figure 1.1).
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Figure I.1. Simplified schematic overview of the RNAi mechanism.



As an endogenous mechanism, cells utilize RNAI for post-transcriptional regulation of gene
expression, protection from transposable elements, and antiviral defense[4, 5]. In this regard,
cells cleave long double-stranded (ds) RNA to produce short sequences of approximately
20 — 25 base pairs[2], i.e., the siRNA.

However, through the introduction of synthetic siRNA[6], the mechanism of RNAi can be
directed against any desired mRNA sequence, making it a promising tool for therapeutic

applications.

To increase performance and stability, but also reduce immunogenicity, therapeutically applied
siRNA is chemically modified[7]. Modifications can affect both strands and cover a broad range
from the modification of the ribose (2'-OMe and 2'-F)[8] or the phosphate group[9], to base
modifications and end-capping[10]. Nonetheless, only a few applications exist in which
chemically modified siRNA, administered without a delivery vector (i.e., as “naked” siRNA),
has demonstrated therapeutic efficacy in humans. These include direct targeting of the kidney
and treatment of ocular diseases via intravitreal injection[10]. Systemically administered,
naked siRNA shows poor cellular uptake and short circulation times due to rapid renal
clearance, which can be improved by nanoparticle formulations[11]. With this approach, the
first proof of successful siRNA delivery in humans in vivo was achieved in 2010[12]. Therefore,
it is widely accepted that most therapeutic siRNA applications will depend on advanced

nanotechnologies to achieve effective delivery.

As of 2025, several siRNA therapies are undergoing clinical trials, and seven FDA-approved
siRNA therapies[13, 14] for humans are already on the market. Six of these are delivered as
siRNA conjugated to trivalent N- acetylgalactosamine (GalNAc), which facilitates liver-targeted
gene knockdown in humans[15]. Other conjugation approaches, for example to antibodies, are
being studied to enable targeting to other tissues, such as tumors[16]. The range of non-viral
delivery systems developed so far further includes inorganic and carbon-based materials, a
broad variety of polymer-based nanoparticle systems, and lipid-based approaches (Figure
1.2)[17].
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Figure 1.2. Overview of some of the most studied non-viral siRNA delivery systems.

1.2 Lipid Nanoparticles

The use of lipids in the concept of liposomes as drug delivery vehicles was established as early
as 1964[18]. Fifty-four years later, in 2018, the FDA approved the siRNA therapy patisiran[19],
demonstrating that lipids are also capable of safely and efficiently delivering siRNA in the form
of lipid nanoparticles (LNPs). Shortly thereafter, the mMRNA COVID-19 vaccines developed by
Moderna and BioNTech/Pfizer were approved[20]. Today, LNPs are the most extensively
researched RNA delivery vehicles. They are commonly composed of four lipid types in varying
ratios: A sterol (typically cholesterol), a helper lipid, a PEGylated lipid, and an ionizable lipid[21].
Like the GalNAc conjugates, the LNP formulation used in patisiran predominantly targets
hepatocytes, which has been postulated to result from the abundance of apolipoprotein E
(ApoE) in the protein corona that forms around the nanoparticle after injection[22]. To further
advance LNP technology, selective targeting towards organs beyond the liver is highly

desirable. For instance, the incorporation of a fifth lipid component enables the design of so-



called selective organ targeting (SORT) LNPs, which have been shown to direct siRNA delivery
to the spleen, lungs, or kidneys[23]. Still, the search for novel lipids and optimized LNP
formulations is ongoing, often aided by computational approaches such as the screening of

large libraries by machine learning algorithms[24-26].

While the PEGylated lipid in LNP formulations is known to play a key role in controlling particle
size and maintaining colloidal stability[21], fully delineating the individual contributions of each
lipid component to RNA encapsulation or inner particle structure remains highly complex. For
example, depending on the shape of the helper lipid[27], lipid to cargo ratios[28], and particle
size[29], the inner structure of an oligonucleotide delivering LNP can range from multilamellar
to inverse hexagonal structures and disordered phases. Consequently, lipid composition of an
LNP largely determines its ability to fuse with biological membranes, which leads to large
differences in downstream processes like the endosomal escape (EE) of LNPs[27, 30].
Sophisticated methods such as Small-Angle X-Ray Scattering (SAXS)[29, 31] help to unveil
the inner organization of LNPs. Likewise, LNP structure is a research area in which computer-
aided methods, like Molecular Dynamics (MD) simulations (see below) have proven to be
highly insightful[32, 33].

1.3 Polymer based delivery systems

Due to the highly versatile nature of polymers, potential strategies to encapsulate siRNA into
polymeric nanostructures are numerous. However, even though several applications have
entered clinical trials[34], no polymer-based nanoparticle formulation for nucleic acids has

been approved as a therapy to date (2025).

Polycationic structures efficiently interact with the polyanionic backbone of siRNA through
electrostatic interactions. The most prominent polymer in this regard is polyethyleneimine (PEI)
in its linear or branched forms with varying molecular weights[35, 36]. Alternatives include
poly(2-(N,N-dimethylamino)ethyl methacrylate) (pDMAEMA), which shows similar
encapsulation ability but lower transfection efficiency compared to PEI[37], or poly(L-lysine)
(PLL), which comes with the advantage of being biodegradable[13]. Poly(amidoamine)s
(PAMAM) on the other hand are well known in the design of dendrimers, which are highly
branched, well defined three-dimensional polymeric structures[38]. However, the high cationic
charge densities found in many polyplexes are often associated with cytotoxicity in vitro and in
vivo[13, 37]. Advancements have been achieved by combining polymers with biocompatible
materials such as poly(lactic acid-co-glycolic acid) (PLGA)[39], by increasing
biodegradability[40] or by incorporating stealth moieties, such as poly(ethyleneglycol) (PEG)
grafted variants. PEGylation of polymeric nanoparticles improves stability and circulation

times, while simultaneously reducing the cytotoxicity of polycations by shielding the charge



dense region[41, 42]. On the other hand, a dense PEG layer on the nanoparticle surface can

decrease transfection efficiency by hindering cellular uptake and EE[43].

As hydrophobic modifications of polymers exhibit great potential to enhance transfection
efficiency[44-47], amphiphilic polymers received increasing attention[48]. In this regard, a
block copolymeric structure facilitates the formation of polymeric micelles with a hydrophobic
core[49]. Nucleic acids can be loaded into polymeric micelles through covalent conjugation or
electrostatic interactions similar to conventional polyplexes, either in the core or the shell region
of the micelle[50]. For polymeric micelles loaded with nucleic acids by electrostatic interaction,
the term micelleplex has been established. Besides an often-increased EE performance,
micelleplexes benefit from hydrophobic contributions to the self-assembly process, which
results in increased colloidal stability[48, 51]. However, amphiphilic polymers do not always
have a strictly block copolymeric structure, as showcased by poly(beta-amino ester)s
(PBAE)s[52-54], which have attracted increasing interest due to their biodegradability and high
versatility. PBAEs are synthesized by Michael addition of a diacrylate and primary amines,

which enables the simultaneous introduction of hydrophilic and hydrophobic side chains[55].

1.4 Universal challenges of the siRNA delivery process

Although non-viral delivery vehicles vary widely in their chemical composition, several common
challenges throughout the delivery process can be identified.

Before reaching the target tissue, the hurdles a formulation must overcome largely depend on
the delivery route. Serum proteins adsorbing to the particle surface (the so-called protein
corona) may render nanoparticles prone to immunological recognition[56]. In contrast, inhaled
nanoparticles must additionally diffuse through mucus barriers before reaching epithelial lung
cells[57].

The conjugation of targeting ligands to the surface of nanoparticles can direct them towards
specific tissues or cell types[58], but the composition of the protein corona can likewise

influence biodistribution[23].

Cellular uptake of nanomedicines is mostly mediated through a variety of endocytic
mechanisms, which depend on both particle properties and cell type. While the process of
phagocytosis is restricted to certain cell types such as macrophages, pinocytosis can be
observed in most cells to varying degrees[59] (Figure 1.3A). Clathrin-mediated endocytosis
(CME), a pathway exploited by many nanomedicines, is activated upon receptor-specific[60,
61] or receptor-independent[62] contact between particle and clathrin-coated pits on the
plasma membrane. During CME, particles are internalized into clathrin-coated vesicles, which

subsequently undergo intracellular trafficking along the endo-lysosomal pathway. In contrast,



caveolae-dependent endocytosis and clathrin/caveolin independent endocytosis circumvent
the lysosomal compartment[63].

Which endocytic mechanism dominates for a given nanoparticle formulation depends on many
factors such as particle size and shape[64]. For instance, caveolae-dependent endocytosis

favors smaller particles than CME[65].

Finally, achieving high cellular uptake does not necessarily guarantee high transfection
efficiency of a formulation[53]. Instead, siRNA must be released from the delivery vehicle and
escape from endocytic vesicles, i.e., the endo-lysosomal compartment. EE is often referred to
as the bottleneck of nucleic acid delivery, and underlying mechanisms are being widely
discussed. EE of LNPs is believed to occur through direct interactions of particles and
membrane[66], resulting in exchange of lipids and the formation of pores for the cargo to
escape. For polycationic materials, rupture via the so-called proton sponge effect has long
been proposed but is unlikely to represent the sole EE mechanism[36, 67] (Figure 1.3B). To
date, EE remains a highly researched topic with many open questions[30, 48], as further

discussed in Chapter IV.
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2 Molecular dynamics (MD) simulations

2.1 MD simulations for pharmaceutical applications

Molecular Dynamics (MD) simulations are a broadly applied tool in both materials and life
sciences. Especially in the context of small-molecule drug discovery, MD is widely established,
as it aids in target modelling, binding pose prediction, lead optimization and serves as a
valuable tool in virtual screening processes[68]. Likewise, advancements have been made to
apply MD in drug development: valuable contributions include studies on drug solubility[69],

protein formulation[70], and nanotechnologies[71, 72].

2.2 The physical background of MD simulations

MD simulations visualize the motion of particles, such as single atoms, based on Newton’s
equations of motion. The potential energy of such a simulated system is composed of two main
components, i.e., bonded and non-bonded interactions. Bonded interactions involve forces
between covalently bound atoms of a molecule, namely bond potentials, angle potentials, and
both proper and improper dihedrals, whereas non-bonded interactions include contributions
from the Lennard-Jones potential and electrostatic forces (Figure 1.4)[73].

These interactions are defined within a force field, which serves as the mathematical
framework of an MD simulation. However, accurately capturing all relevant interactions for a
specific system remains a non-trivial task. As such, the refinement and development of MD

force fields continues to be an active area of research.

Force fields can be developed based on experimental data, such as X-ray diffraction or nuclear
magnetic resonance (NMR) data. Alternatively, they can be derived from quantum mechanical
(QM) calculations, such as ab initio calculations or density functional theory (DFT), or from a
combination of both QM and experimental data[74, 75]. Force fields can be differentiated
according to their application (i.e., force fields that are optimized for the simulation of a certain
type of biomacromolecules[76]) or their resolution (see below). Additionally, a distinction
between additive and polarizable force fields can be made[77]. In addition to bonded and non-
bonded interactions, polarizable force fields account for the response of electron clouds to
changing electrostatic environments, which increases simulation accuracy[78]. However, this

inclusion of additional mathematical terms comes at a significant computational cost[79].

In summary, all force fields are based on the common ground of classical mechanics. Yet, due
to the incorporation of different data sources in their refinement, some force fields are more
suitable for specific setups than others. The choice of the force field for an MD study can

therefore strongly influence its outcome[80-83].

10
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Figure 1.4. Basic representation of the interactions contributing to the force field

within an MD simulation.

2.3  All Atom Simulations

MD simulations can be designed at different levels of resolution. Intuitively, All Atom (AA) MD
simulations treat each atom as a particle with individual interactions and properties. The
increasing availability and capability of computational resources over the last decades, for
example acceleration through graphics processing units (GPUs)[84] and the incorporation of
artificial intelligence, has enabled AA MD simulations of increasingly large systems, such as a
complete model of the SARS-CoV-2 viral envelope[85]. However, more commonly, AA
simulations are applied to system sizes below 50 nm and simulation times below 10 us[86-88].
Several additive AA force fields with distinct strengths and limitations are widely used. The
AMBER family encompasses a variety of force fields, primarily optimized for biomolecules such
as proteins, nucleic acids, and lipids[89-91]. The most recent CHARMM force fields include
CHARMMB36[92] for biomolecules and the CHARMM General Force Field (CGenFF) for small
organic molecules and non-standard compounds. Parameter extensions have been published

for specific molecules[93, 94] as well as extensive, more general improvements[95]. In

11



contrast, the OPLS-AA force field is particularly well suited for small molecules but remains

less advanced for biomacromolecules[96].

2.4 Coarse Grained Simulations

Coarse Grained (CG) MD simulations make use of a simplified resolution of molecules, most
commonly representing 3—4 heavy atoms as one bead[97] (Figure 1.5). This reduction of
particles in the system substantially decreases the degrees of freedom in a simulation setup.
Additionally, coarse-graining enables larger integration time steps, as fast vibrating bonds
(e.g., hydrogen bonds) are no longer represented and hence energy surfaces are
smoother[98]. Overall, this leads to an increase in simulation time by 1-2 orders of magnitude
in comparison to an equally sized AA simulation box with the same computational resource
consumption[99]. With CG simulations, boxes well above 100 nm side length are

accessible[100], as well as timescales of several tens of microseconds[101].

The most popular CG force field is the Martini force field, which was first introduced in 2007 as
a general model for biomolecular simulations[102]. Since 2021, Martini has been available in
its third, refined version, Martini 3[97]. The aim of Martini 3 was to reduce shortcomings of
previous versions, such as overstabilization of biomolecular assemblies[103], and to expand
the variety of bead types, thereby increasing the chemical space Martini 3 can be applied
to[104]. As described above, force fields, especially AA force fields, are parametrized based
on experimental data and quantum mechanical data. In the case of Martini 3, the bead types
were validated by reproducing experimental water-oil transfer free energies and solvent
miscibility data. Consequently, a variety of simulation setups were tested and compared to
other experimental or AA simulation results, demonstrating strongly improved performance of
the force field[97]. In general, CG results are often refined to match AA simulations to ensure
the quality of a newly parametrized molecule model, before upscaling to larger simulation
setups[101, 105]. Since the publication of Martini 3, parametrizations of complex molecules,
such as carbohydrates[106] and cholesterol[107] have become publicly available. Additionally,
automated tools to generate CG input have been developed: This allows for automated
generation of protein models, membranes, and preassembly of whole LNPs in CG
resolution[108, 109]. Furthermore, the titratable Martini 3 version allows to simulate changes
of protonation depending on the pH environment of a molecule[110], whereas backmapping
approaches — i.e., restoring AA resolution to a simulated system that has reached equilibrium

in a CG setup — help to combine simulations of large systems with AA accuracy[111].

Nevertheless, even with Martini 3, room for improvement remains[112]. For instance, Martini 3

failed to reproduce experimental data concerning protein-protein interactions, making further

12



optimization of the force field necessary[113]. Similarly, in the case of intrinsically disordered
proteins, Martini 3 needed modifications to better keep up with state-of-the-art AA force

fields[114]. Hence, AA and CG simulations coexist synergistically.

g

All Atom (AA) representation:  Coarse Grained (CG) representation:
1682 atoms 425 beads

Figure 1.5. All Atom versus Coarse Grained MD simulation. A. Visualization of the
coarse-graining process of a molecule fragment. B. Comparison of a siRNA molecule in
AA and CG resolution.
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2.5 Advanced sampling technigues

A variety of techniques enable MD simulations of rare events that are not accessible within the

timescales of classical equilibrium MD.

The umbrella sampling method[115] applies harmonic biasing potentials to the system of
interest, restraining it to overlapping windows along a predefined collective variable (CV). The
biased distributions obtained from these windows are subsequently reweighted, for example
using the Weighted Histogram Analysis Method (WHAM)[116], to reconstruct the unbiased
probability distribution. From this, the potential of mean force (PMF) can be derived,
representing the free-energy profile along the reaction coordinate.

Similarly, metadynamics simulations derive free-energy surfaces (FES) of a system along
predefined CVs. During the simulation, Gaussian hill potentials are added in a history-
dependent manner. This enables the system to overcome energy barriers, while at the same
time discouraging the system to revisit previously explored states[117].

In accelerated MD (aMD), no prior knowledge of the potential energy landscape of a system
and no definition of CVs are required. The method raises energy minima, thus reducing the
barriers the system must overcome to transfer from one metastable state to another[118].

In contrast to these methods, Replica Exchange MD (REMD) samples multiple replicas of the
system at different temperatures or with independent Hamiltonians. Exchanges of replica
configurations allow the system to cross energetic barriers more efficiently, thereby enhancing

sampling even at lower temperatures[119].

2.6 Limitations of Classical MD simulation

While being extremely powerful in providing mechanistic insights into biomolecular processes
and molecular interactions, MD simulations do not allow the formation or breakage of covalent
bonds[84]. The simulation of chemical reactions therefore lies beyond the scope of classic MD.
For this type of insight, ab initio molecular dynamics (AIMD), which incorporates electronic
properties of the system under investigation[120], is more suitable. Inherently, AIMD
simulations are extremely computationally expensive and therefore limited to a few hundred
picoseconds[121]. Alternatively, hybrid quantum mechanics/molecular mechanics (QM/MM)
simulations apply accurate quantum mechanics to a small region of interest, e.g., the binding
pocket of an enzyme, while treating the remainder of the system with a classical force
field[122].

Although great advances have been made, the availability of computational resources remains

a limiting factor for MD simulations. Consequently, many MD studies apply simplifications to

14



the system under investigation[71, 123], while others explicitly focus on increasing the
complexity of simulated systems[124].

Additionally, the timescales of many biologically relevant processes exceed the temporal range
accessible to MD simulations. Therefore, as mentioned above, rare events that would not be
observed in equilibrium MD simulations are investigated using advanced sampling

techniques[125].
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Chapter Il - How can simulations
aid our understanding of
nanoparticle-mediated siRNA
delivery?

The following chapter was published as an editorial in Therapeutic delivery:

Katharina M. Steinegger and Olivia M. Merkel*:

“How can simulations aid our understanding of nanoparticle-mediated siRNA
delivery?” Therapeutic delivery vol. 16,7 (2025): 617-619.
doi:10.1080/20415990.2025.2505397
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With artificial intelligence and simulation-based methods becoming more powerful, the
increasing role of computational approaches in pharmaceutical research is undeniable. This
includes Molecular Dynamics (MD) simulations, which have been under constant evolution
since 1976[126]. As MD has already proven valuable in the design of small-molecule drugs
and protein research, it is now emerging as a promising tool for the development of siRNA
delivery systems as well.

Short interfering RNA (siRNA) is used to downregulate disease-driving genes within an
organism, offering broad applications in treating cancer, autoimmune diseases, and other
conditions. Yet, due to fast degradation of exogenous nucleic acids in the body, successful
delivery of siRNA strongly depends on the formulation strategy. While good responses can be
achieved with N-acetylgalactosamine (GalNAc) siRNA conjugates in the liver, other formulation
strategies focus on the delivery via Adeno Associated Viruses (AAVs) or the encapsulation of
siRNA into nanoparticles. The materials used for siRNA nanoparticles cover a wide range from
inorganic gold nanoparticles, via the more prominent lipid nanoparticles (LNPs) to polymeric
nanoparticles, particularly polyplexes. Regardless of which material the carrier systems are
based on, they all have a complexity in common which makes the complete understanding of
a formulations’ behavior challenging. MD provides the potential to make molecular interactions,
such as the internal organization of a nanoparticle, accessible while circumventing complex

experimental methods such as x-ray scattering approaches.

All-atom (AA) MD simulations show the molecules of interest in single atom resolution. While
this is a big advantage for the observation of details, it results at the same time in the major
disadvantage of AA simulations: The high number of interactions the simulation must account
for leads to a limitation concerning size of the simulated system and time span of the
simulation. Nevertheless, AA MD studies reveal valuable details on nanoparticle formation.
They can be used to investigate the direct interaction of polyplex-forming cationic
polymers[127, 128] with nucleic acids, unveiling binding strengths between polymers and the
cargo, as well as preferred binding sites[129] (e.g., major grove vs. minor grove of the siRNA).
Other applications allow insights on how modifications of polymers, such as the addition of
hydrophobic units to hydrophilic polyethyleneimines (PEI), change the particle
performance[130].

Similarly, AA simulations are used in the development of LNPs. First, they can be applied to
predict the degree of protonation of an ionizable lipid[31]. This is crucial for LNP design, as the
pKa of a lipid within an LNP (“apparent pKa”) can differ significantly from its pKa in solution.
Second, insights on the geometry of lipid arrangements within an LNP[131, 132] won from AA

MD strongly contribute to the understanding of LNP systems. However, AA models are hardly
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capable of depicting polyplexes or LNPs at the full scale of experimentally observed

nanoparticle sizes.

To access larger systems, coarse-grained (CG) force fields have been developed, the most
popular being the Martini force field[97]. Coarse graining reduces the degrees of freedom in a
simulation by reducing the resolution, as groups of atoms are summarized into beads with
predefined properties such as degree of hydrophobicity or charge. With this approach, not only
systems up to ~ 100 nm are simulated, but also timescales of tenths of microseconds are
accessible. To avoid wrong conclusions based on observations introduced by the inaccuracies
of a CG model, the simplified models must be validated against AA simulations and/or
experimental data before further use. Some well-established polymers in nucleic acid delivery,
e.g. PEI, have therefore been simulated as AA models[35] and as larger CG models[133].
Here, the CG approach allows to cover the whole range of experimentally used molecular
weights of PEIl. CG simulations also expand the knowledge gained from MD to include more
formulation parameters, such as the role of different N/P ratios (i.e., the ratio of positive charges
in the encapsulation agent to negative charges of the RNA). This sheds light on different stages
of siRNA encapsulation or the presence of unproductive polymer in a polyplex
formulation[134]. Similarly, CG simulations shape the understanding on how different ionizable
lipids form LNPs with substantially different properties[109]. Other simulations visualize the
changes in LNPs upon pH changes in the environment, including dehydration and
rearrangement of lipids in an LNP when dialyzed towards neutral pH[135]. Backmapping from
CG resolution to AA is the chance to combine the advantages of both: Assembling larger
structures in CG MD and observing atomistic details in the final state after AA resolution was
reapplied to the molecules. This method can, for example, be used to research the complex

interplay of the different lipid types in an LNP[111].

As siRNA delivery does not end with the formation of a stable nanoparticle, efforts of MD
research also expand to the interactions of nanoparticles in biological environments. A key
application is the widely debated question of how carrier systems enable efficient endosomal
escape of the siRNA, which is necessary for it to reach the site of action in the cytoplasm.
Advanced microscopy methods provide valuable insights by tracking nanoparticles in
combination with endosomal escape markers[136]. While these methods enable the
correlation of particle properties with endosomal escape performance, they do not provide
detailed information on underlying mechanisms. MD simulation is beginning to make the
molecular process of endosomal escape observable[71, 109], allowing for more
comprehensive understanding of mechanistic backgrounds. In this regard, the influence of lipid

composition and charge in an LNP on its ability to fuse with endosomal membranes can be
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visualized. Additionally, the role of different lipid types in the biological membranes can be more

thoroughly discussed when made observable by a simulation[123].

With the rapidly growing number of publications in the field, the availability of tools and methods
for faster preparation of simulations increases as well. For example, tools for automatic
generation of membranes with desired composition[137, 138] or flexible protocols for building
LNPs in CG resolution[109] are publicly available. Certainly, this will further contribute to the

progression of MD simulation in the field of siRNA delivery.

It can be concluded that MD simulations aid our understanding of nanoparticle-mediated siRNA
delivery by making processes visible and understandable on a molecular level. However,
simulation data must always be carefully validated and compared to experimental results to
avoid over-interpretation and false conclusions. For now, the strength of MD lies in elucidation
and explanation of experimental observations, while the time where it replaces experiments in

the development of siRNA delivery systems is yet to come.
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1 Abstract

Cationic polymers are known to efficiently deliver nucleic acids to target cells by encapsulating
the cargo into nanoparticles. However, the molecular organization of these nanoparticles is
often not fully explored. Yet, this information is crucial to understand complex particle systems
and the role influencing factors play at later stages of drug development. Coarse-grained
molecular dynamics (CG-MD) enables modeling of systems in the size of real nanoparticles,
providing meaningful insights into molecular interactions between polymers and nucleic acids.
Herein, the particle assembly of variations of an amphiphilic poly(beta-amino ester) (PBAE)
with siRNA was simulated to investigate the influence of factors such as polymer lipophilicity
and buffer conditions on nanoparticle structure. Simulations were validated by wet lab methods
including nuclear magnetic resonance (NMR) and align well with experimental findings.
Therefore, this work emphasizes that CG-MD simulations can provide underlying explanations
to experimentally observed nanoparticle properties by visualizing the nanoscale structure of

polyplexes.

2 Introduction

Short-interfering ribonucleic acid (siRNA) as therapeutic agent successfully entered the
pharmaceutical market in 2018, with five FDA-approved products currently available[139]. Its
mode of action is downregulation of transcription of disease driving genes via the mechanism
of RNA interference (RNAI) in the target cells. However, while the demand for nucleic acid
therapies is growing, all presently approved siRNA drugs target the liver[19, 140-142]. A major
challenge therefore remains in finding delivery vectors[143], which enable efficient targeting to

other organs and simultaneously avoid early degradation of the RNA.

The five marketed siRNA therapies rely either on lipid nanoparticles (LNPs) or conjugation to
trivalent N-acetylgalactosamine (GalNAc) to assure delivery[139]. Besides viral vectors,
alternatives for delivery vehicles include polymers. Cationic polymers encapsulate the
negatively charged RNA mainly via electrostatic interactions[35], forming so called poly- or
micelleplexes. Using polymers as delivery vectors provides certain advantages[144, 145], such
as broad tunability and good biodegradability. Therefore, polycations are being investigated as
nonviral vectors for safe and efficient delivery targeting a wide variety of diseases[146-149].
The explored materials cover a broad chemical space ranging from polyethyleneimines
(PEN[150, 151], via carbohydrates such as chitosan[152], to more complex molecular

structures such as poly(beta-amino ester) (PBAE)s[153].
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PBAESs were first introduced as polycationic vectors for plasmid DNA in the year 2000[154] and
stand out due to their almost unlimited adaptability. Owing to a toolbox-like system, PBAEs
allow various combinations of diacrylates for the backbone and amines as side chains of the
molecular structure[155]. The introduction of amphiphilicity by combination of hydrophilic and
hydrophobic side chains within one polymer was shown to improve colloidal stability[156].
Subsequently, amphiphilic poly(beta-amino ester) (PBAE)s, containing a varying ratio of
polycationic spermine and lipophilic oleylamine (OA), have been identified as copolymers that
successfully deliver siRNA, achieving particularly high knockdown efficiencies at low polymer-
to-RNA ratios[157].

Understanding the internal organization of self-assembled polyplexes can help to identify
relevant formulation parameters and to link these to the particles’ physicochemical
properties[35]. Subsequently, the intracellular behavior of polyplexes can further be
elucidated[48, 71]. Experimental methods including Transmission Electron Microscopy
(TEM)[35, 51] or Small-Angle X-Ray Scattering (SAXS)[158] have been applied to investigate
particle shapes. Others have exposed the role of the molecular weight (MW) of PBAEs by
explicitly screening its influence on knockdown efficiency[159]. Meanwhile, Molecular
Dynamics (MD) simulations have developed into a powerful tool to be incorporated in the
development of drug delivery systems[133, 160, 161]. Especially with the refinement of coarse-
grained (CG) models, MD allows for simulating systems in the size of real nanoparticles up to

100 nm at timescales of several microseconds[135, 162].

Herein, PBAEs comprising spermine as polycationic moiety and OA as lipophilic component,

have been mapped and parametrized in CG resolution in the MARTINI 3 force field[97].

3 Results and Discussion

The parametrization, based on the mapping (Figure 1ll.1A), yielded distributions of bonded
interactions in good agreement with the All-Atom (AA) reference (Figure [Il.S1A+B). The herein
studied PBAE polyplexes are exposed to an acidic pH of 5.4 during polyplex formulation, a pH
of 7.4 upon administration and again acidic pH after cellular internalization in the endosomal
compartment[48]. According to the pKa values determined by Density functional theory (DFT),
all amines of the polymer were protonated at pH 5.4. At pH 7.4, only the secondary amines
and the tertiary amine of the OA linkage in the backbone were protonated (Figure Ill.1A). The
remaining amines in the spermine moiety were considered deprotonated due to neighboring
effects of the protonated secondary amines (Figure 111.S2). PBAE models were generated for

polymers with varying %OA between 10% and 85%. Initially, a molecular weight (MW) of
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around 9 kDa was chosen. To account for possible influences of the MW, models with 4.5, 27,
and 100 kDa were generated additionally. As the behavior of these models showed no notable
differences upon particle formation in visible outputs and radial distribution functions (RDF)
around RNA phosphates (Figure 111.S3), further simulations were conducted with the 9 kDa
models. Micelle formation of the amphiphilic polymer (Figure IIl.1B) was confirmed by TEM
imaging (Figure 111.1C), dynamic light scattering (DLS) (Figure 111.1D), and a pyrene assay for
critical micellar concentration (CMC) (Figure 111.54), with decreasing CMCs observed as the

%OA increased.

A. pKa values and mapping to Martini 3 B. Simulation snapshots of micelles
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Figure Ill.1. PBAE mapping and model validation. A. Molecular structure and pKa
values at 25 °C of the PBAE copolymer with a spermine (left) and oleylamine (right)
subunit. Mapping to CG resolution within Martini 3 indicated by spheres. B. Simulation
snapshots of 9 kDa polymers in 10 mM HEPES at pH 5.4, simulated for 2.5 ps. Lipophilic
components in grey, charged beads in red. Exemplary coloring corresponds to one
polymer molecule per color. C. Micelles formed of PBAE 70% OA as visible in TEM
imaging. D. Comparison of hydrodynamic diameters in DLS and Simulation (MD) under
low and high ionic strength buffer conditions. DLS results (n = 3) with mean + SD of main
peak below 20 nm by intensity. MD results are mean of Dh averaged over the whole box,
calculated from mean square deviation (msd) between 1.75 and 2.25 ys simulated time.
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To validate the behavior of the polymer models, setups with only PBAE in buffer were simulated
and the average hydrodynamic diameter of micelles was calculated via mean square deviation
(msd). The micelle sizes in simulation were in good agreement with DLS results (Figure I11.1D)
and followed the trend of increasing micelle size with increasing %OA of the polymer. Analysis
of TEM images yielded a diameter of 18.8 + 3.8 nm for the 70% OA polymer in 10 mM HEPES,
which is larger than DLS (9.4 + 2.8 nm) and simulation (10.7 nm). This deviation was attributed
to the increased visibility of larger micelles in the TEM and unclear margins of single micelles.
Another explanation can be an increased sample concentration in TEM making the formation
of larger polymer aggregates more favorable, especially considering the high lipophilicity of the
70% OA polymer.

Previous in vitro experiments with this type of PBAE copolymer[157], and other PBAE-based
studies[163] showed a strong influence of the polymers’ amphiphilicity on knockdown or
transfection efficiency. Hence, the %OA in the polymer was selected as a factor for in depth in
silico investigation. Upon simulation of particle assembly, precursor micelles assembled within
the first ps. Polycationic spermine moieties remained on the surface and established
electrostatic interactions with the negatively charged phosphate beads of the siRNA (Figure
I11.2A). Over time, this led to the formation of nanoparticles. Unlike for the micelles, the particle
sizes cannot be directly compared between simulation and experiment, as the simulation box

does not contain enough material to form real sized nanoparticles.
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A. Simulation output after 5 ps simulated timespan

% OA 10 30 50 70 85

B. TEM of polyplexes at N/P 10 C. Simulation output (70% OA) at increased
box size (75 nm)

o 55% OA|=m i 70%OA

Figure lll.2. Influence of polymer lipophilicity on particle morphology (in 10 mM HEPES, pH 5.4,
at N/P 10). A. Simulation output after 5 ys of particle assembly with increasing lipophilicity, i.e., %OA of
the polymer (10%, 30%, 50%, 70% and 85% shown) from left to right. Polymers in grey/red, siRNA in
turquoise. B. Particles formed with either 55% or 70% OA in TEM. C. Simulation output of particle
assembly under the same conditions as in A. for 70% OA but in a cubic box with 75 nm side length,
containing 99 siRNA molecules, 5 pys. Orange color represents polymer outside of siRNA containing
particles.

Zhao et al.[129] demonstrated in an AA simulation setup the exclusive interaction of spermines
with the major groove of siRNA. Notably, this exclusivity of interaction was not reproduced in
our model (Figure 111.S5), which could be attributed to the reduced mobility of the spermines
anchored in the PBAE backbone at GC resolution. Shortcomings of the Martini 3 force field,
including non-ideal nonbonded interactions[164], have been reported. Therefore, detailed
small-scale interactions profit from the application of an AA simulation, whereas CG-MD is
advantageous for large scale simulation setups due to the massive reduction of consumed

resources.

The particle morphology was strongly influenced by the lipophilicity of the copolymer: Low %OA
polymers formed undefined particles with rugged surfaces. Increasing the %OA led to irregular,
“bead-on-a-string”-like particles, as previously described for other polyplexes[35, 51]. Only
above 70% OA, compact particles formed (Figure Ill.2A). TEM images (Figure 111.2B)
confirmed a change in particle shape, with 55% OA polymer particles being irregularly shaped
and 70% OA polymer particles appearing condensed. The differences in particle shape
between MD and TEM in the range from 70-80% OA might be attributed to the limited time of
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assembly during the simulations. The 70% OA, N/P 10 (ratio of PBAE-amines to RNA
phosphates) particle assembly was therefore extended to 15 us. However, the particle did only
slightly condense further but did not reach a similarly compacted shape as observed in the
corresponding TEM images (Figure 111.S6). As particle assembly in wet lab experiments
requires incubation times in the minute-range, the process could be too slow to be portrayed
in simulation to the final state. To determine if the limited simulation size of the cubic 40 nm
box does affect particle assembly, the 70% OA polymer was exemplarily simulated in a 75 nm
box with 99 siRNA molecules (Figure 111.2C). The RDF around RNA phosphates showed similar
contact levels with amines and water (Figure 111.S7) compared to the smaller setup, validating

the use of the 40 nm box simulations.

The trends in particle shape were attributed to the capability of different polymers to form larger
supramolecular assemblies, i.e., elongated micellar structures, spheres with RNA containing
pores, or larger micelles in general. With increasing %OA, the total mass of polymer to achieve
the same N/P ratio increases, as the number of charged spermines within the same total mass
of polymer decreases. In the simulations, this was quantified as the number of spermines per
nm? of the micelle core surface (Figure 111.S8). With increasing %OA, the spermine density on
the micelle surface decreased, therefore the repulsion between single micelles was reduced.
Thus, larger polymer arrangements formed, and more compacted particle shapes were

accessible.

The N/P ratio is often correlated with knockdown efficiency of siRNA polyplexes[35] and was
shown to be of high impact for the characteristics of particles formed with the PBAEs[157].
Here, nanoparticles were prepared for polymers with 30%, 55%, and 70% OA at N/P ratios 1—
10 and the polymers’ encapsulation efficiencies were assessed. Z - average and PDI (Figure
S9A) confirmed the formation of small (< 100 nm) and monodisperse (PDI < 0.2) nanoparticles
for all polymers within an optimized N/P range. The {-potential increased with increasing N/P
ratio from below 0 mV to maximum values around 20 mV. All formulations benefited from an
N/P ratio where the -potential (Figure 111.S9B) was positive. In contrast, in the N/P range
around charge neutrality, standard deviations for z - average and PDI were high due to
aggregation tendencies of the nanoparticles. The PDI was lowest just above charge neutrality
and increased with the addition of more polymer, arguably due to the formation of excess
micelles as a second species. This indicated an optimal N/P ratio of 5—6 for the 30% and 55%
OA polymers, while the 70% OA polymer formed the smallest and most monodisperse particles
at N/P 7-10. This observation corresponds well with the N/P values at which full encapsulation
was reached: Figure 3A shows that for 30% and 55% OA, full encapsulation was achieved at
N/P ~ 4, with no notable difference between the two polymers. The more lipophilic polymer

(70% OA) reached full encapsulation at an N/P ratio around 6.
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Subsequently, MD simulations were conducted with the same polymers at N/P ratios from 1 to
15. The encapsulation efficiency within the simulations was quantified via the area under the
curve (AUC) of RDF for the water contacts of the RNA surface (Figure 111.510). Figure 111.3B
shows a decrease of water contacts until N/P 4 is reached for all polymers, which fully
corroborates the experimental results for 30% and 55% OA. Conversely, the difference of
encapsulation efficiency for the 70% OA polymer between N/P 1-5 was not reproduced. As
observed with the results for particle morphology, this suggests inaccuracies of the CG-MD

approach in the middle to high %OA range.

It was however visible in the simulation output that particles formed by the hydrophilic polymers
(30% and 55%O0A) contained more spermine moieties on the particle surface at low N/P ratios
(Figure 111.3C, N/P 3 and 5). These spermines were not in reach of any RNA backbone and did
therefore not contribute to RNA complexation. Instead, they formed a charged corona on the
particle surface. The simulations thus provide an explanation for the transition from negative
to positive C-potential at lower N/P ratios for particles with lower %OA PBAEs. Again, the
observed effect can be attributed to limited possibilities for supramolecular arrangement of the

polymer within the smaller micelles[161].

Further, the choice of N/P ratio is of high relevance as an excess of unnecessary excipients
can promote side-effects[165-167]. Figure 111.3C shows the first appearance of free, excess
polymer at N/P 5 for 30% OA and N/P 7 for 55% and 70% OA. The amount of free polymer,
and from that, the stoichiometry (i.e., effective N/P ratio) in MD simulations was quantified for
all polymer models between 10% and 85% OA at N/P 10 in different buffers (Figure 111.4A). The
trend clearly suggests that the more lipophilic the polymer, the higher the amount polymer

bound per siRNA, leading to higher effective N/P ratios.
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Figure 111.3. Nanoparticles at different N/P ratios. A. Encapsulation efficiency
experimentally assessed by SYBR Gold assay, n = 3, shown as mean + SD. B. Area under
the curve (AUC) of radial distribution functions (RDF) within 0.6 nm of the RNA surface,
indicating the decrease of water contacts of the RNA with increasing N/P ratios.
C. Simulation output after 5 ys simulated particle assembly with increasing N/P ratios
from left to right, simulated with 30%, 55% and 70% OA polymers. Excess polymer
(outside of RNA containing particles) shown in orange.
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These simulation results were validated by 'H nuclear magnetic resonance (NMR)
spectroscopy. By titration of an siRNA sample with increasing amounts of PBAE and
measurement of an '"H NMR spectrum after each step, new signals referring to excess polymer
were identified above certain N/P ratios (Figure 111.4B). After the addition of the first PBAE to
the siRNA, additional signals appeared incrementally. Assuming that the polyplex signals are
not visible due to severe line broadening resulting from short transverse relaxation times (T2),
these signals were attributed to dangling residues on the polyplex surface[168]. In comparison
to the peaks of PBAE only samples and samples with high N/P, these signals are slightly shifted
towards higher ppm. At high N/P ratios, the most prominent signals showing a constant
increase in intensity were signal A, B, C and D (Figure II1.4B+C). Signals A and B can be
exclusively attributed to the OA[169, 170] within the polymer (Figure 111.511).

The appearance of free polymer at high N/P ratios was confirmed by 2D NOESY experiments.
These are based on the nuclear Overhauser effect (NOE), used to detect spatial proximity of
protons/ the chemical exchange of protons in different chemical environments[171, 172]. This
type of experiment was performed with samples containing RNA and 70% OA polymer at N/P
7 or 15 (Figure 111.512). First, reference spectra containing only PBAE were analyzed. Very
intense intramolecular NOEs are present, mainly originating from the OA moiety of the polymer.
At N/P ratio of 7, all intramolecular NOEs nearly collapse or are not visible at all due to the
extreme line broadening. This may be due to either the sole presence of a giant supramolecular
assembly i.e., polyplexes with low tumbling rates leading to drastically increased transverse
relaxation rates (R»), or transitions between free and bound states with significantly different
chemical shifts in the slow intermediated exchange regime on the NMR timescale[173]. These
findings are in good agreement with the in silico results indicating that an N/P ratio around 7
represents a stoichiometric inflection point in polyplex formation with 70% OA PBAE. Finally, if
a relatively large excess of polymer is obtained (N/P 15), the NOEs previously present in the

reference spectrum (PBAE only) become visible again.

Both methods (NMR and CG-MD) implied that the stoichiometry within the particles no longer
increased linearly with the theoretical N/P ratio (Table 111.S1, Figure I11.S13). Instead, the
effective N/P ratio in 10 mM phosphate buffered saline (PBS) reached a threshold of about 9
for 70% OA polyplexes and about 6 for the 30% OA PBAE particles.

The good agreement between NMR results and effective N/P ratios from MD simulations
(Figure 111.4D) highlights the accuracy of the MD model. The strongest deviation between NMR
and MD results was measured in high ionic strength buffer (150 mM PBS in NMR or 160 mM
HEPES buffered saline (HBS) in MD) at an input N/P ratio of 15. Here, MD results imply nearly
full binding of the 70% OA polymer. This trend towards higher effective N/P ratios in high ionic

strength buffers was consistent throughout all simulations (Figure I1l.4A). However, by NMR
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no significant difference was observed at N/P = 15 between particles formed in high or low
ionic strength buffer with 70% OA PBAE (Figure I11.4D).

Notably, concentrations in MD simulations were about 100x higher than in experimental setups,
which might have contributed to the observed deviation between NMR and MD results.
Additionally, the reaction field (rf) algorithm used to handle electrostatic interactions in the MD
setup comprises a tradeoff with improved computational performance but reduced accuracy of
the simulation, as it uses a coulomb cutoff beyond which the dielectric constant of the system
is treated as uniform[174]. This leads to poorer treatment of long range electrostatics in
comparison to e.g. the Particle Mesh Ewald algorithm (PME)[175]. Still, ionic strength of the
medium is known to often influence colloidal stability and size of nanoparticles[176, 177] and

will therefore be further discussed below.
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A. Effective N/P ratio calculated from MD by %OA at N/P 10 B- NMR spectra of titration PBAE to siGFP
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Figure Ill.4. Simulation validation by NMR. A. Effective N/P ratio calculated from MD
(n = 1) at an input N/P ratio of 10. Simulated for polymers from 10% to 85% OA in 5%
Glucose, 10 mM HEPES or 10 mM HEPES + 150 mM NaCl (= HBS). B. '"H NMR spectra
with water suppression (10 mM PBS, pH 5.4, 10% D20/H20). N/P ratios increase from
top to bottom by stepwise addition of 70% OA polymer to the sample. Signals with most
prominent changes upon titration marked by boxes. C. Excerpt of chemical structure of
PBAE, signal assignment and overlay of "TH NMR spectra of N/P 15 and PBAE only; NMR
conditions as described under A. D. Effective N/P ratio calculated from NMR (n = 3, mean
+ SD) in comparison to MD (n = 2, mean).
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To determine the influence of buffer excipients, particles were formulated at N/P 10 in three
different buffers/solutions at pH 5.4: 5% Glucose, 10 mM HEPES, and 160 mM HBS. DLS
measurements revealed a shift towards larger particles (Figure 111.5A) with higher  — potential
(Figure 111.S14) at high ionic strength of the medium, independent of lipophilicity of the used
polymer. Although no significant difference between 5% Glucose and 10 mM HEPES
concerning size and { — potential was observed, the presence of ions at higher concentrations
(HBS) caused significantly larger particles with hydrodynamic diameters of above 400 nm. In
MD simulation, visually more compact particles formed (Figure 111.5B) and, as discussed

above, the effect of ionic strength resulted in higher effective N/P ratios.

The presence of more ions in the hydrodynamic shell of the PBAE micelles alters the repulsive
forces upon particle assembly. Reduced colloidal stability and altered particle shapes are
therefore to be expected. Furthermore, surface charge of nanoparticles is known to alter their
interaction in physiological environments e.g., with proteins in serum[178]. Ultimately, this

influences cellular uptake and intracellular trafficking[67, 179, 180].

When the particle contains functional groups with pKa values in physiological ranges, pH
changes in the surrounding medium will alter the particle charge and its interactions with the
environment[181]. To mimic these changes in the simulation, pH values of 5.4 (formulation),
followed by pH 7.4 (administration), and again pH 5.4 (endosome) were applied via an
adjustment of the protonation state of the polymer[135]. Increasing the pH to 7.4 caused
condensation of the particles, as the decreased charge on the micelle surface allowed for a
rearrangement of the micelles into larger supramolecular structures (Figure 111.5C). These
changes reduced the water contacts of the RNA phosphates (Figure I11.5D) but increased the
contacts with amines. In contrast to CG-MD observations made on lipid-based RNA
carriers[135], the pH increase did not cause expulsion of RNA from the particle. After the pH
was reduced again, the particles rearranged but primarily maintained the agglomerated shape.
However, the microenvironment around the phosphates restored to the level as before the pH
changes- for both water and amine contacts. Especially for high %OA particles, the shapes
resulting after the pH changes align better with the TEM images (Figure 111.2B, Figure 111.S6)
than before. It could therefore be argued that the pH changes speed up the process of particle
condensation, which is otherwise too slow to be simulated to a final state. The readjustment to
pH 5.4 was accompanied by a moderate swelling of the polyplex, which was hypothesized

previously to play a role in endosomal escape[67].
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A. Z-Average and PDI: Buffer influence B. Influence of buffer on particle C. Effect of pH change on simulated
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Figure II1.5. Influence of buffer conditions on PBAE polyplexes. A. Last frame of
simulated particle assembly (5 ps) in different buffers. B. Z-average (bars) and PDI (dots)
of polyplexes at N/P = 10 in 5% Glucose, 10 mM HEPES or 10 mM HEPES + 150 mM
NaCl (= 160 mM HBS), all pH 5.4. n = 3, mean = SD. C. RDF of amines of 50% OA PBAE
and water around RNA phosphate beads a) after initial particle assembly b) after pH
increase to pH 7.4, and c) after subsequent reduction of the pH back to 5.4.
D. Visualization of changes in particle structure after simulation of subsequent pH
changes (assembly at pH 5.4 for 5 ps, equilibration at pH 7.4 for 2 ys, equilibration back
to pH 5.4 for 2 us).
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With a combinatorial approach of CG-MD simulation and experimental validation,
experimentally observed influences on polyplex structure were explained on a molecular level.
Our CG-MD approach did not suggest a pronounced effect of MW of the polymer for the
investigated PBAESs. Instead, lipophilicity of the PBAE was identified to be the main influencing
factor on particle shape - reflected by the charge, density, and mobility of spermines on the
surface of polymeric micelles. Polyplex morphology may strongly affect cellular uptake and
endosomal escape[182]. Hence, the demonstrated influence of lipophilicity of the polymer
should be carefully considered when designing amphiphilic PBAEs. Structural alterations of
polyplexes were also observed through changes of pH and ionic strength of the medium.
Furthermore, with CG-MD and NMR, two methods were introduced to determine the critical
N/Pmax for every %OA. Further increasing the N/P in the formulation did not significantly
increase the stoichiometry within the particles. PBAEs are a heterogenous group of polymers,
varying not only in lipophilicity, but e.g. also backbone rigidity or side-chain architecture. Similar
simulation setups could therefore be applied to other PBAE structures, allowing for a more
extensive comparison of the polymers.

Future work will have to show, how the herein found differences between polyplexes of varying
lipophilicity and structure are linked to their differing behavior in vitro and in vivo. A quantitative
approach that directly links in silico data to in vitro data is however a major hurdle, as the
simulation of whole cells, including their active mechanisms and pathways, is not possible
yet[100]. Still, future simulations could provide underlying explanations for differences in
biological interaction (e.g., endosomal escape)’"l.

In this work, despite minor limitations in reproducing experimental results at high %OA,
computational results were generally consistent with experimental findings. By comparing
experiments with CG-MD simulations, this study clarifies the molecular organization of PBAE

polyplexes and demonstrates the utility of CG-MD in developing drug delivery systems.

4 Methods

4.1 Chemicals

All PBAEs were synthesized in house as described previously[55]: In brief, 1,4-butanediol
diacrylate (TCI, Japan) as the backbone was polymerized in a Michael-addition step-growth
polymerization with spermine (Fisher Scientific, Acros, USA), protected as tri-boc spermine,
and oleylamine (Fisher Scientific, Acros, USA). Tri-boc spermine was deprotected with
trifluoroacetic acid (Fisher Scientific, Acros, USA) and products were purified by gel
chromatography. Amine-modified siRNA for the knockdown of eGFP ((5'-
pACCCUGAAGUUCAUCUGCACCACcg, 3- ACUGGGACUUCAAGUAGACGGGUGGC),
siGFP) was obtained from Integrated DNA Technologies (Leuven, Belgium). HEPES (4-(2-
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hydroxylethyl)-1-piperazineethanesulfonic acid), Dulbecco's Phosphate Buffered Saline
(PBS), D-Glucose, sodium chloride, deuteriumoxide (D20) and 3-(trimethylsilyl)propionic-
2,2,3,3-ds acid sodium salt (TSP) were obtained from Sigma-Aldrich (Taufkirchen, Germany),
while SYBR Gold dye was bought from Life Technologies (Darmstadt, Germany). Water was

MilliQ quality produced by an in-house installation.

4.2 Calculation of pKa values by Density Functional Theory (DFT)

To choose appropriate protonation states for the amine beads of the polymer in the MD models,
pKa values were determined by density functional theory (DFT) with the B3LYP version. The
6311G+(d,p) basis set was applied using the Gaussian 16W software to optimize the geometry
of four states (protonated in water, protonated in vacuum, unprotonated in water, unprotonated
in vacuum) of a polymer fragment to minimum electron density. With the obtained sum of
electronic energies within each state, pKa values were calculated applying a thermodynamic
cycle as described elsewhere[183]. All protonable amines within the polymer structure were
considered at 25 °C and 37 °C. After identifying the amines with the highest pKa values (i.e.,
the amines that will most likely be protonated first), the effect of their protonation on the pKa

of neighboring amines was further investigated with the same approach.

4.3 Molecular Dynamics (MD) Simulations

Parametrizations

All CG simulations were run using the Martini 3 force field[97] within GROMACS 2021.4[184].
The siRNA model for siGFP was adapted from our previous publication[133] by incorporating
the RNA backbone parametrization recently published[135] for Martini 3. To obtain models for
the PBAE, a dimer (one spermine subunit and one OA subunit) was parametrized and mapped
to be used in the Martini 3 force field. To do so, the protocol suggested by the Marrink — Lab
on the Martini website (cgmartini.nl/index.php) was followed, using the proposed tools to
generate input files[185-189]. Similarly, a HEPES model was created to be used as buffer
substance in the production simulations (Figure S15). To create polymer models from the
parametrized dimer, a python script was created, which automatically generates the necessary

input files for desired MW and %OA based on the initially obtained bonded interactions.

Shear viscosity of simulated solvents

As the hydrodynamic diameter of micelles in the simulation was calculated via the Stokes-
Einstein—equation[190], shear viscosities for the simulated buffers were required. The shear
viscosities at 298 K for standard Martini 3 water, 10 mM HEPES, 5% Glucose[106] and 10 mM
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HEPES + 150 mM NaCl (HEPES-buffered saline, HBS) were calculated via the periodic
perturbation method[191], using the “cosine acceleration”(cos. acc.) option in GROMACS and
analysis via the gmx energy tool. Each solvent was simulated in boxes with 12x12x23 nm? size
with five different cosine accelerations ranging from 0.001 nm*ps to 0.005 nm*ps2. Shear
viscosities [mPa*s] were then calculated via extrapolation to cos. acc. = 0 nm*ps2. Viscosity

results are shown in Table 111.S2 and Figure 111.S16.

Production runs

Unless stated otherwise, all simulations were run in a cubic simulation box with 40 nm side
length and periodic boundary conditions. The boxes were set up by random placement of
siRNA and polymer molecules, subsequent addition of ions or other excipients (HEPES/
Glucose[106]) and solvation with standard Martini 3 water[97].

The standard setup for the simulation of polyplex assembly contained 15 siGFP molecules.
Individual simulations were additionally tested in a larger setup comprising 99 siGFP molecules
in a cube with 75 nm side length. PBAE molecules were added as needed to reach the desired

N/P ratio (i.e., ratio of protonable units in the polymer to RNA phosphates) (eq. 1):

n(siGFP) *50 x N/P ( )

n(PBAE) = n(charges/PBAE—molecule)

Unless stated otherwise, simulations were run at 298 K in 10 mM HEPES with the protonation
state of the polymer corresponding to pH 5.4 — the typical conditions for experimental polyplex
assembly.[157]

All boxes were minimized in 15 000 steps employing the steepest descent method, followed
by an NPT equilibration with 100 000 steps at a timestep of 5 fs. The run settings for the
production runs were derived from the settings introduced in the Martini Tutorials: Electrostatic
interactions were controlled by the reaction field algorithm with a relative permittivity of €, = 15
and a cutoff of 1.1 nm. Temperature was handled by the velocity rescale thermostat, while
pressure was controlled by the Parinello-Rahman barostat [192, 193]. The timestep was
reduced to 10 fs to ensure numerical stability for all simulations. Analysis was conducted with
inbuilt GROMACS functions (gmx rdf, gmx clustsize, gmx energy), MD Analysis tools[194,
195], msd analysis[196, 197], and density based object completion[198].

44 \Wet Lab Methods

Polyplex Formulation and Characterization

All polyplexes were prepared by batch mixing as described previously for this group of

poly(beta-amino ester)s[55, 157, 166]: PBAE was dissolved in the respective buffers at 2.5
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mg/ml. Subsequently, the polymer was diluted to a concentration where 50 pl contain the

number of protonable units needed for 50 pmol siGFP at the desired N/P ratio (eq. 2):

n(protonable units PBAE) _

phosphates
S0 = 50pmol * 52 (——————

RNA

)*N/P - (2)

siGFP was diluted to a concentration of 1 nmol/ml, to facilitate batch mixing with the respective
PBAE solution at a ratio of 1:1 (w/w), yielding a final siRNA concentration of 500 pmol/ml. After
batch mixing, the particles were incubated at RT for at least 90 min before characterization.
Size- and C - potential were measured on a Malvern Zetasizer Ultra (Malvern Instruments,
Malvern, UK). The encapsulation efficiency was assessed by SYBR Gold assay[166]: Particles
were prepared as described in a range from N/P = 1 to N/P = 10 and transferred as triplicates
to black 384-well plates with a volume of 20 ul per well. SYBR Gold stain was diluted 1:2000
and 3 yl of the final dilution were added to each well. Fluorescence resulting from intercalation
of the dye into the RNA backbone was measured on a TECAN Spark Plate Reader (Tecan
Trading AG, Switzerland) at 492 (20) nm excitation and 537 (20) nm emission. siGFP at the
respective concentration (500 pmol/ml) without the addition of polymer was set to reference
100% free siRNA. Particle preparation and characterization was conducted in triplicates
(n=23).

Critical Micellar Concentrations (CMC) by Pyrene Assay

The critical micellar concentration (CMC) of polymers covering the %OA range from 12% to
75% was determined by the pyrene assay[199]. Pyrene was dissolved in acetone at a
concentration of 1.2 mM, diluted 1:500 into glass vials and left for the acetone to evaporate
overnight. Afterwards, a dilution series of PBAE between 0.5-1500 ug/ml was prepared in
these vials and incubated in the dark for 24 h. After incubation, fluorescence spectra covering
the range from 300 to 350 nm (step size 1 nm, bandwidth 20 nm) were measured on a TECAN
Spark Plate Reader (Tecan Trading AG, Switzerland) using black 96-well plates, an emission
wavelength of 397 (20) nm. Finally, the spectra were analyzed by calculating lsss/l33 and

plotting of these values against log (c [pg/ml]).

Transmission Electron Microscopy (TEM)

Polyplexes were imaged by transmission electron microscopy (TEM) using a FEI Titan Themis
60-300 microscope (Thermo Fisher Scientific, Schwerte, Germany) as described
previously[166]. The particles were prepared with either a 55% OA or a 70% OA polymer at
N/P = 10 in 10 mM HEPES (pH 5.4) at a concentration of 6.1 uM siRNA. Micelles formed by
PBAE 70% OA were imaged at a concentration of 2.5 mg/ml. For 10 min, 10 ul of sample were

placed on a copper grid. Excess liquid was removed with a lint free tissue and next the grid
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was stained with 2% (w/v) phosphotungstic acid (PTA) as negative stain. After removal of the
excess dye solution, grids were left to dry for at least 15 min before imaging. The diameter of

micelles in TEM images was measured in ImageJ (total 275 micelles from three images).

1H Nuclear Magnetic Resonance (NMR)

Calculation of excess polymer and therefore, “real” N/P ratios via the application of nuclear
magnetic resonance (NMR) was inspired by a previously published method[168]. NMR
measurements were recorded on a Bruker Avance Il HD 500 MHz spectrometer equipped with
a broad band observe 5-mm BB-H&FD CryProbe Prodigy (Bruker BioSpin GmbH, Ettlingen,
Germany).

All 1D 'H NMR spectra were recorded at 25 °C with a standard water suppression pulse
sequence (zgesgp) from the Bruker pulse program library using excitation sculpting. The 11/2
pulse length was 10.4 ps. The spectra were acquired with 64K data points, an acquisition time
of 1.64 s, a relaxation delay of 2 s, and 16 transients.

For titration of polyplexes, siGFP was dialyzed against 150 mM PBS (pH 7.4) and diluted in
10 mM or 150 mM PBS (pH 5.4) to a concentration of 2700 pmol/ml. 10% DO were added as
well as 0.036 mg/ml TSP as reference standard. PBAE was dissolved in the respective buffer
to reach a concentration that contains (1500 * 52) pmol protonable units per 6 pul PBAE stock.
This results in titration of N/P +1 per 6 ul PBAE stock added to the NMR sample. The total
volume of the start-samples (RNA only, “N/P” = 0) was 550 pl. Titration was achieved by
pipetting the PBAE stock solution into the tube, followed by mixing with a vortex. For
measurement of PBAE only, the amount of siGFP stock added was replaced by buffer. A
schematic overview of the titration NMR experiment can be found in Figure 111.S17A.

For analysis, the most prominent peaks originating from the OA moiety (peaks A and B, see
Figure 4C) were integrated using MestReNova 15.0.0 software. First, all spectra were
processed by automatic phase and baseline correction (Bernstein Polynomial Fit).
Subsequently, PBAE only samples were analyzed by automatic peak identification and
subsequent automated integration. The integration ranges were reused for the integration of
the peaks in the polyplex samples to ensure consistency and reproducibility. For each condition
(30% OAin 10 mM PBS; 70% OA in 10 mM PBS or 150 mM PBS) linear regression of the
integrals (Figure S17B) of samples without siGFP was conducted.

The effective N/P ratios were then calculated according to eq. 3:
ef fective N/P = N/Pinput - ((f Peaksampie — fpeakRNA—Ref)/S) (3),

with s being the slope of the corresponding linear regression, conducted on the PBAE only
samples. Finally, the effective N/P was averaged over peaks A and B, which refer to the OA

moiety and provided the most consistent results.
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2D NOESY spectra

The 2D NOESY spectra were recorded at 25 °C with a phase-sensitive pulse sequence with
water suppression employing an excitation sculpting element from the Bruker pulse program
library (noesyesfpgpphrs). Data acquisition was performed with 1K (F2) x 512 (F1) data points
and a mixing time of 0.1 s. The recycling delay was 1.0 s and 32 transients per increment were
applied at a sweep width of 6 kHz in both dimensions resulting in an acquisition time of
0.1204 s. The special acquisition parameters regarding the water suppression element of the
pulse sequence were adopted from the optimized parameter set of the respective one-
dimensional experiment. A 90° shifted sine-square multiplication and an exponential window
of 2.0 Hz in both dimensions in both dimensions prior to FT and zero filing was applied to yield

a final symmetrical 2D matrix of 1K x 1K data points.

Data analysis and visualization

Data plotting, linear regressions, and -where applicable- statistical analysis (unpaired t-test,
statistical significance defined as p < 0.05) were performed in GraphPad Prism (version 5.0,
GraphPad Software, Inc., Boston, MA). Simulation output was visualized in PyMOL (version
2.5, Schrodinger, Inc., New York, NY). Some figures shown herein include elements created
with BioRender.
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6 Supporting Information
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Figure 111.S1. Distributions of A. bonds B. angels and C. distribution of solvent
accessible surface area (SASA) within the parametrization of the PBAE dimer. Blue:
distributions in the AA model, red: distributions of the CG model in Martini 3.
D. Visualization of the SASA for the PBAE dimer.
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Figure 11l.S2. pKa values of the polymer at 25 °C (orange) and 37 °C (red). pKa values
after protonation of the secondary amine with pKa 10.05 (i.e., the most alkaline) are
shown in italics.
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A. Simulation snapshots after 5y us simulated timespan
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Figure I11.S3. Variation of molecular weight of the polymer. A. Visual output after 5 pys
simulated particle assembly B. Radial distribution function (RDF) around RNA phosphate
beads (BB1) for 70% OA PBAE at varied MW of the polymer. Red: Amine beads, Blue:
Water beads.
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A. Determination of CMC for 70%0A PBAE by Pyrene Assay
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Figure 111.S4. CMCs determined by pyrene assay. A. Calculation of the CMC for a 70%
OA polymer B. Overview of CMCs depending on %OA.
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Figure 111.85. Closeup simulation snapshot, visualizing the interaction between siRNA
(phosphates blue/ ribose petrol/ bases mint) and spermines (red).

A. 70% OA, N/P 10 particle after 5 ps B 70% OA, N/P 10 particle after 15 ps

C. 70% OA, N/P 10 particle after pH increase (7.4) and
subsequent reduction (5.4)

Figure I11.S6. 70%OA, N/P 10 particle at different time points. A. After 5 uys at pH 5.4
B. the same particle after 15 pys simulation at pH 5.4 C. The same particle after pH
increase to pH 7.4 and subsequent reduction to pH 5.4.
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Figure Il1.S7. Comparison of simulation in increased box size (75 nm) to the standard
setup (40 nm) via RDF: Amines (red) and water (blue) around phosphate beads (BB1).
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Figure 111.S8. Spermine density on the solvent accessible surface area (SASA) of the
micelle cores, consisting of backbone and OA beads. Calculated after simulation of
polymer only for 2.5 pys in 10 mM HEPES (blue) or 160 mM HBS (red).
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A. Z-Average (DLS) and PDI (n = 3) B. - Potential (n = 3)
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Figure 111.S9. Particle characterization at increasing N/P ratios for 30%, 55% and
70% OA PBAE with siGFP. A. z-average (bars) and PDI (dots) of particles as function of
N/P ratio, mean £ sd, n = 3. B. {-Potential as function of N/P ratio, mean + sd, n = 3.
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A. RDF of Water Beads around RNA surface
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Figure 111.810. Calculation of encapsulation efficiency from MD output via the area
under the curve (AUC) of radial distribution functions (RDF). A. Radial distribution
functions of water around the surface of the RNA model for 30%, 55% and 70% OA at
N/P ratios from 0 (RNA only) to 15. B. Graph resulting from integration of RDF curves of
(A) between 0 nm and 0.65 nm distance, yielding the AUC for each N/P ratio.
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Figure 111.S11. Proton assignment to "H NMR signals of PBAE. A. Artificial fragments
of the oleylamine part (green) and the spermine part (blue) of the PBAE polymer for input
into the "H NMR spectra prediction tool of MestReNova. B. Overlay of the predicted
spectra (oleylamine spectrum with signal assignment in green; spermine spectrum with
signal assignment in blue; fragment signal assignment in lower case) and the real 'H
NMR spectrum of PBAE (70% OA) with resulting region assignment (in upper case) of
the polymer-PBAE structure in C.
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Figure 111.S12. Excerpts of 2D NOESY spectra with identical amplifications of A.
PBAE alone; concentration as in C. B. PBAE alone; concentration as in D. C. N/P 7. The
dashed oval circles indicate the region where previous NOE correlations are now missing.
D. N/P 15.
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Table I11.S1. Summary of results from titration '"H NMR method. Effective N/P ratios were
calculated according to eq. 3, based on the regressions shown in Figure |11.S3B.

theoretical
N/P

effective N/P

n1 n2 n3 mean SD

1.15
2.08
3.27
3.98
4.64 4.92 5.08 4.88 0.22
4.08
5.31 6.36 6.32 6.00 0.59
4.23 7.20 7.24 6.22 1.73

30% OA. 10
mM PBS

N O O B W] N =

—_
o

0.93
1.89
2.81
3.73
4.77
5.85
6.88 6.82 6.61 6.77 0.14
7.81
8.60
9.28 8.34 6.62 8.08 1.35
10.61 6.83 6.98 8.14 2.14

70% OA. 10
mM PBS

1.55
3.03
4.82
6.82 6.85 6.93 6.86 0.05
8.01
11.6 9.37
10 8.92 8.66 8.74 8.77 0.13
13.3 9.68
15 9.97 10.67 10.80 10.48 0.45

Wl = | o

70% OA. 150
mM PBS

Qo
w
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Figure 111.S15. Mapping and parametrization of the HEPES model used as buffer
substance within MD simulations of the project. Bonded distributions of the CG model
(red) are shown in comparison to the All-Atom (AA) model (blue).
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Figure 111.816. Shear viscosity of simulated buffers/solvents as determined by the
periodic perturbation method. A. Water B. 10 mM HEPES C. 5% Glucose D. 160 mM HBS.

Table 111.S2. Shear viscosity of simulated buffers/solvents as determined by the periodic
perturbation method.

Buffer/Solvent Shear Viscosity [mPa*s]
Water 0.683
10 mM HEPES 0.696
5% Glucose 0.832
160 mM HBS 0.735
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A. Titration scheme for 1D'H NMR method
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1 Abstract

To achieve a therapeutic effect, nanoparticles delivering nucleic acids must facilitate
endosomal escape (EE) of their cargo. Despite extensive research, the mechanisms that lead
to an effective EE are not sufficiently understood. Herein, we utilized Molecular Dynamics (MD)
simulations in All Atom (AA) and Coarse Grained (CG) resolutions to differentiate the
interaction of four polymeric formulations (polyplexes) and one lipid nanoparticle (LNP) with
endosomal membranes. On the one hand, the results emphasize the benefit of hydrophobic
residues in the nanoparticles. On the other hand, the role of anionic lipids in the biological
membranes is demonstrated. Furthermore, the identified interaction patterns were
successfully correlated to the in vitro performance of the formulations. For the first time,
different EE mechanisms of polyplex formulations are visualized in simulation and therefore
distinguishable from one another. Hence, this work highlights the power of MD simulations for

taking a big step towards better understanding EE efficiency.

2 Introduction

Short interfering ribonucleic acid (siRNA) downregulates the expression of targeted, disease-
driving genes[3] by binding to the RNA-induced Silencing Complex (RISC) in the cytoplasm.
Therefore, following endocytosis, escape from the endo-lysosomal pathway is essential to
achieve a therapeutic effect[200]. A broad range of strategies has been developed to formulate
potent nanoparticles for nucleic acid delivery[201, 202], including the use of polycationic
polymers[151, 203]. However, many of these polymer-based polyelectrolyte complexes,
commonly termed polyplexes, exhibit limited endosomal escape (EE)[136, 204], leaving room

for significant technological improvement[45, 157].

Various mechanisms have been discussed to play a role in the EE of polymeric nanoparticles:
Initially, the “proton sponge” theory, first formulated in the 1990s[36], was among the most
popular theories. It relies on the buffering capacity of endocytosed polymers, which promotes
increased proton influx into the endosome during acidification. This is thought to be
accompanied by the influx of neutralizing chloride ions and water[67], resulting in osmotic
swelling. Ultimately, the endosome ruptures and nucleic acid cargos could be released into the
cytoplasm. A closely related hypothesis proposes that endosomal acidification increases the
charge density of the polymer, leading to polyplex swelling and inducing a steric burst of the
endosomal membrane[48]. These hypotheses are supported by findings that polymers with

pKa values in the physiological range (approximately 6-8) are more effective at facilitating

56



EE[205] and the circumstance that EE can be reduced by inhibiting endosomal acidification.
However, conflicting results from live-cell imaging demand a revision of the proposed
mechanisms[206], as the data does not indicate complete lysis of endosomes after successful
EE of the nucleic acid. In either case, rapid and intense disruption of endosomes and
lysosomes can induce cytotoxicity due to the concurrent release of harmful vesicular contents,
and is therefore considered undesirable[207]. Subsequently, attention shifts to direct polymer-
membrane interactions that locally form smaller endosomal holes or pores[208, 209].
Polyplexes do not escape the endosomes intact[206], but rather in a disintegrated state. The
role of acidification could therefore be attributed to its involvement in nucleic acid cargo
unpacking and polymer shedding from the particle[179].

Concerning lipid-based nanoparticles (lipoplexes and lipid nanoparticles (LNPs)), research
indicates EE to be a complex procedure including membrane fusion, phase transition in the
lipid phase of the LNP, and lipid mixing between membrane and nanoparticle [30, 66, 71, 206,
210].

In consequence, the lipid bilayer of the membrane is disturbed and the cargo escapes through
resulting holes. LNPs can be highly effective and have successfully entered the market, for
example in the form of Onpattro® (Patisiran)[19]. Still, LNPs too are limited by their EE, and
only a small, often cited as single-digit percentage[211] of the encapsulated siRNA molecules

reaches the cytoplasm[212].

Even though great effort has been put into understanding EE mechanisms, the process is still
not understood to a level that allows specific fine tuning of EE performance of a formulation.

As Molecular Dynamics (MD) simulations help to understand underlying mechanisms in
complex formulations or biological interactions on a molecular level[71, 213], they possess
great potential to overcome the gap in understanding EE. All Atom (AA) MD simulations,
showing the molecules in single atom resolution, provide detailed insights on e.g., binding
mechanisms on a small scale[128, 129]. In contrast, Coarse Grained (CG) MD simulations
work with a decreased resolution, as they summarize groups of atoms in predefined beads[97].
CG MD enables larger simulations up to ~ 100 nm side length of the simulation box with longer
timescales in the range of multiple microseconds- enabling for example the simulation of the
formation of whole nanoparticles[134, 135]. Additionally, it has previously been shown that CG

MD can visualize EE mechanisms[71].

This work compares the EE of four polyplexes and one LNP formulation through AA and CG
MD simulations. The first polyplex material is 25 kDa branched PEI (bPEI), which is a
commercially available polymer that has been used for siRNA delivery in research for over 20
years[35, 36]. The second polymer is a block copolymer consisting of two blocks of 5 kDa
bPEI, linked by a 5 kDa polycaprolactone (PCL) chain[214]. Furthermore, two variants of an
amphiphilic poly(beta)aminoester (PBAE) copolymer[55, 157] were tested for their EE

57



performance. They differ in their content of hydrophobic oleylamine (OA) residues, so that a
more hydrophilic particle is compared to a more hydrophobic variant. Lastly, an Onpattro®-like
LNP formulation[109] was incorporated in the study to directly compare the EE of polyplexes
and LNPs.

In vitro experiments outlined strong differences in the performance of the compared
formulations. Based on the interaction patterns visualized and identified by MD, these
differences can be meaningfully interpreted. Hence, this work highlights the power of MD

simulations for taking a big step towards better understanding EE mechanisms.
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Figure IV.1. Polymer structures and model particles in CG resolution

A. Molecular structures of polymers used in this work; branched polyethylenimine (bPEI),
poly(beta)aminoester (PBAE) with varying ratios of hydrophilic spermine and hydrophobic oleylamine
(OA), and bPEI — polycaprolactone (PCL) — bPEI block copolymer (PPP). B. CG model particles with
three siRNA molecules each at pH 7.4. The LNP is additionally shown with transparent lipids to visualize
the orientation of the siRNA molecules inside; polymer in gold/orange, MC3/MC3H in pink, DSPC in
purple, cholesterol in green, RNA in blue.
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3 Results and Discussion

3.1 Characterization of nanoparticles

Four polyplex formulations described in the literature were included in this study and based on
the polymers shown in Figure IV.1A. For the PBAE, either a 70% OA polymer (i.e., more
hydrophobic) or a 30% OA polymer (i.e., more hydrophilic) were used. All polyplexes were
formulated at N/P 10, as all four polymers have been shown to form stable particles at that
ratio[35, 54, 157, 214]. The LNP was formulated with an Onpattro®-like composition, but at
N/P ratio of 6.5 to align as closely as possible with the simulated model LNP[109]. For all
experiments, the formulations were normalized to equal siRNA concentration. However, due
to differences in polymer charge density, the total polymer mass concentration varied notably
between formulations, despite equivalent N/P ratios. Specifically, relative to bPEI, the
concentrations were 7.9-fold higher for 70% OA PBAE, 5.9-fold for 30% OA PBAE, and 1.6-
fold for PPP.

All five formulations formed particles with a hydrodynamic diameter (z-average) between 50
and 70 nm and a polydispersity index (PDI) below 0.3 (Figure IV.S1A). The (-potential of all
polyplexes was positive, whereas the LNPs were slightly negatively charged (Figure IV.S1B).
In CG simulations, polyplexes were formed via self-assembly, resulting in stable nanoparticles
with diameters ranging from approximately 10 to 18 nm (Figure IV.1B). All polymer molecules
present were associated with the respective polyplex, except for 30% OA PBAE. Here, 20% of
the polymer remained separate from the polyplex at both pH 5.4 and pH 7.4, resulting in a final
N/P ratio of approximately eight. This agrees with our previous work on PBAE polyplexes,
where 30% OA PBAE showed unbound polymer at pH 5.4 and N/P ratios above ~ 6[134]. For
subsequent simulations of the membrane interaction, excess polymer in the 30% OA PBAE
MD setup was removed. The model LNP with a diameter of ~ 16 nm did not originate from a
self assembly simulation, but was constructed based on a protocol for the setup of LNPs with
hexagonal core structure in Martini 3[109]. As Polyethylenglycol (PEG) lipids tend to shed from
LNPs when in contact with serum[215] they are not expected to play a role in EE of LNPs.

Therefore, no PEG lipids were incorporated into the simulated LNP model.

3.2 Comparison of the particles in vitro

In Hela cells stably expressing enhanced green fluorescent protein (eGFP), the 70% OA
PBAE polyplex and the LNP showed the highest knockdown efficiencies with 30 - 60% at a
dose of 20 pmol/ 6,000 cells. (Figure IV.2A), whereas the other polyplex formulations achieved
no knockdown at the same dose. No cytotoxicity was evident for the 30% OA PBAE and the

LNP formulation, with cell viability being > 90% and lactate dehydrogenase (LDH) release
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being < 10% (Figure 1V.S3) at all tested particle concentrations. The bPEI and PPP particles
only caused mild cytotoxicity (< 90% cell viability) at the highest concentration. However, the
70% OA PBAE polyplexes caused notable LDH release (12-25%) and reduced cell viability

(50-80%) at all tested concentrations.

The limited knockdown efficiencies observed for the 30% OA PBAE, bPEI, and PPP polyplexes
can be partially attributed to insufficient cellular uptake (Figure IV.2B and Figure IV.S4). Among
all formulations, the 70% OA PBAE polyplex consistently showed superior uptake, while 30%
OA PBAE exhibited particularly low internalization, and bPEI and PPP polyplexes performed
comparably to each other. The relatively weak uptake signal of the LNP in confocal microscopy
was likely due to fluorescence quenching within the dense core of the nanoparticles[216].
Since the microscope settings were optimized to detect the strong fluorescence signal of
AF647-labeled siRNA in polyplexes, they were suboptimal for capturing the quenched signal
from the LNPs. Consequently, Figure 1V.S4 indicates that cellular uptake of the LNPs is
comparable to that of bPEl and PPP. Differences in uptake may explain the superior
knockdown efficiency of the 70% OA PBAE. However, they do not fully account for the
performance gap between the LNP and the bPEI or PPP polyplexes. Subsequently, EE
efficiency was quantified through confocal fluorescence microscopy as puncta caused by the
recruitment of mRuby-3-Galectin 8 fusion protein (Gal8) stably expressed by the cells. Gal8 is
recruited to damaged endosomes when luminal glycans are exposed to the cytoplasm (Figure
IV.2C+D) and is therefore widely used as EE marker[217]. The 70% OA PBAE polyplexes
caused significantly more Gal8 recruitment compared to all other formulations. However, these
polyplexes also achieved the highest uptake by the HelLa cells. Therefore, the high knockdown
efficiency of the 70% OA PBAE was likely a combination of superior uptake and strong EE.
The endo-lysosomal membrane disruption caused by the EE of the 70% OA polyplexes can
trigger apoptosis or uncontrolled cell death[218, 219], consistent with the observed cytotoxicity
of 70% OAPBAE. Hela cells are characterized by relatively small endosomes, which has been
suggested to favor the EE efficiency of polyplex formulations[204]. Hence, because Gal8
recruitment is cell type-dependent[53], the same polymer may be safe and effective in other
cell types[54]. The other polyplexes induced significantly lower Gal8 recruitment, suggesting
that limited EE may contribute to their poor knockdown efficiency, which is in accordance with
published results about PEI polyplexes[53].

Due to the lack of cellular uptake of 30% OA PBAE, their performance in the Gal8 assay could
not be directly compared to the other formulations. Rui et al.[53] reported a negative correlation
between the hydrophobicity of PBAE polyplexes and Gal8 recruitment. Notably, in their study,
increased Gal8 recruitment did not translate into improved transfection efficiency. The authors
suggested that high Gal8 puncta counts might result from empty polymer micelles that disrupt

endosomes without delivering nucleic acid cargo. For other amphiphilic PBAEs, a positive
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correlation between hydrophobicity and Gal8 recruitment was observed[220], with the most

hydrophilic polymer causing the least Gal8 puncta.

Interestingly, the LNP formulation caused Gal8 recruitment as low as bPEI and PPP, even
though its knockdown efficiency was higher. However, the low Gal8 recruitment by the LNPs
likely originated from the EE mechanism itself: It has been shown that the ionizable lipid DLin-
MC3-DMG does not induce Galectin recruitment[30], arguably due to the formation of only
small pores in the endosomal membrane. In summary, although useful within narrowly defined
particle libraries[136], Gal8 recruitment alone is not sufficient to predict the EE or knockdown
efficiency across diverse nanoparticle formulations. The detection of Gal8 puncta does not
indicate whether endosomal damage was accompanied by the release of nucleic acid
cargo[53], nor does it capture smaller membrane defects[30]. This could lead to favoring
potentially cytotoxic particles with high Gal8 recruitment over similarly effective particles that
cause only minor endosomal damage through other EE mechanisms. To further analyze the
interaction of the nanoparticles with cellular membranes, their capacity to induce erythrocyte
lysis was tested (Figure IV.2E). The LNPs, 30% OA PBAE and bPEI polyplexes only caused
minor hemolysis, independent of the medium’s pH level. In contrast, PPP particles caused
notable hemolysis of ~ 10 — 25% at all pH levels, and 70% OA PBAE polyplexes caused
increased lysis at pH 5.4 only. Hemolytic activity is generally associated with cytotoxicity[221].
However, lytic activity at acidic pH only, as demonstrated by 70% OA PBAE, is favorable for
polyplexes[136], as it indicates increased membrane interaction in the acidified endo-
lysosomal compartment. Again, this emphasizes that the toxicity of the 70% OA PBAE can be
referred to its excessive effect on the endosomes.

As the uptake efficiency of the polyplexes differed strongly, it was not possible to fully
distinguish the EE efficiency from the above presented results. However, the 70% OA PBAE
and the LNP overall outperform the other formulations concerning knockdown efficiency, which
will be correlated to their membrane interactions and EE mechanisms by MD below. Therefore,
nanoparticles-membrane interactions were next assessed by measuring erythrocyte lysis
(Figure IV.2E). The LNPs, 30% OA PBAE and bPEI polyplexes only caused minor hemolysis,
independent of the medium’s pH level. In contrast, PPP particles caused notable hemolysis of
~ 10 — 25% at all pH levels, and 70% OA PBAE polyplexes caused increased lysis at pH 5.4
only. Hemolytic activity is generally associated with cytotoxicity[221]. However, Iytic activity at
acidic pH only, as demonstrated by 70% OA PBAE, is favorable for polyplexes[136], as it
indicates increased membrane interaction in the acidified endo-lysosomal compartment.
Again, this emphasizes that the toxicity of the 70% OA PBAE can be referred to its excessive
effect on the endosomes. As the lytic activity of the PPP polymer exceeds the cytotoxicity

observed in other assays (Figure IV.S3), it can be related to membrane interactions in the
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hemolysis assay that are otherwise masked by a protein corona around the nanoparticle
formed in serum[222].

As the uptake efficiency of the formulations differed strongly, differences in EE performance
could not be clearly interpreted. However, the 70% OA PBAE and the LNP formulation overall
outperform the other polyplexes concerning knockdown efficiency, which will be correlated to

their membrane interactions and EE mechanisms by MD below.
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Figure IV.2. Comparison of in-vitro behavior

A. eGFP knockdown in HeLa/eGFP cells, mean + sd, n = 2. B. Uptake in HelLa cells quantified as puncta
of AF647 labeled siRNA per cell observed in the confocal images, mean * sd, one-way ANOVA, ***p <
0.001, ns = nonsignificant (p > 0.05). C. Confocal images showing Gal8 recruitment (green puncta) in
Hela cells (blue: DAPI) 4 h after transfection. D. Quantification of Gal8 puncta as shown in C, mean +
sd, one-way ANOVA, ***p < 0.001, ns = nonsignificant (p > 0.05). E. Erythrocyte lysis of all five
nanoparticle formulations relative to Triton X treatment at three different pH values (5.4, 6.5 and 7.4),
mean = sd, n = 3.



3.3 Membrane interaction mechanisms in simulation

To identify the interaction mechanisms of nanoparticles with membranes after cellular uptake,
AA and CG membranes mimicking different stages of the endo-lysosomal pathway were
created (Table IV.S1). The first membrane represents the (early) endosome, which is slightly
negatively charged and contains glycolipids that were initially present at the outer leaflet of the
plasma membrane[223]. As the milieu in the early endosome is only slightly acidic, the particle
interactions with this membrane type were simulated at pH 6.5. Deemed crucial for the
functionality of biological membranes is also the formation of microdomains such as lipid
rafts[224]. These specified membrane regions form through the preferred interaction of
cholesterol, saturated lipids and sphingolipids. To investigate the influence of lipid raft
formation on EE, a simplified membrane model, composed of
palmitoyloleoylphosphatidylcholine (POPC), cholesterol, and N-Palmitoyl-D-sphingomyelin
(DPSM) was created. This model contained an increased amount (2%) of glycolipids (glycolip-
monosialotetrahexosylgangliosides DPG1 and DPG3), which comprise one n-
acetylneuraminic acid each. Hence, the lipid raft model contained all its negative charge in the
glycan layer. Lipid rafts are characterized by reduced lateral diffusion[225] in the ordered state,
which was well represented by our models (both AA and CG) in comparison to the other
membrane types (Figure IV.S2).

Two additional membrane models were constructed to simulate the late endosome/lysosome
with interactions at more acidic conditions (pH 5.4). In the late endosome, the amount of
cholesterol and sphingolipids was decreased, whereas the amount of negatively charged lipids
was increased[223, 226]. These negatively charged lipids include bis-(monoacylglycero)-
phosphate (BMGP)[227], a lipid that is unique to late endosomal/lysosomal membranes. The
late endosomal membrane contained the same number of glycolipids as the endosomal
membrane used in this study. The lysosomal membrane model was structurally identical to the
late endosomal model, except that glycolipids were omitted to allow assessment of their
specific influence. As a result, the lysosomal membrane was the only symmetrical bilayer
among all models examined. While this study aimed to reproduce the lipid composition of endo-
lysosomal membranes with greater compositional diversity than previous models[71, 123], the
incorporation of membrane proteins and active cellular processes remains beyond its scope.
Consequently, the presented membrane models should still be regarded as simplified

representations.

The interaction of the four CG membrane models with all five particle formulations was
simulated in triplicates. Initial contact of the particles with the glycosylated leaflet of the
membrane was assured by a short pull applied to the particle in the first nanoseconds of
simulation. After 2.5 ps, distinctive differences between the particles were detected (Figure

IV.3A-E). Two types of interaction with the membranes were prominent: Firstly, hydrophobic
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interactions of the PBAEs, the PPP polyplex and the LNP were visible as interference of
polymers/LNP-lipids with the hydrophobic core of the membranes. In the case of the PBAEs
(Figure IV.3A+B) and the LNP (Figure 1V.3C), this led to mixing of membrane lipids and particle
material[123], resulting in notable amounts of particle material being shed from the particle and
integrated into the membrane. Simultaneously, the 70% OA PBAE polyplex and the LNP were
capable of extracting membrane lipids out of the initial membrane plane. Due to the
copolymeric structure of the PBAEs, their OA tails reached into the hydrophobic membrane
center, while the backbone stayed in the headgroup region and the polycationic spermines
reached into the solvent layer above. However, unlike the 70% OA PBAE and the LNP, the
30% OA polymer was not capable of extracting lipids from the membrane into hydrophobic
particle compartments above the membrane surface. Hence, the interaction mode of the
hydrophilic PBAE appeared more comparable to the influence of bPEI and PPP, which caused
only minor to no deviations of the membranes’ density profiles (Figure IV.3B, D and E). In the
PPP polymer, the hydrophobic compartment of the particle (the PCL chain) is clearly separated
from the hydrophilic bPEI units due to the block copolymeric structure. Consequently, if in
immediate contact with the membrane, the PCL residue tended to partition into the membrane
core, whereas the bPEI segments remained localized at the membrane surface (Figure IV.3E,
Figure IV.S5).
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Figure IV.3. CG-MD simulations of nanoparticles interacting with planar membrane models
Density distribution along the z — coordinate of the simulation box after the interaction of a late
endosomal membrane with A. a 70% OA PBAE particle B. a 30% OA PBAE particle C. an Onpattro —
like LNP D. a 25 kDa bPEI polyplex E. a PPP polyplex. F. Lipids (excluding cholesterol) extracted from
the plane of different membranes after interaction with the respective particles, mean * sd, n = 3.

Based on umbrella sampling simulations, the octanol — water partition coefficients (log P) of
the polymers were ranked according to their hydrophobicity: 70% OA PBAE (most
hydrophobic) > PPP > 30% OA PBAE > bPEI (least hydrophobic) (Figure IV.4A+B). As
discussed above, a direct correlation of polymer hydrophobicity with its EE performance can
be seen as controversial. In this case, the most hydrophobic polymer caused the strongest
membrane disturbance, but no clear relationship between the other polymers’ log P and their

effect on endosomal membranes was found.
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Secondly, electrostatic interactions were observed for all particles. As the nanoparticles
contained an excess of cationic charges, the interaction with negatively charged membrane
lipids was favorable. For the 70% OA PBAE, this correlated with the amount of lipids being
extracted from the membranes (Figure IV.3F). The least lipids were extracted from the least
charged membrane type (lipid raft), and the most extraction took place from the strongly
charged late endosome and lysosome membranes. The presence of glycolipids (late

endosome vs. lysosome) however did not have a notable influence.
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Figure IV.4. Determination of log P values in CG MD.

A. Potential of mean force (PMF) curves of the transfer of a polymer molecule from an octanol phase to
a water phase, mean % sd (n = 5). B. log P values of polymers, normalized to molecular weight (per
kDa) as calculated from PMF curves in A., mean £ sd (n = 5).

The preferred interaction of all polymers with negatively charged lipids was conclusive both in
AA MD (Figure IV.5A+B, Figure IV.S6) and CG MD (Figure IV.5C+D, Figure IV.S6+ IV.S7). In
both cases, the anionic lipids (purple shades) clustered around the attached particle or free
polymer molecules interacting with the membrane. Figure V.5 shows the interactions of 70%
OA PBAE or bPEI with the late endosomal membrane. In AA resolution, the graphs are noisier
due to the lower overall number of molecules in the simulations. Still, it is visible that both
polymers (70% OA and bPEI) were transiently attached to the glycolipids, followed by favored
contacts to other anionic lipids. This was in general true for all AA setups simulated (Figure
S6). The importance of anionic lipids for stable polymer—membrane interactions was
particularly evident in simulations involving the lipid raft model. In this system, negative
charges were confined to the glycosylated layer extending above the lipid headgroups. As a
result, during the transient contacts with glycolipids no negative charges were available in the
headgroup region of the membrane, and permanent polymer adsorption did not occur. The role

of anionic lipids, especially the lysosome-specific lipid BMGP, has previously been discussed
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to be of high relevance for EE of cationic formulations/drugs[228, 229] and was emphasized
again by the here presented results. Additionally, the AA simulations confirmed the presence
of interactions with neutral lipids and cholesterol for the PBAEs (Figure 1V.5B), which clearly
distinguished them from the bPEI polymer.

Analysis of the CG simulations (Figure IV.5C+D, Figure IV.S7+8) regarding polymer/MC3 —
membrane contacts confirmed good agreement with the AA setups, although glycolipid
contacts appeared less transient. In CG simulations, all particles remained associated with the
membranes, including the lipid raft model, over the whole simulated timespan, likely due to the

larger system size and hence an increased number of initial contact points.
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A. Visualization of polymer — late endosome interactions (top- and side view) from AA simulations
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nm per membrane lipid atom (late endosome) over time, n = 2. C. Visualization of particle — late
endosome interactions (top- and side view) from CG simulations in Martini 3. D. Polymer contacts

(upper: 70% OA PBAE, lower: bPEI) below 0.6 nm per membrane lipid bead (late endosome) over time,
n=3.
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3.4 Interaction of nanoparticles with membrane vesicles

For further investigation of potential EE mechanisms, all particles were simulated in
endosome-mimicking CG membrane vesicles (Figure IV.S9). The vesicles had varied inner
diameters between 19 nm (lipid raft) and 24 nm (lysosome) to acknowledge the fact that the
lysosome tends to be larger than the early endosome[230]. In the early endosome and the lipid
raft, simulations were begun with 1 ys at pH 7.4 protonation settings and then continued with
7 us at pH 6.5. In the late endosome and the lysosome, pH 7.4 was only simulated for the first
0.6 s, followed by 1.2 us at pH 6.5 and prolonged to 8 us at pH 5.4 protonation. Similarly to
the previous results, the affinity of the polymers and the ionizable lipid MC3 to negatively
charged lipids was observed (Figure IV.S8) with increasing contacts over time. In general, the
number of polymer contacts per lipid bead rapidly increased in the initial ns and then stabilized

towards the end of the simulations.

The EE of lipid-based systems, such as the LNP incorporated in this study, is believed to rely
on membrane fusion and the disruption of the membrane bilayer[231, 232]. In the vesicle
simulation setups, the LNP fused with the membrane, which caused rapid exchange of lipids
between membrane and LNP. Similarly as recently portrayed by others[109], this caused
disruption of the membranes and the formation of disordered phases in the vesicle (Figure
IV.6A+B). However, in only one of the eight LNP-vesicle interactions, this led to successful
escape of siRNA molecules from the vesicle (Figure IV.6A). Closer observation of this
simulation revealed that the EE of two siRNA molecules in this simulation occurred directly
during the initial fusion of LNP and vesicle. The energetic hurdle that must be overcome for
the fusion of LNP and membrane to be initiated[123, 233] seemed to be increased in the
interaction with the lipid raft model. Here, no membrane fusion occurred (Figure IV.6C) in one
simulation, while in the repeated simulation fusion only occurred after ~ 3 us (Figure S8). This
can be explained by the absence of anionic lipids, as described above, or the presence of an
increased amount of glycosylated lipids, forming a “buffer zone” above the membrane surface.
The effect of pH in the endosomal compartments on the LNP-membrane interaction has been
investigated in depth elsewhere[66], with the result that acidic pH (< 6.5) enhances LNP
disintegration and promotes lipid exchange between LNP and endosomal membranes. This
was well reproduced by our results, as each step of pH reduction in the simulations led to an

abrupt increase in the number of contacts between LNP lipids and membrane (Figure 1V.S8).
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Figure IV.6. CG MD simulation outputs of an Onpattro® like LNP interacting with endosome
mimicking vesicles for 8 ys. A. LNP and early endosomal vesicle. B. LNP and late endosomal vesicle.
C. LNP and lipid raft vesicle. (green: membrane lipids, light gray: glycans, light green: cholesterol, blue:
siRNA, pink: MC3/MC3H, purple: DSPC)

Interestingly, the 70% OA PBAE, even though to a smaller extent, caused membrane
disturbances comparable to the LNP (Figure IV.7A). This formulation preferably interacted with
the anionic lipids but was at the same time capable of forming hydrophobic interactions with
all membrane lipids (Figure 1V.S8). Over time, the polyplex disassembled and polymer
molecules distributed over the whole vesicle (Figure IV.7A). In the lipid raft vesicle, the
disintegration of the polyplex was less pronounced. Instead, incorporation of preferably
cholesterol from the membrane into the hydrophobic PBAE core was observed (Figure IV.7B).
Transmission electron microscopy (TEM) imaging has previously been used to visualize the
effect of EE efficient polyplexes on endosomes[136]. Those images showed disturbed
membranes that could be interpreted similar to the results from the vesicle- 70% OA PBAE
polyplex simulations herein. However, no escape events were observed for the 70% OA PBAE
polyplex. This may be attributed to the inherently low frequency of escape events, even in
formulations considered effective for EE. Alternatively, the absence of detectable escape could
suggest that PBAE-mediated EE involves a combination of membrane fusion and proton
sponge-like mechanisms, which may have caused strong endosomal damage and Gal8
recruitment in vitro. In the vesicle simulations, chloride ions were inserted inside the vesicles
to compensate for the increasing positive charge of the polymer under increasingly acidic
conditions. However, this approach is unlikely to fully replicate the osmotic pressure dynamics

that might develop physiologically.
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Figure IV.7. CG MD simulation outputs of 70% OA PBAE polyplex interacting with endosome
mimicking vesicles for 8 pus. A. PBAE polyplex in the early endosomal vesicle (left), with visualization
of disassembled polyplex only (right). B. 70% OA PBAE polyplex and lipid raft vesicle. (green:
membrane lipids, light gray: glycans, blue: siRNA, beige/orange: polymer)

The more hydrophilic PBAE (30% OA) followed similar principles to the 70% OA PBAE, but
due to the decreased hydrophobic interactions (Figure 1V.S8), the effect of the particles on the
vesicles was less pronounced (Figure IV.8A+B). Instead of polymer molecules fusing into the
membrane, the interaction was dominated by surface contacts between the cationic spermines
and the anionic lipids. Only minor disturbances of the membrane bilayer occurred. However,
the vesicles deformed to a flattened shape, which allowed more surface contact with the

polyplex (Figure 1V.8B).

Figure IV.8. CG MD simulation outputs of 30% OA PBAE polyplex interacting with endosome
mimicking vesicles for 8 pus. A. PBAE polyplex in the early endosomal vesicle (left), with visualization
of disassembled polyplex only (right). B. 30% OA PBAE polyplex and lipid raft vesicle. (green:
membrane lipids, light gray: glycans, blue: siRNA, beige/orange: polymer)

The effect of the bPEI polyplex on the membrane vesicles resembled the 30% OA PBAE, with
the difference that the bPEI polyplex did not shed any polymer (Figure IV.9A-C). As mentioned
above, no hydrophobic interactions of the hydrophilic bPEI polymer with the membranes were
observed (Figure IV.S8). The minimal membrane interaction observed for bPEI in this setup is

consistent with its limited endosomal escape efficiency in the Gal8 recruitment assay. However,
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others have reported satisfying efficiency of PEI siRNA polyplexes before[35]. Some reported
the formation of membrane pores due to the interaction with PEls in simulation, however with
the PEI being already placed in the membrane at the beginning of the simulation[234]. Neither
our CG nor our AA models produced membrane pores in unstirred simulations. Only when the
bPEI particle was not only pulled onto, but forcefully pulled through a membrane, a pore in the
CG membrane formed (Figure 1V.S10). In summary, this particle’s results support a hypothesis
formed by others on the EE of PEI polyplexes in HeLa cells[206]: The highly charged PEI
polyplex firmly associates with the membrane, and local osmotic or mechanical forces are
necessary for RNA release through local membrane defects into the cytoplasm. As described
above, the buildup of osmotic pressure in our unstirred equilibrium simulations is limited, which

makes the observation of escape events in this setup unlikely.

Figure IV.9. CG MD simulation outputs of the bPEI polyplex interacting with endosome mimicking
vesicles for 8 ps. A. bPEI polyplex in the early endosomal vesicle B. bPEI polyplex in the lipid raft
vesicle. C. bPEI polyplex in the late endosome vesicle. (green: membrane lipids, light gray: glycans,
blue: siRNA, beige/orange: polymer)

Finally, the PPP polyplex performed comparably to the bPEI and the 30% OA particles (Figure
IV.10A+B). As described for the planar membrane interaction, the PCL segment accumulated
in the lipid tail region of the membranes, but only if the particle did not attach to the membrane
surface with the bPEI residues first. In this case, the particle was hindered from hydrophobic
interactions as the PEI stuck to the anionic membrane surface (Figure IV.10A). To investigate
whether a larger PPP particle with therefore more hydrophobic units would cause membrane
disturbance akin to the 70% OA polyplex, a PPP particle with a total polymer mass equal to
the 70% OA particle was created. This polyplex caused some disturbance in the lysosomal

membrane, but like the smaller particles, it did not disassemble (Figure 1V.10C).
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Figure IV.10. CG MD simulation outputs of the PPP polyplex interacting with endosome
mimicking vesicles. A. Small PPP polyplex in the lipid raft vesicle B. Small PPP polyplex in the
lysosomal vesicle. C. Larger PPP polyplex (containing 15 siRNA molecules) in the lysosomal vesicle.
(green: membrane lipids, light gray: glycans, blue: siRNA, beige/orange: polymer (darker orange bPEI,
PCL shown in brighter coloring)

The outcome of particle—vesicle interactions is summarized in Figure IV.11A, reporting the total
number of contacts between polymer (or MC3 plus DPSC for the LNP) and membrane lipids
in the final simulation frame. Consistent with the observations from planar membrane
simulations, both the LNP and the 70% OA PBAE polyplex exhibited substantially higher
membrane contact numbers compared to the other formulations. Specifically, the total number
of contacts between 70% OA PBAE and membrane lipids was between 18.6-fold (lysosomal
membrane) and 52.8-fold (early endosomal membrane) greater than that observed for bPEI.
Hence, the difference can not solely be attributed to the overall higher amount of polymer in
the PBAE polyplex, but also polymer specific properties. Furthermore, as noted previously, the
presence of anionic lipids appeared to promote interaction, with late endosomal and lysosomal
vesicles showing higher abundance of polymer or LNP contacts than early endosomal or lipid

raft membranes.

Polyplex stability is known to depend on multiple interrelated factors, including polymer
architecture, molecular weight, and hydrophobicity[55, 235]. In an effective polyplex
formulation, these factors must be well balanced to ensure sufficient stability in serum and
efficient cargo release following cellular uptake[236]. In our CG MD simulations, a comparison
of polymer—siRNA contacts before and after endosomal membrane interaction revealed a
reduction in siRNA encapsulation across all systems tested (Figure IV.11B), suggesting partial
unpacking upon membrane contact. While no consistent trend emerged across membrane
compositions, the results indicate that the 30% OA PBAE polyplex is the least stable, whereas
the PPP-based polyplex shows the highest stability. Interestingly, the polyplex that exhibited
the strongest membrane interaction (70% OA PBAE) did not show the most efficient siRNA

unpacking. Nevertheless, comparisons between structurally related polymers (70% OA vs.
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30% OA PBAE; PPP vs. bPEI) revealed that increased hydrophobicity was associated with
reduced unpacking.

Noticeably, the MD-based unpacking results reproduced the outcome from an experimental
stability assay (Figure IV.S11), in which competitive displacement by heparin and Triton X
revealed an identical stability ranking among the four polyplexes. This correlation validates the
predictive power of the simulation approach and highlights its ability to mechanistically dissect

complex structure—function relationships.

100+ O Endosome

" 60000 QO Lipid Raft
= o @ Late Endosome
a = 904
< ‘s o Lysosome
5 3
_E 40000+ >~ 80
o k)
E =
. c

o}
=] o 704
2 <
& 20000+ z
€ <
8 \‘g 604
: Q

oL J]qlﬂ—.ﬁﬂ_ﬂqlll L 50 | a u 1 L
¥ & & R NS Y & <& R Q
o\oo e\oo ‘QQ QQ \’e o\co o\oo ‘QQ QQ \’é

Figure IV.11. Quantification of CG MD output after 8 ys simulated interaction between endosomal
membranes and model particles. A. Total number of contacts of the polymer (or DLin-MC3-DMG and
DSPC for the LNP) with membrane components in the last frame of simulations (8 us); shown as mean
from n = 2 simulations per setup. B. Percentage of contacts of the polymer (or DLin-MC3-DMG and
DSPC for the LNP) with siRNA that remained after 8 us simulated interaction with model vesicles in
comparison to t = 0 ns; shown as mean from n = 2 simulations per setup.
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4 Conclusion

The herein presented MD simulations visualized and quantified the interaction of different
siRNA nanoparticles with endo-lysosomal membranes. All formulations showed increased
affinity to anionic membrane lipids, highlighting that these play a significant role for EE.
However, only two formulations (the 70% OA PBAE polyplex and the Onpattro®-like LNP)
achieved eGFP knockdown in vitro. These were the only particles that formed larger numbers
of hydrophobic interactions in MD, extracting lipids from planar membranes and disturbing
membrane vesicles. Hence, a pronounced role of hydrophobic interactions for effective EE
through membrane fusion was demonstrated. Particles that do not contain hydrophobic
residues (such as bPEI polyplexes) were not capable of interacting with the lipid tails of
endosomal membranes.

Combining the findings of this work with the existing knowledge on EE mechanisms, we
understand EE mechanisms of polyplexes as a spectrum ranging from proton sponge-like EE
to membrane fusion-dominated mechanisms. For the EE of polyplexes based on hydrophilic
polymers such as PEI, our simulations propose an electrostatically driven attachment of
particles onto endosomal membranes, which could be followed by comparably rare escape
events through the buildup of osmotic or mechanical stress. Larger hydrophobic modifications
of a polymer are necessary for hydrophobic interactions to arise, which enhances membrane
disruption and polymer shedding. By exploiting both proton-sponge like and membrane fusion-
based mechanisms, the amphiphilic polyplex formulations (represented herein by 70% OA
PBAE polyplexes) possess increased EE efficiency, but also cause large membrane defects,
visible in vitro through the observation of Gal8 recruitment. This type of polyplex is efficient at
siRNA delivery, but potentially cytotoxic through excessive endosomal disruption.

In our simulations, the Onpattro®-like LNPs caused the highest extent of membrane disruption
through fusion of LNP and membrane and the mixing of lipids. In vitro, the formulation
produced only small holes in the endosome, which were not detectable by galectins.
Considering the cytotoxicity caused by large endosomal defects, the EE mechanism of the
simulated LNP appears desirable. Engineering polyplexes towards more membrane fusion-
based EE, for example by modifying hydrophobic residues, could therefore largely advance
the development of polymers for siRNA delivery.

Even though escape events of siRNA from polyplex formulations were not observed in
simulation, our results show that MD simulations of EE mechanisms can conclusively be
correlated to in vitro results. In the future, expanding the library of simulated nanoparticle-
membrane systems will help to solidify the identification of desirable EE mechanisms in MD
simulations. Subsequently, MD could be used to predict EE behavior of a formulation and

screen for beneficial properties.
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5 Materials and Methods

5.1 Materials

Spermine and oleylamine for the synthesis of the poly(beta)aminoesters (PBAE) were obtained
from Fisher Scientific (Acros, USA), whereas the 1,4-butanediol diacrylate for the PBAE
backbone originated from Tokyo Chemical Industry Co. (Tokyo, Japan). The 25 kDa branched
polyethylenimine (bPEI) and the 5 kDa bPEI for the synthesis of the PEI-PCL-PEI polymer
(PPP) were a kind gift from BASF (Ludwigshafen, Germany). Polycaprolactone diacrylate
(PCL), as well as HEPES (4-(2-hydroxylethyl)-1-piperazineethanesulfonic acid), Dulbecco's
Phosphate Buffered Saline (PBS), D-Glucose, Triton-X, porcine Heparin sodium salt,
Cholesterol and Copper sulfate pentahydrate, Minimum Essential Medium Eagle (MEM),
High/Low glucose Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum (FBS),
MEM Non-Essential Amino Acids (NEAA) solution (100X) and Cell Counting Kit-8 were
obtained from Sigma-Aldrich (Taufkirchen, Germany). D-Lin-MC3-DMA was from
MedChemExpress (Sollentuna, Sweden), DSPC and DMG-PEG 2000 from Avanti Research
(Birmingham, United Kingdom). The siRNA used in this project was amine-modified siRNA for
the knockdown of eGFP (siGFP), with the sequence 5'-
pACCCUGAAGUUCAUCUGCACCACcg, 3'- ACUGGGACUUCAAGUAGACGGGUGGC, or
negative control siRNA (siNC) with the sequence 5 -pCGUUAAUCGCGUAUAAUACGCGUAT,
3'-CAGCAAUUAGCGCAUAUUAUGCGCAUA, both purchased from Merck (Darmstadt,
Germany). Dyes for confocal microscopy (DAPI (4',6-Diamidin-2-phenylindol,
Dihydrochloride), Alexa-Fluor 647) were obtained from Life Technologies GmbH (Frankfurt,
Germany).  Penicillin-Streptomycin (P/S, 10.000 U/ml), Blasticidin S HCI (10 mg/ml),
Lipofectamine 2000, 4% Paraformaldehyde in PBS and DAPI (4',6-diamidino-2-phenylindole)
were bought from Thermo Fisher (Waltham, MA, USA). CytoTox 96® Non-Radioactive
Cytotoxicity Assay kit was purchased from Promega Corporation (Madison, WI, USA).
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5.2 Experimental Methods

Polymer Synthesis

The poly(beta)aminoesters (PBAE) were synthesized via Michael Addition as previously
described[55]. The synthesis was based on tri-boc-spermine as hydrophilic side chain,
oleylamine (OA) as hydrophobic side chain, and 1,4-butanendiol diacrylate as backbone. After
polymerization, the tri-boc-spermine was deprotected with trifluoroacetic acid. The ratio of
hydrophilic spermine to hydrophobic OA was controlled by the input ratio of the reagents and
validated by 'H nuclear magnetic resonance (NMR). For this work, a polymer containing 33%
OA (generally referenced as “30% OA” for clarity in the comparison to simulation) and 68% OA
(“70% OA”) were used.

The synthesis of the 5 kDa-5 kDa-5 kDa PEI-PCL-PEI polymer (PPP) was previously described
by Jin et al.[214] In brief, 5 kDa branched polyethylenimine (bPEIl) was stirred with
polycaprolactone-diacrylate (PCL) for 48 h at 40 °C at a molar ratio of 2 (PEI) : 1 (PCL). Then
the polymer was purified from monomers by dialysis against water with a molecular weight cut-
off of 10 kDa and subsequently lyophilized. The ratio of PEI:PCL in the product was evaluated
to be 2:1 by a TNBS assay, which was calibrated with unmodified 5 kDa PEI[237].

Particle Formulation

PBAE and bPEI Particles: PBAE and 25 kDa bPEI polyplexes were formulated at an N/P ratio

of ten (i.e., ten protonable units of the polymer per phosphate of the siRNA). The polymers and

the siRNA were separately diluted in 10 mM HEPES buffer at pH 5.4 to equal volumes. For the
particles used in the hemolysis assay, HEPES- buffered Glucose (5%) (HBG) at three different
pH levels (7.4, 6.5 and 5.4) was used instead to ensure isotonicity. Both components were
mixed by batch-mixing and shortly vortexed afterwards. Finally, the particles were incubated

for 90 minutes at room temperature before further use.

PPP Particles: The PPP particles were prepared as previously described[214] by preparing
empty particles first and subsequently adding the siRNA. The polymer was dissolved in
acetone, and then slowly dripped into formulation buffer (as above) while stirring. The acetone
was left to evaporate from the mixture over three hours, and the formation of empty particles
was confirmed by dynamic light scattering (DLS). Then, siRNA loaded polyplexes were
prepared by diluting the empty particles and mixing as described above for the PBAE and bPEI

particles.

MC3 — LNP: For the preparation of LNPs, the lipids were diluted in ethanol, with ratios of 50%
DIlin-MC3-DMA, 38.5% cholesterol, 10% DSPC and 1.5% PEG-2000-DMG. The siRNA was
diluted in 25 mM sodium acetate buffer at pH 4. Lipid blend and siRNA were combined by
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microfluidic mixing in a T-mixer (micro IDEX H&S P-888) at flow rate ratios of 0.75 ml/min (lipid)
and 2,25 ml/min (siRNA). Afterwards, the LNPs were dialyzed overnight against 150 mM PBS
or HBG when used for the hemolysis assay. Before further use, the LNPs were filtered through

a 0.22 ym syringe filter.

Z-average, PDI and C-potential of all particles were determined on a Malvern Zetasizer Ultra
(Malvern Instruments, Malvern, UK). All particles were produced in biological triplicates for

characterization.

Hemolysis Assay

For the hemolysis assay[238], blood from a healthy anonymous donor was centrifuged for 10
minutes at 1500x g. The sedimented erythrocytes were resuspended in PBS and repeatedly
washed with PBS until the supernatant was clear after centrifugation. The erythrocytes were
resuspended in PBS again and then diluted to 5 * 10*8/ml in HBG with either pH 5.4, 6.5 or
7.4. Subsequently, 1:1 mixtures of erythrocytes and the respective particles (50 pmol siRNA/
100 pl) or 15 mg/ml polymer dilutions were then incubated in 96-well plates for 30 minutes at
37 °C. 1% Triton-X was used as positive control (i.e., 100% hemolysis) and buffers as negative
controls. After incubation, the plates were centrifuged for 5 minutes at 1500x g and the
supernatants were transferred to fresh transparent well plates. The absorbance of the
supernatants was measured at 541 nm on a TECAN Spark Plate Reader (Tecan Trading AG,
Switzerland). The assay was performed in a biological triplicate. Erythrocyte aggregation was
documented on the resuspended erythrocyte pellets on a Evos M5000 microscope (Thermo

Fisher Scientific, Schwerte, Germany).

Particle Stability Assay

The stability of polyplex formulations was assessed by a competition assay at pH 5.4, as
previously described elsewhere[55]. Briefly, a dilution series of stress solutions containing
heparin and Triton X was prepared. In this regard, 100% stress referred to a concentration of
200 USP units heparin/ml and 1% (m/m) Triton X. First, 10 pL of nanoparticles formulated at
pH 5.4 were incubated with 20 uL of the respective stress solution for 1 h at 37 °C. Then, 5 uL
of diluted SYBR Gold solution was added and after 5 minutes, fluorescence was measured on
a TECAN Spark Plate Reader (Tecan Trading AG, Switzerland). Excitation was set to 492 nm;
emission was set to 537 nm. For data analysis, all data points (n = 3 technical replicates) were
normalized towards the 100% stress sample of each formulation, which was assumed to
represent maximal unpacking (i.e., 0% encapsulation). To calculate the EC50 value of each
formulation, a sigmoidal curve fit with automated outlier detection was performed in GraphPad
Prism5 2007 software.
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Cell culture

Hela WT cells (passages 10-15) were cultured in MEM containing 10% FBS, Hela/eGFP cells
(ATCC, USA, passages 5-10) were cultured in DMEM-high glucose containing 10% FBS, 0.1
mM MEM NEAA, 1% P/S and 10 pyg/mL Blasticidin. Hela-Gal8-mRuby3 cells (passages 5-10)
were kindly provided by Professor Ernst Wagner (Ludwig-Maximilians-Universitat Munich,
Germany) and cultured in DMEM-low glucose with 10% FBS and 1% P/S. All cells were

cultured in a humidified atmosphere containing 5% CO- at 37 °C.

Galectin-8 Assay

The recruitment of Galectin-8 (Gal8) to damaged endosomes as an indicator of successful
endosomal escape was tested on HelLa cells expressing mRuby-3-Gal8 fusion protein. Cells
were seeded at a density of 10,000 cells per well in an 8-well ibiTreat chamber slide (Ibidi,
Grafelfing, Germany). The cells were transfected with nanoparticles containing 20 pmol siRNA
per well for 4 hours or 24 hours. Of the total siRNA, 20% were labeled with Alexa Fluor 647.
The culture medium was changed after 4 hours, and cells were imaged at the SP8 inverted
confocal laser scanning microscope (CLSM; Leica Camera, Wetzlar, Germany) with a 63X oil
objective. Cell nuclei were stained with DAPI. siRNA uptake and Gal8 puncta of = 25 cells per
sample were quantified from the images by automated counting using the Fuiji plug-in of

Image J.

eGFP Knockdown

HelLa/eGFP cells were seeded at a density of 6,000 cells per well in 96-well plates. The
following day, cells were transfected with nanoparticles containing either 20 pmol siRNA
targeting eGFP mRNA (siGFP) or 20 pmol scrambled siRNA of the same length (siNC) for 48
hours. Lipofectamine 2000 was used as a positive control, while free siRNA served as a
negative control. After incubation, the cells were collected to perform the FACS analysis
(Attune NxT Flow Cytometer, ThermoFisher Scientific). The eGFP knockdown efficiencies
(biological duplicate with n = 3 technical replicates) were calculated by dividing the Median

Fluorescence Intensity (MFI) of siRNA-treated group by that of the respective siNC-treated
group.

Cellular uptake

HelLa/eGFP cells were seeded at a density of 6,000 cells per well in 96-well plates. The
following day, cells were transfected with nanoparticles containing 20 pmol siGFP, of which
20% were labelled with Alexa Fluor 647. Lipofectamine 2000 was used as a positive control,
while free siRNA served as a negative control. After 24 hours, the cells were collected to

perform the FACS analysis (Attune NxT Flow Cytometer, ThermoFisher Scientific).
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Additionally, uptake was analyzed by FACS after quenching the fluorescent signal on the cell

surface with trypan blue (n = 3 technical replicates).

LDH- and CCK-8 Assay

To evaluate cytotoxicity, both an LDH- and a CCK-8 assay were conducted (n = 3 technical
replicates). The particles for this experiment were prepared as described above and then
diluted to test four concentrations (i.e., 40, 30, 20 and 10 pmol siRNA/50 pL). HelLa cells were
seeded at 6,000 cells in 96 well plates. When reached 80% confluence, the cells were
incubated with the four nanoparticle dilutions for 48 hours. For the LDH-assay, 50 uL cell
culture supernatant was diluted 1:1 with CytoTox 96 reagent and incubated in the dark for 30
minutes at room temperature. After addition of 50 L stop solution, the samples were quantified
at 490 nm absorbance, and the results were normalized to the positive control. The cells pre-
treated with 20 uL of lysis solution for 45 minutes at 37°C served as positive control for
maximum LDH release. For the CCK-8 assay, 10 yL CCK-8 solution was added directly into
each well containing treated cells and incubated for another 3 hours. The cell viability was

quantified by absorbance relative to an untreated sample at 450 nm.

5.3 CG-MD Simulation

All simulations were run in Gromacs 2021.4-plumed[184]. For the CG simulations, the Martini
3 force field[97] was applied. The CG model particles were generated with our previously
established siRNA model[134] and contain three siRNA molecules each. The number of
polymer molecules was chosen to reach ~ N/P 10 for all polyplexes, whereas the MC3 — LNP
had a final N/P ratio of 6.5. After minimization and NPT equilibration, all simulations were run
at a timestep of 15 fs with Particle mesh Ewald (PME) electrostatic handling[239] with a cutoff
of 1.1 nm. Temperature was controlled by v-rescale temperature coupling at 298 K (particle
assembly) or 310 K (membrane interactions), whereas pressure was handled by the Parrinello-
Rahman barostat[193] at 1 bar.

CG Particle Models

PBAE and bPEI Particles: The PBAE model particles were generated in accordance with our

previously established approach for this group of polymers[134] with either a 30% Oleylamine
(OA) or a 70% OA polymer model. The bPEI particles were generated the same way, based
on a 25 kDa PEI model with a branching degree of 59%[133] (bPEI). PBAE or bPEI particles
initially self-assembled in a 5 ys unbiased run in a cubic box with 26 nm side length. Boxes
were solvated with 10 mM HEPES and neutralized with chloride ions. During the first run, the

protonation corresponded to pH 5.4. This run was followed by 0.5 us run time with reduced
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polymer protonation, allowing the particles to adjust to a theoretical pH 7.4. To generate input
for the interaction with planar membranes at pH 6.5 or 5.4, the protonation was subsequently
adjusted for another 0.5 ps. All particles were extracted from their initial assembly box including
the ions of their hydration shell to ensure the particle stability in new simulation boxes with

PME electrostatics.

PPP_Particles: The PPP polymer model was created from two identical 5 kDa bPEI

models[133] that were connected by a 5 kDa PCL chain. The parametrization of this PCL chain
was obtained according to the common Martini parametrization approach
(cgmartini.nl/index.php)[185-188]. To ensure a particle constitution comparable to wet-lab
experiments, the PPP polymer was left to self-assemble for 3 us under the simulation
conditions described above. The siRNA molecules were then added to the empty particle in a
subsequent 2.5 ys simulation for encapsulation. pH adjustments were done in the same way
as for the PBAE and bPEI particles.

MC3 — LNP: The MC3 — LNP with an Onpattro® — like composition was assembled following
the recently published approach by Kjglbe et al.[109] The siRNA is placed in water channels
within a hexagonal lipid core, covered by an outer lipid layer. This resulted in a particle
consisting of 49% MC3, 39% Cholesterol and 12% DSPC and a total N/P ratio of ~ 6.5. PEG-
lipids were not incorporated, as they are expected to be already shed from the LNP when it
reaches the endosomal compartment of cells[215]. Protonation of MC3 was calculated based
on the apparent pKa of 6.55 for MC3[31], however the lipids in direct contact with the siRNA
were kept protonated at all pH levels studied to avoid excessive shedding of siRNA from the
LNP at pH 7.4.

All particle models and the chemical structures of the polymers are depicted in Figure 1V.1.

Membrane Models

To study the interaction of nanoparticles with different membrane compositions present in the
endo-lysosomal pathway, four different membrane types were established, namely an early
endosomal membrane, a lipid raft, a late endosomal membrane and a lysosomal membrane.
The respective compositions were adapted from literature[226, 240-244] and are listed in table
S1. The initial topologies were generated with the INSANE[137] tool. Lipid topologies were
used from literature[97, 245, 246] or created based on the established building blocks if not
yet available in Martini 3 (e.g., bis(monoacylglycero)phosphate (BMGP), glycolipids (DPG1
and DPG3[106, 245])). All planar models had an initial size of 25x25 nm and were simulated
with semi-isotropic pressure scaling. The membranes were fixed in their position by restraints
on the z-coordinate applied to the POPC molecules (in case of the lipid raft, only 50% of POPC

molecules) with a force constant of 1000 kJ/mol*nm?. Lateral diffusion of lipid components
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(POPC, DPSM or cholesterol) inside the planar models was analyzed with the mean squared
displacement tool[196, 247] from the MDAnalysis package[194, 248]. For the vesicular models,
membrane discs with a radius of 25 nm (early endosome), 26 nm (lipid raft) or 28 nm (late
endosome, lysosome) were generated. To initiate the formation of vesicles, the membranes’
center of mass (COM) was pulled out of the plane in z-direction by a moving restraint applied
with the PLUMED plugin. Afterwards, closed vesicles formed in an unbiased simulation within

less than 1 ps.
Umbrella Sampling

The lipophilicity of the simulated CG polymer models was characterized by the calculation of

a logP/ kDa according to eq. 1:

AGy, /0
lOgP/kDa = (2.303/RT)/MWpolymer (1)

The free energy AGuw of transferring one polymer molecule from an octanol phase to a water
phase was determined in umbrella sampling simulations[115, 249]. A polymer molecule and
neutralizing chloride ions were placed in the center of an octanol phase of 9x9x20 nm. Then
the molecule was pulled into the adjacent water phase with equal dimensions by a harmonic
potential applied along the z-axis. A spacing of 0.25 nm was used for the umbrella windows,
resulting in 65 windows, which were simulated for 20 ns each. The potential of mean force
(PMF) was generated as a function of distance from initial position by weighted histogram

analysis with the gmx wham function[116, 250, 251].

Planar Membrane Interactions

For the investigation of particle-membrane interactions in a simple, planar setup, the 25x25
nm membranes were simulated with each model particle (70% OA PBAE, 30% OA PBAE,
bPEI, PPP and LNP) in triplicate runs. The box had a z-dimension of 35 nm, and the
membranes were centered at z = 10 nm. All boxes were solvated with 150 mM NaCl and
simulated at 310 K. The interactions with the early endosome and the lipid raft were simulated
at pH 6.5, whereas late endosome and lysosomal interaction was simulated with protonation
settings of the particles corresponding to pH 5.4. To ensure interaction from the glycosylated
membrane leaflet, the particles were pulled in contact with the membrane by a moving restraint
with the PLUMED plugin, lasting for 5 ns. Then a 2495 ns unbiased interaction was simulated
with the above-mentioned settings. For analysis, the mass density distribution along the z-axis
was calculated vie the gmx density function, defining the center of the membrane as z= 0. The
amount of membrane components extracted from the membrane plane was calculated from
the density distribution, where the upper limit of the membrane area was defined as the point,

where the first derivative of the density distribution was > -100.
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Vesicle Interactions

Additionally, the interaction of particles with the inside of endosome-mimicking vesicles was
simulated to compare a more realistic setup. Particles were placed inside the preformed
vesicles and solvated with 150 mM NaCl at 310 K in cubic boxes with 40 or 42 nm side length.
All setups started with protonation corresponding to pH 7.4. For the early endosome and the
lipid raft, the pH was reduced to 6.5 after 1 us, which was then followed by 7 ps simulation at
the mildly acidic pH. In the late endosome and the lysosome vesicle, pH was reduced to 6.5
after 0.5 ys, and then further reduced to pH 5.4 after another 1.2 us, at which additional 6.3 ps
were simulated. The additional chloride ions needed to neutralize the polymer charge after
each pH change were placed inside the vesicle to mimic the osmotic pressure increase inside
the endosome. Overall, every vesicle-particle setup was simulated for 8 us and every setup
was simulated twice. The vesicle interactions were analyzed for the number of polymer—
membrane contacts over time using the gmx mindist tool and for changes in the siRNA

environment via the Radial Distribution Function (RDF).

5.4 AA Models and Simulations

The AA simulation input was generated with CHARMM-GUI[252, 253] using the CHARMM36
force field[254]: Planar membrane models with a size of 10x10 nm and lipid compositions
identical to the CG membranes were built by the Membrane builder[255-257]. Polymer models
with a reduced molecular weight (trimers for PBAEs, i.e. ~ 1.3 kDa; bPEI and PPP ~ 1.8 kDa)
were obtained through the Ligand Reader & Modeler[258]. All AA simulation boxes were
neutralized and solvated with 150 mM sodium chloride. The simulations were run as NPT
ensembles with the standard settings supplied by CHARMM, i.e. PME electrostatic handling,
semi-isotropic pressure scaling with the c-rescale barostat, v-rescale thermostat at 310.15 K
and a timestep of 2 fs. The membranes were first simulated for 500 ns without interacting
polymers. For the simulation of polymer-membrane interactions, ~ 9 kDa total mass of a
polymer were used. The PBAEs were simulated separately for 500 ns to form micelles similar
as the CG model and then further used in this form. The bPEI and the PPP models were used
as individual molecules, as they did not aggregate within 500 ns (for PPP unlike the CG model
— arguably due to the reduced MW and therefore length of the PCL segment). All polymers
were placed in proximity to the glycosylated membrane leaflets in a 10x10x18 nm box. To
facilitate initial contact with the membrane, a short pulling sequence mediated by a PLUMED
moving restraint was applied to the polymer molecules. The polymer-membrane interactions

were simulated in duplicates for 1 ys and analyzed with the gmx mindist tool.
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55 Data Analysis and Visualization

Graphs were created in GraphPad Prism5 2007 software, which was also used for statistical

analysis, where applicable. Simulations were visualized in Blender 4.5.2 LTS.
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6 Supplementary Data

Table IV.S1. Composition of model membranes [%)]

Percentage of lipid components by headgroup type in the four different simulated membrane types.

Anionic lipids are marked in blue.

Early Endosome Lipid Raft Late Endosome Lysosome
% Cholesterol 29.5 45.0 20.1 20.1
Phosphatidylcholines (PC) POPC 17.0 POPC 27.5 POPC 11.0 POPC 11.0

PIPC 15.1 PIPC 18.1 PIPC 18.1

PAPC 5.5 PAPC 6.0 PAPC 6.0
Phosphatidylethanolamines (PE) PIPE 4.1 POPE 11.5 POPE 11.5

PAPE 6.8 PAPE 11.5 PAPE 11.5
Sphingomyelins (SM) DPSM 71 DPSM 255 DPSM 2.7 DPSM 2.9

PGSM 7.1 DXSM 27 DXSM 29
Phosphatidylserines (PS) POPS 20 POPS 20
Phosphatidylinositols (PI) PIPI 7.3 PIPI 8.0 PIPI 8.0
Glycolip-monosialohexosylganglioside (DPG) DPG1 0.2 DPG1 1.0 DPG1 0.2

DPG3 0.2 DPG3 1.0 DPG3 0.2
Bis(monoacylglycero)phosphate (BMGP) BMGP 6.0 BMGP 6.0
% neg. lipids (sum) 7.7 2.0 16.4 15.9
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models.
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Figure IV.§10. CG simulation of a bPEI polyplex being forcefully pulled through an endosomal

membrane.
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Summary and Outlook

Advances in computational power have enabled computational research to take on an
increasingly important role in drug development. At the same time, nucleic acid delivery has
emerged as one of the most active research fields in pharmaceutical science. This offers the
opportunity to combine these two areas and accelerate the design of delivery systems by
leveraging computational approaches. With this aim, this work highlighted previous research
advances in the field and then developed large-scale MD simulation protocols to showcase

how MD can provide meaningful insights into nanoparticle systems.

The applied CG MD approaches reproduced the assembly of PBAE polyplexes in close
agreement with experimental observations, as both MD analysis and experiments were
designed to allow direct comparison of orthogonal approaches. The main achievements of this
chapter demonstrated that hydrodynamic diameters of micelles retrieved from MD were
comparable to DLS results. Furthermore, particle morphologies observed in TEM images were
validated by MD and vice versa, and the encapsulation of siRNA by polymer, as well as excess
polymer, was quantified by MD in good agreement with experiment. Hence, this chapter
demonstrates that properly parameterized simulation workflows can capture the essential

molecular assembly of complex polyplex formulations.

Beyond polyplex assembly, MD simulations also provided mechanistic insights into
nanoparticle—-membrane interactions, with the aim of better understanding endosomal escape.
The work revealed that hydrophobic moieties in polyplexes play a decisive role in membrane
perturbation. Additionally, the contribution of electrostatic interactions, influenced by the
composition of both nanoparticles and membranes, was highlighted. This chapter also
incorporated a comparison of MD simulation results with in vitro data. Although this provided
a less direct validation than the experiments described in the previous chapter, the analysis
nonetheless offered valuable insights. The correlations observed between simulated behavior
and experimental outcomes underline the capacity of MD to capture key aspects of complex
biological processes, even when a higher level of abstraction is necessary, such as the

exclusion of membrane proteins in the MD setup.

Together, these studies demonstrate how simulation and experiment can complement one
another: while experiments provide the essential benchmark for reliability and the real-world
framework of application, simulations help to rationalize observed phenomena and reveal
underlying mechanisms. In this way, MD can serve both predictive and explanatory roles in the
development of nucleic acid delivery systems, ultimately bridging the gap between molecular-

scale processes and experimentally measurable outcomes.
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The workflows presented herein reproduce experimental findings and offer mechanistic
insights, but further validation is required to generalize the correlations across diverse
materials and formulations. This will allow us to distinguish which of the presented results are
specific to the simulated material (polymer), and which conclusions can be generalized to a
broader range of particle formulations. Especially regarding the EE investigations, this will
further refine the in silico —in vitro correlation and support the establishment of robust predictive

models.

Furthermore, MD workflows require a balance between model accuracy and computational
efficiency. Larger, more sophisticated models provide detailed, realistic insights. However,
once robust correlations between MD simulations and wet-lab experiments have been
established and validated across a broader range of systems, it will be desirable to simplify the
models while maintaining these correlations. Downsizing and streamlining MD protocols would
reduce computational cost and thereby allow their broader and more efficient use in early
formulation screening. In the future, this would allow the incorporation of MD simulations as a
standard tool in the rational design of delivery platforms, guiding material synthesis and

experimental prioritization.

Ultimately, this work underscores the potential of MD simulations not only to deepen our
mechanistic understanding of nucleic acid delivery but also to accelerate the development of

novel nanoparticle systems.
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AA
AF647
AGO2
AIMD
aMD
ApoE
AUC
BMGP
bPEI
CG
CMC
CME
COM
CcVv
DFT
DLS
DMEM
DPG1/3
DPSM
DSPC
EE
eGFP
FBS
FES
Gal8
GalNAc
HBG
HBS
LDH
LF
LNP
MC3(H)

All Atom

Alexa Fluor 647

Argonaute 2

Ab Initio Molecular Dynamics
accelerated Molecular Dynamics
Apolipoprotein E

Area Under the Curve
bis-(monoacylglycero)-phosphate
branched Polyethylenimine
Coarse Grained

Critical Micellar Concentration
Clathrin-Mediated Endocytosis
Center Of Mass

Collective Variable

Density Functional Theory
Dynamic Light Scattering
Dulbecco’s Modified Eagle Medium
Glycolip-monosialotetrahexosylgangliosides
N-Palmitoyl-D-sphingomyelin
1,2-Distearoyl-sn-glycero-3-phosphocholine
Endosomal Escape

enhanced Green Fluorescent Protein
Fetal Bovine Serum

Free Energy Surface

Galectin 8

trivalent N- acetylgalactosamine
HEPES Buffered Glucose

HEPES Buffered Saline

Lactate Dehydrogenase
Lipofectamine 2000

Lipid Nanoparticle

Dlin-MC3-DMA
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MD
MEM
mRNA
Msd
MW
N/P
NEAA
NMR
NOE
OA
PAMAM
PBAE
PBS
PCL
PDI
pDMAEMA
PEG
PEI
PLGA
PLL
PME
PMF
POPC
POPS
PPP
QM
RDF
REMD
RISC
RNA
RNAI
SASA
SAXS
SD
siGFP
siNC

Molecular Dynamics

Minimum Essential Medium Eagle
messenger Ribonucleic Acid

Mean Square Displacement

Molecular Weight

Amine (N) to Phosphate (P) Ratio
Non-Essential Amino Acids

Nuclear Magnetic Resonance

Nuclear Overhauser Effect

Oleylamine

Poly(amidoamine)

Poly(beta-amino ester)

Phosphate Buffered Saline
Polycaprolactone

Polydispersity Index
Poly(2-(N,N-dimethylamino)ethyl methacrylate)
Poly(ethyleneglycol)

Polyethyleneimine

Poly(lactic acid-co-glycolic acid)
Poly(L-lysine)

Particle Mesh Ewald algorithm
Potential of Mean Force
Palmitoyloleoylphosphatidylcholine
1-Palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine
5 kDa-5 kDa-5 kDa PEI-PCL-PEI polymer
Quantum Mechanical Calculations
Radial Distribution Function

Replica Exchange Molecular Dynamics
RNA Induced Silencing Complex
Ribonucleic Acid

RNA Inteference

Solvent Accessible Surface Area
Small-Angle X-Ray Scattering
Standard Deviation

siRNA for the knockdown of eGFP

negative control siRNA
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SORT Selective ORgan Targeting

TEM Transmission Electron Microscopy
WHAM Weighted Histogram Analysis Method
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